FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Damineli, A Almeida, LA Blum, RD Damineli, DSC Navarete, F Rubinho, MS Teodoro, M AF Damineli, A. Almeida, L. A. Blum, R. D. Damineli, D. S. C. Navarete, F. Rubinho, M. S. Teodoro, M. TI Extinction law in the range 0.4-4.8 mu m and the 8620 angstrom DIB towards the stellar cluster Westerlund 1 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE dust, extinction; ISM: lines and bands; open clusters and associations: individual: Westerlund 1 ID RED CLUMP GIANTS; INNER MILKY-WAY; K-S BANDS; INTERSTELLAR EXTINCTION; GALACTIC-CENTER; INFRARED EXTINCTION; MASS SEGREGATION; OB SUPERGIANTS; STARS; BULGE AB The young stellar cluster Westerlund 1 (Wd 1: l = 339 degrees 6, b = -0.degrees 4) is one of the most massive in the local Universe, but accurate parameters are pending on better determination of its extinction and distance. Based on our photometry and data collected from other sources, we have derived a reddening law for the cluster line-of-sight representative of the Galactic plane (-5 degrees < b <+5 degrees) in the window 0.4-4.8 mu m: The power-law exponent alpha = 2.13 +/- 0.08 is much steeper than those published a decade ago (1.6-1.8) and our index R-V = 2.50 +/- 0.04 also differs from them, but in very good agreement with recent works based on deep surveys in the inner Galaxy. As a consequence, the total extinction A(Ks) = 0.74 +/- 0.08 (A(V) = 11.40 +/- 2.40) is substantially smaller than previous results (0.91-1.13), part of which (A(Ks) = 0.63 or A(V) = 9.66) is from the interstellar medium. The extinction in front of the cluster spans a range of Delta A(V) similar to 8.7 with a gradient increasing from SW to NE across the cluster face, following the same general trend of warm dust distribution. The map of the J - Ks colour index also shows a trend of reddening in this direction. We measured the equivalent width of the diffuse interstellar band at 8620 angstrom(the 'GAIA DIB') for Wd 1 cluster members and derived the relation A(Ks) = 0.612 EW - 0.191 EW2. This extends the Munari et al. relation, valid for EB-V < 1, to the non-linear regime (A(V) > 4). C1 [Damineli, A.; Almeida, L. A.; Navarete, F.; Rubinho, M. S.] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Rua Matao 1226,Cidade Univ, BR-05508090 Sao Paulo, SP, Brazil. [Blum, R. D.] Natl Opt Astron Observ, 950 N Cherry Ave, Tucson, AZ 85719 USA. [Damineli, D. S. C.] Univ Maryland, Cell Biol & Mol Genet Dept, College Pk, MD 20742 USA. [Damineli, D. S. C.] Inst Gulbenkian Ciencias, PhD Program Computat Biol, P-2780156 Oeiras, Portugal. [Teodoro, M.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 667, Greenbelt, MD 20771 USA. [Teodoro, M.] Univ Space Res Assoc, 7178 Columbia Gateway Dr, Columbia, MD 20146 USA. RP Damineli, A (reprint author), Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Rua Matao 1226,Cidade Univ, BR-05508090 Sao Paulo, SP, Brazil. EM augusto.damineli@gmail.com RI Almeida, L./G-7188-2012 FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP [2011/51680-6]; FAPESP [2013/18245-0, 2012/09716-6, 2013/11680-2] FX We thank an anonymous referee for the very productive questions/remarks which has improved our manuscript. We also thank M. Gennaro and A. Bonanos for critical comments on earlier versions of this paper. AD thanks to Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP for support through proc. 2011/51680-6. LAA acknowledges support from the FAPESP (2013/18245-0 and 2012/09716-6). FN acknowledges support from the FAPESP (2013/11680-2). This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France. Based on observations obtained at the CTIO, OPD/LNA/MCT, SOAR, ESO and Gemini South Observatory (GS). NR 54 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC PY 2016 VL 463 IS 3 BP 2653 EP 2666 DI 10.1093/mnras/stw2122 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ9SC UT WOS:000393566000029 ER PT J AU Roa, J AF Roa, Javier TI Non-conservative extension of Keplerian integrals and a new class of integrable system SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE acceleration of particles; radiation: dynamics; methods: analytical; celestial mechanics ID ALGEBRAIC 1ST INTEGRALS; CONSERVATION-LAWS; ARTIFICIAL SATELLITE; DYNAMIC-SYSTEMS; MOTION; EXISTENCE; DRAG AB The invariance of the Lagrangian under time translations and rotations in Kepler's problem yields the conservation laws related to the energy and angular momentum. Noether's theorem reveals that these same symmetries furnish generalized forms of the first integrals in a special non-conservative case, which approximates various physical models. The system is perturbed by a biparametric acceleration with components along the tangential and normal directions. A similarity transformation reduces the biparametric disturbance to a simpler uniparametric forcing along the velocity vector. The solvability conditions of this new problem are discussed, and closed-form solutions for the integrable cases are provided. Thanks to the conservation of a generalized energy, the orbits are classified as elliptic, parabolic, and hyperbolic. Keplerian orbits appear naturally as particular solutions to the problem. After characterizing the orbits independently, a unified form of the solution is built based on the Weierstrass elliptic functions. The new trajectories involve fundamental curves such as cardioids and logarithmic, sinusoidal, and Cotes' spirals. These orbits can represent the motion of particles perturbed by solar radiation pressure, of spacecraft with continuous-thrust propulsion, and some instances of Schwarzschild geodesics. Finally, the problem is connected with other known integrable systems in celestial mechanics. C1 [Roa, Javier] Tech Univ Madrid, Space Dynam Grp, Pza Cardenal Cisneros 3, E-28040 Madrid, Spain. [Roa, Javier] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Roa, J (reprint author), Tech Univ Madrid, Space Dynam Grp, Pza Cardenal Cisneros 3, E-28040 Madrid, Spain.; Roa, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM javier.roa@upm.es FU Spanish Ministry of Economy and Competitiveness [ESP2013-41634-P]; 'La Caixa' Doctoral Fellowship FX This work is part of the research project entitled 'Dynamical Analysis, Advanced Orbit Propagation and Simulation of Complex Space Systems' (ESP2013-41634-P) supported by the Spanish Ministry of Economy and Competitiveness. The author has been funded by a 'La Caixa' Doctoral Fellowship for he is deeply grateful to Obra Social 'La Caixa'. The present paper would not have been possible without the selfless help, support, and advice from Prof. Jesus Pelaez. An anonymous reviewer made valuable contributions to the final version of the manuscript. NR 57 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC PY 2016 VL 463 IS 3 BP 3204 EP 3219 DI 10.1093/mnras/stw2209 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ9SC UT WOS:000393566000073 ER PT J AU Uysal, F Dunn, Z Yeary, M Rincon, R AF Uysal, Faruk Dunn, Zachary Yeary, Mark Rincon, Rafael TI Application of Waveform Weighting for a Frequency-Invariant Transmit Beampattern SO IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE LA English DT Article ID WIDE-BAND; BEAM PATTERN; ARRAYS; DESIGN C1 [Uysal, Faruk; Dunn, Zachary; Yeary, Mark] Univ Oklahoma, Adv Radar Res Ctr, 3190 Monitor Ave, Norman, OK 73019 USA. [Uysal, Faruk] Delft Univ Technol, Microwave Sensing Syst & Signals, NL-2628 CD Delft, Netherlands. [Rincon, Rafael] NASA, Goddard Space Flight Ctr, Code 555, Greenbelt, MD 20770 USA. RP Uysal, F (reprint author), Univ Oklahoma, Adv Radar Res Ctr, 3190 Monitor Ave, Norman, OK 73019 USA.; Uysal, F (reprint author), Delft Univ Technol, Microwave Sensing Syst & Signals, NL-2628 CD Delft, Netherlands. EM f.uysal@tudelft.nl FU NASA [NNX13A-D37A] FX This work is partially supported by NASA grant NNX13A-D37A. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect those of NASA. NR 22 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8985 EI 1557-959X J9 IEEE AERO EL SYS MAG JI IEEE Aerosp. Electron. Syst. Mag. PD DEC PY 2016 VL 31 IS 12 BP 4 EP 12 DI 10.1109/MAES.2016.150201 PG 9 WC Engineering, Aerospace; Engineering, Electrical & Electronic SC Engineering GA EK5YT UT WOS:000394002800001 ER PT J AU Kong, XM Squire, K Li, EW LeDuff, P Rorrer, GL Tang, SN Chen, B Mckay, CP Navarro-Gonzalez, R Wang, AX AF Kong, Xianming Squire, Kenny Li, Erwen LeDuff, Paul Rorrer, Gregory L. Tang, Suning Chen, Bin Mckay, Christopher P. Navarro-Gonzalez, Rafael Wang, Alan X. TI Chemical and Biological Sensing Using Diatom Photonic Crystal Biosilica With In-Situ Growth Plasmonic Nanoparticles SO IEEE TRANSACTIONS ON NANOBIOSCIENCE LA English DT Article DE Biosensors; plasmonic nanoparticles; photonic crystals; surface-enhanced Raman scattering ID ENHANCED RAMAN-SCATTERING; SILVER ELECTRODE; WAVE-GUIDES; SURFACE; MELAMINE; XYLENE; SPECTROSCOPY; BENZENE; TOLUENE; LIGHT AB In this paper, we described a new type of bioenabled nano-plasmonic sensors based on diatom photonic crystal biosilica with in-situ growth silver nanoparticles and demonstrated label-free chemical and biological sensing based on surface-enhanced Raman scattering (SERs) from complex samples. Diatoms are photosynthetic marine micro-organisms that create their own skeletal shells of hydrated amorphous silica, called frustules, which possess photonic crystal-like hierarchical micro-&nanoscale periodic pores. Our research shows that such hybrid plasmonic-biosilica nanostructures formed by cost-effective and eco-friendly bottom-up processes can achieve ultra-high limit of detection for medical applications, food sensing, water/air quality monitoring and geological/space research. The enhanced sensitivity comes from the optical coupling of the guided-mode resonance of the diatom frustules and the localized surface plasmons of the silver nanoparticles. Additionally, the nanoporous, ultra-hydrophilic diatom biosilica with large surface-to-volume ratio can concentrate more analyte molecules to the surface of the SERS substrates, which can help to detect biomolecules that cannot be easily adsorbed by metallic nanoparticles. C1 [Kong, Xianming; Squire, Kenny; Li, Erwen; Wang, Alan X.] Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA. [LeDuff, Paul; Rorrer, Gregory L.] Oregon State Univ, Sch Chem Biol Environm Engn, Corvallis, OR 97331 USA. [Tang, Suning] Crystal Res Inc, 2711 Hillcrest Ave,Suite 208, Antioch, CA 94531 USA. [Chen, Bin; Mckay, Christopher P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Navarro-Gonzalez, Rafael] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ciudad Univ, Mexico City 04510, DF, Mexico. RP Wang, AX (reprint author), Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA. EM xianmingk@gmail.com; ksquire10@gmail.com; lie@onid.oregonstate.edu; leduffp@oregonstate.edu; gregory.rorrer@oregonstate.edu; suningtang@eocrystal.com; bin.chen-1@nasa.gov; chris.mckay@nasa.gov; navarro@nucleares.unam.mx; wang@oregonstate.edu RI Gonzalez, Rafael/D-1748-2009 FU National Institutes of Health [1R03EB018893, 9R42ES024023]; U.S. Department of Defense, Office of Naval Research, Synthetic Biology Program [N000141210313]; NASA Ames Research Center [NNX14CA26P, NNX15CA12C]; Universidad Nacional Autonoma de Mexico [DGAPA-IN109416]; National Council of Science and Technology of Mexico [220626] FX This technical effort was performed with support from the National Institutes of Health under Grant No. 1R03EB018893 and 9R42ES024023. This work was also supported by the U.S. Department of Defense, Office of Naval Research, Synthetic Biology Program, award Number N000141210313 and NASA Ames Research Center through research programs of contract numbers NNX14CA26P and NNX15CA12C, as well as Universidad Nacional Autonoma de Mexico (DGAPA-IN109416); National Council of Science and Technology of Mexico (220626). Asterisk indicates corresponding author. NR 57 TC 0 Z9 0 U1 4 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1536-1241 EI 1558-2639 J9 IEEE T NANOBIOSCI JI IEEE Trans. Nanobiosci. PD DEC PY 2016 VL 15 IS 8 BP 828 EP 834 DI 10.1109/TNB.2016.2636869 PG 7 WC Biochemical Research Methods; Nanoscience & Nanotechnology SC Biochemistry & Molecular Biology; Science & Technology - Other Topics GA EK7NB UT WOS:000394111400006 ER PT J AU Kacprzak, T Kirk, D Friedrich, O Amara, A Refregier, A Marian, L Dietrich, JP Suchyta, E Aleksic, J Bacon, D Becker, MR Bonnett, C Bridle, SL Chang, C Eifler, TF Hartley, WG Huff, EM Krause, E MacCrann, N Melchior, P Nicola, A Samuroff, S Sheldon, E Troxel, MA Weller, J Zuntz, J Abbott, TMC Abdalla, FB Armstrong, R Benoit-Levy, A Bernstein, GM Bernstein, RA Bertin, E Brooks, D Burke, DL Rosell, AC Kind, MC Carretero, J Castander, FJ Crocce, M D'Andrea, CB da Costa, LN Desai, S Diehl, HT Evrard, AE Neto, AF Flaugher, B Fosalba, P Frieman, J Gerdes, DW Goldstein, DA Gruen, D Gruendl, RA Gutierrez, G Honscheid, K Jain, B James, DJ Jarvis, M Kuehn, K Kuropatkin, N Lahav, O Lima, M March, M Marshall, JL Martini, P Miller, CJ Miquel, R Mohr, JJ Nichol, RC Nord, B Plazas, AA Romer, AK Roodman, A Rykoff, ES Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Swanson, MEC Tarle, G Thomas, D Vikram, V Walker, AR Zhang, Y AF Kacprzak, T. Kirk, D. Friedrich, O. Amara, A. Refregier, A. Marian, L. Dietrich, J. P. Suchyta, E. Aleksic, J. Bacon, D. Becker, M. R. Bonnett, C. Bridle, S. L. Chang, C. Eifler, T. F. Hartley, W. G. Huff, E. M. Krause, E. MacCrann, N. Melchior, P. Nicola, A. Samuroff, S. Sheldon, E. Troxel, M. A. Weller, J. Zuntz, J. Abbott, T. M. C. Abdalla, F. B. Armstrong, R. Benoit-Levy, A. Bernstein, G. M. Bernstein, R. A. Bertin, E. Brooks, D. Burke, D. L. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Castander, F. J. Crocce, M. D'Andrea, C. B. da Costa, L. N. Desai, S. Diehl, H. T. Evrard, A. E. Fausti Neto, A. Flaugher, B. Fosalba, P. Frieman, J. Gerdes, D. W. Goldstein, D. A. Gruen, D. Gruendl, R. A. Gutierrez, G. Honscheid, K. Jain, B. James, D. J. Jarvis, M. Kuehn, K. Kuropatkin, N. Lahav, O. Lima, M. March, M. Marshall, J. L. Martini, P. Miller, C. J. Miquel, R. Mohr, J. J. Nichol, R. C. Nord, B. Plazas, A. A. Romer, A. K. Roodman, A. Rykoff, E. S. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Swanson, M. E. C. Tarle, G. Thomas, D. Vikram, V. Walker, A. R. Zhang, Y. CA DES Collaboration TI Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; methods: data analysis; methods: statistical; cosmological parameter; cosmology: observations; dark matter ID WEAK-LENSING SURVEYS; PRIMORDIAL NON-GAUSSIANITY; BONN DEEP SURVEY; COSMIC SHEAR; INTRINSIC ALIGNMENTS; GALAXY CLUSTERS; CROSS-CORRELATION; SHAPE MEASUREMENT; NOISE BIAS; COVARIANCE-MATRIX AB Shear peak statistics has gained a lot of attention recently as a practical alternative to the two-point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg(2) field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range 0 < S/N < 4. To predict the peak counts as a function of cosmological parameters, we use a suite of N-body simulations spanning 158 models with varying Omega(m) and sigma(8), fixing w = -1, Omega(b) = 0.04, h = 0.7 and n(s) = 1, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure sigma(8)(Omega(m)/0.3)(0.6) = 0.77 +/- 0.07, after marginalizing over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending and source contamination by cluster members. These models indicate that peaks with S/N > 4 would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two-point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. We discuss prospects for future peak statistics analysis with upcoming DES data. C1 [Kacprzak, T.; Amara, A.; Refregier, A.; Chang, C.; Hartley, W. G.; Nicola, A.] Swiss Fed Inst Technol, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. [Kirk, D.; Hartley, W. G.; Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Friedrich, O.; Weller, J.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Friedrich, O.; Weller, J.] Ludwig Maximilians Univ Munchen, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Marian, L.; Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Dietrich, J. P.; Weller, J.; Desai, S.; Mohr, J. J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Dietrich, J. P.; Desai, S.; Mohr, J. J.] Ludwig Maximilians Univ Munchen, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Suchyta, E.; Bernstein, G. M.; Jain, B.; Jarvis, M.; March, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Aleksic, J.; Bonnett, C.; D'Andrea, C. B.; Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Bacon, D.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Becker, M. R.; Krause, E.; Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Becker, M. R.; Carretero, J.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Bridle, S. L.; MacCrann, N.; Samuroff, S.; Troxel, M. A.; Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Huff, E. M.; Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Huff, E. M.; Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Melchior, P.; Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Abbott, T. M. C.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Benoit-Levy, A.; Bertin, E.] Inst Astrophys Paris, UMR 7095, CNRS, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] UPMC Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Carnero Rosell, A.; da Costa, L. N.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Sobreira, F.] Lab Interinst & Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Lima, M.] CSIC, IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Bellaterra, Barcelona, Spain. [D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Diehl, H. T.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Zhang, Y.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Complutense 40, E-28040 Madrid, Spain. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Kacprzak, T (reprint author), Swiss Fed Inst Technol, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. EM tomasz.kacprzak@phys.ethz.ch OI Abdalla, Filipe/0000-0003-2063-4345; Sobreira, Flavia/0000-0002-7822-0658 FU US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Dark Energy Survey; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under European Union, ERC [240672, 291329, 306478]; European Research Council [FP7/291329]; ETHZ ISG; Brutus cluster team; Dark Universe by Deutsche Forschungsgemeinschaft (DFG) [SFB-Transregio 33] FX Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986 and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329 and 306478.; DK acknowledges support from a European Research Council Advanced Grant FP7/291329. TK thanks the support of ETHZ ISG and the Brutus cluster team. OF was supported by SFB-Transregio 33 'The Dark Universe' by the Deutsche Forschungsgemeinschaft (DFG). NR 125 TC 4 Z9 4 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC PY 2016 VL 463 IS 4 BP 3653 EP 3673 DI 10.1093/mnras/stw2070 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ9SW UT WOS:000393568200019 ER PT J AU Ji, SQ Oh, SP Ruszkowski, M Markevitch, M AF Ji, Suoqing Oh, S. Peng Ruszkowski, M. Markevitch, M. TI The efficiency of magnetic field amplification at shocks by turbulence SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE elementary particles; magnetic fields; radiation mechanisms: non-thermal; cosmic rays; galaxies: clusters: general ID YOUNG SUPERNOVA-REMNANTS; INTERSTELLAR-MEDIUM; POWER SPECTRUM; PARTICLE-ACCELERATION; SUNYAEV-ZELDOVICH; CLUSTER PHYSICS; GALAXY CLUSTERS; RADIO-EMISSION; COSMIC-RAYS; DRIVEN TURBULENCE AB Turbulent dynamo field amplification has often been invoked to explain the strong field strengths in thin rims in supernova shocks (similar to 100 mu G) and in radio relics in galaxy clusters (similar to mu G). We present high-resolution magnetohydrodynamic simulations of the interaction between pre-shock turbulence, clumping and shocks, to quantify the conditions under which turbulent dynamo amplification can be significant. We demonstrate numerically converged field amplification which scales with Alfven Mach number, B/B-0 proportional to M-A, up to M-A similar to 150. This implies that the post-shock field strength is relatively independent of the seed field. Amplification is dominated by compression at low M-A, and stretching (turbulent amplification) at high M-A. For high M-A, the B-field grows exponentially and saturates at equipartition with turbulence, while the vorticity jumps sharply at the shock and subsequently decays; the resulting field is orientated predominately along the shock normal (an effect only apparent in 3D and not 2D). This agrees with the radial field bias seen in supernova remnants. By contrast, for low M-A, field amplification is mostly compressional, relatively modest, and results in a predominantly perpendicular field. The latter is consistent with the polarization seen in radio relics. Our results are relatively robust to the assumed level of gas clumping. Our results imply that the turbulent dynamo may be important for supernovae, but is only consistent with the field strength, and not geometry, for cluster radio relics. For the latter, this implies strong pre-existing B-fields in the ambient cluster outskirts. C1 [Ji, Suoqing; Oh, S. Peng] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Ruszkowski, M.] Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA. [Ruszkowski, M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Markevitch, M.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Astrophys Sci Div, Code 662, Greenbelt, MD 20771 USA. RP Ji, SQ (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM suoqing@physics.ucsb.edu OI Ji, Suoqing/0000-0001-9658-0588 FU NASA [NNX12AG73G, NNX15AK81G, ATP12-0017]; NSF [NSF 1008454] FX We thank Mike McCourt for helpful conversations and insightful comments on a draft. SJ and SPO are supported by NASA grants NNX12AG73G and NNX15AK81G. MR acknowledges NSF grant NSF 1008454 and NASA ATP12-0017. This research has used the Extreme Science and Engineering Discovery Environment (XSEDE allocations TG-AST140058 and TG-AST140086). We have made use of NASA's Astrophysics Data System and the yt astrophysics analysis software suite (Turk et al. 2010). NR 71 TC 2 Z9 2 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC PY 2016 VL 463 IS 4 BP 3989 EP 4003 DI 10.1093/mnras/stw2320 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ9SW UT WOS:000393568200039 ER PT J AU Zhou, G Kedziora-Chudczer, L Bailey, J Marshall, JP Bayliss, DDR Stockdale, C Nelson, P Tan, TG Rodriguez, JE Tinney, CG Dragomir, D Colon, K Shporer, A Bento, J Sefako, R Horne, K Cochran, W AF Zhou, G. Kedziora-Chudczer, L. Bailey, J. Marshall, J. P. Bayliss, D. D. R. Stockdale, C. Nelson, P. Tan, T. G. Rodriguez, J. E. Tinney, C. G. Dragomir, D. Colon, K. Shporer, A. Bento, J. Sefako, R. Horne, K. Cochran, W. TI Simultaneous infrared and optical observations of the transiting debris cloud around WD 1145+017 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE planets and satellites: individual: WD 1145+017; white dwarfs ID ANGLO-AUSTRALIAN TELESCOPE; WHITE-DWARF G29-38; DUST CLOUD; DATA RELEASE; SDSS; CANDIDATE; DISCOVERY; FREQUENCY; GRAINS; STARS AB We present multiwavelength photometric monitoring of WD 1145+017, a white dwarf exhibiting periodic dimming events interpreted to be the transits of orbiting, disintegrating planetesimals. Our observations include the first set of near-infrared light curves for the object, obtained on multiple nights over the span of 1 month, and recorded multiple transit events with depths varying between similar to 20 and 50 per cent. Simultaneous near-infrared and optical observations of the deepest and longest duration transit event were obtained on two epochs with the Anglo-Australian Telescope and three optical facilities, over the wavelength range of 0.5-1.2 mu m. These observations revealed no measurable difference in transit depths for multiple photometric pass bands, allowing us to place a 2 sigma lower limit of 0.8 mu m on the grain size in the putative transiting debris cloud. This conclusion is consistent with the spectral energy distribution of the system, which can be fit with an optically thin debris disc with minimum particle sizes of 10(-3)(+5) mu m. C1 [Zhou, G.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Kedziora-Chudczer, L.; Bailey, J.; Marshall, J. P.; Tinney, C. G.] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia. [Kedziora-Chudczer, L.; Bailey, J.; Marshall, J. P.; Tinney, C. G.] Univ New South Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. [Bayliss, D. D. R.] Univ Geneva, Astron Observ, 51 Ch Maillettes, CH-1290 Versoix, Switzerland. [Stockdale, C.] Hazelwood Observ, Melbourne, Vic, Australia. [Nelson, P.] Ellinbank Observ, Melbourne, Vic, Australia. [Tan, T. G.] Perth Exoplanet Survey Telescope, Perth, WA, Australia. [Rodriguez, J. E.] Vanderbilt Univ, Dept Phys & Astron, Stevenson Ctr 6301, Nashville, TN 37235 USA. [Dragomir, D.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Dragomir, D.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Colon, K.] NASA, Ames Res Ctr, M-S 244-30, Moffett Field, CA 94035 USA. [Colon, K.] Bay Area Environm Res Inst, 625 2nd St Ste 209, Petaluma, CA 94952 USA. [Shporer, A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Bento, J.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Sefako, R.] SAAO, POB 9, ZA-7935 Observatory, South Africa. [Horne, K.] Univ St Andrews, SUPA Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Cochran, W.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. RP Zhou, G (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM george.zhou@cfa.harvard.edu OI Tan, Thiam-Guan/0000-0001-5603-6895 FU UNSW Vice-Chancellor's Postdoctoral Fellowship; NASA - Space Telescope Science Institute [HST-HF2-51372.001-A]; NASA [NAS5-26555] FX GZ thanks insightful discussions with Andrew Vanderburg and Bryce Croll. JPM is supported by a UNSW Vice-Chancellor's Postdoctoral Fellowship. We thank the support staff at the AAO, who made the continued IRIS2 observations possible. This work makes use of observations from the LCOGT network. DD acknowledges support provided by NASA through Hubble Fellowship grant HST-HF2-51372.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. NR 48 TC 6 Z9 6 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC PY 2016 VL 463 IS 4 BP 4422 EP 4432 DI 10.1093/mnras/stw2286 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ9SW UT WOS:000393568200068 ER PT J AU Zuidema, P Chang, P Medeiros, B Kirtman, BP Mechoso, R Schneider, EK Toniazzo, T Richter, I Small, RJ Bellomo, K Brandt, P de Szoeke, S Farrar, JT Jung, E Kato, S Li, MK Patricola, C Wang, ZY Wood, R Xu, Z AF Zuidema, Paquita Chang, Ping Medeiros, Brian Kirtman, Ben P. Mechoso, Roberto Schneider, Edwin K. Toniazzo, Thomas Richter, Ingo Small, R. Justin Bellomo, Katinka Brandt, Peter de Szoeke, Simon Farrar, J. Thomas Jung, Eunsil Kato, Seiji Li, Mingkui Patricola, Christina Wang, Zaiyu Wood, Robert Xu, Zhao TI CHALLENGES AND PROSPECTS FOR REDUCING COUPLED CLIMATE MODEL SST BIASES IN THE EASTERN TROPICAL ATLANTIC AND PACIFIC OCEANS The US CLIVAR Eastern Tropical Oceans Synthesis Working Group SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID GENERAL-CIRCULATION MODELS; COMMUNITY ATMOSPHERE MODEL; NUMERICAL WEATHER PREDICTION; SUBTROPICAL SOUTH-AMERICA; LOW-LEVEL JET; EQUATORIAL ATLANTIC; SOUTHEASTERN PACIFIC; SEASONAL CYCLE; CLOUD BIASES; SATELLITE-OBSERVATIONS AB Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components; on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model-dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational-modeling synergism exist. C1 [Zuidema, Paquita; Kirtman, Ben P.; Jung, Eunsil] Univ Miami, Miami, FL USA. [Chang, Ping; Patricola, Christina] Texas A&M, College Stn, TX USA. [Chang, Ping] Ocean Univ China, Collaborat Innovat Ctr Marine Sci & Technol, Qingdao, Peoples R China. [Medeiros, Brian; Small, R. Justin] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Mechoso, Roberto] Univ Calif Los Angeles, Los Angeles, CA USA. [Schneider, Edwin K.; Wang, Zaiyu] George Mason Univ, Fairfax, VA 22030 USA. [Toniazzo, Thomas] Univ Bergen, Bergen, Norway. [Richter, Ingo] Japan Agcy Marine Earth Sci & Technol, Yokohama, Kanagawa, Japan. [Bellomo, Katinka] Columbia Univ, New York, NY USA. [Brandt, Peter] GEOMAR, Kiel, Germany. [de Szoeke, Simon] Oregon State Univ, Corvallis, OR 97331 USA. [Farrar, J. Thomas] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Kato, Seiji] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Li, Mingkui; Xu, Zhao] Ocean Univ China, Qingdao, Peoples R China. [Wood, Robert] Univ Washington, Seattle, WA 98195 USA. RP Zuidema, P (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. EM pzuidema@rsmas.miami.edu RI Brandt, Peter/C-8254-2013; Zuidema, Paquita/C-9659-2013; Farrar, John T./F-3532-2012 OI Brandt, Peter/0000-0002-9235-955X; Zuidema, Paquita/0000-0003-4719-372X; Farrar, John T./0000-0003-3495-1990 FU NSF [AGS-1233874, OCE-0745508, AGS-1338427]; Regional and Global Climate Modeling Program of the U.S. Department of Energy's Office of Science [DE-FC02-97ER62402]; U.S. NSF [OCE-1334707, AGS-1462127]; NOAA [NA11OAR4310154, NA14OAR4310278, NA14OAR4310160]; China's National Basic Research Priorities Programme [2013CB956204]; Natural Science Foundation of China [41222037, 41221063]; NASA [NNX14AM71G, NNX14AM19G]; BMBF SACUS project [03G0837A]; European Union [603521]; National Monsoon Mission, Ministry of Earth Sciences, India FX More details can be found within the U.S. CLIVAR white paper upon which this publication is based (www.usclivar.org). We thank Mike Patterson of U.S. CLIVAR for his initial support of the working group, and his continued and patient interest in its progress to the completion of this contribution. Meghan Cronin is thanked for helping to clarify the historical timeline; many pertinent documents can be found online (www.usclivar.org, www.clivar.org, and http://iges.org/ctbp). PZ, BK, and RM acknowledge support from NOAA Grant NA14OAR4310278, and PZ acknowledges support from NSF AGS-1233874. BM acknowledges support from the Regional and Global Climate Modeling Program of the U.S. Department of Energy's Office of Science, Cooperative Agreement DE-FC02-97ER62402. PC acknowledges support from U.S. NSF Grants OCE-1334707 and AGS-1462127, and NOAA Grant NA11OAR4310154. PC also acknowledges support from China's National Basic Research Priorities Programme (2013CB956204) and the Natural Science Foundation of China (41222037 and 41221063). TF acknowledges support from NSF Grant OCE-0745508 and NASA Grant NNX14AM71G. PB acknowledges support from the BMBF SACUS (03G0837A) project. TT and PB acknowledge support from the European Union Seventh Framework Programme (FP7 20072013) under Grant Agreement 603521 for the PREFACE Project. ES and ZW acknowledge support from NSF AGS-1338427, NOAA NA14OAR4310160, and NASA NNX14AM19G; and ES is grateful for further support from the National Monsoon Mission, Ministry of Earth Sciences, India. NR 130 TC 1 Z9 1 U1 5 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD DEC PY 2016 VL 97 IS 12 BP 2305 EP + DI 10.1175/BAMS-D-15-00274.1 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI3CN UT WOS:000392367400009 ER PT J AU Purdy, AJ Fisher, JB Goulden, ML Famiglietti, JS AF Purdy, A. J. Fisher, J. B. Goulden, M. L. Famiglietti, J. S. TI Ground heat flux: An analytical review of 6 models evaluated at 88 sites and globally SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID NET-RADIATION RATIO; WACMOS-ET PROJECT; ENERGY-BALANCE; SURFACE-TEMPERATURE; VEGETATION INDEXES; SOIL; EVAPORATION; EVAPOTRANSPIRATION; WATER; VARIABILITY AB Uncertainty in ground heat flux (G) means that evaluation of the other terms in the surface energy balance (e.g., latent and sensible heat fluxes (LE and H)) remains problematic. Algorithms that calculate LE and H require available energy, the difference between net radiation, R-NET, and G. There are a wide range of approaches to model G for large-scale applications, with a subsequent wide range of estimates and accuracies. We provide the largest review of these methods to date (N = 6), evaluating modeled G against measured G from 88 FLUXNET sites. The instantaneous midday variability in G is best captured by models forced with net radiation, while models forced by temperature show the least error at both instantaneous and daily time scales. We produce global decadal data sets of G to illustrate regional and seasonal sensitivities, as well as uncertainty. Global model mean midmorning instantaneous G is highest during September, October, and November at 63.42 (+/- 16.84) Wm(-2), while over December, January, and February G is lowest at 53.86 (+/- 18.09) Wm(-2) but shows greater intermodel uncertainty. Results from this work have the potential to improve evapotranspiration estimates and guide appropriate G model selection and development for various land uses. C1 [Purdy, A. J.; Goulden, M. L.; Famiglietti, J. S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Fisher, J. B.; Famiglietti, J. S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Purdy, AJ (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM ajpurdy@uci.edu FU AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program) [DE-FG02-04ER63917, DE-FG02-04ER63911]; AfriFlux; AsiaFlux; CarboAfrica; CarboEuropeIP; CarboItaly; CarboMont; ChinaFlux; FLUXNET-Canada; CFCAS; NSERC; BIOCAP; Environment Canada; NRCan; GreenGrass; KoFlux; LBA; NECC; OzFlux; TCOS-Siberia; USCCC; FAO-GTOS-TCO; iLEAPS; Max Planck Institute for Biogeochemistry; National Science Foundation; University of Tuscia; Universite Laval; U.S. Department of Energy; NASA's Science Utilization of the Soil Moisture Active-Passive Mission (SUSMAP); NASA's Earth and Space Science Fellowship (NESSF) FX This work used eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, FLUXNET-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, and USCCC. We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Universite Laval, Environment Canada, and U.S. Department of Energy and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California-Berkeley, and the University of Virginia. Research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Support was provided by NASA's Science Utilization of the Soil Moisture Active-Passive Mission (SUSMAP) and NASA's Earth and Space Science Fellowship (NESSF). Code used for this analysis will be available upon requests to corresponding author. All data used in this study are open access and available through FLUXNET or NASA. The MOD13C1 and MOD11C1 were retrieved from the online Data Pool, courtesy of the NASA EOSDIS Land Processes Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. NR 38 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD DEC PY 2016 VL 121 IS 12 BP 3045 EP 3059 DI 10.1002/2016JG003591 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA EJ3TL UT WOS:000393134800010 ER PT J AU Lee, YJ Matrai, PA Friedrichs, MAM Saba, VS Aumont, O Babin, M Buitenhuis, ET Chevallier, M de Mora, L Dessert, M Dunne, JP Ellingsen, IH Feldman, D Frouin, R Gehlen, M Gorgues, T Ilyina, T Jin, MB John, JG Lawrence, J Manizza, M Menkes, CE Perruche, C Le Fouest, V Popova, EE Romanou, A Samuelsen, A Schwinger, J Seferian, R Stock, CA Tjiputra, J Tremblay, B Ueyoshi, K Vichi, M Yool, A Zhang, JL AF Lee, Younjoo J. Matrai, Patricia A. Friedrichs, Marjorie A. M. Saba, Vincent S. Aumont, Olivier Babin, Marcel Buitenhuis, Erik T. Chevallier, Matthieu de Mora, Lee Dessert, Morgane Dunne, John P. Ellingsen, Ingrid H. Feldman, Doron Frouin, Robert Gehlen, Marion Gorgues, Thomas Ilyina, Tatiana Jin, Meibing John, Jasmin G. Lawrence, Jon Manizza, Manfredi Menkes, Christophe E. Perruche, Coralie Le Fouest, Vincent Popova, Ekaterina E. Romanou, Anastasia Samuelsen, Annette Schwinger, Jorg Seferian, Roland Stock, Charles A. Tjiputra, Jerry Tremblay, Bruno Ueyoshi, Kyozo Vichi, Marcello Yool, Andrew Zhang, Jinlun TI Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID GENERAL-CIRCULATION MODEL; SEA-ICE MODEL; EARTH SYSTEM MODEL; LINE SIMULATION CHARACTERISTICS; MARINE PRIMARY PRODUCTION; ECOSYSTEM MODEL; PHYTOPLANKTON BLOOMS; CANADA BASIN; BARENTS SEA; SKILL ASSESSMENT AB The relative skill of 21 regional and global biogeochemical models was assessed in terms of how well the models reproduced observed net primary productivity (NPP) and environmental variables such as nitrate concentration (NO3), mixed layer depth (MLD), euphotic layer depth (Z(eu)), and sea ice concentration, by comparing results against a newly updated, quality-controlled in situ NPP database for the Arctic Ocean (1959-2011). The models broadly captured the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP by varying degrees in spite of overestimating surface NO3, MLD, and Z(eu) throughout the regions. Among the models, iNPP exhibited little difference over sea ice condition (ice-free versus ice-influenced) and bottom depth (shelf versus deep ocean). The models performed relatively well for the most recent decade and toward the end of Arctic summer. In the Barents and Greenland Seas, regional model skill of surface NO3 was best associated with how well MLD was reproduced. Regionally, iNPP was relatively well simulated in the Beaufort Sea and the central Arctic Basin, where in situ NPP is low and nutrients are mostly depleted. Models performed less well at simulating iNPP in the Greenland and Chukchi Seas, despite the higher model skill in MLD and sea ice concentration, respectively. iNPP model skill was constrained by different factors in different Arctic Ocean regions. Our study suggests that better parameterization of biological and ecological microbial rates (phytoplankton growth and zooplankton grazing) are needed for improved Arctic Ocean biogeochemical modeling. C1 [Lee, Younjoo J.; Matrai, Patricia A.] Bigelow Lab Ocean Sci, East Boothbay, ME 04544 USA. [Lee, Younjoo J.] Naval Postgrad Sch, Dept Oceanog, Monterey, CA 93943 USA. [Friedrichs, Marjorie A. M.] Coll William & Mary, Virginia Inst Marine Sci, Gloucester Point, VA USA. [Saba, Vincent S.] Princeton Univ, Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr,Geophys Fluid Dynam L, Princeton, NJ 08544 USA. [Aumont, Olivier; Menkes, Christophe E.] Univ Paris 06, Lab Ocean Climat Exploitat & Applicat Numer, Inst Pierre Simon Laplace, CNRS,IRD, Paris, France. [Babin, Marcel] Univ Laval, CNRS, Takuvik Joint Int Lab, Quebec City, PQ, Canada. [Buitenhuis, Erik T.] Univ East Anglia, Sch Environm Sci, Norwich, Norfolk, England. [Chevallier, Matthieu; Seferian, Roland] CNRS, Ctr Natl Rech Meteorol, Unite Mixte Rech Meteo France 3589, Toulouse, France. [de Mora, Lee] Plymouth Marine Lab, Plymouth, Devon, England. [Dessert, Morgane; Gorgues, Thomas] UBO, Lab Oceanog Phys & Spatiale, CNRS, IFREMER,IRD,Inst Univ & Europeen Mer, Plouzane, France. [Dunne, John P.; John, Jasmin G.; Stock, Charles A.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Ellingsen, Ingrid H.] SINTEF Fisheries & Aquaculture, Trondheim, Norway. [Feldman, Doron; Romanou, Anastasia] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Frouin, Robert; Ueyoshi, Kyozo] Univ Calif, Scripps Inst Oceanog, Climate Atmospher Sci & Phys Oceanog Div, La Jolla, CA USA. [Gehlen, Marion] Inst Pierre Simon Laplace, Lab Sci Climat & Environm, Gif Sur Yvette, France. [Ilyina, Tatiana] Max Planck Inst Meteorol, Hamburg, Germany. [Jin, Meibing] Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99701 USA. [Jin, Meibing] Qingdao Natl Lab Marine Sci & Technol, Lab Reg Oceanog & Numer Modeling, Qingdao, Peoples R China. [Lawrence, Jon; Popova, Ekaterina E.; Yool, Andrew] Univ Southampton, Natl Oceanog Ctr, Southampton, Hants, England. [Manizza, Manfredi] Univ Calif, Scripps Inst Oceanog, Geosci Res Div, La Jolla, CA USA. [Perruche, Coralie] Mercator Ocean, Toulouse, France. [Le Fouest, Vincent] Univ La Rochelle, LIttoral Environm & Soc, La Rochelle, France. [Romanou, Anastasia] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Samuelsen, Annette] Nansen Environm & Remote Sensing Ctr, Bergen, Norway. [Samuelsen, Annette] Hjort Ctr Marine Ecosyst Dynam, Bergen, Norway. [Schwinger, Jorg; Tjiputra, Jerry] Bjerknes Ctr Climate Res, Uni Res Climate, Bergen, Norway. [Tremblay, Bruno] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ, Canada. [Vichi, Marcello] Univ Cape Town, Dept Oceanog, Cape Town, South Africa. [Vichi, Marcello] Univ Cape Town, Marine Res Inst, Cape Town, South Africa. [Zhang, Jinlun] Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA. RP Lee, YJ; Matrai, PA (reprint author), Bigelow Lab Ocean Sci, East Boothbay, ME 04544 USA.; Lee, YJ (reprint author), Naval Postgrad Sch, Dept Oceanog, Monterey, CA 93943 USA. EM ylee@bigelow.org; pmatrai@bigelow.org RI Popova, Ekaterina/B-4520-2012; Buitenhuis, Erik/A-7692-2012; menkes, christophe/H-9085-2016; OI Tjiputra, Jerry/0000-0002-4600-2453; Buitenhuis, Erik/0000-0001-6274-5583; menkes, christophe/0000-0002-1457-9696; Saba, Vincent/0000-0002-2974-4826; Friedrichs, Marjorie/0000-0003-2828-7595; le fouest, vincent/0000-0003-4295-9714 FU National Aeronautics and Space Agency (NASA) Ocean Biology and Biogeochemistry (OBB) program [NNX13AE81G]; project "Green Mercator" through national program CNRS/LEFE/INSU; NSF Office of Polar Programs [PLR-1417925, PLR-1416920]; FP7 MyOcean2 project [283367]; Research Council of Norway [239965/RU]; NASA Cryosphere program [NNX15AG68G] FX This project was funded by the National Aeronautics and Space Agency (NASA) Ocean Biology and Biogeochemistry (OBB) program (NNX13AE81G). We thank the anonymous reviewers for careful reading and constructive comments, and also thank Charlotte Laufkotter for thoughtful suggestions. The project "Green Mercator" provided funding to M. Gehlen and C. Perruche through the national program CNRS/LEFE/INSU. M. Jin's contribution was supported by the NSF Office of Polar Programs (PLR-1417925, and PLR-1416920). A. Samuelsen acknowledges the projects FP7 MyOcean2 (project number 283367) and PAVE (Polish-Norwegian Research Program) and a grant of CPU time from the Norwegian Supercomputing Project (NOTUR2). J. Tjiputra acknowledges the Research Council of Norway funded project ORGANIC (239965/RU). J. Zhang's contribution was supported by the NASA Cryosphere program (NNX15AG68G). R. Seferian and M. Chevallier thank Meteo-France/DSI supercomputing center and the support of the team in charge of the CNRM-CM climate model. Upon publication, the in situ data will be available for academic purposes through the NASA SeaWiFS Bio-optical Archive and Storage System (http://seabass.gsfc.nasa.gov/), including NPP, NO3, and Zeu. NR 213 TC 0 Z9 0 U1 9 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD DEC PY 2016 VL 121 IS 12 BP 8635 EP 8669 DI 10.1002/2016JC011993 PG 35 WC Oceanography SC Oceanography GA EJ3VN UT WOS:000393140400013 ER PT J AU Orton, PM Hall, TM Talke, SA Blumberg, AF Georgas, N Vinogradov, S AF Orton, P. M. Hall, T. M. Talke, S. A. Blumberg, A. F. Georgas, N. Vinogradov, S. TI A validated tropical-extratropical flood hazard assessment for New York Harbor SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID STORM SURGES; CYCLONE INTENSITY; CLIMATE-CHANGE; NEW-JERSEY; WIND; CITY; MODEL; OCEAN; WAVE; HURRICANES AB Recent studies of flood risk at New York Harbor (NYH) have shown disparate results for the 100 year storm tide, providing an uncertain foundation for the flood mitigation response after Hurricane Sandy. Here we present a flood hazard assessment that improves confidence in our understanding of the region's present-day potential for flooding, by separately including the contribution of tropical cyclones (TCs) and extratropical cyclones (ETCs), and validating our modeling study at multiple stages against historical observations. The TC assessment is based on a climatology of 606 synthetic storms developed from a statistical-stochastic model of North Atlantic TCs. The ETC assessment is based on simulations of historical storms with many random tide scenarios. Synthetic TC landfall rates and the final TC and ETC flood exceedance curves are all shown to be consistent with curves computed using historical data, within 95% confidence ranges. Combining the ETC and TC results together, the 100 year return period storm tide at NYH is 2.70 m (2.51-2.92 at 95% confidence), and Hurricane Sandy's storm tide of 3.38 m was a 260 year (170-420) storm tide. Deeper analyses of historical flood reports from estimated Category-3 hurricanes in 1788 and 1821 lead to new estimates and reduced uncertainties for their floods and show that Sandy's storm tide was the largest at NYH back to at least 1700. The flood exceedance curves for ETCs and TCs have sharply different slopes due to their differing meteorology and frequency, warranting separate treatment in hazard assessments. C1 [Orton, P. M.; Blumberg, A. F.; Georgas, N.; Vinogradov, S.] Stevens Inst Technol, Davidson Lab, Hoboken, NJ 07030 USA. [Hall, T. M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Talke, S. A.] Portland State Univ, Dept Civil & Environm Engn, Portland, OR 97207 USA. [Vinogradov, S.] NOAA, Silver Spring, MD USA. RP Orton, PM (reprint author), Stevens Inst Technol, Davidson Lab, Hoboken, NJ 07030 USA. EM philip.orton@stevens.edu FU NASA [NNX12AI28G, NNX15AD61G]; NASA's Research Opportunities in Space and Earth Science ROSES grant [NNX14AD48G]; NOAA's Regional Integrated Sciences and Assessments (RISA) program [NA10OAR4310212]; NASA; U.S. Army Corps of Engineers award [W1927N-14-2-0015]; NSF [CNS-0855217, CNS-0958379, ACI-1126113] FX Work by P.O., A.B., N.G., and S.V. was funded by the NASA Centers call for support of the National Climate Assessment (Hall, PI; agreements NNX12AI28G and NNX15AD61G), NASA's Research Opportunities in Space and Earth Science ROSES-2012 (grant NNX14AD48G), and NOAA's Regional Integrated Sciences and Assessments (RISA) program (award NA10OAR4310212). Work by T.H. was also funded by the NASA projects listed above. Work by S.T. was funded by the U.S. Army Corps of Engineers (award W1927N-14-2-0015). Supercomputer resources were utilized under a grant of computer time from the City University of New York High Performance Computing Center under NSF grants CNS-0855217, CNS-0958379, and ACI-1126113. This publication utilizes meteorological reanalyses constructed in part using data from NASA satellites/instruments, QuikSCAT, NSCAT and TOPEX/ POSEIDON, in some cases processed and made available by NASA's Jet Propulsion Laboratory. The model data, compiled NOAA water elevation observations, and Matlab codes necessary to reproduce the study are available at http://personal.stevens.edu/similar to porton/Orton_etal_JGR16.zip. NR 82 TC 0 Z9 0 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD DEC PY 2016 VL 121 IS 12 BP 8904 EP 8929 DI 10.1002/2016JC011679 PG 26 WC Oceanography SC Oceanography GA EJ3VN UT WOS:000393140400028 ER PT J AU Hussain, E Hooper, A Wright, TJ Walters, RJ Bekaert, DPS AF Hussain, Ekbal Hooper, Andrew Wright, Tim J. Walters, Richard J. Bekaert, David P. S. TI Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped InSAR measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID SATELLITE RADAR INTERFEROMETRY; 1999 IZMIT EARTHQUAKE; MARMARA SEA REGION; ISMETPASA SEGMENT; TURKEY IMPLICATIONS; EASTERN ANATOLIA; GPS OBSERVATIONS; ASEISMIC SLIP; PLATE MOTION; DEFORMATION AB The North Anatolian Fault (NAF) is a major tectonic feature in the Middle East and is the most active fault in Turkey. The central portion of the NAF is a region of Global Navigation Satellite Systems (GNSS) scarcity. Previous studies of interseismic deformation have focused on the aseismic creep near the town of Ismetpasa using radar data acquired in a single line-of-sight direction, requiring several modeling assumptions. We have measured interseismic deformation across the NAF using both ascending and descending data from the Envisat satellite mission acquired between 2003 and 2010. Rather than rejecting incorrectly unwrapped areas in the interferograms, we develop a new iterative unwrapping procedure for small baseline interferometric synthetic aperture radar (InSAR) processing that expands the spatial coverage. Our method corrects unwrapping errors iteratively and increases the robustness of the unwrapping procedure. We remove long wavelength trends from the InSAR data using GNSS observations and deconvolve the InSAR velocities into fault-parallel motion. Profiles of fault-parallel velocity reveal a systematic eastward decrease in fault slip rate from 30 mm/yr (25-34, 95% confidence interval (CI)) to 21 mm/yr (14-27, 95% CI) over a distance of similar to 200 km. Direct offset measurements across the fault reveal fault creep along a similar to 130 km section of the central NAF, with an average creep rate of 8 +/- 2 mm/yr and a maximum creep rate of 14 +/- 2 mm/yr located similar to 30 km east of Ismetpasa. As fault creep is releasing only 30-40% of the long-term strain in the shallow crust, the fault is still capable of producing large, damaging earthquakes in this region. C1 [Hussain, Ekbal; Hooper, Andrew; Wright, Tim J.] Univ Leeds, COMET, Sch Earth & Environm, Leeds, W Yorkshire, England. [Walters, Richard J.] Univ Durham, Dept Earth Sci, COMET, Durham, England. [Bekaert, David P. S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bekaert, David P. S.] Univ Leeds, COMET, Leeds, W Yorkshire, England. RP Hussain, E (reprint author), Univ Leeds, COMET, Sch Earth & Environm, Leeds, W Yorkshire, England. EM eeehu@leeds.ac.uk OI Walters, Richard/0000-0002-1704-8727; Wright, Tim/0000-0001-8338-5935; Hooper, Andrew/0000-0003-4244-6652; Bekaert, David/0000-0002-0408-0488 FU Natural Environment Research Council [NE/I028017/1] FX This work has been supported by the Natural Environment Research Council project grant NE/I028017/1, which supports the lead author's research studentship as part of the FaultLab project at the University of Leeds. The Envisat satellite data are freely available and were obtained from the European Space Agency's Geohazard Supersites project. The GNSS data were obtained from the Global Strain Rate Model project website (http://gsrm2.unavco. org). Many of the figures in this paper were made using the public domain Generic Mapping Tools (GMT) software [Wessel and Smith, 2001]. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. COMET is the Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics. Results can be obtained by contacting the lead author (eeehu@leeds.ac.uk). We would like to thank two anonymous reviewers for their helpful feedback and suggestions, which have improved the quality of the paper. NR 82 TC 0 Z9 0 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD DEC PY 2016 VL 121 IS 12 BP 9000 EP 9019 DI 10.1002/2016JB013108 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EJ4IY UT WOS:000393181500032 ER PT J AU Crowell, BW Bock, Y Liu, Z AF Crowell, Brendan W. Bock, Yehuda Liu, Zhen TI Single-station automated detection of transient deformation in GPS time series with the relative strength index: A case study of Cascadian slow slip SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID PRINCIPAL COMPONENT ANALYSIS; SUBDUCTION ZONE; EPISODIC TREMOR; SILENT SLIP; LOS-ANGELES; EARTHQUAKE; EVENTS; MOTION; PROBABILITY; CALIFORNIA AB The discovery of slow-slip events over the past decades has changed our understanding of tectonic hazards and the earthquake cycle. Proper geodetic characterization of slow-slip events is necessary for studies of regional interseismic, coseismic and postseismic deformation, and miscalculations can affect our understanding of the regional stress field and tectonic hazard. Because of the proliferation of GPS data over the last two decades, an automated algorithm is required to analyze the signals and model the deformation on a station by station basis. Using the relative strength index (RSI), a financial momentum oscillator, we test the ability to detect events of various sizes and durations. We first determine the statistics of the RSI under different noise conditions and then use this information as the basis for the automated transient detection algorithm by testing different synthetic signals. We then apply the technique to daily GPS displacement time series from 213 stations along the Cascadia subduction zone to form a record of transient deformation between 2005 and 2016. Our estimates of the spatial extent, duration, and propagation of major episodic tremor and slip (ETS) events are consistent with previous studies. We use the automated detections to remodel the displacement time series and obtain transient deformation rates over the past decade and discuss the tectonic implications. Finally, we analyze the correlation between transient detections and tremor showing good agreement between the two at slab depths commonly associated with ETS events. C1 [Crowell, Brendan W.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Bock, Yehuda] Univ Calif San Diego, Scripps Inst Oceanog, Cecil H & Ida M Green Inst Geophys & Planetary Ph, La Jolla, CA 92093 USA. [Liu, Zhen] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Crowell, BW (reprint author), Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. EM crowellb@uw.edu RI Liu, Zhen/D-8334-2017 FU NASA AIST-11 [NNX09AI67G]; NASA ROSES [NNX12AK24G]; NASA's Earth Surface and Interior focus area; NASA MEaSUREs [NNX13AI45A]; Gordon and Betty Moore Foundation [663450] FX We would like to thank David Schmidt for discussion on the interpretation of velocity field signals. We thank the Associate Editor, Laura Wallace, and two anonymous reviewers for helpful suggestions. Research at the Scripps Institution of Oceanography (SIO) was supported by NASA AIST-11 grant NNX09AI67G and NASA ROSES grant NNX12AK24G. Research at the Jet Propulsion Laboratory (JPL), California Institute of Technology, was supported by NASA's Earth Surface and Interior focus area. The GPS displacement time series were produced by our colleagues at JPL and SIO's Orbit and Permanent Array Center (SOPAC) with support from NASA MEaSUREs grant NNX13AI45A. B.W.C. is funded through the Gordon and Betty Moore Foundation, grant 663450 to University of Washington. The MATLAB package used in this manuscript is available at https://www.github.com/crowellbw/rsi_transient. NR 55 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD DEC PY 2016 VL 121 IS 12 BP 9077 EP 9094 DI 10.1002/2016JB013542 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EJ4IY UT WOS:000393181500036 ER PT J AU Holman, GD AF Holman, Gordon D. TI Scientific considerations for future spectroscopic measurements from space of activity on the Sun SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Review ID HARD X-RAY; UNDERSTANDING PARTICLE-ACCELERATION; LOOP RADIATIVE HYDRODYNAMICS; IMPULSIVE SOLAR-FLARES; 20 FEBRUARY 2002; MAGNETIC RECONNECTION; GAMMA-RAY; THICK-TARGET; CHROMOSPHERIC EVAPORATION; LINE EMISSION AB High-resolution UV and X-ray spectroscopy are important to understanding the origin and evolution of magnetic energy release in the solar atmosphere, as well as the subsequent evolution of heated plasma and accelerated particles. Electromagnetic radiation is observed from plasma heated to temperatures ranging from about 10 kK to above 10 MK, from accelerated electrons emitting photons primarily at X-ray energies, and from ions emitting in gamma rays. These observations require space-based instruments sensitive to emissions at wavelengths shorter than the near UV. This article reviews some recent observations with emphasis on solar eruptive events, the models that describe them, and the measurements they indicate are needed for substantial progress in the future. Specific examples are discussed demonstrating that imaging spectroscopy with a cadence of seconds or better is needed to follow, understand, and predict the evolution of solar activity. Critical to substantial progress is the combination of a judicious choice of UV, EUV, and soft X-ray imaging spectroscopy sensitive to the evolution of this thermal plasma combined with hard X-ray imaging spectroscopy sensitive to suprathermal electrons. The major challenge will be to conceive instruments that, within the bounds of possible technologies and funding, have the flexibility and field of view to obtain spectroscopic observations where and when events occur while providing an optimum balance of dynamic range, spectral resolution and range, and spatial resolution. C1 [Holman, Gordon D.] NASA, Heliophys Div, Solar Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Holman, GD (reprint author), NASA, Heliophys Div, Solar Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Gordon.D.Holman@nasa.gov FU RHESSI Project; NASA FX This review originated with an invited presentation at the Measurement Techniques in Solar and Space Physics (MTSSP) Meeting held the week of 20 April 2015, in Boulder, Colorado. I thank the meeting organizers for entrusting me with this responsibility, Brian Dennis for many comments leading to significant improvements, and also Peter Young for valuable comments. I thank the two anonymous reviewers for the time and effort they invested to provide many valuable comments that substantially improved the paper. All data for this paper are properly cited and referred to in the reference list. I acknowledge support from the RHESSI Project and the NASA Living with a Star and Heliophysics Guest Investigator programs. NR 143 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC PY 2016 VL 121 IS 12 BP 11667 EP 11697 DI 10.1002/2016JA022651 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ4JQ UT WOS:000393183300006 ER PT J AU Vaisberg, O Berthellier, JJ Moore, T Avanov, L Leblanc, F Leblanc, F Moiseev, P Moiseenko, D Becker, J Collier, M Laky, G Keller, J Koynash, G Lichtenneger, H Leibov, A Zhuravlev, R Shestakov, A Burch, J McComas, D Shuvalov, S Chornay, D Torkar, K AF Vaisberg, O. Berthellier, J. -J. Moore, T. Avanov, L. Leblanc, F. Leblanc, F. Moiseev, P. Moiseenko, D. Becker, J. Collier, M. Laky, G. Keller, J. Koynash, G. Lichtenneger, H. Leibov, A. Zhuravlev, R. Shestakov, A. Burch, J. McComas, D. Shuvalov, S. Chornay, D. Torkar, K. TI The 2 pi charged particles analyzer: All-sky camera concept and development for space missions SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PLASMA SPECTROMETER; ENERGETIC PARTICLE; MASS-SPECTROMETER; IONS AB Increasing the temporal resolution and instant coverage of velocity space of space plasma measurements is one of the key issues for experimentalists. Today, the top-hat plasma analyzer appears to be the favorite solution due to its relative simplicity and the possibility to extend its application by adding a mass-analysis section and an electrostatic angular scanner. Similarly, great success has been achieved in MMS mission using such multiple top-hat analyzers to achieve unprecedented temporal resolution. An instantaneous angular coverage of charged particles measurements is an alternative approach to pursuing the goal of high time resolution. This was done with 4-D Fast Omnidirectional Nonscanning Energy Mass Analyzer and, to a lesser extent, by DYMIO instruments for Mars-96 and with the Fast Imaging Plasma Spectrometer instrument for MErcury Surface, Space ENvironment, GEochemistry, and Ranging mission. In this paper we describe, along with precursors, a plasma analyzer with a 2 pi electrostatic mirror that was developed originally for the Phobos-Soil mission with a follow-up in the frame of the BepiColombo mission and is under development for future Russian missions. Different versions of instrument are discussed along with their advantages and drawbacks. C1 [Vaisberg, O.; Moiseenko, D.; Koynash, G.; Leibov, A.; Zhuravlev, R.; Shestakov, A.; Shuvalov, S.] Space Res Inst, Moscow, Russia. [Berthellier, J. -J.; Leblanc, F.; Becker, J.] CNRS UPMC UVSQ, LATMOS IPSL, Paris, France. [Moore, T.; Collier, M.; Keller, J.] NASA, Goddard Space Flight Ctr, College Pk, MD USA. [Avanov, L.; Chornay, D.] Univ Maryland, NASA, Goddard Space Flight, Greenbelt, MD USA. [Leblanc, F.] Ecole Polytech, CNRS, LPP, Paris, France. [Moiseev, P.] Astron Elect, Oryol, Russia. [Laky, G.; Lichtenneger, H.; Torkar, K.] Austrian Acad Sci, Space Res Inst, Graz, Austria. [Burch, J.] Southwest Res Inst, San Antonio, TX USA. [McComas, D.] Princeton Univ, Princeton, NJ 08544 USA. RP Vaisberg, O (reprint author), Space Res Inst, Moscow, Russia. EM olegv@iki.rssi.ru; jean-jacques.berthelier@latmos.ipsl.fr; michael.r.collier@nasa.gov RI Zhuravlev, Roman/F-5457-2017 FU CNES; Austrian Research Promotion Agency (FFG); ESA-PRODEX FX Contribution of our passed friend and colleague Valery Smirnov in DI-Aries development is highly appreciated. Alan Johnstone made important contribution to FONEMA. Authors are thankful to Carl McIlwain for advice to put circular shades in front of SCA-1 scanner. Computer simulation of OLEG camera by John Keller is appreciated. Authors are thankful to Dennis Chornay for help in the test of OLEG camera prototype. The contribution of Andrei Kozhukhovsky in modeling of the FONEMA mirror is appreciated. Permission of Thomas H. Zurbuchen to use FIPS model drawing and measurements sample figures is appreciated. All other figures in the manuscript are from papers published by authors. Questions concerning the data and results of SCA1 and DI-Aries can be answered by Oleg Vaisberg (olegv@ikirssi.ru), FONEMA-Oleg Vaisberg and Andrei Fedorov (Andrei. Fedorov@irap.omp.eu), FIPS-Thomas Zurbuchen (thomasz@umich.edu), OLEG camera-Oleg Vaisberg and Mike Collier (michael.r.collier@nasa.gov), PICAM-Jean-Jacques Berthelier (jean-jacques. berthelier@latmos.ipsl.fr), and Oleg Vaisberg. Work at LATMOS and LPP was supported in a large part through CNES grants in the frame of a multiannual funding for the study and development of PICAM ion optics. We also wish to acknowledge the continuous support of J. Schrive. Work at IWF was supported by grants of the Austrian Research Promotion Agency (FFG) and ESA-PRODEX. The authors would like to thank reviewers for their comments and suggestions that have contributed to improvement of this paper. NR 21 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC PY 2016 VL 121 IS 12 BP 11750 EP 11765 DI 10.1002/2016JA022568 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ4JQ UT WOS:000393183300011 ER PT J AU Pokhotelov, D Rae, IJ Murphy, KR Mann, IR Ozeke, L AF Pokhotelov, D. Rae, I. J. Murphy, K. R. Mann, I. R. Ozeke, L. TI Effects of ULF wave power on relativistic radiation belt electrons: 8-9 October 2012 geomagnetic storm SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID LOCAL ACCELERATION; LOSSES; DIFFUSION; THEMIS AB Electromagnetic ultralow-frequency (ULF) waves are known to play a substantial role in radial transport, acceleration, and loss of relativistic particles trapped in the Earth's outer radiation belt. Using in situ observations by multiple spacecraft operating in the vicinity of outer radiation belts, we analyze the temporal and spatial behavior of ULF waves throughout the geomagnetic storm of 8-9 October 2012 and compare with the dynamics of relativistic electron fluxes on board the twin Van Allen Probes spacecraft. The analysis shows that the relativistic electron fluxes reduce from their prestorm levels during the first phase of the storm and rapidly increase during the second phase of the storm. We demonstrate that the behavior of ULF wave power changes throughout the storm, from ULF oscillations being a mixture of compressional and shear magnetic components during the first phase of the storm to ULF oscillations being dominated by transverse (shear) components during the second phase. We analyze the parameters of ULF-driven radial diffusion throughout the storm and compare the observed diffusion coefficients with their statistical averages. We demonstrate that the observed diffusion coefficients are strong enough to impact the redistribution of relativistic electron fluxes from and to the outer boundary of radiation belts and the diffusion might influence the effects of any local electron acceleration by transporting fluxes inward or outward according to phase space density gradients. C1 [Pokhotelov, D.; Rae, I. J.] UCL, Mullard Space Sci Lab, Dorking, Surrey, England. [Murphy, K. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Mann, I. R.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. RP Pokhotelov, D (reprint author), UCL, Mullard Space Sci Lab, Dorking, Surrey, England. EM d.pokhotelov@ucl.ac.uk OI Mann, Ian/0000-0003-1004-7841; Rae, Iain/0000-0002-2637-4786; Murphy, Kyle/0000-0002-3063-6451 FU Science and Technology Facilities Council (STFC) [ST/L000563/1, ST/N000722/1]; Canadian NSERC postdoctoral fellowship FX D.P. and I.J.R. are supported by Science and Technology Facilities Council (STFC) grants ST/L000563/1 and ST/N000722/1. K.R.M. is partially supported by a Canadian NSERC postdoctoral fellowship. The Van Allen Probes EMFISIS fluxgate magnetometer data, the list of spacecraft charging events, and the list of spacecraft maneuver events are provided by the University of Iowa (https://emfisis.physics.uiowa.edu). The Van Allen Probes REPT and MagEIS particle data are provided by the Los Alamos National Laboratory (https://www.rbsp-ect.lanl.gov). THEMIS FGM and EFI data are provided by the University of California, Berkeley (https://themis.ssl.berkeley.edu). GOES FGM data are provided by the NOAA's National Centers for Environmental Information (https://ngdc.noaa.gov). Solar wind data and geomagnetic indices are obtained from NASA OMNIWeb (https://omniweb.gsfc.nasa.gov). We acknowledge the use of Space Physics Environment Data Analysis Software (SPEDAS) suite. NR 38 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC PY 2016 VL 121 IS 12 BP 11766 EP 11779 DI 10.1002/2016JA023130 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ4JQ UT WOS:000393183300012 ER PT J AU Tyler, E Cattell, C Thaller, S Wygant, J Gurgiolo, C Goldstein, M Mouikis, C AF Tyler, Evan Cattell, Cynthia Thaller, Scott Wygant, John Gurgiolo, Chris Goldstein, Melvyn Mouikis, Christopher TI Partitioning of integrated energy fluxes in four tail reconnection events observed by Cluster SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EARTHS MAGNETOTAIL; CONVERSION; PLASMA AB We present the partitioning of integrated energy flux from four tail reconnection events observed by Cluster, focusing on the relative contributions of Poynting flux, electron, H+ and O+ enthalpy, and kinetic energy flux in the tailward and earthward directions in order to study temporal and spatial features of each event. We further subdivide the Poynting flux into three frequency bands to examine the possible structures and waves that contribute most significantly to the total Poynting flux from the reconnection region. Our results indicate that H+ enthalpy flux is often dominant, but O+ enthalpy, electron enthalpy, Poynting flux, and H+ kinetic energy flux can contribute significant or greater total energy flux depending on spacecraft location with respect the current sheet, flow direction, temporal scale, and local conditions. We observe integrated H+ enthalpy fluxes that differ by factors of 3-4 between satellites, even over ion inertial length scales. We observe strong differences in behavior between H+ and O+ enthalpy fluxes in all events, highlighting the importance of species-specific energization mechanisms. We find tailward-earthward asymmetry in H+ enthalpy flux, possibly indicative of the influence of the closed earthward boundary of the magnetotail system. Frequency filtering of the Poynting flux shows that current sheet surface waves and structures on the timescale of current sheet flapping contribute significantly, while large-scale structure contributions are relatively small. We observe that the direction and behavior of the Poynting flux differs between bands, indicating that the observed flux originates from multiple distinct sources or processes. C1 [Tyler, Evan; Cattell, Cynthia; Thaller, Scott; Wygant, John] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN USA. [Gurgiolo, Chris] Bitterroot Basic Res, Hamilton, MT USA. [Goldstein, Melvyn] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Mouikis, Christopher] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. RP Tyler, E (reprint author), Univ Minnesota, Sch Phys & Astron, Minneapolis, MN USA. EM nucko006@umn.edu OI GOLDSTEIN, MELVYN/0000-0002-5317-988X FU NASA grant at the University of Minnesota, Twin Cities [NNX13AE16G] FX We would like to thank the Cluster spacecraft software and engineering teams for making these data available. We gratefully acknowledge Alexander Igl for his assistance with some graphics. This work was supported by NASA grant NNX13AE16G at the University of Minnesota, Twin Cities. Cluster data can be accessed from the ESA Cluster Science Archive (http://www.cosmos.esa.int/web/csa). NR 31 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC PY 2016 VL 121 IS 12 BP 11798 EP 11825 DI 10.1002/2016JA023330 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ4JQ UT WOS:000393183300014 ER PT J AU Salinas, CCJH Chang, LC Liang, MC Yue, J Russell, J Mlynczak, M AF Salinas, Cornelius Csar Jude H. Chang, Loren C. Liang, Mao-Chang Yue, Jia Russell, James, III Mlynczak, Martin TI Impacts of SABER CO2-based eddy diffusion coefficients in the lower thermosphere on the ionosphere/thermosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID GENERAL-CIRCULATION MODEL; INCOHERENT-SCATTER DATA; LATENT-HEAT RELEASE; SEMIANNUAL OSCILLATION; MIDDLE ATMOSPHERE; VERTICAL TRANSPORT; SEASONAL-VARIATION; MASS-SPECTROMETER; GRAVITY-WAVE; IONOSPHERIC F2-LAYER AB This work estimates global-mean Kzz using Sounding of the Atmosphere using Broadband Emission Radiometry/Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics monthly global-mean CO2 profiles and a one-dimensional transport model. It is then specified as a lower boundary into the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). Results first show that global-mean CO2 in the mesosphere and lower thermosphere region has annual and semiannual oscillations (AO and SAO) with maxima during solstice seasons along with a primary maximum in boreal summer. Our calculated AO and SAO in global-mean CO2 are then modeled by AO and SAO in global-mean Kzz. It is then shown that our estimated global-mean Kzz is lower in magnitude than the suggested global-mean Kzz from Qian et al. (2009) that can model the observed AO and SAO in the ionosphere/thermosphere (IT) region. However, our estimated global-mean Kzz is similar in magnitude with recent suggestions of global-mean Kzz in models with explicit gravity wave parameterization. Our work therefore concludes that global-mean Kzz from global-mean CO2 profiles cannot model the observed AO and SAO in the IT region because our estimated global-mean Kzz may only be representing eddy diffusion due to gravity wave breaking. The difference between our estimated global-mean Kzz and the global-mean Kzz from Qian et al. (2009) thus represents diffusion and mixing from other nongravity wave sources not directly accounted for in the TIE-GCM lower boundary conditions. These other sources may well be the more dominant lower atmospheric forcing behind the AO and SAO in the IT region. C1 [Salinas, Cornelius Csar Jude H.; Chang, Loren C.; Liang, Mao-Chang] Acad Sinica, Taiwan Int Grad Program Earth Syst Sci, Taipei, Taiwan. [Salinas, Cornelius Csar Jude H.] Natl Cent Univ, Dept Atmospher Sci, Zhongli, Taiwan. [Salinas, Cornelius Csar Jude H.; Chang, Loren C.] Natl Cent Univ, Grad Inst Space Sci, Zhongli, Taiwan. [Liang, Mao-Chang] Acad Sinica, Res Ctr Environm Change, Taipei, Taiwan. [Yue, Jia; Russell, James, III] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. [Yue, Jia] Univ Maryland, ESSIC, College Pk, MD 20742 USA. [Mlynczak, Martin] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Chang, LC (reprint author), Acad Sinica, Taiwan Int Grad Program Earth Syst Sci, Taipei, Taiwan.; Chang, LC (reprint author), Natl Cent Univ, Grad Inst Space Sci, Zhongli, Taiwan. EM loren@jupiter.ss.ncu.edu.tw RI Yue, Jia/D-8177-2011; OI Salinas, Cornelius Csar Jude/0000-0002-3996-8700 FU Taiwan Ministry of Science and Technology (MOST) [MOST 103-2111-M-008-019-MY3]; Taiwan National Space Organization (NSPO) [NSPO-S-104163]; Taiwan International Graduate Program-Earth Systems Science; NASA [NNX14AF20G, NNH13ZDA001N-HGI]; NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics Project; [MOST 101-2628-M-001-001-MY4] FX L.C. Chang and C.C.J. Salinas are supported by Taiwan Ministry of Science and Technology (MOST) grant MOST 103-2111-M-008-019-MY3 and Taiwan National Space Organization (NSPO) grant NSPO-S-104163. C.C.J. Salinas acknowledges the Taiwan International Graduate Program-Earth Systems Science for their financial support. M.C. Liang is supported in part by grant MOST 101-2628-M-001-001-MY4 to Academia Sinica. J. Yue is supported by NASA grants NNX14AF20G and NNH13ZDA001N-HGI. M. Mlynczak and J. Russell acknowledge support from the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics Project. The new version 2.0 SABER products presented in this paper are accessible from the SABER website: http://saber.gats-inc.com/data.php. The 1-D CO2 model is available with C.C.J. Salinas and M.C. Liang upon request. TIE-GCM is available on their website: http://www.hao.ucar.edu/modeling/tgcm/. We thank the Editors and three anonymous reviewers for improving our manuscript. NR 68 TC 1 Z9 1 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC PY 2016 VL 121 IS 12 BP 12080 EP 12092 DI 10.1002/2016JA023161 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ4JQ UT WOS:000393183300032 ER PT J AU Christian, JA Robinson, SB AF Christian, John A. Robinson, Shane B. TI Noniterative Horizon-Based Optical Navigation by Cholesky Factorization SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article ID IMAGE; SYSTEM C1 [Christian, John A.] West Virginia Univ, Dept Mech & Aerosp Engn, Benjamin M Statler Coll Engn & Mineral Resources, Morgantown, WV 26506 USA. [Robinson, Shane B.] NASA, Johnson Space Ctr, GN&C Autonomous Flight Syst Branch, Houston, TX 77058 USA. RP Christian, JA (reprint author), West Virginia Univ, Dept Mech & Aerosp Engn, Benjamin M Statler Coll Engn & Mineral Resources, Morgantown, WV 26506 USA. FU NASA [NNX13AJ25A] FX John Christian's portion of this work was made possible by NASA under award NNX13AJ25A. The authors thank Chris D'Souza and John Goodman for many insightful discussions that helped improve the quality of this manuscript. The authors would also like to thank Jim and Danny Roberts for helping view the problem from a new perspective. An earlier version of this Note was presented as American Astronautical Society (AAS) Paper 16-151 at the 39th Annual AAS Guidance, Navigation, and Control Conference in Breckenridge, Colorado, 5-10 February 2016. NR 26 TC 0 Z9 0 U1 1 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 EI 1533-3884 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD DEC PY 2016 VL 39 IS 12 BP 2755 EP + DI 10.2514/1.G000539 PG 9 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA EJ2KZ UT WOS:000393040200014 ER PT J AU Tardivel, S AF Tardivel, Simon TI Optimization of the Ballistic Deployment to the Secondary of a Binary Asteroid SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article ID DEFLECTION ASSESSMENT MISSION; SAMPLE RETURN MISSION; ROSETTA LANDER; IMPACT C1 [Tardivel, Simon] CALTECH, Jet Prop Lab, M-S-1709,4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Tardivel, S (reprint author), CALTECH, Jet Prop Lab, M-S-1709,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM simon.tardivel@jpl.nasa.gov FU NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology FX Simon Tardivel acknowledges support by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by the Universities Space Research Association through a contract with NASA. NR 18 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 EI 1533-3884 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD DEC PY 2016 VL 39 IS 12 BP 2786 EP + DI 10.2514/1.G000593 PG 9 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA EJ2KZ UT WOS:000393040200018 ER PT J AU Greenberger, RN Mustard, JF Osinski, GR Tornabene, LL Pontefract, AJ Marion, CL Flemming, RL Wilson, JH Cloutis, EA AF Greenberger, Rebecca N. Mustard, John F. Osinski, Gordon R. Tornabene, Livio L. Pontefract, Alexandra J. Marion, Cassandra L. Flemming, Roberta L. Wilson, Janette H. Cloutis, Edward A. TI Hyperspectral mapping of alteration assemblages within a hydrothermal vug at the Haughton impact structure, Canada SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID SULFIDE MINERAL OXIDATION; REFLECTANCE SPECTROSCOPY; OMEGA/MARS EXPRESS; DEVON ISLAND; MERIDIANI-PLANUM; ARCTIC CANADA; IRON MOUNTAIN; MARS; SULFATE; CARBONATE AB Meteorite impacts on Earth and Mars can generate hydrothermal systems that alter the primary mineralogies of rocks and provide suitable environments for microbial colonization. We investigate a calcite-marcasite-bearing vug at the similar to 23 km diameter Haughton impact structure, Devon Island, Nunavut, Canada, using imaging spectroscopy of the outcrop in the field (0.65-1.1 mu m) and samples in the laboratory (0.4-2.5 mu m), point spectroscopy (0.35-2.5 mu m), major element chemistry, and X-ray diffraction analyses. The mineral assemblages mapped at the outcrop include marcasite; marcasite with minor gypsum and jarosite; fibroferrite and copiapite with minor gypsum and melanterite; gypsum, Fe3+ oxides, and jarosite; and calcite, gypsum, clay, microcline, and quartz. Hyperspectral mapping of alteration phases shows spatial patterns that illuminate changes in alteration conditions and formation of specific mineral phases. Marcasite formed from the postimpact hydrothermal system under reducing conditions, while subsequent weathering oxidized the marcasite at low temperatures and water/rock ratios. The acidic fluids resulting from the oxidation collected on flat-lying portions of the outcrop, precipitating fibroferrite + copiapite. That assemblage then likely dissolved, and the changing chemistry and pH resulting from interaction with the calcite-rich host rock formed gypsum-bearing red coatings. These results have implications for understanding water-rock interactions and habitabilities at this site and on Mars. C1 [Greenberger, Rebecca N.; Mustard, John F.] Brown Univ, Dept Earth Environm & Planetary Sci, 324 Brook St,Box 1846, Providence, RI 02912 USA. [Osinski, Gordon R.; Tornabene, Livio L.; Pontefract, Alexandra J.; Marion, Cassandra L.; Flemming, Roberta L.] Univ Western Ontario, Ctr Planetary Sci & Explorat, 1151 Richmond St, London, ON N6A 5B7, Canada. [Osinski, Gordon R.; Tornabene, Livio L.; Pontefract, Alexandra J.; Marion, Cassandra L.; Flemming, Roberta L.] Univ Western Ontario, Dept Earth Sci, 1151 Richmond St, London, ON N6A 5B7, Canada. [Osinski, Gordon R.] Univ Western Ontario, Dept Phys & Astron, 1151 Richmond St, London, ON N6A 5B7, Canada. [Tornabene, Livio L.] SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. [Pontefract, Alexandra J.] Planetary Sci Inst, 1700 East Ft Lowell,Suite 106, Tucson, AZ 85719 USA. [Wilson, Janette H.] Headwall Photon Inc, 601 River St, Fitchburg, MA 01420 USA. [Cloutis, Edward A.] Univ Winnipeg, Dept Geog, 515 Portage Ave, Winnipeg, MB R3B 2E9, Canada. [Greenberger, Rebecca N.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 171-310, Pasadena, CA 91109 USA. RP Greenberger, RN (reprint author), Brown Univ, Dept Earth Environm & Planetary Sci, 324 Brook St,Box 1846, Providence, RI 02912 USA.; Greenberger, RN (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 171-310, Pasadena, CA 91109 USA. EM rebecca.n.greenberger@jpl.nasa.gov OI Greenberger, Rebecca/0000-0003-1583-0261 FU Brown University; Natural Sciences and Engineering Research Council (NSERC) Discovery Grant; Northern Supplement program; Northern Scientific Training Program; Manitoba Research Innovations Funds; NSERC of Canada FX We thank Paul Mann for his efforts in maintaining, packing, and shipping the equipment that made this work possible and David Bannon, Kwok Wong, and Headwall Photonics, Inc. for use of their hyperspectral imagers in the laboratory. We thank Dave Murray and Joe Orchardo for assistance with flux fusion, ICP-AES, and elemental analyses. We are also grateful for help in the field from other members of the field team: Jerome Gattacceca, Jeremy Hansen, Yoann Quesnel, Pierre Rochette, and Scott Simpson. We thank Brown University for supporting this research. The Polar Continental Shelf Program provided field support for this work. Funding from the Natural Sciences and Engineering Research Council (NSERC) Discovery Grant and Northern Supplement program funded GRO, LLT, AP, and CLM. AP and CLM also thank the Northern Scientific Training Program for funding. EAC thanks the University of Winnipeg, the Canadian Space Agency, the Manitoba Research Innovations Funds, and NSERC of Canada for supporting the establishment of the University of Winnipeg's Planetary Spectrophotometer Facility and this study. Finally, we thank Carle Pieters for editorial handling and Adrian Brown and Matthew Izawa for constructive reviews that significantly improved this paper. The authors confirm that there is no conflict of interest to declare. NR 88 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD DEC PY 2016 VL 51 IS 12 BP 2274 EP 2292 DI 10.1111/maps.12716 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EJ3US UT WOS:000393138200002 ER PT J AU Liu, Y Baziotis, IP Asimow, PD Bodnar, RJ Taylor, LA AF Liu, Yang Baziotis, Ioannis P. Asimow, Paul D. Bodnar, Robert J. Taylor, Lawrence A. TI Mineral chemistry of the Tissint meteorite: Indications of two-stage crystallization in a closed system SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID OLIVINE-PHYRIC SHERGOTTITES; HOSTED MELT INCLUSIONS; LARKMAN NUNATAK 06319; MARTIAN METEORITE; CRYSTAL-CHEMISTRY; DIFFERENTIATION HISTORY; PETROGENETIC LINKAGES; ISOTOPIC SYSTEMATICS; MAGMATIC PROCESSES; COOLING HISTORY AB The Tissint meteorite is a geochemically depleted, olivine-phyric shergottite. Olivine megacrysts contain 300-600 mu m cores with uniform Mg# (similar to 80 +/- 1) followed by concentric zones of Fe-enrichment toward the rims. We applied a number of tests to distinguish the relationship of these megacrysts to the host rock. Major and trace element compositions of the Mg-rich core in olivine are in equilibrium with the bulk rock, within uncertainty, and rare earth element abundances of melt inclusions in Mg-rich olivines reported in the literature are similar to those of the bulk rock. Moreover, the P K alpha intensity maps of two large olivine grains show no resorption between the uniform core and the rim. Taken together, these lines of evidence suggest the olivine megacrysts are phenocrysts. Among depleted olivine-phyric shergottites, Tissint is the first one that acts mostly as a closed system with olivine megacrysts being the phenocrysts. The texture and mineral chemistry of Tissint indicate a crystallization sequence of: olivine (Mg# 80 +/- 1) --> olivine (Mg# 76) + chromite --> olivine (Mg# 74) + Ti-chromite --> olivine (Mg# 74-63) + pyroxene (Mg# 76-65) + Cr-ulvospinel --> olivine (Mg# 63-35) + pyroxene (Mg# 65-60) + plagioclase, followed by late-stage ilmenite and phosphate. The crystallization of the Tissint meteorite likely occurred in two stages: uniform olivine cores likely crystallized under equilibrium conditions; and a fractional crystallization sequence that formed the rest of the rock. The two-stage crystallization without crystal settling is simulated using MELTS and the Tissint bulk composition, and can broadly reproduce the crystallization sequence and mineral chemistry measured in the Tissint samples. The transition between equilibrium and fractional crystallization is associated with a dramatic increase in cooling rate and might have been driven by an acceleration in the ascent rate or by encounter with a steep thermal gradient in the Martian crust. C1 [Liu, Yang] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Liu, Yang; Baziotis, Ioannis P.; Taylor, Lawrence A.] Univ Tennessee, Dept Earth & Planetary Sci, Planetary Geosci Inst, Knoxville, TN 37996 USA. [Baziotis, Ioannis P.] Agr Univ Athens, Lab Mineral & Geol, Dept Nat Resources Management & Agr Engn, Athens 11855, Greece. [Asimow, Paul D.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Bodnar, Robert J.] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. RP Liu, Y (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Liu, Y (reprint author), Univ Tennessee, Dept Earth & Planetary Sci, Planetary Geosci Inst, Knoxville, TN 37996 USA. EM yang.liu@jpl.nasa.gov FU NASA [NNX11AG58G, NNN13D465T]; NSF [EAR-1226270, EAR1019770]; Jet Propulsion Laboratory FX We thank Allan Patchen and Luca Fedele for their assistance with data collection. Comments from the AE (C. Goodrich), T. Usui, C. Herd, and M. McCanta on earlier versions of the manuscript have significantly improved the presentation and are greatly appreciated. We acknowledge partial support by NASA Cosmochemistry grants NNX11AG58G to LAT, NNN13D465T to YL, NSF Grant EAR-1226270 to PDA, and NSF Grant EAR1019770 to RJB. YL is supported by the Jet Propulsion Laboratory, which is managed by the California Institute of Technology under a contract with NASA. NR 70 TC 0 Z9 0 U1 1 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD DEC PY 2016 VL 51 IS 12 BP 2293 EP 2315 DI 10.1111/maps.12726 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EJ3US UT WOS:000393138200003 ER PT J AU Denevi, BW Beck, AW Coman, EI Thomson, BJ Ammannito, E Blewett, DT Sunshine, JM De Sanctis, MC Li, JY Marchi, S Mittlefehldt, DW Petro, NE Raymond, CA Russell, CT AF Denevi, Brett W. Beck, Andrew W. Coman, Ecaterina I. Thomson, Bradley J. Ammannito, Eleonora Blewett, David T. Sunshine, Jessica M. De Sanctis, Maria Cristina Li, Jian-Yang Marchi, Simone Mittlefehldt, David W. Petro, Noah E. Raymond, Carol A. Russell, Christopher T. TI Global variations in regolith properties on asteroid Vesta from Dawn's low-altitude mapping orbit SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID EARLY SOLAR-SYSTEM; INDUCED SEISMIC ACTIVITY; FRAMING CAMERA; LUNAR REGOLITH; DARK MATERIAL; MN-53-CR-53 SYSTEMATICS; SUBSURFACE STRUCTURE; GALILEO PHOTOMETRY; IMPACT CRATERS; HED METEORITES AB We investigate the depth, variability, and history of regolith on asteroid Vesta using data from the Dawn spacecraft. High-resolution (15-20 m pixel(-1)) Framing Camera images are used to assess the presence of morphologic indicators of a shallow regolith, including the presence of blocks in crater ejecta, spur-and-gully-type features in crater walls, and the retention of small (<300 m) impact craters. Such features reveal that the broad, regional heterogeneities observed on Vesta in terms of albedo and surface composition extend to the physical properties of the upper similar to 1 km of the surface. Regions of thin regolith are found within the Rheasilvia basin and at equatorial latitudes from similar to 0-90 degrees E and similar to 260-360 degrees E. Craters in these areas that appear to excavate material from beneath the regolith have more diogenitic (Rheasilvia, 0-90 degrees E) and cumulate eucrite (260-360 degrees E) compositions. A region of especially thick regolith, where depths generally exceed 1 km, is found from similar to 100-240 degrees E and corresponds to heavily cratered, low-albedo surface with a basaltic eucrite composition enriched in carbonaceous chondrite material. The presence of a thick regolith in this area supports the idea that this is an ancient terrain that has accumulated a larger component of exogenic debris. We find evidence for the gardening of crater ejecta toward more howarditic compositions, consistent with regolith mixing being the dominant form of "weathering" on Vesta. C1 [Denevi, Brett W.; Beck, Andrew W.; Coman, Ecaterina I.; Blewett, David T.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Coman, Ecaterina I.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Thomson, Bradley J.] Boston Univ, Ctr Remote Sensing, Boston, MA 02215 USA. [Ammannito, Eleonora; De Sanctis, Maria Cristina] INAF, Ist Astrofis & Planetol Spaziali, I-00133 Rome, Italy. [Ammannito, Eleonora; Russell, Christopher T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Sunshine, Jessica M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Li, Jian-Yang] Planetary Sci Inst, Tucson, AZ 85719 USA. [Marchi, Simone] NASA Lunar Sci Inst, Boulder, CO 80302 USA. [Mittlefehldt, David W.] NASA Johnson Space Ctr, Astromat Res & Explorat Sci Div, Houston, TX 77058 USA. [Petro, Noah E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Raymond, Carol A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Denevi, BW (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. EM brett.denevi@jhuapl.edu RI Denevi, Brett/I-6502-2012; Beck, Andrew/J-7215-2015 OI Denevi, Brett/0000-0001-7837-6663; Beck, Andrew/0000-0003-4455-2299 FU Dawn Science, Instrument and Operations Teams; Dawn at Vesta Participating Scientist program through NASA [NNX11AC28G] FX We thank W. Fa, L. McFadden, and an anonymous reviewer for helpful suggestions. We gratefully acknowledge the support of the Dawn Science, Instrument and Operations Teams. BWD was supported by the Dawn at Vesta Participating Scientist program through NASA Grant NNX11AC28G. NR 103 TC 1 Z9 1 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD DEC PY 2016 VL 51 IS 12 BP 2366 EP 2386 DI 10.1111/maps.12729 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EJ3US UT WOS:000393138200007 ER PT J AU Galewsky, J Steen-Larsen, HC Field, RD Worden, J Risi, C Schneider, M AF Galewsky, Joseph Steen-Larsen, Hans Christian Field, Robert D. Worden, John Risi, Camille Schneider, Matthias TI Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle SO REVIEWS OF GEOPHYSICS LA English DT Review ID GENERAL-CIRCULATION MODEL; LAST GLACIAL MAXIMUM; TROPOSPHERIC EMISSION SPECTROMETER; CAVITY-OUTPUT SPECTROSCOPY; TROPICAL INTRASEASONAL VARIABILITY; STRATOSPHERIC DEUTERATED WATER; SUBTROPICAL HUMIDITY DYNAMICS; HIGH-PRECISION MEASUREMENTS; MADDEN-JULIAN OSCILLATION; RING-DOWN SPECTROSCOPY AB The measurement and simulation of water vapor isotopic composition has matured rapidly over the last decade, with long-term data sets and comprehensive modeling capabilities now available. Theories for water vapor isotopic composition have been developed by extending the theories that have been used for the isotopic composition of precipitation to include a more nuanced understanding of evaporation, large-scale mixing, deep convection, and kinetic fractionation. The technologies for in situ and remote sensing measurements of water vapor isotopic composition have developed especially rapidly over the last decade, with discrete water vapor sampling methods, based on mass spectroscopy, giving way to laser spectroscopic methods and satellite-and ground-based infrared absorption techniques. The simulation of water vapor isotopic composition has evolved from General Circulation Model (GCM) methods for simulating precipitation isotopic composition to sophisticated isotope-enabled microphysics schemes using higher-order moments for water and ice size distributions. The incorporation of isotopes into GCMs has enabled more detailed diagnostics of the water cycle and has led to improvements in its simulation. The combination of improved measurement and modeling of water vapor isotopic composition opens the door to new advances in our understanding of the atmospheric water cycle, in processes ranging from the marine boundary layer, through deep convection and tropospheric mixing, and into the water cycle of the stratosphere. Finally, studies of the processes governing modern water vapor isotopic composition provide an improved framework for the interpretation of paleoclimate proxy records of the hydrological cycle. C1 [Galewsky, Joseph] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Steen-Larsen, Hans Christian] Lab Sci Climat & Environm, Paris, France. [Steen-Larsen, Hans Christian] Univ Copenhagen, Niels Bohr Inst, Ctr Ice & Climate, Copenhagen, Denmark. [Field, Robert D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Field, Robert D.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Worden, John] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Risi, Camille] CNRS, Inst Pierre Simon Laplace, Lab Meteorol Dynam, Paris, France. [Schneider, Matthias] Karlsruhe Inst Technol, Inst Meteorol & Climate Res IMK ASF, Karlsruhe, Germany. RP Galewsky, J (reprint author), Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. EM galewsky@unm.edu RI Steen-Larsen, Hans Christian/F-9927-2013 OI Steen-Larsen, Hans Christian/0000-0002-7202-5907 FU NSF-AGS award [1158582]; NASA Energy and Water Cycle grant [NNH13ZDA001N]; European Research Council under the European Community's Seventh Framework Programme (FP7)/ERC grant [256961] FX This work was partially supported by NSF-AGS award 1158582 to J.G. and NASA Energy and Water Cycle grant NNH13ZDA001N to R.F. (A. LeGrande). M.S. is supported by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 256961. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. All of the data presented in this paper were obtained from the cited references. NR 394 TC 3 Z9 3 U1 14 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 8755-1209 EI 1944-9208 J9 REV GEOPHYS JI Rev. Geophys. PD DEC PY 2016 VL 54 IS 4 BP 809 EP 865 DI 10.1002/2015RG000512 PG 57 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EJ4WM UT WOS:000393217800003 ER PT J AU Li, ZQ Lau, WKM Ramanathan, V Wu, G Ding, Y Manoj, MG Liu, J Qian, Y Li, J Zhou, T Fan, J Rosenfeld, D Ming, Y Wang, Y Huang, J Wang, B Xu, X Lee, SS Cribb, M Zhang, F Yang, X Zhao, C Takemura, T Wang, K Xia, X Yin, Y Zhang, H Guo, J Zhai, PM Sugimoto, N Babu, SS Brasseur, GP AF Li, Zhanqing Lau, W. K. -M. Ramanathan, V. Wu, G. Ding, Y. Manoj, M. G. Liu, J. Qian, Y. Li, J. Zhou, T. Fan, J. Rosenfeld, D. Ming, Y. Wang, Y. Huang, J. Wang, B. Xu, X. Lee, S. -S. Cribb, M. Zhang, F. Yang, X. Zhao, C. Takemura, T. Wang, K. Xia, X. Yin, Y. Zhang, H. Guo, J. Zhai, P. M. Sugimoto, N. Babu, S. S. Brasseur, G. P. TI Aerosol and monsoon climate interactions over Asia SO REVIEWS OF GEOPHYSICS LA English DT Review ID CLOUD CONDENSATION NUCLEI; INDIAN-SUMMER MONSOON; BLACK CARBON AEROSOLS; EURASIAN SNOW COVER; DEEP CONVECTIVE CLOUDS; DIURNAL TEMPERATURE-RANGE; TROPICAL CONVERGENCE ZONE; GENERAL-CIRCULATION MODEL; INCIDENT SOLAR-RADIATION; SEA-SURFACE TEMPERATURE AB The increasing severity of droughts/floods and worsening air quality from increasing aerosols in Asia monsoon regions are the two gravest threats facing over 60% of the world population living in Asian monsoon regions. These dual threats have fueled a large body of research in the last decade on the roles of aerosols in impacting Asian monsoon weather and climate. This paper provides a comprehensive review of studies on Asian aerosols, monsoons, and their interactions. The Asian monsoon region is a primary source of emissions of diverse species of aerosols from both anthropogenic and natural origins. The distributions of aerosol loading are strongly influenced by distinct weather and climatic regimes, which are, in turn, modulated by aerosol effects. On a continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulations. The atmospheric thermodynamic state, which determines the formation of clouds, convection, and precipitation, may also be altered by aerosols serving as cloud condensation nuclei or ice nuclei. Absorbing aerosols such as black carbon and desert dust in Asian monsoon regions may also induce dynamical feedback processes, leading to a strengthening of the early monsoon and affecting the subsequent evolution of the monsoon. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of different monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcing of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections. C1 [Li, Zhanqing; Li, J.; Zhang, F.; Yang, X.; Zhao, C.; Wang, K.] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China. [Li, Zhanqing; Li, J.; Zhang, F.; Yang, X.; Zhao, C.; Wang, K.] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing, Peoples R China. [Li, Zhanqing; Lau, W. K. -M.; Manoj, M. G.; Liu, J.; Lee, S. -S.; Cribb, M.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Li, Zhanqing; Lau, W. K. -M.; Manoj, M. G.; Liu, J.; Lee, S. -S.; Cribb, M.] Univ Maryland, ESSIC, College Pk, MD 20742 USA. [Ramanathan, V.] Univ Calif San Diego, Dept Atmospher & Climate Sci, San Diego, CA 92103 USA. [Wu, G.; Zhou, T.; Xia, X.] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China. [Ding, Y.; Zhang, H.] China Meteorol Adm, Natl Climate Ctr, Beijing, Peoples R China. [Qian, Y.; Fan, J.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Rosenfeld, D.] Hebrew Univ Jerusalem, Inst Earth Sci, Jerusalem, Israel. [Ming, Y.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Wang, Y.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Huang, J.] Lanzhou Univ, Coll Atmospher Sci, Lanzhou, Peoples R China. [Wang, B.] Univ Hawaii, Dept Atmospher Sci, Honolulu, HI 96822 USA. [Wang, B.; Yin, Y.] Nanjing Univ Informat Sci & Technol, Sch Atmospher Phys, Nanjing, Jiangsu, Peoples R China. [Xu, X.; Guo, J.; Zhai, P. M.] Chinese Acad Meteorol Sci, Beijing, Peoples R China. [Takemura, T.] Kyushu Univ, Res Inst Appl Mech, Fukuoka, Japan. [Sugimoto, N.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Babu, S. S.] Vikram Sarabhai Space Ctr, Space Phys Lab, Thiruvananthapuram, Kerala, India. [Brasseur, G. P.] Max Planck Inst Meteorol, Hamburg, Germany. RP Li, ZQ (reprint author), Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China.; Li, ZQ (reprint author), Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing, Peoples R China.; Li, ZQ (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA.; Li, ZQ (reprint author), Univ Maryland, ESSIC, College Pk, MD 20742 USA. EM zli@atmos.umd.edu RI qian, yun/E-1845-2011; Wang, Kaicun/F-7813-2012; Kyushu, RIAM/F-4018-2015; Takemura, Toshihiko/C-2822-2009; Cribb, Maureen/K-1341-2013 OI Wang, Kaicun/0000-0002-7414-5400; Takemura, Toshihiko/0000-0002-2859-6067; Cribb, Maureen/0000-0002-9745-3676 FU China's National Basic Research Program on Global Change [2013CB955804]; National Natural Science Foundation of China [91544217]; U.S. National Science Foundation [AGS1534670]; NOAA [NA15NWS4680011]; U.S. Department of Energy [DESC0007171]; DOE ESM Program [DE-AC05-76RL01830] FX We are grateful to the following people who provided some of the original figures used in this article: Jaehwa Lee (Figure 1), F. Song (Figure 2), J. Wu and J. Lin (Figure 6), J. Xin (Figure 7a), K. Lee (Figures 4c and 7b), A. Robock (Figure 11), S. Dey (Figure 14), V. Vinoj (Figure 18), R. Zhang (Figure 19), and Jun Matsumoto (Figure 30). The bulk of the writing was done while the lead author was on sabbatical leave at the Beijing Normal University and the Max-Planck Institutes of Germany. Major funding supports pertinent to this work have been provided by the China's National Basic Research Program on Global Change (grant 2013CB955804), National Natural Science Foundation of China (grant 91544217), U.S. National Science Foundation (AGS1534670), NOAA (NA15NWS4680011), and the U.S. Department of Energy (DESC0007171), DOE ESM Program under contract DE-AC05-76RL01830. NR 474 TC 2 Z9 2 U1 19 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 8755-1209 EI 1944-9208 J9 REV GEOPHYS JI Rev. Geophys. PD DEC PY 2016 VL 54 IS 4 BP 866 EP 929 DI 10.1002/2015RG000500 PG 64 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EJ4WM UT WOS:000393217800004 ER PT J AU Scanlon, BR Zhang, ZZ Save, H Wiese, DN Landerer, FW Long, D Longuevergne, L Chen, Jl AF Scanlon, Bridget R. Zhang, Zizhan Save, Himanshu Wiese, David N. Landerer, Felix W. Long, Di Longuevergne, Laurent Chen, Jianli TI Global evaluation of new GRACE mascon products for hydrologic applications SO WATER RESOURCES RESEARCH LA English DT Article ID WATER STORAGE; GROUNDWATER DEPLETION; CLIMATE EXPERIMENT; SATELLITE GRAVITY; NORTHWEST INDIA; ANTARCTICA; VARIABILITY; GREENLAND; RECOVERY; DROUGHT AB Recent developments in mascon (mass concentration) solutions for GRACE (Gravity Recovery and Climate Experiment) satellite data have significantly increased the spatial localization and amplitude of recovered terrestrial Total Water Storage anomalies (TWSA); however, land hydrology applications have been limited. Here we compare TWSA from April 2002 through March 2015 from (1) newly released GRACE mascons from the Center for Space Research (CSR-M) with (2) NASA JPL mascons (JPL-M), and with (3) CSR Tellus gridded spherical harmonics rescaled (sf) (CSRT-GSH. sf) in 176 river basins, similar to 60% of the global land area. Time series in TWSA mascons (CSR-M and JPL-M) and spherical harmonics are highly correlated (rank correlation coefficients mostly > 0.9). The signal from long-term trends (up to +/- 20 mm/yr) is much less than that from seasonal amplitudes (up to 250 mm). Net long-term trends, summed over all 176 basins, are similar for CSR and JPL mascons (66-69 km(3)/yr) but are lower for spherical harmonics (similar to 14 km(3)/yr). Long-term TWSA declines are found mostly in irrigated basins (241 to 269 km(3)/yr). Seasonal amplitudes agree among GRACE solutions, increasing confidence in GRACE-based seasonal fluctuations. Rescaling spherical harmonics significantly increases agreement with mascons for seasonal fluctuations, but less for long-term trends. Mascons provide advantages relative to spherical harmonics, including (1) reduced leakage from land to ocean increasing signal amplitude, and (2) application of geophysical data constraints during processing with little empirical postprocessing requirements, making it easier for nongeodetic users. Results of this product intercomparison should allow hydrologists to better select suitable GRACE solutions for hydrologic applications. C1 [Scanlon, Bridget R.; Zhang, Zizhan] Univ Texas Austin, Bur Econ Geol, Jackson Sch Geosci, Austin, TX 78712 USA. [Save, Himanshu; Chen, Jianli] Univ Texas Austin, Ctr Space Res, Austin, TX 78712 USA. [Wiese, David N.; Landerer, Felix W.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Long, Di] Tsinghua Univ, Dept Hydraul Engn, Beijing, Peoples R China. [Longuevergne, Laurent] Univ Rennes, Geosci Rennes, Campus Beaulieu, Rennes, France. RP Scanlon, BR (reprint author), Univ Texas Austin, Bur Econ Geol, Jackson Sch Geosci, Austin, TX 78712 USA. EM bridget.scanlon@beg.utexas.edu OI Long, Di/0000-0001-9033-5039; Longuevergne, Laurent /0000-0003-3169-743X; Wiese, David/0000-0001-7035-0514 FU Jackson School of Geosciences; NASA MEaSUREs Program FX We would like to acknowledge financial support for the Senior Author from the Jackson School of Geosciences. Additional data are provided in supporting information. The work performed by D. N. Wiese and F. W. Landerer was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. GRACE Tellus land grids are available at http://grace.jpl.nasa.gov, supported by the NASA MEaSUREs Program. The CSR GRACE RL05 mascons solutions were downloaded from http://www.csr.utexas.edu/grace. NR 49 TC 1 Z9 1 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC PY 2016 VL 52 IS 12 BP 9412 EP 9429 DI 10.1002/2016WR019494 PG 18 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA EJ6HV UT WOS:000393321000014 ER PT J AU Nanteza, J de Linage, CR Thomas, BF Famiglietti, JS AF Nanteza, J. de Linage, C. R. Thomas, B. F. Famiglietti, J. S. TI Monitoring groundwater storage changes in complex basement aquifers: An evaluation of the GRACE satellites over East Africa SO WATER RESOURCES RESEARCH LA English DT Article ID GLOBAL HYDROLOGICAL MODEL; LAKE VICTORIA BASIN; REGIONAL CLIMATE MODEL; COLORADO RIVER-BASIN; INDIAN-OCEAN DIPOLE; HIGH-PLAINS AQUIFER; WATER STORAGE; RAINFALL VARIABILITY; GRAVITY RECOVERY; SOIL-MOISTURE AB Although the use of the Gravity Recovery and Climate Experiment (GRACE) satellites to monitor groundwater storage changes has become commonplace, our evaluation suggests that careful processing of the GRACE data is necessary to extract a representative signal especially in regions with significant surface water storage (i.e., lakes/reservoirs). In our study, we use cautiously processed data sets, including GRACE, lake altimetry, and model soil moisture, to reduce scaling factor bias and compare GRACE-derived groundwater storage changes to in situ groundwater observations over parts of East Africa. Over the period 2007-2010, a strong correlation between in situ groundwater storage changes and GRACE groundwater estimates (Spearman's rho = 0.6) is found. Piecewise trend analyses for the GRACE groundwater estimates reveal significant negative storage changes that are attributed to groundwater use and climate variability. Further analysis comparing groundwater and satellite precipitation data sets permits identification of regional groundwater characterization. For example, our results identify potentially permeable and/or shallow groundwater systems underlying Tanzania and deep and/or less permeable groundwater systems underlying the Upper Nile basin. Regional groundwater behaviors in the semiarid regions of Northern Kenya are attributed to hydraulic connections to recharge zones outside the subbasin boundary. Our results prove the utility of applying GRACE in monitoring groundwater resources in hydrologically complex regions that are undersampled and where policies limit data accessibility. C1 [Nanteza, J.; de Linage, C. R.; Famiglietti, J. S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92717 USA. [Nanteza, J.] Makerere Univ, Dept Geog Geoinformat & Climat Sci, Kampala, Uganda. [Thomas, B. F.] Univ Pittsburgh, Dept Geol & Environm Sci, Pittsburgh, PA USA. [Famiglietti, J. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Famiglietti, J. S.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92717 USA. RP Famiglietti, JS (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92717 USA.; Famiglietti, JS (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.; Famiglietti, JS (reprint author), Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92717 USA. EM james.famiglietti@jpl.nasa.gov OI Thomas, Brian/0000-0003-0080-7958 FU Fulbright Science and Technology fellowship; National Aeronautics and Space Administration (NASA) Earth and Space Science graduate student fellowship; Faculty for the Future Schlumberger fellowship; Intergovernmental Panel on Climate Change (IPCC) research grant; Department of Earth System Science, University of California, Irvine; NASA GRACE Science Team; University of California office of the President Multi-campus research and programs initiative; University of California School of Physical Sciences; Makerere University, Department of Geography, Geo-Informatics and Climatic Sciences; NASA MEaSUREs Program FX This study was supported through fellowships and research grants awarded to the first author including the Fulbright Science and Technology fellowship, National Aeronautics and Space Administration (NASA) Earth and Space Science graduate student fellowship, Faculty for the Future Schlumberger fellowship, the Intergovernmental Panel on Climate Change (IPCC) research grant and the Department of Earth System Science, University of California, Irvine. The support of the NASA GRACE Science Team, the University of California office of the President Multi-campus research and programs initiative, the University of California School of Physical Sciences and Makerere University, Department of Geography, Geo-Informatics and Climatic Sciences are gratefully acknowledged. A portion of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This study was also made possible using freely available data from the Global Land Data Assimilation System (http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings)while the GRACE data are available at http://grace.jpl.nasa.gov, supported by the NASA MEaSUREs Program. We acknowledge Andreas Guentner from GFZ for the WaterGAP model outputs. We also acknowledge the Uganda Department of Water Resources Monitoring (DWRM) for availing us with ground-based observations data sets. We wish to thank the Associate Editor and anonymous reviewers for their constructive comments which improved our manuscript. Additional data used in t/his study are available from the first author upon request (nantezajmt8@gmail.com). NR 163 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC PY 2016 VL 52 IS 12 BP 9542 EP 9564 DI 10.1002/2016WR018846 PG 23 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA EJ6HV UT WOS:000393321000021 ER PT J AU Abdul-Aziz, A Wroblewski, AC AF Abdul-Aziz, Ali Wroblewski, Adam C. TI Durability Analysis and Experimental Validation of Environmental Barrier Coating (EBC) Performance Using Combined Digital Image Correlation and NDE SO COATINGS LA English DT Article DE digital image correlation; tensile test; NDE; CMC; EBC; computed tomography ID SI-BASED CERAMICS; SIC/SIC COMPOSITES; DELAMINATION; CRACKING AB To understand the failure mechanism or to predict the spallation life of environmental barrier coatings (EBC) on fiber reinforced ceramic matrix composites, the fracture strength of EBC and the process of the crack growth in EBC layers need to be experimentally determined under standard or simulated engine operating conditions. The current work considers a multi layered barium strontium aluminum silicate (BSAS)-based EBC-coated, melt infiltrated silicon carbide fiber reinforced silicon carbide matrix composite (MI SiC/SiC) specimen that was tensile tested at room temperature. Numerous tests were performed under tensile loading conditions, and the specimen was loaded until failure under pre-determined stress levels. The specimen was examined with optical microscopy, scanning electron microscopy (SEM), computed tomography (CT) scan, and digital image correlation (DIC) camera. Observation from the computed tomography scanning, the SEM, and the optical microscopy did not offer conclusive information concerning the cracks that spawned during the tests. However, inspection with the DIC camera offered some indication that cracks had developed and allowed their detection and the location of their initiation site. Thus, this study provides detailed discussion of the results obtained from the experimental investigation and the nondestructive evaluation (NDE), and it also includes assessment of the stress response predicted by analytical modeling and their impact on EBC durability and crack growth formation under complex loading settings. C1 [Abdul-Aziz, Ali] Kent State Univ, Dept Aerosp Engn, Coll Appl Engn Sustainabil & Technol, Kent, OH 44242 USA. [Wroblewski, Adam C.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM aabdula3@kent.edu; Adam.C.Wroblewski@nasa.gov OI Abdul-Aziz, Ali/0000-0003-4506-940X NR 21 TC 0 Z9 0 U1 4 U2 4 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2079-6412 J9 COATINGS JI Coatings PD DEC PY 2016 VL 6 IS 4 AR 70 DI 10.3390/coatings6040070 PG 10 WC Materials Science, Coatings & Films SC Materials Science GA EI4TE UT WOS:000392485400030 ER PT J AU Ray, RD Foster, G AF Ray, Richard D. Foster, Grant TI Future nuisance flooding at Boston caused by astronomical tides alone SO Earths Future LA English DT Article ID SEA-LEVEL RISE; NORTHEAST COAST; CLIMATE-CHANGE; UNITED-STATES; GULF-STREAM; EXTREME; IMPACTS; AMERICA; TRENDS; FUNDY AB Sea level rise necessarily triggers more occurrences of minor, or nuisance, flooding events along coastlines, a fact well documented in recent studies. At some locations nuisance flooding can be brought about merely by high spring tides, independent of storms, winds, or other atmospheric conditions. Analysis of observed water levels at Boston indicates that tidal flooding began to occur there in 2011 and will become more frequent in subsequent years. A compilation of all predicted nuisance-flooding events, induced by astronomical tides alone, is presented through year 2050. The accuracy of the tide prediction is improved when several unusual properties of Gulf of Maine tides, including secular changes, are properly accounted for. Future mean sea-level rise at Boston cannot be predicted with comparable confidence, so two very different climate scenarios are adopted; both predict a large increase in the frequency and the magnitude of tidal flooding events. C1 [Ray, Richard D.] NASA, Goddard Space Flight Ctr, Lab Geodesy & Geophys, Greenbelt, MD 20771 USA. [Foster, Grant] Tempo Analyt, Garland, ME USA. RP Ray, RD (reprint author), NASA, Goddard Space Flight Ctr, Lab Geodesy & Geophys, Greenbelt, MD 20771 USA. EM richard.ray@nasa.gov RI Ray, Richard/D-1034-2012 FU NASA Sea-Level Change project FX Hourly tide gauge data were obtained from the University of Hawaii Sea Level Center, at http://uhslc.soest.hawaii.edu. Six-minute data were obtained from NOAA's Center for Operational Oceanographic Products and Services, through their website at http://tidesandcurrents.noaa.gov. Computed annual means were obtained from the Permanent Service for Mean Sea Level; http://www.psmsl.org. We thank Ben Hamlington for useful discussions and John Hunter and an anonymous reviewer for comments and suggestions. Part of this work was supported by the NASA Sea-Level Change project. NR 38 TC 2 Z9 2 U1 5 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2328-4277 J9 EARTHS FUTURE JI Earth Future PD DEC PY 2016 VL 4 IS 12 BP 578 EP 587 DI 10.1002/2016EF000423 PG 10 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA EI9FO UT WOS:000392813400003 ER PT J AU Robinson, JE Heineman, WR Sagle, LB Meyyappan, M Koehne, JE AF Robinson, Jendai E. Heineman, William R. Sagle, Laura B. Meyyappan, M. Koehne, Jessica E. TI Electrochemical Characterization of Vertically Aligned Carbon Nanofiber Arrays Prepared by Hole-mask Colloidal Lithography SO ELECTROANALYSIS LA English DT Article DE Cyclic voltammetry; Vertically aligned carbon nanofibers; Hole-mask colloidal lithography ID NANOELECTRODE ARRAYS; ELECTRODE ARRAYS; FABRICATION; BIOSENSORS; ENSEMBLES; GLUCOSE; SENSOR; LEAD AB Nanoelectrode arrays consisting of vertically aligned carbon nanofibers were prepared through plasma enhanced chemical vapor deposition and patterned using hole-mask colloidal lithography (HCL), a simple fabrication method employed as a cost-effective patterning alternative to the conventional electron beam lithography. The density of the carbon nanofibers was easily altered by changing the concentration of the polystyrene spheres employed in HCL. Cyclic voltammetry and chronoamperometry were used to electrochemically characterize the arrays of different density. Results indicate that the density of the carbon nanofibers leads to differences in the macro/micro electroactive surface areas. C1 [Robinson, Jendai E.; Heineman, William R.; Sagle, Laura B.] Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA. [Meyyappan, M.; Koehne, Jessica E.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. RP Koehne, JE (reprint author), NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. EM Jessica.e.koehne@nasa.gov FU University of Cincinnati start-up funds; Pre-doctoral fellowship program for Jendai Robinson, a NASA Office of Education Minority University Research and Education Program (MUREP) FX This work was supported by University of Cincinnati start-up funds. The authors also gratefully acknowledge the use of the UCSC MACS Facility at the NASA Ames Research Center, University of Cincinnati Engineering Research Center (ERC), and Clean Room and Advanced Materials Characterization Center (AMCC). We thank Ian Bruzas at the University of Cincinnati for his efforts on the HCL procedure, Cory Rusinek at the University of Cincinnati for his helpful discussions on electrochemical techniques and the NASA Harriet G. Jenkins Pre-doctoral fellowship program for Jendai Robinson, a NASA Office of Education Minority University Research and Education Program (MUREP). NR 26 TC 0 Z9 0 U1 3 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1040-0397 EI 1521-4109 J9 ELECTROANAL JI Electroanalysis PD DEC PY 2016 VL 28 IS 12 BP 3039 EP 3047 DI 10.1002/elan.201600303 PG 9 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA EI9JN UT WOS:000392824200018 ER PT J AU Tan, ZH Schneider, T Teixeira, J Pressel, KG AF Tan, Zhihong Schneider, Tapio Teixeira, Joao Pressel, Kyle G. TI Large-eddy simulation of subtropical cloud-topped boundary layers: 1. A forcing framework with closed surface energy balance SO Journal of Advances in Modeling Earth Systems LA English DT Article ID ESSENTIALLY NONOSCILLATORY SCHEMES; GENERAL-CIRCULATION MODELS; EFFICIENT IMPLEMENTATION; CLIMATE SENSITIVITY; CUMULUS CONVECTION; HYDROLOGICAL CYCLE; STRATOCUMULUS; FEEDBACK; ATMOSPHERE; GCM AB Large-eddy simulation (LES) of clouds has the potential to resolve a central question in climate dynamics, namely, how subtropical marine boundary layer (MBL) clouds respond to global warming. However, large-scale processes need to be prescribed or represented parameterically in the limited-area LES domains. It is important that the representation of large-scale processes satisfies constraints such as a closed energy balance in a manner that is realizable under climate change. For example, LES with fixed sea surface temperatures usually do not close the surface energy balance, potentially leading to spurious surface fluxes and cloud responses to climate change. Here a framework of forcing LES of subtropical MBL clouds is presented that enforces a closed surface energy balance by coupling atmospheric LES to an ocean mixed layer with a sea surface temperature (SST) that depends on radiative fluxes and sensible and latent heat fluxes at the surface. A variety of subtropical MBL cloud regimes (stratocumulus, cumulus, and stratocumulus over cumulus) are simulated successfully within this framework. However, unlike in conventional frameworks with fixed SST, feedbacks between cloud cover and SST arise, which can lead to sudden transitions between cloud regimes (e. g., stratocumulus to cumulus) as forcing parameters are varied. The simulations validate this framework for studies of MBL clouds and establish its usefulness for studies of how the clouds respond to climate change. C1 [Tan, Zhihong; Schneider, Tapio; Pressel, Kyle G.] ETH, Dept Earth Sci, Zurich, Switzerland. [Tan, Zhihong; Schneider, Tapio; Teixeira, Joao] CALTECH, Pasadena, CA 91125 USA. [Tan, Zhihong] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Teixeira, Joao] Jet Prop Lab, Pasadena, CA USA. RP Tan, ZH (reprint author), ETH, Dept Earth Sci, Zurich, Switzerland.; Tan, ZH (reprint author), CALTECH, Pasadena, CA 91125 USA.; Tan, ZH (reprint author), Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. EM tanzh@uchicago.edu OI Tan, Zhihong/0000-0002-7422-3317 FU U.S. National Science Foundation [CCF-1048575]; Caltech's Terrestrial Hazard Observation and Reporting (THOR) Center; Swiss National Science Foundation FX This work was supported by the U.S. National Science Foundation (grant CCF-1048575), by Caltech's Terrestrial Hazard Observation and Reporting (THOR) Center, and by the Swiss National Science Foundation. The numerical simulations were performed on the Euler Cluster operated by the high performance computing (HPC) team at ETH Zurich. The PyCLES codes and the configurations for the new forcing framework are available online at climate-dynamics. org/software. We also thank Colleen Kaul for her contributions to the microphysics scheme in PyCLES. NR 60 TC 1 Z9 1 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD DEC PY 2016 VL 8 IS 4 BP 1565 EP 1585 DI 10.1002/2016MS000655 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI9FL UT WOS:000392813100004 ER PT J AU Blossey, PN Bretherton, CS Cheng, AN Endo, S Heus, T Lock, AP van der Dussen, JJ AF Blossey, Peter N. Bretherton, Christopher S. Cheng, Anning Endo, Satoshi Heus, Thijs Lock, Adrian P. van der Dussen, Johan J. TI CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO2 quadrupling and a CMIP3 composite forcing change SO Journal of Advances in Modeling Earth Systems LA English DT Article ID MIXED-LAYER MODEL; STRATOCUMULUS RESPONSE; CLIMATE SENSITIVITY; FEEDBACK; COVER; CIRCULATION AB Phase 1 of the CGILS large-eddy simulation (LES) intercomparison is extended to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide ("fast adjustment'') and to a composite climate perturbation representative of CMIP3 multimodel mean 2XCO(2) near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. The results are generally consistent with a single-LES study of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. The cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height. C1 [Blossey, Peter N.; Bretherton, Christopher S.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Cheng, Anning] Sci Syst & Applicat Inc, Hampton, VA USA. [Cheng, Anning] NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23665 USA. [Endo, Satoshi] Brookhaven Natl Lab, Upton, NY 11973 USA. [Heus, Thijs] Cleveland State Univ, Dept Phys, Cleveland, OH 44115 USA. [Lock, Adrian P.] Met Off, Exeter, Devon, England. [van der Dussen, Johan J.] Delft Univ Technol, Delft, Netherlands. RP Blossey, PN (reprint author), Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. EM pblossey@uw.edu RI Heus, Thijs/E-7336-2012 OI Heus, Thijs/0000-0003-2650-2423 FU NSF Science and Technology Center for Multi-Scale Modeling of Atmospheric Processes (CMMAP) [ATM-0425247]; DOE Atmospheric System Research Program [DE-SC0005450, DE-SC0008779]; Laboratory Directed Research and Development (LDRD) Program of Brookhaven National Laboratory; Deutscher Wetter Dienst (DWD) through the Hans-Ertel Centre for Weather Research; European Union CLoud Intercomparison, Process Study & Evaluation (EUCLIPSE) project from European Union, Seventh Framework Programme (FP7) [244067] FX P.N.B. and C.S.B. acknowledge support from the NSF Science and Technology Center for Multi-Scale Modeling of Atmospheric Processes (CMMAP), led by David Randall and managed by Colorado State University under cooperative agreement ATM-0425247. A.C. was supported by the DOE Atmospheric System Research Program under Interagency agreement DE-SC0005450 and DE-SC0008779 and used computational resources provided by Argonne National Laboratory, DOE's Office of Science and the local computation clusters: K-cluster and Icluster. S.E. was partly supported by the Laboratory Directed Research and Development (LDRD) Program of Brookhaven National Laboratory. T.H. was supported by the Deutscher Wetter Dienst (DWD) through the Hans-Ertel Centre for Weather Research. J.J.v.d.D. was supported by the European Union CLoud Intercomparison, Process Study & Evaluation (EUCLIPSE) project through funding from European Union, Seventh Framework Programme (FP7/2007-2013) under grant agreement 244067. The model output data and scripts used to produce the plots in this paper, along with a description of the simulation setup and forcings for the different cases, may be accessed at http://hdl.handle.net/1773/37295. NR 33 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD DEC PY 2016 VL 8 IS 4 BP 1714 EP 1726 DI 10.1002/2016MS000765 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI9FL UT WOS:000392813100011 ER PT J AU Xu, KM Cheng, AN AF Xu, Kuan-Man Cheng, Anning TI Understanding the tropical cloud feedback from an analysis of the circulation and stability regimes simulated from an upgraded multiscale modeling framework SO Journal of Advances in Modeling Earth Systems LA English DT Article ID BOUNDARY-LAYER CLOUDS; 3RD-ORDER TURBULENCE CLOSURES; CLIMATE-CHANGE EXPERIMENTS; RESOLVING MODEL; RADIATION BUDGET; SATELLITE-OBSERVATIONS; SURFACE-TEMPERATURE; PART I; SENSITIVITY; PARAMETERIZATION AB As revealed from studies using conventional general circulation models (GCMs), the thermodynamic contribution to the tropical cloud feedback dominates the dynamic contribution, but these models have difficulty in simulating the subsidence regimes in the tropics. In this study, we analyze the tropical cloud feedback from a 2 K sea surface temperature (SST) perturbation experiment performed with a multiscale modeling framework (MMF). The MMF explicitly represents cloud processes using 2-D cloud-resolving models with an advanced higher-order turbulence closure in each atmospheric column of the host GCM. We sort the monthly mean cloud properties and cloud radiative effects according to circulation and stability regimes. We find that the regime-sorted dynamic changes dominate the thermodynamic changes in terms of the absolute magnitude. The dynamic changes in the weak subsidence regimes exhibit strong negative cloud feedback due to increases in shallow cumulus and deep clouds while those in strongly convective and moderate-to-strong subsidence regimes have opposite signs, resulting in a small contribution to cloud feedback. On the other hand, the thermodynamic changes are large due to decreases in stratocumulus clouds in the moderate-to-strong subsidence regimes with small opposite changes in the weak subsidence and strongly convective regimes, resulting in a relatively large contribution to positive cloud feedback. The dynamic and thermodynamic changes contribute equally to positive cloud feedback and are relatively insensitive to stability in the moderate-to-strong subsidence regimes. But they are sensitive to stability changes from the SST increase in convective and weak subsidence regimes. These results have implications for interpreting cloud feedback mechanisms. C1 [Xu, Kuan-Man] NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23665 USA. [Cheng, Anning] NOAA, NCEP, EMC, College Pk, MD USA. RP Xu, KM (reprint author), NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23665 USA. EM Kuan-Man.Xu@nasa.gov RI Xu, Kuan-Man/B-7557-2013 OI Xu, Kuan-Man/0000-0001-7851-2629 FU DOE Atmospheric System Research Program [DE-SC0005450, DE-SC0008779]; NASA Interdisciplinary Study program FX This work has been supported by DOE Atmospheric System Research Program under Interagency agreement DE-SC0005450 and DE-SC0008779. The lead author is also supported by NASA Interdisciplinary Study program. The computational resources were provided by Argonne National Laboratory, DOE's Office of Science, and the local computation clusters: K-cluster and Icluster. We thank Peter Blossey of University of Washington for providing the Matlab code to verify some of the plots and SPCAM data presented in Table 1. We thank all reviewers for their constructive comments that lead to the improvement of the final manuscript. NR 71 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD DEC PY 2016 VL 8 IS 4 BP 1825 EP 1846 DI 10.1002/2016MS000767 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI9FL UT WOS:000392813100017 ER PT J AU Voigt, A Biasutti, M Scheff, J Bader, J Bordoni, S Codron, F Dixon, RD Jonas, J Kang, SM Klingaman, NP Leung, R Lu, J Mapes, B Maroon, EA McDermid, S Park, JY Roehrig, R Rose, BEJ Russell, GL Seo, JB Toniazzo, T Wei, HH Yoshimori, M Zeppetello, LRV AF Voigt, Aiko Biasutti, Michela Scheff, Jacob Bader, Juergen Bordoni, Simona Codron, Francis Dixon, Ross D. Jonas, Jeffrey Kang, Sarah M. Klingaman, Nicholas P. Leung, Ruby Lu, Jian Mapes, Brian Maroon, Elizabeth A. McDermid, Sonali Park, Jong-yeon Roehrig, Romain Rose, Brian E. J. Russell, Gary L. Seo, Jeongbin Toniazzo, Thomas Wei, Ho-Hsuan Yoshimori, Masakazu Zeppetello, Lucas R. Vargas TI The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP SO Journal of Advances in Modeling Earth Systems LA English DT Article ID GENERAL-CIRCULATION MODELS; ENERGY FLUX EQUATOR; CLIMATE SENSITIVITY; SAHEL RAINFALL; ATMOSPHERIC CIRCULATION; OVERTURNING CIRCULATION; INTERANNUAL VARIATIONS; RADIATIVE FEEDBACKS; HYDROLOGICAL CYCLE; OCEAN CIRCULATION AB This paper introduces the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project (TRACMIP). TRACMIP studies the dynamics of tropical rain belts and their response to past and future radiative forcings through simulations with 13 comprehensive and one simplified atmosphere models coupled to a slab ocean and driven by seasonally varying insolation. Five idealized experiments, two with an aquaplanet setup and three with a setup with an idealized tropical continent, fill the space between prescribed-SST aquaplanet simulations and realistic simulations provided by CMIP5/6. The simulations reproduce key features of present-day climate and expected future climate change, including an annual-mean intertropical convergence zone (ITCZ) that is located north of the equator and Hadley cells and eddy-driven jets that are similar to present-day climate. Quadrupling CO2 leads to a northward ITCZ shift and preferential warming in Northern high latitudes. The simulations show interesting CO2-induced changes in the seasonal excursion of the ITCZ and indicate a possible state dependence of climate sensitivity. The inclusion of an idealized continent modulates both the control climate and the response to increased CO2; for example, it reduces the northward ITCZ shift associated with warming and, in some models, climate sensitivity. In response to eccentricity-driven seasonal insolation changes, seasonal changes in oceanic rainfall are best characterized as a meridional dipole, while seasonal continental rainfall changes tend to be symmetric about the equator. This survey illustrates TRACMIP's potential to engender a deeper understanding of global and regional climate and to address questions on past and future climate change. C1 [Voigt, Aiko] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Dept Troposphere Res, Karlsruhe, Germany. [Voigt, Aiko; Biasutti, Michela; Scheff, Jacob; Zeppetello, Lucas R. Vargas] Columbia Univ, Lamont Doherty Earth Observ, New York, NY 10027 USA. [Bader, Juergen; Park, Jong-yeon] Max Planck Inst Meteorol, Hamburg, Germany. [Bordoni, Simona; Wei, Ho-Hsuan] CALTECH, Pasadena, CA 91125 USA. [Codron, Francis] UPMC, Sorbonne Univ, Lab Oceanog & Climat, Paris, France. [Dixon, Ross D.] Univ Wisconsin, Madison, WI USA. [Jonas, Jeffrey] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Kang, Sarah M.; Seo, Jeongbin] Ulsan Natl Inst Sci & Technol, Sch Urban & Environm Engn, Ulsan, South Korea. [Klingaman, Nicholas P.] Univ Reading, Natl Ctr Atmospher Sci Climate, Reading, Berks, England. [Klingaman, Nicholas P.] Univ Reading, Dept Meteorol, Reading, Berks, England. [Leung, Ruby; Lu, Jian] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Mapes, Brian] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL USA. [Maroon, Elizabeth A.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [McDermid, Sonali] NYU, New York, NY USA. [Roehrig, Romain] CNRS, Ctr Natl Rech Meteorol, UMR Meteo France 3589, Toulouse, France. [Rose, Brian E. J.] SUNY Albany, Albany, NY USA. [Russell, Gary L.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Toniazzo, Thomas] Bjerknes Ctr Climate Res, Uni Res, Bergen, Norway. [Yoshimori, Masakazu] Hokkaido Univ, Fac Environm Earth Sci, Sapporo, Hokkaido, Japan. [Yoshimori, Masakazu] Hokkaido Univ, Arctic Res Ctr, Sapporo, Hokkaido, Japan. RP Voigt, A (reprint author), Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Dept Troposphere Res, Karlsruhe, Germany.; Voigt, A (reprint author), Columbia Univ, Lamont Doherty Earth Observ, New York, NY 10027 USA. EM aiko.voigt@kit.edu RI Voigt, Aiko/H-4691-2012; Klingaman, Nicholas/H-4610-2012; Biasutti, Michela/G-3804-2012 OI Voigt, Aiko/0000-0002-7394-8252; Klingaman, Nicholas/0000-0002-2927-9303; Biasutti, Michela/0000-0001-6681-1533 FU NSF [AGS-1565522, AGS-1433551, AGS-1462544, AGS-1455071]; Earth Institute of Columbia University; German Ministry of Education and Research (BMBF); FONA: Research for Sustainable Development [01LK1509A]; Department of Energy BER award [DE-SC0014423]; IDRIS supercomputing center; project MORDICUS of the French National Research Agency (ANR) [ANR-13-SENV-0002]; National Science Foundation; Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [2016R1A1A3A04005520]; Independent Research Fellowship from the UK Natural Environment Research Council [NE/L010976/1]; U.S. Department of Energy Office of Science Biological and Environmental Research (BER), Regional and Global Climate Modeling program; NSF IGERT Program on Ocean Change; JSPS KAKENHI [15K05280]; Program for Risk Information on Climate Change (SOUSEI program) of MEXT, Japan FX We are indebted to RSMAS (University of Miami) for hosting the TRACMIP data sets on their data repository. M.B., A.V. and J. Scheff are supported by NSF award AGS-1565522. A.V. and M.B. acknowledge support from the undergraduate research program of the Earth Institute of Columbia University for LRVZ. A.V. received support from the German Ministry of Education and Research (BMBF) and FONA: Research for Sustainable Development (www.fona.de) under grant 01LK1509A. M.B. was supported by a Department of Energy BER award DE-SC0014423. J. Scheff was funded by NSF award AGS-1433551. SB and HHW were supported by the NSF under grant AGS-1462544. F.C. acknowledges support from the IDRIS supercomputing center and the project MORDICUS ANR-13-SENV-0002 of the French National Research Agency (ANR). R.D.D. acknowledges high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. S.M.K. and J. Seo were supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2016R1A1A3A04005520). N.P.K. was funded by an Independent Research Fellowship from the UK Natural Environment Research Council (NE/L010976/1). MetUM simulations were performed on the ARCHER UK national supercomputing service (http://www.archer.ac.uk). R.L. and J.L. were supported by the U.S. Department of Energy Office of Science Biological and Environmental Research (BER) as part of the Regional and Global Climate Modeling program. E.A.M. was supported by the NSF IGERT Program on Ocean Change. S.M. acknowledges and thanks Larissa Nazarenko for her help in making the GISS ModelE2 contributions possible. B.E.J.R. acknowledges support from NSF grant AGS-1455071. M.Y. acknowledges support from JSPS KAKENHI grant 15K05280 and the Program for Risk Information on Climate Change (SOUSEI program) of MEXT, Japan. The MIROC5 simulations were conducted using the Fujitsu PRIMEHPC FX10 System in the Information Technology Center and collaborating with the Atmosphere and Ocean Research Institute, both in the University of Tokyo. We thank Catherine Pomposi for comments on an earlier version of the manuscript. Tracmip simulations are made publicly available on an OpenDAP data server of BM's group at the University of Miami. Detailed instructions on how to obtain the simulations are provided on the project's website www.sites.google.com/site/tracmip/ and can also be obtained from AV and MB via tracmip@gmail.com. NR 100 TC 1 Z9 1 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD DEC PY 2016 VL 8 IS 4 BP 1868 EP 1891 DI 10.1002/2016MS000748 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI9FL UT WOS:000392813100019 ER PT J AU Miege, C Forster, RR Brucker, L Koenig, LS Solomon, DK Paden, JD Box, JE Burgess, EW Miller, JZ McNerney, L Brautigam, N Fausto, RS Gogineni, S AF Miege, Clement Forster, Richard R. Brucker, Ludovic Koenig, Lora S. Solomon, D. Kip Paden, John D. Box, Jason E. Burgess, Evan W. Miller, Julie Z. McNerney, Laura Brautigam, Noah Fausto, Robert S. Gogineni, Sivaprasad TI Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article ID ICE-SHEET; MELTWATER STORAGE; ACCUMULATION RATES; WATER-MOVEMENT; CLIMATE MODEL; MASS-BALANCE; FLOW; ELEVATION; SNOW; STORGLACIAREN AB We document the existence of widespread firn aquifers in an elevation range of similar to 1200-2000 m, in the high snow-accumulation regions of the Greenland ice sheet. We use NASA Operation IceBridge accumulation radar data from five campaigns (2010-2014) to estimate a firn-aquifer total extent of 21,900 km(2). We investigate two locations in Southeast Greenland, where repeated radar profiles allow mapping of aquifer-extent and water table variations. In the upper part of Helheim Glacier the water table rises in spring following above-average summer melt, showing the direct firn-aquifer response to surface meltwater production changes. After spring 2012, a drainage of the firn-aquifer lower margin (5 km) is inferred from both 750 MHz accumulation radar and 195 MHz multicoherent radar depth sounder data. For 2011-2014, we use a ground-penetrating radar profile located at our Ridgeline field site and find a spatially stable aquifer with a water table fluctuating less than 2.5 m vertically. When combining radar data with surface topography, we find that the upper elevation edge of firn aquifers is located directly downstream of locally high surface slopes. Using a steady state 2-D groundwater flow model, water is simulated to flow laterally in an unconfined aquifer, topographically driven by ice sheet surface undulations until the water encounters crevasses. Simulations suggest that local flow cells form within the Helheim aquifer, allowing water to discharge in the firn at the steep-to-flat transitions of surface topography. Supported by visible imagery, we infer that water drains into crevasses, but its volume and rate remain unconstrained. C1 [Miege, Clement; Forster, Richard R.; Burgess, Evan W.; Miller, Julie Z.; McNerney, Laura; Brautigam, Noah] Univ Utah, Dept Geog, Salt Lake City, UT 84112 USA. [Brucker, Ludovic] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Code 615, Greenbelt, MD USA. [Brucker, Ludovic] Univ Space Res Assoc, Goddard Earth Sci Technol & Res Studies & Invest, Columbia, MD USA. [Koenig, Lora S.] Univ Colorado, Cooperat Inst Res Environm Sci, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. [Solomon, D. Kip] Univ Utah, Dept Geol & Geophys, Salt Lake City, UT 84112 USA. [Paden, John D.; Gogineni, Sivaprasad] Univ Kansas, Ctr Remote Sensing Ice Sheets, Lawrence, KS 66045 USA. [Box, Jason E.; Fausto, Robert S.] Geol Survey Denmark & Greenland GEUS, Copenhagen, Denmark. [Miller, Julie Z.] Ohio State Univ, Byrd Climate & Res Ctr, Columbus, OH 43210 USA. RP Miege, C (reprint author), Univ Utah, Dept Geog, Salt Lake City, UT 84112 USA. EM clement.miege@geog.utah.edu RI Brucker, Ludovic/A-8029-2010; OI Brucker, Ludovic/0000-0001-7102-8084; Miege, Clement/0000-0002-1894-3723; Solomon, Douglas Kip/0000-0001-6370-7124 FU NSF [ANT-0424589, OPP-0909499, EAGER-1311655]; NASA [NNX13AD53A, NNX13AK23G]; NASA ESS Fellowship program [NNX11AL64H]; NASA's Cryospheric Science Program; Det Frie Forskningsrad of Denmark grant [DFF-4002-00234]; CH2MHILL; IDDO; Air National Guard; Air Greenland; UNAVCO FX We would like to thank Scientific Editor Bryn Hubbard for handling our manuscript and for his comments, as well as an Associate Editor, three anonymous reviewers and Jack Kohler for many insights and suggestions that substantially improved this manuscript. Thanks to NASA Operation IceBridge and CReSIS at the University of Kansas for the high-quality airborne data that made this study possible. CReSIS data were generated with support from NSF (ANT-0424589) and NASA (NNX13AD53A). C. Miege acknowledges NASA ESS Fellowship program (NNX11AL64H). NSF with grants OPP-0909499 and EAGER-1311655 supported fieldwork in 2011 and 2013. L. Brucker and L. Koenig were supported by NASA's Cryospheric Science Program. R. Forster acknowledges NASA grant NNX13AK23G. J. Box and R. Fausto are supported by the Det Frie Forskningsrad of Denmark grant DFF-4002-00234. Thanks to the 2011 and 2013 field team members: B. Ballard, T. Gacke, and J. Kyne. Thanks to the following institutions for the fieldwork support: CH2MHILL, IDDO, 109th Air National Guard, Air Greenland, and UNAVCO. Thanks to G. Roth at the Polar Geospatial Center for preparing the DigitalGlobe (c) images. Thanks to J. Collins at CReSIS for the careful grammatical edits on this manuscript. Thanks to Xavier Fettweis at the University of Liege for the availability of his MAR output data. The firn-aquifer map and depth to the water table are available for download at nsidc.org/ acadis or by contacting the lead author (clement.miege@geog.utah.edu). NR 49 TC 3 Z9 3 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD DEC PY 2016 VL 121 IS 12 BP 2381 EP 2398 DI 10.1002/2016JF003869 PG 18 WC Geosciences, Multidisciplinary SC Geology GA EI9MI UT WOS:000392831800007 ER PT J AU Sherman, JP Gupta, P Levy, RC Sherman, PJ AF Sherman, James P. Gupta, Pawan Levy, Robert C. Sherman, Peter J. TI An Evaluation of MODIS-Retrieved Aerosol Optical Depth over a Mountainous AERONET Site in the Southeastern US SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE Aerosol optical thickness; Air quality; Collection 5; Southern Appalachian mountains ID TROPOSPHERIC AEROSOL; PRODUCTS; LAND; NETWORK; OCEAN; URBAN; CLOUD AB The literature shows that aerosol optical depth (AOD) derived from the MODIS Collection 5 (C5) dark target algorithm has been extensively validated by spatiotemporal collocation with AERONET sites on both global and regional scales. Although generally comparing well over the eastern US region, poor performance over mountains in other regions indicate the need to evaluate the MODIS product over a mountain site. This study compares MODIS C5 AOD at 550nm to AOD measured at the Appalachian State University AERONET site in Boone, NC over 30 months between August 2010 and September 2013. For the combined Aqua and Terra datasets, although more than 70% of the 500 MODIS AOD measurements agree with collocated AERONET AOD to within error envelope of +/- (0.05 + 15%), MODIS tends to have a low bias (0.02-0.03). The agreement between MODIS and AERONET AOD does not depend on MODIS quality assurance confidence (QAC) value. However, when stratified by satellite, MODIS-Terra data does not perform as well as Aqua, with especially poor correlation (r = 0.39) for low aerosol loading conditions (AERONET AOD less than 0.15). Linear regressions between Terra and AERONET possess statistically-different slopes for AOD < 0.15 and AOD >= 0.15. AERONET AOD measured only during MODIS overpass hours is highly correlated with daily-averaged AERONET AOD. MODIS monthly-averaged AOD also tracks that of AERONET over the study period. These results indicate that MODIS is sensitive to the day-to-day variability, as well as the annual cycle of AOD over the Appalachian State AERONET site. The complex topography and high seasonality in AOD and vegetation indices allow us to specifically evaluate MODIS dark target algorithm surface albedo and aerosol model assumptions at a regionally-representative SE US mountain site. C1 [Sherman, James P.] Appalachian State Univ, Dept Phys & Astron, Boone, NC 28608 USA. [Gupta, Pawan; Levy, Robert C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Sherman, Peter J.] Iowa State Univ, Dept Aerosp Engn, Boone, IA 50036 USA. RP Sherman, PJ (reprint author), Iowa State Univ, Dept Aerosp Engn, Boone, IA 50036 USA. EM shermanjp@appstate.edu RI Levy, Robert/M-7764-2013 OI Levy, Robert/0000-0002-8933-5303 NR 20 TC 0 Z9 0 U1 3 U2 3 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 EI 2071-1409 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD DEC PY 2016 VL 16 IS 12 BP 3243 EP 3255 DI 10.4209/aaqr.2015.09.0568 PG 13 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI2HR UT WOS:000392308000022 ER PT J AU Neudeck, PG Meredith, RD Chen, LY Spry, DJ Nakley, LM Hunter, GW AF Neudeck, Philip G. Meredith, Roger D. Chen, Liangyu Spry, David J. Nakley, Leah M. Hunter, Gary W. TI Prolonged silicon carbide integrated circuit operation in Venus surface atmospheric conditions SO AIP ADVANCES LA English DT Article AB The prolonged operation of semiconductor integrated circuits (ICs) needed for long-duration exploration of the surface of Venus has proven insurmountably challenging to date due to the similar to 460 degrees C, similar to 9.4 MPa caustic environment. Past and planned Venus landers have been limited to a few hours of surface operation, even when IC electronics needed for basic lander operation are protected with heavily cumbersome pressure vessels and cooling measures. Here we demonstrate vastly longer (weeks) electrical operation of two silicon carbide (4H-SiC) junction field effect transistor (JFET) ring oscillator ICs tested with chips directly exposed (no cooling and no protective chip packaging) to a high-fidelity physical and chemical reproduction of Venus' surface atmosphere. This represents more than 100-fold extension of demonstrated Venus environment electronics durability. With further technology maturation, such SiC IC electronics could drastically improve Venus lander designs and mission concepts, fundamentally enabling long-duration enhanced missions to the surface of Venus. (C) 2016 Author(s). C1 [Neudeck, Philip G.; Meredith, Roger D.; Spry, David J.; Nakley, Leah M.; Hunter, Gary W.] NASA, Glenn Res Ctr, 21000 Brookpk Rd,MS 77-1, Cleveland, OH 44135 USA. [Chen, Liangyu] OAI NASA Glenn, 21000 Brookpk Rd,MS 77-1, Cleveland, OH 44135 USA. RP Neudeck, PG (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd,MS 77-1, Cleveland, OH 44135 USA. EM Neudeck@nasa.gov FU NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) program FX We thank D. Vento, J. Rymut, M. Arnett, K. Gregg, M. Krasowski, D. Lukco, G. Costa, M. Perez, R. Buttler, G. Beheim, C. Chang, N. Prokop, T. Kremic, G. Landis, M. Smith, K. Moses, J. Gonzalez, M. Mrdenovich, J. Wrbanek, L. Arnett, and L. Matus at The NASA Glenn Research Center. We thank R. Harvey at Case Western Reserve University for his manuscript review and improvement suggestions. Work conducted by the National Aeronautics and Space Administration (NASA) at The John H. Glenn Research Center in Cleveland, Ohio USA, under funding from the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) program. NR 29 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD DEC PY 2016 VL 6 IS 12 AR 125119 DI 10.1063/1.4973429 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EH9KZ UT WOS:000392091500088 ER PT J AU Hoareau, C Noel, V Chepfer, H Vidot, J Chiriaco, M Bastin, S Reverdy, M Cesana, G AF Hoareau, C. Noel, V. Chepfer, H. Vidot, J. Chiriaco, M. Bastin, S. Reverdy, M. Cesana, G. TI Remote sensing ice supersaturation inside and near cirrus clouds: a case study in the subtropics SO ATMOSPHERIC SCIENCE LETTERS LA English DT Article DE cirrus; water vapor; supersaturation; Raman lidar; subtropics ID UPPER-TROPOSPHERIC HUMIDITY; TROPICAL TROPOPAUSE LAYER; CLIMATE-CHANGE; CALIPSO DATA; THIN CIRRUS; RAMAN LIDAR; DISTRIBUTIONS; MECHANISMS; REANALYSIS; NUCLEATION AB Combining vertically resolved lidar retrievals of water vapor and cloud detection, we document a 2-day subtropical cirrus case study over La Reunion (20.9 degrees S-55.5 degrees E) in March 2005, focusing on the conditions of ice supersaturation inside and near the observed cloud. Using satellite observations, we describe the synoptic conditions leading to cloud formation. Supersaturation occurs 25% of the time within the cirrus, up to 35% in its middle segment, where relative humidity goes beyond 150%. In clear-sky areas, relative humidity stays consistently low, especially in profiles without clouds. High-troposphere atmospheric waves could initiate the formation of supersaturation conditions, especially on 16 March. C1 [Hoareau, C.] CNRS, Lab Meteorol Dynam, UMR 8539, Palaiseau, France. [Noel, V.] CNRS, Lab Aerol, UMR 5560, Toulouse, France. [Chepfer, H.] UPMC, Lab Meteorol Dynam, UMR 8539, Palaiseau, France. [Vidot, J.] Meteo France, Ctr Meteorol Spatiale, Lannion, France. [Chiriaco, M.; Bastin, S.] UPMC Univ Paris 06, Sorbonne Univ, Univ Versailles St Quentin, 11 Bd Alembert, Guyancourt, France. [Chiriaco, M.; Bastin, S.] CNRS INSU, LATMOS IPSL, 11 Bd Alembert, Guyancourt, France. [Reverdy, M.] FX Conseil, Lab Meteorol Dynam, UMR 8539, Palaiseau, France. [Cesana, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Noel, V (reprint author), CNRS, Lab Aerol, 14 Ave Edouard Belin, F-31400 Toulouse, France. EM vincent.noel@aero.obs-mip.fr NR 38 TC 0 Z9 0 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1530-261X J9 ATMOS SCI LETT JI Atmos. Sci. Lett. PD DEC PY 2016 VL 17 IS 12 BP 639 EP 645 DI 10.1002/asl.714 PG 7 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA EI3XF UT WOS:000392425100003 ER PT J AU Bhatia, AK AF Bhatia, Anand K. TI Positron-Hydrogen Scattering, Annihilation, and Positronium Formation SO ATOMS LA English DT Article DE positron scattering; annihilation; positron formation ID FORMATION CROSS-SECTIONS; S-WAVE POSITRON; ATOMIC-HYDROGEN; LOW ENERGIES; ELECTRONS; STATES; GASES AB In previous papers (Bhatia A.K. 2007, 2012) a hybrid theory for the scattering of electrons from a hydrogenic system was developed and applied to calculate scattering phase shifts, Feshbach resonances, and photoabsorption processes. This approach is now being applied to the scattering of positrons from hydrogen atoms. Very accurate phase shifts, using the Feshbach projection operator formalism, were calculated previously (Bhatia A.K. et al. 1971 and Bhatia et al. 1974a). The present results, obtained using shorter expansions in the correlation function, along with long-range correlations in the Schrodinger equation, agree very well with the results obtained earlier. The scattering length is also calculated and the present results are compared with the previous results. Annihilation cross-sections, and positronium formation cross-sections, calculated in the distorted-wave approximation, are also presented. C1 [Bhatia, Anand K.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. RP Bhatia, AK (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. EM Anand.K.Bhatia@nasa.gov NR 47 TC 0 Z9 0 U1 5 U2 5 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2218-2004 J9 ATOMS JI Atoms PD DEC PY 2016 VL 4 IS 4 AR 27 DI 10.3390/atoms4040027 PG 13 WC Physics, Atomic, Molecular & Chemical SC Physics GA EI1JO UT WOS:000392233500001 ER PT J AU Parinussa, RM de Jeu, RAM van der Schalie, R Crow, WT Lei, FN Holmes, TRH AF Parinussa, Robert M. de Jeu, Richard A. M. van der Schalie, Robin Crow, Wade T. Lei, Fangni Holmes, Thomas R. H. TI A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the Land Surface Temperature Input SO CLIMATE LA English DT Article DE soil moisture; anomalies; land surface temperature; AMSR-E ID PARAMETER RETRIEVAL MODEL; MICROWAVE EMISSION; PRODUCTS; SCATTEROMETERS; VALIDATION; AUSTRALIA; FIELDS; ASCAT AB Passive microwave observations from various spaceborne sensors have been linked to the soil moisture of the Earth's surface layer. A new generation of passive microwave sensors are dedicated to retrieving this variable and make observations in the single theoretically optimal L-band frequency (1-2 GHz). Previous generations of passive microwave sensors made observations in a range of higher frequencies, allowing for simultaneous estimation of additional variables required for solving the radiative transfer equation. One of these additional variables is land surface temperature, which plays a unique role in the radiative transfer equation and has an influence on the final quality of retrieved soil moisture anomalies. This study presents an optimization procedure for soil moisture retrievals through a quasi-global precipitation-based verification technique, the so-called R-value metric. Various land surface temperature scenarios were evaluated in which biases were added to an existing linear regression, specifically focusing on improving the skills to capture the temporal variability of soil moisture. We focus on the relative quality of the day-time (01:30 pm) observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), as these are theoretically most challenging due to the thermal equilibrium theory, and existing studies indicate that larger improvements are possible for these observations compared to their night-time (01:30 am) equivalent. Soil moisture data used in this study were retrieved through the Land Parameter Retrieval Model (LPRM), and in line with theory, both satellite paths show a unique and distinct degradation as a function of vegetation density. Both the ascending (01:30 pm) and descending (01:30 am) paths of the publicly available and widely used AMSR-E LPRM soil moisture products were used for benchmarking purposes. Several scenarios were employed in which the land surface temperature input for the radiative transfer was varied by imposing a bias on an existing regression. These scenarios were evaluated through the R-value technique, resulting in optimal bias values on top of this regression. In a next step, these optimal bias values were incorporated in order to re-calibrate the existing linear regression, resulting in a quasi-global uniform LST relation for day-time observations. In a final step, day-time soil moisture retrievals using the re-calibrated land surface temperature relation were again validated through the R-value technique. Results indicate an average increasing R-value of 16.5%, which indicates a better performance obtained through the re-calibration. This number was confirmed through an independent Triple Collocation verification over the same domain, demonstrating an average root mean square error reduction of 15.3%. Furthermore, a comparison against an extensive in situ database (679 stations) also indicates a generally higher quality for the re-calibrated dataset. Besides the improved day-time dataset, this study furthermore provides insights on the relative quality of soil moisture retrieved from AMSR-E's day- and night-time observations. C1 [Parinussa, Robert M.] Univ New S Wales, Water Res Ctr, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia. [Parinussa, Robert M.; de Jeu, Richard A. M.; van der Schalie, Robin] Transmiss BV, VanderSat BV, Space Technol Business Pk,Huygenstr 34, NL-2201 DK Noordwijk, Netherlands. [Crow, Wade T.; Lei, Fangni] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. [Holmes, Thomas R. H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Parinussa, RM (reprint author), Univ New S Wales, Water Res Ctr, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia.; Parinussa, RM (reprint author), Transmiss BV, VanderSat BV, Space Technol Business Pk,Huygenstr 34, NL-2201 DK Noordwijk, Netherlands. EM r.parinussa@unsw.edu.au; rdejeu@vandersat.com; rvanderschalie@vandersat.com; wade.crow@ars.usda.gov; minifang89@gmail.com; thomas.r.holmes@nasa.gov OI de Jeu, Richard/0000-0002-4498-8984; Holmes, Thomas/0000-0002-4651-0079 FU Australian Research Council [DP140102394]; European Space Agency through the Climate Change Initiative for Soil Moisture [4000104814/11/I-NB]; European Space Agency through the Wade Crow's membership on the NASA SMAP mission science team FX This work has been undertaken as part of a Discovery Project (DP140102394) funded by the Australian Research Council. Partial funding was also provided by the European Space Agency through the Climate Change Initiative for Soil Moisture (Contract 4000104814/11/I-NB) and through Wade Crow's membership on the NASA SMAP mission science team. We are furthermore grateful to all contributors to the datasets that were used in this study. Particularly, we thank the teams from NASA, the Japanese Aerospace Exploration Agency and the Technical University Vienna for making their datasets publically available. NR 49 TC 1 Z9 1 U1 0 U2 0 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2225-1154 J9 CLIMATE JI Climate PD DEC PY 2016 VL 4 IS 4 AR 50 DI 10.3390/cli4040050 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI1VX UT WOS:000392275500003 ER PT J AU Jasinski, MF Stoll, JD Cook, WB Ondrusek, M Stengel, E Brunt, K AF Jasinski, Michael F. Stoll, Jeremy D. Cook, William B. Ondrusek, Michael Stengel, Eric Brunt, Kelly TI Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL) SO JOURNAL OF COASTAL RESEARCH LA English DT Article DE Lidar; inland water; coast; altimetry; ICESat-2; ATLAS; MABEL; photon counting; 532-nm; light penetration; subsurface backscatter; solar background; significant wave height ID GREENLAND ICE-SHEET; SURFACE WIND-SPEED; WAVE-FORM LIDAR; AIRBORNE LIDAR; SATELLITE LIDAR; SHOALS SYSTEM; OCEAN SURFACE; MISSION; REFLECTANCE; PERFORMANCE AB The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532-nm laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in ice caps, sea ice, and vegetation, the polarorbiting satellite will observe global surface water during its designed three-year life span, including inland water bodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype, the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high-altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the datasets of three MABEL transects observed from 20 km above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 km in length and included the middle Chesapeake Bay, the near-shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision of approximately 5-7 cm per 100-m segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR0, were observed over a range of 1.3 to 9.3 m, depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when the solar background rate was low. Near-shore bottom reflectance was detected only at the Lake Mead site down to a maximum of 10 m under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest that the feasibility of retrieving operational surface water height statistics from space-based photon counting systems such as ATLAS is very high for resolutions down to about 100 m, even in partly cloudy conditions. The capability to observe subsurface backscatter profiles is achievable but requires much longer transects of several hundreds of meters. C1 [Jasinski, Michael F.; Stoll, Jeremy D.] NASA, Hydrol Sci Lab, Goddard Space Flight Ctr, Code 617, Greenbelt, MD 20771 USA. [Stoll, Jeremy D.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Cook, William B.] NASA, Mesoscale Atmospher Proc Lab, Goddard Space Flight Ctr, Code 612, Greenbelt, MD 20771 USA. [Ondrusek, Michael; Stengel, Eric] NASA, Ctr Satellite Applicat & Res, Natl Environm Satellite, Data & Informat Serv, College Pk, MD 20740 USA. [Brunt, Kelly] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Brunt, Kelly] NASA, Cryospher Sci Lab, Goddard Space Flight Ctr, Code 615, Greenbelt, MD 20771 USA. RP Jasinski, MF (reprint author), NASA, Hydrol Sci Lab, Goddard Space Flight Ctr, Code 617, Greenbelt, MD 20771 USA. EM michael.f.jasinski@nasa.gov FU NASA Cryosphere Program through the ICESat-2 Project Office; Goddard Space Flight Center Strategic Support FX This work was supported by the NASA Cryosphere Program through the ICESat-2 Project Office, and also the Goddard Space Flight Center Strategic Support. We acknowledge the MABEL instrument and flight support team including Eugenia DeMarco, Dan Reed, and the ICESat-2 project scientists including Thorsten Markus and Thomas Neumann, the advice provided by David Harding of GSFC's Planetary Geodynamics Laboratory. Figures 1 and 2 were provided by the ICESat-2 Project Office. We are especially grateful to the NOAA NESDIS Center for Satellite Applications and Research for conducting the 2013 field experiment in the Chesapeake Bay, and also two anonymous reviewers whose careful review and suggestions substantially improved the manuscript. NR 58 TC 0 Z9 0 U1 3 U2 3 PU COASTAL EDUCATION & RESEARCH FOUNDATION PI COCONUT CREEK PA 5130 NW 54TH STREET, COCONUT CREEK, FL 33073 USA SN 0749-0208 EI 1551-5036 J9 J COASTAL RES JI J. Coast. Res. PD WIN PY 2016 SI 76 BP 44 EP 55 DI 10.2112/SI76-005 PG 12 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA EH5MT UT WOS:000391817900005 ER PT J AU Loftis, JD Wang, HV DeYoung, RJ Ball, WB AF Loftis, Jon Derek Wang, Harry V. DeYoung, Russell J. Ball, William B. TI Using Lidar Elevation Data to Develop a Topobathymetric Digital Elevation Model for Sub-Grid Inundation Modeling at Langley Research Center SO JOURNAL OF COASTAL RESEARCH LA English DT Article DE Flood modeling; storm surge; sea-level rise; Hurricane Irene; Hurricane Isabel; tidewater; Virginia ID CHESAPEAKE BAY; ESTUARY; EVENTS; ISABEL AB Technological progression in light detection and ranging permits the production of highly detailed digital elevation models, which are useful in sub-grid hydrodynamic modeling applications. Sub-grid modeling technology is capable of incorporating these high-resolution lidar-derived elevation measurements into the conventional hydrodynamic modeling framework to resolve detailed topographic features for inclusion in a hydrological transport model for runoff simulations. The horizontal resolution and vertical accuracy of the digital elevation model is augmented via inclusion of these lidar elevation values on a nested 5-m sub-grid within each coarse computational grid cell. This aids in resolving ditches and overland drainage infrastructure at Langley Research Center to calculate runoff induced by the heavy precipitation often accompanied with tropical storm systems, such as Hurricane Irene (2011) and Hurricane Isabel (2003). Temporal comparisons of model results with a NASA tide gauge during Hurricane Irene yielded a good R-2 correlation of 0.97, and root mean squared error statistic of 0.079 m. A rigorous point-to-point comparison between model results and wrack line observations collected at several sites after Hurricane Irene revealed that when soil infiltration was not accounted for in the model, the mean difference between modeled and observed maximum water levels was approximately 10%. This difference was reduced to 2-5% when infiltration was considered in the model formulation, ultimately resulting in the sub-grid model more accurately predicting the horizontal maximum inundation extents within 1.0-8.5 m of flood sites surveyed. Finally, sea-level rise scenarios using Hurricane Isabel as a base case revealed future storm-induced inundation could extend 0.5-2.5 km inland corresponding to increases in mean sea level of 37.5-150 cm. C1 [Loftis, Jon Derek; Wang, Harry V.] Coll William & Mary, Dept Phys Sci, Virginia Inst Marine Sci, Gloucester Point, VA 23062 USA. [DeYoung, Russell J.; Ball, William B.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Loftis, JD (reprint author), Coll William & Mary, Dept Phys Sci, Virginia Inst Marine Sci, Gloucester Point, VA 23062 USA. EM jdloftis@vims.edu NR 45 TC 0 Z9 0 U1 3 U2 3 PU COASTAL EDUCATION & RESEARCH FOUNDATION PI COCONUT CREEK PA 5130 NW 54TH STREET, COCONUT CREEK, FL 33073 USA SN 0749-0208 EI 1551-5036 J9 J COASTAL RES JI J. Coast. Res. PD WIN PY 2016 SI 76 BP 134 EP 148 DI 10.2112/SI76-012 PG 15 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA EH5MT UT WOS:000391817900012 ER PT J AU Burns, D Kollias, P Tatarevic, A Battaglia, A Tanelli, S AF Burns, David Kollias, Pavlos Tatarevic, Aleksandra Battaglia, Alessandro Tanelli, Simone TI The performance of the EarthCARE Cloud Profiling Radar in marine stratiform clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DOPPLER RADAR; ATMOSPHERIC RADIATION; VELOCITY-MEASUREMENTS; REFLECTIVITY; STRATOCUMULUS; PRODUCTS; PROGRAM AB Marine stratiform clouds are a challenging target for spaceborne radars due to their proximity to Earth's surface, limited vertical extent, and low radar reflectivity. The joint European-Japanese Earth Clouds, Aerosol and Radiation Explorer (EarthCARE) mission is scheduled for launch in 2019 and features the first atmospheric Cloud Profiling Radar (CPR) with Doppler capability in space. Here the performance of the CPR in (i) detecting these clouds and their boundaries and (ii) measuring the Doppler velocities of drizzle particles is evaluated. Extensive observations from the Atmospheric Radiation Measurement Mobile Facility in marine stratus regimes are used as input to an EarthCARE CPR simulator and to compare the resulting reflectivity factors, Doppler velocities, and cloud detections. Cloud detection of the CPR is 70-80% that of the ground-based radars, depending upon integration length and feature mask configuration. For clouds entirely contained within the surface clutter, detection is limited but is predicted to be an order of magnitude greater for the EarthCARE CPR than for CloudSat due to the improved range sampling rate of the former. The EarthCARE-CPR range resolution is found to introduce cloud top height and reflectivity biases of +100 m (equal to the range sampling rate) and +1.3 dB; by applying a constrained linear inversion to the range resolution, these are reduced to 30 m and 0.1 dB, respectively. The analysis indicates that a velocity uncertainty of 0.5 ms(-1) is achievable through either a 5 km along-track integration or a combination of matched spatial filters and 1 km along-track integration. C1 [Burns, David; Kollias, Pavlos; Tatarevic, Aleksandra] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ, Canada. [Battaglia, Alessandro] Univ Leicester, Natl Ctr Earth Observat, Leicester, Leics, England. [Battaglia, Alessandro] Univ Leicester, Dept Phys & Astron, Earth Observat Sci, Leicester, Leics, England. [Tanelli, Simone] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Burns, D (reprint author), McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ, Canada. EM david.burns2@mail.mcgill.ca OI Battaglia, Alessandro/0000-0001-9243-3484 FU European Space Agency under the Doppler Radar and Synergy Products for EarthCARE project; NASA US Participating Investigator Program FX This work was supported by the European Space Agency under the Doppler Radar and Synergy Products for EarthCARE project. The contributions by Simone Tanelli were performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Support by the NASA US Participating Investigator Program is gratefully acknowledged. The ARM WACR and ceilometer data were acquired from the ARM data archive. CloudSat CPR data were acquired from the CloudSat Data Processing Center. Figures and simulated data used in this study are available at http://meteo.mcgill.ca/similar to dburns/EC_CPR_sim_data.tar.gz. NR 30 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC PY 2016 VL 121 IS 24 BP 14525 EP 14537 DI 10.1002/2016JD025090 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI1OR UT WOS:000392247400014 ER PT J AU Christensen, M Chen, YC Stephens, GL AF Christensen, MatthewW. Chen, Yi-Chun Stephens, Graeme L. TI Aerosol indirect effect dictated by liquid clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GENERAL-CIRCULATION MODEL; DEEP CONVECTIVE CLOUDS; OPTICAL DEPTH; SATELLITE; PRECIPITATION; ATLANTIC; FRACTION; ALBEDO; PARAMETERIZATION; INVIGORATION AB Anthropogenic aerosols have been shown to enhance the solar reflection from warm liquid clouds and mask part of the warming due to the buildup of greenhouse gases. However, very little is known about the effects of aerosol on mixed-phase stratiform clouds as well as other cloud regimes including cumulus, altocumulus, nimbostratus, deep convection, and anvil cirrus. These additional cloud categories are ubiquitous and typically overlooked in satellite-based assessments of the global aerosol indirect forcing. Here we provide their contribution to the aerosol indirect forcing estimate using satellite data collected from several colocated sensors in the A-train for the period 2006-2010. Cloud type is determined according to the 2B-CLDCLASS-LIDAR CloudSat product, and the observations are matched to the radiative flux measurements from CERES (Clouds and the Earth's Radiant Energy System) and aerosol retrievals from MODIS (MODerate resolution Imaging Spectroradiometer). The oceanic mean aerosol indirect forcing is estimated to be -0.20 +/- 0.31 W m(-2) with warm low-level cloud largely dictating the strength of the response (-0.36 +/- 0.21 W m(-2)) due to their abundance and strong cloud albedo effect. Contributions from mixed-phase low-level cloud (0.01 +/- 0.06 W m(-2)) and convective cloud (0.15 +/- 0.23 W m(-2)) are positive and buffer the system due to strong aerosol-cloud feedbacks that reduce the cloud albedo effect and/or lead to convective invigoration causing a countering positive longwave warming response. By combining all major cloud categories together, aerosol indirect forcing decreases and now contains positive values in the uncertainty estimate. C1 [Christensen, MatthewW.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Chen, Yi-Chun; Stephens, Graeme L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Christensen, M (reprint author), Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. EM matthew.christensen@stfc.ac.uk FU CSU under NASA grant [NAS5-99237]; NSF [AGS-0968648]; Caltech, under a contract with NASA [NNN13D771T]; JPL CloudSat [1439268] FX We thank the anonymous reviewers for their insightful and constructive comments in assessing the quality of this research. We thank NASA Goddard (https://ladsweb.nascom.nasa.gov) for MODIS data, NASA Langley for CCCM data (http://ceres.larc.nasa.gov), the Cooperative Institute for Research in the Atmosphere for CloudSat data (http://www.cloudsat.cira.colostate.edu), and NASA Atmospheric Science Data Center for CALIPSO data (https://eosweb.larc.nasa.gov/) used in this paper. Part of the research was carried out at CSU under NASA grant NAS5-99237 and NSF award AGS-0968648 "Collaborative Research: Cloud Macrophysical Parameterization and its Application to Aerosol Indirect Effect", with the other portion at JPL, Caltech, under a contract with NASA funded by grant NNN13D771T and JPL CloudSat subcontract 1439268. NR 64 TC 0 Z9 0 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC PY 2016 VL 121 IS 24 BP 14636 EP 14650 DI 10.1002/2016JD025245 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI1OR UT WOS:000392247400021 ER PT J AU Martin, DS Lee, SMC Matz, TP Westby, CM Scott, JM Stenger, MB Platts, SH AF Martin, David S. Lee, Stuart M. C. Matz, Timothy P. Westby, Christian M. Scott, Jessica M. Stenger, Michael B. Platts, Steven H. TI Internal jugular pressure increases during parabolic flight SO PHYSIOLOGICAL REPORTS LA English DT Article DE Spaceflight; visual impairment and intracranial pressure ID CENTRAL VENOUS-PRESSURE; VALSALVA MANEUVER; INTRACRANIAL-PRESSURE; SPACE-FLIGHT; SHORT-TERM; HUMANS; WEIGHTLESSNESS; MICROGRAVITY; SPACEFLIGHT; SHIFTS AB One hypothesized contributor to vision changes experienced by >75% of International Space Station astronauts is elevated intracranial pressure (ICP). While no definitive data yet exist, elevated ICP might be secondary to the microgravity-induced cephalad fluid shift, resulting in venous congestion (overfilling and distension) and inhibition of cerebrospinal and lymphatic fluid drainage from the skull. The objective of this study was to measure internal jugular venous pressure (IJVP) during normo- and hypo-gravity as an index of venous congestion. IJVP was measured noninvasively using compression sonography at rest during end-expiration in 11 normal, healthy subjects (3M, 8F) during normal gravity (1G; supine) and weightlessness (0G; seated) produced by parabolic flight. IJVP also was measured in two subjects during parabolas approximating Lunar (1/6G) and Martian gravity (1/3G). Finally, IJVP was measured during increased intrathoracic pressure produced using controlled Valsalva maneuvers. IJVP was higher in 0G than 1G (23.9 +/- 5.6 vs. 9.9 +/- 5.1mmHg, mean +/- SD P<0.001) in all subjects, and IJVP increased as gravity levels decreased in two subjects. Finally, IJVP was greater in 0G than 1G at all expiration pressures (P<0.01). Taken together, these data suggest that IJVP is elevated during acute exposure to reduced gravity and may be elevated further by conditions that increase intrathoracic pressure, a strong modulator of central venous pressure and IJVP. However, whether elevated IJVP, and perhaps consequent venous congestion, observed during acute microgravity exposure contribute to vision changes during long-duration spaceflight is yet to be determined. C1 [Martin, David S.; Lee, Stuart M. C.; Stenger, Michael B.] KBRwyle Sci, Technol & Engn Grp, 2400 NASA Pkwy, Houston, TX 77058 USA. [Matz, Timothy P.] MEI Technol, Houston, TX USA. [Westby, Christian M.; Scott, Jessica M.] Univ Space Res Assoc, Houston, TX USA. [Platts, Steven H.] NASA Johnson Space Ctr, Houston, TX USA. RP Martin, DS (reprint author), KBRwyle Sci, Technol & Engn Grp, 2400 NASA Pkwy, Houston, TX 77058 USA. EM david.s.martin@nasa.gov FU NASA Human Research Program FX Funding for this study was provided by the NASA Human Research Program. NR 38 TC 1 Z9 1 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2051-817X J9 PHYSIOL REP JI PHYSIOL. REP. PD DEC PY 2016 VL 4 IS 24 AR e13068 DI 10.14814/phy2.13068 PG 10 WC Physiology SC Physiology GA EI1KQ UT WOS:000392236500016 ER PT J AU Chen, XX Wu, AS Xiong, XX Lei, N Wang, ZP Chiang, KF AF Chen, Xuexia Wu, Aisheng Xiong, Xiaoxiong Lei, Ning Wang, Zhipeng Chiang, Kwofu TI Using Ground Targets to Validate S-NPP VIIRS Day-Night Band Calibration SO REMOTE SENSING LA English DT Article DE VIIRS; SCIAMACHY; Day-Night Band; M bands; calibration; radiance; reflectance; RSR; BRDF; Libya 4; Dome C ID REFLECTIVE SOLAR BANDS; BIDIRECTIONAL REFLECTANCE; SURFACE; STABILITY; DESERT AB In this study, the observations from S-NPP VIIRS Day-Night band (DNB) and Moderate resolution bands (M bands) of Libya 4 and Dome C over the first four years of the mission are used to assess the DNB low gain calibration stability. The Sensor Data Records produced by NASA Land Product Evaluation and Algorithm Testing Element (PEATE) are acquired from nearly nadir overpasses for Libya 4 desert and Dome C snow surfaces. A kernel-driven bidirectional reflectance distribution function (BRDF) correction model is used for both Libya 4 and Dome C sites to correct the surface BRDF influence. At both sites, the simulated top-of-atmosphere (TOA) DNB reflectances based on SCIAMACHY spectral data are compared with Land PEATE TOA reflectances based on modulated Relative Spectral Response (RSR). In the Libya 4 site, the results indicate a decrease of 1.03% in Land PEATE TOA reflectance and a decrease of 1.01% in SCIAMACHY derived TOA reflectance over the period from April 2012 to January 2016. In the Dome C site, the decreases are 0.29% and 0.14%, respectively. The consistency between SCIAMACHY and Land PEATE data trends is good. The small difference between SCIAMACHY and Land PEATE derived TOA reflectances could be caused by changes in the surface targets, atmosphere status, and on-orbit calibration. The reflectances and radiances of Land PEATE DNB are also compared with matching M bands and the integral M bands based on M4, M5, and M7. The fitting trends of the DNB to integral M bands ratios indicate a 0.75% decrease at the Libya 4 site and a 1.89% decrease at the Dome C site. Part of the difference is due to an insufficient number of sampled bands available within the DNB wavelength range. The above results indicate that the Land PEATE VIIRS DNB product is accurate and stable. The methods used in this study can be used on other satellite instruments to provide quantitative assessments for calibration stability. C1 [Chen, Xuexia; Wu, Aisheng; Lei, Ning; Wang, Zhipeng; Chiang, Kwofu] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20661 USA. RP Chen, XX (reprint author), Sci Syst & Applicat Inc, Lanham, MD 20706 USA. EM xuexia.chen@ssaihq.com; aisheng.wu@ssaihq.com; xiaoxiong.xiong-1@nasa.gov; ning.lei@ssaihq.com; zhipeng.wang@ssaihq.com; kwofu.chiang@ssaihq.com NR 36 TC 0 Z9 0 U1 2 U2 2 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD DEC PY 2016 VL 8 IS 12 AR 984 DI 10.3390/rs8120984 PG 16 WC Remote Sensing SC Remote Sensing GA EI4UQ UT WOS:000392489400013 ER PT J AU Dupuy, E Morino, I Deutscher, NM Yoshida, Y Uchino, O Connor, BJ De Maziere, M Griffith, DWT Hase, F Heikkinen, P Hillyard, PW Iraci, LT Kawakami, S Kivi, R Matsunaga, T Notholt, J Petri, C Podolske, JR Pollard, DF Rettinger, M Roehl, CM Sherlock, V Sussmann, R Toon, GC Velazco, VA Warneke, T Wennberg, PO Wunch, D Yokota, T AF Dupuy, Eric Morino, Isamu Deutscher, Nicholas M. Yoshida, Yukio Uchino, Osamu Connor, Brian J. De Maziere, Martine Griffith, David W. T. Hase, Frank Heikkinen, Pauli Hillyard, Patrick W. Iraci, Laura T. Kawakami, Shuji Kivi, Rigel Matsunaga, Tsuneo Notholt, Justus Petri, Christof Podolske, James R. Pollard, David F. Rettinger, Markus Roehl, Coleen M. Sherlock, Vanessa Sussmann, Ralf Toon, Geoffrey C. Velazco, Voltaire A. Warneke, Thorsten Wennberg, Paul O. Wunch, Debra Yokota, Tatsuya TI Comparison of XH2O Retrieved from GOSAT Short-Wavelength Infrared Spectra with Observations from the TCCON Network (vol 8, 414, 2016) SO REMOTE SENSING LA English DT Correction C1 [Dupuy, Eric; Morino, Isamu; Yoshida, Yukio; Uchino, Osamu; Matsunaga, Tsuneo; Yokota, Tatsuya] NIES, 16-2 Onogawa, Tsukuba, Ibaraki 3058506, Japan. [Deutscher, Nicholas M.; Griffith, David W. T.; Velazco, Voltaire A.] Univ Wollongong, Ctr Atmospher Chem, Sch Chem, Northfields Ave, Wollongong, NSW 2522, Australia. [Deutscher, Nicholas M.; Notholt, Justus; Petri, Christof; Warneke, Thorsten] Univ Bremen, Inst Environm Phys, Otto Hahn Allee 1, D-28359 Bremen, Germany. [Connor, Brian J.] BC Consulting Ltd, 6 Fairway Dr, Alexandra 9320, New Zealand. [De Maziere, Martine] Inst Aeron Spatiale Belgique BIRA IASB, 3 Ave Circulaire, B-1180 Brussels, Belgium. [Hase, Frank] Karlsruhe Inst Technol, IMK ASF, Hermann Helmholtz Pl 1, D-76344 Leopoldshafen, Germany. [Heikkinen, Pauli; Kivi, Rigel] FMI Arctic Res Ctr, Tahtelantie 62, FIN-99600 Sodankyla, Finland. [Hillyard, Patrick W.; Iraci, Laura T.; Podolske, James R.] NASA, Ames Res Ctr, Atmospher Sci Branch, Mail Stop 245-5, Moffett Field, CA 94035 USA. [Hillyard, Patrick W.] Bay Area Environm Res Inst, 625 2nd St,Suite 209, Petaluma, CA 94952 USA. [Kawakami, Shuji] Japan Aerosp Explorat Agcy JAXA, EORC, 2-1-1 Sengen, Tsukuba, Ibaraki 3058505, Japan. [Pollard, David F.; Sherlock, Vanessa] Natl Inst Water & Atmospher Res NIWA, Private Bag 50061, Omakau 9352, New Zealand. [Rettinger, Markus; Sussmann, Ralf] Karlsruhe Inst Technol, IMK IFU, Kreuzeckbahnstr 19, D-82467 Garmisch Partenkirchen, Germany. [Roehl, Coleen M.; Wennberg, Paul O.; Wunch, Debra] CALTECH, MC 131-24,1200 E Calif Blvd, Pasadena, CA 91125 USA. [Toon, Geoffrey C.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Wunch, Debra] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S IA7, Canada. RP Dupuy, E (reprint author), NIES, 16-2 Onogawa, Tsukuba, Ibaraki 3058506, Japan. EM dupuy.eric-albert@nies.go.jp; morino@nies.go.jp; ndeutsch@uow.edu.au; yoshida.yukio@nies.go.jp; uchino.osamu@nies.go.jp; bcconsulting@xtra.co.nz; Martine.DeMaziere@bira-iasb.oma.be; griffith@uow.edu.au; frank.hase@kit.edu; Pauli.Heikkinen@fmi.fi; patrick.hillyard@nasa.gov; Laura.T.Iraci@nasa.gov; kawakami.shuji@jaxa.jp; Rigel.Kivi@fmi.fi; matsunag@nies.go.jp; jnotholt@iup.physik.uni-bremen.de; christof_p@iup.physik.uni-bremen.de; James.R.Podolske@nasa.gov; Dave.Pollard@niwa.co.nz; markus.rettinger@kit.edu; coleen@gps.caltech.edu; vj.sherlock@gmail.com; ralf.sussmann@kit.edu; geoffrey.c.toon@jpl.nasa.gov; voltaire@uow.edu.au; warneke@iup.physik.uni-bremen.de; wennberg@gps.caltech.edu; dwunch@atmosp.physics.utoronto.ca; yoko@nies.go.jp RI Notholt, Justus/P-4520-2016 OI Notholt, Justus/0000-0002-3324-885X NR 2 TC 0 Z9 0 U1 5 U2 5 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD DEC PY 2016 VL 8 IS 12 AR 982 DI 10.3390/rs8120982 PG 7 WC Remote Sensing SC Remote Sensing GA EI4UQ UT WOS:000392489400011 ER PT J AU Tedesco, M Jeyaratnam, J AF Tedesco, Marco Jeyaratnam, Jeyavinoth TI A New Operational Snow Retrieval Algorithm Applied to Historical AMSR-E Brightness Temperatures SO REMOTE SENSING LA English DT Article DE snow; passive microwave; AMSR-E ID WATER EQUIVALENT; DENSE MEDIUM; DEPTH ALGORITHM; RADIOMETER DATA; EMISSION MODEL; SMMR DATA; COVER; CLIMATE; PARAMETERS; REGIONS AB Snow is a key element of the water and energy cycles and the knowledge of spatio-temporal distribution of snow depth and snow water equivalent (SWE) is fundamental for hydrological and climatological applications. SWE and snow depth estimates can be obtained from spaceborne microwave brightness temperatures at global scale and high temporal resolution (daily). In this regard, the data recorded by the Advanced Microwave Scanning RadiometerEarth Orbiting System (EOS) (AMSR-E) onboard the National Aeronautics and Space Administration's (NASA) AQUA spacecraft have been used to generate operational estimates of SWE and snow depth, complementing estimates generated with other microwave sensors flying on other platforms. In this study, we report the results concerning the development and assessment of a new operational algorithm applied to historical AMSR-E data. The new algorithm here proposed makes use of climatological data, electromagnetic modeling and artificial neural networks for estimating snow depth as well as a spatio-temporal dynamic density scheme to convert snow depth to SWE. The outputs of the new algorithm are compared with those of the current AMSR-E operational algorithm as well as in-situ measurements and other operational snow products, specifically the Canadian Meteorological Center (CMC) and GlobSnow datasets. Our results show that the AMSR-E algorithm here proposed generally performs better than the operational one and addresses some major issues identified in the spatial distribution of snow depth fields associated with the evolution of effective grain size. C1 [Tedesco, Marco] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Tedesco, Marco] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Jeyaratnam, Jeyavinoth] CUNY, New York, NY 10031 USA. RP Tedesco, M (reprint author), Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA.; Tedesco, M (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM mtedesco@ldeo.columbia.edu; jeyavinoth@gmail.com FU NASA [NNX14AQ38G, NNX13AN44G] FX This project was supported by the NASA grants NNX14AQ38G and NNX13AN44G. NR 66 TC 0 Z9 0 U1 1 U2 1 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD DEC PY 2016 VL 8 IS 12 AR 1037 DI 10.3390/rs8121037 PG 25 WC Remote Sensing SC Remote Sensing GA EI4UQ UT WOS:000392489400066 ER PT J AU Brown, ME Arias, SD Neumann, T Jasinski, MF Posey, P Babonis, G Glenn, NF Birkett, CM Escobar, VM Markus, T AF Brown, Molly E. Arias, Sabrina Delgado Neumann, Thomas Jasinski, Michael F. Posey, Pamela Babonis, Greg Glenn, Nancy F. Birkett, Charon M. Escobar, Vanessa M. Markus, Thorsten TI Applications for ICESat-2 Data From NASA's Early Adopter Program SO IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE LA English DT Article ID EXPERIMENTAL LIDAR MABEL; FUSION; FIRE; ICE; USA C1 [Brown, Molly E.] Univ Maryland, Interdisciplinary Res Focused Using Satellite Rem, College Pk, MD 20742 USA. [Arias, Sabrina Delgado; Neumann, Thomas; Jasinski, Michael F.] NASA, Goddard Space Flight Ctr, ICESat Mission 2, Greenbelt, MD USA. [Arias, Sabrina Delgado] Sci Syst & Applicat Inc, Lanham, MD USA. [Posey, Pamela] US Navy, Res Lab, Washington, DC USA. [Babonis, Greg] SUNY Albany, Albany, NY USA. [Glenn, Nancy F.] Boise State Univ, Dept Geosci, Boise, ID 83725 USA. [Birkett, Charon M.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Escobar, Vanessa M.] Univ Maryland, College Pk, MD 20742 USA. [Escobar, Vanessa M.] Sci Syst & Applicat Inc, Greenbelt, MD USA. [Markus, Thorsten] NASA, Goddard Space Flight Ctr, Microwave Sensors Branch, Greenbelt, MD USA. RP Brown, ME (reprint author), Univ Maryland, Interdisciplinary Res Focused Using Satellite Rem, College Pk, MD 20742 USA. EM mbrown52@umd.edu NR 45 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6831 J9 IEEE GEOSC REM SEN M JI IEEE Geosci. Remote Sens. Mag. PD DEC PY 2016 VL 4 IS 4 BP 24 EP 37 DI 10.1109/MGRS.2016.2560759 PG 14 WC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology GA EH2GQ UT WOS:000391586200004 ER PT J AU Bohn, JG AF Bohn, Jeff G. TI Earthquakes and the Moon A cross-correlation analysis of earthquake locations and relative moon positions SO IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE LA English DT Article C1 [Bohn, Jeff G.] NASA, Boeing Syst Control, Washington, DC 20402 USA. RP Bohn, JG (reprint author), NASA, Boeing Syst Control, Washington, DC 20402 USA. EM jeff.g.bohn@ieee.org NR 9 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6831 J9 IEEE GEOSC REM SEN M JI IEEE Geosci. Remote Sens. Mag. PD DEC PY 2016 VL 4 IS 4 BP 51 EP 60 DI 10.1109/MGRS.2016.2590963 PG 10 WC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology GA EH2GQ UT WOS:000391586200006 ER PT J AU Yue, P Ramachandran, R Baumann, P Khalsa, SJS Deng, MX Jiang, LC AF Yue, Peng Ramachandran, Rahul Baumann, Peter Khalsa, Siri Jodha S. Deng, Meixia Jiang, Liangcun TI Recent Activities in Earth Data Science SO IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE LA English DT Article ID WEB C1 [Yue, Peng] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Peoples R China. [Ramachandran, Rahul] NASA, Marshall Space Flight Ctr, Huntsville, AL USA. [Baumann, Peter] Jacobs Univ Bremen, D-28759 Bremen, Germany. [Khalsa, Siri Jodha S.] Univ Colorado, Boulder, CO USA. [Khalsa, Siri Jodha S.] Natl Snow & Ice Data Ctr, Boulder, CO USA. [Deng, Meixia] George Mason Univ, Fairfax, VA 22030 USA. [Jiang, Liangcun] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping, Wuhan, Peoples R China. RP Yue, P (reprint author), Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Peoples R China. EM pyue@whu.edu.cn; rahul.ramachandran@nasa.gov; p.baumann@jacobs-university.de FU National Natural Science Foundation of China [91438203, 41271397]; Hubei Science and Technology Support Program [2014BAA087]; Program for New Century Excellent Talents in University [NCET-13-0435] FX We are grateful to the associate editor and the anonymous reviewers for their constructive comments and suggestions. This work was supported partly by the National Natural Science Foundation of China (91438203 and 41271397), the Hubei Science and Technology Support Program (2014BAA087), and the Program for New Century Excellent Talents in University (NCET-13-0435). NR 30 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6831 J9 IEEE GEOSC REM SEN M JI IEEE Geosci. Remote Sens. Mag. PD DEC PY 2016 VL 4 IS 4 BP 84 EP 89 DI 10.1109/MGRS.2016.2600528 PG 6 WC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology GA EH2GQ UT WOS:000391586200009 ER PT J AU Riha, L Le Moigne, J El-Ghazawi, T AF Riha, Lubomir Le Moigne, Jacqueline El-Ghazawi, Tarek TI Optimization of Selected Remote Sensing Algorithms for Many-Core Architectures SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Cloud detection; dimension reduction; Intel Xeon Phi; Kepler GPU; onboard processing; remote sensing; Tegra K1 ID CLOUD-COVER ASSESSMENT; HYPERSPECTRAL IMAGERY AB This paper evaluates the potential of embedded graphic processing units (GPU) in the Nvidia's Tegra K1 for onboard processing. The performance is compared to a general purpose multicore central processing unit (CPU), a full-fledge GPU accelerator, and an Intel Xeon Phi coprocessor, for two representative potential applications, wavelet spectral dimension reduction of hyperspectral imagery and automated cloud-cover assessment (ACCA). For these applications, Tegra K1 achieved 51% performance for the ACCA algorithm and 20% performance for the dimension reduction algorithm, as compared to the performance of the high-end eight-core server Intel Xeon CPU which has a 13.5 times higher power consumption. This paper also shows the potential of modern high-performance computing accelerators for algorithms such as the ones for which the paper presents an optimized parallel implementation. The two algorithms that were tested mostly contain spatially localized computations, and one can assume that all image processing algorithms containing localized computations would exhibit similar speed-ups when implemented on these parallel architectures. C1 [Riha, Lubomir] VSB Tech Univ Ostrava, Natl Supercomp Ctr IT4Innovat, Ostrava 70833, Czech Republic. [Le Moigne, Jacqueline] NASA, Goddard Space Flight Ctr, Software Engn Div, Greenbelt, MD 20771 USA. [El-Ghazawi, Tarek] George Washington Univ, High Performance Comp Lab, Ashburn, VA 20052 USA. RP Riha, L (reprint author), VSB Tech Univ Ostrava, Natl Supercomp Ctr IT4Innovat, Ostrava 70833, Czech Republic. EM lubomir.riha@vsb.cz; jacqueline.j.lemoigne-stewart@nasa.gov; tarek@gwu.edu FU Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) project "IT4Innovations excellence in science" [LQ1602]; Ministry of Education, Youth and Sports from Large Infrastructures for Research, Experimental Development and Innovations project "IT4Innovations National Supercomputing Center" [LM2015070] FX This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) project "IT4Innovations excellence in science - LQ1602" and from the Large Infrastructures for Research, Experimental Development and Innovations project "IT4Innovations National Supercomputing Center - LM2015070". NR 24 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD DEC PY 2016 VL 9 IS 12 BP 5576 EP 5587 DI 10.1109/JSTARS.2016.2558492 PN 2 PG 12 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA EH0QN UT WOS:000391468900003 ER PT J AU Marinan, AD Cahoy, KL Bishop, RL Lui, SS Bardeen, JR Mulligan, T Blackwell, WJ Leslie, RV Osaretin, IA Shields, M AF Marinan, Anne D. Cahoy, Kerri L. Bishop, Rebecca L. Lui, Susan Seto Bardeen, James R. Mulligan, Tamitha Blackwell, William J. Leslie, Robert Vincent Osaretin, Idahosa A. Shields, Michael TI Assessment of Radiometer Calibration With GPS Radio Occultation for the MiRaTA CubeSat Mission SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Calibration; microwave radiometry; radio propagation; remote sensing; space technology ID TEMPERATURE; EARTH AB The microwave radiometer technology acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office. The science payload on MiRaTA consists of a triband microwave radiometer and global positioning system (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the compact total electron content and atmospheric GPS sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/ lower stratosphere (similar to 20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPSRO: 1) new ultracompact and low-power technology for multichannel and multiband passive microwave radiometers, 2) the application of a commercial off-the-shelf GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and 3) a new approach to space-borne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective 3, developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K. C1 [Marinan, Anne D.; Cahoy, Kerri L.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. [Marinan, Anne D.] Jet Prop Lab, Pasadena, CA 91109 USA. [Cahoy, Kerri L.] MIT, Earth Atmospher & Planetary Sci Dept, Cambridge, MA 02139 USA. [Bishop, Rebecca L.; Lui, Susan Seto; Bardeen, James R.; Mulligan, Tamitha] Aerosp Corp, El Segundo, CA 90245 USA. [Blackwell, William J.; Leslie, Robert Vincent; Osaretin, Idahosa A.; Shields, Michael] MIT, Lincoln Lab, Lexington, MA 02420 USA. RP Marinan, AD (reprint author), MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA.; Marinan, AD (reprint author), Jet Prop Lab, Pasadena, CA 91109 USA. EM anne.d.marinan@jpl.nasa.gov; kcahoy@mit.edu; Rebecca.L.Bishop@aero.org; susan.s.lui@aero.org; james.r.bardeen@aero.org; Tamitha.M.Skov@aero.org; wjb@ll.mit.edu; lesliev@LL.mit.edu; idahosa.osaretin@ll.mit.edu; shields@ll.mit.edu FU NASA Space Technology Research Fellowship Program; Lincoln Scholars Program; NOAA FX The authors would like to thank the NASA Space Technology Research Fellowship Program, the Lincoln Scholars Program, and NOAA for support and the MiRaTA team for their insights and feedback. They would also like to thank T. Meehan, C. Ao, T. Mannucci, S. Asmar, and W. Williamson at JPL for their helpful feedback and suggestions, and D. Hinson at Stanford and SETI for use of his temperature retrieval method. At last, the authors would like to thank the journal's anonymous reviewers and service of its editorial staff for helpful suggestions and feedback. NR 38 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD DEC PY 2016 VL 9 IS 12 BP 5703 EP 5714 DI 10.1109/JSTARS.2016.2598798 PN 2 PG 12 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA EH0QN UT WOS:000391468900014 ER PT J AU Brolly, M Simard, M Tang, H Dubayah, RO Fisk, JP AF Brolly, Matthew Simard, Marc Tang, Hao Dubayah, Ralph O. Fisk, Justin P. TI A Lidar-Radar Framework to Assess the Impact of Vertical Forest Structure on Interferometric Coherence SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE EM extinction; forest; interferometric coherence; lidar; synthetic aperture radar (SAR); vegetation; vertical structure ID POLARIMETRIC SAR INTERFEROMETRY; SYNTHETIC-APERTURE RADAR; WAVE-FORM LIDAR; LASER ALTIMETER; ELEVATION DATA; PINE FOREST; L-BAND; ABOVEGROUND BIOMASS; MANGROVE FORESTS; CANOPY STRUCTURE AB In this paper, we present novel modeling approaches to investigate the sensitivity of radar interferometric coherence to variations in the vertical forest canopy profile. We introduce a common framework applicable to model radar microwave extinction and structure from lidar data. To perform this analysis, we make use of interferometric data from the uninhabited aerial vehicle synthetic aperture radar (UAVSAR) L-band radar and full waveform lidar data from laser vegetation imaging sensor (LVIS). The datasets were acquired over the Laurentides Wildlife Reserve Forest, Quebec, Canada. A twofold analysis of the framework to estimate interferometric coherence is undertaken. First, a sensitivity analysis is performed by incorporating lidar waveform Legendre descriptions into two adapted independent polarimetric interferometry models. Second, we examine the effectiveness of using lidar data in this novel way to model radar interferometric coherence. Where appropriate, coherence estimates are obtained using Legendre solutions up to fourth order and at resolutions up to 75 m. The maximum r(2) values between modeled outputs and observed coherence across hh, vv, and hv polarizations are shown as 0.51(p < 0.05) and 0.76(p < 0.05) at 25 and 75 m pixel resolutions, respectively. The introduction of a common framework to combine lidar and radar enables an estimation of the impact of canopy structure on observed interferometric coherence and provides further insight into the feasibility of assuming uniform microwave extinction rates on different scales through forest canopy. The framework's potential lies in its use to assess performance of canopy structure estimates from future spaceborne radar interferometers in synergy with lidar data. C1 [Brolly, Matthew] Univ Brighton, Sch Environm & Technol, Brighton BN2 4AT, E Sussex, England. [Simard, Marc] Jet Prop Lab, Pasadena, CA 91125 USA. [Tang, Hao; Dubayah, Ralph O.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Fisk, Justin P.] Appl Geosolut, Newmarket, NH 03857 USA. RP Brolly, M (reprint author), Univ Brighton, Sch Environm & Technol, Brighton BN2 4AT, E Sussex, England. EM m.brolly@brighton.ac.uk; marc.simard@jpl.nasa.gov; htang@umd.edu; dubayah@umd.edu; jfisk@appliedgeosolutions.com OI Brolly, Matthew/0000-0002-3576-9675 FU NASA's Terrestrial Ecology program [WBS 281945.02.61.01.69, NNX12AQ80G]; National Aeronautics and Space Administration; University of Brighton Rising Stars Scheme FX This work was supported in part by NASA's Terrestrial Ecology program (WBS 281945.02.61.01.69) and through funding for the NASA-ISRO SAR Science Definition Team (NNX12AQ80G), in part by the National Aeronautics and Space Administration, and in part by the University of Brighton Rising Stars Scheme. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology. NR 67 TC 0 Z9 0 U1 6 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD DEC PY 2016 VL 9 IS 12 BP 5830 EP 5841 DI 10.1109/JSTARS.2016.2527360 PN 2 PG 12 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA EH0QN UT WOS:000391468900025 ER PT J AU Islam, T Srivastava, PK Petropoulos, GP AF Islam, Tanvir Srivastava, Prashant K. Petropoulos, George P. TI Uncertainty Quantification in the Infrared Surface Emissivity Model (ISEM) SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Emissivity validation; infrared measurements; multiple reflections; ocean surface; (RTTOV); radiative transfer simulation; sea surface emissivity; sea surface temperature (SST); wind speed ID SEA-SURFACE; TEMPERATURE; CLIMATE; OCEAN; REFLECTION AB Accurate modeling of surface emissivity is imperative for accurate radiative transfer simulation and forward modeling of satellite radiance observations. The Radiative Transfer for (A) TOVS (RTTOV) fast radiative transfermodel uses the Infrared Surface Emissivity Model (ISEM) for the computation of sea surface emissivity in the infrared (IR) spectrum. However, the model does not incorporate the effect of surface-emitted surface reflected (SESR) radiation and dependence of wind speed in the emissivity calculation. This paper investigates the uncertainty in the ISEM model caused by ignoring the SESR radiation and wind speed effects in the 3 IR bands, 3.7, 11, and 12 mu m. First, we develop a new model called Surface Emissivity Model in IR with SESR (SEMIS) that takes the SESR radiation and wind speed effects into account. The uncertainty in the ISEM model is then quantified by comparing the ISEM emissivity against SEMIS derived emissivity. The comparison results suggest that two models are in excellent agreement below similar to 60 degrees emission angle, implying no notable uncertainty in the ISEM model at smaller angles. Nevertheless, uncertainty tends to significantly increase with increasing emission angle above similar to 60 degrees, which is even more notable at high wind speed (similar to 15 m/s). Two models are further compared against emissivity measurements from a radiometer. The ISEM model has produced large errors as opposed to the SEMIS. C1 [Islam, Tanvir] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Srivastava, Prashant K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Srivastava, Prashant K.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Petropoulos, George P.] Aberystwyth Univ, Dept Geog & Earth Sci, Aberystwyth SY23 3DB, Dyfed, Wales. RP Islam, T (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM tanvir.islam@jpl.nasa.gov; prashant.k.srivastava@nasa.gov; Petropoulosgep9@aber.ac.uk OI Islam, Tanvir/0000-0003-2429-3074 FU National Aeronautics and Space Administration FX Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. (Corresponding author: Tanvir Islam.) NR 19 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD DEC PY 2016 VL 9 IS 12 BP 5888 EP 5892 DI 10.1109/JSTARS.2016.2557303 PN 2 PG 5 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA EH0QN UT WOS:000391468900030 ER PT J AU Virts, KS Houze, RA AF Virts, Katrina S. Houze, Robert A., Jr. TI Seasonal and Intraseasonal Variability of Mesoscale Convective Systems over the South Asian Monsoon Region SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID TRMM PRECIPITATION RADAR; INDIAN-SUMMER MONSOON; BOREAL SUMMER; HIMALAYAN REGION; CLOUD CLUSTERS; WARM POOL; A-TRAIN; RAINFALL; OSCILLATION; BENGAL AB Seasonal and intraseasonal differences in mesoscale convective systems (MCSs) over South Asia are examined using A-Train satellites, a ground-based lightning network, and reanalysis fields. Premonsoon (April-May) MCSs occur primarily over Bangladesh and the eastern Bay of Bengal. During the monsoon (June-September), small MCSs occur over the Meghalaya Plateau and northeast Himalayan notch, while large and connected MCSs are most widespread over the Bay of Bengal. Monsoon MCSs produce less lightning and exhibit more extensive stratiform and anvil reflectivity structures in CloudSat observations than do premonsoon MCSs. During the monsoon, Bay of Bengal and Meghalaya Plateau MCSs vary with the 30-60-day northward propagating intraseasonal oscillation, while northeast Himalayan notch MCSs are associated with weak large-scale anomalies but locally enhanced CAPE. During intraseasonal active periods, a zone of enhanced large and connected MCSs, precipitation, and lightning extends from the northeastern Arabian Sea southeastward over India and the Bay of Bengal, flanked by suppressed anomalies. Spatial variability is observed within this enhancement zone: lightning is most enhanced where MCSs are less enhanced, and vice versa. Reanalysis composites indicate that Bay of Bengal MCSs are associated with monsoon depressions, which are frequent during active monsoon periods, while Meghalaya Plateau MCSs are most frequent at the end of break periods, as anomalous southwesterly winds strengthen moist advection toward the terrain. Over both regions, MCSs exhibit more extensive stratiform and anvil regions and less lightning when the large-scale environment is moister, and vice versa. C1 [Virts, Katrina S.; Houze, Robert A., Jr.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Houze, Robert A., Jr.] Pacific Northwest Natl Lab, Richland, WA USA. [Virts, Katrina S.] NASA, Marshall Space Flight Ctr, ZP-11,320 Sparkman Dr, Huntsville, AL 35805 USA. RP Virts, KS (reprint author), NASA, Marshall Space Flight Ctr, ZP-11,320 Sparkman Dr, Huntsville, AL 35805 USA. EM katrina.virts@nsstc.uah.edu FU National Aeronautics and Space Administration [NNX13AQ37G]; U.S. Department of Energy Biological and Environmental Research Atmospheric System Research [DE-SC008452]; Regional and Global Climate Modeling programs; DOE [DE-AC05-76RL01830] FX The authors thank Beth Tully for her expert processing of the graphics and three reviewers for their helpful comments. This work was supported by the National Aeronautics and Space Administration (Grant NNX13AQ37G), and the U.S. Department of Energy Biological and Environmental Research Atmospheric System Research (Grant DE-SC008452) and the Regional and Global Climate Modeling programs. PNNL is operated for DOE by Battelle Memorial Institute under Contract DE-AC05-76RL01830. Lightning location data were provided by WWLLN (http://wwlln.net), a collaboration of over 50 universities and institutions. ERA-Interim data are available from the European Centre for Medium-Range Weather Forecasts and CloudSat data from the CloudSat Data Processing Center, as described in the reference list. NR 62 TC 0 Z9 0 U1 0 U2 0 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD DEC PY 2016 VL 73 IS 12 BP 4753 EP 4774 DI 10.1175/JAS-D-16-0022.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EH3CK UT WOS:000391646500008 ER PT J AU Dahlin, JT Drake, JF Swisdak, M AF Dahlin, J. T. Drake, J. F. Swisdak, M. TI Parallel electric fields are inefficient drivers of energetic electrons in magnetic reconnection SO PHYSICS OF PLASMAS LA English DT Article ID PARTICLE-ACCELERATION; GENERATION; FLARE AB We present two-dimensional kinetic simulations, with a broad range of initial guide fields, which isolate the role of parallel electric fields (E-parallel to) in energetic electron production during collisionless magnetic reconnection. In the strong guide field regime, E-parallel to drives essentially all of the electron energy gains, yet fails to generate an energetic component. We suggest that this is due to the weak energy scaling of particle acceleration from E-parallel to compared to that of a Fermi-type mechanism responsible for energetic electron production in the weak guide-field regime. This result has important implications for energetic electron production in astrophysical systems and reconnection-driven dissipation in turbulence. Published by AIP Publishing. C1 [Dahlin, J. T.; Drake, J. F.; Swisdak, M.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. [Dahlin, J. T.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Drake, J. F.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Drake, J. F.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. RP Dahlin, JT (reprint author), Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA.; Dahlin, JT (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. EM jdahlin@umd.edu FU NSF [PHY1500460]; NASA [NNX14AC78G, NNX14AF42G]; DOE [DEFG0293ER54197]; NASA LWS Jack Eddy Fellowship FX This work has been supported by NSF Grant No. PHY1500460 and NASA Grant Nos. NNX14AC78G, NNX14AF42G, and DOE Grant No. DEFG0293ER54197. J.T.D. acknowledges support from the NASA LWS Jack Eddy Fellowship administered by the University Corporation for Atmospheric Research. Simulations were carried out at the National Energy Research Scientific Computing Center. NR 30 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 120704 DI 10.1063/1.4972082 PG 6 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000004 ER PT J AU Remya, B Lee, KH Lee, LC Tsurutani, BT AF Remya, B. Lee, K. H. Lee, L. C. Tsurutani, B. T. TI Polarization of obliquely propagating whistler mode waves based on linear dispersion theory SO PHYSICS OF PLASMAS LA English DT Article ID FREQUENCY ELECTROMAGNETIC RADIATION; EARTHS MAGNETOSPHERE; PLASMASPHERIC HISS; BANDED CHORUS; GENDRIN MODE; LION ROARS; MAGNETOSHEATH; EMISSIONS AB We discuss the variation of whistler mode wave electric and magnetic field polarizations as a function of propagation angle theta(kB0) with respect to the background magnetic field B-0 using linear kinetic dispersion theory. The circular polarization of the whistler mode wave magnetic field at all propagation angles [Verkhoglyadova et al. J. Geophys. Res. 115, A00F19 (2010); P. M. Bellan, Phys. Plasmas 20, 082113 (2013)] is found to be valid only for cold plasma or low plasma beta conditions. The wave magnetic fields, on a plane orthogonal to the wave vector k, tend to become elliptically polarized with an increase in propagation angles for high beta plasma background conditions (beta(e) >= 0.1). The electric field polarization plane may not be orthogonal to wave vector k, especially for oblique propagations, and is found to be circularly polarized only at parallel propagation direction as reported by Verkhoglyadova et al. [J. Geophys. Res. 115, A00F19 (2010)] and Bellan [Phys. Plasmas 20, 082113 (2013)]. They become elliptically polarized with an increase in propagation angles. This is valid for arbitrary plasma beta conditions. The results are also analysed and compared for an inner magnetospheric plasma model with three electron species. The two major angles, Gendrin and resonance cone angles, are also discussed. Published by AIP Publishing. C1 [Remya, B.; Lee, K. H.; Lee, L. C.] Acad Sinica, Inst Earth Sci, Taipei, Taiwan. [Tsurutani, B. T.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Remya, B (reprint author), Acad Sinica, Inst Earth Sci, Taipei, Taiwan. EM remyaphysics@gmail.com FU Ministry of Science and Technology [MOST 104-2111-M-001-003-MY2]; Academia Sinica in Taiwan; NASA FX This work was supported by the Ministry of Science and Technology (MOST 104-2111-M-001-003-MY2) and by the Academia Sinica in Taiwan. Portions of this research were performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. The authors thank Kyoto University Space Plasma group for providing the KUPDAP package available for public use. The program and source codes of KUPDAP can be downloaded from the website (http://space.rish.kyotou.ac.jp/software/) of RISH, Kyoto University. NR 32 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 122120 DI 10.1063/1.4972534 PG 9 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000027 ER PT J AU Gorti, U Liseau, R Sandor, Z Clarke, C AF Gorti, U. Liseau, R. Sandor, Z. Clarke, C. TI Disk Dispersal: Theoretical Understanding and Observational Constraints SO SPACE SCIENCE REVIEWS LA English DT Review DE Protoplanetary disks; Planet formation; Accretion; Winds ID T TAURI STARS; MAIN-SEQUENCE STARS; PHOTOEVAPORATING PROTOPLANETARY DISCS; HUBBLE-SPACE-TELESCOPE; ORION NEBULA PROPLYDS; X-RAY-RADIATION; LOW-MASS STARS; H-II REGIONS; CIRCUMSTELLAR DISKS; PLANET FORMATION AB Protoplanetary disks dissipate rapidly after the central star forms, on time-scales comparable to those inferred for planet formation. In order to allow the formation of planets, disks must survive the dispersive effects of UV and X-ray photoevaporation for at least a few Myr. Viscous accretion depletes significant amounts of the mass in gas and solids, while photoevaporative flows driven by internal and external irradiation remove most of the gas. A reasonably large fraction of the mass in solids and some gas get incorporated into planets. Here, we review our current understanding of disk evolution and dispersal, and discuss how these might affect planet formation. We also discuss existing observational constraints on dispersal mechanisms and future directions. C1 [Gorti, U.] NASA, Ames Res Ctr, SETI Inst, Mountain View, CA 94035 USA. [Liseau, R.] Chalmers, Onsala Space Observ, Dept Earth & Space Sci, S-43992 Onsala, Sweden. [Sandor, Z.] Hungarian Acad Sci, Konkoly Observ, POB 67, H-1525 Budapest, Hungary. [Clarke, C.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. RP Gorti, U (reprint author), NASA, Ames Res Ctr, SETI Inst, Mountain View, CA 94035 USA. EM uma.gorti-1@nasa.gov FU National Science Foundation [NSF AST-1313003]; Hungarian Academy of Sciences FX We thank ISSI for their kind invitation and our Chinese hosts for their hospitality during the workshop. U. Gorti acknowledges support from the National Science Foundation (NSF AST-1313003). Zs. Sandor thanks the support of the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences. NR 181 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2016 VL 205 IS 1-4 BP 125 EP 152 DI 10.1007/s11214-015-0228-x PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EH4VP UT WOS:000391769100005 ER PT J AU Adam, R Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Ballardini, M Banday, AJ Barreiro, RB Bartolo, N Basak, S Battye, R Benabed, K Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Calabrese, E Cardoso, JF Carron, J Chiang, HC Colombo, LPL Combet, C Comis, B Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Di Valentino, E Dickinson, C Diego, JM Dore, O Douspis, M Ducout, A Dupac, X Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fantaye, Y Finelli, F Forastieri, F Frailis, M Fraisse, AA Franceschi, E Frolov, A Galeotta, S Galli, S Ganga, K Genova-Santos, RT Gerbino, M Ghosh, T Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Gudmundsson, JE Hansen, FK Helou, G Henrot-Versille, S Herranz, D Hivon, E Huang, Z Ilic, S Jaffe, AH Jones, WC Keihanen, E Keskitalo, R Kisner, TS Knox, L Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Langer, M Lasenby, A Lattanzi, M Lawrence, CR Le Jeune, M Levrier, F Lewis, A Liguori, M Lilje, PB Lopez-Caniego, M Ma, YZ Macias-Perez, JF Maggio, G Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Matarrese, S Mauri, N McEwen, JD Meinhold, PR Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Molinari, D Moneti, A Montier, L Morgante, G Moss, A Naselsky, P Natoli, P Oxborrow, CA Pagano, L Paoletti, D Partridge, B Patanchon, G Patrizii, L Perdereau, O Perotto, L Pettorino, V Piacentini, F Plaszczynski, S Polastri, L Polenta, G Puget, JL Rachen, JP Racine, B Reinecke, M Remazeilles, M Renzi, A Rocha, G Rossetti, M Roudier, G Rubino-Martin, JA Ruiz-Granados, B Salvati, L Sandri, M Savelainen, M Scott, D Sirri, G Sunyaev, R Suur-Uski, AS Tauber, JA Tenti, M Toffolatti, L Tomasi, M Tristram, M Trombetti, T Valiviita, J Van Tent, F Vielva, P Villa, F Vittorio, N Wandelt, BD Wehus, IK White, M Zacchei, A Zonca, A AF Adam, R. Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Battye, R. Benabed, K. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Calabrese, E. Cardoso, J. -F. Carron, J. Chiang, H. C. Colombo, L. P. L. Combet, C. Comis, B. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Di Valentino, E. Dickinson, C. Diego, J. M. Dore, O. Douspis, M. Ducout, A. Dupac, X. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fantaye, Y. Finelli, F. Forastieri, F. Frailis, M. Fraisse, A. A. Franceschi, E. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Gerbino, M. Ghosh, T. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Helou, G. Henrot-Versille, S. Herranz, D. Hivon, E. Huang, Z. Ilic, S. Jaffe, A. H. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Knox, L. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Langer, M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jeune, M. Levrier, F. Lewis, A. Liguori, M. Lilje, P. B. Lopez-Caniego, M. Ma, Y. -Z. Macias-Perez, J. F. Maggio, G. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Matarrese, S. Mauri, N. McEwen, J. D. Meinhold, P. R. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Molinari, D. Moneti, A. Montier, L. Morgante, G. Moss, A. Naselsky, P. Natoli, P. Oxborrow, C. A. Pagano, L. Paoletti, D. Partridge, B. Patanchon, G. Patrizii, L. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Plaszczynski, S. Polastri, L. Polenta, G. Puget, J. -L Rachen, J. P. Racine, B. Reinecke, M. Remazeilles, M. Renzi, A. Rocha, G. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Ruiz-Granados, B. Salvati, L. Sandri, M. Savelainen, M. Scott, D. Sirri, G. Sunyaev, R. Suur-Uski, A. -S. Tauber, J. A. Tenti, M. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. Wehus, I. K. White, M. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLVII. Planck constraints on reionization history SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; dark ages, reionization, first stars; polarization ID MICROWAVE BACKGROUND ANISOTROPIES; PROBE WMAP OBSERVATIONS; STAR-FORMING GALAXIES; ANGULAR POWER SPECTRUM; HIGH-REDSHIFT GALAXIES; SOUTH-POLE TELESCOPE; DEEP FIELD CAMPAIGN; LY-ALPHA-EMITTERS; SIMILAR-TO 6; COSMIC REIONIZATION AB We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit Lambda CDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth tau = 0.058 +/- 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Delta z < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z similar or equal to 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources. C1 [Ganga, K.; Le Jeune, M.; Patanchon, G.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite,CEA lrfu, Observ Paris,CNRS IN2P3, APC AstroParticule & Cosmol, F-75205 Paris 13, France. [Calabrese, E.; Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, Aalto 00076, Finland. [Calabrese, E.; Lahteenmaki, A.] Dept Radio Sci & Engn, Aalto 00076, Finland. [Fantaye, Y.; Kunz, M.] African Inst Math Sci, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ilic, S.] Aix Marseille Univ, Ctr Phys Theor, F-13288 Marseille, France. [Ashdown, M.; Curto, A.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Bond, J. R.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ilic, S.; Montier, L.] CNRS, IRAP, F-31028 Toulouse 4, France. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Oxborrow, C. A.] Tech Univ Denmark, Space Natl Space Inst, DTU, Lyngby, Denmark. [Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ la Laguna, Dept Astrofis, San Cristobal de la Laguna 38206, Tenerife, Spain. [Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC, Canada. [Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Carron, J.; Lewis, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95064 USA. [Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Ballardini, M.] Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy. [Burigana, C.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Gerbino, M.; Melchiorri, A.; Pagano, L.; Piacentini, F.; Salvati, L.] Univ La Sapienza, Dipartimento Fis, I-00133 Rome, Italy. [Bersanelli, M.; Ducout, A.; Krachmalnicoff, N.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Fantaye, Y.; Forastieri, F.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Madrid 28691, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Gran Sasso Sci Inst, INFN, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Helsinki 00560, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, I-35131 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maggio, G.; Maris, M.; Zacchei, A.] INAF Osservatorio Astron Trieste, I-34127 Trieste, Italy. [Ballardini, M.; Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Molinari, D.; Morgante, G.; Paoletti, D.; Sandri, M.; Toffolatti, L.; Trombetti, T.; Villa, F.] INAF IASF Bologna, I-40127 Bologna, Italy. [Bersanelli, M.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, I-20133 Milan, Italy. [Tenti, M.] INFN CNAF, I-40127 Bologna, Italy. [Ballardini, M.; Burigana, C.; Finelli, F.; Gruppuso, A.; Mauri, N.; Paoletti, D.; Patrizii, L.; Sirri, G.] INFN, Sez Bologna, I-40127 Bologna, Italy. [Forastieri, F.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.] INFN, Sez Ferrara, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Rome Sapienza, INFN, Sez Roma 1, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, I-00185 Rome, Italy. [Jaffe, A. H.] Imperial Coll London, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Ghosh, T.; Kunz, M.; Lagache, G.; Langer, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Puget, J. -L; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, Inst Astrophys Spatiale, CNRS, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Migliaccio, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Racine, B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38205, Spain. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Basak, S.; Battye, R.; Bonaldi, A.; Davis, R. J.; Dickinson, C.; Ma, Y. -Z.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Cambridge CB3 OHA, England. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, F-91405 Orsay, France. [Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observ Paris, F-75000 Paris, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Adam, R.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, F-38026 Grenoble, France. [Van Tent, F.] Univ ParisSud 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, F.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Ensslin, T. A.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, DK-1165 Copenhagen, Denmark. [Gerbino, M.; Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, S-10691 Stockholm, Sweden. [Baccigalupi, C.; Bielewicz, P.; de Zotti, G.] SISSA, Astrophys Sector, I-34136 Trieste, Italy. [Ma, Y. -Z.] Univ KwaZulu Natal, Sch Chem & Phys, ZA-4000 Durban, South Africa. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Frolov, A.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Bouchet, F. R.; Di Valentino, E.] Sorbonne Univ, UPMC, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England. [Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC, Univ Paris 06, UMR 7095, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Ilic, S.; Montier, L.] Univ Toulouse, UPS OMP IRAP, F-31028 Toulouse 4, France. [Ruiz-Granados, B.] Univ Granada, Dept Fis Tedr & Cosmos, Fac Ciencias, Granada 18010, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Tristram, M (reprint author), Univ Paris 11, CNRS IN2P3, LAL, F-91405 Orsay, France. EM marian.douspis@ias.u-psud.fr; tristram@lal.in2p3.fr RI Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Lahteenmaki, Anne/L-5987-2013; White, Martin/I-3880-2015; Ruiz-Granados, Beatriz/K-2798-2014; Gerbino, Martina/E-4029-2017; Barreiro, Rita Belen/N-5442-2014; Mauri, Nicoletta/B-8712-2017; bonavera, laura/E-9368-2017 OI Huang, Zhiqi/0000-0002-1506-1063; Lilje, Per/0000-0003-4324-7794; Ballardini, Mario/0000-0003-4481-3559; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; White, Martin/0000-0001-9912-5070; Gerbino, Martina/0000-0002-3538-1283; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); MPG (Germany); DLR (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); J.A. (Spain) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration NR 110 TC 3 Z9 3 U1 5 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A108 DI 10.1051/0004-6361/201628897 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900066 ER PT J AU Adam, R Ade, PAR Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bersanelli, M Bielewicz, P Bikmaev, I Bonaldi, A Bond, JR Borrill, J Bouchet, FR Burenin, R Burigana, C Calabrese, E Cardoso, JF Catalano, A Chiang, HC Christensen, PR Churazov, E Colombo, LPL Combet, C Comis, B Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Diego, JM Dole, H Dore, O Douspis, M Ducout, A Dupac, X Elsner, F Ensslin, TA Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Harrison, DL Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Hornstrup, A Hovest, W Hurier, G Jaffe, HA Jaffe, TR Jones, WC Keihanen, E Keskitalo, R Khamitov, I Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Macias-Perez, JF Maffei, B Maggio, G Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Santos, D Savelainen, M Savini, G Scott, D Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Valenziano, L Valiviita, J Van Tent, F Vielva, P Villa, F Wade, LA Wehus, IK Yvon, D Zacchei, A Zonca, A AF Adam, R. Ade, P. A. R. Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bersanelli, M. Bielewicz, P. Bikmaev, I. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Burenin, R. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chiang, H. C. Christensen, P. R. Churazov, E. Colombo, L. P. L. Combet, C. Comis, B. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Diego, J. M. Dole, H. Dore, O. Douspis, M. Ducout, A. Dupac, X. Elsner, F. Ensslin, T. A. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Harrison, D. L. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Hornstrup, A. Hovest, W. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Keihanen, E. Keskitalo, R. Khamitov, I. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Macias-Perez, J. F. Maffei, B. Maggio, G. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Santos, D. Savelainen, M. Savini, G. Scott, D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Wade, L. A. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLIII. Spectral energy distribution of dust in clusters of galaxies SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: intracluster medium; galaxies: clusters: general; diffuse radiation; infrared: general ID INFRARED-EMISSION; SCALING RELATIONS; INTRACLUSTER DUST; INTERSTELLAR DUST; COMA CLUSTER; LUMINOSITY; HERSCHEL; EVOLUTION; CONSTRAINTS; CALIBRATION AB Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the degeneracy between dust temperature and mass. By complementing the IRAS spectral coverage with Planck satellite data from 100 to 857 GHz, we provide new constraints on the IR spectrum of thermal dust emission in clusters of galaxies. We achieve this by using a stacking approach for a sample of several hundred objects from the Planck cluster sample. This procedure averages out fluctuations from the IR sky, allowing us to reach a significant detection of the faint cluster contribution. We also use the large frequency range probed by Planck, together with component-separation techniques, to remove the contamination from both cosmic microwave background anisotropies and the thermal Sunyaev-Zeldovich effect (tSZ) signal, which dominate at v <= 353 GHz. By excluding dominant spurious signals or systematic effects, averaged detections are reported at frequencies 353 GHz <= v <= 5000 GHz. We confirm the presence of dust in clusters of galaxies at low and intermediate redshifts, yielding an SED with a shape similar to that of the Milky Way. Planck's resolution does not allow us to investigate the detailed spatial distribution of this emission (e.g. whether it comes from intergalactic dust or simply the dust content of the cluster galaxies), but the radial distribution of the emission appears to follow that of the stacked SZ signal, and thus the extent of the clusters. The recovered SED allows us to constrain the dust mass responsible for the signal and its temperature. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Sorbonne Paris Cite,Observ Paris, APC AstroParticule & Cosmol, CNRS IN2P3 CEA Irfu, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Bauman Str 20, Kazan 420111, Republic Of Tat, Russia. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, West Ville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107,Casilla 763, Santiago 0355, Chile. [Leonardi, R.] CGEE, SCS Qd 9,Torre C,4 Andar,Ed Parque Cidade Corp, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, E-28049 Madrid, Spain. [Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] ULL, Dept Astrofis, Tenerife 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33077, Spain. [Bikmaev, I.; Khamitov, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kremlevskaya Str 18, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Franceschi, E.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2A, SF-00100 Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Kneissl, R.] ESO Vitacura, European So Observ, Alonso Cordova 3107, Santiago 19001, Chile. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain. [Tauber, J. A.] Estec, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 35131, Finland. [de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35131 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Lattanzi, M.; Natoli, P.] Ist Nazl Fis Nucl, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] Natl Inst Nucl Phys, Ist Nazl Fis Nucl, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.] CNRS, Inst Astrophys Paris, UMR7095, 98Bis Blvd Arago, F-75014 Paris, France. [Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-38106 Oslo, Norway. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davis, R. J.; Maffei, B.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75000 Paris, France. [Pratt, G. W.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,IRFU,CEA,DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris, France. [Adam, R.; Catalano, A.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.; Valiviita, J.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Astro Space Ctr, 84-32 Profsoyuznaya St,GSP-7, Moscow, Russia. [Churazov, E.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Burenin, R.] Moscow Inst Phys & Technol, Inst Sky Per 9, Moscow 141700, Russia. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] UPMC, Sorbonne Univ, Inst Astrophys Paris, UMR7095, 98Bis Blvd Arago, F-75014 Paris, France. [Burenin, R.; Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Prof Soyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Khamitov, I.] TUBITAK Natl Observ, Akdeniz Univ Campus, TR-07058 Antalya, Turkey. [Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.] Univ Paris 06, UPMC, UMR7095, 98Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, IRAP, UPS, OMP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. EM comis@lpsc.in2p3.fr RI Lahteenmaki, Anne/L-5987-2013; Churazov, Eugene/A-7783-2013; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; Hivon, Eric/0000-0003-1880-2733; TERENZI, LUCA/0000-0001-9915-6379 FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA; DoE (USA); STFC; UKSA (UK); CSIC; MINECO; JA; RES (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC; PRACE (EU); [ANR-11-BS56-015] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. This paper makes use of the HEALPix software package. We acknowledge the support of grant ANR-11-BS56-015. We are thankful to the anonymous referee for useful comments that helped improve the quality of the paper. NR 69 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A104 DI 10.1051/0004-6361/201628522 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900045 ER PT J AU Adam, R Ade, PAR Alves, MIR Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chiang, HC Christensen, PR Colombo, LPL Combet, C Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dolag, K Dore, O Ducout, A Dupac, X Elsner, F Ensslin, TA Eriksen, HK Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Harrison, DL Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hobson, M Hornstrup, A Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leahy, JP Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Oppermann, N Orlando, E Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Scott, D Spencer, LD Stolyarov, V Stompor, R Strong, AW Sudiwala, R Sunyaev, R Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Valenziano, L Valiviita, J Van Tent, F Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Adam, R. Ade, P. A. R. Alves, M. I. R. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chiang, H. C. Christensen, P. R. Colombo, L. P. L. Combet, C. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dolag, K. Dore, O. Ducout, A. Dupac, X. Elsner, F. Ensslin, T. A. Eriksen, H. K. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Harrison, D. L. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hobson, M. Hornstrup, A. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leahy, J. P. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Oppermann, N. Orlando, E. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Scott, D. Spencer, L. D. Stolyarov, V. Stompor, R. Strong, A. W. Sudiwala, R. Sunyaev, R. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLII. Large-scale Galactic magnetic fields SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: general; ISM: magnetic fields; polarization ID PROBE WMAP OBSERVATIONS; COSMIC-RAY PROPAGATION; SYNCHROTRON EMISSION; MILKY-WAY; POLARIZATION MEASUREMENTS; SPECTRAL INDEX; OUTER GALAXY; MODELS; DUST; MAPS AB Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering in the magnetic fields is sensitive to these systematic uncertainties, and we further show the importance of considering the expected variations in the observables in addition to their mean morphology. We then compare the resulting simulated emission to the observed dust polarization and find that the dust predictions do not match the morphology in the Planck data but underpredict the dust polarization away from the plane. We modify one of the models to roughly match both observables at high latitudes by increasing the field ordering in the thin disc near the observer. Though this specific analysis is dependent on the component separation issues, we present the improved model as a proof of concept for how these studies can be advanced in future using complementary information from ongoing and planned observational projects. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA lrfu,Obser Paris,Sorbonne Paris Cite, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Cardoso, J. -F.; Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Leonardi, R.] Parque Cidade Corp, CGEE, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Rubino-Martin, J. A.] ULL, Dept Astrofis, San Cristobal la Laguna 38206, Spain. Univ Oviedo, Dept Fis, Oviedo 33007, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys Astron, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, ESTEC, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Gran Sasso Sci Inst, INFN, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF, Osservatorio Astron Padova, I-35122 Padua, Italy. [Polenta, G.] INAF, Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF, Osservatorio Astron Trieste, I-40127 Trieste, Italy. [Benoit-Levy, A.; Burigana, C.; Butler, R. C.; Catalano, A.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF, IASF Bologna, I-40129 Bologna, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF, IASF Milano, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, I-40127 Bologna, Italy. [Lattanzi, M.; Natoli, P.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, I-00185 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France. [Ducout, A.; Jaffe, A. H.] Imperial Coll London, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Alves, M. I. R.; Aumont, J.; Benoit-Levy, A.; Boulanger, F.; Catalano, A.; Ghosh, T.; Hurier, G.; Kunz, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Univ Paris Saclay, CNRS, Inst dAstrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Ducout, A.; Elsner, F.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst dAstrophys Paris, CNRS UMR 7095, F-75014 Paris, France. [Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, San Cristobal la Laguna 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucleare, Sez57adova, I-35131 Padua, Italy. [Benoit-Levy, A.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Davis, R. J.; Dickinson, C.; Leahy, J. P.; Remazeilles, M.] Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, Kazan 420008, Russia. [Couchot, F.; Mangilli, A.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observatoire Paris, F-75014 Paris, France. [Pratt, G. W.] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA Saclay,CEA DSM CNRS, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS UMR 5141, Labe Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Adam, R.; Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, F.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Strong, A. W.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Christensen, P. R.] Niels Bohr Inst, Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, S-10691 Stockholm, Sweden. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sector, I-34136 Trieste, Italy. [Terenzi, L.] Univ eCampus, SMARTEST Res Ctr, I-22060 Novedrate CO, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Parade, Cardiff CF24 3AA, Wales. [Bouchet, F. R.] Inst dAstrophys Paris, Sorbonne Univ UPMC, UMR 7095, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai 369167, Russia. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Prunet, S.; Wandelt, B. D.] UPMC, UMR 7095, Univ Paris 06, F-75014 Paris, France. [Alves, M. I. R.; Banday, A. J.; Benoit-Levy, A.; Bernard, J. -P.; Catalano, A.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.] Ludwig Maximilian Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Granada 18071, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac, Granada 18071, Spain. [Orlando, E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, W W Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA. [Orlando, E.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Jaffe, TR (reprint author), CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. EM tjaffe@irap.omp.eu RI Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016 OI Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Pierpaoli, Elena/0000-0002-7957-8993; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC; PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results in this paper have been derived using the HEALPix package. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA), part of the High Energy Astrophysics Science Archive Center (HEASARC). HEASARC/LAMBDA is a service of the Astrophysics Science Division at the NASA Goddard Space Flight Center. NR 56 TC 0 Z9 0 U1 2 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A103 DI 10.1051/0004-6361/201528033 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900022 ER PT J AU Ade, PAR Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Basak, S Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, LPL Combet, C Crill, BP Curto, A Cuttaia, F Danese, L Davis, RJ de Bernardis, P de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dore, O Ducout, A Dupac, X Elsner, F Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Gudmundsson, JE Harrison, DL Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hornstrup, A Hovest, W Hurier, G Jaffe, AH Jones, WC Keihanen, E Keskitalo, R Kisner, TS Knoche, J Knox, L Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Leonardi, R Levrier, F Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maggie, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Meinhold, PR Melchiorri, A Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Novikov, D Novikov, I Pagano, L Pajot, F Paoletti, D Pasian, F Patanchon, G Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pointecouteau, E Polenta, G Pratt, GW Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davis, R. J. de Bernardis, P. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dore, O. Ducout, A. Dupac, X. Elsner, F. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Gudmundsson, J. E. Harrison, D. L. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hornstrup, A. Hovest, W. Hurier, G. Jaffe, A. H. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Knoche, J. Knox, L. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Leonardi, R. Levrier, F. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maggie, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Meinhold, P. R. Melchiorri, A. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Novikov, D. Novikov, I. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pointecouteau, E. Polenta, G. Pratt, G. W. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. TI Planck intermediate results XLI. A map of lensing-induced B-modes SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; cosmic background radiation; polarization; gravitational lensing: weak ID MICROWAVE BACKGROUND POLARIZATION; INFLATIONARY UNIVERSE SCENARIO; GRAVITY-WAVES; CMB; RECONSTRUCTION; COSMOLOGY; PROSPECTS; FLATNESS; HORIZON; SPHERE AB The secondary cosmic microwave background (CMB) B-modes stem from the post-decoupling distortion of the polarization E-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced B-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB B-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization E-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced B-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) B-mode map can be used to measure the lensing B-mode power spectrum at multipoles up to 2000. In particular, when cross-correlating with the B-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced B-mode power spectrum measurement at a significance level of 12 sigma, which agrees with the theoretical expectation derived from the Planck best-fit Lambda cold dark matter model. This unique nearly all-sky secondary B-mode template, which includes the lensing-induced information from intermediate to small (10 less than or similar to l less than or similar to 1000) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial B-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB B-modes. C1 [Benoit-Levy, A.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEAlrfu,Observ Paris,Sorbonne Paris Cite, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ Metsahovi Radio Observ, Aalto 00076, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, ZA-00040 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, Cambridge CB3 OHE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Leonardi, R.] CGEE, SCS Qd 9, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Benoit-Levy, A.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91109 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Rubino-Martin, J. A.] ULL, Dept Astrofis, Tenerife 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Oviedo 33007, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter, Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 93106 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Bartolo, N.; Matarrese, S.] Univ Padua, Dipartimento Fis Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Benoit-Levy, A.; de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00133 Rome, Italy. [Benoit-Levy, A.; Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Discovery Ctr, Niels Bohr Inst, DK-1165 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.] Planck Sci Off, ESAC, European Space Agcy, Madrid 28691, Spain. [Tauber, J. A.] Estec, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ e Campus, Fac Ingn, I-22060 Novedrate, CO, Italy. [Matarrese, S.] INFN, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Benoit-Levy, A.; Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF, Osserv Astron Padova, I-35131 Padua, Italy. [Polenta, G.] INAF, Osserv Astron Roma, I-00040 Monte Porzio Catone, Italy. [Benoit-Levy, A.; Frailis, M.; Galeotta, S.; Maggie, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF, Osserv Astron Trieste, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, I-40126 Bologna, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Sez Roma 1, INFN, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, INFN, I-00133 Rome, Italy. [Mitra, S.] Pune Univ Campus, IUCAA, Pune 411007, Maharashtra, India. [Benoit-Levy, A.; Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aghanim, N.; Aumont, J.; Benoit-Levy, A.; Bonaldi, A.; Boulanger, F.; Catalano, A.; Ghosh, T.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Remazeilles, M.] Univ Paris 11, CNRS UMR8617, Inst Astrophys Spatiale, F-91898 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bonaldi, A.; Bouchet, F. R.; Cardoso, J. -F.; Catalano, A.; Colombi, S.; Ducout, A.; Elsner, F.; Moneti, A.; Sygnet, J. -F.; Wandelt, B. D.] CNRS UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 OHA, England. [Eriksen, H. K.; Gjerlow, E.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38205, Spain. [Barreiro, R. B.; Benoit-Levy, A.; Bonaldi, A.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Santander 39005, Spain. [Bartolo, N.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Benoit-Levy, A.; Bock, J. J.; Bonaldi, A.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Mitra, S.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Benoit-Levy, A.; Bonaldi, A.; Davis, R. J.; Dickinson, C.; Maffei, B.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Benoit-Levy, A.; Bonaldi, A.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 OHA, England. [Stolyarov, V.] Kazan Fed Univ, Kazan 420008, Russia. [Benoit-Levy, A.; Mangilli, A.; Perdereau, O.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91898 Orsay, France. [Benoit-Levy, A.; Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, Observ Paris, LERMA, F-75000 Paris, France. [Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU Serv Astrophys,CEA DSM, Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, CNRS, Lab Phys Theor, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, Moscow 117997, Russia. [Benoit-Levy, A.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, DK-1165 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Optic Sci Lab, London, England. [Baccigalupi, C.; Basak, S.; Benoit-Levy, A.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sector, I-34136 Trieste, Italy. [Ade, P. A. R.; Benoit-Levy, A.; Bonaldi, A.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Univ Paris 06, Sorbonne Univ, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian 369167, Russia. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmopart Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Benoit-Levy, A.; Bonaldi, A.; Colombi, S.; Elsner, F.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France. [Banday, A. J.; Benoit-Levy, A.; Bernard, J. -P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 18071, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Perotto, L (reprint author), Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, F-38026 Grenoble, France. EM laurence.perotto@lpsc.in2p3.fr RI bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Lahteenmaki, Anne/L-5987-2013; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014 OI Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck. This paper made use of the HEALPix software package. We thank the anonymous referee for their helpful comments and thoughtful suggestions that contributed to improve this paper. NR 72 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A102 DI 10.1051/0004-6361/201527932 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900017 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Churazov, E Clements, DL Colombo, LPL Combet, C Comis, B Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Galli, S Gangal, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maggio, G Maino, D Mandolesi, N Mangilli, A Marcos-Caballero, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Meinhold, PR Melchiorri, A Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Noviello, F Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Pearson, TJ Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Schaefer, BM Scott, D Soler, JD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Weller, J Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Churazov, E. Clements, D. L. Colombo, L. P. L. Combet, C. Comis, B. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Galli, S. Gangal, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Marcos-Caballero, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Meinhold, P. R. Melchiorri, A. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Pearson, T. J. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Schaefer, B. M. Scott, D. Soler, J. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Weller, J. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XL. The Sunyaev-Zeldovich signal from the Virgo cluster SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: general; galaxies: clusters: individual: Virgo; galaxies: clusters: intracluster medium; cosmic background radiation; large-scale structure of Universe ID HUBBLE-SPACE-TELESCOPE; HOT INTERGALACTIC MEDIUM; CENTIMETER LINE WIDTHS; X-RAY; GALAXY CLUSTERS; VIRIAL RADIUS; 3-DIMENSIONAL STRUCTURE; GAS; DISTANCE; TEMPERATURE AB The Virgo cluster is the largest Sunyaev-Zeldovich (SZ) source in the sky, both in terms of angular size and total integrated flux. Planck's wide angular scale and frequency coverage, together with its high sensitivity, enable a detailed study of this big object through the SZ effect. Virgo is well resolved by Planck, showing an elongated structure that correlates well with the morphology observed from X-rays, but extends beyond the observed X-ray signal. We find good agreement between the SZ signal (or Compton parameter, y(c)) observed by Planck and the expected signal inferred from X-ray observations and simple analytical models. Owing to its proximity to us, the gas beyond the virial radius in Virgo can be studied with unprecedented sensitivity by integrating the SZ signal over tens of square degrees. We study the signal in the outskirts of Virgo and compare it with analytical models and a constrained simulation of the environment of Virgo. Planck data suggest that significant amounts of low-density plasma surround Virgo, out to twice the virial radius. We find the SZ signal in the outskirts of Virgo to be consistent with a simple model that extrapolates the inferred pressure at lower radii, while assuming that the temperature stays in the keV range beyond the virial radius. The observed signal is also consistent with simulations and points to a shallow pressure profile in the outskirts of the cluster. This reservoir of gas at large radii can be linked with the hottest phase of the elusive warm/hot intergalactic medium. Taking the lack of symmetry of Virgo into account, we find that a prolate model is favoured by the combination of SZ and X-ray data, in agreement with predictions. Finally, based on the combination of the same SZ and X-ray data, we constrain the total amount of gas in Virgo. Under the hypothesis that the abundance of baryons in Virgo is representative of the cosmic average, we also infer a distance for Virgo of approximately 18 Mpc, in good agreement with previous estimates. C1 [Cardoso, J. -F.; Delabrouille, J.; Gangal, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, J J Thomson Ave, Cambridge CB3 OHE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Offices, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107, Santiago 7630355, Chile. [Leonardi, R.] Parque Cidade Corp, CGEE, SCS Qd 9,Lote C,Torre C, 4, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rubino-Martin, J. A.] ULL, Dept Astrofis, San Cristobal la Laguna 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33007, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL USA. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Studi Padova, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, P le A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via Valerio 2, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Scientifica 1, I-00133 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Scientifica, I-00133 Rome, Italy. Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Kneissl, R.] European Southern Observ, ESO Vitacura, Alonso Cordova 3107, Santiago 19001, Chile. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, ESTEC, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ Studi Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate CO, Italy. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00014, Finland. [Umana, G.] INAF Osservatorio Astrofisico Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo dell Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] INAF Osservatorio Astronomico Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astronomico Trieste, Via G B Tiepolo 11, I-40127 Trieste, Italy. [Benoit-Levy, A.; Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF, IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF, IASF Milano, Via Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Scientifica 1, I-00185 Rome, Italy. [Ponthieu, N.] INFN, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, Inst Planetol & dAstrophys Grenoble, CNRS,IPAG, F-38000 Grenoble, France. [Mitra, S.] Pune Univ Campus, IUCAA, Post Bag 4, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Soler, J. D.] Univ Paris Sud 11, Inst dAstrophys Spatiale, CNRS UMR 8617, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bonaldi, A.; Bouchet, F. R.; Cardoso, J. -F.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst dAstrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 OHA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, San Cristobal la Laguna 38205, Spain. [Barreiro, R. B.; Benoit-Levy, A.; Bonaldi, A.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Marcos-Caballero, A.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda los Castros S-N, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Benoit-Levy, A.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Benoit-Levy, A.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observatoire Paris, 61 Ave IObser, Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, IRFU Serv dAstrophys, CEA DSM CNRS, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS UMR 5141, Lab Traitement & Commun IInformat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St, Moscow 117997, Russia. [Churazov, E.; Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Savini, G.] UCL, Optic Sci Lab, Gower St, London, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, Wales. [Bouchet, F. R.] UPMC, Inst dAstrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai-Cherkessian 369167, Russia. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC, Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, Philosophenweg 12, D-69120 Heidelberg, Germany. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.; Weller, J.] Ludwig Maximilian Univ Munich, Univ Observ, Scheinerstr 1, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18071, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Diego, JM (reprint author), Univ Cantabria, CSIC, Inst Fis Cantabria, Avda los Castros S-N, Santander 39005, Spain. EM jdiego@ifca.unican.es RI Churazov, Eugene/A-7783-2013; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; Hivon, Eric/0000-0003-1880-2733; TERENZI, LUCA/0000-0001-9915-6379 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results presented in this work are based on observations obtained with XMM-Newton an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA5. NR 73 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A101 DI 10.1051/0004-6361/201527743 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900009 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Butler, RC Calabrese, E Catalano, A Chiang, HC Christensen, PR Clements, DL Colombo, LPL Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Dore, O Douspis, M Ducout, A Dupac, X Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Finelli, F Flores-Cacho, I Frailis, M Fraisse, AA Franceschi, E Galeotta, S Galli, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Hornstrup, A Hovest, W Enberger, KMHF Hurier, G Jaffe, AH Jaffe, TR Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Melchiorri, A Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Nati, F Natoli, P Nesvadba, NPH Noviello, F Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paoletti, D Partridge, B Pasian, F Pearson, TJ Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Turler, M Umana, G Valenziano, L Valiviita, J Van Tent, F Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Welikala, N Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. - Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Butler, R. C. Calabrese, E. Catalano, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombo, L. P. L. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Dore, O. Douspis, M. Ducout, A. Dupac, X. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Finelli, F. Flores-Cacho, I. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Galli, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Melchiorri, A. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Nati, F. Natoli, P. Nesvadba, N. P. H. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Partridge, B. Pasian, F. Pearson, T. J. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuerler, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Welikala, N. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXIX. The Planck list of high-redshift source candidates SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE catalogs; submillimeter: galaxies; galaxies: high-redshift; galaxies: clusters: general; large-scale structure of Universe ID SOUTH-POLE TELESCOPE; STAR-FORMING GALAXIES; FAR-INFRARED PROPERTIES; SIMILAR-TO 2; GRAVITATIONALLY LENSED GALAXIES; LY-ALPHA EMITTERS; MU-M OBSERVATIONS; DEEP FIELD-SOUTH; GREATER-THAN 1; RADIO GALAXY AB The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. A novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been validated and characterized on numerous simulations, and applied to select the most luminous cold submillimetre sources with spectral energy distributions peaking between 353 and 857 GHz at 5' resolution. A total of 2151 Planck high-z source candidates (the PHZ) have been detected in the cleanest 26% of the sky, with flux density at 545 GHz above 500 mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent with redshifts z > 2, assuming a dust temperature of T-xgal = 35K and a spectral index of beta(xgal) = 1.5. Exhibiting extremely high luminosities, larger than 10(14) L-circle dot, the PHZ objects may be made of multiple galaxies or clumps at high redshift, as suggested by a first statistical analysis based on a comparison with number count models. Furthermore, first follow-up observations obtained from optical to submillimetre wavelengths, which can be found in companion papers, have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies at redshift 2 to 4, while the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colours consistent with being at z > 2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, which is complementary to the Planck Sunyaev-Zeldovich Catalogue (PSZ2); by extending the population of virialized massive galaxy clusters detected below z < 1.5 through their SZ signal to a population of sources at z > 1.5, the PHZ may contain the progenitors of today's clusters. Hence the Planck list of high-redshift source candidates opens a new window on the study of the early stages of structure formation, particularly understanding the intensively star-forming phase at high-z. C1 [Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS,Obser Paris, IN2P3,CEA,Irfu,Sorbonne Paris Cite, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy. [Lagache, G.] Univ Aix Marseille, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Santiago 7630355, Chile. [Leonardi, R.] CGEE, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Flores-Cacho, I.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Brazil. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Yvon, D.] CEA, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327,2800 Kgs, Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E. Ansermet, CH-1211 Geneva, Switzerland. [Rubino-Martin, J. A.] ULL, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z4, Canada. [Colombo, L. P. L.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, FI-00100 Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ USA. [Lubin, P. M.; Zonca, A.] Univ Calif, Dept Phys, Santa Barbara, CA USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, P Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20122 Milan, Italy. Univ Trieste, Dipartimento Fis, Via Valerio 2, I-34128 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Mate, Via Ric Scientifica, I-00173 Rome, Italy. [Christensen, P. R.] Discovery Ctr, Niels Bohr Inst, Blegdamsvej 17, Copenhagen 2100, Denmark. [Gregorio, A.; Kneissl, R.] ESO Vitacura, 3107 Alonso Cordova, Santiago 19001, Chile. [Tauber, J. A.] ESTEC, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00100, Finland. [Umana, G.] INAF, Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF, Osservatorio Astronom Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF, Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, Via G B Tiepolo 11, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF, IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E. Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Gruppuso, A.; Paoletti, D.] INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Lattanzi, M.; Natoli, P.] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, P Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, INFN, Via Ric Scientifica 1, I-00173 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Tuerler, M.] Univ Geneva, Dept Astron, ISDC, Ch dEcogia 16, CH-1290 Versoix, Switzerland. [Mitra, S.] Univ Poona, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Nesvadba, N. P. H.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Univ Paris Saclay, CNRS, Inst dAstrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bonaldi, A.; Bouchet, F. R.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS UMR 7095, Inst dAstrophys Paris, 98bis boule vard Arago, F-75014 Paris, France. [Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Crill, B. P.; Rubino-Martin, J. A.] Inst Astrofis Canarias, San Cristobal la Laguna 38205, Spain. [Barreiro, R. B. -; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Sez Padova, Ist Nazl Fis Nucl, Via Marzolo 8, I-35131 Padua, Italy. [Benoit-Levy, A.; Colombo, L. P. L.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Benoit-Levy, A.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, LAL, F-91400 Orsay, France. [Benoit-Levy, A.; Catalano, A.; Coulais, A.; Dupac, X.; Giraud-Heraud, Y.; Hornstrup, A.; Hovest, W.; Kisner, T. S.; Pettorino, V.; Stolyarov, V.] CNRS, LERMA, Observatoire Paris, 61 Ave IObservatoire, F-75014 Paris, France. [Arnaud, M.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, IRFU, F-91191 Gif Sur Yvette, France. [Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS, Lab Phys Subatom & Cosmol, IN2P3, 53 rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Optic Sci Lab, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ Studi Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate CO, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] Inst dAstrophys Paris, Sorbonne Univ UPMC, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str, Moscow 117997, Russia. [Borrill, J.] Univ Calif, Space Sci Lab, Berkeley, CA 92521 USA. [Calabrese, E.; Welikala, N.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor Cosmos, Granada 18010, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor Computac, Granada 18010, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RI Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Savini, Giorgio/0000-0003-4449-9416; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Hivon, Eric/0000-0003-1880-2733; TERENZI, LUCA/0000-0001-9915-6379; Lilje, Per/0000-0003-4324-7794 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO, J.A. (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. NR 137 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A100 DI 10.1051/0004-6361/201527206 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900007 ER PT J AU Ade, PAR Aghanim, N Aller, HD Aller, MF Arnaud, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Burigana, C Calabrese, E Catalano, A Chiang, HC Christensen, PR Clements, DL Colomb, LPL Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Ducout, A Dupac, X Efstathiou, G Elsner, F Eriksen, HK Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Galli, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Gurwel, MA Hansen, FK Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Hildebrandt, SR Hobson, M Hornstrup, A Hovatta, T Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jarvela, E Keihanen, E Keskitalo, R Kisner, TS Kneiss, R Knoche, J Kunz, M Kurki-Suonio, H Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Martini, PG Martinez-Gonzalez, E Masi, S Matarrese, S Max-Moerbeck, W Meinhold, PR Melchiorri, A Mennella, A Migliaccio, M Millgaliev, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Nati, F Natoli, P Nieppola, E Noviello, F Novikov, D Novikov, I Pagano, L Pajot, F Paoletti, D Partridge, B Pasian, F Pearson, TJ Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Ramakrishnan, V Rastorgueva-Foi, EA Readhead, ACS Reinecke, M Remazeilles, M Renault, C Renzi, A Richards, JL Ristorcelli, I Rocha, G Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Savelainen, M Savini, G Scott, D Sotnikova, Y Stolyarov, V Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tammi, J Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tornikoski, M Tristram, M Tucci, M Turler, M Valenziano, L Valiviita, J Valtaoja, E Van Tent, B Vielva, P Ville, F Wade, LA Wehrle, AE Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Aller, H. D. Aller, M. F. Arnaud, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Calabrese, E. Catalano, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colomb, L. P. L. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Galli, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Gurwel, M. A. Hansen, F. K. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hobson, M. Hornstrup, A. Hovatta, T. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jarvela, E. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneiss, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Martini, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Max-Moerbeck, W. Meinhold, P. R. Melchiorri, A. Mennella, A. Migliaccio, M. Millgaliev, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Nati, F. Natoli, P. Nieppola, E. Noviello, F. Novikov, D. Novikov, I. Pagano, L. Pajot, F. Paoletti, D. Partridge, B. Pasian, F. Pearson, T. J. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Ramakrishnan, V. Rastorgueva-Foi, E. A. Readhead, A. C. S. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Richards, J. L. Ristorcelli, I. Rocha, G. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savelainen, M. Savini, G. Scott, D. Sotnikova, Y. Stolyarov, V. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tammi, J. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tornikoski, M. Tristram, M. Tucci, M. Turler, M. Valenziano, L. Valiviita, J. Valtaoja, E. Van Tent, B. Vielva, P. Ville, F. Wade, L. A. Wehrle, A. E. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLV. Radio spectra of northern extragalactic radio sources SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: active; galaxies: general; radio continuum: galaxies ID LONG-TERM VARIABILITY; BL LACERTAE OBJECTS; GAMMA-RAY OUTBURST; FLUX-DENSITY SCALE; QUASAR 3C 454.3; MULTIWAVELENGTH OBSERVATIONS; 2010 NOVEMBER; GASP-WEBT; BLAZAR; JET AB Continuum spectra covering centimetre to submillimetre wavelengths are presented for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The radio spectra peak at high frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Variability can generally be approximated by achromatic variations, while sources with clear signatures of evolving shocks appear to be limited to the strongest outbursts. C1 [Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, APC, CNRS IN2P3, CEA lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Jarvela, E.; Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Jarvela, E.; Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Hovatta, T.; Nieppola, E.; Ramakrishnan, V.; Tammi, J.; Tornikoski, M.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, 830 Dennison Bldg,500 Church St, Ann Arbor, MI 48109 USA. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, J J Thomson Ave, Cambridge CB3 OHE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, West Ville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneiss, R.] ALMA Santiago Cent Offices, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107, Santiago 7630355, Chile. [Bond, J. R.; Martini, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, TRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Hovatta, T.; Max-Moerbeck, W.; Readhead, A. C. S.; Richards, J. L.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-12114 Geneva, Switzerland. [Rubino-Martin, J. A.] ULL, Dept Astrofis, San Cristobal la Laguna 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo, Spain. [Scott, D.] Univ British Columbia, Dept Phys Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colomb, L. P. L.; Pierpaoli, E.] Univ Southern California, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL USA. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Richards, J. L.] Purdue Univ, Dept Phys, 525 Northwestern Ave, W Lafayette, IN 47907 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, P Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Scientifica 1, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Kneiss, R.] ESO Vitacura, Alonso Cordova 3107, Santiago, Chile. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28691, Spain. [Tauber, J. A.] European Space Agcy, ESTEC, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ Campus, Facolta Ingn, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, Italy. [Nieppola, E.] Univ Turku, Finnish Ctr Astron ESO, FINCA, Vaisalantie 20, Piikkio 21500, Finland. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Phys Theor, Philosophenweg 16, D-69120 Heidelberg, Germany. [Gurwel, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00560, Finland. [de Zotti, G.] INAF, Osservatorio Astronomico Padova, Vicolo dellOsservatorio 5, Padua, Italy. [Polenta, G.] Ist Nazl Fis Nucl, Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Pasian, F.; Zacchei, A.] INAF, Osservatorio Astron Trieste, Via G B Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Ville, F.] INAF, IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF, IASF Milano, Via Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Scientifica 1, I-00185 Rome, Italy. [Turler, M.] Univ Geneva, Dept Astron, ISDC, Ch dEcogia 16, CH-1290 Versoix, Switzerland. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Hurier, G.; Kunz, M.; Miville-Deschenes, M. -A.; Pajot, F.; Remazeilles, M.] Univ Paris Sud 11, Inst Astrophys Spatiale, CNRS UMR8617, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Ducout, A.; Elsner, F.; Moneti, A.; Sygnet, J. -F.] CNRS, Inst Astrophys Paris, UMR7095, 98bis Blv Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, San Cristobal la Laguna, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Los Castros S-N, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Mar zolo 8, I-35131 Padua, Italy. [Benoit-Levy, A.; Bonaldi, A.; Colomb, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Benoit-Levy, A.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Millgaliev, M.; Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observ Paris, 61 Ave Observ, F-75000 Paris, France. [Arnaud, M.; Pratt, G. W.] Univ Paris Dide, CEA Saclay, CEA DSM CNRS, IRFU Serv Astrophys,Lab AIM, Bat 709, F-91191 Gif Sur Yvette, France. [Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Astro Space Ctr, 84-32 Profsoyuznaya St,GSP 7, Moscow 117997, Russia. [Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Max-Moerbeck, W.] Natl Radio Astron Observ, POB 0, Socorro, NM 87801 USA. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Savini, G.] UCL, Optic Sci Lab, Gower St, London, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Rastorgueva-Foi, E. A.] Univ Tasmania, Sch Math & Phys, Private Bag 37, Hobart, Tas, Australia. [Ade, P. A. R.; Munshi, D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] Sorbonne Univ UPMC, Inst Astrophys Paris, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Wehrle, A. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Suite, CO 205 USA. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Millgaliev, M.; Sotnikova, Y.; Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai 369167, Russia. [Calabrese, E.] Univ Oxford, Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Valtaoja, E.] Turku Univ, Dept Phys & Astron, Tuorla Observ, Vaisalantie 20, Piikkio 21500, Finland. [Benabed, K.; Benoit-Levy, A.; Elsner, F.] UPMC, Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Benoit-Levy, A.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teorica & Cosmos, Granada 18071, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Lahteenmaki, A (reprint author), Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland.; Lahteenmaki, A (reprint author), Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. EM anne.lahteenmaki@aalto.fi RI Lahteenmaki, Anne/L-5987-2013; Stolyarov, Vladislav/C-5656-2017; Ramakrishnan, Venkatessh/C-8628-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; OI Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Stolyarov, Vladislav/0000-0001-8151-828X; Ramakrishnan, Venkatessh/0000-0002-9248-086X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); Academy of Finland [212656, 210338, 121148]; Smithsonian Institution; Academia Sinica; NASA [NNX08AW31G, NNX11A043G]; NSF [AST-0808050, AST-1109911]; NSF; NASA; University of Michigan; Russian Government Programme of Competitive Growth of Kazan Federal University FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. The Metsahovi team acknowledges the support from the Academy of Finland to our observing projects (Nos. 212656, 210338, 121148, and others). The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. The OVRO 40-m monitoring programme is supported in part by NASA grants NNX08AW31G and NNX11A043G, and NSF grants AST-0808050 and AST-1109911. UMRAO has been supported by a series of grants from the NSF and NASA, and by the University of Michigan. We also acknowledge support through the Russian Government Programme of Competitive Growth of Kazan Federal University. NR 60 TC 0 Z9 0 U1 2 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A106 DI 10.1051/0004-6361/201527780 PG 37 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900011 ER PT J AU Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Ballardini, M Banday, AJ Barreiro, RB Bartolo, N Basak, S Benabed, K Bernard, JP Bersanelli, M Bielewicz, P Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Calabrese, E Cardoso, JF Carron, J Chiang, HC Colombo, LPL Comis, B Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F de Bernardis, P de Zotti, G Delabrouille, J Di Valentino, E Dickinson, C Diego, JM Dore, O Douspis, M Ducout, A Dupac, X Dusini, S Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fantaye, Y Finelli, F Forastieri, F Frailis, M Fraisse, AA Franceschi, E Frolov, A Galeotta, S Galli, S Ganga, K Genova-Santos, RT Gerbino, M Ghosh, T Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Gudmundsson, JE Hansen, FK Helou, G Henrot-Versille, S Herranz, D Hivon, E Huang, Z Jaffe, AH Jones, WC Keihanen, E Keskitalo, R Kiiveri, K Kisner, TS Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lamarre, JM Langer, M Lasenby, A Lattanzi, M Lawrence, CR Le Jeune, M Levrier, F Lilje, PB Lilley, M Lindholm, V Lopez-Caniego, M Ma, YZ Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Matarrese, S Mauri, N McEwen, JD Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Molinari, D Moneti, A Montier, L Morgante, G Moss, A Natoli, P Oxborrow, CA Pagano, L Paoletti, D Patanchon, G Perdereau, O Perotto, L Pettorino, V Piacentini, F Plaszczynski, S Polastri, L Polenta, G Puget, JL Rachen, JP Racine, B Reinecke, M Remazeilles, M Renzi, A Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Ruiz-Granados, B Salvati, L Sandri, M Savelainen, M Scott, D Sirignano, C Sirri, G Soler, JD Spencer, LD Suur-Uski, AS Tauber, JA Tavagnacco, D Tenti, M Toffolatti, L Tomasi, M Tristram, M Trombetti, T Valiviita, J Van Tent, F Vielva, P Villa, F Vittorio, N Wandelt, BD Wehus, IK Zacchei, A Zonca, A AF Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Benabed, K. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Calabrese, E. Cardoso, J. -F. Carron, J. Chiang, H. C. Colombo, L. P. L. Comis, B. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. de Bernardis, P. de Zotti, G. Delabrouille, J. Di Valentino, E. Dickinson, C. Diego, J. M. Dore, O. Douspis, M. Ducout, A. Dupac, X. Dusini, S. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fantaye, Y. Finelli, F. Forastieri, F. Frailis, M. Fraisse, A. A. Franceschi, E. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Gerbino, M. Ghosh, T. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Helou, G. Henrot-Versille, S. Herranz, D. Hivon, E. Huang, Z. Jaffe, A. H. Jones, W. C. Keihanen, E. Keskitalo, R. Kiiveri, K. Kisner, T. S. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lamarre, J. -M. Langer, M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jeune, M. Levrier, F. Lilje, P. B. Lilley, M. Lindholm, V. Lopez-Caniego, M. Ma, Y. -Z. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Matarrese, S. Mauri, N. McEwen, J. D. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Molinari, D. Moneti, A. Montier, L. Morgante, G. Moss, A. Natoli, P. Oxborrow, C. A. Pagano, L. Paoletti, D. Patanchon, G. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Plaszczynski, S. Polastri, L. Polenta, G. Puget, J. -L. Rachen, J. P. Racine, B. Reinecke, M. Remazeilles, M. Renzi, A. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Ruiz-Granados, B. Salvati, L. Sandri, M. Savelainen, M. Scott, D. Sirignano, C. Sirri, G. Soler, J. D. Spencer, L. D. Suur-Uski, A. -S. Tauber, J. A. Tavagnacco, D. Tenti, M. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. Wehus, I. K. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; methods: data analysis; ISM: general; dust, extinction; infrared: diffuse background; large-scale structure of Universe ID INTERNAL LINEAR COMBINATION; COMPONENT SEPARATION; POWER SPECTRUM; MILKY-WAY; MODEL; CMB; MAPS; GALAXIES; SPHERE AB Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular power spectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectral index over the sky with reduced dispersion, especially at high Galactic latitudes above b = +/- 20 degrees. We find that the dust temperature is T = (19.4 +/- 1.3) K and the dust spectral index is beta = 1.6 +/- 0.1 averaged over the whole sky, while T = (19.4 +/- 1.5) K and beta = 1.6 +/- 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes vertical bar b vertical bar > 20 degrees. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Racine, B.; Remazeilles, M.; Rosset, C.] Univ Paris Diderot, Sorbonne Paris Cite,CEA lrfu, APC,CNRS IN2P3, AstroParticule & Cosmol, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn SNC, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, J J Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, West Ville Campus,Private Bag X54001, Durban 4000, South Africa. [Bond, J. R.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto M5S 3H8, ON, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Montier, L.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Helou, G.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S N, Oviedo 33007, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Carron, J.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, FIN-00014 Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Matarrese, S.; Sirignano, C.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Ballardini, M.] Univ Bologna, Dipartimento Fis & Astron, Alma Mater Studiorum,Via Berti Pichat 6-2, I-40127 Bologna, Italy. [Burigana, C.; Forastieri, F.; Lattanzi, M.; Mandolesi, N.; Molinari, D.; Natoli, P.; Polastri, L.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Gerbino, M.; Melchiorri, A.; Pagano, L.; Piacentini, F.; Salvati, L.] Univ Roma La Sapienza, Dipartimento Fis, P Le A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Tavagnacco, D.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy. [Fantaye, Y.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S N,Urbanizac Villafranca, Madrid 28692, Spain. [Tauber, J. A.] Estec, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Via F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, FIN-00014 Helsinki, Finland. [de Zotti, G.] INAF, Osservator Astron Padova, Vicolo Osservator 5, I-35122 Padua, Italy. [Polenta, G.] INAF, Osservator Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maggio, G.; Maris, M.; Tavagnacco, D.; Zacchei, A.] INAF, Osservator Astron Trieste, Via G B Tiepolo 11, I-40127 Trieste, Italy. [Ballardini, M.; Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Molinari, D.; Morgante, G.; Paoletti, D.; Sandri, M.; Toffolatti, L.; Trombetti, T.; Villa, F.] INAF, IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF, IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Tenti, M.] INFN, CNAF, Via Berti Pichat 6-2, I-40127 Bologna, Italy. [Ballardini, M.; Burigana, C.; Finelli, F.; Gruppuso, A.; Mauri, N.; Paoletti, D.; Sirri, G.] INFN, Sez Bologna, Via Berti Pichat 6-2, I-40127 Bologna, Italy. [Forastieri, F.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Ducout, A.; Jaffe, A. H.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Ghosh, T.; Kunz, M.; Langer, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Puget, J. -L.; Remazeilles, M.; Soler, J. D.] Univ Paris 11, Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Lilley, M.; Moneti, A.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S N, San Cristobal la Laguna 38205, Tenerife, Spain. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S N, E-39005 Santander, Spain. [Bartolo, N.; Dusini, S.; Matarrese, S.; Sirignano, C.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA. [Dickinson, C.; Ma, Y. -Z.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Comis, B.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble Alpes, CNRS 1N2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France. [Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Gerbino, M.; Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstulls Backen 23, S-10691 Stockholm, Sweden. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; de Zotti, G.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy. [Ma, Y. -Z.] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Spencer, L. D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada. [Bouchet, F. R.; Di Valentino, E.; Lilley, M.] Sorbonne Univ, UPMC, Inst Astrophys Paris, UMR 7095, 98 bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, S-10691 Stockholm, Sweden. [Benabed, K.; Elsner, F.; Hivon, E.; Wandelt, B. D.] Univ Paris 06, UPMC, UMR 7095, 98 bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Montier, L.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Ruiz-Granados, B.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Remazeilles, M (reprint author), Univ Paris Diderot, Sorbonne Paris Cite,CEA lrfu, APC,CNRS IN2P3, AstroParticule & Cosmol, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.; Remazeilles, M (reprint author), Univ Paris 11, Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France.; Remazeilles, M (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. EM mathieu.remazeilles@manchester.ac.uk RI Ruiz-Granados, Beatriz/K-2798-2014; Gerbino, Martina/E-4029-2017; Barreiro, Rita Belen/N-5442-2014; Mauri, Nicoletta/B-8712-2017; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016 OI Ballardini, Mario/0000-0003-4481-3559; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; Huang, Zhiqi/0000-0002-1506-1063; Lilje, Per/0000-0003-4324-7794; Gerbino, Martina/0000-0002-3538-1283; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); ERC [307209] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results in this paper have been derived using the HEALPix package. The research leading to these results has received funding from the ERC Grant No. 307209. NR 52 TC 0 Z9 0 U1 3 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A109 DI 10.1051/0004-6361/201629022 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900075 ER PT J AU Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Ballardini, M Banday, AJ Barreiro, RB Bartolo, N Basak, S Benabed, K Bernard, JP Bersanelli, M Bielewicz, P Bonavera, L Bond, JR Borrill, J Bouchet, FR Burigana, C Calabrese, E Cardoso, JF Carron, J Chiang, HC Colombo, LPL Comis, B Contreras, D Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Di Valentino, E Dickinson, C Diego, JM Dore, O Ducout, A Dupac, X Dusini, S Elsner, F Ensslin, TA Eriksen, HK Fantaye, Y Finelli, F Forastieri, F Frailis, M Franceschi, E Frolov, A Galeotta, S Galli, S Ganga, K Genova-Santos, RT Gerbino, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Gudmundsson, JE Hansen, FK Henrot-Versille, S Herranz, D Hivon, E Huang, Z Jaffe, AH Jones, WC Keihanen, E Keskitalo, R Kiiveri, K Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lamarre, JM Langer, M Lasenby, A Lattanzi, M Lawrence, CR Le Jeune, M Leahy, JP Levrier, F Liguori, M Lilje, PB Lindholm, V Lopez-Caniego, M Ma, YZ Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Maris, M Martin, PG Martinez-Gonzalez, E Matarrese, S Mauri, N McEwen, JD Meinhold, PR Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Molinari, D Moneti, A Morgante, G Moss, A Natoli, P Pagano, L Paoletti, D Patanchon, G Patrizii, L Perotto, L Pettorino, V Piacentini, F Polastri, L Polenta, G Rachen, JP Racine, B Reinecke, M Remazeilles, M Renzi, A Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Ruiz-Granados, B Sandri, M Savelainen, M Scott, D Sirignano, C Sirri, G Spencer, LD Suur-Uski, AS Tauber, JA Tavagnacco, D Tenti, M Toffolatti, L Tomasi, M Tristram, M Trombetti, T Valiviita, J Van Tent, F Vielva, P Villa, F Vittorio, N Wandelt, BD Wehus, IK Zacchei, A Zonca, A AF Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Benabed, K. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Calabrese, E. Cardoso, J. -F. Carron, J. Chiang, H. C. Colombo, L. P. L. Comis, B. Contreras, D. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Di Valentino, E. Dickinson, C. Diego, J. M. Dore, O. Ducout, A. Dupac, X. Dusini, S. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fantaye, Y. Finelli, F. Forastieri, F. Frailis, M. Franceschi, E. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Gerbino, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Henrot-Versille, S. Herranz, D. Hivon, E. Huang, Z. Jaffe, A. H. Jones, W. C. Keihanen, E. Keskitalo, R. Kiiveri, K. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lamarre, J. -M. Langer, M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jeune, M. Leahy, J. P. Levrier, F. Liguori, M. Lilje, P. B. Lindholm, V. Lopez-Caniego, M. Ma, Y. -Z. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Matarrese, S. Mauri, N. McEwen, J. D. Meinhold, P. R. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Molinari, D. Moneti, A. Morgante, G. Moss, A. Natoli, P. Pagano, L. Paoletti, D. Patanchon, G. Patrizii, L. Perotto, L. Pettorino, V. Piacentini, F. Polastri, L. Polenta, G. Rachen, J. P. Racine, B. Reinecke, M. Remazeilles, M. Renzi, A. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Ruiz-Granados, B. Sandri, M. Savelainen, M. Scott, D. Sirignano, C. Sirri, G. Spencer, L. D. Suur-Uski, A. -S. Tauber, J. A. Tavagnacco, D. Tenti, M. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. Wehus, I. K. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLIX. Parity-violation constraints from polarization data SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; cosmic background radiation; cosmological parameters; methods: data analysis; methods: statistical ID PROBE WMAP OBSERVATIONS; B-MODE POLARIZATION; DISTANT RADIO GALAXIES; COSMOLOGICAL DISTANCES; POWER SPECTRUM; MICROWAVE; BIREFRINGENCE; TEMPERATURE; STATISTICS; ROTATION AB Parity-violating extensions of the standard electromagnetic theory cause in vacuo rotation of the plane of polarization of propagating photons. This effect, also known as cosmic birefringence, has an impact on the cosmic microwave background (CMB) anisotropy angular power spectra, producing non-vanishing T-B and E-B correlations that are otherwise null when parity is a symmetry. Here we present new constraints on an isotropic rotation, parametrized by the angle alpha, derived from Planck 2015 CMB polarization data. To increase the robustness of our analyses, we employ two complementary approaches, in harmonic space and in map space, the latter based on a peak stacking technique. The two approaches provide estimates for alpha that are in agreement within statistical uncertainties and are very stable against several consistency tests. Considering the T-B and E-B information jointly, we find alpha = 0 degrees: 31 +/- 0 degrees.05 (stat:) +/- 0 degrees:28 (syst:) from the harmonic analysis and alpha = 0 degrees.35 +/- 0 degrees.05 (stat :) 0 degrees.28 (syst :) from the stacking approach. These constraints are compatible with no parity violation and are dominated by the systematic uncertainty in the orientation of Planck's polarization-sensitive bolometers. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Racine, B.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite,Observ Paris, APC AstroParticule & Cosmol, CNRS IN2P3,CEA lrfu, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, J J Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Huang, Z.; Martin, P. G.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Kunz, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, San Cristobal la Laguna 38206, Spain. [Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Calvo Sotelo S N, Oviedo 33007, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Contreras, D.; Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Carron, J.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki, Finland. [Chiang, H. C.; Gudmundsson, J. E.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.; Sirignano, C.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Ballardini, M.] Univ Bologna, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Burigana, C.; Forastieri, F.; Lattanzi, M.; Mandolesi, N.; Molinari, D.; Natoli, P.; Polastri, L.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Gerbino, M.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Tavagnacco, D.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Villa, F.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy. [Fantaye, Y.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S N,Urbanizac Villafranca Ca, Madrid 28692, Spain. [Tauber, J. A.] Estec, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Via F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00014, Finland. [de Zotti, G.] INAF Osservator Astron Padova, Vicolo Osservator 5, I-35122 Padua, Italy. [Polenta, G.] INAF Osservator Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maggio, G.; Maris, M.; Tavagnacco, D.; Zacchei, A.] INAF Osservator Astron Trieste, Via G B Tiepolo 11, I-40127 Trieste, Italy. [Ballardini, M.; Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Molinari, D.; Morgante, G.; Paoletti, D.; Sandri, M.; Toffolatti, L.; Trombetti, T.; Vielva, P.] INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Tenti, M.] INFN CNAF, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Ballardini, M.; Burigana, C.; Finelli, F.; Gruppuso, A.; Mauri, N.; Paoletti, D.; Patrizii, L.; Sirri, G.] INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Forastieri, F.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Rome Sapienza, INFN, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Desert, F. -X.] IPAG, F-38000 Grenoble, France. [Desert, F. -X.] Univ Grenoble Alpes, Inst Planetol & Astrophys Grenoble, IPAG, F-38000 Grenoble, France. [Desert, F. -X.] CNRS, IPAG, F-38000 Grenoble, France. [Ducout, A.; Jaffe, A. H.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Aghanim, N.; Aumont, J.; Kunz, M.; Langer, M.; Miville-Deschenes, M. -A.; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis blvd Arago, F-75014 Paris, France. [Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S N, Tenerife 38205, Spain. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.] CSIC Univ Cantabria, Inst Fis Cantabria, Avda Los Castros S N, Santander 39005, Spain. [Bartolo, N.; Dusini, S.; Liguori, M.; Matarrese, S.; Sirignano, C.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA. [Dickinson, C.; Leahy, J. P.; Ma, Y. -Z.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, F-91898 Orsay, France. [Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observ Paris, 61 Ave Observ, F-75014 Paris, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Comis, B.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France. [Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France. [Ensslin, T. A.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Bielewicz, P.] Nicholas Copernicus Astron Ctr, Bartycka 18, Warsaw 00716, Poland. [Gerbino, M.; Gudmundsson, J. E.] NORDITA, Nord Inst Theoret Phys, Roslagstulls Backen 23, S-10691 Stockholm, Sweden. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; de Zotti, G.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy. [Ma, Y. -Z.] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Spencer, L. D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada. [Bouchet, F. R.; Di Valentino, E.] Sorbonne Univ, UPMC, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC, Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Ruiz-Granados, B.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Gruppuso, A (reprint author), INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy.; Gruppuso, A (reprint author), INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. EM gruppuso@iasfbo.inaf.it RI Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Ruiz-Granados, Beatriz/K-2798-2014; Gerbino, Martina/E-4029-2017; Barreiro, Rita Belen/N-5442-2014; Mauri, Nicoletta/B-8712-2017; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; OI Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; Huang, Zhiqi/0000-0002-1506-1063; Toffolatti, Luigi/0000-0003-2645-7386; Gerbino, Martina/0000-0002-3538-1283; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Lilje, Per/0000-0003-4324-7794; Ballardini, Mario/0000-0003-4481-3559 FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA; DoE (USA); STFC; UKSA (UK); CSIC; MINECO; JA; RES (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC; PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results of this paper have been derived using the HEALPIX package (Gorski et al. 2005). NR 66 TC 0 Z9 0 U1 4 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A110 DI 10.1051/0004-6361/201629018 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900074 ER PT J AU Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Ballardini, M Banday, AJ Barreiro, RB Bartolo, N Basak, S Battye, R Benabed, K Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Carron, J Challinor, A Chiang, HC Colombo, LPL Combet, C Comis, B Coulais, A Crill, BP Curto, A Cuttaia, F Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Di Valentino, E Dickinson, C Diego, JM Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fantaye, Y Finelli, F Forastieri, F Frailis, M Fraisse, AA Franceschi, E Frolov, A Galeotta, S Galli, S Ganga, K Genova-Santos, RT Gerbino, M Ghosh, T Gonzalez-Nuevo, J Gorski, KM Gratton, S Gruppuso, A Gudmundsson, JE Hansen, FK Helou, G Henrot-Versille, S Herranz, D Hivon, E Huang, Z Ilic, S Jaffe, H Jones, WC Keihanen, E Keskitalo, R Kisner, TS Knox, L Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Langer, M Lasenby, A Lattanzi, M Lawrence, CR Le Jeune, M Leahy, JP Levrier, F Liguori, M Lilje, PB Lopez-Caniego, M Ma, YZ Macias-Perez, JF Maggio, G Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Matarrese, S Mauri, N McEwen, JD Meinhold, PR Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Molinari, D Moneti, A Montier, L Morgante, G Moss, A Mottet, S Naselsky, P Natoli, P Oxborrow, CA Pagano, L Paoletti, D Partridge, B Patanchon, G Patrizii, L Perdereau, O Perotto, L Pettorino, V Piacentini, F Plaszczynski, S Polastri, L Polenta, G Puget, JL Rachen, JP Racine, B Reinecke, M Remazeilles, M Renzi, A Rocha, G Rossetti, M Roudier, G Rubino-Martin, JA Ruiz-Granados, B Salvati, L Sandri, M Savelainen, M Scott, D Sirri, G Sunyaev, R Suur-Uski, AS Tauber, JA Tenti, M Toffolatti, L Tomasi, M Tristram, M Trombetti, T Valiviita, J Van Tent, F Vibert, L Vielva, P Villa, F Vittorio, N Wandelt, BD Watson, R Wehus, IK White, M Zacchei, A Zonca, A AF Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Battye, R. Benabed, K. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Carron, J. Challinor, A. Chiang, H. C. Colombo, L. P. L. Combet, C. Comis, B. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Di Valentino, E. Dickinson, C. Diego, J. M. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fantaye, Y. Finelli, F. Forastieri, F. Frailis, M. Fraisse, A. A. Franceschi, E. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Gerbino, M. Ghosh, T. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Helou, G. Henrot-Versille, S. Herranz, D. Hivon, E. Huang, Z. Ilic, S. Jaffe, A. H. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Knox, L. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Langer, M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jeune, M. Leahy, J. P. Levrier, F. Liguori, M. Lilje, P. B. Lopez-Caniego, M. Ma, Y. -Z. Macias-Perez, J. F. Maggio, G. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Matarrese, S. Mauri, N. McEwen, J. D. Meinhold, P. R. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Molinari, D. Moneti, A. Montier, L. Morgante, G. Moss, A. Mottet, S. Naselsky, P. Natoli, P. Oxborrow, C. A. Pagano, L. Paoletti, D. Partridge, B. Patanchon, G. Patrizii, L. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Plaszczynski, S. Polastri, L. Polenta, G. Puget, J. -L. Rachen, J. P. Racine, B. Reinecke, M. Remazeilles, M. Renzi, A. Rocha, G. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Ruiz-Granados, B. Salvati, L. Sandri, M. Savelainen, M. Scott, D. Sirri, G. Sunyaev, R. Suur-Uski, A. -S. Tauber, J. A. Tenti, M. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Valiviita, J. Van Tent, F. Vibert, L. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. Watson, R. Wehus, I. K. White, M. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; dark ages, reionization, first stars; cosmic background radiation; space vehicles: instruments; instrumentation: detectors ID PROBE WMAP OBSERVATIONS; POWER SPECTRA; PHOTOMETRIC CALIBRATION; COSMIC REIONIZATION; MODEL; CONSTRAINTS; TEMPERATURE; INSTRUMENT; LUMINOSITY; EMISSION AB This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth tau using, for the first time, the low-multipole EE data from HFI, reducing significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain tau from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based tau posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 +/- 0.009. In a companion paper these results are discussed in the context of the best-fit Planck Lambda CDM cosmological model and recent models of reionization. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Le Jeune, M.; Patanchon, G.; Racine, B.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite, APC AstroParticule & Cosmol, CNRS IN2P3 CEA Irfu Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd,Muizenberg, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ilic, S.] Aix Marseille Univ, Ctr Phys Theor, 163 Ave Luminy, F-13288 Marseille, France. [Ashdown, M.; Curto, A.; Lasenby, A.; Lawrence, C. R.] Univ Cambridge, Cavendish Lab, Astrophys Grp, J J Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ilic, S.; Montier, L.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Rocha, G.] CALTECH, Pasadena, CA USA. [Challinor, A.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327,2800 Kgs, Lyngby, Denmark. [Kunz, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S N, Oviedo 33007, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Carron, J.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 93106 USA. [Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Ballardini, M.] Univ Bologna, Alma Mater Studiorum, Dipartmento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Burigana, C.; Forastieri, F.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Gerbino, M.; Melchiorri, A.; Pagano, L.; Piacentini, F.; Salvati, L.] Univ Roma La Sapienza, Dipartimento Fis, P A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Krachmalnicoff, N.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy. [Fantaye, Y.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, Planck Sci Off, Camino Bajo Castillo,S-N, Madrid 28691, Spain. [Tauber, J. A.] Estec, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Via F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00560, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35131 Padua, Italy. [Polenta, G.] INAF Osservatorio Astronom Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maggio, G.; Maris, M.; Zacchei, A.] INAF Osservatorio Astronom Trieste, Via GB Tiepolo 11, I-34127 Trieste, Italy. [Ballardini, M.; Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Molinari, D.; Morgante, G.; Paoletti, D.; Rubino-Martin, J. A.; Sandri, M.; Toffolatti, L.; Trombetti, T.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Tenti, M.] INFN CNAF, Via Berti Pichat 6-2, I-40127 Bologna, Italy. [Ballardini, M.; Burigana, C.; Finelli, F.; Gruppuso, A.; Mauri, N.; Paoletti, D.; Patrizii, L.; Sirri, G.] INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Forastieri, F.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Rome Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Ducout, A.; Jaffe, A. H.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Ghosh, T.; Kunz, M.; Lagache, G.; Langer, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Puget, J. -L.; Remazeilles, M.; Vibert, L.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Delouis, J. -M.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Mottet, S.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France. [Challinor, A.; Efstathiou, G.; Gratton, S.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Rocha, G.; Roudier, G.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Battye, R.; Bonaldi, A.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Ma, Y. -Z.; Remazeilles, M.; Watson, R.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, F-91405 Orsay, France. [Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observ Paris, 61 Ave Observ, F-75000 Paris, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Ensslin, T. A.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Surrey RH5 6NT, England. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Gerbino, M.; Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ma, Y. -Z.] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada. [Bouchet, F. R.; Di Valentino, E.; Mottet, S.] UPMC, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Calabrese, E.] Univ Oxford, SubDept Astrophys, Oxford OX1 3RH, England. [Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC, Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Ilic, S.; Montier, L.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Ruiz-Granados, B.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Puget, JL (reprint author), Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. EM jean-loup.puget@ias.u-psud.fr RI Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; White, Martin/I-3880-2015; Ruiz-Granados, Beatriz/K-2798-2014; Gerbino, Martina/E-4029-2017; Barreiro, Rita Belen/N-5442-2014; Mauri, Nicoletta/B-8712-2017; bonavera, laura/E-9368-2017; OI Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; Huang, Zhiqi/0000-0002-1506-1063; White, Martin/0000-0001-9912-5070; Gerbino, Martina/0000-0002-3538-1283; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Watson, Robert/0000-0002-5873-0124; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Ballardini, Mario/0000-0003-4481-3559 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); RES (Spain); MINECO (Spain); CSC (Finland); AoF (Finland); Tekes (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); J.A. (Spain) FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. NR 58 TC 5 Z9 5 U1 3 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A107 DI 10.1051/0004-6361/201628890 PG 52 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900065 ER PT J AU Aghanim, N Alves, MIR Arzoumanian, D Aumont, J Baccigalupi, C Ballardini, M Banday, AJ Barreiro, RB Bartolo, N Basak, S Benabed, K Bernard, JP Bersanelli, M Bielewicz, P Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Bucher, M Burigana, C Calabrese, E Cardoso, JF Chiang, HC Colombo, LPL Combet, C Comis, B Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Di Valentino, E Dickinson, C Diego, JM Dore, O Douspis, M Ducout, A Dupac, X Dusini, S Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fantaye, Y Ferriere, K Finelli, F Frailis, M Fraisse, AA Franceschi, E Frolov, A Galeotta, S Galli, S Ganga, K Genova-Santos, RT Gerbino, M Ghosh, T Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Guillet, V Hansen, FK Helou, G Henrot-Versille, S Herranz, D Hivon, E Huang, Z Jaffe, AH Jaffe, TR Jones, WC Keihanen, E Keskitalo, R Kisner, TS Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Langer, M Lasenby, A Lattanzi, M Le Jeune, M Levrier, F Liguori, M Lilje, PB Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Matarrese, S Mauri, N McEwen, JD Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Molinari, D Moneti, A Montier, L Morgante, G Moss, A Naselsky, P Natoli, P Neveu, J Norgaard-Nielsen, HU Oppermann, N Oxborrow, CA Pagano, L Paoletti, D Partridge, B Perdereau, O Perotto, L Pettorino, V Piacentini, F Plaszczynski, S Polenta, G Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renzi, A Ristorcelli, I Rocha, G Rossetti, M Roudier, G Ruiz-Granados, B Salvati, L Sandri, M Savelainen, M Scott, D Sirignano, C Soler, JD Suur-Uski, AS Tauber, JA Tavagnacco, D Tenti, M Toffolatti, L Tomasi, M Tristram, M Trombetti, T Valiviita, J Vansyngel, F Van Tent, F Vielva, P Villa, F Wandelt, BD Wehus, IK Zacchei, A Zonca, A AF Aghanim, N. Alves, M. I. R. Arzoumanian, D. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Benabed, K. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Bucher, M. Burigana, C. Calabrese, E. Cardoso, J. -F. Chiang, H. C. Colombo, L. P. L. Combet, C. Comis, B. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Di Valentino, E. Dickinson, C. Diego, J. M. Dore, O. Douspis, M. Ducout, A. Dupac, X. Dusini, S. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fantaye, Y. Ferriere, K. Finelli, F. Frailis, M. Fraisse, A. A. Franceschi, E. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Gerbino, M. Ghosh, T. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Guillet, V. Hansen, F. K. Helou, G. Henrot-Versille, S. Herranz, D. Hivon, E. Huang, Z. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Langer, M. Lasenby, A. Lattanzi, M. Le Jeune, M. Levrier, F. Liguori, M. Lilje, P. B. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Matarrese, S. Mauri, N. McEwen, J. D. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Molinari, D. Moneti, A. Montier, L. Morgante, G. Moss, A. Naselsky, P. Natoli, P. Neveu, J. Norgaard-Nielsen, H. U. Oppermann, N. Oxborrow, C. A. Pagano, L. Paoletti, D. Partridge, B. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Plaszczynski, S. Polenta, G. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renzi, A. Ristorcelli, I. Rocha, G. Rossetti, M. Roudier, G. Ruiz-Granados, B. Salvati, L. Sandri, M. Savelainen, M. Scott, D. Sirignano, C. Soler, J. D. Suur-Uski, A. -S. Tauber, J. A. Tavagnacco, D. Tenti, M. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Valiviita, J. Vansyngel, F. Van Tent, F. Vielva, P. Villa, F. Wandelt, B. D. Wehus, I. K. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE magnetohydrodynamics (MHD); polarization; methods: data analysis; dust, extinction; cosmic background radiation; ISM: magnetic fields ID MILKY-WAY; INTERSTELLAR TURBULENCE; SYNCHROTRON EMISSION; GRAIN ALIGNMENT; H I; GAS; GRADIENTS; LOFAR; SCALE; SKY AB Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < -60 degrees). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the polarized dust foreground for use in cosmic microwave background (CMB) component-separation procedures. We examine the Stokes I, Q, and U maps at 353 GHz, and particularly the statistical distribution of the polarization fraction (p) and angle (Psi), in order to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. The Q and U maps show patterns at large angular scales, which we relate to the mean orientation of the GMF towards Galactic coordinates (l(0); b(0)) = (70 degrees +/- 5 degrees, 24 degrees +/- 5 degrees). The histogram of the observed p values shows a wide dispersion up to 25%. The histogram Psi of has a standard deviation of 12 degrees about the regular pattern expected from the ordered GMF. We build a phenomenological model that connects the distributions of p and Psi to a statistical description of the turbulent component of the GMF, assuming a uniform effective polarization fraction (p(0)) of dust emission. To compute the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of N independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed p and distributions using a p0 value of 26%, a ratio of 0.9 between the strengths of the turbulent and mean components of the GMF, and a small value of N. The mean value of p (inferred from the fit of the large-scale patterns in the Stokes maps) is 12 +/- 1%. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS. We emphasize the simplicity of our model (involving only a few parameters), which can be easily computed on the celestial sphere to produce simulated maps of dust polarization. Our work is an important step towards a model that can be used to assess the accuracy of component-separation methods in present and future CMB experiments designed to search the B mode CMB polarization from primordial gravity waves. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Le Jeune, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite, Observ Paris, APC,AstroParticule & Cosmol,CNRS,IN2P3,CEA,Lrfu, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Curto, A.; Lasenby, A.] Univ Cambridge, Astrophys Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Jaffe, T. R.; Montier, L.; Ristorcelli, I.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Helou, G.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, E-28006 Madrid, Spain. [Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rebolo, R.] ULL, Dept Astrofis, Tenerife 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33007, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2A, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.; Sirignano, C.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Ballardini, M.] Univ Bologna, Alma Mater Studiorum, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Molinari, D.; Natoli, P.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Gerbino, M.; Melchiorri, A.; Pagano, L.; Piacentini, F.; Salvati, L.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.; Tavagnacco, D.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Fantaye, Y.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu, FIN-00014 Helsinki, Finland. [de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Tavagnacco, D.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-40127 Trieste, Italy. [Ballardini, M.; Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Molinari, D.; Morgante, G.; Paoletti, D.; Sandri, M.; Toffolatti, L.; Trombetti, T.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E Bassini 15, I-20133 Milan, Italy. [Tenti, M.] CNAF, Ist Nazl Fis Nucl, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Ballardini, M.; Burigana, C.; Finelli, F.; Mauri, N.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Lattanzi, M.; Molinari, D.; Natoli, P.] Ist Nazl Fis Nucl, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] Natl Inst Nucl Phys, Ist Nazl Fis Nucl, Via Valerio 2, I-34127 Trieste, Italy. [Ducout, A.; Jaffe, A. H.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Douspis, M.; Ghosh, T.; Guillet, V.; Kunz, M.; Lagache, G.; Langer, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Remazeilles, M.; Soler, J. D.; Vansyngel, F.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Delouis, J. -M.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Gratton, S.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Genova-Santos, R. T.; Rebolo, R.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain. [Bartolo, N.; Dusini, S.; Liguori, M.; Matarrese, S.; Sirignano, C.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Rocha, G.; Roudier, G.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA. [Davis, R. J.; Dickinson, C.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Curto, A.; Gratton, S.; Lasenby, A.; Migliaccio, M.; Neveu, J.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Neveu, J.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Arzoumanian, D.; Bracco, A.; Soler, J. D.] Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris, France. [Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France. [Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Ensslin, T. A.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Surrey RH5 6NT, England. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Gerbino, M.; Gudmundsson, J. E.] NORDITA, Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; de Zotti, G.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada. [Bouchet, F. R.; Di Valentino, E.] Sorbonne Univ UPMC, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif, Space Sci Lab, Berkeley, CA 94720 USA. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England. [Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Ferriere, K.; Jaffe, T. R.; Montier, L.; Ristorcelli, I.] Univ Toulouse, UPSOMP, IRAP, F-31028 Toulouse 4, France. [Ruiz-Granados, B.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Bracco, A (reprint author), Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France.; Bracco, A (reprint author), Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. EM andrea.bracco@cea.fr RI Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Lahteenmaki, Anne/L-5987-2013; Ruiz-Granados, Beatriz/K-2798-2014; Gerbino, Martina/E-4029-2017; Barreiro, Rita Belen/N-5442-2014; Mauri, Nicoletta/B-8712-2017; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014 OI Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Ballardini, Mario/0000-0003-4481-3559; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; Hivon, Eric/0000-0003-1880-2733; Gerbino, Martina/0000-0002-3538-1283; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822 FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA; DoE (USA); STFC; UKSA (UK); CSIC; MINECO; JA; RES (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC; PRACE (EU); European Research Council under the European Union's Seventh Framework Programme/ERC [267934] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planckcollaboration. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 89 TC 0 Z9 0 U1 2 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A105 DI 10.1051/0004-6361/201628636 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900052 ER PT J AU Gonzalez-Garcia, B Manoj, P Watson, DM Vavrek, R Megeath, ST Stutz, AM Osorio, M Wyrowski, F Fischer, W Tobin, JJ Sanchez-Portal, M Rodriguez, AKD Wilson, TL AF Gonzalez-Garcia, B. Manoj, P. Watson, D. M. Vavrek, R. Megeath, S. T. Stutz, A. M. Osorio, M. Wyrowski, F. Fischer, W. Tobin, J. J. Sanchez-Portal, M. Rodriguez, A. K. Diaz Wilson, T. L. TI Herschel/PACS far-IR spectral imaging of a jet from an intermediate mass protostar in the OMC-2 region SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: jets and outflows; stars: formation; techniques: spectroscopic ID ELECTRON-IMPACT EXCITATION; YOUNG STELLAR OBJECTS; HERBIG-HARO OBJECTS; PHOTODISSOCIATION REGIONS; MOLECULAR CLOUDS; STAR-FORMATION; ORION; EMISSION; DISTRIBUTIONS; EVOLUTION AB We present the first detection of a jet in the far-IR [O I] lines from an intermediate mass protostar. This jet was detected in a Herschel/PACS spectral mapping study in the [O I] lines of OMC-2 FIR 3 and FIR 4, two of the most luminous protostars in Orion outside of the Orion Nebula. The spatial morphology of the fine structure line emission reveals the presence of an extended photodissociation region (PDR) and a narrow, but intense jet connecting the two protostars. The jet seen in [O I] emission is spatially aligned with the Spitzer/IRAC 4.5 mu m jet and the CO (6-5) molecular outflow centered on FIR 3. The mass-loss rate derived from the total [O I] 63 mu m line luminosity of the jet is 7.7 x 10(6) M-circle dot yr(-1), more than an order of magnitude higher than that measured for typical low-mass class 0 protostars. The implied accretion luminosity is significantly higher than the observed bolometric luminosity of FIR 4, indicating that the [O I] jet is unlikely to be associated with FIR 4. We argue that the peak line emission seen toward FIR 4 originates in the terminal shock produced by the jet driven by FIR 3. The higher mass-loss rate that we find for FIR 3 is consistent with the idea that intermediate-mass protostars drive more powerful jets than their low-mass counterparts. Our results also call into question the nature of FIR 4. C1 [Gonzalez-Garcia, B.; Vavrek, R.; Sanchez-Portal, M.] ESA, European Space Astron Ctr, POB 78, Villanueva De La Canada 28691, Madrid, Spain. [Gonzalez-Garcia, B.; Sanchez-Portal, M.] ISDEFE, Beatriz de Bobadilla 3, Madrid 28040, Spain. [Manoj, P.] Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. [Watson, D. M.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Megeath, S. T.] Univ Toledo, Dept Phys & Astron, 2801 West Bancroft St, Toledo, OH 43606 USA. [Stutz, A. M.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Osorio, M.] CSIC, Inst Astrofis Andalucia, Camino Bajo Huetor 50, E-18008 Granada, Spain. [Wyrowski, F.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Fischer, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Tobin, J. J.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [Wilson, T. L.] Naval Res Lab, Washington, DC 20375 USA. RP Gonzalez-Garcia, B (reprint author), ESA, European Space Astron Ctr, POB 78, Villanueva De La Canada 28691, Madrid, Spain.; Gonzalez-Garcia, B (reprint author), ISDEFE, Beatriz de Bobadilla 3, Madrid 28040, Spain. EM bgonzale@sciops.esa.int FU ISDEFE; National Aeronautics and Space Administration (NASA) through Jet Propulsion Laboratory, California Institute of Technology (JPL/Caltech); MINECO (Spain) [AYA2011-3O228-CO3-01, AYA2014-57369-C3-3-P]; FEDER funds; NASA; APEX FX Part of this work was supported by ISDEFE. Thanks to Katrina Exter, Jeroen de Jong and Pablo Riviere-Marichalar for their support at PACS data processing. Support was provided by National Aeronautics and Space Administration (NASA) through awards issued by the Jet Propulsion Laboratory, California Institute of Technology (JPL/Caltech). M.O. and A.K.D.R. acknowledge support from MINECO (Spain) AYA2011-3O228-CO3-01 and AYA2014-57369-C3-3-P grants (co-funded with FEDER funds). We include data from Herschel, a European Space Agency space observatory with science instruments provided by European-led consortia and with important participation from NASA. We also use data from the Spitzer Space Telescope, operated by JPL/Caltech under a contract with NASA, and APEX, a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. NR 34 TC 0 Z9 0 U1 3 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A26 DI 10.1051/0004-6361/201527186 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900006 ER PT J AU Groenewegen, MAT Vlemmings, WHT Marigo, P Sloan, GC Decin, L Feast, MW Goldman, SR Justtanont, K Kerschbaum, F Matsuura, M McDonald, I Olofsson, H Sahai, R van Loon, JT Wood, PR Zijlstra, AA Bernard-Salas, J Boyer, ML Guzman-Ramirez, L Jones, OC Lagadec, E Meixner, M Rawlings, MG Srinivasan, S AF Groenewegen, M. A. T. Vlemmings, W. H. T. Marigo, P. Sloan, G. C. Decin, L. Feast, M. W. Goldman, S. R. Justtanont, K. Kerschbaum, F. Matsuura, M. McDonald, I. Olofsson, H. Sahai, R. van Loon, J. Th. Wood, P. R. Zijlstra, A. A. Bernard-Salas, J. Boyer, M. L. Guzman-Ramirez, L. Jones, O. C. Lagadec, E. Meixner, M. Rawlings, M. G. Srinivasan, S. TI The ALMA detection of CO rotational line emission in AGB stars in the Large Magellanic Cloud SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: AGB and post-AGB; stars: winds; outflows; radio continuum: stars ID ASYMPTOTIC GIANT BRANCH; MASS-LOSS RATES; EXTREME CARBON STARS; INFRARED-SURVEY-EXPLORER; LOW-METALLICITY; INTERMEDIATE-MASS; OH/IR STARS; EVOLUTION; DUST; SAMPLE AB Context. Low-and intermediate-mass stars lose most of their stellar mass at the end of their lives on the asymptotic giant branch (AGB). Determining gas and dust mass-loss rates (MLRs) is important in quantifying the contribution of evolved stars to the enrichment of the interstellar medium. Aims. This study attempts to spectrally resolve CO thermal line emission in a small sample of AGB stars in the Large Magellanic Cloud (LMC). Methods. The Atacama Large Millimeter Array was used to observe two OH/IR stars and four carbon stars in the LMC in the CO J = 2-1 line. Results. We present the first measurement of expansion velocities in extragalactic carbon stars. All four C stars are detected and wind expansion velocities and stellar velocities are directly measured. Mass-loss rates are derived from modelling the spectral energy distribution and Spitzer/IRS spectrum with the DUSTY code. The derived gas-to-dust ratios allow the predicted velocities to agree with the observed gas-to-dust ratios. The expansion velocities and MLRs are compared to a Galactic sample of well-studied relatively low MLRs stars supplemented with extreme C stars with properties that are more similar to the LMC targets. Gas MLRs derived from a simple formula are significantly smaller than those derived from dust modelling, indicating an order of magnitude underestimate of the estimated CO abundance, time-variable mass loss, or that the CO intensities in LMC stars are lower than predicted by the formula derived for Galactic objects. This could be related to a stronger interstellar radiation field in the LMC. Conclusions. Although the LMC sample is small and the comparison to Galactic stars is non-trivial because of uncertainties in their distances (hence luminosities), it appears that for C stars the wind expansion velocities in the LMC are lower than in the solar neighbourhood, while the MLRs appear to be similar. This is in agreement with dynamical dust-driven wind models. C1 [Groenewegen, M. A. T.] Koninklijke Sterrenwacht Belgie, Ringlaan 3, B-1180 Brussels, Belgium. [Vlemmings, W. H. T.; Justtanont, K.; Olofsson, H.] Chalmers, Onsala Space Observ, Dept Earth & Space Sci, S-43992 Onsala, Sweden. [Marigo, P.] Univ Padua, Dept Phys & Astron G Galilei, Vicolo Osservatorio 3, I-35122 Padua, Italy. [Sloan, G. C.] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA. [Sloan, G. C.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Sloan, G. C.; Jones, O. C.; Meixner, M.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Decin, L.] Univ Leuven, Dept Phys & Astron, Inst Astron, Celestijnenlaan 200D, B-3001 Leuven, Belgium. [Feast, M. W.] Univ Cape Town, Dept Astron, ZA-7701 Rondebosch, South Africa. [Feast, M. W.] South African Astron Observ, POB 9, ZA-7935 Observatory, South Africa. [Goldman, S. R.; van Loon, J. Th.] Keele Univ, Lennard Jones Labs, Keele ST5 5BG, Staffs, England. [Kerschbaum, F.] Univ Vienna, Dept Astrophys, Turkenschanzstr 17, A-1180 Vienna, Austria. [Matsuura, M.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [McDonald, I.; Zijlstra, A. A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Sahai, R.] CALTECH, Jet Prop Lab, MS183-900, Pasadena, CA 91109 USA. [Wood, P. R.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Bernard-Salas, J.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. [Boyer, M. L.] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Boyer, M. L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Guzman-Ramirez, L.] European Southern Observ, Santiago 3107, Chile. [Guzman-Ramirez, L.] Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. [Lagadec, E.] Univ Cote Azur, Lab Lagrange, Observ Cote Azur, CNRS, Bd Observ,CS 34229, F-06304 Nice 4, France. [Rawlings, M. G.] East Asian Observ, 660 N Aohoku Pl, Hilo, HI 96720 USA. [Srinivasan, S.] Acad Sinica, Inst Astron & Astrophys, 11F,Astron Math Bldg 1,Roosevelt Rd,Sec 4, Taipei 10617, Taiwan. RP Groenewegen, MAT (reprint author), Koninklijke Sterrenwacht Belgie, Ringlaan 3, B-1180 Brussels, Belgium. EM martin.groenewegen@oma.be OI /0000-0002-2700-9916; /0000-0003-1689-9201 FU Career Integration Grant within the 7th European Community Framework Programme [FP7-PEOPLE-2013-CIG-630861-SYNISM]; ERC consolidator grant AEROSOL [646758]; FWO Research Project [G024112N]; National Research Foundation of South Africa (NRF); NASA grant [NNX14AN06G]; ERC Consolidator Grant funding scheme (project STARKEY) [615604]; STFC Ernest Rutherford fellowship; Swedish Research Council; NSF [1108645]; UK Science and Technology Facility Council [ST/M001040/1]; ERC [614264] FX This paper makes use of the following ALMA data: ADS/JAO.ALMA#2013.1.00319.S. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. M.A.T.G. would like to thank the Nordic ALMA regional centre for their hospitality and support in the data reduction and analysis. J.B.S. wishes to acknowledge the support of a Career Integration Grant within the 7th European Community Framework Programme, FP7-PEOPLE-2013-CIG-630861-SYNISM. L.D. acknowledges support from the ERC consolidator grant 646758 AEROSOL and the FWO Research Project grant G024112N. M.W.F. gratefully acknowledges the receipt of research grants from the National Research Foundation of South Africa (NRF). O.C.J. acknowledges support from NASA grant, NNX14AN06G. P.M. acknowledges support from the ERC Consolidator Grant funding scheme (project STARKEY, G.A. No. 615604). M.M. is supported by the STFC Ernest Rutherford fellowship. H.O. acknowledges financial support from the Swedish Research Council. R.S.'s contribution to the research described here was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with NASA. G.C.S. was supported by the NSF through Award 1108645. J.v.L. acknowledges support from the UK Science and Technology Facility Council under grant ST/M001040/1. W.V. acknowledges support from the ERC through consolidator grant 614264. A.Z. and I.M. acknowledge support from the UK Science and Technology Facility Council under grant ST/L000768/1. NR 65 TC 0 Z9 0 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A50 DI 10.1051/0004-6361/201629590 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900112 ER PT J AU Lannier, J Delorme, P Lagrange, AM Borgniet, S Rameau, J Schlieder, JE Gagne, J Bonavita, MA Malo, L Chauvin, G Bonnefoy, M Girard, JH AF Lannier, J. Delorme, P. Lagrange, A. M. Borgniet, S. Rameau, J. Schlieder, J. E. Gagne, J. Bonavita, M. A. Malo, L. Chauvin, G. Bonnefoy, M. Girard, J. H. TI MASSIVE: A Bayesian analysis of giant planet populations around low-mass stars SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planetary systems; stars: low-mass; methods: statistical; planets and satellites: formation ID VERY-LOW-MASS; SUBSTELLAR CANDIDATE MEMBERS; STELLAR KINEMATIC GROUPS; TW HYDRAE ASSOCIATION; PICTORIS MOVING GROUP; YOUNG BROWN DWARF; BETA-PICTORIS; WIDE ORBITS; TRIGONOMETRIC PARALLAXES; EVOLUTIONARY MODELS AB Context. Direct imaging has led to the discovery of several giant planet and brown dwarf companions. These imaged companions populate a mass, separation and age domain (mass > 1 M-Jup, orbits > 5 AU, age < 1 Gyr) quite distinct from the one occupied by exoplanets discovered by the radial velocity or transit methods. This distinction could indicate that different formation mechanisms are at play. Aims. We aim at investigating correlations between the host star's mass and the presence of wide-orbit giant planets, and at providing new observational constraints on planetary formation models. Methods. We observed 58 young and nearby M-type dwarfs in L'-band with the VLT/NaCo instrument and used angular differential imaging algorithms to optimize the sensitivity to planetary-mass companions and to derive the best detection limits. We estimate the probability of detecting a planet as a function of its mass and physical separation around each target. We conduct a Bayesian analysis to determine the frequency of substellar companions orbiting low-mass stars, using a homogenous sub-sample of 54 stars. Results. We derive a frequency of 4.4(1.3)(+3.2)% for companions with masses in the range of 2 80 M-Jup, and 2.3(0.7)(+2.9)% for planetary mass companions (2 14 M-Jup), at physical separations of 8 to 400 AU for both cases. Comparing our results with a previous survey targeting more massive stars, we find evidence that substellar companions more massive than 1 M-Jup with a low mass ratio Q with respect to their host star (Q < 1%), are less frequent around low-mass stars. This may represent observational evidence that the frequency of imaged wide-orbit substellar companions is correlated with stellar mass, corroborating theoretical expectations. Contrarily, we show statistical evidence that intermediate-mass ratio (1% < Q < 5%) companion with masses > 2 M-Jup might be independent from the mass of the host star. C1 [Lannier, J.; Delorme, P.; Lagrange, A. M.; Borgniet, S.; Chauvin, G.; Bonnefoy, M.] Univ Grenoble Alpes, Inst Planetol & Astrophys Grenoble IPAG, UMR 5274, F-38000 Grenoble, France. [Rameau, J.] Univ Montreal, Inst Rech Exoplanetes iREx, Dept Phys & Observ Mt Megant, CP 6128,Succursale Ctr Ville, Montreal, PQ H3C 3J7, Canada. [Schlieder, J. E.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-6, Moffett Field, CA 94035 USA. [Gagne, J.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Bonavita, M. A.] Univ Edinburgh, Royal Observ, Inst Astron, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Malo, L.] CFHT Corp, 65-1238 Mamalahoa Hwy, Kamuela, HI 96743 USA. [Girard, J. H.] European Southern Observ, Alonso Cordova 3107, Santiago, Chile. RP Lannier, J (reprint author), Univ Grenoble Alpes, Inst Planetol & Astrophys Grenoble IPAG, UMR 5274, F-38000 Grenoble, France. EM justine.lannier@univ-grenoble-alpes.fr FU French National Research Agency (ANR) through the GuEPARD project [ANR10-BLANC0504-01]; "Programme National de Physique Stellaire" (PNPS) of CNRS/INSU, France FX We thank the staff of ESO-VLT for their support at the telescope. We acknowledge support from the French National Research Agency (ANR) through the GuEPARD project grant ANR10-BLANC0504-01. We acknowledge financial support from "Programme National de Physique Stellaire" (PNPS) of CNRS/INSU, France. We thank Didier Fraix-Burnet for our discussions on statistics. The research of J.E.S. was supported by an appointment to the NASA Postdoctoral Program at NASA Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 96 TC 1 Z9 1 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A83 DI 10.1051/0004-6361/201628237 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900031 ER PT J AU Lee, MY Madden, SC Lebouteiller, V Gusdorf, A Godard, B Wu, R Galametz, M Cormier, D Le Petit, F Roueff, E Bron, E Carlson, L Chevance, M Fukui, Y Galliano, F Hony, S Hughes, A Indebetouw, R Israel, FP Kawamura, A Le Bourlot, J Lesaffre, P Meixner, M Muller, E Nayak, O Onishi, T Roman-Duval, J Sewilo, M AF Lee, M. -Y. Madden, S. C. Lebouteiller, V. Gusdorf, A. Godard, B. Wu, R. Galametz, M. Cormier, D. Le Petit, F. Roueff, E. Bron, E. Carlson, L. Chevance, M. Fukui, Y. Galliano, F. Hony, S. Hughes, A. Indebetouw, R. Israel, F. P. Kawamura, A. Le Bourlot, J. Lesaffre, P. Meixner, M. Muller, E. Nayak, O. Onishi, T. Roman-Duval, J. Sewilo, M. TI Radiative and mechanical feedback into the molecular gas in the Large Magellanic Cloud I. N159W SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: molecules; Magellanic Clouds; galaxies: ISM; infrared: ISM ID FOURIER-TRANSFORM SPECTROMETER; HERSCHEL-SPIRE INSTRUMENT; LOW-VELOCITY SHOCKS; J CO OBSERVATIONS; STAR-FORMATION; PHOTODISSOCIATION REGIONS; INTERSTELLAR-MEDIUM; LINE EMISSION; MAGNETOHYDRODYNAMIC SHOCKS; PHOTOELECTRIC-EMISSION AB We present Herschel SPIRE Fourier Transform Spectrometer (FTS) observations of N159W, an active star-forming region in the Large Magellanic Cloud (LMC). In our observations, a number of far-infrared cooling lines, including carbon monoxide (CO) J = 4 -> 3 to J = 12 -> 11, [CI] 609 mu m and 370 mu m, and [NII] 205 mu m, are clearly detected. With an aim of investigating the physical conditions and excitation processes of molecular gas, we first construct CO spectral line energy distributions (SLEDs) on similar to 10 pc scales by combining the FTS CO transitions with ground-based low-J CO data and analyze the observed CO SLEDs using non-LTE (local thermodynamic equilibrium) radiative transfer models. We find that the CO-traced molecular gas in N159W is warm (kinetic temperature of 153-754 K) and moderately dense (H-2 number density of (1.1-4.5) x 103 cm 3). To assess the impact of the energetic processes in the interstellar medium on the physical conditions of the CO-emitting gas, we then compare the observed CO line intensities with the models of photodissociation regions (PDRs) and shocks. We first constrain the properties of PDRs by modeling Herschel observations of [OI] 145 mu m, [CII] 158 mu m, and [CI] 370 mu m fine-structure lines and find that the constrained PDR components emit very weak CO emission. X-rays and cosmic-rays are also found to provide a negligible contribution to the CO emission, essentially ruling out ionizing sources (ultraviolet photons, X-rays, and cosmic-rays) as the dominant heating source for CO in N159W. On the other hand, mechanical heating by low-velocity C-type shocks with similar to 10 km s(-1) appears sufficient enough to reproduce the observed warm CO. C1 [Lee, M. -Y.; Madden, S. C.; Lebouteiller, V.; Chevance, M.; Galliano, F.] CEA, IRFU, Serv Astrophys, Lab AIM, Bat 709, F-91191 Gif Sur Yvette, France. [Gusdorf, A.; Lesaffre, P.] PSL Res Univ, Ecole Normale Super, Observ Paris, LERMA,CNRS,UMR 8112, F-75014 Paris, France. [Gusdorf, A.; Le Bourlot, J.] UPMC Univ Paris 6, Sorbonne Univ, UMR 8112, LERMA, F-75005 Paris, France. [Godard, B.; Le Petit, F.; Roueff, E.; Bron, E.] PSL Res Univ, Observ Paris, LERMA, CNRS,UMR 8112, F-92190 Meudon, France. [Wu, R.] Univ Tokyo, JSPS, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Galametz, M.] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Cormier, D.; Hony, S.] Heidelberg Univ, Zenturm Astron, Inst Theoret Astrophys, Albert Ueberle Str 2, D-69120 Heidelberg, Germany. [Bron, E.] CSIC, ICMM, Madrid 28049, Spain. [Carlson, L.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Fukui, Y.] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Hughes, A.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Indebetouw, R.] Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA. [Indebetouw, R.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Israel, F. P.] Leiden Univ, Sterrewacht Leiden, POB 9513, NL-2300 RA Leiden, Netherlands. [Kawamura, A.; Muller, E.] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Meixner, M.; Roman-Duval, J.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Nayak, O.] Johns Hopkins Univ, Dept Phys & Astron, 366 Bloomberg Ctr,3400 N Charles St, Baltimore, MD 21218 USA. [Onishi, T.] Osaka Prefecture Univ, Grad Sch Sci, Dept Phys Sci, 1-1 Gakuen Cho, Sakai, Osaka 5998531, Japan. [Sewilo, M.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Lee, MY (reprint author), CEA, IRFU, Serv Astrophys, Lab AIM, Bat 709, F-91191 Gif Sur Yvette, France. EM min-young.lee@cea.fr OI Lee, Min-Young/0000-0002-9888-0784 FU DIM ACAV of the Region Ile de France; SYMPATICO grant of the French Agence Nationale de la Recherche [ANR-11-BS56-0023]; CNRS PCMI program; DFG [HO 5475/2-1]; BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain); CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); UKSA (UK); NASA (USA) FX We would like to thank the anonymous referee for the constructive comments that improved this work. We also thank Julia Kamenetzky, Edward Polehampton, Eric Pellegrini, and Naseem Rangwala for helpful discussions on FTS data reduction and science. M.-Y.L. acknowledges support from the DIM ACAV of the Region Ile de France, the SYMPATICO grant (ANR-11-BS56-0023) of the French Agence Nationale de la Recherche, and the CNRS PCMI program. S.H. acknowledges financial support from DFG programme HO 5475/2-1. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA). NR 124 TC 0 Z9 0 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A85 DI 10.1051/0004-6361/201628098 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900025 ER PT J AU Mehdipour, M Kaastra, JS Kallman, T AF Mehdipour, M. Kaastra, J. S. Kallman, T. TI Systematic comparison of photoionised plasma codes with application to spectroscopic studies of AGN in X-rays SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE plasmas; atomic processes; atomic data; techniques: spectroscopic; X-rays: general ID COLLISIONAL IONIZATION EQUILIBRIUM; ACTIVE GALACTIC NUCLEI; OPTICALLY THIN PLASMAS; DIELECTRONIC RECOMBINATION; RATE COEFFICIENTS; GRATING SPECTROMETER; IONS; GAS; MODELS AB Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionisation codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionisation equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionisation codes, and compare their derived thermal and ionisation states for various ionising spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionised outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionisation parameter xi, we find that on average there is about 30% deviation between the codes in xi where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in xi is smaller at about 10% on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30% deviation between the codes in the optical depth of the lines produced at log xi similar to 1 to 2, reducing to about 20% deviation at log xi similar to 3. We also simulate spectra of the ionised outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionisation codes, which is about 10 to 40%. We compare the modelling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionisation codes for the upcoming era of X-ray astronomy with Athena. C1 [Mehdipour, M.; Kaastra, J. S.] SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. [Kaastra, J. S.] Univ Utrecht, Dept Phys & Astron, POB 80000, NL-3508 TA Utrecht, Netherlands. [Kaastra, J. S.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [Kallman, T.] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. RP Mehdipour, M (reprint author), SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. EM M.Mehdipour@sron.nl FU NWO, The Netherlands Organization for Scientific Research FX SRON is supported financially by NWO, The Netherlands Organization for Scientific Research. We thank Gary Ferland for useful discussions. We thank the anonymous referee for useful comments. NR 28 TC 0 Z9 0 U1 4 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A65 DI 10.1051/0004-6361/201628721 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900057 ER PT J AU Pariat, E Dalmasse, K DeVore, CR Antiochos, SK Karpen, JT AF Pariat, E. Dalmasse, K. DeVore, C. R. Antiochos, S. K. Karpen, J. T. TI A model for straight and helical solar jets II. Parametric study of the plasma beta SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE magnetohydrodynamics (MHD); Sun: flares; magnetic reconnection; Sun: magnetic fields ID X-RAY JETS; CHROMOSPHERIC ANEMONE JETS; H-ALPHA SURGES; FLUX EMERGENCE; BLOWOUT JET; MAGNETOHYDRODYNAMIC SIMULATIONS; EXPLOSIVE EVENTS; CORONAL HOLES; MAGNETIC RECONNECTION; NUMERICAL SIMULATIONS AB Context. Jets are dynamic, impulsive, well-collimated plasma events that develop at many different scales and in different layers of the solar atmosphere. Aims. Jets are believed to be induced by magnetic reconnection, a process central to many astrophysical phenomena. Within the solar atmosphere, jet-like events develop in many different environments, e.g., in the vicinity of active regions, as well as in coronal holes, and at various scales, from small photospheric spicules to large coronal jets. In all these events, signatures of helical structure and/or twisting/rotating motions are regularly observed. We aim to establish that a single model can generally reproduce the observed properties of these jet-like events. Methods. Using our state-of-the-art numerical solver ARMS, we present a parametric study of a numerical tridimensional magnetohydrodynamic (MHD) model of solar jet-like events. Within the MHD paradigm, we study the impact of varying the atmospheric plasma beta on the generation and properties of solar-like jets. Results. The parametric study validates our model of jets for plasma beta ranging from 10(-3) to 1, typical of the different layers and magnetic environments of the solar atmosphere. Our model of jets can robustly explain the generation of helical solar jet-like events at various beta <= 1. We introduces the new result that the plasma beta modifies the morphology of the helical jet, explaining the different observed shapes of jets at different scales and in different layers of the solar atmosphere. Conclusions. Our results enable us to understand the energisation, triggering, and driving processes of jet-like events. Our model enables us to make predictions of the impulsiveness and energetics of jets as determined by the surrounding environment, as well as the morphological properties of the resulting jets. C1 [Pariat, E.] Univ Paris Diderot, UPMC Univ Paris 06, Sorbonne Univ, LESIA,Observ Paris,PSL Res Univ,CNRS,Sorbonne Par, 5 Pl Jules Janssen, F-92195 Meudon, France. [Dalmasse, K.] Natl Ctr Atmospher Res, CISL HAO, POB 3000, Boulder, CO 80307 USA. [DeVore, C. R.; Antiochos, S. K.; Karpen, J. T.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. RP Pariat, E (reprint author), Univ Paris Diderot, UPMC Univ Paris 06, Sorbonne Univ, LESIA,Observ Paris,PSL Res Univ,CNRS,Sorbonne Par, 5 Pl Jules Janssen, F-92195 Meudon, France. EM etienne.pariat@obspm.fr FU International Space Science Institute; Computational and Information Systems Laboratory; High Altitude Observatory of the National Center for Atmospheric Research; National Science Foundation; NASA FX The authors thank the referee for helpful comments which improved the clarity of the paper. The authors acknowledge access to the substantial HPC resources of CINES under the allocations 2014-046331, 2015 046331, and 2016-046331 made by GENCI (Grand Equipement National de Calcul Intentif). We also appreciate the support of the International Space Science Institute and the contributions by other team members during the workshops Understanding Solar Jets and their Role in Atmospheric Structure and Dynamics. K.D. acknowledges support from the Computational and Information Systems Laboratory and the High Altitude Observatory of the National Center for Atmospheric Research, which is sponsored by the National Science Foundation. C.R.D., S.K.A., and J.T.K. all gratefully acknowledge support from NASA's LWS TR&T and H-SR programs. NR 83 TC 1 Z9 1 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A36 DI 10.1051/0004-6361/201629109 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900087 ER PT J AU Pinilla, P Flock, M Ovelar, MD Birnstiel, T AF Pinilla, Paola Flock, Mario Ovelar, Maria de Juan Birnstiel, Til TI Can dead zones create structures like a transition disk? SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planets and satellites: formation; protoplanetary disks; magnetohydrodynamics (MHD) ID TURBULENT PROTOPLANETARY DISKS; NON-AXISYMMETRICAL STRUCTURES; POLARIZED SCATTERED-LIGHT; WEAKLY MAGNETIZED DISKS; ROSSBY-WAVE INSTABILITY; GLOBAL MHD SIMULATIONS; MAIN-SEQUENCE STARS; ACCRETION DISKS; MAGNETOROTATIONAL INSTABILITY; PLANET FORMATION AB Context. Regions of low ionisation where the activity of the magneto-rotational instability is suppressed, the so-called dead zones, have been suggested to explain gaps and asymmetries of transition disks. Dead zones are therefore a potential cause for the observational signatures of transition disks without requiring the presence of embedded planets. Aims. We investigate the gas and dust evolution simultaneously assuming simplified prescriptions for a dead zone and a magnetohydrodynamic (MHD) wind acting on the disk. We explore whether the resulting gas and dust distribution can create signatures similar to those observed in transition disks. Methods. We imposed a dead zone and/or an MHD wind in the radial evolution of gas and dust in protoplanetary disks. For the dust evolution, we included the transport, growth, and fragmentation of dust particles. To compare with observations, we produced synthetic images in scattered optical light and in thermal emission at mm wavelengths. Results. In all models with a dead zone, a bump in the gas surface density is produced that is able to efficiently trap large particles (greater than or similar to 1 mm) at the outer edge of the dead zone. The gas bump reaches an amplitude of a factor of similar to 5, which can be enhanced by the presence of an MHD wind that removes mass from the inner disk. While our 1D simulations suggest that such a structure can be present only for similar to 1 Myr, the structure may be maintained for a longer time when more realistic 2D/3D simulations are performed. In the synthetic images, gap-like low-emission regions are seen at scattered light and in thermal emission at mm wavelengths, as previously predicted in the case of planet-disk interaction. Conclusions. Main signatures of transition disks can be reproduced by assuming a dead zone in the disk, such as gap-like structure in scattered light and millimetre continuum emission, and a lower gas surface density within the dead zone. Previous studies showed that the Rossby wave instability can also develop at the edge of such dead zones, forming vortices and also creating asymmetries. C1 [Pinilla, Paola] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [Flock, Mario] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ovelar, Maria de Juan] Liverpool John Moores Univ, Astrophys Res Inst, 146 Brownlow Hill, Liverpool L3 5RF, Merseyside, England. [Birnstiel, Til] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. RP Pinilla, P (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. EM pinilla@strw.leidenuniv.nl FU Royal Netherlands Academy of Arts and Sciences (KNAW); DFG [SPP 1833, KL 1469/13-1] FX The authors are very thankful to C. Dominik and E. F. van Dishoeck for their valuable comments and lively discussions of this paper. We acknowledge X.-N. Bai, C. Baruteau, S. Facchini, G. Rosotti, and C. Walsh for their useful feedback, and we also thank the referees for their constructive reports. This work is supported by a Royal Netherlands Academy of Arts and Sciences (KNAW) professor prize. T.B. acknowledges support from the DFG through SPP 1833 "Building a Habitable Earth" (KL 1469/13-1). NR 126 TC 1 Z9 1 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A81 DI 10.1051/0004-6361/201628441 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900040 ER PT J AU Simmonds, C Bauer, FE Thuan, TX Izotov, YI Stern, D Harrison, FA AF Simmonds, C. Bauer, F. E. Thuan, T. X. Izotov, Y. I. Stern, D. Harrison, F. A. TI Do some AGN lack X-ray emission? SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: active; galaxies: Seyfert; X-rays: galaxies; galaxies: dwarf ID ACTIVE GALACTIC NUCLEI; BLACK-HOLE MASSES; ULTRALUMINOUS INFRARED GALAXIES; COMPACT DWARF GALAXIES; DIGITAL SKY SURVEY; HOST GALAXIES; OPTICAL OBSERVATIONS; VELOCITY DISPERSION; CONFIDENCE-LIMITS; SEYFERT-1 GALAXY AB Context. Intermediate-mass black holes (IMBHs) are thought to be the seeds of early supermassive black holes (SMBHs). While greater than or similar to 100 IMBH and small SMBH candidates have been identified in recent years, few have been robustly confirmed to date, leaving their number density in considerable doubt. Placing firmer constraints both on the methods used to identify and confirm IMBHs/SMBHs, as well as characterizing the range of host environments that IMBHs/SMBHs likely inhabit is therefore of considerable interest and importance. Additionally, finding significant numbers of IMBHs in metal-poor systems would be particularly intriguing, since such systems may represent local analogs of primordial galaxies, and therefore could provide clues of early accretion processes. Aims. Here we study in detail several candidate active galactic nuclei (AGN) found in metal-poor hosts. Methods. We utilize new X-ray and optical observations to characterize these metal-poor AGN candidates and compare them against known AGN luminosity relations and well-characterized IMBH/SMBH samples. Results. Despite having clear broad optical emission lines that are long-lived (greater than or similar to 10-13 yr), these candidate AGN appear to lack associated strong X-ray and hard UV emission, lying at least 1-2 dex off the known AGN correlations. If they are IMBHs/SMBHs, our constraints imply that they either are not actively accreting, their accretion disks are fully obscured along our line-of-sight, or their accretion disks are not producing characteristic high energy emission. Alternatively, if they are not AGN, then their luminous broad emission lines imply production by extreme stellar processes. The latter would have profound implications on the applicability of broad lines for mass estimates of massive black holes. C1 [Simmonds, C.; Bauer, F. E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile. [Simmonds, C.; Bauer, F. E.] Pontificia Univ Catolica Chile, Fac Fis, Ctr Astroingn, Casilla 306, Santiago 22, Chile. [Bauer, F. E.] Millennium Inst Astrophys MAS, Nuncio Monsenor Sotero Sanz 100, Santiago, Chile. [Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Thuan, T. X.] Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA. [Izotov, Y. I.] Ukrainian Natl Acad Sci, Main Astron Observ, 27 Zabolotnoho St, UA-03680 Kiev, Ukraine. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. RP Simmonds, C (reprint author), Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile.; Simmonds, C (reprint author), Pontificia Univ Catolica Chile, Fac Fis, Ctr Astroingn, Casilla 306, Santiago 22, Chile. EM cpsimmonds@uc.cl FU CONICYT-Chile [Basal-CATA PFB-06/2007]; FONDECYT [1141218]; "EMBIGGEN" Anillo [ACT1101]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC120009]; NASA [GO9-0106C, NAS8-03060]; National Aeronautics and Space Administration; W. M. Keck Foundation; NSF [AST-9987045]; NSF Telescope System Instrumentation Program (TSIP); Ohio Board of Regents; Ohio State University Office of Research FX We thank Mislav Balokovic for help acquiring Keck spectra. The work of Daniel Stern was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We acknowledge support from CONICYT-Chile grants Basal-CATA PFB-06/2007 (FEB), FONDECYT Regular 1141218 (CS, FEB), and "EMBIGGEN" Anillo ACT1101 (FEB); the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (FEB); and NASA through Chandra Award Number GO9-0106C (FEB, TXT) issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the NASA under contract NAS8-03060. The scientific results reported in this article are based in part on observations made by the Chandra X-ray Observatory and data obtained from the Chandra Data Archive, as well as observations made by the Chandra X-ray Observatory and published previously in cited articles. This research has made use of software provided by the Chandra X-ray Center (CXC) in the application packages CIAO, ChIPS, and Sherpa. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. This paper used data obtained with the MODS spectrographs built with funding from NSF grant AST-9987045 and the NSF Telescope System Instrumentation Program (TSIP), with additional funds from the Ohio Board of Regents and the Ohio State University Office of Research. This research has made use of NASA's Astrophysics Data System. NR 69 TC 1 Z9 1 U1 4 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A64 DI 10.1051/0004-6361/201629310 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900098 ER PT J AU Stolker, T Dominik, C Min, M Garufi, A Mulders, GD Avenhaus, H AF Stolker, T. Dominik, C. Min, M. Garufi, A. Mulders, G. D. Avenhaus, H. TI Scattered light mapping of protoplanetary disks SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE protoplanetary disks; scattering; polarization; stars: individual: HD 100546; methods: numerical ID HD 100546; CIRCUMSTELLAR DISKS; TRANSITIONAL DISK; OPTICAL-PROPERTIES; SHADOWS CAST; PARTICLES; PLANETS; IMAGES; ALMA; GAPS AB Context. High-contrast scattered light observations have revealed the surface morphology of several dozen protoplanetary disks at optical and near-infrared wavelengths. Inclined disks offer the opportunity to measure part of the phase function of the dust grains that reside in the disk surface which is essential for our understanding of protoplanetary dust properties and the early stages of planet formation. Aims. We aim to construct a method which takes into account how the flaring shape of the scattering surface of an optically thick protoplanetary disk projects onto the image plane of the observer. This allows us to map physical quantities (e.g., scattering radius and scattering angle) onto scattered light images and retrieve stellar irradiation corrected images (r(2)-scaled) and dust phase functions. Methods. The scattered light mapping method projects a power law shaped disk surface onto the detector plane after which the observed scattered light image is interpolated backward onto the disk surface. We apply the method on archival polarized intensity images of the protoplanetary disk around HD 100546 that were obtained with VLT/SPHERE in the R' band and VLT/NACO in the H and K-s bands. \Results. The brightest side of the r(2)-scaled R-0 band polarized intensity image of HD 100546 changes from the far to the near side of the disk when a flaring instead of a geometrically flat disk surface is used for the r(2)-scaling. The decrease in polarized surface brightness in the scattering angle range of similar to 40 degrees-70 degrees is likely a result of the dust phase function and degree of polarization which peak in different scattering angle regimes. The derived phase functions show part of a forward scattering peak, which indicates that large, aggregate dust grains dominate the scattering opacity in the disk surface. Conclusions. Projection effects of a protoplanetary disk surface need to be taken into account to correctly interpret scattered light images. Applying the correct scaling for the correction of stellar irradiation is crucial for the interpretation of the images and the derivation of the dust properties in the disk surface layer. C1 [Stolker, T.; Dominik, C.; Min, M.] Univ Amsterdam, Astron Inst Anton Pannekoek, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. [Min, M.] SRON, Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. [Garufi, A.] Univ Autonoma Madrid, Dept Fis Teor, Fac Ciencias, Modulo 15,Campus Cantoblanco, E-28049 Madrid, Spain. [Garufi, A.] Swiss Fed Inst Technol, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Mulders, G. D.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Mulders, G. D.] NASA, Nexus Exoplanet Syst Sci, Earths Other Solar Syst Team, Washington, DC 20546 USA. [Avenhaus, H.] Univ Chile, Dept Astron, Casilla 36-D, Santiago, Chile. [Avenhaus, H.] Millennium Nucl Protoplanetary Disks, Santiago, Chile. RP Stolker, T (reprint author), Univ Amsterdam, Astron Inst Anton Pannekoek, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. EM T.Stolker@uva.nl FU Millennium Science Initiative (Chilean Ministry of Economy) [Nucleus RC130007]; FONDECYT [3150643]; ESO; CNRS (France); MPIA (Germany); INAF (Italy); FINES (Switzerland); NOVA (The Netherlands); European Commission Sixth Framework Programme, Optical Infrared Coordination Network for Astronomy (OPTICON) [RII3-Ct-2004-001566]; European Commission Seven Framework Programme, Optical Infrared Coordination Network for Astronomy (OPTICON) [226604, 312430] FX We are grateful to the anonymous referee for providing valuable comments. H.A. acknowledges support from the Millennium Science Initiative (Chilean Ministry of Economy), through grant "Nucleus RC130007" and from FONDECYT grant 3150643. SPHERE is an instrument designed and built by a consortium consisting of IPAG (Grenoble, France), MPIA (Heidelberg, Germany), LAM (Marseille, France), LESIA (Paris, France), Laboratoire Lagrange (Nice, France), INAF Osservatorio di Padova (Italy), Observatoire de Geneve (Switzerland), ETH Zurich (Switzerland), NOVA (The Netherlands), ONERA (France), and ASTRON (The Netherlands) in collaboration with ESO. SPHERE was funded by ESO, with additional contributions from CNRS (France), MPIA (Germany), INAF (Italy), FINES (Switzerland), and NOVA (The Netherlands). SPHERE also received funding from the European Commission Sixth and Seventh Framework Programmes as part of the Optical Infrared Coordination Network for Astronomy (OPTICON) under grant number RII3-Ct-2004-001566 for FP6 (2004 2008), grant number 226604 for FP7 (2009 2012), and grant number 312430 for FP7 (2013-2016). This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013). NR 45 TC 2 Z9 2 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A70 DI 10.1051/0004-6361/201629098 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900084 ER PT J AU Wahhaj, Z Milli, J Kennedy, G Ertel, S Matra, L Boccaletti, A del Burgo, C Wyatt, M Pinte, C Lagrange, AM Absil, O Choquet, E Gonzalez, CAG Kobayashi, H Mawet, D Mouillet, D Pueyo, L Dent, WRF Augereau, JC Girard, J AF Wahhaj, Zahed Milli, Julien Kennedy, Grant Ertel, Steve Matra, Luca Boccaletti, Anthony del Burgo, Carlos Wyatt, Mark Pinte, Christophe Lagrange, Anne-Marie Absil, Olivier Choquet, Elodie Gonzalez, Carlos A. Gomez Kobayashi, Hiroshi Mawet, Dimitri Mouillet, David Pueyo, Laurent Dent, William R. F. Augereau, Jean-Charles Girard, Julien TI The SHARDDS survey: First resolved image of the HD 114082 debris disk in the Lower Centaurus Crux with SPHERE SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: individual: HD 114082; techniques: high angular resolution; planetary systems ID PLANET-FINDING CAMPAIGN; BETA-PICTORIS DISK; CIRCUMSTELLAR DISK; HR 4796A; AU MICROSCOPII; OB ASSOCIATION; RING; LIGHT; AGE; CONSTRAINTS AB We present the first resolved image of the debris disk around the 16 +/- 8 Myr old star, HD 114082. The observation was made in the H-band using the SPHERE instrument. The star is at a distance of 92 +/- 6 pc in the Lower Centaurus Crux association. Using a Markov chain Monte Carlo analysis, we determined that the debris is likely in the form of a dust ring with an inner edge of 27.7(-3.5)(+2.8) au, position angle -74.3 degrees(-1.5) (+0.5), and an inclination with respect to the line of sight of 6.7 degrees(+3.8)(-0.4). The disk imaged in scattered light has a surface density that is declining with radius of similar to r(-4), which is steeper than expected for grain blowout by radiation pressure. We find only marginal evidence (2 sigma) of eccentricity and rule out planets more massive than 1.0 M-Jup orbiting within 1 au of the inner edge of the ring, since such a planet would have disrupted the disk. The disk has roughly the same fractional disk luminosity (L-disk = L-* = 3.3 x 10(-3)) as HR 4796 A and beta Pictoris, however it was not detected by previous instrument facilities most likely because of its small angular size (radius similar to 0.4"), low albedo (similar to 0.2), and low scattering efficiency far from the star due to high scattering anisotropy. With the arrival of extreme adaptive optics systems, such as SPHERE and GPI, the morphology of smaller, fainter, and more distant debris disks are being revealed, providing clues to planet-disk interactions in young protoplanetary systems. C1 [Wahhaj, Zahed; Girard, Julien] European Southern Observ, Alonso C rdova 3107,Casilla 19001, Santiago, Chile. [Kennedy, Grant; Matra, Luca; Wyatt, Mark] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Ertel, Steve] Univ Arizona, Dept Astron, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Boccaletti, Anthony] UPMC Univ Paris 06, Univ Paris Diderot, PSL Res Univ, Sorbonne Univ, F-92195 Meudon, France. [Pinte, Christophe] CNRS INSU UMI, UMI FCA, Paris, France. [Pinte, Christophe] Univ Chile, Dept Astron, Santiago, Chile. [Lagrange, Anne-Marie] Univ Liege, STAR Inst, 19c Allee 6 Aout, B-4000 Liege, Belgium. [Pueyo, Laurent] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Choquet, Elodie] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Wyatt, Mark] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan. [Wahhaj, Zahed] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan. [Wahhaj, Zahed; Matra, Luca] CALTECH, Dept Astron, 1200 CA Blvd, Pasadena, CA 91125 USA. [Mawet, Dimitri] ALMA Santiago Cent Off, Alonso Cordova 3107,Vitacura,Casilla 763 0355, Santiago, Chile. RP Wahhaj, Z (reprint author), European Southern Observ, Alonso C rdova 3107,Casilla 19001, Santiago, Chile. EM zwahhaj@eso.org FU European Union through ERC [337569]; Royal Society as a Royal Society University Research Fellow; Mexican CONACyT research grant [CB-2012-183007]; NASA through Hubble Fellowship by STScI [HST-HF2-51355]; NASA [NAS5-26555] FX We would like to thank the ESO staff and the technical operators at the Paranal Observatory. O.A. is F.R.S.-FNRS Research Associate. O.A. and C.G.G. acknowledge support by the European Union through ERC grant number 337569. G.M.K. is supported by the Royal Society as a Royal Society University Research Fellow. C.B. has been supported by Mexican CONACyT research grant CB-2012-183007. E.C. acknowledges support for this work from NASA through Hubble Fellowship grant HST-HF2-51355 awarded by STScI, which is operated by the AURA, Inc., for NASA under contract NAS5-26555. NR 53 TC 2 Z9 2 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR L4 DI 10.1051/0004-6361/201629769 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900118 ER PT J AU Ngeow, CC Yu, PC Bellm, E Yang, TC Chang, CK Miller, A Laher, R Surace, J Ip, WH AF Ngeow, Chow-Choong Yu, Po-Chieh Bellm, Eric Yang, Ting-Chang Chang, Chan-Kao Miller, Adam Laher, Russ Surace, Jason Ip, Wing-Huen TI THE PALOMAR TRANSIENT FACTORY AND RR LYRAE: THE METALLICITY-LIGHT CURVE RELATION BASED ON AB-TYPE RR LYRAE IN THE KEPLER FIELD SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE distance scale; stars: abundances; stars: variables: RR Lyrae ID LARGE-MAGELLANIC-CLOUD; METAL ABUNDANCES; LOW-RESOLUTION; STARS. I.; STRIPE 82; M-V; DEPENDENCE; VARIABLES; FE/H; MODE AB The wide-field synoptic sky surveys, known as the Palomar Transient Factory (PTF) and the intermediate Palomar Transient Factory (iPTF), will accumulate a large number of known and new RR Lyrae. These RR Lyrae are good tracers to study the substructure of the. Galactic halo if their distance, metallicity, and galactocentric velocity can be measured. Candidates of halo RR Lyrae can be identified from their distance and metallicity before requesting spectroscopic observations for confirmation. This is because both quantities can be obtained via their photometric light curves, because the absolute V-band magnitude for RR Lyrae is correlated with metallicity, and the metallicity can be estimated using a metallicity-light curve relation. To fully utilize the PTF and iPTF light-curve data in related future work, it is necessary to derive the metallicity-light curve relation in the native PTF/iPTF R-band photometric system. In this work, we derived such a relation using the known ab- type RR Lyrae located in the Kepler field, and it is found to be [Fe/H](PTF) = -4.089-7.346P + 1.280 phi(31) (where P is pulsational period and phi(31) is one of the Fourier parameters describing the shape of the light curve), with a dispersion of 0.118. dex. We tested our metallicity-light curve relation with new spectroscopic observations of a few RR Lyrae in the Kepler field, as well as several data sets available in the literature. Our tests demonstrated that. the derived metallicity-light curve relation could be used to estimate metallicities for the majority of the RR Lyrae, which are in agreement with the published values. C1 [Ngeow, Chow-Choong; Yu, Po-Chieh; Yang, Ting-Chang; Chang, Chan-Kao; Ip, Wing-Huen] Natl Cent Univ, Grad Inst Astron, Jhongli 32001, Taiwan. [Bellm, Eric] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Miller, Adam] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Miller, Adam] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Laher, Russ; Surace, Jason] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RP Ngeow, CC (reprint author), Natl Cent Univ, Grad Inst Astron, Jhongli 32001, Taiwan. EM cngeow@astro.ncu.edu.tw OI Yu, Po-Chieh/0000-0001-8894-0854; Chang, Chan-Kao/0000-0003-1656-4540; Ngeow, Chow-Choong/0000-0001-8771-7554 FU Ministry of Science and Technology (Taiwan) [104-2112-M-008-012-MY3, 104-2119-M-008-024] FX We thank the referee for valuable input. that. improved the manuscript. We acknowledge Wee Siang Edmund Yuen, a 2015 summer student at the National Central University, for carrying out the. preliminary analysis of the PTF data for RR Lyrae in the Kepler field. C.C.N. is thankful for the funding from the Ministry of Science and Technology (Taiwan) under grants 104-2112-M-008-012-MY3 and 104-2119-M-008-024. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 54 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD DEC PY 2016 VL 227 IS 2 AR 30 DI 10.3847/1538-4365/227/2/30 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EH0GK UT WOS:000391441600005 ER PT J AU Neigh, CSR McCorkel, J Campbell, PKE Ong, L Ly, V Landis, D Middleton, EM AF Neigh, Christopher S. R. McCorkel, Joel Campbell, Petya K. E. Ong, Lawrence Vuong Ly Landis, David Middleton, Elizabeth M. TI Monitoring Orbital Precession of EO-1 Hyperion With Three Atmospheric Correction Models in the Libya-4 PICS SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Atmospheric correction now (ACORN); atmospheric removal program (ATREM); EO-1 Hyperion; fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH); land surface imaging (LSI); Libya-4; orbital precession; pseudoinvariant calibration site (PICS); surface reflectance; time-series analysis ID ABSOLUTE CALIBRATION; HYPERSPECTRAL DATA; ALGORITHM; RETRIEVALS; IMAGERY; AVIRIS; SITES AB Spaceborne spectrometers require spectral-temporal stability characterization to aid in validation of derived data products. Earth Observation 1 (EO-1) began orbital precession in 2011 after exhausting onboard fuel resources. In the Libya-4 pseudoinvariant calibration site (PICS), this resulted in a progressive shift from a mean local equatorial crossing time of similar to 10: 00 A. M. in 2011 to similar to 8: 30 A. M. in late 2015. Here, we studied precession impacts to Hyperion surface reflectance products using three atmospheric correction approaches from 2004 to 2015. Combined difference estimates of surface reflectance were <5% in the visible near infrared (VNIR) and <10% for most of the shortwave infrared (SWIR). Combined coefficient of variation estimates in the VNIR ranged from 0.025 to 0.095, and in the SWIR it ranged from 0.025 to 0.06, excluding bands near atmospheric absorption features. Reflectances produced with different atmospheric models were correlated (R-2) in VNIR from 0.25 to 0.94 and in SWIR from 0.12 to 0.88 (p < 0.01). The uncertainties in all the models increased with a terrain slope up to 15 degrees and selecting dune flats could reduce errors. We conclude that these data remain a valuable resource over this period for sensor intercalibration despite orbital decay. C1 [Neigh, Christopher S. R.; McCorkel, Joel; Middleton, Elizabeth M.] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. [Campbell, Petya K. E.] Univ Maryland, Joint Ctr Earth Syst & Technol, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ong, Lawrence] Sci Syst & Applicat Inc, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20706 USA. [Vuong Ly] NASA, Ground Software Syst Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Landis, David] Global Sci & Technol Inc, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Neigh, CSR (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. EM christopher.s.neigh@nasa.gov; joel.mccorkel@nasa.gov; petya.campbell@nasa.gov; lawrence.ong@nasa.gov; vuong.ly@nasa.gov; david.r.landis@nasa.gov; elizabeth.m.middleton@nasa.gov OI Neigh, Christopher/0000-0002-5322-6340 NR 35 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X EI 1558-0571 J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD DEC PY 2016 VL 13 IS 12 BP 1797 EP 1801 DI 10.1109/LGRS.2016.2612539 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA EG8HZ UT WOS:000391298500010 ER PT J AU Collow, ABM Bosilovich, MG Koster, RD AF Collow, Allison B. Marquardt Bosilovich, Michael G. Koster, Randal D. TI Large-Scale Influences on Summertime Extreme Precipitation in the Northeastern United States SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID EVENTS; RAINFALL; TEMPERATURE; TRENDS; CIRCULATION; CLIMATOLOGY; EVOLUTION; REGION; US AB Observations indicate that over the last few decades there has been a statistically significant increase in precipitation in the northeastern United States and that this can be attributed to an increase in precipitation associated with extreme precipitation events. Here a state-of-the-art atmospheric reanalysis is used to examine such events in detail. Daily extreme precipitation events defined at the 75th and 95th percentile from gridded gauge observations are identified for a selected region within the Northeast. Atmospheric variables from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), are then composited during these events to illustrate the time evolution of associated synoptic structures, with a focus on vertically integrated water vapor fluxes, sea level pressure, and 500-hPa heights. Anomalies of these fields move into the region from the northwest, with stronger anomalies present in the 95th percentile case. Although previous studies show tropical cyclones are responsible for the most intense extreme precipitation events, only 10% of the events in this study are caused by tropical cyclones. On the other hand, extreme events resulting from cutoff low pressure systems have increased. The time period of the study was divided in half to determine how the mean composite has changed over time. An arc of lower sea level pressure along the East Coast and a change in the vertical profile of equivalent potential temperature suggest a possible increase in the frequency or intensity of synoptic-scale baroclinic disturbances. C1 [Collow, Allison B. Marquardt] Univ Space Res Assoc, Columbia, MD USA. [Collow, Allison B. Marquardt] NASA, Goddard Space Flight Ctr, Goddard Earth Sci Technol & Res, Greenbelt, MD USA. [Collow, Allison B. Marquardt; Bosilovich, Michael G.; Koster, Randal D.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Collow, ABM (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM allison.collow@nasa.gov RI Koster, Randal/F-5881-2012 OI Koster, Randal/0000-0001-6418-6383 FU NASA's Earth Science Research Program FX This work was supported by NASA's Earth Science Research Program. CPC U.S. Unified Precipitation data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, from their web site at http://www.esrl.noaa.gov/psd/. MERRA-2 data were developed by the Global Modeling and Assimilation Office at NASA GSFC and disseminated through the Goddard Earth Science Data and Information Services Center (GES DISC). HURDAT was provided by NOAA/HRD. NR 39 TC 0 Z9 0 U1 4 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD DEC PY 2016 VL 17 IS 12 BP 3045 EP 3061 DI 10.1175/JHM-D-16-0091.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EG6MA UT WOS:000391159400005 ER PT J AU Goodman, KZ Lipford, WE Watkins, AN AF Goodman, Kyle Z. Lipford, William E. Watkins, Anthony Neal TI Boundary-Layer Detection at Cryogenic Conditions Using Temperature Sensitive Paint Coupled with a Carbon Nanotube Heating Layer SO SENSORS LA English DT Article DE temperature sensitive paint (TSP); carbon nanotubes (CNT); transition detection; cryogenic testing; natural laminar flow ID TRANSITION DETECTION AB Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method. C1 [Goodman, Kyle Z.] Analyt Mech Associates Inc, 18 Langley Blvd,MS 493, Hampton, VA 23669 USA. [Lipford, William E.; Watkins, Anthony Neal] NASA Langley Res Ctr, 18 Langley Blvd,MS 493, Hampton, VA 23669 USA. RP Watkins, AN (reprint author), NASA Langley Res Ctr, 18 Langley Blvd,MS 493, Hampton, VA 23669 USA. EM kyle.z.goodman@nasa.gov; william.e.lipford@nasa.gov; Anthony.N.Watkins@nasa.gov OI Watkins, Anthony/0000-0002-1413-3512 FU NASA Transformational Tools and Technologies (TTT) Project under the Transformative Aeronautics Concepts Program FX The authors would like to thank the Clifford Obara, Wesley Goodman, Michael Chambers, Reginald Brown, Karl Maddux, and Gary Beachum at the 0.3-m TCT for their support for the wind tunnel testing. The authors would also like to thank Sally Viken, Michelle Lynde, and Richard Campbell from the NASA Langley Configuration Aerodynamics Branch, Reginald Exton form the NASA Langley Advanced Measurement and Data Systems Branch, and Eric Walker from the NASA Langley Research Directorate for developing and guiding the wind tunnel testing. This work was funded by the NASA Transformational Tools and Technologies (TTT) Project under the Transformative Aeronautics Concepts Program. Wind tunnel testing was provided by the NASA Langley Research Directorate. NR 29 TC 0 Z9 0 U1 1 U2 1 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD DEC PY 2016 VL 16 IS 12 AR 2062 DI 10.3390/s16122062 PG 17 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA EG8JM UT WOS:000391303000082 ER PT J AU Gain, AK Giupponi, C Wada, Y AF Gain, Animesh K. Giupponi, Carlo Wada, Yoshihide TI Measuring global water security towards sustainable development goals SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE water scarcity; water security; sustainable development goals; spatial multicriteria analysis ID MULTICRITERIA DECISION-MAKING; BRAHMAPUTRA RIVER-BASIN; CLIMATE-CHANGE; INTEGRATED APPROACH; DYNAMIC ASSESSMENT; VULNERABILITY; RESOURCES; SCARCITY; GROUNDWATER; BANGLADESH AB Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience 'low water security' over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated-physical and socio-economic-approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term 'security' is conceptualized as a function of 'availability', 'accessibility to services', 'safety and quality', and 'management'. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents. C1 [Gain, Animesh K.] GFZ German Res Ctr Geosci, Sect Hydrol 5 4, D-14473 Potsdam, Germany. [Giupponi, Carlo] Ca Foscari Univ Venice, Dept Econ, Venice Ctr Climate Studies, Cannaregio 873, Venice, Italy. [Wada, Yoshihide] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Wada, Yoshihide] Columbia Univ, Ctr Climate Syst Res, New York, NY 10027 USA. [Wada, Yoshihide] Univ Utrecht, Dept Phys Geog, Utrecht, Netherlands. [Wada, Yoshihide] Int Inst Appl Syst Anal, Laxenburg, Austria. RP Gain, AK (reprint author), GFZ German Res Ctr Geosci, Sect Hydrol 5 4, D-14473 Potsdam, Germany. EM animesh.gain@gfz-potsdam.de OI Gain, Animesh K./0000-0003-3814-693X FU Alexander von Humboldt Foundation; Leverhulme Trust FX AG was supported by Alexander von Humboldt Foundation. Authors would like to acknowledge Leverhulme Trust for the financial support. AG designed the research and processed the data. YW analyzed the water scarcity index, groundwater depletion and drought index. CG designed and performed the spatial analysis and aggregation of indicators. NR 78 TC 1 Z9 1 U1 35 U2 35 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD DEC PY 2016 VL 11 IS 12 AR 124015 DI 10.1088/1748-9326/11/12/124015 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA EG1UP UT WOS:000390818300001 ER PT J AU Frank, JD McGuire, K Moses, HR Stephenson, J AF Frank, Jeremy D. McGuire, Kerry Moses, Haifa R. Stephenson, Jerri TI Developing Decision Aids to Enable Human Spaceflight Autonomy SO AI MAGAZINE LA English DT Article AB As NASA explores destinations beyond the moon, the distance between Earth and spacecraft will increase communication delays between astronauts and the Mission Control Center (MCC). Today, astronauts coordinate with MCC to request assistance and await approval to perform tasks. Many of these coordination tasks require multiple exchanges of information, (for example, taking turns). In the presence of long communication delays, the length of time between turns may lead to inefficiency or increased mission risk. Future astronauts will need software based decision aids to enable them to work autonomously from the Mission Control Center: These tools require the appropriate combination of mission operations functions, for example, automated planning and fault management, troubleshooting recommendations, easy-to-access information, and just-in-time training. Ensuring that these elements are properly designed and integrated requires an integrated human factors approach. This article describes a recent demonstration of autonomous mission operations using a novel software-based decision aid on board the International Space Station. We describe how this new technology changes the way astronauts coordinate with MCC, and how the lessons learned from these early demonstrations will enable the operational autonomy needed to ensure astronauts can safely journey to Mars, and beyond. C1 [Frank, Jeremy D.] NASA, Ames Res Ctr, Planning & Scheduling Grp, Mountain View, CA 94043 USA. [McGuire, Kerry] NASA, Johnson Space Ctr, Mountain View, CA USA. [Moses, Haifa R.] NASA, Johnson Space Ctr, Human Syst Engn & Dev Div, Mountain View, CA USA. [Stephenson, Jerri] NASA, Johnson Space Ctr, Human Syst Engn & Dev Div, Habitabil & Human Factors Branch, Mountain View, CA USA. RP Frank, JD (reprint author), NASA, Ames Res Ctr, Planning & Scheduling Grp, Mountain View, CA 94043 USA. FU NASA Advanced Exploration Systems (AES) program FX This work was funded by the NASA Advanced Exploration Systems (AES) program. The authors gratefully acknowledge the hard work and dedication of the large team of flight controllers, programmers, human factors engineers, and crew that made this demonstration possible. NR 11 TC 0 Z9 0 U1 4 U2 4 PU AMER ASSOC ARTIFICIAL INTELL PI MENLO PK PA 445 BURGESS DRIVE, MENLO PK, CA 94025-3496 USA SN 0738-4602 J9 AI MAG JI AI Mag. PD WIN PY 2016 VL 37 IS 4 BP 46 EP 54 PG 9 WC Computer Science, Artificial Intelligence SC Computer Science GA EG5KI UT WOS:000391082300006 ER PT J AU Martin, A Bailey, SCC Panerai, F Davuluri, RSC Zhang, HB Vazsonyi, AR Lippay, ZS Mansour, NN Inman, JA Bathel, BF Splinter, SC Danehy, PM AF Martin, Alexandre Bailey, Sean C. C. Panerai, Francesco Davuluri, Raghava S. C. Zhang, Huaibao Vazsonyi, Alexander R. Lippay, Zachary S. Mansour, Nagi N. Inman, Jennifer A. Bathel, Brett F. Splinter, Scott C. Danehy, Paul M. TI Numerical and experimental analysis of spallation phenomena SO CEAS SPACE JOURNAL LA English DT Article DE Ablation; Spallation; Arcjet; Thermal protection system ID CHARRING ABLATIVE MATERIALS; PARTICLES AB The spallation phenomenon was studied through numerical analysis using a coupled Lagrangian particle tracking code and a hypersonic aerothermodynamics computational fluid dynamics solver. The results show that carbon emission from spalled particles results in a significant modification of the gas composition of the post-shock layer. Results from a test campaign at the NASA Langley HYM-ETS facility are presented. Using an automated image processing of short exposure images, two-dimensional velocity vectors of the spalled particles were calculated. In a 30-s test at 100 W/cm(2) of cold-wall heat flux, more than 722 particles were detected, with an average velocity of 110 m/s. C1 [Martin, Alexandre; Bailey, Sean C. C.; Panerai, Francesco; Davuluri, Raghava S. C.; Zhang, Huaibao; Vazsonyi, Alexander R.; Lippay, Zachary S.] Univ Kentucky, Lexington, KY 40506 USA. [Mansour, Nagi N.] NASA Ames Res Ctr, Moffett Field, CA 94035 USA. [Inman, Jennifer A.; Bathel, Brett F.; Splinter, Scott C.; Danehy, Paul M.] NASA Langley Res Ctr, Hampton, VA 23681 USA. RP Martin, A (reprint author), Univ Kentucky, Lexington, KY 40506 USA. EM alexandre.martin@uky.edu OI Davuluri, Raghava Sai Chaitanya/0000-0001-9156-1708; Martin, Alexandre/0000-0003-2216-2468 FU NASA [NNX13AN04A, NNX14AI97G]; NASA Kentucky EPSCoR [NNX10AV39A]; Hypersonic EDL program, through M.J. Wright at NASA Ames FX Financial support for this work was provided by NASA Award NNX13AN04A, NASA Award NNX14AI97G and NASA Kentucky EPSCoR Award NNX10AV39A. Additional support was generously provided by the Hypersonic EDL program, through M.J. Wright at NASA Ames. The authors are immensely grateful to him. They also would like to thank M.J. Gasch at NASA Ames, as well as J.G. Gragg and S.B. Jones at NASA Langley for their technical assistance. Lastly, the authors are grateful to E. Sozer at NASA Ames for insightful discussions on the CFD code. NR 37 TC 0 Z9 0 U1 3 U2 3 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 1868-2502 EI 1868-2510 J9 CEAS SPACE J JI CEAS Space J. PD DEC PY 2016 VL 8 IS 4 BP 229 EP 236 DI 10.1007/s12567-016-0118-4 PG 8 WC Engineering, Aerospace SC Engineering GA EG4BX UT WOS:000390989500001 ER PT J AU Jauncey, DL Bignall, HE Kedziora-Chudczer, L Koay, JY Lovell, JEJ Macquart, JP Ojha, R Pursimo, T Reynolds, C Rickett, BJ AF Jauncey, David L. Bignall, Hayley E. Kedziora-Chudczer, Lucyna Koay, Jun Yi Lovell, James E. J. Macquart, Jean-Pierre Ojha, Roopesh Pursimo, Tapio Reynolds, Cormac Rickett, Barney J. TI Interstellar Scintillation and Scattering of Micro-arc-second AGN SO GALAXIES LA English DT Review DE quasars; variability; interstellar scattering ID EXTRAGALACTIC RADIO-SOURCES; ACTIVE GALACTIC NUCLEI; INTRADAY VARIABILITY; 3C 273; RAPID VARIABILITY; ANNUAL CYCLES; QUASAR; J1819+3845; OBJECT; ORIGIN AB The discovery of the first quasar 3C 273 led directly to the discovery of their variability at optical and radio wavelengths. We review the radio variability observations, in particular the variability found at frequencies below 1 GHz, as well as those exhibiting intra-day variability (IDV) at cm wavelengths. Observations have shown that IDV arises principally from scintillation caused by scattering in the ionized interstellar medium of our Galaxy. The sensitivity of interstellar scintillation towards source angular sizes has provided a powerful tool for studying the most compact components of radio-loud AGN at microarcsecond and milliarcsecond scale resolution. C1 [Jauncey, David L.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Jauncey, David L.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Bignall, Hayley E.; Reynolds, Cormac] CSIRO Astron & Space Sci, Kensington, NSW 6151, Australia. [Kedziora-Chudczer, Lucyna] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia. [Kedziora-Chudczer, Lucyna] Univ New South Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. [Koay, Jun Yi] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Lovell, James E. J.] Univ Tasmania, Sch Phys Sci, Private Bag 37, Hobart, Tas 7001, Australia. [Macquart, Jean-Pierre] Curtin Univ, Curtin Inst Radio Astron, ICRAR, Perth, WA 6845, Australia. [Macquart, Jean-Pierre] Univ Sydney, ARC Ctr Excellence All Sky Astrophys CAASTRO, Sydney, NSW 2006, Australia. [Ojha, Roopesh] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Ojha, Roopesh] Univ Maryland, Ctr Space Sci & Technol, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Ojha, Roopesh] Catholic Univ Amer, Dept Phys, 620 Michigan Ave NE, Washington, DC 20064 USA. [Pursimo, Tapio] Nord Opt Telescope, La Palma 3537, Canary Islands, Spain. [Rickett, Barney J.] Univ Calif San Diego, ECE Dept, La Jolla, CA 92093 USA. RP Jauncey, DL (reprint author), CSIRO Astron & Space Sci, Epping, NSW 1710, Australia.; Jauncey, DL (reprint author), Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. EM David.Jauncey@csiro.au; Hayley.Bignall@csiro.au; lkedzior@unsw.edu.au; koayjy@dark-cosmology.dk; Jim.Lovell@utas.edu.au; J.Macquart@curtin.edu.au; roopesh.ojha@gmail.com; tpursimo@not.iac.es; Cormac.Reynolds@csiro.au; bjrickett@ucsd.edu FU Danish Council for Independent Research [DFF 4002-00275] FX J.Y.K. gratefully acknowledges support from the Danish Council for Independent Research via grant No. DFF 4002-00275. We thank the reviewers for helpful suggestions to improve the manuscript. NR 45 TC 0 Z9 0 U1 0 U2 0 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2075-4434 J9 GALAXIES JI Galaxies PD DEC PY 2016 VL 4 IS 4 AR 62 DI 10.3390/galaxies4040062 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG4HH UT WOS:000391004000030 ER PT J AU Manganaro, M Pedaletti, G Doert, M Bastieri, D Ramazani, VF Gasparrini, D Lindfors, E Lott, B Nievas, M Rani, B Thompson, DJ Angelakis, E Borman, G Gurwell, M Hovatta, T Itoh, R Jorstad, S Kraus, A Krichbaum, TP Kuin, P Lahteenmaki, A Larionov, V Lien, AY Myserlis, I Tornikoski, M Troitsky, I Zensus, JA AF Manganaro, Marina Pedaletti, Giovanna Doert, Marlene Bastieri, Denis Ramazani, Vandad Fallah Gasparrini, Dario Lindfors, Elina Lott, Benoit Nievas, Mireia Rani, Bindu Thompson, David J. Angelakis, Emmanouil Borman, George Gurwell, Mark Hovatta, Talvikki Itoh, Ryosuke Jorstad, Svetlana Kraus, Alex Krichbaum, Thomas P. Kuin, Paul Lahteenmaki, Anne Larionov, Valeri Lien, Amy Yarleen Myserlis, Ioannis Tornikoski, Merja Troitsky, Ivan Zensus, J. Anton CA MAGIC& Fermi-LAT Collaborations TI Multiwavelength Picture of the Blazar S5 0716+714 during Its Brightest Outburst SO GALAXIES LA English DT Article DE BL Lacertae objects: individual: S5 0716+714; Galaxies: active; gamma-rays: galaxies ID LARGE-AREA TELESCOPE; QUASAR PKS 1510-089; GAMMA-RAY; DETECTED BLAZARS; INNER JET; VARIABILITY; S5-0716+714; SPECTRUM; BAND AB S5 0716+714 is a well known BL Lac object, and one of the brightest and most active blazars. The discovery in the Very High Energy band (VHE, E > 100 GeV) by MAGIC happened in 2008. In January 2015, the source went through the brightest optical state ever observed, triggering MAGIC follow-up and a VHE detection with similar to 13 sigma significance (ATel #6999). Rich multiwavelength coverage of the flare allowed us to construct the broad-band spectral energy distribution of S5 0716+714 during its brightest outburst. In this work, we will present the preliminary analysis of MAGIC and Fermi-LAT data of the flaring activity in January and February 2015 for the HE (0.1 < HE < 300 GeV) and VHE band, together with radio (Metsahovi, OVRO, VLBA, Effelsberg), sub-millimeter (SMA), optical (Tuorla, Perkins, Steward, AZT-8+ST7, LX-200, Kanata), X-ray and UV (Swift-XRT and UVOT), in the same time-window and discuss the time variability of the multiwavelength light curves during this impressive outburst. C1 [Manganaro, Marina] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Manganaro, Marina] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Pedaletti, Giovanna] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Doert, Marlene] Tech Univ Dortmund, Dept Phys, D-44221 Dortmund, Germany. [Bastieri, Denis] INFN Padova, I-35131 Padua, Italy. [Ramazani, Vandad Fallah; Lindfors, Elina] Univ Turku, Dept Phys & Astron, SF-20500 Turku, Finland. [Gasparrini, Dario] ASI Sci Data Ctr, I-06123 Perugia, Italy. [Gasparrini, Dario] Ist Nazl Fis Nucl, I-06123 Perugia, Italy. [Lott, Benoit] CEN Bordeaux Gradignan, F-33170 Gradignan, France. [Nievas, Mireia] Univ Complutense, Dept Atom Mol & Nucl Phys, E-28040 Madrid, Spain. [Rani, Bindu; Thompson, David J.; Lien, Amy Yarleen] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Angelakis, Emmanouil; Kraus, Alex; Krichbaum, Thomas P.; Myserlis, Ioannis; Zensus, J. Anton] Max Planck Inst Radioastron MPIfR, D-53121 Bonn, Germany. [Borman, George] Crimean Astrophys Observ, Nauchny 98409, Crimea, Russia. [Gurwell, Mark] Harvard Smithsonian CfA, Cambridge, MA 02138 USA. [Hovatta, Talvikki; Lahteenmaki, Anne; Tornikoski, Merja] Aalto Univ, Metsahovi Radio Observ, FI-02540 Kylmala, Finland. [Itoh, Ryosuke] Hiroshima Univ, Dept Phys Sci, Higashihiroshima 7398526, Japan. [Jorstad, Svetlana] Boston Univ, Inst Astrophys Res, Boston, MA 02215 USA. [Kuin, Paul] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Lahteenmaki, Anne] Aalto Univ, Dept Radio Sci & Engn, FI-00076 Aalto, Finland. [Larionov, Valeri; Troitsky, Ivan] St Petersburg State Univ, Astron Inst, St Petersburg 198504, Russia. RP Manganaro, M (reprint author), Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain.; Manganaro, M (reprint author), Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. EM manganaro@iac.es; giovanna.pedaletti@desy.de; marlene.doert@tu-dortmund.de; denis.bastieri@gmail.com; vafara@utu.fi; dario.gasparrini@asdc.asi.it; elilin@utu.fi; lott@cenbg.in2p3.fr; mnievas@ucm.es; bindu.rani@nasa.gov; David.J.Thompson@nasa.gov; eangelakis@mpifr.de; borman.ga@gmail.com; mgurwell@cfa.harvard.edu; talvikki.hovatta@aalto.fi; itoh@hep01.hepl.hiroshima-u.ac.jp; jorstad@bu.edu; akraus@mpifr.de; tkrichbaum@mpifr-bonn.mpg.de; n.kuin@ucl.ac.uk; anne.lahteenmaki@aalto.fi; v.larionov@spbu.ru; amy.y.lien@nasa.gov; imyserlis@mpifr-bonn.mpg.de; merja.tornikoski@aalto.fi; i.troitsky@spbu.ru; azensus@mpifr-bonn.mpg.de RI Lahteenmaki, Anne/L-5987-2013; Manganaro, Marina/B-7657-2011; OI Manganaro, Marina/0000-0003-1530-3031; Jorstad, Svetlana/0000-0001-6158-1708; Angelakis, Emmanouil/0000-0001-7327-5441 FU German BMBF; German MPG; Italian INFN; Italian INAF; Swiss National Fund SNF; ERDF under the Spanish MINECO [FPA2015-69818-P, FPA2012-36668, FPA2015-68278-P, FPA2015-69210-C6-2-R, FPA2015-69210-C6-4-R, FPA2015-69210-C6-6-R, AYA2013-47447-C3-1-P, AYA2015-71042-P, ESP2015-71662-C2-2-P, CSD2009-00064]; Japanese JSPS; Japanese MEXT; Spanish Centro de Excelencia "Severo Ochoa" [SEV-2012-0234, SEV-2015-0548]; Unidad de Excelencia "Maria de Maeztu" [MDM-2014-0369]; Academy of Finland [268740, 212656, 210338, 121148]; Croatian Science Foundation (HrZZ) Project [09/176]; University of Rijeka [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW [745/N-HESS-MAGIC/2010/0]; Smithsonian Institution; Academia Sinica; NASA [NNX08AW31G, NNX11A043G, NNX14AQ89G]; NSF [AST-0808050, AST-1109911]; RFBR [15-02-00949]; [6.38.335.2015] FX We would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the he ERDF under the Spanish MINECO (FPA2015-69818-P, FPA2012-36668, FPA2015-68278-P,FPA2015-69210-C6-2-R, FPA2015-69210-C6-4-R, FPA2015-69210-C6-6-R, AYA2013-47447-C3-1-P, AYA2015-71042-P, ESP2015-71662-C2-2-P, CSD2009-00064), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Spanish Centro de Excelencia "Severo Ochoa" SEV-2012-0234 and SEV-2015-0548, and Unidad de Excelencia "Maria de Maeztu" MDM-2014-0369, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0. The Fermi-LAT Collaboration acknowledges support for LAT development, operation and data analysis from NASA and DOE (United States), CEA/Irfu and IN2P3/CNRS (France), ASI and INFN (Italy), MEXT, KEK, and JAXA (Japan), and the K.A. Wallenberg Foundation, the Swedish Research Council and the National Space Board (Sweden). Science analysis support in the operations phase from INAF (Italy) and CNES (France) is also gratefully acknowledged. We thank the Swift team duty scientists and science planners. The Metsahovi team acknowledges the support from the Academy of Finland to our observing projects (numbers 212656, 210338, 121148, and others). The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. The OVRO 40-m monitoring program is supported in part by NASA grants NNX08AW31G, NNX11A043G and NNX14AQ89G, and NSF grants AST-0808050 and AST-1109911. St.-Petersburg University team was supported by research grant 6.38.335.2015 and RFBR grant 15-02-00949. NR 25 TC 0 Z9 0 U1 6 U2 6 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2075-4434 J9 GALAXIES JI Galaxies PD DEC PY 2016 VL 4 IS 4 AR 69 DI 10.3390/galaxies4040069 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG4HH UT WOS:000391004000037 ER PT J AU Sitarek, J Gonzalez, JB Buson, S Prester, DD Manganaro, M Mazin, D Nilsson, K Nievas, M Stamerra, A Tavecchio, F Vovk, I AF Sitarek, Julian Gonzalez, Josefa Becerra Buson, Sara Prester, Dijana Dominis Manganaro, Marina Mazin, Daniel Nilsson, Kari Nievas, Mireia Stamerra, Antonio Tavecchio, Fabrizio Vovk, Ievgen CA MAGIC Fermi-LAT Collaboration TI Broad Band Observations of Gravitationally Lensed Blazar during a Gamma-Ray Outburst SO GALAXIES LA English DT Article DE gamma rays: galaxies; gravitational lensing: strong; galaxies: jets; radiation mechanisms: non-thermal; galaxies: QSO B0218+357 ID LARGE-AREA TELESCOPE; MAGIC TELESCOPES; MAJOR UPGRADE; TIME-DELAY; B0218+357; CATALOG; SYSTEM; FLARES AB QSO B0218+357 is a gravitationally lensed blazar located at a cosmological redshift of 0.944. In July 2014 a GeV flare was observed by Fermi-LAT, triggering follow-up observations with the MAGIC telescopes at energies above 100 GeV. The MAGIC observations at the expected time of arrival of the trailing component resulted in the first detection of QSO B0218+ 357 in Very-High-Energy (VHE, >100 GeV) gamma rays. We report here the observed multiwavelength emission during the 2014 flare. C1 [Sitarek, Julian] Univ Lodz, Dept Astrophys, PL-90236 Lodz, Poland. [Gonzalez, Josefa Becerra; Buson, Sara] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gonzalez, Josefa Becerra] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gonzalez, Josefa Becerra] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Buson, Sara] Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21250 USA. [Prester, Dijana Dominis] Univ Rijeka, Dept Phys, Radmile Matejcic 2, Rijeka 51000, Croatia. [Manganaro, Marina] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Manganaro, Marina] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Mazin, Daniel] Univ Tokyo, Inst Cosm Ray Res, Kashiwa No Ha 5-1-5, Kashiwa, Chiba 2778582, Japan. [Mazin, Daniel; Vovk, Ievgen] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Nilsson, Kari] Univ Turku, Astron Div, Tuorla Observ, FI-21500 Piikkio, Finland. [Nievas, Mireia] Univ Complutense Madrid, Dept Atom Mol & Nucl Phys, E-28040 Madrid, Spain. [Stamerra, Antonio; Tavecchio, Fabrizio] INAF Natl Inst Astrophys, I-00136 Rome, Italy. RP Sitarek, J (reprint author), Univ Lodz, Dept Astrophys, PL-90236 Lodz, Poland. EM jsitarek@uni.lodz.pl; josefa.becerragonzalez@nasa.gov; sara.buson@nasa.gov; dijana@uniri.hr; manganaro@iac.es; mazin@icrr.u-tokyo.ac.jp; kani@utu.fi; mnievas@ucm.es; stamerra@oato.inaf.it; fabrizio.tavecchio@brera.inaf.it; Ievgen.Vovk@mpp.mpg.de RI Manganaro, Marina/B-7657-2011 OI Manganaro, Marina/0000-0003-1530-3031 FU German BMBF; German MPG; Italian INFN; Italian INAF; Swiss National Fund SNF; ERDF under the Spanish MINECO [FPA2012-39502]; Japanese JSPS; Japanese MEXT; Centro de Excelencia Severo Ochoa project of the Spanish Consolider-Ingenio programme [SEV-2012-0234]; CPAN project of the Spanish Consolider-Ingenio programme [CSD2007-00042]; MultiDark project of the Spanish Consolider-Ingenio programme [CSD2009-00064]; Academy of Finland [268740]; Croatian Science Foundation (HrZZ) Project [09/176]; University of Rijeka [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW [745/N-HESS-MAGIC/2010/0] FX We would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2012-39502), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0. The Fermi-LAT Collaboration acknowledges support for LAT development, operation and data analysis from NASA and DOE (United States), CEA/Irfu and IN2P3/CNRS (France), ASI and INFN (Italy), MEXT, KEK, and JAXA (Japan), and the K.A. Wallenberg Foundation, the Swedish Research Council and the National Space Board (Sweden). Science analysis support in the operations phase from INAF (Italy) and CNES (France) is also gratefully acknowledged. NR 24 TC 0 Z9 0 U1 2 U2 2 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2075-4434 J9 GALAXIES JI Galaxies PD DEC PY 2016 VL 4 IS 4 AR 31 DI 10.3390/galaxies4040031 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG4HH UT WOS:000391004000001 ER PT J AU Walker, RC Hardee, PE Davies, F Ly, C Junor, W Mertens, F Lobanov, A AF Walker, R. Craig Hardee, Philip E. Davies, Fred Ly, Chun Junor, William Mertens, Florent Lobanov, Andrei TI Observations of the Structure and Dynamics of the Inner M87 Jet SO GALAXIES LA English DT Article DE galaxies: individual (M87); galaxies: jets; galaxies: active; radio continuum: galaxies ID GAMMA-RAY EMISSION; CENTRAL BLACK-HOLE; RADIO JET; SCHWARZSCHILD RADII; BASE; EFFICIENT; GALAXY AB M87 is the best source in which to study a jet at high resolution in gravitational units because it has a very high mass black hole and is nearby. The angular size of the black hole is second only to Sgr A*, which does not have a strong jet. The jet structure is edge brightened with a wide opening angle base and a weak counterjet. We have roughly annual observations for 17 years plus intensive monitoring at three week intervals for a year and five day intervals for 2.5 months made with the Very Long Baseline Array (VLBA) at 43 GHz. The inner jet shows very complex dynamics, with apparent motions both along and across the jet. Speeds from zero to over 2c are seen, with acceleration observed over the first 3 milli-arcseconds. The counterjet decreases in brightness much more rapidly than the main jet, as is expected from relativistic beaming in an accelerating jet oriented near the line-of-sight. Details of the structure and dynamics are discussed. The roughly annual observations show side-to-side motion of the whole jet with a characteristic time scale of about 9 years. C1 [Walker, R. Craig] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Hardee, Philip E.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Davies, Fred] MPIA, D-69117 Heidelberg, Germany. [Ly, Chun] Goddard Space Flight Ctr, Astrophys Sci Div, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Junor, William] Los Alamos Natl Lab, ISR 2,MS-D436,POB 1663, Los Alamos, NM 87545 USA. [Mertens, Florent; Lobanov, Andrei] Max Planck Inst Radioastron, Huegel 69, D-53121 Bonn, Germany. [Mertens, Florent] Kapteyn Astron Inst, POB 800, NL-9700 AV Groningen, Netherlands. [Lobanov, Andrei] Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany. RP Walker, RC (reprint author), Natl Radio Astron Observ, Socorro, NM 87801 USA. EM cwalker@nrao.edu; pehardee@gmail.com; fdavies@ucla.edu; astro.chun@gmail.com; bjunor@lanl.gov; florent.mertens@gmail.com; alobanov@mpifr-bonn.mpg.de FU International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the University of Bonn; International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the University of Cologne; NASA FX The Very Long Baseline Array is an instrument of the National Radio Astronomy Observatory, which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This work made use of the Swinburne University of Technology software correlator [24], developed as part of the Australian Major National Research Facilities Programme and operated under licence. Florent Mertens was supported for this research through a stipend from the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne. Chun Ly is supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities and Universities Space Research Association through contracts with NASA. NR 24 TC 0 Z9 0 U1 0 U2 0 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2075-4434 J9 GALAXIES JI Galaxies PD DEC PY 2016 VL 4 IS 4 AR 46 DI 10.3390/galaxies4040046 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG4HH UT WOS:000391004000014 ER PT J AU Konishi, M Matsuo, T Yamamoto, K Samland, M Sudo, J Shibai, H Itoh, Y Fukagawa, M Sumi, T Kudo, T Hashimoto, J Kuzuhara, M Kusakabe, N Abe, L Akiyama, E Brandner, W Brandt, TD Carson, JC Feldt, M Goto, M Grady, CA Guyon, O Hayano, Y Hayashi, M Hayashi, SS Henning, T Hodapp, KW Ishii, M Iye, M Janson, M Kandori, R Knapp, GR Kwon, J McElwain, MW Mede, K Miyama, S Morino, JI Moro-Martin, A Nishimura, T Oh, D Pyo, TS Serabyn, E Schlieder, JE Suenaga, T Suto, H Suzuki, R Takahashi, YH Takami, M Takato, N Terada, H Thalmann, C Turner, EL Watanabe, M Wisniewski, JP Yamada, T Takami, H Usuda, T Tamura, M AF Konishi, Mihoko Matsuo, Taro Yamamoto, Kodai Samland, Matthias Sudo, Jun Shibai, Hiroshi Itoh, Yoichi Fukagawa, Misato Sumi, Takahiro Kudo, Tomoyuki Hashimoto, Jun Kuzuhara, Masayuki Kusakabe, Nobuhiko Abe, Lyu Akiyama, Eiji Brandner, Wolfgang Brandt, Timothy D. Carson, Joseph C. Feldt, Markus Goto, Miwa Grady, Carol A. Guyon, Olivier Hayano, Yutaka Hayashi, Masahiko Hayashi, Saeko S. Henning, Thomas Hodapp, Klaus W. Ishii, Miki Iye, Masanori Janson, Markus Kandori, Ryo Knapp, Gillian R. Kwon, Jungmi McElwain, Michael W. Mede, Kyle Miyama, Shoken Morino, Jun-Ichi Moro-Martin, Amaya Nishimura, Tetsuo Oh, Daehyeon Pyo, Tae-Soo Serabyn, Eugene Schlieder, Joshua E. Suenaga, Takuya Suto, Hiroshi Suzuki, Ryuji Takahashi, Yasuhiro H. Takami, Michihiro Takato, Naruhisa Terada, Hiroshi Thalmann, Christian Turner, Edwin L. Watanabe, Makoto Wisniewski, John P. Yamada, Toru Takami, Hideki Usuda, Tomonori Tamura, Motohide TI A substellar companion to Pleiades HII 3441 SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE brown dwarfs; stars: imaging; stars: individual (Pleiades HII 3441); stars: low-mass ID LOW-MASS STARS; BROWN DWARF CANDIDATES; IMAGING SURVEY; HIGH-CONTRAST; LITHIUM DEPLETION; OPEN CLUSTERS; SEQUENCE; MULTIPLICITY; RESOLUTION; MEMBERS AB We find a new substellar companion to the Pleiades member star, Pleiades HII 3441, using the Subaru telescope with adaptive optics. The discovery is made as part of the high-contrast imaging survey to search for planetary-mass and substellar companions in the Pleiades and young moving groups. The companion has a projected separation of 0.'' 49 +/- 0.'' 02 (66 +/- 2 au) and a mass of 68 +/- 5 M-J based on three observations in the J-, H-, and K-s-bands. The spectral type is estimated to be M7 (similar to 2700 K), and thus no methane absorption is detected in the H band. Our Pleiades observations result in the detection of two substellar companions including one previously reported among 20 observed Pleiades stars, and indicate that the fraction of substellar companions in the Pleiades is about 10.0(-8.8)(+26.1)%. This is consistent with multiplicity studies of both the Pleiades stars and other open clusters. C1 [Konishi, Mihoko; Akiyama, Eiji; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Ishii, Miki; Iye, Masanori; Kandori, Ryo; Morino, Jun-Ichi; Oh, Daehyeon; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Terada, Hiroshi; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Matsuo, Taro; Sudo, Jun; Shibai, Hiroshi; Sumi, Takahiro] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan. [Yamamoto, Kodai] Kyoto Univ, Dept Astron, Fac Sci, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto, Kyoto 6068502, Japan. [Samland, Matthias; Brandner, Wolfgang; Feldt, Markus; Henning, Thomas; Schlieder, Joshua E.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Itoh, Yoichi] Nishi Harima Astron Observ, 407-2 Nishigaichi, Sayo, Hyogo 6795313, Japan. [Fukagawa, Misato] Nagoya Univ, Grad Sch Sci, Div Particle & Astrophys Sci, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan. [Kudo, Tomoyuki; Guyon, Olivier; Hayashi, Saeko S.; Nishimura, Tetsuo; Pyo, Tae-Soo; Takato, Naruhisa] Natl Astron Observ Japan, Subaru Telescope, 650 North Aohoku Pl, Hilo, HI 96720 USA. [Hashimoto, Jun; Kuzuhara, Masayuki; Kusakabe, Nobuhiko; Guyon, Olivier; Suto, Hiroshi; Tamura, Motohide] Astrobiol Ctr, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Kuzuhara, Masayuki] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan. [Abe, Lyu] Univ Nice Sophia Antipolis, Observ Cote Azur, Lab Lagrange, CNRS,UMR 7293, Nice 4, France. [Brandt, Timothy D.] Inst Adv Study, Dept Astrophys, 1 Einstein Dr, Princeton, NJ 08540 USA. [Carson, Joseph C.] Coll Charleston, Dept Phys & Astron, 58 Coming St, Charleston, SC 29424 USA. [Goto, Miwa] Ludwig Maximilians Univ Munchen, Univ Sternwarte Munchen, Scheinerstr 1, D-81679 Munich, Germany. [Grady, Carol A.] Eureka Sci, 2452 Delmer St,Suite 100, Oakland, CA 94602 USA. [Grady, Carol A.; McElwain, Michael W.] Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. [Guyon, Olivier] Univ Arizona, Dept Astron, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Hodapp, Klaus W.] Univ Hawaii, Inst Astron, 640 N Aohoku Pl, Hilo, HI 96720 USA. [Janson, Markus] Univ Stockholm, Dept Astron, SE-10691 Stockholm, Sweden. [Knapp, Gillian R.; Turner, Edwin L.] Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08544 USA. [Kwon, Jungmi; Mede, Kyle; Takahashi, Yasuhiro H.; Tamura, Motohide] Univ Tokyo, Dept Astron, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Kwon, Jungmi; Yamada, Toru] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. [Miyama, Shoken] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398526, Japan. [Moro-Martin, Amaya] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Oh, Daehyeon] Natl Meteorol Satellite Ctr, 64-18,Guam Gil, Jincheon Gun 27803, Chungcheongbuk, South Korea. [Oh, Daehyeon; Suenaga, Takuya] Grad Univ Adv Studies, Dept Astron Sci, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Serabyn, Eugene] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Schlieder, Joshua E.] CALTECH, NASA Exoplanet Sci Inst, Mail Code 100-22,1200 East Calif Blvd, Pasadena, CA 91125 USA. [Takami, Michihiro] Acad Sinica, Inst Astron & Astrophys, 1 Sect 4,Roosevelt Rd, Taipei 10617, Taiwan. [Thalmann, Christian] Inst Astron, Swiss Fed Inst Technol, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Turner, Edwin L.] Univ Tokyo, Kavli Inst Phys & Math Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan. [Watanabe, Makoto] Okayama Univ Sci, Kita Ku, 1-1 Ridai Cho, Okayama, Okayama 7000005, Japan. [Wisniewski, John P.] Univ Oklahoma, HL Dodge Dept Phys & Astron, 440 W Brooks St, Norman, OK 73019 USA. RP Konishi, M; Matsuo, T (reprint author), Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan.; Konishi, M; Matsuo, T (reprint author), Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan. EM mihoko.konishi@nao.ac.jp; matsuo@ess.sci.osaka-u.ac.jp RI MIYAMA, Shoken/A-3598-2015 FU Spanish MICINN [AyA2011-24052]; U.S. National Science Foundation [1009203]; [25-8826] FX The authors recognize and acknowledge the significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. We thank the anonymous referee for carefully reading our manuscript and for giving helpful comments. The authors are grateful to David Lafreniere for generously providing the source code for the LOCI algorithm. This publication makes use of VOSA to estimate the primary spectral type, developed under the Spanish Virtual Observatory project supported from the Spanish MICINN through grant AyA2011-24052. This work was partially supported by the Grant-in-Aid for JSPS fellows (Grant Number 25-8826). J.C. was supported by the U.S. National Science Foundation under Award No. 1009203. NR 48 TC 0 Z9 0 U1 2 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD DEC PY 2016 VL 68 IS 6 AR 92 DI 10.1093/pasj/psw083 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG8GV UT WOS:000391295100004 ER PT J AU Akiyama, E Hashimoto, J Liu, HB Li, JIH Bonnefoy, M Dong, RB Hasegawa, Y Henning, T Sitko, ML Janson, M Feldt, M Wisniewski, J Kudo, T Kusakabe, N Tsukagoshi, T Momose, M Muto, T Taki, T Kuzuhara, M Satoshi, M Takami, M Ohashi, N Grady, CA Kwon, J Thalmann, C Abe, L Brandner, W Brandt, TD Carson, JC Egner, S Goto, M Guyon, O Hayano, Y Hayashi, M Hayashi, SS Hodapp, KW Ishii, M Iye, M Knapp, GR Kandori, R Matsuo, T Mcelwain, MW Miyama, S Morino, JI Moro-Martin, A Nishimura, T Pyo, TS Serabyn, E Suenaga, T Suto, H Suzuki, R Takahashi, YH Takato, N Terada, H Tomono, D Turner, EL Watanabe, M Yamada, T Takami, H Usuda, T Tamura, M AF Akiyama, Eiji Hashimoto, Jun Liu, Hauyu Baobabu Li, Jennifer I-Hsiu Bonnefoy, Michael Dong, Ruobing Hasegawa, Yasuhiro Henning, Thomas Sitko, Michael L. Janson, Markus Feldt, Markus Wisniewski, John Kudo, Tomoyuki Kusakabe, Nobuhiko Tsukagoshi, Takashi Momose, Munetake Muto, Takayuki Taki, Tetsuo Kuzuhara, Masayuki Satoshi, Mayama Takami, Michihiro Ohashi, Nagayoshi Grady, Carol A. Kwon, Jungmi Thalmann, Christian Abe, Lyu Brandner, Wolfgang Brandt, Timothy D. Carson, Joseph C. Egner, Sebastian Goto, Miwa Guyon, Olivier Hayano, Yutaka Hayashi, Masahiko Hayashi, Saeko S. Hodapp, Klaus W. Ishii, Miki Iye, Masanori Knapp, Gillian R. Kandori, Ryo Matsuo, Taro Mcelwain, Michael W. Miyama, Shoken Morino, Jun-Ichi Moro-Martin, Amaya Nishimura, Tetsuo Pyo, Tae-Soo Serabyn, Eugene Suenaga, Takuya Suto, Hiroshi Suzuki, Ryuji Takahashi, Yasuhiro H. Takato, Naruhisa Terada, Hiroshi Tomono, Daigo Turner, Edwin L. Watanabe, Makoto Yamada, Toru Takami, Hideki Usuda, Tomonori Tamura, Motohide TI SPIRAL STRUCTURE AND DIFFERENTIAL DUST SIZE DISTRIBUTION IN THE LkH alpha 330 DISK SO ASTRONOMICAL JOURNAL LA English DT Article DE planetary systems; stars: pre-main sequence; stars: individual (LkH alpha 330); techniques: interferometric ID PROTOPLANETARY DISKS; TRANSITIONAL DISKS; GRAIN-GROWTH; CIRCUMSTELLAR DISKS; TAURUS-AURIGA; HD 142527; MWC 758; PLANETS; STARS; SPECTROSCOPY AB Dust trapping accelerates the coagulation of dust particles, and, thus, it represents an initial step toward the formation of planetesimals. We report H-band (1.6 mu m) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkH alpha 330. As a. result, a pair of spiral arms were detected in the H-band emission, and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure. and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (beta) by plotting the observed spectral energy distribution slope between 0.87 mm from our Submillimeter Array observation and 1.3 mm from literature. The results imply that grains are indistinguishable from interstellar medium-like dust in the east side (beta = 2.0 +/- 0.5) but are much smaller in the west side beta = 0.7(-0.4)(+0.5), indicating differential dust size distribution between the two sides of the disk. Combining the results of near-infrared and submillimeter observations, we conjecture that the spiral arms exist at the upper surface and an asymmetric structure resides in the disk interior. Future observations at centimeter wavelengths and differential polarization imaging in other bands (Y-K) with extreme AO imagers are required to understand how large dust grains form and to further explore the dust distribution in the disk. C1 [Akiyama, Eiji; Hashimoto, Jun; Hasegawa, Yasuhiro; Ishii, Miki; Iye, Masanori; Kandori, Ryo; Morino, Jun-Ichi; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Liu, Hauyu Baobabu] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Liu, Hauyu Baobabu; Li, Jennifer I-Hsiu; Takami, Michihiro] Acad Sinica, Inst Astron & Astrophys, POB 23-141, Taipei 10167, Taiwan. [Li, Jennifer I-Hsiu] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Bonnefoy, Michael] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Bonnefoy, Michael] CNRS, F-38000 Grenoble, France. [Bonnefoy, Michael; Henning, Thomas; Feldt, Markus; Brandner, Wolfgang] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Dong, Ruobing] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hasegawa, Yasuhiro; Serabyn, Eugene] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Sitko, Michael L.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Sitko, Michael L.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Janson, Markus] Stockholm Univ, AlbaNova Univ Ctr, Dept Astron, SE-10691 Stockholm, Sweden. [Wisniewski, John] Univ Oklahoma, Dept Phys & Astron, 440 W Brooks St, Norman, OK 73019 USA. [Kudo, Tomoyuki; Egner, Sebastian; Guyon, Olivier; Hayano, Yutaka; Hayashi, Saeko S.; Nishimura, Tetsuo; Pyo, Tae-Soo; Takato, Naruhisa; Terada, Hiroshi; Tomono, Daigo] Natl Astron Observ Japan, Subaru Telescope, 650 North Aohoku Pl, Hilo, HI 96720 USA. [Kusakabe, Nobuhiko; Kuzuhara, Masayuki; Tamura, Motohide] NINS, Astrobiol Ctr, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Tsukagoshi, Takashi; Momose, Munetake] Ibaraki Univ, Coll Sci, 2-1-1 Bunkyo, Mito, Ibaraki 3108512, Japan. [Muto, Takayuki] Kogakuin Univ, Div Liberal Arts, Shinjuku Ku, 1-24-2 Nishi Shinjuku, Tokyo 1638677, Japan. [Taki, Tetsuo] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan. [Satoshi, Mayama; Hayashi, Masahiko] Grad Univ Adv Studies, Ctr Promot Integrated Sci, Hayama Cho, Miura, Kanagawa 2400115, Japan. [Grady, Carol A.; Mcelwain, Michael W.] Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. [Grady, Carol A.] Eureka Sci, 2452 Delmer,Suite 100, Oakland, CA 96002 USA. [Kwon, Jungmi] Univ Tokyo, Dept Astron, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Thalmann, Christian] Swiss Fed Inst Technol, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Abe, Lyu] Univ Nice Sophia Antipolis, Lab Hippolyte Fizeau, UMR6525, 28 Ave Valrose, F-06108 Nice 02, France. [Brandt, Timothy D.; Knapp, Gillian R.; Turner, Edwin L.] Princeton Univ, Dept Astrophys Sci, Peyton Hall,Ivy Lane, Princeton, NJ 08544 USA. [Carson, Joseph C.] Coll Charleston, Dept Phys & Astron, 66 George St, Charleston, SC 29424 USA. [Goto, Miwa] Univ Munich, 12 Univ Sternwarte Munchen, Scheinerstr 1, D-81679 Munich, Germany. [Hodapp, Klaus W.] Univ Hawaii, Inst Astron, 640 North Aohoku Pl, Hilo, HI 96720 USA. [Matsuo, Taro] Kyoto Univ, Dept Astron, Sakyo Ku, Kita Shirakawa Oiwake Cho, Kyoto 6068502, Japan. [Miyama, Shoken] Hiroshima Univ, 1-3-2 Kagamiyama, Higashihiroshima, Hiroshima 7398511, Japan. [Moro-Martin, Amaya] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Moro-Martin, Amaya] Johns Hopkins Univ, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [Suenaga, Takuya] Grad Univ Adv Studies SOKENDAI, Sch Phys Sci, Dept Astron Sci, Mitaka, Tokyo 1818588, Japan. [Turner, Edwin L.] Univ Tokyo, Kavli Inst Phys & Math Univ, 5-1-1 Kashiwanoha, Kashiwa, Chiba 2278568, Japan. [Watanabe, Makoto] Hokkaido Univ, Dept Cosmosci, Kita Ku, Sapporo, Hokkaido 0600810, Japan. [Yamada, Toru] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan. RP Akiyama, E (reprint author), Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. EM eiji.akiyama@nao.ac.jp RI MIYAMA, Shoken/A-3598-2015 FU Ministry of Science and Technology (MoST) of Taiwan [103-2112-M-001-029]; JPL/Caltech under NASA; MEXT KAKENHI [23103004] FX M.T. is supported by the Ministry of Science and Technology (MoST) of Taiwan (grant No. 103-2112-M-001-029). Y.H. is currently supported by JPL/Caltech under a contract from NASA. This work is supported by MEXT KAKENHI No. 23103004. NR 50 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 222 DI 10.3847/1538-3881/152/6/222 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1ED UT WOS:000390773800002 ER PT J AU Lupu, RE Marley, MS Lewis, N Line, M Traub, WA Zahnle, K AF Lupu, Roxana E. Marley, Mark S. Lewis, Nikole Line, Michael Traub, Wesley A. Zahnle, Kevin TI DEVELOPING ATMOSPHERIC RETRIEVAL METHODS FOR DIRECT IMAGING SPECTROSCOPY OF GAS GIANTS IN REFLECTED LIGHT. I. METHANE ABUNDANCES AND BASIC CLOUD PROPERTIES SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: statistical; planets and satellites: atmospheres; planets and satellites: composition; techniques: spectroscopic ID BAYESIAN MODEL SELECTION; PLANETARY-ATMOSPHERES; RADIATIVE-TRANSFER; THERMAL STRUCTURE; CASSINI ISS; SCATTERING; SPECTRA; SEPARATION; COSMOLOGY; INFERENCE AB Upcoming space-based coronagraphic instruments in the next decade will perform reflected light spectroscopy and photometry of cool directly imaged extrasolar giant planets. We are developing a new atmospheric retrieval methodology to help assess the science return and inform the instrument design for such future missions, and ultimately interpret the resulting observations. Our retrieval technique employs a geometric albedo model coupled with both a Markov chain Monte Carlo Ensemble Sampler (emcee) and a multimodal nested sampling algorithm (MultiNest) to map the posterior distribution. This combination makes the global evidence calculation more robust for any given model and highlights possible discrepancies in the likelihood maps. As a proof of concept, our current atmospheric model contains one or two cloud layers, methane as a major absorber, and a H-2-He background gas. This 6-to-9 parameter model is appropriate for Jupiter-like planets and can be easily expanded in the future. In addition to deriving the marginal likelihood distribution and confidence intervals for the model parameters, we perform model selection to determine the significance of methane and cloud detection as a function of expected signal-to-noise ratio in the presence of spectral noise correlations. After internal validation, the method is applied to realistic spectra of Jupiter, Saturn, and HD 99492c, a model observing target. We find that the presence or absence of clouds and methane can be determined with high confidence, while parameter uncertainties are model dependent and correlated. Such general methods will also be applicable to the interpretation of direct imaging spectra of cloudy terrestrial planets. C1 [Lupu, Roxana E.] NASA Ames Res Ctr, BAER Inst, Moffett Field, CA 94035 USA. [Marley, Mark S.; Zahnle, Kevin] NASA Ames Res Ctr, Moffett Field, CA 94035 USA. [Lewis, Nikole] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Line, Michael] Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA. [Traub, Wesley A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Lupu, RE (reprint author), NASA Ames Res Ctr, BAER Inst, Moffett Field, CA 94035 USA. EM Roxana.E.Lupu@nasa.gov OI Marley, Mark/0000-0002-5251-2943 FU WFIRST Preparatory Science Program; JPL Exoplanet Exploration Program Office; NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center FX This research was supported by the WFIRST Preparatory Science Program and the JPL Exoplanet Exploration Program Office. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We thank an anonymous referee for constructive comments that helped improve this paper. R.L. would like to thank the other coauthors for paying her a living wage for the duration of the project, and Mom for endless moral support. NR 58 TC 1 Z9 1 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 217 DI 10.3847/0004-6256/152/6/217 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1DY UT WOS:000390773300001 ER PT J AU Obermeier, C Henning, T Schlieder, JE Crossfield, IJM Petigura, EA Howard, AW Sinukoff, E Isaacson, H Ciardi, DR David, TJ Hillenbrand, LA Beichman, CA Howell, SB Horch, E Everett, M Hirsch, L Teske, J Christiansen, JL Lepine, S Aller, KM Liu, MC Saglia, RP Livingston, J Kluge, M AF Obermeier, Christian Henning, Thomas Schlieder, Joshua E. Crossfield, Ian J. M. Petigura, Erik A. Howard, Andrew W. Sinukoff, Evan Isaacson, Howard Ciardi, David R. David, Trevor J. Hillenbrand, Lynne A. Beichman, Charles A. Howell, Steve B. Horch, Elliott Everett, Mark Hirsch, Lea Teske, Johanna Christiansen, Jessie L. Lepine, Sebastien Aller, Kimberly M. Liu, Michael C. Saglia, Roberto P. Livingston, John Kluge, Matthias TI K2 DISCOVERS A BUSY BEE: AN UNUSUAL TRANSITING NEPTUNE FOUND IN THE BEEHIVE CLUSTER SO ASTRONOMICAL JOURNAL LA English DT Article DE eclipses; stars: individual (K2-95); stars: low-mass; techniques: photometric; techniques: spectroscopic ID LOW-MASS STARS; INFRARED TELESCOPE FACILITY; MAIN-SEQUENCE STARS; NEARBY M DWARFS; HOT JUPITERS; PLANETARY SYSTEMS; PHYSICAL-PROPERTIES; ECLIPSING BINARIES; MODEL ATMOSPHERES; RADIAL-VELOCITIES AB Open clusters have been the focus of several exoplanet surveys, but only a few planets have so far been discovered. The Kepler spacecraft revealed an abundance of small planets around small cool stars, therefore, such cluster members are prime targets for exoplanet transit searches. Kepler's new mission, K2, is targeting several open clusters and star-forming regions around the ecliptic to search for transiting planets around their low-mass constituents. Here, we report the discovery of the first transiting planet in the intermediate-age (800 Myr) Beehive cluster (Praesepe). K2-95 is a faint (Kp = 15.5 mag) M3.0 +/- 0.5 dwarf from K2's Campaign 5 with an effective temperature of 3471 +/- 124 K, approximately solar metallicity and a radius of 0.402 +/- 0.050 R-circle dot. We detected a transiting planet with a radius of 3.47(-0.53)(+0.78)R(circle plus) and an orbital period of 10.134 days. We combined photometry, medium/high-resolution spectroscopy, adaptive optics/speckle imaging, and archival survey images to rule out any false-positive detection scenarios, validate the planet, and further characterize the system. The planet's radius is very unusual as M-dwarf field stars rarely have Neptune-sized transiting planets. The comparatively large radius of K2-95b is consistent with the other recently discovered cluster planets K2-25b (Hyades) and K2-33b (Upper Scorpius), indicating systematic differences in their evolutionary states or formation. These discoveries from K2 provide a snapshot of planet formation and evolution in cluster environments and thus make excellent laboratories to test differences between field-star and cluster planet populations. C1 [Obermeier, Christian; Henning, Thomas] Max Planck Inst Astron, Heidelberg, Germany. [Obermeier, Christian; Saglia, Roberto P.; Kluge, Matthias] Max Planck Inst Extraterr Phys, Garching, Germany. [Obermeier, Christian; Kluge, Matthias] Ludwig Maximilians Univ Munchen, Univ Observ Munich USM, Munich, Germany. [Schlieder, Joshua E.; Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 91125 USA. [Schlieder, Joshua E.; Ciardi, David R.; Christiansen, Jessie L.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Crossfield, Ian J. M.] Univ Arizona, Lunar & Planetary Lab, 1629 E Univ Blvd, Tucson, AZ 85721 USA. [Petigura, Erik A.] CALTECH, Geol & Planetary Sci, Pasadena, CA 91125 USA. [Howard, Andrew W.; Sinukoff, Evan; Aller, Kimberly M.; Liu, Michael C.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Isaacson, Howard; Beichman, Charles A.; Hirsch, Lea] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [David, Trevor J.; Hillenbrand, Lynne A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Horch, Elliott] Southern Connecticut State Univ, Dept Phys, New Haven, CT 06515 USA. [Everett, Mark] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Teske, Johanna] Carnegie Dept Terr Magnetism, Washington, DC 20015 USA. [Lepine, Sebastien] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA. [Livingston, John] Univ Tokyo, Grad Sch Sci, Dept Astron, 7-3-1 Bunkyo Ku, Tokyo 1130033, Japan. RP Obermeier, C (reprint author), Max Planck Inst Astron, Heidelberg, Germany.; Obermeier, C (reprint author), Max Planck Inst Extraterr Phys, Garching, Germany.; Obermeier, C (reprint author), Ludwig Maximilians Univ Munchen, Univ Observ Munich USM, Munich, Germany. OI Ciardi, David/0000-0002-5741-3047; Isaacson, Howard/0000-0002-0531-1073; David, Trevor/0000-0001-6534-6246 FU Hubble Fellowship; NASA [NNH14CK55B] FX E.A.P. acknowledges support through a Hubble Fellowship.; Some of the data presented herein were obtained at the W.M. Keck Observatory (which is operated as a scientific partnership among Caltech, UC, and NASA) and at the Infrared Telescope Facility (IRTF, operated by UH under NASA contract NNH14CK55B). The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 116 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 223 DI 10.3847/1538-3881/152/6/223 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1ED UT WOS:000390773800003 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Behnke, B Bejger, M Bell, AS Bell, CJ Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bogan, C Bohe, A Bojtos, P Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, CB Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R De, S Debra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fong, H Fournier, JD Franco, S Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gatto, A Gaur, G Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, A Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Holz, DE Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Islas, G Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Karki, S Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalaidovski, A Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, J Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Kleybolte, L Klimenko, S Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Li, TGF Libson, A Littenberg, TB Lockerbie, NA Logue, J Lombardi, AL Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, DJ McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mendoza-Gandara, D Mercer, RA Merilh, E Merzougui, M Meshkov, S Messenger, C Messick, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, ME Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Piccinni, O Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poggiani, R Popolizio, P Porter, EK Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qi, H Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, R Romanov, G Romie, JH RosiNska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sampson, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Sathyaprakash, BS Saulson, PR Sauter, O Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sentenac, D Sequino, V Sergeev, A Serna, G Setyawati, Y Sevigny, A Shaddock, DA Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stevenson, S Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G Vallisneri, M van Bakel, N van Beuzekom, M van den Brand, JFJ Van den Broeck, C Vander-Hyde, DC van der Schaaf, L van Heijningen, JV van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, D Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wesels, P Westphal, T Wette, K Whelan, JT White, DJ Whiting, BF Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Wright, JL Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yap, MJ Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Behnke, B. Bejger, M. Bell, A. S. Bell, C. J. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cahillane, C. Calderon Bustillo, J. Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. B. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. G. Cominsky, L. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P. Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. De, S. Debra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fong, H. Fournier, J. -D. Franco, S. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gatto, A. Gaur, G. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Castro, J. M. Gonzalez Gopakumar, A. Gordon, A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Holz, D. E. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J. -M. Isi, M. Islas, G. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, C. Kim, J. Kim, K. Kim, Nam-Gyu Kim, Namjun Kim, Y. -M. King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Logue, J. Lombardi, A. L. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lueck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, D. J. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mendoza-Gandara, D. Mercer, R. A. Merilh, E. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Piccinni, O. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poggiani, R. Popolizio, P. Porter, E. K. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qi, H. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, R. Romanov, G. Romie, J. H. RosiNska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sampson, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Sauter, O. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Setyawati, Y. Sevigny, A. Shaddock, D. A. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stevenson, S. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Toyra, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. Vallisneri, M. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. Van den Broeck, C. Vander-Hyde, D. C. van der Schaaf, L. van Heijningen, J. V. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wesels, P. Westphal, T. Wette, K. Whelan, J. T. White, D. J. Whiting, B. F. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Wright, J. L. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yap, M. J. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zevin, M. Zhang, F. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. CA LIGO Sci Collaboration Virgo Collaboration TI SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914" (2016, ApJL, 833, L1) SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE gravitational waves; stars: black holes AB This article provides supplemental information for a Letter reporting the rate of (BBH) coalescences inferred from 16 days of coincident Advanced LIGO observations surrounding the transient (GW) signal GW150914. In that work we reported various rate estimates whose 90% confidence intervals fell in the range 2-600. Gpc(-3). yr(-1). Here we give details on our method and computations, including information about our search pipelines, a derivation of our likelihood function for the analysis, a description of the astrophysical search trigger distribution expected from merging BBHs, details on our computational methods, a description of the effects and our model for calibration uncertainty, and an analytic method for estimating our detector sensitivity, which is calibrated to our measurements. C1 [Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Ain, A.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Addesso, P.; Barone, F.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.] INFN, Sez Napoli, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Voss, D.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mt Blanc, CNRS IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Adya, V. B.; Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Baune, C.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Doravari, S.; Drago, M.; Eggenstein, H. -B.; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wesels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zhang, F.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Aiello, L.; Coccia, E.; Fafone, V.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] INFN, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] INFN, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, Archisman; Iyer, B. R.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Walsh, S.] Univ Wisconsin Milwaukee, Milwaukee, WI 53201 USA. [Allen, B.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Kawazoe, F.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Castro, J. M. Gonzalez; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Castro, J. M. Gonzalez; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] INFN, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.; Yap, M. J.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Read, J.; Serna, G.; Smith, J. R.; Vander-Hyde, D. C.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Frey, V.; Hello, P.; Huet, D.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris Saclay, Univ Paris Sud, LAL, CNRS IN2P3, F-91400 Orsay, France. [Arun, K. G.; Kalaghatgi, C. V.] Chennai Math Inst, Chennai 603103, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Piccinni, O.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Frasca, S.; Grunewald, S.; Harry, I. W.; Leaci, P.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Puerrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.; Walsh, S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Gatto, A.; Lebigot, E. O.; Porter, E. K.; Tacca, M.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Irfu,Observ Paris,Sorbonne Paris Cite, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Romano, R.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Romano, R.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; De, S.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, A.; Graef, C.; Grant, A.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Merilh, E.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Bergmann, G.; Debreczeni, G.; Vasuth, M.] RMKI, Wigner RCP, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; Debra, D.; Fejer, M. M.; Kim, Namjun; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; RosiNska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C. -J.; Mandel, I.; Miao, H.; Middleton, H.; Stevenson, S.; Thomas, E. G.; Toyra, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; Shah, S.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Artemis Univ Cote dAzur, CNRS, Observ Cote dAzur, Artemis, F-34229 Nice 4, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.; Isac, J. -M.; Jacqmin, T.] ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, Coll France, F-75005 Paris, France. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Cowan, E. E.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Lumiere Matiere, UMR CNRS 5306, F-69622 Villeurbanne, France. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, CNRS IN2P3, LMA, F-69622 Lyon, France. [Calderon Bustillo, J.; Husa, S.; Jimenez-Forteza, F.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IEEC IAC3, E-07122 Palma De Mallorca, Spain. [Calloni, E.; De laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Napoli Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Fong, H.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Chamberlin, S. J.; Everett, R.; Hanna, C.; Idrisy, A.; Meacher, D.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Schmidt, P.; Thorne, K. S.; Vallisneri, M.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, C.; Kim, Nam-Gyu] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Colla, A.; Conte, A.; Di Giovanni, M.; Di Pace, S.; Leaci, P.; Mezzani, F.; Naticchioni, L.; Piccinni, O.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Coughlin, S. B.; Huerta, E. A.; Kalogera, V.; Pankow, C.; Sampson, L.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, Evanston, IL 60208 USA. [Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Muir, A. W.; Sathyaprakash, B. S.; Schutz, B. F.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.; Sengupta, A. S.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom Ter 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Goetz, E.; Gustafson, R.; Neunzert, A.; Riles, K.; Sanders, J. R.; Sauter, O.] Univ Michigan, Ann Arbor, MI 48109 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hoak, D.; Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts Amherst, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E. A.; McWilliams, S. T.] West Virginia Univ, Morgantown, WV 26506 USA. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Krolak, A.; Kutynia, A.; Lange, J.; Zadrozny, A.] Rochester Inst Technol, Rochester, NY 14623 USA. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Littenberg, T. B.] Univ Alabama Huntsville, Huntsville, AL 35899 USA. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [RosiNska, D.] Univ Zielona, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Di Virgilio, Angela Dora Vittoria/E-9078-2015; Garufi, Fabio/K-3263-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; Leonardi, Matteo/G-9694-2015; Sigg, Daniel/I-4308-2015; Cesarini, Elisabetta/C-4507-2017; Strain, Kenneth/D-5236-2011; Costa, Cesar/G-7588-2012; Hild, Stefan/A-3864-2010; Chow, Jong/A-3183-2008; Gemme, Gianluca/C-7233-2008; Frey, Raymond/E-2830-2016; Prokhorov, Leonid/I-2953-2012; Gammaitoni, Luca/B-5375-2009; Ferrante, Isidoro/F-1017-2012; Ciani, Giacomo/G-1036-2011; Strigin, Sergey/I-8337-2012 OI Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Garufi, Fabio/0000-0003-1391-6168; Nelemans, Gijs/0000-0002-0752-2974; Sigg, Daniel/0000-0003-4606-6526; Cesarini, Elisabetta/0000-0001-9127-3167; Strain, Kenneth/0000-0002-2066-5355; Chow, Jong/0000-0002-2414-5402; Gemme, Gianluca/0000-0002-1127-7406; Frey, Raymond/0000-0003-0341-2636; Gammaitoni, Luca/0000-0002-4972-7062; Ferrante, Isidoro/0000-0002-0083-7228; Ciani, Giacomo/0000-0003-4258-9338; FU United States National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; Max-Planck-Society (MPS); State of Niedersachsen/Germany; Australian Research Council; Netherlands Organisation for Scientific Research; EGO consortium; Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Commission; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; Natural Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; Brazilian Ministry of Science, Technology, and Innovation; Russian Foundation for Basic Research; Leverhulme Trust; Research Corporation; Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation; NSF; STFC; MPS; INFN; CNRS FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO, as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector, and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well: the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, the Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for the provision of computational resources. This article has been assigned the document number LIGO-P1500217. NR 24 TC 0 Z9 0 U1 22 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD DEC PY 2016 VL 227 IS 2 AR 14 DI 10.3847/0067-0049/227/2/14 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF4ZT UT WOS:000390341200001 ER PT J AU Crawford, TM Chown, R Holder, GP Aird, KA Benson, BA Bleem, LE Carlstrom, JE Chang, CL Cho, HM Crites, AT de Haan, T Dobbs, MA George, EM Halverson, NW Harrington, NL Holzapfel, WL Hou, Z Hrubes, JD Keisler, R Knox, L Lee, AT Leitch, EM Luong-Van, D Marrone, DP McMahon, JJ Meyer, SS Mocanu, LM Mohr, JJ Natoli, T Padin, S Pryke, C Reichardt, CL Ruhl, JE Sayre, JT Schaffer, KK Shirokoff, E Staniszewski, Z Stark, AA Story, KT Vanderlinde, K Vieira, JD Williamson, R AF Crawford, T. M. Chown, R. Holder, G. P. Aird, K. A. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Cho, H-M. Crites, A. T. de Haan, T. Dobbs, M. A. George, E. M. Halverson, N. W. Harrington, N. L. Holzapfel, W. L. Hou, Z. Hrubes, J. D. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Luong-Van, D. Marrone, D. P. McMahon, J. J. Meyer, S. S. Mocanu, L. M. Mohr, J. J. Natoli, T. Padin, S. Pryke, C. Reichardt, C. L. Ruhl, J. E. Sayre, J. T. Schaffer, K. K. Shirokoff, E. Staniszewski, Z. Stark, A. A. Story, K. T. Vanderlinde, K. Vieira, J. D. Williamson, R. TI MAPS OF THE MAGELLANIC CLOUDS FROM COMBINED SOUTH POLE TELESCOPE AND PLANCK DATA SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE Magellanic Clouds; methods: data analysis ID SOURCE CATALOG; RESULTS. VI.; EMISSION; RADIO; SKY; HFI; SUBMILLIMETER; SPECTRUM; FIELD; DUST AB We present maps of the Large and Small Magellanic Clouds from combined South Pole Telescope (SPT) and Planck data. The Planck satellite observes in nine bands, while the SPT data used in this work were taken with the three-band SPT-SZ camera, The SPT-SZ bands correspond closely to three of the nine Planck bands, namely those centered at 1.4, 2.1, and 3.0 mm. The angular resolution of the Planck data ranges from 5 to 10 arcmin, while the SPT resolution ranges from 1.0 to 1.7 arcmin. The combined maps take advantage of the high resolution of the SPT data and the long-timescale stability of the space-based Planck observations to deliver robust brightness measurements on scales from the size of the maps down to similar to 1 arcmin. In each band, we first calibrate and color-correct the SPT data to match the Planck data, then we use noise estimates from each instrument and knowledge of each instrument's beam to make the inverse-variance-weighted combination of the two instruments' data as a function of angular scale. We create maps assuming a range of underlying emission spectra and at a range of final resolutions. We perform several consistency tests on the combined maps and estimate the expected noise in measurements of features in them. We compare maps from this work to those from the Herschel HERITAGE survey, finding general consistency between the data sets. All data products described in this paper are available for download from the NASA Legacy Archive for Microwave Background Data Analysis server. C1 [Crawford, T. M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crites, A. T.; Hou, Z.; Keisler, R.; Leitch, E. M.; Meyer, S. S.; Mocanu, L. M.; Natoli, T.; Padin, S.; Schaffer, K. K.; Shirokoff, E.; Story, K. T.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Crawford, T. M.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crites, A. T.; Hou, Z.; Leitch, E. M.; Meyer, S. S.; Mocanu, L. M.; Padin, S.; Shirokoff, E.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Chown, R.; Holder, G. P.; de Haan, T.; Dobbs, M. A.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Aird, K. A.; Hrubes, J. D.; Luong-Van, D.] Univ Chicago, Chicago, IL 60637 USA. [Benson, B. A.] Fermilab Natl Accelerator Lab, MS209,POB 500, Batavia, IL 60510 USA. [Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Natoli, T.; Story, K. T.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cho, H-M.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Crites, A. T.] CALTECH, Pasadena, CA 91125 USA. [de Haan, T.; George, E. M.; Harrington, N. L.; Holzapfel, W. L.; Lee, A. T.; Reichardt, C. L.; Shirokoff, E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [George, E. M.; Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Halverson, N. W.; Sayre, J. T.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.; Sayre, J. T.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Keisler, R.; Story, K. T.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Marrone, D. P.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Ludwig Maximilians Univ Munchen, Fac Phys, D-81679 Munich, Germany. [Mohr, J. J.] Excellence Cluster Universe, D-85748 Garching, Germany. [Natoli, T.; Vanderlinde, K.] Univ Toronto, Dunlap Inst Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Ruhl, J. E.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Ctr Educ & Res Cosmol & Astrophys, Dept Phys, Cleveland, OH 44106 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Staniszewski, Z.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Stark, A. A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Story, K. T.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Vanderlinde, K.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Vieira, J. D.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Vieira, J. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. RP Crawford, TM (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.; Crawford, TM (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM tcrawfor@kicp.uchicago.edu OI Stark, Antony/0000-0002-2718-9996 FU National Science Foundation [PLR-1248097]; NSF Physics Frontier Center [PHY-1125897]; Kavli Foundation; Gordon and Betty Moore Foundation [GBMF 947]; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; U.S. Department of Energy [DE-AC02-06CH11357] FX The South Pole Telescope is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation grant GBMF 947. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. Argonne National Laboratory work was supported under U.S. Department of Energy contract DE-AC02-06CH11357. We thank M. Meixner and the HERITAGE team for making their data publicly available and K. Ganga for helpful discussion on Planck map properties. NR 28 TC 1 Z9 1 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD DEC PY 2016 VL 227 IS 2 AR 23 DI 10.3847/1538-4365/227/2/23 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MF UT WOS:000390795900003 ER PT J AU Thornton, RJ Ade, PAR Aiola, S Angile, FE Amiri, M Beall, JA Becker, DT Cho, HM Choi, SK Corlies, P Coughlin, KP Datta, R Devlin, MJ Dicker, SR Dunner, R Fowler, JW Fox, AE Gallardo, PA Gao, J Grace, E Halpern, M Hasselfield, M Henderson, SW Hilton, GC Hincks, AD Ho, SP Hubmayr, J Irwin, KD Klein, J Koopman, B Li, DL Louis, T Lungu, M Maurin, L McMahon, J Munson, CD Naess, S Nati, F Newburgh, L Nibarger, J Niemack, MD Niraula, P Nolta, MR Page, LA Pappas, CG Schillaci, A Schmitt, BL Sehgal, N Sievers, JL Simon, SM Staggs, ST Tucker, C Uehara, M van Lanen, J Ward, JT Wollack, EJ AF Thornton, R. J. Ade, P. A. R. Aiola, S. Angile, F. E. Amiri, M. Beall, J. A. Becker, D. T. Cho, H-M. Choi, S. K. Corlies, P. Coughlin, K. P. Datta, R. Devlin, M. J. Dicker, S. R. Dunner, R. Fowler, J. W. Fox, A. E. Gallardo, P. A. Gao, J. Grace, E. Halpern, M. Hasselfield, M. Henderson, S. W. Hilton, G. C. Hincks, A. D. Ho, S. P. Hubmayr, J. Irwin, K. D. Klein, J. Koopman, B. Li, Dale Louis, T. Lungu, M. Maurin, L. McMahon, J. Munson, C. D. Naess, S. Nati, F. Newburgh, L. Nibarger, J. Niemack, M. D. Niraula, P. Nolta, M. R. Page, L. A. Pappas, C. G. Schillaci, A. Schmitt, B. L. Sehgal, N. Sievers, J. L. Simon, S. M. Staggs, S. T. Tucker, C. Uehara, M. van Lanen, J. Ward, J. T. Wollack, E. J. TI THE ATACAMA COSMOLOGY TELESCOPE: THE POLARIZATION-SENSITIVE ACTPol INSTRUMENT SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmic background radiation; instrumentation: polarimeters ID MICROWAVE BACKGROUND POLARIZATION; MULTICHROIC POLARIMETER ARRAY; ANISOTROPY-PROBE; OPTICAL DESIGN; SILICON LENSES; MILLIMETER AB The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3 degrees field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems. C1 [Thornton, R. J.] West Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Thornton, R. J.; Angile, F. E.; Devlin, M. J.; Dicker, S. R.; Klein, J.; Lungu, M.; Nati, F.; Schmitt, B. L.; Ward, J. T.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Ade, P. A. R.; Tucker, C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aiola, S.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aiola, S.] Univ Pittsburgh, Pittsburgh Particle Phys Astrophys & Cosmol Ctr, Pittsburgh, PA 15260 USA. [Amiri, M.; Halpern, M.; Hincks, A. D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Beall, J. A.; Becker, D. T.; Fowler, J. W.; Fox, A. E.; Gao, J.; Hilton, G. C.; Hubmayr, J.; Nibarger, J.; van Lanen, J.] NIST Quantum Sensors Grp, 325 Broadway Mailcode 817-03, Boulder, CO 80305 USA. [Cho, H-M.; Irwin, K. D.; Li, Dale] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Choi, S. K.; Grace, E.; Ho, S. P.; Page, L. A.; Pappas, C. G.; Schillaci, A.; Simon, S. M.; Staggs, S. T.] Princeton Univ, Joseph Henry Labs Phys, Jadwin Hall, Princeton, NJ 08544 USA. [Corlies, P.; Gallardo, P. A.; Henderson, S. W.; Koopman, B.; Niemack, M. D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Coughlin, K. P.; Datta, R.; McMahon, J.; Munson, C. D.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Dunner, R.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Ave Vicuna Mackenna 4860, Santiago 7820436, Chile. [Dunner, R.] Pontificia Univ Catolica Chile, Fac Fis, Ctr Astroingn, Ave Vicuna Mackenna 4860, Santiago 7820436, Chile. [Hasselfield, M.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Hasselfield, M.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Hincks, A. D.] Pontificia Univ Gregoriana, Piazza Pilotta 4, I-00187 Rome, Italy. [Irwin, K. D.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Louis, T.] UPMC Univ Paris 06, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Maurin, L.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Ave Vicuna Mackenna 4860, Santiago 7820436, Chile. [Naess, S.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Newburgh, L.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H14, Canada. [Niraula, P.; Schillaci, A.; Uehara, M.] Soc Radiosky Asesoras Ingn Ltd, Lincoyan 54,Dept 805, Concepcion, Chile. [Nolta, M. R.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Sehgal, N.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Sievers, J. L.] Univ KwaZulu Natal, Sch Chem & Phys, Astrophys & Cosmol Res Unit, Durban, South Africa. [Sievers, J. L.] Natl Inst Theoret Phys, Kwa Zulu, South Africa. [Wollack, E. J.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Thornton, RJ (reprint author), West Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA.; Thornton, RJ (reprint author), Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. RI Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 FU U.S. National Science Foundation [AST-0408698, AST-0965625]; Princeton University; University of Pennsylvania; Cornell University; Wilkinson Fund; NASA [NNX13AE56G, NNX14AB58G, NNX12AM32H]; NASA; CONICYT [FONDECYT 1141113, Anillo ACT-1417] FX ACT is on the Chajnantor Science preserve, which was made possible by the Chilean Comision Nacional de Investigacion Cientifica y Tecnologica. We are grateful for the assistance we received at various times from the ABS, ALMA, APEX, ASTE, and POLARBEAR groups. The PWV data come from the public APEX weather site. Field operations were based at the Don Esteban (operated by Astro-Norte) and RadioSky facilities. This work was supported by the U.S. National Science Foundation through awards AST-0408698 and AST-0965625. Funding was also provided by Princeton University, the University of Pennsylvania, Cornell University, the Wilkinson Fund, and the Mishrahi Gift. The development of multichroic detectors and lenses was supported by NASA grants NNX13AE56G and NNX14AB58G. C.M. acknowledges support from NASA grant NNX12AM32H. B.S., B.K., C.M., E.G., K.C., J.W., and S.M.S. received funding from NASA Space Technology Research Fellowships. R.D. thanks CONICYT for grants FONDECYT 1141113 and Anillo ACT-1417. NR 46 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD DEC PY 2016 VL 227 IS 2 AR 21 DI 10.3847/1538-4365/227/2/21 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MF UT WOS:000390795900001 ER PT J AU McKinley, IM Smith, CH Ramsey, PG Rodriguez, JI AF McKinley, Ian M. Smith, Colin H. Ramsey, Perry G. Rodriguez, Jose I. TI Pyrolytic graphite film thermal straps: Characterization testing SO CRYOGENICS LA English DT Article DE Pyrolytic graphite film; Flexible thermal link; Annealed pyrolytic graphite AB This paper reports on the experimentally-measured conductance, stiffness, and particulate contamination of pyrolytic graphite film thermal straps. This work was aimed at assessing the feasibility of replacing standard aluminum foil in thermal straps with graphite film, which is more conductive and lighter. Four different U-shaped straps with similar cross-sections and terminals were tested in the study. Three of the straps had a three-inch long flexible section. One of these was made from aluminum 1100 foil, and two were made from Pyrovo pyrolytic graphite film (PGF). One of the PGF straps was fabricated with an aluminized mylar blanket that was sealed at the terminals. The last strap was made from PGF, was blanketed, and was six inches long. The conductance of each strap was measured as a function of mean strap temperature ranging from 60 K to 300 K. The peak measured conductance of the three-inch PGF and aluminum straps were 1.0 W/K at 162 K and 0.28 W/K at 64K, respectively. The conductance of all straps converged to around 0.3 W/K as the mean strap temperature approached 60 K. In addition, the peak conductance of the six-inch PGF strap was 0.83 W/K at 150 K. The fact that its peak conductance was near the conductance of the three-inch PGF strap indicated that the thermal resistance of the terminals in the PGF straps was significant. For a given temperature, the conductance varied by as much as 15% for two units of the same strap design. One of the straps was thermally cycled from 300 K to 60 K ten times. Its conductance was unchanged by the thermal cycling. Furthermore, one of the six-inch long PGF straps was subjected to random vibration. The random vibration spectrum was designed so that one terminal achieved a maximum displacement of 0.25 in. from its neutral position in three orthogonal axes while the other was held stationary. The conductance of this strap was unaffected by the random vibration test. The straps were also tested for the level of contamination introduced to the environment. The bare aluminum and bare PGF straps had equal particulate cleanliness levels while the encapsulated PGF strap had a lower one. Finally, the dynamic stiffness of one of the six-inch strap was measured to be less than 0.5 lb/in. in all directions for temperatures between 200 and 300 K. (C) 2016 Elsevier Ltd. All rights reserved. C1 [McKinley, Ian M.; Smith, Colin H.; Ramsey, Perry G.; Rodriguez, Jose I.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP McKinley, IM (reprint author), 4800 Oak Grove Dr M-S 157-316, Pasadena, CA 91109 USA. EM ian.m.mckinley@jpl.nasa.gov NR 8 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD DEC PY 2016 VL 80 BP 174 EP 180 DI 10.1016/j.cryogenics.2016.10.002 PN 1 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA EG0MJ UT WOS:000390726600019 ER PT J AU Sigler, MF Napp, JM Stabeno, PJ Heintz, RA Lomas, MW Hunt, GL AF Sigler, Michael F. Napp, Jeffrey M. Stabeno, Phyllis J. Heintz, Ronald A. Lomas, Michael W. Hunt, George L., Jr. TI Variation in annual production of copepods, euphausiids, and juvenile walleye pollock in the southeastern Bering Sea SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Climate; Sea ice; Productivity; Zooplankton; Walleye pollock; Bering Sea; Match-mismatch ID NET COMMUNITY PRODUCTION; THERAGRA-CHALCOGRAMMA; CLIMATE-CHANGE; CALANUS-GLACIALIS; SHELIKOF-STRAIT; FISHERIES OCEANOGRAPHY; SPATIAL-DISTRIBUTION; THYSANOESSA-INERMIS; PHYSICAL PROCESSES; INORGANIC CARBON AB We synthesize recent research on variation in annual production of copepods (Calanus spp.), euphausiids (Thysanoessa spp.), and juvenile walleye pollock (Gadus chalcogrammus) in the southeastern Bering Sea. We reach five conclusions: 1) the timing of the spring bloom is more important than the amount of annual primary production for the transfer of primary to secondary production (i.e., timing matters); 2) summer and fall, not just spring, matter: organisms must maximize energy intake devoted to somatic growth and storage of lipids and minimize energy expenditures during each season; 3) stored lipids are important for the overwinter survival of both zooplankton and age-0 walleye pollock; 4) variation in ice extent and timing of ice retreat affect the spatial distributions of phytoplanlcton, zooplankton, and age-0 walleye pollock; when these spatial distributions match in late-ice-retreat years, the annual production of copepods, euphausiids, and juvenile walleye pollock often increases (i.e., location matters); 5) if years with late ice retreat, which favor copepod, euphausiid, and juvenile walleye pollock production, occur in succession, top-down control increases. These conclusions help to explain annual variation in production of copepods, euphausiids and juvenile walleye pollock. Copepods and euphausiids often are more abundant in cold years with late ice retreat than in warm years with early ice retreat due to bloom timing and the availability of ice algae during years with late ice retreat. As a consequence, age-0 walleye pollock consume lipid-enriched prey in cold years, better preparing them for their first winter and their over winter survival is greater. In addition, there is a spatial match of primary production, zooplankton, and age-0 walleye pollock in cold years and a mismatch in warm years. Published by Elsevier Ltd. C1 [Sigler, Michael F.; Heintz, Ronald A.] Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, NOAA, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. [Napp, Jeffrey M.] Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115 USA. [Stabeno, Phyllis J.] NOAA, Pacific Marine Environm Lab, Oceans & Atmospher Res, 7600 Sand Point Way NE, Seattle, WA 98115 USA. [Lomas, Michael W.] Bigelow Lab Ocean Sci, 60 Bigelow Dr,POB 380, East Boothbay, ME 04544 USA. [Hunt, George L., Jr.] Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. RP Sigler, MF (reprint author), Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, NOAA, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. EM mike.sigler@noaa.gov OI Lomas, Michael/0000-0003-1209-3753 FU National Science Foundation [ANC-1107250]; Bering Sea Project [175]; NOAA's Climate Regimes and Ecosystem Productivity Program FX Thanks to Ken Coyle, Elizabeth Siddon, Carin Ashjian, and three anonymous reviewers for their thorough and insightful reviews and to Carin Ashjian, Neal Banas, Bob Campbell, Seth Danielson, Ted Durbin, Lisa Eisner, Rodger Harvey, Cal Mordy, Alexei Pinchuk, Rachel Pleuthner, and Patrick Ressler for answers to some of our questions as we wrote our manuscript. GLH and MWL were supported, in part, by National Science Foundation, Grant ANC-1107250. This is NPRB paper number 572 and Bering Sea Project paper number 175. It is also PMEL Contribution #4374 and Eco-FOCI Contribution #N848 to NOAA's North Pacific Climate Regimes and Ecosystem Productivity research program. JMN and PJS gratefully acknowledge the support of NOAA's Climate Regimes and Ecosystem Productivity Program which funded their participation and the warm year observations collected by the EcoFOCI Program. The findings and conclusions are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service. NR 126 TC 6 Z9 6 U1 3 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 EI 1879-0100 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD DEC PY 2016 VL 134 BP 223 EP 234 DI 10.1016/j.dsr2.2016.01.003 PG 12 WC Oceanography SC Oceanography GA EF7LG UT WOS:000390510500016 ER PT J AU Andrews, AG Strasburger, WW Farley, EV Murphy, JM Coyle, KO AF Andrews, Alexander G., III Strasburger, Wesley W. Farley, Edward V., Jr. Murphy, James M. Coyle, Kenneth O. TI Effects of warm and cold climate conditions on capelin (Mallotus villosus) and Pacific herring (Clupea pallasii) in the eastern Bering Sea SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Capelin; Herring; Forage fish; Bering Sea; Climate change; Diet; Crustacean zooplankton ID POLLOCK THERAGRA-CHALCOGRAMMA; WALLEYE POLLOCK; FEEDING ECOLOGY; BARENTS SEA; FISH DISTRIBUTIONS; FOOD-HABITS; FORAGE FISH; ECOSYSTEM; SHELF; NORTHERN AB Climate warming has impacted the southern extent of sea ice in the eastern Bering Sea (EBS) ecosystem, leading to many changes in ocean conditions and food webs there. We explore how these changes have affected two key forage fish species, capelin (Mallotus villosus) and Pacific herring (Clupea pallasii), examining the effects of climate change on this commercially important ecosystem in the EBS. Catch per unit effort (CPUE) data from surface trawls, size, and diet of capelin and Pacific herring were collected during a series of warm and cold years by fisheries oceanographic surveys conducted from mid-August to early October 2003 through 2011. Overall, mean CPUE for both species was higher in the northeastern Bering Sea [NEBS; capelin = 1.2 kg/km(2) (warm) and 40.0 kg/km(2) (cold); herring=141.1 kg/km(2) (warm) and 132.4 kg/km(2) (cold)] relative to the southeastern Bering Sea [SEBS; capelin = 0.2 kg/km(2) (warm) and 5.8 kg/km(2) (cold); herring=15.8 kg/km(2) (warm) and 24.5 kg/km(2) (cold)1, irrespective of temperature conditions. Capelin mean CPUE was significantly lower during warm years than during cold years [p < 0.001; 0.6 kg/km(2) (warm), 19.0 kg/km(2) (cold)]. Pacific herring mean CPUE was less variable between warm and cold years [p < 0.001; 63.8 kg/km(2) (warm), 66.2 kg/km(2) (cold)], but was still significantly less during warm years than cold. Capelin and herring lengths remained relatively constant between climate periods. Capelin lengths were similar among oceanographic domains [104 mm (South Inner domain), 112 mm (South Middle domain), 107 mm (North Inner domain), and 104 mm (North Middle domain)], while herring were larger in domains further offshore [123 mm (South Inner domain), 232 mm (South Middle domain), 260 mm (South Outer domain), 129 mm (North Inner domain), and 198 mm (North Middle domain)]. Diets for both species were significantly different between climate periods. Large crustacean prey comprised a higher proportion of the diets in most regions during cold years. Age-0 walleye pollock (Gadus chalcogrammus) contributed > 60% to the diets of Pacific herring in southern Middle Domain and > 30% in the northern Middle domain during warm years. A switch to less energetic prey for these forage fishes during warm years may have implications for fitness and future recruitment. The shifts in the distribution and lower biomass of capelin in the EBS during warm years could lead to disruptions in energy pathways in this complex marine ecosystem. Published by Elsevier Ltd. C1 [Andrews, Alexander G., III; Strasburger, Wesley W.; Farley, Edward V., Jr.; Murphy, James M.] Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, NOAA, 17109 Point Lena Loop Rd, Juneau, AK 99801 USA. [Coyle, Kenneth O.] Univ Alaska, Sch Fisheries & Ocean Sci, Fairbanks, AK 99775 USA. RP Andrews, AG (reprint author), Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, NOAA, 17109 Point Lena Loop Rd, Juneau, AK 99801 USA. EM alex.andrews@noaa.gov FU BEST-BSIERP Bering Sea Project [170] FX We thank the officers and crew of the NOAA ship Oscar Dyson as well as the captains and crews of the following fishing vessels: F/V Sea Storm, F/V Northwest Explorer, F/V Epic Explorer, and F/V Bristol Explorer. We also thank the many scientists that assisted with processing and sampling the catch. This project would not have been possible without the expertize of Natalia Kuznetsova (TINRO) and Mary Auburn-Cook for performing on board diet analyses. We greatly appreciate Peter Hulson (AFSC), Franz Mueter (UAF) and Kathy Mier (AFSC) for their guidance and assistance with some of the statistical analyses. In addition, we would like to thank Ellen Yasumiishi, the AFSC editorial staff, three anonymous reviewers, and Jeff Napp (guest editor), whose valuable comments and constructive criticism greatly improved the quality of this manuscript. This is BEST-BSIERP Bering Sea Project publication number 170 and NPRB publication number 555. The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service. NR 72 TC 2 Z9 2 U1 7 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 EI 1879-0100 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD DEC PY 2016 VL 134 BP 235 EP 246 DI 10.1016/j.dsr2.2015.10.008 PG 12 WC Oceanography SC Oceanography GA EF7LG UT WOS:000390510500017 ER PT J AU Farley, EV Heintz, RA Andrews, AG Hurst, TP AF Farley, Edward V., Jr. Heintz, Ron A. Andrews, Alex G. Hurst, Thomas P. TI Size, diet, and condition of age-0 Pacific cod (Gadus macrocephalus) during warm and cool climate states in the eastern Bering sea SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Bering Sea; Pacific cod; Age-0; Energetics; Diet; Winter survival ID OSCILLATING CONTROL HYPOTHESIS; POLLOCK THERAGRA-CHALCOGRAMMA; WALLEYE POLLOCK; ENERGY ALLOCATION; FORAGE FISH; BODY-SIZE; TEMPERATURE; RECRUITMENT; DISTRIBUTIONS; ALLOMETRY AB The revised Oscillating Control Hypothesis for the Bering Sea suggests that recruitment of groundfish is linked to climatic processes affecting seasonal sea ice that, in turn, drives the quality and quantity of prey available to young fish for growth and energy storage during their critical life history stages. We test this notion for age-0 (juvenile) Pacific cod (Gadus macrocephalus) by examining the variability in size, diet, and energetic condition during warm (2003-2005), average (2006), and cool (2007-2011) climate states in the eastern Bering Sea. Juvenile cod stomachs contained high proportions of age-0 walleye pollock (by wet weight) during years with warm sea temperatures with a shift to euphausiids and large copepods during years with cool sea temperatures. Juvenile cod were largest during years with warm sea temperatures and smallest during years with cool sea temperatures. However, energetic status (condition) of juvenile cod was highest during years with cool sea temperatures. This result is likely linked to the shift to high quality, lipid-rich prey found in greater abundance on the shelf and in the stomach contents of juvenile cod during cool years. Our examination of juvenile cod size, diet, and energetic status provided results that are similar to those from studies on juvenile pollock, suggesting that the common mechanisms regulating gadid recruitment on the eastern Bering Sea shelf are climate state, prey quality and quantity, and caloric density of gadids prior to winter. Published by Elsevier Ltd. C1 [Farley, Edward V., Jr.; Heintz, Ron A.; Andrews, Alex G.] Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, NOAA, 17109 Point Lena Loop Rd, Juneau, AK 99801 USA. [Hurst, Thomas P.] Natl Marine Fisheries Serv, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr, NOAA,Hatfield Marine Sci Ctr, 2030 SE Marine Sci Dr, Newport, OR 97365 USA. RP Farley, EV (reprint author), Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, NOAA, 17109 Point Lena Loop Rd, Juneau, AK 99801 USA. EM ed.farley@noaa.gov; ron.heintz@noaa.gov; alex.andrews@noaa.gov; thomas.hurst@noaa.gov NR 37 TC 5 Z9 5 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 EI 1879-0100 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD DEC PY 2016 VL 134 BP 247 EP 254 DI 10.1016/j.dsr2.2014.12.011 PG 8 WC Oceanography SC Oceanography GA EF7LG UT WOS:000390510500018 ER PT J AU Duffy-Anderson, JT Barbeaux, SJ Farley, E Heintz, R Horne, JK Parker-Stetter, SL Petrik, C Siddon, EC Smart, TI AF Duffy-Anderson, J. T. Barbeaux, S. J. Farley, E. Heintz, R. Horne, J. K. Parker-Stetter, S. L. Petrik, C. Siddon, E. C. Smart, T. I. TI The critical first year of life of walleye pollock (Gadus chalcogrammus) in the eastern Bering Sea: Implications for recruitment and future research SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Walleye pollock; Eggs; Larvae; Juveniles; Bering Sea; Recruitment; Climate ID OSCILLATING CONTROL HYPOTHESIS; GULF-OF-ALASKA; THERAGRA-CHALCOGRAMMA; PRIBILOF ISLANDS; CLIMATE-CHANGE; DEPENDENT GROWTH; SHELIKOF STRAIT; WESTERN GULF; ATLANTIC COD; PACIFIC COD AB Walleye pollock (Gadus chalcogrammus) support a large commercial fishery in the eastern Bering Sea despite large interannual and decadal swings in population abundance. These oscillations challenge the fishery, prompting significant effort directed to understanding the species and its recruitment. Conceptual paradigms of walleye pollock recruitment recognize that understanding the factors affecting survivorship during the first year of life is central to understanding population fluctuation. Since the first year is critical to year-class strength of this key economically and ecologically important species, we review the state of knowledge of pre-recruit walleye pollock ecology in the eastern Bering Sea during this critical first-year period, including spawning, changes in vertical and horizontal distributions, feeding, growth, body condition, transport, and predation. We then critically examine the recruitment paradigms based on the component processes that have been proposed to explain mechanisms of recruitment control. We identify paradigm strengths or weaknesses relative to our current state of knowledge, discussing relevance and validity. Finally, we identify gaps in knowledge and propose areas of future research effort. Published by Elsevier Ltd. C1 [Duffy-Anderson, J. T.; Barbeaux, S. J.] Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115 USA. [Farley, E.; Heintz, R.; Siddon, E. C.] Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, NOAA, 17109 Point Lena Loop Rd, Juneau, AK 99801 USA. [Horne, J. K.; Parker-Stetter, S. L.; Smart, T. I.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. [Petrik, C.] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, 17101 Point Lena Loop Rd, Juneau, AK 99801 USA. [Petrik, C.] Univ Calif Santa Cruz, Inst Marine Sci, 110 Shaffer Rd, Santa Cruz, CA 95060 USA. [Smart, T. I.] South Carolina Dept Nat Resources, Marine Resources Res Inst, Charleston, SC 29422 USA. RP Duffy-Anderson, JT (reprint author), Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115 USA. EM janet.duffy-anderson@noaa.gov FU Ecosystems and Fisheries Oceanography Coordinated Investigation's North Pacific Climate Regimes and Ecosystems Program; National Science Foundation's Bering Ecosystem Study Program; BEST-BSIERP Project [150] FX Special thanks to Patrick Ressler, Franz Mueter, Kevin Bailey, and Thomas Hurst for discussion and to Ann Matarese, Jeff Napp, Mike Sigler, and three anonymous reviewers for comments. Debbie Blood assisted with editing an earlier version of this manuscript. This research was supported, in part, with funds from the Ecosystems and Fisheries Oceanography Coordinated Investigation's North Pacific Climate Regimes and Ecosystems Program, the North Pacific Research Board's Bering Sea Integrated Ecosystem Program, and the National Science Foundation's Bering Ecosystem Study Program. This paper is contribution EcoFOCI-0780 to NOAA's Fisheries-Oceanography Coordinated Investigations Program, BEST-BSIERP Project publication number 150, and NPRB publication number 515. The findings and conclusions in the paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service. Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NR 178 TC 4 Z9 4 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 EI 1879-0100 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD DEC PY 2016 VL 134 BP 283 EP 301 DI 10.1016/j.dsr2.2015.02.001 PG 19 WC Oceanography SC Oceanography GA EF7LG UT WOS:000390510500021 ER PT J AU Ichoku, C Adegoke, J AF Ichoku, Charles Adegoke, Jimmy TI Synthesis and review: African environmental processes and water-cycle dynamics SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Editorial Material ID TROPICAL NORTH-AFRICA; LAND-USE CHANGE; SAHEL RAINFALL; CLIMATE-CHANGE; SURFACE; DESERTIFICATION; DROUGHT; IMPACT AB Africa's vast landmass harbors a variety of physical processes that affect the environment and the water cycle. This focus issue on 'African Environmental Processes and Water-Cycle Dynamics' contains eight articles that address these phenomena from different but complementary perspectives. Fires used for agricultural and related purposes play a major role in land-cover change, surface albedo modifications, and smoke emission; all of which affect the environment and the water cycle in different ways. However, emissions of aerosols and trace gases are not restricted to fires, but also emanate from other natural and human activities. The African water cycle undergoes significant perturbations that are attributable to several factors, including the aforesaid environmental processes. These changes in the water cycle have produced severe drought and flooding events in recent decades that affect societal wellbeing across sub-Saharan Africa. The combined effects of the environmental processes and water-cycle dynamics affect and are affected by climate variability and can be propagated beyond the continent. Future studies should utilize the wealth of observations and modeling tools that are constantly improving to clearly elucidate the interrelationships between all of these phenomena for the benefit of society. C1 [Ichoku, Charles] NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA. [Adegoke, Jimmy] Univ Missouri, Dept Geosci, Kansas City, MO 64110 USA. RP Ichoku, C (reprint author), NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA. EM Charles.Ichoku@nasa.gov NR 30 TC 0 Z9 0 U1 5 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD DEC PY 2016 VL 11 IS 12 AR 120206 DI 10.1088/1748-9326/11/12/120206 PG 4 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA EG1AF UT WOS:000390763100002 ER PT J AU Bhanja, SN Mukherjee, A Saha, D Velicogna, I Famiglietti, JS AF Bhanja, Soumendra N. Mukherjee, Abhijit Saha, Dipankar Velicogna, Isabella Famiglietti, James S. TI Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India SO JOURNAL OF HYDROLOGY LA English DT Article DE Groundwater; India; GRACE validation; Specific yield ID WATER-BALANCE; SYSTEM; EARTH; TRMM AB In this study, we tried to validate groundwater storage (GWS) anomaly obtained from a combination of GRACE and land-surface model based estimates, for the first time, with GWS anomaly obtained from a dense network of in-situ groundwater observation wells within 12 major river basins in India. We used seasonal data from >15,000 groundwater observation wells between 2005 and 2013, distributed all over the country. Two recently released GRACE products, RL05 spherical harmonics (SH) and RL05 mascon (MS) products are used for comparison with in-situ data. To our knowledge, this is the first study of comparing the performance of two independent GRACE products at a sub-continental scale. Also for the first time, we have created a high resolution (0.1(0) x 0.1(0)) map of specific yield for the entire country that was used for calculating GWS. Observed GWS anomalies have been computed using water level anomalies and specific yield information for the locale of individual observation wells that are up-scaled to basin-scale in order to compare with GRACE-based estimates. In general GRACE-based estimates match well (on the basis of the statistical analyses performed in the study) with observed estimates in most of the river basins. On comparing with observed GWS anomaly, GRACE-SH estimates match well in terms of RMSE, while GRACE-MS estimates show better association in terms of correlation, while the output of skewness, kurtosis, coefficient of variation (CV) and scatter analyses remain inconclusive for inter comparison between two GRACE estimates. We used a non-parametric trend estimation approach, the Hodrick-Prescott (HP) filter, to further assess the performance of the two GRACE estimates. GRACE-MS estimates clearly outperform GRACE-SH estimates for reproducing observed GWS anomaly trends with significantly (>95% confidence level) strong association in 10 out of 12 basins for GRACE-MS estimates, on the other hand, GRACE-SH estimates show significantly (>95% confidence level) strong association in 6 out of 12 basins. On the basis of the study output, we recommend using GRACE-MS estimates for groundwater studies over the region and other regions of the globe with similar climatic, hydrogeologic or groundwater withdrawal conditions. (C) 2016 Elsevier B.V. All rights reserved. C1 [Bhanja, Soumendra N.; Mukherjee, Abhijit] Indian Inst Technol Kharagpur, Dept Geol & Geophys, Kharagpur, W Bengal, India. [Mukherjee, Abhijit] Indian Inst Technol Kharagpur, Sch Environm Sci & Engn, Kharagpur, W Bengal, India. [Saha, Dipankar] Govt India, Minist Water Resources River Dev & Ganga Rejuvena, Cent Ground Water Board, Faridabad, Haryana, India. [Velicogna, Isabella] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92717 USA. [Velicogna, Isabella; Famiglietti, James S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Famiglietti, James S.] Univ Calif Irvine, Sch Phys Sci, Irvine, CA 92717 USA. RP Mukherjee, A (reprint author), Indian Inst Technol Kharagpur, Dept Geol & Geophys, Kharagpur, W Bengal, India. EM soumendrabhanja@gmail.com; abhijit@gg.iitkgp.ernet.in OI Bhanja, Soumendra/0000-0002-9434-8483 FU CSIR (India); U.S. Department of State; Ministry of Human Resource Development (MHRD) project AGI (IIT/SRIC/GG), Application of artificial intelligence in groundwater storage estimation of Indian subcontinent; Ministry of Human Resource Development (MHRD) project AGI, Application of artificial intelligence in groundwater storage estimation of Indian subcontinent [CSE/AGI/2013-14/201]; NASA MEaSUREs Program FX We thank Dr. Matthew Rodell, NASA-Goddard Space Flight Center for his advices and Dr. Siddhartha Chattopadhyay, Department of Humanities and Social Sciences, Indian Institute of Technology Kharagpur, for his advices and suggestions on statistical analyses. This manuscript uses open-source data of the Central Ground Water Board (CGWB), Ministry of Water Resources, River Development and Ganga Rejuvenation, Government of India. Dr. Saha acknowledge the support provided by the Chairman, CGWB, during the study. The opinion expressed in the paper is of author's own and not of the affiliated agency. Soumendra Nath Bhanja (SNB) acknowledges CSIR (India) for their support through SPM fellowship. SNB also acknowledges U.S. Department of State for the Fulbright fellowship. Abhijit Mukherjee acknowledges the support from Ministry of Human Resource Development (MHRD) project AGI (IIT/SRIC/GG & CSE/AGI/2013-14/201), Application of artificial intelligence in groundwater storage estimation of Indian subcontinent, and Prof. Sudeshna Sarkar and Prof. Pabitra Mitra for their support We acknowledge Pragnaditya Malakar and Charu Nirmale, for their help with groundwater level data retrievals. SNB also thanks Dr. Shubha Verma for her advice. GRACE land data were processed by Sean Swenson, supported by the NASA MEaSUREs Program, and is available at http://grace.jpl.nasa.gov. The GLDAS data used in this study were acquired as part of the mission of NASA's Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Tropical Rainfall Measuring Mission (TRMM) (2011), TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree x 0.25 degree V7, version, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed on 20th November, 2015. We would like to thank Geoff Syme, Editor-in-Chief, Craig T. Simmon, Associate Editor, and the two anonymous reviewers for their insightful comments on the manuscript. NR 50 TC 1 Z9 1 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD DEC PY 2016 VL 543 BP 729 EP 738 DI 10.1016/j.jhydrol.2016.10.042 PN B PG 10 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA EG0PY UT WOS:000390735900043 ER PT J AU Yu, SS Gordon, I Roy, PN AF Yu, Shanshan Gordon, Iouli Roy, Pierre-Nicholas TI Potentiology and spectroscopy in honor of Robert Le Roy: A preface to the special issue SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Biographical-Item C1 [Yu, Shanshan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Gordon, Iouli] Harvard Smithsonian Ctr Astrophys, Atom & Mol Phys Div, MS 50,60 Garden St, Cambridge, MA 02138 USA. [Roy, Pierre-Nicholas] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. RP Yu, SS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM shanshan.yu@jpl.nasa.gov; igordon@cfa.harvard.edu; pnroy@uwaterloo.ca RI Yu, Shanshan/D-8733-2016 NR 29 TC 0 Z9 0 U1 6 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 EI 1096-083X J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD DEC PY 2016 VL 330 SI SI BP 1 EP 3 DI 10.1016/j.jms.2016.10.019 PG 3 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA EF9EX UT WOS:000390634600001 ER PT J AU Huang, XC Schwenke, DW Lee, TJ AF Huang, Xinchuan Schwenke, David W. Lee, Timothy J. TI Ames (SOO)-S-32-O-16-O-18 line list for high-resolution experimental IR analysis SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Sulfur dioxide; Isotopologue; IR line list database; Empirical refinement ID VIBRATIONAL-STATES; SULFUR-DIOXIDE; 1500 K; BANDS; SO2; (SO2)-S-34-O-16; SPECTROSCOPY; SPECTRUM; CM(-1); NU(1) AB By comparing to the most recent experimental data and spectra of the SO2 628 v(1)/v(3) bands (see Ulenikov et al., JQSRT 168 (2016) 29-39), this study illustrates the reliability and accuracy of the Ames-296K SO2 line list, which is accurate enough to facilitate such high-resolution spectroscopic analysis. The SO2 628 IR line list is computed on a recently improved potential energy surface (PES) refinement, denoted Ames-Pre2, and the published purely ab initio CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface. Progress has been made in both energy level convergence and rovibrational quantum number assignments agreeing with laboratory analysis models. The accuracy of the computed 628 energy levels and line list is similar to what has been achieved and reported for SO2 626 and 646, i.e. 0.01-0.03 cm(-1) for bands up to 5500 cm(-1). During the comparison, we found some discrepancies in addition to overall good agreements. The three-IR-list based feature-by-feature analysis in a 0.25 cm(-1) spectral window clearly demonstrates the power of the current Ames line lists with new assignments, correction of some errors, and intensity contributions from varied sources including other isotopologues. We are inclined to attribute part of detected discrepancies to an incomplete experimental analysis and missing intensity in the model. With complete line position, intensity, and rovibrational quantum numbers determined at 296 K, spectroscopic analysis is significantly facilitated especially for a spectral range exhibiting such an unusually high density of lines. The computed 628 rovibrational levels and line list are accurate enough to provide alternatives for the missing bands or suspicious assignments, as well as helpful to identify these isotopologues in various celestial environments. The next step will be to revisit the SO2 828 and 646 spectral analyses. (C) 2016 Elsevier Inc. All rights reserved. C1 [Huang, Xinchuan] SETI Inst, 189 Bernardo Ave,Suite 200, Mountain View, CA 94043 USA. [Huang, Xinchuan] ASA Ames Res Ctr, Astrophys Branch, MS 245-6, Moffett Field, CA 94035 USA. [Schwenke, David W.] NASA, Ames Res Ctr, NAS Facil, MS T27B-1, Moffett Field, CA 94035 USA. [Lee, Timothy J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-1, Moffett Field, CA 94035 USA. RP Huang, XC (reprint author), SETI Inst, 189 Bernardo Ave,Suite 200, Mountain View, CA 94043 USA.; Lee, TJ (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-1, Moffett Field, CA 94035 USA. EM Xinchuan.Huang-1@nasa.gov; David.W.Schwenke@nasa.gov; Timothy.J.Lee@nasa.gov RI Lee, Timothy/K-2838-2012; HUANG, XINCHUAN/A-3266-2013 FU NASA [12-APRA12-0107]; NASA/SETI Institute [NNX15AF45A] FX We are delighted to contribute this paper to the special issue of "Potentiology and Spectroscopy in Honor of Robert Le Roy". We gratefully acknowledge funding support from the NASA Grants 12-APRA12-0107. XH also acknowledges support from the NASA/SETI Institute Cooperative Agreement NNX15AF45A. We thank Dr. J.-M. Flaud for kindly sharing experimental SO2 646 data. Dr. Daniel Underwood and Professor Jonathan Tennyson (University College London) are thanked for providing their SO2 626 J = 50 data computed on the Ames-1B PES for comparison. We thank Dr. Holger Muller (Cologne) for helpful discussions. NR 36 TC 1 Z9 1 U1 3 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 EI 1096-083X J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD DEC PY 2016 VL 330 SI SI BP 101 EP 111 DI 10.1016/j.jms.2016.08.013 PG 11 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA EF9EX UT WOS:000390634600014 ER PT J AU Zhang, YQ Cooper, OR Gaudel, A Thompson, AM Nedelec, P Ogino, SY West, JJ AF Zhang, Yuqiang Cooper, Owen R. Gaudel, Audrey Thompson, Anne M. Nedelec, Philippe Ogino, Shin-Ya West, J. Jason TI Tropospheric ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions SO NATURE GEOSCIENCE LA English DT Article ID GREENHOUSE-GAS EMISSIONS; EARTH SYSTEM MODEL; AIR-QUALITY; ATMOSPHERIC CHEMISTRY; TERM CHANGES; CLIMATOLOGY; AEROSOLS; NOX; CO; INCREASES AB Ozone is an important air pollutant at the surface(1), and the third most important anthropogenic greenhouse gas in the troposphere(2). Since 1980, anthropogenic emissions of ozone precursors-methane, non-methane volatile organic compounds, carbon monoxide and nitrogen oxides (NOx)have shifted from developed to developing regions. Emissions have thereby been redistributed equatorwards(3-6), where they are expected to have a stronger effect on the tropospheric ozone burden due to greater convection, reaction rates and NOx sensitivity(7-11). Here we use a global chemical transport model to simulate changes in tropospheric ozone concentrations from 1980 to 2010, and to separate the influences of changes in the spatial distribution of global anthropogenic emissions of short-lived pollutants, the magnitude of these emissions, and the global atmospheric methane concentration. We estimate that the increase in ozone burden due to the spatial distribution change slightly exceeds the combined influences of the increased emission magnitude and global methane. Emission increases in Southeast, East and South Asia may be most important for the ozone change, supported by an analysis of statistically significant increases in observed ozone above these regions. The spatial distribution of emissions dominates global tropospheric ozone, suggesting that the future ozone burden will be determined mainly by emissions from low latitudes. C1 [Zhang, Yuqiang; West, J. Jason] Univ North Carolina Chapel Hill, Environm Sci & Engn Dept, Chapel Hill, NC 27599 USA. [Cooper, Owen R.; Gaudel, Audrey] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Cooper, Owen R.; Gaudel, Audrey] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO 80305 USA. [Thompson, Anne M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Nedelec, Philippe] Univ Paul Sabatier Toulouse III, CNRS, Lab Aerol, FR-31062 Toulouse, France. [Ogino, Shin-Ya] Japan Agcy Marine Earth Sci & Technol, Yokosuka, Kanagawa 2370061, Japan. [Zhang, Yuqiang] Environm Protect Agcy, Res Triangle Pk, NC 27709 USA. RP West, JJ (reprint author), Univ North Carolina Chapel Hill, Environm Sci & Engn Dept, Chapel Hill, NC 27599 USA. EM jjwest@email.unc.edu RI West, Jason/J-2322-2015; Thompson, Anne /C-3649-2014; Manager, CSD Publications/B-2789-2015 OI West, Jason/0000-0001-5652-4987; Thompson, Anne /0000-0002-7829-0920; FU National Institute of Environmental Health Sciences [1 R21 ES022600-01]; Environmental Protection Agency STAR [834285, RD83587801]; NOAA's Health of the Atmosphere and Atmospheric Chemistry and Climate Programs FX Y.Z. and J.J.W. were funded by National Institute of Environmental Health Sciences grant no. 1 R21 ES022600-01 and Environmental Protection Agency STAR grants no. 834285 and RD83587801, and O.R.C. and A.G. were funded by NOAA's Health of the Atmosphere and Atmospheric Chemistry and Climate Programs. The contents are solely the responsibility of the grantee and do not necessarily represent the official views of the US EPA or other funding sources. We thank the NCAR AMWG for developing and maintaining the diagnostic package for the model evaluation. We acknowledge the free use of O3 observation data from NOAA GMD for the remote sites of Barrow, Mauna Loa, Samoa and South Pole; Global Atmosphere Watch World Data Centre for Greenhouse Gases for Hohenpeissenberg, J. Schwab from University at Albany-SUNY for Whiteface Mountain, and P. Young of Lancaster University for processed ozonesonde climatology of ref. 25. NR 47 TC 1 Z9 1 U1 13 U2 13 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD DEC PY 2016 VL 9 IS 12 BP 875 EP + DI 10.1038/NGEO2827 PG 7 WC Geosciences, Multidisciplinary SC Geology GA EF6ZA UT WOS:000390478700011 ER PT J AU Willis, JK Rignot, E Nerem, RS Lindstrom, E AF Willis, Josh K. Rignot, Eric Nerem, R. Steven Lindstrom, Eric TI INTRODUCTION TO THE SPECIAL ISSUE ON Ocean-Ice Interaction SO OCEANOGRAPHY LA English DT Editorial Material C1 [Willis, Josh K.; Rignot, Eric] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Rignot, Eric] Univ Calif Irvine, Earth Syst Sci, Irvine, CA USA. [Nerem, R. Steven] Univ Colorado, Colorado Ctr Astrodynam Res, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. [Nerem, R. Steven] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Lindstrom, Eric] NASA Headquarters, Sci Miss Directorate, Washington, DC USA. RP Willis, JK (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM joshua.k.willis@jpl.nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU OCEANOGRAPHY SOC PI ROCKVILLE PA P.O. BOX 1931, ROCKVILLE, MD USA SN 1042-8275 J9 OCEANOGRAPHY JI Oceanography PD DEC PY 2016 VL 29 IS 4 SI SI BP 19 EP 21 DI 10.5670/oceanog.2016.95 PG 3 WC Oceanography SC Oceanography GA EF8EB UT WOS:000390560400005 ER PT J AU Morlighem, M Rignot, E Willis, JK AF Morlighem, Mathieu Rignot, Eric Willis, Josh K. TI Improving Bed Topography Mapping of Greenland Glaciers Using NASA's Oceans Melting Greenland (OMG) Data SO OCEANOGRAPHY LA English DT Article ID ICE-SHEET; WEST GREENLAND AB Melting of the Greenland Ice Sheet has the potential to raise sea level by 7.36 m and is already contributing to global sea level rise at a rate higher than 1 mm yr(1). Computer models are our best tools to make projections of the mass balance of Greenland over the next centuries, but these models rely on bed topography data that remain poorly constrained near glacier termini. Accurate bed topography in the vicinity of calving fronts is critical for numerical models, as the shapes of the glacier bed and of the nearby bathymetry control both the ocean circulation in the fjord and the stability and response of the ice sheet to climate warming. NASA's Oceans Melting Greenland (OMG) mission is collecting bathymetry data along Greenland fjords at several glacier termini. Here, we show that these measurements are transforming our knowledge of fjord and glacier depths. Using a mass conservation approach, we combine OMG bathymetry with observations of ice velocity and thickness to produce estimates of bed depth and ice thickness across the ice-ocean boundary with unprecedented accuracy and reliability. Our results along the northwest coast of Greenland reveal complex structural features in bed elevation, such as valleys, ridges, bumps, and hollows. These features have important implications for both channeling ice flow toward the continental margin, and for controlling the amount of warm, salty Atlantic Water that reaches the glaciers. C1 [Morlighem, Mathieu; Rignot, Eric] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Rignot, Eric] CALTECH, Jet Prop Lab, Radar Sci & Engn Sect, Pasadena, CA USA. [Willis, Josh K.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Morlighem, M (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. EM mathieu.morlighem@uci.edu FU National Aeronautics and Space Administration, Cryospheric Sciences Program [NNX15AD55G] FX This work was performed at the Department of Earth System Science, University of California, Irvine, and at Caltech's Jet Propulsion Laboratory, Pasadena, under a contract with the National Aeronautics and Space Administration, Cryospheric Sciences Program, grant NNX15AD55G, and as part of the EVS-2 OMG mission. We thank the three anonymous reviewers and the guest editor S. Nerem for their helpful and insightful comments. NR 32 TC 0 Z9 0 U1 5 U2 5 PU OCEANOGRAPHY SOC PI ROCKVILLE PA P.O. BOX 1931, ROCKVILLE, MD USA SN 1042-8275 J9 OCEANOGRAPHY JI Oceanography PD DEC PY 2016 VL 29 IS 4 SI SI BP 62 EP 71 DI 10.5670/oceanog.2016.99 PG 10 WC Oceanography SC Oceanography GA EF8EB UT WOS:000390560400009 ER PT J AU Fenty, I Willis, JK Khazendar, A Dinardo, S Forsberg, R Fukumori, I Holland, D Jakobsson, M Moller, D Morison, J Munchow, A Rignot, E Schodlok, M Thompson, AF Tinto, K Rutherford, M Trenholm, N AF Fenty, Ian Willis, Josh K. Khazendar, Ala Dinardo, Steven Forsberg, Rene Fukumori, Ichiro Holland, David Jakobsson, Martin Moller, Delwyn Morison, James Munchow, Andreas Rignot, Eric Schodlok, Michael Thompson, Andrew F. Tinto, Kirsteen Rutherford, Matthew Trenholm, Nicole TI OCEANS MELTING GREENLAND Early Results from NASA's Ocean-Ice Mission in Greenland SO OCEANOGRAPHY LA English DT Article ID ILULISSAT ICEFJORD WATERS; WEST GREENLAND; BOUNDARY-CONDITIONS; TIDEWATER GLACIERS; JAKOBSHAVN ISBRAE; OUTLET GLACIERS; EAST GREENLAND; LABRADOR SEA; MASS-BALANCE; VARIABILITY AB Melting of the Greenland Ice Sheet represents a major uncertainty in projecting future rates of global sea level rise. Much of this uncertainty is related to a lack of knowledge about subsurface ocean hydrographic properties, particularly heat content, how these properties are modified across the continental shelf, and about the extent to which the ocean interacts with glaciers. Early results from NASA's five-year Oceans Melting Greenland (OMG) mission, based on extensive hydrographic and bathymetric surveys, suggest that many glaciers terminate in deep water and are hence vulnerable to increased melting due to ocean-ice interaction. OMG will track ocean conditions and ice loss at glaciers around Greenland through the year 2020, providing critical information about ocean-driven Greenland ice mass loss in a warming climate. C1 [Fenty, Ian; Willis, Josh K.; Khazendar, Ala; Dinardo, Steven; Fukumori, Ichiro; Rignot, Eric; Schodlok, Michael] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Forsberg, Rene] Tech Univ Denmark, Natl Space Inst, Geodynam, Lyngby, Denmark. [Holland, David] NYU, New York, NY USA. [Jakobsson, Martin] Stockholm Univ, S-10691 Stockholm, Sweden. [Moller, Delwyn] Remote Sensing Solut Inc, Barnstable, MA USA. [Morison, James] Univ Washington, Seattle, WA 98195 USA. [Munchow, Andreas] Univ Delaware, Newark, DE USA. [Rignot, Eric] Univ Calif Irvine, Earth Syst Sci, Irvine, CA USA. [Thompson, Andrew F.] CALTECH, Pasadena, CA 91125 USA. [Tinto, Kirsteen] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Rutherford, Matthew; Trenholm, Nicole] Ocean Res Project, Annapolis, MD USA. RP Fenty, I (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM ian.fenty@jpl.nasa.gov RI Muenchow, Andreas/J-8257-2012 FU US Government FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. (C) 2015 California Institute of Technology. US Government sponsorship is acknowledged. NR 47 TC 0 Z9 0 U1 14 U2 14 PU OCEANOGRAPHY SOC PI ROCKVILLE PA P.O. BOX 1931, ROCKVILLE, MD USA SN 1042-8275 J9 OCEANOGRAPHY JI Oceanography PD DEC PY 2016 VL 29 IS 4 SI SI BP 72 EP 83 DI 10.5670/oceanog.2016.100 PG 12 WC Oceanography SC Oceanography GA EF8EB UT WOS:000390560400010 ER PT J AU Saarela, S Holm, S Grafstrom, A Schnell, S Naesset, E Gregoire, TG Nelson, RF Stahl, G AF Saarela, Svetlana Holm, Soren Grafstrom, Anton Schnell, Sebastian Naesset, Erik Gregoire, Timothy G. Nelson, Ross F. Stahl, Goran TI Hierarchical model-based inference for forest inventory utilizing three sources of information SO ANNALS OF FOREST SCIENCE LA English DT Article DE Landsat; Large-scale forest inventory; Monte Carlo simulation; Two-stage least squares regression ID GROWING STOCK VOLUME; LIDAR SAMPLE SURVEY; HEDMARK COUNTY; ASSISTED ESTIMATION; BIOMASS ESTIMATION; SPACEBORNE LIDAR; AIRBORNE LIDAR; AREA; DESIGN; NORWAY AB The study presents novel model-based estimators for growing stock volume and its uncertainty estimation, combining a sparse sample of field plots, a sample of laser data, and wall-to-wall Landsat data. On the basis of our detailed simulation, we show that when the uncertainty of estimating mean growing stock volume on the basis of an intermediate ALS model is not accounted for, the estimated variance of the estimator can be biased by as much as a factor of three or more, depending on the sample size at the various stages of the design. This study concerns model-based inference for estimating growing stock volume in large-area forest inventories, combining wall-to-wall Landsat data, a sample of laser data, and a sparse subsample of field data. We develop and evaluate novel estimators and variance estimators for the population mean volume, taking into account the uncertainty in two model steps. Estimators and variance estimators were derived for two main methodological approaches and evaluated through Monte Carlo simulation. The first approach is known as two-stage least squares regression, where Landsat data were used to predict laser predictor variables, thus emulating the use of wall-to-wall laser data. In the second approach laser data were used to predict field-recorded volumes, which were subsequently used as response variables in modeling the relationship between Landsat and field data. a (TM) The estimators and variance estimators are shown to be at least approximately unbiased. Under certain assumptions the two methods provide identical results with regard to estimators and similar results with regard to estimated variances. We show that ignoring the uncertainty due to one of the models leads to substantial underestimation of the variance, when two models are involved in the estimation procedure. C1 [Saarela, Svetlana; Holm, Soren; Grafstrom, Anton; Schnell, Sebastian; Stahl, Goran] Swedish Univ Agr Sci, Dept Forest Resource Management, SLU Skogsmarksgrand, SE-90183 Umea, Sweden. [Naesset, Erik] Norwegian Univ Life Sci, Dept Ecol & Nat Resource Management, POB 5003, NO-1432 As, Norway. [Gregoire, Timothy G.] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA. [Nelson, Ross F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Saarela, S (reprint author), Swedish Univ Agr Sci, Dept Forest Resource Management, SLU Skogsmarksgrand, SE-90183 Umea, Sweden. EM svetlana.saarela@slu.se; soren.holm@gronstenen.se; anton.grafstrom@slu.se; sebastian.schnell@slu.se; erik.naesset@nmbu.no; timothy.gregoire@yale.edu; rfn104@gmail.com; goran.stahl@slu.se OI Saarela, Svetlana/0000-0002-9044-7249 NR 44 TC 1 Z9 1 U1 1 U2 1 PU SPRINGER FRANCE PI PARIS PA 22 RUE DE PALESTRO, PARIS, 75002, FRANCE SN 1286-4560 EI 1297-966X J9 ANN FOREST SCI JI Ann. For. Sci. PD DEC PY 2016 VL 73 IS 4 BP 895 EP 910 DI 10.1007/s13595-016-0590-1 PG 16 WC Forestry SC Forestry GA EF0GN UT WOS:000390004000010 ER PT J AU Bannister, MT Alexandersen, M Benecchi, SD Chen, YT Delsanti, A Fraser, WC Gladman, BJ Granvik, M Grundy, WM Guilbert-Lepoutre, A Gwyn, SDJ Ip, WH Jakubik, M Jones, RL Kaib, N Kavelaars, JJ Lacerda, P Lawler, S Lehner, MJ Lin, HW Lykawka, PS Marsset, M Murray-Clay, R Noll, KS Parker, A Petit, JM Pike, RE Rousselot, P Schwamb, ME Shankman, C Veres, P Vernazza, P Volk, K Wang, SY Weryk, R AF Bannister, Michele T. Alexandersen, Mike Benecchi, Susan D. Chen, Ying-Tung Delsanti, Audrey Fraser, Wesley C. Gladman, Brett J. Granvik, Mikael Grundy, Will M. Guilbert-Lepoutre, Aurelie Gwyn, Stephen D. J. Ip, Wing-Huen Jakubik, Marian Jones, R. Lynne Kaib, Nathan Kavelaars, J. J. Lacerda, Pedro Lawler, Samantha Lehner, Matthew J. Lin, Hsing Wen Lykawka, Patryk Sofia Marsset, Michael Murray-Clay, Ruth Noll, Keith S. Parker, Alex Petit, Jean-Marc Pike, Rosemary E. Rousselot, Philippe Schwamb, Megan E. Shankman, Cory Veres, Peter Vernazza, Pierre Volk, Kathryn Wang, Shiang-Yu Weryk, Robert TI OSSOS. IV. DISCOVERY OF A DWARF PLANET CANDIDATE IN THE 9:2 RESONANCE WITH NEPTUNE SO ASTRONOMICAL JOURNAL LA English DT Article DE Kuiper belt objects: individual (2015 RR245) ID KUIPER-BELT OBJECTS; OUTER SOLAR-SYSTEM; SCATTERED DISK; DYNAMICAL INSTABILITY; SIZE DISTRIBUTION; OORT CLOUD; SKY SURVEY; POPULATION; ORIGIN; RADIUS AB We report the discovery and orbit of a new dwarf planet candidate, 2015 RR245, by the Outer Solar System Origins Survey (OSSOS). The orbit of 2015 RR245 is eccentric (e = 0.586), with a semimajor axis near 82 au, yielding a perihelion distance of 34 au. 2015 RR245 has g - r = 0.59 +/- 0.11 and absolute magnitude H-r = 3.6 +/- 0.1; for an assumed albedo of p(V) = 12%, the object has a diameter of similar to 670. km. Based on astrometric measurements from OSSOS and Pan-STARRS1, we find that 2015 RR245 is securely trapped on ten-megayear timescales in the 9: 2 mean-motion resonance with Neptune. It is the first trans-Neptunian object (TNO) identified in this resonance. On hundred-megayear. timescales, particles in 2015 RR245-like orbits depart and sometimes return to the resonance, indicating that 2015 RR245 likely forms part of the long-lived metastable population of distant TNOs that drift between resonance sticking and actively scattering via gravitational encounters with Neptune. The discovery of a 9: 2 TNO stresses the role of resonances in the long-term evolution of objects in the scattering disk. and reinforces the view that distant resonances are heavily populated in the current solar system. This object further motivates detailed modeling of the transient sticking population. C1 [Bannister, Michele T.; Kavelaars, J. J.; Pike, Rosemary E.; Shankman, Cory] Univ Victoria, Dept Phys & Astron, Elliott Bldg,3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada. [Alexandersen, Mike; Chen, Ying-Tung; Lehner, Matthew J.; Pike, Rosemary E.; Wang, Shiang-Yu] Acad Sinica, Inst Astron & Astrophys, 1 Roosevelt Rd,Sec 4, Taipei 10617, Taiwan. [Alexandersen, Mike; Chen, Ying-Tung; Lehner, Matthew J.; Pike, Rosemary E.; Wang, Shiang-Yu] Natl Taiwan Univ, AS NTU 11F, 1 Roosevelt Rd,Sec 4, Taipei 10617, Taiwan. [Benecchi, Susan D.] Planetary Sci Inst, 1700 East Ft Lowell,Suite 106, Tucson, AZ 85719 USA. [Delsanti, Audrey; Marsset, Michael; Vernazza, Pierre] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Bannister, Michele T.; Fraser, Wesley C.; Lacerda, Pedro] Queens Univ Belfast, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Gladman, Brett J.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC, Canada. [Granvik, Mikael] Univ Helsinki, Dept Phys, POB 64, FIN-00014 Helsinki, Finland. [Grundy, Will M.] Lowell Observ, Flagstaff, AZ USA. [Guilbert-Lepoutre, Aurelie; Petit, Jean-Marc; Rousselot, Philippe] Univ Bourgogne Franche Comte, CNRS, Inst UTINAM,OSU Theta, UMR6213, F-25000 Besancon, France. [Bannister, Michele T.; Gwyn, Stephen D. J.; Kavelaars, J. J.; Lawler, Samantha] Natl Res Council Canada, NRC Herzberg Astron & Astrophys, 5071 West Saanich Rd, Victoria, BC V9E 2E7, Canada. [Ip, Wing-Huen; Lin, Hsing Wen] Natl Cent Univ, Inst Astron, Taoyuan, Taiwan. [Ip, Wing-Huen] Macau Univ Sci & Technol, Space Sci Inst, Taipa, Macau, Peoples R China. [Jakubik, Marian] Slovak Acad Sci, Astron Inst, Tatranska Lomnica 05960, Slovakia. [Jones, R. Lynne] Univ Washington, Washington, DC USA. [Kaib, Nathan] Univ Oklahoma, HL Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Lehner, Matthew J.] Univ Penn, Dept Phys & Astron, 209 S 33rd St, Philadelphia, PA 19104 USA. [Lehner, Matthew J.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Lykawka, Patryk Sofia] Kindai Univ, Sch Interdisciplinary Social & Human Sci, Astron Grp, Higashiosaka, Osaka, Japan. [Marsset, Michael] ESO, Alonso Cordova 3107,1900 Casilla Vitacura, Santiago, Chile. [Murray-Clay, Ruth] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Noll, Keith S.] NASA, Goddard Space Flight Ctr, Code 693, Greenbelt, MD 20771 USA. [Parker, Alex] Southwest Res Inst, Boulder, CO USA. [Schwamb, Megan E.] Northern Operat Ctr, Gemini Observ, 670 North Aohuku Pl, Hilo, HI 96720 USA. [Veres, Peter] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Volk, Kathryn] Univ Arizona, Lunar & Planetary Lab, Dept Planetary Sci, 1629 E Univ Blvd, Tucson, AZ 85721 USA. [Weryk, Robert] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. RP Bannister, MT (reprint author), Univ Victoria, Dept Phys & Astron, Elliott Bldg,3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.; Bannister, MT (reprint author), Queens Univ Belfast, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland.; Bannister, MT (reprint author), Natl Res Council Canada, NRC Herzberg Astron & Astrophys, 5071 West Saanich Rd, Victoria, BC V9E 2E7, Canada. EM michele.t.bannister@gmail.com OI Sofia Lykawka, Patryk/0000-0003-0926-2448 FU National Research Council of Canada; National Science and Engineering Research Council of Canada; Gemini Observatory; Slovak Grant Agency for Science [2/0031/14] FX This research was supported by funding from the National Research Council of Canada and the National Science and Engineering Research Council of Canada. The authors recognize and acknowledge the sacred nature of Maunakea. and appreciate the opportunity to observe from the mountain. This project could not have been a success without the dedicated staff of the Canada-France-Hawaii Telescope (CFHT) telescope. This work is based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA. CFHT is operated by the National Research Council of Canada, the Institute National des Sciences de l'universe of the Centre National de la Recherche Scientifique of France, and the University of Hawaii, with OSSOS receiving additional access due to contributions from the Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan. This work is based in part on data produced and hosted at the Canadian Astronomy Data Centre, with data processing and analysis performed using computing and storage capacity provided by the Canadian Advanced Network For Astronomy Research (CANFAR). MES was supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Brazil, Canada, Chile, and the United States of America. MJ acknowledges support from the Slovak Grant Agency for Science (grant no. 2/0031/14). NR 52 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 212 DI 10.3847/0004-6256/152/6/212 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF5AA UT WOS:000390341900004 ER PT J AU Karim, MT Stassun, KG Briceno, C Vivas, AK Raetz, S Mateu, C Downes, JJ Calvet, N Hernandez, J Neuhauser, R Mugrauer, M Takahashi, H Tachihara, K Chini, R Cruz-Dias, GA Aarnio, A James, DJ Hackstein, M AF Karim, Md Tanveer Stassun, Keivan G. Briceno, Cesar Katherina Vivas, A. Raetz, Stefanie Mateu, Cecilia Jose Downes, Juan Calvet, Nuria Hernandez, Jesus Neuhaeuser, Ralph Mugrauer, Markus Takahashi, Hidenori Tachihara, Kengo Chini, Rolf Cruz-Dias, Gustavo A. Aarnio, Alicia James, David J. Hackstein, Moritz TI THE ROTATION PERIOD DISTRIBUTIONS OF 4-10 Myr T TAURI STARS IN ORION OB1: NEW CONSTRAINTS ON PRE-MAIN-SEQUENCE ANGULAR MOMENTUM EVOLUTION SO ASTRONOMICAL JOURNAL LA English DT Article DE stars: evolution; stars: pre-main sequence; stars: rotation ID LOW-MASS STARS; ASTRONOMICAL TIME-SERIES; CIRCUMSTELLAR DISK; ETA CHAMAELEONTIS; OPEN CLUSTER; SPACED DATA; CCD CAMERA; POPULATION; DISSIPATION; VARIABILITY AB Most existing studies of the angular momentum evolution of young stellar populations have focused on the youngest (less than or similar to 1-3 Myr) T Tauri stars. In contrast, the angular momentum distributions of older T Tauri stars (similar to 4-10 Myr) have been less studied, even though they hold key insights to understanding stellar angular momentum evolution at a time when protoplanetary disks have largely dissipated and when models therefore predict changes in the rotational evolution that can in principle be tested. We present a study of photometric variability among 1974 confirmed T Tauri members of various subregions of the Orion OB1 association, and with ages spanning 4-10 Myr, using optical time series from three different surveys. For 564 of the stars (similar to 32% of the weak-lined T Tauri stars and similar to 13% of the classical T Tauri stars in our sample) we detect statistically significant periodic variations, which we attribute to the stellar rotation periods, making this one of the largest samples of T Tauri star rotation periods yet published. We observe a clear change in the overall rotation period distributions over the age range 4-10 Myr, with the progressively older subpopulations exhibiting systematically faster rotation. This result is consistent with angular momentum evolution model predictions of an important qualitative change in the stellar rotation periods starting at similar to 5 Myr, an age range for which very few observational constraints were previously available. C1 [Karim, Md Tanveer] Univ Rochester, Dept Phys & Astron, 500 Joseph C Wilson Blvd, Rochester, NY 14627 USA. [Stassun, Keivan G.] Vanderbilt Univ, Dept Phys & Astron, VU Stn B 1807, Nashville, TN 37235 USA. [Stassun, Keivan G.; Chini, Rolf] Univ Catlica Norte, Inst Astron, Ave Angamos 0610, Antofagasta, Chile. [Stassun, Keivan G.] Fisk Univ, Dept Phys, 1000 17th Ave N, Nashville, TN 37208 USA. [Briceno, Cesar; Katherina Vivas, A.; James, David J.] Cerro Tololo Interamer Observ, Casilla Postal 603, La Serena 1700000, Chile. [Raetz, Stefanie] European Space Res & Technol Ctr ESA ESTEC, Directorate Sci & Robot Explorat, Sci Support Off, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Mateu, Cecilia; Jose Downes, Juan; Hernandez, Jesus] Ctr Invest Astron CIDA, Apartado Postal 264, Merida 5101, Venezuela. [Calvet, Nuria; Aarnio, Alicia] Univ Michigan, Dept Astron, 311 West Hall,1085 South Univ Ave, Ann Arbor, MI 48109 USA. [Neuhaeuser, Ralph; Mugrauer, Markus] Astrophys Inst, Schillergasschen 2-3, D-07745 Jena, Germany. [Neuhaeuser, Ralph; Mugrauer, Markus] Univ Sternwarte, FSU Jena, Schillergasschen 2-3, D-07745 Jena, Germany. [Takahashi, Hidenori; Tachihara, Kengo] Gunma Astron Observ, 6860-86 Nakayama, Takayama, Gunma 3770702, Japan. [Chini, Rolf; Hackstein, Moritz] Ruhr Univ Bochum, Astron Inst, Univ Str 150, D-44801 Bochum, Germany. [Cruz-Dias, Gustavo A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Cruz-Dias, Gustavo A.] BAER Inst, 625 2nd St Ste 209, Petaluma, CA 94952 USA. RP Karim, MT (reprint author), Univ Rochester, Dept Phys & Astron, 500 Joseph C Wilson Blvd, Rochester, NY 14627 USA. OI Karim, Md Tanveer/0000-0002-5652-8870; Stassun, Keivan/0000-0002-3481-9052 FU National Science Foundation [AST-1062976, PHY-1263045] FX This research is based partly on observations collected at the Jurgen Stock 1 m Schmidt telescope of the National Observatory of Llano del Hato Venezuela, operated by CIDA for the Ministerio del Poder Popular para la Ciencia y Tecnologia, Venezuela, and on observations obtained at Kitt Peak National Observatory, National Optical Astronomy Observatory (NOAO Prop. ID: 2005B-0529; PI: K. Stassun), which is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation. This study was conducted as part of the Cerro Tololo Inter-American Observatory REU Program and the Vanderbilt University REU Program, which are supported by the National Science Foundation under grants AST-1062976 and PHY-1263045, respectively. We thank Herbert Pablo for assistance with the Kitt Peak observations. NR 51 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 198 DI 10.3847/0004-6256/152/6/198 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF5HI UT WOS:000390360900001 ER PT J AU Line, MR Stevenson, KB Bean, J Desert, JM Fortney, JJ Kreidberg, L Madhusudhan, N Showman, AP Diamond-Lowe, H AF Line, Michael R. Stevenson, Kevin B. Bean, Jacob Desert, Jean-Michel Fortney, Jonathan J. Kreidberg, Laura Madhusudhan, Nikku Showman, Adam P. Diamond-Lowe, Hannah TI NO THERMAL INVERSION AND A SOLAR WATER ABUNDANCE FOR THE HOT JUPITER HD 209458B FROM HST/WFC3 SPECTROSCOPY SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: statistical; planets and satellites: atmospheres; planets and satellites: composition; planets and satellites: gaseous planets; planets and satellites: individual (HD 209458b); techniques: spectroscopic ID HUBBLE-SPACE-TELESCOPE; NICMOS TRANSMISSION SPECTROSCOPY; SYSTEMATIC RETRIEVAL ANALYSIS; EXTRASOLAR GIANT PLANETS; FIELD CAMERA 3; SECONDARY ECLIPSE; EMISSION-SPECTRA; EXOPLANET ATMOSPHERE; MU-M; IRRADIATED ATMOSPHERES AB The nature of the thermal structure of hot Jupiter atmospheres is one of the key questions raised by the characterization of transiting exoplanets over the past decade. There have been claims that many hot Jupiters exhibit atmospheric thermal inversions. However, these claims have been based on broadband photometry rather than the unambiguous identification of emission features with spectroscopy, and the chemical species that could cause the thermal inversions by absorbing stellar irradiation at high altitudes have not been identified despite extensive theoretical and observational effort. Here we present high-precision Hubble Space Telescope WFC3 observations of the dayside thermal emission spectrum of the hot Jupiter HD 209458b, which was the first exoplanet suggested to have a thermal inversion. In contrast to previous results for this planet, our observations detect water in absorption at 6.2 sigma confidence. When combined with Spitzer photometry, the data are indicative of a monotonically decreasing temperature with pressure over the range of 1-0.001 bars at 7.7 sigma confidence. We test the robustness of our results by exploring a variety of model assumptions, including the temperature profile parameterization, presence of a cloud, and choice of Spitzer data reduction. We also introduce a new analysis method to determine the elemental abundances from the spectrally retrieved mixing ratios with thermochemical self-consistency and find plausible abundances consistent with solar metallicity (0.06-10 x solar) and carbon-to oxygen ratios less than unity. This work suggests that high-precision spectrophotometric results are required to robustly infer thermal structures and compositions of extrasolar planet atmospheres and to perform comparative exoplanetology. C1 [Line, Michael R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Line, Michael R.] Bay Area Environm Res Inst, 625 2nd St,Suite 209, Petaluma, CA 94952 USA. [Line, Michael R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Stevenson, Kevin B.; Bean, Jacob; Kreidberg, Laura] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Desert, Jean-Michel] Univ Amsterdam, NL-1012 WX Amsterdam, Netherlands. [Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, 1156 High St, Santa Cruz, CA 95064 USA. [Madhusudhan, Nikku] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Showman, Adam P.] Univ Arizona, Dept Planetary Sci, 1629 E Univ Blvd, Tucson, AZ 85721 USA. [Showman, Adam P.] Univ Arizona, Lunar & Planetary Lab, 1629 E Univ Blvd, Tucson, AZ 85721 USA. [Diamond-Lowe, Hannah] Harvard Smithsonian Ctr Astrophys, Dept Astron, 60 Garden St,MS-10, Cambridge, MA 02138 USA. RP Line, MR (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.; Line, MR (reprint author), Bay Area Environm Res Inst, 625 2nd St,Suite 209, Petaluma, CA 94952 USA.; Line, MR (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. FU GO Treasury Program [13467]; NASA [NAS 5-26555]; David and Lucile Packard Foundation; NASA - Space Telescope Science Institute [51362]; NASA Exoplanet Science Institute Sagan Postdoctoral Fellowship FX These observations were made under the GO Treasury Program 13467 with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under the contract NAS 5-26555. M.R.L. acknowledges support provided by NASA through Hubble Fellowship grant 51362 awarded by the Space Telescope Science Institute. K.B.S. acknowledges support from the NASA Exoplanet Science Institute Sagan Postdoctoral Fellowship. J.L.B. acknowledges support from the David and Lucile Packard Foundation. We also thank Dan Foreman-Mackey for making the corner.py plotting routine available to the public and Johannes Buchner for making pymultinest publicly available. We also thank Vivien Parmentier, Kevin Heng, Tom Evans, Drake Deming, Adam Burrows, and Heather Knutson for useful discussion and comments on the manuscript. We thank Drake Deming, Peter McCullough, Adam Burrows, Sara Seager, David Charbonneau, and Derek Homeier for being co-investigators on the HST observing proposal. Finally, we thank Roxana Lupu for support with the molecular absorption cross sections. NR 110 TC 3 Z9 3 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 203 DI 10.3847/0004-6256/152/6/203 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF5HK UT WOS:000390361100001 ER PT J AU Mayorga, LC Jackiewicz, J Rages, K West, RA Knowles, B Lewis, N Marley, MS AF Mayorga, L. C. Jackiewicz, J. Rages, K. West, R. A. Knowles, B. Lewis, N. Marley, M. S. TI JUPITER'S PHASE VARIATIONS FROM CASSINI: A TESTBED FOR FUTURE DIRECT-IMAGING MISSIONS SO ASTRONOMICAL JOURNAL LA English DT Article DE planets and satellites: atmospheres; planets and satellites: gaseous planets ID EXTRASOLAR GIANT PLANETS; SOUTH TROPICAL ZONE; LIGHT CURVES; REFLECTED-LIGHT; JOVIAN PLANETS; EXOPLANETS; PHOTOMETRY; ALBEDOS; CLOUD; SPECTROPHOTOMETRY AB We present empirical phase curves of Jupiter from similar to 0 degrees to 140 degrees as measured in multiple optical bandpasses by Cassini/Imaging Science Subsystem (ISS) during the Millennium flyby of Jupiter in late 2000 to early 2001. Phase curves are of interest for studying the energy balance of Jupiter and understanding the scattering behavior of the planet as an exoplanet analog. We find that Jupiter is significantly darker at partial phases than an idealized Lambertian planet by roughly 25% and is not well fit by Jupiter-like exoplanet atmospheric models across all wavelengths. We provide analytic fits to Jupiter's phase function in several Cassini/ ISS imaging filter bandpasses. In addition, these observations show that Jupiter's color is more variable with phase angle than predicted by models. Therefore, the color of even a near Jupiter-twin planet observed at a partial phase cannot be assumed to be comparable to that of Jupiter at full phase. We discuss how the Wide-Field Infrared Survey Telescope and other future direct-imaging missions can enhance the study of cool giants. C1 [Mayorga, L. C.; Jackiewicz, J.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Rages, K.] SETI Inst, Mountain View, CA 94043 USA. [West, R. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Knowles, B.] CICLOPS Space Sci Inst, Boulder, CO 80301 USA. [Lewis, N.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Lewis, N.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Marley, M. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Mayorga, LC (reprint author), New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. OI Marley, Mark/0000-0002-5251-2943 FU NSF GRFP; National Science Foundation [DGE-1144458]; WFIRST Project Office FX The authors would like to thank Adam Burrows for providing the code to generate the Rayleigh phase curves. K.R. and M.S.M. thank the WFIRST Project Office for support of their participation in this project. L.C.M. would like to acknowledge support from the NSF GRFP. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1144458. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. NR 36 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 209 DI 10.3847/0004-6256/152/6/209 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF5AA UT WOS:000390341900001 ER PT J AU Ipatov, AV Bondarenko, YS Medvedev, YD Mishina, NA Marshalov, DA Benner, LA AF Ipatov, A. V. Bondarenko, Yu. S. Medvedev, Yu. D. Mishina, N. A. Marshalov, D. A. Benner, L. A. TI Radar observations of the asteroid 2011 UW158 SO ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS LA English DT Article DE NEAs; asteroids; radar observations; orbit determination ID SYSTEM AB In July 2015 intercontinental bistatic radar observations of the potentially dangerous asteroid 2011 UW158 during its close approach to the Earth were carried out. The asteroid was illuminated at a frequency of 8.4 GHz with the 70-m DSS-14 antenna of the Goldstone Deep Space Communications Complex, while the signal reflected from the asteroid was received with the 32-m radio telescopes of the Quasar VLBI network at the Zelenchukskaya and Badary Observatories. The spectra of the reflected radio signals were obtained. The sizes and rotation period of the asteroid consistent with photometric observations and the ratio of the powers of the reflected signals with left- and right-hand circular polarizations were determined. The derived values suggest that the asteroid has an inhomogeneous surface and a prolate shape. The observations of the Doppler shift of the reflected signal frequency were obtained, which allowed the orbital parameters of the asteroid to be improved. C1 [Ipatov, A. V.; Bondarenko, Yu. S.; Medvedev, Yu. D.; Mishina, N. A.; Marshalov, D. A.] Russian Acad Sci, Inst Appl Astron, Nab Kutuzova 10, St Petersburg 191187, Russia. [Benner, L. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Bondarenko, YS (reprint author), Russian Acad Sci, Inst Appl Astron, Nab Kutuzova 10, St Petersburg 191187, Russia. EM bondarenko@ipa.nw.ru FU Russian Science Foundation [16-12-00071] FX This work was supported by the Russian Science Foundation (project no. 16-12-00071). NR 7 TC 0 Z9 0 U1 0 U2 0 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7737 EI 1562-6873 J9 ASTRON LETT+ JI Astron. Lett.-J. Astron. Space Astrophys. PD DEC PY 2016 VL 42 IS 12 BP 850 EP 855 DI 10.1134/S1063773716120021 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF0WB UT WOS:000390045900007 ER PT J AU Cheng, YT Chang, TC Bock, J Bradford, CM Cooray, A AF Cheng, Yun-Ting Chang, Tzu-Ching Bock, James Bradford, C. Matt Cooray, Asantha TI SPECTRAL LINE DE-CONFUSION IN AN INTENSITY MAPPING SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; cosmology: theory; dark ages, reionization, first stars; large-scale structure of universe ID C II EMISSION; STAR-FORMING GALAXIES; LARGE-SCALE STRUCTURE; POWER SPECTRUM; COSMIC REIONIZATION; MOLECULAR GAS; HIGH-REDSHIFT; FOREGROUND CONTAMINATION; PROBING REIONIZATION; ALPHA EMISSION AB Spectral line intensity mapping (LIM) has been proposed as a promising tool to efficiently probe the cosmic reionization and the large-scale structure. Without detecting individual sources, LIM makes use of all available photons and measures the integrated light in the source confusion limit. to efficiently map the three-dimensional matter distribution on large scales as traced by a given emission line. One particular challenge is the separation of desired signals from astrophysical continuum foregrounds and line interlopers. Here we present a technique to extract large-scale structure information traced by emission lines from different redshifts, embedded in a three-dimensional intensity mapping data cube. The line redshifts are distinguished by the anisotropic shape of the power spectra when projected onto a common coordinate frame. We consider the case where high-redshift [C II] lines are confused with multiple low-redshift CO rotational lines. We present a semi-analytic model for [C II] and CO line estimates based on the cosmic infrared background measurements, and show that with a modest instrumental noise level and survey geometry, the large-scale [C II] and CO power spectrum amplitudes can be successfully extracted from a confusion-limited data set, without external information. We discuss the implications and limits of this technique for possible LIM experiments. C1 [Cheng, Yun-Ting; Bock, James; Bradford, C. Matt] CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Cheng, Yun-Ting; Chang, Tzu-Ching] Acad Sinica, Inst Astron & Astrophys, 1 Roosevelt Rd,Sect 4, Taipei 10617, Taiwan. [Bock, James; Bradford, C. Matt] NASA, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Cooray, Asantha] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Cheng, YT (reprint author), CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA.; Cheng, YT (reprint author), Acad Sinica, Inst Astron & Astrophys, 1 Roosevelt Rd,Sect 4, Taipei 10617, Taiwan. EM ycheng3@caltech.edu FU MoST [103-2112-M-001-002-MY3] FX We are grateful to the Time-Pilot collaboration for providing useful inputs throughout this work. We thank Phil Bull, Olivier Dore Tony Li, Adam Lidz, Roland de Putter, Paolo Serra, Chun-Hao To, and Heidi Hao-Yi Wu for helpful discussions and valuable comments on the manuscript. Y.-T.C. and T.-C.C. were supported in part by MoST grant 103-2112-M-001-002-MY3. T.-C.C. gratefully acknowledges the hospitality of the Caltech OBSCOS group and the Jet Propulsion Laboratory, where part of this work was carried out. NR 61 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 165 DI 10.3847/0004-637X/832/2/165 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7DK UT WOS:000390490100025 ER PT J AU Chian, ACL Feng, HQ Hu, Q Loew, MH Miranda, RA Munoz, PR Sibeck, DG Wu, DJ AF Chian, Abraham C. -L. Feng, Heng Q. Hu, Qiang Loew, Murray H. Miranda, Rodrigo A. Munoz, Pablo R. Sibeck, David G. Wu, De J. TI GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE-ROPE MAGNETIC RECONNECTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic reconnection; plasmas; solar wind; Sun: coronal mass ejections (CMEs); turbulence ID CORONAL MASS EJECTIONS; SOLAR-WIND; FLUX ROPES; GEOMAGNETIC-ACTIVITY; 1 AU; CLOUD; SIGNATURES; MULTIPLE; SPACE; TUBES AB In a recent paper,. the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad-Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope-rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm. C1 [Chian, Abraham C. -L.; Loew, Murray H.] George Washington Univ, Dept Biomed Engn, Washington, DC 20052 USA. [Chian, Abraham C. -L.] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia. [Feng, Heng Q.] Luoyang Normal Univ, Inst Space Phys, Luoyang, Peoples R China. [Hu, Qiang] Univ Alabama, Dept Space Sci, Huntsville, AL 35805 USA. [Hu, Qiang] Univ Alabama, CSPAR, Huntsville, AL 35805 USA. [Miranda, Rodrigo A.] Univ Brasilia UnB, Inst Phys, UnB Gama Campus, BR-70910900 Brasilia, DF, Brazil. [Miranda, Rodrigo A.] Univ Brasilia UnB, Inst Phys, Plasma Phys Lab, BR-70910900 Brasilia, DF, Brazil. [Munoz, Pablo R.] Univ La Serena, Dept Phys & Astron, Av Juan Cisternas 1200, La Serena, Chile. [Sibeck, David G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wu, De J.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Jiangsu, Peoples R China. [Chian, Abraham C. -L.] Inst Aeronaut Technol ITA, BR-12228900 Sao Jose Dos Campos, SP, Brazil. [Chian, Abraham C. -L.] Natl Inst Space Res INPE, POB 515, BR-12227010 Sao Jose Dos Campos, SP, Brazil. RP Chian, ACL (reprint author), George Washington Univ, Dept Biomed Engn, Washington, DC 20052 USA.; Chian, ACL (reprint author), Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia.; Chian, ACL (reprint author), Inst Aeronaut Technol ITA, BR-12228900 Sao Jose Dos Campos, SP, Brazil.; Chian, ACL (reprint author), Natl Inst Space Res INPE, POB 515, BR-12227010 Sao Jose Dos Campos, SP, Brazil. EM abraham.chian@gmail.com OI Hu, Qiang/0000-0002-7570-2301; Feng, Heng Qiang/0000-0003-2632-8066 FU CAPES; CNPq; Fulbright Commission; NSFC [41274180]; NASA [NNX12AH50G, NNX14AF41G]; FAPDF (Brazil) [3798.25.34800.0807/2015]; DIULS (Chile) [PI15143] FX The authors are grateful to the referee's comments. A.C.L.C. thanks CAPES, CNPq, and Fulbright Commission for support, UoA, GWU, and KU Leuven for kind hospitality, and D. T. Phan for valuable discussion. H.Q.F. acknowledges support from NSFC under grant No. 41274180. Q.H. acknowledges support from NASA grants NNX12AH50G and NNX14AF41G. R.A.M. acknowledges support from FAPDF (Brazil) under grant 3798.25.34800.0807/2015. P.R.M. acknowledges support from DIULS (Chile) under grant PI15143. This work was motivated by Church's Aurora Borealis. A.C.L.C. and M.H.L. are indebted to E. J. Harvey of Smithsonian American Art Museum for insightful information on this masterpiece. NR 56 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 179 DI 10.3847/0004-637X/832/2/179 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7DK UT WOS:000390490100039 ER PT J AU Fonseca, E Pennucci, TT Ellis, JA Stairs, IH Nice, DJ Ransom, SM Demorest, PB Arzoumanian, Z Crowter, K Dolch, T Ferdman, RD Gonzalez, ME Jones, G Jones, ML Lam, MT Levin, L McLaughlin, MA Stovall, K Swiggum, JK Zhu, WW AF Fonseca, Emmanuel Pennucci, Timothy T. Ellis, Justin A. Stairs, Ingrid H. Nice, David J. Ransom, Scott M. Demorest, Paul B. Arzoumanian, Zaven Crowter, Kathryn Dolch, Timothy Ferdman, Robert D. Gonzalez, Marjorie E. Jones, Glenn Jones, Megan L. Lam, Michael T. Levin, Lina McLaughlin, Maura A. Stovall, Kevin Swiggum, Joseph K. Zhu, Weiwei TI THE NANOGRAV NINE-YEAR DATA SET: MASS AND GEOMETRIC MEASUREMENTS OF BINARY MILLISECOND PULSARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; gravitation; pulsars: general; stars: evolution; stars: neutron ID WHITE-DWARF COMPANION; X-RAY BINARIES; RELATIVISTIC CELESTIAL MECHANICS; NANCAY RADIO TELESCOPE; NEUTRON-STAR; SHAPIRO DELAY; GENERAL-RELATIVITY; TRIPLE SYSTEM; TIMING MEASUREMENTS; GALACTIC DISK AB We analyze 24 binary radio pulsars in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) nine-year data set. We make 14. significant measurements of the. Shapiro delay, including new detections in four pulsar-binary systems (PSRs J0613-0200, J2017+0603, J2302+4442, and J2317+1439), and derive estimates of the binary-component masses and orbital inclination for these MSP-binary systems. We find a wide range of binary pulsar masses, with values as low as m(p) = 1.18(-0.09)(+0.10) M circle dot for PSR J1918-0642 and as high as m(p) = 1.928(-0.017)(+0.017) for PSR J1614-2230 (both 68.3% credibility). We make an improved measurement of the Shapiro timing delay in the PSR J1918-0642 and J2043+1711 systems, measuring the pulsar mass in the latter system to be m(p) = 1.41(-0.18)(+0.21)M circle dot(68.3% credibility) for the first time. We measure secular variations of one or more orbital elements in many systems, and use these measurements to further constrain our estimates of the pulsar and companion masses whenever possible. In particular, we used the observed Shapiro delay and periastron advance due to relativistic gravity in the PSR J1903+0327 system to derive a pulsar mass of m(p) = 1.65(-0.02)(+0.02) M circle dot (68.3% credibility). We discuss the implications that our mass measurements have on the overall neutron-star mass distribution, and on the "mass/orbital-period" correlation due to extended mass transfer. C1 [Fonseca, Emmanuel; Stairs, Ingrid H.; Crowter, Kathryn; Gonzalez, Marjorie E.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Pennucci, Timothy T.; Jones, Glenn] Columbia Univ, Dept Astron, 550 W 120th St, New York, NY 10027 USA. [Ellis, Justin A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Stairs, Ingrid H.] McGill Space Inst, 3550 Univ, Montreal, PQ H3A 2A7, Canada. [Nice, David J.] Lafayette Coll, Dept Phys, Easton, PA 18042 USA. [Ransom, Scott M.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Demorest, Paul B.] Natl Radio Astron Observ, POB 0, Socorro, NM 87801 USA. [Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, X Ray Astrophys Lab, Code 662, Greenbelt, MD 20771 USA. [Dolch, Timothy] Hillsdale Coll, Dept Phys, 33 E Coll St, Hillsdale, MI 49242 USA. [Dolch, Timothy] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Ferdman, Robert D.] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Gonzalez, Marjorie E.] Vancouver Coastal Hlth Author, Dept Nucl Med, Vancouver, BC V5Z 1M9, Canada. [Jones, Megan L.] Univ Virginia, Dept Phys, POB 6315, Morgantown, WV 26505 USA. [Levin, Lina] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Swiggum, Joseph K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Zhu, Weiwei] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. RP Fonseca, E (reprint author), Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. OI Nice, David/0000-0002-6709-2566 FU National Science Foundation (NSF) PIRE program [0968296]; NSF Physics Frontier Center [1430284]; NSERC; Canadian Institute for Advanced Research; NASA New York Space Grant [NNX15AK07H] FX We thank P.C.C. Freire for useful discussion, as well as C. Bassa and C. Ng for comments on the manuscript. The NANOGrav project receives support from National Science Foundation (NSF) PIRE program award number 0968296 and NSF Physics Frontier Center award number 1430284. NANO-Grav research at UBC is supported by an NSERC Discovery Grant and Discovery Accelerator Supplement and the Canadian Institute for Advanced Research. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. T. T. P. was a student at the National Radio Astronomy Observatory while this project was undertaken. M. T. L. was partially supported by NASA New York Space Grant award number NNX15AK07H. The National Radio Astronomy Observatory is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. The Arecibo Observatory is operated by SRI International under a cooperative agreement with the NSF (AST-1100968), and in alliance with Ana G. Mendez-Universidad Metropolitana, and the Universities Space Research Association. NR 105 TC 6 Z9 6 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 167 DI 10.3847/0004-637X/832/2/167 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7DK UT WOS:000390490100027 ER PT J AU Katsuda, S Maeda, K Bamba, A Terada, Y Fukazawa, Y Kawabata, K Ohno, M Sugawara, Y Tsuboi, Y Immler, S AF Katsuda, Satoru Maeda, Keiichi Bamba, Aya Terada, Yukikatsu Fukazawa, Yasushi Kawabata, Koji Ohno, Masanori Sugawara, Yasuharu Tsuboi, Yohko Immler, Stefan TI TWO DISTINCT-ABSORPTION X-RAY COMPONENTS FROM TYPE IIn SUPERNOVAE: EVIDENCE FOR ASPHERICITY IN THE CIRCUMSTELLAR MEDIUM SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; supernovae: general; supernovae: individual (SN 2005kd, SN 2006jd, SN 2010jl); X-rays: general ID SN 2010JL; OBSERVATIONS REVEAL; MASS-LOSS; EMISSION; RADIO; ENVIRONMENT; PROGENITOR; ELECTRONS; EVOLUTION; EXPANSION AB We present multi-epoch X-ray spectral observations of three Type IIn supernovae (SNe), SN 2005kd, SN 2006jd, and SN 2010jl, acquired with Chandra, XMM-Newton, Suzaku, and Swift. Previous extensive X-ray studies of SN. 2010jl have revealed that X-ray spectra are dominated by thermal emission, which likely arises from a hot plasma heated by a forward shock propagating into a massive circumstellar medium (CSM). Interestingly, an additional soft X-ray component was required to reproduce the spectra at a period of similar to 1-2 years after the SN explosion. Although this component is likely associated with the SN, its origin remained an open question. We find a similar, additional soft X-ray component from the other two SNe IIn as well. Given this finding, we present a new interpretation for the origin of this component; it is thermal emission from a forward shock essentially identical to the hard X-ray component, but directly reaches us from a void of the dense CSM. Namely, the hard and soft components are responsible for the heavily and moderately absorbed components, respectively. The co-existence of the two components with distinct absorptions as well as the delayed emergence of the moderately absorbed X-ray component could be evidence for asphericity of the CSM. We show that the X-ray spectral evolution can be qualitatively explained by considering a torus-like geometry for the dense CSM. Based on our X-ray spectral analyses, we estimate the radius of the torus-like CSM to be on the order of similar to 5 x 10(16) cm. C1 [Katsuda, Satoru; Tsuboi, Yohko] Chuo Univ, Fac Sci & Engn, Dept Phys, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, Japan. [Maeda, Keiichi] Kyoto Univ, Dept Astron, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan. [Maeda, Keiichi] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan. [Bamba, Aya] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Bamba, Aya] Univ Tokyo, Sch Sci, Res Ctr Early Universe, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Terada, Yukikatsu] Saitama Univ, Grad Sch Sci & Engn, 255 Shimo Ohkubo, Sakura, Saitama 3388570, Japan. [Fukazawa, Yasushi; Kawabata, Koji; Ohno, Masanori] Hiroshima Univ, Dept Phys Sci, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398526, Japan. [Fukazawa, Yasushi; Kawabata, Koji] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398526, Japan. [Fukazawa, Yasushi; Ohno, Masanori] Hiroshima Univ, Core Res Energet Univ Core U, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398526, Japan. [Sugawara, Yasuharu] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan. [Immler, Stefan] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Immler, Stefan] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Katsuda, S (reprint author), Chuo Univ, Fac Sci & Engn, Dept Phys, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, Japan. EM katsuda@phys.chuo-u.ac.jp FU Japan Society for the Promotion of Science KAKENHI [16K17673, 26800100, 16K17667]; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan FX This work is supported by the Japan Society for the Promotion of Science KAKENHI grant numbers 16K17673 (S.K.), 26800100 (K.M.), 16K17667 (Y.S.). The work by K.M. is supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. NR 44 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 194 DI 10.3847/0004-637X/832/2/194 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7DK UT WOS:000390490100054 ER PT J AU Kostov, VB Moore, K Tamayo, D Jayawardhana, R Rinehart, SA AF Kostov, Veselin B. Moore, Keavin Tamayo, Daniel Jayawardhana, Ray Rinehart, Stephen A. TI TATOOINE'S FUTURE: THE ECCENTRIC RESPONSE OF KEPLER'S CIRCUMBINARY PLANETS TO COMMON-ENVELOPE EVOLUTION OF THEIR HOST STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; binaries: eclipsing; methods: numerical; planetary systems; stars: individual (Kepler-47, 1647, NN Ser); techniques: photometric ID BINARY STARS; STELLAR EVOLUTION; GREAT ESCAPE; SYSTEM; MASS; PHASE; STABILITY; EJECTION; NEBULAE; DISC AB Inspired by the recent Kepler. discoveries of circumbinary planets orbiting nine close binary stars, we explore the fate of the former as the latter evolve off the main sequence. We combine binary star evolution models with dynamical simulations to study the orbital evolution of these planets as their hosts undergo common-envelope (CE) stages, losing in the process a tremendous amount of mass on dynamical timescales. Five of the systems experience at least one Roche-lobe overflow and CE stage. (Kepler-1647 experiences three), and the binary stars either shrink to very short orbits or coalesce; two systems trigger a double-degenerate supernova explosion. Kepler's circumbinary planets predominantly remain gravitationally bound at the end of the CE phase, migrate to larger orbits, and may gain significant eccentricity; their orbital expansion can be more than an order of magnitude and can occur over the course of a single planetary orbit. The orbits these planets can reach are qualitatively consistent with those of the currently known post-CE, eclipse-time variations circumbinary candidates. Our results also show that circumbinary planets can experience both modes of orbital expansion (adiabatic and nonadiabatic) if their host binaries undergo more than one CE stage; multiplanet circumbinary systems like Kepler-47 can experience both modes during the same CE stage. Additionally, unlike Mercury orbiting the Sun, a circumbinary planet with the same semimajor axis can survive the CE evolution of a close binary star with a total mass of 1 M-circle dot. C1 [Kostov, Veselin B.; Rinehart, Stephen A.] NASA, Goddard Space Flight Ctr, Mail Code 665, Greenbelt, MD 20771 USA. [Moore, Keavin; Jayawardhana, Ray] York Univ, Fac Sci, 4700 Keele St, Toronto, ON M3J 1P3, Canada. [Tamayo, Daniel] Univ Toronto Scarborough, Dept Phys & Environm Sci, Toronto, ON M1C 1A4, Canada. [Tamayo, Daniel] Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada. RP Kostov, VB (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 665, Greenbelt, MD 20771 USA. EM veselin.b.kostov@nasa.gov OI , Veselin/0000-0001-9786-1031 FU Centre for Planetary Sciences at the University of Toronto at Scarborough; Jeffrey L. Bishop Fellowship; NSERC grants FX We thank the anonymous referee for the insightful comments that helped us improve this paper. The authors are grateful to Jarrod Hurley and Marten van Kerkwijk for valuable discussions. VBK gratefully acknowledges support by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center. DT was supported by a postdoctoral fellowship from the Centre for Planetary Sciences at the University of Toronto at Scarborough and is grateful for additional support from the Jeffrey L. Bishop Fellowship. This work was supported in part by NSERC grants to RJ. We acknowledge conversations with Daniel Fabrycky, Nader Haghighipour, Kaitlin Kratter, Boyana Lilian, Jerome Orosz, and William Welsh. NR 75 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 183 DI 10.3847/0004-637X/832/2/183 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7DK UT WOS:000390490100043 ER PT J AU Kubo, M Katsukawa, Y Suematsu, Y Kano, R Bando, T Narukage, N Ishikawa, R Hara, H Giono, G Tsuneta, S Ishikawa, S Shimizu, T Sakao, T Winebarger, A Kobayashi, K Cirtain, J Champey, P Auchere, F Bueno, JT Ramos, AA Stepan, J Belluzzi, L Sainz, RM De Pontieu, B Ichimoto, K Carlsson, M Casini, R Goto, M AF Kubo, M. Katsukawa, Y. Suematsu, Y. Kano, R. Bando, T. Narukage, N. Ishikawa, R. Hara, H. Giono, G. Tsuneta, S. Ishikawa, S. Shimizu, T. Sakao, T. Winebarger, A. Kobayashi, K. Cirtain, J. Champey, P. Auchere, F. Bueno, J. Trujillo Ramos, A. Asensio Stepan, J. Belluzzi, L. Sainz, R. Manso De Pontieu, B. Ichimoto, K. Carlsson, M. Casini, R. Goto, M. TI DISCOVERY OF UBIQUITOUS FAST-PROPAGATING INTENSITY DISTURBANCES BY THE CHROMOSPHERIC LYMAN ALPHA SPECTROPOLARIMETER (CLASP) SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic reconnection; Sun: chromosphere; Sun: transition region; waves ID HIGH-RESOLUTION OBSERVATIONS; DYNAMICS-OBSERVATORY SDO; JET-LIKE FEATURES; LIGHT BRIDGE; II SPICULES; QUIET-SUN; H-ALPHA; NUMERICAL-SIMULATION; PENUMBRAL MICROJETS; EXTREME-ULTRAVIOLET AB High-cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere or the transition region or both at a speed much higher than the speed of sound. The CLASP/SJ instrument provides a time series of two-dimensional images taken with broadband filters centered on the Ly alpha line at a 0.6 s cadence. The multiple fast-propagating intensity disturbances appear in the quiet Sun and in an active region, and they are clearly detected in at least 20 areas in a field of view of 527 '' x 527 '' during the 5 minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km s(-1), and they are comparable to the local Alfven speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed fast-propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is about 10 '', and the widths are a few arcseconds, which are almost determined by a pixel size of 1.'' 03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation for the fast-propagating intensity disturbances observed by CLASP is magnetohydrodynamic fast-mode waves. C1 [Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Ichimoto, K.] Natl Astron Observ Japan, Natl Inst Nat Sci, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Tsuneta, S.; Ishikawa, S.; Shimizu, T.; Sakao, T.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan. [Winebarger, A.; Kobayashi, K.; Cirtain, J.] NASA, Marshall Space Flight Ctr, ZP 13, Huntsville, AL 35812 USA. [Champey, P.] Univ Alabama, 301 Sparkman Dr, Huntsville, AL 35899 USA. [Auchere, F.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. [Bueno, J. Trujillo; Ramos, A. Asensio] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Tenerife, Spain. [Stepan, J.] Acad Sci Czech Republic, Inst Astron, CS-25165 Ondrejov, Czech Republic. [Belluzzi, L.] Ist Ric Solari Locarno, CH-6605 Locarno, Switzerland. [Belluzzi, L.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Sainz, R. Manso] Max Planck Inst Sonnen Syst Forsch, Justus Von Liebig Weg 3, D-37077 Gottingen, Germany. [De Pontieu, B.] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA. [Ichimoto, K.] Kyoto Univ, Hida Observ, Takayama, Gifu 5061314, Japan. [Carlsson, M.] Univ Oslo, POB 1029, NO-0315 Oslo, Norway. [Casini, R.] Natl Ctr Atmospher Res, High Altitude Observ, POB 3000, Boulder, CO 80307 USA. [Goto, M.] Natl Inst Nat Sci, Natl Inst Fus Sci, 322-6 Oroshicho, Toki, Gifu 5095292, Japan. RP Kubo, M (reprint author), Natl Astron Observ Japan, Natl Inst Nat Sci, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. EM masahito.kubo@nao.ac.jp RI Stepan, Jiri/G-9050-2014 FU basic research program of ISAS/JAXA; NAOJ; JSPS KAKENHI [23340052, 24740134, 24340040, 25220703]; NASA Low Cost Access to Space [12-SHP 12/2-0283]; Ministry of Economy and Competitiveness (Solar Magnetism and Astrophysical Spectropolarimetry) [AYA2010-18029]; Centre National d'Etudes Spatiales (CNES); Czech Science Foundation [16-16861S]; Academy of Sciences of Czech Republic [RVO:67985815] FX We would like to thank T.J. Okamoto, P. Antolin, S. Toriumi, T. Yokoyama, and R. Rutten for their insightful discussions. We gratefully acknowledge the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) team. The team was an international partnership between the NASA Marshall Space Flight Center, the National Astronomical Observatory of Japan (NAOJ), the Japan Aerospace Exploration Agency (JAXA), Instituto de Astrofisica de Canarias (IAC), and Institut d'Astrophysique Spatiale; additional partners include Astronomical Institute ASCR, Lockheed Martin, and the University of Oslo. The slit-jaw optics of CLASP was manufactured by Genesia Corp., and we are grateful to N. Takeyama, Y. Kanai, and Y. Sakakibara. Japanese participation is funded by the basic research program of ISAS/JAXA, internal research funding of NAOJ, and JSPS KAKENHI (grant numbers 23340052, 24740134, 24340040, and 25220703). US participation is funded by NASA Low Cost Access to Space (Award Number 12-SHP 12/2-0283). Spanish participation has been funded by the Ministry of Economy and Competitiveness through project AYA2010-18029 (Solar Magnetism and Astrophysical Spectropolarimetry). French hardware participation was funded by Centre National d'Etudes Spatiales (CNES). J.S. acknowledges the support of the Czech Science Foundation via grant 16-16861S and project RVO:67985815 of the Academy of Sciences of the Czech Republic. NR 42 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 141 DI 10.3847/0004-637X/832/2/141 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7DK UT WOS:000390490100001 ER PT J AU Kuridze, D Mathioudakis, M Christian, DJ Kowalski, AF Jess, DB Grant, SDT Kawate, T Simoes, PJA Allred, JC Keenan, FP AF Kuridze, D. Mathioudakis, M. Christian, D. J. Kowalski, A. F. Jess, D. B. Grant, S. D. T. Kawate, T. Simoes, P. J. A. Allred, J. C. Keenan, F. P. TI OBSERVATIONS AND SIMULATIONS OF THE Na I D-1 LINE PROFILES IN AN M-CLASS SOLAR FLARE SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: numerical; radiative transfer; Sun: chromosphere; Sun: flares; Sun: photosphere; techniques: imaging spectroscopy ID H-ALPHA; SPECTRAL-LINES; ATMOSPHERE; RHESSI; CHROMOSPHERE; DIAGNOSTICS; ELECTRONS; EMISSION; MODELS; IBIS AB We study the temporal evolution of the Na I D-1 line profiles in the M3.9 flare SOL2014-06-11T21:03. UT, using observations at high spectral resolution obtained with the Interferometric Bidimensional Spectrometer instrument on the Dunn Solar Telescope combined with radiative hydrodynamic simulations. Our results show a significant increase in the intensities of the line core and wings during the flare. The analysis of the line profiles from the flare ribbons reveals that the Na I D-1 line has a central reversal with excess emission in the blue wing (blue asymmetry). We combine RADYN and RH simulations to synthesize Na I D-1 line profiles of the flaring atmosphere and find good agreement with the observations. Heating with a beam of electrons modifies the radiation field in the flaring atmosphere and excites electrons from the ground state 3s S-2 to the first excited state 3p P-2, which in turn modifies the relative population of the two states. The change in temperature and the population density of the energy states make the sodium line profile revert from absorption into emission. Furthermore, the rapid changes in temperature break the pressure balance between the different layers of the lower atmosphere, generating upflow/downflow patterns. Analysis of the simulated spectra reveals that the asymmetries of the Na I D-1 flare profile are produced by the velocity gradients in the lower solar atmosphere. C1 [Kuridze, D.; Mathioudakis, M.; Jess, D. B.; Grant, S. D. T.; Kawate, T.; Keenan, F. P.] Queens Univ Belfast, Astrophys Res Ctr, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [Christian, D. J.] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. [Simoes, P. J. A.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Kowalski, A. F.; Allred, J. C.] NASA, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. [Kowalski, A. F.] Univ Colorado, Boulder, CO 80303 USA. RP Kuridze, D (reprint author), Queens Univ Belfast, Astrophys Res Ctr, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. OI Grant, Samuel/0000-0001-5170-9747; Christian, Damian/0000-0003-1746-3020 FU European Community's Seventh Framework Programme (F-CHROMA) [606862] FX The Dunn Solar Telescope at Sacramento Peak/NM is operated by the National Solar Observatory (NSO). NSO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation (NSF). The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 606862 (F-CHROMA). NR 32 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 147 DI 10.3847/0004-637X/832/2/147 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7DK UT WOS:000390490100007 ER PT J AU Nikolov, N Sing, DK Gibson, NP Fortney, JJ Evans, TM Barstow, JK Kataria, T Wilson, PA AF Nikolov, Nikolay Sing, David K. Gibson, Neale P. Fortney, Jonathan J. Evans, Thomas M. Barstow, Joanna K. Kataria, Tiffany Wilson, Paul A. TI VLT FORS2 COMPARATIVE TRANSMISSION SPECTROSCOPY: DETECTION OF Na IN THE ATMOSPHERE OF WASP-39b FROM THE GROUND SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: atmospheres; stars: individual (WASP-39); techniques: photometric; techniques: spectroscopic ID HUBBLE-SPACE-TELESCOPE; LIMB-DARKENING COEFFICIENTS; HOT-JUPITER WASP-19B; EXOPLANET GJ 1214B; HD 189733B; EXTRASOLAR PLANET; SPECTRAL SURVEY; SODIUM; MODEL; WATER AB We present transmission spectroscopy of the warm Saturn-mass exoplanet WASP-39b made with the Very. Large. Telescope. FOcal Reducer. and. Spectrograph. (FORS2) across the wavelength range 411-810 nm. The transit depth is measured with a typical precision of 240 parts per million (ppm) in wavelength bins of 10 nm on a V = 12.1 mag star. We detect the sodium absorption feature (3.2 sigma) and find evidence of potassium. The ground-based transmission spectrum is consistent with Hubble Space Telescope (HST) optical spectroscopy, supporting the interpretation that WASP-39b has a largely clear atmosphere. Our results demonstrate the great potential of the recently upgraded FORS2 spectrograph for optical transmission spectroscopy, with which we obtained HST-quality light curves from the ground. C1 [Nikolov, Nikolay; Sing, David K.; Evans, Thomas M.] Univ Exeter, Phys & Astron, Exeter EX4 4QL, Devon, England. [Gibson, Neale P.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Barstow, Joanna K.] UCL, Phys & Astron, London, England. [Kataria, Tiffany] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Wilson, Paul A.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. RP Nikolov, N (reprint author), Univ Exeter, Phys & Astron, Exeter EX4 4QL, Devon, England. EM nikolay@astro.ex.ac.uk OI Nikolov, Nikolay/0000-0002-6500-3574 FU ESO program [096.C-0765(E)]; European Research Council under the European Union Seventh Framework Program (FP7) ERC [336792]; Royal Society; French Agence Nationale de la Recherche (ANR) [ANR-12-BS05-0012]; [617119] FX Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere under ESO program 096.C-0765(E). We are grateful to the anonymous referee for their valuable comments and suggestions for improving the manuscript. The research leading to these results received funding from the European Research Council under the European Union Seventh Framework Program (FP7/2007-2013) ERC grant agreement no. 336792. N.P.G. gratefully acknowledges support from the Royal Society in the form of a University Research Fellowship. J.K.B. and E.R.C. acknowledge support from project 617119 (ExoLights). P.A.W. acknowledges the support of the French Agence Nationale de la Recherche (ANR), under program ANR-12-BS05-0012 "Exo-Atmos." NR 46 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 191 DI 10.3847/0004-637X/832/2/191 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7DK UT WOS:000390490100051 ER PT J AU Osten, RA Kowalski, A Drake, SA Krimm, H Page, K Gazeas, K Kennea, J Oates, S Page, M de Miguel, E Novak, R Apeltauer, T Gehrels, N AF Osten, Rachel A. Kowalski, Adam Drake, Stephen A. Krimm, Hans Page, Kim Gazeas, Kosmas Kennea, Jamie Oates, Samantha Page, Mathew de Miguel, Enrique Novak, Rudolf Apeltauer, Tomas Gehrels, Neil TI A VERY BRIGHT, VERY HOT, AND VERY LONG FLARING EVENT FROM THE M DWARF BINARY SYSTEM DG CVn SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: coronae; stars: flare; stars: individual (DG CVn) ID X-RAY FLARES; WHITE-LIGHT FLARE; STAR EV-LACERTAE; STELLAR FLARES; SOLAR-FLARES; PARTICLE-ACCELERATION; SCALING LAWS; AD LEONIS; YZ CMI; EMISSION AB On 2014 April 23, the Swift satellite responded to a hard X-ray transient detected by its Burst Alert Telescope, which turned out to be a stellar flare from a nearby, young M dwarf binary DG CVn. We utilize observations at X-ray, UV, optical, and radio wavelengths to infer the properties of two large flares. The X-ray spectrum of the primary outburst can be described over the 0.3-100 keV bandpass by either a single very high-temperature plasma or a nonthermal thick-target bremsstrahlung model, and we rule out the nonthermal model based on energetic grounds. The temperatures were the highest seen spectroscopically in a stellar flare, at T-X of 290 MK. The first event was followed by a comparably energetic event almost a day later. We constrain the photospheric area involved in each of the two flares to be >10(20) cm(2), and find evidence from flux ratios in the second event of contributions to the white light flare emission in addition to the usual hot, T similar to 10(4) K blackbody emission seen in the impulsive phase of flares. The radiated energy in X-rays and white light reveal these events to be the two most energetic X-ray flares observed from an M dwarf, with X-ray radiated energies in the 0.3-10 keV bandpass of 4 x 10(35) and 9 x 10(35) erg, and optical flare energies at E-V of 2.8 x 10(34) and 5.2 x 10(34) erg, respectively. The results presented here should be integrated into updated modeling of the astrophysical impact of large stellar flares on close-in exoplanetary atmospheres. C1 [Osten, Rachel A.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Kowalski, Adam] Univ Md GSFC, Baltimore, MD USA. [Kowalski, Adam] Univ Colorado, Dept Astrophys & Planetary Sci, 2000 Colorado Ave, Boulder, CO 80305 USA. [Kowalski, Adam] Univ Colorado, Natl Solar Observ, 3665 Discovery Dr, Boulder, CO 80303 USA. [Drake, Stephen A.; Krimm, Hans] USRA, CRESST, Columbia, MD USA. [Drake, Stephen A.; Gehrels, Neil] NASA, GSFC, Washington, DC 20546 USA. [Page, Kim] Univ Leicester, Dept Phys & Astron, Xray & Observat Astron Grp, Leicester LE1 7RH, Leics, England. [Gazeas, Kosmas] Univ Athens, Dept Astrophys Astron & Mech, GR-15784 Athens, Greece. [Kennea, Jamie] Penn State, State Coll, PA USA. [Oates, Samantha] IAA CSIC, Glorieta Astron S-N, E-18008 Granada, Spain. [Page, Mathew] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [de Miguel, Enrique] Univ Huelva, Fac Ciencias Expt, Dept Fis Aplicada, E-21071 Huelva, Spain. [Novak, Rudolf] Masaryk Univ, Fac Sci, Res Ctr Tox Cpds Environm, Kamenice 3, Brno 62500, Czech Republic. [Apeltauer, Tomas] Brno Univ Technol, Fac Civil Engn, Veveri 331-95, Brno 60200, Czech Republic. [Osten, Rachel A.] Johns Hopkins Univ, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [de Miguel, Enrique] CBA Huelva, Observ CIECEM, Parque Dunar Matalascanas, Almonte 21760, Huelva, Spain. RP Osten, RA (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.; Osten, RA (reprint author), Johns Hopkins Univ, Ctr Astrophys Sci, Baltimore, MD 21218 USA. EM osten@stsci.edu OI Page, Kim/0000-0001-5624-2613 FU National Aeronautics and Space Administration; Spanish Ministry [AYA2012-39727-C03-01]; Swift project FX This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. S.R.O. also acknowledges the support of the Spanish Ministry, Project Number AYA2012-39727-C03-01. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. We acknowledge the support from the Swift project (N. Gehrels) and Swift schedulers at Penn State, which enabled the acquisition of this wonderful data set. R.A.O. and A.K. acknowledge fruitful discussions at ISSI in Bern with the Energy Transformation in Solar and Stellar Flares team during the preparation of this manuscript. NR 75 TC 1 Z9 1 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 174 DI 10.3847/0004-637X/832/2/174 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7DK UT WOS:000390490100034 ER PT J AU Smith, KL Mushotzky, RF Vogel, S Shimizu, TT Miller, N AF Smith, Krista Lynne Mushotzky, Richard F. Vogel, Stuart Shimizu, Thomas T. Miller, Neal TI RADIO PROPERTIES OF THE BAT AGNs: THE FIR-RADIO RELATION, THE FUNDAMENTAL PLANE, AND THE MAIN SEQUENCE OF STAR FORMATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: nuclei; galaxies: Seyfert; radio continuum: galaxies; stars: formation ID ACTIVE GALACTIC NUCLEI; BLACK-HOLE MASSES; QUASI-STELLAR OBJECTS; X-RAY; SEYFERT-GALAXIES; HOST GALAXIES; FORMING GALAXIES; FORMATION RATES; QUIET QUASARS; EMISSION-LINE AB We conducted 22 GHz 1 '' JVLA imaging of 70 radio-quiet active galactic nuclei. (AGNs) from the Swift-BAT survey. We find radio cores in all but three objects. The radio morphologies of the sample fall into three groups: compact and core-dominated, extended, and jet-like. We spatially decompose each image into core flux and extended flux, and compare the extended radio emission with that predicted from previous Herschel observations using the canonical FIR-radio relation. After removing the AGN contribution to the FIR and radio flux densities, we find that the relation holds remarkably well despite the potentially different star formation physics in the circumnuclear environment. We also compare our core radio flux densities with predictions of coronal models and scale-invariant jet models for the origin of radio emission in radio-quiet AGNs, and find general consistency with both models. However, we find that the L-R/L-X relation does not distinguish between star formation and non-relativistic AGN-driven outflows as the origin of radio emission in radio-quiet AGNs. Finally, we examine where objects with different radio morphologies fall in relation to the main sequence (MS) of star formation, and conclude that those AGNs that fall below the MS, as X-ray selected AGNs have been found to do, have core-dominated or jet-like 22 GHz morphologies. C1 [Smith, Krista Lynne; Mushotzky, Richard F.; Vogel, Stuart; Shimizu, Thomas T.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Smith, Krista Lynne] NASA GSFC, Greenbelt, MD 20771 USA. [Miller, Neal] Stevenson Univ, Dept Math & Phys, Stevenson, MD 21117 USA. RP Smith, KL (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.; Smith, KL (reprint author), NASA GSFC, Greenbelt, MD 20771 USA. EM klsmith@astro.umd.edu FU National Radio Astronomy Observatory (NRAO) FX We acknowledge Peter Teuben and Kartik Sheth for assistance with CASA data reductions, as well as Heidi and Drew Medlin for their prompt and useful assistance in VLA observations scheduling. We also acknowledge Sylvain Veilleux and Ehud Behar for many helpful conversations. K. L. S. is grateful for support from the National Radio Astronomy Observatory (NRAO). The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Finally, we acknowledge the very helpful comments of an anonymous referee, which have improved the manuscript. NR 104 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 163 DI 10.3847/0004-637X/832/2/163 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7DK UT WOS:000390490100023 ER PT J AU Toy, VL Cucchiara, A Veilleux, S Fumagalli, M Rafelski, M Rahmati, A Cenko, SB Capone, JI Pasham, DR AF Toy, Vicki L. Cucchiara, Antonino Veilleux, Sylvain Fumagalli, Michele Rafelski, Marc Rahmati, Alireza Cenko, S. Bradley Capone, John I. Pasham, Dheeraj R. TI EXPLORING DAMPED Ly alpha SYSTEM HOST GALAXIES USING GAMMA-RAY BURSTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: high-redshift; galaxies: ISM; galaxies: star formation; gamma-ray burst: general; ISM: atoms ID HIGH-REDSHIFT GALAXIES; LYMAN-BREAK GALAXIES; HUBBLE-SPACE-TELESCOPE; STAR-FORMATION HISTORY; DIGITAL SKY SURVEY; SIMILAR-TO 3; SURFACE BRIGHTNESS GALAXIES; MAGELLAN UNIFORM SURVEY; ULTRA DEEP FIELD; NEUTRAL GAS AB We present a sample of 45 Damped Ly alpha system (DLA; N-HI >= 2 x 10(20) cm(-2)) counterparts (33 detections, 12 upper limits) which host gamma-ray bursts (GRB-DLAs) in order to investigate star formation and metallicity within galaxies hosting DLAs. Our sample spans z similar to 2-6 and is nearly three times larger than any previously detected DLA counterparts survey based on quasar line-of-sight searches (QSO-DLAs). We report star formation rates (SFRs) from rest-frame UV photometry and spectral energy distribution modeling. We find that DLA counterpart SFRs are not correlated with either redshift or HI column density. Thanks to the combination of Hubble Space Telescope and ground-based observations, we also investigate DLA host star formation efficiency. Our GRB-DLA counterpart sample spans both higher efficiency and low efficiency star formation regions compared to the local Kennicutt-Schmidt relation, local star formation laws, and z similar to 3 cosmological simulations. We also compare the depletion times of our DLA hosts sample to other objects in the local universe; our sample appears to deviate from the star formation efficiencies measured in local spiral and dwarf galaxies. Furthermore, we find similar efficiencies as local inner disks, SMC, and Lyman-break galaxy outskirts. Finally, our enrichment time measurements show a spread of systems with under-and over-abundance of metals, which may suggest that these systems had episodic star formation and a metal enrichment/depletion as a result of strong stellar feedback and/or metal inflow/outflow. C1 [Toy, Vicki L.; Veilleux, Sylvain; Capone, John I.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Cucchiara, Antonino; Rafelski, Marc; Cenko, S. Bradley; Pasham, Dheeraj R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cucchiara, Antonino; Rafelski, Marc] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Cucchiara, Antonino] Univ Virgin Isl, Coll Sci & Math, 2 John Brewers Bay, St Thomas, VI 00802 USA. [Veilleux, Sylvain; Cenko, S. Bradley; Pasham, Dheeraj R.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Fumagalli, Michele] Univ Durham, Inst Computat Cosmol, S Rd, Durham DH1 3LE, England. [Fumagalli, Michele] Univ Durham, Dept Phys, Ctr Extragalact Astron, S Rd, Durham DH1 3LE, England. [Rahmati, Alireza] Univ Zurich, Inst Computat Sci, Winterthurerstr 190, CH-8057 Zurich, Switzerland. [Rafelski, Marc] NASA, Postdoctoral Program, Washington, DC 20546 USA. RP Toy, VL (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RI Fumagalli, Michele/K-9510-2015 OI Fumagalli, Michele/0000-0001-6676-3842 FU Discovery Communications; National Science Foundation [AST-1005313]; National Aeronautics and Space Administration (NASA) Headquarters under NASA Earth and Space Science Fellowship Program [NNX12AL70H]; NSF/ATI [1207785]; NASA grant "Multiband Observations of the Most Relativistic Gamma-Ray Bursts" [NNX15AP23G]; NASA Postdoctoral Program; Science and Technology Facilities Council [ST/L00075X/1] FX These results made use of Lowell Observatory's Discovery Channel Telescope. Lowell operates the DCT in partnership with Boston University, Northern Arizona University, the University of Maryland, and the University of Toledo. Partial support of the DCT was provided by Discovery Communications. LMI construction was supported by a grant AST-1005313 from the National Science Foundation.; This work was supported by the National Aeronautics and Space Administration (NASA) Headquarters under the NASA Earth and Space Science Fellowship Program (grant NNX12AL70H to V.T.). V.T., J.C., and S.V. were partially supported by NSF/ATI grant 1207785. A.C. is funded by the NASA grant "Multiband Observations of the Most Relativistic Gamma-Ray Bursts," NNX15AP23G. M.R. acknowledges support from the NASA Postdoctoral Program. M.F. acknowledges support by the Science and Technology Facilities Council (grant number ST/L00075X/1). NR 145 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 175 DI 10.3847/0004-637X/832/2/175 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7DK UT WOS:000390490100035 ER PT J AU Uzgil, BD Bradford, CM Hailey-Dunsheath, S Maloney, PR Aguirre, JE AF Uzgil, Bade D. Bradford, C. Matt Hailey-Dunsheath, Steve Maloney, Philip R. Aguirre, James E. TI CONSTRAINING THE ISM PROPERTIES OF THE CLOVERLEAF QUASAR HOST GALAXY WITH HERSCHEL SPECTROSCOPY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (H11413+117); galaxies: ISM; infrared: galaxies ID DENSE MOLECULAR GAS; MU-M LINE; STAR-FORMATION; HIGH-REDSHIFT; PHOTODISSOCIATION REGIONS; INTERSTELLAR-MEDIUM; APM 08279+5255; COSMIC-RAY; PHYSICAL CONDITIONS; SPIRE SPECTROSCOPY AB We present Herschel observations of the far-infrared (FIR) fine-structure (FS) lines [C II]158 mu m, [O I]63 mu m, [O III]52 mu m, and [Si II]35 mu m in the z = 2.56 Cloverleaf quasar, and combine them with published data in an analysis of the dense interstellar medium (ISM) in this system. Observed [C II]158 mu m, [O I]63 mu m, and FIR continuum flux ratios are reproduced with photodissociation region (PDR) models characterized by moderate far-ultraviolet (FUV) radiation fields with G(0) = 0.3-1 x. 103 and atomic gas densities n(H) = 3-5 x 10(3) cm(-3), depending on contributions to [C II]158 mu m from ionized gas. We assess the contribution to the [C II]158 mu m flux from an active galactic nucleus (AGN) narrow line region (NLR) using ground-based measurements of the [N II]122 mu m transition, finding that the NLR can contribute at most 20%-30% of the observed [C II]158 mu m flux. The PDR density and far-UV radiation fields inferred from the atomic lines are not consistent with the CO emission, indicating that the molecular gas excitation is not solely provided via UV heating from local star formation (SF), but requires an additional heating source. X-ray heating from the AGN is explored, and we find that X-ray-dominated region (XDR) models, in combination with PDR models, can match the CO cooling without overproducing the observed FS line emission. While this XDR/PDR solution is favored given the evidence for both X-rays and SF in the Cloverleaf, we also investigate alternatives for the warm molecular gas, finding that either mechanical heating via low-velocity shocks or an enhanced cosmic-ray ionization rate may also contribute. Finally, we include upper limits on two other measurements attempted in the Herschel program: [C II]158 mu m in FSC 10214 and [O I]63 mu m in APM 08279+5255. C1 [Uzgil, Bade D.; Bradford, C. Matt; Hailey-Dunsheath, Steve] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Bradford, C. Matt] Jet Prop Lab, Pasadena, CA 91109 USA. [Maloney, Philip R.] Univ Colorado, Ctr Astrophys & Space Astron, Campus Box 391, Boulder, CO 80309 USA. [Aguirre, James E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. RP Uzgil, BD (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. EM badeu@caltech.edu FU NASA Graduate Student Research Program fellowship; NSF [AST 1455151]; NASA through a JPL/Caltech award [1489920] FX The authors would like to thank Nanyao Lu for help assessing the noise level in the Herschel-FTS spectra of the Cloverleaf. We thank Carl Ferkinhoff for discussions related to the [N II] 122 mu m data from ALMA. We thank Lee Armus and Tanio Diaz-Santos for helpful discussions and comments on the manuscript, and for providing us with results from an analysis of [C II] 158 mu m and PAH emission in GOALS galaxies. We would also like to thank Aaron Evans, Brent Groves, J.D. Smith, and Fabian Walter for helpful discussions related to this work. B.D.U. acknowledges support from the NASA Graduate Student Research Program fellowship and NSF AST 1455151. These investigations made use of Herschel open-time award funds from NASA through a JPL/Caltech award no. 1489920 to C.M.B. NR 75 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 209 DI 10.3847/0004-637X/832/2/209 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7DK UT WOS:000390490100069 ER PT J AU Litzow, MA Hunsicker, ME AF Litzow, Michael A. Hunsicker, Mary E. TI Early warning signals, nonlinearity, and signs of hysteresis in real ecosystems SO ECOSPHERE LA English DT Article DE alternate states; early warning; hysteresis; leading indicator; nonlinearity; North Pacific; regime shift ID ALTERNATIVE STABLE STATES; CRITICAL SLOWING-DOWN; NORTH PACIFIC-OCEAN; REGIME SHIFTS; CRITICAL TRANSITIONS; CONTINENTAL-SHELF; PHASE-SHIFTS; CORAL-REEFS; COMMUNITY REORGANIZATION; POPULATION COLLAPSE AB Early warning signals (EWS) might dramatically improve our ability to manage nonlinear ecological change. However, the degree to which theoretical EWS predictions are supported in empirical systems remains unclear. The goal of this study is to make recommendations for identifying the types of ecological transitions that are expected to show EWS. We conducted a review and meta-analysis of published studies and comparative analysis of eight northeast Pacific Ocean time series to illustrate the importance of testing for nonlinearity in empirical EWS studies. We found that published studies demonstrating nonlinearity in ecosystem dynamics are more likely to support EWS predictions than studies with linear or undetermined dynamics. The northeast Pacific time series in our analysis were often too short for formal tests of nonlinearity, a common problem in empirical studies. To assess the evidence for nonlinear dynamics in these data, we tested for state-dependent driver-response relationships consistent with hysteresis, a central feature of nonlinear ecological models. This analysis supported the results of the literature meta-analysis. Four time series with driver-response relationships consistent with hysteresis generally supported theoretical EWS predictions, while four without evidence of hysteresis failed to support EWS predictions. Theoretical support for EWS is largely generated from nonlinear models, and we conclude that tests for either nonlinear dynamics or hysteresis are needed before employing EWS. C1 [Litzow, Michael A.] Farallon Inst Adv Ecosyst Res, Petaluma, CA 94952 USA. [Hunsicker, Mary E.] NOAA, Fish Ecol Div, Northwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, Newport, OR 97365 USA. RP Litzow, MA (reprint author), Farallon Inst Adv Ecosyst Res, Petaluma, CA 94952 USA. EM litzow@faralloninstitute.org FU Pew Charitable Trusts FX We thank two anonymous reviewers for constructive comments on an earlier version of this manuscript. For helpful discussions and providing data, we thank Jennifer Fisher, Bob Lauth, Peter Lawson, Dan Nichol, Bill Peterson, and the Ocean Tipping Points Project Team, including Rod Fujita, Carrie Kappel, Kendra Karr, and Courtney Scarborough. MAL was supported by a grant from the Pew Charitable Trusts. NR 98 TC 0 Z9 0 U1 12 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2150-8925 J9 ECOSPHERE JI Ecosphere PD DEC PY 2016 VL 7 IS 12 AR e01614 DI 10.1002/ecs2.1614 PG 18 WC Ecology SC Environmental Sciences & Ecology GA EF2EE UT WOS:000390136700014 ER PT J AU Potter, C Dolanc, C AF Potter, Christopher Dolanc, Christopher TI Thirty Years of Change in Subalpine Forest Cover from Landsat Image Analysis in the Sierra Nevada Mountains of California SO FOREST SCIENCE LA English DT Article DE Landsat; forest; normalized difference vegetation index (NDVI); disturbance; Sierra Nevada; California ID LEAF-AREA INDEX; YOSEMITE-NATIONAL-PARK; LODGEPOLE PINE; POSTFIRE VEGETATION; WHITEBARK-PINE; NORTH-AMERICA; USA; MORTALITY; CLIMATE; TM AB Landsat imagery was analyzed to understand changes in subalpine forest stands since the mid-1980s in the Sierra Nevada region of California. At locations where long-term plot measurements have shown that stands are becoming denser in the number of small tree stems (compared with the early 1930s), the 30-year analysis of normalized difference vegetation index (NDVI) indicated that no consistent increases in canopy leaf cover have occurred at these same locations since the mid-1980s. Interannual variations in stand NDVI closely followed snow accumulation amounts recorded at nearby stations. In contrast, at Sierra whitebark pine stand locations where it has been observed that widespread tree mortality has occurred, decreasing NDVI trends over the past 5-10 years were consistent with rapid loss of forest canopy cover. The matching of patterns and trends in the NDVI with measured stand attributes can better inform regionwide assessments of forest growth trends using Landsat image analysis. The management implications of these results will depend on the recruitment rates of subalpine trees across forest ecotones in decades to come. C1 [Potter, Christopher] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Dolanc, Christopher] Mercyhurst Univ, Erie, PA USA. RP Potter, C (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM chris.potter@nasa.gov; cdolanc@merghurst.edu NR 48 TC 0 Z9 0 U1 12 U2 12 PU SOC AMER FORESTERS PI BETHESDA PA 5400 GROSVENOR LANE, BETHESDA, MD 20814 USA SN 0015-749X EI 1938-3738 J9 FOREST SCI JI For. Sci. PD DEC PY 2016 VL 62 IS 6 BP 623 EP 632 DI 10.5849/forsci.15-145 PG 10 WC Forestry SC Forestry GA EF2UK UT WOS:000390180900005 ER PT J AU Zhao, Y Chen, ZZ Du, Y Li, YL Al Hadi, R Virbila, G Xu, YN Kim, Y Tang, A Reck, TJ Chang, MCF AF Zhao, Yan Chen, Zuow-Zun Du, Yuan Li, Yilei Al Hadi, Richard Virbila, Gabriel Xu, Yinuo Kim, Yanghyo Tang, Adrian Reck, Theodore J. Chang, Mau-Chung Frank TI A 0.56 THz Phase-Locked Frequency Synthesizer in 65 nm CMOS Technology SO IEEE JOURNAL OF SOLID-STATE CIRCUITS LA English DT Article; Proceedings Paper CT IEEE International Solid-State Circuits Conference (ISSCC) CY FEB, 2016 CL San Francisco, CA SP IEEE DE Bulk voltage tuning; frequency synthesizer; harmonic oscillator; injection locking; phase-locked loop (PLL); subsampling phase detector; terahertz; triple-push Colpitts oscillator (TPCO); triple-push oscillator (TPO) ID GHZ; DIVIDER; RANGE AB This paper presents the design and characterization of a 0.56 THz frequency synthesizer implemented in standard 65 nm CMOS technology. Its front end consists of triple-push Colpitts oscillators (TPCOs), followed by the first and second stage injection locking frequency dividers (ILFDs) and a divide-by-16 chain. TPCOs are used to triple their fundamental frequencies to 0.53-0.56 THz, while ILFDs and the subsequent divider chain are used to divide such frequencies to 2.7-2.9 GHz. Its back end consists of separate frequency and phase-locked loops with unique CMOS circuit designs to accomplish the desirable frequency/phase locking, including: 1) band-selection inductor switches; 2) simultaneous bulk voltage tuning over TPCOs and the first ILFD; and 3) a dual port injection architecture for the first ILFD. The resultant prototype realizes a 21 GHz frequency locking range with phase noise lower than -74 dBc/Hz at 1 MHz offset, and consumes 174 mW dc power. C1 [Zhao, Yan; Chen, Zuow-Zun; Du, Yuan; Li, Yilei; Al Hadi, Richard; Xu, Yinuo; Chang, Mau-Chung Frank] Univ Calif Los Angeles, High Speed Elect Lab, Los Angeles, CA 90095 USA. [Virbila, Gabriel] HRL Labs LLC, Malibu, CA USA. [Kim, Yanghyo; Tang, Adrian; Reck, Theodore J.] Jet Prop Lab, Pasadena, CA 91109 USA. [Chang, Mau-Chung Frank] Natl Chiao Tung Univ, Hsinchu 300, Taiwan. RP Zhao, Y (reprint author), Univ Calif Los Angeles, High Speed Elect Lab, Los Angeles, CA 90095 USA. EM yanzhao@ieee.org; mfchang@ee.ucla.edu OI Zhao, Yan/0000-0001-9233-5809 NR 30 TC 0 Z9 0 U1 5 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9200 EI 1558-173X J9 IEEE J SOLID-ST CIRC JI IEEE J. Solid-State Circuit PD DEC PY 2016 VL 51 IS 12 SI SI BP 3005 EP 3019 DI 10.1109/JSSC.2016.2601614 PG 15 WC Engineering, Electrical & Electronic SC Engineering GA EF6DG UT WOS:000390420300018 ER PT J AU Shariff, K AF Shariff, Karim TI Making Aircraft Vortices Visible to Radar by Spraying Water into the Wake SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID AIRPLANE TRAILING VORTICES; DOPPLER RADAR; BREAKUP; CLOUD; PRECIPITATION; REFLECTIVITY; SIGNATURE; SYSTEM; FLUID; JET AB Aircraft trailing vortices pose a danger to following aircraft during takeoff and landing. This necessitates spacing rules, based on aircraft type, to be enforced during approach in instrument flight regulation (IFR) conditions; this can limit airport capacity. To help choose aircraft spacing based on the actual location and strength of the wake, it is proposed that wake vortices can be detected using conventional ground-based precipitation and cloud radars. This is enabled by spraying a small quantity of water into the wake from near the wing. The vortex strength is revealed by the Doppler velocity of the droplets. In the present work, droplet size distributions produced by nozzles used for aerial spraying are considered. Droplet trajectory and evaporation in the flow field is numerically calculated for a heavy aircraft, followed by an evaluation of radar reflectivity at 6 nautical miles (nmi) behind the aircraft. Small droplets evaporate, while larger droplets fall out of the wake. In the humid conditions that typically prevail during IFR, a sufficient number of droplets remain in the wake and give good signal-to-noise ratios (SNR). For conditions of average humidity, higher-frequency radars combined with spectral processing give good SNR. C1 [Shariff, Karim] NASA, Ames Res Ctr, Mail Stop 258-1, Moffett Field, CA 94035 USA. RP Shariff, K (reprint author), NASA, Ames Res Ctr, Mail Stop 258-1, Moffett Field, CA 94035 USA. EM karim.shariff@nasa.gov OI Shariff, Karim/0000-0002-7256-2497 NR 42 TC 0 Z9 0 U1 1 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD DEC PY 2016 VL 33 IS 12 BP 2615 EP 2638 DI 10.1175/JTECH-D-16-0066.1 PG 24 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA EF6IB UT WOS:000390433300005 ER PT J AU Berg, W Bilanow, S Chen, RY Datta, S Draper, D Ebrahimi, H Farrar, S Jones, WL Kroodsma, R McKague, D Payne, V Wang, J Wilheit, T Yang, JX AF Berg, Wesley Bilanow, Stephen Chen, Ruiyao Datta, Saswati Draper, David Ebrahimi, Hamideh Farrar, Spencer Jones, W. Linwood Kroodsma, Rachael McKague, Darren Payne, Vivienne Wang, James Wilheit, Thomas Yang, John Xun TI Intercalibration of the GPM Microwave Radiometer Constellation SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID ATMOSPHERIC WATER-VAPOR; CLIMATE DATA RECORD; INTERSENSOR CALIBRATION; POSTLAUNCH CALIBRATION; ORBIT PERFORMANCE; INTER-CALIBRATION; SSM/I SENSORS; IMAGER; OCEAN; IMAGER/SOUNDER AB The Global Precipitation Measurement (GPM) mission is a constellation-based satellite mission designed to unify and advance precipitation measurements using both research and operational microwave sensors. This requires consistency in the input brightness temperatures (Tb), which is accomplished by intercalibrating the constellation radiometers using the GPM Microwave Imager (GMI) as the calibration reference. The first step in intercalibrating the sensors involves prescreening the sensor Tb to identify and correct for calibration biases across the scan or along the orbit path. Next, multiple techniques developed by teams within the GPM Intersatellite Calibration Working Group (XCAL) are used to adjust the calibrations of the constellation radiometers to be consistent with GMI. Comparing results from multiple approaches helps identify flaws or limitations of a given technique, increase confidence in the results, and provide a measure of the residual uncertainty. The original calibration differences relative to GMI are generally within 2-3K for channels below 92 GHz, although AMSR2 exhibits larger differences that vary with scene temperature. SSMIS calibration differences also vary with scene temperature but to a lesser degree. For SSMIS channels above 150 GHz, the differences are generally within similar to 2 K with the exception of SSMIS on board DMSP F19, which ranges from 7 to 11 K colder than GMI depending on frequency. The calibrations of the cross-track radiometers agree very well with GMI with values mostly within 0.5 K for the Sondeur Atmospherique du Profil d'Humidite Intertropicale par Radiometrie (SAPHIR) and the Microwave Humidity Sounder (MHS) sensors, and within 1 K for the Advanced Technology Microwave Sounder (ATMS). C1 [Berg, Wesley] Colorado State Univ, Ft Collins, CO 80523 USA. [Bilanow, Stephen] Wyle Informat Syst, Mclean, VA USA. [Chen, Ruiyao; Ebrahimi, Hamideh; Farrar, Spencer; Jones, W. Linwood] Univ Cent Florida, Orlando, FL 32816 USA. [Datta, Saswati] Data & Image Proc Consultants LLC, Morrisville, NC USA. [Draper, David] Ball Aerosp & Technol Corp, Boulder, CO USA. [Kroodsma, Rachael] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Kroodsma, Rachael] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [McKague, Darren; Yang, John Xun] Univ Michigan, Ann Arbor, MI 48109 USA. [Payne, Vivienne] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Wang, James] Sci Syst & Applicat Inc, Lanham, MD USA. [Wilheit, Thomas] Texas A&M Univ, College Stn, TX USA. RP Berg, W (reprint author), Colorado State Univ, Dept Atmospher Sci, 1371 Campus Delivery, Ft Collins, CO 80523 USA. EM berg@atmos.colostate.edu FU NASA's Global Precipitation Measurement (GPM) mission; NASA contracts at Ball Aerospace (Goddard SESDA III) [S-Ball-01]; Jet Propulsion Laboratory, California Institute of Technology, and Science Systems and Applications, Inc. (SSAI); NASA Precipitation Measurement Missions (PMM) science team [NNX13AG30G, NNX16AE35G, NNX13AG70G, NNX13AG46G] FX The authors thank the NASA Precipitation Processing System for providing the datasets used for the intercalibration analysis. Funding for this work was provided by NASA's Global Precipitation Measurement (GPM) mission; NASA contracts at Ball Aerospace (Goddard SESDA III No. S-Ball-01), the Jet Propulsion Laboratory, California Institute of Technology, and Science Systems and Applications, Inc. (SSAI); and the NASA Precipitation Measurement Missions (PMM) science team under Grants NNX13AG30G, NNX16AE35G, NNX13AG70G, and NNX13AG46G. Reference herein to any specific commercial product, process, or service by trade name, manufacturer, or otherwise does not constitute or imply its endorsement by the U.S. government or the Jet Propulsion Laboratory, California Institute of Technology. NR 53 TC 0 Z9 0 U1 2 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD DEC PY 2016 VL 33 IS 12 BP 2639 EP 2654 DI 10.1175/JTECH-D-16-0100.1 PG 16 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA EF6IB UT WOS:000390433300006 ER PT J AU Doelling, DR Haney, CO Scarino, BR Gopalan, A Bhatt, R AF Doelling, David R. Haney, Conor O. Scarino, Benjamin R. Gopalan, Arun Bhatt, Rajendra TI Improvements to the Geostationary Visible Imager Ray-Matching Calibration Algorithm for CERES Edition 4 SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID DEEP CONVECTIVE CLOUDS; ABSOLUTE CALIBRATION; INTER-CALIBRATION; VICARIOUS CALIBRATION; HYPERSPECTRAL DATA; INFRARED CHANNELS; PART I; SCIAMACHY; REFLECTANCE; SENSORS AB The Clouds and the Earth's Radiant Energy System (CERES) project relies on geostationary imager-derived TOA broadband fluxes and cloud properties to account for the regional diurnal fluctuations between the Terra and Aqua CERES and MODIS measurements. The CERES project employs a ray-matching calibration algorithm in order to transfer the Aqua MODIS calibration to the geostationary (GEO) imagers, thereby allowing the derivation of consistent fluxes and cloud retrievals across the 16 GEO imagers utilized in the CERES record. The CERES Edition 4 processing scheme grants the opportunity to recalibrate the GEO record using an improved GEO/MODIS all-sky ocean ray-matching algorithm. Using a graduated angle matching method, which is most restrictive for anisotropic clear-sky ocean radiances and least restrictive for isotropic bright cloud radiances, reduces the bidirectional bias while preserving the dynamic range. Furthermore, SCIAMACHY hyperspectral radiances are used to account for both the solar incoming and Earth-reflected spectra in order to correct spectral band differences. As a result, the difference between the linear regression offset and the maintained GEO space count was reduced, and the calibration slopes computed from the linear fit and the regression through the space count agreed to within 0.4%. A deep convective cloud (DCC) ray-matching algorithm is also presented. The all-sky ocean and DCC ray-matching timeline gains are within 0.7% of one another. Because DCC are isotropic and the brightest, Earth targets with near-uniform visible spectra, the temporal standard error of GEO imager gains, are reduced by up to 60% from that of all-sky ocean targets. C1 [Doelling, David R.] NASA, Climate Sci Branch, Langley Res Ctr, Hampton, VA USA. [Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun; Bhatt, Rajendra] Sci Syst & Applicat Inc, Hampton, VA USA. RP Doelling, DR (reprint author), NASA, Langley Res Ctr, Bldg 1250,Mail Stop 420, Hampton, VA 23681 USA. EM david.r.doelling@nasa.gov NR 56 TC 0 Z9 0 U1 1 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD DEC PY 2016 VL 33 IS 12 BP 2679 EP 2698 DI 10.1175/JTECH-D-16-0113.1 PG 20 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA EF6IB UT WOS:000390433300009 ER PT J AU Ruggiero, GA Cosme, E Brankart, JM Le Sommer, J Ubelmann, C AF Ruggiero, Giovanni Abdelnur Cosme, Emmanuel Brankart, Jean-Michel Le Sommer, Julien Ubelmann, Clement TI An Efficient Way to Account for Observation Error Correlations in the Assimilation of Data from the Future SWOT High-Resolution Altimeter Mission SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article AB Most data assimilation algorithms require the inverse of the covariance matrix of the observation errors. In practical applications, the cost of computing this inverse matrix with spatially correlated observation errors is prohibitive. Common practices are therefore to subsample or combine the observations so that the errors of the assimilated observations can be considered uncorrelated. As a consequence, a large fraction of the available observational information is not used in practical applications. In this study, a method is developed to account for the correlations of the errors that will be present in the wide-swath sea surface height measurements, for example, the Surface Water and Ocean Topography (SWOT) mission. It basically consists of the transformation of the observation vector so that the inverse of the corresponding covariance matrix can be replaced by a diagonal matrix, thus allowing to genuinely take into account errors that are spatially correlated in physical space. Numerical experiments of ensemble Kalman filter analysis of SWOT-like observations are conducted with three different observation error covariance matrices. Results suggest that the proposed method provides an effective way to account for error correlations in the assimilation of the future SWOT data. The transformation of the observation vector proposed herein yields both a significant reduction of the root-mean-square errors and a good consistency between the filter analysis error statistics and the true error statistics. C1 [Ruggiero, Giovanni Abdelnur; Cosme, Emmanuel; Brankart, Jean-Michel; Le Sommer, Julien] Univ Grenoble Alpes, CNRS, LGGE, Grenoble, France. [Ubelmann, Clement] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Ruggiero, Giovanni Abdelnur] Mercator Ocean, Toulouse, France. [Ubelmann, Clement] CLS, Toulouse, France. RP Cosme, E (reprint author), LGGE MEOM, BP53X, F-38041 Grenoble 9, France. EM emmanuel.cosme@univ-grenoble-alpes.fr OI Le Sommer, Julien/0000-0002-6882-2938 FU Centre National d'Etudes Spatiales (CNES); Seventh Framework Programme FP7 of the European Commission through the Stochastic Assimilation for the Next Generation Ocean Model Applications (SANGOMA) project [283580]; Grand equipement national de calcul intensif-Institut du developpement et des ressources en informatique scientifique (GENCI-IDRIS) [2014-0111279] FX The research presented in the paper was supported by the Centre National d'Etudes Spatiales (CNES) and the Seventh Framework Programme FP7/2007-2013 of the European Commission through the Stochastic Assimilation for the Next Generation Ocean Model Applications (SANGOMA) project (Grant Agreement 283580). Computations were carried out using high performance computing resources from Grand equipement national de calcul intensif-Institut du developpement et des ressources en informatique scientifique (GENCI-IDRIS; Grant 2014-0111279). NR 21 TC 0 Z9 0 U1 4 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD DEC PY 2016 VL 33 IS 12 BP 2755 EP 2768 DI 10.1175/JTECH-D-16-0048.1 PG 14 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA EF6IB UT WOS:000390433300014 ER PT J AU Robertson, FR Bosilovich, MG Roberts, JB AF Robertson, Franklin R. Bosilovich, Michael G. Roberts, Jason B. TI Reconciling Land-Ocean Moisture Transport Variability in Reanalyses with P - ET in Observationally Driven Land Surface Models SO JOURNAL OF CLIMATE LA English DT Article ID GLOBAL WATER CYCLE; NORTHEAST BRAZIL RAINFALL; ATMOSPHERIC MOISTURE; HYDROLOGICAL CYCLE; INTERDECADAL VARIABILITY; SAHEL RAINFALL; AMAZON BASIN; TIME SCALES; DATA SET; ENERGY AB Vertically integrated atmospheric moisture transport from ocean to land [vertically integrated atmospheric moisture flux convergence (VMFC)] is a dynamic component of the global climate system but remains problematic in atmospheric reanalyses, with current estimates having significant multidecadal global trends differing even in sign. Continual evolution of the global observing system, particularly stepwise improvements in satellite observations, has introduced discrete changes in the ability of data assimilation to correct systematic model biases, manifesting as nonphysical variability. Land surface models (LSMs) forced with observed precipitation P and near-surface meteorology and radiation provide estimates of evapotranspiration (ET). Since variability of atmospheric moisture storage is small on interannual and longer time scales, VMFC 5 P - ET is a good approximation and LSMs can provide an alternative estimate. However, heterogeneous density of rain gauge coverage, especially the sparse coverage over tropical continents, remains a serious concern. Rotated principal component analysis (RPCA) with prefiltering of VMFC to isolate the artificial variability is used to investigate artifacts in five reanalysis systems. This procedure, although ad hoc, enables useful VMFC corrections over global land. The P - ET estimates from seven different LSMs are evaluated and subsequently used to confirm the efficacy of the RPCA-based adjustments. Global VMFC trends over the period 1979-2012 ranging from 0.07 to 20.03 mm day(-1) decade(-1) are reduced by the adjustments to 0.016 mm da(-1) decade(-1), much closer to the LSM P - ET estimate (0.007 mm day(-1) decade(-1)). Neither is significant at the 90% level. ENSO-related modulation of VMFC and P - ET remains the largest global interannual signal, with mean LSM and adjusted reanalysis time series correlating at 0.86. C1 [Robertson, Franklin R.; Roberts, Jason B.] NASA Marshall Space Flight Ctr, Earth Sci Off, Huntsville, AL USA. [Bosilovich, Michael G.] NASA Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA. RP Robertson, FR (reprint author), NASA Marshall Space Flight Ctr, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM pete.robertson@nasa.gov FU NASA Energy and Water Cycle Study (NEWS) program [WBS281945] FX This work was sponsored in large part by the NASA Energy and Water Cycle Study (NEWS) program (Grant WBS281945)-Dr. Jared Entin, Program Manager. The authors wish to acknowledge the institutions and individuals involved in development and production of the many datasets listed here. (For references and data access, see Tables 1 and 2.) The authors also gratefully acknowledge the many individuals who discussed, enabled data access to, and contributed datasets used in this investigation: Drs. Steven Sitch and Sam Levis for access to the CLM4C data under the auspices of the TRENDY initiative and Drs. Graham Weedon and Ben Poulter for the ORCHIDEE integrations from the WFDEI component of the WATCH program. Dr. Markus Reichstein facilitated access to the MPI-BGC satellite-based ET estimates. MERRA and MERRA-2 are distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). JRA-55 data were obtained from the project website (http://jra.kishou.go.jp/JRA-55/index_en.html). CFSR VMFC fields were obtained from the National Center for Atmospheric Research Climate Analysis Section data holdings (http://www.cgd.ucar.edu/cas/catalog/newbudgets/index.html). We thank Dr. Aiguo Dai for providing the updated global river runoff time series. NR 105 TC 1 Z9 1 U1 1 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD DEC PY 2016 VL 29 IS 23 BP 8625 EP 8646 DI 10.1175/JCLI-D-16-0379.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED2LK UT WOS:000388676000019 ER PT J AU Hosamani, R Leib, R Bhardwaj, SR Adams, CM Bhattacharya, S AF Hosamani, Ravikumar Leib, Ryan Bhardwaj, Shilpa R. Adams, Christopher M. Bhattacharya, Sharmila TI Elucidating the "Gravome": Quantitative Proteomic Profiling of the Response to Chronic Hypergravity in Drosophila SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE Drosophila melanogaster; hypergravity; proteomics; immune response; stress response; cuticle development; transport proteins ID HUMORAL STRESS-RESPONSE; HUMAN SKELETAL-MUSCLE; MELANOGASTER FLIES; NEURODEGENERATIVE DISEASES; SIMULATED MICROGRAVITY; RIBOSOMAL-PROTEIN; HEAT-SHOCK; YOUNG AGE; SPACEFLIGHT; CALCIUM AB Altered gravity conditions, such as experienced by organisms during spaceflight, are known to cause transcriptomic and proteomic changes. We describe the proteomic changes in whole adult Drosophila melanogaster (fruit fly) but focus specifically on the localized changes in the adult head in response to chronic hypergravity (3 g) treatment. Canton S adult female flies (2 to 3 days old) were exposed to chronic hypergravity for 9 days and compared with 1 g controls. After hypergravity treatment, either whole flies (body + head) or fly-head-only samples were isolated and evaluated for quantitative comparison of the two gravity conditions using an isobaric tagging liquid chromatography tandem mass spectrometry approach. A total of 1948 proteins from whole flies and 1480 proteins from fly heads were differentially present in hypergravity-treated flies. Gene Ontology analysis of head-specific proteomics revealed host immune response, and humoral stress proteins were significantly upregulated. Proteins related to calcium regulation, ion transport, and ATPase were decreased. Increased expression of cuticular proteins may suggest an alteration in chitin metabolism and in chitin-based cuticle development. We therefore present a comprehensive quantitative survey of proteomic changes in response to chronic hypergravity in Drosophila, which will help elucidate the underlying molecular mechanism(s) associated with altered gravity environments. C1 [Hosamani, Ravikumar; Bhardwaj, Shilpa R.; Bhattacharya, Sharmila] NASA, Ames Res Ctr, Space Biosci Div, Moffett Field, CA 94035 USA. [Leib, Ryan; Adams, Christopher M.] SUMS, Stanford, CA 94305 USA. RP Bhattacharya, S (reprint author), NASA, Ames Res Ctr, Space Biosci Div, Moffett Field, CA 94035 USA. EM sharmila.bhattacharya@nasa.gov FU NASA [NNX15AB42G, NNX13AN38G]; NIH SIG Award [S10RR027425] FX We thank Allis Chien and Anna Okumu of Stanford University Mass Spectrometry (SUMS) for the facility and the Stanford Dean of Research for support. This work was funded by NASA grants to S.B. (NNX15AB42G and NNX13AN38G). R.H. was supported by a NASA Post- Doctoral Program (NPP) Fellowship. We also thank the NIH SIG Award Number S10RR027425 for assistance in purchasing the LTQ Velos Orbitrap mass spectrometer. NR 53 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD DEC PY 2016 VL 15 IS 12 BP 4165 EP 4175 DI 10.1021/acs.jproteome.6b00030 PG 11 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA EE2EM UT WOS:000389396500003 PM 27648494 ER PT J AU Busch, DS Griffis, R Link, J Abrams, K Baker, J Brainard, RE Ford, M Hare, JA Himes-Cornell, A Hollowed, A Mantua, NJ McClatchie, S McClure, M Nelson, MW Osgood, K Peterson, JO Rust, M Saba, V Sigler, MF Sykora-Bodie, S Toole, C Thunberg, E Waples, RS Merrick, R AF Busch, D. Shallin Griffis, Roger Link, Jason Abrams, Karen Baker, Jason Brainard, Russell E. Ford, Michael Hare, Jonathan A. Himes-Cornell, Amber Hollowed, Anne Mantua, Nathan J. McClatchie, Sam McClure, Michelle Nelson, Mark W. Osgood, Kenric Peterson, Jay O. Rust, Michael Saba, Vincent Sigler, Michael F. Sykora-Bodie, Seth Toole, Christopher Thunberg, Eric Waples, Robin S. Merrick, Richard TI Climate science strategy of the US National Marine Fisheries Service SO MARINE POLICY LA English DT Article DE Adaptation; Climate policy; Ecosystem-based management; Fisheries management; Living marine resources; Marine conservation ID EASTERN BERING-SEA; CHANGE IMPACTS; MANAGEMENT; VARIABILITY; RESPONSES; RECRUITMENT; INDICATORS; THRESHOLDS; ECOSYSTEMS AB Changes to our climate and oceans are already affecting living marine resources (LMRs) and the people, businesses, and economies that depend on them. As a result, the U.S. National Marine Fisheries Service (NMFS) has developed a Climate Science Strategy (CSS) to increase the production and use of the climate related information necessary to fulfill its LMR stewardship mission for fisheries management and protected species conservation. The CSS establishes seven objectives: (1) determine appropriate, climate-informed reference points; (2) identify robust strategies for managing LMRs under changing climate conditions; (3) design decision, processes that are robust to climate-change scenarios; (4) predict future states of ecosystems, LMRs, and LMR-dependent human communities; (5) determine the mechanisms of climate-change related effects on ecosystems, LMRs, and LMR-dependent human communities; (6) track trends in ecosystems, LMRs, and LMR-dependent human communities and provide early warning of change; and (7) build and, maintain the science infrastructure required to fulfill NMFS mandates under changing climate conditions. These objectives provide a nationally consistent approach to addressing climate-LMR science needs that supports informed decision-making and effective implementation of the NMFS legislative mandates in each region. Near term actions that will address all objectives include: (1) conducting climate vulnerability analyses in each region for all LMRs; (2) establishing and strengthening ecosystem indicators and status reports in all regions; and (3) developing a capacity to conduct management strategy evaluations of climate-related impacts on management targets, priorities, and goals. Implementation of the Strategy over the next few years and beyond is critical for effective fulfillment of the NMFS mission and mandates in a changing climate. Published by Elsevier Ltd. C1 [Busch, D. Shallin] NOAA, Ocean Acidificat Program, Off Ocean & Atmospher Res, Natl Marine Fisheries Serv, 1315 East West Highway, Silver Spring, MD 20910 USA. [Busch, D. Shallin; Griffis, Roger; Ford, Michael; Osgood, Kenric; Peterson, Jay O.] NOAA, Off Sci & Technol, Natl Marine Fisheries Serv, 1315 East West Highway, Silver Spring, MD 20910 USA. [Link, Jason] NOAA, Natl Marine Fisheries Serv, 166 Water St, Woods Hole, MA 02543 USA. [Abrams, Karen; Nelson, Mark W.] NOAA, Off Sustainable Fisheries, Natl Marine Fisheries Serv, 1315 East West Highway, Silver Spring, MD 20910 USA. [Baker, Jason; Brainard, Russell E.] NOAA, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, 1845 Wasp Blvd,Bldg 176, Honolulu, HI 96818 USA. [Hare, Jonathan A.] NOAA, Northeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, 28 Tarzwell Dr, Narragansett, RI 02882 USA. [Himes-Cornell, Amber; Hollowed, Anne] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 7600 Sand Point Way NE, Seattle, WA 98115 USA. [Mantua, Nathan J.] NOAA, Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 110 Shaffer Rd, Santa Cruz, CA 95060 USA. [McClatchie, Sam] NOAA, Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 8901 La Jolla Shores Dr, La Jolla, CA 92037 USA. [McClure, Michelle; Waples, Robin S.] NOAA, Northwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd E, Seattle, WA 98115 USA. [Rust, Michael] NOAA, Off Aquaculture, Natl Marine Fisheries Serv, 1315 East West Highway, Silver Spring, MD 20910 USA. [Saba, Vincent] NOAA, Northeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, Geophys Fluid Dynam Lab, 201 Forrestal Rd,Princeton Univ Forrestal Campus, Princeton, NJ 08540 USA. [Sigler, Michael F.] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 17109 Point Lena Loop Rd, Juneau, AK 99801 USA. [Sykora-Bodie, Seth] NOAA, Off Protected Resources, Natl Marine Fisheries Serv, 1315 East West Highway, Silver Spring, MD 20910 USA. [Toole, Christopher] NOAA, West Coast Reg, Natl Marine Fisheries Serv, 1201 Northeast Lloyd Blvd, Portland, OR 97232 USA. [Thunberg, Eric] NOAA, Northeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, 166 Water St, Woods Hole, MA 02543 USA. [Merrick, Richard] NOAA, Natl Marine Fisheries Serv, 1315 East West Highway, Silver Spring, MD 20910 USA. [Busch, D. Shallin] NOAA, Ocean Acidificat Program, Off Ocean & Atmospher Res, Natl Marine Fisheries Serv, 2725 Montlake Blvd E, Seattle, WA 98125 USA. [Busch, D. Shallin] NOAA, Northwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd E, Seattle, WA 98125 USA. [Himes-Cornell, Amber] Univ Brest, European Inst Marine Sci IUEM, UMR6308, AMURE, Rue Dumont DUrville, F-29280 Plouzane, France. [Sykora-Bodie, Seth] Duke Univ, Nicholas Sch Environm, Duke Marine Lab, 135 Duke Marine Rd, Beaufort, NC 28516 USA. RP Busch, DS (reprint author), NOAA, Ocean Acidificat Program, Off Ocean & Atmospher Res, Natl Marine Fisheries Serv, 2725 Montlake Blvd E, Seattle, WA 98125 USA.; Busch, DS (reprint author), NOAA, Northwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd E, Seattle, WA 98125 USA. EM Shallin.Busch@noaa.gov NR 52 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0308-597X EI 1872-9460 J9 MAR POLICY JI Mar. Pol. PD DEC PY 2016 VL 74 BP 58 EP 67 DI 10.1016/j.marpol.2016.09.001 PG 10 WC Environmental Studies; International Relations SC Environmental Sciences & Ecology; International Relations GA EF7EY UT WOS:000390494100007 ER PT J AU Gorospe, KD Michaels, W Pomeroy, R Elvidge, C Lynch, P Wongbusarakum, S Brainard, RE AF Gorospe, Kelvin D. Michaels, William Pomeroy, Robert Elvidge, Christopher Lynch, Patrick Wongbusarakum, Supin Brainard, Russell E. TI The mobilization of science and technology fisheries innovations towards an ecosystem approach to fisheries management in the Coral Triangle and Southeast Asia SO MARINE POLICY LA English DT Article ID DATA-COLLECTION; PROGRESS; LOGBOOK; CHALLENGES; PROGRAMS; SYSTEMS; FISH; COD AB Several regional fisheries and marine conservation organizations in the Coral Triangle (CT) and Southeast Asia have indicated their support for an ecosystem approach to fisheries management (EAFM). It is also likely that science and technology (S&T) innovations will play a role in the region for the purposes of filling gaps in fisheries data, enhancing the coordination of fisheries management efforts, and implementing and operationalizing an EAFM. Here, we outline the methodology and results of an expert opinion survey designed to elucidate and prioritize the implementation of these S&T innovations. As a first step and case study, the survey presented here was conducted on U.S. government experts. The US. market is one of the world's largest importers of seafood, and therefore, in the framework of this study, is considered to be a stakeholder in the seafood supply chain that originates in the CT and Southeast Asia region. Results are discussed in terms of the data needs and principles of an EAFM, as well as current trends and contexts of the CT and Southeast Asia region. Next steps and recommendations are also provided on how S&T innovations can be implemented to enhance the cooperation and coordination of regional marine resource management efforts. (C) 2016 The Authors. Published by Elsevier Ltd. C1 [Gorospe, Kelvin D.; Wongbusarakum, Supin; Brainard, Russell E.] US Natl Ocean & Atmospher Adm, Coral Reef Ecosyst Program, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, Honolulu, HI 96818 USA. [Gorospe, Kelvin D.; Wongbusarakum, Supin] Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA. [Michaels, William; Lynch, Patrick] US Natl Ocean & Atmospher Adm, Off Sci & Technol, Natl Marine Fisheries Serv, Silver Spring, MD 20910 USA. [Pomeroy, Robert] Univ Connecticut, Dept Agr & Resource Econ, Groton, CT 06340 USA. [Elvidge, Christopher] US Natl Ocean & Atmospher Adm, Natl Geophys Data Ctr, Natl Environm Satellite Data & Informat Serv, Boulder, CO 80305 USA. RP Gorospe, KD (reprint author), Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA. FU USAID/NOAA [AID-486-T-13-00001] FX This article is based on results from a survey developed for the United States Agency for International Development - Regional Development Mission for Asia (USAID-RDMA). We thanks all members of the S&T working group who helped develop the survey, as well as all of our colleagues who took part in the survey. Funding was provided by USAID/NOAA (# AID-486-T-13-00001). We thank Keith Chanon and Patricia Bickley for their leadership in coordinating our activities with the NOAA International Affairs Council and the Department of Interior's International Technical Assistance Program, respectively. We also thank Amanda Dillon for designing Fig. 1, as well as, the editors and reviewers of the Pacific Islands Fisheries Science Center and the Journal of Marine Policy for providing comments to the manuscript. The contents in this manuscript are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the U.S. Government. NR 45 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0308-597X EI 1872-9460 J9 MAR POLICY JI Mar. Pol. PD DEC PY 2016 VL 74 BP 143 EP 152 DI 10.1016/j.marpol.2916.09.014 PG 10 WC Environmental Studies; International Relations SC Environmental Sciences & Ecology; International Relations GA EF7EY UT WOS:000390494100018 ER PT J AU Verseux, C Acevedo-Rocha, CG Chizzolini, F Rothschild, LJ AF Verseux, Cyprien Acevedo-Rocha, Carlos G. Chizzolini, Fabio Rothschild, Lynn J. TI Misconceptions of Synthetic Biology: Lessons from an Interdisciplinary Summer School SO NANOETHICS LA English DT Article DE Emerging technologies; Synthetic biology; Interdisciplinarity; Scientist-layperson communication; Science policy ID ESCHERICHIA-COLI; LIFE; BIOTECHNOLOGY; COVERAGE; SCIENCE; YEAST AB In 2014, an international group of scholars from various fields analysed the "societal dimensions" of synthetic biology in an interdisciplinary summer school. Here, we report and discuss the biologists' observations on the general perception of synthetic biology by non-biologists who took part in this event. Most attendees mainly associated synthetic biology with contributions from the best-known public figures of the field, rarely mentioning other scientists. Media extrapolations of those contributions appeared to have created unrealistic expectations and irrelevant fears that were widely disconnected from the current research in synthetic biology. Another observation was that when debating developments in synthetic biology, semantics strongly mattered: depending on the terms used to present an application of synthetic biology, attendees reacted in radically different ways. For example, using the term "GMOs" (genetically modified organisms) rather than the term "genetic engineering" led to very different reactions. Stimulating debates also happened with participants having unanticipated points of view, for instance biocentrist ethicists who argued that engineered microbes should not be used for human purposes. Another communication challenge emerged from the connotations and inaccuracies surrounding the word "life", which impaired constructive debates, thus leading to misconceptions about the abilities of scientists to engineer or even create living organisms. Finally, it appeared that synthetic biologists tend to overestimate the knowledge of non-biologists, further affecting communication. The motivation and ability of synthetic biologists to communicate their work outside their research field needs to be fostered, notably towards policymakers who need a more accurate and technical understanding of the field to make informed decisions. Interdisciplinary events gathering scholars working in and around synthetic biology are an effective tool in addressing those issues. C1 [Verseux, Cyprien] Univ Roma Tor Vergata, Rome, Italy. [Acevedo-Rocha, Carlos G.] Biosyntia ApS, Horsholm, Denmark. [Acevedo-Rocha, Carlos G.] Tech Univ Denmark, Novo Nordisk Fdn, Ctr Biosustainabil, Horsholm, Denmark. [Chizzolini, Fabio] Univ Trento, Trient, Italy. [Rothschild, Lynn J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Verseux, C (reprint author), Univ Roma Tor Vergata, Rome, Italy. EM cyprien.verseux@gmail.com FU German Federal Ministry of Education and Research; Armenise-Harvard Foundation; Autonomous Province of Trento; CIBIO FX The authors are grateful to the organizers of the TASynBio Summer School: Kristin Hagen, Margret Engelhard and Georg Toepfer as well as its funding body, the German Federal Ministry of Education and Research. We thank our fellow attendees for their insightful comments and friendly conversations and for their patience when jargon from our different fields made communication laborious. Thanks are also due to Kristin Hagen and Stefanie Seitz for coordinating this special issue. We are also grateful to the two anonymous reviewers, whose comments led to significant improvements to the manuscript. CV had an appointment to the NASA Education Associates Program managed by the Universities Space Research Association at the time of writing. FC thanks the Armenise-Harvard Foundation, the Autonomous Province of Trento, and CIBIO for the support. NR 48 TC 0 Z9 0 U1 8 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1871-4757 EI 1871-4765 J9 NANOETHICS JI NanoEthics PD DEC PY 2016 VL 10 IS 3 BP 327 EP 336 DI 10.1007/s11569-016-0264-3 PG 10 WC Ethics; History & Philosophy Of Science SC Social Sciences - Other Topics; History & Philosophy of Science GA EF2AS UT WOS:000390127200011 ER PT J AU Frippiat, JP Crucian, BE de Quervain, DJF Grimm, D Montano, N Praun, S Roozendaal, B Schelling, G Thiel, M Ullrich, O Chouker, A AF Frippiat, Jean-Pol Crucian, Brian E. de Quervain, Dominique J-F Grimm, Daniela Montano, Nicola Praun, Siegfried Roozendaal, Benno Schelling, Gustav Thiel, Manfred Ullrich, Oliver Chouker, Alexander TI Towards human exploration of space: The THESEUS review series on immunology research priorities SO NPJ MICROGRAVITY LA English DT Review ID IMMUNE-SYSTEM DYSREGULATION; AMPHIBIAN PLEURODELES-WALTL; LONG-DURATION SPACEFLIGHT; HUMAN T-LYMPHOCYTES; DOWN BED REST; GENE-EXPRESSION; SIMULATED MICROGRAVITY; SIGNAL-TRANSDUCTION; CYTOKINE PRODUCTION; TERM SPACEFLIGHT AB Dysregulation of the immune system occurs during spaceflight and may represent a crew health risk during exploration missions because astronauts are challenged by many stressors. Therefore, it is crucial to understand the biology of immune modulation under spaceflight conditions in order to be able to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent to scientists around the world. From the review of collected answers, they deduced a list of key issues and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space, and to increase increments duration for some ISS crew members to 12 months or longer. These recommendations should contribute to improve our knowledge about spaceflight effects on the immune system and the development of countermeasures that, beyond astronauts, could have a societal impact. C1 [Frippiat, Jean-Pol] Lorraine Univ, Stress Immun Pathogens Lab, EA7300, Nancy, France. [Crucian, Brian E.] NASA, Johnson Space Ctr, Houston, TX USA. [de Quervain, Dominique J-F] Univ Basel, Dept Med, Basel, Switzerland. [de Quervain, Dominique J-F] Univ Basel, Dept Psychol, Basel, Switzerland. [Grimm, Daniela] Aarhus Univ, Dept Biomed, Pharmacol, Aarhus, Denmark. [Montano, Nicola] Univ Milan, Dept Biomed & Clin Sci, Cardiovasc Neurosci Lab, Milan, Italy. [Praun, Siegfried] VF Serv GmbH, Absam, Austria. [Roozendaal, Benno] Radboud Univ Nijmegen, Med Ctr, Dept Cognit Neurosci, Nijmegen, Netherlands. [Roozendaal, Benno] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Nijmegen, Netherlands. [Schelling, Gustav; Chouker, Alexander] Univ Munich, Stress & Immun Lab, Dept Anaesthesiol, Munich, Germany. [Thiel, Manfred] Heidelberg Univ, Med Fac Mannheim, Univ Med Ctr Mannheim, Dept Anaesthesiol & Surg Intens Care Med, Heidelberg, Germany. [Ullrich, Oliver] Univ Zurich, Inst Anat, Fac Med, Zurich, Switzerland. RP Frippiat, JP (reprint author), Lorraine Univ, Stress Immun Pathogens Lab, EA7300, Nancy, France. EM jean-pol.frippiat@univ-lorraine.fr FU European Community [242482]; French (CNES); German (DLR); Italian (ASI); Russian (IBMP); American (NASA); Russian (Rocosmos) FX This review is a product of the Theseus Project: Towards Human Exploration of Space: a European Strategy of the European Science Foundation and was supported by European Community's 7th Framework Programme (FP7/2007-2013) under grant agreement #242482. We also thank the French (CNES), the German (DLR), the Italian (ASI), the Russian (IBMP, Rocosmos) and the American (NASA) space agencies for their support. We are particularly grateful to Brigitte Gaillard for outstanding work in coordinating the heavy editorial processes of the overall Theseus series dedicated to integrated physiology system. NR 97 TC 0 Z9 0 U1 12 U2 12 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 2373-8065 J9 NPJ MICROGRAVITY JI NPJ Microgravity PD DEC 1 PY 2016 VL 2 AR 16040 DI 10.1038/npjmgrav.2016.40 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EF6XX UT WOS:000390475700001 ER PT J AU Henderson, CB Poleski, R Penny, M Street, RA Bennett, DP Hogg, DW Gaudi, BS Zhu, W Barclay, T Barentsen, G Howell, SB Mullally, F Udalski, A Szymanski, MK Skowron, J Mroz, P Kozlowski, S Wyrzykowski, L Pietrukowicz, P Soszynski, I Ulaczyk, K Pawlak, M Sumi, T Abe, F Asakura, Y Barry, RK Bhattacharya, A Bond, IA Donachie, M Freeman, M Fukui, A Hirao, Y Itow, Y Koshimoto, N Li, MCA Ling, CH Masuda, K Matsubara, Y Muraki, Y Nagakane, M Ohnishi, K Oyokawa, H Rattenbury, N Saito, T Sharan, A Sullivan, J Tristram, PJ Yonehara, A Bachelet, E Bramich, DM Cassan, A Dominik, M Jaimes, RF Horne, K Hundertmark, M Mao, S Ranc, C Schmidt, R Snodgrass, C Steele, IA Tsapras, Y Wambsganss, J Bozza, V Burgdorf, MJ Jorgensen, UG Novati, SC Ciceri, S D'Ago, G Evans, DF Hessman, FV Hinse, TC Husser, TO Mancini, L Popovas, A Rabus, M Rahvar, S Scarpetta, G Skottfelt, J Southworth, J Unda-Sanzana, E Bryson, ST Caldwell, DA Haas, MR Larson, K McCalmont, K Packard, M Peterson, C Putnam, D Reedy, L Ross, S Van Cleve, JE Akeson, R Batista, V Beaulieu, JP Beichman, CA Bryden, G Ciardi, D Cole, A Coutures, C Foreman-Mackey, D Fouque, P Friedmann, M Gelino, C Kaspi, S Kerins, E Korhonen, H Lang, D Lee, CH Lineweaver, CH Maoz, D Marquette, JB Mogavero, F Morales, JC Nataf, D Pogge, RW Santerne, A Shvartzvald, Y Suzuki, D Tamura, M Tisserand, P Wang, D AF Henderson, Calen B. Poleski, Radoslaw Penny, Matthew Street, Rachel A. Bennett, David P. Hogg, David W. Gaudi, B. Scott Zhu, W. Barclay, T. Barentsen, G. Howell, S. B. Mullally, F. Udalski, A. Szymanski, M. K. Skowron, J. Mroz, P. Kozlowski, S. Wyrzykowski, L. Pietrukowicz, P. Soszynski, I. Ulaczyk, K. Pawlak, M. Sumi, T. Abe, F. Asakura, Y. Barry, R. K. Bhattacharya, A. Bond, I. A. Donachie, M. Freeman, M. Fukui, A. Hirao, Y. Itow, Y. Koshimoto, N. Li, M. C. A. Ling, C. H. Masuda, K. Matsubara, Y. Muraki, Y. Nagakane, M. Ohnishi, K. Oyokawa, H. Rattenbury, N. Saito, To. Sharan, A. Sullivan, J. Tristram, P. J. Yonehara, A. Bachelet, E. Bramich, D. M. Cassan, A. Dominik, M. Jaimes, R. Figuera Horne, K. Hundertmark, M. Mao, S. Ranc, C. Schmidt, R. Snodgrass, C. Steele, I. A. Tsapras, Y. Wambsganss, J. Bozza, V. Burgdorf, M. J. Jorgensen, U. G. Novati, S. Calchi Ciceri, S. D'Ago, G. Evans, D. F. Hessman, F. V. Hinse, T. C. Husser, T. -O. Mancini, L. Popovas, A. Rabus, M. Rahvar, S. Scarpetta, G. Skottfelt, J. Southworth, J. Unda-Sanzana, E. Bryson, S. T. Caldwell, D. A. Haas, M. R. Larson, K. McCalmont, K. Packard, M. Peterson, C. Putnam, D. Reedy, L. Ross, S. Van Cleve, J. E. Akeson, R. Batista, V. Beaulieu, J. -P. Beichman, C. A. Bryden, G. Ciardi, D. Cole, A. Coutures, C. Foreman-Mackey, D. Fouque, P. Friedmann, M. Gelino, C. Kaspi, S. Kerins, E. Korhonen, H. Lang, D. Lee, C. -H. Lineweaver, C. H. Maoz, D. Marquette, J. -B. Mogavero, F. Morales, J. C. Nataf, D. Pogge, R. W. Santerne, A. Shvartzvald, Y. Suzuki, D. Tamura, M. Tisserand, P. Wang, D. CA K2 Campaign 9 Microlensing Sci OGLE Project MOA Collaboration RoboNet Project MiNDSTEp Team K2C9 Engn Team TI Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article DE binaries: general; Galaxy: bulge; gravitational lensing: micro; planets and satellites: detection; planets and satellites: fundamental parameters ID GRAVITATIONAL LENSING EXPERIMENT; SYNTHESIZING EXOPLANET DEMOGRAPHICS; PARALLAX SATELLITE MASS; GALACTIC BULGE; OGLE-III; SPITZER OBSERVATIONS; PLANETARY COMPANION; TERRESTRIAL PLANET; IMAGE SUBTRACTION; TELESCOPE NETWORK AB K2's Campaign 9 (K2C9) will conduct a similar to 3.7 deg(2) survey toward the Galactic bulge from 2016 April 22 through July 2 that will leverage the spatial separation between K2 and the Earth to facilitate measurement of the microlens parallax pi(E) for greater than or similar to 170 microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this article we provide an overview of the K2C9 space-and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of K2C9, and the array of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in K2C9, which constitutes an important pathfinding mission and community exercise in anticipation of WFIRST. C1 [Henderson, Calen B.; Beichman, C. A.; Bryden, G.; Shvartzvald, Y.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Poleski, Radoslaw; Penny, Matthew; Gaudi, B. Scott; Zhu, W.; Pogge, R. W.] Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. [Poleski, Radoslaw; Udalski, A.; Szymanski, M. K.; Skowron, J.; Mroz, P.; Kozlowski, S.; Wyrzykowski, L.; Pietrukowicz, P.; Soszynski, I.; Ulaczyk, K.; Pawlak, M.] Univ Warsaw Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland. [Street, Rachel A.; Bachelet, E.] Las Cumbres Observ, Global Telescope Network, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA. [Bennett, David P.; Barry, R. K.; Suzuki, D.] NASA, Goddard Space Flight Ctr, Lab Exoplanets & Stellar Astrophys, Greenbelt, MD 20771 USA. [Hogg, David W.; Wang, D.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, 4 Washington Pl,Room 424, New York, NY 10003 USA. [Hogg, David W.] NYU, Ctr Data Sci, 726 Broadway,7th Floor, New York, NY 10003 USA. [Barclay, T.; Barentsen, G.; Howell, S. B.; Mullally, F.; Bryson, S. T.; Caldwell, D. A.; Haas, M. R.; Van Cleve, J. E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Sumi, T.; Asakura, Y.; Hirao, Y.; Koshimoto, N.; Nagakane, M.; Oyokawa, H.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Abe, F.; Itow, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y.] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi 4648601, Japan. [Bhattacharya, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Bond, I. A.; Ling, C. H.] Massey Univ, Inst Informat & Math Sci, Private Bag 102-904,North Shore Mail Ctr, Auckland, New Zealand. [Donachie, M.; Freeman, M.; Li, M. C. A.; Rattenbury, N.; Sharan, A.] Univ Auckland, Dept Phys, Private Bag 92019, Auckland, New Zealand. [Fukui, A.] Natl Astron Observ Japan, Okayama Astrophys Observ, 3037-5 Honjo, Asakuchi, Okayama 7190232, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To.] Tokyo Metropolitan Coll Aeronaut, Tokyo 1168523, Japan. [Sullivan, J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Tristram, P. J.] Mt John Univ Observ, POB 56, Lake Tekapo 8770, New Zealand. [Yonehara, A.] Kyoto Sangyo Univ, Fac Sci, Dept Phys, Kyoto 6038555, Japan. [Bramich, D. M.] Qatar Fdn, HBKU, QEERI, Doha, Qatar. [Cassan, A.; Ranc, C.; Batista, V.; Beaulieu, J. -P.; Coutures, C.; Mogavero, F.; Tisserand, P.] UPMC Univ Paris 6, Sorbonne Univ, 98 Bis Bd Arago, F-75014 Paris, France. [Cassan, A.; Ranc, C.; Batista, V.; Beaulieu, J. -P.; Coutures, C.; Marquette, J. -B.; Mogavero, F.; Tisserand, P.] Inst Astrophys Paris, UMR 7095, CNRS, F-75014 Paris, France. [Dominik, M.; Jaimes, R. Figuera; Horne, K.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Hundertmark, M.; Jorgensen, U. G.; Popovas, A.; Skottfelt, J.; Korhonen, H.] Univ Copenhagen, Niels Bohr Inst, Oster Voldgade 5, DK-1350 Copenhagen, Denmark. [Hundertmark, M.; Jorgensen, U. G.; Popovas, A.; Skottfelt, J.; Korhonen, H.] Univ Copenhagen, Ctr Star & Planet Format, Oster Voldgade 5, DK-1350 Copenhagen, Denmark. [Mao, S.] Tsinghua Univ, Dept Phys & Ctr Astrophys, Beijing 100084, Peoples R China. [Mao, S.] Chinese Acad Sci, Natl Astron Observ, 20A Datun Rd, Beijing 100012, Peoples R China. [Mao, S.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Schmidt, R.; Tsapras, Y.; Wambsganss, J.] Zentrum Univ Heidelberg ZAH, Astron Rechen Inst, D-69120 Heidelberg, Germany. [Snodgrass, C.] Open Univ, Dept Phys Sci, Planetary & Space Sci, Milton Keynes MK7 6AA, Bucks, England. [Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England. [Bozza, V.; Novati, S. Calchi; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo 2 132, I-84084 Fisciano, SA, Italy. [Bozza, V.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Burgdorf, M. J.] Univ Hamburg, Meteorol Inst, Bundesstr 55, D-20146 Hamburg, Germany. [Novati, S. Calchi; Akeson, R.; Beichman, C. A.; Ciardi, D.; Gelino, C.] CALTECH, NASA Exoplanet Sci Inst, 770 S Wilson Ave, Pasadena, CA 91125 USA. [Novati, S. Calchi; D'Ago, G.; Scarpetta, G.] IIASS, Via G Pellegrino 19, I-84019 Vietri Sul Mare, SA, Italy. [Ciceri, S.; Mancini, L.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Evans, D. F.; Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Hessman, F. V.; Husser, T. -O.] Georg August Univ, Inst Astrophys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany. [Hinse, T. C.] Korea Astron & Space Sci Inst, 776 Daedukdae Ro, Daejeon 305348, South Korea. [Rabus, M.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Ave Vicuna Mackenna 4860, Santiago 7820436, Chile. [Rahvar, S.] Sharif Univ Technol, Dept Phys, POB 11155-9161, Tehran, Iran. [Skottfelt, J.] Open Univ, Dept Phys Sci, Ctr Elect Imaging, Milton Keynes MK7 6AA, Bucks, England. [Unda-Sanzana, E.] Univ Antofagasta, Fac Ciencias Basicas, Unidad Astron, Avda Univ Antofagasta 02800, Antofagasta, Chile. [Larson, K.; McCalmont, K.; Peterson, C.; Putnam, D.; Ross, S.] Ball Aerosp & Technol, Boulder, CO 80301 USA. [Packard, M.; Reedy, L.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. [Beichman, C. A.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Cole, A.] Univ Tasmania, Sch Phys Sci, Private Bag 37, Hobart, Tas 7001, Australia. [Fouque, P.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Fouque, P.] CFHT Corp, 65-1238 Mamalahoa Hwy, Kamuela, HI 96743 USA. [Friedmann, M.; Kaspi, S.; Maoz, D.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Kerins, E.] Univ Manchester, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England. [Lang, D.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Lee, C. -H.] Natl Astron Observ Japan, Subaru Telescope, 650 North Aohoku Pl, Hilo, HI 96720 USA. [Lineweaver, C. H.; Nataf, D.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Morales, J. C.] Inst Ciencies Espai CSIC IEEC, Campus UAB,Carrer Can Magrans S-N, E-08193 Cerdanyola Del Valles, Spain. [Santerne, A.] Univ Porto, CAUP, Inst Astrofis & Ciencias Espaco, Rua Estrelas, P-4150762 Oporto, Portugal. [Tamura, M.] Astrobiol Ctr, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Tamura, M.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Tamura, M.] Univ Tokyo, Dept Astron, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. RP Henderson, CB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM calen.b.henderson@jpl.nasa.gov OI Ciardi, David/0000-0002-5741-3047 FU NASA K2 Guest Observer Program; National Aeronautics and Space Administration under Exoplanet Exploration Program; NASA; National Science Centre, Poland [MAESTRO 2014/14/A/ST9/00121]; Regione Campania from POR-FSE Campania; KASI grant [2016-1-832-01]; Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences [XDB09000000]; National Natural Science Foundation of China (NSFC) [11333003, 11390372] FX C.B.H., R.P., M.P., R.A.S., D.P.B., D.W.H., and B.S.G. were supported through the NASA K2 Guest Observer Program. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. Work by C.B.H. and Y.S. was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Universities Space Research Association through a contract with NASA. The OGLE project has received funding from the National Science Centre, Poland, grant MAESTRO 2014/14/A/ST9/00121 to A.U. G.D. acknowledges Regione Campania for support from POR-FSE Campania 2014-2020. TCH is funded through KASI grant #2016-1-832-01. SM was supported by the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences grant No. XDB09000000, and by the National Natural Science Foundation of China (NSFC) under grant number 11333003 and 11390372 (SM). C.B.H. thanks graphic designer Kathryn Chamberlain for her generous assistance with Figure 4. (C) California Institute of Technology. Government sponsorship acknowledged. NR 116 TC 3 Z9 3 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD DEC PY 2016 VL 128 IS 970 AR UNSP 124401 DI 10.1088/1538-3873/128/970/124401 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF4XX UT WOS:000390336400007 ER PT J AU Smith, JC Morris, RL Jenkins, JM Bryson, ST Caldwell, DA Girouard, FR AF Smith, Jeffrey C. Morris, Robert L. Jenkins, Jon M. Bryson, Stephen T. Caldwell, Douglas A. Girouard, Forrest R. TI Finding Optimal Apertures in Kepler Data SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article DE methods: data analysis; techniques: image processing; techniques: photometric; planets and satellites: detection ID SYSTEMATIC-ERROR CORRECTION AB With the loss of two spacecraft reaction wheels precluding further data collection for the Kepler primary mission, even greater pressure is placed on the processing pipeline to eke out every last transit signal in the data. To that end, we have developed a new method to optimize the Kepler Simple Aperture Photometry (SAP) photometric apertures for both planet detection and minimization of systematic effects. The approach uses a per cadence modeling of the raw pixel data and then performs an aperture optimization based on signal-to-noise ratio and the Kepler Combined Differential Photometric Precision (CDPP), which is a measure of the noise over the duration of a reference transit signal. We have found the new apertures to be superior to the previous Kepler apertures. We can now also find a per cadence flux fraction in aperture and crowding metric. The new approach has also been proven to be robust at finding apertures in K2 data that help mitigate the larger motion-induced systematics in the photometry. The method further allows us to identify errors in the Kepler and K2 input catalogs. C1 [Smith, Jeffrey C.; Morris, Robert L.; Jenkins, Jon M.; Bryson, Stephen T.; Caldwell, Douglas A.; Girouard, Forrest R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Smith, Jeffrey C.; Morris, Robert L.; Caldwell, Douglas A.] SETI Inst, 189 Bernardo Ave,Suite 100, Mountain View, CA 94043 USA. [Girouard, Forrest R.] Logyx LLC, 425 N Whisman Rd, Mountain View, CA 94043 USA. RP Smith, JC (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.; Smith, JC (reprint author), SETI Inst, 189 Bernardo Ave,Suite 100, Mountain View, CA 94043 USA. EM jeffrey.smith@nasa.gov FU NASA's Science Mission Directorate FX Funding for the Kepler and K2 Missions is provided by NASA's Science Mission Directorate. The authors acknowledge the efforts of the Kepler Mission team for obtaining the calibrated pixel and light curve data used in this publication. These data products were generated by the Kepler Mission science pipeline through the efforts of the Kepler Science Operations Center and Science Office. The Kepler Mission is lead by the project office at the NASA Ames Research Center. Ball Aerospace built the Kepler photometer and spacecraft, which is operated by the mission operations center at LASP. These data products are archived at the Mikulski Archive for Space Telescopes/NASA Exoplanet Science Institute. We thank the hundreds of people whose efforts made Kepler's grand voyage of discovery possible. We especially want to thank the Kepler Science Operation Center and Science Office staff who design, build, and operate the Kepler Science Pipeline for putting their hearts into this endeavor. NR 25 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD DEC PY 2016 VL 128 IS 970 AR 124501 DI 10.1088/1538-3873/128/970/124501 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF4XX UT WOS:000390336400011 ER PT J AU Fox, NJ Velli, MC Bale, SD Decker, R Driesman, A Howard, RA Kasper, JC Kinnison, J Kusterer, M Lario, D Lockwood, MK McComas, DJ Raouafi, NE Szabo, A AF Fox, N. J. Velli, M. C. Bale, S. D. Decker, R. Driesman, A. Howard, R. A. Kasper, J. C. Kinnison, J. Kusterer, M. Lario, D. Lockwood, M. K. McComas, D. J. Raouafi, N. E. Szabo, A. TI The Solar Probe Plus Mission: Humanity's First Visit to Our Star SO SPACE SCIENCE REVIEWS LA English DT Review DE Solar Probe Plus; SPP; Corona; Heliophysics; NASA mission; Solar wind ID REDUCED MAGNETOHYDRODYNAMIC TURBULENCE; KELVIN-HELMHOLTZ INSTABILITIES; PROTON TEMPERATURE ANISOTROPY; HIGH HELIOGRAPHIC LATITUDES; FIELD POLARITY INVERSIONS; HELIOS PLASMA-EXPERIMENT; MAGNETIC-FIELD; CORONAL HOLES; ENERGETIC PARTICLES; ALFVEN WAVES AB Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPP's main science goal is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles. The SPP mission was confirmed in March 2014 and is under development as a part of NASA's Living with a Star (LWS) Program. SPP is scheduled for launch in mid-2018, and will perform 24 orbits over a 7-year nominal mission duration. Seven Venus gravity assists gradually reduce SPP's perihelion from 35 solar radii () for the first orbit to for the final three orbits. In this paper we present the science, mission concept and the baseline vehicle for SPP, and examine how the mission will address the key science questions. C1 [Fox, N. J.; Decker, R.; Driesman, A.; Kinnison, J.; Kusterer, M.; Lario, D.; Lockwood, M. K.; Raouafi, N. E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Velli, M. C.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Bale, S. D.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Howard, R. A.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Kasper, J. C.] Univ Michigan, Ann Arbor, MI 48109 USA. [Kasper, J. C.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [McComas, D. J.] Southwest Res Inst, San Antonio, TX 78228 USA. [McComas, D. J.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Szabo, A.] Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Fox, NJ (reprint author), Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. EM Nicola.Fox@jhuapl.edu RI Bale, Stuart/E-7533-2011 OI Bale, Stuart/0000-0002-1989-3596 FU NASA [NNN06AA01C, NNN10AA08T] FX The Solar Probe Plus mission is the result of tireless efforts by countless scientists from all over the world who first imagined this project in the 1950s and never ceased in their efforts over the following decades to ensure that the mission will finally become a reality. We are deeply indebted to all of them for their outstanding work and remarkable determination and vision. We acknowledge the continuous support of NASA to the project. Solar Probe Plus is part of NASA's Living With a Star program. We, the authors, acknowledge the support from NASA under contract NNN06AA01C (Task NNN10AA08T). We would like also to acknowledge the leadership and friendship of the late Andrew Dantzler (the first Solar Probe Plus Project Manager). We are very grateful to the anonymous referees for the constructive criticism that helped improve the quality of the manuscript. NR 126 TC 8 Z9 8 U1 5 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2016 VL 204 IS 1-4 BP 7 EP 48 DI 10.1007/s11214-015-0211-6 PG 42 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF0XX UT WOS:000390050700002 ER PT J AU Bale, SD Goetz, K Harvey, PR Turin, P Bonnell, JW Dudok de Wit, T Ergun, RE MacDowall, RJ Pulupa, M Andre, M Bolton, M Bougeret, JL Bowen, TA Burgess, D Cattell, CA Chandran, BDG Chaston, CC Chen, CHK Choi, MK Connerney, JE Cranmer, S Diaz-Aguado, M Donakowski, W Drake, JF Farrell, WM Fergeau, P Fermin, J Fischer, J Fox, N Glaser, D Goldstein, M Gordon, D Hanson, E Harris, SE Hayes, LM Hinze, JJ Hollweg, JV Horbury, TS Howard, RA Hoxie, V Jannet, G Karlsson, M Kasper, JC Kellogg, PJ Kien, M Klimchuk, JA Krasnoselskikh, VV Krucker, S Lynch, JJ Maksimovic, M Malaspina, DM Marker, S Martin, P Martinez-Oliveros, J McCauley, J McComas, DJ McDonald, T Meyer-Vernet, N Moncuquet, M Monson, SJ Mozer, FS Murphy, SD Odom, J Oliverson, R Olson, J Parker, EN Pankow, D Phan, T Quataert, E Quinn, T Ruplin, SW Salem, C Seitz, D Sheppard, DA Siy, A Stevens, K Summers, D Szabo, A Timofeeva, M Vaivads, A Velli, M Yehle, A Werthimer, D Wygant, JR AF Bale, S. D. Goetz, K. Harvey, P. R. Turin, P. Bonnell, J. W. Dudok de Wit, T. Ergun, R. E. MacDowall, R. J. Pulupa, M. Andre, M. Bolton, M. Bougeret, J. -L. Bowen, T. A. Burgess, D. Cattell, C. A. Chandran, B. D. G. Chaston, C. C. Chen, C. H. K. Choi, M. K. Connerney, J. E. Cranmer, S. Diaz-Aguado, M. Donakowski, W. Drake, J. F. Farrell, W. M. Fergeau, P. Fermin, J. Fischer, J. Fox, N. Glaser, D. Goldstein, M. Gordon, D. Hanson, E. Harris, S. E. Hayes, L. M. Hinze, J. J. Hollweg, J. V. Horbury, T. S. Howard, R. A. Hoxie, V. Jannet, G. Karlsson, M. Kasper, J. C. Kellogg, P. J. Kien, M. Klimchuk, J. A. Krasnoselskikh, V. V. Krucker, S. Lynch, J. J. Maksimovic, M. Malaspina, D. M. Marker, S. Martin, P. Martinez-Oliveros, J. McCauley, J. McComas, D. J. McDonald, T. Meyer-Vernet, N. Moncuquet, M. Monson, S. J. Mozer, F. S. Murphy, S. D. Odom, J. Oliverson, R. Olson, J. Parker, E. N. Pankow, D. Phan, T. Quataert, E. Quinn, T. Ruplin, S. W. Salem, C. Seitz, D. Sheppard, D. A. Siy, A. Stevens, K. Summers, D. Szabo, A. Timofeeva, M. Vaivads, A. Velli, M. Yehle, A. Werthimer, D. Wygant, J. R. TI The FIELDS Instrument Suite for Solar Probe Plus SO SPACE SCIENCE REVIEWS LA English DT Review DE Coronal heating; Solar Probe Plus ID ALFVEN WAVES; WIND; TURBULENCE; CORONA; INTERPLANETARY; ACCELERATION; SPACECRAFT; FREQUENCY; RADIO; MODEL AB NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products. C1 [Bale, S. D.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Pulupa, M.; Bowen, T. A.; Chaston, C. C.; Diaz-Aguado, M.; Donakowski, W.; Fermin, J.; Fischer, J.; Glaser, D.; Gordon, D.; Hanson, E.; Harris, S. E.; Hayes, L. M.; Krucker, S.; Marker, S.; Martinez-Oliveros, J.; McCauley, J.; McDonald, T.; Mozer, F. S.; Olson, J.; Pankow, D.; Phan, T.; Quinn, T.; Salem, C.; Seitz, D.; Siy, A.; Werthimer, D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Bale, S. D.; Bowen, T. A.; Hanson, E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Goetz, K.; Cattell, C. A.; Hinze, J. J.; Kellogg, P. J.; Lynch, J. J.; Monson, S. J.; Wygant, J. R.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Dudok de Wit, T.; Fergeau, P.; Jannet, G.; Krasnoselskikh, V. V.; Martin, P.; Timofeeva, M.] CNRS, LPC2E, 3A Ave Rech Sci, Orleans, France. [Ergun, R. E.; Bolton, M.; Cranmer, S.; Hoxie, V.; Karlsson, M.; Kien, M.; Malaspina, D. M.; Stevens, K.; Summers, D.; Yehle, A.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA. [MacDowall, R. J.; Choi, M. K.; Connerney, J. E.; Farrell, W. M.; Goldstein, M.; Klimchuk, J. A.; Murphy, S. D.; Odom, J.; Oliverson, R.; Sheppard, D. A.; Szabo, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Andre, M.; Vaivads, A.] Swedish Inst Space Phys IRF, Uppsala, Sweden. [Bougeret, J. -L.; Maksimovic, M.; Meyer-Vernet, N.; Moncuquet, M.] Observ Paris, LESIA, Meudon, France. [Burgess, D.] Queen Mary Univ London, Astron Unit, London, England. [Chandran, B. D. G.; Hollweg, J. V.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Chen, C. H. K.; Horbury, T. S.] Imperial Coll, Dept Phys, London, England. [Drake, J. F.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Fox, N.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Howard, R. A.] Naval Res Lab, Washington, DC 20375 USA. [Kasper, J. C.] Univ Michigan, Ann Arbor, MI 48109 USA. [McComas, D. J.] Southwest Res Inst, San Antonio, TX USA. [Parker, E. N.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Quataert, E.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Ruplin, S. W.] Praxis Studios, Brooklyn, NY USA. [Velli, M.] UCLA, Earth Planetary & Space Sci, Los Angeles, CA USA. RP Bale, SD (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.; Bale, SD (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM bale@berkeley.edu RI Bale, Stuart/E-7533-2011; Farrell, William/I-4865-2013; OI Bale, Stuart/0000-0002-1989-3596; Pulupa, Marc/0000-0002-1573-7457 FU NASA [NNN06AA01C]; French Centre National d'Etudes Spatiales (CNES) FX The SPP/FIELDS instrument suite was developed under NASA contract NNN06AA01C. Development of the Search Coil Magnetometer sensor is funded by the French Centre National d'Etudes Spatiales (CNES). We acknowledge the many efforts of the spacecraft engineering team at the Applied Physics Laboratory (APL). NR 33 TC 4 Z9 4 U1 2 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2016 VL 204 IS 1-4 BP 49 EP 82 DI 10.1007/s11214-016-0244-5 PG 34 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF0XX UT WOS:000390050700003 ER PT J AU Vourlidas, A Howard, RA Plunkett, SP Korendyke, CM Thernisien, AFR Wang, D Rich, N Carter, MT Chua, DH Socker, DG Linton, MG Morrill, JS Lynch, S Thurn, A Van Duyne, P Hagood, R Clifford, G Grey, PJ Velli, M Liewer, PC Hall, JR DeJong, EM Mikic, Z Rochus, P Mazy, E Bothmer, V Rodmann, J AF Vourlidas, Angelos Howard, Russell A. Plunkett, Simon P. Korendyke, Clarence M. Thernisien, Arnaud F. R. Wang, Dennis Rich, Nathan Carter, Michael T. Chua, Damien H. Socker, Dennis G. Linton, Mark G. Morrill, Jeff S. Lynch, Sean Thurn, Adam Van Duyne, Peter Hagood, Robert Clifford, Greg Grey, Phares J. Velli, Marco Liewer, Paulett C. Hall, Jeffrey R. DeJong, Eric M. Mikic, Zoran Rochus, Pierre Mazy, Emanuel Bothmer, Volker Rodmann, Jens TI The Wide-Field Imager for Solar Probe Plus (WISPR) SO SPACE SCIENCE REVIEWS LA English DT Review DE Solar probe plus; Heliospheric imager; Solar corona; Solar wind; Imaging; Thomson scattering ID CORONAL MASS EJECTIONS; ENERGETIC PARTICLE EVENTS; COSMIC-RAY MODULATION; HELIOSPHERIC IMAGER; ELECTRON-DENSITY; STEREO MISSION; DUST GRAINS; WIND; SUN; BRIGHTNESS AB The Wide-field Imager for Solar PRobe Plus (WISPR) is the sole imager aboard the Solar Probe Plus (SPP) mission scheduled for launch in 2018. SPP will be a unique mission designed to orbit as close as 7 million km (9.86 solar radii) from Sun center. WISPR employs a 95(ay) radial by 58(ay) transverse field of view to image the fine-scale structure of the solar corona, derive the 3D structure of the large-scale corona, and determine whether a dust-free zone exists near the Sun. WISPR is the smallest heliospheric imager to date yet it comprises two nested wide-field telescopes with large-format (2 K x 2 K) APS CMOS detectors to optimize the performance for their respective fields of view and to minimize the risk of dust damage, which may be considerable close to the Sun. The WISPR electronics are very flexible allowing the collection of individual images at cadences up to 1 second at perihelion or the summing of multiple images to increase the signal-to-noise when the spacecraft is further from the Sun. The dependency of the Thomson scattering emission of the corona on the imaging geometry dictates that WISPR will be very sensitive to the emission from plasma close to the spacecraft in contrast to the situation for imaging from Earth orbit. WISPR will be the first 'local' imager providing a crucial link between the large-scale corona and the in-situ measurements. C1 [Vourlidas, Angelos; Grey, Phares J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20732 USA. [Howard, Russell A.; Plunkett, Simon P.; Korendyke, Clarence M.; Thernisien, Arnaud F. R.; Wang, Dennis; Rich, Nathan; Carter, Michael T.; Chua, Damien H.; Socker, Dennis G.; Linton, Mark G.; Morrill, Jeff S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Lynch, Sean; Thurn, Adam] Naval Res Lab, Naval Ctr Space Technol Div, Washington, DC 20375 USA. [Van Duyne, Peter] Space Syst Res Corp, Alexandria, VA 22314 USA. [Hagood, Robert] ATK Space Syst, Beltsville, MD 20705 USA. [Clifford, Greg] Silver Engn Inc, Melbourne, FL 32904 USA. [Velli, Marco; Liewer, Paulett C.; Hall, Jeffrey R.; DeJong, Eric M.] Jet Prop Lab, Pasadena, CA 91109 USA. [Mikic, Zoran] Predict Sci Inc, San Diego, CA 92121 USA. [Rochus, Pierre; Mazy, Emanuel] Univ Liege, Ctr Spatial Liege, Liege, Belgium. [Bothmer, Volker; Rodmann, Jens] Univ Gottingen, Inst Astrophys, Gottingen, Germany. RP Vourlidas, A (reprint author), Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20732 USA. EM angelos.vourlidas@jhuapl.edu RI Vourlidas, Angelos/C-8231-2009 OI Vourlidas, Angelos/0000-0002-8164-5948 FU NASA LWS program [NNG11EK11I]; Deutsches Zentrum fur Luft- und Raumfahrt [FKZ 50OL1201]; Belgian Science Policy Office (BELSPO); Centre National d'Etudes Spatiales (CNES) FX This work is sponsored by the NASA LWS program through interagency agreement NNG11EK11I to NRL. The German contribution to WISPR is sponsored by the Deutsches Zentrum fur Luft- und Raumfahrt (Grant No: FKZ 50OL1201). The Belgian contribution is sponsored by the Belgian Science Policy Office (BELSPO). The French contribution is sponsored by the Centre National d'Etudes Spatiales (CNES). NR 78 TC 4 Z9 4 U1 1 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2016 VL 204 IS 1-4 BP 83 EP 130 DI 10.1007/s11214-014-0114-y PG 48 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF0XX UT WOS:000390050700004 ER PT J AU Kasper, JC Abiad, R Austin, G Balat-Pichelin, M Bale, SD Belcher, JW Berg, P Bergner, H Berthomier, M Bookbinder, J Brodu, E Caldwell, D Case, AW Chandran, BDG Cheimets, P Cirtain, JW Cranmer, SR Curtis, DW Daigneau, P Dalton, G Dasgupta, B DeTomaso, D Diaz-Aguado, M Djordjevic, B Donaskowski, B Effinger, M Florinski, V Fox, N Freeman, M Gallagher, D Gary, SP Gauron, T Gates, R Goldstein, M Golub, L Gordon, DA Gurnee, R Guth, G Halekas, J Hatch, K Heerikuisen, J Ho, G Hu, Q Johnson, G Jordan, SP Korreck, KE Larson, D Lazarus, AJ Li, G Livi, R Ludlam, M Maksimovic, M McFadden, JP Marchant, W Maruca, BA McComas, DJ Messina, L Mercer, T Park, S Peddie, AM Pogorelov, N Reinhart, MJ Richardson, JD Robinson, M Rosen, I Skoug, RM Slagle, A Steinberg, JT Stevens, ML Szabo, A Taylor, ER Tiu, C Turin, P Velli, M Webb, G Whittlesey, P Wright, K Wu, ST Zank, G AF Kasper, Justin C. Abiad, Robert Austin, Gerry Balat-Pichelin, Marianne Bale, Stuart D. Belcher, John W. Berg, Peter Bergner, Henry Berthomier, Matthieu Bookbinder, Jay Brodu, Etienne Caldwell, David Case, Anthony W. Chandran, Benjamin D. G. Cheimets, Peter Cirtain, Jonathan W. Cranmer, Steven R. Curtis, David W. Daigneau, Peter Dalton, Greg Dasgupta, Brahmananda DeTomaso, David Diaz-Aguado, Millan Djordjevic, Blagoje Donaskowski, Bill Effinger, Michael Florinski, Vladimir Fox, Nichola Freeman, Mark Gallagher, Dennis Gary, S. Peter Gauron, Tom Gates, Richard Goldstein, Melvin Golub, Leon Gordon, Dorothy A. Gurnee, Reid Guth, Giora Halekas, Jasper Hatch, Ken Heerikuisen, Jacob Ho, George Hu, Qiang Johnson, Greg Jordan, Steven P. Korreck, Kelly E. Larson, Davin Lazarus, Alan J. Li, Gang Livi, Roberto Ludlam, Michael Maksimovic, Milan McFadden, James P. Marchant, William Maruca, Bennet A. McComas, David J. Messina, Luciana Mercer, Tony Park, Sang Peddie, Andrew M. Pogorelov, Nikolai Reinhart, Matthew J. Richardson, John D. Robinson, Miles Rosen, Irene Skoug, Ruth M. Slagle, Amanda Steinberg, John T. Stevens, Michael L. Szabo, Adam Taylor, Ellen R. Tiu, Chris Turin, Paul Velli, Marco Webb, Gary Whittlesey, Phyllis Wright, Ken Wu, S. T. Zank, Gary TI Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus SO SPACE SCIENCE REVIEWS LA English DT Review DE Solar probe plus; SWEAP; Solar wind plasma; Corona; Heating; Acceleration ID ION-CYCLOTRON WAVES; KINETIC SHELL-MODEL; MAGNETIC-FIELD; MAGNETOHYDRODYNAMIC TURBULENCE; PARTICLE-ACCELERATION; ALFVEN WAVES; COSMIC-RAYS; FLUCTUATIONS; DISSIPATION; TEMPERATURE AB The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes the implementation of the SWEAP Investigation, the driving requirements for the suite, expected performance of the instruments, and planned data products, as of mission preliminary design review. C1 [Kasper, Justin C.] Univ Michigan, Ann Arbor, MI 48109 USA. [Kasper, Justin C.; Austin, Gerry; Bergner, Henry; Bookbinder, Jay; Caldwell, David; Case, Anthony W.; Cheimets, Peter; Daigneau, Peter; Freeman, Mark; Gauron, Tom; Gates, Richard; Golub, Leon; Guth, Giora; Jordan, Steven P.; Korreck, Kelly E.; Park, Sang; Stevens, Michael L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Abiad, Robert; Bale, Stuart D.; Berg, Peter; Curtis, David W.; Dalton, Greg; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Gordon, Dorothy A.; Hatch, Ken; Johnson, Greg; Larson, Davin; Livi, Roberto; Ludlam, Michael; McFadden, James P.; Marchant, William; Maruca, Bennet A.; Messina, Luciana; Mercer, Tony; Robinson, Miles; Rosen, Irene; Slagle, Amanda; Taylor, Ellen R.; Tiu, Chris; Turin, Paul] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Balat-Pichelin, Marianne; Brodu, Etienne] PROMES CNRS, Lab Proc Mat & Energie Solaire, 7 Rue 4 Solaire, F-66120 Font Romeu, France. [Belcher, John W.; Lazarus, Alan J.; Richardson, John D.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Berthomier, Matthieu] Ecole Polytech, Lab Phys Plasmas, Palaiseau, France. [Chandran, Benjamin D. G.] Univ New Hampshire, Durham, NH 03824 USA. [Cirtain, Jonathan W.; Effinger, Michael; Gallagher, Dennis] Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Cirtain, Jonathan W.; Effinger, Michael; Gallagher, Dennis] Univ Colorado, Boulder, CO 80309 USA. [Dasgupta, Brahmananda; Florinski, Vladimir; Heerikuisen, Jacob; Hu, Qiang; Li, Gang; Pogorelov, Nikolai; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S. T.; Zank, Gary] Univ Alabama Huntsville, Huntsville, AL 35805 USA. [DeTomaso, David; Fox, Nichola; Gurnee, Reid; Ho, George; Reinhart, Matthew J.] Appl Phys Lab, Laurel, MD 20723 USA. [Gary, S. Peter; Skoug, Ruth M.; Steinberg, John T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Goldstein, Melvin; Peddie, Andrew M.; Szabo, Adam] Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Halekas, Jasper] Univ Iowa, Iowa City, IA 52242 USA. [Maksimovic, Milan] LESIA, Observ Paris, CNRS, UMR 8109, F-92195 Meudon, France. [McComas, David J.] Southwest Res Inst, San Antonio, TX 78228 USA. [McComas, David J.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Velli, Marco] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Kasper, JC (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA.; Kasper, JC (reprint author), Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. EM jckasper@umich.edu RI Bale, Stuart/E-7533-2011; OI Bale, Stuart/0000-0002-1989-3596; Halekas, Jasper/0000-0001-5258-6128 FU NASA [NNN06AA01C, NNN10AA08T]; CNES; NASA; rest of the SPP team FX We acknowledge support from NASA under contract NNN06AA01C (Task NNN10AA08T). We are grateful for the creativity and dedication of the many people at SWEAP institutions who make this investigation possible. We also acknowledge early support for technology development by the Smithsonian Institution, NASA Marshall Space Flight Center and the CNRS PROMES research group in Odeillo-Font Romeu, France. We thank Jean-Yves Prado and CNES for providing financial support for our activities in France. We also thank NASA and the rest of the SPP team for their support on this project. J.C. Kasper personally thanks John Alexander Simpson and Alan Jay Lazarus for their contributions to Solar Probe and for exposing a student to this exciting mission of discovery. NR 103 TC 5 Z9 5 U1 2 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2016 VL 204 IS 1-4 BP 131 EP 186 DI 10.1007/s11214-015-0206-3 PG 56 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF0XX UT WOS:000390050700005 ER PT J AU McComas, DJ Alexander, N Angold, N Bale, S Beebe, C Birdwell, B Boyle, M Burgum, JM Burnham, JA Christian, ER Cook, WR Cooper, SA Cummings, AC Davis, AJ Desai, MI Dickinson, J Dirks, G Do, DH Fox, N Giacalone, J Gold, RE Gurnee, RS Hayes, JR Hill, ME Kasper, JC Kecman, B Klemic, J Krimigis, SM Labrador, AW Layman, RS Leske, RA Livi, S Matthaeus, WH McNutt, RL Mewaldt, RA Mitchell, DG Nelson, KS Parker, C Rankin, JS Roelof, EC Schwadron, NA Seifert, H Shuman, S Stokes, MR Stone, EC Vandegriff, JD Velli, M von Rosenvinge, TT Weidner, SE Wiedenbeck, ME Wilson, P AF McComas, D. J. Alexander, N. Angold, N. Bale, S. Beebe, C. Birdwell, B. Boyle, M. Burgum, J. M. Burnham, J. A. Christian, E. R. Cook, W. R. Cooper, S. A. Cummings, A. C. Davis, A. J. Desai, M. I. Dickinson, J. Dirks, G. Do, D. H. Fox, N. Giacalone, J. Gold, R. E. Gurnee, R. S. Hayes, J. R. Hill, M. E. Kasper, J. C. Kecman, B. Klemic, J. Krimigis, S. M. Labrador, A. W. Layman, R. S. Leske, R. A. Livi, S. Matthaeus, W. H. McNutt, R. L., Jr. Mewaldt, R. A. Mitchell, D. G. Nelson, K. S. Parker, C. Rankin, J. S. Roelof, E. C. Schwadron, N. A. Seifert, H. Shuman, S. Stokes, M. R. Stone, E. C. Vandegriff, J. D. Velli, M. von Rosenvinge, T. T. Weidner, S. E. Wiedenbeck, M. E. Wilson, P. TI Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation SO SPACE SCIENCE REVIEWS LA English DT Review DE Solar Probe Plus; ISIS; Solar energetic particles; SEPs; CMEs; Corona; Particle acceleration ID HELIOSPHERIC MAGNETIC-FIELD; CORONAL MASS EJECTIONS; HE-3-RICH SOLAR-FLARES; INTERPLANETARY SHOCKS; SPECTRAL PROPERTIES; CHARGED-PARTICLES; HEAVY-IONS; 1 AU; MAGNETOHYDRODYNAMIC TURBULENCE; ULTRAHEAVY IONS AB The Integrated Science Investigation of the Sun (ISIS) is a complete science investigation on the Solar Probe Plus (SPP) mission, which flies to within nine solar radii of the Sun's surface. ISIS comprises a two-instrument suite to measure energetic particles over a very broad energy range, as well as coordinated management, science operations, data processing, and scientific analysis. Together, ISIS observations allow us to explore the mechanisms of energetic particles dynamics, including their: (1) Origins-defining the seed populations and physical conditions necessary for energetic particle acceleration; (2) Acceleration-determining the roles of shocks, reconnection, waves, and turbulence in accelerating energetic particles; and (3) Transport-revealing how energetic particles propagate from the corona out into the heliosphere. The two ISIS Energetic Particle Instruments measure lower (EPI-Lo) and higher (EPI-Hi) energy particles. EPI-Lo measures ions and ion composition from similar to 20 keV/nucleon-15 MeV total energy and electrons from similar to 25-1000 keV. EPI-Hi measures ions from similar to 1-200 MeV/nucleon and electrons from similar to 0.5-6 MeV. EPI-Lo comprises 80 tiny apertures with fields-of-view (FOVs) that sample over nearly a complete hemisphere, while EPI-Hi combines three telescopes that together provide five large-FOV apertures. ISIS observes continuously inside of 0.25 AU with a high data collection rate and burst data (EPI-Lo) coordinated with the rest of the SPP payload; outside of 0.25 AU, ISIS runs in low-rate science mode whenever feasible to capture as complete a record as possible of the solar energetic particle environment and provide calibration and continuity for measurements closer in to the Sun. The ISIS Science Operations Center plans and executes commanding, receives and analyzes all ISIS data, and coordinates science observations and analyses with the rest of the SPP science investigations. Together, ISIS' unique observations on SPP will enable the discovery, untangling, and understanding of the important physical processes that govern energetic particles in the innermost regions of our heliosphere, for the first time. This paper summarizes the ISIS investigation at the time of the SPP mission Preliminary Design Review in January 2014. C1 [McComas, D. J.; Alexander, N.; Angold, N.; Beebe, C.; Birdwell, B.; Desai, M. I.; Dickinson, J.; Dirks, G.; Livi, S.; Weidner, S. E.; Wilson, P.] Southwest Res Inst, San Antonio, TX 78228 USA. [McComas, D. J.; Desai, M. I.; Livi, S.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Bale, S.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Boyle, M.; Burgum, J. M.; Cooper, S. A.; Do, D. H.; Fox, N.; Gold, R. E.; Gurnee, R. S.; Hayes, J. R.; Hill, M. E.; Krimigis, S. M.; Layman, R. S.; McNutt, R. L., Jr.; Mitchell, D. G.; Nelson, K. S.; Parker, C.; Roelof, E. C.; Seifert, H.; Stokes, M. R.; Vandegriff, J. D.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Burnham, J. A.; Cook, W. R.; Cummings, A. C.; Davis, A. J.; Kecman, B.; Klemic, J.; Labrador, A. W.; Leske, R. A.; Mewaldt, R. A.; Rankin, J. S.; Stone, E. C.] CALTECH, Pasadena, CA 91125 USA. [Christian, E. R.; Shuman, S.; von Rosenvinge, T. T.] Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Giacalone, J.] Univ Arizona, Tucson, AZ 85721 USA. [Kasper, J. C.] Univ Michigan, Ann Arbor, MI 48109 USA. [Kasper, J. C.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Matthaeus, W. H.] Univ Delaware, Newark, DE 19716 USA. [Schwadron, N. A.] Univ New Hampshire, Durham, NH 03824 USA. [Velli, M.; Wiedenbeck, M. E.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP McComas, DJ (reprint author), Southwest Res Inst, San Antonio, TX 78228 USA. EM dmccomas@swri.edu RI Bale, Stuart/E-7533-2011 OI Bale, Stuart/0000-0002-1989-3596 FU NASA FX We are deeply indebted to all of the outstanding men and women who have made the Solar Probe Plus Mission and ISIS investigation a reality. These include members of the Solar Probe/Solar Probe Plus Science and Technology Definition Team (STDT), NASA headquarters personnel who have supported and continue to support the mission, project team members at APL and GSFC, instrument team members at a variety of universities and other institutions across the country and around the world, and other members of the community who support this critical mission through their advisory work for the NRC and informally through many other means. We also thank Wendy Mills for the great job she did in assembling and editing this paper for the ISIS Team. NR 87 TC 4 Z9 4 U1 2 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2016 VL 204 IS 1-4 BP 187 EP 256 DI 10.1007/s11214-014-0059-1 PG 70 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF0XX UT WOS:000390050700006 ER PT J AU Druyan, LM Fulakeza, M AF Druyan, Leonard M. Fulakeza, Matthew TI Downscaling GISS ModelE boreal summer climate over Africa SO CLIMATE DYNAMICS LA English DT Article DE Dynamic downscaling; West African monsoon; Regional climate models ID WEST-AFRICA; PRECIPITATION; SIMULATIONS; VARIABILITY; MONSOON; PARAMETERIZATION; REANALYSIS; WAVES; ITCZ AB The study examines the perceived added value of downscaling atmosphere-ocean global climate model simulations over Africa and adjacent oceans by a nested regional climate model. NASA/Goddard Institute for Space Studies (GISS) coupled ModelE simulations for June-September 1998-2002 are used to form lateral boundary conditions for synchronous simulations by the GISS RM3 regional climate model. The ModelE computational grid spacing is 2A degrees latitude by 2.5A degrees longitude and the RM3 grid spacing is 0.44A degrees. ModelE precipitation climatology for June-September 1998-2002 is shown to be a good proxy for 30-year means so results based on the 5-year sample are presumed to be generally representative. Comparison with observational evidence shows several discrepancies in ModelE configuration of the boreal summer inter-tropical convergence zone (ITCZ). One glaring shortcoming is that ModelE simulations do not advance the West African rain band northward during the summer to represent monsoon precipitation onset over the Sahel. Results for 1998-2002 show that onset simulation is an important added value produced by downscaling with RM3. ModelE Eastern South Atlantic Ocean computed sea-surface temperatures (SST) are some 4 K warmer than reanalysis, contributing to large positive biases in overlying surface air temperatures (Tsfc). ModelE Tsfc are also too warm over most of Africa. RM3 downscaling somewhat mitigates the magnitude of Tsfc biases over the African continent, it eliminates the ModelE double ITCZ over the Atlantic and it produces more realistic orographic precipitation maxima. Parallel ModelE and RM3 simulations with observed SST forcing (in place of the predicted ocean) lower Tsfc errors but have mixed impacts on circulation and precipitation biases. Downscaling improvements of the meridional movement of the rain band over West Africa and the configuration of orographic precipitation maxima are realized irrespective of the SST biases. C1 [Druyan, Leonard M.; Fulakeza, Matthew] NASA Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Druyan, Leonard M.] Columbia Univ, Dept Appl Phys & Math, 2880 Broadway, New York, NY 10025 USA. [Fulakeza, Matthew] Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA. RP Druyan, LM (reprint author), NASA Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA.; Druyan, LM (reprint author), Columbia Univ, Dept Appl Phys & Math, 2880 Broadway, New York, NY 10025 USA. EM leonard.druyan@columbia.edu FU f NASA Cooperative [NNX11AR63A] FX The research was performed with the support of NASA Cooperative Agreement NNX11AR63A. TRMM data were acquired using the GES-DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni), part of NASA's Goddard Earth Sciences (GES) Data and Information Services Center (DISC). GPCP data were obtained from NASA/GSFC/MAPL. ERA-I data were provided by the European Center for Medium Range Weather Forecasts, facilitated by the CORDEX project. NCEP/DOE reanalysis 2 data used in the study were obtained from the NOAA-ESRL Physical Sciences Division, Boulder CO online from www.esrl.noaa.gov/psd. The authors gratefully acknowledge the cooperation of GISS colleagues, Dr. K. Lo for accessing ModelE data and Dr. I. Aleinov for discussions about ModelE. Many constructive suggestions from two anonymous reviewers are also gratefully acknowledged. NR 26 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD DEC PY 2016 VL 47 IS 11 BP 3499 EP 3515 DI 10.1007/s00382-015-2880-y PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EE1NM UT WOS:000389349000007 ER PT J AU Xue, YK De Sales, F Lau, WKM Boone, A Kim, KM Mechoso, CR Wang, GL Kucharski, F Schiro, K Hosaka, M Li, SS Druyan, LM Sanda, IS Thiaw, W Zeng, N Comer, RE Lim, YK Mahanama, S Song, GQ Gu, Y Hagos, SM Chin, M Schubert, S Dirmeyer, P Leung, LR Kalnay, E Kitoh, A Lu, CH Mahowald, NM Zhang, ZQ AF Xue, Yongkang De Sales, Fernando Lau, William K. -M. Boone, Aaron Kim, Kyu-Myong Mechoso, Carlos R. Wang, Guiling Kucharski, Fred Schiro, Kathleen Hosaka, Masahiro Li, Suosuo Druyan, Leonard M. Sanda, Ibrah Seidou Thiaw, Wassila Zeng, Ning Comer, Ruth E. Lim, Young-Kwon Mahanama, Sarith Song, Guoqiong Gu, Yu Hagos, Samson M. Chin, Mian Schubert, Siegfried Dirmeyer, Paul Leung, L. Ruby Kalnay, Eugenia Kitoh, Akio Lu, Cheng-Hsuan Mahowald, Natalie M. Zhang, Zhengqiu TI West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) SO CLIMATE DYNAMICS LA English DT Article DE Sahel seasonal and decadal climate variability; Sahel drought; SST and land forcings; GCM ID SAHEL RAINFALL VARIABILITY; LAND-USE TRANSITIONS; LONG-TERM LINK; CLIMATE VARIABILITY; SUMMER RAINFALL; VEGETATION DYNAMICS; AIR-TEMPERATURE; SECONDARY LANDS; REGIONAL MODEL; GLOBAL-MODEL AB The second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedbacks of sea surface temperature (SST), land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The project's strategy is to apply prescribed observationally based anomaly forcing, i.e., "idealized but realistic" forcing, in simulations by climate models. The goal is to assess these forcings' effects in producing/amplifying seasonal and decadal climate variability in the Sahel between the 1950s and the 1980s, which is selected to characterize the great drought period of the last century. This is the first multi-model experiment specifically designed to simultaneously evaluate such relative contributions. The WAMME II models have consistently demonstrated that SST forcing is a major contributor to the twentieth century Sahel drought. Under the influence of the maximum possible SST forcing, the ensemble mean of WAMME II models can produce up to 60 % of the precipitation difference during the period. The present paper also addresses the role of SSTs in triggering and maintaining the Sahel drought. In this regard, the consensus of WAMME II models is that both Indian and Pacific Ocean SSTs greatly contributed to the drought, with the former producing an anomalous displacement of the Intertropical Convergence Zone before the WAM onset, and the latter mainly contributes to the summer WAM drought. The WAMME II models also show that the impact of LULCC forcing on the Sahel climate system is weaker than that of SST forcing, but still of first order magnitude. According to the results, under LULCC forcing the ensemble mean of WAMME II models can produces about 40 % of the precipitation difference between the 1980s and the 1950s. The role of land surface processes in responding to and amplifying the drought is also identified. The results suggest that catastrophic consequences are likely to occur in the regional Sahel climate when SST anomalies in individual ocean basins and in land conditions combine synergistically to favor drought. C1 [Xue, Yongkang; Mechoso, Carlos R.; Schiro, Kathleen; Li, Suosuo; Song, Guoqiong; Gu, Yu; Zhang, Zhengqiu] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [De Sales, Fernando] San Diego State Univ, San Diego, CA 92182 USA. [Lau, William K. -M.; Zeng, Ning; Kalnay, Eugenia] Univ Maryland, College Pk, MD 20742 USA. [Boone, Aaron] Meteo France, Ctr Natl Rech Meteorol, Toulouse, France. [Kim, Kyu-Myong; Lim, Young-Kwon; Mahanama, Sarith; Chin, Mian; Schubert, Siegfried] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Wang, Guiling] Univ Connecticut, Storrs, CT USA. [Kucharski, Fred] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Hosaka, Masahiro] Meteorol Res Inst, Tsukuba, Ibaraki, Japan. [Li, Suosuo] Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou, Peoples R China. [Druyan, Leonard M.] NASA Goddard Inst Space Studies, New York, NY USA. [Druyan, Leonard M.] Columbia Univ, New York, NY USA. [Sanda, Ibrah Seidou] AGRHYMET Reg Ctr, Niamey, Niger. [Sanda, Ibrah Seidou] Abdou Moumouni Univ, Niamey, Niger. [Thiaw, Wassila; Lu, Cheng-Hsuan] Natl Ctr Environm Predict, College Pk, MD USA. [Comer, Ruth E.] Hadley Ctr, Met Off, Exeter, Devon, England. [Lim, Young-Kwon] IM Syst Grp, Goddard Earth Sci Technol & Res, Greenbelt, MD USA. [Dirmeyer, Paul] George Mason Univ, Ctr Ocean Land Atmosphere Interact Studies, Fairfax, VA 22030 USA. [Hagos, Samson M.; Leung, L. Ruby] Pacific Northwest Natl Lab, Richland, WA USA. [Kitoh, Akio] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Lu, Cheng-Hsuan] SUNY Albany, Albany, NY 12222 USA. [Mahowald, Natalie M.] Cornell Univ, Ithaca, NY USA. [Zhang, Zhengqiu] Chinese Acad Meteorol Sci, Beijing, Peoples R China. RP Xue, YK (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA. EM yxue@geog.ucla.edu RI Zeng, Ning/A-3130-2008; OI Zeng, Ning/0000-0002-7489-7629; xue, yongkang/0000-0002-6169-9631 FU U.S. NSF [AGS-1115506, AGS-1419526]; NASA; European Union; AMMA FX We appreciate AMMA's support for the WAMME project, including use of the AMMA database for the WAMME II experiment. The WAMME activity and analysis are supported by U.S. NSF Grants AGS-1115506 and AGS-1419526. Each WAMME model group's efforts are supported by U.S. NSF and NASA, the European Union, and other funding agencies. A number of WAMME models simulations were conducted with the NCAR Supercomputers. NR 104 TC 4 Z9 4 U1 6 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD DEC PY 2016 VL 47 IS 11 BP 3517 EP 3545 DI 10.1007/s00382-016-3224-2 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EE1NM UT WOS:000389349000008 ER PT J AU Boone, AA Xue, YK De Sales, F Comer, RE Hagos, S Mahanama, S Schiro, K Song, GQ Wang, GL Li, S Mechoso, CR AF Boone, Aaron Anthony Xue, Yongkang De Sales, Fernando Comer, Ruth E. Hagos, Samson Mahanama, Sarith Schiro, Kathleen Song, Guoqiong Wang, Guiling Li, S. Mechoso, Carlos R. TI The regional impact of Land-Use Land-cover Change (LULCC) over West Africa from an ensemble of global climate models under the auspices of the WAMME2 project SO CLIMATE DYNAMICS LA English DT Article DE African monsoon; Land use land cover change; Land degradation; Climate simulations; Land surface models; Land-atmosphere coupling ID GENERAL-CIRCULATION MODEL; MONSOON MULTIDISCIPLINARY ANALYSIS; SEMIARID REGIONS; SECONDARY LANDS; USE TRANSITIONS; SURFACE ALBEDO; WOOD-HARVEST; SAHEL; PRECIPITATION; VARIABILITY AB The population of the Sahel region of West Africa has approximately doubled in the past 50 years, and could potentially double again by the middle of this century. This has led to the northward expansion of agricultural areas at the expense of natural savanna, leading to widespread land use -land cover change (LULCC). Because there is strong evidence of significant surface-atmosphere coupling in this region, one of the main goals of the West African Monsoon Modeling and Evaluation project phase II is to provide basic understanding of LULCC on the regional climate, and to evaluate the sensitivity of the seasonal variability of the West African Monsoon to LULCC. The prescribed LULCC is based on the changes from 1950 through 1990, representing a maximum feasible degradation scenario in the past half century. It is applied to 5 state of the art global climate models (GCMs) over a 6-year simulation period. Multiple GCMs are used because the magnitude of the impact of LULCC depends on model-dependent coupling strength between the surface and the overlying atmosphere, the magnitude of the surface biophysical changes, and how the key processes linking the surface with the atmosphere are parameterized within a particular model framework. Land cover maps and surface parameters may vary widely among models; therefore a special effort was made to impose consistent biogeophysical responses of surface parameters to LULCC using a simple experimental setup. The prescribed LULCC corresponds to degraded vegetation conditions, which mainly cause increases in the Bowen ratio and decreases in the surface net radiation, and result in a significant reduction in surface evaporation (upwards of 1 mm day(-1) over a large part of the Sahel). This, in turn, mainly leads to less moisture convergence and precipitation over the LULCC zone. The overall impact is a rainfall reduction with every model, which ranges across models from 4 to 25 % averaged over the Sahel, and a southward shift of the rainfall peak in three of the five models which evokes a precipitation dipole pattern which is consistent with the observed pattern for dry climate anomalies over this region. The African Easterly Jet shifts equator-ward, although the strength of this change varies considerably among the models. In most of the models, the main factor causing diabatic cooling of the upper troposphere and enhanced subsidence over the region of LULCC is the reduction of convective heating rates linked to reduced latent heat flux and moisture flux convergence. In broad agreement with previous studies, the impact of degradation on the regional climate is found to vary among the different models, however, the signal is stronger and more consistent between the models here than in previous inter-comparison projects. This is likely related to our emphasis on prioritizing a consistent impact of LULCC on the surface biophysical properties. C1 [Boone, Aaron Anthony] Meteo France CNRS, CNRM UMR 3589, Toulouse, France. [Xue, Yongkang; Schiro, Kathleen; Song, Guoqiong; Li, S.; Mechoso, Carlos R.] Univ Calif Los Angeles, Los Angeles, CA USA. [Wang, Guiling] Univ Connecticut, Storrs, CT USA. [Comer, Ruth E.] Hadley Ctr, Met Off, Exeter, Devon, England. [Hagos, Samson] Pacific Northwest Natl Lab, Richland, WA USA. [Mahanama, Sarith] SSAI, Lanham, MD USA. [Mahanama, Sarith] NASA Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA. [De Sales, Fernando] San Diego State Univ, San Diego, CA 92182 USA. RP Boone, AA (reprint author), Meteo France CNRS, CNRM UMR 3589, Toulouse, France. EM aaron.a.boone@gmail.com FU AMMA; Based on French initiative; European Community's Sixth Framework Research Programme; UK Department for International Development (DFID); U.S. NSF [AGS-1115506, AGS-1419526] FX This study was supported by the French component of AMMA. Based on French initiative, AMMA was built by an international scientific group and is currently funded by a large number of agencies, especially from France, UK, US and Africa. It has been beneficiary of a major financial contribution from the European Community's Sixth Framework Research Programme. Detailed information on scientific coordination and funding is available on the AMMA International website http://www.amma-international.org. The authors acknowledge the ESPRI/IPSL database team for hosting the WAMME2 workspace within the framework of the AMMA database, and to K. Ramage, S. Bouffies-Cloche, and L. Fleury for their kind assistance with the WAMME2 database. We wish to acknowledge comments by R. Koster. R. Comer's contribution was funded by the UK Department for International Development (DFID). The WAMME activity and analysis are supported by U.S. NSF Grants AGS-1115506 and AGS-1419526. NR 76 TC 1 Z9 1 U1 9 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD DEC PY 2016 VL 47 IS 11 BP 3547 EP 3573 DI 10.1007/s00382-016-3252-y PG 27 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EE1NM UT WOS:000389349000009 ER PT J AU Takahashi, H Su, H Jiang, JH AF Takahashi, Hanii Su, Hui Jiang, Jonathan H. TI Water vapor changes under global warming and the linkage to present-day interannual variabilities in CMIP5 models SO CLIMATE DYNAMICS LA English DT Article DE Water vapor; CMIP5; Interannual variations; Climate model; Climate change ID CLIMATE SENSITIVITY; ATMOSPHERE; FEEDBACKS; HUMIDITY; SPREAD AB The fractional water vapor changes under global warming across 14 Coupled Model Intercomparison Project Phase 5 simulations are analyzed. We show that the mean fractional water vapor changes under global warming in the tropical upper troposphere between 300 and 100 hPa range from 12.4 to 28.0 %/K across all models while the fractional water vapor changes are about 5-8 %/K in other regions and at lower altitudes. The "upper-tropospheric amplification" of the water vapor change is primarily driven by a larger temperature increase in the upper troposphere than in the lower troposphere per degree of surface warming. The relative contributions of atmospheric temperature and relative humidity changes to the water vapor change in each model vary between 71.5 to 131.8 % and 24.8 to -20.1 %, respectively. The inter-model differences in the water vapor change is primarily caused by differences in temperature change, except over the inter-tropical convergence zone within 10A degrees S-10A degrees N where the model differences due to the relative humidity change are significant. Furthermore, we find that there is generally a positive correlation between the rates of water vapor change for long-tem surface warming and those on the interannual time scales. However, the rates of water vapor change under long-term warming have a systematic offset from those on the inter-annual time scales and the dominant contributor to the differences also differs for the two time scales, suggesting caution needs to be taken when inferring long-term water vapor changes from the observed interannual variations. C1 [Takahashi, Hanii; Su, Hui; Jiang, Jonathan H.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Takahashi, H (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Hanii.Takahashi@jpl.nasa.gov FU NASA ROSES AST program; NASA NEWS program; NASA MAP program; NASA NDOA program FX The authors appreciate the funding support by NASA ROSES AST, NEWS, MAP and NDOA programs. We are also grateful to Mark Richardson and two anonymous reviewers for their valuable comments. This work is performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 25 TC 0 Z9 0 U1 7 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD DEC PY 2016 VL 47 IS 12 BP 3673 EP 3691 DI 10.1007/s00382-016-3035-5 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EE4WG UT WOS:000389605700005 ER PT J AU Nilsson, J Gardner, A Sorensen, LS Forsberg, R AF Nilsson, Johan Gardner, Alex Sorensen, Louise Sandberg Forsberg, Rene TI Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland Ice Sheet SO CRYOSPHERE LA English DT Article ID SEA-LEVEL RISE; SURFACE ELEVATION CHANGE; MASS-BALANCE; RADAR ALTIMETRY; CONTINENTAL ICE; LASER ALTIMETRY; SATELLITE RADAR; RETRACKING ALGORITHM; NORTHEAST GREENLAND; GLACIERS AB A new methodology for retrieval of glacier and ice sheet elevations and elevation changes from CryoSat-2 data is presented. Surface elevations and elevation changes determined using this approach show significant improvements over ESA's publicly available CryoSat-2 elevation product (L2 Baseline-B). The results are compared to near-coincident airborne laser altimetry from NASA's Operation IceBridge and seasonal height amplitudes from the Ice, Cloud, and Elevation Satellite (ICESat). Applying this methodology to CryoSat-2 data collected in interferometric synthetic aperture mode (SIN) over the high-relief regions of the Greenland Ice Sheet we find an improvement in the root-mean-square error (RMSE) of 27 and 40% compared to ESA's L2 product in the derived elevation and elevation changes, respectively. In the interior part of the ice sheet, where CryoSat-2 operates in low-resolution mode (LRM), we find an improvement in the RMSE of 68 and 55% in the derived elevation and elevation changes, respectively. There is also an 86% improvement in the magnitude of the seasonal amplitudes when compared to amplitudes derived from ICESat data. These results indicate that the new methodology provides improved tracking of the snow/ice surface with lower sensitivity to changes in near-surface dielectric properties. To demonstrate the utility of the new processing methodology we produce elevations, elevation changes, and total volume changes from CryoSat-2 data for the Greenland Ice Sheet during the period January 2011 to January 2015. We find that the Greenland Ice Sheet decreased in volume at a rate of 289 +/- 20 km(3) a(-1), with high interannual variability and spatial heterogeneity in rates of loss. This rate is 65 km(3) a(-1) more negative than rates determined from ESA's L2 product, highlighting the importance of CryoSat-2 processing methodologies. C1 [Nilsson, Johan; Gardner, Alex] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Sorensen, Louise Sandberg; Forsberg, Rene] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. RP Nilsson, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM johan.nilsson@jpl.nasa.gov OI Gardner, Alex/0000-0002-8394-8889 FU Nordic Top-level Research Initiative; NASA Cryosphere program; NASA FX We are deeply thankful for the guidance of Laurence Gray and the support of David Burgess. We also thank Sebastian Bjerregaard Simonsen for very fruitful discussions. Furthermore, we thank Frank Paul at the University of Zurich for providing us with polygon outlines of the Greenland Ice Sheet, and the European Space Agency for providing their CryoSat-2 L1b product. We are very grateful to the editor, E. Berthier, the reviewer, L. Schroder, and an anonymous reviewer for their thoughtful and thorough comments that greatly improved the writing and content of the article. We also thank Nicole-Jeanne Schlegel and David Wiese at the Jet Propulsion Laboratory for the use of their GRACE analysis. This publication is contribution 86 of the Nordic Centre of Excellence SVALI funded by the Nordic Top-level Research Initiative. This work was supported by funding from the NASA Cryosphere program. The research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 60 TC 2 Z9 2 U1 8 U2 8 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1994-0416 EI 1994-0424 J9 CRYOSPHERE JI Cryosphere PD DEC 1 PY 2016 VL 10 IS 6 BP 2953 EP 2969 DI 10.5194/tc-10-2953-2016 PG 17 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA ED9UD UT WOS:000389217700001 ER PT J AU Xiao, SH Narbonne, GM Zhou, CM Laflamme, M Grazhdankin, DV Moczydlowska-Vidal, M Cui, H AF Xiao, Shuhai Narbonne, Guy M. Zhou, Chuanming Laflamme, Marc Grazhdankin, Dmitriy V. Moczydlowska-Vidal, Malgorzata Cui, Huan TI Towards an Ediacaran Time Scale: Problems, Protocols, and Prospects SO EPISODES LA English DT Article ID PRECAMBRIAN-CAMBRIAN BOUNDARY; CARBON-ISOTOPE EXCURSION; NEOPROTEROZOIC SNOWBALL EARTH; EAST EUROPEAN PLATFORM; YANGTZE GORGES AREA; SOUTH CHINA; DOUSHANTUO FORMATION; NORTHWESTERN CANADA; FOSSIL ASSEMBLAGES; TRACE FOSSILS AB The Ediacaran Period follows the Cryogenian Period in the wake of a snowball Earth glaciation and precedes the Cambrian Period with its rising tide of animal radiation. It is also the longest among all stratigraphically defined geological periods, lasting 94 million years (635-541 Ma). Hence, a good Ediacaran time scale is essential, not only to elucidate geological time, but also to provide a temporal context for extreme climatic events and transformative evolutionary transitions. Ediacaran fossils are known from many sections and boreholes around the world, permitting ready age recognition and stratigraphic correlation of Ediacaran strata. However, the Ediacaran fossil record is colored by taphonomic biases that variously affect the preservation of the soft-bodied organisms that dominated Ediacaran marine ecosystems, and the Phanerozoic approach of defining stratigraphic boundaries using the first appearance datum (FAD) of widely distributed, rapidly evolving, easily recognizable, and readily preservable species would have limited success in the Ediacaran System. The subdivision of the Ediacaran System must therefore be founded on a holistic approach integrating biostratigraphic, chemostratigraphic, and geochronometric data for correlation. Series-level subdivision of the Ediacaran System is a challenging task, and alternative models subdividing the Ediacaran System into two or three series can be recognized. Resolving these alternatives critically depends on obtaining further data to constrain the age, duration, and global extent of the Shuram negative delta C-13 excursion, to calibrate and correlate Ediacaran acanthomorph biozones, and to determine the temporal relationship among the Shuram excursion, the Gaskiers glaciation, and Ediacaran acanthomorph biozones. Stage-level subdivisions at the bottom and top of the Ediacaran System, however, are realistic goals in the near future, and we propose that the subdivision of the Ediacaran System should initially aim at the second Ediacaran stage (SES) and the terminal Ediacaran stage (TES) where stratigraphic information is relatively rich and consensus for stratigraphic correlation is emerging. Potential stratigraphic markers for the definition of the SES include the post-glacial radiation of eukaryotes as represented by the first appearance of acanthomorph acritarchs, the termination of the cap carbonate series, or the end of the negative delta C-13 excursion (EN1 = Ediacaran negative excursion 1) associated with the cap carbonate. Terminal Ediacaran strata are well dated and host several taxa of skeletal and tubular fossils that postdate the Shuram negative delta C-13 excursion (or its probable equivalent, EN3 = Ediacaran negative excursion 3) where their stratigraphic relationship can be determined; these biostratigraphic markers may be used to define the TES in a Phanerozoic fashion. Additional Ediacaran stages between the SES and TES can be envisioned. Through collaborative efforts in the Ediacaran community, we hope that the first Precambrian stage will be established in the near future to facilitate a better understanding of the geological aftermath of snowball Earth, the redox history of global oceans, the early evolution of multicellular life, and the evolutionary fuse of the Cambrian explosion. C1 [Xiao, Shuhai] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. [Narbonne, Guy M.] Queens Univ, Dept Geol Sci & Geol Engn, Kingston, ON K7L 3N6, Canada. [Zhou, Chuanming] Chinese Acad Sci, Nanjing Inst Geol & Palaeontol, Key Lab Econ Stratig & Palaeogeog, Nanjing 210008, Jiangsu, Peoples R China. [Laflamme, Marc] Univ Toronto, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada. [Grazhdankin, Dmitriy V.] Russian Acad Sci, Siberian Branch, Trofimuk Inst Petr Geol & Geophys, Prospekt Akad Koptyuga 3, Novosibirsk 630090, Russia. [Moczydlowska-Vidal, Malgorzata] Uppsala Univ, Dept Earth Sci, Villavagen 16, SE-75236 Uppsala, Sweden. [Cui, Huan] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Cui, Huan] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA. RP Xiao, SH (reprint author), Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. EM xiao@vt.edu RI Zhou, Chuanming/E-5313-2010; OI Grazhdankin, Dmitry/0000-0003-0797-1347; Xiao, Shuhai/0000-0003-4655-2663 FU International Commission on Stratigraphy; National Science Foundation [EAR-1523334, EAR-1528553]; NASA Exobiology and Evolutionary Biology Program [NNX15AL27G]; National Natural Science Foundation of China [41272011, 41410104004]; Ministry of Science and Technology of China [2013CB835005]; Chinese Academy of Sciences [KZZD-EW-02]; Natural Sciences and Engineering Research Council of Canada (NSERC); Queen's University Research Chair; Russian Science Foundation [14-17-00409]; IGCP Project [587] FX The authors would like to thank Jim Gehling for his leadership of the Neoproterozoic Subcommission, which laid the foundation for the Ediacaran Subcommission. We would also like to thank Graham Shields-Zhou and Loren Babcock, chairs of the Cryogenian and Cambrian subcommissions, respectively, for their efforts to coordinate joint field workshops and symposia. Finally, we would like to thank many of our colleagues who organized and participated in Subcommission activities, including field workshops, symposia, and surveys. Mukund Sharma and Susannah Porter provided constructive reviews on an earlier version of this paper. Financial support was provided by the International Commission on Stratigraphy, National Science Foundation (EAR-1523334 to Stanley Finney; EAR-1528553 to SX), NASA Exobiology and Evolutionary Biology Program (NNX15AL27G to SX), National Natural Science Foundation of China (41272011 and 41410104004 to CZ and SX), Ministry of Science and Technology of China (2013CB835005 to CZ), Chinese Academy of Sciences (KZZD-EW-02 to CZ), Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants to GMN and ML, Queen's University Research Chair to GMN, Russian Science Foundation (14-17-00409 to DVG). This paper is a contribution to IGCP Project 587 "Identity, Facies and Time - The Ediacaran (Vendian) Puzzle". NR 199 TC 3 Z9 3 U1 15 U2 15 PU GEOLOGICAL SOC INDIA PI BANGALORE PA NO 63, 12TH CORSS, BASAPPA LAY OUT, GAVIPURAM PO, PO BOX 1922, BANGALORE, 560-019, INDIA SN 0705-3797 J9 EPISODES JI Episodes PD DEC PY 2016 VL 39 IS 4 BP 540 EP 555 DI 10.18814/epiiugs/2016/v39i4/103886 PG 16 WC Geosciences, Multidisciplinary SC Geology GA EE4HY UT WOS:000389564100001 ER PT J AU Han, JW Kebaili, M Meyyappan, M AF Han, Jin-Woo Kebaili, Mo Meyyappan, M. TI System On Microheater for On-Chip Annealing of Defects Generated by Hot-Carrier Injection, Bias Temperature Instability, and Ionizing Radiation SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE Self-healing; microheater; reliability; semiconductor defect; annealing AB An on-chip immune system against hot-carrier stress, bias temperature instability, and total ionizing dose degradation is presented. A system on microheater provides defect annealing capability for recovering bulk trapped charges and interface states. The microheater and the system-on-chip are fabricated separately and stacked into a single package, which can be implemented on any arbitrary commercial-off-the-shelf device as a generic approach. The device annealed at 200 degrees C for 3 h results in sufficient recovery in drain current versus gate voltage characteristics. C1 [Han, Jin-Woo; Meyyappan, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kebaili, Mo] KEBAILI Corp, Irvine, CA 92618 USA. RP Han, JW (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM jin-woo.han@nasa.gov NR 14 TC 0 Z9 0 U1 9 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0741-3106 EI 1558-0563 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD DEC PY 2016 VL 37 IS 12 BP 1543 EP 1546 DI 10.1109/LED.2016.2616133 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA EE1HV UT WOS:000389332700003 ER PT J AU Kirkham, H AF Kirkham, Harold TI Pure and Applied Metrology SO IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE LA English DT Article ID FREQUENCY; SYSTEM C1 [Kirkham, Harold] Amer Elect Power Co, Measurements & Power Syst, Bridgman, MI 49106 USA. [Kirkham, Harold] NASA, Jet Prop Lab, DOE Project Researching Measurements & Commun, Pasadena, CA USA. [Kirkham, Harold] IEEE, Piscataway, NJ 08855 USA. RP Kirkham, H (reprint author), Amer Elect Power Co, Measurements & Power Syst, Bridgman, MI 49106 USA.; Kirkham, H (reprint author), NASA, Jet Prop Lab, DOE Project Researching Measurements & Commun, Pasadena, CA USA.; Kirkham, H (reprint author), IEEE, Piscataway, NJ 08855 USA. EM harold.kirkham@pnnl.gov NR 14 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1094-6969 EI 1941-0123 J9 IEEE INSTRU MEAS MAG JI IEEE Instrum. Meas. Mag. PD DEC PY 2016 VL 19 IS 6 BP 19 EP 24 PG 6 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA EE8JM UT WOS:000389871600006 ER PT J AU Tokekar, P Hook, JV Mulla, D Isler, V AF Tokekar, Pratap Hook, Joshua Vander Mulla, David Isler, Volkan TI Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture SO IEEE TRANSACTIONS ON ROBOTICS LA English DT Article DE Agriculture; path planning; robot sensing systems ID APPROXIMATION ALGORITHMS; GAUSSIAN-PROCESSES; DATA-COLLECTION; TSP; NEIGHBORHOODS; ROBOTICS; TOOLBOX; NETWORK; SCHEME AB We study two new informative path planning problems that are motivated by the use of aerial and ground robots in precision agriculture. The first problem, termed sampling traveling salesperson problem with neighborhoods (SAMPLINGTSPN), is motivated by scenarios in which unmanned ground vehicles (UGVs) are used to obtain time-consuming soil measurements. The input in SAMPLINGTSPN is a set of possibly overlapping disks. The objective is to choose a sampling location in each disk and a tour to visit the set of sampling locations so as to minimize the sum of the travel and measurement times. The second problem concerns obtaining the maximum number of aerial measurements using an unmanned aerial vehicle (UAV) with limited energy. We study the scenario in which the two types of robots form a symbiotic system-the UAV lands on the UGV, and the UGV transports the UAV between deployment locations. This paper makes the following contributions. First, we present an O(r(max)/r(min)) approximation algorithm for SAMPLINGTSPN, where r(min) and r(max) are the minimum and maximum radii of input disks. Second, we show how to model the UAV planning problem using a metric graph and formulate an orienteering instance to which a known approximation algorithm can be applied. Third, we apply the two algorithms to the problem of obtaining ground and aerial measurements in order to accurately estimate a nitrogen map of a plot. Along with theoretical results, we present results from simulations conducted using real soil data and preliminary field experiments with the UAV. C1 [Tokekar, Pratap] Virginia Polytech Inst & State Univ, Dept Elect & Comp Engn, Blacksburg, VA 24061 USA. [Hook, Joshua Vander] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mulla, David] Univ Minnesota, Dept Soil Water & Climate, Minneapolis, MN 55455 USA. [Isler, Volkan] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA. RP Tokekar, P (reprint author), Virginia Polytech Inst & State Univ, Dept Elect & Comp Engn, Blacksburg, VA 24061 USA. EM tokekar@vt.edu; vanderhook@jpl.nasa.gov; mulla003@umn.edu; isler@cs.umn.edu FU National Science Foundation [1111638, 0917676, 1566247]; Minnesota Discovery, Research and InnoVation Economy Robotics, Sensors, and Advanced Manufacturing initiative FX This work was supported in part by the National Science Foundation Grant 1111638, Grant 0917676, and Grant 1566247, and in part by the Minnesota Discovery, Research and InnoVation Economy Robotics, Sensors, and Advanced Manufacturing initiative. NR 45 TC 0 Z9 0 U1 17 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1552-3098 EI 1941-0468 J9 IEEE T ROBOT JI IEEE Trans. Robot. PD DEC PY 2016 VL 32 IS 6 BP 1498 EP 1511 DI 10.1109/TRO.2016.2603528 PG 14 WC Robotics SC Robotics GA EE8BO UT WOS:000389849700013 ER PT J AU Jacobson, NS Savadkouei, K Morin, C Fenstad, J Copland, EH AF Jacobson, Nathan S. Savadkouei, Kayvon Morin, Christophe Fenstad, Jo Copland, Evan H. TI Combustion Methods for Measuring Low Levels of Carbon in Nickel, Copper, Silver, and Gold SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE LA English DT Article; Proceedings Paper CT International Symposium on Advances in Materials Manufacturing at the Conference of Metallurgists (COM) CY AUG 23-26, 2015 CL Toronto, CANADA SP Canadian Inst Min, Met & Petr, Met Soc ID 2300 DEGREES-C; THERMODYNAMIC PROPERTIES; PHASE-DIAGRAMS; SOLUBILITY; ALLOYS; NANOPARTICLES; TENSION; METALS; COBALT; OXYGEN AB Laboratory studies and a literature search indicate that there is no definitive procedure for combustion analysis of low levels of carbon in Cu, Ag, and Au. Literature data disagree by one to two orders of magnitude for solubility of carbon in Cu, near the melting point. Data for Ag and Au are very limited. This study develops a procedure for combustion analysis of ppm levels of carbon in high-purity Ni, Cu, Ag, and Au samples. For comparison, each sample is measured with glow discharge mass spectrometry. The study begins with Ni, as the procedure for this material is fairly well established. For the other metals, an optimum accelerator and sample-to-accelerate weight ratio is developed. Fine particle copper is a suitable accelerator for Cu and Ag samples, and also shows potential for Au samples (C) The Minerals, Metals & Materials Society and ASM International 2016 C1 [Jacobson, Nathan S.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Savadkouei, Kayvon; Morin, Christophe] Horiba Sci, Edison, NJ 08820 USA. [Fenstad, Jo] FlexiFrame AS, N-7044 Trondheim, Norway. [Copland, Evan H.] CSIRO, Melbourne, FL USA. RP Jacobson, NS (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM nathan.s.jacobson@nasa.gov NR 33 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5615 EI 1543-1916 J9 METALL MATER TRANS B JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. PD DEC PY 2016 VL 47 IS 6 BP 3533 EP 3543 DI 10.1007/s11663-016-0803-x PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EE7MC UT WOS:000389800800039 ER PT J AU Liu, B Asseng, S Muller, C Ewert, F Elliott, J Lobell, DB Martre, P Ruane, AC Wallach, D Jones, J Rosenzweig, C Aggarwal, PK Alderman, PD Anothai, J Basso, B Biernath, C Cammarano, D Challinor, A Deryng, D De Sanctis, G Doltra, J Fereres, E Folberth, C Garcia-Vila, M Gayler, S Hoogenboom, G Hunt, LA Izaurralde, RC Jabloun, M Jones, CD Kersebaum, KC Kimball, BA Koehler, AK Kumar, SN Nendel, C O'Leary, GJ Olesen, JE Ottman, MJ Palosuo, T Prasad, PVV Priesack, E Pugh, TAM Reynolds, M Rezaei, EE Rotter, RP Schmid, E Semenov, MA Shcherbak, I Stehfest, E Stockle, CO Stratonovitch, P Streck, T Supit, I Tao, F Thorburn, P Waha, K Wall, GW Wang, E White, JW Wolf, J Zhao, Z Zhu, Y AF Liu, Bing Asseng, Senthold Muller, Christoph Ewert, Frank Elliott, Joshua Lobell, David B. Martre, Pierre Ruane, Alex C. Wallach, Daniel Jones, JamesW. Rosenzweig, Cynthia Aggarwal, Pramod K. Alderman, Phillip D. Anothai, Jakarat Basso, Bruno Biernath, Christian Cammarano, Davide Challinor, Andy Deryng, Delphine De Sanctis, Giacomo Doltra, Jordi Fereres, Elias Folberth, Christian Garcia-Vila, Margarita Gayler, Sebastian Hoogenboom, Gerrit Hunt, Leslie A. Izaurralde, Roberto C. Jabloun, Mohamed Jones, Curtis D. Kersebaum, Kurt C. Kimball, Bruce A. Koehler, Ann-Kristin Kumar, Soora Naresh Nendel, Claas O'Leary, Garry J. Olesen, Jorgen E. Ottman, Michael J. Palosuo, Taru Prasad, P. V. Vara Priesack, Eckart Pugh, Thomas A. M. Reynolds, Matthew Rezaei, Ehsan E. Rotter, Reimund P. Schmid, Erwin Semenov, Mikhail A. Shcherbak, Iurii Stehfest, Elke Stockle, Claudio O. Stratonovitch, Pierre Streck, Thilo Supit, Iwan Tao, Fulu Thorburn, Peter Waha, Katharina Wall, Gerard W. Wang, Enli White, Jeffrey W. Wolf, Joost Zhao, Zhigan Zhu, Yan TI Similar estimates of temperature impacts on global wheat yield by three independent methods SO NATURE CLIMATE CHANGE LA English DT Article ID CLIMATE-CHANGE; WINTER-WHEAT; CROP YIELDS; HEAT; CO2; TRENDS; METAANALYSIS; VARIABILITY; SYSTEMS; GROWTH AB The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 degrees C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security. C1 [Liu, Bing; Zhu, Yan] Nanjing Agr Univ, Jiangsu Collaborat Innovat Ctr Modern Crop Prod, Jiangsu Key Lab Informat Agr, Natl Engn & Technol Ctr Informat Agr, Nanjing 210095, Jiangsu, Peoples R China. [Liu, Bing; Asseng, Senthold; Jones, JamesW.; Hoogenboom, Gerrit] Univ Florida, Agr & Biol Engn Dept, Gainesville, FL 32611 USA. [Muller, Christoph; Waha, Katharina] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany. [Ewert, Frank; Rezaei, Ehsan E.] Univ Bonn, Inst Crop Sci & Resource Conservat INRES, D-53115 Bonn, Germany. [Ewert, Frank] Leibniz Ctr Agr Landscape Res ZALF, D-15374 Muncheberg, Germany. [Elliott, Joshua; Ruane, Alex C.; Rosenzweig, Cynthia; Deryng, Delphine] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Elliott, Joshua; Deryng, Delphine] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Lobell, David B.] Stanford Univ, Dept Environm Earth Syst Sci, Stanford, CA 94305 USA. [Lobell, David B.] Stanford Univ, Ctr Food Secur & Environm, Stanford, CA 94305 USA. [Martre, Pierre] Montpellier SupAgro, INRA, UMR LEPSE, F-34060 Montpellier, France. [Ruane, Alex C.; Rosenzweig, Cynthia] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Wallach, Daniel] INRA, Agrosyst & Dev Terr AGIR UMR1248, F-31326 Castanet Tolosan, France. [Aggarwal, Pramod K.] CIMMYT, Borlaug Inst South Asia, CGIAR Res Program Climate Change Agr & Food Secur, New Delhi 110012, India. [Alderman, Phillip D.] Oklahoma State Univ, Dept Plant & Soil Sci, Stillwater, OK 74078 USA. [Anothai, Jakarat] Prince Songkla Univ, Fac Nat Resources, Dept Plant Sci, Hat Yai 90112, Thailand. [Basso, Bruno; Shcherbak, Iurii] Michigan State Univ, Dept Geol Sci, E Lansing, MI 48823 USA. [Basso, Bruno; Shcherbak, Iurii] Michigan State Univ, WK Kellogg Biol Stn, E Lansing, MI 48823 USA. [Biernath, Christian; Priesack, Eckart] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Ecol, D-85764 Neuherberg, Germany. [Cammarano, Davide] James Hutton Inst Invergowrie, Dundee DD2 5DA, Scotland. [Challinor, Andy; Koehler, Ann-Kristin] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England. [Challinor, Andy] Int Ctr Trop Agr CIAT, CGIAR ESSP Program Climate Change Agr & Hod Secur, Cali, Colombia. [De Sanctis, Giacomo] European Commiss, Joint Res Ctr, Via Enrico Fermi 2749, I-21027 Ispra, Italy. [Doltra, Jordi] Cantabrian Agr Res & Training Ctr CIFA, Muriedas 39600, Spain. [Fereres, Elias; Garcia-Vila, Margarita] Univ Cordoba, Dept Agron, Apartado 3048, E-14080 Cordoba, Spain. [Folberth, Christian] Univ Munich, Dept Geog, D-80333 Munich, Germany. Int Inst Appl Syst Anal, Ecosyst Serv & Management Program, Schlosspl 1, A-2361 Laxenburg, Austria. [Gayler, Sebastian; Streck, Thilo] Univ Hohenheim, Inst Soil Sci & Land Evaluat, D-70599 Stuttgart, Germany. [Hoogenboom, Gerrit] Washington State Univ, AgWeatherNet Program, Prosser, WA 99350 USA. [Hunt, Leslie A.] Univ Guelph, Dept Plant Agr, Guelph, ON N1G 2W1, Canada. [Izaurralde, Roberto C.; Jones, Curtis D.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Izaurralde, Roberto C.] Texas A&M Univ, Texas A&M AgriLife Res & Extens Ctr, Temple, TX 76502 USA. [Jabloun, Mohamed; Olesen, Jorgen E.] Aarhus Univ, Dept Agroecol, DK-8830 Tjele, Denmark. [Kersebaum, Kurt C.; Nendel, Claas] Leibniz Ctr Agr Landscape Res, Inst Landscape Syst Anal, D-15374 Muncheberg, Germany. [Kimball, Bruce A.; Wall, Gerard W.; White, Jeffrey W.] ARS, USDA, US Arid Land Agr Res Ctr, Maricopa, AZ 85138 USA. [Kumar, Soora Naresh] IARI PUSA, Indian Agr Res Inst, Ctr Environm Sci & Climate Resilient Agr, New Delhi 110012, India. [O'Leary, Garry J.] Dept Econ Dev Jobs Transport & Resources, Landscape & Water Sci, Horsham, Vic 3400, Australia. [Ottman, Michael J.] Univ Arizona, Sch Plant Sci, Tucson, AZ 85721 USA. [Palosuo, Taru; Rotter, Reimund P.; Tao, Fulu] Nat Resources Inst Finland Luke, FI-00790 Helsinki, Finland. [Prasad, P. V. Vara] Kansas State Univ, Dept Agron, Manhattan, KS 66506 USA. [Pugh, Thomas A. M.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Environm Re, D-82467 Garmisch Partenkirchen, Germany. [Pugh, Thomas A. M.] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England. [Pugh, Thomas A. M.] Univ Birmingham, Birmingham Inst Forest Res, Birmingham B15 2TT, W Midlands, England. [Reynolds, Matthew] CIMMYT Int, AP 6-641, Mexico City 06600, DF, Mexico. [Rezaei, Ehsan E.] Ctr Dev Res ZEF, Walter Flex Str 3, D-53113 Bonn, Germany. [Rotter, Reimund P.] Georg August Univ Gottingen, Grisebachstr 6, D-37077 Gottingen, Germany. [Schmid, Erwin] Univ Nat Resources & Life Sci, A-1180 Vienna, Austria. [Semenov, Mikhail A.; Stratonovitch, Pierre] Rothamsted Res, Computat & Syst Biol Dept, Harpenden AL5 2JQ, Herts, England. [Stehfest, Elke] PBL Netherlands Environm Assessment Agcy, NL-3720 AH Bilthoven, Netherlands. [Stockle, Claudio O.] Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA. [Supit, Iwan; Wolf, Joost] Wageningen Univ & Res, PPS, WSG, NL-6700 AA Wageningen, Netherlands. [Supit, Iwan; Wolf, Joost] Wageningen Univ & Res, CALM, NL-6700 AA Wageningen, Netherlands. [Tao, Fulu] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China. [Thorburn, Peter; Waha, Katharina] CSIRO Agr & Food, St Lucia, Qld 4067, Australia. [Wang, Enli; Zhao, Zhigan] CSIRO Agr & Food, Black Mt, ACT 2601, Australia. [Zhao, Zhigan] China Agr Univ, Dept Agron & Biotechnol, Yuanmingyuan West Rd 2, Beijing 100193, Peoples R China. RP Zhu, Y (reprint author), Nanjing Agr Univ, Jiangsu Collaborat Innovat Ctr Modern Crop Prod, Jiangsu Key Lab Informat Agr, Natl Engn & Technol Ctr Informat Agr, Nanjing 210095, Jiangsu, Peoples R China. EM yanzhu@njau.edu.cn RI Palosuo, Taru/B-9593-2012; Doltra, Jordi/C-2106-2015; Challinor, Andrew/C-4992-2008; De Sanctis, Giacomo/F-3498-2017; Thorburn, Peter/A-6884-2011; Pugh, Thomas/A-3790-2010; OI Palosuo, Taru/0000-0003-4322-3450; Challinor, Andrew/0000-0002-8551-6617; De Sanctis, Giacomo/0000-0002-3527-8091; Pugh, Thomas/0000-0002-6242-7371; Martre, Pierre/0000-0002-7419-6558; Muller, Christoph/0000-0002-9491-3550; Wallach, Daniel/0000-0003-3500-8179; Schmid, Erwin/0000-0003-4783-9666 FU National High-Tech Research and Development Program of China [2013AA100404]; National Natural Science Foundation of China [31271616, 31611130182, 41571088, 31561143003]; National Research Foundation for the Doctoral Program of Higher Education of China [20120097110042]; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); China Scholarship Council; IFPRI through the Global Futures and Strategic Foresight project; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS); CGIAR Research Program on Wheat; Agricultural Model Intercomparison and Improvement Project (AgMIP) FX This work was supported by the National High-Tech Research and Development Program of China (2013AA100404), the National Natural Science Foundation of China (31271616, 31611130182, 41571088 and 31561143003), the National Research Foundation for the Doctoral Program of Higher Education of China (20120097110042), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the China Scholarship Council. We would like to acknowledge support provided by IFPRI through the Global Futures and Strategic Foresight project, the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), the CGIAR Research Program on Wheat and the Agricultural Model Intercomparison and Improvement Project (AgMIP). NR 50 TC 1 Z9 1 U1 50 U2 50 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD DEC PY 2016 VL 6 IS 12 BP 1130 EP + DI 10.1038/NCLIMATE3115 PG 8 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA EE2RP UT WOS:000389432200023 ER PT J AU Dale, E Bagheri, M Matsko, AB Frez, C Liang, W Forouhar, S Maleki, L AF Dale, Elijah Bagheri, Mahmood Matsko, Andrey B. Frez, Clifford Liang, Wei Forouhar, Siamak Maleki, Lute TI Microresonator stabilized 2 mu m distributed-feedback GaSb-based diode laser SO OPTICS LETTERS LA English DT Article ID SEMICONDUCTOR-LASERS; ATMOSPHERIC CO2; OPTICAL FEEDBACK; FIBER; RESONATORS; POWER; COHERENT AB We report on the stabilization of a high-power distributed feedback (DFB) semiconductor laser operating at 2.05 mu m wavelength, using a crystalline whispering gallery mode microresonator. The laser's frequency noise is measured to be below 100 Hz/Hz(1/2) at Fourier frequencies ranging from 10 Hz to 1 MHz. The instantaneous linewidth of the laser is improved by four orders of magnitude compared with the free-running DFB laser, and is measured to be 15 Hz at 0.1 ms measurement time. The integral linewidth approaches 100 Hz. The stabilized DFB laser is integrated with a polarization maintaining output fiber and an integrated optical isolator. (C) 2016 Optical Society of America C1 [Bagheri, Mahmood; Frez, Clifford; Forouhar, Siamak] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Dale, Elijah; Matsko, Andrey B.; Liang, Wei; Maleki, Lute] OEwaves Inc, 465 North Halstead St,Suite 140, Pasadena, CA 91107 USA. RP Matsko, AB (reprint author), OEwaves Inc, 465 North Halstead St,Suite 140, Pasadena, CA 91107 USA. EM andrey.matsko@oewaves.com FU Air Force Research Laboratory (AFRL) [FA8650-15-M-1923] FX Air Force Research Laboratory (AFRL) (FA8650-15-M-1923). NR 36 TC 0 Z9 0 U1 5 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD DEC 1 PY 2016 VL 41 IS 23 BP 5559 EP 5562 DI 10.1364/OL.41.005559 PG 4 WC Optics SC Optics GA EE5ND UT WOS:000389654000037 PM 27906238 ER PT J AU Choi, S Ray, HE Lai, SH Alwood, JS Globus, RK AF Choi, Sungshin Ray, Hami E. Lai, San-Huei Alwood, Joshua S. Globus, Ruth K. TI Preservation of Multiple Mammalian Tissues to Maximize Science Return from Ground Based and Spaceflight Experiments SO PLOS ONE LA English DT Article ID GENE-EXPRESSION ANALYSIS; PHENOL-CHLOROFORM EXTRACTION; FRESH-FROZEN TISSUE; SINGLE-STEP METHOD; WARM ISCHEMIA; RNA INTEGRITY; QUALITY; DEGRADATION; IMPACT AB Background Even with recent scientific advancements, challenges posed by limited resources and capabilities at the time of sample dissection continue to limit the collection of high quality tissues from experiments that can be conducted only infrequently and at high cost, such as in space. The resources and time it takes to harvest tissues post-euthanasia, and the methods and duration of long duration storage, potentially have negative impacts on sample quantity and quality, thereby limiting the scientific outcome that can be achieved. Objectives The goals of this study were to optimize methods for both sample recovery and science return from rodent experiments, with possible relevance to both ground based and space-flight studies. The first objective was to determine the impacts of tissue harvest time post euthanasia, preservation methods, and storage duration, focusing on RNA quality and enzyme activities in liver and spleen as indices of sample quality. The second objective was to develop methods that will maximize science return by dissecting multiple tissues after long duration storage in situ at -80 degrees C. Methods Tissues of C57BI/6J mice were dissected and preserved at various time points post-euthanasia and stored at -80 degrees C for up to 11 months. In some experiments, tissues were recovered from frozen carcasses which had been stored at -80 degrees C up to 7 months. RNA quantity and quality was assessed by measuring RNA Integrity Number (RIN) values using an Agilent Bioanalyzer. Additionally, the quality of tissues was assessed by measuring activities of hepatic enzymes (catalase, glutathione reductase and GAPDH). Results Fresh tissues were collected up to one hour post-euthanasia, and stored up to 11 months at -80 degrees C, with minimal adverse effects on the RNA quality of either livers or RNAlater-preserved spleens. Liver enzyme activities were similar to those of positive controls, with no significant effect observed at any time point. Tissues dissected from frozen carcasses that had been stored for up to 7 months at -80 degrees C had variable results, depending on the specific tissue analyzed. RNA quality of liver, heart, and kidneys were minimally affected after 6-7 months of storage at -80 degrees C, whereas RNA degradation was evident in tissues such as small intestine, bone, and bone marrow when they were collected from the carcasses frozen for 2.5 months. Conclusion These results demonstrate that 1) the protocols developed for spaceflight experiments with on-orbit dissections support the retrieval of high quality samples for RNA expression and some protein analyses, despite delayed preservation post-euthanasia or prolonged storage, and 2) many additional tissues for gene expression analysis can be obtained by dissection even following prolonged storage of the tissue in situ at -80 degrees C. These findings have relevance both to high value, ground-based experiments when sample collection capability is severely constrained, and to spaceflight experiments that entail on-orbit sample recovery by astronauts. C1 [Choi, Sungshin; Lai, San-Huei] KBRwyle, Moffett Field, CA USA. [Ray, Hami E.] ASRC Fed Space & Def Inc, Moffett Field, CA USA. [Choi, Sungshin; Ray, Hami E.; Lai, San-Huei; Alwood, Joshua S.; Globus, Ruth K.] NASA, Space Biosci Div, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Globus, RK (reprint author), NASA, Space Biosci Div, Ames Res Ctr, Moffett Field, CA 94035 USA. EM ruth.k.globus@nasa.gov FU NASA, a U.S. Government agency, (Space Biology Program); NASA (ISS Research Integration Office); NASA; [NNA14AB82C] FX The funder, NASA, a U.S. Government agency, (Space Biology Program) provided support in the form of salaries for authors (RKG, SC, SL, JSA and HER), but did not have any additional role in the study design, data collection and analysis, and decisions in preparation of the manuscript. Funds for the supplies and materials needed to conduct the research were provided by NASA (ISS Research Integration Office). Funds for the laboratory space were provided by multiple NASA programs. These funding sources were supplied as directed funds to advance knowledge about the methods needed to conduct research on the ISS, and were not competed (as a grant would be). For authors that are not government employees (SC, SL, and HER), funding was provided as-needed salary support by implementation through the appropriate government services contractor companies under contract number NNA14AB82C. No commercial funds were involved in this activity, and no competing interest exists. The specific roles of these authors are articulated in the 'author contributions' section. Furthermore, KBRwyle and ASRC Federal Space and Defense, Inc. had no roles in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 27 TC 0 Z9 0 U1 3 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 1 PY 2016 VL 11 IS 12 AR e0167391 DI 10.1371/journal.pone.0167391 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EE3JC UT WOS:000389482700140 PM 27907194 ER PT J AU Nielsen, EL De Rosa, RJ Wang, J Rameau, J Song, I Graham, JR Macintosh, B Ammons, M Bailey, VP Barman, TS Bulger, J Chilcote, JK Cotten, T Doyon, R Duchene, G Fitzgerald, MP Follette, KB Greenbaum, AZ Hibon, P Hung, LW Ingraham, P Kalas, P Konopacky, QM Larkin, JE Maire, J Marchis, F Marley, MS Marois, C Metchev, S Millar-Blanchaer, MA Oppenheimer, R Palmer, DW Patience, J Perrin, MD Poyneer, LA Pueyo, L Rajan, A Rantakyro, FT Savransky, D Schneider, AC Sivaramakrishnan, A Soummer, R Thomas, S Wallace, JK Ward-Duong, K Wiktorowicz, SJ Wolff, SG AF Nielsen, Eric L. De Rosa, Robert J. Wang, Jason Rameau, Julien Song, Inseok Graham, James R. Macintosh, Bruce Ammons, Mark Bailey, Vanessa P. Barman, Travis S. Bulger, Joanna Chilcote, Jeffrey K. Cotten, Tara Doyon, Rene Duchene, Gaspard Fitzgerald, Michael P. Follette, Katherine B. Greenbaum, Alexandra Z. Hibon, Pascale Hung, Li-Wei Ingraham, Patrick Kalas, Paul Konopacky, Quinn M. Larkin, James E. Maire, Jerome Marchis, Franck Marley, Mark S. Marois, Christian Metchev, Stanimir Millar-Blanchaer, Maxwell A. Oppenheimer, Rebecca Palmer, David W. Patience, Jenny Perrin, Marshall D. Poyneer, Lisa A. Pueyo, Laurent Rajan, Abhijith Rantakyro, Fredrik T. Savransky, Dmitry Schneider, Adam C. Sivaramakrishnan, Anand Soummer, Remi Thomas, Sandrine Wallace, J. Kent Ward-Duong, Kimberly Wiktorowicz, Sloane J. Wolff, Schuyler G. TI DYNAMICAL MASS MEASUREMENT OF THE YOUNG SPECTROSCOPIC BINARY V343 NORMAE AaAb RESOLVED WITH THE GEMINI PLANET IMAGER SO ASTRONOMICAL JOURNAL LA English DT Article DE planets and satellites: detection; stars: individual (V343 Nor) ID PICTORIS MOVING GROUP; STELLAR KINEMATIC GROUPS; PRE-MAIN-SEQUENCE; SUBSTELLAR COMPANION; FINDING CAMPAIGN; EVOLUTIONARY MODELS; SOLAR NEIGHBORHOOD; ORBITAL PARAMETERS; GIANT PLANETS; DEBRIS DISK AB We present new spatially resolved astrometry and photometry from the Gemini Planet Imager of the inner binary of the young multiple star system V343 Normae, which is a member of the beta Pictoris (beta Pic) moving group. V343 Normae comprises a K0 and mid-M star in a similar to 4.5 year orbit (AaAb) and a wide 10 '' M5 companion (B). By combining these data with archival astrometry and radial velocities we fit the orbit and measure individual masses for both components of M-Aa = 1.10 +/- 0.10M(circle dot) and M-Ab= 0.290 +/- 0.018 M-circle dot. Comparing to theoretical isochrones, we find good agreement for the measured masses and JHK band magnitudes of the two components consistent with the age of the beta Pic moving group. We derive a model-dependent age for the beta Pic moving group of 26 +/- 3 Myr by combining our results for V343 Normae with literature measurements for GJ. 3305, which is another group member with resolved binary components and dynamical masses. C1 [Nielsen, Eric L.; Marchis, Franck] Carl Sagan Ctr, SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. [Nielsen, Eric L.; Macintosh, Bruce; Bailey, Vanessa P.; Follette, Katherine B.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [De Rosa, Robert J.; Wang, Jason; Graham, James R.; Duchene, Gaspard; Kalas, Paul] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Rameau, Julien; Doyon, Rene] Univ Montreal, Dept Phys, Inst Rech Exoplanetes, Montreal, PQ H3C 3J7, Canada. [Song, Inseok; Cotten, Tara] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Ammons, Mark; Palmer, David W.; Poyneer, Lisa A.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Barman, Travis S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Bulger, Joanna] NAOJ, Subaru Telescope, 650 North Aohoku Pl, Hilo, HI 96720 USA. [Chilcote, Jeffrey K.; Maire, Jerome] Univ Toronto, Dunlap Inst Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Duchene, Gaspard] Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France. [Fitzgerald, Michael P.; Hung, Li-Wei; Larkin, James E.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Greenbaum, Alexandra Z.; Wolff, Schuyler G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Hibon, Pascale] European Southern Observ, Alonso Cordova 3107, Santiago, Chile. [Ingraham, Patrick; Thomas, Sandrine] Large Synopt Survey Telescope, 950 N Cherry Ave, Tucson, AZ 85719 USA. [Konopacky, Quinn M.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Marley, Mark S.] NASA, Ames Res Ctr, Div Space Sci, Mail Stop 245-3, Moffett Field, CA 94035 USA. [Marois, Christian] Natl Res Council Canada Herzberg, 5071 West Saanich Rd, Victoria, BC V9E 2E7, Canada. [Marois, Christian] Univ Victoria, Dept Phys & Astron, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada. [Metchev, Stanimir] Univ Western Ontario, Dept Phys & Astron, Ctr Planetary Sci & Explorat, London, ON N6A 3K7, Canada. [Metchev, Stanimir] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Oppenheimer, Rebecca] Amer Museum Nat Hist, Dept Astrophys, Cent Pk West &79th St, New York, NY 10024 USA. [Patience, Jenny; Rajan, Abhijith; Ward-Duong, Kimberly] Arizona State Univ, Sch Earth & Space Explorat, POB 871404, Tempe, AZ 85287 USA. [Perrin, Marshall D.; Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Remi] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Rantakyro, Fredrik T.] Gemini Observ, Casilla 603, La Serena, Chile. [Savransky, Dmitry] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Schneider, Adam C.] Univ Toledo, Dept Phys & Astron, 2801 W Bancroft St, Toledo, OH 43606 USA. [Wallace, J. Kent] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Wiktorowicz, Sloane J.] Aerosp Corp, 2310 E El Segundo Blvd, El Segundo, CA 90245 USA. RP Nielsen, EL (reprint author), Carl Sagan Ctr, SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA.; Nielsen, EL (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RI Savransky, Dmitry/M-1298-2014; OI Savransky, Dmitry/0000-0002-8711-7206; Song, Inseok/0000-0002-5815-7372; Greenbaum, Alexandra/0000-0002-7162-8036; Bailey, Vanessa/0000-0002-5407-2806 FU NSF [AST-0909188, AST-1313718, AST-1411868, AST-141378, NNX11AF74G, DGE-1232825]; NASA [NNX15AD95G/NEXSS, NNX11AD21G, NNX14AJ80G]; Fonds de Recherche du Quebec; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Sciences and Engineering Research Council of Canada; JPL Research and Technology Grant FX We thank the anonymous referee for helpful comments that improved the quality of this work. These results are based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. Supported by NSF grants AST-0909188 and AST-1313718 (RJDR, JRG, JJW, TME, PGK), AST-1411868 (BM, KF, JLP, AR, KWD), AST-141378 (PA, GD, MPF), NNX11AF74G (AZG, AS), and DGE-1232825 (AZG). Supported by NASA grants NNX15AD95G/NEXSS and NNX11AD21G (RJDR, JRG, JJW, TME, PGK), and NNX14AJ80G (ELN, SCB, BM, FM, MP). J.R., R.D., and D.L. acknowledge support from the Fonds de Recherche du Quebec. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (SMA). B.G. and M.J.G. acknowledge support from the National Sciences and Engineering Research Council of Canada. G.V. acknowledges a JPL Research and Technology Grant for improvements to the GPI CAL system. NR 55 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 175 DI 10.3847/0004-6256/152/6/175 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EE1FT UT WOS:000389327100004 ER PT J AU Trilling, DE Mommert, M Hora, J Chesley, S Emery, J Fazio, G Harris, A Mueller, M Smith, H AF Trilling, David E. Mommert, Michael Hora, Joseph Chesley, Steve Emery, Joshua Fazio, Giovanni Harris, Alan Mueller, Michael Smith, Howard TI NEOSURVEY 1: INITIAL RESULTS FROM THE WARM SPITZER EXPLORATION SCIENCE SURVEY OF NEAR-EARTH OBJECT PROPERTIES SO ASTRONOMICAL JOURNAL LA English DT Article DE catalogs; infrared: planetary systems; minor planets, asteroids: general; surveys ID NEOWISE REACTIVATION MISSION; KUIPER-BELT OBJECTS; PHYSICAL-CHARACTERIZATION; ABSOLUTE MAGNITUDES; ASTEROID POPULATION; SPACE-TELESCOPE; THERMAL-MODEL; ALBEDO; CHELYABINSK; PERFORMANCE AB Near-Earth objects (NEOs) are small solar system bodies whose orbits bring them close to the Earth's orbit. We are carrying out a Warm Spitzer Cycle. 11 Exploration Science program entitled NEOSurvey-a fast and efficient flux-limited survey of 597. known NEOs in which we derive a diameter and albedo for each target. The vast majority of our targets are too faint to be observed by NEOWISE, though a small sample has been or will be observed by both observatories, which allows for a cross-check of our mutual results. Our primary goal is to create a large and uniform catalog of NEO properties. We present here the first results from this new program: fluxes and derived diameters and albedos for 80 NEOs, together with a description of the overall program and approach, including several updates to our thermal model. The largest source of error in our diameter and albedo solutions, which derive from our single-band thermal emission measurements, is uncertainty in eta, the beaming parameter used in our thermal modeling; for albedos, improvements in solar system absolute magnitudes would also help significantly. All data and derived diameters and albedos from this entire program are being posted on a publicly accessible Web page at nearearthobjects. nau. edu C1 [Trilling, David E.; Mommert, Michael] No Arizona Univ, Dept Phys & Astron, POB 6010, Flagstaff, AZ 86011 USA. [Hora, Joseph; Fazio, Giovanni; Smith, Howard] Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS-65, Cambridge, MA 02138 USA. [Chesley, Steve] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Emery, Joshua] Univ Tennessee, Dept Earth & Planetary Sci, 306 EPS Bldg,1412 Circle Dr, Knoxville, TN 37996 USA. [Harris, Alan] German Aerosp Ctr DLR, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany. [Mueller, Michael] SRON Netherlands Inst Space Res, SRON, POB 800, NL-9700 AV Groningen, Netherlands. [Mueller, Michael] Univ Groningen, Kapteyn Astron Inst, POB 800, NL-9700 AV Groningen, Netherlands. RP Trilling, DE (reprint author), South African Astron Observ, POB 9, ZA-7935 Cape Town, South Africa.; Trilling, DE (reprint author), Univ Western Cape, Dept Phys, ZA-7535 Cape Town, South Africa. OI Chesley, Steven/0000-0003-3240-6497 FU Arizona's Technology and Research Initiative Fund; NASA FX We acknowledge the thorough and prompt hard work of the staff at the Spitzer Science Center, without whom the execution of this program would not be possible. We also appreciate the support that NASA's Planetary Science Division and Solar System Observations program provide for the Spitzer mission and its NEO observations. We thank two anonymous referees for their detailed comments that improved this paper. We also thank Scott Gaudi for useful advice. Some of the computational analyses were run on Northern Arizona University's monsoon computing cluster, funded by Arizona's Technology and Research Initiative Fund. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by JPL/Caltech under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. We make use of data from the AstDys database, as well as extensive use of the JPL/Horizons system. NR 51 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 172 DI 10.3847/0004-6256/152/6/172 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EE1FT UT WOS:000389327100001 ER PT J AU Furst, F Tomsick, JA Yamaoka, K Dauser, T Miller, JM Clavel, M Corbel, S Fabian, A Garcia, J Harrison, FA Loh, A Kaaret, P Kalemci, E Migliari, S Miller-Jones, JCA Pottschmidt, K Rahoui, F Rodriguez, J Stern, D Stuhlinger, M Walton, DJ Wilms, J AF Furst, F. Tomsick, J. A. Yamaoka, K. Dauser, T. Miller, J. M. Clavel, M. Corbel, S. Fabian, A. Garcia, J. Harrison, F. A. Loh, A. Kaaret, P. Kalemci, E. Migliari, S. Miller-Jones, J. C. A. Pottschmidt, K. Rahoui, F. Rodriguez, J. Stern, D. Stuhlinger, M. Walton, D. J. Wilms, J. TI GRS 1739-278 OBSERVED AT VERY LOW LUMINOSITY WITH XMM-NEWTON AND NuSTAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion; accretion disks; stars: black holes; X-rays: binaries; X-rays: individual (GRS 1739-278) ID X-RAY BINARIES; ADVECTION-DOMINATED ACCRETION; LOW-HARD STATE; NEAR-INFRARED OBSERVATIONS; PHOTON IMAGING CAMERA; BLACK-HOLE TRANSIENTS; GX 339-4; LOW/HARD STATE; XTE J1550-564; MULTIWAVELENGTH EVOLUTION AB We present a detailed spectral analysis of XMM-Newton and NuSTAR observations of the accreting transient black hole GRS 1739-278 during a very faint low hard state at similar to 0.02% of the Eddington luminosity (for a distance of 8.5 kpc and a mass of 10 M-circle dot). The broadband X-ray spectrum between 0.5 and 60 keV can be well-described by a power-law continuum with an exponential cutoff. The continuum is unusually hard for such a low luminosity, with a photon index of Gamma = 1.39 +/- 0.04. We find evidence for an additional reflection component from an optically thick accretion disk at the 98% likelihood level. The reflection fraction is low, with R-refl = 0.043(-0.023)(+0.033). In combination with measurements of the spin and inclination parameters made with NuSTAR during a brighter hard state by Miller et al., we seek to constrain the accretion disk geometry. Depending on the assumed emissivity profile of the accretion disk, we find a truncation radius of 15-35 R-g (5-12 R-ISCO) at the 90% confidence limit. These values depend strongly on the assumptions and we discuss possible systematic uncertainties. C1 [Furst, F.; Harrison, F. A.; Walton, D. J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Tomsick, J. A.; Clavel, M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Yamaoka, K.] Nagoya Univ, Solar Terr Environm Lab, Chikuka Ku, Furo Cho, Nagoya, Aichi 4648601, Japan. [Yamaoka, K.] Nagoya Univ, Grad Sch Sci, Div Particle & Astrophys Sci, Chikuka ku, Furo Cho, Nagoya, Aichi 4648602, Japan. [Dauser, T.] Dr Karl Remeis Sternwarte & ECAP, Sternwartstr 7, D-96049 Bamberg, Germany. [Miller, J. M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Corbel, S.; Loh, A.] Univ Paris Diderot, CEA DSM IRFU SAp, Lab AIM, CEA IRFU CNRS INSU, F-91191 Gif Sur Yvette, France. [Corbel, S.] Univ Orleans, PSL Res Univ, CNRS, Stn Radioastron Nancay,Observ Paris, F-18330 Nancay, France. [Fabian, A.] Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Garcia, J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kaaret, P.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kalemci, E.] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey. [Migliari, S.; Stuhlinger, M.] ESAC, E-28692 Madrid, Spain. [Migliari, S.] Univ Barcelona, Dept Quantum Phys & Astrophys, E-08028 Barcelona, Spain. [Migliari, S.] Univ Barcelona, Inst Cosmos Sci, E-08028 Barcelona, Spain. [Miller-Jones, J. C. A.] Curtin Univ, Int Ctr Radio Astron Res, GPO Box U1987, Perth, WA 6845, Australia. [Pottschmidt, K.] UMBC, CRESST, Dept Phys, Baltimore, MD 21250 USA. [Pottschmidt, K.] UMBC, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rahoui, F.] European Southern Observ, D-85748 Garching, Germany. [Rahoui, F.] Harvard Univ, Dept Astron, Cambridge, MA 02138 USA. [Stern, D.; Walton, D. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Furst, F (reprint author), CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. RI Wilms, Joern/C-8116-2013; OI Wilms, Joern/0000-0003-2065-5410; Clavel, Maica/0000-0003-0724-2742; Garcia, Javier/0000-0003-3828-2448; Miller-Jones, James/0000-0003-3124-2814; Walton, Dominic/0000-0001-5819-3552 FU ESA Member States; NASA [NNX16AH17G, NNG08FD60C]; NASA under Swift Guest Observer grants [NNX15AB81G, NNX15AR52G]; TUBITAK [115F488]; French Research National Agency: CHAOS project [ANR-12-BS05-0009]; UnivEarthS Labex program of Sorbonne Paris Cite [ANR-10-LABX-0023, ANR-11-IDEX-0005-02]; Australian Research Council [FT140101082]; National Aeronautics and Space Administration FX We thank the referee for their helpful comments. We thank the schedulers and SOC of XMM-Newton and NuSTAR for making these observations possible. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. This work is based upon work supported by NASA under award No. NNX16AH17G. J.A.T. acknowledges partial support from NASA under Swift Guest Observer grants NNX15AB81G and NNX15AR52G. E.K.. acknowledges support of TUBITAK Project No 115F488. S.C. and A.L. acknowledge funding support from the French Research National Agency: CHAOS project ANR-12-BS05-0009 and the UnivEarthS Labex program of Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). J.C.A. M.-J. is the recipient of an Australian Research Council Future Fellowship (FT140101082). This work was supported under NASA contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). We would like to thank John E. Davis for the slxfig module, which was used to produce all figures in this work. This research has made use of MAXI data provided by RIKEN, JAXA and the MAXI team. The Swift/BAT transient monitor results were provided by the Swift/BAT team. This research has made use of a collection of ISIS functions (ISISscripts) provided by ECAP/Remeis observatory and MIT (http://www.sternwarte.uni-erlangen.de/isis/). NR 73 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 115 DI 10.3847/0004-637X/832/2/115 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EE0DJ UT WOS:000389243600006 ER PT J AU Hainline, KN Reines, AE Greene, JE Stern, D AF Hainline, Kevin N. Reines, Amy E. Greene, Jenny E. Stern, Daniel TI MID-INFRARED COLORS OF DWARF GALAXIES: YOUNG STARBURSTS MIMICKING ACTIVE GALACTIC NUCLEI SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: dwarf; galaxies: evolution; galaxies: nuclei ID SUPERMASSIVE BLACK-HOLES; DIGITAL SKY SURVEY; SPECTRAL ENERGY-DISTRIBUTIONS; HERSCHEL REFERENCE SURVEY; STELLAR MASS FUNCTIONS; SURVEY EXPLORER WISE; LOW-METALLICITY; STAR-FORMATION; HOST GALAXIES; DUST EMISSION AB Searching for active galactic nuclei (AGNs) in dwarf galaxies is important for our understanding of the seed black holes that formed in the early universe. Here, we test infrared selection methods for AGN activity at low galaxy masses. Our parent sample consists of similar to 18,000 nearby dwarf galaxies (M-* < 3 x 10(9) M-circle dot, z < 0.055) in the Sloan Digital Sky Survey with significant detections in the first three bands of the AllWISE data release from the Wide-field Infrared Survey Explorer (WISE). First, we demonstrate that the majority of optically selected AGNs in dwarf galaxies are not selected as AGNs using WISE infrared color diagnostics and that the infrared emission is dominated by the host galaxies. We then investigate the infrared properties of optically selected star-forming dwarf galaxies, finding that the galaxies with the reddest infrared colors are the most compact, with blue optical colors, young stellar ages, and large specific star formation rates. These results indicate that great care must be taken when selecting AGNs in dwarf galaxies using infrared colors, as star-forming dwarf galaxies are capable of heating dust in such a way that mimics the infrared colors of more luminous AGNs. In particular, a simple W1 - W2 color cut alone should not be used to select AGNs in dwarf galaxies. With these complications in mind, we present a sample of 41 dwarf galaxies that fall in the. WISE infrared color space typically occupied by more luminous AGNs and that are worthy of follow-up observations. C1 [Hainline, Kevin N.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Reines, Amy E.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Greene, Jenny E.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 169-221, Pasadena, CA 91109 USA. RP Hainline, KN (reprint author), Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. FU NASA through Hubble Fellowship - Space Telescope Science Institute [HST-HF2-51347.001-A]; NASA [NAS 5-26555]; National Aeronautics and Space Administration FX Support for A.E.R. was provided by NASA through Hubble Fellowship grant HST-HF2-51347.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. The work of D.S. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We are grateful to the entire SDSS collaboration for providing the data that made this work possible, and to Michael Blanton and all those involved in creating the NASA-Sloan Atlas. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, and NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. WISE and NEOWISE are funded by the National Aeronautics and Space Administration. NR 105 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 119 DI 10.3847/0004-637X/832/2/119 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EE0DJ UT WOS:000389243600010 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, E Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, E Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Bejger, M Bell, AS Berger, BK Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Boer, M Bogaert, G Bogan, C Bohe, A Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Broida, JE Brooks, AF Brown, DA Brown, DD Brown, NM Brunett, S Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cabero, M Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, CB Cerboni Baiardi, L Cerretani, G Cesarini, E Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Cheeseboro, BD Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, E Clark, JA Cleva, E Coccia, E Cohadon, PE Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Cowan, EE Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dasgupta, A Costa, CFDS Dattilo, V Dave, I Davier, M Davies, GS Daw, EJ Day, R De, S Debra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Devine, RC Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Girolamo, T Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Fenyvesi, E Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fournier, JD Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garunfi, E Gaur, G Gehrels, N Gemme, G Geng, P Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Grado, A Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Henry, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hofman, D Holt, K Holz, DE Hopkins, P Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jian, L Jimenez-Forteza, E Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalogera, V Kandhasamy, S Kang, G Kanner, JB Kapadia, SJ Karki, S Karvinen, KS Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kusunchoo, N Kim, CW Kim, C Kim, J Kim, K Kim, N Kim, W Kim, YM Kimbrell, SJ King, EJ King, PJ Kissel, JS Klein, B Kleybolte, L Klimenko, S Koehlenbeck, SM Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, P Kumar, R Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Laxen, M Lazzarini, A Lazzar, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Lewis, JB Li, TGF Libson, A Littenberg, TB Lockerbie, NA Lombardi, AL London, LT Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Luck, H Lundgren, AP Lynch, R Ma, Y Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Zertuche, LM Magee, RM Majorana, E Maksimovic, I Malvezzi, V Man, N Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, E Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, E Martellini, L Martin, IW Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Mastrogiovanni, S Matichard, F Matone, L Mavalvala, N Mazumder, N McCarthy, R McClelland, DE McCormick, S McGuire, SC Mcintyre, G McIver, J McManus, DJ Mcrae, T McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mercer, RA Merilh, EL Merzougui, M Meshkov, S Messenger, C Messick, C Metzdorff, R Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, AL Miller, A Miller, BB Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, N Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Nedkova, K Nelemans, G Nelson, TJN Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Oberling, J Ochsner, E O'Deill, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ottaway, DJ Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, E Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passahieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Perreca, A Perri, LM Phelps, M Piccinni, OJ Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poe, M Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Proxhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qi, H Qin, J Qiu, S Quetschke, V Quintero, EA Quitzow-James, R Raab, EJ Rabeling, DS Radkins, H Raffai, P Raja, S Rajan, C Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Reyes, SD Ricci, F Riles, K Rizzo, M Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Sakellariadou, M Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Sassolas, B Sathyaprakash, BS Saulson, PR Sauter, OES Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbecx, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sentenac, D Sequino, V Sergeev, A Setyawati, Y Shaddock, DA Shaffer, T Shahriar, MS Shaltevi, M Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sieniawska, M Sigg, D Silva, AD Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sunil, S Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thrane, E Tiwari, S Tiwari, V Toxmakov, KV Toland, K Tomlinson, C Tonelli, M Tornasi, Z Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G van Bakel, N van Beuzekom, M van den Brand, JEJ Van Den Broeck, C Vander-Hyde, DC van der Schaaf, L van Heuningen, JV van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, E Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, DV Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Wen, L Wessels, P Westphal, T Wette, K Whelan, JT Whiting, BF Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Woehler, J Worden, J Wright, JL Wu, DS Wu, G Yablong, J Yam, W Yamamoto, H Yancey, CC Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, E. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, E. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Bejger, M. Bell, A. S. Berger, B. K. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Broida, J. E. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Brunett, S. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cabero, M. Cadonati, L. Cagnoli, G. Cahillane, C. Calderon Bustillo, J. Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Casanueva Diaz, J. Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. B. Cerboni Baiardi, L. Cerretani, G. Cesarini, E. Chamberlin, S. J. Chan, M. Chao, S. Chen, Y. Chassande-Mottin, E. Cheeseboro, B. D. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, E. Clark, J. A. Cleva, E. Coccia, E. Cohadon, P. -E Colla, A. Collette, C. G. Cominsky, L. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P Countryman, S. T. Couvares, P. Cowan, E. E. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dasgupta, A. Da Silva Costa, C. F. Dattilo, V. Dave, I. Davier, M. Davies, G. S. Daw, E. J. Day, R. De, S. DeBra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Devine, R. C. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Girolamo, T. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Fenyvesi, E. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fournier, J. -D. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garunfi, E. Gaur, G. Gehrels, N. Gemme, G. Geng, P. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, Abhirup Ghosh, Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Gonzalez Castro, J. M. Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Grado, A. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Henry, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hofman, D. Holt, K. Holz, D. E. Hopkins, P. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J. -M. Isi, M. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jian, L. Jimenez-Forteza, E. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris Kalaghatgi, C. V. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Kapadia, S. J. Karki, S. Karvinen, K. S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kusunchoo, N. Kim, Chi-Woong Kim, Chunglee Kim, J. Kim, K. Kim, N. Kim, W. Kim, Y. -M Kimbrell, S. J. King, E. J. King, P. J. Kissel, J. S. Klein, B. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kumar, R. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Laxen, M. Lazzarini, A. Lazzar, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Lewis, J. B. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Lombardi, A. L. London, L. T. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Luck, H. Lundgren, A. P. Lynch, R. Ma, Y. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Zertuche, L. Magana Magee, R. M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, E. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, E. Martellini, L. Martin, I. W. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Mastrogiovanni, S. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. Mcintyre, G. McIver, J. McManus, D. J. McRae, T. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mercer, R. A. Merilh, E. L. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Metzdorff, R. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, A. L. Miller, A. Miller, B. B. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Nedkova, K. Nelemans, G. Nelson, T. J. N. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Oberling, J. Ochsner, E. O'Deill, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, E. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passahieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Perri, L. M. Phelps, M. Piccinni, O. J. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poe, M. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Proxhorov, L. Puncken, O. Punturo, M. Puppo, P. Purrer, M. Qi, H. Qin, J. Qiu, S. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, E. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rajan, C. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Reyes, S. D. Ricci, F. Riles, K. Rizzo, M. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Rudiger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Sakellariadou, M. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Sauter, O. E. S. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schonbecx, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sentenac, D. Sequino, V. Sergeev, A. Setyawati, Y. Shaddock, D. A. Shaffer, T. Shahriar, M. S. Shaltevi, M. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sieniawska, M. Sigg, D. Silva, A. D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sunil, S. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thrane, E. Tiwari, S. Tiwari, V. Toxmakov, K. V. Toland, K. Tomlinson, C. Tonelli, M. Tornasi, Z. Torres, C. V. Torrie, C. I. Toyra, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. van Bakel, N. van Beuzekom, M. van den Brand, J. E. J. Van Den Broeck, C. Vander-Hyde, D. C. van der Schaaf, L. van Heuningen, J. V. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, E. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. V. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. Whiting, B. F. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Woehler, J. Worden, J. Wright, J. L. Wu, D. S. Wu, G. Yablong, J. Yam, W. Yamamoto, H. Yancey, C. C. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zevin, M. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. CA LIGO Scientific Collaboration Virgo Collaboration TI UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR-BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN SO Astrophysical Journal Letters LA English DT Article DE binaries: general; gamma-ray burst: general; gravitational waves; stars: black holes; stars: neutron ID GAMMA-RAY BURSTS; GRAVITATIONAL-WAVE DETECTION; SHORT GRB 111117A; MASS-DISTRIBUTION; GLOBULAR-CLUSTERS; MAXIMUM MASS; EXPLOSION MECHANISM; MILLISECOND PULSARS; ELLIPTIC GALAXIES; COMPACT BINARIES AB We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary-neutron star systems with component masses is an element of[1, 3] M-circle dot and component dimensionless spins <0.05. We also searched for neutron star-black hole systems with the same neutron star parameters, black hole mass is an element of[2, 99] M-circle dot, and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary-neutron star systems with component mass distributions of 1.35 +/- 0.13 M-circle dot at a volume-weighted average distance of similar to 70 Mpc, and for neutron star-black hole systems with neutron star masses of 1.4 M-circle dot and black hole masses of at least 5 M-circle dot, a volume-weighted average distance of at least similar to 110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc(-3) yr(-1) for binary-neutron star systems and less than 3600 Gpc(-3) yr(-1) for neutron star-black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star-binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of 10(-7)(+20) Gpc(-3) yr(-1), short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary-neutron star (neutron star-black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than. 2.degrees 3(-1.1)(+1.7)(4.degrees 3(-1.9)(+3.1)). C1 [Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Brunett, S.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Eichholz, J.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Lewis, J. B.; Maros, E.; Marx, J. N.; Mcintyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Prijatelj, M.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] LIGO, Calif Inst Technol, Pasadena, CA 91125 USA. [Abbott, T. D.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Abernathy, M. R.; Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Acernese, E.; Barone, E.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, E.; Barone, E.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Di Girolamo, T.; Garunfi, E.; Grado, A.; Milano, L.; Romano, R.] Complesso Univ Monte S Angelo, INFN, Sez Napoli, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Da Silva Costa, C. F.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Klimenko, S.; Miller, A. L.; Mitselmakher, G.; Mueller, G.; Mytidis, A.; Reitze, D. H.; Tanner, D. B.; Voss, D. V.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Laxen, M.; Lormand, M.; McCormick, S.; Mullavey, A.; Nelson, T. J. N.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Lab Annecy Le Vieux Phys Particules, Univ Savoic Mt Blanc, CNRS IN2P3, F-74941 Annecy Le Vieux, France. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] INFN, Sez Napoli, I-80100 Naples, Italy. [Adya, V. B.; Affeldt, C.; Ain, A.; Allen, B.; Allocca, A.; Aulbert, C.; Baker, P. T.; Basti, A.; Baune, C.; Bergmann, G.; Bertolini, A.; Bisht, A.; Bock, O.; Bogan, C.; Bohe, A.; Brinkmann, M.; Cabero, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Doravari, S.; Drago, M.; Eggenstein, H. -B.; Fehrmann, H.; Grote, H.; Hanke, M. M.; Heurs, M.; Hu, Y. M.; Indik, N.; Kapadia, S. J.; Karvinen, K. S.; Kim, W.; Kim, Y. -M; King, E. J.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lombardi, A. L.; Lough, J. D.; Luck, H.; Lundgren, A. P.; Machenschalk, B.; Masserot, A.; Meadors, G. D.; Mossavi, K.; Neunzert, A.; Nielsen, A. B.; Nitz, A.; Oberling, J.; Oppermann, P.; Papa, M. A.; Post, A.; Prix, R.; Puncken, O.; Rudiger, A.; Salemi, F.; Samajdar, A.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltevi, M.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Walsh, S.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.; Woehler, J.; Wu, D. S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; King, E. J.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. E. J.; Van Den Broeck, C.; van der Schaaf, L.; van Heuningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Martynov, D. V.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; O'Shaughnessy, R.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Aiello, L.; Coccia, E.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] INFN, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] INFN, Sezione Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, N.; Prasad, J.; Souradeep, T.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, Abhirup; Ghosh, Archisman; Iyer, B. R.; Mishra, C.; Mukherjee, Arunava] Int Ctr Theoret Sci, Tata Inst Fundamental Res, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Papa, M. A.; Poe, M.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.] Univ Wisconsin Milwaukee, Milwaukee, WI 53201 USA. [Allen, B.; Aufmuth, P.; Bisht, A.; Danzmann, K.; Heurs, M.; Kaufer, S.; Krueger, C.; Lough, J. D.; Luck, H.; Sawadsky, A.; Schuette, D.; Singh, A.; Steinmeyer, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Gonzalez Castro, J. M.; Passahieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Gonzalez Castro, J. M.; Moggi, A.; Paoletti, E.; Passahieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] INFN, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; McRae, T.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Read, J.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Casanueva Diaz, J.; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Robinet, F.] Univ Paris 11, Univ Paris Saclay, CNRS IN2P3, LAL, Orsay, France. [Arun, K. G.] Chennai Math Inst, Madras 603103, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schonbecx, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Pace, S.; Di Palma, I.; Frasca, S.; Leaci, P.; Majorana, E.; Mastrogiovanni, S.; Mezzani, F.; Miller, A. L.; Naticchioni, L.; Palomba, C.; Piccinni, O. J.; Puppo, P.; Rapagnani, P.; Ricci, F.] INFN, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Purrer, M.; Raymond, V.; Schutz, B. F.; Singh, A.; Taracchini, A.; Walsh, S.] Max Planck Inst Gravitat Phys, Alber Einstein Inst, D-14476 Potsdam, Germany. [Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, CNRS IN2P3, Observatoire Paris,CEA Irfu,APC, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Marchesoni, E.; Punturo, M.; Travasso, F.; Vocca, H.] INFN, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Hoak, D.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, E.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-56021 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; De, S.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Zertuche, L. Magana; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Reyes, S. D.; Sanders, J. R.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; Toland, K.; Tornasi, Z.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Blair, R. M.; Clara, E.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Goetz, E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kusunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Landry, M.; McCarthy, R.; Mendell, G.; Merilh, E. L.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, E. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Shaffer, T.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.; Vasuth, M.] Wigner RCP, RMKI, Konkoly Thege Miklos 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; DeBra, D.; Fejer, M. M.; Kim, N.; Lantz, B.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzar, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] INFN, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; Rosinska, D.; Sieniawska, M.] CAMK PAN, PL-00716 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C. -J.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Thomas, E. G.; Toyra, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] INFN, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.; Rajan, C.] RRCAT, Indore 452013, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Proxhorov, L.; Strigin, S.; Vyatchanin, S. P.] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Jian, L.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, E.; Coulon, J. -P; Fournier, J. -D.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Merzougui, M.; Pichot, M.; Regimbau, T.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Univ Cote Azur, Observatoire Cote Azur, F-34229 Nice 4, France. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Cerboni Baiardi, L.; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, E.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, E.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Cerboni Baiardi, L.; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, E.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, E.; Vicere, A.; Wang, G.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P. -E; Deleglise, S.; Heidmann, A.; Isac, J. -M.; Jacqmin, T.; Metzdorff, R.] ENS PSL Res Univ, UPMC Sorbonne Univ, CNRS, Coll France,Lab Kastler Brossel, F-75005 Paris, France. [Broida, J. E.; Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Bulik, T.; Kowalska, I.] Astron Observ Warsaw Univ, PL-00478 Warsaw, Poland. [Bulten, H. J.; van den Brand, J. E. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Cowan, E. E.; Jani, K.; Kimbrell, S. J.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cadonati, L.; Calderon Bustillo, J.; Clark, J. A.; Cowan, E. E.; Jani, K.; Kimbrell, S. J.; Shoemaker, D. M.; Siellez, K.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Cagnoli, G.] Univ Claude Bernard Lyon 1, F-69622 Villeurbanne, France. [Calloni, E.; De laurentis, M.; De Rosa, R.; Di Girolamo, T.; Garunfi, E.; Milano, L.] Complesso Univ Monte S Angelo, Univ Federico II, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.] Univ Tokyo, RESCEU, Tokyo 1130033, Japan. [Cao, J.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Chamberlin, S. J.; Everett, R.; Hanna, C.; Meacher, D.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Chen, Y.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Cheeseboro, B. D.; Devine, R. C.; McWilliams, S. T.] West Virginia Univ, Morgantown, WV 26506 USA. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Schmidt, P.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, Chi-Woong; Kim, Chunglee] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Colla, A.; Conte, A.; Di Pace, S.; Frasca, S.; King, E. J.; Leaci, P.; Mastrogiovanni, S.; Mezzani, F.; Miller, A. L.; Naticchioni, L.; Piccinni, O. J.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Coughlin, S. B.; Kalogera, V.; Klein, B.; Miller, A.; Miller, B. B.; Pankow, C.; Perri, L. M.; Sandeen, B.; Shahriar, M. S.; Yablong, J.; Zevin, M.; Zhou, M.; Zhou, Z.] NW Univ, CIERA, Evanston, IL 60208 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Melatos, A.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Dasgupta, A.; Gaur, G.; Gupta, M. K.; Khan, Z.; Kumar, R.; Srivastava, A. K.; Sunil, S.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Diaz, M. C.; Geng, P.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Quetschke, V.; Rakhmanov, M.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Di Giovanni, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univ Trent, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Di Giovanni, M.; Leonardi, M.; Prodi, G. A.; Tiwari, S.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kalaghatgi, C. V.; Khan, S.; King, E. J.; London, L. T.; Muir, A. W.; Oberling, J.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, Wales. [Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Fenyvesi, E.; Frei, Z.; Gondan, L.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, Budapest 1117, Hungary. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.; Sengupta, A. S.] Indian Inst Technol, Gandhi Sagar 382424, Gujarat, India. [Gergely, L.; Tapai, M.] Univ Szeged, Dom 9, H-6720 Szeged, Hungary. [Gill, K.; Hughey, B.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Grado, A.] INAF, Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Gustafson, R.; Neunzert, A.; Riles, K.; Sauter, O. E. S.] Univ Michigan, Ann Arbor, MI 48109 USA. [Henry, J.; Lange, J.; Rizzo, M.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Huerta, E. A.] Univ Illinois, NCSA, Urbana, IL 61801 USA. [Husa, S.; Jimenez-Forteza, E.; Keitel, D.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IAC3 IEEC, E-07122 Palma de Mallorca, Spain. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Toxmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y. -M; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Kim, W.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lasky, P. D.; Levin, Y.; Qiu, S.; Sammut, L.; Thrane, E.] Monash Univ, Melbourne, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Li, T. G. F.] Chinese Univ Hong Kong, Shatin, NT, Peoples R China. [Littenberg, T. B.] Univ Alabama Huntsville, Huntsville, AL 35899 USA. [Lombardi, A. L.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts Amherst, Amherst, MA 01003 USA. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, E.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur, W Bengal, India. [O'Deill, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Pedurand, R.] Univ Lyon, F-69361 Lyon, France. [Penn, S.] Hobart & William Smith Colleges, Geneva, NY 14456 USA. [Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Sakellariadou, M.] Univ London, Kings Coll London, London WC2R 2LS, England. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, I-53100 Siena, Italy. [Ugolini, D.] Tnnity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Abbott, BP (reprint author), LIGO, Calif Inst Technol, Pasadena, CA 91125 USA. RI Costa, Cesar/G-7588-2012; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; prodi, giovanni/B-4398-2010; Gemme, Gianluca/C-7233-2008; Strigin, Sergey/I-8337-2012; Leonardi, Matteo/G-9694-2015; Ferrante, Isidoro/F-1017-2012; Rocchi, Alessio/O-9499-2015; Marchesoni, Fabio/A-1920-2008; Cesarini, Elisabetta/C-4507-2017; Strain, Kenneth/D-5236-2011; Danilishin, Stefan/K-7262-2012; Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Prokhorov, Leonid/I-2953-2012; Gammaitoni, Luca/B-5375-2009; Ciani, Giacomo/G-1036-2011; Sigg, Daniel/I-4308-2015; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; OI Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; prodi, giovanni/0000-0001-5256-915X; Gemme, Gianluca/0000-0002-1127-7406; Ferrante, Isidoro/0000-0002-0083-7228; Rocchi, Alessio/0000-0002-1382-9016; Marchesoni, Fabio/0000-0001-9240-6793; Cesarini, Elisabetta/0000-0001-9127-3167; Strain, Kenneth/0000-0002-2066-5355; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Gammaitoni, Luca/0000-0002-4972-7062; Ciani, Giacomo/0000-0003-4258-9338; Sigg, Daniel/0000-0003-4606-6526; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Zweizig, John/0000-0002-1521-3397; Groot, Paul/0000-0002-4488-726X; Granata, Massimo/0000-0003-3275-1186; Nelemans, Gijs/0000-0002-0752-2974; Nitz, Alexander/0000-0002-1850-4587; Murphy, David/0000-0002-8538-815X; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628 FU United States National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; Max-Planck-Society (MPS); State of Niedersachsen/Germany [GEO600]; Australian Research Council; Netherlands Organisation for Scientific Research; Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears; National Science Centre of Poland; European Commission; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea, Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; Natural Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; Brazilian Ministry of Science, Technology, and Innovation; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Russian Foundation for Basic Research; Leverhulme Trust; Research Corporation; Ministry of Science and Technology (MOST), Taiwan; Kavli Foundation; NSF; STFC; MPS; INFN; CNRS; State of Niedersachsen/Germany FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources. NR 134 TC 7 Z9 7 U1 27 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 1 PY 2016 VL 832 IS 2 AR L21 DI 10.3847/2041-8205/832/2/L21 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED9FR UT WOS:000389176100001 ER PT J AU Wallach, D Mearns, L Ruane, A Rotter, R Asseng, S AF Wallach, Daniel Mearns, Linda O. Ruane, Alex C. Rotter, Reimund P. Asseng, Senthold TI Lessons from climate modeling on the design and use of ensembles for crop modeling SO CLIMATIC CHANGE LA English DT Article DE Model ensembles; Crop models; Climate models; Model weighting; Super ensembles ID CHANGE PROJECTIONS; ELEVATED CO2; UNCERTAINTY; WHEAT; WATER; SOIL; SIMULATIONS; YIELD; RICE; 21ST-CENTURY AB Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor. C1 [Wallach, Daniel] INRA, UMR AGIR, Castanet Tolosan, France. [Mearns, Linda O.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Ruane, Alex C.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Rotter, Reimund P.] Georg August Univ Gottingen, Gottingen, Germany. [Asseng, Senthold] Univ Florida, Gainesville, FL USA. RP Wallach, D (reprint author), INRA, UMR AGIR, Castanet Tolosan, France. EM Daniel.Wallach@toulouse.inra.fr OI Wallach, Daniel/0000-0003-3500-8179 FU MACSUR project; NCAR - U.S. National Science Foundation; NASA Earth Sciences [WBS: 281945.02.03.03.96] FX The authors gratefully acknowledge the role of the AgMIP project, which has encouraged the close collaboration between climate and crop modelers of which this study is one example. Funding from the MACSUR project for two of the authors is also gratefully acknowledged. Dr. Mearns' participation was funded by NCAR, which is funded by the U.S. National Science Foundation. Dr. Ruane's work was supported by funding from NASA Earth Sciences (WBS: 281945.02.03.03.96). NR 65 TC 0 Z9 0 U1 8 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD DEC PY 2016 VL 139 IS 3-4 BP 551 EP 564 DI 10.1007/s10584-016-1803-1 PG 14 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA ED6JQ UT WOS:000388962300015 ER PT J AU Batalha, NE Kopparapu, RK Haqq-Misra, J Kasting, JF AF Batalha, Natasha E. Kopparapu, Ravi Kumar Haqq-Misra, Jacob Kasting, James F. TI Climate cycling on early Mars caused by the carbonate-silicate cycle SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Mars; martian climate; valley formation ID EARLY MARTIAN CLIMATE; ATMOSPHERE; MODEL; CO2; EVOLUTION; WATER; EARTH; TOPOGRAPHY; DIOXIDE; PLANETS AB For decades, scientists have tried to explain the evidence for fluvial activity on early Mars, but a consensus has yet to emerge regarding the mechanism for producing it. One hypothesis suggests early Mars was warmed by a thick greenhouse atmosphere. Another suggests that early Mars was generally cold but was warmed occasionally by impacts or by episodes of enhanced volcanism. These latter hypotheses struggle to produce the amounts of rainfall needed to form the martian valleys, but are consistent with inferred low rates of weathering compared to Earth. Here, we provide a geophysical mechanism that could have induced cycles of glaciation and deglaciation on early Mars. Our model produces dramatic climate cycles with extended periods of glaciation punctuated by warm periods lasting up to 10 Myr much longer than those generated in other episodic warming models. The cycles occur because stellar insolation was low, and because CO2 outgassing is not able to keep pace with CO2 consumption by silicate weathering followed by deposition of carbonates. While CO2 by itself is not able to deglaciate early Mars in our model, we assume that the greenhouse effect is enhanced by substantial amounts of H-2 outgassed from Mars' reduced crust and mantle. Our hypothesis can be tested by future Mars exploration that better establishes the time scale for valley formation. (C) 2016 Elsevier B.V. All rights reserved. C1 [Batalha, Natasha E.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Batalha, Natasha E.; Kasting, James F.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Batalha, Natasha E.; Kopparapu, Ravi Kumar; Haqq-Misra, Jacob; Kasting, James F.] NASA, Astrobiol Inst, Virtual Planetary Lab, POB 351580, Seattle, WA 98195 USA. [Kopparapu, Ravi Kumar; Haqq-Misra, Jacob] Blue Marble Space Inst Sci, 1001 4th Ave Suite 3201, Seattle, WA 98154 USA. [Kopparapu, Ravi Kumar] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Mail Stop 699-0 Bldg 34, Greenbelt, MD 20771 USA. [Kopparapu, Ravi Kumar] Univ Maryland, Dept Astron, College Pk, MD 20771 USA. [Kasting, James F.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. RP Batalha, NE (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA.; Batalha, NE (reprint author), Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA.; Batalha, NE (reprint author), NASA, Astrobiol Inst, Virtual Planetary Lab, POB 351580, Seattle, WA 98195 USA. EM neb149@psu.edu OI Haqq-Misra, Jacob/0000-0003-4346-2611 FU National Science Foundation [DGE1255832]; NASA Habitable Worlds program [NNX15AQ82G]; NASA Astrobiology Institute's Virtual Planetary Laboratory lead team - NASA [NNH05ZDA001C] FX The authors thank Darren Williams for assistance with model development. This material is based upon work supported by the National Science Foundation under Grant No. DGE1255832 to N.E.B. J.H. acknowledges funding from the NASA Habitable Worlds program under award NNX15AQ82G. R.K.K. and J.F.K. acknowledge funding from NASA Astrobiology Institute's Virtual Planetary Laboratory lead team, supported by NASA under cooperative agreement NNH05ZDA001C. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of NASA or the National Science Foundation. NR 55 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD DEC 1 PY 2016 VL 455 BP 7 EP 13 DI 10.1016/j.epsl.2016.08.044 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EA6KN UT WOS:000386738200002 ER PT J AU Robinson, JE Heineman, WR Sagle, LB Meyyappan, M Koehne, JE AF Robinson, Jendai E. Heineman, William R. Sagle, Laura B. Meyyappan, M. Koehne, Jessica E. TI Carbon nanofiber electrode array for the detection of lead SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Carbon nanofibers; Lead; Anodic stripping voltammetry ID ANODIC-STRIPPING VOLTAMMETRY; NANOELECTRODE ARRAYS; TRACE DETERMINATION; COMPOSITE FILM; WATER; PARYLENE; METALS; SENSOR; IONS AB A nanoelectrode array of vertically aligned carbon nanofibers was evaluated for the detection of Pb2+ by anodic stripping voltammetry. The achieved detection limit of 1.73 nM is well below the environmental guidelines. The approach provides a safer alternative to the mercury electrodes commonly used for the detection of heavy metals. (C) 2016 Elsevier B.V. All rights reserved. C1 [Robinson, Jendai E.; Heineman, William R.; Sagle, Laura B.] Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA. [Meyyappan, M.; Koehne, Jessica E.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. RP Robinson, JE (reprint author), Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA. EM robin2jo@mail.uc.edu; Jessica.e.koehne@nasa.gov FU University of Cincinnati; NASA FX This work was supported by the University of Cincinnati start-up funds. The authors would also like to acknowledge Cory Rusinek, Daoli Zhao and Kolade Ojo from the Heineman research group at the University of Cincinnati for helpful discussions on stripping voltammetry, Prof. Yang of Santa Clara University for use of the Center for Nanostructures Laboratory and the NASA Harriet G. Jenkins Pre-doctoral fellowship for Jendai Robinson, a NASA Office of Education Minority University Research and Education Program (MUREP). NR 40 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 EI 1873-1902 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD DEC PY 2016 VL 73 BP 89 EP 93 DI 10.1016/j.elecom.2016.11.002 PG 5 WC Electrochemistry SC Electrochemistry GA ED9OX UT WOS:000389203100021 ER PT J AU Panda, J AF Panda, J. TI A molecular Rayleigh scattering setup to measure density fluctuations in thermal boundary layers SO EXPERIMENTS IN FLUIDS LA English DT Article ID JETS AB A Rayleigh scattering-based density fluctuation measurement system was set up inside a low-speed wind tunnel of NASA Ames Research Center. The immediate goal was to study the thermal boundary layer on a heated flat plate. A large number of obstacles had to be overcome to set up the system, such as the removal of dust particles using air filters, the use of photoelectron counting electronics to measure low intensity light, an optical layout to minimize stray light contamination, the reduction in tunnel vibration, and an expanded calibration process to relate photoelectron arrival rate to air density close to the plate surface. To measure spectra of turbulent density fluctuations, a two-PMT cross-correlation system was used to minimize the shot noise floor. To validate the Rayleigh measurements, temperature fluctuations spectra were calculated from density spectra and then compared with temperature spectra measured with a cold-wire probe operated in constant current mode. The spectra from the downstream half of the plate were found to be in good agreement with cold-wire probe, whereas spectra from the leading edge differed. Various lessons learnt are discussed. It is believed that the present effort is the first measurement of density fluctuations spectra in a boundary layer flow. C1 [Panda, J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Panda, J (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Jayanta.Panda-1@nasa.gov FU NASA ARMD Innovative Measurement project FX The work was supported by NASA ARMD Innovative Measurement project with Dr. Tom Jones of NASA Langley as the manager. NR 14 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 EI 1432-1114 J9 EXP FLUIDS JI Exp. Fluids PD DEC PY 2016 VL 57 IS 12 AR 183 DI 10.1007/s00348-016-2267-9 PG 10 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA ED3GW UT WOS:000388738600008 ER PT J AU Omidshafiei, S Agha-Mohammadi, AA Chen, YF Ure, NK Liu, SY Lo Pez, BT Surati, R How, JP Vian, J AF Omidshafiei, Shayegan Agha-Mohammadi, Ali-Akbar Chen, Yu Fan Ure, Nazim Kemal Liu, Shih-Yuan Lo Pez, Brett T. Surati, Rajeev How, Jonathan P. Vian, John TI Measurable Augmented Reality for Prototyping Cyberphysical Systems A ROBOTICS PLATFORM TO AID THE HARDWARE PROTOTYPING AND PERFORMANCE TESTING OF ALGORITHMS SO IEEE CONTROL SYSTEMS MAGAZINE LA English DT Article C1 [Omidshafiei, Shayegan] MIT, 77 Massachusetts Ave,32-D631, Cambridge, MA 02139 USA. [Agha-Mohammadi, Ali-Akbar] CALTECH, NASA JPL, Pasadena, CA 91125 USA. [Agha-Mohammadi, Ali-Akbar; Chen, Yu Fan; Liu, Shih-Yuan] MIT, Lab Informat & Decis Syst, Cambridge, MA USA. [Agha-Mohammadi, Ali-Akbar; Chen, Yu Fan; Liu, Shih-Yuan; Lo Pez, Brett T.] MIT, Aerosp Controls Lab, Cambridge, MA USA. [Ure, Nazim Kemal] Istanbul Tech Univ, Aeronaut Engn Dept, Istanbul, Turkey. [Ure, Nazim Kemal] Aerosp Res Ctr, Columbus, OH USA. [How, Jonathan P.] MIT, Aeronaut & Astronaut, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [How, Jonathan P.] Ford MIT Alliance, Dept Aeronaut & Astronaut, Informat Sect, Cambridge, MA USA. [How, Jonathan P.] Ford MIT Alliance, Cambridge, MA USA. [Vian, John] Boeing Res & Technol, Chicago, IL USA. [Vian, John] NASA, Washington, DC USA. [Vian, John] FAA, Washington, DC USA. [Vian, John] Navy, Washington, DC USA. [Vian, John] Air Force Res Contracts, Washington, DC USA. RP Omidshafiei, S (reprint author), MIT, 77 Massachusetts Ave,32-D631, Cambridge, MA 02139 USA. FU Boeing Research Technology FX This work is supported by Boeing Research & Technology. The authors gratefully acknowledge the anonymous reviewers for their insightful comments and feedback. NR 32 TC 0 Z9 0 U1 5 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1066-033X EI 1941-000X J9 IEEE CONTR SYST MAG JI IEEE Control Syst. Mag. PD DEC PY 2016 VL 36 IS 6 BP 65 EP 87 DI 10.1109/MCS.2016.2602090 PG 23 WC Automation & Control Systems SC Automation & Control Systems GA ED5AG UT WOS:000388863100007 ER PT J AU Wang, M Lin, F Rais-Zadeh, M AF Wang, Muzhi Lin, Feng Rais-Zadeh, Mina TI Need a Change? Try GeTe SO IEEE MICROWAVE MAGAZINE LA English DT Article ID INDUCED CRYSTALLIZATION PHENOMENA; ALLOYS; FILTER; SWITCH; NUCLEATION; GROWTH C1 [Wang, Muzhi; Rais-Zadeh, Mina] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA. [Lin, Feng] Beijing Inst Technol, Sch Informat & Elect, Beijing, Peoples R China. [Rais-Zadeh, Mina] NASA, Jet Prop Lab, Pasadena, CA USA. RP Wang, M (reprint author), Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA. EM wangmz@umich.edu; fenglin@bit.edu.cn; minar@umich.edu FU Defense Advance Research Project Agency RF-FPGA program; National Science Foundation EARS program; National Science Foundation CAREER program FX This work is supported by the Defense Advance Research Project Agency RF-FPGA program and by the National Science Foundation EARS and CAREER programs. NR 28 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1527-3342 EI 1557-9581 J9 IEEE MICROW MAG JI IEEE Microw. Mag. PD DEC PY 2016 VL 17 IS 12 BP 70 EP 79 DI 10.1109/MMM.2016.2608699 PG 10 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA ED5LF UT WOS:000388892900010 ER PT J AU Wang, GS Burleigh, SC Wang, RH Shi, LL Qian, Y AF Wang, Guosheng Burleigh, Scott C. Wang, Ruhai Shi, Leilei Qian, Yi TI Scoping Contact Graph-Routing Scalability Investigating the System's Usability in Space-Vehicle Communication Networks SO IEEE Vehicular Technology Magazine LA English DT Article ID PERFORMANCE; INTERNET C1 [Wang, Guosheng; Wang, Ruhai; Shi, Leilei] Soochow Univ, Sch Elect & Informat Engn, Suzhou, Peoples R China. [Burleigh, Scott C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Wang, Ruhai] Lamar Univ, Dept Elect Engn, Beaumont, TX 77710 USA. [Wang, Ruhai] Nanjing Univ, Nanjing, Jiangsu, Peoples R China. [Qian, Yi] Univ Nebraska Lincoln, Dept Elect & Comp Engn, Omaha, NE USA. [Qian, Yi] IEEE Vehicular Technol Soc, Omaha, NE USA. RP Wang, GS (reprint author), Soochow Univ, Sch Elect & Informat Engn, Suzhou, Peoples R China. EM gswang@stu.suda.edu.cn; scott.c.burleigh@jpl.nasa.gov; rwang@lamar.edu; llshi@stu.suda.edu.cn; yqian@ieee.org FU Future Networks Innovation Institute of Jiangsu Province, China [BY2013039-3-10]; National Natural Science Foundation of China [61401194] FX Parts of the research described in this article were performed at the JPL, Caltech, under a contract with NASA. This work was supported in part by the Future Networks Innovation Institute of Jiangsu Province, China, for a prospective research project on future networks under Grant BY2013039-3-10 and by the National Natural Science Foundation of China under Grant 61401194. NR 15 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1556-6072 EI 1556-6080 J9 IEEE VEH TECHNOL MAG JI IEEE Veh. Technol. Mag. PD DEC PY 2016 VL 11 IS 4 BP 46 EP 52 DI 10.1109/MVT.2016.2594796 PG 7 WC Engineering, Electrical & Electronic; Telecommunications; Transportation Science & Technology SC Engineering; Telecommunications; Transportation GA EE1OR UT WOS:000389352100010 ER PT J AU Kim, JS Kug, JS Yoon, JH Jeong, SJ AF Kim, Jin-Soo Kug, Jong-Seong Yoon, Jin-Ho Jeong, Su-Jong TI Increased Atmospheric CO2 Growth Rate during El Nino Driven by Reduced Terrestrial Productivity in the CMIP5 ESMs SO JOURNAL OF CLIMATE LA English DT Article ID EARTH SYSTEM MODELS; CARBON-CYCLE FEEDBACKS; LINE SIMULATION CHARACTERISTICS; NET PRIMARY PRODUCTION; SOUTHERN-OSCILLATION; INTERANNUAL VARIABILITY; CLIMATE-CHANGE; LAND BIOSPHERE; DIOXIDE; TEMPERATURE AB Better understanding of factors that control the global carbon cycle could increase confidence in climate projections. Previous studies found good correlation between the growth rate of atmospheric CO2 concentration and El Nino-Southern Oscillation (ENSO). The growth rate of atmospheric CO2 increases during El Nino but decreases during La Nina. In this study, long-term simulations of the Earth system models (ESMs) in phase 5 of the Coupled Model Intercomparison Project archive were used to examine the interannual carbon flux variability associated with ENSO. The ESMs simulate the relationship reasonably well with a delay of several months between ENSO and the changes in atmospheric CO2. The increase in atmospheric CO2 associated with El Nino is mostly caused by decreasing net primary production (NPP) in the ESMs. It is suggested that NPP anomalies over South Asia are at their maxima during boreal spring; therefore, the increase in CO2 concentration lags 4-5 months behind the peak phase of El Nino. The decrease in NPP during El Nino may be caused by decreased precipitation and increased temperature over tropical regions. Furthermore, systematic errors may exist in the ESM-simulated temperature responses to ENSO phases over tropical land areas, and these errors may lead to an overestimation of ENSO-related NPP anomalies. In contrast, carbon fluxes from heterotrophic respiration and natural fires are likely underestimated in the ESMs compared with offline model results and observational estimates, respectively. These uncertainties should be considered in long-term projections that include climate-carbon feedbacks. C1 [Kim, Jin-Soo; Kug, Jong-Seong] Pohang Univ Sci & Technol POSTECH, Sch Environm Sci & Engn, Pohang, South Korea. [Yoon, Jin-Ho] Pacific Northwest Natl Lab, Richland, WA USA. [Jeong, Su-Jong] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Kug, JS (reprint author), Pohang Univ Sci & Technol, Sch Environm Sci & Engn, Pohang 790784, South Korea. EM jskug1@gmail.com RI Kim, Jin-Soo/D-4528-2016 OI Kim, Jin-Soo/0000-0003-0631-2294 FU Korea Meteorological Administration Research and Development Program [KMIPA 2015-2092]; National Research Foundation [NRF-2014R1A2A2A01003827] FX This study was supported by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-2092 and the National Research Foundation (NRF-2014R1A2A2A01003827). NR 98 TC 0 Z9 0 U1 8 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD DEC PY 2016 VL 29 IS 24 BP 8783 EP 8805 DI 10.1175/JCLI-D-14-00672.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED2LR UT WOS:000388677100007 ER PT J AU Ivanova, DP Gleckler, PJ Taylor, KE Durack, PJ Marvel, KD AF Ivanova, Detelina P. Gleckler, Peter J. Taylor, Karl E. Durack, Paul J. Marvel, Kate D. TI Moving beyond the Total Sea Ice Extent in Gauging Model Biases SO JOURNAL OF CLIMATE LA English DT Article ID EARTH SYSTEM MODEL; HIGH-RESOLUTION; COUPLED MODEL; CMIP5 MODELS; CLIMATE; OCEAN; SIMULATIONS; PROJECTIONS; PERFORMANCE; NORESM1-M AB Reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. Anew approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differences between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the "sector scale'' metric used here aids in reducing the impact of compensating errors in hemispheric integrals. C1 [Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.; Durack, Paul J.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. [Ivanova, Detelina P.] Nansen Environm & Remote Sensing Ctr, Thormohlens Gate 47, N-5006 Bergen, Norway. [Ivanova, Detelina P.] Bjerknes Ctr Climate Res, Bergen, Norway. [Marvel, Kate D.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY USA. RP Ivanova, DP (reprint author), Nansen Environm & Remote Sensing Ctr, Thormohlens Gate 47, N-5006 Bergen, Norway. EM detelina.ivanova@nersc.no RI Taylor, Karl/F-7290-2011; Durack, Paul/A-8758-2010 OI Taylor, Karl/0000-0002-6491-2135; Durack, Paul/0000-0003-2835-1438 FU U.S. Department of Energy's (DOE's) Office of Science (Biological and Environmental Research); Centre for Climate Dynamics at the Bjerknes Centre; Norwegian Research School on Climate Dynamics; [DE-AC52-07NA27344] FX This work was supported by the U.S. Department of Energy's (DOE's) Office of Science (Biological and Environmental Research) through its Regional and Global Climate Modeling Program and was performed at Lawrence Livermore National Laboratory as a contribution to the U.S. Department of Energy, Office of Science, Climate and Environmental Sciences Division, Regional and Global Climate Modeling Program under Contract DE-AC52-07NA27344. The research was partly supported by the Centre for Climate Dynamics at the Bjerknes Centre and the Norwegian Research School on Climate Dynamics. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 2 of this paper) for producing and making available their model output. For CMIP, the U.S. DOE's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We also thank the anonymous reviewers and the editor for their constructive comments, which helped to substantially improve the quality of the paper. NR 49 TC 1 Z9 1 U1 2 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD DEC PY 2016 VL 29 IS 24 BP 8965 EP 8987 DI 10.1175/JCLI-D-16-0026.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED2LR UT WOS:000388677100018 ER PT J AU Badr, HS Dezfuli, AK Zaitchik, BF Peters-Lidard, CD AF Badr, Hamada S. Dezfuli, Amin K. Zaitchik, Benjamin F. Peters-Lidard, Christa D. TI Regionalizing Africa: Patterns of Precipitation Variability in Observations and Global Climate Models SO JOURNAL OF CLIMATE LA English DT Article ID WESTERN EQUATORIAL AFRICA; RAINFALL VARIABILITY; CLUSTER-ANALYSIS; SPATIOTEMPORAL VARIABILITY; SEASONAL RAINFALL; TROPICAL OCEANS; PART I; WATERSHEDS; ANOMALIES AB Many studies have documented dramatic climatic and environmental changes that have affected Africa over different time scales. These studies often raise questions regarding the spatial extent and regional connectivity of changes inferred from observations and proxies and/or derived from climate models. Objective regionalization offers a tool for addressing these questions. To demonstrate this potential, applications of hierarchical climate regionalizations of Africa using observations and GCM historical simulations and future projections are presented. First, Africa is regionalized based on interannual precipitation variability using Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data for the period 1981-2014. A number of data processing techniques and clustering algorithms are tested to ensure a robust definition of climate regions. These regionalization results highlight the seasonal and even month-to-month specificity of regional climate associations across the continent, emphasizing the need to consider time of year as well as research question when defining a coherent region for climate analysis. CHIRPS regions are then compared to those of five GCMs for the historic period, with a focus on boreal summer. Results show that some GCMs capture the climatic coherence of the Sahel and associated teleconnections in a manner that is similar to observations, while other models break the Sahel into uncorrelated subregions or produce a Sahel-like region of variability that is spatially displaced from observations. Finally, shifts in climate regions under projected twenty-first-century climate change for different GCMs and emissions pathways are examined. A projected change is found in the coherence of the Sahel, in which the western and eastern Sahel become distinct regions with different teleconnections. This pattern is most pronounced in high-emissions scenarios. C1 [Badr, Hamada S.; Zaitchik, Benjamin F.] Johns Hopkins Univ, Dept Earth & Planetary Sci, 3400 N Charles St,Olin Hall, Baltimore, MD 21218 USA. [Dezfuli, Amin K.] NASA, Goddard Space Flight Ctr, Climate & Radiat Lab, Greenbelt, MD USA. [Dezfuli, Amin K.] Univ Space Res Assoc, Columbia, MD USA. [Peters-Lidard, Christa D.] NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD USA. RP Badr, HS (reprint author), Johns Hopkins Univ, Dept Earth & Planetary Sci, 3400 N Charles St,Olin Hall, Baltimore, MD 21218 USA. EM badr@jhu.edu RI Peters-Lidard, Christa/E-1429-2012 OI Peters-Lidard, Christa/0000-0003-1255-2876 FU NASA [13-WATER13-0010]; NSF [GEO-1211235] FX We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Work for this paper was supported in part by NASA Applied Sciences Grant 13-WATER13-0010 and NSF's Dynamics of Coupled Natural and Human Systems (CNH) Program Award GEO-1211235. NR 26 TC 0 Z9 0 U1 8 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD DEC PY 2016 VL 29 IS 24 BP 9027 EP 9043 DI 10.1175/JCLI-D-16-0182.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED2LR UT WOS:000388677100021 ER PT J AU Monteiro, DS Estima, SC Gandra, TBR Silva, AP Bugoni, L Swimmer, Y Seminoff, JA Secchi, ER AF Monteiro, Danielle S. Estima, Sergio C. Gandra, Tiago B. R. Silva, Andrine P. Bugoni, Leandro Swimmer, Yonat Seminoff, Jeffrey A. Secchi, Eduardo R. TI Long-term spatial and temporal patterns of sea turtle strandings in southern Brazil SO MARINE BIOLOGY LA English DT Article ID BAJA-CALIFORNIA-SUR; GRANDE-DO-SUL; GULF-OF-MEXICO; DERMOCHELYS-CORIACEA; CHELONIA-MYDAS; LOGGERHEAD TURTLES; ATLANTIC-OCEAN; SPATIOTEMPORAL PATTERNS; SOUTHWESTERN ATLANTIC; SOUTHEASTERN BRAZIL AB Strandings of marine vertebrates along beaches have been widely used to infer threats and causes of mortality in adjacent waters. Understanding the influence of anthropogenic impacts on sea turtle survival is essential for effective conservation, yet limited data are available on the magnitude and patterns of sea turtle mortalities in southern Brazil. Our study reports sea turtle stranding data obtained from monthly beach surveys undertaken from 1995 to 2014 in the state of Rio Grande do Sul, Brazil, and when possible, we identify causes of mortality associated with different fisheries. A total of 6285 turtles of five species were encountered, with the three most common species being loggerhead (Caretta caretta; n = 3192), green (Chelonia mydas; n = 2572), and leatherback turtles (Dermochelys coriacea; n = 376). Generalized linear models demonstrated that loggerhead and green turtle strandings have increased over the last 10 years. Strandings were highest from October to March, which coincides with the greatest bottom pair trawl, gill net, and possibly double-rig trawl fishing effort near the coast. Our results provide a baseline to compare future sea turtle stranding patterns. For reducing sea turtle mortalities, we suggest that time/area closures and/or reduction in gill net, pair trawl, and possibly double-rig trawl fishing effort in coastal waters of southern Brazil during austral spring and summer be considered for future fisheries management plans. C1 [Monteiro, Danielle S.; Secchi, Eduardo R.] Univ Fed Rio Grande FURG, Lab Ecol & Conservacao Megafauna Marinha EcoMega, Rio Grande, RS, Brazil. [Monteiro, Danielle S.; Bugoni, Leandro; Secchi, Eduardo R.] Univ Fed Rio Grande FURG, Programa Posgrad Oceanog Biol, Rio Grande, RS, Brazil. [Monteiro, Danielle S.; Estima, Sergio C.; Gandra, Tiago B. R.; Silva, Andrine P.] NEMA, Projeto Tartarugas Marinhas, Rio Grande, RS, Brazil. [Gandra, Tiago B. R.] Inst Fed Educ Ciencia & Tecnol Rio Grande do Sul, Campus Rio Grande, Rio Grande, RS, Brazil. [Monteiro, Danielle S.; Bugoni, Leandro] Univ Fed Rio Grande FURG, Lab Aves Aquat & Tartarugas Marinhas, Rio Grande, RS, Brazil. [Swimmer, Yonat] NOAA, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, Honolulu, HI USA. [Monteiro, Danielle S.; Seminoff, Jeffrey A.] NOAA, Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, La Jolla, CA 92037 USA. RP Monteiro, DS (reprint author), Univ Fed Rio Grande FURG, Lab Ecol & Conservacao Megafauna Marinha EcoMega, Rio Grande, RS, Brazil.; Monteiro, DS (reprint author), Univ Fed Rio Grande FURG, Programa Posgrad Oceanog Biol, Rio Grande, RS, Brazil.; Monteiro, DS (reprint author), NEMA, Projeto Tartarugas Marinhas, Rio Grande, RS, Brazil.; Monteiro, DS (reprint author), Univ Fed Rio Grande FURG, Lab Aves Aquat & Tartarugas Marinhas, Rio Grande, RS, Brazil.; Monteiro, DS (reprint author), NOAA, Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, La Jolla, CA 92037 USA. EM danismonteiro@yahoo.com.br FU Fundo Nacional do Meio Ambiente; Fundacao Grupo Boticario de Protecao a Natureza; Superintendencia do Porto do Rio Grande; Ministerio da Pesca e Aquicultura; PROBIO/MMA; Yaqu Pacha; Petrobras; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq (Brazilian Science, Technology and Innovation Ministry); 'Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-CAPES' (Ministry of Education) [144433/2012-5, PDSE 6831-15-0]; CNPq [PQ 307843/2014-0, PQ 310550/2015-7]; US National Oceanic and Atmospheric Administration FX This study was funded by Fundo Nacional do Meio Ambiente, Fundacao Grupo Boticario de Protecao a Natureza, Superintendencia do Porto do Rio Grande, Ministerio da Pesca e Aquicultura, PROBIO/MMA, Yaqu Pacha and Petrobras. D.S. Monteiro received scholarships from the 'Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq (Brazilian Science, Technology and Innovation Ministry) and 'Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-CAPES' (Ministry of Education) (Processes 144433/2012-5 and PDSE 6831-15-0). E.R. Secchi received a Research Fellowship from CNPq (PQ 307843/2014-0) and L. Bugoni received a Research Fellowship from CNPq (PQ 310550/2015-7). J. Seminoff and Y. Swimmer were supported by US National Oceanic and Atmospheric Administration. NR 103 TC 0 Z9 0 U1 9 U2 9 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0025-3162 EI 1432-1793 J9 MAR BIOL JI Mar. Biol. PD DEC PY 2016 VL 163 IS 12 AR 247 DI 10.1007/s00227-016-3018-4 PG 19 WC Marine & Freshwater Biology SC Marine & Freshwater Biology GA ED2NW UT WOS:000388685000010 ER PT J AU Zhua, PP Cui, ZW Kesler, MS Newman, JA Manuel, MV Wright, MC Brinson, LC AF Zhua, Pingping Cui, Zhiwei Kesler, Michael S. Newman, John A. Manuel, Michele V. Wright, M. Clara Brinson, L. Catherine TI Characterization and modeling of three-dimensional self-healing shape memory alloy-reinforced metal-matrix composites SO MECHANICS OF MATERIALS LA English DT Article DE Crack closure; Phase transformation; Pre-strain; Finite element model; Digital image correlation ID CONSTITUTIVE MODEL; MICROMECHANICAL ANALYSIS; BEHAVIOR; REORIENTATION; MARTENSITE AB In this work, three-dimensional metal-matrix composites (MMCs) reinforced by shape memory alloy (SMA) wires are modeled and simulated, by adopting an SMA constitutive model accounting for elastic deformation, phase transformation and plastic behavior. A modeling method to create composites with pre-strained SMA wires is also proposed to improve the self-healing ability. Experimental validation is provided with a composite under three-point bending. This modeling method is applied in a series of finite element simulations to investigate the self-healing effects in pre-cracked composites, especially the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain in the SMA. The results demonstrate that SMA reinforcements provide stronger shape recovery ability than other, non-transforming materials. The softening property of the metallic matrix and the pre-strain in SMA are also beneficial to help crack closure and healing. This modeling approach can serve as an efficient tool to design SMA-reinforced MMCs with optimal self-healing properties that have potential applications in components needing a high level of reliability. (C) 2016 Published by Elsevier Ltd. C1 [Zhua, Pingping; Cui, Zhiwei; Brinson, L. Catherine] Northwestern Univ, Mech Engn, Evanston, IL 60208 USA. [Kesler, Michael S.; Manuel, Michele V.] Univ Florida, Mat Sci & Engn, Gainesville, FL 32611 USA. [Newman, John A.] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Wright, M. Clara] NASA Kennedy Space Ctr, Kennedy Space Ctr, FL 32899 USA. RP Brinson, LC (reprint author), Northwestern Univ, Mech Engn, Evanston, IL 60208 USA. EM cbrinson@northwestern.edu RI Kesler, Michael/D-1275-2017 OI Kesler, Michael/0000-0001-6142-3128 FU NASA Aeronautics Research Mission Directorate (ARMD) [NNX13AR52A]; Department of Energy [DE-SC0010594] FX This work was performed under the following financial supports of NASA Aeronautics Research Mission Directorate (ARMD) through grant number NNX13AR52A and Department of Energy through grant number DE-SC0010594. NR 34 TC 0 Z9 0 U1 15 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6636 EI 1872-7743 J9 MECH MATER JI Mech. Mater. PD DEC PY 2016 VL 103 BP 1 EP 10 DI 10.1016/j.mechmat.2016.09.005 PG 10 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA EA6MK UT WOS:000386743100001 ER PT J AU Kharuk, VI Dvinskaya, ML Petrov, IA Im, ST Ranson, KJ AF Kharuk, Viacheslav I. Dvinskaya, Mariya L. Petrov, Ilya A. Im, Sergei T. Ranson, Kenneth J. TI Larch forests of Middle Siberia: long-term trends in fire return intervals SO Regional Environmental Change LA English DT Article DE Fire ecology; Fire history; Fire frequency; Siberian wildfires; Larch forests; Climate change ID BOREAL FOREST; CLIMATE-CHANGE; HISTORY; FREQUENCY; REGIMES; USA AB Fire history within the northern larch forests of Central Siberia was studied (65 + A degrees N). Fires within this area are predominantly caused by lightning strikes rather than human activity. Mean fire return intervals (FRIs) were found to be 112 +/- A 49 years (based on firescars) and 106 +/- A 36 years (based on firescars and tree natality dates). FRIs were increased with latitude increase and observed to be about 80 years at 64A degrees N, about 200 years near the Arctic Circle and about 300 years nearby the northern range limit of larch stands (similar to 71A degrees A + N). Northward FRIs increase correlated with incoming solar radiation (r = -0.95). Post-Little Ice Age (LIA) warming (after 1850) caused approximately a doubling of fire events (in comparison with a similar period during LIA). The data obtained support a hypothesis of climate-induced fire frequency increase. C1 [Kharuk, Viacheslav I.; Dvinskaya, Mariya L.; Petrov, Ilya A.; Im, Sergei T.] VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia. [Kharuk, Viacheslav I.; Im, Sergei T.] Siberian Fed Univ, Krasnoyarsk 660041, Russia. [Im, Sergei T.] Siberian State Aerosp Univ, Krasnoyarsk 660014, Russia. [Ranson, Kenneth J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kharuk, VI (reprint author), VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia.; Kharuk, VI (reprint author), Siberian Fed Univ, Krasnoyarsk 660041, Russia. EM kharuk@ksc.krasn.ru; mary_dvi@ksc.krasn.ru; mizrail0412@mail.ru; stim@ksc.krasn.ru; kenneth.j.ranson@nasa.gov FU Russian Scientific Foundation [14-24-00112] FX This work was supported by Russian Scientific Foundation, Project #14-24-00112. Field measurements in 2012 were supported in part NASA's Terrestrial Ecology Program. NR 37 TC 1 Z9 1 U1 5 U2 5 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1436-3798 EI 1436-378X J9 REG ENVIRON CHANGE JI Reg. Envir. Chang. PD DEC PY 2016 VL 16 IS 8 SI SI BP 2389 EP 2397 DI 10.1007/s10113-016-0964-9 PG 9 WC Environmental Sciences; Environmental Studies SC Environmental Sciences & Ecology GA ED6IK UT WOS:000388959100019 ER PT J AU Sturrock, PA Fischbach, E Scargle, JD AF Sturrock, P. A. Fischbach, E. Scargle, J. D. TI Comparative Analyses of Brookhaven National Laboratory Nuclear Decay Measurements and Super-Kamiokande Solar Neutrino Measurements: Neutrinos and Neutrino-Induced Beta-Decays as Probes of the Deep Solar Interior SO SOLAR PHYSICS LA English DT Article DE Nuclear physics; Solar structure ID POWER-SPECTRUM ANALYSIS; R-MODE OSCILLATIONS; HALF-LIFE; ROTATION; RATES; FLUX; SPACECRAFT; DIAMETER; MATTER AB An experiment carried out at the Brookhaven National Laboratory over a period of almost 8 years acquired 364 measurements of the beta-decay rates of a sample of Si-32 and, for comparison, of a sample of Cl-36. The experimenters reported finding "small periodic annual deviations of the data points from an exponential decay... of uncertain origin". We find that power-spectrum and spectrogram analyses of these datasets show evidence not only of the annual oscillations, but also of transient oscillations with frequencies near 11 year(-1) and 12.5 year(-1). Similar analyses of 358 measurements of the solar neutrino flux acquired by the Super-Kamiokande neutrino observatory over a period of about 5 years yield evidence of an oscillation near 12.5 year(-1) and another near 9.5 year(-1). An oscillation near 12.5 year(-1) is compatible with the influence of rotation of the radiative zone. We suggest that an oscillation near 9.5 year(-1) may be indicative of rotation of the solar core, and that an oscillation near 11 year(-1) may have its origin in a tachocline between the core and the radiative zone. Modulation of the solar neutrino flux may be attributed to an influence of the Sun's internal magnetic field by the Resonant Spin Flavor Precession (RSFP) mechanism, suggesting that neutrinos and neutrino-induced beta decays can provide information about the deep solar interior. C1 [Sturrock, P. A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Sturrock, P. A.] Stanford Univ, Ctr Space Sci & Astrophys, Stanford, CA 94305 USA. [Fischbach, E.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Scargle, J. D.] NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 94035 USA. RP Sturrock, PA (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA.; Sturrock, PA (reprint author), Stanford Univ, Ctr Space Sci & Astrophys, Stanford, CA 94305 USA. EM sturrock@stanford.edu; Ephraim@physics.purdue.edu; Jeffrey.D.Scargle@nasa.gov NR 48 TC 1 Z9 1 U1 1 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD DEC PY 2016 VL 291 IS 12 BP 3467 EP 3484 DI 10.1007/s11207-016-1008-9 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EE2MC UT WOS:000389417400002 ER PT J AU Michalek, G Shanmugaraju, A Gopalswamy, N Yashiro, S Akiyama, S AF Michalek, G. Shanmugaraju, A. Gopalswamy, N. Yashiro, S. Akiyama, S. TI Statistical Analysis of Periodic Oscillations in LASCO Coronal Mass Ejection Speeds SO SOLAR PHYSICS LA English DT Article DE Sun: solar activity; Sun: coronal mass ejections ID MAGNETIC-FLUX ROPE; ACCELERATION; PROMINENCES AB A large set of coronal mass ejections (CMEs, 3463) has been selected to study their periodic oscillations in speed in the Solar and Heliospheric Observatory (SOHO) mission's Large Angle and Spectrometric Coronagraph (LASCO) field of view. These events, reported in the SOHO/LASCO catalog in the period of time 1996-2004, were selected based on having at least 11 height-time measurements. This selection criterion allows us to construct at least ten-point speed-distance profiles and evaluate kinematic properties of CMEs with a reasonable accuracy. To identify quasi-periodicoscillations in the speed of the CMEs a sinusoidal function was fitted to speed-distance profiles and the speed-time profiles. Of the considered events 22% revealed periodic velocity fluctuations. These speed oscillations have on average amplitude equal to 87 kms(-1) and period 7.8R(circle dot) /241 min (in distance/time). The study shows that speed oscillations are a common phenomenon associated with CME propagation implying that all the CMEs have a similar magnetic flux-rope structure. The nature of oscillations can be explained in terms of magnetohydrodynamic (MHD) waves excited during the eruption process. More accurate detection of these modes could, in the future, enable us to characterize magnetic structures in space (space seismology). C1 [Michalek, G.] Jagiellonian Univ, Astron Observ, Krakow, Poland. [Shanmugaraju, A.] Arul Anandar Coll, Dept Phys, Karumathur 625514, India. [Gopalswamy, N.; Yashiro, S.; Akiyama, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Michalek, G (reprint author), Jagiellonian Univ, Astron Observ, Krakow, Poland. EM michalek@oa.uj.edu.pl FU NCN [UMO-2013/09/B/ST9/00034]; NASA LWS TRT program FX Grzegorz Michalek was supported by NCN through the grant UMO-2013/09/B/ST9/00034. This work was supported by NASA LWS TR&T program. NR 30 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD DEC PY 2016 VL 291 IS 12 BP 3751 EP 3764 DI 10.1007/s11207-016-1000-4 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EE2MC UT WOS:000389417400017 ER PT J AU Giono, G Ishikawa, R Narukage, N Kano, R Katsukawa, Y Kubo, M Ishikawa, S Bando, T Hara, H Suematsu, Y Winebarger, A Kobayashi, K Auchere, F Bueno, JT AF Giono, G. Ishikawa, R. Narukage, N. Kano, R. Katsukawa, Y. Kubo, M. Ishikawa, S. Bando, T. Hara, H. Suematsu, Y. Winebarger, A. Kobayashi, K. Auchere, F. Bueno, J. Trujillo TI Polarization Calibration of the Chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1% Polarization Sensitivity in the VUV Range. Part I: Pre-flight Calibration SO SOLAR PHYSICS LA English DT Article DE Polarization calibration; Vacuum UltraViolet; Lyman-alpha; Solar chromosphere; CLASP ID VACUUM-ULTRAVIOLET; SPECTRO-POLARIMETER; TELESCOPE; HINODE AB The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a sounding rocket experiment designed to measure for the first time the linear polarization of the hydrogen Lyman-alpha line (121.6 nm) and requires a 0.1 % polarization sensitivity, which is unprecedented for a spectropolarimeter in the vacuum UV (VUV) spectral range. A unique polarization calibration experiment was conducted under vacuum conditions to estimate the response matrix of the instrument. For this purpose, a custom-made light source was designed to inject Lyman-a light with a known linear polarization state into the spectropolarimeter. Two methods were employed to change the orientation of the linear polarization input: one by rotating the light-source itself (direct method), the other by rotating a half-waveplate located after the light-source's polarizers (waveplate method). The spurious polarization, scale factor, and azimuth error terms of the response matrix were successfully estimated from the polarization calibration measurements. However, it was found that the direct method could not provide an accuracy better than 0.1 % on the spurious polarization terms, whereas their required tolerance was < 0.017 %. On the other hand, the waveplate method determined these terms with only a similar to 0.04 % accuracy due to residual cross-talk between polarization and intensity. Nevertheless, the polarization calibration confirmed the very low spurious polarization level of the instrument, which will also be confirmed with the flight data. The resulting response matrix deviated from an ideal one, and possible causes of the deviation are discussed by considering the polarization properties of the optical components. C1 [Giono, G.; Ishikawa, R.; Narukage, N.; Kano, R.; Katsukawa, Y.; Kubo, M.; Bando, T.; Hara, H.; Suematsu, Y.] Natl Astron Observ Japan, Mitaka, Tokyo, Japan. [Ishikawa, S.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Winebarger, A.; Kobayashi, K.] NASA, Marshall Space Flight Ctr, Huntsville, AL USA. [Auchere, F.] Inst Astrophys Spatiale, Orsay, France. [Bueno, J. Trujillo] Inst Astrofis Canarias, San Cristobal la Laguna, Spain. RP Giono, G (reprint author), Natl Astron Observ Japan, Mitaka, Tokyo, Japan. EM gabriel.giono@nao.ac.jp FU ISAS/JAXA; NAOJ; JSPS KAKENHI Grant [23340052, 24740134, 24340040, 25220703]; NASA Low Cost Access to Space [12-SHP 12/2-0283]; Ministry of Economy and Competitiveness [AYA2010-18029]; Centre National d'Etudes Spatiales (CNES) FX The authors acknowledge the Chromospheric Lyman-Alpha Spectropolarimeter (CLASP) team. The team was an international partnership between NASA Marshall Space Flight Center, National Astronomical Observatory of Japan (NAOJ), Japan Aerospace Exploration Agency (JAXA), Instituto de Astrofisica de Canarias (IAC) and Institut d'Astro-physique Spatiale; additional partners include Astronomical Institute ASCR, Lockheed Martin and University of Oslo. The Japanese participation is funded by the basic research program of ISAS/JAXA, internal research funding of NAOJ, and JSPS KAKENHI Grant Numbers 23340052, 24740134, 24340040, and 25220703. The US participation is funded by NASA Low Cost Access to Space (Award Number 12-SHP 12/2-0283). The Spanish participation is funded by the Ministry of Economy and Competitiveness through project AYA2010-18029 (Solar Magnetism and Astrophysical Spectropolarimetry). The French hardware participation was funded by Centre National d'Etudes Spatiales (CNES). We are especially grateful to K. Ichimoto from Kyoto University for his useful comments on the results and methods applied during this polarization calibration. NR 22 TC 0 Z9 0 U1 4 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD DEC PY 2016 VL 291 IS 12 BP 3831 EP 3867 DI 10.1007/s11207-016-0950-x PG 37 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EE2MC UT WOS:000389417400023 ER PT J AU Michalek, G Gopalswamy, N Yashiro, S Bronarska, K AF Michalek, G. Gopalswamy, N. Yashiro, S. Bronarska, K. TI Dynamics of CMEs in the LASCO Field of View (vol 290, pg 903, 2015) SO SOLAR PHYSICS LA English DT Correction C1 [Michalek, G.; Bronarska, K.] Jagiellonian Univ, Astron Observ, Krakow, Poland. [Gopalswamy, N.; Yashiro, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Yashiro, S.] Catholic Univ Amer, Washington, DC 20064 USA. RP Michalek, G (reprint author), Jagiellonian Univ, Astron Observ, Krakow, Poland. EM michalek@oa.uj.edu.pl NR 1 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD DEC PY 2016 VL 291 IS 12 BP 3869 EP 3869 DI 10.1007/s11207-016-1005-z PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EE2MC UT WOS:000389417400024 ER PT J AU Yuan, WM Amati, L Cannizzo, JK Cordier, B Gehrels, N Ghirlanda, G Gotz, D Produit, N Qiu, YL Sun, JC Tanvir, NR Wei, JY Zhang, C AF Yuan, Weimin Amati, Lorenzo Cannizzo, John K. Cordier, Bertrand Gehrels, Neil Ghirlanda, Giancarlo Gotz, Diego Produit, Nicolas Qiu, Yulei Sun, Jianchao Tanvir, Nial R. Wei, Jianyan Zhang, Chen TI Perspectives on Gamma-Ray Burst Physics and Cosmology with Next Generation Facilities SO SPACE SCIENCE REVIEWS LA English DT Review DE Gamma-ray bursts; High-redshift; Gamma-ray; X-ray; Instrumentation ID 28 FEBRUARY 1997; HIGH-REDSHIFT; GRB 130427A; OPTICAL AFTERGLOWS; RADIO AFTERGLOW; COMPLETE SAMPLE; REVERSE-SHOCK; EMISSION; CALORIMETRY; POPULATION AB High-redshift Gamma-Ray Bursts (GRBs) beyond redshift are potentially powerful tools to probe the distant early Universe. Their detections in large numbers and at truly high redshifts call for the next generation of high-energy wide-field instruments with unprecedented sensitivity at least one order of magnitude higher than the ones currently in orbit. On the other hand, follow-up observations of the afterglows of high-redshift GRBs and identification of their host galaxies, which would be difficult for the currently operating telescopes, require new, extremely large facilities of at multi-wavelengths. This chapter describes future experiments that are expected to advance this exciting field, both being currently built and being proposed. The legacy of Swift will be continued by SVOM, which is equipped with a set of space-based multi-wavelength instruments as well as and a ground segment including a wide angle camera and two follow-up telescopes. The established Lobster-eye X-ray focusing optics provides a promising technology for the detection of faint GRBs at very large distances, based on which the THESEUS, Einstein Probe and other mission concepts have been proposed. Follow-up observations and exploration of the reionization era will be enabled by large facilities such as SKA in the radio, the 30 m class telescopes in the optical/near-IR, and the space-borne WFIRST and JWST in the optical/near-IR/mid-IR. In addition, the X-ray and -ray polarization experiment POLAR is also introduced. C1 [Yuan, Weimin; Qiu, Yulei; Wei, Jianyan; Zhang, Chen] Chinese Acad Sci, Key Lab Space Astron & Technol, Natl Astron Observ, Datun Rd 20A, Beijing 100012, Peoples R China. [Amati, Lorenzo] INAF IASF Bologna, Via P Gobetti 101, I-40129 Bologna, Italy. [Cannizzo, John K.] Univ Maryland Baltimore Cty, CRESST Joint Ctr Astrophys, Baltimore, MD 21250 USA. [Cordier, Bertrand; Gotz, Diego] CEA Irfu, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Gehrels, Neil] NASA, Goddard Space Flight Ctr, Div Astrophys, Greenbelt, MD 20771 USA. [Ghirlanda, Giancarlo] Ist Nazl Astrofis INAF, Osservatorio Astron Brera, Via E Bianchi 46, I-23807 Merate, LC, Italy. [Produit, Nicolas] ISDC, Chemin Ecogia 16, CH-1290 Versoix, Switzerland. [Sun, Jianchao] Chinese Acad Sci, Inst High Energy Phys, Yuquan Lu 19B, Beijing, Peoples R China. [Tanvir, Nial R.] Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. RP Yuan, WM (reprint author), Chinese Acad Sci, Key Lab Space Astron & Technol, Natl Astron Observ, Datun Rd 20A, Beijing 100012, Peoples R China. EM wmy@nao.cas.cn; amati@iasfbo.inaf.it; john.k.cannizzo@nasa.gov; bertrand.cordier@cea.fr; neil.gehrels@nasa.gov; giancarlo.ghirlanda@brera.inaf.it; diego.gotz@cea.fr; Nicolas.Produit@unige.ch; qiuyl@nao.cas.cn; sunjc@ihep.ac.cn; nrt3@le.ac.uk; wjy@nao.cas.cn; chzhang@nao.cas.cn FU "Strategic Priority Research Program on Space Science" of the Chinese Academy of Sciences [XDA04061100]; "Gravitational Wave Universe Research" of the Chinese Academy of Sciences [XDB23000000]; UnivEarthS Labex program at Sorbonne Paris Cite [ANR-10-LABX-0023, ANR-11-IDEX-0005-02]; 973 program [2014CB845802]; NSFC [11503028] FX The authors are grateful to the International Space Science Institute of Beijing (ISSI-Beijing), its executive director Prof. M. Falanga and all the staff for hosting and funding the workshop "Gamma-Ray Bursts: a tool to Explore the Young Universe" held in Beijing from April 10 to 15 2015. W. Yuan and C. Zhang thank R. Willingale, J. P. Osborne and P. O'Brien for their contribution to the EP project and acknowledge support of the "Strategic Priority Research Program on Space Science" (Grant number No. XDA04061100) and "Gravitational Wave Universe Research" (No. XDB23000000) of the Chinese Academy of Sciences. B. Cordier and D. Gotz acknowledge financial support of the UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). Sun acknowledges support from the 973 program 2014CB845802 and NSFC 11503028. NR 84 TC 1 Z9 1 U1 3 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2016 VL 202 IS 1-4 BP 235 EP 277 DI 10.1007/s11214-016-0274-z PG 43 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED6RF UT WOS:000388982800010 ER PT J AU Kintz, NM Chou, CP Vessey, WB Leveton, LB Palinkas, LA AF Kintz, Natalie M. Chou, Chih-Ping Vessey, William B. Leveton, Lauren B. Palinkas, Lawrence A. TI Impact of communication delays to and from the International Space Station on self-reported individual and team behavior and performance: A mixed-methods study SO ACTA ASTRONAUTICA LA English DT Article DE Behavioral health; Astronauts; Long-duration spaceflight; Countermeasures AB Deep space explorations will involve significant delays in communication to and from Earth that will likely impact individual and team outcomes. However, the extent of these impacts and the appropriate countermeasures for their mitigation remain largely unknown. This study utilized the International Space Station (ISS), a high-fidelity analog for deep space, as a research platform to assess the impact of communication delays on individual and team performance, mood, and behavior. Three astronauts on the ISS and 18 mission support personnel performed tasks with and without communication delays (50-s one-way) during a mission lasting 166 days. Self-reported assessments of individual and team performance and mood were obtained after each task. Secondary outcomes included communication quality and task autonomy. Qualitative data from post-mission interviews with astronauts were used to validate and expand on quantitative data, and to elicit recommendations for countermeasures. Crew well-being and communication quality were significantly reduced in communication delay tasks compared to control. Communication delays were also significantly associated with increased individual stress/frustration. Qualitative data suggest communication delays impacted operational outcomes (i.e. task efficiency), teamwork processes (i.e. team/task coordination) and mood (i.e. stress/frustration), particularly when tasks involved high task-related communication demands, either because of poor communication strategies or low crew autonomy. Training, teamwork, and technology-focused countermeasures were identified to mitigate or prevent adverse impacts. C1 [Kintz, Natalie M.; Palinkas, Lawrence A.] Univ Southern Calif, USC Suzanne Dworak Peck Sch Social Work, 669 W 34th St,MC0411, Los Angeles, CA 90089 USA. [Chou, Chih-Ping] Univ Southern Calif, Dept Prevent Med, Los Angeles, CA 90032 USA. [Vessey, William B.] KBRwyle, Houston, TX 77058 USA. [Leveton, Lauren B.] NASA Johnson Space Ctr, Human Res Program, Behav Hlth & Performance, Houston, TX 77058 USA. RP Palinkas, LA (reprint author), Univ Southern Calif, USC Suzanne Dworak Peck Sch Social Work, 669 W 34th St,MC0411, Los Angeles, CA 90089 USA. EM palinkas@usc.edu FU NASA [NNX 12AR21A] FX This work was supported by NASA [NNX 12AR21A]. We are grateful to our colleagues: Erik Hougland, Kathryn Keeton, Daniel Garcia, David Korth, Lauren Landon, and Holly Patterson for their support. NR 22 TC 0 Z9 0 U1 6 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD DEC PY 2016 VL 129 BP 193 EP 200 DI 10.1016/j.actaastro.2016.09.018 PG 8 WC Engineering, Aerospace SC Engineering GA ED7YF UT WOS:000389087900022 ER PT J AU Canchero, A Tinney, CE Murray, N Ruf, JH AF Canchero, Andres Tinney, Charles E. Murray, Nathan Ruf, Joseph H. TI Acoustic Imaging of Clustered Rocket Nozzles Undergoing End Effects SO AIAA JOURNAL LA English DT Article ID RESTRICTED SHOCK SEPARATION; HIGH-SPEED JETS; SUPERSONIC JET; PRESSURE FIELD; SIDE LOADS; NOISE; UNSTEADINESS; VELOCITY; REGIME AB A nonintrusive measure of the exhaust plume and immediate sound field produced by a cluster of two thrust-optimized parabolic contour nozzles is studied during two steady-state conditions. The first condition is at a nozzle pressure ratio of 25, at which point the flow is in a restricted-shock separated state. The second condition is at a nozzle pressure ratio of 37 and is when the flow and internal shock pattern transition rapidly between free-shock separated flow and the end-effects regime. These end-effects regime pulsations produce significant vibroacoustic loads due to the intermittent breathing of the last trapped annular separation bubble with the ambient. The exhaust plumes and surrounding sound field are first visualized by way of retroreflective shadowgraphy. Radon transforms of the spatially resolved shadowgraphy images are then used to characterize the statistical behavior of the acoustic wave fronts that reside within the hydrodynamic periphery of the nozzle flow. The findings reveal quantitative evidence of the sources of most intense vibroacoustic loads during the end-effects regime of clustered rockets. C1 [Canchero, Andres] Univ Texas Austin, Ctr Aeromech Res, Austin, TX 78712 USA. [Tinney, Charles E.] Univ Texas Austin, Appl Res Labs, Austin, TX 78713 USA. [Murray, Nathan] Univ Mississippi, Jamie Whitten Natl Ctr Phys Acoust, University, MS 38677 USA. [Ruf, Joseph H.] NASA, Marshall Space Flight Ctr, Fluid Dynam Branch ER42, Huntsville, AL 35812 USA. RP Canchero, A (reprint author), Univ Texas Austin, Ctr Aeromech Res, Austin, TX 78712 USA. FU NASA Engineering and Safety Center at NASA Langley Research Center FX Funding for this work was graciously provided by the NASA Engineering and Safety Center at NASA Langley Research Center. NR 37 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD DEC PY 2016 VL 54 IS 12 BP 3778 EP 3786 DI 10.2514/1.J055053 PG 9 WC Engineering, Aerospace SC Engineering GA ED6FD UT WOS:000388950600009 ER PT J AU Kolgotin, A Muller, D Chemyakin, E Romanov, A AF Kolgotin, Alexei Mueller, Detlef Chemyakin, Eduard Romanov, Anton TI Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory SO APPLIED OPTICS LA English DT Article ID MULTIWAVELENGTH LIDAR; VERTICAL PROFILES; 2-DIMENSIONAL REGULARIZATION; PARAMETERS; BACKSCATTER; EXTINCTION; RETRIEVAL; DUST; TCAP AB Multiwavelength Raman/high spectral resolution lidars that measure backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm can be used for the retrieval of particle microphysical parameters, such as effective and mean radius, number, surface-area and volume concentrations, and complex refractive index, from inversion algorithms. In this study, we carry out a correlation analysis in order to investigate the degree of dependence that may exist between the optical data taken with lidar and the underlying microphysical parameters. We also investigate if the correlation properties identified in our study can be used as a priori or a posteriori constraints for our inversion scheme so that the inversion results can be improved. We made the simplifying assumption of error-free optical data in order to find out what correlations exist in the best case situation. Clearly, for practical applications, erroneous data need to be considered too. On the basis of simulations with synthetic optical data, we find the following results, which hold true for arbitrary particle size distributions, i.e., regardless of the modality or the shape of the size distribution function: surface-area concentrations and extinction coefficients are linearly correlated with a correlation coefficient above 0.99. We also find a correlation coefficient above 0.99 for the extinction coefficient versus (1) the ratio of the volume concentration to effective radius and (2) the product of the number concentration times the sum of the squares of the mean radius and standard deviation of the investigated particle size distributions. Besides that, we find that for particles of anymode fraction of the particle size distribution, the complex refractive index is uniquely defined by extinction-and backscatter-related Angstrom exponents, lidar ratios at two wavelengths, and an effective radius. (C) 2016 Optical Society of America C1 [Kolgotin, Alexei] Phys Instrumentat Ctr, Troitsk 142190, Moscow Region, Russia. [Mueller, Detlef] Univ Hertfordshire, Hatfield AL10 9AB, Herts, England. [Mueller, Detlef; Chemyakin, Eduard] Sci Syst & Applicat Inc, NASA LaRC, 1 Enterprise Pkwy, Hampton, VA 23666 USA. [Romanov, Anton] Natl Univ Sci & Technol, Leninskii Av 4, Moscow 119049, Russia. RP Muller, D (reprint author), Univ Hertfordshire, Hatfield AL10 9AB, Herts, England.; Muller, D (reprint author), Sci Syst & Applicat Inc, NASA LaRC, 1 Enterprise Pkwy, Hampton, VA 23666 USA. EM d.mueller@herts.ac.uk FU University of Hertfordshire (UH) FX University of Hertfordshire (UH). NR 19 TC 1 Z9 1 U1 4 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD DEC 1 PY 2016 VL 55 IS 34 BP 9839 EP 9849 DI 10.1364/AO.55.009839 PG 11 WC Optics SC Optics GA ED6BF UT WOS:000388938200054 PM 27958480 ER PT J AU Kolgotin, A Muller, D Chemyakin, E Romanov, A AF Kolgotin, Alexei Mueller, Detlef Chemyakin, Eduard Romanov, Anton TI Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic optical data SO APPLIED OPTICS LA English DT Article ID MULTIWAVELENGTH LIDAR; 2-DIMENSIONAL REGULARIZATION; VERTICAL PROFILES; PARAMETERS AB We developed a mathematical scheme that allows us to improve retrieval products obtained from the inversion of multiwavelength Raman/HSRL lidar data, commonly dubbed "3 backscatter + 2 extinction" (3 beta + 2 alpha) lidar. This scheme works independently of the automated inversion method that is currently being developed in the framework of the Aerosol-Cloud-Ecosystem (ACE) mission and which is successfully applied since 2012 [Atmos. Meas. Tech. 7, 3487 (2014); "Comparison of aerosol optical and microphysical retrievals from HSRL-2 and in-situ measurements during DISCOVER-AQ 2013 (California and Texas)," in International Laser Radar Conference, July 2015, paper PS-C1-14] to data collected with the first airborne multiwavelength 3 beta + 2 alpha high spectral resolution lidar (HSRL) developed at NASA Langley Research Center. The mathematical scheme uses gradient correlation relationships we presented in part 1 of our study [Appl. Opt. 55, 9839 (2016)] in which we investigated lidar data products and particle microphysical parameters from one and the same set of optical lidar profiles. For an accurate assessment of regression coefficients that are used in the correlation relationships we specially designed the proximate analysis method that allows us to search for a first-estimate solution space of particle microphysical parameters on the basis of a look-up table. The scheme works for any shape of particle size distribution. Simulation studies demonstrate a significant stabilization of the various solution spaces of the investigated aerosol microphysical data products if we apply this gradient correlation method in our traditional regularization technique. Surface-area concentration can be estimated with an uncertainty that is not worse than the measurement error of the underlying extinction coefficients. The retrieval uncertainty of the effective radius is as large as +/- 0.07 mu m for fine mode particles and approximately 100% for particle size distributions composed of fine (submicron) and coarse (supermicron) mode particles. The volume concentration uncertainty is defined by the sum of the uncertainty of surface-area concentration and the uncertainty of the effective radius. The uncertainty of number concentration is better than 100% for any radius domain between 0.03 and 10 mu m. For monomodal PSDs, the uncertainties of the real and imaginary parts of the CRI can be restricted to +/- 0.1 and +/- 0.01 on the domains [1.3; 1.8] and [0; 0.1], respectively. (C) 2016 Optical Society of America C1 [Kolgotin, Alexei] Phys Instrumentat Ctr, Troitsk 142190, Moscow Region, Russia. [Mueller, Detlef] Univ Hertfordshire, Hatfield AL10 9AB, Herts, England. [Mueller, Detlef; Chemyakin, Eduard] NASA LaRC, Sci Syst & Applicat Inc, 1 Enterprise Pkwy, Hampton, VA 23666 USA. [Romanov, Anton] Natl Univ Sci & Technol, Leninskii Av 4, Moscow 119049, Russia. RP Muller, D (reprint author), Univ Hertfordshire, Hatfield AL10 9AB, Herts, England.; Muller, D (reprint author), NASA LaRC, Sci Syst & Applicat Inc, 1 Enterprise Pkwy, Hampton, VA 23666 USA. EM d.mueller@herts.ac.uk FU University of Hertfordshire (UH) FX University of Hertfordshire (UH). NR 9 TC 0 Z9 0 U1 3 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD DEC 1 PY 2016 VL 55 IS 34 BP 9850 EP 9865 DI 10.1364/AO.55.009850 PG 16 WC Optics SC Optics GA ED6BF UT WOS:000388938200055 PM 27958481 ER PT J AU Mahan, JR Barki, AR Priestley, KJ AF Mahan, J. R. Barki, A. R. Priestley, K. J. TI Diffraction and polarization effects in Earth radiation budget measurements SO APPLIED OPTICS LA English DT Article ID ENERGY SYSTEM INSTRUMENT; CLOUDS; MISSION AB Thermal radiation emitted and reflected from the Earth and viewed from near-Earth orbit may be characterized by its spectral distribution, its degree of coherence, and its state of polarization. The current generation of broadband Earth radiation budget instruments has been designed to minimize the effect of diffraction and polarization on science products. We used Monte Carlo ray-trace (MCRT) models that treat individual rays as quasi-monochromatic, polarized entities to explore the possibility of improving the performance of such instruments by including measures of diffraction and polarization during calibration and operation. We have demonstrated that diffraction and polarization sensitivity associated with typical Earth radiation budget instrument design features has a negligible effect on measurements. (C) 2016 Optical Society of America C1 [Mahan, J. R.] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA. [Barki, A. R.] NASA, Langley Res Ctr, Remote Sensing Flight Syst Branch, Hampton, VA 23682 USA. [Priestley, K. J.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23682 USA. RP Mahan, JR (reprint author), Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA. EM jrmahan@vt.edu FU National Aeronautics and Space Administration (NASA) Office of Chief Scientist (OCS); Science Innovation Fund (SIF) FX National Aeronautics and Space Administration (NASA) Office of Chief Scientist (OCS); Science Innovation Fund (SIF). NR 10 TC 0 Z9 0 U1 1 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD DEC 1 PY 2016 VL 55 IS 34 BP D54 EP D59 DI 10.1364/AO.55.000D54 PG 6 WC Optics SC Optics GA ED6BF UT WOS:000388938200018 PM 27958439 ER PT J AU Grunblatt, SK Huber, D Gaidos, EJ Lopez, ED Fulton, BJ Vanderburg, A Barclay, T Fortney, JJ Howard, AW Isaacson, HT Mann, AW Petigura, E Aguirre, VS Sinukoff, EJ AF Grunblatt, Samuel K. Huber, Daniel Gaidos, Eric J. Lopez, Eric D. Fulton, Benjamin J. Vanderburg, Andrew Barclay, Thomas Fortney, Jonathan J. Howard, Andrew W. Isaacson, Howard T. Mann, Andrew W. Petigura, Erik Aguirre, Victor Silva Sinukoff, Evan J. TI K2-97b: A (RE-?)INFLATED PLANET ORBITING A RED GIANT STAR SO ASTRONOMICAL JOURNAL LA English DT Article DE asteroseismology; planets and satellites: detection; planets and satellites: gaseous planets; planets and satellites: physical evolution; planet-star interactions ID SOLAR-LIKE OSCILLATIONS; TRANSITING EXTRASOLAR PLANETS; HOT JUPITERS; LIGHT CURVES; M-DWARF; FUNDAMENTAL PROPERTIES; STELLAR EVOLUTION; ERROR-CORRECTION; BROWN DWARFS; HOST STARS AB Strongly irradiated giant planets are observed to have radii larger than thermal evolution models predict. Although these inflated planets have been known for over 15 years, it is unclear whether their inflation is caused by the. deposition of energy from the host star. or the. inhibited cooling of the planet. These processes can be distinguished if the planet becomes highly irradiated only when the host star evolves onto the red giant branch. We report the discovery of K2-97b, a 1.31 +/- 0.11 R-J, 1.10 +/- 0.11 M-J planet orbiting a 4.20 +/- 0.14 R-circle dot, 1.16 +/- 0.12 M-circle dot red giant star with an orbital period of 8.4 days. We precisely constrained stellar and planetary parameters by combining asteroseismology, spectroscopy, and granulation noise modeling along with transit and radial velocity measurements. The uncertainty in planet radius is dominated by systematic differences in transit depth, which we measure to be up to 30% between different light-curve reduction methods. Our calculations indicate the incident flux on this planet was 170(-60)(+140) times the incident flux on Earth, while the star was on the main sequence. Previous studies suggest that this incident flux is insufficient to delay planetary cooling enough to explain the present planet radius. This system thus provides the first evidence that planets may be inflated directly by incident stellar radiation rather than by delayed loss of heat from formation. Further studies of planets around red giant branch stars will confirm or contradict this hypothesis. and may reveal a new class of re-inflated planets. C1 [Grunblatt, Samuel K.; Fulton, Benjamin J.; Howard, Andrew W.; Sinukoff, Evan J.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Huber, Daniel] Univ Sydney, Sydney Inst Astron SIfA, Sch Phys, Sydney, NSW 2006, Australia. [Huber, Daniel] SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. [Huber, Daniel; Aguirre, Victor Silva] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. [Gaidos, Eric J.] Univ Hawaii Manoa, Dept Geol & Geophys, Honolulu, HI 96822 USA. [Gaidos, Eric J.] Univ Bern, Ctr Space & Habitabil, CH-3012 Bern, Switzerland. [Lopez, Eric D.] Univ Edinburgh, Royal Observ Edinburgh, Inst Astron, Blackford Hill, Edinburgh, Midlothian, Scotland. [Vanderburg, Andrew] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Barclay, Thomas] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Howard, Andrew W.; Petigura, Erik] CALTECH, Pasadena, CA 91125 USA. [Isaacson, Howard T.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Mann, Andrew W.] Univ Texas Austin, Dept Astron, RLM 15308, Austin, TX 78712 USA. RP Grunblatt, SK (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM skg@ifa.hawaii.edu OI Isaacson, Howard/0000-0002-0531-1073; Vanderburg, Andrew/0000-0001-7246-5438; Fulton, Benjamin/0000-0003-3504-5316 FU NASA [NNX11AC33G, NNX16AH45G, NAS5-26555, NNX09AF08G]; Australian Research Council [DE140101364]; National Aeronautics and Space Administration [NNX14AB92G]; University of Hawaii; University of California; California Institute of Technology; European Union [313014]; National Science Foundation [2014184874] FX The authors would like to thank Jeffrey C. Smith, Suzanne Aigrain, and Travis Berger for helpful discussions. This research was supported by NASA Origins of Solar Systems grant NNX11AC33G to E.G. and by the NASA K2 Guest Observer Award NNX16AH45G to D.H.. D.H. acknowledges support by the Australian Research Council's Discovery Projects funding scheme (project number DE140101364) and support by the National Aeronautics and Space Administration under Grant NNX14AB92G issued through the Kepler Participating Scientist Program. This research has made use of the Exoplanet Orbit Database and the Exoplanet Data Explorer at Exoplanets. org. This work was based on observations at the W. M. Keck Observatory granted by the University of Hawaii, the University of California, and the California Institute of Technology. We thank the observers who contributed to the measurements reported here and acknowledge the efforts of the Keck Observatory staff. We extend special thanks to those of Hawaiian ancestry on whose sacred mountain of Mauna Kea we are privileged to be guests. SNIFS on the UH 2.2 m telescope is part of the Nearby Supernova Factory project, a scientific collaboration among the Centre de Recherche Astronomique de Lyon, Institut de Physique Nuclaire de Lyon, Laboratoire de Physique Nuclaire et des Hautes Energies, Lawrence Berkeley National Laboratory, Yale University, University of Bonn, Max Planck Institute for Astrophysics, Tsinghua Center for Astrophysics, and the Centre de Physique des Particules de Marseille. Based on data from the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NNX-08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. Some/all of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research made use of the SIMBAD and VIZIER Astronomical Databases, operated at CDS, Strasbourg, France (http://cdsweb.u-strasbg.fr/), and of NASAs Astrophysics Data System, of the Jean-Marie Mariotti Center Search service (http://www.jmmc.fr/searchcal), co-developed by FIZEAU and LAOG/IPAG. E.D.L. received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 313014 (ETAEARTH). B.J.F. notes that this material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. 2014184874. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. NR 108 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 185 DI 10.3847/0004-6256/152/6/185 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED7OS UT WOS:000389057100003 ER PT J AU Gupta, RR Kuhlmann, S Kovacs, E Spinka, H Kessler, R Goldstein, DA Liotine, C Pomian, K D'Andrea, CB Sullivan, M Carretero, J Castander, FJ Nichol, RC Finley, DA Fischer, JA Foley, RJ Kim, AG Papadopoulos, A Sako, M Scolnic, DM Smith, M Tucker, BE Uddin, S Wolf, RC Yuan, F Abbott, TMC Abdalla, FB Benoit-Levy, A Bertin, E Brooks, D Rosell, AC Kind, MC Cunha, CE da Costa, LN Desai, S Doel, P Eifler, TF Evrard, AE Flaugher, B Fosalba, P Gaztanaga, E Gruen, D Gruendl, R James, DJ Kuehn, K Kuropatkin, N Maia, MAG Marshall, JL Miquel, R Plazas, AA Romer, AK Sanchez, E Schubnell, M Sevilla-Noarbe, I Sobreira, F Suchyta, E Swanson, MEC Tarle, G Walker, AR Wester, W AF Gupta, Ravi R. Kuhlmann, Steve Kovacs, Eve Spinka, Harold Kessler, Richard Goldstein, Daniel A. Liotine, Camille Pomian, Katarzyna D'Andrea, Chris B. Sullivan, Mark Carretero, Jorge Castander, Francisco J. Nichol, Robert C. Finley, David A. Fischer, John A. Foley, Ryan J. Kim, Alex G. Papadopoulos, Andreas Sako, Masao Scolnic, Daniel M. Smith, Mathew Tucker, Brad E. Uddin, Syed Wolf, Rachel C. Yuan, Fang Abbott, Tim M. C. Abdalla, Filipe B. Benoit-Levy, Aurelien Bertin, Emmanuel Brooks, David Rosell, Aurelio Carnero Kind, Matias Carrasco Cunha, Carlos E. da Costa, Luiz N. Desai, Shantanu Doel, Peter Eifler, Tim F. Evrard, August E. Flaugher, Brenna Fosalba, Pablo Gaztanaga, Enrique Gruen, Daniel Gruendl, Robert James, David J. Kuehn, Kyler Kuropatkin, Nikolay Maia, Marcio A. G. Marshall, Jennifer L. Miquel, Ramon Plazas, Andres A. Romer, A. Kathy Sanchez, Eusebio Schubnell, Michael Sevilla-Noarbe, Ignacio Sobreira, Flavia Suchyta, Eric Swanson, Molly E. C. Tarle, Gregory Walker, Alistair R. Wester, William TI HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS SO ASTRONOMICAL JOURNAL LA English DT Article DE catalogs; galaxies: general; supernovae: general; surveys ID HUBBLE-SPACE-TELESCOPE; DARK ENERGY SURVEY; CHALLENGE LIGHTCONE SIMULATION; IA SUPERNOVAE; SDSS-II; COSMOLOGICAL CONSTRAINTS; STRUCTURAL PARAMETERS; LUMINOSITY FUNCTION; CLUSTER SURVEY; TRANSIENT AB Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey. C1 [Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Liotine, Camille; Pomian, Katarzyna] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. [Kessler, Richard; Scolnic, Daniel M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kessler, Richard] Univ Chicago, Dept Astron & Astrophys, 5640 South Ellis Ave, Chicago, IL 60637 USA. [Goldstein, Daniel A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall 3411, Berkeley, CA 94720 USA. [Goldstein, Daniel A.] Lawrence Berkeley Natl Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [D'Andrea, Chris B.; Nichol, Robert C.; Papadopoulos, Andreas] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [D'Andrea, Chris B.; Sullivan, Mark; Smith, Mathew] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England. [Carretero, Jorge; Castander, Francisco J.; Fosalba, Pablo; Gaztanaga, Enrique] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, Jorge; Miquel, Ramon] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Finley, David A.; Flaugher, Brenna; Kuropatkin, Nikolay; Wester, William] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Fischer, John A.; Sako, Masao; Wolf, Rachel C.; Eifler, Tim F.; Suchyta, Eric] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA. [Foley, Ryan J.; Kind, Matias Carrasco; Gruendl, Robert] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Foley, Ryan J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Papadopoulos, Andreas] European Univ Cyprus, Sch Sci, 6 Diogenis St, CY-1516 Nicosia, Cyprus. [Tucker, Brad E.; Yuan, Fang] Australian Natl Univ, Mt Stromlo Observ, Res Sch Astron & Astrophys, Via Cotter Rd, Weston, ACT 2611, Australia. [Uddin, Syed] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Yuan, Fang] ARC Ctr Excellence All Sky Astrophys CAASTRO, Sydney, NSW, Australia. [Abbott, Tim M. C.; James, David J.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, Casilla 603, La Serena, Chile. [Abdalla, Filipe B.; Benoit-Levy, Aurelien; Brooks, David; Doel, Peter] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, Filipe B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Benoit-Levy, Aurelien; Bertin, Emmanuel] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Benoit-Levy, Aurelien; Bertin, Emmanuel] UPMC Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Rosell, Aurelio Carnero; da Costa, Luiz N.; Maia, Marcio A. G.; Sobreira, Flavia] Lab Interinstituc & Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Rosell, Aurelio Carnero; da Costa, Luiz N.; Maia, Marcio A. G.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, Matias Carrasco; Gruendl, Robert; Swanson, Molly E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Cunha, Carlos E.; Gruen, Daniel] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Desai, Shantanu] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, Shantanu] Ludwig Maximilians Univ Munchen, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, Tim F.; Plazas, Andres A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Evrard, August E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, August E.; Schubnell, Michael; Tarle, Gregory] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gruen, Daniel] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Kuehn, Kyler] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Marshall, Jennifer L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Marshall, Jennifer L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Miquel, Ramon] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Romer, A. Kathy] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, Eusebio] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. RP Gupta, RR (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. EM raviryan@gmail.com OI Abdalla, Filipe/0000-0003-2063-4345; Sullivan, Mark/0000-0001-9053-4820; Sobreira, Flavia/0000-0002-7822-0658 FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; MareNostrum supercomputer; Port d'Informacio Cientifica; CosmoHUB; EU/FP7-ERC grant [615929]; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]; U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; OzDES Membership Consortium; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union's Seventh Framework Programme (FP7); ERC [240672, 291329, 306478] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013). We acknowledge support from the MareNostrum supercomputer (BSC-CNS,. www.bsc.es), Port d'Informacio Cientifica (PIC, www.pic.es), and CosmoHUB (cosmohub.pic.es), where the MICE simulations were run, stored, and distributed, respectively. M. Sullivan acknowledges support from EU/FP7-ERC grant No. [615929]. Part of this research was conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020.; Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766.; The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. NR 66 TC 2 Z9 2 U1 6 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 154 DI 10.3847/0004-6256/152/6/154 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC9QP UT WOS:000388479500002 ER PT J AU Reddy, V Sanchez, JA Bottke, WF Thirouin, A Rivera-Valentin, EG Kelley, MS Ryan, W Cloutis, EA Tegler, SC Ryan, EV Taylor, PA Richardson, JE Moskovitz, N Le Corre, L AF Reddy, Vishnu Sanchez, Juan A. Bottke, William F. Thirouin, Audrey Rivera-Valentin, Edgard G. Kelley, Michael S. Ryan, William Cloutis, Edward A. Tegler, Stephen C. Ryan, Eileen V. Taylor, Patrick A. Richardson, James E. Moskovitz, Nicholas Le Corre, Lucille TI PHYSICAL CHARACTERIZATION OF similar to 2m DIAMETER NEAR-EARTH ASTEROID 2015 TC25: A POSSIBLE BOULDER FROM E-TYPE ASTEROID (44) NYSA SO ASTRONOMICAL JOURNAL LA English DT Article DE meteorites, meteors, meteoroids; minor planets, asteroids: general; techniques: spectroscopic ID INFRARED SPECTROSCOPY; REFLECTANCE SPECTRA; 2867 STEINS; HUNGARIA; SPECTROGRAPH; POPULATION; METEORITES; ROSETTA; OBJECTS; ORIGIN AB Small near-Earth asteroids (NEAs) (< 20 m) are interesting, because they are progenitors for meteorites in our terrestrial collection. The physical characteristics of these small NEAs are crucial to our understanding of the effectiveness of our atmosphere in filtering low-strength impactors. In the past, the characterization of small NEAs has been a challenge, because of the difficulty in detecting them prior to close Earth flyby. In this study, we physically characterized the 2 m diameter NEA 2015 TC25 using ground-based optical, near-infrared and radar assets during a close flyby of the Earth (distance 128,000 km) in 2015 October 12. Our observations suggest that its surface composition is similar to aubrites, a rare class of high-albedo differentiated meteorites. Aubrites make up only 0.14% of all known meteorites in our terrestrial meteorite collection. 2015 TC25 is also a very fast rotator with a period of 133 +/- 6 s. We combined the spectral and dynamical properties of 2015 TC25 and found the best candidate source body in the inner main belt to be the 70 km diameter E-type asteroid (44) Nysa. We attribute the difference in spectral slope between the two objects to the lack of regolith on the surface of 2015 TC25. Using the albedo of E-type asteroids (50%-60%) we refine the diameter of 2015 TC25 to 2 m, making it one of the smallest NEAs ever to be characterized. C1 [Reddy, Vishnu] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Reddy, Vishnu; Sanchez, Juan A.; Kelley, Michael S.; Moskovitz, Nicholas; Le Corre, Lucille] Univ Hawaii, Infrared Telescope Facil, Honolulu, HI 96822 USA. [Sanchez, Juan A.; Richardson, James E.; Le Corre, Lucille] Planetary Sci Inst, Tucson, AZ 85742 USA. [Bottke, William F.] Southwest Res Inst, Boulder, CO 80302 USA. [Thirouin, Audrey; Moskovitz, Nicholas] Lowell Observ, Flagstaff, AZ 86001 USA. [Rivera-Valentin, Edgard G.; Taylor, Patrick A.] Arecibo Observ, Arecibo, PR 00612 USA. [Kelley, Michael S.] Georgia Southern Univ, Dept Geol & Geog, Statesboro, GA 30460 USA. [Kelley, Michael S.] NASA Headquarters, Planetary Sci Div, Sci Mission Directorate, Washington, DC 20546 USA. [Ryan, William; Ryan, Eileen V.] Magdalena Ridge Observ New Mexico Tech, Socorro, NM 87801 USA. [Cloutis, Edward A.] Univ Winnipeg, Dept Geog, Winnipeg, MB R3B 2E9, Canada. [Tegler, Stephen C.] No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ 86011 USA. RP Reddy, V (reprint author), Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.; Reddy, V (reprint author), Univ Hawaii, Infrared Telescope Facil, Honolulu, HI 96822 USA. FU NASA Near-Earth Object Observations Program [NNX14AL06G]; NASA Planetary Geology and Geophysics [NAG5-10345]; National Aeronautics and Space Administration [NNH14CK55B, NNX12AF24G, NNX13AQ46G]; Canada Foundation for Innovation (CFI); Manitoba Research Innovation Fund (MRIF); Natural Sciences and Engineering Research Council of Canada (NSERC); Canadian Space Agency (CSA); University of Winnipeg FX V.R. and J.A.S.'s research work was supported by the NASA Near-Earth Object Observations Program grant NNX14AL06G (PI: Reddy). M.K.'s research was funded by NASA Planetary Geology and Geophysics Grant NAG5-10345 (PI: Gaffey). We thank the IRTF TAC for awarding time to this project, and the IRTF TOs and MKSS staff for their support. The IRTF is operated by the University of Hawaii under contract no. NNH14CK55B with the National Aeronautics and Space Administration. Part of this work was done at the Arecibo Observatory, which is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968) and in alliance with Ana G. Mendez-Universidad Metropolitana and the Universities Space Research Association. The Arecibo Planetary Radar Program is supported by the National Aeronautics and Space Administration under Grant Nos. NNX12AF24G and NNX13AQ46G issued through the Near-Earth Object Observations program. E.A.C. thanks the Canada Foundation for Innovation (CFI), the Manitoba Research Innovation Fund (MRIF), the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Space Agency (CSA), and the University of Winnipeg for supporting the laboratory work undertaken at the University of Winnipeg's Planetary Spectrophotometer Facility (PSF). NR 38 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 162 DI 10.3847/0004-6256/152/6/162 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED1TB UT WOS:000388626700003 ER PT J AU Hamaguchi, K Oskinova, L Russell, CMP Petre, R Enoto, T Morihana, K Ishida, M AF Hamaguchi, K. Oskinova, L. Russell, C. M. P. Petre, R. Enoto, T. Morihana, K. Ishida, M. TI DISCOVERY OF RAPIDLY MOVING PARTIAL X-RAY ABSORBERS WITHIN GAMMA CASSIOPEIAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE blue stragglers; stars: emission-line, Be; stars: individual (gamma Cassiopeiae); stars: winds, outflows; white dwarfs; X-rays: stars ID CIRCUMSTELLAR ENVIRONMENT; MULTIWAVELENGTH CAMPAIGN; INTERSTELLAR-MEDIUM; CHARA ARRAY; STARS; VARIABILITY; EMISSION; SPECTROSCOPY; ABSORPTION; KINEMATICS AB detected six rapid X-ray spectral hardening events called "softness dips" in a similar to 100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either similar to 40% or similar to 70% partial covering absorption to kT similar to 12 keV plasma emission by matter with a neutral hydrogen column density of similar to(2-8) x 10(21) cm(-2), while the spectrum outside these dips is almost free of absorption. This result suggests the presence of two distinct X-ray-emitting spots in the.. Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT similar to 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; gamma Cas may have experienced such activity in the past. C1 [Hamaguchi, K.] NASA, GSFC, CRESST, Greenbelt, MD 20771 USA. [Hamaguchi, K.] NASA, GSFC, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Hamaguchi, K.] Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Oskinova, L.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Russell, C. M. P.; Petre, R.] NASA, GSFC, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Enoto, T.] Kyoto Univ, Hakubi Ctr Adv Res, Kyoto 6068302, Japan. [Enoto, T.] Kyoto Univ, Dept Astron, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan. [Morihana, K.] Univ Hyogo, Ctr Astron, Nishi Harima Astron Observ, 407-2 Nichigaichi,Sayo Cho, Sayo, Hyogo 6705313, Japan. [Ishida, M.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan. RP Hamaguchi, K (reprint author), NASA, GSFC, CRESST, Greenbelt, MD 20771 USA.; Hamaguchi, K (reprint author), NASA, GSFC, Xray Astrophys Lab, Greenbelt, MD 20771 USA.; Hamaguchi, K (reprint author), Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. EM Kenji.Hamaguchi@nasa.gov OI Enoto, Teruaki/0000-0003-1244-3100; Hamaguchi, Kenji/0000-0001-7515-2779 FU Chandra grant [GO4-15019A]; XMM-Newton grant [NNX15AK62G]; ADAP grant [NNX15AM96G] FX The authors are grateful to the anonymous referee for very useful comments and suggestions that helped to significantly improve the paper. The authors appreciate Drs. D. Vanbeveren, S. Drake, M. Smith, K. Mukai, K. Pottschmidt, and C. Shrader for providing important information and discussion. This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center. This research has made use of NASA's Astrophysics Data System Bibliographic Services. K.H. is supported by the Chandra grant GO4-15019A, the XMM-Newton grant NNX15AK62G, and the ADAP grant NNX15AM96G. C.M.P.R. is supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Universities Space Research Association under contract with NASA. NR 53 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 140 DI 10.3847/0004-637X/832/2/140 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED7MM UT WOS:000389049800011 ER PT J AU Flynn, CM Pickering, KE Crawford, JH Weinheimer, AJ Diskin, G Thornhill, KL Loughner, C Lee, P Strode, SA AF Flynn, Clare Marie Pickering, Kenneth E. Crawford, James H. Weinheimer, Andrew J. Diskin, Glenn Thornhill, K. Lee Loughner, Christopher Lee, Pius Strode, Sarah A. TI Variability of O-3 and NO2 profile shapes during DISCOVER-AQ: Implications for satellite observations and comparisons to model-simulated profiles SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Ozone; Nitrogen oxides; DISCOVER-AQ; Cluster analysis; Aircraft measurement campaign; Measurement-model comparison ID SURFACE AIR-QUALITY; OZONESONDE PROFILES; INTEX-B; RETRIEVALS; EMISSIONS; OMI; ALGORITHM; POLLUTION; AIRCRAFT; MISSION AB To investigate the variability of in situ profile shapes under a variety of meteorological and pollution conditions, results are presented of an agglomerative hierarchical cluster analysis of the in situ O-3 and NO2 profiles for each of the four campaigns of the NASA DISCOVER-AQ mission. Understanding the observed profile variability for these trace gases is useful for understanding the accuracy of the assumed profile shapes used in satellite retrieval algorithms as well as for understanding the correlation between satellite column observations and surface concentrations. The four campaigns of the DISCOVER-AQ mission took place in Maryland during July 2011, the San Joaquin Valley of California during January February 2013, the Houston, Texas, metropolitan region during September 2013, and the Denver-Front Range region of Colorado during July August 2014. Several distinct profile clusters emerged for the California, Texas, and Colorado campaigns for O-3, indicating significant variability of O-3 profile shapes, while the Maryland campaign presented only one distinct O-3 cluster. In contrast, very few distinct profile clusters emerged for NO2 during any campaign for this particular clustering technique, indicating the NO2 profile behavior was relatively uniform throughout each campaign. However, changes in NO2 profile shape were evident as the boundary layer evolved through the day, but they were apparently not significant enough to yield more clusters. The degree of vertical mixing (as indicated by temperature lapse rate) associated with each cluster exerted an important influence on the shapes of the median cluster profiles for O-3, as well as impacted the correlations between the associated column and surface data for each cluster for O-3. The correlation analyses suggest satellites may have the best chance to relate to surface O-3 under the conditions encountered during the Maryland campaign Clusters 1 and 2, which include deep, convective boundary layers and few interruptions to this connection from complex meteorology, chemical environments, or orography. The regional CMAQ model captured the shape factors for O-3, and moderately well captured the NO2 shape factors, for the conditions associated with the Maryland campaign, suggesting that a regional air quality model may adequately specify a priori profile shapes for remote sensing retrievals. CMAQ shape factor profiles were not as well represented for the other regions. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Flynn, Clare Marie; Pickering, Kenneth E.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Pickering, Kenneth E.; Loughner, Christopher] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Crawford, James H.; Diskin, Glenn; Thornhill, K. Lee] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Weinheimer, Andrew J.] NCAR, Atmospher Chem Observat & Modeling Lab, Boulder, CO 80305 USA. [Loughner, Christopher] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Lee, Pius] NOAA, Air Resources Lab, Silver Spring, MD 20910 USA. [Strode, Sarah A.] NASA, GSFC, GESTAR, Greenbelt, MD USA. [Flynn, Clare Marie] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. RP Flynn, CM (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA.; Flynn, CM (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM cflynn@atmos.umd.edu RI Strode, Sarah/H-2248-2012; OI Strode, Sarah/0000-0002-8103-1663; Loughner, Christopher/0000-0002-3833-2014 FU NASA Earth Venture 1 DISCOVER-AQ project FX Funding for this work was provided by the NASA Earth Venture 1 DISCOVER-AQ project. The authors thank the MDE, the SJV ACPD, the CARB, the TCEQ the CDPHE, Millersville University, the Penn State NATIVE team, the NASA COMMIT team, the NASA LARGE group, the EPA, and NOAA for providing the surface O3 and NO2 datasets used in this work. The authors also thank Donald Lenschow for providing PBL height estimates for the Maryland campaign. NR 45 TC 1 Z9 1 U1 13 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD DEC PY 2016 VL 147 BP 133 EP 156 DI 10.1016/j.atmosenv.2016.09.068 PG 24 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA ED0PE UT WOS:000388543600013 ER PT J AU Hale, MC McKinney, GJ Thrower, FP Nichols, KM AF Hale, Matthew C. McKinney, Garrett J. Thrower, Frank P. Nichols, Krista M. TI RNA-seq reveals differential gene expression in the brains of juvenile resident and migratory smolt rainbow trout (Oncorhynchus mykiss) SO COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS LA English DT Article DE Migration; Genetics; Transcriptome; Salmonid; Smoltification ID SALMON SALMO-SALAR; LIFE-HISTORY VARIATION; SPRING CHINOOK SALMON; ATLANTIC SALMON; STEELHEAD TROUT; GROWTH-HORMONE; SEAWATER ADAPTATION; THYROID-HORMONES; PINEAL-GLAND; FRESH-WATER AB Many migratory traits are heritable, but there is a paucity of evidence identifying the molecular mechanisms underlying differentiation in alternative migratory tactics, or in linking variation in gene expression to migratory behaviors. To that end, we examined differential gene expression in the brain transcriptome between young steelhead trout that had undergone the smoltification process, and resident rainbow trout (Oncorhynchus mykiss) from Sashin Creek, Alaska. Samples were sequenced from two time points: immediately before (at 20 months of age) and during (2 years of age) the presumed peak of smoltification. Smolt and resident individuals came from two genetic crosses, one where both parents were migratory, and another where both parents were residents. A total of 533 (1.9%) genes were differentially expressed between crosses, or between smolt and resident samples. These genes include some candidate migratory genes (such as POMC), as well as genes with no previous known involvement in the migratory process. Progeny from resident parents showed more upregulated genes than progeny from migrant parents at both time points. Pathway analysis showed enrichment in 227 biological pathways between cross type, and 171 biological pathways were enriched between residents and smolts. Enriched pathways had connections to many biofunctions, and most were only enriched in one contrast. However, pathways connected to phototransduction were enriched between both cross type and migratory tactics in 11 out of 12 contrasts, suggesting there are fundamental differences in how smolts and residents process light in the brain. The genes and pathways described herein constitute an a priori candidate list for future studies of migration in other populations of O. mykiss, and other migratory species. Published by Elsevier Inc. C1 [Hale, Matthew C.; McKinney, Garrett J.; Nichols, Krista M.] Purdue Univ, Dept Biol Sci, 915 W State St, W Lafayette, IN 47906 USA. [Hale, Matthew C.] Texas Christian Univ, Dept Biol, 2800 S Univ Dr, Ft Worth, TX 76133 USA. [Thrower, Frank P.] NOAA, Ted Stevens Marine Res Inst, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK USA. [Nichols, Krista M.] NOAA, Conservat Biol Div, Northwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd E, Natori, Miyagi 98112, Japan. [McKinney, Garrett J.] Univ Washington, Sch Aquat & Fisheries Sci, 1122 NE Boat St, Seattle, WA 98105 USA. RP Nichols, KM (reprint author), Purdue Univ, Dept Biol Sci, 915 W State St, W Lafayette, IN 47906 USA.; Nichols, KM (reprint author), NOAA, Conservat Biol Div, Northwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd E, Natori, Miyagi 98112, Japan. EM krista.nichols@noaa.gov FU National Science Foundation Career Award [NSF-DEB-0845265]; Alaska Fisheries Science Center, Ted Stevens Marine Research Institute, NOAH FX We are grateful to the staff at Little Port Walter, Alaska, for assistance in collection of gametes, culture of juveniles, and tissue sample collection. Thanks also go to Phillip San Miguel, and Paul Parker at the Genomics Facility at Purdue University for their work in constructing Illumina libraries, and carrying out the sequencing. Penny Swanson, Nicholas Marra, and Nate Lichti provided invaluable comments on earlier versions of this manuscript. Julien Bobe, Matt Rise, and Chris Martyniuk provided helpful advice on the treatment of possible pituitary transcripts. Two anonymous reviewers and the handling editors provided invaluable comments that improved the manuscript. Funding for this study was provided by a National Science Foundation Career Award to Krista Nichols (NSF-DEB-0845265) and by the Alaska Fisheries Science Center, Ted Stevens Marine Research Institute, NOAH. NR 104 TC 0 Z9 0 U1 24 U2 24 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1744-117X EI 1878-0407 J9 COMP BIOCHEM PHYS D JI Comp. Biochem. Physiol. D-Genomics Proteomics PD DEC PY 2016 VL 20 BP 136 EP 150 DI 10.1016/j.cbd.2016.07.006 PG 15 WC Biochemistry & Molecular Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Genetics & Heredity GA ED8BS UT WOS:000389097500016 PM 27693967 ER PT J AU Sarrado, C Leone, FA Turon, A AF Sarrado, Carlos Leone, Frank A. Turon, Albert TI Finite-thickness cohesive elements for modeling thick adhesives SO ENGINEERING FRACTURE MECHANICS LA English DT Article DE Cohesive zone modeling; Damage mechanics; Mixed-mode fracture; Debonding; Adhesive joints ID DELAMINATION GROWTH; INTERFACE ELEMENTS; PROGRESSIVE DELAMINATION; LAMINATED COMPOSITES; FRACTURE-TOUGHNESS; DAMAGE MODEL; ZONE MODELS; SIMULATION; JOINTS AB A new cohesive element formulation is proposed for modeling the initial elastic response, softening, and failure of finite-thickness adhesives. By decoupling the penalty stiffness of the cohesive zone model formulation and the physical adhesive modulus, the new formulation ensures proper dissipation of fracture energy for opening and shear loading modes and mixed-mode loading conditions with any combination of elastic and fracture material properties. Predictions are made using the new element formulation for double cantilever beam, end-notched flexure, mixed-mode bending and single lap joint specimens with varying adhesive thicknesses. Good correlation between all predictions and experimental results was observed. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Sarrado, Carlos; Turon, Albert] Univ Girona, Polytech Sch, AMADE, Campus Montilivi S-N, Girona 17071, Spain. [Leone, Frank A.] NASA, Struct Mech & Concepts Branch, Langley Res Ctr, MS 190, Hampton, VA 23681 USA. RP Sarrado, C (reprint author), Univ Girona, Polytech Sch, AMADE, Campus Montilivi S-N, Girona 17071, Spain. EM carlos.sarrado@udg.edu; frank.a.leone@nasa.gov; albert.turon@udg.edu OI Sarrado, Carlos/0000-0002-2245-1596; Turon, Albert/0000-0002-2554-2653 FU Spanish Ministerio de Educacion, Cultura y Deporte [AP2010-0977]; Spanish government through the Ministerio de Economia y Competitividad [DPI2012-34465, TRA2015-71491-R] FX The first author would like to acknowledge the FPU program grant AP2010-0977 from the Spanish Ministerio de Educacion, Cultura y Deporte. The authors also acknowledge the support of the Spanish government through the Ministerio de Economia y Competitividad under the contracts DPI2012-34465 and TRA2015-71491-R. NR 29 TC 1 Z9 1 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-7944 EI 1873-7315 J9 ENG FRACT MECH JI Eng. Fract. Mech. PD DEC PY 2016 VL 168 BP 105 EP 113 DI 10.1016/j.engfracmech.2016.03.020 PN B PG 9 WC Mechanics SC Mechanics GA ED8AL UT WOS:000389094000009 ER PT J AU Jerath, M Bhat, M Rivera-Monroy, VH Castaneda-Moya, E Simard, M Twilley, RR AF Jerath, Meenakshi Bhat, Mahadev Rivera-Monroy, Victor H. Castaneda-Moya, Edward Simard, Marc Twilley, Robert R. TI The role of economic, policy, and ecological factors in estimating the value of carbon stocks in Everglades mangrove forests, South Florida, USA SO ENVIRONMENTAL SCIENCE & POLICY LA English DT Article DE Carbon storage; Carbon economic value; The Florida Everglades; Mangroves; Ecosystem services ID NET PRIMARY PRODUCTIVITY; FRESH-WATER FLOW; COASTAL EVERGLADES; ORGANIC-CARBON; ABOVEGROUND BIOMASS; DIOXIDE EMISSIONS; ENERGY-BALANCE; ELEVATION DATA; CLIMATE-CHANGE; STORM SURGES AB Old growth mangroves in existing protected areas store more carbon than restored forests or plantations. Carbon storage in such forests has economic value independent of additionality, offering opportunities for policy makers to ensure their maintenance, and inclusion in climate change mitigation strategies. Mangrove forests of the Everglades National Park (ENP), South Florida, though protected, face external stressors such as hydrological alterations because of flooding control structures and agriculture impacts and saltwater intrusion as a result of increasing sea level rise. Moreover, decreased funding of Everglades' restoration activities following the recent economic crisis (beginning 2008) threatens the restoration of the Greater Everglades including mangrove dominated coastal regions. We evaluate several economic and ecological challenges confronting the economic valuation of total (vegetation plus soil) organic carbon (TOC) storage in the ENP mangroves. Estimated TOC storage for this forested wetland ranges from 70 to 537 Mg C/ha and is higher than values reported for tropical, boreal, and temperate forests. We calculate the average abatement cost of C specific for ENP mangroves to value the TOC from $2-$3.4 billion; estimated unit area values are $13,859/ha-$23,728/ha. The valuation of the stored/legacy carbon is based on the: 1) ecogeomorphic attributes, 2) regional socio-economic milieu, and 3) status of the ENP mangroves as a protected area. The assessment of C storage estimates and its economic value can change public perception about how this regulating ecosystem service of ENP mangrove wetlands (144,447 ha) supports human well-being and numerous economic activities. This perception, in turn, can contribute to future policy changes such that the ENP mangroves, the largest mangrove area in the continental USA, can be included as a potential alternative in climate change mitigation strategies. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Jerath, Meenakshi; Bhat, Mahadev] Florida Int Univ, Earth & Environm Dept, Miami, FL 33199 USA. [Rivera-Monroy, Victor H.; Castaneda-Moya, Edward; Twilley, Robert R.] Louisiana State Univ, Coll Coast & Environm, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA. [Simard, Marc] CALTECH, Jet Prop Lab, Radar & Engn Sect, Pasadena, CA USA. [Castaneda-Moya, Edward] Florida Int Univ, Southeast Environm Res Ctr, Miami, FL 33199 USA. RP Bhat, M (reprint author), Florida Int Univ, Earth & Environm Dept, Miami, FL 33199 USA. EM bhatm@fiu.edu OI Simard, Marc/0000-0002-9442-4562 FU National Science Foundation under the Water and Climate Sustainability program [EAR-1039223]; Florida Coastal Everglades Long-Term Ecological Research program [DEB-9910514, DBI-0620409, DEB-1237517]; NASA-JPL project (LSU) "Vulnerability Assessment of Mangrove Forest Regions of the Americas" [1452878] FX This study was funded by the National Science Foundation under the Water and Climate Sustainability program (Award # EAR-1039223) and the Florida Coastal Everglades Long-Term Ecological Research program (Grant No. DEB-9910514, Grant No. DBI-0620409, and Grant No. DEB-1237517). Partial funding was also provided by the NASA-JPL project (LSU Subcontract # 1452878) "Vulnerability Assessment of Mangrove Forest Regions of the Americas". We would like to thank Dr. Keqi Zhang, Daniel Gann, and Himadri Biswas for their valuable support in using GIS methodology. NR 84 TC 0 Z9 0 U1 60 U2 60 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1462-9011 EI 1873-6416 J9 ENVIRON SCI POLICY JI Environ. Sci. Policy PD DEC PY 2016 VL 66 BP 160 EP 169 DI 10.1016/j.envsci.2016.09.005 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA ED7YT UT WOS:000389089300017 ER PT J AU Hunter, AH Araullo-Peters, V Gibbons, M Restrepo, OD Niezgoda, SR Windl, W Flores, KM Hofmann, DC Marquis, EA AF Hunter, A. H. Araullo-Peters, V. Gibbons, M. Restrepo, O. D. Niezgoda, S. R. Windl, W. Flores, K. M. Hofmann, D. C. Marquis, E. A. TI Three-dimensional imaging of shear bands in bulk metallic glass composites SO JOURNAL OF MICROSCOPY LA English DT Article DE Atom probe tomography; density-functional theory; shear band ID TRANSMISSION ELECTRON-MICROSCOPY; TENSILE PROPERTIES; DUCTILE DENDRITES; MATRIX COMPOSITES; AMORPHOUS-ALLOYS; AB-INITIO; MICROSTRUCTURE; PLASTICITY; SIZE AB The mechanism of the increase in ductility in bulk metallic glass matrix composites over monolithic bulk metallic glasses is to date little understood, primarily because the interplay between dislocations in the crystalline phase and shear bands in the glass could neither be imaged nor modelled in a validated way. To overcome this roadblock, we show that shear bands can be imaged in three dimensions by atom probe tomography from density variations in the reconstructed atomic density, which density-functional theory suggests being a local-work function effect. Imaging of near-interface shear bands in Ti48Zr20V12Cu5Be15 bulk metallic glass matrix composite permits measurement of their composition, thickness, branching and interactions with the dendrite interface. These results confirm that shear bands here nucleate from stress concentrations in the glass due to intense, localized plastic deformation in the dendrites rather than intrinsic structural inhomogeneities. Lay description Bulk metallic glass matrix composites combine the structure and properties of two different phases: a metallic glass phase and a crystalline phase, making them both strong and ductile. How can we better design these materials so they deform without breaking is the key question of this paper, which we address by imaging locally the regions where the material has deformed. Because of the complex arrangement of the two phases, we use an imaging technique (atom probe tomography) that provides 3D spatial information and we are able to reveal local deformation at the atomic scale, which we support and confirm using modelling. C1 [Hunter, A. H.; Araullo-Peters, V.; Marquis, E. A.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Gibbons, M.; Restrepo, O. D.; Niezgoda, S. R.; Windl, W.] Ohio State Univ, Dept Mat Sci & Engn, 116 W 19Th Ave, Columbus, OH 43210 USA. [Flores, K. M.] Washington Univ, Inst Mat Sci & Engn, Dept Mech Engn & Mat Sci, St Louis, MO USA. [Hofmann, D. C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Marquis, EA (reprint author), Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. EM emarq@umich.edu OI Marquis, Emmanuelle/0000-0002-6476-2835 FU Air Force Office of Scientific Research [FA9550-12-1-0059]; University of Michigan College of Engineering [FA9550-14-1-0249]; Ohio Supercomputer Center [PAS0072]; National Aeronautics and Space Administration (NASA) FX The authors wish to acknowledge financial support from the Air Force Office of Scientific Research Award No. FA9550-12-1-0059 with partial support from Award No. FA9550-14-1-0249, from the University of Michigan College of Engineering, and from computational support by the Ohio Supercomputer Center under Grant No. PAS0072. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). NR 27 TC 0 Z9 0 U1 15 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-2720 EI 1365-2818 J9 J MICROSC-OXFORD JI J. Microsc.. PD DEC PY 2016 VL 264 IS 3 BP 304 EP 310 DI 10.1111/jmi.12443 PG 7 WC Microscopy SC Microscopy GA ED0WZ UT WOS:000388565000005 PM 27513447 ER PT J AU Strekalov, DV Marquardt, C Matsko, AB Schwefel, HGL Leuchs, G AF Strekalov, Dmitry V. Marquardt, Christoph Matsko, Andrey B. Schwefel, Harald G. L. Leuchs, Gerd TI Nonlinear and quantum optics with whispering gallery resonators SO JOURNAL OF OPTICS LA English DT Review DE microresonators; optical wave mixing; non-classical light ID FREQUENCY COMB GENERATION; PHOTON PAIR GENERATION; STIMULATED RAMAN-SCATTERING; 3RD HARMONIC-GENERATION; MICRO-RING RESONATOR; ENHANCED 2ND-HARMONIC GENERATION; MORPHOLOGY-DEPENDENT RESONANCES; INTERNAL-REFLECTION RESONATOR; HIGH-RESOLUTION SPECTROSCOPY; FUSED-SILICA MICROSPHERES AB Optical whispering gallery modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other waves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out-coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas. C1 [Strekalov, Dmitry V.] CALTECH, Jet Prop Lab, Pasadena, CA 91108 USA. [Strekalov, Dmitry V.; Marquardt, Christoph; Schwefel, Harald G. L.; Leuchs, Gerd] Max Planck Inst Sci Light, D-90158 Erlangen, Germany. [Marquardt, Christoph; Schwefel, Harald G. L.; Leuchs, Gerd] Univ Erlangen Nurnberg, Inst Opt Informat & Photon, Staudtstr 7-B2, D-90158 Erlangen, Germany. [Matsko, Andrey B.] OEwaves Inc, 465 N Halstead Str,Suite 140, Pasadena, CA 91107 USA. [Schwefel, Harald G. L.] Univ Otago, Dept Phys, Dodd Walls Ctr Photon & Quantum Technol, Dunedin, New Zealand. RP Strekalov, DV (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91108 USA.; Strekalov, DV (reprint author), Max Planck Inst Sci Light, D-90158 Erlangen, Germany. EM dmitry.v.strekalov@jpl.nasa.gov RI Leuchs, Gerd/G-6178-2012; Marquardt, Christoph/E-5332-2011 OI Leuchs, Gerd/0000-0003-1967-2766; Marquardt, Christoph/0000-0002-5045-513X FU Alexander von Humboldt Foundation; DARPA Quiness program FX DVS acknowledges financial support from Alexander von Humboldt Foundation and the DARPA Quiness program, and would like to thank Dr Maria Chekhova for useful discussions. HGLS would like to thank Florian Sedlmeir and Alfredo Rueda for useful discussions. The authors appreciate Drs.' Kartik Srinivasan, Serge Rosenblum and Hailin Wang valuable feedback on this paper preprint and thank Dr Paul Barclay for sharing the photo shown in figure 16. The research was partly carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 611 TC 1 Z9 1 U1 46 U2 46 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2040-8978 EI 2040-8986 J9 J OPTICS-UK JI J. Opt. PD DEC PY 2016 VL 18 IS 12 AR 123002 DI 10.1088/2040-8978/18/12/123002 PG 43 WC Optics SC Optics GA ED3DB UT WOS:000388728400001 ER PT J AU LaMassa, S AF LaMassa, Stephanie TI ASTRONOMY A black hole changes its feeding habits SO NATURE LA English DT Editorial Material ID ACTIVE GALACTIC NUCLEI; REFERENCE SURVEY CARS; LOOK QUASARS; SEYFERT 1; VARIABILITY; SHADOWS; SEARCH; SDSS AB In the 1980s, the gas surrounding a black hole in a nearby galaxy began to emit much more radiation than before. This change has unexpectedly reversed in the past five years, questioning our understanding of these extreme phenomena. C1 [LaMassa, Stephanie] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP LaMassa, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM stephanie.m.lamassa@nasa.gov NR 15 TC 0 Z9 0 U1 4 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD DEC 1 PY 2016 VL 540 IS 7631 BP 48 EP 49 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED5UA UT WOS:000388916600045 PM 27880760 ER PT J AU Nimmo, F Hamilton, DP McKinnon, WB Schenk, PM Binzel, RP Bierson, CJ Beyer, RA Moore, JM Stern, SA Weaver, HA Olkin, CB Young, LA Smith, KE AF Nimmo, F. Hamilton, D. P. McKinnon, W. B. . Schenk, P. M. Binzel, R. P. Bierson, C. J. Beyer, R. A. Moore, J. M. Stern, S. A. Weaver, H. A. Olkin, C. B. Young, L. A. Smith, K. E. CA New Horizons Geology Geophys TI Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto SO NATURE LA English DT Article ID IMPACT BASIN RELAXATION; KUIPER-BELT OBJECTS; TOPOGRAPHY; CONVECTION; HORIZONS; EUROPA AB The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto's tidal axis(1) and may be an impact feature(2), by analogy with other large basins in the Solar System(3,4). Reorientation(5-7) of Sputnik Planitia arising from tidal and rotational torques can explain the basin's present-day location, but requires the feature to be a positive gravity anomaly(7), despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day(8) and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent(9), nitrogen loading and reorientation may have exhibited complex feedbacks(7). C1 [Nimmo, F.; Bierson, C. J.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Hamilton, D. P.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [McKinnon, W. B. .] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [McKinnon, W. B. .] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA. [Schenk, P. M.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Binzel, R. P.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Beyer, R. A.; Moore, J. M.; Smith, K. E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Stern, S. A.; Olkin, C. B.; Young, L. A.] Southwest Res Inst, Boulder, CO 80302 USA. [Weaver, H. A.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. RP Nimmo, F (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. EM fnimmo@es.ucsc.edu OI Bierson, Carver/0000-0002-6840-7187 NR 37 TC 1 Z9 1 U1 8 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD DEC 1 PY 2016 VL 540 IS 7631 BP 94 EP + DI 10.1038/nature20148 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED5UA UT WOS:000388916600054 PM 27851735 ER PT J AU Hamilton, DP Stern, SA Moore, JM Young, LA AF Hamilton, Douglas P. Stern, S. A. Moore, J. M. Young, L. A. CA New Horizons Geology Geophys TI The rapid formation of Sputnik Planitia early in Pluto's history SO NATURE LA English DT Article ID INSOLATION; CHARON; OBLIQUITY; EVOLUTION AB Pluto's Sputnik Planitia is a bright, roughly circular feature that resembles a polar ice cap. It is approximately 1,000 kilometres across and is centred on a latitude of 25 degrees north and a longitude of 175 degrees, almost directly opposite the side of Pluto that always faces Charon as a result of tidal locking(1). One explanation for its location includes the formation of a basin in a giant impact, with subsequent upwelling of a dense interior ocean(2). Once the basin was established, ice would naturally have accumulated there(3). Then, provided that the basin was a positive gravity anomaly (with or without the ocean), true polar wander could have moved the feature towards the Pluto-Charon tidal axis, on the far side of Pluto from Charon(2,4). Here we report modelling that shows that ice quickly accumulates on Pluto near latitudes of 30 degrees north and south, even in the absence of a basin, because, averaged over its orbital period, those are Pluto's coldest regions. Within a million years of Charon's formation, ice deposits on Pluto concentrate into a single cap centred near a latitude of 30 degrees, owing to the runaway albedo effect. This accumulation of ice causes a positive gravity signature that locks, as Pluto's rotation slows, to a longitude directly opposite Charon. Once locked, Charon raises a permanent tidal bulge on Pluto, which greatly enhances the gravity signature of the ice cap. Meanwhile, the weight of the ice in Sputnik Planitia causes the crust under it to slump, creating its own basin (as has happened on Earth in Greenland(5)). Even if the feature is now a modest negative gravity anomaly, it remains locked in place because of the permanent tidal bulge raised by Charon. Any movement of the feature away from 30 degrees latitude is countered by the preferential recondensation of ices near the coldest extremities of the cap. Therefore, our modelling suggests that Sputnik Planitia formed shortly after Charon did and has been stable, albeit gradually losing volume, over the age of the Solar System. C1 [Hamilton, Douglas P.] Univ Maryland, College Pk, MD 20742 USA. [Stern, S. A.; Young, L. A.] SWRI, Boulder, CO USA. [Moore, J. M.] NASA Ames, Mountain View, CA USA. RP Hamilton, DP (reprint author), Univ Maryland, College Pk, MD 20742 USA. EM dphamil@umd.edu FU NASA; NASA Origins FX We thank NASA for its support of the New Horizons mission and the New Horizons mission team for making the July 2015 flyby possible. We thank V. Bray, B. Carcich, J. Hofgartner and F. Nimmo for helpful comments. This research was supported by a grant from NASA Origins (to D.P.H.). NR 34 TC 1 Z9 1 U1 3 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD DEC 1 PY 2016 VL 540 IS 7631 BP 97 EP + DI 10.1038/nature20586 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED5UA UT WOS:000388916600055 PM 27905411 ER PT J AU Titov, V Song, YT Tang, L Bernard, EN Bar-Sever, Y Wei, Y AF Titov, V. Song, Y. Tony Tang, L. Bernard, E. N. Bar-Sever, Y. Wei, Y. TI Consistent Estimates of Tsunami Energy Show Promise for Improved Early Warning SO PURE AND APPLIED GEOPHYSICS LA English DT Article DE Tsunami energy; GPS network; DART system; early warning ID WAVE-FORMS; DEFORMATION; EARTHQUAKE; RUNUP AB Early tsunami warning critically hinges on rapid determination of the tsunami hazard potential in real-time, before waves inundate critical coastlines. Tsunami energy can quickly characterize the destructive potential of generated waves. Traditional seismic analysis is inadequate to accurately predict a tsunami's energy. Recently, two independent approaches have been proposed to determine tsunami source energy: one inverted from the Deep-ocean Assessment and Reporting of Tsunamis (DART) data during the tsunami propagation, and the other derived from the land-based coastal global positioning system (GPS) during tsunami generation. Here, we focus on assessing these two approaches with data from the March 11, 2011 Japanese tsunami. While the GPS approach takes into consideration the dynamic earthquake process, the DART inversion approach provides the actual tsunami energy estimation of the propagating tsunami waves; both approaches lead to consistent energy scales for previously studied tsunamis. Encouraged by these promising results, we examined a real-time approach to determine tsunami source energy by combining these two methods: first, determine the tsunami source from the globally expanding GPS network immediately after an earthquake for near-field early warnings; and then to refine the tsunami energy estimate from nearby DART measurements for improving forecast accuracy and early cancelations. The combination of these two real-time networks may offer an appealing opportunity for: early determination of the tsunami threat for the purpose of saving more lives, and early cancelation of tsunami warnings to avoid unnecessary false alarms. C1 [Titov, V.; Tang, L.; Bernard, E. N.; Wei, Y.] NOAA, Pacific Marine Environm Lab, Ctr Tsunami Res, 7600 Sand Point Way NE, Seattle, WA 98115 USA. [Song, Y. Tony; Bar-Sever, Y.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Tang, L.; Wei, Y.] Univ Washington, Joint Inst Study Atmosphere & Ocean, Box 355672, Seattle, WA 98105 USA. RP Song, YT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM tony.song@jpl.nasa.gov FU NOAA Center for Tsunami Research, PMEL [4405]; Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA [NA10OAR4320148, NA15OAR4320063, 2497] FX This research is partially funded by the NOAA Center for Tsunami Research, PMEL contribution 4405, and by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA10OAR4320148 (2010-2015) and NA15OAR4320063 (2015-2020), Contribution No. 2497. Part of the research carried out by Y. T. Song and Y. Bar-Sever here was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract "GPS-Aided and DART-Ensured Real-time (GADER) Tsunami Early Detection System'' with the National Aeronautics and Space Administration (NASA). NR 52 TC 1 Z9 1 U1 3 U2 3 PU SPRINGER BASEL AG PI BASEL PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND SN 0033-4553 EI 1420-9136 J9 PURE APPL GEOPHYS JI Pure Appl. Geophys. PD DEC PY 2016 VL 173 IS 12 BP 3863 EP 3880 DI 10.1007/s00024-016-1312-1 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA ED3IY UT WOS:000388744000011 ER PT J AU He, F Jiang, YM Ren, CL Dong, GH Gun, Y Lee, MJ Green, RD Xue, XJ AF He, Fei Jiang, Yanmei Ren, Chunlei Dong, Guohui Gun, Yun Lee, Myong-jin Green, Robert D. Xue, Xingjian TI Generalized electrical conductivity relaxation approach to determine electrochemical kinetic properties for MIECs SO SOLID STATE IONICS LA English DT Article DE Electrochemical kinetics; MIEC; ECR; SOFC ID CHEMICAL DIFFUSION-COEFFICIENT; OXYGEN-SURFACE EXCHANGE; DOPED LANTHANUM CHROMITES; SOFC CATHODES; BULK; ELECTRODES; TRANSPORT; PROFILES; LSCF AB Electrical conductivity relaxation (ECR) technique has been widely used to determine kinetic properties of mixed ionic and electronic conductors (MIECs). However, this technique is only applicable for reliable determination of kinetic parameters within a confined range of chemical Biot numbers. Since the kinetic properties of the materials are not known a priori, this imposes great difficulties on how to verify the obtained kinetic parameters from obtained ECR data. Further due to the ill-posed nature of ECR problem, the measurement noise could lead to significant uncertainties in the determined kinetic parameters. Herein a generalized ECR (g-ECR) approach is developed by coherently incorporating multiple ECR measurements simultaneously into an inverse algorithm. This new approach is able to improve the accuracy of calculated kinetic parameters and attenuate uncertainties induced by measurement noise over a wider range of chemical Biot numbers than the ECR approach with a single measurement. The capability of both reducing uncertainties and increasing the range of chemical Biot numbers for accurate parameter determination can be achieved by increasing the number of employed ECR measurement responses. A case study of ECR measurement for PrBa(Co0.75Fe0.25)(2)O5 + delta is performed in a mixture gas of N-2/Air at 600 degrees C. The kinetic parameters are determined and evaluated using this g-ECR approach. The rationality of using g-ECR approach instead of ECR approach is verified. Published by Elsevier B.V. C1 [He, Fei; Jiang, Yanmei; Ren, Chunlei; Dong, Guohui; Gun, Yun; Lee, Myong-jin; Xue, Xingjian] Univ South Carolina, Dept Mech Engn, Columbia, SC 29208 USA. [Green, Robert D.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Xue, XJ (reprint author), Univ South Carolina, Dept Mech Engn, Columbia, SC 29208 USA. EM Xue@cec.sc.edu FU NASA's Space Technology Research Grants Program [NNX14AB26G] FX This work was supported by Early Stage Innovations grant #NNX14AB26G from NASA's Space Technology Research Grants Program. NR 31 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 EI 1872-7689 J9 SOLID STATE IONICS JI Solid State Ion. PD DEC 1 PY 2016 VL 297 BP 82 EP 92 DI 10.1016/j.ssi.2016.10.006 PG 11 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA ED8AM UT WOS:000389094100013 ER PT J AU Twicken, JD Jenkins, JM Seader, SE Tenenbaum, P Smith, JC Brownston, LS Burke, CJ Catanzarite, JH Clarke, BD Cote, MT Girouard, FR Klaus, TC Li, J McCauliff, SD Morris, RL Wohler, B Campbell, JR Uddin, AK Zamudio, KA Sabale, A Bryson, ST Caldwell, DA Christiansen, JL Coughlin, JL Haas, MR Henze, CE Sanderfer, DT Thompson, SE AF Twicken, Joseph D. Jenkins, Jon M. Seader, Shawn E. Tenenbaum, Peter Smith, Jeffrey C. Brownston, Lee S. Burke, Christopher J. Catanzarite, Joseph H. Clarke, Bruce D. Cote, Miles T. Girouard, Forrest R. Klaus, Todd C. Li, Jie McCauliff, Sean D. Morris, Robert L. Wohler, Bill Campbell, Jennifer R. Uddin, Akm Kamal Zamudio, Khadeejah A. Sabale, Anima Bryson, Steven T. Caldwell, Douglas A. Christiansen, Jessie L. Coughlin, Jeffrey L. Haas, Michael R. Henze, Christopher E. Sanderfer, Dwight T. Thompson, Susan E. TI DETECTION OF POTENTIAL TRANSIT SIGNALS IN 17 QUARTERS OF KEPLER DATA: RESULTS OF THE FINAL KEPLER MISSION TRANSITING PLANET SEARCH (DR25) SO ASTRONOMICAL JOURNAL LA English DT Article DE planetary systems; planets and satellites: detection ID SYSTEMATIC-ERROR CORRECTION; 1ST 12 QUARTERS; ECLIPSING BINARIES; LIGHT CURVES; TIMING OBSERVATIONS; DATA RELEASE; DATA SET; CANDIDATES; CATALOG; RECOVERY AB We present results of the final Kepler Data Processing Pipeline search for transiting planet signals in the full 17-quarter primary mission data set. The search includes a total of 198,709 stellar targets, of which 112,046 were observed in all 17. quarters and 86,663 in fewer than 17. quarters. We report on 17,230 targets for which at least one transit signature is identified that meets the specified detection criteria: periodicity, minimum of three observed transit events, detection statistic (i.e., signal-to-noise ratio) in excess of the search threshold, and passing grade on three statistical transit consistency tests. Light curves for which a transit signal is identified are iteratively searched for additional signatures after a limb-darkened transiting planet model is fitted to the data and transit events are removed. The search for additional planets adds 16,802 transit signals for a total of 34,032; this far exceeds the number of transit signatures identified in prior pipeline runs. There was a strategic emphasis on completeness over reliability for the final Kepler transit search. A comparison of the transit signals against a set of 3402 well-established, high-quality Kepler Objects of Interest yields a recovery rate of 99.8%. The high recovery rate must be weighed against a large number of false-alarm detections. We examine characteristics of the planet population implied by the transiting planet model fits with an. emphasis on detections that would represent small planets orbiting in the habitable zone of their host stars. C1 [Twicken, Joseph D.; Seader, Shawn E.; Tenenbaum, Peter; Smith, Jeffrey C.; Burke, Christopher J.; Catanzarite, Joseph H.; Clarke, Bruce D.; Li, Jie; Morris, Robert L.; Wohler, Bill; Caldwell, Douglas A.; Coughlin, Jeffrey L.; Thompson, Susan E.] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Jenkins, Jon M.; Cote, Miles T.; Bryson, Steven T.; Haas, Michael R.; Henze, Christopher E.; Sanderfer, Dwight T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Brownston, Lee S.; Klaus, Todd C.] NASA, Stinger Ghaffarian Technol, Ames Res Ctr, Moffett Field, CA 94035 USA. [Girouard, Forrest R.] NASA, Logyx LLC, Ames Res Ctr, Moffett Field, CA 94035 USA. [McCauliff, Sean D.; Campbell, Jennifer R.; Uddin, Akm Kamal; Zamudio, Khadeejah A.; Sabale, Anima] NASA, Wyle Labs Inc, Ames Res Ctr, Moffett Field, CA 94035 USA. [Christiansen, Jessie L.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91106 USA. RP Twicken, JD (reprint author), NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. EM joseph.twicken@nasa.gov FU NASA Advanced Supercomputing (NAS) Division within the Science Mission Directorate FX Kepler was competitively selected as the 10th NASA Discovery mission. Funding for this mission is provided by the NASA Science Mission Directorate. The authors gratefully acknowledge the contributions of the greater Kepler team in building and operating the instrument, collecting and distributing the science data, producing the light curves and validation products employed in this publication, and archiving the results. The light curves and validation products were generated by the Kepler Data Processing Pipeline through the efforts of the Kepler Science Operations Center and Science Office. The Kepler Mission is led by the project office at NASA Ames Research Center. Ball Aerospace built the Kepler photometer and spacecraft, which is operated by the Mission Operations Center at LASP. The light curves are archived at the Mikulski Archive for Space Telescopes; the Data Validation products are archived at the NASA Exoplanet Archive. The authors also gratefully acknowledge the support of the NASA Advanced Supercomputing (NAS) Division within the Science Mission Directorate. All of the pipeline processing described in this paper was performed on NAS Pleiades hardware; the pixel- and flux-level transit injection processing referred to in this paper was also performed on Pleiades. The authors finally wish to acknowledge the years of efforts of William J. Borucki and the late David G. Koch; the Kepler Mission would not have been possible without them. NR 64 TC 1 Z9 1 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 158 DI 10.3847/0004-6256/152/6/158 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC6PJ UT WOS:000388258100004 ER PT J AU Hambleton, K Kurtz, DW Prsa, A Quinn, SN Fuller, J Murphy, SJ Thompson, SE Latham, DW Shporer, A AF Hambleton, K. Kurtz, D. W. Prsa, A. Quinn, S. N. Fuller, J. Murphy, S. J. Thompson, S. E. Latham, D. W. Shporer, A. TI KIC 3749404: a heartbeat star with rapid apsidal advance indicative of a tertiary component SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries: eclipsing; stars: individual: KIC 3749404; stars: oscillations ID ECCENTRIC BINARY-SYSTEMS; LIGHT CURVES; ECLIPSING BINARIES; STELLAR STRUCTURE; CLOSE BINARIES; MOTION TEST; ORBITAL SOLUTIONS; DYNAMIC TIDES; DELTA-SCUTI; SPACED DATA AB Heartbeat stars are eccentric (e > 0.2) ellipsoidal variables whose light curves resemble a cardiogram. We present the observations and corresponding model of KIC 3749404, a highly eccentric (e = 0.66), short period (P = 20.3 d) heartbeat star with tidally induced pulsations. A binary star model was created using PHOEBE, which we modified to include tidally induced pulsations and Doppler boosting. The morphology of the photometric periastron variation (heartbeat) depends strongly on the eccentricity, inclination and argument of periastron. We show that the inclusion of tidally induced pulsations in the model significantly changes the parameter values, specifically the inclination and those parameters dependent on it. Furthermore, we determine the rate of apsidal advance by modelling the periastron variation at the beginning and end of the 4-yr Kepler data set and dividing by the elapsed time. We compare the model with the theoretical expectations for classical and general relativistic apsidal motion and find the observed rate to be two orders of magnitude greater than the theoretical rate. We find that the observed rate cannot be explained by tidally induced pulsations alone and consequently hypothesize the presence of a third body in the system. C1 [Hambleton, K.] Villanova Univ, Dept Astron & Astrophys, 800 East Lancaster Ave, Villanova, PA 19085 USA. [Hambleton, K.; Kurtz, D. W.; Prsa, A.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Quinn, S. N.] Georgia State Univ, Dept Phys & Astron, 25 Pk Pl Suite 605, Atlanta, GA 30302 USA. [Fuller, J.] Walter Burke Inst Theoret Phys, TAPIR, Mailcode 350-17, Pasadena, CA USA. [Murphy, S. J.] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark. [Thompson, S. E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Thompson, S. E.] SETI Inst, 189 Bernardo Ave Suite 100, Mountain View, CA 94043 USA. [Latham, D. W.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Shporer, A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Hambleton, K (reprint author), Villanova Univ, Dept Astron & Astrophys, 800 East Lancaster Ave, Villanova, PA 19085 USA.; Hambleton, K (reprint author), Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. EM kelly.hambleton@villanova.edu FU NASA's Science Mission Directorate; NSF [1517460]; STFC (Science and Technology Funding Council); NASA [11-KEPLER11-0056, 14-K2GO1_2-0057]; RAS; Kepler mission under NASA [NNX11AB99A]; NASA through the Sagan Fellowship Program FX The authors express their sincere thanks to NASA and the Kepler team for allowing them to work with and analyse the Kepler data making this work possible. The Kepler mission is funded by NASA's Science Mission Directorate. KH and AP acknowledge support from the NSF grant #1517460. This work was also supported by the STFC (Science and Technology Funding Council). The authors would like to thank Ed Guinan for the enlightening discussion on apsidal motion. KH, ST and JF acknowledge support through NASA K2 GO grant (11-KEPLER11-0056). We would like to thank the RAS for providing grants which enabled KH's attendance to conferences and thus enabled the development of collaborations and the successful completion of this work. AP acknowledges support through NASA K2 GO grant (NASA 14-K2GO1_2-0057). For the spectroscopic observations and results from TRES, DWL and SNQ acknowledge partial support from the Kepler mission under NASA Cooperative Agreement NNX11AB99A to the Smithsonian Astrophysical Observatory. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. NR 83 TC 3 Z9 3 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 1 PY 2016 VL 463 IS 2 BP 1199 EP 1212 DI 10.1093/mnras/stw1970 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC4RY UT WOS:000388122400007 ER PT J AU Srivastava, AK Singh, T Ofman, L Dwivedi, BN AF Srivastava, A. K. Singh, Talwinder Ofman, Leon Dwivedi, Bhola N. TI Inference of magnetic field in the coronal streamer invoking kink wave motions generated by multiple EUV waves SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE MHD; waves; Sun: corona; Sun: magnetic fields; Sun: oscillations; Sun: UV radiation ID SOLAR CORONA; LOOP OSCILLATIONS; EIT WAVES; ELECTRON-DENSITY; SEISMOLOGY; STRENGTH; FLARE; CME; PROPAGATION; INVERSION AB We analyse the observations from Solar TErrestrial RElations Observatory (STEREO) of an oscillating coronal streamer. STEREO-B Extreme Ultraviolet Imaging (EUVI) temporal data on 2012 March 7 show an evolution of two consecutive EUV waves that interact with footpoint of a coronal streamer clearly evident in the co-spatial and co-temporal STEREO-B/COR-1 observations. The waves are observed in the STEREO-B/EUVI too, and its apparent energy exchange with coronal streamer generates kink oscillations. We apply the methodology of magnetohydrodynamic (MHD) seismology of the observed waves and determine the magnetic field profile of the coronal streamer. In particular, we estimate the phase velocities of the kink wave perturbations by tracking them at different heights. We also estimate electron densities inside and outside the streamer using spherically symmetric inversion of polarized brightness images in STEREO-B/COR-1. We detect two large-scale kink wave oscillations that diagnose exponentially decaying radial profiles of magnetic field in streamer up to 3 solar radii. Within the limit of observational and systematic uncertainties, we find that magnetic field of streamer varies slowly at various heights, although its nature always remains exponentially decaying with height. It is seen that during evolution of second kink motion in streamer, it increases in brightness (thus mass density), and also in areal extent slightly, which may be associated with decreased photospheric magnetic flux at footpoint of streamer. As a result, magnetic field profile produced by second kink wave is reduced within streamer compared to the one diagnosed by the first one. C1 [Srivastava, A. K.; Singh, Talwinder; Dwivedi, Bhola N.] Banaras Hindu Univ, Dept Phys, Indian Inst Technol, Varanasi 221005, Uttar Pradesh, India. [Ofman, Leon] Catholic Univ Amer, Code 671, Greenbelt, MD 20771 USA. [Ofman, Leon] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA. RP Srivastava, AK (reprint author), Banaras Hindu Univ, Dept Phys, Indian Inst Technol, Varanasi 221005, Uttar Pradesh, India.; Ofman, L (reprint author), Catholic Univ Amer, Code 671, Greenbelt, MD 20771 USA.; Ofman, L (reprint author), NASA, Goddard Space Flight Ctr, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA. EM asrivastava.app@iitbhu.ac.in; Leon.Ofman@nasa.gov FU RESPOND-ISRO [DOS/PAOGIA2015-16/130/602]; SERB-DST project [YSS/2015/000621]; NASA [NNX16AF78G] FX We thank the reviewer for constructive comments which improved the manuscript. AKS and BND acknowledge the RESPOND-ISRO (DOS/PAOGIA2015-16/130/602), and AKS acknowledges the SERB-DST project (YSS/2015/000621) grants. AKS and TS acknowledge respectively the Advanced Solar Computational & Analyses Laboratory (ASCAL), and infrastructural facilities at Department of Physics, ITT (BHU) to pursue this research. LO acknowledges support by NASA grant NNX16AF78G. Authors acknowledge the use of SSPA technique developed by T.J. Wang and J.-M. Davila to measure the density in the outer corona. They also acknowledge the use of STEREO EUVI and COR-1 observational data. We thank Dr. Tongjinag Wang for discussions and comments. NR 49 TC 0 Z9 0 U1 2 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 1 PY 2016 VL 463 IS 2 BP 1409 EP 1415 DI 10.1093/mnras/stw2017 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC4RY UT WOS:000388122400024 ER PT J AU Grandis, S Rapetti, D Saro, A Mohr, JJ Dietrich, JP AF Grandis, S. Rapetti, D. Saro, A. Mohr, J. J. Dietrich, J. P. TI Quantifying tensions between CMB and distance data sets in models with free curvature or lensing amplitude SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: statistical; cosmic background radiation; cosmological parameters; cosmology: observations; distance scale ID BARYON ACOUSTIC-OSCILLATIONS; COSMOLOGICAL PARAMETER CONSTRAINTS; RELAXED GALAXY CLUSTERS; X-RAY OBSERVATIONS; HUBBLE CONSTANT; SYSTEMATIC BIAS; OBSERVED GROWTH; DARK ENERGY; SDSS DR7; IA DATA AB Recent measurements of the cosmic microwave background (CMB) by the Planck Collaboration have produced arguably the most powerful observational evidence in support of the standard model of cosmology, i.e. the spatially flat Lambda CDM paradigm. In this work, we perform model selection tests to examine whether the base CMB temperature and large scale polarization anisotropy data from Planck 2015 (P15; Planck Collaboration XIII) prefer any of eight commonly used one-parameter model extensions with respect to flat Lambda CDM. We find a clear preference for models with free curvature, Omega(K), or free amplitude of the CMB lensing potential, A(L). We also further develop statistical tools to measure tension between data sets. We use a Gaussianization scheme to compute tensions directly from the posterior samples using an entropy-based method, the surprise, as well as a calibrated evidence ratio presented here for the first time. We then proceed to investigate the consistency between the base P15 CMB data and six other CMB and distance data sets. In flat Lambda CDM we find a 4.8 sigma tension between the base P15 CMB data and a distance ladder measurement, whereas the former are consistent with the other data sets. In the curved Lambda CDM model we find significant tensions in most of the cases, arising from the well-known low power of the low-l multipoles of the CMB data. In the flat Lambda CDM+A(L) model, however, all data sets are consistent with the base P15 CMB observations except for the CMB lensing measurement, which remains in significant tension. This tension is driven by the increased power of the CMB lensing potential derived from the base P15 CMB constraints in both models, pointing at either potentially unresolved systematic effects or the need for new physics beyond the standard flat Lambda CDM model. C1 [Grandis, S.; Rapetti, D.; Saro, A.; Mohr, J. J.; Dietrich, J. P.] Ludwig Maximilians Univ Munchen, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Grandis, S.; Rapetti, D.; Saro, A.; Mohr, J. J.; Dietrich, J. P.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Rapetti, D.] Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, Campus Box 391, Boulder, CO 80309 USA. [Rapetti, D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. RP Grandis, S (reprint author), Ludwig Maximilians Univ Munchen, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany.; Grandis, S (reprint author), Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. EM s.grandis@lmu.de FU DFG Cluster of Excellence 'Origin and Structure of the Universe', the Transregio program TR33 'The Dark Universe'; Ludwig-Maximilians-Universitat; NASA Postdoctoral Program Senior Fellowship at the NASA Ames Research Center FX SG thanks Alexander Refregier, Adam Amara and Sebastian Seehars for fruitful discussions on various aspects of this work. We also thank the anonymous referee for useful comments. We acknowledge the support by the DFG Cluster of Excellence 'Origin and Structure of the Universe', the Transregio program TR33 'The Dark Universe' and the Ludwig-Maximilians-Universitat. DR is currently supported by a NASA Postdoctoral Program Senior Fellowship at the NASA Ames Research Center, administered by the Universities Space Research Association under contract with NASA. We acknowledge use of the Planck Legacy Archive. Planck (http://www.esa.int/Planck) is an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada. NR 76 TC 0 Z9 0 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 1 PY 2016 VL 463 IS 2 BP 1416 EP 1430 DI 10.1093/mnras/stw2028 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC4RY UT WOS:000388122400025 ER PT J AU Palmese, A Lahav, O Banerji, M Gruen, D Jouvel, S Melchior, P Aleksic, J Annis, J Diehl, HT Hartley, WG Jeltema, T Romer, AK Rozo, E Rykoff, ES Seitz, S Suchyta, E Zhang, Y Abbott, TMC Abdalla, FB Allam, S Benoit-Levy, A Bertin, E Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Rosell, AC Kind, MC Carretero, J Crocce, M Cunha, CE D'Andrea, CB da Costa, LN Desai, S Dietrich, JP Doel, P Estrada, J Evrard, AE Flaugher, B Frieman, J Gerdes, DW Goldstein, DA Gruendl, RA Gutierrez, G Honscheid, K James, DJ Kuehn, K Kuropatkin, N Li, TS Lima, M Maia, MAG Marshall, JL Miller, CJ Miquel, R Nord, B Ogando, R Plazas, AA Roodman, A Sanchez, E Scarpine, V Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Swanson, MEC Tarle, G Thomas, D Tucker, D Vikram, V AF Palmese, A. Lahav, O. Banerji, M. Gruen, D. Jouvel, S. Melchior, P. Aleksic, J. Annis, J. Diehl, H. T. Hartley, W. G. Jeltema, T. Romer, A. K. Rozo, E. Rykoff, E. S. Seitz, S. Suchyta, E. Zhang, Y. Abbott, T. M. C. Abdalla, F. B. Allam, S. Benoit-Levy, A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Crocce, M. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Desai, S. Dietrich, J. P. Doel, P. Estrada, J. Evrard, A. E. Flaugher, B. Frieman, J. Gerdes, D. W. Goldstein, D. A. Gruendl, R. A. Gutierrez, G. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Li, T. S. Lima, M. Maia, M. A. G. Marshall, J. L. Miller, C. J. Miquel, R. Nord, B. Ogando, R. Plazas, A. A. Roodman, A. Sanchez, E. Scarpine, V. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Swanson, M. E. C. Tarle, G. Thomas, D. Tucker, D. Vikram, V. TI Comparing Dark Energy Survey and HST-CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; galaxies: clusters: general; galaxies: evolution; galaxies: photometry ID SCIENCE VERIFICATION DATA; PHOTOMETRIC REDSHIFTS; LEGACY SURVEY; CATALOG; HUBBLE; FIELD; VLT; DISTRIBUTIONS; RESOLUTION; PRECISION AB We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (five filters) with those from the Hubble Space Telescope Cluster Lensing And Supernova Survey (CLASH; 17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25 per cent of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysis of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f(star) = (6.8 +/- 1.7) x 10(-3) within a radius of r(200c) similar or equal to 2 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both data sets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the similar to 100 000 clusters that will be observed within this survey and yield important information about galaxy evolution. C1 [Palmese, A.; Lahav, O.; Jouvel, S.; Hartley, W. G.; Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Banerji, M.] Univ Cambidge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Gruen, D.; Rykoff, E. S.; Burke, D. L.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Gruen, D.; Rykoff, E. S.; Burke, D. L.; Cunha, C. E.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Gruen, D.; Seitz, S.] Univ Observ Munich, Scheinerstr 1, D-81679 Munich, Germany. [Gruen, D.; Seitz, S.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Melchior, P.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Aleksic, J.; Carretero, J.; Miquel, R.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Annis, J.; Diehl, H. T.; Allam, S.; Buckley-Geer, E.; Estrada, J.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Tucker, D.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Jeltema, T.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Rozo, E.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Zhang, Y.; Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Tarle, G.] Univ Michigan, Dept Phys, 450 Church St, Ann Arbor, MI 48109 USA. [Abbott, T. M. C.; James, D. J.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Benoit-Levy, A.; Bertin, E.] Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] UPMC Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Capozzi, D.; D'Andrea, C. B.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Carnero Rosell, A.; da Costa, L. N.; Lima, M.; Maia, M. A. G.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Carretero, J.; Crocce, M.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Bellaterra, Barcelona, Spain. [D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Desai, S.; Dietrich, J. P.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.; Dietrich, J. P.] Ludwig Maximilians Univ Munchen, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Honscheid, K.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, Madrid, Spain. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. RP Palmese, A (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM antonella.palmese.13@ucl.ac.uk RI Ogando, Ricardo/A-1747-2010; OI Ogando, Ricardo/0000-0003-2120-1154; Abdalla, Filipe/0000-0003-2063-4345; Sobreira, Flavia/0000-0002-7822-0658 FU European Research Council [FP7/291329]; SFB-Transregio - Deutsche Forschungsgemeinschaft (DFG) [33]; DFG cluster of excellence 'Origin and Structure of the Universe'; NASA through the Einstein Fellowship Program [PF5-160138]; DOE [DE-SC0013541]; U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundayao Carlos Chagas Filho de Amparo Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Unions [240672, 291329, 306478] FX AP acknowledges the UCL PhD studentship. OL acknowledges support from a European Research Council Advanced Grant FP7/291329, which also supported M. Banerji and S. Jouvel.; DG and SS were supported by SFB-Transregio 33 'The Dark Universe' by the Deutsche Forschungsgemeinschaft (DFG) and the DFG cluster of excellence 'Origin and Structure of the Universe'. DG was also supported by NASA through the Einstein Fellowship Program, grant PF5-160138.; TJ acknowledges support from the DOE grant DE-SC0013541.; This work has benefitted by data taken by the CLASH collaboration.; A. P and OL acknowledge N. Bahcall and M. Milgrom for stimulating discussions about this work. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundayao Carlos Chagas Filho de Amparo Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. NR 55 TC 0 Z9 0 U1 4 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 1 PY 2016 VL 463 IS 2 BP 1486 EP 1499 DI 10.1093/mnras/stw2062 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC4RY UT WOS:000388122400029 ER PT J AU Burningham, B Hardcastle, M Nichols, JD Casewell, SL Littlefair, SP Stark, C Burleigh, MR Metchev, S Tannock, ME van Weeren, RJ Williams, WL Wynn, GA AF Burningham, Ben Hardcastle, M. Nichols, J. D. Casewell, S. L. Littlefair, S. P. Stark, C. Burleigh, M. R. Metchev, S. Tannock, M. E. van Weeren, R. J. Williams, W. L. Wynn, G. A. TI A LOFAR mini-survey for low-frequency radio emission from the nearest brown dwarfs SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; brown dwarfs; stars: low-mass ID IONOSPHERE COUPLING CURRENTS; JUPITERS MIDDLE MAGNETOSPHERE; ELECTRON-CYCLOTRON MASER; MAIN AURORAL OVAL; H-ALPHA EMISSION; ULTRACOOL DWARFS; T-DWARFS; PEDERSEN CONDUCTIVITY; PROPER MOTIONS; GIANT PLANETS AB We have conducted a mini-survey for low-frequency radio emission from some of the closest brown dwarfs to the Sun with rapid rotation rates: SIMP J013656.5+093347, WISEPC J150649.97+702736.0 and WISEPA J174124.26+255319.5. We have placed robust 3 sigma upper limits on the flux density in the 111-169 MHz frequency range for these targets: WISE 1506: < 0.72 mJy; WISE 1741: < 0.87 mJy; SIMP 0136: < 0.66 mJy. At 8 h of integration per target to achieve these limits, we find that systematic and detailed study of this class of object at LOFAR frequencies will require a substantial dedication of resources. C1 [Burningham, Ben] NASA, Ames Res Ctr, Mail Stop 245-3, Moffett Field, CA 94035 USA. [Burningham, Ben; Hardcastle, M.; Williams, W. L.] Univ Hertfordshire, Sch Phys Astron & Math, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Nichols, J. D.; Casewell, S. L.; Burleigh, M. R.; Wynn, G. A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Littlefair, S. P.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Stark, C.] Abertay Univ, Div Comp & Math, Kydd Bldg, Dundee DD1 1HG, Scotland. [Metchev, S.; Tannock, M. E.] Univ Western Ontario, Dept Phys & Astron, Ctr Planetary Sci & Explorat, London, ON N6A 3K7, Canada. [Metchev, S.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [van Weeren, R. J.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RP Burningham, B (reprint author), NASA, Ames Res Ctr, Mail Stop 245-3, Moffett Field, CA 94035 USA.; Burningham, B (reprint author), Univ Hertfordshire, Sch Phys Astron & Math, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. EM b.burningham@herts.ac.uk RI Stark, Craig /A-7667-2016; Nichols, Jonathan/F-5764-2010; OI Nichols, Jonathan/0000-0002-8004-6409; Hardcastle, Martin/0000-0003-4223-1117 FU European Commission in the form of a Marie Curie International Outgoing Fellowship [PIOF-GA-2013- 629435]; UK's Science and Technology Facilities Council [ST/M001008/1, ST/M001350/1]; College of Science and Engineering at the University of Leicester FX BB acknowledges financial support from the European Commission in the form of a Marie Curie International Outgoing Fellowship (PIOF-GA-2013- 629435). MJH and WLW acknowledge support from the UK's Science and Technology Facilities Council [grant number ST/M001008/1]. SLC is supported by the College of Science and Engineering at the University of Leicester. SPL acknowledges support from the UK's Science and Technology Facilities Council [grant number ST/M001350/1]. NR 60 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 1 PY 2016 VL 463 IS 2 BP 2202 EP 2209 DI 10.1093/mnras/stw2065 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC4RY UT WOS:000388122400083 ER PT J AU Stephenson, JD Popovic, M Bristow, TF Ditzler, MA AF Stephenson, James D. Popovic, Milena Bristow, Thomas F. Ditzler, Mark A. TI Evolution of ribozymes in the presence of a mineral surface SO RNA LA English DT Article DE clay; in vitro evolution; mineral; origin of life; ribozyme ID SELF-CLEAVING RIBOZYMES; IN-VITRO EVOLUTION; HAMMERHEAD RIBOZYME; RNA WORLD; ENVIRONMENTS; OLIGOMERS; WATER AB Mineral surfaces are often proposed as the sites of critical processes in the emergence of life. Clay minerals in particular are thought to play significant roles in the origin of life including polymerizing, concentrating, organizing, and protecting biopolymers. In these scenarios, the impact of minerals on biopolymer folding is expected to influence evolutionary processes. These processes include both the initial emergence of functional structures in the presence of the mineral and the subsequent transition away from the mineral-associated niche. The initial evolution of function depends upon the number and distribution of sequences capable of functioning in the presence of the mineral, and the transition to new environments depends upon the overlap between sequences that evolve on the mineral surface and sequences that can perform the same functions in the mineral's absence. To examine these processes, we evolved self-cleaving ribozymes in vitro in the presence or absence of Na-saturated montmorillonite clay mineral particles. Starting from a shared population of random sequences, RNA populations were evolved in parallel, along separate evolutionary trajectories. Comparative sequence analysis and activity assays show that the impact of this clay mineral on functional structure selection was minimal; it neither prevented common structures from emerging, nor did it promote the emergence of new structures. This suggests that montmorillonite does not improve RNA's ability to evolve functional structures; however, it also suggests that RNAs that do evolve in contact with montmorillonite retain the same structures in mineral-free environments, potentially facilitating an evolutionary transition away from a mineral associated niche. C1 [Stephenson, James D.] NASA, NASA Postdoctoral Program, Ames Res Ctr, Moffett Field, CA 94035 USA. [Stephenson, James D.; Popovic, Milena; Bristow, Thomas F.; Ditzler, Mark A.] NASA, Space Sci & Astrobiol Div, Exobiol Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. [Popovic, Milena] Blue Marble Space Inst Sci, Seattle, WA 98145 USA. RP Ditzler, MA (reprint author), NASA, Space Sci & Astrobiol Div, Exobiol Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. EM mark.a.ditzler@nasa.gov OI Ditzler, Mark /0000-0003-3108-4596 FU National Aeronautics and Space Administration (NASA) Exobiology grant; NASA Postdoctoral Program Fellowship FX We thank Donald Burke for helpful discussion of the manuscript and Peter Unrau for suggesting that we raise the pH of our stripping solution to improve recovery of RNA from montmorillonite. This work was supported by a National Aeronautics and Space Administration (NASA) Exobiology grant to M.A.D. and NASA Postdoctoral Program Fellowships to J.D.S. and M.P. NR 29 TC 1 Z9 1 U1 10 U2 10 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1355-8382 EI 1469-9001 J9 RNA JI RNA PD DEC PY 2016 VL 22 IS 12 BP 1893 EP 1901 DI 10.1261/rna.057703.116 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA EC6MV UT WOS:000388251300010 PM 27793980 ER PT J AU Choi, SH Kempes, CP Park, T Ganguly, S Wang, WL Xu, L Basu, S Dungan, JL Simard, M Saatchi, SS Piao, SL Ni, XL Shi, YL Cao, CX Nemani, RR Knyazikhin, Y Myneni, RB AF Choi, Sungho Kempes, Christopher P. Park, Taejin Ganguly, Sangram Wang, Weile Xu, Liang Basu, Saikat Dungan, Jennifer L. Simard, Marc Saatchi, Sassan S. Piao, Shilong Ni, Xiliang Shi, Yuli Cao, Chunxiang Nemani, Ramakrishna R. Knyazikhin, Yuri Myneni, Ranga B. TI Application of the metabolic scaling theory and water-energy balance equation to model large-scale patterns of maximum forest canopy height SO GLOBAL ECOLOGY AND BIOGEOGRAPHY LA English DT Article DE Carbon monitoring; disturbance history; geospatial predictors; large-scale modelling; maximum forest height; mechanistic understanding; metabolic scaling theory; prognostic applications; water-energy balance ID GENERAL QUANTITATIVE THEORY; RESOURCE LIMITATIONS MODEL; WAVE-FORM LIDAR; TREE GROWTH; CARBON; RESPIRATION; DYNAMICS; ECOLOGY; BIOLOGY; BIOMASS AB AimForest height, an important biophysical property, underlies the distribution of carbon stocks across scales. Because in situ observations are labour intensive and thus impractical for large-scale mapping and monitoring of forest heights, most previous studies adopted statistical approaches to help alleviate measured data discontinuity in space and time. Here, we document an improved modelling approach which links metabolic scaling theory and the water-energy balance equation with actual observations in order to produce large-scale patterns of forest heights. MethodsOur model, called allometric scaling and resource limitations (ASRL), accounts for the size-dependent metabolism of trees whose maximum growth is constrained by local resource availability. Geospatial predictors used in the model are altitude and monthly precipitation, solar radiation, temperature, vapour pressure and wind speed. Disturbance history (i.e. stand age) is also incorporated to estimate contemporary forest heights. ResultsThis study provides a baseline map (c. 2005; 1-km(2) grids) of forest heights over the contiguous United States. The Pacific Northwest/California is predicted as the most favourable region for hosting large trees (c. 100 m) because of sufficient annual precipitation (> 1400 mm), moderate solar radiation (c. 330 W m(-2)) and temperature (c. 14 degrees C). Our results at sub-regional level are generally in good and statistically significant (P-value<0.001) agreement with independent reference datasets: field measurements [mean absolute error (MAE)=4.0 m], airborne/spaceborne lidar (MAE=7.0 m) and an existing global forest height product (MAE=4.9 m). Model uncertainties at county level are also discussed in this study. Main conclusionsWe improved the metabolic scaling theory to address variations in vertical forest structure due to ecoregion and plant functional type. A clear mechanistic understanding embedded within the model allowed synergistic combinations between actual observations and multiple geopredictors in forest height mapping. This approach shows potential for prognostic applications, unlike previous statistical approaches. C1 [Choi, Sungho; Park, Taejin; Knyazikhin, Yuri; Myneni, Ranga B.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. [Kempes, Christopher P.] CALTECH, Control & Dynam Syst, Pasadena, CA 91125 USA. [Kempes, Christopher P.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Ganguly, Sangram] BAERI, Moffett Field, CA 94035 USA. [Ganguly, Sangram] NASA Ames Res Ctr, Moffett Field, CA 94035 USA. [Wang, Weile] Calif State Univ Monterey Bay, Div Sci & Environm Policy, Seaside, CA 93955 USA. [Wang, Weile] NASA Ames Res Ctr, Biospher Sci Branch, Moffett Field, CA 94035 USA. [Xu, Liang] Univ Calif Los Angeles, Inst Environm & Sustainabil, Los Angeles, CA 90095 USA. [Basu, Saikat] Louisiana State Univ, Dept Comp Sci, Baton Rouge, LA 70803 USA. [Dungan, Jennifer L.] NASA Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA. [Simard, Marc; Saatchi, Sassan S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Piao, Shilong] Peking Univ, Coll Urban & Environm Sci, Beijing 100871, Peoples R China. [Piao, Shilong] Peking Univ, Sino French Inst Earth Syst Sci, Beijing 100871, Peoples R China. [Ni, Xiliang; Cao, Chunxiang] Chinese Acad Sci, Inst Remote Sensing Applicat, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China. [Shi, Yuli] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing, Nanjing 210044, Jiangsu, Peoples R China. [Nemani, Ramakrishna R.] NASA Ames Res Ctr, NASA Adv Supercomp Div, Moffett Field, CA 94035 USA. RP Choi, SH (reprint author), Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. EM schoi@bu.edu RI Myneni, Ranga/F-5129-2012 FU Fulbright Program for graduate studies; Bay Area Environmental Research Institute (BAERI); NASA Earth and Space Science Fellowship Program [NNX13AP55H]; Santa Fe Institute FX The authors would like to thank the anonymous referees. S.C. was supported by the Fulbright Program for graduate studies, the Bay Area Environmental Research Institute (BAERI) and the NASA Earth and Space Science Fellowship Program (grant NNX13AP55H). S.C. is grateful to NASA Earth Exchange (NEX) for providing the opportunity to access all the data needed for the project and model runs using their computational resources. C.P.K. acknowledges the Omidyar Fellowship at The Santa Fe Institute. NR 65 TC 0 Z9 0 U1 7 U2 7 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1466-822X EI 1466-8238 J9 GLOBAL ECOL BIOGEOGR JI Glob. Ecol. Biogeogr. PD DEC PY 2016 VL 25 IS 12 BP 1428 EP 1442 DI 10.1111/geb.12503 PG 15 WC Ecology; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA EB9YA UT WOS:000387752800003 ER PT J AU Eldridge, JI Allison, SW Jenkins, TP Gollub, SL Hall, CA Walker, DG AF Eldridge, Jeffrey I. Allison, Stephen W. Jenkins, Thomas P. Gollub, Sarah L. Hall, Carl A. Walker, D. Greg TI Surface temperature measurements from a stator vane doublet in a turbine afterburner flame using a YAG:Tm thermographic phosphor SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE phosphor thermometry; luminescence; temperature; thermographic phosphor; coatings; thulium ID REMOTE THERMOMETRY; LUMINESCENCE; SYSTEMS AB Phosphor thermometry measurements in turbine engine environments can be difficult because of high background radiation levels. To address this challenge, luminescence lifetime-based phosphor thermometry measurements were obtained using thulium-doped Y3Al5O12 (YAG:Tm) to take advantage of the emission wavelengths at 365 nm (D-1(2) -> H-3(6) transition) and at 456 nm (D-1(2) -> F-3(4) transition). At these wavelengths, turbine engine radiation background is reduced compared with emission from longer wavelength phosphors. Temperature measurements of YAG: Tm coatings were demonstrated using decay of both the 365 and 456 nm emission bands in a furnace environment up to 1400 degrees C. To demonstrate that reliable surface temperatures based on short-wavelength YAG: Tm emission could be obtained from the surface of an actual engine component in a high gas velocity, highly radiative environment, measurements were obtained from a YAG:Tm-coated Honeywell stator vane doublet placed in the afterburner flame exhaust stream of the augmenter-equipped General Electric J85 turbojet test engine at the University of Tennessee Space Institute (UTSI). Using a probe designed for engine insertion, spot temperature measurements were obtained by measuring luminescence decay times over a range of steady state throttle settings as well as during an engine throttle acceleration. YAG:Tm phosphor thermometry measurements of the stator vane surface in the afterburner exhaust stream using the decay of the 456 nm emission band were successfully obtained at temperatures up to almost 1300 degrees C. Phosphor thermometry measurements acquired with the engine probe using the decay of the 365 nm emission band were not successful at usefully high temperatures because the probe design allowed transmission of intense unfiltered silica Raman scattering that produced photomultiplier tube saturation with extended recovery times. Recommendations are made for probe modifications that will enable temperature measurements using the 365 nm emission band decay, which will be beneficial in environments with strong reflections of combustor radiation. C1 [Eldridge, Jeffrey I.] NASA, Glenn Res Ctr, 21000 Brookpark Rd, Cleveland, OH 44135 USA. [Allison, Stephen W.] Emerging Measurements, 1910 Standing Rock Cove, Collierville, TN 38017 USA. [Jenkins, Thomas P.] MetroLaser, 22941 Mill Creek Dr, Laguna Hills, CA 92653 USA. [Gollub, Sarah L.; Hall, Carl A.; Walker, D. Greg] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA. RP Eldridge, JI (reprint author), NASA, Glenn Res Ctr, 21000 Brookpark Rd, Cleveland, OH 44135 USA. EM jeffrey.i.eldridge@nasa.gov FU NASA Transformational Tools and Technologies Project FX The authors gratefully acknowledge the support of the NASA Transformational Tools and Technologies Project. We would like to thank Bill Stange of the Air Force Research Laboratory as well as the Air Force Versatile Affordable Advanced Turbine Engines (VAATE) project for the foundational research that provided the basis for the current work and for making available the engine probe and vane mounting fixture developed under the VAATE project. We also thank Harvey Niska of Honeywell for providing the stator vane doublet. Appreciation is also given to Doug Wolfe at Penn State for deposition of the TBCs by EB-PVD and to Eric Jordan and Jeff Roth at University of Connecticut for deposition of the YAG:Tm thermographic phosphor by SPPS. Finally, much appreciation is given to the AEDC/UTSI Propulsion Research Facility Team for conducting J85 afterburner tests, with special thanks to Robert Howard and Andrew Alexander for great effort in making those tests successful. NR 25 TC 0 Z9 0 U1 8 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD DEC PY 2016 VL 27 IS 12 AR 125205 DI 10.1088/0957-0233/27/12/125205 PG 19 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA EC1VT UT WOS:000387897200001 ER PT J AU Okyay, TO Nguyen, HN Castro, SL Rodrigues, DF AF Okyay, Tugba O. Nguyen, Hang N. Castro, Sarah L. Rodrigues, Debora F. TI CO2 sequestration by ureolytic microbial consortia through microbially-induced calcite precipitation SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Bacterial consortia; Cave; CO2 sequestration; Microbially-induced carbonate precipitation; Travertine; Urease activity ID YELLOWSTONE-NATIONAL-PARK; MAMMOTH HOT-SPRINGS; CARBONATE PRECIPITATION; SPOROSARCINA-PASTEURII; CAVE; BACTERIA; USA AB Urea is an abundant nitrogen-containing compound found in urine of mammals and widely used in fertilizers. This compound is part of the nitrogen biogeochemical cycle and is easily biodegraded by ureolytic microorganisms that have the urease enzyme. Previous studies, with ureolytic isolates, have shown that some ureolytic microorganisms are able to sequester CO2 through a process called microbially-induced calcium carbonate precipitation. The present study investigates 15 ureolytic consortia obtained from the "Pamukkale travertines" and the "Cave Without A Name" using different growth media to identify the possible bacterial genera responsible for CO2 sequestration through themicrobially-induced calcite precipitation (MICP). The community structure and diversity were determined by deep-sequencing. The results showed that all consortia presented varying CO2 sequestration capabilities and MICP rates. The CO2 sequestration varied between 0 and 86.4%, and it depended largely on the community structure, as well as on pH. Consortia with predominance of Comamonas, Plesiomonas and Oxalobacter presented reduced CO2 sequestration. On the other hand, consortia dominated by Sporosarcina, Sphingobacterium, Stenotrophomonas, Acinetobacter, and Elizabethkingia showed higher rates of CO2 uptake in the serum bottle headspace. (C) 2016 Elsevier B.V. All rights reserved. C1 [Okyay, Tugba O.; Nguyen, Hang N.; Rodrigues, Debora F.] Univ Houston, Dept Civil & Environm Engn, Houston, TX 77204 USA. [Castro, Sarah L.] NASA, Johnson Space Ctr, Microbiol Lab, Houston, TX 77058 USA. RP Rodrigues, DF (reprint author), N136,Engn Bldg 1,4800 Calhoun Rd, Houston, TX 77204 USA. EM dfrigirodrigues@uh.edu OI Rodrigues, Debora/0000-0002-3124-1443 FU University of Houston Grants to Enhance and Advance Research [105257]; Turkish Ministry of National Education FX We would like to acknowledge the University of Houston Grants to Enhance and Advance Research (Proposal # 105257) (GEAR) for the support of this research. We also would like to thank the Turkish Ministry of National Education for supporting Tugba Onal Okyay with a Graduate Research Fellowship. We wish to thank the staff in the Microbiology Laboratory at NASA-Johnson Space Center for providing access and training to the MiSeq. NR 30 TC 0 Z9 0 U1 17 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD DEC 1 PY 2016 VL 572 BP 671 EP 680 DI 10.1016/j.scitotenv.2016.06.199 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA EC0RA UT WOS:000387807200065 PM 27524723 ER PT J AU Huang, YY Mao, ZG Noebe, RD Seidman, DN AF Huang, Yanyan Mao, Zugang Noebe, Ronald D. Seidman, David N. TI The effects of refractory elements on Ni-excesses and Ni-depletions at gamma(f.c.c.)/gamma'(L1(2)) interfaces in model Ni-based superalloys: Atom-probe tomographic experiments and first-principles calculations SO ACTA MATERIALIA LA English DT Article DE Ni-based superalloys; Interfacial excesses; Binding energies; Atom-probe tomography; First-principles calculations ID AL-CR SUPERALLOY; SINGLE-CRYSTAL SUPERALLOYS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; NICKEL-BASED SUPERALLOYS; FIELD-ION MICROSCOPY; WAVE BASIS-SET; TEMPORAL EVOLUTION; PHASE-SEPARATION; GAMMA-PRECIPITATE AB The effects of refractory (R) elements (R = Re, Ru, W, or Ta) on a base Ni-Al-Cr alloy are studied, for an aging temperature of 1073 K (800 degrees C) and an aging time of 256 h, employing atom-probe tomography (APT) and first-principles calculations. We find that there are strong attractive chemical binding energies between R-elements and solute (S) atoms (S = Al, Cr) in Ni-Al-Cr based alloys utilizing experimental partial radial distribution function (RDF) results, and first-principles calculations performed at 0 K. We demonstrate that correlated R-S binding energies play a key role in the observed Ni retention-excesses at gamma(f.c.c.)/gamma'(L1(2)-structure) interfaces at aging times as long as 256 h. The total reduction of the gamma(f.c.c.)/gamma'(L1(2)) interfacial energy, as a result of Ni interfacial-excesses in both gamma(f.c.c.)-matrix and gamma'(L1(2))-precipitates, lies between -0.16 +/- 0.06 mJ m(-2) and -0.05 +/- 0.02 mJ m(-2). The R-S binding energies cause changes in the compositional diffusion flux-vectors in and out of gamma(L1(2))-precipitates, which result in larger solvent Ni retention-excesses and wider interfacial compositional widths at 256 h, when compared with the base Ni-Al-Cr alloy. Refractory elements are slow diffusers in nickel and the attractive R-Cr binding energies decelerate the solute diffusional fluxes, which results in a decrease of the Ni diffusivity, which in turn hinders the flux of Ni atoms away from the gamma(f.c.c.)/gamma'(L1(2)) interfaces. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Huang, Yanyan] Sichuan Univ, Sch Aeronaut & Astronaut, 24 South Sect 1,Yihuan Rd, Chengdu 610065, Peoples R China. [Huang, Yanyan; Mao, Zugang; Seidman, David N.] Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. [Noebe, Ronald D.] NASA, Mat & Struct Div, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. [Seidman, David N.] NUCAPT, 2220 Campus Dr, Evanston, IL 60208 USA. RP Seidman, DN (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. EM d-seidman@northwestern.edu FU National Science Foundation, Division of Materials Research (DMR) [1207539]; China Scholarship Council [201206050078]; NSF-MRI [DMR-0420532]; ONR-DURIP [N00014-0400798, N00014-0610539, N00014-0910781]; National Science Foundation's MRSEC program [DMR-1121262] FX This research was supported by the National Science Foundation, Division of Materials Research (DMR) grant number 1207539, Profs. Diane Farkas and Gary Shiflet, grant monitors. Ms. Yanyan Huang was partially supported by China Scholarship Council (with No. 201206050078). Atom-probe tomography was performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT), whose LEAP tomograph was purchased and upgraded with funding from NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, N00014-0910781) grants. Instrumentation at NUCAPT was further upgraded by the Initiative for Sustainability and Energy at Northwestern (ISEN). NUCAPT is a Core Facility of Northwestern University and the Materials Research Center of Northwestern University, partially supported by the National Science Foundation's MRSEC program (DMR-1121262). We wish to thank research associate professor Dr. Dieter Isheim for managing NUCAPT. Drs. Georges Martin, Ivan Blum, Jiantang Jiang, Haiming Wen and Sung-II Baik are kindly thanked for helpful discussions. We thank Ms. Elizaveta Y. Plotnikov for some initial help with atom-probe tomography. And we also thank an anonymous reviewer for useful comments and suggestions, which helped us to improve this article. NR 80 TC 0 Z9 0 U1 24 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD DEC PY 2016 VL 121 BP 288 EP 298 DI 10.1016/j.actamat.2016.09.005 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EA9SH UT WOS:000386984500028 ER PT J AU Evirgen, A Karaman, I Santamarta, R Pons, J Hayrettin, C Noebe, RD AF Evirgen, A. Karaman, I. Santamarta, R. Pons, J. Hayrettin, C. Noebe, R. D. TI Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys SO ACTA MATERIALIA LA English DT Article DE High temperature shape memory alloys; Martensitic transformation; Microstructure; Thermal hysteresis; Crystallographic compatibility ID LATTICE-PARAMETERS; CU ALLOYS; BEHAVIOR; HF; MICROSTRUCTURE; PHASE; TRANSFORMATION; PRECIPITATION; MARTENSITE AB The relationship between the crystallographic compatibility of austenite and martensite phases and the transformation thermal hysteresis (Delta T) of Ni-rich Ni50.3Ti29.7Hf20 and Ni50.3Ti29.7Zr20 alloys undergoing B2-B19' martensitic transformation was studied as a function of microstructure, via differential scanning calorimetry, transmission electron microscopy, and X-ray diffraction. An experimental linear relationship of Delta T vs lambda(2) (the second eigenvalue of the transformation stretch matrix) was observed for these NiTi(Hf/Zr) alloys, but with a shallower slope as compared to the universal behavior followed by alloys showing B2-B19 martensitic phase transformation. Several ternary NiTiCu and binary NiTi alloys undergoing the B2-B19' transformation were also found to deviate from the universal behavior attributed to alloys that undergo a B2-B19 transformation, and instead, follow the trend revealed for the present alloy systems. Aged NiTi(HfiZr) samples, which consist of very fine nano-precipitates, followed the newly established Delta T vs lambda(2) linear relationship, due to only minor changes in the microstructure. In contrast, samples with large precipitates, exhibited a large deviation from this relationship due to much more drastic changes in microstructure. Finally, despite the poor crystallographic compatibility of the austenite and martensite lattices observed in the present alloys, rationalized by large deviation of lambda(2) values from 1, relatively low Delta T values were measured. This behavior is actually consistent with the newly established relationship for Delta T vs lambda(2) for B2-B19' transforming alloys, which is much less sensitive to compatibility (shallower slope). It is concluded that such a difference in the Delta T vs lambda(2) slope must be a consequence of the crystallography of monoclinic martensite formation in NiTi-based alloys as long as other factors such as plasticity or major constraints to the martensitic transformation do not intervene. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Evirgen, A.; Karaman, I.; Hayrettin, C.] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Santamarta, R.; Pons, J.] Univ Illes Balears, Dept Fis, E-07122 Palma De Mallorca, Spain. [Noebe, R. D.] NASA, Mat & Struct Div, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Karaman, I (reprint author), Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. EM ikaraman@tamu.edu FU US Air Force Office of Scientific Research [FA9550-15-1-0287]; National Science Foundation [CMMI-1534534, DMR-08-44082]; International Materials Institute for Multifunctional Materials for Energy Conversion (IIMEC) at Texas AM University; FEDER [MAT2014-56116-C4-1-R]; Spanish MINECO; NASA Transformative Aeronautics Concepts Program, Transformational Tools & Technologies Project FX The present study was supported by the US Air Force Office of Scientific Research, under Grant no. FA9550-15-1-0287. Additional support was received from the National Science Foundation under Grant no. CMMI-1534534, and under Grant no. DMR-08-44082, which supports the International Materials Institute for Multifunctional Materials for Energy Conversion (IIMEC) at Texas A&M University. Spanish MINECO and FEDER under Project Number MAT2014-56116-C4-1-R are also acknowledged for their partial financial support. RDN gratefully acknowledges support from the NASA Transformative Aeronautics Concepts Program, Transformational Tools & Technologies Project. NR 41 TC 1 Z9 1 U1 29 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD DEC PY 2016 VL 121 BP 374 EP 383 DI 10.1016/j.actamat.2016.08.065 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EA9SH UT WOS:000386984500036 ER PT J AU Wernet, MP Hadley, JA AF Wernet, Mark P. Hadley, Judith A. TI A high temperature seeding technique for particle image velocimetry SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE particle image velocimetry; laser doppler velocimetry; particle seeding; high temperature flows ID TRACER PARTICLES; FLOWS AB Non- intrusive measurements of gas velocities via particle image velocimetry (PIV) or laser Doppler velocimetry (LDV) requires entraining particles into the flow field. There are many techniques and materials available for seeding gas phase flows. However, when the flow temperatures exceed 200 degrees C, the available options for seed materials becomes limited. In high temperature applications refractory seed materials are required. The established technique for seeding flows with metal oxide powders is via fluidized beds by themselves or in combination with cyclone separators. These systems are fraught with problems which limit their ability to provide consistent, uniform flow seeding. In this work, we describe a technique for reliably introducing metal oxide particles into high temperature flows. The employment of pH stabilization techniques typically used to obtain stable dispersions in ceramic processing can provide a source of seed material for high temperature air flows. By pH stabilizing submicron alumina particles in ethanol, a stable dispersion is obtained which when atomized, produces a high quality aerosol. Commercial grade alumina is used with a moderate size distribution. The technique is not limited to alumina/ethanol and is also demonstrated with an alumina/H2O system. Other ceramic powders in other polar solvents can also be used once their point of zero charge (pH(pzc)) of the powder in the solvent has been determined. We present an example of the pH stabilized dispersions applied to a very challenging high temperature supersonic flow and a particle dynamics analysis across a shock. C1 [Wernet, Mark P.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Hadley, Judith A.] Malvern Instruments Ltd, Northampton, MA 01060 USA. RP Wernet, MP (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM mark.p.wernet@nasa.gov NR 14 TC 0 Z9 0 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD DEC PY 2016 VL 27 IS 12 AR 125201 DI 10.1088/0957-0233/27/12/125201 PG 10 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA EB0IZ UT WOS:000387028800001 ER PT J AU Iwakiri, WB Black, JK Cole, R Enoto, T Hayato, A Hill, JE Jahoda, K Kaaret, P Kitaguchi, T Kubota, M Marlowe, H McCurdy, R Takeuchi, Y Tamagawa, T AF Iwakiri, W. B. Black, J. K. Cole, R. Enoto, T. Hayato, A. Hill, J. E. Jahoda, K. Kaaret, P. Kitaguchi, T. Kubota, M. Marlowe, H. McCurdy, R. Takeuchi, Y. Tamagawa, T. TI Performance of the PRAXyS X-ray polarimeter SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE X-ray polarimeter; PRAXyS; Micropattern gas detector ID CRAB-NEBULA; POLARIZATION; DETECTOR AB The performance of the Time Projection Chamber (TPC) polarimeter for the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) Small Explorer was evaluated using polarized and unpolarized X-ray sources. The PRAXyS mission will enable exploration of the universe through X-ray polarimetry in the 2-10 keV energy band. We carried out performance tests of the polarimeter at the Brookhaven National Laboratory, National Synchrotron Light Source (BNL-NSLS) and at NASA's Goddard Space Flight Center. The polarimeter was tested with linearly polarized, monochromatic X-rays at 11 different energies between 2.5 and 8.0 keV. At maximum sensitivity, the measured modulation factors at 2.7, 4.5 and 8.0 keV are 27%, 43% and 59%, respectively and the measured angle of polarization is consistent with the expected value at all energies. Measurements with a broadband, unpolarized X-ray source placed a limit of less than 1% on false polarization in the PRAXyS polarimeter. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Iwakiri, W. B.; Hayato, A.; Kubota, M.; Takeuchi, Y.; Tamagawa, T.] RIKEN Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Black, J. K.; Cole, R.; Hill, J. E.; Jahoda, K.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Black, J. K.] Rock Creek Sci, 1400 East West Hwy, Silver Spring, MD 20910 USA. [Enoto, T.] Kyoto Univ, Hakubi Ctr Adv Res, Kyoto 6068302, Japan. [Enoto, T.] Kyoto Univ, Dept Astron, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan. [Kitaguchi, T.] Hiroshima Univ, Dept Phys Sci, 1-3-1 Kagamiyama, Hiroshima 7398526, Japan. [Kaaret, P.; Marlowe, H.; McCurdy, R.] Univ Iowa, Iowa City, IA 52242 USA. [Kubota, M.; Takeuchi, Y.; Tamagawa, T.] Tokyo Univ Sci, Dept Phys, Shinjuku Ku, 3-1 Kagurazaka, Tokyo 1628601, Japan. RP Iwakiri, WB (reprint author), RIKEN Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM wataru.iwakiri@riken.jp FU JSPS KAKENHI [25-5312, JP16H02198]; MEXT KAKENHI [JP24105007]; NASA Astrophysics Research and Analysis Solicitation [13-APRA13-0141, NNH13ZDA001N-APRA] FX This work was partially supported via proposal 13-APRA13-0141 in response to the NASA Astrophysics Research and Analysis Solicitation NNH13ZDA001N-APRA, MEXT KAKENHI Grant Number JP24105007, and JSPS KAKENHI Grant Number JP16H02198. The authors would like to acknowledge the support of Syed Khalid at the X19A beamline at the BNL-NSLS. W.B. Iwakiri was supported by JSPS KAKENHI, Grant-in-Aid for JSPS Fellows, 25-5312. We also thank the two anonymous referees whose comments have helped us improve the presentation of these results. NR 19 TC 1 Z9 1 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 1 PY 2016 VL 838 BP 89 EP 95 DI 10.1016/j.nima.2016.09.024 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DZ7QO UT WOS:000386061200014 ER PT J AU Kelly, ELA Eynaud, Y Clements, SM Gleason, M Sparks, RT Williams, ID Smith, JE AF Kelly, Emily L. A. Eynaud, Yoan Clements, Samantha M. Gleason, Molly Sparks, Russell T. Williams, Ivor D. Smith, Jennifer E. TI Investigating functional redundancy versus complementarity in Hawaiian herbivorous coral reef fishes SO OECOLOGIA LA English DT Article DE Herbivore; Functional redundancy; Complementarity; Functional guild; Selectivity ID ECOLOGICAL IMPLICATIONS; COMMUNITY STRUCTURE; SPARISOMA-VIRIDE; TROPHIC STATUS; ASSEMBLAGES; DIVERSITY; COMPETITION; ECOSYSTEM; PRODUCTIVITY; BIOEROSION AB Patterns of species resource use provide insight into the functional roles of species and thus their ecological significance within a community. The functional role of herbivorous fishes on coral reefs has been defined through a variety of methods, but from a grazing perspective, less is known about the species-specific preferences of herbivores on different groups of reef algae and the extent of dietary overlap across an herbivore community. Here, we quantified patterns of redundancy and complementarity in a highly diverse community of herbivores at a reef on Maui, Hawaii, USA. First, we tracked fish foraging behavior in situ to record bite rate and type of substrate bitten. Second, we examined gut contents of select herbivorous fishes to determine consumption at a finer scale. Finally, we placed foraging behavior in the context of resource availability to determine how fish selected substrate type. All species predominantly (73-100 %) foraged on turf algae, though there were differences among the types of macroalgae and other substrates bitten. Increased resolution via gut content analysis showed the composition of turf algae consumed by fishes differed across herbivore species. Consideration of foraging behavior by substrate availability revealed 50 % of herbivores selected for turf as opposed to other substrate types, but overall, there were variable foraging portfolios across all species. Through these three methods of investigation, we found higher complementarity among herbivorous fishes than would be revealed using a single metric. These results suggest differences across species in the herbivore "rain of bites" that graze and shape benthic community composition. C1 [Kelly, Emily L. A.; Eynaud, Yoan; Clements, Samantha M.; Gleason, Molly; Smith, Jennifer E.] Univ Calif San Diego, Scripps Inst Oceanog, Ctr Marine Biodivers & Conservat, La Jolla, CA 92093 USA. [Sparks, Russell T.] Maui Off, Div Aquat Resources, Dept Land & Nat Resources, 130 Mahalani St, Wailuku, HI 96768 USA. [Williams, Ivor D.] NOAA, CREP, PIFSC, Natl Marine Fisheries Serv,IRC, 1845 Wasp Blvd Bldg 176, Honolulu, HI 96818 USA. RP Kelly, ELA (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Ctr Marine Biodivers & Conservat, La Jolla, CA 92093 USA. EM elkelly@ucsd.edu FU NSF IGERT; Hawaii Coral Reef Initiative; Mia Tegner Fellowship; Women Divers Hall of Fame; Explorers Club Exploration Fund; Sussman Fellowship; Oceanids Memorial Fellowship; NOAA Coral Reef Conservation Program FX We thank S. Sandin for discussions of data analysis and implications. Thanks to M. Dailer and D. White for ideas and field support, P. Dockry for logistical support, and K. Moses and N. Pederson for processing gut content samples. We also thank S. Kram, J. Harris, L. Lewis, M. Miller, D. Brown, J. Locke, and E. Keenan. A. Khen provided drawings used in figures. Funding was provided by NSF IGERT, Hawaii Coral Reef Initiative, Mia Tegner Fellowship, Women Divers Hall of Fame, Explorers Club Exploration Fund, the Sussman Fellowship, and the Oceanids Memorial Fellowship. Funding for benthic coral reef surveys came from the NOAA Coral Reef Conservation Program. We thank D. Burkepile, S. Brandl, and an anonymous reviewer for their constructive comments in improving the manuscript. NR 75 TC 0 Z9 0 U1 16 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0029-8549 EI 1432-1939 J9 OECOLOGIA JI Oecologia PD DEC PY 2016 VL 182 IS 4 BP 1151 EP 1163 DI 10.1007/s00442-016-3724-0 PG 13 WC Ecology SC Environmental Sciences & Ecology GA DZ7TV UT WOS:000386070800021 PM 27651229 ER PT J AU Leroux, DJ Das, NN Entekhabi, D Colliander, A Njoku, EG Dunbar, RS Yueh, SH AF Leroux, Delphine J. Das, Narendra Narayan Entekhabi, Dara Colliander, Andreas Njoku, Eni G. Dunbar, R. Scott Yueh, Simon H. TI Active-Passive Disaggregation of Brightness Temperatures During the SMAPVEX12 Campaign SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Active-passive; brightness temperature disaggregation; Soil Moisture Active Passive (SMAP) ID VALIDATION EXPERIMENT 2012; SOIL-MOISTURE RETRIEVAL; RADAR OBSERVATIONS; RADIOMETER; CROP; CALIBRATION; MISSION; MODEL AB The goal of this study is to assess the performance of the active-passive disaggregation algorithm for the National Aeronautics and Space Administration Soil Moisture Active Passive (SMAP) mission using airborne observations from the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12). This algorithm disaggregates the whole domain resolution (around 30 km) radiometer brightness temperature (TB) using the 1.6-km-resolution radar backscatter (sigma degrees) observations (both acquired by the aircraft-based Passive Active L-and S-band Sensor), to a medium 6.4-km resolution. The parameters of the disaggregation method are affected by changes in soil and vegetation. Different time windows are studied to assess the best representation of the campaign vegetation growth and senescence processes. The algorithm performance is evaluated by comparing disaggregated and observed TB at the medium resolution. A minimum performance algorithm is also applied where the radar data are withheld. The minimum performance algorithm serves as a benchmark to assess the value of the radar to the SMAP active-passive algorithm. C1 [Leroux, Delphine J.; Das, Narendra Narayan; Colliander, Andreas; Njoku, Eni G.; Dunbar, R. Scott; Yueh, Simon H.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Leroux, Delphine J.] Ctr Etud Spatiales Biosphere CESBIO, F-31400 Toulouse, France. [Leroux, Delphine J.] Ctr Natl Rech Meteorol, F-3110 Toulouse, France. [Entekhabi, Dara] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Das, NN (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM narendra.n.das@jpl.nasa.gov NR 30 TC 0 Z9 0 U1 12 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2016 VL 54 IS 12 BP 6859 EP 6867 DI 10.1109/TGRS.2016.2572107 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DZ2ZW UT WOS:000385713500002 ER PT J AU Chang, TJ Xiong, XX Mu, QZ AF Chang, Tiejun Xiong, Xiaoxiong Mu, Qiaozhen TI VIIRS Reflective Solar Band Radiometric and Stability Evaluation Using Deep Convective Clouds SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Deep convective clouds (DCCs); radiometric calibration; striping; Visible Infrared Imaging Radiometer Suite (VIIRS) ID PERFORMANCE; SATELLITE AB This work takes advantage of the stable distribution of deep convective cloud (DCC) reflectance measurements to assess the calibration stability and detector difference in Visible Infrared Imaging Radiometer Suite (VIIRS) reflective bands. VIIRS Sensor Data Records (SDRs) from February 2012 to June 2015 are utilized to analyze the long-term trending, detector difference, and half angle mirror (HAM) side difference. VIIRS has two thermal emissive bands with coverage crossing 11 mu m for DCC pixel identification. The comparison of the results of these two processing bands is one of the indicators of analysis reliability. The long-term stability analysis shows downward trends (up to approximately 0.4% per year) for the visible and near-infrared bands and upward trends (up to 0.5% per year) for the short-and midwave infrared bands. The detector difference for each band is calculated as the difference relative to the average reflectance over all detectors. Except for the slightly greater than 1% difference in the two bands at 1610 nm, the detector difference is less than 1% for other solar reflective bands. The detector differences show increasing trends for some short-wave bands with center wavelengths from 400 to 600 nm and remain unchanged for the bands with longer center wavelengths. The HAM side difference is insignificant and stable. Those short-wave bands from 400 to 600 nm also have relatively larger HAM side difference, up to 0.25%. Comparing the striped images from SDR and the smooth images after the correction validates the analyses of detector difference and HAM side difference. These analyses are very helpful for VIIRS calibration improvement and thus enhance product quality. C1 [Chang, Tiejun; Mu, Qiaozhen] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Xiong, Xiaoxiong] NASA, Sci & Explorat Directorate, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chang, TJ (reprint author), Sci Syst & Applicat Inc, Lanham, MD 20706 USA. EM tiejun.chang@ssaihq.com; Xiaoxiong.Xiong-1@nasa.gov; qiaozhen.mu@ssaihq.com NR 21 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2016 VL 54 IS 12 BP 7009 EP 7017 DI 10.1109/TGRS.2016.2594029 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DZ2ZW UT WOS:000385713500015 ER PT J AU Meissner, T Wentz, FJ Scott, J Vazquez-Cuervo, J AF Meissner, Thomas Wentz, Frank J. Scott, Joel Vazquez-Cuervo, Jorge TI Sensitivity of Ocean Surface Salinity Measurements From Spaceborne L-Band Radiometers to Ancillary Sea Surface Temperature SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Enter L-band; microwave radiometry; ocean salinity; ocean temperature; passive microwave remote sensing ID DATA ASSIMILATION; MISSION AB Sea surface temperature (SST) serves as a crucial ancillary input field to the retrieval algorithm for sea surface salinity (SSS) from L-band satellite radiometers, such as Soil Moisture and Ocean Salinity mission, Aquarius, and Soil Moisture Active Passive mission. It is needed for inverting the radiative transfer model equation of the ocean surface emissivity, which depends both on ocean surface salinity and ocean surface temperature. Our analysis studies the sensitivity of the performance of the Aquarius salinity retrieval algorithm to the ancillary SST that is used in the algorithm. We have retrieved Aquarius salinities using four different SST fields as ancillary input, namely, the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR)-only Optimum Interpolation SST (OISST), the SST from WindSat, the SST from the Canadian Meteorological Center (CMC), and the Multi-scale Ultra-high Resolution (MUR) SST from the National Aeronautics and Space Administration's Jet Propulsion Laboratory. The retrieved Aquarius SSS is compared with ground truth data; thus, the performance of the salinity retrieval algorithm in all four cases can be evaluated. The WindSat, CMC, and MUR SST products, which are all based on or are assimilating SST measurements from the passive microwave (MW) sensors, give better performance than the NOAA AVHRR-only OISST, which does not use any MW SST data, but which is solely based on the in situ data and observations from the infrared AVHRR sensor. The CMC SST gives the best overall performance for the retrieved SSS. The sensitivity of the SSS retrievals and therefore the performance differences between the various ancillary input fields increases in cold water. C1 [Meissner, Thomas; Wentz, Frank J.; Scott, Joel] Remote Sensing Syst, Santa Rosa, CA 95401 USA. [Scott, Joel] NASA, Ocean Biol Proc Grp, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Vazquez-Cuervo, Jorge] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Meissner, T (reprint author), Remote Sensing Syst, Santa Rosa, CA 95401 USA. EM meissner@remss.com; frank.wentz@remss.com; Joel.p.scott@gmail.com; Jorge.Vazquez@jpl.nasa.gov RI Scott, Joel/D-3144-2017 OI Scott, Joel/0000-0003-0345-0704 FU National Aeronautics and Space Administration [NNG04HZ29C] FX This work was supported by the National Aeronautics and Space Administration under Contract NNG04HZ29C. NR 26 TC 0 Z9 0 U1 14 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2016 VL 54 IS 12 BP 7105 EP 7111 DI 10.1109/TGRS.2016.2596100 PG 7 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DZ2ZW UT WOS:000385713500023 ER PT J AU Liao, L Meneghini, R AF Liao, Liang Meneghini, Robert TI A Dual-Wavelength Radar Technique to Detect Hydrometeor Phases SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Radar; rain and snow ID PRECIPITATION RADAR; CLASSIFICATION METHOD; RAIN; BAND AB This paper aims to investigate the feasibility of a Ku-band and Ka-band spaceborne/airborne dual-wavelength radar algorithm to discriminate various phase states of precipitating hydrometeors. A phase-state classification algorithm has been developed from the radar measurements of snow, mixed phase, and rain obtained from stratiform storms. The algorithm, which is presented in the form of a lookup table that links the Ku-band radar reflectivity and dual-frequency ratio to the phase states of hydrometeors, is checked by applying it to the measurements of the Jet Propulsion Laboratory, California Institute of Technology, using Airborne Precipitation Radar Second Generation (APR-2). In creating the statistically based phase lookup table, the attenuation-corrected (or true) radar reflectivity factors are employed, leading to better accuracy in determining the hydrometeor phase. In practice, however, the true radar reflectivity is not always available before the phase states of the hydrometeors are determined. Therefore, it is desirable to make use of the measured radar reflectivity in classifying the phase states. To do this, phase identification that uses only measured radar reflectivity is proposed. The procedure is then tested using APR-2 airborne radar data. The analysis of the classification results in stratiform rain indicates that the regions of snow, mixed phase, and rain derived from the phase identification algorithm coincide reasonably well with those determined from the measured radar reflectivity and linear depolarization ratio. C1 [Liao, Liang] Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 20771 USA. [Meneghini, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Liao, L (reprint author), Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 20771 USA. EM Liang.Liao-1@nasa.gov FU National Aeronautics and Space Administration (NASA) Headquarters through NASA's Precipitation Measurement Mission (PMM) [NNH12ZDA001N-PMM] FX This work was supported by Dr. R. Kakar of the National Aeronautics and Space Administration (NASA) Headquarters through NASA's Precipitation Measurement Mission (PMM) under Grant NNH12ZDA001N-PMM. NR 18 TC 0 Z9 0 U1 4 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2016 VL 54 IS 12 BP 7292 EP 7298 DI 10.1109/TGRS.2016.2599022 PG 7 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DZ2ZW UT WOS:000385713500040 ER PT J AU Yueh, SH Fore, AG Tang, WQ Hayashi, A Stiles, B Reul, N Weng, YH Zhang, FQ AF Yueh, Simon H. Fore, Alexander G. Tang, Wenqing Hayashi, Akiko Stiles, Bryan Reul, Nicolas Weng, Yonghui Zhang, Fuqing TI SMAP L-Band Passive Microwave Observations of Ocean Surface Wind During Severe Storms SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Hurricane; microwave remote sensing; ocean surface wind; radar; radiometer ID MODEL FUNCTION; RETRIEVAL; RADIOMETER; ALGORITHM AB The L-band passive microwave data from the Soil Moisture Active Passive (SMAP) observatory are investigated for remote sensing of ocean surface winds during severe storms. The surface winds of Joaquin derived from the real-time analysis of the Center for Advanced Data Assimilation and Predictability Techniques at Penn State support the linear extrapolation of the Aquarius and SMAP geophysical model functions (GMFs) to hurricane force winds. We apply the SMAP and Aquarius GMFs to the retrieval of ocean surface wind vectors from the SMAP radiometer data to take advantage of SMAP's two-look geometry. The SMAP radiometer winds are compared with the winds from other satellites and numerical weather models for validation. The root-mean-square difference (RMSD) with WindSat or Special Sensor Microwave Imager/Sounder is 1.7 m/s below 20-m/s wind speeds. The RMSD with the European Center for Medium-Range Weather Forecasts direction is 18. for wind speeds between 12 and 30 m/s. We find that the correlation is sufficiently high between the maximum wind speeds retrieved by SMAP with a 60-km resolution and the best track peak winds estimated by the National Hurricane Center and the Joint Typhoon Warning Center to allow them to be estimated by SMAP with a correlation coefficient of 0.8 and an underestimation by 8%-18% on average, which is likely due to the effects of spatial averaging. There is also a good agreement with the airborne Stepped-Frequency Radiometer wind speeds with an RMSD of 4.6 m/s for wind speeds in the range of 20-40 m/s. C1 [Yueh, Simon H.; Fore, Alexander G.; Tang, Wenqing; Hayashi, Akiko; Stiles, Bryan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Reul, Nicolas] IFREMER, Lab Oceanog Phys & Spatial LOPS, F-29280 Plouzane, France. [Weng, Yonghui; Zhang, Fuqing] Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA. [Weng, Yonghui; Zhang, Fuqing] Penn State Univ, Ctr Adv Data Assimilat & Predictabil Tech, University Pk, PA 16802 USA. RP Yueh, SH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM simon.yueh@jpl.nasa.gov; alexander.fore@jpl.nasa.gov; Wenqing.Tang@jpl.nasa.gov; Akiko.Hayashi@jpl.nasa.gov; bryan.stiles@jpl.nasa.gov; nicolas.reul@ifremer.fr; yhweng@psu.edu; fzhang@psu.edu RI Zhang, Fuqing/E-6522-2010; OI Zhang, Fuqing/0000-0003-4860-9985; Reul, Nicolas/0000-0003-4881-2967 FU Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration; ESA's Support to Science Element Program under Soil Moisture and Ocean Salinity + STORMevolution [4000105171/12/I-BG] FX This work was supported by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. The work of N. Reul was supported by the ESA's Support to Science Element Program under the contract Soil Moisture and Ocean Salinity + STORMevolution, #4000105171/12/I-BG. NR 19 TC 0 Z9 0 U1 20 U2 20 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2016 VL 54 IS 12 BP 7339 EP 7350 DI 10.1109/TGRS.2016.2600239 PG 12 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DZ2ZW UT WOS:000385713500045 ER PT J AU Kang, DH Barros, AP Kim, EJ AF Kang, Do-Hyuk Barros, Ana P. Kim, Edward J. TI Evaluating Multispectral Snowpack Reflectivity With Changing Snow Correlation Lengths SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Multiple frequencies; reflectivity; scattering coefficient; snow correlation length ID OBSERVING SYSTEM SIMULATION; GRAIN-SIZE; DIELECTRIC-PROPERTIES; MICROWAVE RADIOMETRY; WATER EQUIVALENT; MODEL; REGIONS; COVER; RETRIEVAL; EMISSIONS AB This study investigates the sensitivity of multispectral reflectivity to changing snow correlation lengths. Matzler's ice-lamellae radiative transfer model was implemented and tested to evaluate the reflectivity of snow correlation lengths at multiple frequencies from the ultraviolet (UV) to the microwave bands. The model reveals that, in the UV to infrared (IR) frequency range, the reflectivity and correlation length are inversely related, whereas reflectivity increases with snow correlation length in the microwave frequency range. The model further shows that the reflectivity behavior can be mainly attributed to scattering rather than absorption for shallow snowpacks. The largest scattering coefficients and reflectivity occur at very small correlation lengths (similar to 10(-5) m) for frequencies higher than the IR band. In the microwave range, the largest scattering coefficients are found at millimeter wavelengths. For validation purposes, the ice-lamella model is coupled with a multilayer snow physics model to characterize the reflectivity response of realistic snow hydrological processes. The evolution of the coupled model simulated reflectivities in both the visible and the microwave bands is consistent with satellite-based reflectivity observations in the same frequencies. The model results are also compared with colocated in situ snow correlation length measurements (Cold Land Processes Field Experiment 2002-2003). The analysis and evaluation of model results indicate that the coupled multifrequency radiative transfer and snow hydrology modeling system can be used as a forward operator in a data-assimilation framework to predict the status of snow physical properties, including snow correlation length. C1 [Kang, Do-Hyuk; Kim, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20850 USA. [Barros, Ana P.] Duke Univ, Durham, NC 27708 USA. RP Kang, DH (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20850 USA. EM dk.kang@nasa.gov FU NASA [NNX13AH39G] FX The work of D.-H. Kang was supported by an appointment to the NASA Postdoctoral Program at the NASA Goddard Space Flight Center, administered by Universities Space Research Association through a contract with NASA. The work of A. P. Barros was supported by NASA under Grant NNX13AH39G. NR 32 TC 0 Z9 0 U1 7 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2016 VL 54 IS 12 BP 7378 EP 7384 DI 10.1109/TGRS.2016.2600958 PG 7 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DZ2ZW UT WOS:000385713500048 ER PT J AU Fore, AG Yueh, SH Tang, WQ Stiles, BW Hayashi, AK AF Fore, Alexander G. Yueh, Simon H. Tang, Wenqing Stiles, Bryan W. Hayashi, Akiko K. TI Combined Active/Passive Retrievals of Ocean Vector Wind and Sea Surface Salinity With SMAP SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Aquarius; ocean vector winds; ocean winds; radar; radiometer; salinity; Soil Moisture Active Passive (SMAP) ID BAND MICROWAVE OBSERVATIONS; MISSION AB In this paper, we introduce the combined active/passive (CAP) data product for the Soil Moisture Active Passive mission. We develop the algorithms for a radiometer-only salinity product, a radar-only vector wind product, and a CAP vector wind and salinity product. We show that the performance of the radiometer-only salinity product nears but is still inferior to the Aquarius salinity accuracy performance when aggregated on a monthly timescale. Then, we show that the radar-only vector wind product has reasonable accuracy away from the nadir track while suffering from inadequate measurement geometry in the middle of the swath. Finally, we demonstrate that the CAP salinity and vector wind performance is superior to individual algorithms and provides wind vectors nearly as good as RapidScat for low-to-moderate winds and possibly superior to traditional scatterometers for wind speeds larger than 12.5 m/s. C1 [Fore, Alexander G.; Yueh, Simon H.; Tang, Wenqing; Stiles, Bryan W.; Hayashi, Akiko K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Fore, AG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Alexander.Fore@jpl.nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration; California Institute of Technology. Government FX This work was supported by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. Copyright 2016 California Institute of Technology. Government sponsorship acknowledged. NR 15 TC 0 Z9 0 U1 9 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2016 VL 54 IS 12 BP 7396 EP 7404 DI 10.1109/TGRS.2016.2601486 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DZ2ZW UT WOS:000385713500050 ER PT J AU Darr, SR Hu, H Glikin, NG Hartwig, JW Majumdar, AK Leclair, AC Chung, JN AF Darr, S. R. Hu, Hong Glikin, N. G. Hartwig, J. W. Majumdar, A. K. Leclair, A. C. Chung, J. N. TI An experimental study on terrestrial cryogenic transfer line chilldown I. Effect of mass flux, equilibrium quality, and inlet subcooling SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Cryogenics; Two-phase flow; Line chilldown; Liquid nitrogen; Film boiling; Transition boiling; Nucleate boiling; Critical heat flux; Quenching curve ID CRITICAL HEAT-FLUX; GENERAL CORRELATION; VERTICAL TUBES; FLOW; NITROGEN AB This is the first of a two-part series which presents the experimental results of the chilldown of a thin walled stainless steel tube with liquid nitrogen under a wide range of pressures and mass fluxes in terrestrial gravity. Data is presented in this paper for a vertically upward (against gravity) flow orientation. The experimental data covers mass fluxes ranging from 6 to 1650 kg/m(2) s (liquid Reynolds numbers ranging from 850 to 231,000), equilibrium two-phase flow qualities from -0.13 to 0.4, inlet subcooling from 0 to 10 K and local pressures from 150 to 720 kPa. The temperature and pressure measurements were made at two axial distances of 14.9 cm and 40.1 cm from the inlet. Analysis is presented on the effects of the mass flux, equilibrium quality, inlet subcooling, pressure, and axial distance from the tube inlet on the measured film, transition, and nucleate boiling heat transfer coefficients as well as the critical heat flux. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Darr, S. R.; Hu, Hong; Glikin, N. G.; Chung, J. N.] Univ Florida, Dept Mech & Aerosp Engn, Cryogen Heat Transfer Lab, Gainesville, FL 32611 USA. [Hartwig, J. W.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Majumdar, A. K.; Leclair, A. C.] NASA, Marshall Spaceflight Ctr, Huntsville, AL 35811 USA. RP Chung, JN (reprint author), Univ Florida, Dept Mech & Aerosp Engn, Cryogen Heat Transfer Lab, Gainesville, FL 32611 USA. EM jnchung@ufl.edu OI Darr, Samuel/0000-0002-1891-405X FU NASA MSFC Space Launch System Advanced Development Project [NNM13AA08G] FX This work was funded by the NASA MSFC Space Launch System Advanced Development Project under Grant NNM13AA08G with Melinda Nettles as the Program Director. NR 43 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD DEC PY 2016 VL 103 BP 1225 EP 1242 DI 10.1016/j.ijheatmasstransfer.2016.05.019 PG 18 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA DY0HL UT WOS:000384777800115 ER PT J AU Darr, SR Hu, H Glikin, N Hartwig, JW Majumdar, AK Leclair, AC Chung, JN AF Darr, S. R. Hu, Hong Glikin, N. Hartwig, J. W. Majumdar, A. K. Leclair, A. C. Chung, J. N. TI An experimental study on terrestrial cryogenic tube chilldown II. Effect of flow direction with respect to gravity and new correlation set SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Cryogenics; Two-phase flow; Line chilldown; Liquid nitrogen; Quenching curve; Flow direction effects ID HEAT-TRANSFER; QUENCHING EXPERIMENTS; 2-PHASE FLOW; PIPE AB This is the second of a two-part series of papers which presents the experimental results of a parametric series of liquid nitrogen chilldown tests of a stainless steel tube. Whereas the first paper in this series focused on the effect of mass flux, inlet subcooling, equilibrium quality, pressure, and axial distance from the inlet on two-phase convection heat flux for vertical upward flow only, this paper focuses on the effect of flow direction with respect to gravity. Nine different flow directions were examined, including horizontal, 30 inclined and declined, 45 inclined and declined, 60 inclined and declined, and vertical upward and downward. The experimental data covers liquid Reynolds numbers ranging from 800 to 230,000 and local pressures ranging from 150 to 725 kPa. Analysis is presented on the effect of flow direction on the measured film, transition, and nucleate boiling heat transfer coefficients as well as the critical heat flux. Finally, new heat transfer correlations to predict the data are presented for film boiling, nucleate boiling, and transition boiling. These correlations can be used for numerical simulations of cryogenic chilldown to help predict the chilldown time and propellant consumption for different system variables. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Darr, S. R.; Hu, Hong; Glikin, N.; Chung, J. N.] Univ Florida, Dept Mech & Aerosp Engn, Cryogen Heat Transfer Lab, Gainesville, FL 32611 USA. [Hartwig, J. W.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Majumdar, A. K.; Leclair, A. C.] NASA, Marshall Spaceflight Ctr, Huntsville, AL 35811 USA. RP Chung, JN (reprint author), Univ Florida, Dept Mech & Aerosp Engn, Cryogen Heat Transfer Lab, Gainesville, FL 32611 USA. EM jnchung@ufl.edu FU NASA MSFC Space Launch System Advanced Development Project [NNM13AA08G] FX This work was funded by the NASA MSFC Space Launch System Advanced Development Project under Grant NNM13AA08G with Melinda Nettles as the Program Director. NR 33 TC 0 Z9 0 U1 3 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD DEC PY 2016 VL 103 BP 1243 EP 1260 DI 10.1016/j.ijheatmasstransfer.2016.08.044 PG 18 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA DY0HL UT WOS:000384777800116 ER PT J AU Christian, JA Benhacine, L Hikes, J D'Souza, C AF Christian, John A. Benhacine, Lylia Hikes, Jacob D'Souza, Christopher TI Geometric Calibration of the Orion Optical Navigation Camera using Star Field Images SO JOURNAL OF THE ASTRONAUTICAL SCIENCES LA English DT Article DE Camera calibration; Optical navigation; Orion AB The Orion Multi Purpose Crew Vehicle will be capable of autonomously navigating in cislunar space using images of the Earth and Moon. Optical navigation systems, such as the one proposed for Orion, require the ability to precisely relate the observed location of an object in a 2D digital image with the true corresponding line-of-sight direction in the camera's sensor frame. This relationship is governed by the camera's geometric calibration parameters - typically described by a set of five intrinsic parameters and five lens distortion parameters. While pre-flight estimations of these parameters will exist, environmental conditions often necessitate on-orbit recalibration. This calibration will be performed for Orion using an ensemble of star field images. This manuscript provides a detailed treatment of the theory and mathematics that will form the foundation of Orion's on-orbit camera calibration. Numerical results and examples are also presented. C1 [Christian, John A.; Benhacine, Lylia; Hikes, Jacob] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [D'Souza, Christopher] NASA Johnson Space Ctr, GNC Autonomous Flight Syst Branch, Houston, TX 77058 USA. RP Christian, JA (reprint author), W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. EM john.christian@mail.wvu.edu FU NASA [NNX13AJ25A] FX The authors thank Steve Lockhart, Renato Zanetti, Rebecca Johanning, and other members of the Orion OPNAV team. This work was made possible by NASA under award NNX13AJ25A. NR 28 TC 1 Z9 1 U1 8 U2 8 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0021-9142 EI 2195-0571 J9 J ASTRONAUT SCI JI J. Astronaut. Sci. PD DEC PY 2016 VL 63 IS 4 BP 335 EP 353 DI 10.1007/s40295-016-0091-3 PG 19 WC Engineering, Aerospace SC Engineering GA DY4JX UT WOS:000385065900004 ER PT J AU Stack, KM Edwards, CS Grotzinger, JP Gupta, S Sumner, DY Calef, FJ Edgar, LA Edgett, KS Fraeman, AA Jacob, SR Le Deit, L Lewis, KW Rice, MS Rubin, D Williams, RME Williford, KH AF Stack, K. M. Edwards, C. S. Grotzinger, J. P. Gupta, S. Sumner, D. Y. Calef, F. J., III Edgar, L. A. Edgett, K. S. Fraeman, A. A. Jacob, S. R. Le Deit, L. Lewis, K. W. Rice, M. S. Rubin, D. Williams, R. M. E. Williford, K. H. TI Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars SO ICARUS LA English DT Article DE Mars; Mars, surface; Geological processes ID SCIENCE LABORATORY MISSION; LANDING SITE; GEOLOGY; MINERALOGY; SELECTION; EVOLUTION; ORIGIN AB This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity's Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations. (C) 2016 Published by Elsevier Inc. C1 [Stack, K. M.; Calef, F. J., III; Williford, K. H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Edwards, C. S.; Edgar, L. A.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Grotzinger, J. P.; Fraeman, A. A.] CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. [Gupta, S.] Imperial Coll, Dept Earth Sci & Engn, London SW7 2AZ, England. [Sumner, D. Y.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. [Edgett, K. S.] Malin Space Sci Syst Inc, San Diego, CA 92191 USA. [Jacob, S. R.] Univ Hawaii Manoa, Dept Geol & Geophys, Honolulu, HI 96822 USA. [Le Deit, L.] Univ Nantes, Lab Planetol & Geodynam Nantes, Nantes, France. [Lewis, K. W.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Rice, M. S.] Western Washington Univ, Dept Phys & Astron, Bellingham, WA 98225 USA. [Rubin, D.] UC Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Williams, R. M. E.] Planetary Sci Inst, Tucson, AZ 85719 USA. RP Stack, KM (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM kathryn.m.stack@jpl.nasa.gov NR 53 TC 8 Z9 8 U1 39 U2 39 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2016 VL 280 BP 3 EP 21 DI 10.1016/j.icarus.2016.02.024 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8HR UT WOS:000384629200002 ER PT J AU Grant, JA Parker, TJ Crumpler, LS Wilson, SA Golombek, MP Mittlefehldt, DW AF Grant, J. A. Parker, T. J. Crumpler, L. S. Wilson, S. A. Golombek, M. P. Mittlefehldt, D. W. TI The degradational history of Endeavour crater, Mars SO ICARUS LA English DT Article DE Mars; Mars, surface; Cratering; Impact processes; Geological processes ID MARTIAN IMPACT CRATERS; PLANUM LANDING SITE; MERIDIANI-PLANUM; SEDIMENTARY-ROCKS; BURNS FORMATION; OPPORTUNITY; GRADATION; EROSION; ORIGIN; EJECTA AB Endeavour crater (2.28 degrees S, 354.77 degrees E) is a Noachian-aged 22 km-diameter impact structure of complex morphology in southern Meridiani Planum. The degradation state of the crater has been studied using orbital data from the Mars Reconnaissance Orbiter and in situ data from the Opportunity rover. Multiple exposed crater rim segments range in elevation from similar to 10 m to over 100 m above the level of the embaying Burns Formation. The crater is 200-500 m deep and the interior wall exposes over similar to 300 m of relief around the southern half of the crater. Slopes of 6-16% flank the exterior of the largest western rim segment. On the west side of the crater, both pre-impact rocks (Matijevic Formation) and Endeavour impact ejecta (Shoemaker Formation) are present at Cape York, but only the Shoemaker Formation (up to similar to 140 m section) outcrops at Cape Tribulation. Study of similar sized pristine craters Bopolu and Tooting (with complex morphology) and use of metrics for describing the morphometry of martian craters suggest the original rim of Endeavour averaged 410 m in elevation, but relief varied about +/- 200 m around the circumference. A 250-275 m section of ejecta (+/- 50-60 m) would have comprised a significant fraction of the rim height. The original crater was likely 1.5-2.2 km deep and may have had a central peak (no obvious evidence is present) between 200 and 500 m high. Comparison between the predicted original and current form of Endeavour suggests 100-200 m of rim degradation ranging from nearly complete ejecta removal in some locations to preservation of a thick ejecta section in others. Differences in rim relief are at least partially due to degradation and not just original rim relief and (or) due to offsets along rim faults. Most degradation occurred prior to deposition of the Burns Formation which is similar to 200 m thick outside the crater, but likely thicker inside the crater. Aeolian stripping of the Burns Formation continues today via prevailing winds and lesser mass wasting is important on steeper walls. However, analogy with degraded Noachian craters south of Meridiani suggests fluvial processes were most important in early degradation and is consistent with the nearly complete removal of ejecta from some rim segments, gaps in the rim, formation of Marathon Valley, and interpretation of a pediment flanking the western rim. Slope processes likely accompanied incision that may have accounted for tens of metres rim lowering near Marathon Valley to more than 100 m at Cape York. Published by Elsevier Inc. C1 [Grant, J. A.; Wilson, S. A.] Smithsonian Inst, NASM CEPS, 6th Independence Ave SW, Washington, DC 20560 USA. [Parker, T. J.; Golombek, M. P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Crumpler, L. S.] New Mexico Museum Nat Hist & Sci, 1801 Mt Rd NW, Albuquerque, NM 87104 USA. [Mittlefehldt, D. W.] NASA, Astromat Res Off, Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. RP Grant, JA (reprint author), Smithsonian Inst, NASM CEPS, 6th Independence Ave SW, Washington, DC 20560 USA. EM grantj@si.edu FU NASA under JPL [1243174, 1272218] FX The authors would like to thank Nadine Barlow and an anonymous reviewer for their constructive comments that improved this manuscript. This research in this paper was supported by NASA under JPL Subcontracts 1243174 (MER) and 1272218 (HiRISE, Univ. of Arizona) to Grant and some of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 56 TC 1 Z9 1 U1 12 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2016 VL 280 BP 22 EP 36 DI 10.1016/j.icarus.2015.08.019 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8HR UT WOS:000384629200003 ER PT J AU Yingst, RA Cropper, K Gupta, S Kah, LC Williams, RME Blank, J Calef, F Hamilton, VE Lewis, K Shechet, J McBride, M Bridges, N Frias, JM Newsom, H AF Yingst, R. A. Cropper, K. Gupta, S. Kah, L. C. Williams, R. M. E. Blank, J. Calef, F., III Hamilton, V. E. Lewis, K. Shechet, J. McBride, M. Bridges, N. Martinez Frias, J. Newsom, H. TI Characteristics of pebble and cobble-sized clasts along the Curiosity rover traverse from sol 100 to 750: Terrain types, potential sources, and transport mechanisms SO ICARUS LA English DT Article DE Mars; Surface; Geological processes ID THERMAL-CONDUCTIVITY MEASUREMENTS; GALE CRATER; PARTICULATE MATERIALS; LANDING SITE; MARS; SCIENCE; ORIGIN; EVOLUTION; SEDIMENTS; ROCKNEST AB We combine the results of orbitally-derived morphologic and thermal inertia data with in situ observations of abundance, size, morphologic characteristics, and distribution of pebble- to cobble-sized clasts along the Curiosity rover traverse. Our goals are to characterize rock sources and transport history, and improve our ability to predict upcoming terrain. There are ten clast types, with nine types interpreted as sedimentary rocks. Only Type 3 clasts had morphologies indicative of significant wear through transport; thus, most clast types are indicative of nearby outcrops or prior presence of laterally extensive sedimentary rock layers, consistent with the erosional landscape. A minor component may reflect impact delivery of more distant material. Types 1 and 4 are heavily-cemented sandstones, likely associated with a "caprock" layer. Types 5 and 6 (and possibly 7) are pebble-rich sandstones, with varying amounts of cement leading to varying susceptibility to erosion/wear. Type 3 clasts are rounded pebbles likely transported and deposited alluvially, then worn out of pebbly sandstone/conglomerate. Types 9 and 10 are poorly-sorted sandstones, with Type 9 representing fragments of Square Top-type layers, and Type 10 deriving from basal or other Mt. Sharp layers. Types 2, 8 and 9 are considered exotics. There are few clear links between clast type and terrain surface roughness (particularly in identifying terrain that is challenging for the rover to navigate). Orbital data may provide a reasonable prediction of certain end-member terrains but the complex interplay between variables that contribute to surface characteristics makes discriminating between terrain types from orbital data problematic. Prediction would likely be improved through higher-resolution thermal inertia data. (C) 2016 The Authors. Published by Elsevier Inc. C1 [Yingst, R. A.; Cropper, K.; Williams, R. M. E.] Planetary Sci Inst, 1700 E Ft Lowell,Suite 106, Tucson, AZ 85719 USA. [Gupta, S.] Imperial Coll, London, England. [Kah, L. C.] Univ Tennessee, 1412 Circle Dr, Knoxville, TN USA. [Blank, J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Blank, J.] Blue Marble Space Inst Sci, Seattle, WA USA. [Calef, F., III; Shechet, J.] Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91011 USA. [Hamilton, V. E.] Southwest Res Inst, Boulder, CO 80302 USA. [Lewis, K.] Johns Hopkins Univ, Dept Earth & Planetary Sci, 301 Olin Hall,3400 N Charles St, Baltimore, MD 21218 USA. [McBride, M.] Malin Space Sci Syst, POB 910148, San Diego, CA 92191 USA. [Bridges, N.] Appl Phys Lab, Laurel, MD USA. [Martinez Frias, J.] CSIC UCM, IGEO, Inst Geosci, Fac Ciencias Geol, Jose Antonio Novais 2,Ciudad Univ, Madrid 28040, Spain. [Newsom, H.] Inst Meteorit, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. RP Yingst, RA (reprint author), Planetary Sci Inst, 1700 E Ft Lowell,Suite 106, Tucson, AZ 85719 USA. EM yingst@psi.edu; s.gupta@imperial.ac.uk; lck@ut.edu; hamilton@boulder.swri.edu; klewis@jhu.edu; griffes@gps.caltech.edu; mariejulia12@gmail.com; Nathan.bridges@jhuapl.edu; j.m.frias@igeo.ucm-csic.es; newsom@unm.edu FU Mars Science Laboratory Program through Malin Space Science Systems [08-0315]; Danish Council for Independent Research/Natural Sciences (FNU grant) [12-127126, 11-107019]; TICRA Foundation; Deutsche Forschungsgemeinschaft (DFG) [GO 2288/1-1]; Mars Science Laboratory Participating Scientist Program (JPL) [1449892] FX We gratefully acknowledge the constructive reviews of Dr. Robert Craddock and an anonymous reviewer that improved this manuscript. This research was supported by the Mars Science Laboratory Program through Malin Space Science Systems contract 08-0315 to R.A.Y. Work in Denmark was funded by the Danish Council for Independent Research/Natural Sciences (FNU grants 12-127126 and 11-107019) and the TICRA Foundation. Work in Germany was funded by the Deutsche Forschungsgemeinschaft (DFG grant GO 2288/1-1). V.E.H. was supported by the Mars Science Laboratory Participating Scientist Program (JPL subcontract 1449892). NR 64 TC 1 Z9 1 U1 11 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2016 VL 280 BP 72 EP 92 DI 10.1016/j.icarus.2016.03.001 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8HR UT WOS:000384629200005 ER PT J AU Martinez, GM Fischer, E Renno, NO Sebastian, E Kemppinen, O Bridges, N Borlina, CS Meslin, PY Genzer, M Harri, AH Vicente-Retortillo, A Ramos, M Juarez, MD Gomez, F Gomez-Elvira, J AF Martinez, G. M. Fischer, E. Renno, N. O. Sebastian, E. Kemppinen, O. Bridges, N. Borlina, C. S. Meslin, P. -Y. Genzer, M. Harri, A. -H. Vicente-Retortillo, A. Ramos, M. Juarez, M. de la Torre Gomez, F. Gomez-Elvira, J. CA REMS Team TI Likely frost events at Gale crater: Analysis from MSL/REMS measurements SO ICARUS LA English DT Article DE Mars, surface; Mars, atmosphere; Ices ID GROUND TEMPERATURE SENSOR; SCIENCE LABORATORY ROVER; X-RAY SPECTROMETER; BOUNDARY-LAYER; CHEMICAL-COMPOSITION; SURFACE-PROPERTIES; MERIDIANI-PLANUM; THERMAL INERTIA; LANDING SITE; LANDER SITE AB We provide indirect evidence for the formation of frost at the surface of Gale crater by analyzing the highest confidence data from simultaneous measurements of relative humidity and ground temperature during the first 1000 sols of the Mars Science Laboratory (MSL) mission. We find that except for sol 44, frost events could have occurred only between sols 400 and 710, corresponding to the most humid and coldest time of the year (from early fall to late winter). In particular, measurements at Dingo Gap during sols 529-535, at an unnamed place during sols 554-560, at Kimberley during sols 609-617 and at an unnamed place during sols 673-676 showed the largest likelihood of the occurrence of frost events. At these four locations, the terrain is composed of fine-grained and loosely packed material with thermal inertia values of similar to 200 SI units, much lower than the 365 +/- 50 SI units value found at the landing ellipse. This is important because terrains with exceptionally low thermal inertia favor the formation of frost by lowering minimum daily ground temperatures. An order-of-magnitude calculation to determine the thickness of the frost layer at these four locations results in values of tenths of pm, while the precipitable water content is a few pr-mu m. Therefore, surface frost events can have important implications for the local water cycle at Gale crater. In addition, frost is the most likely type of water that can be temporarily found in bulk amounts on the surface of Mars at low latitudes and therefore can cause weathering, influencing the geology of Gale crater. (C) 2015 The Authors. Published by Elsevier Inc. C1 [Martinez, G. M.; Fischer, E.; Renno, N. O.; Borlina, C. S.; Meslin, P. -Y.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Sebastian, E.; Gomez, F.; Gomez-Elvira, J.] Ctr Astrobiol, Madrid, Spain. [Kemppinen, O.; Genzer, M.; Harri, A. -H.] Finnish Meteorol Inst, Helsinki, Finland. [Bridges, N.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Meslin, P. -Y.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse, France. [Vicente-Retortillo, A.] Univ Complutense, Fac Ciencias Fis, Dept Fis Tierra Astron & Astrofis 2, Madrid, Spain. [Ramos, M.] Univ Alcala de Henares, Dept Fis, Madrid, Spain. [Juarez, M. de la Torre] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Martinez, GM (reprint author), Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. RI Ramos, Miguel/K-2230-2014; Harri, Ari-Matti/C-7142-2012; Gomez, Felipe/L-7315-2014 OI Ramos, Miguel/0000-0003-3648-6818; Harri, Ari-Matti/0000-0001-8541-2802; Gomez, Felipe/0000-0001-9977-7060 FU JPL grant [1449038]; Spanish Ministry of Economy and Competitiveness (MINECO) [BES-2012-059241] FX This research is supported by JPL grant number 1449038. The author A. Vicente-Retortillo wishes to acknowledge the Spanish Ministry of Economy and Competitiveness (MINECO) for the granted FPI fellowship (BES-2012-059241). NR 51 TC 3 Z9 3 U1 17 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2016 VL 280 BP 93 EP 102 DI 10.1016/j.icarus.2015.12.004 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8HR UT WOS:000384629200006 ER PT J AU Pla-Garcia, J Rafkin, SCR Kahre, M Gomez-Elvira, J Hamilton, VE Navarro, S Torres, J Marin, M Vasavada, AR AF Pla-Garcia, Jorge Rafkin, Scot C. R. Kahre, Melinda Gomez-Elvira, Javier Hamilton, Victoria E. Navarro, Sara Torres, Josefina Marin, Mercedes Vasavada, Ashwin R. TI The meteorology of Gale crater as determined from rover environmental monitoring station observations and numerical modeling. Part I: Comparison of model simulations with observations SO ICARUS LA English DT Article DE Mars atmosphere; Atmospheres, dynamics; Mars, climate; Atmospheres, structure ID THERMAL EMISSION SPECTROMETER; GENERAL-CIRCULATION MODEL; MARTIAN ATMOSPHERE; DATA ASSIMILATION; DUST STORMS; MARS; TIDES; SYSTEM; PATHFINDER; SITES AB Air temperature, ground temperature, pressure, and wind speed and direction data obtained from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory rover Curiosity are compared to data from the Mars Regional Atmospheric Modeling System. A full diurnal cycle at four different seasons (Ls 0, 90, 180 and 270) is investigated at the rover location within Gale crater, Mars. Model results are shown to be in good agreement with observations when considering the uncertainties in the observational data set. The good agreement provides justification for utilizing the model results to investigate the broader meteorological environment of the Gale crater region, which is described in the second, companion paper. (C) 2016 Elsevier Inc. All rights reserved. C1 [Pla-Garcia, Jorge; Rafkin, Scot C. R.; Hamilton, Victoria E.] Southwest Res Inst, 1050 Walnut St,Suite 300, Boulder, CO 80302 USA. [Pla-Garcia, Jorge; Gomez-Elvira, Javier; Torres, Josefina] INTA CSIC, Ctr Astrobiol, Torrejon De Ardoz 28850, Spain. [Kahre, Melinda; Navarro, Sara; Marin, Mercedes] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Vasavada, Ashwin R.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Rafkin, SCR (reprint author), Southwest Res Inst, 1050 Walnut St,Suite 300, Boulder, CO 80302 USA. EM rafkin.swri@gmail.com FU NASA/Jet Propulsion Laboratory [1509303]; Spanish Ministry of Economy and Competitiveness [AYA2011-25720, AYA2012-38707] FX As with all large space missions, the ability to conduct science depends upon the dedication of hundreds of scientists, engineers and managers. The authors are grateful for the hard work of the MSL team, without whose dedication none of this work could be accomplished. The authors would also like to explicitly thank the REMS science team for their efforts. Additionally, this manuscript benefited greatly from comments and discussions provided by Isaias Carrasco, Henrik Kahanpaa, German Martinez Martinez, Bob Haberle, Claire Newman, Javier Martin-Torres, Eduardo Sebastian, Alejandro Soto, Patricia Valentin-Serrano, and Mari-Paz Zorzano. Finally, two anonymous reviewers provided excellent comments that resulted in a greatly improved final paper. This work was supported by the NASA/Jet Propulsion Laboratory under subcontract 1509303 and by the Spanish Ministry of Economy and Competitiveness under contracts AYA2011-25720 and AYA2012-38707. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 41 TC 3 Z9 3 U1 13 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2016 VL 280 BP 103 EP 113 DI 10.1016/j.icarus.2016.03.013 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8HR UT WOS:000384629200007 ER PT J AU Rafkin, SCR Pla-Garcia, J Kahre, M Gomez-Elvira, J Hamilton, VE Marin, M Navarro, S Torres, J Vasavada, A AF Rafkin, Scot C. R. Pla-Garcia, Jorge Kahre, Melinda Gomez-Elvira, Javier Hamilton, Victoria E. Marin, Mercedes Navarro, Sara Torres, Josefina Vasavada, Ashwin TI The meteorology of Gale Crater as determined from Rover Environmental Monitoring Station observations and numerical modeling. Part II: Interpretation SO ICARUS LA English DT Article DE Mars, atmosphere; Atmospheres, dynamics; Atmospheres, structure ID THERMAL EMISSION SPECTROMETER; PLANETARY BOUNDARY-LAYER; SEA-BREEZE; MARTIAN ATMOSPHERE; ROLL VORTICES; MARS; SIMULATION; WINDS; TRANSPORT; DYNAMICS AB Numerical modeling results from the Mars Regional Atmospheric Modeling System are used to interpret the landed meteorological data from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory rover Curiosity. In order to characterize seasonal changes throughout the Martian year, simulations are conducted at Ls 0, 90, 180 and 270. Two additional simulations at Ls 225 and 315 are explored to better understand the unique meteorological setting centered on Ls 270. The synergistic combination of model and observations reveals a complex meteorological environment within the crater. Seasonal planetary circulations, the thermal tide, slope flows along the topographic dichotomy, mesoscale waves, slope flows along the crater slopes and Mt. Sharp, and turbulent motions all interact in nonlinear ways to produce the observed weather. Ls 270 is shown to be an anomalous season when air within and outside the crater is well mixed by strong, flushing northerly flow and large amplitude, breaking mountain waves. At other seasons, the air in the crater is more isolated from the surrounding environment. The potential impact of the partially isolated crater air mass on the dust, water, noncondensable and methane cycles is also considered. In contrast to previous studies, the large amplitude diurnal pressure signal is attributed primarily to necessary hydrostatic adjustments associated with topography of different elevations, with contributions of less than 25% to the diurnal amplitude from the crater circulation itself. The crater circulation is shown to induce a suppressed boundary layer. (C) 2016 Elsevier Inc. All rights reserved. C1 [Rafkin, Scot C. R.; Pla-Garcia, Jorge; Hamilton, Victoria E.] Southwest Res Inst, Boulder, CO 80302 USA. [Pla-Garcia, Jorge; Gomez-Elvira, Javier; Torres, Josefina] Torrejon Ardoz, Ctr Astrobiol, Torrejon De Ardoz, Spain. [Kahre, Melinda; Marin, Mercedes; Navarro, Sara] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Vasavada, Ashwin] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Rafkin, SCR (reprint author), 1050 Walnut St,Suite 300, Boulder, CO 80302 USA. EM rafkin.swri@gmail.com FU NASA/Jet Propulsion Laboratory [1509303]; Spanish Ministry of Economy and Competitiveness [AYA2011-25720, AYA2012-38707] FX As with all large space missions, the ability to conduct science depends upon the dedication of hundreds of scientists, engineers and managers. The authors are grateful for the hard work of the MSL team, without whose dedication none of this work could be accomplished. The authors would also like to explicitly thank the REMS science team for their efforts. Additionally, this manuscript benefited greatly from comments and discussions provided by Isaias Carrasco, Henrik Kahanpaa, German Martinez, Bob Haberle, Claire Newman, Javier Martin-Torres, Eduardo Sebastian, Alejandro Soto, Patricia Valentin-Serrano, and Mari-Paz Zorzano. Two anonymous reviewers provided detailed comments that significantly improved the manuscript and their efforts are greatly appreciated. This work was supported by the NASA/Jet Propulsion Laboratory under subcontract 1509303 and by the Spanish Ministry of Economy and Competitiveness under contracts AYA2011-25720 and AYA2012-38707. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 61 TC 2 Z9 2 U1 10 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2016 VL 280 BP 114 EP 138 DI 10.1016/j.icarus.2016.01.031 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8HR UT WOS:000384629200008 ER PT J AU Deutsch, AN Chabot, NL Mazarico, E Ernst, CM Head, JW Neumann, GA Solomon, SC AF Deutsch, Ariel N. Chabot, Nancy L. Mazarico, Erwan Ernst, Carolyn M. Head, James W. Neumann, Gregory A. Solomon, Sean C. TI Comparison of areas in shadow from imaging and altimetry in the north polar region of Mercury and implications for polar ice deposits SO ICARUS LA English DT Article DE Mercury; Ices; Radar observations; Image processing ID MESSENGER SPACECRAFT; THERMAL-STABILITY; SURFACE VOLATILES; WATER ICE; IMAGES; CONSTRAINTS; ANOMALIES; CRATERS; MISSION; POLES AB Earth-based radar observations and results from the MESSENGER mission have provided strong evidence that permanently shadowed regions near Mercury's poles host deposits of water ice. MESSENGER's complete orbital image and topographic datasets enable Mercury's surface to be observed and modeled under an extensive range of illumination conditions. The shadowed regions of Mercury's north polar region from 65 degrees N to 90 degrees N were mapped by analyzing Mercury Dual Imaging System (MDIS) images and by modeling illumination with Mercury Laser Altimeter (MLA) topographic data. The two independent methods produced strong agreement in identifying shadowed areas. All large radar-bright deposits, those hosted within impact craters >= 6 km in diameter, collocate with regions of shadow identified by both methods. However, only similar to 46% of the persistently shadowed areas determined from images and similar to 43% of the permanently shadowed areas derived from altimetry host radar-bright materials. Some sizable regions of shadow that do not host radar-bright deposits experience thermal conditions similar to those that do. The shadowed craters that lack radar-bright materials show a relation with longitude that is not related to the thermal environment, suggesting that the Earth-based radar observations of these locations may have been limited by viewing geometry, but it is also possible that water ice in these locations is insulated by anomalously thick lag deposits or that these shadowed regions do not host water ice. (C) 2016 Elsevier Inc. All rights reserved. C1 [Deutsch, Ariel N.; Head, James W.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Chabot, Nancy L.; Ernst, Carolyn M.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Mazarico, Erwan; Neumann, Gregory A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. RP Deutsch, AN (reprint author), Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. RI Chabot, Nancy/F-5384-2015; Mazarico, Erwan/N-6034-2014; Neumann, Gregory/I-5591-2013 OI Chabot, Nancy/0000-0001-8628-3176; Mazarico, Erwan/0000-0003-3456-427X; Neumann, Gregory/0000-0003-0644-9944 FU NASA [NAS5-97271, NASW-00002]; NASA Discovery Data Analysis Program [NNX15AK89G] FX We thank David Lawrence for helpful discussions about this work, Oded Aharonson for smooth editorial handling of the manuscript, and Matt Siegler and an anonymous reviewer for constructive comments that improved the final paper. The MESSENGER project is supported by the NASA Discovery Program under contracts NAS5-97271 to The Johns Hopkins University Applied Physics Laboratory and NASW-00002 to the Carnegie Institution of Washington. Support was also provided by NASA Discovery Data Analysis Program grant NNX15AK89G. This research has made use of the Small Body Mapping Tool of The Johns Hopkins University Applied Physics Laboratory and the Integrated Software for Imagers and Spectrometers of the U.S. Geological Survey. All data analyzed in this paper are archived at the NASA Planetary Data System. NR 36 TC 4 Z9 4 U1 7 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2016 VL 280 BP 158 EP 171 DI 10.1016/j.icarus.2016.06.015 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8HR UT WOS:000384629200010 ER PT J AU Smith, MD Zorzano, MP Lemmon, M Martin-Torres, J de Cal, TM AF Smith, Michael D. Zorzano, Maria-Paz Lemmon, Mark Martin-Torres, Javier de Cal, Teresa Mendaza TI Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes SO ICARUS LA English DT Article DE Mars, atmosphere; Atmospheres, composition; Radiative transfer ID GENERAL-CIRCULATION MODEL; MARTIAN DUST CYCLE; GALE CRATER; INTERANNUAL VARIABILITY; EXPLORATION ROVERS; ATMOSPHERE; SURFACE; TES; TEMPERATURE; MISSION AB Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the approximately 1.75 Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around L-s=270 degrees, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time. Published by Elsevier Inc. C1 [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zorzano, Maria-Paz; Martin-Torres, Javier; de Cal, Teresa Mendaza] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Kiruna, Sweden. [Zorzano, Maria-Paz] CSIC, Ctr Astrobiol, INTA, Madrid, Spain. [Lemmon, Mark] Texas A&M Univ, College Stn, TX 77843 USA. [Martin-Torres, Javier] UGR, CSIC, Inst Andaluz Ciencias Tierra, Granada, Spain. RP Smith, MD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Michael.D.Smith@nasa.gov RI Lemmon, Mark/E-9983-2010; Zorzano, Maria-Paz/F-2184-2015 OI Lemmon, Mark/0000-0002-4504-5136; Zorzano, Maria-Paz/0000-0002-4492-9650 FU MSL project FX We would like to thank the MSL and REMS operations teams and the MSL ENV science theme group for their work in collecting and processing the REMS UV dataset. We thank the MAHLI team for periodic imaging of the REMS UV photodiodes. Claire Newman and an anonymous referee provided helpful reviews of this manuscript. Smith acknowledges funding from the MSL project as a Participating Scientist. NR 58 TC 2 Z9 2 U1 12 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2016 VL 280 BP 234 EP 248 DI 10.1016/j.icarus.2016.07.012 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8HR UT WOS:000384629200015 ER PT J AU Fisher, BM Orton, GS Liu, JJ Schneider, T Ressler, ME Hoffman, WF AF Fisher, Brendan M. Orton, Glenn S. Liu, Junjun Schneider, Tapio Ressler, Michael E. Hoffman, William F. TI The organization of Jupiter's upper tropospheric temperature structure and its evolution, 1996-1997 SO ICARUS LA English DT Article DE Jupiter; Atmosphere; Infrared observations; Atmospheres dynamics; Atmospheres structure ID HOT-SPOTS; ATMOSPHERE; CASSINI; WAVES; DYNAMICS; CIRS AB High signal-to-noise images of Jupiter were made at wavelengths between 13.2 and 22.8 mu m in five separate observing runs between 1996 June and 1997 November at the NASA Infrared Telescope Facility. Maps of Jupiter's upper-tropospheric temperatures at pressures of 100 and 400 mbar were made from these images. We use the relatively frequent, well sampled data sets to examine in detail the short-term evolution of the temperature structure. Our 2-6 month sampling periods demonstrate that the longitudinal temperature structures evolve significantly in these short periods and exhibit wave features. Using a three-dimensional general circulation model simulation of Jupiter's upper atmosphere, we show that the thermal structures are consistent with convectively generated Rossby waves that propagate upward from the lower to the upper atmosphere. (C) 2016 Elsevier Inc. All rights reserved. C1 [Fisher, Brendan M.; Orton, Glenn S.; Ressler, Michael E.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Liu, Junjun; Schneider, Tapio] CALTECH, Pasadena, CA 91125 USA. [Schneider, Tapio] Swiss Fed Inst Technol, Zurich, Switzerland. [Hoffman, William F.] Univ Arizona, Tucson, AZ USA. RP Fisher, BM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM brendan.fisher@jpl.nasa.gov RI Schneider, Tapio /A-7038-2014 OI Schneider, Tapio /0000-0001-5687-2287 FU NASA/National Research Council Associateships Program; Galileo mission; NASA Planetary Astronomy, Planetary Atmospheres, and Outer Planets Research Programs [NNX10AQ05G] FX BMF acknowledges support from NASA/National Research Council Associateships Program. GSO acknowledges support from the Galileo mission. This work was also supported by the NASA Planetary Astronomy, Planetary Atmospheres, and Outer Planets Research Programs (grant NNX10AQ05G). It was performed at the Jet Propulsion Laboratory/California Institute of Technology under contract with the National Aeronautics and Space Administration. NR 39 TC 0 Z9 0 U1 7 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2016 VL 280 BP 268 EP 277 DI 10.1016/j.icarus.2016.07.016 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8HR UT WOS:000384629200018 ER PT J AU DeMario, BE Schmidt, BE Mutchler, MJ Li, JY McFadden, LA McLean, BJ Russell, CT AF DeMario, Benjamin E. Schmidt, Britney E. Mutchler, Max J. Li, Jian-Yang McFadden, Lucy A. McLean, Brian J. Russell, Christopher T. TI Results of a hubble space telescope search for natural satellites of dwarf planet 1 ceres SO ICARUS LA English DT Article DE Asteroid Ceres; Satellites of asteroids; Hubble Space Telescope observations ID VESTA; DISCOVERY; ASTEROIDS; ORBITS; PALLAS; ORIGIN AB In order to prepare for the arrival of the Dawn spacecraft at Ceres, a search for satellites was undertaken by the Hubble Space Telescope (HST) to enhance the mission science return and to ensure spacecraft safety. Previous satellite searches from ground-based telescopes have detected no satellites within Ceres' Hill sphere down to a size of 3 km (Gehrels et al. 1987) and early HST investigations searched to a limit of 1-2 km (Bieryla et al. 2011). The Wide Field Camera 3 (WFC3) on board the HST was used to image Ceres between 14 April -28 April 2014. These images cover approximately the inner third of Ceres' Hill sphere, where the Hill sphere is the region surrounding Ceres where stable satellite orbits are possible. We performed a deep search for possible companions orbiting Ceres. No natural companions were located down to a diameter of 48 m, over most of the Hill sphere to a distance of 205,000 km (434 Ceres radii) from the surface of Ceres. It was impossible to search all the way to the surface of Ceres because of scattered light, but at a distance of 2865 km (five Ceres radii), the search limit was determined to be 925 m. (C) 2016 Elsevier Inc. All rights reserved. C1 [DeMario, Benjamin E.; Schmidt, Britney E.] Georgia Inst Technol, Sch Earth & Atmospher Sci, 311 Ferst Dr, Atlanta, GA 30312 USA. [Mutchler, Max J.; McLean, Brian J.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Li, Jian-Yang] Planetary Sci Inst, 1700 East Ft Lowell,Suite 106, Tucson, AZ 85719 USA. [McFadden, Lucy A.] Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Russell, Christopher T.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, 595 Charles Young Dr East,Box 951567, Los Angeles, CA 90095 USA. RP DeMario, BE (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, 311 Ferst Dr, Atlanta, GA 30312 USA. EM bennygleepdiddly@gmail.com; britneys@eas.gatech.edu FU Space Telescope Science Institute [GO 13503]; STSCI FX This work was supported by Space Telescope Science Institute GO 13503, PI Schmidt. The authors express thanks for the support of STSCI and the Dawn Mission Team. NR 27 TC 0 Z9 0 U1 8 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2016 VL 280 BP 308 EP 314 DI 10.1016/j.icarus.2016.07.005 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DX8HR UT WOS:000384629200021 ER PT J AU Ghaffarian, R AF Ghaffarian, Reza TI MICROELECTRONICS PACKAGING TECHNOLOGY ROADMAPS, ASSEMBLY RELIABILITY, AND PROGNOSTICS SO FACTA UNIVERSITATIS-SERIES ELECTRONICS AND ENERGETICS LA English DT Article DE Microelectronics; ITRS; iNEMI; IPC; BGA; WLP; 3D; solder joint reliability; prognostic; neural network; PHM ID ARRAYS AB This paper reviews the industry roadmaps on commercial-off-the shelf (COTS) microelectronics packaging technologies covering the current trends toward further reducing size and increasing functionality. Due to the breadth of work being performed in this field, this paper presents only a number of key packaging technologies. The topics for each category were down-selected by reviewing reports of industry roadmaps including the International Technology Roadmap for Semiconductor (ITRS) and by surveying publications of the International Electronics Manufacturing Initiative (iNEMI) and the roadmap of association connecting electronics industry (IPC). The paper also summarizes the findings of numerous articles and websites that allotted to the emerging and trends in microelectronics packaging technologies. A brief discussion was presented on packaging hierarchy from die to package and to system levels. Key elements of reliability for packaging assemblies were presented followed by reliabilty definition from a probablistic failure perspective. An example was present for showing conventional reliability approach using Monte Carlo simulation results for a number of plastic ball grid array (PBGA). The simulation results were compared to experimental thermal cycle test data. Prognostic health monitoring (PHM) methods, a growing field for microelectronics packaging technologies, were briefly discussed. The artificial neural network (ANN), a data-driven PHM, was discussed in details. Finally, it presented inter-and extra-polations using ANN simulation for thermal cycle test data of PBGA and ceramic BGA (CBGA) assemblies. C1 [Ghaffarian, Reza] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Ghaffarian, R (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM reza.ghaffarian@jpl.nasa.gov NR 56 TC 0 Z9 0 U1 14 U2 14 PU UNIV NIS PI NIS PA UNIVERZITETSKI TRG 2, PO BOX 123, NIS, 18000, SERBIA SN 0353-3670 EI 2217-5997 J9 FACTA UNIV-SER ELECT JI Facta Univ.-Ser. Electron. Energ. PD DEC PY 2016 VL 29 IS 4 BP 543 EP 611 DI 10.2298/FUEE1604543G PG 69 WC Engineering, Electrical & Electronic SC Engineering GA DV5DU UT WOS:000382947200003 ER PT J AU Wu, ZW Sun, XM Xu, HF Konishi, H Wang, Y Wang, C Dai, YZ Deng, XG Yu, M AF Wu, Zhongwei Sun, Xiaoming Xu, Huifang Konishi, Hiromi Wang, Yan Wang, Chi Dai, Yingzhi Deng, Xiguang Yu, Miao TI Occurrences and distribution of "invisible" precious metals in sulfide deposits from the Edmond hydrothermal field, Central Indian Ridge SO ORE GEOLOGY REVIEWS LA English DT Article DE Submicroscopic gold/silver; Nanopartides; Sulfosalt; Massive sulfide deposits; Edmond hydrothermal field; Central Indian Ridge ID MID-ATLANTIC RIDGE; PAPUA-NEW-GUINEA; POLYMETALLIC MASSIVE SULFIDES; EASTERN MANUS BASIN; MODERN SEA-FLOOR; GOLD MINERALIZATION; CHLORIDE COMPLEXES; ARGENTIAN TETRAHEDRITE; SILVER MINERALIZATION; SUPERGENE ALTERATION AB Here, we report the first documented occurrences of "invisible" gold and silver in seafloor sulfide deposits from an active hydrothermal system on the Central Indian Ridge. A detailed mineralogical and geochemical study of polymetallic sulfides from the Edmond vent field was conducted in order to identify controls on the distribution of precious metals. Bulk samples (N = 18) contain up to 18.7 ppm Au and 1450 ppm Ag, with average concentrations of 2.3 ppm Au and 218.9 ppm Ag. Among them, several Zn-rich chimney fragments and anhydrite-dominated ore samples have higher contents of precious metals than Fe-Cu-rich massive sulfides and silica-rich hydrothermal precipitates. Native gold grains are mainly associated with sphalerite, anhydrite, barite and Fe-oxyhydroxides. Abundant submicroscopic Au-Ag alloys tend to occur along grain boundaries between Cu-Fe sulfides and tennantite, or close to the rims of Fe-poor sphalerite. In contrast to primary electrum with high Ag/Au ratios, the absence of detectable silver in high-purity gold indicates that secondary Au enrichment has probably occurred after a direct co-precipitation with Zn-rich mineral assemblages upon cooling and mixing of vent fluids with cold seawater. A suite of late-stage Ag-rich phases, including argentotennantite, pearceite and acanthite, occur as crack-filling veinlets and patches in low-temperature fahlores, or as tiny inclusions enclosed by pyrite, chalcopyrite and colloform sphalerite. By using HRTEM combined with HAADF-STEM imaging, we have found out that silver is also present in significant quantities as discrete colloidal nanoparticles in tennantite. Minor native copper is closely associated with altered chalcopyrite, sphalerite and covellite, exhibiting signs of dissolution, recrystallization and reprecipitation. Extensive hydrothermal reworking resulted from a long history of high temperature venting in this field, together with post-depositional supergene replacement processes (involving oxidation, leaching or coupled dissolution-reprecipitation mechanisms facilitated by a permeable porosity generated in primary Cu-Fe sulfides) are considered to be important for the remobilization and local reconcentration of early-formed precious metals, and may have been responsible for the formation of relatively coarse-grained native gold or silver within recrystallized massive sulfides and chimney debris. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wu, Zhongwei; Sun, Xiaoming; Wang, Yan; Wang, Chi] Sun Yat Sen Univ, Sch Marine Sci, Guangzhou 510006, Guangdong, Peoples R China. [Wu, Zhongwei; Sun, Xiaoming] Guangdong Prov Key Lab Marine Resources & Coastal, Guangzhou 510275, Guangdong, Peoples R China. [Sun, Xiaoming; Dai, Yingzhi] Sun Yat Sen Univ, Sch Earth Sci & Geol Engn, Guangzhou 510275, Guangdong, Peoples R China. [Sun, Xiaoming] South China Sea Bioresource Exploitat & Utilizat, Guangzhou 510006, Guangdong, Peoples R China. [Xu, Huifang; Konishi, Hiromi] Univ Wisconsin, NASA Astrobiol Inst, Dept Geosci, Madison, WI 53706 USA. [Wang, Yan] State Ocean Adm, South China Sea Branch, Guangzhou 510310, Guangdong, Peoples R China. [Deng, Xiguang; Yu, Miao] Guangzhou Marine Geol Survey, Guangzhou 510760, Guangdong, Peoples R China. RP Sun, XM (reprint author), Sun Yat Sen Univ, Sch Earth Sci & Geol Engn, Guangzhou 510275, Guangdong, Peoples R China.; Xu, HF (reprint author), Univ Wisconsin, NASA Astrobiol Inst, Dept Geosci, Madison, WI 53706 USA.; Sun, XM (reprint author), Sun Yat Sen Univ, Sch Marine Sci, Guangzhou 510275, Guangdong, Peoples R China. EM eessxm@mail.sysu.edu.cn; hfxu@geology.wisc.edu FU National Natural Science Foundation of China [41273054, 41503036]; Higher School Specialized Research Fund for the Doctoral Program Funding Issue [20120171130005]; Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme [2011]; China Ocean Mineral Resources Research and Development Association [DYXM-115-02-1-11, DY125-11-R-06]; Fundamental Research Funds for Central Universities [12lgjc05, 09lgpy09]; Project from the State Key Laboratory for Mineral Deposits Research in Nanjing University [16-1011-1]; State Key Laboratory of Ore Deposit Geochemistry in Institute of Geochemistry, Chinese Academy of Sciences [201303]; NASA Astrobiology Institute [N07-5489]; Major Research Instrumentation (MRI) program of NSF FX This research project was jointly funded by National Natural Science Foundation of China (Grant No. 41273054 and 41503036) and Higher School Specialized Research Fund for the Doctoral Program Funding Issue (Grant No. 20120171130005). The project is also supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (Grant No. 2011), China Ocean Mineral Resources Research and Development Association (Grant No. DYXM-115-02-1-11 and DY125-11-R-06), Fundamental Research Funds for Central Universities (Grant No. 12lgjc05, 09lgpy09) and Project from the State Key Laboratory for Mineral Deposits Research in Nanjing University (Grant No. 16-1011-1) and State Key Laboratory of Ore Deposit Geochemistry in Institute of Geochemistry, Chinese Academy of Sciences (Grant No. 201303). We thank the crews and scientists of the DY105-17A and DY115-19 cruises on board the R/V Dayang Yihao, as well as the Autonomous Benthic Explorer (ABE) group, who contributed to successful sample collections from the Edmond vent field during 2005-2007. Xu and Konishi acknowledged the financial support from NASA Astrobiology Institute (N07-5489). The authors are also grateful to the Major Research Instrumentation (MRI) program of NSF for funding the aberration-corrected STEM at the University of Wisconsin-Madison. Finally, we thank Professor Franco Pirajno, Editor-in-Chief of Ore Geology Reviews, and the anonymous reviewers for the valuable and patient suggestions and comments to this manuscript. NR 84 TC 0 Z9 0 U1 40 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-1368 EI 1872-7360 J9 ORE GEOL REV JI Ore Geol. Rev. PD DEC PY 2016 VL 79 BP 105 EP 132 DI 10.1016/j.oregeorev.2016.05.006 PG 28 WC Geology; Mineralogy; Mining & Mineral Processing SC Geology; Mineralogy; Mining & Mineral Processing GA DT9OP UT WOS:000381832500007 ER PT J AU Zhao, XY Fioletov, V Cede, A Davies, J Strong, K AF Zhao, Xiaoyi Fioletov, Vitali Cede, Alexander Davies, Jonathan Strong, Kimberly TI Accuracy, precision, and temperature dependence of Pandora total ozone measurements estimated from a comparison with the Brewer triad in Toronto SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID ABSORPTION CROSS-SECTIONS; MONITORING INSTRUMENT; ANTARCTIC OZONE; DOBSON; SPECTROPHOTOMETERS; SPECTROSCOPY; DOAS; SPECTRA; SYSTEM; UV AB This study evaluates the performance of the recently developed Pandora spectrometer by comparing it with the Brewer reference triad. This triad was established by Environment and Climate Change Canada (ECCC) in the 1980s and is used to calibrate Brewer instruments around the world, ensuring high-quality total column ozone (TCO) measurements. To reduce stray light, the double Brewer instrument was introduced in 1992, and a new reference triad of double Brewers is also operational at Toronto. Since 2013, ECCC has deployed two Pandora spectrometers co-located with the old and new Brewer triads, making it possible to study the performance of three generations of ozone-monitoring instruments. The statistical analysis of TCO records from these instruments indicates that the random uncertainty for the Brewer is below 0.6 %, while that for the Pandora is below 0.4 %. However, there is a 1% seasonal difference and a 3% bias between the standard Pandora and Brewer TCO data, which is related to the temperature dependence and difference in ozone cross sections. A statistical model was developed to remove this seasonal difference and bias. It was based on daily temperature profiles from the European Centre for Medium-Range Weather Forecasts ERA-Interim data over Toronto and TCO from the Brewer reference triads. When the statistical model was used to correct Pandora data, the seasonal difference was reduced to 0.25% and the bias was reduced to 0.04 %. Pandora instruments were also found to have low air mass dependence up to 81.6 degrees solar zenith angle, comparable to double Brewer instruments. C1 [Zhao, Xiaoyi; Strong, Kimberly] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Fioletov, Vitali; Davies, Jonathan] Environm & Climate Change Canada, Toronto, ON M3H 5T4, Canada. [Cede, Alexander] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cede, Alexander] LuftBlick, Kreith, Austria. RP Zhao, XY (reprint author), Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.; Fioletov, V (reprint author), Environm & Climate Change Canada, Toronto, ON M3H 5T4, Canada. EM xizhao@atmosp.physics.utoronto.ca; vitali.fioletov@outlook.com FU NSERC CREATE Training Program in Arctic Atmospheric Science FX X. Zhao was partially supported by the NSERC CREATE Training Program in Arctic Atmospheric Science. We thank ECMWF for providing the ERA-Interim model data and the NASA OMI ozone retrieval team for providing the OMTO3e data. NR 46 TC 0 Z9 0 U1 0 U2 0 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PD NOV 30 PY 2016 VL 9 IS 12 BP 5747 EP 5761 DI 10.5194/amt-9-5747-2016 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED9RH UT WOS:000389209800002 ER PT J AU Wang, GH Zhang, RY Gomez, ME Yang, LX Zamora, ML Hu, M Lin, Y Peng, JF Guo, S Meng, JJ Li, JJ Cheng, CL Hu, TF Ren, YQ Wang, YS Gao, J Cao, JJ An, ZS Zhou, WJ Li, GH Wang, JY Tian, PF Marrero-Ortiz, W Secrest, J Du, ZF Zheng, J Shang, DJ Zeng, LM Shao, M Wang, WG Huang, Y Wang, Y Zhu, YJ Li, YX Hu, JX Pan, B Cai, L Cheng, YT Ji, YM Zhang, F Rosenfeld, D Liss, PS Duce, RA Kolb, CE Molina, MJ AF Wang, Gehui Zhang, Renyi Gomez, Mario E. Yang, Lingxiao Zamora, Misti Levy Hu, Min Lin, Yun Peng, Jianfei Guo, Song Meng, Jingjing Li, Jianjun Cheng, Chunlei Hu, Tafeng Ren, Yanqin Wang, Yuesi Gao, Jian Cao, Junji An, Zhisheng Zhou, Weijian Li, Guohui Wang, Jiayuan Tian, Pengfei Marrero-Ortiz, Wilmarie Secrest, Jeremiah Du, Zhuofei Zheng, Jing Shang, Dongjie Zeng, Limin Shao, Min Wang, Weigang Huang, Yao Wang, Yuan Zhu, Yujiao Li, Yixin Hu, Jiaxi Pan, Bowen Cai, Li Cheng, Yuting Ji, Yuemeng Zhang, Fang Rosenfeld, Daniel Liss, Peter S. Duce, Robert A. Kolb, Charles E. Molina, Mario J. TI Persistent sulfate formation from London Fog to Chinese haze SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE sulfate aerosol; severe haze; pollution; human health; climate ID IONIZATION MASS-SPECTROMETRY; ORGANIC AEROSOL FORMATION; LIQUID SULFURIC-ACID; HETEROGENEOUS REACTIONS; CHEMISTRY; OXIDATION; POLLUTION; RADICALS; AMMONIUM; DUST AB Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world. C1 [Wang, Gehui; Meng, Jingjing; Li, Jianjun; Cheng, Chunlei; Hu, Tafeng; Ren, Yanqin; Cao, Junji; An, Zhisheng; Zhou, Weijian; Li, Guohui; Wang, Jiayuan; Huang, Yao; Cheng, Yuting] Chinese Acad Sci, State Key Lab Loess & Quaternary Geol, Inst Earth Environm, Xian 710061, Peoples R China. [Wang, Gehui; Meng, Jingjing; Li, Jianjun; Cheng, Chunlei; Hu, Tafeng; Ren, Yanqin; Cao, Junji; An, Zhisheng; Zhou, Weijian; Li, Guohui; Wang, Jiayuan; Huang, Yao; Cheng, Yuting] Chinese Acad Sci, Key Lab Aerosol Chem & Phys, Inst Earth Environm, Xian 710061, Peoples R China. [Wang, Gehui; Zhang, Renyi; Gomez, Mario E.; Yang, Lingxiao; Zamora, Misti Levy; Lin, Yun; Peng, Jianfei; Guo, Song; Tian, Pengfei; Marrero-Ortiz, Wilmarie; Secrest, Jeremiah; Wang, Weigang; Zhu, Yujiao; Li, Yixin; Hu, Jiaxi; Pan, Bowen; Cai, Li; Ji, Yuemeng; Zhang, Fang; Rosenfeld, Daniel; Liss, Peter S.; Duce, Robert A.; Kolb, Charles E.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Wang, Gehui; Zhang, Renyi; Gomez, Mario E.; Marrero-Ortiz, Wilmarie; Secrest, Jeremiah] Texas A&M Univ, Dept Chem, College Stn, TX 77840 USA. [Wang, Gehui] East China Normal Univ, Sch Geog Sci, Shanghai 200062, Peoples R China. [Zhang, Renyi; Hu, Min; Peng, Jianfei; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Zeng, Limin; Shao, Min] Peking Univ, State Key Joint Lab Environm Simulat & Pollut Con, Coll Environm Sci & Engn, Beijing 100871, Peoples R China. [Gomez, Mario E.] Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA. [Yang, Lingxiao] Shandong Univ, Sch Environm Sci & Engn, Jinan 250100, Peoples R China. [Meng, Jingjing; Cheng, Chunlei; Ren, Yanqin; Wang, Jiayuan; Huang, Yao; Cheng, Yuting] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Wang, Yuesi] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China. [Gao, Jian] Chinese Res Inst Environm Sci, Beijing 100000, Peoples R China. [An, Zhisheng; Zhang, Fang] Beijing Normal Univ, Beijing 100875, Peoples R China. [Zhou, Weijian] Xi An Jiao Tong Univ, Xian 710049, Peoples R China. [Tian, Pengfei] Lanzhou Univ, Coll Atmospher Sci, Key Lab Semiarid Climate Change, Minist Educ, Lanzhou 730000, Peoples R China. [Wang, Weigang] Chinese Acad Sci, Inst Chem, State Key Lab Struct Chem Unstable & Stable Speci, Beijing 100190, Peoples R China. [Wang, Weigang] Chinese Acad Sci, Beijing Natl Lab Mol Sci, Inst Chem, Beijing 100190, Peoples R China. [Wang, Yuan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Zhu, Yujiao] Ocean Univ China, Minist Educ, Key Lab Marine Environm Sci & Ecol, Qingdao 266100, Peoples R China. [Cai, Li] Wuhan Univ, Sch Elect Engn, Wuhan 430072, Peoples R China. [Ji, Yuemeng] Guangdong Univ Technol, Sch Environm Sci & Engn, Inst Environm Hlth & Pollut Control, Guangzhou 510006, Guangdong, Peoples R China. [Rosenfeld, Daniel] Hebrew Univ Jerusalem, Inst Earth Sci, Program Atmospher Sci, IL-91904 Jerusalem, Israel. [Liss, Peter S.] Univ East Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England. [Kolb, Charles E.] Aerodyne Res Inc, Billerica, MA 01821 USA. [Molina, Mario J.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Wang, Gehui] Chinese Acad Sci, Ctr Excellence Reg Atmospher Environm, Inst Urban Environm, Xiamen 361021, Peoples R China. RP Zhang, RY (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA.; Zhang, RY (reprint author), Texas A&M Univ, Dept Chem, College Stn, TX 77840 USA.; Zhang, RY (reprint author), Peking Univ, State Key Joint Lab Environm Simulat & Pollut Con, Coll Environm Sci & Engn, Beijing 100871, Peoples R China.; Molina, MJ (reprint author), Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. EM renyi-zhang@tamu.edu; mjmolina@ucsd.edu RI Guo, Song/D-9218-2012; AN, Zhisheng/F-8834-2012; Zeng, Limin/D-3948-2013; Zhou, Weijian/D-3393-2015; Cao, Junji/D-3259-2014; OI Guo, Song/0000-0002-9661-2313; Cao, Junji/0000-0003-1000-7241; Lin, Yun/0000-0001-8222-0346 FU National Natural Science Foundation of China [21190052]; Strategic Priority Research Program of the CAS [41325014, XDA05100103, XDB05020401]; Robert A. Welch Foundation [A-1417]; Ministry of Science and Technology of China [2013CB955800]; collaborative research program by Texas AM University; National Basic Research Program, China Ministry of Science and Technology [2013CB228503]; China Ministry of Environmental Protection's Special Funds for Scientific Research on PublicWelfare [20130916]; National Science Foundation Graduate Research Fellowship Program; NASA Earth and Space Science Fellowship Program FX G.W. acknowledges the National Natural Science Foundation of China and the Strategic Priority Research Program of the CAS for financial support (Grants 41325014, XDA05100103, and XDB05020401). This work was partially supported by the Robert A. Welch Foundation (Grant A-1417), the Ministry of Science and Technology of China (Grant 2013CB955800), a collaborative research program by Texas A&M University and the National Natural Science Foundation of China. M.H. acknowledges the National Basic Research Program, China Ministry of Science and Technology (Grant 2013CB228503), National Natural Science Foundation of China (Grant 21190052) and the China Ministry of Environmental Protection's Special Funds for Scientific Research on PublicWelfare (Grant 20130916). W.M.-O. was supported by the National Science Foundation Graduate Research Fellowship Program, and B.P. was supported by the NASA Earth and Space Science Fellowship Program. NR 64 TC 8 Z9 8 U1 88 U2 88 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 29 PY 2016 VL 113 IS 48 BP 13630 EP 13635 DI 10.1073/pnas.1616540113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED4QR UT WOS:000388835700047 PM 27849598 ER PT J AU Talaat, ER Zhu, X AF Talaat, Elsayed R. Zhu, Xun TI Spatial and temporal variation of total electron content as revealed by principal component analysis SO ANNALES GEOPHYSICAE LA English DT Article DE Ionosphere (ionospheric disturbances) ID GENERAL-CIRCULATION MODEL; THERMOSPHERE AB Eleven years of global total electron content (TEC) data derived from the assimilated thermosphere-ionosphere electrodynamics general circulation model are analyzed using empirical orthogonal function (EOF) decomposition and the corresponding principal component analysis (PCA) technique. For the daily averaged TEC field, the first EOF explains more than 89% and the first four EOFs explain more than 98% of the total variance of the TEC field, indicating an effective data compression and clear separation of different physical processes. The effectiveness of the PCA technique for TEC is nearly insensitive to the horizontal resolution and the length of the data records. When the PCA is applied to global TEC including local-time variations, the rich spatial and temporal variations of field can be represented by the first three EOFs that explain 88% of the total variance. The spectral analysis of the time series of the EOF coefficients reveals how different mechanisms such as solar flux variation, change in the orbital declination, nonlinear mode coupling and geomagnetic activity are separated and expressed in different EOFs. This work demonstrates the usefulness of using the PCA technique to assimilate and monitor the global TEC field. C1 [Talaat, Elsayed R.; Zhu, Xun] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. [Talaat, Elsayed R.] NASA Headquarters, Heliophys Div, Washington, DC 20546 USA. RP Zhu, X (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM xun.zhu@jhuapl.edu RI Zhu, Xun/C-2097-2016 OI Zhu, Xun/0000-0001-7860-6430 FU NASA Living With a Star Program [NNX09AJ61G, NNX13AF91G]; Heliophysics Supporting Research program [NNX16AG68G] FX This research was supported by NASA Living With a Star Program under grants NNX09AJ61G and NNX13AF91G and the Heliophysics Supporting Research program under grant NNX16AG68G to the Johns Hopkins University Applied Physics Laboratory. Comments on the paper by two anonymous reviewers are greatly appreciated. NR 8 TC 0 Z9 0 U1 1 U2 1 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 0992-7689 EI 1432-0576 J9 ANN GEOPHYS-GERMANY JI Ann. Geophys. PD NOV 29 PY 2016 VL 34 IS 12 BP 1109 EP 1117 DI 10.5194/angeo-34-1109-2016 PG 9 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA ED2XS UT WOS:000388714100001 ER PT J AU Aguilar, M Cavasonza, LA Ambrosi, G Arruda, L Attig, N Aupetit, S Azzarello, P Bachlechner, A Barao, F Barrau, A Barrin, L Bartoloni, A Basara, L Pree, SBD Battarbee, M Battiston, R Becker, U Behlmann, M Beischer, B Berdugo, J Bertucci, B Bindel, KF Bindi, V Boella, G de Boer, W Bollweg, K Bonnivard, V Borgia, B Boschini, MJ Bourquin, M Bueno, EF Burger, J Cadoux, F Cai, XD Capell, M Caroff, S Casaus, J Castellini, G Cervelli, F Chae, MJ Chang, YH Chen, AI Chen, GM Chen, HS Cheng, L Chou, HY Choumilov, E Choutko, V Chung, CH Clark, C Clavero, R Coignet, G Consolandi, C Contin, A Corti, C Creus, W Crispoltoni, M Cui, Z Dai, YM Delgado, C Della Torre, S Demakov, O Demirkoz, MB Derome, L Di Falco, S Dimiccoli, F Diaz, C von Doetinchem, P Dong, F Donnini, F Duranti, M D'Urso, D Egorov, A Eline, A Eronen, T Feng, J Fiandrini, E Finch, E Fisher, P Formato, V Galaktionov, Y Gallucci, G Garcia, B Garcia-Lopez, RJ Gargiulo, C Gast, H Gebauer, I Gervasi, M Ghelfi, A Giovacchini, F Goglov, P Gomez-Coral, DM Gong, J Goy, C Grabski, V Grandi, D Graziani, M Guo, KH Haino, S Han, KC He, ZH Heil, M Hoffman, J Hsieh, TH Huang, H Huang, ZC Huh, C Incagli, M Ionica, M Jang, WY Jinchi, H Kang, SC Kanishev, K Kim, GN Kim, KS Kirn, T Konak, C Kounina, O Kounine, A Koutsenko, V Krafczyk, MS La Vacca, G Laudi, E Laurenti, G Lazzizzera, I Lebedev, A Lee, HT Lee, SC Leluc, C Li, HS Li, JQ Li, JQ Li, Q Li, TX Li, W Li, Y Li, ZH Li, ZY Lim, S Lin, CH Lipari, P Lippert, T Liu, D Liu, H Lordello, VD Lu, SQ Lu, YS Luebelsmeyer, K Luo, F Luo, JZ Lv, SS Machate, F Majka, R Mana, C Marin, J Martin, T Martinez, G Masi, N Maurin, D Menchaca-Rocha, A Meng, Q Mikuni, VM Mo, DC Morescalchi, L Mott, P Nelson, T Ni, JQ Nikonov, N Nozzoli, F Oliva, A Orcinha, M Palmonari, F Palomares, C Paniccia, M Pauluzzi, M Pensotti, S Pereira, R Picot-Clemente, N Pilo, F Pizzolotto, C Plyaskin, V Pohl, M Poireau, V Putze, A Quadrani, L Qi, XM Qin, X Qu, ZY Raiha, T Rancoita, PG Rapin, D Ricol, JS Rosier-Lees, S Rozhkov, A Rozza, D Sagdeev, R Sandweiss, J Saouter, P Schael, S Schmidt, SM von Dratzig, AS Schwering, G Seo, ES Shan, BS Shi, JY Siedenburg, T Son, D Song, JW Sun, WH Tacconi, M Tang, XW Tang, ZC Tao, L Tescaro, D Ting, SCC Ting, SM Tomassetti, N Torsti, J Turkoglu, C Urban, T Vagelli, V Valente, E Vannini, C Valtonen, E Acosta, MV Vecchi, M Velasco, M Vialle, JP Vitale, V Vitillo, S Wang, LQ Wang, NH Wang, QL Wang, X Wang, XQ Wang, ZX Wei, CC Weng, ZL Whitman, K Wienkenhover, J Wu, H Wu, X Xia, X Xiong, RQ Xu, W Yan, Q Yang, J Yang, M Yang, Y Yi, H Yu, YJ Yu, ZQ Zeissler, S Zhang, C Zhang, J Zhang, JH Zhang, SD Zhang, SW Zhang, Z Zheng, ZM Zhu, ZQ Zhuang, HL Zhukov, V Zichichi, A Zimmermann, N Zuccon, P AF Aguilar, M. Cavasonza, L. Ali Ambrosi, G. Arruda, L. Attig, N. Aupetit, S. Azzarello, P. Bachlechner, A. Barao, F. Barrau, A. Barrin, L. Bartoloni, A. Basara, L. Pree, S. Basegmez-du Battarbee, M. Battiston, R. Becker, U. Behlmann, M. Beischer, B. Berdugo, J. Bertucci, B. Bindel, K. F. Bindi, V. Boella, G. de Boer, W. Bollweg, K. Bonnivard, V. Borgia, B. Boschini, M. J. Bourquin, M. Bueno, E. F. Burger, J. Cadoux, F. Cai, X. D. Capell, M. Caroff, S. Casaus, J. Castellini, G. Cervelli, F. Chae, M. J. Chang, Y. H. Chen, A. I. Chen, G. M. Chen, H. S. Cheng, L. Chou, H. Y. Choumilov, E. Choutko, V. Chung, C. H. Clark, C. Clavero, R. Coignet, G. Consolandi, C. Contin, A. Corti, C. Creus, W. Crispoltoni, M. Cui, Z. Dai, Y. M. Delgado, C. Della Torre, S. Demakov, O. Demirkoz, M. B. Derome, L. Di Falco, S. Dimiccoli, F. Diaz, C. von Doetinchem, P. Dong, F. Donnini, F. Duranti, M. D'Urso, D. Egorov, A. Eline, A. Eronen, T. Feng, J. Fiandrini, E. Finch, E. Fisher, P. Formato, V. Galaktionov, Y. Gallucci, G. Garcia, B. Garcia-Lopez, R. J. Gargiulo, C. Gast, H. Gebauer, I. Gervasi, M. Ghelfi, A. Giovacchini, F. Goglov, P. Gomez-Coral, D. M. Gong, J. Goy, C. Grabski, V. Grandi, D. Graziani, M. Guo, K. H. Haino, S. Han, K. C. He, Z. H. Heil, M. Hoffman, J. Hsieh, T. H. Huang, H. Huang, Z. C. Huh, C. Incagli, M. Ionica, M. Jang, W. Y. Jinchi, H. Kang, S. C. Kanishev, K. Kim, G. N. Kim, K. S. Kirn, Th. Konak, C. Kounina, O. Kounine, A. Koutsenko, V. Krafczyk, M. S. La Vacca, G. Laudi, E. Laurenti, G. Lazzizzera, I. Lebedev, A. Lee, H. T. Lee, S. C. Leluc, C. Li, H. S. Li, J. Q. Li, J. Q. Li, Q. Li, T. X. Li, W. Li, Y. Li, Z. H. Li, Z. Y. Lim, S. Lin, C. H. Lipari, P. Lippert, T. Liu, D. Liu, Hu Lordello, V. D. Lu, S. Q. Lu, Y. S. Luebelsmeyer, K. Luo, F. Luo, J. Z. Lv, S. S. Machate, F. Majka, R. Mana, C. Marin, J. Martin, T. Martinez, G. Masi, N. Maurin, D. Menchaca-Rocha, A. Meng, Q. Mikuni, V. M. Mo, D. C. Morescalchi, L. Mott, P. Nelson, T. Ni, J. Q. Nikonov, N. Nozzoli, F. Oliva, A. Orcinha, M. Palmonari, F. Palomares, C. Paniccia, M. Pauluzzi, M. Pensotti, S. Pereira, R. Picot-Clemente, N. Pilo, F. Pizzolotto, C. Plyaskin, V. Pohl, M. Poireau, V. Putze, A. Quadrani, L. Qi, X. M. Qin, X. Qu, Z. Y. Raeihae, T. Rancoita, P. G. Rapin, D. Ricol, J. S. Rosier-Lees, S. Rozhkov, A. Rozza, D. Sagdeev, R. Sandweiss, J. Saouter, P. Schael, S. Schmidt, S. M. von Dratzig, A. Schulz Schwering, G. Seo, E. S. Shan, B. S. Shi, J. Y. Siedenburg, T. Son, D. Song, J. W. Sun, W. H. Tacconi, M. Tang, X. W. Tang, Z. C. Tao, L. Tescaro, D. Ting, Samuel C. C. Ting, S. M. Tomassetti, N. Torsti, J. Turkoglu, C. Urban, T. Vagelli, V. Valente, E. Vannini, C. Valtonen, E. Acosta, M. Vazquez Vecchi, M. Velasco, M. Vialle, J. P. Vitale, V. Vitillo, S. Wang, L. Q. Wang, N. H. Wang, Q. L. Wang, X. Wang, X. Q. Wang, Z. X. Wei, C. C. Weng, Z. L. Whitman, K. Wienkenhoever, J. Wu, H. Wu, X. Xia, X. Xiong, R. Q. Xu, W. Yan, Q. Yang, J. Yang, M. Yang, Y. Yi, H. Yu, Y. J. Yu, Z. Q. Zeissler, S. Zhang, C. Zhang, J. Zhang, J. H. Zhang, S. D. Zhang, S. W. Zhang, Z. Zheng, Z. M. Zhu, Z. Q. Zhuang, H. L. Zhukov, V. Zichichi, A. Zimmermann, N. Zuccon, P. CA AMS Collaboration TI Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station SO PHYSICAL REVIEW LETTERS LA English DT Article ID GEOMAGNETIC REFERENCE FIELD; REACTION CROSS-SECTION; ENERGY-SPECTRA; LIGHT-NUCLEI; RICH NUCLEI; AMS-02; DETECTOR; PROPAGATION; PERFORMANCE; GENERATION AB Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B/C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B/C spectral index is reported for the first time. The B/C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B/C ratio is well described by a single power law R. with index. Delta = -0.333 +/- 0.014(fit) +/- 0.005(syst), in good agreement with the Kolmogorov theory of turbulence which predicts. Delta = -1/3 asymptotically. C1 [Cavasonza, L. Ali; Bachlechner, A.; Beischer, B.; Chung, C. H.; Gast, H.; Kirn, Th.; Luebelsmeyer, K.; Machate, F.; Nikonov, N.; Raeihae, T.; Schael, S.; von Dratzig, A. Schulz; Schwering, G.; Siedenburg, T.; Wei, C. C.; Wienkenhoever, J.; Zhukov, V.; Zimmermann, N.] Rhein Westfal TH Aachen, Phys Inst, D-52056 Aachen, Germany. [Cavasonza, L. Ali; Bachlechner, A.; Beischer, B.; Chung, C. H.; Gast, H.; Kirn, Th.; Luebelsmeyer, K.; Machate, F.; Nikonov, N.; Raeihae, T.; Schael, S.; von Dratzig, A. Schulz; Schwering, G.; Siedenburg, T.; Wei, C. C.; Wienkenhoever, J.; Zhukov, V.; Zimmermann, N.] Rhein Westfal TH Aachen, JARA FAME, D-52056 Aachen, Germany. [Demirkoz, M. B.; Konak, C.; Turkoglu, C.] Middle East Tech Univ, Dept Phys, TR-06800 Ankara, Turkey. [Caroff, S.; Coignet, G.; Goy, C.; Poireau, V.; Putze, A.; Rosier-Lees, S.; Tao, L.; Vialle, J. P.] Univ Savoie Mont Blanc, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Caroff, S.; Coignet, G.; Goy, C.; Poireau, V.; Putze, A.; Rosier-Lees, S.; Tao, L.; Vialle, J. P.] Univ Savoie Mont Blanc, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Li, W.; Shan, B. S.; Zheng, Z. M.] Beihang Univ BUAA, Beijing 100191, Peoples R China. [Dai, Y. M.; Wang, Q. L.; Yu, Y. J.] Chinese Acad Sci, IEE, Beijing 100190, Peoples R China. [Pree, S. Basegmez-du; Chen, G. M.; Chen, H. S.; Li, Z. H.; Lu, Y. S.; Tang, X. W.; Tang, Z. C.; Wang, X. Q.; Yang, M.; Yu, Z. Q.; Zhang, C.; Zhang, S. W.; Zhuang, H. L.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Contin, A.; Laurenti, G.; Masi, N.; Palmonari, F.; Quadrani, L.; Zichichi, A.] INFN Sezione Bologna, I-40126 Bologna, Italy. [Contin, A.; Palmonari, F.; Quadrani, L.; Zichichi, A.] Univ Bologna, I-40126 Bologna, Italy. [Becker, U.; Behlmann, M.; Burger, J.; Cai, X. D.; Capell, M.; Chen, A. I.; Choumilov, E.; Choutko, V.; Demakov, O.; Egorov, A.; Eline, A.; Fisher, P.; Galaktionov, Y.; Goglov, P.; Heil, M.; Hsieh, T. H.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Lebedev, A.; Li, J. Q.; Plyaskin, V.; Rozhkov, A.; Sun, W. H.; Ting, Samuel C. C.; Ting, S. M.; Wang, X.; Weng, Z. L.; Xu, W.; Yan, Q.; Zhang, J.; Zhang, S. D.; Zhang, Z.; Zhu, Z. Q.; Zuccon, P.] MIT, Cambridge, MA 02139 USA. [Chang, Y. H.; Chou, H. Y.; Liu, D.] NCU, Chungli 32054, Tao Yuan, Taiwan. [Sagdeev, R.] Univ Maryland, East West Ctr Space Sci, College Pk, MD 20742 USA. [Picot-Clemente, N.; Seo, E. S.] Univ Maryland, IPST, College Pk, MD 20742 USA. [Huh, C.; Jang, W. Y.; Kang, S. C.; Kim, G. N.; Kim, K. S.; Lim, S.; Son, D.] Kyungpook Natl Univ, CHEP, Daegu 41566, South Korea. [Castellini, G.] CNR, IROE, I-50125 Florence, Italy. [Barrin, L.; Crispoltoni, M.; Donnini, F.; Formato, V.; Gargiulo, C.; Laudi, E.; Ting, Samuel C. C.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. [Azzarello, P.; Bourquin, M.; Cadoux, F.; Leluc, C.; Li, Y.; Paniccia, M.; Pohl, M.; Rapin, D.; Saouter, P.; Vitillo, S.; Wu, X.] Univ Geneva, DPNC, CH-1211 Geneva 4, Switzerland. [Aupetit, S.; Barrau, A.; Bonnivard, V.; Derome, L.; Ghelfi, A.; Maurin, D.; Ricol, J. S.] CNRS, IN2P3, LPSC, F-38026 Grenoble, France. [Aupetit, S.; Barrau, A.; Bonnivard, V.; Derome, L.; Ghelfi, A.; Maurin, D.; Ricol, J. S.] Univ Grenoble Alpes, F-38026 Grenoble, France. [Guo, K. H.; He, Z. H.; Huang, Z. C.; Li, T. X.; Lv, S. S.; Mo, D. C.; Ni, J. Q.; Qi, X. M.; Wang, Z. X.] Sun Yat Sen Univ, Guangzhou 510275, Guangdong, Peoples R China. [Bindi, V.; Consolandi, C.; Corti, C.; von Doetinchem, P.; Hoffman, J.; Nelson, T.; Pereira, R.; Whitman, K.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Bollweg, K.; Clark, C.; Martin, T.; Mott, P.; Urban, T.] NASA, Johnson Space Ctr, Jacobs Engn & Business Integra, Houston, TX 77058 USA. [Attig, N.; Lippert, T.; Schmidt, S. M.] Julich Supercomp Ctr, D-52425 Julich, Germany. [Attig, N.; Lippert, T.; Schmidt, S. M.] Res Ctr Julich, JARA FAME, D-52425 Julich, Germany. [Bindel, K. F.; de Boer, W.; Gebauer, I.; Zeissler, S.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Clavero, R.; Garcia-Lopez, R. J.; Tescaro, D.; Acosta, M. Vazquez] IAC, E-38205 San Cristobal la Laguna, Spain. [Clavero, R.; Garcia-Lopez, R. J.; Tescaro, D.; Acosta, M. Vazquez] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Arruda, L.; Barao, F.; Orcinha, M.] Lab Instrumentacao Fis Expt Particulas LIP, P-1000 Lisbon, Portugal. [Han, K. C.; Jinchi, H.] NCSIST, Taoyuan 32546, Taiwan. [Aguilar, M.; Berdugo, J.; Casaus, J.; Delgado, C.; Diaz, C.; Garcia, B.; Giovacchini, F.; Liu, Hu; Mana, C.; Marin, J.; Martinez, G.; Oliva, A.; Palomares, C.; Velasco, M.; Xia, X.] CIEMAT, E-28040 Madrid, Spain. [Gomez-Coral, D. M.; Grabski, V.; Menchaca-Rocha, A.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Boella, G.; Boschini, M. J.; Della Torre, S.; Gervasi, M.; Grandi, D.; La Vacca, G.; Pensotti, S.; Rancoita, P. G.; Rozza, D.; Tacconi, M.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Boella, G.; Gervasi, M.; Pensotti, S.] Univ Milano Bicocca, I-20126 Milan, Italy. [Gong, J.; Li, J. Q.; Li, Q.; Luo, J. Z.; Meng, Q.; Shi, J. Y.; Wu, H.; Xiong, R. Q.; Yi, H.; Zhang, J. H.] Southeast Univ SEU, Nanjing 210096, Jiangsu, Peoples R China. Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Ambrosi, G.; Bertucci, B.; Crispoltoni, M.; Donnini, F.; Duranti, M.; D'Urso, D.; Fiandrini, E.; Formato, V.; Graziani, M.; Ionica, M.; Nozzoli, F.; Pauluzzi, M.; Pizzolotto, C.; Qin, X.; Tomassetti, N.; Vagelli, V.; Vitale, V.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Bertucci, B.; Crispoltoni, M.; Donnini, F.; Duranti, M.; Fiandrini, E.; Graziani, M.; Pauluzzi, M.; Tomassetti, N.; Vagelli, V.] Univ Perugia, I-06100 Perugia, Italy. [Cervelli, F.; Di Falco, S.; Gallucci, G.; Incagli, M.; Morescalchi, L.; Pilo, F.; Vannini, C.] Ist Nazl Fis Nucl, Sez Pisa, I-56100 Pisa, Italy. [Basara, L.; Battiston, R.; Dimiccoli, F.; Kanishev, K.; Lazzizzera, I.] Ist Nazl Fis Nucl, TIFPA, I-38123 Trento, Italy. [Battiston, R.; Dimiccoli, F.; Kanishev, K.; Lazzizzera, I.] Univ Trent, I-38123 Trento, Italy. [Bartoloni, A.; Borgia, B.; Lipari, P.; Valente, E.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Borgia, B.; Valente, E.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Bueno, E. F.; Lordello, V. D.; Mikuni, V. M.; Vecchi, M.] Univ Sao Paulo, Inst Fis Sao Carlos, CP 369, BR-13560970 Sao Carlos, SP, Brazil. [Chae, M. J.; Yang, J.] Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea. [Cheng, L.; Cui, Z.; Luo, F.; Song, J. W.; Wang, L. Q.; Wang, N. H.] Shandong Univ SDU, Jinan 250100, Shandong, Peoples R China. [Li, H. S.; Yang, Y.] Natl Cheng Kung Univ, Tainan 70101, Taiwan. [Lee, H. T.] Acad Sinica Grid Ctr, Taipei 11529, Taiwan. [Creus, W.; Feng, J.; Haino, S.; Huang, H.; Li, Z. Y.; Lin, C. H.; Lu, S. Q.; Qu, Z. Y.; Wei, C. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Battarbee, M.; Eronen, T.; Torsti, J.; Valtonen, E.] Univ Turku, Dept Phys & Astron, Space Res Lab, FI-20014 Turku, Finland. ASI, I-00133 Rome, Italy. [D'Urso, D.; Pizzolotto, C.; Vitale, V.] ASI Sci Data Ctr ASDC, I-00133 Rome, Italy. [Li, J. Q.; Li, Y.; Li, Z. Y.; Lu, S. Q.] Sun Yat Sen Univ, Guangzhou 510275, Guangdong, Peoples R China. [Huang, H.; Zhang, J.] Wuhan Univ, Wuhan 430072, Peoples R China. [Zhang, S. D.] Harbin Inst Technol, Harbin 150001, Peoples R China. [Liu, Hu] Huazhong Univ Sci & Technol, Wuhan 430074, Peoples R China. [Morescalchi, L.] Univ Siena, I-53100 Siena, Italy. [Nozzoli, F.; Putze, A.] CNRS, Lab Annecy le Vieux Phys Theor LAITh, F-74941 Annecy Le Vieux, France. [Nozzoli, F.; Putze, A.] Univ Savoie Mont Blanc, F-74941 Annecy Le Vieux, France. [Qin, X.; Xia, X.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Qu, Z. Y.] Nankai Univ, Tianjin 300071, Peoples R China. [Sun, W. H.] Southeast Univ SEU, Nanjing 210096, Jiangsu, Peoples R China. Chinese Acad Sci, Inst Theoretial Phys, Beijing 100190, Peoples R China. [Zhu, Z. Q.] Jilin Univ, Jilin 130012, Peoples R China. RP Aguilar, M (reprint author), CIEMAT, E-28040 Madrid, Spain. RI Paniccia, Mercedes/A-4519-2017; OI Paniccia, Mercedes/0000-0001-8482-2703; Corti, Claudio/0000-0001-9127-7133; Morescalchi, Luca/0000-0002-7819-8139; Bertucci, Bruna/0000-0001-7584-293X; La Vacca, Giuseppe/0000-0002-2168-9447; Della Torre, Stefano/0000-0002-7669-0859 FU NASA; DOE; MIT; Sao Paulo Research Foundation (FAPESP), Brazil [2015/50378-5, 2015/13533-2, 2016/10222-9]; CAS; NSFC; MOST; MOST, NLAA; provincial government of Shandong; provincial government of Jiangsu; provincial government of Guangdong; China Scholarship Council, China; European Union [707543]; Finnish Funding Agency for Innovation (Tekes) [40361/01, 40518/03]; Academy of Finland, Finland [258963]; CNRS/IN2P3; CNES; Enigmass; ANR, France; Pascale Ehrenfreund; DLR; JARA-HPC, Germany [JARA0052]; ASI-INFN, Italy [2013-002-R. 0, 2014-037-R. 0]; CHEP; NRF at Kyungpook National University [NRF-2009-0080142, NRF-2012-010226]; NRF at Ewha Womans University, Korea [NRF-2013-004883]; Consejo Nacional de Ciencia y Tecnologia; UNAM, Mexico; FCT, Portugal [PTDC/FIS/122567/2010]; CIEMAT; IAC; CDTI; SEIDI-MINECO, Spain [AYA2012-39526-C02-(01/02), ESP2015-71662C2-(1-P/2-P), SEV-2011-0187, SEV-2015-0548, MDM-2015-0509]; Swiss National Science Foundation (SNSF); federal authority, Switzerland; cantonal authority, Switzerland; Academia Sinica; Ministry of Science and Technology (MOST) [1032112-M-006-018-MY3, 105-2112-M-001-003, CDA-105-M06]; Turkish Atomic Energy Authority at METU, Turkey; NSF [1455202, 1551980]; Wyle Laboratories [2014/T72497]; NASA NESSF, USA [HELIO15F-0005]; CERN; European Space Agency FX We thank former NASA Administrator Daniel S. Goldin for his dedication to the legacy of the ISS as a scientific laboratory and his decision for NASA to fly AMS as a DOE payload. We also acknowledge the continuous support of the NASA leadership including Charles Bolden and William H. Gerstenmaier and of the JSC and MSFC flight control teams which has allowed AMS to operate optimally on the ISS for over five years. We are grateful for the support of Jim Siegrist and his staff of the DOE. We also acknowledge the continuous support from MIT and its School of Science, Michael Sipser, Marc Kastner, Ernest Moniz, Richard Milner, and Boleslaw Wyslouch. Research supported by Sao Paulo Research Foundation (FAPESP) Grants No. 2015/50378-5, No. 2015/13533-2, and No. 2016/10222-9, Brazil; CAS, NSFC, MOST, NLAA, the provincial governments of Shandong, Jiangsu, Guangdong, and the China Scholarship Council, China; action H2020 MSCA-IF-2015 under Grant No. 707543 MAtISSE, European Union; the Finnish Funding Agency for Innovation (Tekes) Grants No. 40361/01 and No. 40518/03 and the Academy of Finland Grant No. 258963, Finland; CNRS/IN2P3, CNES, Enigmass, and the ANR, France; Pascale Ehrenfreund, DLR, and JARA-HPC under Project No. JARA0052, Germany; INFN and ASI under ASI-INFN Agreements No. 2013-002-R. 0 and No. 2014-037-R. 0, Italy; CHEP and NRF under Grants No. NRF-2009-0080142 and No. NRF-2012-010226 at Kyungpook National University and No. NRF-2013-004883 at Ewha Womans University, Korea; the Consejo Nacional de Ciencia y Tecnologia and UNAM, Mexico; FCT under Grant No. PTDC/FIS/122567/2010, Portugal; CIEMAT, IAC, CDTI, and SEIDI-MINECO under Grants No. AYA2012-39526-C02-(01/02), No. ESP2015-71662C2-(1-P/2-P), No. SEV- 2011-0187, No. SEV-2015-0548, and No. MDM-2015-0509, Spain; the Swiss National Science Foundation (SNSF), federal and cantonal authorities, Switzerland; Academia Sinica and the Ministry of Science and Technology (MOST) under Grants No. 1032112-M-006-018-MY3, No. 105-2112-M-001-003, and No. CDA-105-M06, former President of Academia Sinica Yuan-Tseh Lee, and former Ministers of MOST Maw-Kuen Wu and Luo-Chuan Lee, Taiwan; the Turkish Atomic Energy Authority at METU, Turkey; and NSF Grants No. 1455202 and No. 1551980, Wyle Laboratories Grant No. 2014/T72497, and NASA NESSF Grant No. HELIO15F-0005, USA. We gratefully acknowledge the strong support from CERN including Rolf-Dieter Heuer and Fabiola Gianotti, from the CERN IT department and Bernd Panzer-Steindel, and from the European Space Agency including Johann-Dietrich Wrner and Simonetta Di Pippo. We are grateful for important physics discussions with Fiorenza Donato, Jonathan Ellis, Jonathan Feng, Igor Moskalenko, Michael Salamon, Subir Sarkar, Joachim Trumper, Michael S. Turner, Steven Weinberg, and Arnold Wolfendale. NR 55 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 28 PY 2016 VL 117 IS 23 AR 231102 DI 10.1103/PhysRevLett.117.231102 PG 8 WC Physics, Multidisciplinary SC Physics GA EP2QA UT WOS:000397227000001 PM 27982618 ER PT J AU Adebesin, BO Pulkkinen, A Ngwira, CM AF Adebesin, Babatunde O. Pulkkinen, Antti Ngwira, Chigomezyo M. TI The interplanetary and magnetospheric causes of extreme dB/dt at equatorial locations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GEOMAGNETIC STORMS; ELECTRIC-FIELD; EVENT; CURRENTS AB The 1 min resolution solar wind and geomagnetic data obtained from seven equatorial/low-latitude stations during four extreme geomagnetic activities are used to investigate the extreme dB/dt perturbations. Simulations of the magnetospheric-ionospheric environment were also performed for varying amplitudes of the solar proton density. Simulations were carried out using the Space Weather Modeling Framework/BATS-R-US + RCM model. Both the observations and simulations demonstrated that the appearance time of the extreme dB/dt perturbations at equatorial stations during disturbed conditions is instantaneous and equitable to those experienced at auroral regions yielding time lags of the order of a few seconds. We find that the rapid dB/dt enhancements are caused by the electric field of magnetospheric current origin, which is being enhanced by solar wind density and ram pressure variations and boosted by the equatorial electrojet. Our results indicate that the solar wind proton density variations could be used as a predictor of extreme dB/dt enhancement at equatorial latitudes. C1 [Adebesin, Babatunde O.] Landmark Univ, Space Weather Grp, Environm & Technol Res Cluster, Dept Phys Sci, Omu Aran, Nigeria. [Adebesin, Babatunde O.; Pulkkinen, Antti; Ngwira, Chigomezyo M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Adebesin, Babatunde O.; Pulkkinen, Antti; Ngwira, Chigomezyo M.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Adebesin, BO (reprint author), Landmark Univ, Space Weather Grp, Environm & Technol Res Cluster, Dept Phys Sci, Omu Aran, Nigeria.; Adebesin, BO (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Adebesin, BO (reprint author), Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. EM adebesin.olufemi@lmu.edu.ng OI ADEBESIN, OLUFEMI/0000-0001-5698-6057 FU Scientific Committee on Solar Terrestrial Physics (SCOSTEP); NASA FX The authors appreciate the high observatory standard of INTERMAGNET (www.intermagnet.org) from where the entire ground-based geomagnetic data were obtained. The solar wind data were obtained from the SPDF-CDAWeb internet database at http://cdaweb.gsfc.nasa.gov and are being hosted by the NASA-GSFC Space Physics Data Facility. The simulated data and movie were done at the Community Coordinated Modelling Center (CCMC) of NASA-GFSC Heliophysics Science Division. Anne M. Mendoza, Anna Chulaki, Lutz Rastatter, and Masha Kuznetsova were appreciated for these. Many thanks to the University of Michigan Space Weather Modeling Framework team for developing the SWMF model. The research work of B. O. Adebesin at NASA-GSFC Space Weather Research Laboratory is supported by the Scientific Committee on Solar Terrestrial Physics (SCOSTEP) and NASA under the 2015 SCOSTEP Visiting Scholarship (SVS) Award Programme. B. O. Adebesin sincerely appreciates A. B. Rabiu of the Centre for Atmospheric Research, National Space Research and Development Agency (NASRDA) Anyingba, Nigeria, for his supportive role in the SVS process. NR 27 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 28 PY 2016 VL 43 IS 22 BP 11501 EP 11509 DI 10.1002/2016GL071526 PG 9 WC Geosciences, Multidisciplinary SC Geology GA EJ4SV UT WOS:000393208100003 ER PT J AU Vervack, RJ Killen, RM McClintock, WE Merkel, AW Burger, MH Cassidy, TA Sarantos, M AF Vervack, R. J., Jr. Killen, R. M. McClintock, W. E. Merkel, A. W. Burger, M. H. Cassidy, T. A. Sarantos, M. TI New discoveries from MESSENGER and insights into Mercury's exosphere SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CALCIUM EXOSPHERE; ATMOSPHERE; MOON AB For most of the orbital phase of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, a regular search for weakly emitting or less abundant species in Mercury's exosphere resulted in nondetections. However, during the final Earth year of the mission, emission from multiple lines of manganese, aluminum, and ionized calcium was detected. These observations validate the detection of a single line of ionized calcium during the third MESSENGER Mercury flyby, provide definitive confirmation for weak aluminum detections in ground-based observations, and represent the discovery of manganese in Mercury's exosphere. These detections occurred over a limited range of predawn local times and Mercury true anomaly angles (0 degrees-70 degrees), and each has a distinct spatial distribution. Equally interesting is the absence of detectable emission from oxygen at limits well below the levels reported for Mariner 10. C1 [Vervack, R. J., Jr.] Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA. [Killen, R. M.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD USA. [McClintock, W. E.; Merkel, A. W.; Cassidy, T. A.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Burger, M. H.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Sarantos, M.] Univ Maryland, Goddard Planetary Heliophys Inst, Baltimore, MD 21201 USA. [Sarantos, M.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD USA. RP Vervack, RJ (reprint author), Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA. EM ron.vervack@jhuapl.edu RI Vervack, Ronald/C-2702-2016; OI Vervack, Ronald/0000-0002-8227-9564; CASSIDY, TIMOTHY/0000-0003-4308-4083 FU MESSENGER Participating Scientist Program under the NASA [NNX07AR63G]; NASA DDAP [NNX15AL03G]; MESSENGER Participating Scientist Program; MESSENGER mission; NASA [NAS5-97271, NASW-00002] FX The authors wish to acknowledge the tireless efforts of the MESSENGER spacecraft and science operations teams who made these observations possible, Ann Sprague for the suggestion to search for Mn in the first place, and our two reviewers for helpful comments. R.J.V. was supported by the MESSENGER Participating Scientist Program under the NASA grant NNX07AR63G and by the NASA DDAP under grant NNX15AL03G. R.M.K. was also supported by the MESSENGER Participating Scientist Program. Support for W.E.M., A.W.M., T.A.C., and M.H.B. came from the MESSENGER mission, which was supported by the NASA Discovery Program under contracts NAS5-97271 to The Johns Hopkins University Applied Physics Laboratory and NASW-00002 to the Carnegie Institution of Washington. All data used in this paper are publically available through the MESSENGER data archive with the Planetary Data System. NR 20 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 28 PY 2016 VL 43 IS 22 BP 11545 EP 11551 DI 10.1002/2016GL071284 PG 7 WC Geosciences, Multidisciplinary SC Geology GA EJ4SV UT WOS:000393208100008 ER PT J AU Rangoonwala, A Jones, CE Ramsey, E AF Rangoonwala, Amina Jones, Cathleen E. Ramsey, Elijah, III TI Wetland shoreline recession in the Mississippi River Delta from petroleum oiling and cyclonic storms SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SEA-LEVEL RISE; WATER-HORIZON SPILL; SALT-MARSH GRASS; LOUISIANA; STABILITY; GROWTH; IMAGES; SAR AB We evaluate the relative impact of petroleum spill and storm surge on near-shore wetland loss by quantifying the lateral movement of coastal shores in upper Barataria Bay, Louisiana (USA), between June 2009 and October 2012, a study period that extends from the year prior to the Deepwater Horizon spill to 2.5 years following the spill. We document a distinctly different pattern of shoreline loss in the 2 years following the spill, both from that observed in the year prior to the spill, during which there was no major cyclonic storm, and from change related to Hurricane Isaac, which made landfall in August 2012. Shoreline erosion following oiling was far more spatially extensive and included loss in areas protected from wave-induced erosion. We conclude that petroleum exposure can substantially increase shoreline recession particularly in areas protected from storm-induced degradation and disproportionally alters small oil-exposed barrier islands relative to natural erosion. C1 [Rangoonwala, Amina; Ramsey, Elijah, III] US Geol Survey, Wetland & Aquat Res Ctr, Lafayette, LA USA. [Jones, Cathleen E.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Jones, CE (reprint author), US Geol Survey, Wetland & Aquat Res Ctr, Lafayette, LA USA.; Jones, CE (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM cathleen.e.jones@jpl.nasa.gov FU National Aeronautics Space Administration (NASA) [11-TE11-104]; Jet Propulsion Laboratory; California Institute of Technology; NASA FX We thank Francis Fields, Jr., of the Apache Louisiana Minerals LLC, a subsidiary of Apache Corporation, and Jeff Deblieux IV of the Louisiana Land and Exploration Company, a subsidiary of Conoco Phillips, for access to their properties. We are indebted to the late Clint Jeske of the U.S. Geological Survey for his invaluable assistance in field reconnaissance. We thank Liviu Giosan, Paul Siqueira, and John Shaw for their insightful reviews. Research was supported in part by the National Aeronautics Space Administration (NASA) grant #11-TE11-104 and carried out in collaboration with the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. UAVSAR data are provided courtesy of NASA/JPL-Caltech. The data used in this study are listed in the supporting information and downloadable from uavsar.jpl.nasa.gov or asf.alaska.edu. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 40 TC 1 Z9 1 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 28 PY 2016 VL 43 IS 22 BP 11652 EP 11660 DI 10.1002/2016GL070624 PG 9 WC Geosciences, Multidisciplinary SC Geology GA EJ4SV UT WOS:000393208100021 ER PT J AU Vergados, P Mannucci, AJ Ao, CO Fetzer, EJ AF Vergados, Panagiotis Mannucci, Anthony J. Ao, Chi O. Fetzer, Eric J. TI Using GPS radio occultations to infer the water vapor feedback SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TROPICAL UPPER TROPOSPHERE; RADIATIVE KERNEL TECHNIQUE; CLIMATE FEEDBACKS; RELATIVE-HUMIDITY; MODEL; UNCERTAINTIES; SIMULATIONS; TEMPERATURE; SENSITIVITY; SOUNDER AB The air refractive index at L-band frequencies depends on the air's water vapor content and density. Exploiting this relationship, we derive for the first time a theoretical model to infer the specific humidity response to surface temperature variations, dq/dT(s), given knowledge of how the air refractive index and temperature vary with surface temperature. We validate this model by using 1.2-1.6 GHz Global Positioning System Radio Occultation (GPS RO) observations from 2007 to 2010 at 250 hPa, where the water vapor feedback on surface warming is strongest. The dq/dT(s) estimation from GPS RO observations shows excellent agreement with previously published results and the responses estimated by using the Atmospheric Infrared Sounder and the NASA's Modern-Era Retrospective Analysis for Research and Applications data sets. Because of their high sensitivity to fractional changes in water vapor, current and future GPS RO observations show great promise in monitoring climate feedback and their trends. C1 [Vergados, Panagiotis; Mannucci, Anthony J.; Ao, Chi O.; Fetzer, Eric J.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA. RP Vergados, P (reprint author), CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA. EM Panagiotis.Vergados@jpl.nasa.gov FU NASA's Earth Science Mission Directorate FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors are grateful to the funding provided by NASA's Earth Science Mission Directorate. The JPL COSMIC data are available publicly through genesis. jpl. nasa.gov:8000. The AIRS and MERRA data sets are also publicly available via mirador.gsfc.nasa.gov. NR 60 TC 0 Z9 0 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 28 PY 2016 VL 43 IS 22 BP 11841 EP 11851 DI 10.1002/2016GL071017 PG 11 WC Geosciences, Multidisciplinary SC Geology GA EJ4SV UT WOS:000393208100042 ER PT J AU Sano, I Mukai, S Nakata, M Holben, BN AF Sano, Itaru Mukai, Sonoyo Nakata, Makiko Holben, Brent N. TI Regional and local variations in atmospheric aerosols using ground-based sun photometry during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) in 2012 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID FINE PARTICULATE MATTER; LONG-TERM EXPOSURE; OPTICAL-PROPERTIES; MODEL; VARIABILITY; CHEMISTRY; AERONET; DEPTH; DUST AB Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON). We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP). C1 [Sano, Itaru] Kindai Univ, Fac Sci & Engn, Higashiosaka, Osaka, Japan. [Mukai, Sonoyo] Kyoto Coll Grad Studies Informat, REESIT, Kyoto, Japan. [Nakata, Makiko] Kindai Univ, Fac Appl Sociol, Higashiosaka, Osaka, Japan. [Holben, Brent N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Sano, I (reprint author), Kindai Univ, Fac Sci & Engn, Higashiosaka, Osaka, Japan. EM sano@info.kindai.ac.jp FU Global Change Observation Mission - Climate project by JAXA [JX-PSPC-308878]; Global Environment Research Fund of the Ministry of Environment, Japan [S-12]; JSPS KAKENHI grant [25340019, 15K00528] FX First, the authors are grateful to all collaborators in DRAGON-Japan and acknowledge NASA for the AERONET team and NIES lidar group for data processing. The authors thank the two anonymous reviewers for their valuable comments and suggestions on how to improve the manuscript. This work was supported in part by the Global Change Observation Mission - Climate 1st (GCOM-C1) project by JAXA (no. JX-PSPC-308878). This study was supported in part by the Global Environment Research Fund of the Ministry of Environment, Japan (S-12) and JSPS KAKENHI grant numbers 25340019 and 15K00528. NR 28 TC 0 Z9 0 U1 1 U2 1 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 28 PY 2016 VL 16 IS 22 BP 14795 EP 14803 DI 10.5194/acp-16-14795-2016 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED2TE UT WOS:000388701100002 ER PT J AU Cochrane, CJ Blacksberg, J Anders, MA Lenahan, PM AF Cochrane, Corey J. Blacksberg, Jordana Anders, Mark A. Lenahan, Patrick M. TI Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide SO SCIENTIFIC REPORTS LA English DT Article ID MAGNETIC-FIELD; FLUXGATE MAGNETOMETER; CASSINI MAGNETOMETER; ENCELADUS; CALLISTO; SENSORS; MISSION; EUROPA AB Magnetometers are essential for scientific investigation of planetary bodies and are therefore ubiquitous on missions in space. Fluxgate and optically pumped atomic gas based magnetometers are typically flown because of their proven performance, reliability, and ability to adhere to the strict requirements associated with space missions. However, their complexity, size, and cost prevent their applicability in smaller missions involving cubesats. Conventional solid-state based magnetometers pose a viable solution, though many are prone to radiation damage and plagued with temperature instabilities. In this work, we report on the development of a new self-calibrating, solid-state based magnetometer which measures magnetic field induced changes in current within a SiC pn junction caused by the interaction of external magnetic fields with the atomic scale defects intrinsic to the semiconductor. Unlike heritage designs, the magnetometer does not require inductive sensing elements, high frequency radio, and/or optical circuitry and can be made significantly more compact and lightweight, thus enabling missions leveraging swarms of cubesats capable of science returns not possible with a single large-scale satellite. Additionally, the robustness of the SiC semiconductor allows for operation in extreme conditions such as the hot Venusian surface and the high radiation environment of the Jovian system. C1 [Cochrane, Corey J.; Blacksberg, Jordana] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Anders, Mark A.; Lenahan, Patrick M.] Penn State Univ, University Pk, PA 16802 USA. RP Cochrane, CJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM corey.j.cochrane@jpl.nasa.gov NR 53 TC 1 Z9 1 U1 11 U2 11 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 28 PY 2016 VL 6 AR 37077 DI 10.1038/srep37077 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED7JL UT WOS:000389040100001 PM 27892524 ER PT J AU Barkhordarian, A von Storch, H Zorita, E Gomez-Navarro, JJ AF Barkhordarian, A. von Storch, H. Zorita, E. Gomez-Navarro, J. J. TI An attempt to deconstruct recent climate change in the Baltic Sea basin SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CHANGE PROJECTIONS; EUROPE; PALAEOSIMULATION; SURFACE AB We investigate whether the recently observed temperature and precipitation trends over the Baltic Sea Basin are consistent with state-of-the-art regional climate model projections. To address this question we use several data sources: (1) multidecadal trends derived from various observational data sets, (2) estimates of natural variability provided by a 2000 year paleoclimatic model simulation, and (3) response to greenhouse gas forcing derived from regional climate simulations driven by the A1B and RCP4.5 scenarios (from ENSEMBLES and CORDEX projects). Results indicate that, over the past decades, the climate in the Baltic Sea Basin has undergone a change that is beyond the estimated range of natural variability. We test the hypothesis that this change may be understood as a manifestation of global warming due to increasing concentrations of greenhouse gases (GHGs). We find that changes in near-surface temperature support our hypothesis that the effect of GHG is needed to simulate the observed changes. The pattern correlation and regression results clearly illustrate the concerted emergence of an anthropogenic signal consistent with the GHG signal in summer and autumn in the 21st century. However, none of the 19 regional climate simulations used in this study reproduce the observed warming. The observed trends in precipitation and surface solar radiation are also partially inconsistent with the expected changes due to GHG forcing. We conclude that, besides the regional response to GHG forcing, other human-made drivers have had an imprint. Regional emission of industrial aerosols has been strongly reduced in this region, and we suggest that this reduction may be the missing driver. C1 [Barkhordarian, A.; von Storch, H.; Zorita, E.] Helmholtz Zentrum Geesthacht, Inst Coastal Res, Geesthacht, Germany. [Barkhordarian, A.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Barkhordarian, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Gomez-Navarro, J. J.] Univ Bern, Climate & Environm Phys, Inst Phys, Bern, Switzerland. [Gomez-Navarro, J. J.] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland. [Gomez-Navarro, J. J.] Univ Murcia, Dept Phys, Murcia, Spain. RP Barkhordarian, A (reprint author), Helmholtz Zentrum Geesthacht, Inst Coastal Res, Geesthacht, Germany.; Barkhordarian, A (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA.; Barkhordarian, A (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM barkhora@g.ucla.edu OI Gomez-Navarro, Juan Jose/0000-0001-5488-775X; von Storch, Hans/0000-0002-5825-8069 FU US National Science Foundation [AGS-1547899]; University of Murcia [R-735/2015] FX We acknowledge the Helmholtz Climate Initiative REKLIM, a joint research project of the Helmholtz Association of German Research Centres (HGF). We further acknowledge the International Detection and Attribution Group (IDAG). We thank anonymous reviewers for valuable comments on the manuscript. A.B. acknowledges the partial support provided by the US National Science Foundation AGS-1547899. J.J.G.N. acknowledges the funding provided through the contract for the return of experienced researches, resolution R-735/2015 of the University of Murcia. Data used in this paper are available NR 35 TC 0 Z9 0 U1 8 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 27 PY 2016 VL 121 IS 22 BP 13207 EP 13217 DI 10.1002/2015JD024648 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EJ3QX UT WOS:000393127800001 ER PT J AU Li, J Li, XC Carlson, BE Kahn, RA Lacis, AA Dubovik, O Nakajima, T AF Li, Jing Li, Xichen Carlson, Barbara E. Kahn, Ralph A. Lacis, Andrew A. Dubovik, Oleg Nakajima, Teruyuki TI Reducing multisensor satellite monthly mean aerosol optical depth uncertainty: 1. Objective assessment of current AERONET locations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID IMAGING SPECTRORADIOMETER MISR; SPECTRAL-ANALYSIS TECHNIQUES; OZONE MONITORING INSTRUMENT; MAXIMUM COVARIANCE ANALYSIS; KALMAN FILTER; A-TRAIN; TRANSPORT; DUST; VARIABILITY; PRODUCTS AB Various space-based sensors have been designed and corresponding algorithms developed to retrieve aerosol optical depth (AOD), the very basic aerosol optical property, yet considerable disagreement still exists across these different satellite data sets. Surface-based observations aim to provide ground truth for validating satellite data; hence, their deployment locations should preferably contain as much spatial information as possible, i.e., high spatial representativeness. Using a novel Ensemble Kalman Filter (EnKF)-based approach, we objectively evaluate the spatial representativeness of current Aerosol Robotic Network (AERONET) sites. Multisensor monthly mean AOD data sets from Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, Sea-viewing Wide Field-of-view Sensor, Ozone Monitoring Instrument, and Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar are combined into a 605-member ensemble, and AERONET data are considered as the observations to be assimilated into this ensemble using the EnKF. The assessment is made by comparing the analysis error variance (that has been constrained by ground-based measurements), with the background error variance (based on satellite data alone). Results show that the total uncertainty is reduced by similar to 27% on average and could reach above 50% over certain places. The uncertainty reduction pattern also has distinct seasonal patterns, corresponding to the spatial distribution of seasonally varying aerosol types, such as dust in the spring for Northern Hemisphere and biomass burning in the fall for Southern Hemisphere. Dust and biomass burning sites have the highest spatial representativeness, rural and oceanic sites can also represent moderate spatial information, whereas the representativeness of urban sites is relatively localized. A spatial score ranging from 1 to 3 is assigned to each AERONET site based on the uncertainty reduction, indicating its representativeness level. C1 [Li, Jing] Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Beijing, Peoples R China. [Li, Xichen] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China. [Carlson, Barbara E.; Lacis, Andrew A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Kahn, Ralph A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Dubovik, Oleg] Univ Lille 1, French Natl Ctr Sci Res, Lille, France. [Nakajima, Teruyuki] Japan Aerosp Explorat Agcy, Tsukuba Space Ctr, Tsukuba, Ibaraki, Japan. RP Li, J (reprint author), Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Beijing, Peoples R China. EM jing-li@pku.edu.cn RI Nakajima, Teruyuki/H-2370-2013; OI Nakajima, Teruyuki/0000-0002-9042-504X; Li, Jing/0000-0002-0540-0412; Li, Xichen/0000-0001-6325-6626 FU National Science Foundation of China [41575018, 41530423] FX We thank the MODIS, MISR, SeaWiFS, OMI, and PARASOL science teams for providing the monthly mean AOD data sets used to construct the ensemble. We also thank the AERONET PI investigators and their staff for establishing and maintaining the 77 sites used in this investigation. MODIS Level 3 AOD product is provided by the Level 1 and Atmosphere Archive and Distribution System (LAADS) of Goddard Space Flight Center, available at ftp://ladsweb.nasacom.nasa.gov/allData/6/MOD08_M3. MISR AOD data are downloaded from the NASA Atmospheric Science Data Center, available at https://eosweb.larc.nasa.gov/project/misr. SeaWiFS Deep Blue AOD data are provided by NASA Goddard Space Flight Center, available at http://mirador.gsfc.nasa.gov/. OMI Level 3 data are downloaded from Goddard Earth Sciences Data and Information Services Center (http://mirador.gsfc.nasa.gov/). PARASOL monthly AOD is provided by ICARE Data and Services Center, at http://www.icare.univ-lille1.fr/parasol/. AERONET information is obtained from the GSFC AERONET website at http://aeronet.gsfc.nasa.gov/. Jing Li is funded by National Science Foundation of China grants 41575018 and 41530423. NR 63 TC 0 Z9 0 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 27 PY 2016 VL 121 IS 22 BP 13609 EP 13627 DI 10.1002/2016JD025469 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EJ3QX UT WOS:000393127800022 ER PT J AU Shingler, T Sorooshian, A Ortega, A Crosbie, E Wonaschutz, A Perring, AE Beyersdorf, A Ziemba, L Jimenez, JL Campuzano-Jost, P Mikoviny, T Wisthaler, A Russell, LM AF Shingler, Taylor Sorooshian, Armin Ortega, Amber Crosbie, Ewan Wonaschuetz, Anna Perring, Anne E. Beyersdorf, Andreas Ziemba, Luke Jimenez, Jose L. Campuzano-Jost, Pedro Mikoviny, Tomas Wisthaler, Armin Russell, Lynn M. TI Ambient observations of hygroscopic growth factor and f(RH) below 1: Case studies from surface and airborne measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SINGLE-PARAMETER REPRESENTATION; CONDENSATION NUCLEUS ACTIVITY; SECONDARY ORGANIC AEROSOL; BIOMASS BURNING AEROSOL; DIFFERENTIAL MOBILITY ANALYZER; LIGHT-ABSORPTION; SOOT PARTICLES; SULFURIC-ACID; ACTIVITY-COEFFICIENTS; THERMODYNAMIC MODEL AB This study reports a detailed set of ambient observations of optical/physical shrinking of particles from exposure to water vapor with consistency across different instruments and regions. Data have been utilized from (i) a shipboard humidified tandem differential mobility analyzer during the Eastern Pacific Emitted Aerosol Cloud Experiment in 2011, (ii) multiple instruments on the NASA DC-8 research aircraft during the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys in 2013, and (iii) the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe during ambient measurements in Tucson, Arizona, during summer 2014 and winter 2015. Hygroscopic growth factor (ratio of humidified-to-dry diameter, GF = D-p,D-wet/D-p,D-dry) and f(RH) (ratio of humidified-to-dry scattering coefficients) values below 1 were observed across the range of relative humidity (RH) investigated (75-95%). A commonality of observations of GF and f(RH) below 1 in these experiments was the presence of particles enriched with carbonaceous matter, especially from biomass burning. Evidence of externally mixed aerosol, and thus multiple GFs with at least one GF < 1, was observed concurrently with f(RH) < 1 during smoke periods. Possible mechanisms responsible for observed shrinkage are discussed and include particle restructuring, volatilization effects, and refractive index modifications due to aqueous processing resulting in optical size modification. To further investigate ambient observations of GFs and f(RH) values less than 1, it is recommended to add an optional prehumidification bypass module to hygroscopicity instruments, to preemptively collapse particles prior to controlled RH measurements. C1 [Shingler, Taylor; Sorooshian, Armin; Ortega, Amber] Univ Arizona, Dept Chem & Environm Engn, Tucson, AZ 85721 USA. [Shingler, Taylor; Crosbie, Ewan] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Shingler, Taylor; Crosbie, Ewan; Beyersdorf, Andreas; Ziemba, Luke] Univ Space Res Assoc, Columbia, MD USA. [Sorooshian, Armin] Univ Arizona, Dept Hydrol & Atmospher Sci, Tucson, AZ 85721 USA. [Ortega, Amber] Colorado Dept Publ Hlth & Environm, Air Pollut Control Div, Denver, CO USA. [Wonaschuetz, Anna] Univ Vienna, Fac Phys, Vienna, Austria. [Perring, Anne E.] NASA, Earth Syst Res Lab, Boulder, CO USA. [Perring, Anne E.; Jimenez, Jose L.; Campuzano-Jost, Pedro] Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA. [Jimenez, Jose L.; Campuzano-Jost, Pedro] Univ Colorado Boulder, Dept Chem & Biochem, Boulder, CO USA. [Mikoviny, Tomas; Wisthaler, Armin] Univ Oslo, Dept Chem, Oslo, Norway. [Wisthaler, Armin] Univ Innsbruck, Inst Ion Phys & Appl Phys, Innsbruck, Austria. [Russell, Lynn M.] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92103 USA. RP Sorooshian, A (reprint author), Univ Arizona, Dept Chem & Environm Engn, Tucson, AZ 85721 USA.; Sorooshian, A (reprint author), Univ Arizona, Dept Hydrol & Atmospher Sci, Tucson, AZ 85721 USA. EM armin@email.arizona.edu RI Jimenez, Jose/A-5294-2008; Perring, Anne/G-4597-2013 OI Jimenez, Jose/0000-0001-6203-1847; Perring, Anne/0000-0003-2231-7503 FU NASA [NNX12AC10G, NNX14AP75G, NNX12AC03G, NNX15AT96G]; ONR [N00014-16-1-2567, N00014-10-1-0811]; NSF [AGS-1008848, AGS-1048995]; NASA Earth and Space Science Fellowship [NNX14AK79H]; Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG); Visiting Scientist Program at the National Institute of Aerospace (NIA) FX All data used can be obtained from the corresponding author. This research was funded by NASA grants NNX12AC10G and NNX14AP75G, and ONR grant N00014-16-1-2567. The development of the DASH-SP instrument was funded by ONR grant N00014-10-1-0811, and HTDMA measurements in E-PEACE were funded by NSF AGS-1008848. T.S. acknowledges support from a NASA Earth and Space Science Fellowship (NNX14AK79H). Acetonitrile measurements during SEAC4RS were supported by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG). A.W. and T.M. received support from the Visiting Scientist Program at the National Institute of Aerospace (NIA). L.M.R. acknowledges NSF AGS-1048995 for E-PEACE. P.C.J. and J.L.J. were supported by NASA NNX12AC03G and NNX15AT96G. Manabu Shiraiwa and Andreas Zuend are acknowledged for thermokinetic modeling results. NR 78 TC 1 Z9 1 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 27 PY 2016 VL 121 IS 22 BP 13661 EP 13677 DI 10.1002/2016JD025471 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EJ3QX UT WOS:000393127800025 ER PT J AU Dolinar, EK Dong, XQ Xi, BK Jiang, JH Loeb, NG AF Dolinar, Erica K. Dong, Xiquan Xi, Baike Jiang, Jonathan H. Loeb, Norman G. TI A clear-sky radiation closure study using a one-dimensional radiative transfer model and collocated satellite-surface-reanalysis data sets SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ANGULAR-DISTRIBUTION MODELS; CLIMATE RESEARCH; FLUX CALCULATION; ENERGY BUDGET; PART II; CLOUDS; CERES; PARAMETERIZATION; METHODOLOGY; RADAR AB Earth's climate is largely determined by the planet's energy budget, i.e., the balance of incoming and outgoing radiation at the surface and top of atmosphere (TOA). Studies have shown that computing clear-sky radiative fluxes are strongly dependent on atmospheric state variables, such as temperature and water vapor profiles, while the all-sky fluxes are greatly influenced by the presence of clouds. NASA-modeled vertical profiles of temperature and water vapor are used to derive the surface radiation budget from Clouds and Earth Radiant Energy System (CERES), which is regarded as one of the primary sources for evaluating climate change in climate models. In this study, we evaluate the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) reanalyzed clear-sky temperature and water vapor profiles with newly generated atmospheric profiles from Department of Energy Atmospheric Radiation Measurement (ARM)-merged soundings and Aura Microwave Limb Sounder retrievals at three ARM sites. The temperature profiles are well replicated in MERRA-2 at all three sites, whereas tropospheric water vapor is slightly dry below similar to 700 hPa. These profiles are then used to calculate clear-sky surface and TOA radiative fluxes from the Langley-modified Fu-Liou radiative transfer model (RTM). In order to achieve radiative closure at both the surface and TOA, the ARM-measured surface albedos and aerosol optical depths are adjusted to account for surface inhomogeneity. In general, most of the averaged RTM-calculated surface downward and TOA upward shortwave and longwave fluxes agree within similar to 5 W/m(2) of the observations, which is within the uncertainties of the ARM and CERES measurements. Yet still, further efforts are required to reduce the bias in calculated fluxes in coastal regions. C1 [Dolinar, Erica K.; Xi, Baike] Univ North Dakota, Dept Atmospher Sci, Grand Forks, ND 58201 USA. [Dong, Xiquan] Univ Arizona, Dept Hydrol & Atmospher Sci, Tucson, AZ 85721 USA. [Jiang, Jonathan H.] Jet Prop Lab, Pasadena, CA USA. [Loeb, Norman G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Dong, XQ (reprint author), Univ Arizona, Dept Hydrol & Atmospher Sci, Tucson, AZ 85721 USA. EM xdong@email.arizona.edu OI Xi, Baike/0000-0001-6126-2010 FU NASA Earth and Space Science Fellowship program; NASA CERES project [NNX14AP84G]; NOAA MAPP grant at the University of North Dakota [NA13OAR4310105]; Jet Propulsion Laboratory, California Institute of Technology; NASA FX This work was supported by the NASA Earth and Space Science Fellowship program to Erica Dolinar at the University of North Dakota, under the advisement of Xiquan Dong. The researchers at UND were supported by NASA CERES project under grant NNX14AP84G and NOAA MAPP grant under NA13OAR4310105 at the University of North Dakota. Coauthor Jonathan Jiang acknowledges the support by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. We would also like to thank Norman Loeb for hosting Dolinar for a 13 week internship at NASA Langley Research Center and Science Systems and Applications Inc. for providing additional support. CERES SSF product is produced by the NASA CERES Team, available at http://ceres.larc.nasa.gov. The ground-based observations were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy (DOE) Office of Energy Research, Office of Health and Environmental Research, and Environmental Sciences Division. The ARM-merged soundings are downloaded from http://www.archive.arm.gov/. The MLS data are made available at http://mls.jpl.nasa.gov/. NR 59 TC 0 Z9 0 U1 7 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 27 PY 2016 VL 121 IS 22 BP 13698 EP 13714 DI 10.1002/2016JD025823 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EJ3QX UT WOS:000393127800027 ER PT J AU Johnson, MS Xi, X Jeong, S Yates, EL Iraci, LT Tanaka, T Loewenstein, M Tadic, JM Fischer, ML AF Johnson, Matthew S. Xi, Xin Jeong, Seongeun Yates, Emma L. Iraci, Laura T. Tanaka, Tomoaki Loewenstein, Max Tadic, Jovan M. Fischer, Marc L. TI Investigating seasonal methane emissions in Northern California using airborne measurements and inverse modeling SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GREENHOUSE GASES; SATELLITE-OBSERVATIONS; UNITED-STATES; STILT MODEL; CLOUD MODEL; CO2; TRANSPORT; GOSAT; STEP; CONVECTION AB Seasonal methane (CH4) emissions in Northern California are evaluated during this study by using airborne measurement data and inverse model simulations. This research applies Alpha Jet Atmospheric eXperiment (AJAX) measurements obtained during January-February 2013, July 2014, and October-November 2014 over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV) in order to constrain seasonal CH4 emissions in Northern California. The California Greenhouse Gas Emissions Measurement (CALGEM) a priori emission inventory was applied in conjunction with the Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport model and inverse modeling techniques to optimize CH4 emissions. Comparing model-predicted CH4 mixing ratios with airborne measurements, we find substantial underestimates suggesting that CH4 emissions were likely larger than the year 2008 a priori CALGEM emission inventory in Northern California. Using AJAX measurements to optimize a priori emissions resulted in CH4 flux estimates from the SFBA/SJV of 1.77 +/- 0.41, 0.83 +/- 0.31, and 1.06 +/- 0.39 Tg yr(-1) when using winter, summer, and fall flight data, respectively. Averaging seasonal a posteriori emission estimates (weighted by posterior uncertainties) results in SFBA/SJV annual CH4 emissions of 1.28 +/- 0.38 Tg yr(-1). A posteriori uncertainties are reduced more effectively in the SFBA/SJV region compared to state-wide values indicating that the airborne measurements are most sensitive to emissions in this region. A posteriori estimates during this study suggest that dairy livestock was the source with the largest increase relative to the a priori CALGEM emission inventory during all seasons. C1 [Johnson, Matthew S.; Xi, Xin; Yates, Emma L.; Iraci, Laura T.; Tanaka, Tomoaki; Loewenstein, Max; Tadic, Jovan M.] NASA Ames Res Ctr, Earth Sci Div, Moffett Field, CA 94035 USA. [Jeong, Seongeun; Fischer, Marc L.] Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA USA. [Tadic, Jovan M.] Lawrence Berkeley Natl Lab, Climate Sci Dept, Berkeley, CA USA. RP Johnson, MS (reprint author), NASA Ames Res Ctr, Earth Sci Div, Moffett Field, CA 94035 USA. EM matthew.s.johnson@nasa.gov OI XI, XIN/0000-0003-3804-2735; Tadic, Jovan/0000-0003-4655-5063 FU NASA High-End Computing Program through the NASA Advanced Supercomputing Division at NASA Ames Research Center; NASA Postdoctoral Program at the NASA Ames Research Center; NASA; University of California; California Energy Commission; California Air Resources Board [DE-AC02-05CH11231]; NASA's Earth Science Division at Ames Research Center; [H211 LLC] FX The authors gratefully recognize the support and partnership of H211 LLC, with particular thanks to K. Ambrose, R. Simone, B. Quiambao, J. Lee, and R. Fisher. Technical contributions from W. Gore, A. Trias, M. Roby, Z. Young, E. Quigley, R. Walker, R. Belme, and L. Sharma made this project possible. We would also like to acknowledge the NOAA Earth System Research Laboratory Global Modeling Division-Carbon Cycle Group for producing the Greenhouse Gas Marine Boundary Layer Reference data. Resources supporting this work were provided by the NASA High-End Computing Program through the NASA Advanced Supercomputing Division at NASA Ames Research Center. X. Xi is supported by the NASA Postdoctoral Program at the NASA Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. Efforts by Lawrence Berkeley National Laboratory employees were supported by the University of California, the California Energy Commission, and the California Air Resources Board under contract number DE-AC02-05CH11231. All the authors express gratitude to the support from the NASA's Earth Science Division at Ames Research Center. The views, opinions, and findings contained in this report are those of the authors and should not be construed as an official NASA or United States Government position, policy, or decision. In accordance with the data policy of the Journal of Geophysical Research: Atmospheres, the AJAX data used during this study are available upon request to the corresponding author (matthew.s.johnson@nasa.gov). Finally, the authors would like to thank three anonymous reviewers for their useful comments which greatly improved the manuscript. NR 45 TC 1 Z9 1 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 27 PY 2016 VL 121 IS 22 BP 13753 EP 13767 DI 10.1002/2016JD025157 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EJ3QX UT WOS:000393127800030 ER PT J AU Zhou, MQ Vigouroux, C Langerock, B Wang, P Dutton, G Hermans, C Kumps, N Metzger, JM Toon, G De Maziere, M AF Zhou, Minqiang Vigouroux, Corinne Langerock, Bavo Wang, Pucai Dutton, Geoff Hermans, Christian Kumps, Nicolas Metzger, Jean-Marc Toon, Geoff De Maziere, Martine TI CFC-11, CFC-12 and HCFC-22 ground-based remote sensing FTIR measurements at Reunion Island and comparisons with MIPAS/ENVISAT data SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID CCL2F2 MEASUREMENTS; SOLAR OBSERVATIONS; MIPAS RETRIEVAL; 21-DEGREES S; 55-DEGREES E; TIME-SERIES; MODEL DATA; VALIDATION; CCL3F; EMISSIONS AB Profiles of CFC-11 (CCl3F), CFC-12 (CCl2F2) and HCFC-22 (CHF2Cl) have been obtained from Fourier transform infrared (FTIR) solar absorption measurements above the Saint-Denis (St Denis) and Maido sites at Reunion Island (21 degrees S, 55 degrees E) with low vertical resolution. FTIR profile retrievals are performed by the well-established SFIT4 program and the detail retrieval strategies along with the systematic/random uncertainties of CFC-11, CFC-12 and HCFC-22 are discussed in this study. The FTIR data of all three species are sensitive to the whole troposphere and the lowermost stratosphere, with the peak sensitivity between 5 and 10 km. The ground-based FTIR data have been compared with the collocated Michelson Interferometer for Passive Atmospheric Sounding (MIPAS/ENVISAT) data and found to be in good agreement: the observed mean relative biases and standard deviations of the differences between the smoothed MIPAS and FTIR partial columns (6-30 km) are (-4.3 and 4.4 %), (-2.9 and 4.6 %) and (-0.7 and 4.8 %) for CFC-11, CFC-12 and HCFC-22, respectively, which are within the combined error budgets from both measurements. The season cycles of CFC-11, CFC-12 and HCFC-22 from FTIR measurements and MIPAS data show a similar variation: concentration is highest in February-April and lowest in August-October. The trends derived from the combined St Denis and Maido FTIR time series are -0.86 +/- 0.12 and 2.84 +/- 0.06% year(-1) for CFC-11 and HCFC-22, respectively, for the period 2004 to 2016, and -0.76 +/- 0.05% year(-1) for CFC-12 for 2009 to 2016. These measurements are consistent with the trends observed by the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division's (GMD) Halocarbons & other Atmospheric Trace Species Group (HATS) measurements at Samoa (14.2 degrees S, 170.5 degrees W) for CFC-11 (-0.87 +/- 0.04% year(-1)), but slightly weaker for HCFC-22 (3.46 +/- 0.05 %) year(-1) and stronger for CFC-12 (-0.60 +/- 0.02% year(-1)). C1 [Zhou, Minqiang; Wang, Pucai] Chinese Acad Sci, Key Lab Middle Atmosphere & Global Environm Obser, Inst Atmospher Phys, Beijing, Peoples R China. [Zhou, Minqiang; Vigouroux, Corinne; Langerock, Bavo; Hermans, Christian; Kumps, Nicolas; De Maziere, Martine] Royal Belgian Inst Space Aeron, Brussels, Belgium. [Zhou, Minqiang] Univ Chinese Acad Sci, Beijing, Peoples R China. [Dutton, Geoff] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Metzger, Jean-Marc] Univ La Reunion, UMS 3365, OSU Reunion, St Denis, Reunion. [Toon, Geoff] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Zhou, MQ (reprint author), Chinese Acad Sci, Key Lab Middle Atmosphere & Global Environm Obser, Inst Atmospher Phys, Beijing, Peoples R China.; Zhou, MQ (reprint author), Royal Belgian Inst Space Aeron, Brussels, Belgium.; Zhou, MQ (reprint author), Univ Chinese Acad Sci, Beijing, Peoples R China. EM minqiang.zhou@aeronomie.be FU National Natural Science Foundation of China [41575034] FX This work is supported by the National Natural Science Foundation of China (41575034). The authors wish to thank Steve Montzka from NOAA for providing the HCFC-22 flask measurements, the Universite de la Reunion, as well as the Belgian Science Policy and AGACC-II project for supporting the NDACC operations in Reunion Island, the MIPAS satellite group at KIT/IMK for the provision of CFC-11, CFC-12 and HCFC-22 MIPAS data. The authors the European Communities, the Region Reunion, CNRS, and Universite de la Reunion for their support and contribution in the construction phase of the research infrastructure OPAR (Observatoire de Physique de l'Atmosphere a La Reunion). OPAR is presently funded by CNRS (INSU) and Universite de La Reunion, and managed by OSU-R (Observatoire des Sciences de l'Univers a La Reunion, UMS 3365). The authors also want to thank Emmanuel Mahieu, Philippe Demoulin and Stephanie Conway for helpful discussions. Part of this work was performed at Jet Propulsion Laboratory, California Institute of Technology, under contact with NASA. NR 44 TC 0 Z9 0 U1 1 U2 1 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PD NOV 25 PY 2016 VL 9 IS 11 BP 5621 EP 5636 DI 10.5194/amt-9-5621-2016 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED2UU UT WOS:000388706100002 ER PT J AU Ma, XL Huete, A Cleverly, J Eamus, D Chevallier, F Joiner, J Poulter, B Zhang, YG Guanter, L Meyer, W Xie, ZY Ponce-Campos, G AF Ma, Xuanlong Huete, Alfredo Cleverly, James Eamus, Derek Chevallier, Frederic Joiner, Joanna Poulter, Benjamin Zhang, Yongguang Guanter, Luis Meyer, Wayne Xie, Zunyi Ponce-Campos, Guillermo TI Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia SO SCIENTIFIC REPORTS LA English DT Article ID CARBON-CYCLE; INTERANNUAL VARIABILITY; 21ST-CENTURY DROUGHT; CLIMATE EXTREMES; NORTH-AMERICA; ECOSYSTEMS; PRODUCTIVITY; REDUCTION; SINK; EXCHANGE AB Each year, terrestrial ecosystems absorb more than a quarter of the anthropogenic carbon emissions, termed as land carbon sink. An exceptionally large land carbon sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the persistence and spatially attribution of this carbon sink remain largely unknown. Here we conducted an observation-based study to characterize the Australian land carbon sink through the novel coupling of satellite retrievals of atmospheric CO2 and photosynthesis and in-situ flux tower measures. We show the 2010-11 carbon sink was primarily ascribed to savannas and grasslands. When all biomes were normalized by rainfall, shrublands however, were most efficient in absorbing carbon. We found the 2010-11 net CO2 uptake was highly transient with rapid dissipation through drought. The size of the 2010-11 carbon sink over Australia (0.97 Pg) was reduced to 0.48 Pg in 2011-12, and was nearly eliminated in 2012-13 (0.08 Pg). We further report evidence of an earlier 2000-01 large net CO2 uptake, demonstrating a repetitive nature of this land carbon sink. Given a significant increasing trend in extreme wet year precipitation over Australia, we suggest that carbon sink episodes will exert greater future impacts on global carbon cycle. C1 [Ma, Xuanlong; Huete, Alfredo; Xie, Zunyi] Univ Technol Sydney, Climate Change Cluster, Broadway, NSW 2007, Australia. [Cleverly, James; Eamus, Derek] Univ Technol Sydney, Sch Life Sci, Broadway, NSW 2007, Australia. [Chevallier, Frederic] CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France. [Joiner, Joanna] NASA, Goddard Space Flight Ctr, Lab Atmospher Chem & Dynam, Greenbelt, MD 20771 USA. [Poulter, Benjamin] Montana State Univ, Inst Ecosyst, Bozeman, MT 59717 USA. [Poulter, Benjamin] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. [Zhang, Yongguang] Nanjing Univ, Int Inst Earth Syst Sci, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China. [Zhang, Yongguang] Jiangsu Ctr Collaborat Innovat Geog Informat Res, Nanjing 210023, Jiangsu, Peoples R China. [Guanter, Luis] GFZ German Res Ctr Geosci, Helmholtz Ctr Potsdam, D-14473 Potsdam, Germany. [Meyer, Wayne] Univ Adelaide, Environm Inst Ecol & Environm Sci, Adelaide, SA 5005, Australia. [Ponce-Campos, Guillermo] USDA ARS, Southwest Watershed Res Ctr, Tucson, AZ 85719 USA. RP Ma, XL (reprint author), Univ Technol Sydney, Climate Change Cluster, Broadway, NSW 2007, Australia. EM xuanlong.ma@uts.edu.au RI Cleverly, James/L-2134-2016; OI Cleverly, James/0000-0002-2731-7150; Ma, Xuanlong/0000-0003-1499-8476 FU Australian Research Council [ARC-DP140102698]; Early Career Research Grant (ECRG) from University of Technology Sydney "Fingerprinting Australian ecosystem threats from climate change and biodiversity loss" [PRO16-1358] FX This work was funded by an Australian Research Council - Discovery Project "Impact of extreme hydrometeorological conditions on ecosystem functioning and productivity patterns across Australia" (ARC-DP140102698, CI Huete). The first author also acknowledges the support from an Early Career Research Grant (ECRG) from University of Technology Sydney "Fingerprinting Australian ecosystem threats from climate change and biodiversity loss" (PRO16-1358, CI Ma). We would like to thank the opening of flux tower data for public access by the Australian Terrestrial Ecosystem Research Network (TERN, www.tern.org.au) - OzFlux facility (www.ozflux.org.au), as well as the availability of multiple processed satellite products by TERN's AusCover remote sensing facility (www.auscover.org.au). The ACOS GOSAT data can be obtained from http://co2.jpl.nasa.gov. They were produced by the ACOS/OCO-2 project at the Jet Propulsion Laboratory, California Institute of Technology, using GOSAT observed spectral radiances made available by the GOSAT project. NR 46 TC 1 Z9 1 U1 17 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 25 PY 2016 VL 6 AR 37747 DI 10.1038/srep37747 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC9RU UT WOS:000388482700001 PM 27886216 ER PT J AU Johnson, BT Haywood, JM Langridge, JM Darbyshire, E Morgan, WT Szpek, K Brooke, JK Marenco, F Coe, H Artaxo, P Longo, KM Mulcahy, JP Mann, GW Dalvi, M Bellouin, N AF Johnson, Ben T. Haywood, James M. Langridge, Justin M. Darbyshire, Eoghan Morgan, William T. Szpek, Kate Brooke, Jennifer K. Marenco, Franco Coe, Hugh Artaxo, Paulo Longo, Karla M. Mulcahy, Jane P. Mann, Graham W. Dalvi, Mohit Bellouin, Nicolas TI Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GLOBAL FIRE EMISSIONS; OPTICAL-PROPERTIES; ORGANIC AEROSOL; HYDROLOGICAL CYCLE; MASS-SPECTROMETRY; DIFFUSE-RADIATION; LANDSCAPE FIRES; SOUTHERN AFRICA; AMAZON FOREST; COUPLED MODEL AB We present observations of biomass burning aerosol from the South American Biomass Burning Analysis (SAMBBA) and other measurement campaigns, and use these to evaluate the representation of biomass burning aerosol properties and processes in a state-of-the-art climate model. The evaluation includes detailed comparisons with aircraft and ground data, along with remote sensing observations from MODIS and AERONET. We demonstrate several improvements to aerosol properties following the implementation of the Global Model for Aerosol Processes (GLOMAP-mode) modal aerosol scheme in the HadGEM3 climate model. This predicts the particle size distribution, composition, and optical properties, giving increased accuracy in the representation of aerosol properties and physical-chemical processes over the Coupled Large-scale Aerosol Scheme for Simulations in Climate Models (CLASSIC) bulk aerosol scheme previously used in HadGEM2. Although both models give similar regional distributions of carbonaceous aerosol mass and aerosol optical depth (AOD), GLOMAP-mode is better able to capture the observed size distribution, single scattering albedo, and Angstrom exponent across different tropical biomass burning source regions. Both aerosol schemes overestimate the uptake of water compared to recent observations, CLASSIC more so than GLOMAP-mode, leading to a likely overestimation of aerosol scattering, AOD, and single scattering albedo at high relative humidity. Observed aerosol vertical distributions were well captured when biomass burning aerosol emissions were injected uniformly from the surface to 3 km. Finally, good agreement between observed and modelled AOD was gained only after scaling up GFED3 emissions by a factor of 1.6 for CLASSIC and 2.0 for GLOMAP-mode. We attribute this difference in scaling factor mainly to different assumptions for the water uptake and growth of aerosol mass during ageing via oxidation and condensation of organics. We also note that similar agreement with observed AOD could have been achieved with lower scaling factors if the ratio of organic carbon to primary organic matter was increased in the models toward the upper range of observed values. Improved knowledge from measurements is required to reduce uncertainties in emission ratios for black carbon and organic carbon, and the ratio of organic carbon to primary organic matter for primary emissions from biomass burning. C1 [Johnson, Ben T.; Haywood, James M.; Langridge, Justin M.; Szpek, Kate; Brooke, Jennifer K.; Marenco, Franco; Mulcahy, Jane P.; Dalvi, Mohit] Met Off, Exeter, Devon, England. [Haywood, James M.] Univ Exeter, CEMPS, Exeter, Devon, England. [Darbyshire, Eoghan; Morgan, William T.; Coe, Hugh] Univ Manchester, Ctr Atmospher Sci, Manchester, Lancs, England. [Artaxo, Paulo] Univ Sao Paulo, Inst Phys, Sao Paulo, Brazil. [Longo, Karla M.] Natl Inst Space Res INPE, Sao Jose Dos Campos, Brazil. [Mann, Graham W.] Univ Leeds, Sch Earth & Environm, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England. [Bellouin, Nicolas] Univ Reading, Dept Meteorol, Reading, Berks, England. [Longo, Karla M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Longo, Karla M.] USRA GESTAR, Greenbelt, MD USA. RP Johnson, BT (reprint author), Met Off, Exeter, Devon, England. EM ben.johnson@metoffice.gov.uk RI Marenco, Franco/J-3667-2012; Artaxo, Paulo/E-8874-2010; OI Marenco, Franco/0000-0002-1833-1102; Artaxo, Paulo/0000-0001-7754-3036; Darbyshire, Eoghan/0000-0002-5119-7259; Coe, Hugh/0000-0002-3264-1713 FU SAMBBA (NERC) [NE/J009822/1]; IMPALA [NE/M017214/1]; NERC; DFID FX The Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 Atmospheric Research Aircraft is jointly funded by the Met Office and Natural Environment Research Council and operated by DirectFlight Ltd. We would like to thank the dedicated efforts of FAAM, DirectFlight, INPE, the University of Sao Paulo, and the Brazilian Ministry of Science and Technology in making the SAMBBA measurement campaign possible. For AERONET data we thank the PI investigators and their staff for establishing and maintaining the sites used in this investigation (Alta Floresta and Mongu: Brent Holben, Ilorin: Rachel T. Pinker, Chiang Mai: Serm Janjai, Bonanza Creek: John R. Van de Castle, Jabiru: Ross Mitchell). We thank Andrew Sayer and Robert Levy from Goddard Space Flight Centre for their advice with MODIS aerosol products. We thank Ville Vakkari for help in selecting data from the Welgegund station. James Haywood, Eoghan Darybshire, William Morgan, Hugh Coe, Graham Mann, and Nicolas Bellouin were funded by SAMBBA (NERC grant NE/J009822/1). Ben Johnson, James Haywood and Jane Mulcahy were funded under the Joint UK BEIS/DEFRA - Met Office Hadley Centre Climate Programme (GA01101). James Haywood was part funded by the IMPALA grant (NE/M017214/1) via Future Climates for Africa (FCA) funding provided by NERC and DFID. NR 123 TC 0 Z9 0 U1 13 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 24 PY 2016 VL 16 IS 22 BP 14657 EP 14685 DI 10.5194/acp-16-14657-2016 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED2SV UT WOS:000388700000003 ER PT J AU Hofmann, DC Polit-Casillas, R Roberts, SN Borgonia, JP Dillon, RP Hilgemann, E Kolodziejska, J Montemayor, L Suh, JO Hoff, A Carpenter, K Parness, A Johnson, WL Kennett, A Wilcox, B AF Hofmann, Douglas C. Polit-Casillas, Raul Roberts, Scott N. Borgonia, John-Paul Dillon, Robert P. Hilgemann, Evan Kolodziejska, Joanna Montemayor, Lauren Suh, Jong-ook Hoff, Andrew Carpenter, Kalind Parness, Aaron Johnson, William L. Kennett, Andrew Wilcox, Brian TI Castable Bulk Metallic Glass Strain Wave Gears: Towards Decreasing the Cost of High-Performance Robotics SO SCIENTIFIC REPORTS LA English DT Article ID MATRIX COMPOSITES; HARMONIC DRIVE; FLEXSPLINE AB The use of bulk metallic glasses (BMGs) as the flexspline in strain wave gears (SWGs), also known as harmonic drives, is presented. SWGs are unique, ultra-precision gearboxes that function through the elastic flexing of a thin-walled cup, called a flexspline. The current research demonstrates that BMGs can be cast at extremely low cost relative to machining and can be implemented into SWGs as an alternative to steel. This approach may significantly reduce the cost of SWGs, enabling lower-cost robotics. The attractive properties of BMGs, such as hardness, elastic limit and yield strength, may also be suitable for extreme environment applications in spacecraft. C1 [Hofmann, Douglas C.; Polit-Casillas, Raul; Roberts, Scott N.; Borgonia, John-Paul; Dillon, Robert P.; Hilgemann, Evan; Montemayor, Lauren; Suh, Jong-ook; Carpenter, Kalind; Parness, Aaron; Kennett, Andrew; Wilcox, Brian] CALTECH, Jet Prop Lab, Engn & Sci Directorate, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Hofmann, Douglas C.; Kolodziejska, Joanna; Hoff, Andrew; Johnson, William L.] CALTECH, Keck Lab Engn Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA. RP Hofmann, DC (reprint author), CALTECH, Jet Prop Lab, Engn & Sci Directorate, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Hofmann, DC (reprint author), CALTECH, Keck Lab Engn Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM dch@jpl.nasa.gov FU NASA [NAS7-03001]; Presidential Early Career Award FX The authors acknowledge financial support from NASA's Science Mission Directorate and Space Technology Mission Directorate through the Game Changing Development program under Prime Contract #NAS7-03001 and from NASA's Center Innovation Funds. D.C. Hofmann also acknowledges support from the Presidential Early Career Award. Part of this research was done at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Patents related to the current technology have been filed with the California Institute of Technology. The authors acknowledge the commercial partners in this program, primarily Ryan Coniam and Shawn Armstrong, Visser Precision, Denver, CO, and Nicholas Hutchinson, Materion, Elmore OH. NR 25 TC 0 Z9 0 U1 8 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 24 PY 2016 VL 6 AR 37773 DI 10.1038/srep37773 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED5PQ UT WOS:000388904600001 PM 27883054 ER PT J AU Burton, SP Chemyakin, E Liu, X Knobelspiesse, K Stamnes, S Sawamura, P Moore, RH Hostetler, CA Ferrare, RA AF Burton, Sharon P. Chemyakin, Eduard Liu, Xu Knobelspiesse, Kirk Stamnes, Snorre Sawamura, Patricia Moore, Richard H. Hostetler, Chris A. Ferrare, Richard A. TI Information content and sensitivity of the 3 beta+2 alpha lidar measurement system for aerosol microphysical retrievals SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID SPECTRAL-RESOLUTION LIDAR; MULTIWAVELENGTH LIDAR; SIZE DISTRIBUTION; DEPOLARIZATION RATIO; INVERSION; PARAMETERS; REGULARIZATION; DISTRIBUTIONS; BACKSCATTER; EXTINCTION AB There is considerable interest in retrieving profiles of aerosol effective radius, total number concentration, and complex refractive index from lidar measurements of extinction and backscatter at several wavelengths. The combination of three backscatter channels plus two extinction channels (3 beta + 2 alpha) is particularly important since it is believed to be the minimum configuration necessary for the retrieval of aerosol microphysical properties and because the technological readiness of lidar systems permits this configuration on both an airborne and future spaceborne instrument. The second-generation NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) has been making 3 beta + 2 alpha measurements since 2012. The planned NASA Aerosol/Clouds/Ecosystems (ACE) satellite mission also recommends the 3 beta + 2 alpha combination. Here we develop a deeper understanding of the information content and sensitivities of the 3 beta + 2 alpha system in terms of aerosol microphysical parameters of interest. We use a retrieval-free methodology to determine the basic sensitivities of the measurements independent of retrieval assumptions and constraints. We calculate information content and uncertainty metrics using tools borrowed from the optimal estimation methodology based on Bayes' theorem, using a simplified forward model look-up table, with no explicit inversion. The forward model is simplified to represent spherical particles, monomodal log-normal size distributions, and wavelength-independent refractive indices. Since we only use the forward model with no retrieval, the given simplified aerosol scenario is applicable as a best case for all existing retrievals in the absence of additional constraints. Retrieval-dependent errors due to mismatch between retrieval assumptions and true atmospheric aerosols are not included in this sensitivity study, and neither are retrieval errors that may be introduced in the inversion process. The choice of a simplified model adds clarity to the understanding of the uncertainties in such retrievals, since it allows for separately assessing the sensitivities and uncertainties of the measurements alone that cannot be corrected by any potential or theoretical improvements to retrieval methodology but must instead be addressed by adding information content. The sensitivity metrics allow for identifying (1) information content of the measurements vs. a priori information; (2) error bars on the retrieved parameters; and (3) potential sources of cross-talk or "compensating" errors wherein different retrieval parameters are not independently captured by the measurements. The results suggest that the 3 beta + 2 alpha measurement system is underdetermined with respect to the full suite of microphysical parameters considered in this study and that additional information is required, in the form of additional coincident measurements (e.g., sun-photometer or polarimeter) or a priori retrieval constraints. A specific recommendation is given for addressing cross-talk between effective radius and total number concentration. C1 [Burton, Sharon P.; Liu, Xu; Stamnes, Snorre; Moore, Richard H.; Hostetler, Chris A.; Ferrare, Richard A.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Chemyakin, Eduard] Sci Syst & Applicat Inc, Hampton, VA USA. [Knobelspiesse, Kirk] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Sawamura, Patricia] Univ Space Res Assoc, Columbia, MD USA. RP Burton, SP (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM sharon.p.burton@nasa.gov FU NASA Aerosol/Clouds/Ecosystems project; NASA Earth Science Division's Remote Sensing Theory program; NASA Radiation Science Program FX Funding for this research came from the NASA Aerosol/Clouds/Ecosystems project, NASA Earth Science Division's Remote Sensing Theory program, and NASA Radiation Science Program. NR 38 TC 2 Z9 2 U1 2 U2 2 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PD NOV 22 PY 2016 VL 9 IS 11 BP 5555 EP 5574 DI 10.5194/amt-9-5555-2016 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED2UL UT WOS:000388705000002 ER PT J AU Mazzuca, GM Ren, XR Loughner, CP Estes, M Crawford, JH Pickering, KE Weinheimer, AJ Dickerson, RR AF Mazzuca, Gina M. Ren, Xinrong Loughner, Christopher P. Estes, Mark Crawford, James H. Pickering, Kenneth E. Weinheimer, Andrew J. Dickerson, Russell R. TI Ozone production and its sensitivity to NOx and VOCs: results from the DISCOVER-AQ field experiment, Houston 2013 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID O-3-NOX-VOC SENSITIVITY; ATMOSPHERIC-POLLUTION; PRODUCTION EFFICIENCY; EMISSIONS; INDICATORS; PRECURSORS; CHEMISTRY; TEXAS; AREA AB An observation-constrained box model based on the Carbon Bond mechanism, version 5 (CB05), was used to study photochemical processes along the NASA P-3B flight track and spirals over eight surface sites during the September 2013 Houston, Texas deployment of the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. Data from this campaign provided an opportunity to examine and improve our understanding of atmospheric photochemical oxidation processes related to the formation of secondary air pollutants such as ozone (O-3). O-3 production and its sensitivity to NOx and volatile organic compounds (VOCs) were calculated at different locations and times of day. Ozone production efficiency (OPE), defined as the ratio of the ozone production rate to the NOx oxidation rate, was calculated using the observations and the simulation results of the box and Community Multiscale Air Quality (CMAQ) models. Correlations of these results with other parameters, such as radical sources and NOx mixing ratio, were also evaluated. It was generally found that O-3 production tends to be more VOC-sensitive in the morning along with high ozone production rates, suggesting that control of VOCs may be an effective way to control O-3 in Houston. In the afternoon, O-3 production was found to be mainly NOx-sensitive with some exceptions. O-3 production near major emissions sources such as Deer Park was mostly VOC-sensitive for the entire day, other urban areas near Moody Tower and Channel view were VOC-sensitive or in the transition regime, and areas farther from downtown Houston such as Smith Point and Conroe were mostly NOx sensitive for the entire day. It was also found that the control of NOx emissions has reduced O-3 concentrations over Houston but has led to larger OPE values. The results from this work strengthen our understanding of O-3 production; they indicate that controlling NOx emissions will provide air quality benefits over the greater Houston metropolitan area in the long run, but in selected areas controlling VOC emissions will also be beneficial. C1 [Mazzuca, Gina M.; Ren, Xinrong; Pickering, Kenneth E.; Dickerson, Russell R.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Ren, Xinrong; Loughner, Christopher P.] NOAA, Air Resources Lab, College Pk, MD 20740 USA. [Loughner, Christopher P.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Estes, Mark] Texas Commiss Environm Qual, Austin, TX 78711 USA. [Crawford, James H.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Pickering, Kenneth E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Weinheimer, Andrew J.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. RP Ren, XR (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA.; Ren, XR (reprint author), NOAA, Air Resources Lab, College Pk, MD 20740 USA. EM ren@umd.edu RI Dickerson, Russell/F-2857-2010; Ren, Xinrong/E-7838-2015 OI Dickerson, Russell/0000-0003-0206-3083; Ren, Xinrong/0000-0001-9974-1666 FU Texas Commission on Environmental Quality (TCEQ) through the Air Quality Research Program (AQRP) at University of Texas Austin [14-020]; NASA ACMAP grant [NNX15AE31G]; NASA AQAST FX The authors acknowledge the entire DISCOVER-AQ science team for the use of the P-3B measurement data in this work as well as Winston Luke and Paul Kelley at NOAA Air Resources Laboratory for helpful discussion. This work was funded by the Texas Commission on Environmental Quality (TCEQ) through the Air Quality Research Program (AQRP) at University of Texas Austin (contract no. 14-020) and a NASA ACMAP grant (grant no. NNX15AE31G). The contents, findings, opinions, and conclusions are the work of the authors and do not necessarily represent the findings, opinions, or conclusions of the TCEQ or AQRP. NASA AQAST supported Russell R. Dickerson. NR 29 TC 0 Z9 0 U1 19 U2 19 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 22 PY 2016 VL 16 IS 22 BP 14463 EP 14474 DI 10.5194/acp-16-14463-2016 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC5PI UT WOS:000388187800002 ER PT J AU Marchione, D McCoustra, MRS AF Marchione, Demian McCoustra, Martin R. S. TI Electrons, excitons and hydrogen bonding: electron-promoted desorption from molecular ice surfaces SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID CRYSTALLINE WATER ICE; GAUSSIAN-BASIS SETS; INDUCED AMORPHIZATION; INTERSTELLAR ICES; MASS-SPECTROMETRY; NUCLEAR-REACTORS; LY-ALPHA; ENERGY; METHANOL; IRRADIATION AB Desorption of benzene (C6H6) from thick methanol (CH3OH) and diethyl ether (CH3CH2OCH2CH3) ices during irradiation with 250 eV electrons is reported and compared with our previous work on C6H6 desorption from water (H2O) ice systems. C6H6 electron-promoted desorption (EPD) is seen to be sensitive to the chemical nature of the substrate reflecting both the importance of the excitations localised around the O-atom versus those involving the C-atom; and the role of hydrogen bonding interactions in transporting non-dissociative electronic excitation to the substrate/C6H6 interfaces during the electron irradiation. C1 [Marchione, Demian; McCoustra, Martin R. S.] Heriot Watt Univ, Inst Chem Sci, Edinburgh EH14 4AS, Midlothian, Scotland. [Marchione, Demian] CALTECH, Jet Prop Lab, Div Sci, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Marchione, D (reprint author), Heriot Watt Univ, Inst Chem Sci, Edinburgh EH14 4AS, Midlothian, Scotland.; Marchione, D (reprint author), CALTECH, Jet Prop Lab, Div Sci, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM marchionedemian@gmail.com; m.r.s.mccoustra@hw.ac.uk OI McCoustra, Martin/0000-0002-5716-110X FU European Community FP7-ITN Marie-Curie Programme (LASSIE project) [238258]; Heriot-Watt University FX The authors would like to acknowledge the use of the EPSRC UK National Service for Computational Chemistry Software (NSCCS) at Imperial College London and contributions from its staff in carrying out this work. The authors acknowledge the support of the European Community FP7-ITN Marie-Curie Programme (LASSIE project, grant agreement #238258). Financial support from Heriot-Watt University for a number of upgrades to the UHV system is also acknowledged. DM clarifies that his contribution to this work has been done as a private venture and not in the author's capacity as an affiliate of the Jet Propulsion Laboratory, California Institute of Technology. NR 90 TC 0 Z9 0 U1 10 U2 10 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD NOV 21 PY 2016 VL 18 IS 43 BP 29747 EP 29755 DI 10.1039/c6cp05814k PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EC0FF UT WOS:000387773100010 PM 27775112 ER PT J AU Vito, F Gilli, R Vignali, C Brandt, WN Comastri, A Yang, G Lehmer, BD Luo, B Basu-Zych, A Bauer, FE Cappelluti, N Koekemoer, A Mainieri, V Paolillo, M Ranalli, P Shemmer, O Trump, J Wang, JX Xue, YQ AF Vito, F. Gilli, R. Vignali, C. Brandt, W. N. Comastri, A. Yang, G. Lehmer, B. D. Luo, B. Basu-Zych, A. Bauer, F. E. Cappelluti, N. Koekemoer, A. Mainieri, V. Paolillo, M. Ranalli, P. Shemmer, O. Trump, J. Wang, J. X. Xue, Y. Q. TI The deepest X-ray view of high-redshift galaxies: constraints on low-rate black hole accretion SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; surveys; galaxies: active; galaxies: evolution; galaxies: high-redshift; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; STAR-FORMATION RATE; DIGITAL SKY SURVEY; FIELD-NORTH SURVEY; SIMILAR-TO 5; EXTRAGALACTIC LEGACY SURVEY; AGN LUMINOSITY FUNCTION; LYMAN BREAK GALAXIES; COSMOLOGICAL EVOLUTION; FORMING GALAXIES AB We exploit the 7 Ms Chandra observations in the Chandra Deep Field-South (CDF-S), the deepest X-ray survey to date, coupled with CANDELS/GOODS-S data, to measure the total X-ray emission arising from 2076 galaxies at 3.5 <= z < 6.5. This aim is achieved by stacking the Chandra data at the positions of optically selected galaxies, reaching effective exposure times of >= 10(9)s. We detect significant (> 3.7 sigma) X-ray emission from massive galaxies at z >= 4. We also report the detection of massive galaxies at z >= 5 at a 99.7 per cent confidence level (2.7 sigma), the highest significance ever obtained for X-ray emission from galaxies at such high redshifts. No significant signal is detected from galaxies at even higher redshifts. The stacking results place constraints on the BHAD associated with the known high-redshift galaxy samples, as well as on the SFRD at high redshift, assuming a range of prescriptions for X-ray emission due to X- ray binaries. We find that the X-ray emission from our sample is likely dominated by processes related to star formation. Our results show that low-rate mass accretion on to SMBHs in individually X-ray-undetected galaxies is negligible, compared with the BHAD measured for samples of X-ray detected AGN, for cosmic SMBH mass assembly at high redshift. We also place, for the first time, constraints on the faint-end of the AGN X-ray luminosity function (logL(X) 42) at z > 4, with evidence for fairly flat slopes. The implications of all of these findings are discussed in the context of the evolution of the AGN population at high redshift. C1 [Vito, F.; Brandt, W. N.; Yang, G.; Trump, J.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Vito, F.; Brandt, W. N.; Yang, G.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Vito, F.; Gilli, R.; Vignali, C.; Comastri, A.] INFN Osseivatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy. [Vito, F.; Vignali, C.] Univ Bologna, Dipanimento Fis & Astron, Viale Berri Pichat 6-2, I-40127 Bologna, Italy. [Brandt, W. N.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Lehmer, B. D.] Univ Arkansas, Dept Phys, 226 Phys Bldg,835 West Dickinson St, Fayetteville, AR 72701 USA. [Luo, B.] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210093, Jiangsu, Peoples R China. [Basu-Zych, A.] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Basu-Zych, A.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Bauer, F. E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Casilla 306, Santiago 22, Chile. [Bauer, F. E.] EMBIGGEN Anillo, Casilla 160-C, Concepcion, Chile. [Bauer, F. E.] Millennium Inst Astrophys, Vicuna Mackenna 4860, Santiago 7820436, Chile. [Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Cappelluti, N.] Yale Univ, Dept Phys, POB 208121, New Haven, CT 06520 USA. [Cappelluti, N.] Yale Ctr Astron & Astrophys, Dept Phys, POB 208120, New Haven, CT 06520 USA. [Koekemoer, A.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Mainieri, V.] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Paolillo, M.] Univ Naples Federico II, Dip Fis Ettore Pancini, CU Monte SantAngelo, Via Cinthia, I-80126 Naples, Italy. [Paolillo, M.] Ist Nazl Fis Nucl, Sez Napoli, Via Cinthia, I-80126 Naples, Italy. [Paolillo, M.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Ranalli, P.] Lund Observ, Box 43, SE-22100 Lund, Sweden. [Shemmer, O.] Univ North Texas, Dept Phys, Denton, TX 76203 USA. [Wang, J. X.; Xue, Y. Q.] Chinese Acad Sci, Key Lab Res Galaxies & Cosmol, Dept Astron, Beijing, Peoples R China. Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China. RP Vito, F (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA.; Vito, F (reprint author), Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA.; Vito, F (reprint author), INFN Osseivatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy.; Vito, F (reprint author), Univ Bologna, Dipanimento Fis & Astron, Viale Berri Pichat 6-2, I-40127 Bologna, Italy. EM fvito@psu.edu OI Yang, Guang/0000-0001-8835-7722; Paolillo, Maurizio/0000-0003-4210-7693; Koekemoer, Anton/0000-0002-6610-2048 FU Chandra X-ray Center [GO4-15130A]; V.M. Willaman Endowment; INAF; National Thousand Young Talents program; 973 Program [2015CB857004]; Strategic Priority Research Program of CAS [XDB09000000]; Fundamental Research Funds for the Central Universities; [NSFC-11473026]; [NSFC-11421303] FX FV, WNB, and GY acknowledge support from Chandra X-ray Center grant GO4-15130A and the V.M. Willaman Endowment. FV, RG, CV, and AC acknowledge support from INAF under the contract PRIN-INAF-2014. YQX acknowledges support from the National Thousand Young Talents program, the 973 Program (2015CB857004), NSFC-11473026, NSFC-11421303, the Strategic Priority Research Program of CAS (XDB09000000), and the Fundamental Research Funds for the Central Universities. NR 120 TC 4 Z9 4 U1 8 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 21 PY 2016 VL 463 IS 1 BP 348 EP 374 DI 10.1093/mnras/stw1998 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA2YZ UT WOS:000386464900026 ER PT J AU Aschwanden, MJ Holman, G O'Flannagain, A Caspi, A McTiernan, JM Kontar, EP AF Aschwanden, Markus J. Holman, Gordon O'Flannagain, Aidan Caspi, Amir McTiernan, James M. Kontar, Eduard P. TI GLOBAL ENERGETICS OF SOLAR FLARES. III. NONTHERMAL ENERGIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE radiation mechanisms: nonthermal; Sun: flares; Sun: particle emission; Sun: X-rays, gamma rays Supporting material: machine-readable table ID X-RAY-BURSTS; COLLISIONLESS CONDUCTION FRONT; RHESSI MICROFLARE STATISTICS; ELECTRON ACCELERATION; FREQUENCY-DISTRIBUTIONS; MAGNETIC ENERGIES; SPECTRA; LOOPS; EMISSION; REGIONS AB This study entails the third part of a global flare energetics project, in which Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) data of 191 M and X-class flare events from the first 3.5 years of the Solar Dynamics Observatory mission are analyzed. We fit a thermal and a nonthermal component to RHESSI spectra, yielding the temperature of the differential emission measure (DEM) tail, the nonthermal power-law slope and flux, and the thermal/nonthermal cross-over energy e(co). From these parameters, we calculate the total nonthermal energy E-nt in electrons with two different methods: (1) using the observed cross-over energy e(co) as low-energy cutoff, and (2) using the low-energy cutoff e(wt) predicted by the warm thick-target bremsstrahlung model of Kontar et al. Based on a mean temperature of T-e =. 8.6 MK in active regions, we find low-energy cutoff energies of e(wt) = 6.2 +/- 1.6 keV for the warm-target model, which is significantly lower than the cross-over energies e(co) = 21 +/- 6 keV. Comparing with the statistics of magnetically dissipated energies E-mag and thermal energies E-th from the two previous studies, we find the following mean (logarithmic) energy ratios with the warm-target model: E-nt = 0.41 E-mag, E-th = 0.08 E-mag, and E-th = 0.15 E-nt. The total dissipated magnetic energy exceeds the thermal energy in. 95% and the nonthermal energy in 71% of the flare events, which confirms that magnetic reconnection processes are sufficient to explain flare energies. The nonthermal energy exceeds the thermal energy in 85% of the events, which largely confirms the warm thick-target model. C1 [Aschwanden, Markus J.] Lockheed Martin Solar & Astrophys Lab, Org A021S,Bldg 252,3251 Hanover St, Palo Alto, CA 94304 USA. [Holman, Gordon] NASA Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. [O'Flannagain, Aidan] Trinity Coll Dublin, Sch Phys, Astrophys Res Grp, Dublin 2, Ireland. [Caspi, Amir] Southwest Res Inst, Planetary Sci Directorate, Boulder, CO 80302 USA. [McTiernan, James M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Kontar, Eduard P.] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. RP Aschwanden, MJ (reprint author), Lockheed Martin Solar & Astrophys Lab, Org A021S,Bldg 252,3251 Hanover St, Palo Alto, CA 94304 USA. EM aschwanden@lmsal.com; gordon.d.holman@nasa.gov; aidanoflann@gmail.com; amir.caspi@swri.org; jimm@ssl.berkeley.edu; eduard.kontar@astro.gla.ac.uk OI Caspi, Amir/0000-0001-8702-8273; Kontar, Eduard/0000-0002-8078-0902; Aschwanden, markus/0000-0003-0260-2673 FU NASA of the RHESSI mission through University of California, Berkeley [NAS5-98033, SA2241-26308PG]; NASA of the SDO/AIA instrument [NNG 04EA00C]; NASA [NNX15AK26G] FX We acknowledge useful comments from an anonymous referee and discussions with Brian Dennis, Gordon Emslie, Iain Hannah, Ryan Milligan, Linhui Sui, Daniel Ryan, Richard Schwartz, Alexander Warmuth, and software support from Kim Tolbert and Samuel Freeland. This work was partially supported by NASA contract NAS5-98033 of the RHESSI mission through University of California, Berkeley (subcontract SA2241-26308PG), and by NASA contract NNG 04EA00C of the SDO/AIA instrument. A.C. and J.M.M. were also supported by NASA grant NNX15AK26G. NR 72 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 832 IS 1 AR 27 DI 10.3847/0004-637X/832/1/27 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED1KF UT WOS:000388603600009 ER PT J AU Balog, Z Siegler, N Rieke, GH Kiss, LL Muzerolle, J Gutermuth, RA Bell, CPM Vinko, J Su, KYL Young, ET Gaspar, A AF Balog, Zoltan Siegler, Nick Rieke, G. H. Kiss, L. L. Muzerolle, James Gutermuth, R. A. Bell, Cameron P. M. Vinko, J. Su, K. Y. L. Young, E. T. Gaspar, Andras TI PROTOPLANETARY AND TRANSITIONAL DISKS IN THE OPEN STELLAR CLUSTER IC 2395 SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: stars; open clusters and associations: individual (IC 2395); stars: premain sequence ID SPITZER-SPACE-TELESCOPE; MAIN-SEQUENCE STARS; T-TAURI STARS; MULTIBAND IMAGING PHOTOMETER; INFRARED ARRAY CAMERA; VELOCITY EXPERIMENT RAVE; LOW-MASS STARS; FORMING REGION; DEBRIS DISKS; PROPER MOTIONS AB We present new deep UBVRI images and high-resolution multi-object optical spectroscopy of the young (similar to 6-10 Myr old), relatively nearby (800 pc) open cluster IC 2395. We identify nearly 300 cluster members and use the photometry to estimate their spectral types, which extend from early B to middle M. We also present an infrared imaging survey of the central region using the IRAC and MIPS instruments on board the Spitzer Space Telescope, covering the wavelength range from 3.6 to 24 mu m. Our infrared observations allow us to detect dust in circumstellar disks originating over a typical range of radii from similar to 0.1 to similar to 10 au from the central star. We identify 18 Class II, 8 transitional disk, and 23 debris disk candidates, respectively, 6.5%, 2.9%, and 8.3% of the cluster members with appropriate data. We apply the same criteria for transitional disk identification to 19 other stellar clusters and associations spanning ages from similar to 1 to similar to 18 Myr. We find that the number of disks in the transitional phase as a fraction of the total with strong 24 mu m excesses ([8] - [24]. 1.5) increases from (8.4. +/- 1.3)% at similar to 3 Myr to (46. +/- 5)% at similar to 10 Myr. Alternative definitions of transitional disks will yield different percentages but should show the same trend. C1 [Balog, Zoltan] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Siegler, Nick] CALTECH, Jet Prop Lab, NASA Exoplanet Explorat Program, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Rieke, G. H.; Su, K. Y. L.; Gaspar, Andras] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Kiss, L. L.] Res Ctr Astron & Earth Sci, Konkoly Observ, POB 67, H-1525 Budapest, Hungary. [Muzerolle, James] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Gutermuth, R. A.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Bell, Cameron P. M.] Swiss Fed Inst Technol, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Vinko, J.] Univ Szeged, Dept Opt & Quantum Elect, H-6720 Szeged, Hungary. [Young, E. T.] NASA, Ames SOFIA Sci Ctr, N211, Mountain View, CA 94043 USA. RP Balog, Z (reprint author), Max Planck Inst Astron, D-69117 Heidelberg, Germany. EM balog@mpia-hd.mpg.de OI Kiss, Laszlo/0000-0002-3234-1374; Balog, Zoltan/0000-0003-1748-2926 FU NASA [1255094]; Lendulet Young Researchers Program of the Hungarian Academy of Sciences; National Aeronautics and Space Administration; National Science Foundation FX We thank Eric Mamajek for assistance on estimating cluster ages and Lynne Hillenbrand for a short course on the intricacies of current age determination. We also thank the anonymous referee for a detailed critique that yielded significant improvements in the paper. Partial support for this work was provided by NASA through Contract Number 1255094 issued by JPL/Caltech. L.L.K. has been supported by the Lendulet Young Researchers Program of the Hungarian Academy of Sciences. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. It also makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. We thank the Anglo-Australian Observatory and Cerro Tololo Inter-American Observatory for granting telescope time and for logistical support of our program. NR 151 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 832 IS 1 AR 87 DI 10.3847/0004-637X/832/1/87 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED3IW UT WOS:000388743800017 ER PT J AU Cao, Y Kulkarni, SR Gal-Yam, A Papadogiannakis, S Nugent, PE Masci, FJ Bue, BD AF Cao, Yi Kulkarni, S. R. Gal-Yam, Avishay Papadogiannakis, S. Nugent, P. E. Masci, Frank J. Bue, Brian D. TI SN2002es-LIKE SUPERNOVAE FROM DIFFERENT VIEWING ANGLES SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general; supernovae: individual (SN2002es, iPTF14atg, iPTF14dpk) ID IA SUPERNOVAE; LOW-RESOLUTION; LIGHT CURVES; EXTINCTION; SPECTRA AB In this article, we compare optical light curves of two SN2002es-like Type Ia supernovae (SNe), iPTF14atg and iPTF14dpk, from the intermediate Palomar Transient Factory. Although the two light curves resemble each other around and after maximum, they show distinct early-phase rise behavior in the r-band. On the one hand, iPTF14atg revealed a slow and steady rise that lasted for 22 days with a mean rise rate of 0.2-0.3 mag day(-1), before it reached the R-band peak (- 18.05 mag). On the other hand, iPTF14dpk rose rapidly to - 17 mag within a day of discovery with a rise rate > 1.8 mag day(-1), and then rose slowly to its peak (- 18.19 mag) with a rise rate similar to iPTF14atg. The apparent total rise time of iPTF14dpk is therefore only 16 days. We show that emission from iPTF14atg before - 17 days with respect to its maximum can be entirely attributed to radiation produced by collision between the SN and its companion star. Such emission is absent from iPTF14dpk probably because of an unfavored viewing angle, provided that SN2002es-like events arise from the same progenitor channel. We further show that an SN2002es-like SN may experience a dark phase after the explosion but before its radioactively powered light curve becomes visible. This dark phase may be lit by radiation from supernova-companion interaction. C1 [Cao, Yi; Kulkarni, S. R.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Gal-Yam, Avishay] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Papadogiannakis, S.] Stockholm Univ, Oskar Klein Ctr, Dept Phys, SE-10691 Stockholm, Sweden. [Nugent, P. E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Nugent, P. E.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 50B-4206, Berkeley, CA 94720 USA. [Masci, Frank J.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Bue, Brian D.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Cao, Y (reprint author), CALTECH, Dept Astron, Pasadena, CA 91125 USA. OI Gal-Yam, Avishay/0000-0002-3653-5598 FU DOE [DE-AC02-05CH11231]; GROWTH project - National Science Foundation [1545949]; EU/FP7 via ERC [307260]; Quantum Universe I-Core programme by the Israeli Committee for Planning and Budgeting; ISF; Minerva grant; Kimmel award; ARCHES award; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Weizmann-UK "making connections" programme; ISF grant FX Y.C. and P.E.N. acknowledge support from the DOE under grant DE-AC02-05CH11231, Analytical Modeling for Extreme-Scale Computing Environments. Y.C. also acknowledges support by the GROWTH project funded by the National Science Foundation under Grant No 1545949. A.G.-Y. is supported by the EU/FP7 via ERC grant no. 307260, the Quantum Universe I-Core programme by the Israeli Committee for Planning and Budgeting and the ISF; by Minerva and ISF grants; by the Weizmann-UK "making connections" programme; and by Kimmel and ARCHES awards.; This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 33 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 832 IS 1 AR 86 DI 10.3847/0004-637X/832/1/86 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED3IW UT WOS:000388743800016 ER PT J AU Doschek, GA Warren, HP Young, PR AF Doschek, G. A. Warren, H. P. Young, P. R. TI THE ELECTRON DENSITY IN EXPLOSIVE TRANSITION REGION EVENTS OBSERVED BY IRIS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: corona; Sun: flares; Sun: UV radiation ID SOLAR ATMOSPHERE; O-IV; NONEQUILIBRIUM IONIZATION; ULTRAVIOLET SPECTROMETER; SPECTRAL-LINES; XUV SPECTRA; QUIET SUN; 105 K; SKYLAB; ZONE AB We discuss the intensity ratio of the O IV line at 1401.16 angstrom to the Si IV line at 1402.77 angstrom in Interface Region Imaging Spectrograph (IRIS) spectra. This intensity ratio is important if it can be used to measure high electron densities that cannot be measured using line intensity ratios of two different O IV lines from the multiplet within the IRIS wavelength range. Our discussion is in terms of considerably earlier observations made from the Skylab manned space station and other spectrometers on orbiting spacecraft. The earlier data on the O IV and Si IV ratio and other intersystem line ratios not available to IRIS are complementary to IRIS data. In this paper, we adopt a simple interpretation based on electron density. We adopt a set of assumptions and calculate the electron density as a function of velocity in the Si IV line profiles of two explosive events. At zero velocity the densities are about 2-3 x 10(11) cm(-3), and near 200 km s(-1) outflow speed the densities are about 1012 cm(-3). The densities increase with outflow speed up to about 150 km s(-1) after which they level off. Because of the difference in the temperature of formation of the two lines and other possible effects such as non-ionization equilibrium, these density measurements do not have the precision that would be available if there were some additional lines near the formation temperature of O IV. C1 [Doschek, G. A.; Warren, H. P.] Naval Res Lab, Div Space Sci, 4555 Overlook Ave SW, Washington, DC 20375 USA. [Young, P. R.] George Mason Univ, Coll Sci, 4400 Univ Dr, Fairfax, VA 22030 USA. [Young, P. R.] Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Doschek, GA (reprint author), Naval Res Lab, Div Space Sci, 4555 Overlook Ave SW, Washington, DC 20375 USA. OI Warren, Harry/0000-0001-6102-6851 FU NASA Hinode program; NASA grant [NNX15AF48G] FX G.A.D. and H.P.W. acknowledge support from the NASA Hinode program. G.A.D. and H.P.W. also acknowledge NRL 6.1 basic research support. P.R.Y. acknowledges support from NASA grant NNX15AF48G. P.R.Y. acknowledges valuable discussions during the International Team Meeting, "Solar UV bursts-a new insight to magnetic reconnection," hosted by ISSI (Bern) in 2016 January. NR 44 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 832 IS 1 AR 77 DI 10.3847/0004-637X/832/1/77 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED3IW UT WOS:000388743800007 ER PT J AU Hasegawa, Y AF Hasegawa, Yasuhiro TI SUPER-EARTHS AS FAILED CORES IN ORBITAL MIGRATION TRAPS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; methods: analytical; planet-disk interactions ID GIANT PLANET FORMATION; NEPTUNE-MASS PLANETS; PROTOPLANETARY DISKS; MAGNETOROTATIONAL INSTABILITY; TORQUE FORMULA; DEAD ZONES; POPULATION SYNTHESIS; DETERMINISTIC MODEL; SOLID CORES; I MIGRATION AB I explore whether close-in super-Earths were formed as rocky bodies that failed to grow fast enough to become the cores of gas giants before the natal protostellar disk dispersed. I model the failed cores' inward orbital migration in the low-mass or type I regime to stopping points at distances where the tidal interaction with the protostellar disk applies zero net torque. The three kinds of migration traps considered are those due to the dead zone's outer edge, the ice line, and the transition from accretion to starlight as the disk's main heat source. As the disk disperses, the traps move toward final positions near or just outside 1. au. Planets at this location exceeding about 3. M-circle plus open a gap, decouple from their host traps, and migrate inward in the high-mass or type II regime to reach the vicinity of the star. I synthesize the population of planets that formed in this scenario, finding that a fraction of the observed super-Earths could have been failed cores. Most super-Earths that formed this way have more than 4. M-circle plus, so their orbits when the disks dispersed were governed by type II migration. These planets have solid cores surrounded by gaseous envelopes. Their subsequent photoevaporative mass loss is most effective for masses originally below about 6 M-circle plus. The failed core scenario suggests a division of the observed super-Earth mass-radius diagram into five zones according to the inferred formation history. C1 [Hasegawa, Yasuhiro] Acad Sinica ASIAA, Inst Astron & Astrophys, Taipei 10641, Taiwan. [Hasegawa, Yasuhiro] Natl Astron Observ Japan, Div Theoret Astron, Mitaka, Tokyo 1818588, Japan. [Hasegawa, Yasuhiro] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hasegawa, Y (reprint author), Acad Sinica ASIAA, Inst Astron & Astrophys, Taipei 10641, Taiwan.; Hasegawa, Y (reprint author), Natl Astron Observ Japan, Div Theoret Astron, Mitaka, Tokyo 1818588, Japan.; Hasegawa, Y (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM yasuhiro@caltech.edu FU Jet Propulsion Laboratory, California Institute of Technology; National Astronomical Observatory of Japan; National Astronomical Observatory of China; Korea Astronomy and Space Science Institute FX I thank Matthew Alessi, Ramon Brasser, Pin-Gao Gu, Soko Matsumura, Neal Turner, and Ralph Pudritz for stimulating discussions, and two anonymous referees for useful comments on my manuscript. I am currently supported by the Jet Propulsion Laboratory, California Institute of Technology, and have previously been supported by an EACOA Fellowship of the East Asia Core Observatories Association which consists of the Academia Sinica Institute of Astronomy and Astrophysics, the National Astronomical Observatory of Japan, the National Astronomical Observatory of China, and the Korea Astronomy and Space Science Institute. Part of this research was carried out at JPL/Caltech, under a contract with NASA. NR 132 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 832 IS 1 AR 83 DI 10.3847/0004-637X/832/1/83 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED3IW UT WOS:000388743800013 ER PT J AU Helminiak, KG Kuzuhara, M Mede, K Brandt, TD Kandori, R Suenaga, T Kusakabe, N Narita, N Carson, JC Currie, T Kudo, T Hashimoto, J Abe, L Akiyama, E Brandner, W Feldt, M Goto, M Grady, CA Guyon, O Hayano, Y Hayashi, M Hayashi, SS Henning, T Hodapp, KW Ishii, M Iye, M Janson, M Knapp, GR Kwon, J Matsuo, T McElwain, MW Miyama, S Morino, JI Moro-Martin, A Nishimura, T Ryu, T Pyo, TS Serabyn, E Suto, H Suzuki, R Takahashi, YH Takami, M Takato, N Terada, H Thalmann, C Turner, EL Watanabe, M Wisniewski, J Yamada, T Takami, H Usuda, T Tamura, M AF Helminiak, K. G. Kuzuhara, M. Mede, K. Brandt, T. D. Kandori, R. Suenaga, T. Kusakabe, N. Narita, N. Carson, J. C. Currie, T. Kudo, T. Hashimoto, J. Abe, L. Akiyama, E. Brandner, W. Feldt, M. Goto, M. Grady, C. A. Guyon, O. Hayano, Y. Hayashi, M. Hayashi, S. S. Henning, T. Hodapp, K. W. Ishii, M. Iye, M. Janson, M. Knapp, G. R. Kwon, J. Matsuo, T. McElwain, M. W. Miyama, S. Morino, J. -I. Moro-Martin, A. Nishimura, T. Ryu, T. Pyo, T. -S. Serabyn, E. Suto, H. Suzuki, R. Takahashi, Y. H. Takami, M. Takato, N. Terada, H. Thalmann, C. Turner, E. L. Watanabe, M. Wisniewski, J. Yamada, T. Takami, H. Usuda, T. Tamura, M. TI SEEDS DIRECT IMAGING OF THE RV-DETECTED COMPANION TO V450 ANDROMEDAE, AND CHARACTERIZATION OF THE SYSTEM SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: spectroscopic; binaries: visual; stars: imaging; stars: individual (V450 And); stars: low-mass ID STELLAR KINEMATIC GROUPS; BROWN DWARF DESERT; PRE-MAIN-SEQUENCE; SOLAR-TYPE STARS; CA-II EMISSION; LOW-MASS STARS; SUN-LIKE STAR; ADAPTIVE OPTICS; PLANET-SEARCH; GIANT PLANET AB We report the direct imaging detection of a low-mass companion to a young, moderately active star V450. And, that was previously identified with the radial velocity (RV) method. The companion was found in high-contrast images obtained with the Subaru Telescope equipped with the HiCIAO camera and AO188 adaptive optics system. From the public ELODIE and SOPHIE archives we extracted available high-resolution spectra and RV measurements, along with RVs from the Lick planet search program. We combined our multi-epoch astrometry with these archival, partially unpublished RVs, and found that the companion is a low-mass star, not a brown dwarf, as previously suggested. We found the best-fitting dynamical masses to be m(1) = 1.141(-0.091)(+0.037)and m(2) = 0.279(-0.020)(+0.023) M-circle dot. We also performed spectral analysis of the SOPHIE spectra with the iSpec code. Hipparcos time-series photometry shows a periodicity of P = 5.743 day, which is also seen in the SOPHIE spectra as an RV modulation of the star A. We interpret it as being caused by spots on the stellar surface, and the star to be rotating with the given period. From the rotation and level of activity, we found that the system is 380(-100)(+220) Myr old, consistent with an isochrone analysis (220(-90)(+2120) Myr). This work may serve as a test case for future studies of low-mass stars, brown dwarfs, and exoplanets by combination of RV and direct imaging data. C1 [Helminiak, K. G.; Currie, T.; Kudo, T.; Guyon, O.; Hayano, Y.; Hayashi, S. S.; Nishimura, T.; Pyo, T. -S.; Takato, N.] Natl Astron Observ Japan, Subaru Telescope, 650 N Aohoku Pl, Hilo, HI 96720 USA. [Kuzuhara, M.] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, Tokyo 1528551, Japan. [Kuzuhara, M.; Kandori, R.; Suenaga, T.; Narita, N.; Akiyama, E.; Hayashi, M.; Ishii, M.; Iye, M.; Morino, J. -I.; Ryu, T.; Suto, H.; Suzuki, R.; Takahashi, Y. H.; Terada, H.; Takami, H.; Usuda, T.; Tamura, M.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Mede, K.; Narita, N.; Kwon, J.; Takahashi, Y. H.; Tamura, M.] Univ Tokyo, Dept Astron, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Brandt, T. D.] Inst Adv Study, Dept Astrophys, Olden Lane, Princeton, NJ 08540 USA. [Suenaga, T.; Narita, N.; Hayashi, S. S.; Ryu, T.] SOKENDAI Grad Univ Adv Studies, Dept Astron Sci, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Kusakabe, N.; Narita, N.; Hashimoto, J.; Suto, H.; Tamura, M.] NINS, Astrobiol Ctr, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Carson, J. C.] Coll Charleston, Dept Phys & Astron, 66 George St, Charleston, SC 29424 USA. [Abe, L.] Univ Nice Sophia Antipolis, Observ Cote Azur, CNRS, Lab Lagrange UMR 7293, 28 Ave Valrose, F-06108 Nice 2, France. [Brandner, W.; Feldt, M.; Henning, T.; Moro-Martin, A.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Goto, M.] Ludwig Maximilians Univ Munchen, Univ Sternwarte Munchen, Scheinerstr 1, D-81679 Munich, Germany. [Grady, C. A.; McElwain, M. W.] Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. [Grady, C. A.] Eureka Sci, 2452 Delmer,Suite 100, Oakland, CA 96002 USA. [Grady, C. A.] Goddard Ctr Astrobiol, Greenbelt, MD USA. [Guyon, O.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Hodapp, K. W.] Univ Hawaii, Inst Astron, 640 N Aohoku Pl, Hilo, HI 96720 USA. [Janson, M.] Stockholm Univ, AlbaNova Univ Ctr, Dept Astron, SE-10691 Stockholm, Sweden. [Knapp, G. R.; Turner, E. L.] Princeton Univ, Dept Astrophys Sci, Peyton Hall,Ivy Lane, Princeton, NJ 08544 USA. [Matsuo, T.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, 1-1 Machikaneyamacho, Toyonaka, Osaka 5600043, Japan. [Miyama, S.] Hiroshima Univ, 1-3-2 Kagamiyama, Hiroshima 7398511, Japan. [Moro-Martin, A.] CAB CSIC INTA, Dept Astrophys, E-28850 Madrid, Spain. [Serabyn, E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Takami, M.] Acad Sinica, Inst Astron & Astrophys, POB 23-141, Taipei 10617, Taiwan. [Thalmann, C.] Swiss Fed Inst Technol, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Turner, E. L.] Univ Tokyo, Kavli Inst Phys & Math Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778568, Japan. [Watanabe, M.] Hokkaido Univ, Dept Cosmosci, Kita Ku, Sapporo, Hokkaido 0600810, Japan. [Wisniewski, J.] Univ Oklahoma, HL Dodge Dept Phys & Astron, 440 W Brooks St, Norman, OK 73019 USA. [Yamada, T.] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Kuzuhara, M.] JSPS, Tokyo, Japan. RP Helminiak, KG (reprint author), Natl Astron Observ Japan, Subaru Telescope, 650 N Aohoku Pl, Hilo, HI 96720 USA. EM xysiek@naoj.org RI MIYAMA, Shoken/A-3598-2015 FU National Astronomical Observatory of Japan as Subaru Astronomical Research Fellow; Japan Society for Promotion of Science (JSPS) Fellowship for Research; Mitsubishi Corporation International Student Scholarship; NASA through the Sagan Fellowship Program; NAOJ Fellowship, Inoue Science Research Award; JSPS KAKENHI [25247026]; U.S. National Science Foundation [1009203]; JSPS KAKENHI Grant [25247026, 15H02063]; [25-8826] FX KGH acknowledges support provided by the National Astronomical Observatory of Japan as Subaru Astronomical Research Fellow. MK is supported by Japan Society for Promotion of Science (JSPS) Fellowship for Research and this work was partially supported by the Grant-in-Aid for JSPS Fellows (Grant Number 25-8826). KM gratefully acknowledges support from the Mitsubishi Corporation International Student Scholarship. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. NN acknowledges supports by the NAOJ Fellowship, Inoue Science Research Award, and Grant-in-Aid for Scientific Research (A) (JSPS KAKENHI Grant Number 25247026). JCC was supported by the U.S. National Science Foundation under Award No. 1009203. MT is supported by JSPS KAKENHI Grant (Number 15H02063). NR 93 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 832 IS 1 AR 33 DI 10.3847/0004-637X/832/1/33 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED1KF UT WOS:000388603600015 ER PT J AU Lopez, RA Moya, PS Navarro, RE Araneda, JA Munoz, V Vinas, AF Valdivia, JA AF Lopez, Rodrigo A. Moya, Pablo S. Navarro, Roberto E. Araneda, Jaime A. Munoz, Victor Vinas, Adolfo F. Valdivia, J. Alejandro TI RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE instabilities; methods: analytical; methods: numerical; plasmas; relativistic processes; waves ID ELECTRON-POSITRON PLASMAS; KINETIC DISPERSION THEORY; BI-MAXWELLIAN PLASMA; ELECTROMAGNETIC FLUCTUATIONS; WEIBEL INSTABILITY; PAIR PLASMA; SOLAR-WIND; WAVES; DISTRIBUTIONS; MAGNETOSPHERE AB A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results. C1 [Lopez, Rodrigo A.; Moya, Pablo S.; Munoz, Victor; Valdivia, J. Alejandro] Univ Chile, Fac Ciencias, Dept Fis, Casilla 653, Santiago, Chile. [Navarro, Roberto E.; Araneda, Jaime A.] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Fis, Casilla 160-C, Concepcion, Chile. [Vinas, Adolfo F.] NASA Goddard Space Flight Ctr, Heliophys Sci Div, Geospace Phys Lab, Mail Code 673, Greenbelt, MD 20771 USA. [Valdivia, J. Alejandro] Ctr Desarrollo Nanociencia & Nanotecnol, CEDENNA, Santiago, Chile. RP Lopez, RA (reprint author), Univ Chile, Fac Ciencias, Dept Fis, Casilla 653, Santiago, Chile. EM rlopez186@gmail.com RI Lopez, Rodrigo/H-7576-2013; Moya, Pablo/C-3163-2011; Munoz, Victor/A-2255-2008 OI Moya, Pablo/0000-0002-9161-0888; FU CONICyT through FONDECyT [1150718, 1130273, 1161711, 1161700, 11150055]; FONDECyT Postdoctoral Grant [3150262]; CEDENNA; CONICyT PIA [ACT1405]; NASA-Wind/SWE project; Universidad de Concepcion through VRID-Enlace [215.011.059-1.0] FX We thank CONICyT through FONDECyT Grants No. 1150718 and No. 1130273 (J.A.V.); No. 1161711 (V.M.); No. 1161700 (J.A.A.); No. 11150055 (P.S.M.); and FONDECyT Postdoctoral Grant No. 3150262 (R.E.N.). We also thank CEDENNA and CONICyT PIA project ACT1405 for their financial support. A.F.V. would like to thank the NASA-Wind/SWE project for their support. J.A.A. also thanks the Universidad de Concepcion for support through VRID-Enlace grant No. 215.011.059-1.0. NR 54 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 832 IS 1 AR 36 DI 10.3847/0004-637X/832/1/36 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED1KF UT WOS:000388603600018 ER PT J AU Ozel, F Psaltis, D Arzoumanian, Z Morsink, S Baubock, M AF Oezel, Feryal Psaltis, Dimitrios Arzoumanian, Zaven Morsink, Sharon Bauboeck, Michi TI MEASURING NEUTRON STAR RADII VIA PULSE PROFILE MODELING WITH NICER SO ASTROPHYSICAL JOURNAL LA English DT Article DE dense matter; equation of state; gravitation; pulsars: general; stars: neutron ID EQUATION-OF-STATE; X-RAY-EMISSION; RADIATION PAIR FRONTS; MILLISECOND PULSARS; LIGHT CURVES; PSR J0437-4715; MAGNETIC-FIELD; HOT-SPOTS; MASS; OSCILLATIONS AB The Neutron-star Interior Composition Explorer is an X-ray astrophysics payload that will be placed on the International Space Station. Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Achieving this goal will depend, among other things, on accurate knowledge of the source, sky, and instrument backgrounds. We use here simple analytic estimates to quantify the level at which these backgrounds need to be known in order for the upcoming measurements to provide significant constraints on the properties of neutron stars. We show that, even in the minimal-information scenario, knowledge of the background at a few percent level for a background-to-source countrate ratio of 0.2 allows for a measurement of the neutron star compactness to better than 10% uncertainty for most of the parameter space. These constraints improve further when more realistic assumptions are made about the neutron star emission and spin, and when additional information about the source itself, such as its mass or distance, are incorporated. C1 [Oezel, Feryal; Psaltis, Dimitrios; Bauboeck, Michi] Univ Arizona, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, USRA, Ctr Res & Explorat Space Sci & Technol, Code 662, Greenbelt, MD 20771 USA. [Morsink, Sharon] Univ Alberta, Dept Phys, 11455 Saskatchewan Dr, Edmonton, AB T6G 2E1, Canada. RP Ozel, F (reprint author), Univ Arizona, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM fozel@email.arizona.edu FU NASA [NNX16AC56G]; NICER mission within the Explorers Program; NSERC FX F.O., D.P., and M.B. gratefully acknowledge support from NASA grant NNX16AC56G. Z.A. was supported through funding for the NICER mission within the Explorers Program. S.M. acknowledges financial support from NSERC. NR 38 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 832 IS 1 AR 92 DI 10.3847/0004-637X/832/1/92 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED3IW UT WOS:000388743800022 ER PT J AU Pacifici, C Kassin, SA Weiner, BJ Holden, B Gardner, JP Faber, SM Ferguson, HC Koo, DC Primack, JR Bell, EF Dekel, A Gawiser, E Giavalisco, M Rafelski, M Simons, RC Barro, G Croton, DJ Dave, R Fontana, A Grogin, NA Koekemoer, AM Lee, SK Salmon, B Somerville, R Behroozi, P AF Pacifici, Camilla Kassin, Susan A. Weiner, Benjamin J. Holden, Bradford Gardner, Jonathan P. Faber, Sandra M. Ferguson, Henry C. Koo, David C. Primack, Joel R. Bell, Eric F. Dekel, Avishai Gawiser, Eric Giavalisco, Mauro Rafelski, Marc Simons, Raymond C. Barro, Guillermo Croton, Darren J. Dave, Romeel Fontana, Adriano Grogin, Norman A. Koekemoer, Anton M. Lee, Seong-Kook Salmon, Brett Somerville, Rachel Behroozi, Peter TI THE EVOLUTION OF STAR FORMATION HISTORIES OF QUIESCENT GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: formation; galaxies: statistics; galaxies: stellar content ID EXTRAGALACTIC LEGACY SURVEY; BRIGHTEST CLUSTER GALAXIES; FUNDAMENTAL PLANE SPACE; ACTIVE GALACTIC NUCLEI; DIGITAL SKY SURVEY; LESS-THAN 2.5; FORMING GALAXIES; HIERARCHICAL UNIVERSE; ELLIPTIC GALAXIES; MASSIVE GALAXIES AB Although there has been much progress in understanding how galaxies evolve, we still do not understand how and when they stop forming stars and become quiescent. We address this by applying our galaxy spectral energy distribution models, which incorporate physically motivated star formation histories (SFHs) from cosmological simulations, to a sample of quiescent galaxies at 0.2 < z < 2.1. A total of 845 quiescent galaxies with multi-band photometry spanning rest-frame ultraviolet through near-infrared wavelengths are selected from the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) data set. We compute median SFHs of these galaxies in bins of stellar mass and redshift. At all redshifts and stellar masses, the median SFHs rise, reach a peak, and then decline to reach quiescence. At high redshift, we find that the rise and decline are fast, as expected, because the universe is young. At low redshift, the duration of these phases depends strongly on stellar mass. Low-mass galaxies (log(M*/M-circle dot) similar to 9.5) grow on average slowly, take a long time to reach their peak of star formation (greater than or similar to 4 Gyr), and then the declining phase is fast (less than or similar to 2 Gyr). Conversely, high-mass galaxies (log(M*/M-circle dot) similar to 11) grow on average fast (less than or similar to 2 Gyr), and, after reaching their peak, decrease the star formation slowly (greater than or similar to 3). These findings are consistent with galaxy stellar mass being a driving factor in determining how evolved galaxies are, with high-mass galaxies being the most evolved at any time (i.e., downsizing). The different durations we observe in the declining phases also suggest that low- and high-mass galaxies experience different quenching mechanisms, which operate on different timescales. C1 [Pacifici, Camilla; Gardner, Jonathan P.] Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Kassin, Susan A.; Ferguson, Henry C.; Rafelski, Marc; Grogin, Norman A.; Koekemoer, Anton M.; Salmon, Brett] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Weiner, Benjamin J.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Holden, Bradford; Faber, Sandra M.; Koo, David C.; Primack, Joel R.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Lick Observ, UCO, Santa Cruz, CA 95064 USA. [Bell, Eric F.] Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA. [Dekel, Avishai] Hebrew Univ Jerusalem, Racah Inst Phys, Ctr Astrophys & Planetary Sci, IL-91904 Jerusalem, Israel. [Gawiser, Eric; Somerville, Rachel] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Giavalisco, Mauro] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Simons, Raymond C.] Johns Hopkins Univ, Dept Phys & Astron, 366 Bloomberg Ctr, Baltimore, MD 21218 USA. [Barro, Guillermo; Behroozi, Peter] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Croton, Darren J.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, POB 218, Hawthorn, Vic 3122, Australia. [Dave, Romeel] Univ Western Cape, ZA-7535 Cape Town, South Africa. [Dave, Romeel] South African Astron Observ, Observ, ZA-7525 Cape Town, South Africa. [Dave, Romeel] African Inst Math Sci, ZA-7545 Cape Town, South Africa. [Fontana, Adriano] INAF, Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Lee, Seong-Kook] Seoul Natl Univ, Dept Phys & Astron, Ctr Explorat Origin Universe, Seoul 151742, South Korea. RP Pacifici, C (reprint author), Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. OI Koo, David/0000-0003-3385-6799; Kassin, Susan/0000-0002-3838-8093; Holden, Bradford/0000-0002-6153-3076; Weiner, Benjamin/0000-0001-6065-7483; Ferguson, Henry/0000-0001-7113-2738; Koekemoer, Anton/0000-0002-6610-2048; Bell, Eric/0000-0002-5564-9873 FU NASA [NAS5-26555]; SAK through HST Grant [AR-12828.001]; Director's Discretionary Research Fund (DDRF) FX We thank the referee for the helpful report. We thank Stephane Charlot, Julianne Dalcanton, and Steven Willner for useful discussions. CP acknowledges support by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by USRA through a contract with NASA. CP is grateful for the support by SAK through the HST Grant AR-12828.001 and a Director's Discretionary Research Fund (DDRF). This work is based on observations taken by the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. NR 81 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 832 IS 1 AR 79 DI 10.3847/0004-637X/832/1/79 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED3IW UT WOS:000388743800009 ER PT J AU Pan, M Nesvold, ER Kuchner, MJ AF Pan, Margaret Nesvold, Erika R. Kuchner, Marc J. TI APOCENTER GLOW IN ECCENTRIC DEBRIS DISKS: IMPLICATIONS FOR FOMALHAUT AND epsilon ERIDANI SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; planets and satellites: dynamical evolution and stability; protoplanetary disks ID EXTRASOLAR KUIPER-BELT; CIRCUMSTELLAR DISK; SPACE-TELESCOPE; BETA-PICTORIS; DUST DISK; HR 4796; RING; PLANETS; PLANETESIMALS; IMAGES AB Debris disks often take the form of eccentric rings with azimuthal asymmetries in surface brightness. Such disks are often described as showing "pericenter glow," an enhancement of the disk brightness in regions nearest the central star. At long wavelengths, however, the disk apocenters should appear brighter than their pericenters: in the long-wavelength limit, we find that the apocenter/pericenter flux ratio scales as 1 + e for disk eccentricity e. We produce new models of this "apocenter glow" to explore its causes and wavelength dependence and study its potential as a probe of dust grain properties. Based on our models, we argue that several far-infrared and (sub) millimeter images of the Fomalhaut and epsilon Eridani debris rings obtained with Herschel, JCMT, SHARC II, ALMA, and ATCA should be reinterpreted as suggestions or examples of apocenter glow. This reinterpretation yields new constraints on the disks' dust grain properties and size distributions. C1 [Pan, Margaret] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Pan, Margaret] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Pan, Margaret; Kuchner, Marc J.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Nesvold, Erika R.] Univ Maryland Baltimore Cty, Dept Appl Phys, Baltimore, MD 21250 USA. [Nesvold, Erika R.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. RP Pan, M (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA.; Pan, M (reprint author), Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada.; Pan, M (reprint author), NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. FU NSERC; NPP fellowship at Goddard Space Flight Center; NASA [NNX15AK23G] FX M.P. was supported by NSERC funds and by an NPP fellowship at Goddard Space Flight Center administered by ORAU through a contract with NASA. M.P. and M.J.K. were partially supported by NASA grant NNX15AK23G. We thank an anonymous referee for knowledgeable comments that improved our writeup. M.P. thanks Yoram Lithwick and Yanqin Wu for helpful conversations and Bok Tower Gardens for their warm hospitality in the later stages of writing. NR 31 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 832 IS 1 AR 81 DI 10.3847/0004-637X/832/1/81 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED3IW UT WOS:000388743800011 ER PT J AU Tahani, K Plume, R Bergin, EA Tolls, V Phillips, TG Caux, E Cabrit, S Goicoechea, JR Goldsmith, PF Johnstone, D Lis, DC Pagani, L Menten, KM Muller, HSP Ossenkopf-Okada, V Pearson, JC van der Tak, FFS AF Tahani, K. Plume, R. Bergin, E. A. Tolls, V. Phillips, T. G. Caux, E. Cabrit, S. Goicoechea, J. R. Goldsmith, P. F. Johnstone, D. Lis, D. C. Pagani, L. Menten, K. M. Mueller, H. S. P. Ossenkopf-Okada, V. Pearson, J. C. van der Tak, F. F. S. TI ANALYSIS OF THE HERSCHEL/HEXOS SPECTRAL SURVEY TOWARD ORION SOUTH: A MASSIVE PROTOSTELLAR ENVELOPE WITH STRONG EXTERNAL IRRADIATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: abundances; ISM: individual objects (Orion South); ISM: kinematics and dynamics; ISM: lines and bands; ISM: molecules ID MOLECULAR LINE SURVEY; EXTRAORDINARY SOURCES ANALYSIS; LIMITED MILLIMETER SURVEY; STAR-FORMING REGIONS; CLOUD CORES; MU-M; SUBMILLIMETER ARRAY; OBSERVATIONAL DATA; INTERSTELLAR JETS; ODIN SATELLITE AB We present results from a comprehensive submillimeter spectral survey toward the source Orion South, based on data obtained with the Heterodyne Instrument for the Far-Infrared instrument on board the Herschel Space Observatory, covering the frequency range of 480 to 1900 GHz. We detect 685 spectral lines with signal-to-noise ratios (S/Ns) > 3 sigma, originating from 52 different molecular and atomic species. We model each of the detected species assuming conditions of Local Thermodynamic Equilibrium. This analysis provides an estimate of the physical conditions of Orion South (column density, temperature, source size, and VLSR). We find evidence for three different cloud components: a cool (T-ex similar to 20-40 K), spatially extended (> 60 ''), and quiescent (Delta V-FWHM similar to 4 km s(-1)) component; a warmer (T-ex similar to 80-100 K), less spatially extended (similar to 30 ''), and dynamic (Delta V-FWHM similar to 8 km s(-1)) component, which is likely affected by embedded outflows; and a kinematically distinct region (T-ex > 100 K; V-LSR similar to 8 km s(-1)), dominated by emission from species that trace ultraviolet irradiation, likely at the surface of the cloud. We find little evidence for the existence of a chemically distinct "hot-core" component, likely due to the small filling factor of the hot core or hot cores within the Herschel beam. We find that the chemical composition of the gas in the cooler, quiescent component of Orion South more closely resembles that of the quiescent ridge in Orion-KL. The gas in the warmer, dynamic component, however, more closely resembles that of the Compact Ridge and Plateau regions of Orion-KL, suggesting that higher temperatures and shocks also have an influence on the overall chemistry of Orion South. C1 [Tahani, K.; Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Bergin, E. A.] Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA. [Tolls, V.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Phillips, T. G.; Lis, D. C.] CALTECH, Cahill Ctr Astron & Astrophys 301 17, Pasadena, CA 91125 USA. [Caux, E.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse, France. [Caux, E.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Cabrit, S.; Lis, D. C.; Pagani, L.] UPMC Univ Paris 06, Sorbonne Univ, PSL Res Univ, LERMA,Observ Paris,CNRS, F-75014 Paris, France. [Goicoechea, J. R.] CSIC, Inst Ciencia Mat Madrid, Sor Juana Ines de la Cruz 3, E-28049 Madrid, Spain. [Goldsmith, P. F.; Pearson, J. C.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, 5071 West Saanich Rd, Victoria, BC V9E 2E7, Canada. [Menten, K. M.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Mueller, H. S. P.] Univ Cologne, Inst Phys 1, Zulpicher Str 77, D-50937 Cologne, Germany. [van der Tak, F. F. S.] SRON Netherlands Inst Space Res, POB 800, NL-9700 AV Groningen, Netherlands. [van der Tak, F. F. S.] Univ Groningen, Kapteyn Astron Inst, Groningen, Netherlands. RP Tahani, K (reprint author), Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. EM ktahani@ucalgary.ca FU Deutsche Forschungsgemeinschaft (DFG) [SFB 956]; ERC; Spanish MINECO [ERC-2013-Syg-610256, AYA2012-32032]; National Sciences and Engineering Research Council of Canada (NSERC); NASA FX HIFI was designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States under the leadership of the SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France, and the US. Consortium members are Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronmico Nacional (IGN), Centro de Astrobiologa (CSIC-INTA). Sweden: Chalmers University of Technology-MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University-Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. We also need to acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG) via the collaborative research grant SFB 956, project C1 & C3, as well as the ERC and the Spanish MINECO for funding support under grants ERC-2013-Syg-610256 and AYA2012-32032. Support for this work was provided, in part, by a National Sciences and Engineering Research Council of Canada (NSERC) grant to R. Plume and K. Tahani and by NASA through an award issued by JPL/Caltech. This work was carried out in part at the Jet Propulsion Laboratory, which is operated for NASA by the California Institute of Technology. NR 94 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 832 IS 1 AR 12 DI 10.3847/0004-637X/832/1/12 PG 39 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC5US UT WOS:000388203200001 ER PT J AU Pascucci, I Testi, L Herczeg, GJ Long, F Manara, CF Hendler, N Mulders, GD Krijt, S Ciesla, F Henning, T Mohanty, S Drabek-Maunder, E Apai, D Szucs, L Sacco, G Olofsson, J AF Pascucci, I. Testi, L. Herczeg, G. J. Long, F. Manara, C. F. Hendler, N. Mulders, G. D. Krijt, S. Ciesla, F. Henning, Th. Mohanty, S. Drabek-Maunder, E. Apai, D. Szucs, L. Sacco, G. Olofsson, J. TI A STEEPER THAN LINEAR DISK MASS-STELLAR MASS SCALING RELATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; protoplanetary disks; stars: pre-main sequence; submillimeter: planetary systems ID STAR-FORMING REGION; PRE-MAIN-SEQUENCE; BROWN DWARF DISKS; SCORPIUS OB ASSOCIATION; T-TAURI STARS; PROTOPLANETARY DISKS; CHAMELEON-I; CIRCUMSTELLAR DISKS; PLANET OCCURRENCE; EVOLUTIONARY MODELS AB The disk mass is among the most important input parameter for every planet formation model to determine the number and masses of the planets that can form. We present an ALMA 887 mu m survey of the disk population around objects from similar to 2 to 0.03 M-circle dot in the nearby similar to 2 Myr old Chamaeleon I star-forming region. We detect thermal dust emission from 66 out of 93 disks, spatially resolve 34 of them, and identify two disks with large dust cavities of about 45 au in radius. Assuming isothermal and optically thin emission, we convert the 887 mu m flux densities into dust disk masses, hereafter M-dust. We find that the M-dust-M* relation is steeper than linear and of the form M-dust proportional to (M*)(1.3-1.9), where the range in the power-law index reflects two extremes of the possible relation between the average dust temperature and stellar luminosity. By reanalyzing all millimeter data available for nearby regions in a self-consistent way, we show that the 1-3 Myr old regions of Taurus, Lupus, and Chamaeleon. I share the same M-dust-M* relation, while the 10 Myr old Upper. Sco association has a steeper relation. Theoretical models of grain growth, drift, and fragmentation reproduce this trend and suggest that disks are in the fragmentation-limited regime. In this regime millimeter grains will be located closer in around lower-mass stars, a prediction that can be tested with deeper and higher spatial resolution ALMA observations. C1 [Pascucci, I.; Hendler, N.; Mulders, G. D.; Apai, D.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Testi, L.] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Testi, L.; Sacco, G.] INAF Arcetri, Largo E Fermi 5, I-50125 Florence, Italy. [Herczeg, G. J.; Long, F.] Peking Univ, Kavli Inst Astron & Astrophys, Yi He Yuan Lu 5, Beijing 100871, Peoples R China. [Manara, C. F.] European Space Res & Technol Ctr ESA ESTEC, Directorate Sci, Sci Support Off, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Ciesla, F.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Henning, Th.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Mohanty, S.; Drabek-Maunder, E.] Imperial Coll London, 1010 Blackett Lab,Prince Consort Rd, London SW7 2AZ, England. [Apai, D.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Szucs, L.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Olofsson, J.] Univ Valparaiso, Fac Ciencias, Inst Fis & Astron, Valparaiso, Chile. [Pascucci, I.; Mulders, G. D.; Krijt, S.; Ciesla, F.; Apai, D.] NASA, Nexus Exoplanet Syst Sci, Earths Other Solar Syst Team, Washington, DC USA. [Testi, L.] Chalmers, Gothenburg Ctr Adv Studies Sci & Technol, SE-41296 Gothenburg, Sweden. [Testi, L.] Univ Gothenburg, SE-41296 Gothenburg, Sweden. RP Pascucci, I (reprint author), Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.; Pascucci, I (reprint author), NASA, Nexus Exoplanet Syst Sci, Earths Other Solar Syst Team, Washington, DC USA. EM pascucci@lpl.arizona.edu OI Sacco, Giuseppe Germano/0000-0002-6893-2221; Herczeg, Gregory/0000-0002-7154-6065 FU NSF Astronomy & Astrophysics Research Grant [1515392]; National Science Foundation of China [11473005]; Italian Ministero dell'Istruzione, Universita e Ricerca through the grant Progetti Premiali -iALMA [CUP C52I13000140001]; Gothenburg Centre of Advanced Studies in Science and Technology through the program Origins of Habitable Planets; National Aeronautics and Space Administration [NNX15AD94G]; NASA's Science Mission Directorate FX The authors thank the anonymous referee and the statistic editor for insightful comments that helped improve the manuscript. I.P. thanks Megan Ansdell and John Carpenter for sharing some of their results in advance of publication and for clarifying their procedures to analyze the ALMA data. I.P. also acknowledges support from an NSF Astronomy & Astrophysics Research Grant (ID: 1515392). G.H. and L.F. are supported by general grant 11473005 awarded by the National Science Foundation of China. C.F.M. gratefully acknowledges an ESA Research Fellowship. L.T. acknowledges partial support from Italian Ministero dell'Istruzione, Universita e Ricerca through the grant Progetti Premiali 2012 -iALMA (CUP C52I13000140001) and from Gothenburg Centre of Advanced Studies in Science and Technology through the program Origins of Habitable Planets. This material is based on work supported by the National Aeronautics and Space Administration under Agreement No. NNX15AD94G for the program Earths in Other Solar Systems. The results reported herein benefitted from collaborations and/or information exchange within NASA's Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA's Science Mission Directorate. This paper makes use of the following ALMA data: ADS/JAO. ALMA#2011.0.01234.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. NR 108 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 831 IS 2 AR 125 DI 10.3847/0004-637X/831/2/125 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC0LM UT WOS:000387792500011 ER PT J AU Richardson, JD Burlaga, LF Drake, JF Hill, ME Opher, M AF Richardson, J. D. Burlaga, L. F. Drake, J. F. Hill, M. E. Opher, M. TI VOYAGER OBSERVATIONS OF MAGNETIC SECTORS AND HELIOSPHERIC CURRENT SHEET CROSSINGS IN THE OUTER HELIOSPHERE SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic reconnection; solar wind; Sun: heliosphere ID ANOMALOUS COSMIC-RAYS; TERMINATION SHOCK; SOLAR-CYCLE; HELIOSHEATH; FIELD; PLASMA; FLOW; AU; RECONNECTION; VELOCITY AB Voyager 1 (V1) has passed through the heliosheath and is in the local interstellar medium. Voyager 2 (V2) has been in the heliosheath since 2007. The role of reconnection in the heliosheath is under debate; compression of the heliospheric current sheets (HCS) in the heliosheath could lead to rapid reconnection and a reconfiguration of the magnetic field topology. This paper compares the expected and actual amounts of time the Voyager spacecraft observe each magnetic sector and the number of HCS crossings. The predicted and observed values generally agree well. One exception is at Voyager 1 in 2008 and 2009, where the distribution of sectors is more equal than expected and the number of HCS crossings is small. Two other exceptions are at V1 in 2011-2012 and at V2 in 2012, when the spacecraft are in the opposite magnetic sector less than expected and see fewer HCS crossings than expected. These features are consistent with those predicted for reconnection, and consequently searches for other reconnection signatures should focus on these times. C1 [Richardson, J. D.] MIT, Kavli Ctr Astrophys & Space Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA. [Drake, J. F.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Drake, J. F.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [Hill, M. E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Opher, M.] Boston Univ, Dept Astron, 675 Commonwealth Ave, Boston, MA 02215 USA. RP Richardson, JD (reprint author), MIT, Kavli Ctr Astrophys & Space Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM jdr@space.mit.edu; lburlagahsp@verizon.net; drake@umd.edu; Matthew.Hill@jhuapl.edu; mopher@bu.edu FU International Space Science Institute; NASA from the Jet Propulsion Laboratory at the Massachusetts Institute of Technology [959203]; NASA [NNG14PN24P, NNX13AE04G, NNX14AF42G]; NASA Grand Challenge [NNX14AIB0G] FX We wish to acknowledge support from the International Space Science Institute for the team "Facing the Most Pressing Challenges to Our Understanding of the Heliosheath and its Outer Boundaries", which spurred this work and we thank WSO for providing the HCS data. JDR was supported under NASA contract 959203 from the Jet Propulsion Laboratory at the Massachusetts Institute of Technology. L. F. Burlaga was supported by NASA Contract NNG14PN24P. M. O. acknowledges the support of NASA Grand Challenge NNX14AIB0G and NASA award NNX13AE04G. J. D. F. was supported by NASA grant NNX14AF42G. NR 26 TC 0 Z9 0 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 831 IS 2 AR 115 DI 10.3847/0004-637X/831/2/115 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC0LM UT WOS:000387792500001 ER PT J AU Morgan, JV Gulick, SPS Bralower, T Chenot, E Christeson, G Claeys, P Cockell, CS Collins, GS Coolen, MJL Ferriere, L Gebhardt, C Goto, K Jones, H Kring, DA Le Ber, E Lofi, J Long, X Lowery, C Mellett, C Ocampo-Torres, R Osinski, GR Perez-Cruz, L Pickersgill, A Poelchau, M Rae, A Rasmussen, C Rebolledo-Vieyra, M Riller, U Sato, H Schmitt, DR Smit, J Tikoo, S Tomioka, N Urrutia-Fucugauchi, J Whalen, M Wittmann, A Yamaguchi, KE Zylberman, W AF Morgan, Joanna V. Gulick, Sean P. S. Bralower, Timothy Chenot, Elise Christeson, Gail Claeys, Philippe Cockell, Charles S. Collins, Gareth S. Coolen, Marco J. L. Ferriere, Ludovic Gebhardt, Catalina Goto, Kazuhisa Jones, Heather Kring, David A. Le Ber, Erwan Lofi, Johanna Long, Xiao Lowery, Christopher Mellett, Claire Ocampo-Torres, Ruben Osinski, Gordon R. Perez-Cruz, Ligia Pickersgill, Annemarie Poelchau, Michael Rae, Auriol Rasmussen, Cornelia Rebolledo-Vieyra, Mario Riller, Ulrich Sato, Honami Schmitt, Douglas R. Smit, Jan Tikoo, Sonia Tomioka, Naotaka Urrutia-Fucugauchi, Jaime Whalen, Michael Wittmann, Axel Yamaguchi, Kosei E. Zylberman, William TI The formation of peak rings in large impact craters SO SCIENCE LA English DT Article ID CRUSTAL STRUCTURE; CHICXULUB CRATER; BASIN FORMATION; ASYMMETRY; MODEL; GRAVITY; DENSITY; QUARTZ AB Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust. C1 [Morgan, Joanna V.; Collins, Gareth S.; Rae, Auriol] Imperial Coll London, Dept Earth Sci & Engn, London SW7 2AZ, England. [Gulick, Sean P. S.; Christeson, Gail; Lowery, Christopher] Univ Texas Austin, Inst Geophys, Jackson Sch Geosci, Austin, TX 78758 USA. [Bralower, Timothy; Jones, Heather] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Chenot, Elise] Univ Bourgogne Franche Comte, UMR CNRS 6282, Biogeosci Lab, F-21000 Dijon, France. [Claeys, Philippe] Vrije Univ Brussel, Analyt Environm & Geochem, Pl Laan 2, B-1050 Brussels, Belgium. [Cockell, Charles S.] Univ Edinburgh, Sch Phys & Astron, Ctr Astrobiol, Edinburgh EH9 3FD, Midlothian, Scotland. [Coolen, Marco J. L.] Curtin Univ, WA Organ & Isotope Geochem Ctr WA OIGC, Dept Chem, Bentley, WA 6102, Australia. [Ferriere, Ludovic] Nat Hist Museum, Burgring 7, A-1010 Vienna, Austria. [Gebhardt, Catalina] Alfred Wegener Inst Helmholtz Ctr Polar & Marine, D-27568 Bremerhaven, Germany. [Goto, Kazuhisa] Tohoku Univ, Int Res Inst Disaster Sci, Aoba Ku, 468-1 E303, Sendai, Miyagi 9800845, Japan. [Kring, David A.] Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. [Le Ber, Erwan] Univ Leicester, Dept Geol, Leicester LE1 7RH, Leics, England. [Lofi, Johanna] Univ Montpellier, Geosci Montpellier, F-34095 Montpellier 05, France. [Long, Xiao] China Univ Geosci, Sch Earth Sci, Planetary Sci Inst, 388 Lumo Rd, Wuhan, Peoples R China. [Mellett, Claire] British Geol Survey, Lyell Ctr, Res Ave South, Edinburgh EH14 4AP, Midlothian, Scotland. [Ocampo-Torres, Ruben] UMR 7515 Univ Strasbourg CNRS, Grp Phys Chim Atmosphere, Inst Chim & Proc Energie Environm & Sante, 1 Rue Blessig, F-67000 Strasbourg, France. [Osinski, Gordon R.; Zylberman, William] Univ Western Ontario, Ctr Planetary Sci & Explorat, London, ON N6A 5B7, Canada. [Osinski, Gordon R.] Univ Western Ontario, Dept Earth Sci, London, ON N6A 5B7, Canada. [Osinski, Gordon R.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 5B7, Canada. [Perez-Cruz, Ligia; Urrutia-Fucugauchi, Jaime] Univ Nacl Autonoma Mexico, Inst Geofis, Cd Univ,Coyoacan Ciudad Mexico, Mexico City 04510, DF, Mexico. [Pickersgill, Annemarie] Univ Glasgow, Sch Geog & Earth Sci, Lilybank Gardens, Glasgow G12 8QQ, Lanark, Scotland. [Poelchau, Michael] Univ Freiburg, Geol, Albertstr 23b, D-79104 Freiburg, Germany. [Rasmussen, Cornelia] Univ Utah, Dept Geol & Geophys, 115 S 1460 E FASB, Salt Lake City, UT 84112 USA. [Rebolledo-Vieyra, Mario] Ctr Invest Cient Yucatan AC, Unidad Ciencias Agua, Cancun 77500, Quintana Roo, Mexico. [Riller, Ulrich] Univ Hamburg, Inst Geol, Bundesstr 55, D-20146 Hamburg, Germany. [Sato, Honami] Japan Agcy Marine Earth Sci & Technol, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan. [Schmitt, Douglas R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Smit, Jan] Vrije Univ Amsterdam, Fac Earth & Life Sci FALW, Boelelaan 1085, NL-1018 HV Amsterdam, Netherlands. [Tikoo, Sonia] Rutgers Univ New Brunswick, Earth & Planetary Sci, Piscataway Township, NJ 08854 USA. [Tomioka, Naotaka] Japan Agcy Marine Earth Sci & Technol, Kochi Inst Core Sample Res, 200 Monobe Otsu, Nankoku, Kochi 7838502, Japan. [Whalen, Michael] Univ Alaska, Dept Geosci, 900 Yukon Dr, Fairbanks, AK 99775 USA. [Wittmann, Axel] Arizona State Univ, LeRoy Eyring Ctr Solid State Sci Phys Sci, Tempe, AZ 85287 USA. [Yamaguchi, Kosei E.] Toho Univ, Dept Chem, Funabashi, Chiba 2748510, Japan. [Yamaguchi, Kosei E.] NASA, Astrobiol Inst, Mountain View, CA USA. [Zylberman, William] Aix Marseille Univ, CNRS, Inst Rech & Dev, Coll France, Aix En Provence, France. RP Morgan, JV (reprint author), Imperial Coll London, Dept Earth Sci & Engn, London SW7 2AZ, England. EM j.morgan@imperial.ac.uk RI Christeson, Gail/B-9967-2008; Tomioka, Naotaka/B-1888-2011; Claeys, Philippe/B-4895-2008 OI Christeson, Gail/0000-0002-4749-4429; Tomioka, Naotaka/0000-0001-5725-9513; Claeys, Philippe/0000-0002-4585-7687 FU European Consortium for Ocean Research Drilling (ECORD); International Continental Scientific Program; UK Science and Technology Facilities Council [ST/N000803/1]; Hanse-Wissenschaftkolleg, Germany FX This research used samples and data provided by IODP. Samples can be requested at http://web.iodp.tamu.edu/sdrm after the end of the moratorium on 19 October 2017. Expedition 364 was jointly funded by the European Consortium for Ocean Research Drilling (ECORD) and the International Continental Scientific Program, with contributions and logistical support from the Yucatan State Government and Universidad Nacional Autonoma de Mexico (UNAM). G.S.C. was funded by UK Science and Technology Facilities Council grant ST/N000803/1. S.P.S.G. acknowledges his Fellowship at the Hanse-Wissenschaftkolleg, Germany. This is UTIG Contribution #3018. NR 41 TC 2 Z9 2 U1 17 U2 17 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 18 PY 2016 VL 354 IS 6314 BP 878 EP 882 DI 10.1126/science.aah6561 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED0KR UT WOS:000388531900038 PM 27856906 ER PT J AU Fischer, D Magnes, W Hagen, C Dors, I Chutter, MW Needell, J Torbert, RB Le Contel, O Strangeway, RJ Kubin, G Valavanoglou, A Plaschke, F Nakamura, R Mirioni, L Russell, CT Leinweber, HK Bromund, KR Le, G Kepko, L Anderson, BJ Slavin, JA Baumjohann, W AF Fischer, David Magnes, Werner Hagen, Christian Dors, Ivan Chutter, Mark W. Needell, Jerry Torbert, Roy B. Le Contel, Olivier Strangeway, Robert J. Kubin, Gernot Valavanoglou, Aris Plaschke, Ferdinand Nakamura, Rumi Mirioni, Laurent Russell, Christopher T. Leinweber, Hannes K. Bromund, Kenneth R. Le, Guan Kepko, Lawrence Anderson, Brian J. Slavin, James A. Baumjohann, Wolfgang TI Optimized merging of search coil and fluxgate data for MMS SO GEOSCIENTIFIC INSTRUMENTATION METHODS AND DATA SYSTEMS LA English DT Article ID MAGNETOMETER; THEMIS AB The Magnetospheric Multiscale mission (MMS) targets the characterization of fine-scale current structures in the Earth's tail and magnetopause. The high speed of these structures, when traversing one of the MMS spacecraft, creates magnetic field signatures that cross the sensitive frequency bands of both search coil and fluxgate magnetometers. Higher data quality for analysis of these events can be achieved by combining data from both instrument types and using the frequency bands with best sensitivity and signal-to-noise ratio from both sensors. This can be achieved by a model-based frequency compensation approach which requires the precise knowledge of instrument gain and phase properties. We discuss relevant aspects of the instrument design and the ground calibration activities, describe the model development and explain the application on in-flight data. Finally, we show the precision of this method by comparison of in-flight data. It confirms unity gain and a time difference of less than 100 mu s between the different magnetometer instruments. C1 [Fischer, David; Magnes, Werner; Hagen, Christian; Valavanoglou, Aris; Plaschke, Ferdinand; Nakamura, Rumi; Baumjohann, Wolfgang] Austrian Acad Sci, Space Res Inst, Graz, Austria. [Dors, Ivan; Chutter, Mark W.; Needell, Jerry; Torbert, Roy B.] Univ New Hampshire, Space Plasma Magnetospher Phys, Durham, NH 03824 USA. [Le Contel, Olivier; Mirioni, Laurent] Univ Paris Sud, UPMC, Ecole Polytech, CNRS,UMR7648,Lab Phys Plasmas,Obs Paris, Paris, France. [Strangeway, Robert J.; Russell, Christopher T.; Leinweber, Hannes K.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Fischer, David; Kubin, Gernot] Graz Univ Technol, Signal Proc & Speech Commun Lab, Graz, Austria. [Bromund, Kenneth R.; Le, Guan; Kepko, Lawrence] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Anderson, Brian J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Slavin, James A.] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. RP Fischer, D (reprint author), Austrian Acad Sci, Space Res Inst, Graz, Austria.; Fischer, D (reprint author), Graz Univ Technol, Signal Proc & Speech Commun Lab, Graz, Austria. EM david.fischer@oeaw.ac.at RI NASA MMS, Science Team/J-5393-2013; Le, Guan/C-9524-2012; Slavin, James/H-3170-2012 OI NASA MMS, Science Team/0000-0002-9504-5214; Le, Guan/0000-0002-9504-5214; Slavin, James/0000-0002-9206-724X FU NASA [NNG04EB99C]; CNES; CNRS; Austrian Academy of Sciences; Austrian Space Applications Programme [FFG/ASAP-844377] FX The dedication and expertise of the Magnetospheric Multiscale (MMS) development and operations teams are greatly appreciated. Work at JHU/APL, UCLA, UNH and SwRI was supported by NASA contract number NNG04EB99C. The French involvement (SCM) on MMS is supported by CNES and CNRS. We acknowledge the use of burst L1A data from digital and analog fluxgate magnetometers and search coil magnetometers. The data are stored at the MMS Science Data Center https://lasp.colorado.edu/mms/sdc/ and are publicly available. The Austrian part of the development, operation and calibration of the DFG was financially supported by rolling grant of the Austrian Academy of Sciences and the Austrian Space Applications Programme with the contract number FFG/ASAP-844377. NR 14 TC 0 Z9 0 U1 7 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 2193-0856 EI 2193-0864 J9 GEOSCI INSTRUM METH JI Geosci. Instrum. Methods Data Syst. PD NOV 17 PY 2016 VL 5 IS 2 BP 521 EP 530 DI 10.5194/gi-5-521-2016 PG 10 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Geology; Meteorology & Atmospheric Sciences GA ED3AN UT WOS:000388721700001 ER PT J AU Handmer, CJ Szilagyi, B Winicour, J AF Handmer, Casey J. Szilagyi, Bela Winicour, Jeffrey TI Spectral Cauchy characteristic extraction of strain, news and gravitational radiation flux SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE numerical relativity; gravitational radiation; general relativity; algorithm; spectral ID GENERAL-RELATIVITY; ANGULAR-MOMENTUM; ASYMPTOTIC SYMMETRIES; NULL INFINITY; CONSERVED QUANTITIES; ISOLATED SYSTEMS; SPACE-TIMES; LINKAGES; FIELDS; WAVES AB We present a new approach for the Cauchy-characteristic extraction (CCE) of gravitational radiation strain, news function, and the flux of the energy-momentum, supermomentum and angular momentum associated with the Bondi-Metzner-Sachs asymptotic symmetries. In CCE, a characteristic evolution code takes numerical data on an inner worldtube supplied by a Cauchy evolution code, and propagates it outwards to obtain the space-time metric in a neighborhood of null infinity. The metric is first determined in a scrambled form in terms of coordinates determined by the Cauchy formalism. In prior treatments, the waveform is first extracted from this metric and then transformed into an asymptotic inertial coordinate system. This procedure provides the physically proper description of the waveform and the radiated energy but it does not generalize to determine the flux of angular momentum or supermomentum. Here we formulate and implement a new approach which transforms the full metric into an asymptotic inertial frame and provides a uniform treatment of all the radiation fluxes associated with the asymptotic symmetries. Computations are performed and calibrated using the spectral Einstein code. C1 [Handmer, Casey J.; Szilagyi, Bela] CALTECH, Walter Burke Inst Theoret Phys, TAPIR, MC 350-17,1200 E Calif Blvd, Pasadena, CA 91125 USA. [Szilagyi, Bela] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Winicour, Jeffrey] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP Handmer, CJ (reprint author), CALTECH, Walter Burke Inst Theoret Phys, TAPIR, MC 350-17,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM chandmer@caltech.edu FU Sherman Fairchild Foundation; NSF [PHY-0960291, PHY-1505965]; Extreme Science and Engineering Discovery Environment (XSEDE) [TG-PHY990002]; NSF at Caltech [PHY-1068881, AST-1333520, PHY-0956189] FX We thank Nicholas Taylor for his generic precessing binary black hole run that we used to test and baseline code performance. We thank Mark Scheel, Yanbei Chen, and Christian Reisswig for their advice, support, and technical expertise. This research used the Spectral Einstein Code (SpEC) [46]. The Caltech cluster zwicky.cacr.caltech.edu is an essential resource for SpEC related research, supported by the Sherman Fairchild Foundation and by NSF award PHY-0960291. This research also used the Extreme Science and Engineering Discovery Environment (XSEDE) under grant TG-PHY990002. The UCSD cluster ccom-boom.ucsd.edu was used during code development. This project was supported by the Sherman Fairchild Foundation, and by NSF Grants PHY-1068881, AST-1333520, and CAREER Grant PHY-0956189 at Caltech. JW's research was supported by NSF grant PHY-1505965 to the University of Pittsburgh. NR 44 TC 1 Z9 1 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD NOV 17 PY 2016 VL 33 IS 22 AR 225007 DI 10.1088/0264-9381/33/22/225007 PG 28 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EA7GL UT WOS:000386798300001 ER PT J AU Mangold, N Baratoux, D Witasse, O Encrenaz, T Sotin, C AF Mangold, N. Baratoux, D. Witasse, O. Encrenaz, T. Sotin, C. TI Mars: a small terrestrial planet SO ASTRONOMY AND ASTROPHYSICS REVIEW LA English DT Review DE Mars; Geological evolution; Geophysics; Atmosphere ID ULTRAVIOLET SPECTROMETER EXPERIMENT; RADIO OCCULTATION MEASUREMENTS; THERMAL EMISSION SPECTROMETER; MARTIAN MAGNETIC-ANOMALIES; OMEGA/MARS EXPRESS OBSERVATIONS; SUBLIMATION-DRIVEN ACTIVITY; TRANSVERSE AEOLIAN RIDGES; SEDIMENTARY-ROCK RECORD; POLAR LAYERED DEPOSITS; TRANSIENT LIQUID WATER AB Mars is characterized by geological landforms familiar to terrestrial geologists. It has a tenuous atmosphere that evolved differently from that of Earth and Venus and a differentiated inner structure. Our knowledge of the structure and evolution of Mars has strongly improved thanks to a huge amount of data of various types (visible and infrared imagery, altimetry, radar, chemistry, etc) acquired by a dozen of missions over the last two decades. In situ data have provided ground truth for remote-sensing data and have opened a new era in the study of Mars geology. While large sections of Mars science have made progress and new topics have emerged, a major question in Mars exploration-the possibility of past or present life-is still unsolved. Without entering into the debate around the presence of life traces, our review develops various topics of Mars science to help the search of life on Mars, building on the most recent discoveries, going from the exosphere to the interior structure, from the magmatic evolution to the currently active processes, including the fate of volatiles and especially liquid water. C1 [Mangold, N.; Sotin, C.] CNRS, Lab Planetol Geodynam, 2 Rue Houssiniere, F-44322 Nantes, France. [Mangold, N.; Sotin, C.] Univ Nantes, 2 Rue Houssiniere, F-44322 Nantes, France. [Baratoux, D.] Univ Toulouse, CNRS, Geosci Environm Toulouse, 14 Ave Edouard Belin, F-31400 Toulouse, France. [Baratoux, D.] IRD, UMR 5563, 14 Ave Edouard Belin, F-31400 Toulouse, France. [Baratoux, D.] Inst Fondamental Afrique Noire Check Anta Diop, Dakar, Senegal. [Witasse, O.] European Space Agcy, Sci Support Off, NL-2200 AG Noordwijk, Netherlands. [Encrenaz, T.] Observ Paris, Site Meudon LESIA 5 Pl Jules Janssen, F-92195 Meudon, France. [Sotin, C.] NASA, JPL, Pasadena, CA USA. RP Mangold, N (reprint author), CNRS, Lab Planetol Geodynam, 2 Rue Houssiniere, F-44322 Nantes, France.; Mangold, N (reprint author), Univ Nantes, 2 Rue Houssiniere, F-44322 Nantes, France. EM nicolas.mangold@univ-nantes.fr FU Centre National d'Etudes Spatiales (CNES) FX We greatly appreciated detailed reviews from Mike Carr and anonymous reviewer. We wish to warmly thank Eliott Sefton-Nash for his detailed comments. Authors are funded by the Centre National d'Etudes Spatiales (CNES). NR 701 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0935-4956 EI 1432-0754 J9 ASTRON ASTROPHYS REV JI Astron. Astrophys. Rev. PD NOV 16 PY 2016 VL 24 AR 15 DI 10.1007/s00159-016-0099-5 PG 107 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EO0FV UT WOS:000396374600001 ER PT J AU Cook, BI Palmer, JG Cook, ER Turney, CSM Allen, K Fenwick, P O'Donnell, A Lough, JM Grierson, PF Ho, M Baker, PJ AF Cook, Benjamin I. Palmer, Jonathan G. Cook, Edward R. Turney, Chris S. M. Allen, Kathryn Fenwick, Pavla O'Donnell, Alison Lough, Janice M. Grierson, Pauline F. Ho, Michelle Baker, Patrick J. TI The paleoclimate context and future trajectory of extreme summer hydroclimate in eastern Australia SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MURRAY-DARLING BASIN; MULTI-DECADAL VARIABILITY; WATER-USE EFFICIENCY; MILLENNIUM DROUGHT; EL-NINO; BIG DRY; RAINFALL RECONSTRUCTION; IRRIGATED AGRICULTURE; SOUTHERN-OSCILLATION; CLIMATE VARIABILITY AB Eastern Australia recently experienced an intense drought (Millennium Drought, 2003-2009) and record-breaking rainfall and flooding (austral summer 2010-2011). There is some limited evidence for a climate change contribution to these events, but such analyses are hampered by the paucity of information on long-term natural variability. Analyzing a new reconstruction of summer (December-January-February) Palmer Drought Severity Index (the Australia-New Zealand Drought Atlas; ANZDA, 1500-2012 Common Era), we find moisture deficits during the Millennium Drought fall within the range of the last 500 years of natural hydroclimate variability. This variability includes periods of multidecadal drought in the 1500s more persistent than any event in the historical record. However, the severity of the Millennium Drought, which was caused by autumn (March-April-May) precipitation declines, may be underestimated in the ANZDA because the reconstruction is biased toward summer and antecedent spring (September-October-November) precipitation. The pluvial in 2011, however, which was characterized by extreme summer rainfall faithfully captured by the ANZDA, is likely the wettest year in the reconstruction for Coastal Queensland. Climate projections (Representative Concentration Pathways (RCP) 8.5 scenario) suggest that eastern Australia will experience long-term drying during the 21st century. While the contribution of anthropogenic forcing to recent extremes remains an open question, these projections indicate an amplified risk of multiyear drought anomalies matching or exceeding the intensity of the Millennium Drought. C1 [Cook, Benjamin I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Cook, Benjamin I.; Cook, Edward R.] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Palmer, Jonathan G.; Turney, Chris S. M.] Univ New South Wales, Climate Change Res Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW, Australia. [Allen, Kathryn; Baker, Patrick J.] Univ Melbourne, Sch Ecosyst & Forest Sci, Richmond, Vic, Australia. [Fenwick, Pavla] Gondwana Tree Ring Lab, Little River, New Zealand. [O'Donnell, Alison; Grierson, Pauline F.] Univ Western Australia, Sch Plant Biol, Ecosyst Res Grp, Crawley, WA USA. [Lough, Janice M.] Australian Inst Marine Sci, Townsville, Qld, Australia. [Ho, Michelle] Columbia Univ, Columbia Water Ctr, New York, NY USA. RP Cook, BI (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA.; Cook, BI (reprint author), Lamont Doherty Earth Observ, Palisades, NY 10964 USA. EM benjamin.i.cook@nasa.gov RI Cook, Benjamin/H-2265-2012; Grierson, Pauline/A-9240-2008; OI Grierson, Pauline/0000-0003-2135-0272; Turney, Chris/0000-0001-6733-0993; Palmer, Jonathan/0000-0002-6665-4483; Fenwick, Pavla/0000-0002-0462-2371; Ho, Michelle/0000-0002-1513-8016 FU Australian Research Council [FL100100195, DP130104156, LP120100310, DP0878744, DP120104320, LP120200811, FT120100715]; NASA FX C.S.M.T. thanks the Australian Research Council for the provision of a Laureate Fellowship. Support was provided by the Australian Research Council through grants FL100100195, and DP130104156 to C.S.M. Turney, LP120100310 to P.F. Grierson, and DP0878744, DP120104320, LP120200811, and FT120100715 for P.J. Baker. B.I. Cook is supported by NASA. The ANZDA is freely available from the NOAA Paleoclimate Archive (https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets). Thanks to David Karoly and two anonymous reviewers for providing comments that greatly improved the quality of this manuscript. The authors also thank Linden Ashcroft, for providing the extended precipitation record for Southeastern Australia and additional valuable comments. Lamont contribution 8070. NR 84 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 16 PY 2016 VL 121 IS 21 BP 12820 EP 12838 DI 10.1002/2016JD024892 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED6IZ UT WOS:000388960600015 ER PT J AU Liu, J Bowman, KW Lee, M AF Liu, Junjie Bowman, Kevin W. Lee, Meemong TI Comparison between the Local Ensemble Transform Kalman Filter (LETKF) and 4D-Var in atmospheric CO2 flux inversion with the Goddard Earth Observing System-Chem model and the observation impact diagnostics from the LETKF SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DATA ASSIMILATION; CARBON BALANCE; GOSAT; SENSITIVITY; SINKS; CARBONTRACKER; ADJOINT; XCO2; RETRIEVALS; ALGORITHM AB Ensemble Kalman filter (EnKF) and 4D-Variational (4D-Var) are two advanced data assimilation methods that are the basis of numerical weather prediction and have been extensively used in trace gas assimilation and inverse modeling. In this study, we compare 4D-Var and the Local Ensemble Transform Kalman Filter (LETKF), one type of EnKF, in estimating CO2 fluxes with both simulated and real satellite data from Greenhouse gases Observing Satellite (GOSAT) and propose a method to calculate flux changes and flux error reductions from assimilating each observation within the LETKF. The results show that the mean posterior flux accuracy across 11 land regions defined by the Atmospheric Tracer Transport Model Intercomparison Project is comparable between 4D-Var and the LETKF, as shown in the Observing System Simulation Experiment, but the differences between the LETKF and 4D-Var are relatively larger over data sparse regions. We show that this is most likely due to the fact that the observations from a much broader region have impact on flux estimation in 4D-Var than in the LETKF. As a result, the posterior fluxes from 4D-Var are more consistent with the atmospheric CO2 growth rate. We find that the inversion results are less dependent on inversion methods with the increase of observations. With real GOSAT observations, we show that the posterior flux changes in 2011 relative to 2010 are more consistent between these two methods than the absolute estimates. C1 [Liu, Junjie; Bowman, Kevin W.; Lee, Meemong] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Liu, J (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM junjie.liu@jpl.nasa.gov FU NASA OCO-2 science team grant; NASA Carbon Cycle Science program; NASA Carbon Monitoring System program; National Aeronautics and Space Administration FX Data to support this article can be obtained by contacting the corresponding author by email (junjie.liu@jpl.nasa.gov). Liu would like to thank Eugenia Kalnay and Inez Fung for the support and enlightening discussions when she worked at University of Maryland and UC Berkeley. We appreciate the insightful and constructive comments from Wouter Peters and the three anonymous reviewers. We thank Colm Sweeney for sharing the aircraft observations used in the verification. We acknowledge the funding support from NASA OCO-2 science team grant, NASA Carbon Cycle Science program, and NASA Carbon Monitoring System program. The GOSAT-ACOS XCO2 data were produced by the ACOS/OCO-2 project at the Jet Propulsion Laboratory, California Institute of Technology and obtained from the ACOS/OCO-2 data archive maintained at the NASA Goddard Earth Science Data and Information Services Center. The GOSAT spectra were provided to the ACOS Team through a GOSAT Research Announcement (RA) agreement between the California Institute of Technology and the three parties, JAXA, NIES, and the MOE. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. All the computations were performed in NASA AMES supercomputers. NR 55 TC 0 Z9 0 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 16 PY 2016 VL 121 IS 21 BP 13066 EP 13087 DI 10.1002/2016JD025100 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED6IZ UT WOS:000388960600028 ER PT J AU Schroeder, JR Crawford, JH Fried, A Walega, J Weinheimer, A Wisthaler, A Muller, M Mikoviny, T Chen, G Shook, M Blake, DR Diskin, G Estes, M Thompson, AM Lefer, BL Long, R Mattson, E AF Schroeder, Jason R. Crawford, James H. Fried, Alan Walega, James Weinheimer, Andrew Wisthaler, Armin Muller, Markus Mikoviny, Tomas Chen, Gao Shook, Michael Blake, Donald R. Diskin, Glenn Estes, Mark Thompson, Anne M. Lefer, Barry L. Long, Russell Mattson, Eric TI Formaldehyde column density measurements as a suitable pathway to estimate near-surface ozone tendencies from space SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID VOLATILE ORGANIC-COMPOUNDS; US INTERMOUNTAIN WEST; AIR-QUALITY; TROPOSPHERIC OZONE; SATELLITE-OBSERVATIONS; AIRBORNE OBSERVATIONS; TEMPORAL VARIABILITY; STATISTICAL-ANALYSIS; ISOPRENE EMISSIONS; OMI OBSERVATIONS AB In support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation (r(2) = 0.45) between ozone (O-3) and formaldehyde (CH2O) column densities was observed. Further analysis revealed regional variability in the O-3-CH2O relationship, with Maryland having a strong relationship when data were viewed temporally and Houston having a strong relationship when data were viewed spatially. These differences in regional behavior are attributed to differences in volatile organic compound (VOC) emissions. In Maryland, biogenic VOCs were responsible for similar to 28% of CH2O formation within the boundary layer column, causing CH2O to, in general, increase monotonically throughout the day. In Houston, persistent anthropogenic emissions dominated the local hydrocarbon environment, and no discernable diurnal trend in CH2O was observed. Box model simulations suggested that ambient CH2O mixing ratios have a weak diurnal trend (+/- 20% throughout the day) due to photochemical effects, and that larger diurnal trends are associated with changes in hydrocarbon precursors. Finally, mathematical relationships were developed from first principles and were able to replicate the different behaviors seen in Maryland and Houston. While studies would be necessary to validate these results and determine the regional applicability of the O-3-CH2O relationship, the results presented here provide compelling insight into the ability of future satellite missions to aid in monitoring near-surface air quality. C1 [Schroeder, Jason R.; Crawford, James H.; Chen, Gao; Shook, Michael; Diskin, Glenn] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Schroeder, Jason R.] NASA Langley Res Ctr, NASA Postdoctoral Program, Hampton, VA 23666 USA. [Fried, Alan; Walega, James] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Weinheimer, Andrew] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Wisthaler, Armin; Muller, Markus] Univ Innsbruck, Inst Ion Phys & Appl Phys, Innsbruck, Austria. [Wisthaler, Armin; Mikoviny, Tomas] Univ Oslo, Dept Chem, Oslo, Norway. [Blake, Donald R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. [Estes, Mark] Texas Commiss Environm Qual, Austin, TX USA. [Thompson, Anne M.] Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA. [Thompson, Anne M.] NASA Goddard Space Flight, Greenbelt, MD USA. [Lefer, Barry L.] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX USA. [Lefer, Barry L.] NASA Headquarters, Washington, DC USA. [Long, Russell] US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA. [Mattson, Eric] Colorado Dept Publ Hlth & Environm, Denver, CO USA. RP Schroeder, JR (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA.; Schroeder, JR (reprint author), NASA Langley Res Ctr, NASA Postdoctoral Program, Hampton, VA 23666 USA. EM Jason.r.schroeder@nasa.gov RI Lefer, Barry/B-5417-2012; Thompson, Anne /C-3649-2014; Muller, Markus/L-1699-2014 OI Lefer, Barry/0000-0001-9520-5495; Thompson, Anne /0000-0002-7829-0920; Muller, Markus/0000-0003-4110-8950 FU Austrian Ministry for Transport, Innovation, and Technology through the Austrian Space Applications Program of the Austrian Research Promotion Agency (FFG); NASA; Visiting Scientist Program of the National Institute of Aerospace FX All data used in this work can be downloaded from: http://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html. PTR-MS measurements during DISCOVER-AQ were supported by the Austrian Ministry for Transport, Innovation, and Technology through the Austrian Space Applications Program of the Austrian Research Promotion Agency (FFG). Jason Schroeder and Tomas Mikoviny were partially supported by an appointment with the NASA Postdoctoral Program at NASA Langley Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. Armin Wisthaler and Markus Muller received support from the Visiting Scientist Program of the National Institute of Aerospace. The authors would like to thank the thoughtful reviewers who gave valuable input into making this paper better. NR 84 TC 0 Z9 0 U1 7 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 16 PY 2016 VL 121 IS 21 BP 13088 EP 13112 DI 10.1002/2016JD025419 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED6IZ UT WOS:000388960600029 ER PT J AU Tang, SQ Xie, SC Zhang, YY Zhang, MH Schumacher, C Upton, H Jensen, MP Johnson, KL Wang, M Ahlgrimm, M Feng, Z Minnis, P Thieman, M AF Tang, Shuaiqi Xie, Shaocheng Zhang, Yunyan Zhang, Minghua Schumacher, Courtney Upton, Hannah Jensen, Michael P. Johnson, Karen L. Wang, Meng Ahlgrimm, Maike Feng, Zhe Minnis, Patrick Thieman, Mandana TI Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BOUNDARY-LAYER EXPERIMENT; TROPICAL CLOUD CLUSTERS; PACIFIC WARM POOL; PRECIPITATION RADAR; MOISTURE BUDGETS; AMAZON; RAINFALL; CIRCULATIONS; VARIABILITY; ATMOSPHERE AB This study describes the characteristics of large-scale vertical velocity, apparent heating source (Q1) and apparent moisture sink (Q2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wet seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia - i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems - is also conducted to investigate the variability of the large-scale environment with different types of convective systems. C1 [Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Zhang, Minghua] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Schumacher, Courtney; Upton, Hannah] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Jensen, Michael P.; Johnson, Karen L.; Wang, Meng] Brookhaven Natl Lab, Upton, NY 11973 USA. [Ahlgrimm, Maike] European Ctr Medium Range Weather Forecasts, Shinfield Pk, Reading RG2 9AX, Berks, England. [Feng, Zhe] Pacific Northwest Natl Lab, Richland, WA 99354 USA. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Thieman, Mandana] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. RP Tang, SQ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM tang32@llnl.gov RI Xie, Shaocheng/D-2207-2013; Schumacher, Courtney/B-8968-2011 OI Xie, Shaocheng/0000-0001-8931-5145; Schumacher, Courtney/0000-0003-3612-485X FU Biological and Environmental Research Division in the Office of Sciences of the US Department of Energy (DOE); DOE; US Department of Energy [DE-AC52-07NA27344, DE-SC0005259]; Office of Science of the US Department of Energy; National Science Foundation; ARM program; Atmospheric Systems Research Program [DE-AC02-98CH10886]; US Department of Energy; US DOE; DOE [DE-AC05-76RL01830, DE-SC0013896] FX The authors gratefully thank Luiz Machado, Jiwen Fan and many others in the GoAmazon group for valuable discussions about the synoptic and climate features in Amazonia region. This research is supported by the Biological and Environmental Research Division in the Office of Sciences of the US Department of Energy (DOE). Work at LLNL was supported by the DOE Atmospheric Radiation Measurement (ARM) program and performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344. Work at Stony Brook was supported by the Office of Science of the US Department of Energy and by the National Science Foundation. This paper has been authored by employees of Brookhaven Science Associates, LLC, with support from the ARM program and Atmospheric Systems Research Program under contract no. DE-AC02-98CH10886 with the US Department of Energy. Zhe Feng at the Pacific Northwest National Laboratory (PNNL) is supported by the US DOE, as part of the Atmospheric System Research (ASR) Program. PNNL is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. Work at ECMWF was supported by the US Department of Energy via the Atmospheric Systems Research Program under contract no. DE-SC0005259. The satellite analyses are supported by the DOE ARM and ASR program under contract, DE-SC0013896. We thank The Brazilian National Institute of Amazonian Research (INPA), the Amazonas State University (UEA) and Antonio Manzi for providing surface flux data. NR 55 TC 0 Z9 0 U1 5 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 16 PY 2016 VL 16 IS 22 BP 14249 EP 14264 DI 10.5194/acp-16-14249-2016 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC1JP UT WOS:000387861000005 ER PT J AU Bauschlicher, CW AF Bauschlicher, Charles W., Jr. TI Basis set effects on the geometry of C96H24 SO CHEMICAL PHYSICS LETTERS LA English DT Article DE Basis set; Symmetry; Polycyclic aromatic hydrocarbons ID POLYCYCLIC AROMATIC-HYDROCARBONS; INFRARED-SPECTROSCOPY; FREQUENCIES; SPECTRA; APPROXIMATION; EXCHANGE; DATABASE; ENERGY; PAHS; IONS AB C96H24 has D-6h symmetry using the 4-31G, 6-31G, cc-pVDZ, or cc-pVTZ basis sets, but has lower symmetry if the 6-31G** or 6-311G** basis sets are used. Changing the carbon 3d exponent in the 6-31G** basis set can restore the D-6h symmetry, but raises the total energy. The question of geometry vs basis set is discussed. Published by Elsevier B.V. C1 [Bauschlicher, Charles W., Jr.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Bauschlicher, Charles W., Jr.] Thermal Protect Mat Branch, Mail Stop 230-3, Moffett Field, CA 94035 USA. RP Bauschlicher, CW (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.; Bauschlicher, CW (reprint author), Thermal Protect Mat Branch, Mail Stop 230-3, Moffett Field, CA 94035 USA. EM Charles.W.Bauschlicher@nasa.gov NR 29 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD NOV 16 PY 2016 VL 665 BP 100 EP 104 DI 10.1016/j.cplett.2016.10.060 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EB4AO UT WOS:000387311600017 ER PT J AU Okada, T Inoue, KY Kalita, G Tanemura, M Matsue, T Meyyappan, M Samukawa, S AF Okada, Takeru Inoue, Kumi Y. Kalita, Golap Tanemura, Masaki Matsue, Tomokazu Meyyappan, M. Samukawa, Seiji TI Bonding state and defects of nitrogen-doped graphene in oxygen reduction reaction SO CHEMICAL PHYSICS LETTERS LA English DT Article DE Graphene; Nitrogen doping; Neutral beam; Oxygen reduction reaction ID HIGH ELECTROCATALYTIC ACTIVITY; NEUTRAL-BEAM; CARBON; CATALYSTS; ARRAYS AB Nitrogen-doped graphene is favored as a catalyst for oxygen reduction reaction (ORR) over rare metals. However, the effects of bonding state, nitrogen doped site and defects on catalytic conversion are still unclear. Here, we investigate oxygen reduction reaction using nitrogen-doped graphene with selective bonding state through pyridinic and graphitic nitrogen selective approaches. Both types show ORR activity and the catalytic reaction is clarified to be a four electron reaction path. Graphitic nitrogen with a low level of defects is found superior from the viewpoint of using single graphene sheet for the ORR application. Our investigation provides useful information for various applications using doped graphene. (C) 2016 Elsevier B.V. All rights reserved. C1 [Okada, Takeru; Samukawa, Seiji] Tohoku Univ, Inst Fluid Sci, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan. [Inoue, Kumi Y.; Matsue, Tomokazu] Tohoku Univ, Grad Sch Environm Studies, Aoba Ku, Aramaki 6-6-11-604, Sendai, Miyagi 9808579, Japan. [Kalita, Golap; Tanemura, Masaki] Nagoya Inst Technol, Grad Sch Engn, Dept Frontier Mat, Showa Ku, Gokiso Cho, Nagoya, Aichi 4668555, Japan. [Matsue, Tomokazu; Samukawa, Seiji] Tohoku Univ, WPI AIMR, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan. [Meyyappan, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Samukawa, S (reprint author), Tohoku Univ, Inst Fluid Sci, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan. EM samukawa@ifs.tohoku.ac.jp RI Okada, Takeru/D-1606-2010 OI Okada, Takeru/0000-0002-5397-0970 FU KAKENHI [15K17446]; Nanotechnology Platform Japan Program FX This work was supported by KAKENHI Grant Number 15K17446 and Nanotechnology Platform Japan Program. The authors thank M. Nemoto (Technical Division of Tohoku University) for support for spectroscopic measurement and T. Ozaki (IFS, Tohoku University) for technical support for the neutral beam system. NR 24 TC 0 Z9 0 U1 21 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD NOV 16 PY 2016 VL 665 BP 117 EP 120 DI 10.1016/j.cplett.2016.10.061 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EB4AO UT WOS:000387311600020 ER PT J AU Realmuto, VJ Berk, A AF Realmuto, Vincent J. Berk, Alexander TI Plume Tracker: Interactive mapping of volcanic sulfur dioxide emissions with high-performance radiative transfer modeling SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE Thermal infrared remote sensing; SO2 emissions; Sarychev Peak Volcano; Kilauea Volcano; Turrialba Volcano ID RESOLUTION-IMAGING-SPECTRORADIOMETER; MT ETNA VOLCANO; KILAUEA VOLCANO; SATELLITE DATA; SIMULTANEOUS RETRIEVAL; MIYAKEJIMA VOLCANO; TURRIALBA VOLCANO; SO2 EMISSIONS; COSTA-RICA; MOUNT-ETNA AB We describe the development of Plume Tracker, an interactive toolkit for the analysis of multispectral thermal infrared observations of volcanic plumes and clouds. Plume Tracker is the successor to MAP_SO2, and together these flexible and comprehensive tools have enabled investigators to map sulfur dioxide (SO2) emissions from a number of volcanoes with TIR data from a variety of airborne and satellite instruments. Our objective for the development of Plume Tracker was to improve the computational performance of the retrieval procedures while retaining the accuracy of the retrievals. We have achieved a 300x improvement in the benchmark performance of the retrieval procedures through the introduction of innovative data"binning and signal reconstruction strategies, and improved the accuracy of the retrievals with a new method for evaluating the misfit between model and observed radiance spectra. We evaluated the accuracy of Plume Tracker retrievals with case studies based on MODIS and AIRS data acquired over Sarychev Peak Volcano, and ASTER data acquired over Kilauea and Turrialba Volcanoes. In the Sarychev Peak study, the AIRS-based estimate of total SO2 mass was 40% lower than the MODIS-based estimate. This result was consistent with a 45% reduction in the AIRS-based estimate of plume area relative to the corresponding MODIS-based estimate. In addition, we found that our AIRS-based estimate agreed with an independent estimate, based on a competing retrieval technique, within a margin off 20%. In the Kilauea study, the ASTER-based concentration estimates from 21 May 2012 were within 50% of concurrent ground-level concentration measurements. In the Turrialba study, the ASTER-based concentration estimates on 21 January 2012 were in exact agreement with SO2 concentrations measured at plume altitude on 1 February 2012. (C) 2016 Elsevier B.V. All rights reserved. C1 [Realmuto, Vincent J.] CALTECH, Jet Prop Lab, Mail Stop 183-501,4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Berk, Alexander] Spectral Sci Inc, 4 Fourth Ave, Burlington, MA 01803 USA. RP Realmuto, VJ (reprint author), CALTECH, Jet Prop Lab, Mail Stop 183-501,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM vincent.j.realmuto@jpl.nasa.gov; lex@spectral.com NR 82 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 EI 1872-6097 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD NOV 15 PY 2016 VL 327 BP 55 EP 69 DI 10.1016/j.jvolgeores.2016.07.001 PG 15 WC Geosciences, Multidisciplinary SC Geology GA EG5IU UT WOS:000391078300004 ER PT J AU Hofmeister, AM Sehlke, A Avard, G Bollasina, AJ Robert, G Whittington, AG AF Hofmeister, Anne M. Sehlke, Alexander Avard, Geoffroy Bollasina, Anthony J. Robert, Genevieve Whittington, Alan G. TI Transport properties of glassy and molten lavas as a function of temperature and composition SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE High-temperature; Thermal diffusivity; Viscosity; Heat capacity; Thermal conductivity; Lavas; Glass; Melt ID DEPENDENT THERMAL-DIFFUSIVITY; CONFIGURATIONAL-ENTROPY; SILICATE MELTS; HEAT-CAPACITY; CHEMICAL-COMPOSITION; VISCOSITY; LIQUIDS; MODEL; WATER; TRANSITION AB We provide measurements of thermal diffusivity (D), heat capacity (C-p), and viscosity (eta) for 12 remelted natural lavas and 4 synthetic glasses and melts, ranging in composition from leucogranite to low-silica basalt, and calculate their thermal conductivity. Both viscosity and the glass transition temperature decrease with decreasing melt polymerization. For basaltic glasses, D is low, similar to 0.5 mm(2) s(-1) at room temperature, decreases slightly with increasing temperature, and then drops upon melting to similar to 0.25 to 035 mm(2) s(-1). Other samples behave similarly. Despite scatter, clear correlations exist between D of glass or melt with Si content, density, NBO/1', and, most strongly, with fragility (m). Glass thermal diffusivity is represented by D = FT-G + HT, where F, G and H are fitting parameters. For melts, partial derivative D/partial derivative T was resolved only for dacite-andesite and MORB: a positive slope is consistent with other iron-bearing samples. Glass and liquid C-p depend on density and other physical properties, but not exactly in the same manner as D. We calculate thermal conductivity (k) from these data and demonstrate that k for glasses is described by a Maier-Kelly formula. Large scatter exists for k at 298 K, but silicic to intermediate melts have k between 1.8 and 13 Wm(-1) K-1, whereas basaltic melts are constrained to similar to 1.4 0.1 Wm(-1) k(-1). Low values for thermal diffusivity and viscosity for basaltic melts suggests that basalts transfer heat much more efficiently by advection than by conduction alone, and that partially molten zones in the mantle quickly become more thermally insulating than non-molten zones, potentially contributing to melt localization during decompression melting. (C) 2016 Elsevier B.V. All rights reserved. C1 [Hofmeister, Anne M.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Sehlke, Alexander; Avard, Geoffroy; Bollasina, Anthony J.; Robert, Genevieve; Whittington, Alan G.] Univ Missouri, Dept Geol Sci, Columbia, MO 65211 USA. [Avard, Geoffroy] OVSICORI UNA, Heredia, Costa Rica. [Robert, Genevieve] Bates Coll, Dept Geol, Lewiston, ME 04240 USA. [Sehlke, Alexander] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Hofmeister, AM (reprint author), Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. EM Hofmeist@wustl.edu OI Sehlke, Alexander/0000-0001-7929-1776 FU National Science Foundation [EAR-1321857, EAR-1220051]; NASA [PGG-NNX12AO44G] FX This work was supported by the National Science Foundation through grant EAR-1321857 to AMH, EAR-1220051 to AGW, and by NASA through grant PGG-NNX12AO44G to AGW. We thank Paul Carpenter (W.U.) for providing microprobe analysis; Bridget Hellwig (M.U.), Mitch Schulte (NASA), Benoit Smets and Matthieu Kervyn (U. Brussels) for providing samples. NR 61 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 EI 1872-6097 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD NOV 15 PY 2016 VL 327 BP 330 EP 348 DI 10.1016/j.jvolgeores.2016.08.015 PG 19 WC Geosciences, Multidisciplinary SC Geology GA EG5IU UT WOS:000391078300023 ER PT J AU Jean, MM Taylor, LA Howarth, GH Peslier, AH Fedele, L Bodnar, RJ Guan, Y Doucet, LS Ionov, DA Logvinova, AM Golovin, AV Sobolev, NV AF Jean, M. M. Taylor, L. A. Howarth, G. H. Peslier, A. H. Fedele, L. Bodnar, R. J. Guan, Y. Doucet, L. S. Ionov, D. A. Logvinova, A. M. Golovin, A. V. Sobolev, N. V. TI Olivine inclusions in Siberian diamonds and mantle xenoliths: Contrasting water and trace-element contents SO LITHOS LA English DT Article; Proceedings Paper CT 2nd International Diamond School (IDS) on Nature of Diamonds and their Use in Earth's Study CY JAN, 2015 CL Bressanone, ITALY SP Gemol Inst Amer DE Nominally anhydrous minerals (NAM); Mantle water; Olivine trace elements; SIMS; Diamond inclusions; Siberian craton ID CRATONIC LITHOSPHERIC MANTLE; UDACHNAYA-EAST KIMBERLITE; PERIDOTITE XENOLITHS; RE-OS; SOUTH-AFRICA; QUANTITATIVE-ANALYSIS; PLASTIC-DEFORMATION; GARNET PERIDOTITES; KAAPVAAL CRATON; MINOR ELEMENTS AB A subject of continuing debate is how the Earth's lithospheric portion of the upper mantle has remained the thickest (>200 km) and oldest (>3 Gy) beneath cratons and is yet surrounded by a vigorously convecting asthenosphere. It is generally admitted that water is a key parameter in the strength and longevity of cratonic roots, because olivine, the main phase of the lithospheric mantle, becomes stronger if its water content decreases. Expanding upon the work presented in Novella et al. (2015) and Taylor et al. (2016), we report new water contents for additional olivine inclusions in diamonds together with the trace-element composition for all olivine inclusions, as well as for mantle xenoliths from various kimberlite pipes located on the Siberian craton. The olivine diamond inclusions from this study have systematically low-water contents (<50 ppmw H2O), moderate to high forsterite (e.g., Fo(91_94)) contents and low Ni, Co, and Zn ppm contents (e.g., <2848, <108, and <47 ppm, respectively). In contrast, olivines from Siberian craton mantle xenoliths have a wide range of water contents (6-323 ppmw H2O) and extend to lower-Fo (91-92), Ni, Co, and Zn-rich compositions, compared to the diamond inclusions. Depleted incompatible trace-element concentrations in olivine (0.1-0.001 x Primitive Mantle) advance our hypothesis for the protogenetic origins for the majority of Siberian diamond inclusions. These observations are consistent with the peridotite xenoliths as representing a part of the cratonic lithosphere that has experienced melt re-fertilization, which has also transported water. The olivine diamond inclusions, on the other hand, preserve "micro-samples" of an initial, dry cratonic lithosphere, mostly resulting from melting events. These inclusions are likely sourced from the initial cratonic mantle lithosphere, which thereby, resisted delamination over time, due to its buoyancy and strength, imparted from melt and water depletion, respectively. And thus, our data provides a major argument that the kimberlite-hosted mantle xenoliths may be more metasomatized than common rocks at the base of the Siberian and other cratonic roots away from kimberlite fields. (C) 2016 Elsevier B.V. All rights reserved. C1 [Jean, M. M.; Taylor, L. A.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Howarth, G. H.] Univ Cape Town, Dept Geol Sci, ZA-7700 Rondebosch, South Africa. [Peslier, A. H.] NASA, Johnson Space Ctr, Jacobs, JETS, Mail Code X13, Houston, TX 77058 USA. [Fedele, L.; Bodnar, R. J.] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. [Guan, Y.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Doucet, L. S.; Ionov, D. A.] Univ Libre Bruxelles, Lab G Time, Dept Geosci Environm & Soc, B-1000 Brussels, Belgium. [Ionov, D. A.] Univ Montpellier 2, Geosci Montpellier, F-34095 Montpellier, France. [Ionov, D. A.] UMR CNRS 5243, F-34095 Montpellier, France. [Logvinova, A. M.; Golovin, A. V.; Sobolev, N. V.] Russian Acad Sci, Siberian Branch, VS Sobolev Inst Geol & Mineral, Novosibirsk, Russia. [Logvinova, A. M.; Golovin, A. V.; Sobolev, N. V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. RP Jean, MM (reprint author), Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. EM mjean1@utk.edu OI Ionov, Dmitri/0000-0002-5055-7339 NR 93 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0024-4937 EI 1872-6143 J9 LITHOS JI Lithos PD NOV 15 PY 2016 VL 265 SI SI BP 31 EP 41 DI 10.1016/j.lithos.2016.07.023 PG 11 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA EE0QF UT WOS:000389283300004 ER PT J AU Abbott, BP Abbott, R Abbott, TD Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, VB Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Aiello, L Ain, A Ajith, P Allen, B Allocca, A Altin, PA Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, CC Areeda, JS Arnaud, N Arun, KG Ascenzi, S Ashton, G Ast, M Aston, SM Astone, P Aufmuth, P Aulbert, C Babak, S Bacon, P Bader, MKM Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barclay, SE Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barta, D Bartlett, J Bartos, I Bassiri, R Basti, A Batch, JC Baune, C Bavigadda, V Bazzan, M Behnke, B Bejger, M Bell, AS Bell, CJ Berger, BK Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Birney, R Biscans, S Bisht, A Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blair, CD Blair, DG Blair, RM Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bogan, C Bohe, A Bojtos, P Bond, C Bondu, F Bonnand, R Boom, BA Bork, R Boschi, V Bose, S Bouffanais, Y Bozzi, A Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Brillet, A Brinkmann, M Brisson, V Brockill, P Brooks, AF Brown, DA Brown, DD Brown, NM Buchanan, CC Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cahillane, C Bustillo, JC Callister, T Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Casentini, C Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, CB Baiardi, LC Cerretani, G Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chan, M Chao, S Charlton, P Chassande-Mottin, E Chen, HY Chen, Y Cheng, C Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, CG Cominsky, L Constancio, M Conte, A Conti, L Cook, D Corbitt, TR Cornish, N Corpuz, A Corsi, A Cortese, S Costa, CA Coughlin, MW Coughlin, SB Coulon, JP Countryman, ST Couvares, P Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Dal Canton, T Danilishin, SL D'Antonio, S Danzmann, K Darman, NS Dattilo, V Dave, I Daveloza, HP Davier, M Davies, GS Daw, EJ Day, R DeBra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Dhurandhar, S Diaz, MC Di Fiore, L Di Giovanni, M Di Girolamo, T Di Lieto, A Di Pace, S Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Drever, RWP Driggers, JC Du, Z Ducrot, M Dwyer, SE Edo, TB Edwards, MC Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Engels, W Essick, RC Etzel, T Evans, M Evans, TM Everett, R Factourovich, M Fafone, V Fair, H Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fiorucci, D Fisher, RP Flaminio, R Fletcher, M Fournier, JD Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Frey, V Fricke, TT Fritschel, P Frolov, VV Fulda, P Fyffe, M Gabbard, HAG Gair, JR Gammaitoni, L Gaonkar, SG Garufi, F Gaur, G Gehrels, N Gemme, G Genin, E Gennai, A George, J Gergely, L Germain, V Ghosh, A Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gill, K Glaefke, A Goetz, E Goetz, R Gondan, L Gonzalez, G Castro, JMG Gopakumar, A Gordon, NA Gorodetsky, ML Gossan, SE Gosselin, M Gouaty, R Grado, A Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greco, G Green, AC Groot, P Grote, H Grunewald, S Guidi, GM Guo, X Gupta, A Gupta, MK Gushwa, KE Gustafson, EK Gustafson, R Hacker, JJ Hall, BR Hall, ED Hammond, G Haney, M Hanke, MM Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, MJ Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Hennig, J Heptonstall, AW Heurs, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Holz, DE Hopkins, P Hosken, DJ Hough, J Houston, EA Howell, EJ Hu, YM Huang, S Huerta, EA Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Isa, HN Isac, JM Isi, M Islas, G Isogai, T Iyer, BR Izumi, K Jacqmin, T Jang, H Jani, K Jaranowski, P Jawahar, S Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalaghatgi, CV Kalmus, P Kalogera, V Kamaretsos, I Kandhasamy, S Kang, G Kanner, JB Karki, S Kasprzack, M Katsavounidis, E Katzman, W Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Kehl, MS Keitel, D Kelley, DB Kells, W Kennedy, R Key, JS Khalaidovski, A Khalili, FY Khan, I Khan, S Khan, Z Khazanov, EA Kijbunchoo, N Kim, C Kim, J Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Kleybolte, L Klimenko, S Koehlenbeck, SM Kokeyama, K Koley, S Kondrashov, V Kontos, A Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, P Kuo, L Kutynia, A Lackey, BD Landry, M Lange, J Lantz, B Lasky, PD Lazzarini, A Lazzaro, C Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Lee, K Lenon, A Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, BM Li, TGF Libson, A Littenberg, TB Lockerbie, NA Loew, K Logue, J Lombardi, AL Lord, JE Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, JD Luck, H Lundgren, AP Luo, J Lynch, R Ma, Y MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, RM Mageswaran, M Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mansell, GL Manske, M Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, AS Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, DV Marx, JN Mason, K Masserot, A Massinger, TJ Masso-Reid, M Mastrogiovanni, S Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J McManus, DJ McWilliams, ST Meacher, D Meadors, GD Meidam, J Melatos, A Mendell, G Mendoza-Gandara, D Mercer, RA Merilh, EL Merzougui, M Meshkov, S Messenger, C Messick, C Metzdorff, R Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, AL Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moggi, A Mohan, M Mohapatra, SRP Montani, M Moore, BC Moore, CJ Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Muir, AW Mukherjee, A Mukherjee, D Mukherjee, S Mukund, KN Mullavey, A Munch, J Murphy, DJ Murray, PG Mytidis, A Nardecchia, I Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, M Neunzert, A Newton, G Nguyen, TT Nielsen, AB Nissanke, S Nitz, A Nocera, F Nolting, D Normandin, MEN Nuttall, LK Oberling, J Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oliver, M Oppermann, P Oram, RJ O'Reilly, B O'Shaughnessy, R Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pai, A Pai, SA Palamos, JR Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, F Paoli, A Papa, MA Paris, HR Parker, W Pascucci, D Pasqualetti, A Passaquieti, R Passuello, D Patricelli, B Patrick, Z Pearlstone, BL Pedraza, M Pedurand, R Pekowsky, L Pele, A Penn, S Pereira, R Perreca, A Phelps, M Piccinni, OJ Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poggiani, R Popolizio, P Post, A Powell, J Prasad, J Predoi, V Premachandra, SS Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qi, H Qin, J Quetschke, V Quintero, EA Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rakhmanov, M Rapagnani, P Raymond, V Razzano, M Re, V Read, J Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Rew, H Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, VJ Romano, JD Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Salconi, L Saleem, M Salemi, F Samajdar, A Sammut, L Sanchez, EJ Sandberg, V Sandeen, B Sanders, JR Santamaria, L Sassolas, B Sathyaprakash, BS Saulson, PR Sauter, OES Savage, RL Sawadsky, A Schale, P Schilling, R Schmidt, J Schmidt, P Schnabel, R Schofield, RMS Schonbeck, A Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sentenac, D Sequino, V Sergeev, A Serna, G Setyawati, Y Sevigny, A Shaddock, DA Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Sheperd, A Shoemaker, DH Shoemaker, DM Siellez, K Siemens, X Sieniawska, M Sigg, D Silva, AD Simakov, D Singer, A Singer, LP Singh, A Singh, R Singhal, A Sintes, AM Slagmolen, BJJ Smith, JR Smith, ND Smith, RJE Son, EJ Sorazu, B Sorrentino, F Souradeep, T Srivastava, AK Staley, A Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Stone, R Strain, KA Straniero, N Stratta, G Strauss, NA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sun, L Sutton, PJ Swinkels, BL Szczepanczyk, MJ Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Theeg, T Thirugnanasambandam, MP Thomas, EG Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, S Tiwari, V Tokmakov, KV Tomlinson, C Tonelli, M Torres, CV Torrie, CI Toyra, D Travasso, F Traylor, G Trifiro, D Tringali, MC Trozzo, L Tse, M Turconi, M Tuyenbayev, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G van Bakel, N van Beuzekom, M van den Brand, JFJ van den Broeck, C Vander-Hyde, DC van der Schaaf, L van Heijningen, JV van Veggel, AA Vardaro, M Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vinciguerra, S Vine, DJ Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Voss, DV Vousden, WD Vyatchanin, SP Wade, AR Wade, LE Wade, M Walker, M Wallace, L Walsh, S Wang, G Wang, H Wang, M Wang, X Wang, Y Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Williams, RD Williamson, AR Willis, JL Willke, B Wimmer, MH Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Wright, JL Wu, G Yablon, J Yam, W Yamamoto, H Yancey, CC Yap, MJ Yu, H Yvert, M Zadrozny, A Zangrando, L Zanolin, M Zendri, JP Zevin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhou, Z Zhu, XJ Zucker, ME Zuraw, SE Zweizig, J AF Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, B. Allocca, A. Altin, P. A. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. C. Areeda, J. S. Arnaud, N. Arun, K. G. Ascenzi, S. Ashton, G. Ast, M. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Bacon, P. Bader, M. K. M. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barclay, S. E. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barta, D. Bartlett, J. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Baune, C. Bavigadda, V. Bazzan, M. Behnke, B. Bejger, M. Bell, A. S. Bell, C. J. Berger, B. K. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Birney, R. Biscans, S. Bisht, A. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blair, C. D. Blair, D. G. Blair, R. M. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bogan, C. Bohe, A. Bojtos, P. Bond, C. Bondu, F. Bonnand, R. Boom, B. A. Bork, R. Boschi, V. Bose, S. Bouffanais, Y. Bozzi, A. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Brillet, A. Brinkmann, M. Brisson, V. Brockill, P. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchanan, C. C. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cahillane, C. Bustillo, J. Calderon Callister, T. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Casentini, C. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. B. Baiardi, L. Cerboni Cerretani, G. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chan, M. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, H. Y. Chen, Y. Cheng, C. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. G. Cominsky, L. Constancio, M., Jr. Conte, A. Conti, L. Cook, D. Corbitt, T. R. Cornish, N. Corpuz, A. Corsi, A. Cortese, S. Costa, C. A. Coughlin, M. W. Coughlin, S. B. Coulon, J. -P. Countryman, S. T. Couvares, P. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Dal Canton, T. Danilishin, S. L. D'Antonio, S. Danzmann, K. Darman, N. S. Dattilo, V. Dave, I. Daveloza, H. P. Davier, M. Davies, G. S. Daw, E. J. Day, R. DeBra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Dhurandhar, S. Diaz, M. C. Di Fiore, L. Di Giovanni, M. Di Girolamo, T. Di Lieto, A. Di Pace, S. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. E. Edo, T. B. Edwards, M. C. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Engels, W. Essick, R. C. Etzel, T. Evans, M. Evans, T. M. Everett, R. Factourovich, M. Fafone, V. Fair, H. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fiorucci, D. Fisher, R. P. Flaminio, R. Fletcher, M. Fournier, J. -D. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Frey, V. Fricke, T. T. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gabbard, H. A. G. Gair, J. R. Gammaitoni, L. Gaonkar, S. G. Garufi, F. Gaur, G. Gehrels, N. Gemme, G. Genin, E. Gennai, A. George, J. Gergely, L. Germain, V. Ghosh, Archisman Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gill, K. Glaefke, A. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Castro, J. M. Gonzalez Gopakumar, A. Gordon, N. A. Gorodetsky, M. L. Gossan, S. E. Gosselin, M. Gouaty, R. Grado, A. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greco, G. Green, A. C. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guo, X. Gupta, A. Gupta, M. K. Gushwa, K. E. Gustafson, E. K. Gustafson, R. Hacker, J. J. Hall, B. R. Hall, E. D. Hammond, G. Haney, M. Hanke, M. M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. J. Hartman, M. T. Haster, C. -J. Haughian, K. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Hennig, J. Heptonstall, A. W. Heurs, M. Hild, S. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Holz, D. E. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. A. Howell, E. J. Hu, Y. M. Huang, S. Huerta, E. A. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Isa, H. N. Isac, J. -M. Isi, M. Islas, G. Isogai, T. Iyer, B. R. Izumi, K. Jacqmin, T. Jang, H. Jani, K. Jaranowski, P. Jawahar, S. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalaghatgi, C. V. Kalmus, P. Kalogera, V. Kamaretsos, I. Kandhasamy, S. Kang, G. Kanner, J. B. Karki, S. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Kehl, M. S. Keitel, D. Kelley, D. B. Kells, W. Kennedy, R. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khan, I. Khan, S. Khan, Z. Khazanov, E. A. Kijbunchoo, N. Kim, Chunglee Kim, J. Kim, K. Kim, Nam-Gyu Kim, Namjun Kim, Y. -M. King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Kleybolte, L. Klimenko, S. Koehlenbeck, S. M. Kokeyama, K. Koley, S. Kondrashov, V. Kontos, A. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, P. Kuo, L. Kutynia, A. Lackey, B. D. Landry, M. Lange, J. Lantz, B. Lasky, P. D. Lazzarini, A. Lazzaro, C. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Lee, K. Lenon, A. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. M. Li, T. G. F. Libson, A. Littenberg, T. B. Lockerbie, N. A. Loew, K. Logue, J. Lombardi, A. L. Lord, J. E. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. D. Lueck, H. Lundgren, A. P. Luo, J. Lynch, R. Ma, Y. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Magee, R. M. Mageswaran, M. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Manske, M. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. S. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. V. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Masso-Reid, M. Mastrogiovanni, S. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. McManus, D. J. McWilliams, S. T. Meacher, D. Meadors, G. D. Meidam, J. Melatos, A. Mendell, G. Mendoza-Gandara, D. Mercer, R. A. Merilh, E. L. Merzougui, M. Meshkov, S. Messenger, C. Messick, C. Metzdorff, R. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, A. L. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moggi, A. Mohan, M. Mohapatra, S. R. P. Montani, M. Moore, B. C. Moore, C. J. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Muir, A. W. Mukherjee, Arunava Mukherjee, D. Mukherjee, S. Mukund, K. N. Mullavey, A. Munch, J. Murphy, D. J. Murray, P. G. Mytidis, A. Nardecchia, I. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, M. Neunzert, A. Newton, G. Nguyen, T. T. Nielsen, A. B. Nissanke, S. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Oberling, J. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oliver, M. Oppermann, P. Oram, Richard J. O'Reilly, B. O'Shaughnessy, R. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pai, A. Pai, S. A. Palamos, J. R. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Paoli, A. Papa, M. A. Paris, H. R. Parker, W. Pascucci, D. Pasqualetti, A. Passaquieti, R. Passuello, D. Patricelli, B. Patrick, Z. Pearlstone, B. L. Pedraza, M. Pedurand, R. Pekowsky, L. Pele, A. Penn, S. Pereira, R. Perreca, A. Phelps, M. Piccinni, O. J. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poggiani, R. Popolizio, P. Post, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Purrer, M. Qi, H. Qin, J. Quetschke, V. Quintero, E. A. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rakhmanov, M. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Read, J. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Rew, H. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. J. Romano, J. D. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Salconi, L. Saleem, M. Salemi, F. Samajdar, A. Sammut, L. Sanchez, E. J. Sandberg, V. Sandeen, B. Sanders, J. R. Santamaria, L. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Sauter, O. E. S. Savage, R. L. Sawadsky, A. Schale, P. Schilling, R. Schmidt, J. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schoenbeck, A. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Setyawati, Y. Sevigny, A. Shaddock, D. A. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Sheperd, A. Shoemaker, D. H. Shoemaker, D. M. Siellez, K. Siemens, X. Sieniawska, M. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. P. Singh, A. Singh, R. Singhal, A. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, N. D. Smith, R. J. E. Son, E. J. Sorazu, B. Sorrentino, F. Souradeep, T. Srivastava, A. K. Staley, A. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Stone, R. Strain, K. A. Straniero, N. Stratta, G. Strauss, N. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, L. Sutton, P. J. Swinkels, B. L. Szczepanczyk, M. J. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Theeg, T. Thirugnanasambandam, M. P. Thomas, E. G. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, S. Tiwari, V. Tokmakov, K. V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Toyra, D. Travasso, F. Traylor, G. Trifiro, D. Tringali, M. C. Trozzo, L. Tse, M. Turconi, M. Tuyenbayev, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. van den Broeck, C. Vander-Hyde, D. C. van der Schaaf, L. van Heijningen, J. V. van Veggel, A. A. Vardaro, M. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vinciguerra, S. Vine, D. J. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Voss, D. V. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. E. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, G. Wang, H. Wang, M. Wang, X. Wang, Y. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Williams, R. D. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. H. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Wright, J. L. Wu, G. Yablon, J. Yam, W. Yamamoto, H. Yancey, C. C. Yap, M. J. Yu, H. Yvert, M. Zadrozny, A. Zangrando, L. Zanolin, M. Zendri, J. -P. Zevin, M. Zhang, F. Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhou, Z. Zhu, X. J. Zucker, M. E. Zuraw, S. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors SO PHYSICAL REVIEW D LA English DT Article ID ACCRETION-SHOCK INSTABILITY; EXPANDING PHOTOSPHERE METHOD; RED SUPERGIANT PROGENITOR; GAMMA-RAY BURSTS; IIB SN 2008AX; SCIENCE RUN; MASSIVE STARS; RELATIVISTIC SIMULATIONS; LIGO OBSERVATIONS; NEUTRINO BURST AB We present results from a search for gravitational-wave bursts coincident with two core-collapse supernovae observed optically in 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and Virgo detectors. C1 [Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Chakraborty, R.; Chalermsongsak, T.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Isi, M.; Kalmus, P.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Li, T. G. F.; Mageswaran, M.; Maros, E.; Martynov, D. V.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Santamaria, L.; Schmidt, P.; Shao, Z.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Adams, T.; Buchanan, C. C.; Corbitt, T. R.; Cripe, J.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kasprzack, M.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Di Girolamo, T.; Garufi, F.; Grado, A.; Milano, L.; Romano, R.] Complesso Univ Monte S Angelo, Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Ackley, K.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Fulda, P.; Goetz, R.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Miller, A. L.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Voss, D. V.; Whiting, B. F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Cowart, M. J.; DeRosa, R. T.; Doravari, S.; Effler, A.; Evans, T. M.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, Richard J.; O'Reilly, B.; Overmier, H.; Parker, W.; Pele, A.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wu, G.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie Mont Blanc, Lab Annecy le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Adya, V. B.; Affeldt, C.; Allen, B.; Aulbert, C.; Baune, C.; Bergmann, G.; Bisht, A.; Bock, O.; Bogan, C.; Brinkmann, M.; Capano, C. D.; Dal Canton, T.; Danzmann, K.; Denker, T.; Dent, T.; Di Palma, I.; Drago, M.; Eggenstein, H. -B.; Fehrmann, H.; Fricke, T. T.; Grote, H.; Hanke, M. M.; Heurs, M.; Indik, N.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Koehlenbeck, S. M.; Kringel, V.; Krishnan, B.; Kuehn, G.; Leong, J. R.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Meadors, G. D.; Mendoza-Gandara, D.; Ming, J.; Mossavi, K.; Nielsen, A. B.; Nitz, A.; Oppermann, P.; Papa, M. A.; Post, A.; Prix, R.; Puncken, O.; Ruediger, A.; Salemi, F.; Schilling, R.; Schmidt, J.; Schreiber, E.; Schuette, D.; Shaltev, M.; Simakov, D.; Singh, A.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bader, M. K. M.; Bertolini, A.; Boom, B. A.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Koley, S.; Meidam, J.; Nelemans, G.; Nissanke, S.; Setyawati, Y.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R. C.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Kontos, A.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Yam, W.; Yu, H.; Zhang, F.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Aiello, L.; Coccia, E.; Khan, I.; Lorenzini, M.; Singhal, A.; Tiwari, S.; Wang, G.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Aiello, L.; Ascenzi, S.; Casentini, C.; Cesarini, E.; D'Antonio, S.; Fafone, V.; Lorenzini, M.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ain, A.; Bose, S.; Dhurandhar, S.; Gaonkar, S. G.; Gupta, A.; Mitra, S.; Mukund, K. N.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Ghosh, Archisman; Iyer, B. R.; Mishra, C.; Mukherjee, Arunava] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Allen, B.; Anderson, W. G.; Brady, P. R.; Brockill, P.; Caudill, S.; Chamberlin, S. J.; Creighton, J. D. E.; Downes, T. P.; Manske, M.; Mercer, R. A.; Mukherjee, D.; Ochsner, E.; Pankow, C.; Papa, M. A.; Qi, H.; Sadeghian, L.; Sheperd, A.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, B.; Aufmuth, P.; Bisht, A.; Danzmann, K.; Denker, T.; Heurs, M.; Kaufer, S.; Krueger, C.; Lough, J. D.; Lueck, H.; Sawadsky, A.; Schuette, D.; Steinmeyer, D.; Vahlbruch, H.; Willke, B.; Wimmer, M. H.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allocca, A.; Basti, A.; Boschi, V.; Cerretani, G.; Di Lieto, A.; Ferrante, I.; Castro, J. M. Gonzalez; Passaquieti, R.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Basti, A.; Boschi, V.; Bradaschia, C.; Cella, G.; Cerretani, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Castro, J. M. Gonzalez; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Poggiani, R.; Razzano, M.; Tonelli, M.; Trozzo, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Altin, P. A.; Chow, J. H.; Mansell, G. L.; McClelland, D. E.; McManus, D. J.; Nguyen, T. T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.; Yap, M. J.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Arceneaux, C. C.; Cavaglia, M.; Dooley, K. L.; Gabbard, H. A. G.; Kandhasamy, S.; Trifiro, D.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J. J.; Islas, G.; Read, J.; Serna, G.; Smith, J. R.; Vander-Hyde, D. C.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Robinet, F.] Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, LAL, F-91400 Orsay, France. [Arun, K. G.; Kalaghatgi, C. V.] Chennai Math Inst, Madras 603103, Tamil Nadu, India. [Ascenzi, S.; Casentini, C.; Cesarini, E.; Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, M.; Kleybolte, L.; Korobko, M.; Pal-Singh, A.; Schnabel, R.; Schoenbeck, A.] Univ Hamburg, D-22761 Hamburg, Germany. [Astone, P.; Colla, A.; Conte, A.; Di Pace, S.; Frasca, S.; Leaci, P.; Majorana, E.; Mastrogiovanni, S.; Mezzani, F.; Miller, A. L.; Naticchioni, L.; Palomba, C.; Piccinni, O. J.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Babak, S.; Behnke, B.; Bohe, A.; Buonanno, A.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Meadors, G. D.; Ming, J.; Papa, M. A.; Privitera, S.; Raymond, V.; Singh, A.; Taracchini, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Bacon, P.; Barsuglia, M.; Bouffanais, Y.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Fiorucci, D.; Lebigot, E. O.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, CNRS IN2P3, APC,AstroParticule & Cosmol,CEA Irfu,Observ Paris, F-75205 Paris 13, France. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Bozzi, A.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cortese, S.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Gosselin, M.; Hemming, G.; Hoak, D.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoli, A.; Pasqualetti, A.; Pillant, G.; Popolizio, P.; Prijatelj, M.; Ruggi, P.; Salconi, L.; Sentenac, D.; Swinkels, B. L.] EGO, I-5602 Pisa, Italy. [Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Fair, H.; Fisher, R. P.; Kelley, D. B.; Lackey, B. D.; Lenon, A.; Lord, J. E.; Magana-Sandoval, F.; Massinger, T. J.; Nuttall, L. K.; Pekowsky, L.; Saulson, P. R.; Usman, S. A.; Vander-Hyde, D. C.; Vo, T.] Syracuse Univ, Syracuse, NY 13244 USA. [Barclay, S. E.; Barr, B.; Bell, A. S.; Bell, C. J.; Chan, M.; Craig, K.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Davies, G. S.; Douglas, R.; Fletcher, M.; Glaefke, A.; Gordon, N. A.; Graef, C.; Grant, A.; Hammond, G.; Hart, M. J.; Haughian, K.; Hendry, M.; Heng, I. S.; Hennig, J.; Hild, S.; Hough, J.; Houston, E. A.; Hu, Y. M.; Huttner, S. H.; Isa, H. N.; Jones, R.; Leavey, S.; Lee, K.; Logue, J.; Mangano, V.; Martin, I. W.; Masso-Reid, M.; Messenger, C.; Murray, P. G.; Newton, G.; Pascucci, D.; Pearlstone, B. L.; Phelps, M.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; van Veggel, A. A.; Woan, G.; Wright, J. L.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Batch, J. C.; Bergman, J.; Blair, R. M.; Clara, F.; Cook, D.; Driggers, J. C.; Dwyer, S. E.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; Kijbunchoo, N.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B. M.; McCarthy, R.; Mendell, G.; Merilh, E. L.; Moraru, D.; Moreno, G.; Oberling, J.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R. L.; Sevigny, A.; Sigg, D.; Thomas, P.; Vorvick, C.; Warner, J.; Weaver, B.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barta, D.; Debreczeni, G.; Vasuth, M.] Wigner RCP, RMKI, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary. [Bartos, I.; Countryman, S. T.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D. J.; Pereira, R.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Byer, R. L.; DeBra, D.; Fejer, M. M.; Kim, Namjun; Lantz, B.; MacDonald, T.; Markosyan, A. S.; Paris, H. R.; Patrick, Z.; Shapiro, B.] Stanford Univ, Stanford, CA 94305 USA. [Bazzan, M.; Vardaro, M.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Bazzan, M.; Conti, L.; Lazzaro, C.; Vardaro, M.; Vedovato, G.; Zangrando, L.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bejger, M.; Rosinska, D.; Sieniawska, M.] CAMK PAN, PL-00716 Warsaw, Poland. [Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Green, A. C.; Haster, C. -J.; Mandel, I.; Miao, H.; Middleton, H.; Mow-Lowry, C. M.; Thomas, E. G.; Toyra, D.; Vecchio, A.; Veitch, J.; Vinciguerra, S.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.; Sorrentino, F.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; George, J.; Pai, S. A.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia. [Birney, R.; Reid, S.; Vine, D. J.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Blair, C. D.; Blair, D. G.; Chu, Q.; Chung, S.; Coward, D. M.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wang, Y.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Nissanke, S.; Setyawati, Y.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Merzougui, M.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Univ Cote dAzur, CNRS, Observ Cote dAzur, Artemis, CS 34229, Nice 4, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Hall, B. R.; Magee, R. M.; Mazumder, N.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Martelli, F.; Montani, M.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Baiardi, L. Cerboni; Greco, G.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Stratta, G.; Vetrano, F.; Vicere, A.; Wang, G.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Karki, S.; Palamos, J. R.; Quitzow-James, R.; Roma, V. J.; Schale, P.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.; Isac, J. -M.; Jacqmin, T.; Metzdorff, R.] ENS PSL Res Univ, Lab Kastler Brossel, Coll France, UPMC,Sorbonne Univ,CNRS, F-75005 Paris, France. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Cho, M.; Graff, P. B.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Cadonati, L.; Bustillo, J. Calderon; Clark, J. A.; Jani, K.; Lazzaro, C.; Shoemaker, D. M.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pedurand, R.; Pinard, L.; Sassolas, B.; Straniero, N.] CNRS IN2P3, LMA, F-69622 Villeurbanne, France. [Cagnoli, G.] Univ Claude Bernard Lyon 1, F-69622 Villeurbanne, France. [Bustillo, J. Calderon; Husa, S.; Jimenez-Forteza, F.; Oliver, M.; Sintes, A. M.] Univ Illes Balears, IAC3 IEEC, E-07122 Palma De Mallorca, Spain. [Calloni, E.; De laurentis, M.; De Rosa, R.; Di Girolamo, T.; Garufi, F.; Milano, L.] Univ Napoli Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Camp, J. B.; Gehrels, N.; Graff, P. B.; Singer, L. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, K. C.; Kehl, M. S.; Kumar, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto M5S 3H8, ON, Canada. [Cao, J.; Du, Z.; Fan, X.; Guo, X.; Lebigot, E. O.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Goetz, E.; Gustafson, R.; Neunzert, A.; Riles, K.; Sanders, J. R.; Sauter, O. E. S.] Univ Michigan, Ann Arbor, MI 48109 USA. [Chao, S.; Cheng, C.; Huang, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, H. Y.; Farr, B.; Holz, D. E.] Univ Chicago, Chicago, IL 60637 USA. [Chen, Y.; Engels, W.; Ott, C. D.; Schmidt, P.; Thorne, K. S.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Jang, H.; Kang, G.; Kim, Chunglee; Kim, Nam-Gyu] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Christensen, N.; Coughlin, M. W.; Edwards, M. C.; Luo, J.; Strauss, N. A.] Carleton Coll, Northfield, MN 55057 USA. [Colla, A.; Conte, A.; Di Pace, S.; Frasca, S.; Leaci, P.; Mastrogiovanni, S.; Mezzani, F.; Miller, A. L.; Naticchioni, L.; Piccinni, O. J.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Collette, C. G.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Corsi, A.; Coyne, R.; Inta, R.; Owen, B. J.] Texas Tech Univ, Lubbock, TX 79409 USA. [Coughlin, S. B.; Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Kamaretsos, I.; Khan, S.; Muir, A. W.; Ohme, F.; Pannarale, F.; Predoi, V.; Purrer, M.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Tiwari, V.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Darman, N. S.; Melatos, A.; Sammut, L.; Sun, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Daveloza, H. P.; Diaz, M. C.; Key, J. S.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Torres, C. V.; Tuyenbayev, D.; Valdes, G.] Univ Texas Rio Grande Valley, Brownsville, TX 78520 USA. [Daw, E. J.; Edo, T. B.; Kennedy, R.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Di Giovanni, M.; Leonardi, M.; Prodi, G. A.; Tringali, M. C.] Univt Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy. [Di Giovanni, M.; Leonardi, M.; Prodi, G. A.; Tiwari, S.; Tringali, M. C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Dojcinoski, G.; Favata, M.; Moore, B. C.] Montclair State Univ, Montclair, NJ 07043 USA. [Everett, R.; Hanna, C.; Idrisy, A.; Messick, C.] Penn State Univ, University Pk, PA 16802 USA. [Flaminio, R.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Gair, J. R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland. [Gaur, G.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Gaur, G.; Gupta, M. K.; Khan, Z.; Srivastava, A. K.] Inst Plasma Phys, Bhat 382428, Gandhinagar, India. [Gergely, L.; Tapai, M.] Univ Szeged, M T R 9, Dom Ter 9, H-6720 Szeged, Hungary. [Corpuz, A.; Gill, K.; Hughey, B.; Loew, K.; Szczepanczyk, M. J.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Gopakumar, A.; Haney, M.; Unnikrishnan, C. S.] Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Grado, A.] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hoak, D.; Lombardi, A. L.; McIver, J.; Nedkova, K.; Zuraw, S. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E. A.; McWilliams, S. T.] West Virginia Univ, Morgantown, WV 26506 USA. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Pai, A.; Saleem, M.] IISER TVM, CET Campus, Trivandrum 695016, Kerala, India. [Kalogera, V.; Pankow, C.; Sandeen, B.; Shahriar, M. S.; Yablon, J.; Zevin, M.; Zhou, M.; Zhou, Z.] Northwestern Univ, Evanston, IL 60208 USA. [Khazanov, E. A.; Palashov, O.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, J.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Lange, J.; O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Lasky, P. D.; Levin, Y.; Premachandra, S. S.; Sammut, L.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Littenberg, T. B.] Univ Alabama, Huntsville, AL 35899 USA. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.] Southern Univ & A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Rew, H.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil. [Moore, C. J.] Univ Cambridge, Cambridge CB2 1TN, England. [Nayak, R. K.; Samajdar, A.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Ogin, G. H.] Whitman Coll, 345 Boyer Ave, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [Pedurand, R.] Univ Lyon, F-69361 Lyon, France. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rosinska, D.] Univ Zielona Gora, Janusz Gil Inst Astron, PL-65265 Zielona Gora, Poland. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Trozzo, L.] Univ Siena, I-53100 Siena, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Wade, L. E.; Wade, M.] Kenyon Coll, Gambier, OH 43022 USA. [Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Costa, Cesar/G-7588-2012; Marchesoni, Fabio/A-1920-2008; Strigin, Sergey/I-8337-2012; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; prodi, giovanni/B-4398-2010; Gemme, Gianluca/C-7233-2008; Leonardi, Matteo/G-9694-2015; Ferrante, Isidoro/F-1017-2012; Rocchi, Alessio/O-9499-2015; Cesarini, Elisabetta/C-4507-2017; Strain, Kenneth/D-5236-2011; Danilishin, Stefan/K-7262-2012; Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Prokhorov, Leonid/I-2953-2012; Gammaitoni, Luca/B-5375-2009; Ciani, Giacomo/G-1036-2011; Sigg, Daniel/I-4308-2015; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Garufi, Fabio/K-3263-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; OI Marchesoni, Fabio/0000-0001-9240-6793; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; prodi, giovanni/0000-0001-5256-915X; Gemme, Gianluca/0000-0002-1127-7406; Ferrante, Isidoro/0000-0002-0083-7228; Rocchi, Alessio/0000-0002-1382-9016; Cesarini, Elisabetta/0000-0001-9127-3167; Strain, Kenneth/0000-0002-2066-5355; Danilishin, Stefan/0000-0001-7758-7493; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Gammaitoni, Luca/0000-0002-4972-7062; Ciani, Giacomo/0000-0003-4258-9338; Sigg, Daniel/0000-0003-4606-6526; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Garufi, Fabio/0000-0003-1391-6168; Zweizig, John/0000-0002-1521-3397; Granata, Massimo/0000-0003-3275-1186; Piccinni, Ornella Juliana/0000-0001-5478-3950; Nelemans, Gijs/0000-0002-0752-2974; Wang, Gang/0000-0002-9668-8772; Pitkin, Matthew/0000-0003-4548-526X; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628 FU Science and Technology Facilities Council of the United Kingdom; Max-Planck-Society; Italian Istituto Nazionale di Fisica Nucleare; Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter - Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS Programme of Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX We thank L. Dessart for applying the expanding photosphere method to SN 2008bk to derive an approximate explosion date and A. Howell for access to his supernova spectra fit software SUPERFIT. The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO 600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This document has been assigned LIGO Laboratory document No. LIGO-P1400208. NR 172 TC 2 Z9 2 U1 27 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 15 PY 2016 VL 94 IS 10 AR 102001 DI 10.1103/PhysRevD.94.102001 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA ED1DP UT WOS:000388584600001 ER PT J AU Le Jeannic, H Verma, VB Cavailles, A Marsili, F Shaw, MD Huang, K Morin, O Nam, SW Laurat, J AF Le Jeannic, Hanna Verma, Varun B. Cavailles, Adrien Marsili, Francesco Shaw, Matthew D. Huang, Kun Morin, Olivier Nam, Sae Woo Laurat, Julien TI High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared SO OPTICS LETTERS LA English DT Article ID SQUEEZED STATES; INFORMATION; GENERATION; OPTICS; LIGHT AB We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous tungsten silicide and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric downconversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of 0.6 x 10(4) photons/(s . mW . MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering. (C) 2016 Optical Society of America. C1 [Le Jeannic, Hanna; Cavailles, Adrien; Huang, Kun; Laurat, Julien] PSL Res Univ, Sorbonne Univ, UPMC, Lab Kastler Brossel,CNRS,ENS,Coll France, 4 Pl Jussieu, F-75005 Paris, France. [Verma, Varun B.; Nam, Sae Woo] NIST, 325 Broadway, Boulder, CO 80305 USA. [Marsili, Francesco; Shaw, Matthew D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Morin, Olivier] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany. RP Laurat, J (reprint author), PSL Res Univ, Sorbonne Univ, UPMC, Lab Kastler Brossel,CNRS,ENS,Coll France, 4 Pl Jussieu, F-75005 Paris, France. EM julien.laurat@upmc.fr RI MORIN, Olivier/A-1075-2017 FU European Research Council (ERC) (HybridNet); Institut Universitaire de France (IUF); Jet Propulsion Laboratory (JPL); Defense Advanced Research Projects Agency (DARPA) (InPho, Quiness) FX European Research Council (ERC) (HybridNet); Institut Universitaire de France (IUF); Jet Propulsion Laboratory (JPL); Defense Advanced Research Projects Agency (DARPA) (InPho, Quiness). NR 41 TC 0 Z9 0 U1 16 U2 16 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD NOV 15 PY 2016 VL 41 IS 22 BP 5341 EP 5344 DI 10.1364/OL.41.005341 PG 4 WC Optics SC Optics GA EC0AV UT WOS:000387760700052 PM 27842128 ER PT J AU Reid, JS Xian, P Holben, BN Hyer, EJ Reid, EA Salinas, SV Zhang, JL Campbell, JR Chew, BN Holz, RE Kuciauskas, AP Lagrosas, N Posselt, DJ Sampson, CR Walker, AL Welton, EJ Zhang, CD AF Reid, Jeffrey S. Xian, Peng Holben, Brent N. Hyer, Edward J. Reid, Elizabeth A. Salinas, Santo V. Zhang, Jianglong Campbell, James R. Chew, Boon Ning Holz, Robert E. Kuciauskas, Arunas P. Lagrosas, Nofel Posselt, Derek J. Sampson, Charles R. Walker, Annette L. Welton, E. Judd Zhang, Chidong TI Aerosol meteorology of the Maritime Continent for the 2012 7SEAS southwest monsoon intensive study - Part 1: regional-scale phenomena SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MADDEN-JULIAN OSCILLATION; SMOKE TRANSPORT; SOUTHEAST-ASIA; OPTICAL DEPTH; EL-NINO; SEASONAL PREDICTABILITY; TROPICAL CYCLONES; NORTH PACIFIC; RAINFALL; PHILIPPINES AB The largest 7 Southeast Asian Studies (7SEAS) operation period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Included was an enhanced deployment of Aerosol Robotic Network (AERONET) sun photometers, multiple lidars, and field measurements to observe transported smoke and pollution as it left the MC and entered the southwest monsoon trough. Here we describe the nature of the overall 2012 southwest monsoon (SWM) and biomass burning season to give context to the 2012 deployment. The MC in 2012 was in a slightly warm El Nino/Southern Oscillation (ENSO) phase and with spatially typical burning activity. However, overall fire counts for 2012 were 10% lower than the Reid et al. (2012) baseline, with regions of significant departures from this norm, ranging from southern Sumatra (+30 %) to southern Kalimantan (-42 %). Fire activity and monsoonal flows for the dominant burning regions were modulated by a series of intraseasonal oscillation events (e.g., Madden-Julian Oscillation, or MJO, and boreal summer intraseasonal oscillation, or BSISO). As is typical, fire activity systematically progressed eastward over time, starting with central Sumatran fire activity in June related to a moderately strong MJO event which brought drier air from the Indian Ocean aloft and enhanced monsoonal flow. Further burning in Sumatra and Kalimantan Borneo occurred in a series of significant events from early August to a peak in the first week of October, ending when the monsoon started to migrate back to its wintertime northeastern flow conditions in mid-October. Significant monsoonal enhancements and flow reversals collinear with tropical cyclone (TC) activity and easterly waves were also observed. Islands of the eastern MC, including Sulawesi, Java, and Timor, showed less sensitivity to monsoonal variation, with slowly increasing fire activity that also peaked in early October but lingered into November. Interestingly, even though fire counts were middling, resultant AERONET 500 nm aerosol optical thickness (AOT) from fire activity was high, with maximums of 3.6 and 5.6 in the Sumatra and Kalimantan source regions at the end of the burning season and an average of similar to 1. AOTs could also be high at receptor sites, with a mean and maximum of 0.57 and 1.24 in Singapore and 0.61 and 0.8 in Kuching Sarawak. Ultimately, outside of the extreme 2015 El Nino event, average AERONET AOT values were higher than any other time since sites were established. Thus, while satellite fire data, models, and AERONET all qualitatively agree on the nature of smoke production and transport, the MC's complex environment resulted in clear differences in quantitative interpretation of these datasets. C1 [Reid, Jeffrey S.; Xian, Peng; Hyer, Edward J.; Reid, Elizabeth A.; Campbell, James R.; Kuciauskas, Arunas P.; Sampson, Charles R.; Walker, Annette L.] Naval Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. [Holben, Brent N.; Welton, E. Judd] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Salinas, Santo V.] Natl Univ Singapore, Ctr Remote Imaging Sensing & Proc, Singapore, Singapore. [Zhang, Jianglong] Univ North Dakota, Dept Atmospher Sci, Grand Forks, ND USA. [Chew, Boon Ning] Meteorol Serv, Singapore, Singapore. [Holz, Robert E.] Univ Wisconsin, Space Sci Engn Ctr, Madison, WI USA. [Lagrosas, Nofel] Manila Observ, Manila, Philippines. [Posselt, Derek J.] Jet Prop Lab, Pasadena, CA USA. [Zhang, Chidong] NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way Ne, Seattle, WA 98115 USA. RP Reid, JS (reprint author), Naval Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. EM jeffrey.reid@nrlmry.navy.mil RI Campbell, James/C-4884-2012; OI Campbell, James/0000-0003-0251-4550; LAGROSAS, NOFEL/0000-0002-8672-4717 FU Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS) science team; NASA [NNG13HH10I] FX We are grateful to all participants of the 2012 7SEAS intensive study and are in particular to the host institutions for regional AERONET site deployment and the use of derived optical thickness data herein. Authors also benefitted from conversations with Eric Maloney (CSU), Matthew Wheeler (CSIRO), and Chidong Zhang (U of Miami). Funding for US scientist deployment and instrument analysis was provided by the NRL Base Program and ONR 35. Modeling analysis was provided by ONR 32. Remote sensing and model analysis was provided by the NASA Interdisciplinary Science Program. Ground site deployments were supported by the NASA Radiation Science Program through a grant from the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS) science team. Author James R. Campbell acknowledges the support of NASA Interagency Agreement NNG13HH10I on behalf of MPLNET and SEAC4RS science teams. NR 64 TC 2 Z9 2 U1 7 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 15 PY 2016 VL 16 IS 22 BP 14041 EP 14056 DI 10.5194/acp-16-14041-2016 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC1JN UT WOS:000387860800001 ER PT J AU Reid, JS Lagrosas, ND Jonsson, HH Reid, EA Atwood, SA Boyd, TJ Ghate, VP Xian, P Posselt, DJ Simpas, JB Uy, SN Zaiger, K Blake, DR Bucholtz, A Campbell, JR Chew, BN Cliff, SS Holben, BN Holz, RE Hyer, EJ Kreidenweis, SM Kuciauskas, AP Lolli, S Oo, M Perry, KD Salinas, SV Sessions, WR Smirnov, A Walker, AL Wang, Q Yu, LY Zhang, JL Zhao, YJ AF Reid, Jeffrey S. Lagrosas, Nofel D. Jonsson, Haflidi H. Reid, Elizabeth A. Atwood, Samuel A. Boyd, Thomas J. Ghate, Virendra P. Xian, Peng Posselt, Derek J. Simpas, James B. Uy, Sherdon N. Zaiger, Kimo Blake, Donald R. Bucholtz, Anthony Campbell, James R. Chew, Boon Ning Cliff, Steven S. Holben, Brent N. Holz, Robert E. Hyer, Edward J. Kreidenweis, Sonia M. Kuciauskas, Arunas P. Lolli, Simone Oo, Min Perry, Kevin D. Salinas, Santo V. Sessions, Walter R. Smirnov, Alexander Walker, Annette L. Wang, Qing Yu, Liya Zhang, Jianglong Zhao, Yongjing TI Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study - Part 2: Philippine receptor observations of fine-scale aerosol behavior SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MADDEN-JULIAN OSCILLATION; AIR-QUALITY; EMISSION FACTORS; SMOKE TRANSPORT; OPTICAL DEPTH; CLOUDS; PARTICLES; GROWTH; BRAZIL; SEA AB The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3-12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model. Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds. C1 [Reid, Jeffrey S.; Reid, Elizabeth A.; Xian, Peng; Bucholtz, Anthony; Campbell, James R.; Hyer, Edward J.; Kuciauskas, Arunas P.; Walker, Annette L.] Naval Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. [Lagrosas, Nofel D.; Simpas, James B.; Uy, Sherdon N.] Manila Observ, Manila, Philippines. [Jonsson, Haflidi H.; Wang, Qing] Naval Postgrad Sch, Dept Meteorol, Monterey, CA USA. [Atwood, Samuel A.; Kreidenweis, Sonia M.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Boyd, Thomas J.] Naval Res Lab, Marine Biogeochem Sect, Washington, DC 20375 USA. [Ghate, Virendra P.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Posselt, Derek J.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Zaiger, Kimo] NAVFAC Engn & Expeditionary Warfare Ctr Port Huen, Port Hueneme, CA USA. [Blake, Donald R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. [Chew, Boon Ning] Meteorol Serv, Singapore, Singapore. [Cliff, Steven S.; Zhao, Yongjing] Univ Calif Davis, Dept Appl Sci, Davis, CA USA. [Holben, Brent N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Holz, Robert E.; Oo, Min; Sessions, Walter R.] Univ Wisconsin, Space Sci Engn Ctr, Madison, WI USA. [Lolli, Simone] Univ Maryland Baltimore Cty JCET, Baltimore, MD USA. [Perry, Kevin D.] Univ Utah, Salt Lake City, UT USA. [Salinas, Santo V.] Natl Univ Singapore, Ctr Remote Imaging Sensing & Proc, Singapore, Singapore. [Smirnov, Alexander] Sci Syst & Applicat Inc, Lanham, MD USA. [Yu, Liya] Natl Univ Singapore, Dept Environm Engn, Singapore, Singapore. [Zhang, Jianglong] Univ North Dakota, Dept Atmospher Sci, Grand Forks, ND USA. RP Reid, JS (reprint author), Naval Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. EM jeffrey.reid@nrlmry.navy.mil RI Campbell, James/C-4884-2012; Kreidenweis, Sonia/E-5993-2011; Smirnov, Alexander/C-2121-2009; OI Campbell, James/0000-0003-0251-4550; Kreidenweis, Sonia/0000-0002-2561-2914; Smirnov, Alexander/0000-0002-8208-1304; LAGROSAS, NOFEL/0000-0002-8672-4717 FU ONR [NRL 6.1, 35, 32, 38]; NRL Base Program; NASA Radiation Science Program through a grant from the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS) science team; NASA [NNG13HH10I] FX Organization of this research cruise and the overall 2012 IOP required the assistance of a number of organizations, including the staff of the Office of Naval Research-Global program office and reservist unit (esp. Joseph Johnson, Blake McBride, and Paul Marshall), the Manila Observatory (esp. Antonia Loyzaga and Fr. Daniel McNamara), US State Department/Embassy in Manila (esp. Maria Theresa Villa and Dovas Saulys), and the Naval Postgraduate School (esp. Richard Lind). We are most grateful to the Vasco ship management and crew, operated by Cosmix Underwater Research Ltd. (esp. Luc Heymans and Annabelle du Parc). We are also grateful to the host institutions for regional AERONET site deployment and the use of derived optical thickness data herein. Authors also benefitted from conversations with Eric Maloney (CSU) and Matthew Wheeler (CSIRO). Funding for this research cruise and analysis was provided by numerous sources. Vasco ship time procurement was provided by the NRL 6.1 Base Program via an ONR Global grant to the Manila Observatory. Funding for US scientist deployment and instrument analysis was provided by the NRL Base Program and ONR 35. Modeling analysis was provided by ONR 32. Remote sensing and model analysis was provided by the NASA Interdisciplinary Science Program. Reservist support was provided by ONR Program 38. Ground site deployments were supported by the NASA Radiation Science Program through a grant from the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS) science team. Gas chemistry was provided by the NASA Tropospheric Chemistry Program. Author James R. Campbell acknowledges the support of NASA Interagency Agreement NNG13HH10I on behalf of MPLNET and SEAC4RS science teams. NR 62 TC 1 Z9 1 U1 7 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 15 PY 2016 VL 16 IS 22 BP 14057 EP 14078 DI 10.5194/acp-16-14057-2016 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC1JN UT WOS:000387860800002 ER PT J AU Wunch, D Toon, GC Hedelius, JK Vizenor, N Roehl, CM Saad, KM Blavier, JFL Blake, DR Wennberg, PO AF Wunch, Debra Toon, Geoffrey C. Hedelius, Jacob K. Vizenor, Nicholas Roehl, Coleen M. Saad, Katherine M. Blavier, Jean-Francois L. Blake, Donald R. Wennberg, Paul O. TI Quantifying the loss of processed natural gas within California's South Coast Air Basin using long-term measurements of ethane and methane SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID TROPOSPHERIC METHANE; ANGELES BASIN; CLARS-FTS; EMISSIONS; CH4; DROUGHT; SOIL AB Methane emissions inventories for Southern California's South Coast Air Basin (SoCAB) have underestimated emissions from atmospheric measurements. To provide insight into the sources of the discrepancy, we analyze records of atmospheric trace gas total column abundances in the SoCAB starting in the late 1980s to produce annual estimates of the ethane emissions from 1989 to 2015 and methane emissions from 2007 to 2015. The first decade of measurements shows a rapid decline in ethane emissions coincident with decreasing natural gas and crude oil production in the basin. Between 2010 and 2015, however, ethane emissions have grown gradually from about 13 +/- 5 to about 23 +/- 3 Gg yr(-1), despite the steady production of natural gas and oil over that time period. The methane emissions record begins with 1 year of measurements in 2007 and continuous measurements from 2011 to 2016 and shows little trend over time, with an average emission rate of 413 +/- 86 Gg yr(-1). Since 2012, ethane to methane ratios in the natural gas withdrawn from a storage facility within the SoCAB have been increasing by 0.62 +/- 0.05% yr(-1), consistent with the ratios measured in the delivered gas. Our atmospheric measurements also show an increase in these ratios but with a slope of 0.36 +/- 0.08% yr(-1), or 58 +/- 13% of the slope calculated from the withdrawn gas. From this, we infer that more than half of the excess methane in the SoCAB between 2012 and 2015 is attributable to losses from the natural gas infrastructure. C1 [Wunch, Debra] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Wunch, Debra; Toon, Geoffrey C.; Hedelius, Jacob K.; Roehl, Coleen M.; Saad, Katherine M.; Blavier, Jean-Francois L.; Wennberg, Paul O.] CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. [Toon, Geoffrey C.; Blavier, Jean-Francois L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Vizenor, Nicholas; Blake, Donald R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. [Wennberg, Paul O.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. RP Wunch, D (reprint author), Univ Toronto, Dept Phys, Toronto, ON, Canada.; Wunch, D (reprint author), CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. EM dwunch@atmosp.physics.utoronto.ca OI Hedelius, Jacob/0000-0003-2025-7519 FU NASA Upper Atmosphere Research Program; NASA's Carbon Cycle Science program [NNX14AI60G] FX Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. We thank the various people who have assisted with MkIV ground-based observations over the years, as well as the NASA Upper Atmosphere Research Program for funding. This research was supported by NASA's Carbon Cycle Science program (NNX14AI60G). TCCON data were obtained from the TCCON Data Archive, hosted by the Carbon Dioxide Information Analysis Center (CDIAC) - http://tccon.ornl.gov. We thank four anonymous reviewers and D. Lyon for providing thoughtful reviews that significantly improved this paper. NR 43 TC 0 Z9 0 U1 6 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 15 PY 2016 VL 16 IS 22 BP 14091 EP 14105 DI 10.5194/acp-16-14091-2016 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC1JN UT WOS:000387860800004 ER PT J AU Gundersen, GW Jagodnik, KM Woodland, H Fernandez, NF Sani, K Dohlman, AB Ung, PMU Monteiro, CD Schlessinger, A Ma'ayan, A AF Gundersen, Gregory W. Jagodnik, Kathleen M. Woodland, Holly Fernandez, Nicholas F. Sani, Kevin Dohlman, Anders B. Ung, Peter Man-Un Monteiro, Caroline D. Schlessinger, Avner Ma'ayan, Avi TI GEN3VA: aggregation and analysis of gene expression signatures from related studies SO BMC BIOINFORMATICS LA English DT Article DE Systems Biology; Microarrays; Data mining; Interactive reports ID NF-KAPPA-B; GLUCOCORTICOID-RECEPTOR; OMNIBUS; TOOL; ACTIVATION; REPOSITORY; ONTOLOGY; ENRICHR; BIOLOGY; UPDATE AB Background: Genome-wide gene expression profiling of mammalian cells is becoming a staple of many published biomedical and biological research studies. Such data is deposited into data repositories such as the Gene Expression Omnibus (GEO) for potential reuse. However, these repositories currently do not provide simple interfaces to systematically analyze collections of related studies. Results: Here we present GENE Expression and Enrichment Vector Analyzer (GEN3VA), a web-based system that enables the integrative analysis of aggregated collections of tagged gene expression signatures identified and extracted from GEO. Each tagged collection of signatures is presented in a report that consists of heatmaps of the differentially expressed genes; principal component analysis of all signatures; enrichment analysis with several gene set libraries across all signatures, which we term enrichment vector analysis; and global mapping of small molecules that are predicted to reverse or mimic each signature in the aggregate. We demonstrate how GEN3VA can be used to identify common molecular mechanisms of aging by analyzing tagged signatures from 244 studies that compared young vs. old tissues in mammalian systems. In a second case study, we collected 86 signatures from treatment of human cells with dexamethasone, a glucocorticoid receptor (GR) agonist. Our analysis confirms consensus GR target genes and predicts potential drug mimickers. Conclusions: GEN3VA can be used to identify, aggregate, and analyze themed collections of gene expression signatures from diverse but related studies. Such integrative analyses can be used to address concerns about data reproducibility, confirm results across labs, and discover new collective knowledge by data reuse. GEN3VA is an open-source web-based system that is freely available at: http://amp.pharm.mssm.edu/gen3va. C1 [Gundersen, Gregory W.; Fernandez, Nicholas F.; Sani, Kevin; Dohlman, Anders B.; Ung, Peter Man-Un; Monteiro, Caroline D.; Schlessinger, Avner; Ma'ayan, Avi] Dept Pharmacol Sci, One Gustave L Levy Pl,Box 1603, New York, NY 10029 USA. [Gundersen, Gregory W.; Fernandez, Nicholas F.; Sani, Kevin; Dohlman, Anders B.; Monteiro, Caroline D.; Ma'ayan, Avi] Icahn Sch Med Mt Sinai, Mt Sinai Ctr Bioinformat, One Gustave L Levy Pl,Box 1603, New York, NY 10029 USA. [Jagodnik, Kathleen M.] NASA, Glenn Res Ctr, Fluid Phys & Transport Proc Branch, 21000 Brookpk Rd, Cleveland, OH 44135 USA. [Jagodnik, Kathleen M.] Baylor Coll Med, Ctr Space Med, 1 Baylor Plaza, Houston, TX 77030 USA. [Woodland, Holly] The Fairway, Weybridge KT13 0RZ, Surrey, England. RP Ma'ayan, A (reprint author), Dept Pharmacol Sci, One Gustave L Levy Pl,Box 1603, New York, NY 10029 USA.; Ma'ayan, A (reprint author), Icahn Sch Med Mt Sinai, Mt Sinai Ctr Bioinformat, One Gustave L Levy Pl,Box 1603, New York, NY 10029 USA. EM avi.maayan@mssm.edu FU National Institutes of Health (NIH) grants [U54HL127624, U54CA189201, R01GM098316] FX This work is partially supported by the National Institutes of Health (NIH) grants U54HL127624, U54CA189201, and R01GM098316 to AM. NR 38 TC 0 Z9 0 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD NOV 15 PY 2016 VL 17 AR 461 DI 10.1186/s12859-016-1321-1 PG 12 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA EC0ZF UT WOS:000387831700001 PM 27846806 ER PT J AU Foppiano, AJ Won, YI Torres, XA Flores, PA Veloso, AD Arriagada, MA AF Foppiano, A. J. Won, Y-I. Torres, X. A. Flores, P. A. Daniel Veloso, A. Arriagada, M. A. TI Ionosonde and optical determinations of thermospheric neutral winds over the Antarctic Peninsula SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Thermosphere; Antarctic Peninsula; Neutral winds; FPI; Ionosonde ID FABRY-PEROT-INTERFEROMETER; KING GEORGE ISLAND; MERIDIONAL WINDS; F2 PEAK; ELECTRON-CONCENTRATION; SOLAR-CYCLE; HEIGHT; F2-LAYER; MODEL; MIDDLE AB Ionosonde observations have been made at Great Wall station (62.22 degrees S; 58.97 degrees W), King George Island, and at further south Vernadsky station (65.25 degrees S; 64.27 degrees W), Argentine Islands, for many years. For several days at the two locations the magnetic meridional component of the thermospheric neutral wind has also been derived using three different algorithms with ionosonde data input. At King Sejong station (62.22 degrees S; 58.78 degrees W), close to Great Wall, almost simultaneous thermospheric winds were measured with.a Fabry-Perot Interferometer (FPI) during a few days in 1997. All days correspond to intervals of low solar and geomagnetic activity levels and for different seasons. Here, the geographic meridional FPI winds measured at the geographic south pointing location are compared with the magnetic meridional component of the wind derived from ionosonde observations at Vernadsky. Also, the magnetic meridian FPI winds measured using all four cardinal pointing locations are compared with the magnetic meridional component of the wind derived from ionosonde observations at Great Wall. The patterns of the diurnal variations of the magnetic meridional component of ionosonde derived winds using the three different techniques are similar in most cases. However, the amplitudes of these variations and some individual values can differ by more than 150 m/s depending on season, particularly during daytime. Comparison of the autumn FPI with the ionosonde winds for Vernadsky and Great Wall shows that they coincide within observation uncertainties. Results for other seasons are not so good. Some of the discrepancies are discussed in relation to the hour-to-hour variability of ionosonde based winds and the latitudinal gradients of ionospheric characteristics. Other discrepancies need to be further explained. Recently reported FPI mean winds for tens of days in different seasons for Palmer (64.77 degrees S; 64.05 degrees W), Anvers Island, are found to be particularly close to ionosonde derived mean winds for Argentine Islands station (former Vernadsky), albeit observations are for different time intervals. Unless comprehensive FPI winds for the Antarctic Peninsula longitude sector become available, ionosonde based winds seem to be reliable enough for several purposes. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Foppiano, A. J.; Daniel Veloso, A.] Univ Concepcion, Casilla 160-C, Concepcion, Chile. [Won, Y-I.] NASA, Goddard Space Flight Ctr, Wyle ESDIS, Greenbelt, MD 20771 USA. [Torres, X. A.; Flores, P. A.; Arriagada, M. A.] Univ Bio Bio, Casilla 5-C, Concepcion, Chile. RP Foppiano, AJ (reprint author), Univ Concepcion, Casilla 160-C, Concepcion, Chile. EM foppiano@udec.cl NR 49 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD NOV 15 PY 2016 VL 58 IS 10 BP 2026 EP 2036 DI 10.1016/j.asr.2016.01.001 PG 11 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA EB6UL UT WOS:000387521000012 ER PT J AU Valdivia, JA Toledo, BA Gallo, N Munoz, V Rogan, J Stepanova, M Moya, PS Navarro, RE Vinas, AF Araneda, J Lopez, RA Diaz, M AF Valdivia, J. A. Toledo, B. A. Gallo, N. Munoz, V. Rogan, J. Stepanova, M. Moya, P. S. Navarro, R. E. Vinas, A. F. Araneda, J. Lopez, R. A. Diaz, M. TI Magnetic fluctuations in anisotropic space plasmas: The effect of the plasma environment SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Thermally induced electromagnetic fluctuations ID PROTON TEMPERATURE ANISOTROPY; QUASI-THERMAL FLUCTUATIONS; SOLAR-WIND; CYCLOTRON INSTABILITY; ELECTROMAGNETIC FLUCTUATIONS; VELOCITY DISTRIBUTION; LINEAR-THEORY; NOISE; WAVES AB The observations in the solar wind, which are usually organized in a beta-anisotropy diagram, seem to be constrained by linear instability thresholds. Unexpectedly, under these quasi-stable conditions, there is a finite level of electromagnetic fluctuations. A relevant component of these fluctuations can be understood in terms of the electromagnetic fields produced by the thermal motion of the charged particles. For the simple case of parallel propagating fields in an electron-proton plasma, we study the effect of the parameter omega(pp)/Omega(c) that characterizes the different space physics environments, and can affect the continuum spectrum produced by these fluctuations, which in turn may be used to understand the relevance of these processes occurring in a specific plasma environment. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Valdivia, J. A.; Toledo, B. A.; Gallo, N.; Munoz, V.; Rogan, J.; Moya, P. S.; Lopez, R. A.] Univ Chile, Fac Ciencias, Dept Fis, Santiago, Chile. [Stepanova, M.] Univ Santiago, Fac Ciencias, Dept Fis, Santiago, Chile. [Navarro, R. E.; Araneda, J.] Univ Concepcion, Dept Fis, Concepcion 4070386, Chile. [Moya, P. S.; Vinas, A. F.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Geospace Phys Lab, Mail Code 673, Greenbelt, MD 20771 USA. [Moya, P. S.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Valdivia, J. A.; Rogan, J.] CEDENNA, Ctr Desarrollo Nanociencia & Nanotecnol, Santiago, Chile. [Diaz, M.] Univ Chile, Fac Ciencias Fis & Matemat, Dept Ingn Elect, Santiago, Chile. RP Valdivia, JA (reprint author), Univ Chile, Fac Ciencias, Dept Fis, Santiago, Chile. EM alejo@macul.ciencias.uchile.cl RI Valdivia, Juan/A-3631-2008; Lopez, Rodrigo/H-7576-2013; Moya, Pablo/C-3163-2011; Munoz, Victor/A-2255-2008 OI Valdivia, Juan/0000-0003-3381-9904; Moya, Pablo/0000-0002-9161-0888; NR 51 TC 1 Z9 1 U1 3 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD NOV 15 PY 2016 VL 58 IS 10 BP 2126 EP 2133 DI 10.1016/j.asr.2016.04.017 PG 8 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA EB6UL UT WOS:000387521000023 ER PT J AU Ullman, DJ Carlson, AE Hostetler, SW Clark, PU Cuzzone, J Milne, GA Winsor, K Caffee, M AF Ullman, David J. Carlson, Anders E. Hostetler, Steven W. Clark, Peter U. Cuzzone, Joshua Milne, Glenn A. Winsor, Kelsey Caffee, Marc TI Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change SO QUATERNARY SCIENCE REVIEWS LA English DT Article DE Holocene; Laurentide ice sheet; Surface exposure dating; Sea level rise ID 100,000-YEAR GLACIAL CYCLES; PRODUCTION-RATE CALIBRATION; ATMOSPHERE-OCEAN MODEL; FRESH-WATER OUTBURST; LAST DEGLACIATION; COSMOGENIC NUCLIDES; PRODUCTION-RATES; LABRADOR SECTOR; HUDSON-BAY; COLD EVENT AB Despite elevated summer insolation forcing during the early Holocene, global ice sheets retained nearly half of their volume from the Last Glacial Maximum, as indicated by deglacial records of global mean sea level (GMSL). Partitioning the GMSL rise among potential sources requires accurate dating of ice-sheet extent to estimate ice-sheet volume. Here, we date the final retreat of the Laurentide Ice Sheet with Be-10 surface exposure ages for the Labrador Dome, the largest of the remnant Laurentide ice domes during the Holocene. We show that the Labrador Dome deposited moraines during North Atlantic cold events at similar to 10.3 ka, 9.3 ka and 8.2 ka, suggesting that these regional climate events helped stabilize the retreating Labrador Dome in the early Holocene. After Hudson Bay became seasonally ice free at 8.2 ka, the majority of Laurentide ice-sheet melted abruptly within a few centuries. We demonstrate through high-resolution regional climate model simulations that the thermal properties of a seasonally ice-free Hudson Bay would have increased Laurentide ice-sheet ablation and thus contributed to the subsequent rapid Labrador Dome retreat. Finally, our new 10Be chronology indicates full Laurentide ice-sheet had completely deglaciated by 6.7 +/- 0.4 ka, which re quires that Antarctic ice sheets contributed 3.6 -6.5 m to GMSL rise since 6.3-7.1 ka. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Ullman, David J.] Northland Coll, Dept Geosci, Ashland, WI 54806 USA. [Ullman, David J.; Carlson, Anders E.; Hostetler, Steven W.; Clark, Peter U.; Cuzzone, Joshua] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Ullman, David J.] Univ Wisconsin Madison, Dept Geosci, Madison, WI USA. [Hostetler, Steven W.] US Geol Survey, Corvallis, OR USA. [Cuzzone, Joshua] CALTECH, Jet Prop Lab, NASA, Pasadena, CA USA. [Milne, Glenn A.] Univ Ottawa, Dept Earth Sci, Ottawa, ON, Canada. [Winsor, Kelsey] Univ Massachusetts Lowell, Dept Environm Earth & Atmospher Sci, Lowell, MA USA. [Caffee, Marc] Purdue Univ, Dept Phys, PRIME Lab, W Lafayette, IN 47907 USA. [Caffee, Marc] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. RP Ullman, DJ (reprint author), Northland Coll, Dept Geosci, Ashland, WI 54806 USA. EM dullman@northland.edu FU Wisconsin Alumni Research Foundation; National Science Foundation [EAR-0958872/-1343573, EAR-0958417] FX We thank Shaun Marcott, Kyle Fredericks, Levi Mitchell, Richard Becker, and Brent Goehring for their assistance and helpful discussions related to this project. Research was supported by the Wisconsin Alumni Research Foundation and National Science Foundation awards EAR-0958872/-1343573 (AEC) and EAR-0958417 (PUC). Finally, we also thank two anonymous reviewers for their constructive comments and suggestions, which helped to improve this paper. NR 79 TC 0 Z9 0 U1 18 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD NOV 15 PY 2016 VL 152 BP 49 EP 59 DI 10.1016/j.quascirev.2016.09.014 PG 11 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA EB6WT UT WOS:000387527000004 ER PT J AU Ricks, TM Lacy, TE Pineda, EJ Bednarcyk, BA Arnold, SM AF Ricks, Trenton M. Lacy, Thomas E., Jr. Pineda, Evan J. Bednarcyk, Brett A. Arnold, Steven M. TI Computationally efficient High-Fidelity Generalized Method of Cells micromechanics via order-reduction techniques SO COMPOSITE STRUCTURES LA English DT Article DE Order-reduction; Micromechanics; Method of cells; Multiscale; Composites ID PROPER ORTHOGONAL DECOMPOSITION; MODEL-REDUCTION; PLATES; HOMOGENIZATION; DYNAMICS; FAILURE; STRAINS; MEDIA AB The High-Fidelity Generalized Method of Cells (HFGMC) is a powerful technique for simulating composite materials. The HFGMC uses a higher-order approximation for the subcell displacement field that allows for accurate determination of the subcell stress/strain fields. In order to reduce computational costs associated with the solution of the ensuing system of simultaneous equations, the HFGMC global system of equations for doubly-periodic RUCs was reduced in size through the use of Proper Orthogonal Decomposition. Accurate order-reduced HFGMC models were then implemented within a special purpose finite element user material subroutine and used to perform multiscale composite analyses. A number of cases were presented that demonstrate the computational feasibility of using order reduction techniques to solve solid mechanics problems with complex microstructures. By simulating composite materials in a more computationally efficient manner, a pathway forward is presented for performing high-fidelity multiscale analyses of composite structures. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Ricks, Trenton M.; Lacy, Thomas E., Jr.] Mississippi State Univ, Dept Aerosp Engn, POB A, Mississippi State, MS 39762 USA. [Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.] NASA, Glenn Res Ctr, Mat & Struct Div, Multiscale Multiphys Modeling Branch, 21000 Brookpk Rd MS 49-7, Cleveland, OH 44135 USA. RP Lacy, TE (reprint author), Mississippi State Univ, Dept Aerosp Engn, POB A, Mississippi State, MS 39762 USA. EM tmr95@msstate.edu; lacy@ae.msstate.edu; evan.j.pineda@nasa.gov; brett.a.bednarcyk@nasa.gov; steven.m.arnold@nasa.gov NR 35 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-8223 EI 1879-1085 J9 COMPOS STRUCT JI Compos. Struct. PD NOV 15 PY 2016 VL 156 BP 2 EP 9 DI 10.1016/j.compstruct.2016.05.093 PG 8 WC Materials Science, Composites SC Materials Science GA EA6PY UT WOS:000386752400002 ER PT J AU Conrad, PG Malespin, CA Franz, HB Pepin, RO Trainer, MG Schwenzer, SP Atreya, SK Freissinet, C Jones, JH Manning, H Owen, T Pavlov, AA Wiens, RC Wong, MH Mahaffy, PR AF Conrad, P. G. Malespin, C. A. Franz, H. B. Pepin, R. O. Trainer, M. G. Schwenzer, S. P. Atreya, S. K. Freissinet, C. Jones, J. H. Manning, H. Owen, T. Pavlov, A. A. Wiens, R. C. Wong, M. H. Mahaffy, P. R. TI In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE krypton; xenon; Mars atmosphere; Mars evolution; Mars Science Laboratory; Mars meteorites ID TERRESTRIAL PLANET ATMOSPHERES; NOBLE-GASES; ISOTOPIC COMPOSITION; MARTIAN METEORITES; GALE CRATER; ORIGIN; SHERGOTTITES; COMPONENTS; CHASSIGNY; NITROGEN AB Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at Kr-80 and Kr-82 in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than Xe-132 have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites. Published by Elsevier B.V. C1 [Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Trainer, M. G.; Freissinet, C.; Pavlov, A. A.; Mahaffy, P. R.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Malespin, C. A.] Univ Space Res Assoc, Columbia, MD USA. [Franz, H. B.] NASA, CRESST, UMBC, GSFC, Greenbelt, MD 20771 USA. [Pepin, R. O.] Univ Minnesota, Minneapolis, MN 55455 USA. [Schwenzer, S. P.] Open Univ, Dept Environm Earth & Ecosyst, Walton Hall, Milton Keynes MK6 3AQ, Bucks, England. [Atreya, S. K.; Wong, M. H.] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Jones, J. H.] NASA, XI 3, ARES, JSC, Houston, TX 77058 USA. [Manning, H.] Concordia Univ, Moorhead, MN 56562 USA. [Owen, T.] Univ Hawaii, Honolulu, HI 96822 USA. [Wiens, R. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Conrad, PG (reprint author), NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Pamela.G.Conrad@nasa.gov OI Schwenzer, Susanne Petra/0000-0002-9608-0759 FU NASA's Mars Science Laboratory mission FX Special thanks to Richard Becker for helpful discussion regarding the data analysis. We are indebted to G. Avice and two anonymous reviewers for comments that greatly improved the manuscript. This work was funded by NASA's Mars Science Laboratory mission. NR 47 TC 0 Z9 0 U1 11 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD NOV 15 PY 2016 VL 454 BP 1 EP 9 DI 10.1016/j.epsl.2016.08.028 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EA5FV UT WOS:000386645700001 ER PT J AU Satkoski, AM Lowe, DR Beard, BL Coleman, ML Johnson, CM AF Satkoski, Aaron M. Lowe, Donald R. Beard, Brian L. Coleman, Max L. Johnson, Clark M. TI A high continental weathering flux into Paleoarchean seawater revealed by strontium isotope analysis of 3.26 Ga barite SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Archean seawater; strontium isotopes; barite ID BARBERTON GREENSTONE-BELT; BILLION YEARS AGO; SOUTH-AFRICA; SULFUR ISOTOPES; ARCHEAN OCEAN; MOUNTAIN LAND; EVOLUTION; SULFATE; ATMOSPHERE; CARBONATE AB Controls on Archean seawater chemistry remain controversial. Many studies have suggested that it was largely controlled by oceanic hydrothermal fluid circulation. Recent work, however, from clastic sequences, Hf-O isotope data from detrital zircons, and models for the Rb/Sr evolution of the continental crust suggest that intense continental weathering and low-temperature surface alteration were more important than previously thought during the early Archean. This is consistent with biogeochemical studies that suggest the Archean had a diverse microbial ecology, which would, in part, need to be sustained by nutrients (e.g., phosphorus) that were derived from continental weathering. To further quantify continental weathering during the early Archean, we analyzed 3.26 Ga barite from the Fig Tree Group, South Africa for strontium, oxygen, and sulfur isotope compositions. We propose that the seawater component of the barite is characterized by Sr-87/Sr-86 ratios >0.701, which is significantly more radiogenic than contemporaneous mantle (similar to 0.7007-0.7008). The radiogenic nature of seawater at this time suggests that the continental weathering flux at 3.26 Ga had a large impact on ocean chemistry 400 million years earlier than previously suggested. (C) 2016 Elsevier B.V. All rights reserved. C1 [Satkoski, Aaron M.; Beard, Brian L.; Johnson, Clark M.] Univ Wisconsin, Dept Geosci, 1215 West Dayton St, Madison, WI 53706 USA. [Satkoski, Aaron M.; Beard, Brian L.; Coleman, Max L.; Johnson, Clark M.] NASA, Astrobiol Inst, Washington, DC 20546 USA. [Lowe, Donald R.] Stanford Univ, Dept Geol & Environm Sci, 118 Braun Hall, Stanford, CA 94305 USA. [Coleman, Max L.] CALTECH, Planetary Surface Instruments Grp, NASA, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Satkoski, AM (reprint author), Univ Wisconsin, Dept Geosci, 1215 West Dayton St, Madison, WI 53706 USA. EM satkoski@wisc.edu OI Coleman, Max/0000-0002-5514-1826 FU NASA Astrobiology Institute; NSF [1523697]; National Aeronautical and Space Administration (NASA) FX We thank two anonymous reviewers for constructive reviews of the manuscript, and Prof. Michael Bickle for editorial handling and comments. This study was funded by the NASA Astrobiology Institute and NSF grant 1523697. The contribution by MC was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautical and Space Administration (NASA). We thank Bethany Theiling for the S and O isotope analyses. NR 46 TC 0 Z9 0 U1 13 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD NOV 15 PY 2016 VL 454 BP 28 EP 35 DI 10.1016/j.epsl.2016.08.032 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EA5FV UT WOS:000386645700004 ER PT J AU Tait, AW Fisher, KR Srinivasan, P Simon, JI AF Tait, Alastair W. Fisher, Kent R. Srinivasan, Poorna Simon, Justin I. TI Evidence for impact induced pressure gradients on the Allende CV3 parent body: Consequences for fluid and volatile transport SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE meteorite; petrofabric; lineation; foliation; deformation; fluid ID CARBONACEOUS CHONDRITES; AQUEOUS ALTERATION; IMAGE-ANALYSIS; CM CHONDRITE; DEFORMATION; CHONDRULES; POROSITY; METEORITES; PERMEABILITY; ORIENTATION AB Carbonaceous chondrites, such as those associated with the Vigarano (CV) parent body, exhibit a diverse range of oxidative/reduced alteration mineralogy (McSween, 1977). Although fluids are often cited as the medium by which this occurs (Rubin, 2012), a mechanism to explain how this fluid migrates, and why some meteorite subtypes from the same planetary body are more oxidized than others remains elusive. In our study we examined a slab of the well-known Allende (CV3(OxA)) meteorite. Using several petrological techniques (e.g., Fry's and Flinn) and Computerized Tomography (CT) we discover it exhibits a strong penetrative planar fabric, resulting from strain partitioning among its major components: Calcium Aluminum-rich Inclusions (CAIs) (64.5%(CT)) > matrix (21.5%(Fry)) > chondrules (17.6%(CT)). In addition to the planar fabric, we found a strong lineation defined by the alignment of the maximum elongation of flattened particles interpreted to have developed by an impact event. The existence of a lineation could either be non-coaxial deformation, or the result of a mechanically heterogeneous target material. In the later case it could have formed due to discontinuous patches of sub-surface ice and/or fabrics developed through prior impact compaction (MacPherson and Krot, 2014), which would have encouraged preferential flow within the target material immediately following the impact, compacting pore spaces. We suggest that structurally controlled movement of alteration fluids in the asteroid parent body along pressure gradients contributed to the formation of secondary minerals, which may have ultimately lead to the different oxidized subtypes. Published by Elsevier B.V. C1 [Tait, Alastair W.] Monash Univ, Sch Geosci, Melbourne, Vic 3800, Australia. [Fisher, Kent R.] Univ Cincinnati, Cincinnati, OH 45219 USA. [Srinivasan, Poorna] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Simon, Justin I.] NASA, Ctr Isotope Cosmochem & Geochronol, ARES, Johnson Space Ctr, Houston, TX 77058 USA. RP Tait, AW (reprint author), Monash Univ, Sch Geosci, Melbourne, Vic 3800, Australia. EM alastair.tait@monash.edu FU Lunar and Planetary Institute (LPI); National Aeronautics and Space Administration (NASA); NASA Cosmochemistry Program [11-COS11-0066] FX This work would not have been possible without the generous loan of a similar to 25 cm2 slab of Allende CV3 and an adjacent slab from the personal collections of Joesph Minafra and Phil Mani. The Nondestructive Evaluation (NDE) Laboratory at NASA Johnson Space Center generously provided the Computed Tomography (CT) data. AWT and PS would like to thank the Lunar and Planetary Institute (LPI) and The National Aeronautics and Space Administration (NASA), for funding their 2013 and 2012 internships, through which this research was undertaken. In addition, KRF acknowledges his support through the NASA Co-op program. The research was supported by NASA Cosmochemistry Program grant 11-COS11-0066 to JIS who mentored AWT, KRF and PS as summer interns. We would like to thank Roberto Weinberg who reviewed an early version of this manuscript and provided valuable suggestions. We would lastly like to thank the feedback from Romy D. Hanna and two anonymous reviewers, whose comments greatly refined this paper. NR 51 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD NOV 15 PY 2016 VL 454 BP 213 EP 224 DI 10.1016/j.epsl.2016.09.015 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EA5FV UT WOS:000386645700022 ER PT J AU Peng, ZZ Yu, DT Huang, D Heiser, J Kalb, P AF Peng, Zhenzhou Yu, Dantong Huang, Dong Heiser, John Kalb, Paul TI A hybrid approach to estimate the complex motions of clouds in sky images SO SOLAR ENERGY LA English DT Article DE Sky imagery; Cloud motion tracking; Optical flow ID UC SAN-DIEGO; SOLAR IRRADIANCE; OPTICAL-FLOW; FORECAST; CLASSIFICATION; REGISTRATION; VARIABILITY; SURFACE; FIELDS; IMPACT AB Tracking the motion of clouds is essential to forecasting the weather and to predicting the short-term solar energy generation. Existing techniques mainly fall into two categories: variational optical flow, and block matching. In this paper, we summarize recent advances in estimating cloud motion using ground-based sky imagers and quantitatively evaluate state-of-the-art approaches. Then we propose a hybrid tracking framework to incorporate the strength of both block matching and optical flow models. To validate the accuracy of the proposed approach, we introduce a series of synthetic images to simulate the cloud movement and deformation, and thereafter comprehensively compare our hybrid approach with several representative tracking algorithms over both simulated and real images collected from various sites/imagers. The results show that our hybrid approach outperforms state-of-the-art models by reducing at least 30% motion estimation errors compared with the ground-truth motions in most of simulated image sequences. Moreover, our hybrid model demonstrates its superior efficiency in several real cloud image datasets by lowering at least 15% Mean Absolute Error (MAE) between predicted images and ground-truth images. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Peng, Zhenzhou] SUNY Stony Brook, Dept Elect & Comp Engn, 100 Nicolls Rd, Stony Brook, NY 11790 USA. [Peng, Zhenzhou; Heiser, John; Kalb, Paul] Brookhaven Natl Lab, 2 Ctr St, Upton, NY 11973 USA. [Huang, Dong] NASA, GSFC, Mail Code 613, Greenbelt, MD 20771 USA. [Yu, Dantong] New Jersey Inst Technol, Martin Tuchman Sch Management, Newark, NJ 07102 USA. RP Huang, D (reprint author), NASA, GSFC, Mail Code 613, Greenbelt, MD 20771 USA.; Yu, DT (reprint author), New Jersey Inst Technol, Martin Tuchman Sch Management, Newark, NJ 07102 USA. EM zhenzhou.peng@stonybrook.edu; dantong.yu@njit.edu; dong.huang@nasa.gov; heiser@bnl.gov; kalb@bnl.gov NR 67 TC 0 Z9 0 U1 9 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD NOV 15 PY 2016 VL 138 BP 10 EP 25 DI 10.1016/j.solener.2016.09.002 PG 16 WC Energy & Fuels SC Energy & Fuels GA EA2GF UT WOS:000386410100002 ER PT J AU Ma, LX Zheng, G Eitel, JUH Magney, TS Moskal, LM AF Ma, Lixia Zheng, Guang Eitel, Jan U. H. Magney, Troy S. Moskal, L. Monika TI Determining woody-to-total area ratio using terrestrial laser scanning (TLS) SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Terrestrial lidar; Woody-to-total area ratio; Leaf area index (LAI); Sampling space; Leaf orientation ID LEAF-AREA; CANOPY STRUCTURE; LADAR DATA; LIDAR; FOREST; INDEX; LEAVES; ORIENTATION; DIMENSIONS; RETRIEVAL AB Accurately determining woody-to-total area ratio (WTA) is a key step to indirectly retrieve leaf area index (LAI) from terrestrial laser scanning (TLS) data. In this work, we first collected both individual tree and forest plot point cloud data (PCD) from broadleaf and coniferous tree species and leaf characteristics using both side-lateral and full field-of-view TLS field setups with scan distances between 2.5 to 28 m. Using a local geometrical feature-based algorithm, the generated PCD were automatically classified into three different categories including photosynthetic canopy components, non-photosynthetic canopy components, and bare earth. To convert each classified point into a surface area, we then developed and validated a novel approach that considers sampling space, laser incidence angle, and leaf orientation information. The estimated surface areas from this approach showed strong agreements with validation datasets for single leaf (91.44%), photosynthetic (95.64%), and non-photosynthetic canopy components (89.60%) of an artificial tree and stems of an old-growth coniferous tree (93.53%), two individual broadleaf trees (98.31% and 97.46%) and a broadleaf forest plot (90.26%). By doing this, we computed the parameter WTA for an individual artificial tree (10.90%), an old-growth coniferous tree (29.97%), two individual broadleaf tree (14.83% and 4.27%) and four natural forest stands ranging from 7.74%-15.57%, respectively. The proposed method can effectively improve the accuracy of retrieving true LAI by removing the effects of woody components and converting each point into a surface area. (C) 2016 Elsevier B.V. All rights reserved. C1 [Ma, Lixia] Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China. [Ma, Lixia; Zheng, Guang] Nanjing Univ, Int Inst Earth Syst Sci, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China. [Eitel, Jan U. H.] Univ Idaho, Geospatial Lab Environm Dynam, Moscow, ID 83844 USA. [Eitel, Jan U. H.] Univ Idaho, McCall Outdoor Sci Sch, Mccall, ID 83638 USA. [Magney, Troy S.] NASA, Jet Prop Lab, 4800 Oak Grove Dr MS 233-300, Pasadena, CA 91109 USA. [Moskal, L. Monika] Univ Washington, Sch Environm & Forest Sci, Precis Forestry Cooperat, Remote Sensing & Geospatial Anal Lab, Box 352100, Seattle, WA 98115 USA. RP Zheng, G (reprint author), Nanjing Univ, Int Inst Earth Syst Sci, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China. EM zhengguang@nju.edu.cn FU Forestry Public Welfare Project [201304208]; National Science Foundation of China (NSFC) [41201337, 41301395]; NASA Idaho Space Grant Fellowship [NNX10AM75H] FX Funding and resources for this research project came from the the Forestry Public Welfare Project (201304208), National Science Foundation of China (NSFC) (NSFC award # 41201337 and # 41301395), and the NASA Idaho Space Grant Fellowship NNX10AM75H awarded to T.S.M. This research was conducted at the International Institute for Earth System Science, Nanjing University. We also want to thank Weizheng Li, Qian Zhang, Lu Lu, Qi Xu, Jun Wang, Nicole Hackman, Jeff Richardson, and Philip Johnsey for their help in field data collection. NR 39 TC 0 Z9 0 U1 30 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD NOV 15 PY 2016 VL 228 BP 217 EP 228 DI 10.1016/j.agrformet.2016.06.021 PG 12 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA DV9XJ UT WOS:000383295200018 ER PT J AU Morishima, R Spilker, L Brooks, S Deau, E Pilorz, S AF Morishima, Ryuji Spilker, Linda Brooks, Shawn Deau, Estelle Pilorz, Stu TI Incomplete cooling down of Saturn's A ring at solar equinox: Implication for seasonal thermal inertia and internal structure of ring particles SO ICARUS LA English DT Article; Proceedings Paper CT 4th Planetary Rings Workshop CY AUG 13-15, 2014 CL Univ Colorado, Boulder, CO SP Cassini Huygens Missm Rings Working Grp HO Univ Colorado DE Saturn, rings; Infrared observations; Radiative transfer ID DENSE PLANETARY RINGS; SELF-GRAVITY WAKES; CASSINI-CIRS; MAIN RINGS; STELLAR OCCULTATION; AZIMUTHAL ASYMMETRY; INFRARED-EMISSION; MULTILAYER MODEL; PROPELLER MOONS; HEAT-CAPACITY AB At the solar equinox in August 2009, the Composite Infrared Spectrometer (CIRS) onboard Cassini showed the lowest Saturn's ring temperatures ever observed. Detailed radiative transfer models show that the observed equinox temperatures of Saturn's A ring are much higher than model predictions as long as only the flux from Saturn is taken into account. In addition, the post-equinox temperatures are lower than the pre-equinox temperatures at the same absolute solar elevation angle. These facts indicate that the A ring was not completely cooled down at the equinox and that it is possible to give constraints on the size and seasonal thermal inertia of ring particles using seasonal temperature variations around the equinox. We develop a simple seasonal model for ring temperatures and first assume that the internal density and the thermal inertia of a ring particle are uniform with depth. The particle size is estimated to be 1-2 m. The seasonal thermal inertia is found to be 30-50 J m(-2) K-1 s(-1/2) in the middle A ring whereas it is similar to 10 J m(-2) K-1 s(-1/2) or as low as the diurnal thermal inertia in the inner and outermost regions of the A ring. An additional internal structure model, in which a particle has a high density core surrounded by a fluffy regolith mantle, shows that the core radius relative to the particle radius is about 0.9 for the middle A ring and is much less for the inner and outer regions of the A ring. This means that the radial variation of the internal density of ring particles exists across the A ring. Some mechanisms may be confining dense particles in the middle A ring against viscous diffusion. Alternatively, the (middle) A ring might have recently formed (<10(8) yr) by destruction of an icy satellite, so that dense particles have not yet diffused over the A ring and regolith mantles of particles have not grown thick. Our model results also indicate that the composition of the core is predominantly water ice, not rock. (C) 2015 Elsevier Inc. All rights reserved. C1 [Morishima, Ryuji] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Morishima, Ryuji; Spilker, Linda; Brooks, Shawn; Deau, Estelle] Jet Prop Lab, Pasadena, CA 91109 USA. [Deau, Estelle; Pilorz, Stu] SETI Inst, Mountain View, CA 94043 USA. RP Morishima, R (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA. EM Ryuji.Morishima@jpl.nasa.gov NR 84 TC 0 Z9 0 U1 7 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 15 PY 2016 VL 279 SI SI BP 2 EP 19 DI 10.1016/j.icarus.2015.06.025 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DV0FV UT WOS:000382594300002 ER PT J AU French, RG Nicholson, PD Hedman, MM Hahn, JM McGhee-French, CA Colwell, JE Marouf, EA Rappaport, NJ AF French, Richard G. Nicholson, Philip D. Hedman, Mathew M. Hahn, Joseph M. McGhee-French, Colleen A. Colwell, Joshua E. Marouf, Essam A. Rappaport, Nicole J. TI Deciphering the embedded wave in Saturn's Maxwell ringlet SO ICARUS LA English DT Article; Proceedings Paper CT 4th Planetary Rings Workshop CY AUG 13-15, 2014 CL Univ Colorado, Boulder, CO SP Cassini Huygens Missm Rings Working Grp HO Univ Colorado DE Occultations; Saturn, rings; Planetary rings; Resonances, rings; Saturn, interior ID PLANETARY RINGS; DENSITY WAVES; B RING; OCCULTATION OBSERVATIONS; NONRADIAL OSCILLATIONS; NONCIRCULAR FEATURES; RADIO OCCULTATION; EPSILON-RING; C RING; SIMULATIONS AB The eccentric Maxwell ringlet in Saturn's C ring is home to a prominent wavelike structure that varies strongly and systematically with true anomaly, as revealed by nearly a decade of high-SNR Cassini occultation observations. Using a simple linear "accordion" model to compensate for the compression and expansion of the ringlet and the wave, we derive a mean optical depth profile for the ringlet and a set of rescaled, background-subtracted radial wave profiles. We use wavelet analysis to identify the wave as a 2-armed trailing spiral, consistent with a density wave driven by an m = 2 outer Lindblad resonance (OLR), with a pattern speed Omega(p) = 1769.17 degrees d(-1) and a corresponding resonance radius a(res) = 87530.0 km. Estimates of the surface mass density of the Maxwell ringlet range from a mean value of 11 g cm(-2) derived from the self-gravity model to 5 12 g cm(-2), as inferred from the wave's phase profile and a theoretical dispersion relation. The corresponding opacity is about 0.12 cm(2) g(-1), comparable to several plateaus in the outer C ring (Hedman, M.N., Nicholson, P.D. [2014]. Mont. Not. Roy. Astron. Soc. 444, 1369-1388). A linear density wave model using the derived wave phase profile nicely matches the wave's amplitude, wavelength, and phase in most of our observations, confirming the accuracy of the pattern speed and demonstrating the wave's coherence over a period of 8 years. However, the linear model fails to reproduce the narrow, spike-like structures that are prominent in the observed optical depth profiles. Using a symplectic N-body streamline-based dynamical code (Hahn, J.M., Spitale, J.N. [2013]. Astrophys. J. 772, 122), we simulate analogs of the Maxwell ringlet, modeled as an eccentric ringlet with an embedded wave driven by a fictitious satellite with an OLR located within the ring. The simulations reproduce many of the features of the actual observations, including strongly asymmetric peaks and troughs in the inward-propagating density wave. We argue that the Maxwell ringlet wave is generated by a sectoral normal mode oscillation inside Saturn with l = m = 2, similar to other planetary internal modes that have been inferred from density waves observed in Saturn's C ring (Hedman, M.N., Nicholson, P.D. [2013]. Astron. J. 146, 12; Hedman, M.N., Nicholson, P.D. [2014]. Mont. Not. Roy. Astron. Soc. 444, 1369-1388). Our identification of a third m = 2 mode associated with saturnian internal oscillations supports the suggestions of mode splitting by Fuller et al. (Fuller, J., Lai, D., Storch, N.I. [2014]. Icarus 231, 34-50) and Fuller (Fuller, J. [2014]. Icarus 242, 283-296). The fitted amplitude of the wave, if it is interpreted as driven by the l = m = 2 f-mode, implies a radial amplitude at the 1 bar level of similar to 50 cm, according to the models of Marley and Porco (Marley, M.S., Porco, C.C. [1993]. Icarus 106, 508). (C) 2015 Elsevier Inc. All rights reserved. C1 [French, Richard G.; McGhee-French, Colleen A.] Wellesley Coll, Dept Astron, Wellesley, MA 02481 USA. [Nicholson, Philip D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Hedman, Mathew M.] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. [Hahn, Joseph M.] Space Sci Inst, Austin, TX 78759 USA. [Colwell, Joshua E.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Marouf, Essam A.] San Jose State Univ, Dept Elect Engn, San Jose, CA 95192 USA. [Rappaport, Nicole J.] JPL, Pasadena, CA 91109 USA. RP French, RG (reprint author), Wellesley Coll, Dept Astron, Wellesley, MA 02481 USA. EM rfrench@wellesley.edu NR 33 TC 1 Z9 1 U1 9 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 15 PY 2016 VL 279 SI SI BP 62 EP 77 DI 10.1016/j.icarus.2015.08.020 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DV0FV UT WOS:000382594300006 ER PT J AU Koo, JH Kim, J Lee, J Eck, TF Lee, YG Park, SS Kim, M Jung, U Yoon, J Mok, J Cho, HK AF Koo, Ja-Ho Kim, Jhoon Lee, Jaehwa Eck, Thomas F. Lee, Yun Gon Park, Sang Seo Kim, Mijin Jung, Ukkyo Yoon, Jongmin Mok, Jungbin Cho, Hi-Ku TI Wavelength dependence of Angstrom exponent and single scattering albedo observed by skyradiometer in Seoul, Korea SO ATMOSPHERIC RESEARCH LA English DT Article DE Aerosol; Skyradiometer; Angstrom exponent; Single scattering albedo ID AEROSOL OPTICAL-PROPERTIES; SKY RADIOMETER MEASUREMENTS; BIOMASS BURNING AEROSOLS; BROWN CARBON; BREWER SPECTROPHOTOMETER; CIMEL SUNPHOTOMETER; PREDE SKYRADIOMETER; PHYSICAL-PROPERTIES; LIGHT-ABSORPTION; BLACK CARBON AB Absorption and scattering characteristics of various aerosol events are investigated using 2-years of measurements from a skyradiometer at Yonsei University in Seoul, Korea. Both transported dust and anthropogenic aerosols are observed at distinct geo-location of Seoul, a megacity located a few thousand kilometers away from dust source regions in China. We focus on the wavelength dependence of Angstrom exponent (AE) and single scattering albedo (SSA), showing the characteristics of regional aerosols. The correlation between spectral SSAs and AEs calculated using different wavelength pairs generally indicates relatively weak absorption of fine-mode aerosols (urban pollution and/or biomass burning) and strong absorption of coarse-mode aerosols (desert dust) at this location. AE ratio (AER), a ratio of AEs calculated using wavelength pair between shorter (340-675 nm) and longer wavelength pair (675-1020 nm) correlates differently with SSA according to the dominant size of local aerosols. Correlations between SSA and AER show strong absorption of aerosols for AER < 1.0 and weak absorption for AER > 2.0. Based on the seasonal pattern of wavelength dependence of AER and SSA, this correlation difference looks to reveal the separated charatteristics of transported dust and anthropogenic particles from urban pollution respectively. The seasonal characteristics of AER and SSAs also show that the skyradiometer measurement with multiple wavelengths may be able to detect the water soluble brown carbon, one of the important secondary organic aerosols in the summertime atmospheric composition. (C) 2016 Published by Elsevier B.V. C1 [Koo, Ja-Ho; Kim, Jhoon; Park, Sang Seo; Kim, Mijin; Jung, Ukkyo; Cho, Hi-Ku] Yonsei Univ, Dept Atmospher Sci, Brain Korea Program 21, Inst Earth Astron & Atmosphere, Seoul, South Korea. [Lee, Jaehwa] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Lee, Jaehwa; Eck, Thomas F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Lee, Yun Gon] Chungnam Natl Univ, Res Inst Basic Sci, Daejeon, South Korea. [Yoon, Jongmin] Max Planck Inst Chem, Atmospher Chem Dept, POB 3060, D-55020 Mainz, Germany. [Mok, Jungbin] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. RP Kim, J (reprint author), Yonsei Univ, Dept Atmospher Sci, Brain Korea Program 21, Inst Earth Astron & Atmosphere, Seoul, South Korea. EM jkim2@yonsei.ac.kr FU Korea Polar Research Institute (KOPRI) [PE16090] FX This study was supported by the Korea Polar Research Institute (KOPRI, PE16090). NR 72 TC 0 Z9 0 U1 71 U2 71 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 EI 1873-2895 J9 ATMOS RES JI Atmos. Res. PD NOV 15 PY 2016 VL 181 BP 12 EP 19 DI 10.1016/j.atmosres.2016.06.006 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DU1EW UT WOS:000381952000002 ER PT J AU Serabyn, E Liewer, K Mawet, D AF Serabyn, Eugene Liewer, Kurt Mawet, Dimitri TI Laboratory demonstration of a dual-stage vortex coronagraph SO OPTICS COMMUNICATIONS LA English DT Article DE Coronagraphy; Starlight rejection; High contrast imaging ID TELESCOPES AB While an ideal optical vortex coronagraph operating behind a clear, circular, unaberrated telescope aperture can theoretically provide perfect rejection of the incident plane wave from an unresolved star, use of a telescope with an on-axis secondary mirror limits the rejection. In theory, a dual-stage vortex coronagraph can provide improved starlight rejection for an on-axis telescope, and here we provide experimental confirmation of the predicted distribution of the residual light in the output pupil plane of a dual-stage vortex coronagraph. In addition, a simple method of further improving the rejection of such a coronagraph is suggested: by slightly oversizing the first Lyot stop and phase-shifting the light within the exposed annulus by half a wave, the residual starlight within the pupil can be canceled to deeper levels. (C) 2016 Elsevier B.V. All rights reserved. C1 [Serabyn, Eugene; Liewer, Kurt] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mawet, Dimitri] CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. RP Serabyn, E (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM gene.serabyn@jpl.nasa.gov NR 11 TC 0 Z9 0 U1 7 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 EI 1873-0310 J9 OPT COMMUN JI Opt. Commun. PD NOV 15 PY 2016 VL 379 BP 64 EP 67 DI 10.1016/j.optcom.2016.05.042 PG 4 WC Optics SC Optics GA DP8TK UT WOS:000378770600011 ER PT J AU Le Quere, C Andrew, RM Canadell, JG Sitch, S Korsbakken, JI Peters, GP Manning, AC Boden, TA Tans, PP Houghton, RA Keeling, RF Alin, S Andrews, OD Anthoni, P Barbero, L Bopp, L Chevallier, F Chini, LP Ciais, P Currie, K Delire, C Doney, SC Friedlingstein, P Gkritzalis, T Harris, I Hauck, J Haverd, V Hoppema, M Goldewijk, KK Jain, AK Kato, E Kortzinger, A Landschutzer, P Lefevre, N Lenton, A Lienert, S Lombardozzi, D Melton, JR Metzl, N Millero, F Monteiro, PMS Munro, DR Nabel, JEMS Nakaoka, S O'Brien, K Olsen, A Omar, AM Ono, T Pierrot, D Poulter, B Rodenbeck, C Salisbury, J Schuster, U Schwinger, J Seferian, R Skjelvan, I Stocker, BD Sutton, AJ Takahashi, T Tian, HQ Tilbrook, B van der Laan-Luijkx, IT van der Werf, GR Viovy, N Walker, AP Wiltshire, AJ Zaehle, S AF Le Quere, Corinne Andrew, Robbie M. Canadell, Josep G. Sitch, Stephen Korsbakken, Jan Ivar Peters, Glen P. Manning, Andrew C. Boden, Thomas A. Tans, Pieter P. Houghton, Richard A. Keeling, Ralph F. Alin, Simone Andrews, Oliver D. Anthoni, Peter Barbero, Leticia Bopp, Laurent Chevallier, Frederic Chini, Louise P. Ciais, Philippe Currie, Kim Delire, Christine Doney, Scott C. Friedlingstein, Pierre Gkritzalis, Thanos Harris, Ian Hauck, Judith Haverd, Vanessa Hoppema, Mario Goldewijk, Kees Klein Jain, Atul K. Kato, Etsushi Koertzinger, Arne Landschuetzer, Peter Lefevre, Nathalie Lenton, Andrew Lienert, Sebastian Lombardozzi, Danica Melton, Joe R. Metzl, Nicolas Millero, Frank Monteiro, Pedro M. S. Munro, David R. Nabel, Julia E. M. S. Nakaoka, Shin-ichiro O'Brien, Kevin Olsen, Are Omar, Abdirahman M. Ono, Tsuneo Pierrot, Denis Poulter, Benjamin Roedenbeck, Christian Salisbury, Joe Schuster, Ute Schwinger, Joerg Seferian, Roland Skjelvan, Ingunn Stocker, Benjamin D. Sutton, Adrienne J. Takahashi, Taro Tian, Hanqin Tilbrook, Bronte van der Laan-Luijkx, Ingrid T. van der Werf, Guido R. Viovy, Nicolas Walker, Anthony P. Wiltshire, Andrew J. Zaehle, Soenke TI Global Carbon Budget 2016 SO EARTH SYSTEM SCIENCE DATA LA English DT Article ID LAND-USE CHANGE; ENVIRONMENT SIMULATOR JULES; FOSSIL-FUEL COMBUSTION; CO2 FLUX VARIABILITY; MIXED-LAYER SCHEME; ATMOSPHERIC CO2; DIOXIDE EMISSIONS; VEGETATION DYNAMICS; MODEL DESCRIPTION; ATLAS SOCAT AB Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (E-FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S-OCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), E-FF was 9.3 +/- 0.5 GtC yr(-1), E-LUC 1.0 +/- 0.5 GtC yr(-1), G(ATM) 4.5 +/- 0.1 GtC yr(-1), S-OCEAN 2.6 +/- 0.5 GtC yr(-1), and S-LAND 3.1 +/- 0.9 GtC yr(-1). For year 2015 alone, the growth in E-FF was approximately zero and emissions remained at 9.9 +/- 0.5 GtC yr(-1), showing a slowdown in growth of these emissions compared to the average growth of 1.8% yr(-1) that took place during 2006-2015. Also, for 2015, E-LUC was 1.3 +/- 0.5 GtC yr(-1), G(ATM) was 6.3 +/- 0.2 GtC yr(-1), S-OCEAN was 3.0 +/- 0.5 GtC yr(-1), and S-LAND was 1.9 +/- 0.9 GtC yr(-1). G(ATM) was higher in 2015 compared to the past decade (2006-2015), reflecting a smaller S-LAND for that year. The global atmospheric CO2 concentration reached 399.4 +/- 0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in E-FF with +0.2% (range of -1.0 to +1.8 %) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of E-FF in 2016, the growth rate in atmospheric CO2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink (S-LAND) in response to El Nino conditions of 2015-2016. From this projection of E-FF and assumed constant E-LUC for 2016, cumulative emissions of CO2 will reach 565 +/- 55 GtC (2075 +/- 205 GtCO(2)) for 1870-2016, about 75% from E-FF and 25% from E-LUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quere et al., 2015b, a, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi: 10.3334/CDIAC/GCP_2016). C1 [Le Quere, Corinne; Andrews, Oliver D.] Univ East Anglia, Tyndall Ctr Climate Change Res, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England. [Andrew, Robbie M.; Korsbakken, Jan Ivar; Peters, Glen P.] Univ East Anglia, Tyndall Ctr Climate Change Res, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England. [Canadell, Josep G.] Ctr Int Climate & Environm Res Oslo, Oslo, Norway. [Sitch, Stephen; Schuster, Ute] CSIRO Oceans & Atmosphere, Global Carbon Project, GPO Box 3023, Canberra, ACT 2601, Australia. [Manning, Andrew C.] Univ Exeter, Coll Life & Environm Sci, Exeter EX4 4RJ, Devon, England. [Boden, Thomas A.] Univ East Anglia, Sch Environm Sci, Ctr Ocean & Atmospher Sci, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England. [Tans, Pieter P.] Oak Ridge Natl Lab, Carbon Dioxide Informat Anal Ctr, Oak Ridge, TN 37830 USA. [Houghton, Richard A.] Natl Ocean & Atmospher Adm, Earth Syst Res Lab NOAA ESRL, Boulder, CO 80305 USA. [Keeling, Ralph F.] Woods Hole Res Ctr, Falmouth, MA 02540 USA. [Alin, Simone; Sutton, Adrienne J.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Anthoni, Peter] Natl Ocean & Atmospher Adm, Pacific Marine Environm Lab, 7600 Sand Point Way NE, Seattle, WA 98115 USA. [Barbero, Leticia; Pierrot, Denis] Inst Meteorol & Climate Res Atmospher Environm Re, Karlsruhe Inst Technol, D-82467 Garmisch Partenkirchen, Germany. [Barbero, Leticia; Pierrot, Denis] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Cooperat Inst Marine & Atmospher Studies, Miami, FL 33149 USA. [Bopp, Laurent; Chevallier, Frederic; Ciais, Philippe; Viovy, Nicolas] Natl Ocean & Atmospher Adm, Atlant Oceanog & Meteorol Lab, Miami, FL 33149 USA. [Chini, Louise P.] CEA, CNRS, UVSQ, Inst Pierre Simon Laplace,Lab Sci Climat & Enviro, F-91191 Gif Sur Yvette, France. [Currie, Kim] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Delire, Christine; Seferian, Roland] Natl Inst Water & Atmospher Res, Dunedin 9054, New Zealand. [Doney, Scott C.] CNRS, Ctr Natl Rech Meteorol, Unite Mixte Rech Meteo France 3589, 42 Ave Gaspard Coriolis, F-31100 Toulouse, France. [Friedlingstein, Pierre] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Gkritzalis, Thanos] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England. [Harris, Ian] InnovOcean, Flanders Marine Inst, Wandelaarkaai 7, B-8400 Oostende, Belgium. [Hauck, Judith; Hoppema, Mario] Univ East Anglia, Climat Res Unit, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England. [Haverd, Vanessa] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, D-120161 Postfach, Germany. [Goldewijk, Kees Klein] CSIRO Oceans & Atmosphere, GPO Box 1700, Canberra, ACT 2601, Australia. [Goldewijk, Kees Klein] PBL Netherlands Environm Assessment Agcy, The Hague, Netherlands. [Jain, Atul K.] Univ Utrecht, Utrecht, Netherlands. [Kato, Etsushi] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61821 USA. [Koertzinger, Arne] Inst Appl Energy, Minato Ku, Tokyo 1050003, Japan. [Landschuetzer, Peter; Nabel, Julia E. M. S.] GEOMAR Helmholtz Ctr Ocean Res Kiel, Dusternbrooker Weg 20, D-24105 Kiel, Germany. [Lefevre, Nathalie; Metzl, Nicolas] Max Planck Inst Meteorol, Bundesstr 53, D-20146 Hamburg, Germany. [Lenton, Andrew] Univ Paris 06, Sorbonne Univ, CNRS, IRD,MNHN,LOCEAN IPSL Lab, F-75252 Paris, France. [Lienert, Sebastian] CSIRO Oceans & Atmosphere, POB 1538, Hobart, Tas, Australia. [Lienert, Sebastian] Univ Bern, Inst Phys, Climate & Environm Phys, Bern, Switzerland. [Lombardozzi, Danica] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland. [Melton, Joe R.] Natl Ctr Atmospher Res Climate & Global Dynam, Terr Sci Sect, Boulder, CO 80305 USA. [Millero, Frank] Climate Res Div, Environm & Climate Change Canada, Victoria, BC, Canada. [Monteiro, Pedro M. S.] Univ Miami, RSMAS, MAC, Dept Ocean Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. [Munro, David R.] CSIR, CHPC, Ocean Syst & Climate, ZA-7700 Cape Town, South Africa. [Munro, David R.] Univ Colorado, Dept Atmospher & Ocean Sci, Campus Box 450, Boulder, CO 80309 USA. [Nakaoka, Shin-ichiro] Univ Colorado, Inst Arct & Alpine Res, Campus Box 450, Boulder, CO 80309 USA. [O'Brien, Kevin; Sutton, Adrienne J.] Natl Inst Environm Studies, Ctr Global Environm Res, 16-2 Onogawa, Tsukuba, Ibaraki 3058506, Japan. [Olsen, Are; Omar, Abdirahman M.] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98195 USA. [Olsen, Are; Omar, Abdirahman M.] Univ Bergen, Inst Geophys, Allegaten 70, N-5007 Bergen, Norway. [Ono, Tsuneo] Univ Bergen, Bjerknes Ctr Climate Res, Allegaten 70, N-5007 Bergen, Norway. [Poulter, Benjamin] Japan Fisheries Res & Educ Agcy, Natl Res Inst Far Sea Fisheries, 2-12-4 Fukuura, Yokohama, Kanagawa 2368648, Japan. [Poulter, Benjamin] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. [Roedenbeck, Christian; Zaehle, Soenke] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. [Salisbury, Joe] Max Planck Inst Biogeochem, POB 600164,Hans Knoll Str 10, D-07745 Jena, Germany. [Schwinger, Joerg; Skjelvan, Ingunn] Univ New Hampshire, Ocean Proc Anal Lab, 161 Morse Hall,8 Coll Rd, Durham, NH 03824 USA. [Stocker, Benjamin D.] Uni Res Climate, Bjerknes Ctr Climate Res, Nygardsgaten 112, N-5008 Bergen, Norway. [Takahashi, Taro] Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, Silwood Pk, Ascot SL5 7PY, Berks, England. [Tian, Hanqin] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Tilbrook, Bronte] Auburn Univ, Sch Forestry & Wildlife Sci, 602 Ducan Dr, Auburn, AL 36849 USA. [Tilbrook, Bronte] CSIRO Oceans & Atmosphere, Hobart, Tas, Australia. [van der Laan-Luijkx, Ingrid T.] Antarct Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia. [van der Werf, Guido R.] Wageningen Univ & Res, Dept Meteorol & Air Qual, POB 47, NL-6700 AA Wageningen, Netherlands. [Walker, Anthony P.] Vrije Univ Amsterdam, Fac Earth & Life Sci, Amsterdam, Netherlands. [Walker, Anthony P.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. [Wiltshire, Andrew J.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37830 USA. Met Off Hadley Ctr, FitzRoy Rd, Exeter EX1 3PB, Devon, England. EM c.lequere@uea.ac.uk RI Lenton, Andrew/D-2077-2012; Doney, Scott/F-9247-2010; OI Lenton, Andrew/0000-0001-9437-8896; Doney, Scott/0000-0002-3683-2437; Andrew, Robbie/0000-0001-8590-6431 FU International Ocean Carbon Coordination Project (IOCCP); Surface Ocean Lower Atmosphere Study (SOLAS); Integrated Marine Biogeochemistry, Ecosystem Research (IMBER) programme FX We thank all people and institutions who provided the data used in this carbon budget; C. Enright, W. Peters, and S. Shu for their involvement in the development, use, and analysis of the models and data products used here; F. Joos and S. Khatiwala for providing historical data; and P. Regnier for assistance in describing LOAC fluxes. We thank E. Dlugokencky, who provided the atmospheric CO2 measurements used here; B. Pfeil, C. Landa, and S. Jones of the Bjerknes Climate Data Centre and the ICOS Ocean Thematic Centre data management at the University of Bergen, who helped with gathering information from the SOCAT community; D. Bakker for support with the SOCAT coordination; and all those involved in collecting and providing oceanographic CO2 measurements used here, in particular for the new ocean data for years 2015: A. Andersson, N. Bates, R. Bott, A. Cattrijsse, E. De Carlo, C. Dietrich, L. Gregor, C. Hunt, T. Johannessen, W. R. Joubert, A. Kuwata, S. K. Lauvset, C. Lo Monaco, S. Maenner, D. Manzello, N. Monacci, S. Musielewicz, T. Newberger, A. Olsen, J. Osborne, C. Sabine, S. C. Sutherland, C. Sweeney, K. Tadokoro, S. van Heuven, D. Vandemark, and R. Wanninkhof. We thank the institutions and funding agencies responsible for the collection and quality control of the data included in SOCAT, and the support of the International Ocean Carbon Coordination Project (IOCCP), the Surface Ocean Lower Atmosphere Study (SOLAS), and the Integrated Marine Biogeochemistry, Ecosystem Research (IMBER) programme. We thank data providers to ObsPack GLOBALVIEWplus v1.0 and NRT v3.0 for atmospheric CO2 observations used in CTE2016-FT. This is NOAA-PMEL contribution number 4576. NR 158 TC 5 Z9 5 U1 0 U2 0 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1866-3508 EI 1866-3516 J9 EARTH SYST SCI DATA JI Earth Syst. Sci. Data PD NOV 14 PY 2016 VL 8 IS 2 BP 605 EP 649 DI 10.5194/essd-8-605-2016 PG 45 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Geology; Meteorology & Atmospheric Sciences GA EN8HS UT WOS:000396242100001 ER PT J AU Wilson, LB Sibeck, DG Turner, DL Osmane, A Caprioli, D Angelopoulos, V AF Wilson, L. B., III Sibeck, D. G. Turner, D. L. Osmane, A. Caprioli, D. Angelopoulos, V. TI Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock SO PHYSICAL REVIEW LETTERS LA English DT Article ID HOT FLOW ANOMALIES; QUASI-PARALLEL SHOCK; AMPLITUDE MAGNETIC-STRUCTURES; ENERGY-DISSIPATION RATES; SOLAR-WIND; DRIFT ACCELERATION; 3-DIMENSIONAL PLASMA; DETECTION EFFICIENCY; ION EVENTS; WAVES AB Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-large-scale (i.e., tens to thousands of thermal ion Larmor radii), transient (similar to 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 <= M < 20) bow shock. Here we report observations of electrons energized by foreshock disturbances to energies up to at least similar to 300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas. C1 [Wilson, L. B., III; Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Turner, D. L.] Aerosp Corp, El Segundo, CA 90245 USA. [Osmane, A.] Aalto Univ, Dept Radio Sci, Espoo 02150, Finland. [Caprioli, D.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Caprioli, D.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Angelopoulos, V.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. [Angelopoulos, V.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. RP Wilson, LB (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM lynn.b.wilsoniii@gmail.com RI Wilson III, Lynn/D-4425-2012; Caprioli, Damiano/I-6582-2012 OI Wilson III, Lynn/0000-0002-4313-1970; Caprioli, Damiano/0000-0003-0939-8775 FU Wind mission; MMS mission; THEMIS mission; Van Allen Probes mission; Aerospace Corp.; NASA [NNX14AC16G, NNX16AQ50G]; NASA Heliophysics Supporting Research grant; Academy of Finland [N297688]; Canadian Space Agency FX The authors thank A. F.- Vinas, D. Bryant, V. Krasnoselskikh, M. Desai, B. Randol, J. Giacalone, F. Guo, A. W. Breneman, and E. R. Christian for useful discussions of the fundamental physics involved in our study. The authors thank J. R. Woodroffe and T. W. Kirkman for discussions of probabilities of rare events. The authors thank the CARISMA team (operated by the University of Alberta and funded by the Canadian Space Agency), the Wind and STEREO teams, and NASA SPDF/CDAWeb for data. This work was funded by the Wind, MMS, THEMIS, and Van Allen Probes missions, the Aerospace Corp., NASA Grants No. NNX14AC16G and No. NNX16AQ50G, Grant No. N297688 from the Academy of Finland, and a NASA Heliophysics Supporting Research grant. NR 76 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 14 PY 2016 VL 117 IS 21 AR 215101 DI 10.1103/PhysRevLett.117.215101 PG 6 WC Physics, Multidisciplinary SC Physics GA EC6YC UT WOS:000388281600003 PM 27911552 ER PT J AU Benardini, JN Venkateswaran, K AF Benardini, James N. Venkateswaran, Kasthuri TI Application of the ATP assay to rapidly assess cleanliness of spacecraft surfaces: a path to set a standard for future missions SO AMB EXPRESS LA English DT Article DE Planetary protection; Spore; Burden; ATP; NASA standard assay; MSL ID CLEAN-ROOM; ENVIRONMENTS; FACILITY AB The National Aeronautics and Space Administration (NASA) measures and validates the biological cleanliness of spacecraft surfaces by counting endospores using the NASA standard assay (NSA). NASA has also approved an adenosine-5'-triphosphate (ATP)-based detection methodology as a means to prescreen surfaces for the presence of microbial contamination, prior to the spore assay. During Mars Science Laboratory (MSL) spacecraft assembly, test, and launch operations, 4853 surface samples were collected to verify compliance with the bioburden requirement at launch. A subset of these samples was measured for microbial cleanliness using both the NSA (n = 272) and ATP assay (n = 249). NSA results revealed that similar to 8% (22/272) of the samples showed the presence of at least one spore, whereas ATP assay measurements indicated that similar to 15% (35/249) of samples exceeded the "threshold cleanliness limit" of 2.3 x 10(-11) mmol ATP per 25 cm(2) used by MSL. Of the 22 NSA samples with a spore, 18% (4/22) were considered above the level of acceptance by both techniques. Based on post launch data analysis presented here, it was determined that this threshold cleanliness limit of 2.3 x 10(-11) mmol ATP per 25 cm(2) could be adopted as a benchmark for assessing spacecraft surface cleanliness. This study clearly demonstrates the value of using alternative methods to rapidly assess spacecraft cleanliness, and provides useful information regarding the process. C1 [Benardini, James N.; Venkateswaran, Kasthuri] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, 4800 Oak Grove Dr,MS 89-2, Pasadena, CA 91109 USA. RP Venkateswaran, K (reprint author), CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, 4800 Oak Grove Dr,MS 89-2, Pasadena, CA 91109 USA. EM kjvenkat@jpl.nasa.gov FU NASA FX Part of the research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The authors acknowledge the contributions of Catharine Conley and Pericles Stabekis of the NASA Planetary Protection Office. We are thankful to Robert Koukol for his role as MSL Planetary Protection manager in helping to coordinate the sample collection campaign. A significant amount of sample collection and processing was carried out by Fabian Morales and Gayane Kazarians. The authors thank Sheryl Bergstrom for her logistical support at KSC, Robert Beaudet for his raw data management, Melissa Jones for critically reading the manuscript, and Karen Buxbaum and James A. Spry for managerial oversight. Copyright 2016 California Institute of Technology. Government sponsorship acknowledged. NR 19 TC 0 Z9 0 U1 3 U2 3 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2191-0855 J9 AMB EXPRESS JI AMB Express PD NOV 14 PY 2016 VL 6 AR 113 DI 10.1186/s13568-016-0286-9 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA EC2BK UT WOS:000387914100001 PM 27844457 ER PT J AU Korotova, G Sibeck, D Engebretson, M Wygant, J Thaller, S Spence, H Kletzing, C Angelopoulos, V Redmon, R AF Korotova, Galina Sibeck, David Engebretson, Mark Wygant, John Thaller, Scott Spence, Harlan Kletzing, Craig Angelopoulos, Vassilis Redmon, Robert TI Multipoint spacecraft observations of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere on 1-2 May 2014 SO ANNALES GEOPHYSICAE LA English DT Article DE Magnetospheric physics (solar-wind-magnetosphere interactions); radio science (magnetospheric physics; waves in plasma) ID VAN ALLEN PROBES; SYNCHRONOUS ORBIT; GEOSTATIONARY ORBIT; INNER MAGNETOSPHERE; MAGNETIC PULSATIONS; ALFVEN WAVES; LOCAL TIME; PLASMAPAUSE; CLUSTER; EVENT AB We use magnetic field and plasma observations from the Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms ( THEMIS) and Geostationary Operational Environmental Satellite system ( GOES) spacecraft to study the spatial and temporal characteristics of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere. The pulsations were observed after the main phase of a moderate storm during low geomagnetic activity. The pulsations occurred during various interplanetary conditions and the solar wind parameters do not seem to control the occurrence of the pulsations. The most striking feature of the Pc4 magnetic field pulsations was their occurrence at similar locations during three of four successive orbits. We used this information to study the latitudinal nodal structure of the pulsations and demonstrated that the latitudinal extent of the magnetic field pulsations did not exceed 2 Earth radii (R-E}. A phase shift between the azimuthal and radial components of the electric and magnetic fields was observed from Z(SM) = 0.30 R-E to Z(SM) = 0.16 R-E. We used magnetic and electric field data from Van Allen Probes to determine the structure of ULF waves. We showed that the Pc4 magnetic field pulsations were radially polarized and are the secondmode harmonic waves. We suggest that the spacecraft were near a magnetic field null during the second orbit when they failed to observe the magnetic field pulsations at the local times where pulsations were observed on previous and successive orbits. We investigated the spectral structure of the Pc4 pulsations. Each spacecraft observed a decrease of the dominant period as it moved to a smaller L shell (stronger magnetic field strength). We demonstrated that higher frequencies occurred at times and locations where Alfven velocities were greater, i.e., on Orbit 1. There is some evidence that the periods of the pulsations increased during the plasmasphere refilling following the storm. C1 [Korotova, Galina] Univ Maryland, IPST, College Pk, MD 20742 USA. [Korotova, Galina] Russian Acad Sci, IZMIRAN, Troitsk, Russia. [Sibeck, David] NASA GSFC, Code 674, Greenbelt, MD USA. [Engebretson, Mark] Augsburg Coll, Dept Phys, Minneapolis, MN USA. [Wygant, John; Thaller, Scott] Univ Minnesota, Coll Sci & Engn, Minneapolis, MN USA. [Spence, Harlan] Univ New Hampshire, EOS, Durham, NH 03824 USA. [Kletzing, Craig] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Angelopoulos, Vassilis] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Redmon, Robert] NGDC NOAA, Solar & Terr Phys Div, Boulder, CO USA. RP Korotova, G (reprint author), Univ Maryland, IPST, College Pk, MD 20742 USA.; Korotova, G (reprint author), Russian Acad Sci, IZMIRAN, Troitsk, Russia. EM gkorotov@umd.edu FU NASA [NNX15AW86G S01]; NSF [AGS-1207445]; Van Allen Probes mission FX The Van Allen Probes mission is supported by NASA. NASA GSFC's CDAWEB provided Wind and GOES observations, while SSCWEB provided Van Allen Probes EPHEMERIS. Work by G. Korotova at the University of Maryland was supported by grants from NASA NNX15AW86G S01 and NSF AGS-1207445. Work performed by M. Engebretson at NASA/GSFC was supported by the Van Allen Probes mission. NR 43 TC 0 Z9 0 U1 1 U2 1 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 0992-7689 EI 1432-0576 J9 ANN GEOPHYS-GERMANY JI Ann. Geophys. PD NOV 14 PY 2016 VL 34 IS 11 BP 985 EP 998 DI 10.5194/angeo-34-985-2016 PG 14 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA EC1KL UT WOS:000387863400001 ER PT J AU Panesar, NK Sterling, AC Moore, RL Chakrapani, P AF Panesar, Navdeep K. Sterling, Alphonse C. Moore, Ronald L. Chakrapani, Prithi TI MAGNETIC FLUX CANCELATION AS THE TRIGGER OF SOLAR QUIET-REGION CORONAL JETS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: activity; Sun: filaments, prominences; Sun: photosphere ID X-RAY JETS; HINODE OBSERVATIONS; FILAMENT ERUPTIONS; FIELD PROPERTIES; ACTIVE-REGION; BLOWOUT JET; HOLES; PARAMETERS; TELESCOPE; SUN AB We report observations of 10 random on-disk solar quiet-region coronal jets found in high-resolution extreme ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly and having good coverage in magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament). However, the trigger of these eruptions is still unknown. In the present study, we address the question: what leads to the jetdriving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jet event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line of sight photospheric magnetic field, we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the 10 cases, the opposite-polarity patches approach and merge with each other (flux reduction between 21% and 57%). After several hours, continuous flux cancelation at the neutral line apparently destabilizes the field holding the cool-plasma minifilament to erupt and undergo internal reconnection, and external reconnection with the surrounding coronal field. The external reconnection opens the minifilament field allowing the minifilament material to escape outward, forming part of the jet spire. Thus, we found that each of the 10 jets resulted from eruption of a minifilament following flux cancelation at the neutral line under the minifilament. These observations establish that magnetic flux cancelation is usually the trigger of quiet-region coronal jet eruptions. C1 [Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.] Marshall Space Flight Ctr, Heliophys & Planetary Sci Off, ZP13, Huntsville, AL 35812 USA. [Moore, Ronald L.] UAH, CSPAR, Huntsville, AL 35805 USA. [Chakrapani, Prithi] CUNY Hunter Coll, High Sch, New York, NY 10021 USA. RP Panesar, NK (reprint author), Marshall Space Flight Ctr, Heliophys & Planetary Sci Off, ZP13, Huntsville, AL 35812 USA. EM navdeep.k.panesar@nasa.gov OI Panesar, Navdeep/0000-0001-7620-362X FU NASA Postdoctoral Program at the NASA MSFC; Heliophysics Division of NASA's Science Mission Directorate through the heliophysics Guest Investigators Program; Hinode Project FX N.K.P. is supported by an appointment to the NASA Postdoctoral Program at the NASA MSFC, administrated by Universities Space Research Association under contract with NASA. This work was also funded by the Heliophysics Division of NASA's Science Mission Directorate through the heliophysics Guest Investigators Program, and by the Hinode Project. We acknowledge the use of the SDO/AIA and SDO/HMI observations for this study. SDO data are courtesy of the NASA/SDO AIA and HMI science teams. We thank the referee for constructive comments. NR 30 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 11 PY 2016 VL 832 IS 1 AR L7 DI 10.3847/2041-8205/832/1/L7 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC9PK UT WOS:000388476300007 ER PT J AU Berger, T Przybyla, B Matthia, D Reitz, G Burmeister, S Labrenz, J Bilski, P Horwacik, T Twardak, A Hajek, M Fugger, M Hofstatter, C Sihver, L Palfalvi, JK Szabo, J Stradi, A Ambrozova, I Kubancak, J Brabcova, KP Vanhavere, F Cauwels, V Van Hoey, O Schoonjans, W Parisi, A Gaza, R Semones, E Yukihara, EG Benton, ER Doull, BA Uchihori, Y Kodaira, S Kitamura, H Boehme, M AF Berger, Thomas Przybyla, Bartos Matthiae, Daniel Reitz, Guenther Burmeister, Soenke Labrenz, Johannes Bilski, Pawel Horwacik, Tomasz Twardak, Anna Hajek, Michael Fugger, Manfred Hofstaetter, Christina Sihver, Lembit Palfalvi, Jozsef K. Szabo, Julianna Stradi, Andrea Ambrozova, Iva Kubancak, Jan Brabcova, Katerina Pachnerova Vanhavere, Filip Cauwels, Vanessa Van Hoey, Olivier Schoonjans, Werner Parisi, Alessio Gaza, Ramona Semones, Edward Yukihara, Eduardo G. Benton, Eric R. Doull, Brandon A. Uchihori, Yukio Kodaira, Satoshi Kitamura, Hisashi Boehme, Matthias TI DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS) SO JOURNAL OF SPACE WEATHER AND SPACE CLIMATE LA English DT Article DE International Space Station; Columbus; Space radiation; DOSIS; DOSIS 3D ID OPTICALLY STIMULATED LUMINESCENCE; COSMIC-RADIATION; RELATIVE EFFICIENCY; TL DETECTORS; ION-BEAMS; DOSIMETRY; PHANTOM; ENVIRONMENT; ASTRONAUTS; EXPOSURE AB The radiation environment encountered in space differs in nature from that on Earth, consisting mostly of highly energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on Earth for occupational radiation workers. Since the beginning of the space era, the radiation exposure during space missions has been monitored with various active and passive radiation instruments. Also onboard the International Space Station (ISS), a number of area monitoring devices provide data related to the spatial and temporal variation of the radiation field in and outside the ISS. The aim of the DOSIS (2009-2011) and the DOSIS 3D (2012-ongoing) experiments was and is to measure the radiation environment within the European Columbus Laboratory of the ISS. These measurements are, on the one hand, performed with passive radiation detectors mounted at 11 locations within Columbus for the determination of the spatial distribution of the radiation field parameters and, on the other, with two active radiation detectors mounted at a fixed position inside Columbus for the determination of the temporal variation of the radiation field parameters. Data measured with passive radiation detectors showed that the absorbed dose values inside the Columbus Laboratory follow a pattern, based on the local shielding configuration of the radiation detectors, with minimum dose values observed in the year 2010 of 195-270 mu Gy/day and maximum values observed in the year 2012 with values ranging from 260 to 360 mu Gy/day. The absorbed dose is modulated by (a) the variation in solar activity and (b) the changes in ISS altitude. C1 [Berger, Thomas; Przybyla, Bartos; Matthiae, Daniel; Reitz, Guenther] German Aerosp Ctr DLR, Inst Aerosp Med, D-51147 Cologne, Germany. [Burmeister, Soenke; Labrenz, Johannes] Christian Albrechts Univ Kiel CAU, Christian Albrechts Pl, D-24118 Kiel, Germany. [Bilski, Pawel; Horwacik, Tomasz; Twardak, Anna] Polish Acad Sci IFJ, Inst Nucl Phys, PL-31342 Krakow, Poland. [Hajek, Michael] IAEA, Div Radiat Transport & Waste Safety, A-1400 Vienna, Austria. [Hajek, Michael; Fugger, Manfred; Hofstaetter, Christina; Sihver, Lembit] Vienna Univ Technol, Atominst ATI, Stad Allee 2, A-1020 Vienna, Austria. [Sihver, Lembit] EGB MedAustron, Marie Curie Str 5, A-2700 Wiener Neustadt, Austria. [Palfalvi, Jozsef K.; Szabo, Julianna; Stradi, Andrea] Energy Res Ctr, MTA EK, Konkoly Thege Ut 29-33, H-1121 Budapest, Hungary. [Ambrozova, Iva; Kubancak, Jan; Brabcova, Katerina Pachnerova] CAS, Inst Nucl Phys, Dept Radiat Dosimetry, Truhlarce 39-64, Prague 18000, Czech Republic. [Vanhavere, Filip; Cauwels, Vanessa; Van Hoey, Olivier; Schoonjans, Werner; Parisi, Alessio] CEN SCK, Belgian Nucl Res Ctr, Boeretang 200, B-2400 Mol, Belgium. [Gaza, Ramona; Semones, Edward] NASA, Space Radiat Anal Grp, Houston, TX 77058 USA. [Gaza, Ramona] Leidos Explorat & Miss Support, 2400 NASA Pkwy, Houston, TX 77058 USA. [Yukihara, Eduardo G.; Benton, Eric R.; Doull, Brandon A.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi] Natl Inst Radiol Sci, Natl Inst Quantum & Radiol Sci & Technol QST, Inage Ku, 4-9-1 Anagawa, Chiba 2638555, Japan. [Boehme, Matthias] OHB Syst AG, Univ Alle 27-29, D-28359 Bremen, Germany. RP Berger, T (reprint author), German Aerosp Ctr DLR, Inst Aerosp Med, D-51147 Cologne, Germany. EM thomas.berger@dlr.de RI Yukihara, Eduardo/F-1345-2014; OI Yukihara, Eduardo/0000-0002-4615-6698; Matthia, Daniel/0000-0003-1507-0143; Berger, Thomas/0000-0003-3319-5740 FU Austrian Space Applications Programme (ASAP) [819643]; National Science Center [DEC-2012/06/M/ST9/00423]; ESA PECS [PECS4000108464]; Czech Science Foundation (GACR) [15-16622Y]; DLR [50WB0826, 50WB1026, 50WB1232, 50WB1533]; European Space Agency (ESA) FX The participation of the Technische Universitat Wien, Atominstitut (ATI), Vienna, Austria in the DOSIS-1 and -2 experiments was supported by the Austrian Space Applications Programme (ASAP) under Contract No. 819643. The Polish contribution for the Institute of Nuclear Physics (IFJ), Krakow, Poland was supported by the National Science Center (Project No DEC-2012/06/M/ST9/00423). MTA EK greatly acknowledges the possibility of participating in the project to the DLR and to the ESA PECS for the Financial Grant No. PECS4000108464. The participation of the Nuclear Physics Institute of the Czech Academy of Sciences was supported by the grant of Czech Science Foundation (GACR) No. 15-16622Y. The CAU, University of Kiel was supported by DLR under Grants 50WB0826, 50WB1026, 50WB1232, and 50WB1533.; The authors gratefully acknowledge the support of the European Space Agency (ESA) especially Jason Hatton, Rene Demets, Chiara Lombardi, and Liesbeth De Smet, as well as colleagues from CADMOS, Toulouse, France and DLR-MUSC, Cologne, Germany. All of these experiments would not have been possible without the help of all the astronauts working on the DOSIS and s: Frank de Winne, Tracy Caldwell-Dyson, Shannon Walker, Ron Garan, Mike Fossum, Andre Kuipers, Joe Acaba, Sunita Williams, Chris Hadfield, Chris Cassidy, Luca Parmitano, Michael Hopkins, Rick Mastracchio, Koichi Wakata, Alexander Gerst, Samantha Cristoforetti, and Scott Kelly. NR 47 TC 3 Z9 3 U1 6 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 2115-7251 J9 J SPACE WEATHER SPAC JI J. Space Weather Space Clim. PD NOV 11 PY 2016 VL 6 AR A39 DI 10.1051/swsc/2016034 PG 19 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA EB8RX UT WOS:000387659600001 ER PT J AU Schroder, C Bland, PA Golombek, MP Ashley, JW Warner, NH Grant, JA AF Schroder, Christian Bland, Phil A. Golombek, Matthew P. Ashley, James W. Warner, Nicholas H. Grant, John A. TI Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars SO NATURE COMMUNICATIONS LA English DT Article ID MOSSBAUER-SPECTROSCOPY; CLIMATE-CHANGE; EROSION RATES; CRATER; DESERT AB Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are similar to 1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth. C1 [Schroder, Christian] Univ Stirling, Fac Nat Sci, Biol & Environm Sci, Stirling FK9 4LA, Scotland. [Bland, Phil A.] Curtin Univ, Dept Appl Geol, Perth, WA 6845, Australia. [Golombek, Matthew P.; Ashley, James W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Warner, Nicholas H.] SUNY Coll Geneseo, Dept Geol Sci, Geneseo, NY 14454 USA. [Grant, John A.] Smithsonian Inst, Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DE 20560 USA. RP Schroder, C (reprint author), Univ Stirling, Fac Nat Sci, Biol & Environm Sci, Stirling FK9 4LA, Scotland. EM christian.schroeder@stir.ac.uk RI Schroder, Christian/B-3870-2009 OI Schroder, Christian/0000-0002-7935-6039 FU University of Stirling; NASA FX C.S. acknowledges an Impact Fellowship awarded by the University of Stirling. Part of the work described herein was done by the Mars Exploration Rover Project, Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. The authors thank James F. Bell III for providing the seam-corrected mosaic shown in Fig. 2. NR 40 TC 0 Z9 0 U1 14 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV 11 PY 2016 VL 7 AR 13459 DI 10.1038/ncomms13459 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB6DE UT WOS:000387470500001 PM 27834377 ER PT J AU Mok, J Krotkov, NA Arola, A Torres, O Jethva, H Andrade, M Labow, G Eck, TF Li, ZQ Dickerson, RR Stenchikov, GL Osipov, S Ren, XR AF Mok, Jungbin Krotkov, Nickolay A. Arola, Antti Torres, Omar Jethva, Hiren Andrade, Marcos Labow, Gordon Eck, Thomas F. Li, Zhanqing Dickerson, Russell R. Stenchikov, Georgiy L. Osipov, Sergey Ren, Xinrong TI Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin SO SCIENTIFIC REPORTS LA English DT Article ID ABSORPTION EXPERIMENT 2002; SINGLE SCATTERING ALBEDO; LIGHT-ABSORPTION; ORGANIC-CARBON; ULTRAVIOLET-RADIATION; OPTICAL-PROPERTIES; BLACK CARBON; MEXICO-CITY; PART 1; AEROSOLS AB The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or "brown" carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305-368 nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18% and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17%, 15%, and 14%, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning. C1 [Mok, Jungbin; Li, Zhanqing; Dickerson, Russell R.; Ren, Xinrong] Univ Maryland, Dept Atmospher & Ocean Sci AOSC, College Pk, MD 20742 USA. [Mok, Jungbin; Li, Zhanqing] Earth Syst Sci Interdisciplinary Ctr ESSIC, College Pk, MD 20740 USA. [Krotkov, Nickolay A.; Torres, Omar; Jethva, Hiren; Labow, Gordon; Eck, Thomas F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Arola, Antti] Finnish Meteorol Inst, Kuopio, Finland. [Jethva, Hiren; Eck, Thomas F.] Univ Space Res Assoc, Columbia, MD USA. [Andrade, Marcos] Univ Mayor San Andres, Inst Phys Res, Lab Atmospher Phys, La Paz, Bolivia. [Labow, Gordon] Sci Syst & Applicat Inc, Lanham, MD USA. [Li, Zhanqing] Beijing Normal Univ, State Lab Earth Surface Proc & Resource Ecol, Coll Global Change & Earth Syst Sci, Beijing, Peoples R China. [Stenchikov, Georgiy L.; Osipov, Sergey] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Thuwal, Saudi Arabia. [Ren, Xinrong] NOAA, Air Resources Lab, College Pk, MD USA. RP Li, ZQ (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci AOSC, College Pk, MD 20742 USA.; Li, ZQ (reprint author), Earth Syst Sci Interdisciplinary Ctr ESSIC, College Pk, MD 20740 USA.; Li, ZQ (reprint author), Beijing Normal Univ, State Lab Earth Surface Proc & Resource Ecol, Coll Global Change & Earth Syst Sci, Beijing, Peoples R China. EM zli@atmos.umd.edu RI Dickerson, Russell/F-2857-2010; Ren, Xinrong/E-7838-2015; Li, Zhanqing/F-4424-2010; OI Dickerson, Russell/0000-0003-0206-3083; Ren, Xinrong/0000-0001-9974-1666; Li, Zhanqing/0000-0001-6737-382X; Arola, Antti/0000-0002-9220-0194 FU ESSIC-NASA Master grant [5266960]; National Science Foundation [AGS1118325, AGS1534670]; MOST [2013CB955804]; NSFC [91544217]; King Abdullah University of Science and Technology (KAUST); NASA Earth Science Division, Radiation Sciences and Atmospheric Composition programs FX J.M. and Z.L. were supported by ESSIC-NASA Master grant (5266960), the National Science Foundation (AGS1118325, AGS1534670), MOST (2013CB955804), and NSFC (91544217). G.S. and S.O. were supported by the King Abdullah University of Science and Technology (KAUST) and used the resources of the Supercomputing Laboratory at KAUST in Thuwal, Saudi Arabia. The authors acknowledge support from NASA Earth Science Division, Radiation Sciences and Atmospheric Composition programs. The authors also thank the AERONET and UV-B Monitoring and Research Program team members. NR 54 TC 1 Z9 1 U1 22 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 11 PY 2016 VL 6 AR 36940 DI 10.1038/srep36940 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB6EO UT WOS:000387474300001 PM 27833145 ER PT J AU Kim, T Gadotti, DA Athanassoula, E Bosma, A Sheth, K Lee, MG AF Kim, Taehyun Gadotti, Dimitri A. Athanassoula, E. Bosma, Albert Sheth, Kartik Lee, Myung Gyoon TI Evidence of bar-induced secular evolution in the inner regions of stellar discs in galaxies: what shapes disc galaxies? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: formation; galaxies: spiral; galaxies: structure ID 3.6 MU-M; SURFACE-BRIGHTNESS PROFILES; SPIRAL GALAXIES; SPITZER SURVEY; STAR-FORMATION; GALACTIC DISKS; FACE-ON; DARK-MATTER; STRUCTURAL-PROPERTIES; MASS DISTRIBUTIONS AB We present evidence of bar-induced secular evolution in galactic discs using 3.6 mu m images of nearby galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S(4)G). We find that among massive galaxies (M-*/M-circle dot > 10(10)), longer bars tend to reside in inner discs having a flatter radial profile. Such galaxies show a light deficit in the disc surrounding the bar, within the bar radius and often show a Theta-shaped morphology. We quantify this deficit and find that among all galaxies explored in this study (with 10(9) < M-*/M-circle dot < 10(11)), galaxies with a stronger bar (i.e. longer and/or with a higher Bar/T) show a more pronounced deficit. We also examine simulation snapshots to confirm and extend results by Athanassoula and Misiriotis, showing that as bars evolve they become longer, while the light deficit in the disc becomes more pronounced. Theoretical studies have predicted that, as a barred galaxy evolves, the bar captures disc stars in its immediate neighbourhood so as to make the bar longer, stronger and thinner. Hence, we claim that the light deficit in the inner disc is produced by bars, which thus take part in shaping the mass distribution of their host galaxies. C1 [Kim, Taehyun] Korea Astron & Space Sci Inst, Daejeon 34055, South Korea. [Kim, Taehyun; Sheth, Kartik] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Kim, Taehyun; Lee, Myung Gyoon] Seoul Natl Univ, Dept Phys & Astron, Astron Program, Seoul 08826, South Korea. [Gadotti, Dimitri A.] European Southern Observ, Casilla 19001, Santiago 19, Chile. [Athanassoula, E.; Bosma, Albert] Aix Marseille Univ, LAM, CNRS, UMR 7326, F-13388 Marseille, France. [Sheth, Kartik] NASA Headquaters, 300 E St SW, Washington, DC 20546 USA. RP Kim, T (reprint author), Korea Astron & Space Sci Inst, Daejeon 34055, South Korea.; Kim, T (reprint author), Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA.; Kim, T; Lee, MG (reprint author), Seoul Natl Univ, Dept Phys & Astron, Astron Program, Seoul 08826, South Korea. EM tkim@kasi.re.kr; mglee@astro.snu.ac.kr FU National Radio Astronomy Observatory; NASA JPL/Spitzer grant [RSA 1374189]; National Research Foundation of Korea (NRF) - Korea Government (MEST) [2012R1A4A1028713]; Marie Curie Actions of the European Commission (FP7-COFUND); Centre National d'Etudes Spatiales (CNES); 'Programme National de Cosmologie and Galaxies' (PNCG) of CNRS/INSU, France; People Programme (Marie Curie Actions) of the European Union under REA grant [PITN-GA-2011-289313]; GENCI-TGCC/CINES Grants [2013 - x2013047098, 2014 - x2014047098]; National Aeronautics and Space Administration (NASA) FX We thank the S4G team for their effort in this project. TK, KS, acknowledge support from the National Radio Astronomy Observatory, which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. We are grateful for the support from NASA JPL/Spitzer grant RSA 1374189 provided for the S4G project. TK and MGLwere supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MEST) (No. 2012R1A4A1028713). DAG, EA, and AB thanks the Marie Curie Actions of the European Commission (FP7-COFUND) for the funding. EA and AB thank the Centre National d'Etudes Spatiales (CNES) and the 'Programme National de Cosmologie and Galaxies' (PNCG) of CNRS/INSU, France for financial support. They also acknowledge financial support from the People Programme (Marie Curie Actions) of the European Union's FP7/2007-2013/to the DAGAL network under REA grant agreement no. PITN-GA-2011-289313. EA acknowledges the use of HPC resources from GENCI-TGCC/CINES (Grants 2013 - x2013047098 and 2014 - x2014047098).; This research is based on observations and archival data made with the Spitzer Space Telescope, and made use of the NASA/IPAC Extragalactic Database (NED) which are operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with National Aeronautics and Space Administration (NASA). We acknowledge the usage of the HyperLeda data base (http://leda.univ-lyon1.fr). NR 109 TC 2 Z9 2 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2016 VL 462 IS 4 BP 3430 EP 3440 DI 10.1093/mnras/stw1899 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY6LH UT WOS:000385231600002 ER PT J AU Moffett, AJ Lange, R Driver, SP Robotham, ASG Kelvin, LS Alpaslan, M Andrews, SK Bland-Hawthorn, J Brough, S Cluver, ME Colless, M Davies, LJM Holwerda, BW Hopkins, AM Kafle, PR Liske, J Meyer, M AF Moffett, Amanda J. Lange, Rebecca Driver, Simon P. Robotham, Aaron S. G. Kelvin, Lee S. Alpaslan, Mehmet Andrews, Stephen K. Bland-Hawthorn, Joss Brough, Sarah Cluver, Michelle E. Colless, Matthew Davies, Luke J. M. Holwerda, Benne W. Hopkins, Andrew M. Kafle, Prajwal R. Liske, Jochen Meyer, Martin TI Galaxy and Mass Assembly (GAMA): the stellar mass budget of galaxy spheroids and discs SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: elliptical and lenticular, cD; galaxies: fundamental parameters; galaxies: luminosity function, mass function; galaxies: spiral; galaxies: statistics ID DIGITAL SKY SURVEY; STAR-FORMATION HISTORIES; LUMINOSITY FUNCTION; SPIRAL GALAXIES; STRUCTURAL PARAMETERS; RADIATIVE-TRANSFER; CLASSICAL BULGES; ANGULAR-MOMENTUM; SERSIC INDEX; LAMBDA-CDM AB We build on a recent photometric decomposition analysis of 7506 Galaxy and Mass Assembly (GAMA) survey galaxies to derive stellar mass function fits to individual spheroid and disc component populations down to a lower mass limit of log(M*/M-circle dot) = 8. We find that the spheroid/ disc mass distributions for individual galaxy morphological types are well described by single Schechter function forms. We derive estimates of the total stellar mass densities in spheroids (rho(spheroid) = 1.24 +/- 0.49 x 10(8) M-circle dot Mpc (-3)h(0.7)) and discs (rho(disc) = 1.20 +/- 0.45 x 10(8)M(circle dot) Mpc (-3)h(0.7)), which translates to approximately 50 per cent of the local stellar mass density in spheroids and 48 per cent in discs. The remaining stellar mass is found in the dwarf 'little blue spheroid' class, which is not obviously similar in structure to either classical spheroid or disc populations. We also examine the variation of component mass ratios across galaxy mass and group halo mass regimes, finding the transition from spheroid to disc mass dominance occurs near galaxy stellar mass similar to 10(11)M(circle dot) and group halo mass similar to 10(12.5)M(circle dot) h(-1). We further quantify the variation in spheroid-to-total mass ratio with group halo mass for central and satellite populations as well as the radial variation of this ratio within groups. C1 [Moffett, Amanda J.; Lange, Rebecca; Driver, Simon P.; Robotham, Aaron S. G.; Andrews, Stephen K.; Davies, Luke J. M.; Kafle, Prajwal R.; Meyer, Martin] Univ Western Australia, ICRAR, 35 Stirling Highway, Crawley, WA 6009, Australia. [Driver, Simon P.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Kelvin, Lee S.] Liverpool John Moores Univ, Astrophys Res Inst, IC2,Liverpool Sci Pk,146 Brownlow Hill, Liverpool L3 5RF, Merseyside, England. [Alpaslan, Mehmet] NASA, Ames Res Ctr, N232 Moffett Field, Moffett Field, CA 94035 USA. [Bland-Hawthorn, Joss] Univ Sydney, Sch Phys A28, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Brough, Sarah] Australian Astron Observ, POB 915, N Ryde, NSW 1670, Australia. [Cluver, Michelle E.] Univ Western Cape, Dept Phys & Astron, Robert Sobukwe Rd, ZA-7535 Bellville, South Africa. [Colless, Matthew] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Holwerda, Benne W.] Leiden Univ, Sterrenwacht Leiden, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. [Liske, Jochen] Univ Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. RP Moffett, AJ (reprint author), Univ Western Australia, ICRAR, 35 Stirling Highway, Crawley, WA 6009, Australia. EM amanda.moffett@uwa.edu.au OI Alpaslan, Mehmet/0000-0003-0321-1033; Colless, Matthew/0000-0001-9552-8075 FU Australian Research Council [130103505]; STFC (UK); ARC (Australia); AAO; Alfred P. Sloan Foundation; National Science Foundation; U. S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; La Silla Paranal Observatory [179.A-2004] FX We thank Alister Graham, Anne Samson, and the anonymous referee for helpful comments on this manuscript. SPD and AJM acknowledge funding support from the Australian Research Council under Discovery Project 130103505.; GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalogue is based on data taken from the Sloan Digital Sky Survey and the UKIRT Infrared Deep Sky Survey. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programmes including GALEX MIS, VST KiDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO, and the participating institutions. The GAMA website is http://www.gama-survey.org/.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U. S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.; The VIKING survey is based on observations with ESO Telescopes at the La Silla Paranal Observatory under the programme ID 179.A-2004. NR 68 TC 2 Z9 2 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2016 VL 462 IS 4 BP 4336 EP 4348 DI 10.1093/mnras/stw1861 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY6LH UT WOS:000385231600063 ER PT J AU Brouwer, MM Cacciato, M Dvornik, A Eardley, L Heymans, C Hoekstra, H Kuijken, K McNaught-Roberts, T Sifon, C Viola, M Alpaslan, M Bilicki, M Bland-Hawthorn, J Brough, S Choi, A Driver, SP Erben, T Grado, A Hildebrandt, H Holwerda, BW Hopkins, AM de Jong, JTA Liske, J McFarland, J Nakajima, R Napolitano, NR Norberg, P Peacock, JA Radovich, M Robotham, ASG Schneider, P Sikkema, G van Uitert, E Kleijn, GV Valentijn, EA AF Brouwer, Margot M. Cacciato, Marcello Dvornik, Andrej Eardley, Lizzie Heymans, Catherine Hoekstra, Henk Kuijken, Konrad McNaught-Roberts, Tamsyn Sifon, Cristobal Viola, Massimo Alpaslan, Mehmet Bilicki, Maciej Bland-Hawthorn, Joss Brough, Sarah Choi, Ami Driver, Simon P. Erben, Thomas Grado, Aniello Hildebrandt, Hendrik Holwerda, Benne W. Hopkins, Andrew M. de Jong, Jelte T. A. Liske, Jochen McFarland, John Nakajima, Reiko Napolitano, Nicola R. Norberg, Peder Peacock, John A. Radovich, Mario Robotham, Aaron S. G. Schneider, Peter Sikkema, Gert van Uitert, Edo Kleijn, Gijs Verdoes Valentijn, Edwin A. TI Dependence of GAMA galaxy halo masses on the cosmic web environment from 100 deg(2) of KiDS weak lensing data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; methods: statistical; surveys; galaxies: haloes; dark matter; large-scale structure of Universe ID DARK-MATTER HALOES; DIGITAL SKY SURVEY; ASSEMBLY GAMA; STELLAR MASS; DATA RELEASE; PHOTOMETRIC REDSHIFTS; LUMINOSITY FUNCTION; SQUARE DEGREES; EVOLUTION; CFHTLENS AB Galaxies and their dark matter haloes are part of a complex network of mass structures, collectively called the cosmic web. Using the tidal tensor prescription these structures can be classified into four cosmic environments: voids, sheets, filaments and knots. As the cosmic web may influence the formation and evolution of dark matter haloes and the galaxies they host, we aim to study the effect of these cosmic environments on the average mass of galactic haloes. To this end we measure the galaxy-galaxy lensing profile of 91 195 galaxies, within 0.039 < z < 0.263, from the spectroscopic Galaxy And Mass Assembly survey, using similar to 100 deg(2) of overlapping data from the Kilo-Degree Survey. In each of the four cosmic environments we model the contributions from group centrals, satellites and neighbouring groups to the stacked galaxy-galaxy lensing profiles. After correcting the lens samples for differences in the stellar mass distribution, we find no dependence of the average halo mass of central galaxies on their cosmic environment. We do find a significant increase in the average contribution of neighbouring groups to the lensing profile in increasingly dense cosmic environments. We show, however, that the observed effect can be entirely attributed to the galaxy density at much smaller scales (within 4 h(-1) Mpc), which is correlated with the density of the cosmic environments. Within our current uncertainties we find no direct dependence of galaxy halo mass on their cosmic environment. C1 [Brouwer, Margot M.; Cacciato, Marcello; Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad; Sifon, Cristobal; Viola, Massimo; Bilicki, Maciej; Holwerda, Benne W.; de Jong, Jelte T. A.] Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. [Eardley, Lizzie; Heymans, Catherine; Choi, Ami; Peacock, John A.] Univ Edinburgh, Inst Astron, SUPA, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [McNaught-Roberts, Tamsyn; Norberg, Peder] Univ Durham, ICC, South Rd, Durham DH1 3LE, England. [McNaught-Roberts, Tamsyn; Norberg, Peder] Univ Durham, CEA, Dept Phys, South Rd, Durham DH1 3LE, England. [Alpaslan, Mehmet] NASA, Ames Res Ctr, N232,Moffett Field, Moffett Field, CA 94035 USA. [Bland-Hawthorn, Joss] Univ Sydney, Sch Phys A28, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Brough, Sarah; Hopkins, Andrew M.] Australian Astron Observ, POB 915, N Ryde, NSW 1670, Australia. [Driver, Simon P.; Robotham, Aaron S. G.] Univ Western Australia, ICRAR M468, 35 Stirling Hwy, Crawley, WA 6009, Australia. [Driver, Simon P.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Erben, Thomas; Hildebrandt, Hendrik; Nakajima, Reiko; Schneider, Peter] Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany. [Grado, Aniello; Napolitano, Nicola R.; Radovich, Mario] INAF Osservatorio Astron Capodimonte, Via Moiariello 16, I-80131 Naples, Italy. [Liske, Jochen] Univ Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. [McFarland, John; Sikkema, Gert; Kleijn, Gijs Verdoes; Valentijn, Edwin A.] Univ Groningen, Kapteyn Astron Inst, POB 800, NL-9700 AV Groningen, Netherlands. [van Uitert, Edo] UCL, Gower St, London WC1E 6BT, England. RP Brouwer, MM (reprint author), Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. EM brouwer@strw.leidenuniv.nl OI Bilicki, Maciej/0000-0002-3910-5809 FU European Research Council [279396, 240185, G47112]; Netherlands Organisation for Scientific Research (NWO) [614.001.103]; Deutsche Forschungsgemeinschaft [Hi 1495/2-1, TR]; Netherlands Research School for Astronomy (NOVA) and Target; STFC Ernest Rutherford Research Grant [ST/L00285X/1]; La Silla Paranal Observatory [177.A-3016, 177.A-3017, 177.A-3018]; NOVA; NWO-M; Department of Physics and Astronomy of the University of Padova; Department of Physics of Univ. Federico II (Naples); STFC (UK); ARC (Australia); AAO FX We thank Alexander Mead for useful comments on the manuscript. CH, MV, MC, HHo, CS and AC acknowledge support from the European Research Council under FP7 grant number 279396 (MV, MC, CS, HHo), grant number 240185 (AC and CH) and grant number G47112 (CH). MV acknowledges support from the Netherlands Organisation for Scientific Research (NWO) through grants 614.001.103. HHi is supported by an Emmy Noether grant (No. Hi 1495/2-1) of the Deutsche Forschungsgemeinschaft. RN acknowledges support from the German Federal Ministry for Economic Affairs and Energy (BMWi) provided via DLR under project no. 50QE1103. TM-R and PN acknowledge support from an European Research Council Starting Grant (DEGAS-259586). This work is supported by the Deutsche Forschungsgemeinschaft in the framework of the TR33 'The Dark Universe'. GVK acknowledges financial support from the Netherlands Research School for Astronomy (NOVA) and Target. Target is supported by Samenwerkingsverband Noord Nederland, European fund for regional development, Dutch Ministry of economic affairs, Pieken in de Delta, Provinces of Groningen and Drenthe. EvU acknowledges support from an STFC Ernest Rutherford Research Grant, grant reference ST/L00285X/1.; This research is based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 177.A-3016, 177.A-3017 and 177.A-3018, and on data products produced by Target OmegaCEN, INAF-OACN, INAF-OAPD and the KiDS production team, on behalf of the KiDS consortium. OmegaCEN and the KiDS production team acknowledge support by NOVA and NWO-M grants. Members of INAF-OAPD and INAF-OACN also acknowledge the support from the Department of Physics and Astronomy of the University of Padova, and of the Department of Physics of Univ. Federico II (Naples).; GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalogue is based on data taken from the SDSS and the UKIRT Infrared Deep Sky Survey. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programmes including GALEX MIS, VST KiDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO and the participating institutions. The GAMA website is www.gama-survey.org. NR 70 TC 1 Z9 1 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2016 VL 462 IS 4 BP 4451 EP 4463 DI 10.1093/mnras/stw1602 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DY6LH UT WOS:000385231600072 ER PT J AU Hotokezaka, K Nissanke, S Hallinan, G Lazio, TJW Nakar, E Piran, T AF Hotokezaka, K. Nissanke, S. Hallinan, G. Lazio, T. J. W. Nakar, E. Piran, T. TI RADIO COUNTERPARTS OF COMPACT BINARY MERGERS DETECTABLE IN GRAVITATIONAL WAVES: A SIMULATION FOR AN OPTIMIZED SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; gravitational waves; radio continuum: stars; stars: neutron ID GAMMA-RAY BURSTS; NEUTRON-STAR MERGERS; SYNCHROTRON SELF-ABSORPTION; R-PROCESS NUCLEOSYNTHESIS; DYNAMICAL MASS EJECTION; SHORT-DURATION GRBS; DEEP FIELD-SOUTH; LIGHT CURVES; BLACK-HOLE; ELECTROMAGNETIC COUNTERPARTS AB Mergers of binary neutron stars and black hole-neutron star binaries produce gravitational-wave. (GW) emission and outflows with significant kinetic energies. These outflows result in radio emissions through synchrotron radiation. We explore the detectability of these synchrotron-generated radio signals by follow-up observations of GW merger events lacking a detection of electromagnetic counterparts in other wavelengths. We model radio light curves arising from (i) sub-relativistic merger ejecta and (ii) ultra-relativistic jets. The former produce radio remnants on timescales of a few years and the latter produce gamma-ray bursts in the direction of the jet and orphan-radio afterglows extending over wider angles on timescales of weeks. Based on the derived light curves, we suggest an optimized survey at 1.4 GHz with five epochs separated by a logarithmic time interval. We estimate the detectability of the radio counterparts of simulated GW-merger events to be detected by advanced LIGO and Virgo by current and future radio facilities. The detectable distances for these GW merger events could be as high as 1 Gpc. Around 20%-60% of the long-lasting radio remnants will be detectable in the case of the moderate kinetic energy of 3 . 10(50) erg and a circum-merger density of 0.1 cm(-3) or larger, while 5%-20% of the orphan-radio afterglows with kinetic energy of 10(48). erg will be detectable. The detection likelihood increases if one focuses on the well-localizable GW events. We discuss the background noise due to radio fluxes of host galaxies and false positives arising from extragalactic radio transients and variable active. galactic. nuclei, and we show that the quiet radio transient sky is of great advantage when searching for the radio counterparts. C1 [Hotokezaka, K.; Piran, T.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Nissanke, S.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands. [Hallinan, G.] CALTECH, Cahill Ctr Astron, MC 249-17, Pasadena, CA 91125 USA. [Lazio, T. J. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nakar, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. RP Hotokezaka, K (reprint author), Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. OI Piran, Tsvi/0000-0002-7964-5420 FU I-CORE Program of the Planning and Budgeting Committee; Israel Science Foundation [1829/12]; ISF-CNSF grant; Radboud University Excellence Fellowship; National Aeronautics and Space Administration FX This work was supported by the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation (grant No 1829/12) and by an ISF-CNSF grant. SMN acknowledges generous support from the Radboud University Excellence Fellowship. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 146 TC 1 Z9 1 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2016 VL 831 IS 2 AR 190 DI 10.3847/0004-637X/831/2/190 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC6DU UT WOS:000388227500001 ER PT J AU Wolff, MT Becker, PA Gottlieb, AM Furst, F Hemphill, PB Marcu-Cheatham, DM Pottschmidt, K Schwarm, FW Wilms, J Wood, KS AF Wolff, Michael T. Becker, Peter A. Gottlieb, Amy M. Fuerst, Felix Hemphill, Paul B. Marcu-Cheatham, Diana M. Pottschmidt, Katja Schwarm, Fritz-Walter Wilms, Joern Wood, Kent S. TI THE NuSTAR X-RAY SPECTRUM OF HERCULES X-1: A RADIATION-DOMINATED RADIATIVE SHOCK SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; X-rays: binaries; stars: individual (Her X-1); stars: neutron; radiative transfer ID MAGNETIZED NEUTRON-STARS; SPECTROSCOPIC-TELESCOPE-ARRAY; LOW-LUMINOSITY ACCRETION; CYCLOTRON LINE FORMATION; PULSAR; COMPTONIZATION; ENERGY; MODELS; RADIUS; PERIOD AB We report on new spectral modeling of the accreting X-ray pulsar Hercules X-1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker & Wolff on Comptonized accretion flows onto magnetic neutron stars. We obtain a good fit to the spin-phase-averaged 4-78 keV X-ray spectrum observed by the Nuclear Spectroscopic Telescope Array during a main-on phase of the Her X-1 35 day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters in the accretion column. This is in contrast to previous phenomenological models that characterized the shape of the X-ray spectrum, but could not determine the physical parameters of the accretion flow. We describe the spectral fitting details and discuss the interpretation of the accretion flow physical parameters. C1 [Wolff, Michael T.; Wood, Kent S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Becker, Peter A.] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Gottlieb, Amy M.; Marcu-Cheatham, Diana M.; Pottschmidt, Katja] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Gottlieb, Amy M.; Marcu-Cheatham, Diana M.; Pottschmidt, Katja] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Gottlieb, Amy M.; Marcu-Cheatham, Diana M.; Pottschmidt, Katja] CRESST, Code 661, Greenbelt, MD 20771 USA. [Gottlieb, Amy M.; Marcu-Cheatham, Diana M.; Pottschmidt, Katja] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Fuerst, Felix] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Hemphill, Paul B.] Univ Calif San Diego, Ctr Astrophys & Space Sci, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Schwarm, Fritz-Walter; Wilms, Joern] Dr Karl Remeis Sternwarte & ECAP, Sternwartstr 7, D-96049 Bamberg, Germany. [Wood, Kent S.] Praxis Inc, 5845 Richmond Hwy,Suite 700, Alexandria, VA 22303 USA. RP Wolff, MT (reprint author), Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. RI Wilms, Joern/C-8116-2013; OI Wilms, Joern/0000-0003-2065-5410; Becker, Peter/0000-0002-3718-1293 FU National Aeronautics and Space Administration Astrophysical Data Analysis Program [12-ADAP12-0118]; Chief of Naval Research; Deutsche Forschungsgemeinschaft; National Aeronautics and Space Administration FX The authors thank Dr. Carlo Ferrigno and Dr. Kenneth Wolfram for valuable help in formulating the numerical implementation of many of the analytical expressions. We thank Dr. Richard Rothschild for a number of stimulating discussions. We also thank an anonymous referee for a number of insightful comments that helped improve the manuscript. This research was supported by the National Aeronautics and Space Administration Astrophysical Data Analysis Program under Grant 12-ADAP12-0118. MTW and KSW are also supported by the Chief of Naval Research. JW and F-WS are grateful for support by the Deutsche Forschungsgemeinschaft. This work made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. This research has also made use of the NuSTAR Data Analysis Software (NuSTAR-DAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). NR 39 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2016 VL 831 IS 2 AR 194 DI 10.3847/0004-637X/831/2/194 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC6DU UT WOS:000388227500005 ER PT J AU Ebert, RW Dayeh, MA Desai, MI Jian, LK Li, G Mason, GM AF Ebert, R. W. Dayeh, M. A. Desai, M. I. Jian, L. K. Li, G. Mason, G. M. TI MULTI-SPACECRAFT ANALYSIS OF ENERGETIC HEAVY ION AND INTERPLANETARY SHOCK PROPERTIES IN ENERGETIC STORM PARTICLE EVENTS NEAR 1 au SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; interplanetary medium; shock waves; Sun: coronal mass ejections (CMEs); Sun: heliosphere ID ADVANCED COMPOSITION EXPLORER; EJECTION-DRIVEN SHOCKS; CORONAL MASS EJECTIONS; SOLAR-WIND; STEREO MISSION; ISOTOPE SPECTROMETER; PEAK INTENSITIES; ACE SPACECRAFT; PROTON EVENTS; HIGH-ENERGIES AB We examine the longitude distribution of and relationship between interplanetary (IP) shock properties and similar to 0.1-20 MeV nucleon(-1) O and Fe ions during seven multi-spacecraft energetic storm particle (ESP) events at 1 au. These ESP events were observed at two spacecraft and were primarily associated with low Mach number, quasi-perpendicular shocks. Key observations include the following: (i) the Alfven Mach number increased from east to west of the coronal mass ejection source longitude, while the shock speed, compression ratios, and obliquity showed no clear dependence; (ii) the O and Fe time intensity profiles and peak intensities varied significantly between longitudinally separated spacecraft observing the same event, the peak intensities being larger near the nose and smaller along the flank of the IP shock; (iii) the O and Fe peak intensities had weak to no correlations with the shock parameters; (iv) the Fe/O time profiles showed intra-event variations upstream of the shock that disappeared downstream of the shock, where values plateaued to those comparable to the mean Fe/O of solar cycle 23; (v) the O and Fe spectral index ranged from similar to 1.0 to 3.4, the Fe spectra being softer in most events; and (vi) the observed spectral index was softer than the value predicted from the shock compression ratio in most events. We conclude that while the variations in IP shock properties may account for some variations in O and Fe properties within these multi-spacecraft events, detailed examination of the upstream seed population and IP turbulence, along with modeling, are required to fully characterize these observations. C1 [Ebert, R. W.; Dayeh, M. A.; Desai, M. I.] Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA. [Desai, M. I.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA. [Jian, L. K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Jian, L. K.] NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Li, G.] Univ Alabama, CSPAR, Huntsville, AL 35756 USA. [Mason, G. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20273 USA. RP Ebert, RW (reprint author), Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA. EM rebert@swri.edu FU NASA [NNX13AE07G, NNX13AI75G, NNX10AT75G, NNN06AA01C, NNX13AR20G/115828]; NSF [AGS-1135432, AGS-1460118, ATM-0847719, AGS 1259549]; University of California, Berkeley [SA4889-26309]; NASA's Science Mission Directorate, STEREO project FX Work at SwRI was partially supported by NASA grants NNX13AE07G and NNX13AI75G, NASA contracts NNX10AT75G and NNN06AA01C, and NSF grants AGS-1135432 and AGS-1460118. Work at APL (ACE/ULEIS and STEREO/SIT) was supported by NASA grant NNX13AR20G/115828 and subcontract SA4889-26309 from the University of California, Berkeley. Work at UAH was supported by NSF grants ATM-0847719 and AGS-1135432. L.K.J. was supported by NSF grant AGS 1259549 and NASA's Science Mission Directorate as part of the STEREO project. We gratefully thank the STEREO/LET, PLASTIC, and MAG and ACE/SIS, SWEPAM, SWICS, and MAG teams for the use of their data and making their data publicly available. We thank NASA's Community Coordinated Modeling Center for making the WSA-ENLIL simulations publicly available. NR 58 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2016 VL 831 IS 2 AR 153 DI 10.3847/0004-637X/831/2/153 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC1PI UT WOS:000387878200004 ER PT J AU Kaufman, M Elmegreen, BG Struck, C Elmegreen, DM Bournaud, F Brinks, E Juneau, S Sheth, K AF Kaufman, Michele Elmegreen, Bruce G. Struck, Curtis Elmegreen, Debra Meloy Bournaud, Frederic Brinks, Elias Juneau, Stephanie Sheth, Kartik TI OCULAR SHOCK FRONT IN THE COLLIDING GALAXY IC 2163 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (IC 2163/NGC 2207); galaxies: interactions; galaxies: ISM ID SPACE-TELESCOPE OBSERVATIONS; NGC 2207/IC 2163; SPIRAL GALAXIES; GRAZING ENCOUNTER; NGC-2207; IC-2163; COMPANION; GAS AB ALMA observations in the (CO)-C-12 J = 1 -> 0 line of the interacting galaxy pair IC 2163 and NGC 2207 at 2 '' x 1 ''.5 resolution reveal how the encounter drives gas to pile up in narrow, similar to 1 kpc wide, "eyelids" in IC 2163. IC 2163 and NGC 2207 are involved in a grazing encounter, which has led to the development in IC 2163 of an eye-shaped (ocular) structure at mid-radius and two tidal arms. The CO data show that there are large velocity gradients across the width of each eyelid, with a mixture of radial and azimuthal streaming of gas at the outer edge of the eyelid relative to its inner edge. The sense of the radial streaming in the eyelids is consistent with the idea that gas from the outer part of IC 2163 flows inward until its radial streaming slows down abruptly and the gas piles up in the eyelids. The radial compression at the eyelids causes an increase in the gas column density by direct radial impact and also leads to a high rate of shear. A linear regression of the molecular column density N(H-2) on the magnitude of |dv/dR| across the width of the eyelid at fixed values of azimuth finds a strong correlation between N(H-2) and |dv/dR|. Substantial portions of the eyelids have high velocity dispersion in CO, indicative of elevated turbulence there. C1 [Kaufman, Michele] 110 Westchester Rd, Newton, MA 02458 USA. [Elmegreen, Bruce G.] IBM Res Div, TJ Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA. [Struck, Curtis] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Elmegreen, Debra Meloy] Vassar Coll, Dept Phys & Astron, Poughkeepsie, NY 12604 USA. [Bournaud, Frederic; Juneau, Stephanie] Univ Paris Diderot, CEA Saclay, Irfu Serv Astrophys, CEA DSM CNRS,Lab AIM Paris Saclay, F-91191 Gif Sur Yvette, France. [Brinks, Elias] Univ Hertfordshire, Ctr Astrophys Res, Coll Lane, Hatfield AL10 9AB, Herts, England. [Sheth, Kartik] NASA, 300 E St SW, Washington, DC 20546 USA. RP Kaufman, M (reprint author), 110 Westchester Rd, Newton, MA 02458 USA. EM kaufmanrallis@icloud.com; bge@us.ibm.com; curt@iastate.edu; elmegreen@vassar.edu; frederic.bournaud@gmail.com; e.brinks@herts.ac.uk; stephanie.juneau@cea.fr; astrokartik@gmail.com OI Elmegreen, Debra/0000-0002-1392-3520; Brinks, Elias/0000-0002-7758-9699 FU National Aeronautics and Space Administration; UK Science and Technology Facilities Council [ST/M001008/1]; EU [ERC-StG-257720] FX This paper makes use of the following ALMA data: ADS/JAO.ALMA#2012.1.00357.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by the Associated Universities, Inc. This research made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. E.B. acknowledges support from the UK Science and Technology Facilities Council [grant number ST/M001008/1]. F.B. acknowledges funding from the EU through grant ERC-StG-257720. NR 18 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2016 VL 831 IS 2 AR 161 DI 10.3847/0004-637X/831/2/161 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC1PI UT WOS:000387878200012 ER PT J AU Simon, MN Pascucci, I Edwards, S Feng, W Gorti, U Hollenbach, D Rigliaco, E Keane, JT AF Simon, M. N. Pascucci, I. Edwards, S. Feng, W. Gorti, U. Hollenbach, D. Rigliaco, E. Keane, J. T. TI TRACING SLOW WINDS FROM T TAURI STARS VIA LOW-VELOCITY FORBIDDEN LINE EMISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; protoplanetary disks; stars: pre-main sequence ID YOUNG STELLAR OBJECTS; MAIN-SEQUENCE STARS; LOW-MASS STARS; CIRCUMSTELLAR DISKS; PROTOPLANETARY DISKS; ROVIBRATIONAL CO; ACCRETION RATES; ORIGIN; EVOLUTION; SPECTRA AB Using Keck/HIRES spectra (Delta v similar to 7 km s(-1)) we analyze forbidden lines of [O I] 6300 angstrom, [O I] 5577 angstrom. and [S II] 6731 angstrom. from 33 T Tauri stars covering a range of disk evolutionary stages. After removing a high-velocity component (HVC) associated with microjets, we study the properties of the low-velocity component (LVC). The LVC can be attributed to slow disk winds that could be magnetically (magnetohydrodynamic) or thermally (photoevaporative) driven. Both of these winds play an important role in the evolution and dispersal of protoplanetary material. LVC emission is seen in all 30 stars with detected [O. I] but only in two out of eight with detected [S. II], so our analysis is largely based on the properties of the [O. I] LVC. The LVC itself is resolved into broad (BC) and narrow (NC) kinematic components. Both components are found over a wide range of accretion rates and their luminosity is correlated with the accretion luminosity, but the NC is proportionately stronger than the BC in transition disks. The full width at half maximum of both the BC and NC correlates with disk inclination, consistent with Keplerian broadening from radii of 0.05 to 0.5 au and 0.5 to 5 au, respectively. The velocity centroids of the BC suggest formation in an MHD disk wind, with the largest blueshifts found in sources with closer to face-on orientations. The velocity centroids of the NC, however, show no dependence on disk inclination. The origin of this component is less clear and the evidence for photoevaporation is not conclusive. C1 [Simon, M. N.; Pascucci, I.; Keane, J. T.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Edwards, S.] Smith Coll, Coll Astron Dept 5, Northampton, MA 01063 USA. [Feng, W.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Gorti, U.; Hollenbach, D.] SETI Inst, Mountain View, CA 94043 USA. [Gorti, U.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Rigliaco, E.] Swiss Fed Inst Technol, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. RP Simon, MN (reprint author), Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. FU Collaborative NSF Astronomy and Astrophysics Research Grant [1312962, 1313003]; NASA [NNG506GE47G]; W.M. Keck Foundation FX I. Pascucci, U. Gorti, and D. Hollenbach acknowledge support from a Collaborative NSF Astronomy and Astrophysics Research Grant (IDs: 1312962 and 1313003). S. Edwards acknowledges support from NASA grant NNG506GE47G issued through the Office of Space Science. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 79 TC 1 Z9 1 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2016 VL 831 IS 2 AR 169 DI 10.3847/0004-637X/831/2/169 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC1PI UT WOS:000387878200020 ER PT J AU Winebarger, AR Lionello, R Downs, C Mikic, Z Linker, J Mok, Y AF Winebarger, Amy R. Lionello, Roberto Downs, Cooper Mikic, Zoran Linker, Jon Mok, Yung TI AN INVESTIGATION OF TIME LAG MAPS USING THREE-DIMENSIONAL SIMULATIONS OF HIGHLY STRATIFIED HEATING SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: UV radiation ID SOLAR CORONAL LOOPS; ACTIVE-REGION; 3 DIMENSIONS; PROMINENCES; DYNAMICS; MODEL; CONDENSATION; EVOLUTION; RAIN AB The location and frequency of coronal energy release provide a significant constraint on the coronal heating mechanism. The evolution of the intensity observed in coronal structures found from time lag analysis of Atmospheric Imaging Assembly (AIA) data has been used to argue that heating must occur sporadically. Recently, we have demonstrated that quasi-steady, highly stratified (footpoint) heating can produce results qualitatively consistent with the evolution of observed coronal structures. The goals of this paper are to demonstrate that time lag analysis of 3D simulations of footpoint heating are qualitatively consistent with time lag analysis of observations and to use the 3D simulations to further understand whether time lag analysis is a useful tool in defining the evolution of coronal structures. We find the time lag maps generated from simulated data are consistent with the observed time lag maps. We next investigate several example points. In some cases, the calculated time lag reflects the evolution of a unique loop along the line of sight, though there may be additional evolving structures along the line of sight. We confirm that using the multi-peak AIA channels can produce time lags that are difficult to interpret. We suggest using a different high temperature channel, such as an X-ray channel. Finally, we find that multiple evolving structures along the line of sight can produce time lags that do not represent the physical properties of any structure along the line of sight, although the cross-correlation coefficient of the lightcurves is high. Considering the projected geometry of the loops may reduce some of the line-of-sight confusion. C1 [Winebarger, Amy R.] NASA, Marshall Space Flight Ctr, ZP 13, Huntsville, AL 35812 USA. [Lionello, Roberto; Downs, Cooper; Mikic, Zoran; Linker, Jon] Predict Sci Inc 9990, 9990 Mesa Rim Rd,Ste 170, San Diego, CA 92121 USA. [Mok, Yung] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Winebarger, AR (reprint author), NASA, Marshall Space Flight Ctr, ZP 13, Huntsville, AL 35812 USA. EM amy.r.winebarger@nasa.gov; lionel@predsci.com; cdowns@predsci.com; mikicz@predsci.com; linkerj@predsci.com; ymok@uci.edu OI Lionello, Roberto/0000-0001-9231-045X FU NASA's LWS, Theory, and Heliophysics Supporting Research Programs; NSF's Strategic Capabilities Program; Center for Integrated Space Weather Modeling, and AFOSR FX The authors would like to thank the referee for helpful comments and Jim Klimchuk, Nicki Viall, and Frederic Auchere for many useful discussions. This work was supported by NASA's LWS, Theory, and Heliophysics Supporting Research Programs, NSF's Strategic Capabilities Program and the Center for Integrated Space Weather Modeling, and AFOSR. This paper is an outgrowth of the participation of A. W., Z.M., and R.L. in the 2011 "Loops Workshop." NR 34 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2016 VL 831 IS 2 AR 172 DI 10.3847/0004-637X/831/2/172 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC1PI UT WOS:000387878200023 ER PT J AU Krakauer, NY Puma, MJ Cook, BI Gentine, P Nazarenko, L AF Krakauer, Nir Y. Puma, Michael J. Cook, Benjamin I. Gentine, Pierre Nazarenko, Larissa TI Ocean-atmosphere interactions modulate irrigation's climate impacts SO EARTH SYSTEM DYNAMICS LA English DT Article ID LAND-COVER CHANGES; GLOBAL CLIMATE; SURFACE-TEMPERATURE; VEGETATION MODEL; NORTHERN WINTER; GISS MODELE2; WATER-VAPOR; MONSOON; PRECIPITATION; SIMULATIONS AB Numerous studies have focused on the local and regional climate effects of irrigated agriculture and other land cover and land use change (LCLUC) phenomena, but there are few studies on the role of ocean-atmosphere interaction in modulating irrigation climate impacts. Here, we compare simulations with and without interactive sea surface temperatures of the equilibrium effect on climate of contemporary (year 2000) irrigation geographic extent and intensity. We find that ocean-atmosphere interaction does impact the magnitude of global-mean and spatially varying climate impacts, greatly increasing their global reach. Local climate effects in the irrigated regions remain broadly similar, while non-local effects, particularly over the oceans, tend to be larger. The interaction amplifies irrigation-driven standing wave patterns in the tropics and midlatitudes in our simulations, approximately doubling the global-mean amplitude of surface temperature changes due to irrigation. The fractions of global area experiencing significant annual-mean surface air temperature and precipitation change also approximately double with ocean-atmosphere interaction. Subject to confirmation with other models, these findings imply that LCLUC is an important contributor to climate change even in remote areas such as the Southern Ocean, and that attribution studies should include interactive oceans and need to consider LCLUC, including irrigation, as a truly global forcing that affects climate and the water cycle over ocean as well as land areas. C1 [Krakauer, Nir Y.] CUNY, Dept Civil Engn, New York, NY 10031 USA. [Krakauer, Nir Y.] CUNY, NOAA CREST, New York, NY 10031 USA. [Puma, Michael J.; Nazarenko, Larissa] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Puma, Michael J.; Cook, Benjamin I.; Nazarenko, Larissa] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Puma, Michael J.] Columbia Univ, Ctr Climate & Life, Palisades, NY 10964 USA. [Gentine, Pierre] Columbia Univ, Sch Engn & Appl Sci, Earth & Environm Engn, New York, NY USA. RP Krakauer, NY (reprint author), CUNY, Dept Civil Engn, New York, NY 10031 USA.; Krakauer, NY (reprint author), CUNY, NOAA CREST, New York, NY 10031 USA. EM mail@nirkrakauer.net RI Cook, Benjamin/H-2265-2012 FU NASA Modeling, Analysis, and Prediction program; NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulations (NCCS) at Goddard Space Flight Center; Interdisciplinary Global Change Research under NASA - NASA Climate and Earth Observing Program [NNX14AB99A]; Columbia University Center for Climate and Life; NOAA [NA11SEC4810004, NA12OAR4310084, NA15OAR4310080]; CUNY [68346-00 46, 2207]; USAID IPM Innovation Lab award "Participatory Biodiversity and Climate Change Assessment for Integrated Pest Management in the Annapurna-Chitwan Landscape, Nepal"; U.S. government FX Climate modeling at GISS is supported by the NASA Modeling, Analysis, and Prediction program. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulations (NCCS) at Goddard Space Flight Center. The authors specifically thank Maxwell Kelly for assistance with the model irrigation module and output diagnostics. Michael J. Puma gratefully acknowledges support from the Interdisciplinary Global Change Research under NASA cooperative agreement NNX14AB99A supported by the NASA Climate and Earth Observing Program and from the Columbia University Center for Climate and Life, where he is a Climate and Life Fellow. Nir Y. Krakauer gratefully acknowledges support from NOAA under grants NA11SEC4810004, NA12OAR4310084, and NA15OAR4310080; from CUNY through PSC-CUNY Award 68346-00 46 and CUNY CIRG Award 2207; and from USAID IPM Innovation Lab award "Participatory Biodiversity and Climate Change Assessment for Integrated Pest Management in the Annapurna-Chitwan Landscape, Nepal". All statements made are the views of the authors and not the opinions of the funding agency or the U.S. government. NR 52 TC 1 Z9 1 U1 7 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 2190-4979 EI 2190-4987 J9 EARTH SYST DYNAM JI Earth Syst. Dynam. PD NOV 10 PY 2016 VL 7 IS 4 BP 863 EP 876 DI 10.5194/esd-7-863-2016 PG 14 WC Geosciences, Multidisciplinary SC Geology GA EB5ZC UT WOS:000387458600002 ER PT J AU Bahr, CJ Cattafesta, LN AF Bahr, Christopher J. Cattafesta, Louis N. TI Wavenumber-frequency deconvolution of aeroacoustic microphone phased array data of arbitrary coherence SO JOURNAL OF SOUND AND VIBRATION LA English DT Article DE Phased array; Beamforming; Deconvolution; Wavenumber-frequency ID RESOLUTION; PRESSURE AB Deconvolution of aeroacoustic data acquired with microphone phased arrays is a computationally challenging task for distributed sources with arbitrary coherence. A new technique for performing such deconvolution is proposed. This technique relies on analysis of the array data in the wavenumber-frequency domain, allowing for fast convolution and reduced storage requirements when compared to traditional coherent deconvolution. A positive semi definite constraint for the iterative deconvolution procedure is implemented and shows improved behavior in terms of quantifiable convergence metrics when compared to a standalone covariance inequality constraint. A series of simulations validates the method's ability to resolve coherence and phase angle relationships between partially coherent sources, as well as determines convergence criteria for deconvolution analysis. Simulations for point sources near the microphone phased array show potential for handling such data in the wavenumber-frequency domain. In particular, a physics-based integration boundary calculation is described, and can successfully isolate sources and track the appropriate integration bounds with and without the presence of flow. Magnitude and phase relationships between multiple sources are successfully extracted. Limitations of the deconvolution technique are determined from the simulations, particularly in the context of a simulated acoustic field in a closed test section wind tunnel with strong boundary layer contamination. A final application to a trailing edge noise experiment conducted in an open-jet wind tunnel matches best estimates of acoustic levels from traditional calculation methods and qualitatively assesses the coherence characteristics of the trailing edge noise source. Published by Elsevier Ltd. C1 [Bahr, Christopher J.] NASA, Aeroacoust Branch, Langley Res Ctr, Hampton, VA 23666 USA. [Cattafesta, Louis N.] Florida State Univ, Dept Mech Engn, FCAAP, Tallahassee, FL 32306 USA. RP Bahr, CJ (reprint author), NASA, Aeroacoust Branch, Langley Res Ctr, Hampton, VA 23666 USA. EM christopher.j.bahr@nasa.gov OI Bahr, Christopher/0000-0002-3095-4265 NR 33 TC 0 Z9 0 U1 3 U2 3 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X EI 1095-8568 J9 J SOUND VIB JI J. Sound Vibr. PD NOV 10 PY 2016 VL 382 BP 13 EP 42 DI 10.1016/j.jsv.2016.06.044 PG 30 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA DV3EY UT WOS:000382805000002 ER PT J AU Spalt, TB Brooks, TF Fuller, CR AF Spalt, Taylor B. Brooks, Thomas F. Fuller, Christopher R. TI Constrained Spectral Conditioning for spatial sound level estimation SO JOURNAL OF SOUND AND VIBRATION LA English DT Article DE Phased array; Spatial filtering; Preprocessor; Beamforming; Linear constraint ID RESOLUTION; ALGORITHM AB Microphone arrays are utilized in aeroacoustic testing to spatially map the sound emitted from an article under study. Whereas a single microphone allows only the total sound level to be estimated at the measurement location, an array permits differentiation between the contributions of distinct components. The accuracy of these spatial sound estimates produced by post-processing the array outputs is continuously being improved. One way of increasing the estimation accuracy is to filter the array outputs before they become inputs to a post-processor. This work presents a constrained method of linear filtering for microphone arrays which minimizes the total signal present on the array channels while preserving the signal from a targeted spatial location. Thus, each single channel, filtered output for a given targeted location estimates only the signal from that location, even when multiple and/or distributed sources have been measured simultaneously. The method is based on Conditioned Spectral Analysis and modifies the Wiener-Hopf equation in a manner similar to the Generalized Sidelobe Canceller. This modified form of Conditioned Spectral Analysis is embedded within an iterative loop and termed Constrained Spectral Conditioning. Linear constraints are derived which prevent the cancellation of targeted signal due to random statistical error as well as location error in the sensor and/or source positions. The increased spatial mapping accuracy of Constrained Spectral Conditioning is shown for a simulated dataset of point sources which vary in strength. An experimental point source is used to validate the efficacy of the constraints which yield preservation of the targeted signal at the expense of reduced filtering ability. The beamforming results of a cold, supersonic jet demonstrate the qualitative and quantitative improvement obtained when using this technique to map a spatially-distributed, complex, and possibly coherent sound source. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Spalt, Taylor B.; Brooks, Thomas F.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Fuller, Christopher R.] Virginia Tech, Vibrat & Acoust Lab, Blacksburg, VA 24061 USA. [Fuller, Christopher R.] Natl Inst Aerosp, Hampton, VA 23666 USA. RP Spalt, TB (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM T.B.Spalt@gmail.com FU NASA Pathways Intern Employment Program FX Funding for this work was provided by the NASA Pathways Intern Employment Program. NR 37 TC 0 Z9 0 U1 1 U2 1 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X EI 1095-8568 J9 J SOUND VIB JI J. Sound Vibr. PD NOV 10 PY 2016 VL 382 BP 379 EP 394 DI 10.1016/j.jsv.2016.07.011 PG 16 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA DV3EY UT WOS:000382805000023 ER PT J AU Howell, LN Reich, KJ Shaver, DJ Landry, AM Gorga, CC AF Howell, Lyndsey N. Reich, Kimberly J. Shaver, Donna J. Landry, Andre M., Jr. Gorga, Catherine C. TI Ontogenetic shifts in diet and habitat of juvenile green sea turtles in the northwestern Gulf of Mexico SO MARINE ECOLOGY PROGRESS SERIES LA English DT Article DE Green turtle; Chelonia mydas; Ontogenetic shift; Stomach content analysis; Stable isotope analysis; delta C-13; delta N-15; Gulf of Mexico; Texas ID CHELONIA-MYDAS; STABLE-ISOTOPES; TROPHIC RELATIONSHIPS; SPECIES INTERACTIONS; SYNTHETIC-POLYMERS; N-15 INCORPORATION; FORAGING HABITATS; FEEDING ECOLOGY; MARINE DEBRIS; SOUTH TEXAS AB Effective management of a rapidly increasing juvenile green sea turtle Chelonia mydas population necessitates an understanding of the foraging grounds utilized throughout ontogeny. We used stomach content (SCA) and stable isotope analyses (SIA) of multiple size classes of green turtles foraging along the middle (MTC) and lower Texas coasts (LTC) in the northwestern Gulf of Mexico to identify ontogenetic shifts in foraging behavior. Spatial differences in diet and habitat residency were examined based on samples gathered from live (n = 55) and deceased turtles (n = 114). Additionally, the isotopic composition of putative forage material within nearshore and inshore habitats was investigated to determine prey contribution to diet. Green turtle recruitment to neritic channel environments in Texas waters at sizes < 25 cm straight carapace length (SCL) was established based on the presence of benthic macroalgae in the diet. Integration of SCA with SIA of carbon and nitrogen in scute material, as well as potential prey, revealed a subsequent inshore shift to seagrass beds before obtaining 35 cm SCL for turtles of the LTC, while turtles from the MTC exhibited considerable variation in size at transition. This study improves our understanding of the feeding ecology of green turtles within critical foraging grounds along the Texas coast. C1 [Howell, Lyndsey N.; Reich, Kimberly J.; Landry, Andre M., Jr.; Gorga, Catherine C.] Texas A&M Univ, Dept Marine Biol, Sea Turtle & Fisheries Ecol Res Lab, Galveston, TX 77553 USA. [Howell, Lyndsey N.] NOAA, Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Protected Species Branch, Galveston, TX 77551 USA. [Shaver, Donna J.] Padre Isl Natl Seashore, Sea Turtle Sci & Recovery Div, Natl Pk Serv, Corpus Christi, TX 78480 USA. RP Howell, LN (reprint author), Texas A&M Univ, Dept Marine Biol, Sea Turtle & Fisheries Ecol Res Lab, Galveston, TX 77553 USA.; Howell, LN (reprint author), NOAA, Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Protected Species Branch, Galveston, TX 77551 USA. EM lyndsey.howell@noaa.gov FU Texas Sea Grant Program; Texas A & M University Marine Biology Department FX Carcasses were received through the Sea Turtle Stranding and Salvage Network where many federal and state agencies, private entities, and volunteers collected the stranded animals. We are grateful to the Padre Island National Seashore Sea Turtle Science and Recovery Division for providing a necropsy facility and for assisting with the logistics of this study. A special thanks to T. Berk, S. Walker, and R. Zimmerman for providing various means of support. The Texas Sea Grant Program and the Texas A & M University Marine Biology Department made funding for this research available. All work with stranded turtles was done under, and complied with, the provisions of the sea turtle research permit US Fish and Wildlife Service permit TE840727-3 and Texas Parks and Wildlife Department scientific permit SPR-0190-122. Authorization for sea turtle capture and data collection was granted under National Marine Fisheries Service permits 1526, 1526-02, and 15606 and TPWD scientific permit number SPR-0590-094. NR 89 TC 1 Z9 1 U1 20 U2 20 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 0171-8630 EI 1616-1599 J9 MAR ECOL PROG SER JI Mar. Ecol.-Prog. Ser. PD NOV 9 PY 2016 VL 559 BP 217 EP 229 DI 10.3354/meps11897 PG 13 WC Ecology; Marine & Freshwater Biology; Oceanography SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography GA EC6CW UT WOS:000388225000017 ER PT J AU Georgoulias, AK Alexandri, G Kourtidis, KA Lelieveld, J Zanis, P Poschl, U Levy, R Amiridis, V Marinou, E Tsikerdekis, A AF Georgoulias, Aristeidis K. Alexandri, Georgia Kourtidis, Konstantinos A. Lelieveld, Jos Zanis, Prodromos Poeschl, Ulrich Levy, Robert Amiridis, Vassilis Marinou, Eleni Tsikerdekis, Athanasios TI Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID REGIONAL CLIMATE MODEL; RESOLUTION IMAGING SPECTRORADIOMETER; OZONE MONITORING INSTRUMENT; SKY RADIANCE MEASUREMENTS; GROUND-BASED MEASUREMENTS; BIOMASS BURNING AEROSOLS; LONG-RANGE TRANSPORT; SAHARAN DUST LAYERS; RAMAN LIDAR; MIDDLE-EAST AB This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD) over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer) Terra (March 2000-December 2012) and Aqua (July 2002-December 2012) satellite instruments. For this purpose, a 0.1 degrees x 0.1 degrees gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD(550)) for the entire region is similar to 0.22 +/- 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD(550). The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD(550) exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for similar to 51, similar to 34 and similar to 15% of the total AOD(550) over land, while, anthropogenic aerosols, dust and marine aerosols account similar to 40, similar to 34 and similar to 26% of the total AOD(550) over the sea, based on MODIS Terra and Aqua observations. C1 [Georgoulias, Aristeidis K.; Zanis, Prodromos; Tsikerdekis, Athanasios] Aristotle Univ Thessaloniki, Sch Geol, Dept Meteorol & Climatol, Thessaloniki 54124, Greece. [Georgoulias, Aristeidis K.; Poeschl, Ulrich] Max Planck Inst Chem, Multiphase Chem Dept, D-55128 Mainz, Germany. [Georgoulias, Aristeidis K.; Lelieveld, Jos] Cyprus Inst, Energy Environm & Water Res Ctr, Nicosia, Cyprus. [Alexandri, Georgia; Marinou, Eleni] Aristotle Univ Thessaloniki, Dept Phys, Lab Atmospher Phys, Thessaloniki 54124, Greece. [Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos A.] Democritus Univ Thrace, Dept Environm Engn, Lab Atmospher Pollut & Pollut Control Engn Atmosp, GR-67100 Xanthi, Greece. [Lelieveld, Jos] Max Planck Inst Chem, Atmospher Chem Dept, D-55128 Mainz, Germany. [Levy, Robert] NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA. [Amiridis, Vassilis; Marinou, Eleni] Natl Observ Athens, Inst Astron Astrophys Space Applicat & Remote Sen, Athens 15236, Greece. RP Georgoulias, AK (reprint author), Aristotle Univ Thessaloniki, Sch Geol, Dept Meteorol & Climatol, Thessaloniki 54124, Greece.; Georgoulias, AK (reprint author), Max Planck Inst Chem, Multiphase Chem Dept, D-55128 Mainz, Germany.; Georgoulias, AK (reprint author), Cyprus Inst, Energy Environm & Water Res Ctr, Nicosia, Cyprus.; Georgoulias, AK (reprint author), Democritus Univ Thrace, Dept Environm Engn, Lab Atmospher Pollut & Pollut Control Engn Atmosp, GR-67100 Xanthi, Greece. EM argeor@env.duth.gr RI Poschl, Ulrich/A-6263-2010; Levy, Robert/M-7764-2013; Marinou, Eleni/K-5793-2013; Lelieveld, Johannes/A-1986-2013; Amiridis, Vassilis/G-6769-2012; Zanis, Prodromos/B-5598-2015 OI Poschl, Ulrich/0000-0003-1412-3557; Levy, Robert/0000-0002-8933-5303; Marinou, Eleni/0000-0003-2631-6057; Amiridis, Vassilis/0000-0002-1544-7812; FU European Social Fund (ESF); national resources under the operational programme Education and Lifelong Learning (EdLL) within the framework of the Action "Supporting Postdoctoral Researchers" (QUADIEEMS project); European Research Council under the European Union/ERC [226144]; FP7 Programme MarcoPolo [606953, SPA.2013.3.2-01]; European Union's Horizon 2020 Research and Innovation programme [654109]; ESA-ESTEC project LIVAS [4000104106/11/NL/FF/fk] FX This research received funding from the European Social Fund (ESF) and national resources under the operational programme Education and Lifelong Learning (EdLL) within the framework of the Action "Supporting Postdoctoral Researchers" (QUADIEEMS project), from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 226144 (C8 project), from the FP7 Programme MarcoPolo (grant number 606953, theme SPA.2013.3.2-01) and from the European Union's Horizon 2020 Research and Innovation programme under grant agreement no. 654109. The authors express their gratitude to the teams that developed the algorithms and produced the satellite products used in this study, and to those who worked on the production of the model and reanalysis data used here. Special thanks are expressed to NASA Goddard Space Flight Center (GSFC) Level 1 and Atmosphere Archive and Distribution System (LAADS) (http://ladsweb.nascom.nasa.gov) for making the MODIS Terra and Aqua Collection 051 level-2 aerosol data available, and the principal investigators and staff for maintaining the 13 AERONET (http://aeronet.gsfc.nasa.gov) sites used in the present work. LIVAS has been financed under the ESA-ESTEC project LIVAS (contract no. 4000104106/11/NL/FF/fk). We thank the ICARE Data and Services Center (www.icare.univ-lille1.fr) for providing access to NASA's CALIPSO data, and acknowledge the use of NASA's CALIPSO data. Special thanks are expressed to ECMWF (www.ecmwf.int) for the provision of the ERA-Interim and MACC reanalysis data. NASA's GIOVANNI web database (http://giovanni.gsfc.nasa.gov/giovanni/) is highly acknowledged for the provision of Aerosol Index data from Earth Probe TOMS and OMI, aerosol data from the GOCART chemistry-aerosol-transport model (older version of GIOVANNI), tropospheric NO2 and PBL SO2 columnar data from OMI and precipitation data from 3B43 TRMM and Other Sources Monthly Rainfall Product. Aristeidis K. Georgoulias acknowledges the fruitful discussions with various colleagues from the Max Planck Institute for Chemistry and the Cyprus Institute (EEWRC), who indirectly contributed to this research. NR 163 TC 2 Z9 2 U1 11 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 9 PY 2016 VL 16 IS 21 BP 13853 EP 13884 DI 10.5194/acp-16-13853-2016 PG 32 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EB5XI UT WOS:000387453600003 ER PT J AU Keenan, TF Prentice, IC Canadell, JG Williams, CA Wang, H Raupach, M Collatz, GJ AF Keenan, Trevor F. Prentice, I. Colin Canadell, Josep G. Williams, Christopher A. Wang, Han Raupach, Michael Collatz, G. James TI Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake SO NATURE COMMUNICATIONS LA English DT Article ID CLIMATE-CHANGE; SOIL RESPIRATION; LAND; SINK; DROUGHT; MODEL; PHOTOSYNTHESIS; FORESTS; DIOXIDE; TRENDS AB Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly. C1 [Keenan, Trevor F.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94709 USA. [Keenan, Trevor F.; Prentice, I. Colin; Wang, Han] Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia. [Prentice, I. Colin] Imperial Coll London, Dept Life Sci, Silwood Pk Campus,Buckhurst Rd, Ascot SL5 7PY, Berks, England. [Canadell, Josep G.; Raupach, Michael] CSIRO Oceans & Atmosphere, Global Carbon Project, Canberra, ACT 2601, Australia. [Williams, Christopher A.] Clark Univ, Grad Sch Geog, Dept Biol, Worcester, MA 01610 USA. [Wang, Han] Northwest A&F Univ, Coll Forestry, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Peoples R China. [Collatz, G. James] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Keenan, TF (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94709 USA.; Keenan, TF (reprint author), Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia. EM trevorkeenan@lbl.gov RI Keenan, Trevor/B-2744-2010; Canadell, Josep/E-9419-2010; collatz, george/D-5381-2012 OI Keenan, Trevor/0000-0002-3347-0258; Canadell, Josep/0000-0002-8788-3218; FU Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy [DE-AC02-05CH11231]; Macquarie University Research Fellowship; Australian Climate Change Science Program; U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program [DE-FG02-04ER63917, DE-FG02-04ER63911, DE-SC0006708]; CFCAS; NSERC; BIOCAP; Environment Canada; NRCan; CarboEuropeIP; FAO-GTOS-TCO; iLEAPS; Max Planck Institute for Biogeochemistry; National Science Foundation; University of Tuscia; Universite Laval and Environment Canada; US Department of Energy FX T.F.K. acknowledges support from the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231, and a Macquarie University Research Fellowship. This research contributes to the AXA Chair Programme in Biosphere and Climate Impacts and the Imperial College initiative on Grand Challenges in Ecosystems and the Environment. J.G.C. thanks the support from the Australian Climate Change Science Program. Eddy covariance data used was acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911, DE-SC0006708)), CarboEuropeIP, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada and NRCan). We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Universite Laval and Environment Canada and US Department of Energy and the database development and technical support from Lawrence Berkeley National Laboratory, Berkeley Water Center, Microsoft Research eScience, Oak Ridge National Laboratory, University of California-Berkeley, University of Virginia. We thank Ranga Myneni and Zaichun Zhu for the provision of the fAPAR data set, the Max Planck Institute for Biogeochemistry Department of Biogeochemical Integration for the provision of the upscaled GPP data and Miguel Mahecha for advice on the S.S.A. We thank the TRENDY team, Stephen Sitch, Pierre Friedlingstein, Chris Huntingford, Ben Poulter, Anders Ahlstrom, Mark Lomas, Peter Levy, Sam Levis, Sonke Zaehle, Nicolas Viovy, Ning Zeng and Phillipe Peylin for the provision of the DGVM simulations, and the researchers of the Global Carbon Project for making their data available. NR 69 TC 1 Z9 1 U1 47 U2 47 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV 8 PY 2016 VL 7 AR 13428 DI 10.1038/ncomms13428 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB3JI UT WOS:000387260000001 PM 27824333 ER PT J AU Sanchez-Lavega, A Garcia-Melendo, E Perez-Hoyos, S Hueso, R Wong, MH Simon, A Sanz-Requena, JF Antunano, A Barrado-Izagirre, N Garate-Lopez, I Rojas, JF del Rio-Gaztelurrutia, T Gomez-Forrellad, JM de Pater, I Li, L Barry, T AF Sanchez-Lavega, A. Garcia-Melendo, E. Perez-Hoyos, S. Hueso, R. Wong, M. H. Simon, A. Sanz-Requena, J. F. Antunano, A. Barrado-Izagirre, N. Garate-Lopez, I. Rojas, J. F. del Rio-Gaztelurrutia, T. Gomez-Forrellad, J. M. de Pater, I. Li, L. Barry, T. TI An enduring rapidly moving storm as a guide to Saturn's Equatorial jet's complex structure SO NATURE COMMUNICATIONS LA English DT Article ID ZONAL WINDS; CLOUD LEVEL; CASSINI ISS; IMAGES; VARIABILITY; ATMOSPHERE; HST; DISTURBANCE; EVOLUTION; FLUX AB Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn's equator a natural laboratory to test models of jets in giant planets. Here we report on a bright equatorial atmospheric feature imaged in 2015 that moved steadily at a high speed of 450 ms(-1) not measured since 1980-1981 with other equatorial clouds moving within an ample range of velocities. Radiative transfer models show that these motions occur at three altitude levels within the upper haze and clouds. We find that the peak of the jet ( latitudes 10 degrees N to 10 degrees S) suffers intense vertical shears reaching + 2.5 ms(-1) km(1), two orders of magnitude higher than meridional shears, and temporal variability above 1 bar altitude level. C1 [Sanchez-Lavega, A.; Garcia-Melendo, E.; Perez-Hoyos, S.; Hueso, R.; Antunano, A.; Barrado-Izagirre, N.; Garate-Lopez, I.; Rojas, J. F.; del Rio-Gaztelurrutia, T.] Univ Basque Country, EHU, Dept Fis Aplicada 1, Escuela Ingn Bilbao, Alameda Urquijo S-N, Bilbao 48013, Spain. [Garcia-Melendo, E.; Gomez-Forrellad, J. M.] Fundacio Observ Esteve Duran, C Montseny,46 Urb El Montanya, Barcelona 08553, Spain. [Wong, M. H.; de Pater, I.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Simon, A.] NASA, Goddard Space Flight Ctr 690, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Sanz-Requena, J. F.] Univ Europea Miguel de Cervantes, Dept Ciencias Expt, C Padre Julio Chevalier 2, Valladolid 47012, Spain. [Li, L.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Barry, T.] Broken Hill Observ, 406 Bromide St, Broken Hill, NSW 2880, Australia. RP Sanchez-Lavega, A (reprint author), Univ Basque Country, EHU, Dept Fis Aplicada 1, Escuela Ingn Bilbao, Alameda Urquijo S-N, Bilbao 48013, Spain. EM agustin.sanchez@ehu.eus RI Simon, Amy/C-8020-2012; OI Simon, Amy/0000-0003-4641-6186; Barrado-Izagirre, Naiara/0000-0001-6319-8577; Antunano, Arrate/0000-0001-9206-6960; del Rio Gaztelurrutia, Teresa/0000-0001-8552-226X; Hueso, Ricardo/0000-0003-0169-123X; Rojas Palenzuela, Jose Felix/0000-0002-1102-5612; Perez-Hoyos, Santiago/0000-0002-2587-4682 FU Hubble Space Telescope (GO/DD program) [14064]; Spanish projects [AYA2012-36666, AYA2015-65041-P]; FEDER; Grupos Gobierno Vasco [IT-765-13]; Universidad del Pais Vasco UPV/EHU program [UFI11/55]; Diputacion Foral Bizkaia (BFA) FX This work is based on observations and analysis from Hubble Space Telescope (GO/DD program 14064), Cassini ISS images (NASA pds), and Calar Alto Observatory (CAHA-MPIA). A.S.-L. and UPV/EHU team are supported by the Spanish projects AYA2012-36666 and AYA2015-65041-P with FEDER support, Grupos Gobierno Vasco IT-765-13, Universidad del Pais Vasco UPV/EHU program UFI11/55, and Diputacion Foral Bizkaia (BFA). We acknowledge the contribution of Saturn images by T. Olivetti, M. Kardasis, A. Germano, A. Wesley, P. Miles, M. Delcroix, C. Go, T. Horiuchi and P. Maxon. We also acknowledge the wind model data provided by J. Friedson. NR 65 TC 0 Z9 0 U1 3 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV 8 PY 2016 VL 7 AR 13262 DI 10.1038/ncomms13262 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB3IR UT WOS:000387258000001 PM 27824031 ER PT J AU Yu, SS Krishnamurthy, R Fernandez, FM Hud, NV Schork, FJ Grover, MA AF Yu, Sheng-Sheng Krishnamurthy, Ramanarayanan Fernandez, Facundo M. Hud, Nicholas V. Schork, F. Joseph Grover, Martha A. TI Kinetics of prebiotic depsipeptide formation from the ester-amide exchange reaction SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID PEPTIDE-BOND HYDROLYSIS; WET-DRY CYCLES; LACTIC-ACID; MOLECULAR-WEIGHT; FREE-ENERGIES; AMINO-ACIDS; COPOLYMERS; SEQUENCE; CONDENSATION; ENVIRONMENTS AB In this work, we introduce a kinetic model to study the effectiveness of ester-mediated amide bond formation under prebiotic conditions. In our previous work, we found that a simple system composed of alpha-hydroxy acids and alpha-amino acids is capable of forming peptide bonds via esterification followed by the ester-amide exchange reaction. To further understand the kinetic behavior of this copolymerization, we first tracked the growth of initial species from a valine/lactic acid mixture in a closed system reactor. A mathematical model was developed to simulate the reactions and evaluate the rate constants at different temperatures. We found these reactions can be described by the empirical Arrhenius equation even when reaction occurred in the solid (dry) state. Further calculations for activation parameters showed that the ester-mediated pathway facilitates amide bond formation by lowering activation entropies. These results provide a theoretical framework that illustrates why the ester-mediated pathway for peptide bond formation is efficient and why it would have been more favorable on the early Earth, compared to peptide bond formation without the aid of hydroxy acids. C1 [Yu, Sheng-Sheng; Schork, F. Joseph; Grover, Martha A.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Yu, Sheng-Sheng; Krishnamurthy, Ramanarayanan; Fernandez, Facundo M.; Hud, Nicholas V.; Schork, F. Joseph; Grover, Martha A.] NASA, NSF, Ctr Chem Evolut, Washington, DC 20546 USA. [Krishnamurthy, Ramanarayanan] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA. [Fernandez, Facundo M.; Hud, Nicholas V.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. RP Grover, MA (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.; Grover, MA (reprint author), NASA, NSF, Ctr Chem Evolut, Washington, DC 20546 USA. EM martha.grover@chbe.gatech.edu OI Krishnamurthy, Ramanarayanan/0000-0001-5238-610X FU NSF; NASA Astrobiology Program, under NSF Center for Chemical Evolution [CHE-1504217] FX We thank Dr Jay G. Forsythe for discussion and Catherine Psarakis for assistance with HPLC analysis. This work was jointly supported by the NSF and the NASA Astrobiology Program, under the NSF Center for Chemical Evolution, CHE-1504217. NR 36 TC 0 Z9 0 U1 9 U2 9 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD NOV 7 PY 2016 VL 18 IS 41 BP 28441 EP 28450 DI 10.1039/c6cp05527c PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EA5NR UT WOS:000386668200007 PM 27711571 ER PT J AU Tsuge, M Bahou, M Wu, YJ Allamandola, L Lee, YP AF Tsuge, Masashi Bahou, Mohammed Wu, Yu-Jong Allamandola, Louis Lee, Yuan-Pern TI Infrared spectra of ovalene (C32H14) and hydrogenated ovalene (C32H15 center dot) in solid para-hydrogen SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; ELECTRONIC-ABSORPTION-SPECTRA; DIFFUSE INTERSTELLAR BANDS; MOLECULAR-HYDROGEN; H-2 FORMATION; ASTROPHYSICAL IMPLICATIONS; NEUTRAL COUNTERPART; EMISSION BANDS; PAH CATIONS; CORONENE AB We report the infrared (IR) spectra of ovalene (C32H14) and hydrogenated ovalene (C32H15 center dot) in solid para-hydrogen (p-H-2). The hydrogenated ovalene and protonated ovalene were generated from electron bombardment of a mixture of ovalene and p-H-2 during deposition of a matrix at 3.2 K. The features that decreased with time have been previously assigned to 7-C32H15+, the most stable isomer of protonated ovalene (Astrophys. J., 2016, 825, 96). The spectral features that increased with time are assigned to the most stable isomer of hydrogenated ovalene (7-C32H15 center dot) based on the expected chemistry and on a comparison with the vibrational wavenumbers and IR intensities predicted by the B3PW91/6-311++ G(2d, 2p) method. The mechanism of formation of 7-C32H15 center dot is discussed according to the observed changes in intensity and calculated energetics of possible reactions of H + C32H14 and isomerization of C32H15 center dot. The formation of 7-C32H15 center dot is dominated by the reaction H + C32H14 -> 7-C32H15 center dot, implying that, regardless of the presence of a barrier, the hydrogenation of polycyclic aromatic hydrocarbons occurs even at 3.2 K. C1 [Tsuge, Masashi; Bahou, Mohammed; Lee, Yuan-Pern] Natl Chiao Tung Univ, Dept Appl Chem, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan. [Tsuge, Masashi; Bahou, Mohammed; Lee, Yuan-Pern] Natl Chiao Tung Univ, Inst Mol Sci, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan. [Wu, Yu-Jong] Natl Synchrotron Radiat Res Ctr, 101,Hsin Ann Rd, Hsinchu 30076, Taiwan. [Allamandola, Louis] NASA, Ames Res Ctr, Astrophys & Astrochemy Lab, Moffett Field, CA 94035 USA. [Lee, Yuan-Pern] Acad Sinica, Inst Mol Sci, Taipei 10617, Taiwan. RP Tsuge, M; Lee, YP (reprint author), Natl Chiao Tung Univ, Dept Appl Chem, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan.; Tsuge, M; Lee, YP (reprint author), Natl Chiao Tung Univ, Inst Mol Sci, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan.; Lee, YP (reprint author), Acad Sinica, Inst Mol Sci, Taipei 10617, Taiwan. EM tsuge@nctu.edu.tw; yplee@mail.nctu.edu.tw RI Lee, Yuan-Pern/F-7938-2012; OI Lee, Yuan-Pern/0000-0001-6418-7378; Tsuge, Masashi/0000-0001-9669-1288 FU Ministry of Science and Technology, Taiwan [MOST104-2745-M009-001-ASP, MOST104-2113-M-213-004]; Ministry of Education, Taiwan ("Aim for the Top University Plan" of National Chiao Tung University); NASA's Astrophysics Data Analysis Program FX Ministry of Science and Technology, Taiwan (Grant No. MOST104-2745-M009-001-ASP and MOST104-2113-M-213-004) and Ministry of Education, Taiwan ("Aim for the Top University Plan" of National Chiao Tung University) supported this work. The National Center for High-Performance Computation provided computer time. L. A. gratefully acknowledges support from NASA's Astrophysics Data Analysis Program. NR 43 TC 0 Z9 0 U1 4 U2 4 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD NOV 7 PY 2016 VL 18 IS 41 BP 28864 EP 28871 DI 10.1039/c6cp05701b PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EA5NR UT WOS:000386668200046 PM 27722314 ER PT J AU Grundy, WM Cruikshank, DP Gladstone, GR Howett, CJA Lauer, TR Spencer, JR Summers, ME Buie, MW Earle, AM Ennico, K Parker, JW Porter, SB Singer, KN Stern, SA Verbiscer, AJ Beyer, RA Binzel, RP Buratti, BJ Cook, JC Ore, CMD Olkin, CB Parker, AH Protopapa, S Quirico, E Retherford, KD Robbins, SJ Schmitt, B Stansberry, JA Umurhan, OM Weaver, HA Young, LA Zangari, AM Bray, VJ Cheng, AF McKinnon, WB McNutt, RL Moore, JM Nimmo, F Reuter, DC Schenk, PM AF Grundy, W. M. Cruikshank, D. P. Gladstone, G. R. Howett, C. J. A. Lauer, T. R. Spencer, J. R. Summers, M. E. Buie, M. W. Earle, A. M. Ennico, K. Parker, J. Wm. Porter, S. B. Singer, K. N. Stern, S. A. Verbiscer, A. J. Beyer, R. A. Binzel, R. P. Buratti, B. J. Cook, J. C. Ore, C. M. Dalle Olkin, C. B. Parker, A. H. Protopapa, S. Quirico, E. Retherford, K. D. Robbins, S. J. Schmitt, B. Stansberry, J. A. Umurhan, O. M. Weaver, H. A. Young, L. A. Zangari, A. M. Bray, V. J. Cheng, A. F. McKinnon, W. B. McNutt, R. L., Jr. Moore, J. M. Nimmo, F. Reuter, D. C. Schenk, P. M. CA New Horizons Sci Team TI The formation of Charon's red poles from seasonally cold-trapped volatiles SO NATURE LA English DT Article ID OUTER SOLAR-SYSTEM; PLUTO; IRRADIATION; HORIZONS; SURFACE; ICES; IMAGER; CH4 AB A unique feature of Pluto's large satellite Charon is its dark red northern polar cap(1). Similar colours on Pluto's surface have been attributed(2) to tholin-like organic macromolecules produced by energetic radiation processing of hydrocarbons. The polar location on Charon implicates the temperature extremes that result from Charon's high obliquity and long seasons in the production of this material. The escape of Pluto's atmosphere provides a potential feedstock for a complex chemistry(3,4). Gas from Pluto that is transiently cold-trapped and processed at Charon's winter pole was proposed(1,2) as an explanation for the dark coloration on the basis of an image of Charon's northern hemisphere, but not modelled quantitatively. Here we report images of the southern hemisphere illuminated by Pluto-shine and also images taken during the approach phase that show the northern polar cap over a range of longitudes. We model the surface thermal environment on Charon and the supply and temporary cold-trapping of material escaping from Pluto, as well as the photolytic processing of this material into more complex and less volatile molecules while cold-trapped. The model results are consistent with the proposed mechanism for producing the observed colour pattern on Charon. C1 [Grundy, W. M.] Lowell Observ, Flagstaff, AZ 86001 USA. [Cruikshank, D. P.; Ennico, K.; Beyer, R. A.; Ore, C. M. Dalle; Umurhan, O. M.; Moore, J. M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gladstone, G. R.; Retherford, K. D.] Southwest Res Inst, San Antonio, TX USA. [Howett, C. J. A.; Spencer, J. R.; Buie, M. W.; Parker, J. Wm.; Porter, S. B.; Singer, K. N.; Stern, S. A.; Cook, J. C.; Olkin, C. B.; Parker, A. H.; Robbins, S. J.] Southwest Res Inst, Boulder, CO USA. [Lauer, T. R.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Summers, M. E.] George Mason Univ, Fairfax, VA 22030 USA. [Earle, A. M.; Binzel, R. P.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Verbiscer, A. J.] Univ Virginia, Charlottesville, VA USA. [Beyer, R. A.; Ore, C. M. Dalle] SETI Inst, Carl Sagan Ctr, Mountain View, CA USA. [Buratti, B. J.] NASA, Jet Prop Lab, La Canada Flintridge, CA USA. [Protopapa, S.] Univ Maryland, College Pk, MD 20742 USA. [Quirico, E.; Schmitt, B.] Univ Grenoble Alpes, CNRS, IPAG, Grenoble, France. [Stansberry, J. A.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Weaver, H. A.; Cheng, A. F.; McNutt, R. L., Jr.] Johns Hopkins Univ, Appl Phys Lab, Columbia, MD USA. [Bray, V. J.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ USA. [McKinnon, W. B.] Washington Univ, St Louis, MO USA. [Nimmo, F.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Reuter, D. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Schenk, P. M.] Lunar & Planetary Inst, Houston, TX USA. RP Grundy, WM (reprint author), Lowell Observ, Flagstaff, AZ 86001 USA. EM w.grundy@lowell.edu RI Schmitt, Bernard/A-1064-2009; quirico, eric/K-9650-2013; OI Schmitt, Bernard/0000-0002-1230-6627; quirico, eric/0000-0003-2768-0694; Beyer, Ross/0000-0003-4503-3335 FU NASA's New Horizons Project; Centre National d'Etudes Spatiales (CNES) through its 'Systeme Solaire' programme FX This work was supported by NASA's New Horizons Project. E.Q., B.S. and S.Phi. acknowledge the Centre National d'Etudes Spatiales (CNES) for its financial support through its 'Systeme Solaire' programme. NR 43 TC 0 Z9 0 U1 9 U2 9 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD NOV 3 PY 2016 VL 539 IS 7627 BP 65 EP + DI 10.1038/nature19340 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EA5OJ UT WOS:000386670100029 PM 27626378 ER PT J AU Walsh, ED Han, XG Lacey, SD Kim, JW Connell, JW Hu, LB Lin, Y AF Walsh, Evan D. Han, Xiaogang Lacey, Steven D. Kim, Jae-Woo Connell, John W. Hu, Liangbing Lin, Yi TI Dry-Processed, Binder-Free Holey Graphene Electrodes for Supercapacitors with Ultrahigh Areal Loadings SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE supercapacitors; graphene; holey graphene; dry processing areal capacitance ID ELECTROCHEMICAL ENERGY-STORAGE; HIGH-PERFORMANCE; FLEXIBLE SUPERCAPACITORS; CARBON; OXIDE; NANOMATERIALS; CAPACITORS; CONVERSION; NANOMESH; POWER AB For commercial applications, the need for smaller footprint energy storage devices requires more energy to be stored per unit area. Carbon nanomaterials, especially graphene, have been studied as supercapacitor electrodes and can achieve high gravimetric capacities affording high gravimetric energy densities. However, most nanocarbon-based electrodes exhibit a significant decrease in their areal capacitances when scaled to the high mass loadings typically used in commercially available cells (similar to 10 mg/cm(2)). One of the reasons for this behavior is that the additional surface area in thick electrodes is not readily accessible by electrolyte ions due to the large tortuosity. Furthermore, the fabrication of such electrodes often involves complicated processes that limit the potential for mass production. Here, holey graphene electrodes for supercapacitors that are scalable in both production and areal capacitance are presented. The lateral surface porosity on the graphene sheets was created using a facile single-step air oxidation method, and the resultant holey graphene was compacted under ambient conditions into mechanically robust monolithic shapes that can be directly used as binder-free electrodes. In comparison, pristine graphene discs under similar binder-free compression molding conditions were extremely brittle and thus not deemed useful for electrode applications. The coin cell supercapacitors, based on these holey graphene electrodes exhibited small variations in gravimetric capacitance over a wide range of areal mass loadings (similar to 1-30 mg/cm(2)) at current densities as high as 30 mA/cm(2), resulting in the near-linear increase of the areal capacitance (F/cm(2)) with the mass loading. The prospects of the presented method for facile binder-free ultrathick graphene electrode fabrication are discussed. C1 [Walsh, Evan D.; Lacey, Steven D.] NASA, NASA Interns Fellows & Scholars NIFS Program, Langley Res Ctr, Hampton, VA 23681 USA. [Han, Xiaogang; Lacey, Steven D.; Hu, Liangbing] Univ Maryland, Dept Mat & Nucl Engn, College Pk, MD 20742 USA. [Kim, Jae-Woo; Lin, Yi] Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA. [Connell, John W.] NASA, Adv Mat & Proc Branch, Langley Res Ctr, Mail Stop 226, Hampton, VA 23681 USA. [Lin, Yi] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23185 USA. RP Hu, LB (reprint author), Univ Maryland, Dept Mat & Nucl Engn, College Pk, MD 20742 USA.; Lin, Y (reprint author), Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA.; Lin, Y (reprint author), Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23185 USA. EM binghu@umd.edu; yilin-1@nasa.gov RI Kim, Jae-Woo/A-8314-2008 FU NASA Langley Internal Research and Development (IRAD) Program; Leading Edge Aeronautics Research for NASA (LEARN) program [NNX13AB88A]; IRAD FX Y.L. gratefully acknowledges the financial support from the NASA Langley Internal Research and Development (IRAD) Program and the Leading Edge Aeronautics Research for NASA (LEARN) program (Grant number NNX13AB88A). E.D.W. and S.D.L. (partially) were IRAD-supported interns under the supervisions of Y.L. and J.W.C. via NASA Interns, Fellows, and Scholars (NIFS) Program. NR 32 TC 1 Z9 1 U1 49 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 2 PY 2016 VL 8 IS 43 BP 29478 EP 29485 DI 10.1021/acsami.6b09951 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EB1FP UT WOS:000387095300033 PM 27718542 ER PT J AU Frank, J AF Frank, Jeremy TI Revisiting dynamic constraint satisfaction for model-based planning SO KNOWLEDGE ENGINEERING REVIEW LA English DT Review AB As planning problems become more complex, it is increasingly useful to integrate complex constraints on time and resources into planning models, and use constraint reasoning approaches to help solve the resulting problems. Dynamic constraint satisfaction is a key enabler of automated planning in the presence of such constraints. In this paper, we identify some limitations with the previously developed theories of dynamic constraint satisfaction. We identify a minimum set of elementary transformations from which all other transformations can be constructed. We propose a new classification of dynamic constraint satisfaction transformations based on a formal criteria, namely the change in the fraction of solutions. This criteria can be used to evaluate elementary transformations of a constraint satisfaction problem as well as sequences of transformations. We extend the notion of transformations to include constrained optimization problems. We discuss how this new framework can inform the evolution of planning models, automated planning algorithms, and mixed-initiative planning. C1 [Frank, Jeremy] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Frank, J (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM jeremy.d.frank@nasa.gov NR 22 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0269-8889 EI 1469-8005 J9 KNOWL ENG REV JI Knowl. Eng. Rev. PD NOV PY 2016 VL 31 IS 5 BP 429 EP 439 DI 10.1017/S0269888916000242 PG 11 WC Computer Science, Artificial Intelligence SC Computer Science GA EM7JR UT WOS:000395487800003 ER PT J AU O'Gorman, B Rieffel, EG Do, M Venturelli, D Frank, J AF O'Gorman, Bryan Rieffel, Eleanor Gilbert Do, Minh Venturelli, Davide Frank, Jeremy TI Comparing planning problem compilation approaches for quantum annealing SO KNOWLEDGE ENGINEERING REVIEW LA English DT Review ID GRAPH AB One approach to solving planning problems is to compile them to other problems for which powerful off-the-shelf solvers are available; common targets include SAT, CSP, and MILP. Recently, a novel optimization technique has become available: quantum annealing (QA). QA takes as input problem instances of quadratic unconstrained binary optimization (QUBO) problem. Early quantum annealers are now available, though their constraints restrict the types of QUBOs they can take as input. Here, we introduce the planning community to the key steps in compiling planning problems to QA hardware: a hardware-independent step, mapping, and a hardware-dependent step, embedding. After describing two approaches to mapping general planning problems to QUBO, we describe preliminary results from running an early quantum annealer on a parametrized family of hard planning problems. The results show that different mappings can substantially affect performance, even when many features of the resulting instances are similar. We conclude with insights gained from this early study that suggest directions for future work. C1 [O'Gorman, Bryan; Rieffel, Eleanor Gilbert; Venturelli, Davide] NASA, Ames Res Ctr, QuAIL, Moffett Field, CA 94035 USA. [Do, Minh; Frank, Jeremy] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. [Venturelli, Davide] Univ Space Res Assoc, 615 Natl Ave,Suite 220, Mountain View, CA 94043 USA. [O'Gorman, Bryan; Do, Minh] Stinger Ghaffarian Technol Inc, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA. RP O'Gorman, B (reprint author), NASA, Ames Res Ctr, QuAIL, Moffett Field, CA 94035 USA.; O'Gorman, B (reprint author), Stinger Ghaffarian Technol Inc, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA. EM bryan.a.ogorman@nasa.gov; eleanor.rieffel@nasa.gov; minh.do@nasa.gov; davide.venturelli@nasa.gov; jeremy.d.frank@nasa.gov FU Office of the Director of National Intelligence (ODNI); Intelligence Advanced Research Projects Activity (IARPA) [IAA 145483]; AFRL Information Directorate [F4HBKC4162G001]; NASA Advanced Exploration Systems program; NASA Ames Research Center; NASA grant [NNX12AK33A] FX The authors are grateful to Zhihui Wang for helpful discussions. This work was supported in part by the Office of the Director of National Intelligence (ODNI), the Intelligence Advanced Research Projects Activity (IARPA), via IAA 145483; by the AFRL Information Directorate under grant F4HBKC4162G001. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, AFRL, or the US Government. The US Government is authorized to reproduce and distribute reprints for Governmental purpose notwithstanding any copyright annotation thereon. The authors also like to acknowledge support from the NASA Advanced Exploration Systems program and NASA Ames Research Center and NASA grant NNX12AK33A. NR 24 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0269-8889 EI 1469-8005 J9 KNOWL ENG REV JI Knowl. Eng. Rev. PD NOV PY 2016 VL 31 IS 5 BP 465 EP 474 DI 10.1017/S0269888916000278 PG 10 WC Computer Science, Artificial Intelligence SC Computer Science GA EM7JR UT WOS:000395487800006 ER PT J AU Hsiao, TC Ye, WC Wang, SH Tsay, SC Chen, WN Lin, NH Lee, CT Hung, HM Chuang, MT Chantara, S AF Hsiao, Ta-Chih Ye, Wei-Cheng Wang, Sheng-Hsiang Tsay, Si-Chee Chen, Wei-Nai Lin, Neng-Huei Lee, Chung-Te Hung, Hui-Ming Chuang, Ming-Tung Chantara, Somporn TI Investigation of the CCN Activity, BC and UVBC Mass Concentrations of Biomass Burning Aerosols during the 2013 BASELInE Campaign SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE Cloud condensation nuclei; Biomass burning aerosol; Long-range transport; Diurnal cycle; Hygroscopicity ID CLOUD CONDENSATION NUCLEI; SIZE-RESOLVED MEASUREMENTS; OPTICAL-PROPERTIES; PRECIPITATION INTERACTIONS; PHYSICAL-PROPERTIES; HYGROSCOPIC GROWTH; SOUTHERN AFRICA; BLACK CARBON; WATER-UPTAKE; RAIN-FOREST AB Biomass-burning (BB) aerosols, acting as cloud condensation nuclei (CCN), can influence cloud microphysical and radiative properties. In this study, we present CCN measured near the BB source regions over northern Southeast Asia (Doi Ang Khang, Thailand) and at downwind receptor areas (Lulin Atmospheric Background Station, Taiwan), focusing exclusively on 13-20 March 2013 as part of 2013 spring campaign of the Seven SouthEast Asian Studies (7-SEAS) intensive observation. One of the campaign's objectives is to characterize BB aerosols serving as CCN in SouthEast Asia (SEA). CCN concentrations were measured by a CCN counter at 5 supersaturation (SS) levels: 0.15%, 0.30%, 0.45%, 0.60%, and 0.75%. In addition, PM2.5 and black carbon mass concentrations were analyzed by using a tapered element oscillating microbalance and an aethalometer. It was found the number-size distributions and the characteristics of hygroscopicity (e.g., activation ratio and k) of BB aerosols in SEA have a strong diurnal pattern, and different behaviors of patterns were characterized under two distinct weather systems. The overall average k value was low (0.05-0.1) but comparable with previous CCN studies in other BB source regions. Furthermore, a large fraction of UV-absorbing organic material (UVBC) and high Delta-C among BB aerosols were also observed, which suggest the existence of substantial particulate organic matter in fresh BB aerosols. These data provide the most extensive characterization of BB aerosols in SEA until now. C1 [Hsiao, Ta-Chih; Ye, Wei-Cheng; Lee, Chung-Te] Natl Cent Univ, Grad Inst Environm Engn, Chungli 32001, Taiwan. [Wang, Sheng-Hsiang; Lin, Neng-Huei] Natl Cent Univ, Dept Atmospher Sci, Chungli 32001, Taiwan. [Tsay, Si-Chee] Goddard Space Flight Ctr, NASA, Greenbelt, MD USA. [Chen, Wei-Nai] Acad Sinica, Res Ctr Environm Changes, Taipei 11529, Taiwan. [Hung, Hui-Ming] Natl Taiwan Univ, Dept Atmospher Sci, Taipei 10617, Taiwan. [Chuang, Ming-Tung] Natl Cent Univ, Grad Inst Energy Engn, Chungli 32001, Taiwan. [Chantara, Somporn] Chiang Mai Univ, Environm Sci Program, Chiang Mai, Thailand. RP Hsiao, TC (reprint author), Natl Cent Univ, Grad Inst Environm Engn, Chungli 32001, Taiwan. EM tchsiao@cc.ncu.edu.tw FU National Science Council of Taiwan [NSC 102-2221-E-008-004-MY3]; Taiwan EPA [EPA-103-U1L1-02-101, EPA-102-FA11-03-A217]; NASA Radiation Sciences Program FX This work was supported by the National Science Council of Taiwan under grant no. NSC 102-2221-E-008-004-MY3 and by the Taiwan EPA under contracts no. EPA-103-U1L1-02-101 and EPA-102-FA11-03-A217. Deployment of 7-SEAS/BASELInE in Southeast Asia was supported by NASA Radiation Sciences Program, managed by Dr. Hal B. Maring. We also thank all assistants from the region and many graduate students involved in the site operations, data analyses, and technical support for making the 7-SEAS/BASELInE campaign a success. NR 61 TC 5 Z9 5 U1 0 U2 0 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 EI 2071-1409 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD NOV PY 2016 VL 16 IS 11 SI SI BP 2742 EP 2756 DI 10.4209/aaqr.2015.07.0447 PG 15 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI2HI UT WOS:000392307100013 ER PT J AU Zeman, SM Brodeur, RD Daly, EA Sutherland, KR AF Zeman, Samantha M. Brodeur, Richard D. Daly, Elizabeth A. Sutherland, Kelly R. TI Prey selection patterns of Chrysaora fuscescens in the northern California Current SO JOURNAL OF PLANKTON RESEARCH LA English DT Article DE Chrysaora fuscescens; northern California Current; jellyfish; ichthyoplankton ID PRINCE-WILLIAM-SOUND; AURELIA-AURITA; SURFACE WATERS; FISH LARVAE; PELAGIC CNIDARIANS; AEQUOREA-AEQUOREA; PREDATION IMPACT; SPATIAL OVERLAP; DIGESTION TIMES; LARGE JELLYFISH AB Chrysaora fuscescens is the most abundant large scyphomedusae in the northern California Current (NCC), a productive upwelling system. We quantified the diet and prey selection of C. fuscescens at stations off the Oregon and Washington coasts during the summer of 2014. The major prey items ingested were copepods, cladocerans and gelatinous taxa, and comprised 4-77% of gut contents. Northern anchovy eggs (Engraulis mordax) were a dominant prey item at stations near the Columbia River, comprising 40% of gut contents. Prey selection indices showed that though copepods dominated gut contents, C. fuscescens preferentially ingested slow-moving, non-motile prey including fish eggs and gelatinous taxa and negatively selected for more motile prey such as copepods. Clearance rates and ingestion rates varied by three orders of magnitude for the different zooplankton taxa but, on average, fish eggs and gelatinous taxa were cleared at higher rates than more commonly ingested prey items such as copepods. Daily carbon ration reached 10% of body carbon but had an average value of 2%, suggesting that some medusae may be food limited. These results highlight medusae predation on ichthyoplankton and can inform ecosystem models in the NCC. C1 [Zeman, Samantha M.; Sutherland, Kelly R.] 5289 Univ Oregon, Oregon Inst Marine Biol, Eugene, OR 97405 USA. [Brodeur, Richard D.] NOAA, Fish Ecol Div, Northwest Fisheries Sci Ctr, Natl Marine Fisheries Serv,Hatfield Marine Sci Ct, 2030 SE Marine Sci Dr, Newport, OR 97365 USA. [Daly, Elizabeth A.] Oregon State Univ, Cooperat Inst Marine Resources Studies, 2030 SE Marine Sci Dr, Newport, OR 97365 USA. RP Zeman, SM (reprint author), 5289 Univ Oregon, Oregon Inst Marine Biol, Eugene, OR 97405 USA. EM zemans@oregonstate.edu FU Oregon Sea Grant [NA14OAR4170064]; National Science Foundation [OCE-1155084]; UO's Office of Research; Northwest Fisheries Science Center; National Oceanic and Atmospheric Administration; Bonneville Power Administration FX Oregon Sea Grant (NA14OAR4170064 to K.R.S. and R.D.B.); the National Science Foundation (OCE-1155084 to K.R.S.); UO's Office of Research (to K.R.S.). Northwest Fisheries Science Center; National Oceanic and Atmospheric Administration; the Bonneville Power Administration. NR 53 TC 0 Z9 0 U1 3 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0142-7873 EI 1464-3774 J9 J PLANKTON RES JI J. Plankton Res. PD NOV-DEC PY 2016 VL 38 IS 6 BP 1433 EP 1443 DI 10.1093/plankt/fbw065 PG 11 WC Marine & Freshwater Biology; Oceanography SC Marine & Freshwater Biology; Oceanography GA EJ2HP UT WOS:000393031000008 ER PT J AU Bair, EH Rittger, K Davis, RE Painter, TH Dozier, J AF Bair, Edward H. Rittger, Karl Davis, Robert E. Painter, Thomas H. Dozier, Jeff TI Validating reconstruction of snow water equivalent in California's Sierra Nevada using measurements from the NASA Airborne Snow Observatory SO WATER RESOURCES RESEARCH LA English DT Article ID DATA ASSIMILATION SYSTEM; LANDSAT THEMATIC MAPPER; ENERGY-BALANCE; SPATIAL-DISTRIBUTION; MOUNTAIN BASINS; RUNOFF MODEL; RIVER-BASIN; COVER DATA; RADIATION; COLORADO AB Accurately estimating basin-wide snow water equivalent (SWE) is the most important unsolved problem in mountain hydrology. Models that rely on remotely sensed inputs are especially needed in ranges with few surface measurements. The NASA Airborne Snow Observatory (ASO) provides estimates of SWE at 50 m spatial resolution in several basins across the Western U.S. during the melt season. Primarily, water managers use this information to forecast snowmelt runoff into reservoirs; another impactful use of ASO measurements lies in validating and improving satellite-based snow estimates or models that can scale to whole mountain ranges, even those without ground-based measurements. We compare ASO measurements from 2013 to 2015 to four methods that estimate spatially distributed SWE: two versions of a SWE reconstruction method, spatial interpolation from snow pillows and courses, and NOAA's Snow Data Assimilation System (SNODAS). SWE reconstruction downscales energy forcings to compute potential melt, then multiplies those values by satellite-derived estimates of fractional snow-covered area to calculate snowmelt. The snowpack is then built in reverse from the date the snow is observed to disappear. The two SWE reconstruction models tested include one that employs an energy balance calculation of snowmelt, and one that combines net radiation and degree-day approaches to estimate melt. Our full energy balance model, without ground observations, performed slightly better than spatial interpolation from snow pillows, having no systematic bias and 26% mean absolute error when compared to SWE from ASO. Both reconstruction models and interpolation were more accurate than SNODAS. C1 [Bair, Edward H.] Univ Calif Santa Barbara, Earth Res Inst, Santa Barbara, CA 93106 USA. [Rittger, Karl] Natl Snow & Ice Data Ctr, Boulder, CO USA. [Davis, Robert E.] US Army Corps Engineers, Cold Reg Res & Engn Lab, Hanover, NH USA. [Painter, Thomas H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Dozier, Jeff] Univ Calif Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA. RP Bair, EH (reprint author), Univ Calif Santa Barbara, Earth Res Inst, Santa Barbara, CA 93106 USA. EM nbair@eri.ucsb.edu RI Painter, Thomas/B-7806-2016 FU U.S. Army Cold Regions Research and Engineering Laboratory Award [W913E5-15-C-0003]; NASA [NNH11ZDA001N, NNX12AJ87G]; Microsoft Research FX We thank Kat Bormann and McKenzie Skiles for supplying ASO snow depth and SWE measurements at the native 3 m resolution (SWE at 50 m resolution can be downloaded from http://aso.jpl.nasa.gov/). We thank Jessica Lundquist, Manuela Girotto, Noah Molotch, and an anonymous reviewer for their constructive reviews. Support for this work comes from the U.S. Army Cold Regions Research and Engineering Laboratory Award W913E5-15-C-0003, NASA Awards NNH11ZDA001N and NNX12AJ87G, and Microsoft Research. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. All data and software used in this study are available either through the links in the text or upon request. We are currently working with the UCSB Library on their initiative to serve data from investigations carried out by researchers on campus. NR 75 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV PY 2016 VL 52 IS 11 BP 8437 EP 8460 DI 10.1002/2016WR018704 PG 24 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA EJ6GY UT WOS:000393318600003 ER PT J AU Henn, B Clark, MP Kavetski, D McGurk, B Painter, TH Lundquist, JD AF Henn, Brian Clark, Martyn P. Kavetski, Dmitri McGurk, Bruce Painter, Thomas H. Lundquist, Jessica D. TI Combining snow, streamflow, and precipitation gauge observations to infer basin-mean precipitation SO WATER RESOURCES RESEARCH LA English DT Article ID TELEMETRY SNOTEL DATA; COLORADO RIVER-BASIN; SIERRA-NEVADA; UNITED-STATES; INPUT UNCERTAINTY; BAYESIAN-ANALYSIS; WATER EQUIVALENT; COMPLEX TERRAIN; TEMPERATURE; FOREST AB Precipitation data in mountain basins are typically sparse and subject to uncertainty due to difficulties in measurement and capturing spatial variability. Streamflow provides indirect information about basin-mean precipitation, but inferring precipitation from streamflow requires assumptions about hydrologic model structure that influence precipitation amounts. In this study, we test the extent to which using both snow and streamflow observations reduces differences in inferred annual total precipitation, compared to inference from streamflow alone. The case study area is the upper Tuolumne River basin in the Sierra Nevada of California, where distributed and basin-mean snow water equivalent (SWE) estimates have been made using LiDAR as part of the NASA Airborne Snow Observatory (ASO). To reconstruct basin-mean SWE for years prior to the ASO campaign, we test for a robust relationship between SWE estimates from ASO and from snow courses and pillows, which have a longer record. Relative to ASO's distributed SWE observations, point SWE measurements in this part of the Sierra Nevada tend to overestimate SWE at a given elevation, but undersample high-elevation areas. We then infer precipitation from snow and streamflow, obtained from multiple hydrologic model structures. When included in precipitation inference, snow data reduce by up to one third the standard deviations of the water year total precipitation between model structures and improve the consistency between structures in terms of the yearly variability in precipitation. We reiterate previous findings that multiple types of hydrologic data improve the consistency of modeled physical processes and help identify the most appropriate model structures. C1 [Henn, Brian; Lundquist, Jessica D.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [Henn, Brian] Univ Calif San Diego, Scripps Inst Oceanog, Ctr Western Weather & Water Extremes, La Jolla, CA 92093 USA. [Clark, Martyn P.] Natl Ctr Atmospher Res, Res Applicat Lab, POB 3000, Boulder, CO 80307 USA. [Kavetski, Dmitri] Univ Adelaide, Sch Civil Environm & Min Engn, Adelaide, SA, Australia. [McGurk, Bruce] McGurk Hydrol, Orinda, CA USA. [Painter, Thomas H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Henn, B (reprint author), Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA.; Henn, B (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Ctr Western Weather & Water Extremes, La Jolla, CA 92093 USA. EM bhenn@ucsd.edu; mclark@ucar.edu; dmitri.kavetski@adelaide.edu.au RI Painter, Thomas/B-7806-2016 FU NSF [EAR-1344595]; NASA [NNX15AB29G]; NASA Terrestrial Hydrology Program; NASA Applied Sciences; California Department of Water Resources FX B.H. and D.K. acknowledge support from NSF grant EAR-1344595. J.D.L. acknowledges support from NSF grant EAR-1344595 and NASA grant NNX15AB29G. T.H.P. acknowledges support from the NASA Terrestrial Hydrology Program, NASA Applied Sciences, and the California Department of Water Resources. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. The NCAR Advanced Study Program provided computing cluster time, and this work was also facilitated though the use of advanced computational, storage, and networking infrastructure provided by the Hyak supercomputer system at the University of Washington. We thank Jeff Dozier for quality-controlled CDEC snow course and pillow data used in this study, as well as members of the Mountain Hydrology Group at the University of Washington for useful feedback on this manuscript. Meteorological forcing data from the Hetch Hetchy and Cherry Valley Dam sites are available as Supporting Information (Data Set S1) to this article. In addition, Data Set S1 contains the Hetch Hetchy Reservoir full natural flow series against which the model structures were calibrated. The snow observations used here are available from the CDEC website (http://cdec.water.ca.gov/) and from the ASO website (http://aso.jpl.nasa.gov/). The BATEA software used to conduct the parameter inference may be accessed upon request from Dmitri Kavetski at the University of Adelaide (dmitri.kavetski@adelaide.edu.au); the FUSE software used for the hydrological modeling may be accessed upon request from Martyn Clark (mclark@ucar.edu). NR 62 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV PY 2016 VL 52 IS 11 BP 8700 EP 8723 DI 10.1002/2015WR018564 PG 24 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA EJ6GY UT WOS:000393318600018 ER PT J AU Murphy, TE Prufert-Bebout, LE Bebout, BM AF Murphy, Thomas E. Prufert-Bebout, Leslie E. Bebout, Brad M. TI A Radiative Transfer Modeling Approach for Accurate Interpretation of PAM Fluorometry Experiments in Suspended Algal Cultures SO BIOTECHNOLOGY PROGRESS LA English DT Article DE PAM fluorometry; radiative transfer; photosynthesis; Photosystem II; algae; planktonic cultures; suspended cultures ID CHLOROPHYLL FLUORESCENCE ANALYSIS; PHOTOSYSTEM-II; MONTE-CARLO; PHOTOSYNTHETIC PERFORMANCE; ELECTRON-TRANSPORT; SCATTERING ERROR; QUANTUM YIELD; ABSORPTION; PHOTOBIOREACTORS; CHLORELLA AB The results of a numerical study on the simulation of pulse amplitude modulated (PAM) fluorometry within dense suspensions of photosynthetic microorganisms are presented. The Monte Carlo method was used to solve the radiative transfer equation in an algae-filled cuvette, taking into account absorption, anisotropic scattering, and fluorescence, as well as Fresnel reflections at interfaces. This method was used to simulate the transport of excitation and fluorescence light in a common laboratory fluorometer. In this fluorometer, detected fluorescence originates from a multitude of locations within the algal suspension, which can be exposed to very different fluence rates. The fluorescence-weighted fluence rate is reported, which is the local fluence rate of actinic light, averaged over all locations from which detected fluorescence originated. A methodology is reported for recovering the fluorescence-weighted fluence rate as a function of the transmittance of measuring light and actinic light through the sample, which are easily measured with common laboratory fluorometers. The fluorescence-weighted fluence rate can in turn be used as a correction factor for recovering intrinsic physiological parameters, such as the functional cross section of Photosystem II, from apparent (experimental) values. (C) 2016 American Institute of Chemical Engineers C1 [Murphy, Thomas E.; Prufert-Bebout, Leslie E.; Bebout, Brad M.] NASA, Ames Res Ctr, Exobiol Dept, Moffett Field, CA 94035 USA. RP Murphy, TE (reprint author), NASA, Ames Res Ctr, Exobiol Dept, Moffett Field, CA 94035 USA. EM thomasemurphy@utexas.edu FU NASA FX The authors are grateful for the funding provided by the NASA Postdoctoral Program. The authors also sincerely thank Ulrich Schreiber for his helpful discussions. Finally, the authors are tremendously grateful to two anonymous reviewers, whose comments helped vastly improve the manuscript. NR 59 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 8756-7938 EI 1520-6033 J9 BIOTECHNOL PROGR JI Biotechnol. Prog. PD NOV-DEC PY 2016 VL 32 IS 6 BP 1601 EP 1615 DI 10.1002/btpr.2394 PG 15 WC Biotechnology & Applied Microbiology; Food Science & Technology SC Biotechnology & Applied Microbiology; Food Science & Technology GA EI9GQ UT WOS:000392816300027 PM 27801554 ER PT J AU Yan, XH Boyer, T Trenberth, K Karl, TR Xie, SP Nieves, V Tung, KK Roemmich, D AF Yan, Xiao-Hai Boyer, Tim Trenberth, Kevin Karl, Thomas R. Xie, Shang-Ping Nieves, Veronica Tung, Ka-Kit Roemmich, Dean TI The global warming hiatus: Slowdown or redistribution? SO Earths Future LA English DT Review ID OCEAN HEAT-CONTENT; SEA-LEVEL; UNDERWATER GLIDERS; INDIAN-OCEAN; ARGO ARRAY; TEMPERATURE; PACIFIC; ATLANTIC; ACCELERATION; CIRCULATION AB Global mean surface temperatures (GMST) exhibited a smaller rate of warming during 1998-2013, compared to the warming in the latter half of the 20th Century. Although, not a "true" hiatus in the strict definition of the word, this has been termed the "global warming hiatus" by IPCC (2013). There have been other periods that have also been defined as the "hiatus" depending on the analysis. There are a number of uncertainties and knowledge gaps regarding the "hiatus." This report reviews these issues and also posits insights from a collective set of diverse information that helps us understand what we do and do not know. One salient insight is that the GMST phenomenon is a surface characteristic that does not represent a slowdown in warming of the climate system but rather is an energy redistribution within the oceans. Improved understanding of the ocean distribution and redistribution of heat will help better monitor Earth's energy budget and its consequences. A review of recent scientific publications on the "hiatus" shows the difficulty and complexities in pinpointing the oceanic sink of the "missing heat" from the atmosphere and the upper layer of the oceans, which defines the "hiatus." Advances in "hiatus" research and outlooks (recommendations) are given in this report. C1 [Yan, Xiao-Hai] Univ Delaware, Joint Inst CRM, Newark, DE 19716 USA. [Yan, Xiao-Hai] Xiamen Univ, Xiamen, Fujian, Peoples R China. [Boyer, Tim] NOAA, Natl Ctr Environm Informat, Silver Spring, MD USA. [Trenberth, Kevin] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Xie, Shang-Ping; Roemmich, Dean] Scripps Inst Oceanog, Climate Atmospher Sci & Phys Oceanog, San Diego, CA USA. [Nieves, Veronica] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [Nieves, Veronica] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tung, Ka-Kit] Univ Washington, Appl Math, Seattle, WA 98195 USA. RP Yan, XH (reprint author), Univ Delaware, Joint Inst CRM, Newark, DE 19716 USA.; Yan, XH (reprint author), Xiamen Univ, Xiamen, Fujian, Peoples R China. EM xiaohai@UDel.Edu OI Trenberth, Kevin/0000-0002-1445-1000 FU National Science Foundation (NSF); National Aeronautics and Space Administration (NASA); National Oceanic and Atmospheric Administration (NOAA); US Department of Energy (DOE); NASA; National Science Foundation of China (NSFC); State Oceanic Administration (SOA) of China FX We thank Jim Carton and Mike Patterson for working as coconveners of the US-CLIVAR panel at the American Geophysical Union (AGU) Fall Meeting, 2015. We also thank Weiwei Zhang for improving the manuscript and Enhui Liao for helping reference reformatting and some figure replotting. The AGU's Ocean Science Section and the US CLIVAR Project Office's support during the panel session are greatly appreciated. US CLIVAR's activities are sponsored by the National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), and US Department of Energy (DOE). Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The research carried out at the University of Delaware/Xiamen University's Joint Institute of CRM was partially supported by the National Science Foundation of China (NSFC) and the State Oceanic Administration (SOA) of China. The IPCC heat content values we used were obtained from Gregory C. Johnson. This is a review paper, and all relevant experimental data can be found in the referenced papers. NR 64 TC 0 Z9 0 U1 7 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2328-4277 J9 EARTHS FUTURE JI Earth Future PD NOV PY 2016 VL 4 IS 11 BP 472 EP 482 DI 10.1002/2016EF000417 PG 11 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA EI9FI UT WOS:000392812800001 ER PT J AU Fisher, DA Lacelle, D Pollard, W Davila, A McKay, CP AF Fisher, David A. Lacelle, Denis Pollard, Wayne Davila, Alfonso McKay, Christopher P. TI Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article DE ground ice; ice table; permafrost; McMurdo Dry Valleys of Antarctica ID BEACON VALLEY; EAST ANTARCTICA; ACTIVE-LAYER; GLACIER ICE; SUBLIMATION; PERMAFROST; MARS; STABILITY; SOIL; DIFFUSION AB In the upper McMurdo Dry Valleys, 90% of the measured ice table depths range from 0 to 80cm; however, numerical models predict that the ice table is not in equilibrium with current climate conditions and should be deeper than measured. This study explored the effects of boundary conditions (air versus ground surface temperature and humidity), ground temperature cycles, and their diminishing amplitude with depth and advective flows (Darcy flow and wind pumping) on water vapor fluxes in soils and ice table depths using the REGO vapor diffusion model. We conducted a series of numerical experiments that illustrated different hypothetical scenarios and estimated the water vapor flux and ice table depth using the conditions in University Valley, a small high elevation valley. In situ measurements showed that while the mean annual ground surface temperature approximates that in the air, the mean annual ground surface relative humidity (>85%(ice)) was significantly higher than in the atmosphere (similar to 50%(ice)). When ground surface temperature and humidity were used as boundary conditions, along with damping diurnal and annual temperature cycles within the sandy soil, REGO predicted that measured ice table depths in the valley were in equilibrium with contemporary conditions. Based on model results, a dry soil column can become saturated with ice within centuries. Overall, the results from the new soil data and modeling have implications regarding the factors and boundary conditions that affect the stability of ground ice in cold and hyperarid regions where liquid water is rare. C1 [Fisher, David A.] Univ Ottawa, Dept Earth Sci, Ottawa, ON, Canada. [Lacelle, Denis] Univ Ottawa, Dept Geog, Ottawa, ON, Canada. [Pollard, Wayne] McGill Univ, Dept Geog, Montreal, PQ, Canada. [Davila, Alfonso] SETI Inst, Carl Sagan Ctr, Mountain View, CA USA. [McKay, Christopher P.] NASA Ames Res Ctr, Moffett Field, CA USA. RP Fisher, DA (reprint author), Univ Ottawa, Dept Earth Sci, Ottawa, ON, Canada. EM dafisher2@sympatico.ca OI Lacelle, Denis/0000-0002-6691-8717 FU NASA; Natural Science and Engineering Research Council of Canada (NSERC) FX Fieldwork in the Quartermain Mountains (austral summers of 2009 to 2012) was supported by NASA's ASTEP program and operated by the National Science Foundation (NSF) Office of Polar Programs. Natural Science and Engineering Research Council of Canada (NSERC) Discovery grant provided financial support for data analyses and numerical modeling. The results from the numerical experiments can be obtained by contacting the primary author. We thank J. Levy, two anonymous reviewers, and the Editor (B. Hubbard) for their constructive comments on the manuscript. NR 47 TC 1 Z9 1 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD NOV PY 2016 VL 121 IS 11 BP 2069 EP 2084 DI 10.1002/2016JF004054 PG 16 WC Geosciences, Multidisciplinary SC Geology GA EI9KD UT WOS:000392825900006 ER PT J AU de Groh, KK Perry, BA Banks, BA AF de Groh, Kim K. Perry, Bruce A. Banks, Bruce A. TI Effect of 1.5 Years of Space Exposure on Tensile Properties of Teflon SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT 13th International Symposium on Materials in Space Environment (ISMSE) CY JUN 22-26, 2015 CL Pau, FRANCE ID THERMAL CONTRIBUTIONS; TELESCOPE; DEGRADATION; FEP AB Materials on the exterior of spacecraft in low Earth orbit are subject to extremely harsh environmental conditions, including exposure to various forms of radiation, temperature extremes, thermal cycling, and atomic oxygen. These environmental exposures can result in erosion and optical and mechanical property degradation of susceptible materials, threatening spacecraft performance and durability. In an effort to better understand the effect of space exposure on the mechanical property degradation of Teflon insulation, 19 tensile samples were exposed to the space environment for 1.5 years on the exterior of the International Space Station. The samples were flown in ram, wake, zenith, or nadir orientations as part of three Materials International Space Station Experiment 7 mission experiments. This paper provides an overview of the flight mission, an introduction to the experiments, and compares the Teflon property degradation in the various orientations. The reduction in ductility of the samples correlates with the amount of solar radiation. Samples with high solar exposure (zenith orientation) experienced a 76% reduction in elongation relative to controls, whereas samples in the shadowed nadir orientation only experienced a 4% reduction. Additionally, thickness loss measurements show that erosion is significant in the ram orientation, but negligible in other orientations. C1 [de Groh, Kim K.] NASA, John H Glenn Res Ctr Lewis Field, Environm Effects & Coatings Branch, 21000 Brookpark Rd,Mail Stop 49-5, Cleveland, OH 44135 USA. [Perry, Bruce A.] Ohio Aerosp Inst, Environm Effects & Coatings Branch, 22800 Cedar Point Rd, Brookpark, OH 44142 USA. [Banks, Bruce A.] NASA, Sci Applicat Int Corp, John H Glenn Res Ctr Lewis Field, Environm Effects & Coatings Branch, 21000 Brookpark Rd,Mail Stop 49-5, Cleveland, OH 44135 USA. RP de Groh, KK (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Environm Effects & Coatings Branch, 21000 Brookpark Rd,Mail Stop 49-5, Cleveland, OH 44135 USA. FU International Space Station (ISS) Research Program; Materials International Space Station Experiment (MISSE-X) Project; MISSE Informatics Project FX This research was supported by the International Space Station (ISS) Research Program and the Materials International Space Station Experiment (MISSE-X) Project. Documentation of this research was supported by the MISSE Informatics Project. We would like to thank Don Jaworske of NASA John H. Glenn Research Center (GRC) for coordinating all the GRC MISSE experiments and for his help and dedication to the MISSE Program. We greatly appreciate the support provided by Carl Walz and Fran Chiaramonte of NASA Headquarters, Fred Kohl and Tom St. Onge of NASA Glenn, Stu Cooke and Melissa Ashe of NASA Langley Research Center, and Julie Robinson and George Nelson of NASA Johnson Space Center for their support of MISSE postflight analyses. We would like to thank Iwonka Palusinski of The Aerospace Corporation for including the nadir samples as part of The Aerospace Corporation's MISSE 7 experiment. And, finally, we express our sincere appreciation to Phil Jenkins of the Naval Research Laboratory and Gary Pippin of Boeing for providing the unique opportunity to fly the Zenith Polymers and the Polymers Experiment, respectively, as part of MISSE 7. NR 12 TC 0 Z9 0 U1 2 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV PY 2016 VL 53 IS 6 SI SI BP 1002 EP 1011 DI 10.2514/1.A33557 PG 10 WC Engineering, Aerospace SC Engineering GA EJ0DG UT WOS:000392878200002 ER PT J AU Kondyurin, AV Bilek, MMM Kondyurina, IV Vogel, R de Groh, KK AF Kondyurin, Alexey V. Bilek, Marcela M. M. Kondyurina, Irina V. Vogel, Roland de Groh, Kim K. TI First Stratospheric Flight of Preimpregnated Uncured Epoxy Matrix SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT 13th International Symposium on Materials in Space Environment (ISMSE) CY JUN 22-26, 2015 CL Pau, FRANCE ID FREE-SPACE CONDITIONS; POLYMERIZATION PROCESSES; ATOMIC-OXYGEN; COMPOSITE-MATERIALS; ENVIRONMENT; POLYMERS; EROSION AB A cassette with uncured preimpregnated based on carbon fibers and epoxy resin was exposed in the stratosphere (40 km altitude) above the ozone layer for over three days. Temperature variations of -76 degrees C to +32.5 degrees C and pressures up to 2.1 Torr were observed during flight. Analyses of the chemical structures of the composites show that the polymer matrix exposed in the stratosphere becomes crosslinked while the epoxy groups remain active, and the ground control polymer matrix reacted through polymerization reaction of epoxy groups. The space radiation exposures are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active after exposure in the stratosphere. The results can be used for predicting the curing processes of polymer composites in the space environment during an orbital space flight. C1 [Kondyurin, Alexey V.; Bilek, Marcela M. M.; Kondyurina, Irina V.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Vogel, Roland] Leibniz Inst Polymer Res Dresden, D-01005 Dresden, Germany. [de Groh, Kim K.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Kondyurin, AV (reprint author), Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. RI Umlauf, Ursula/D-3356-2014 FU NASA Program of the Stratospheric Balloons; Alexander von Humboldt Foundation; University of Sydney; Russian Foundation of Basic Research [12-08-00970] FX The investigation was supported by the NASA Program of the Stratospheric Balloons, Alexander von Humboldt Foundation (A.K.), the University of Sydney and the Russian Foundation of Basic Research (grant 12-08-00970). The authors thank David Gregory (NASA Balloon Program) for his excellent organization of the scientific stratospheric balloon program in Australia; William Stepp, Scott Hadley, and their colleagues [Columbia Scientific Balloon Facility (CSBF)] for an outstanding launch, smooth flight of the balloon, and gentle landing of the payload; Allen Zych and his colleagues for useful collaboration and friendly help with the payload; Ravi Sood (Australian Defence Force Academy) for support of the mission in Alice Springs; Miriam Baltuck (Commonwealth Scientific and Industrial Research Organisation Astronomy and Space Science); Bruce Banks and Viet Nguyen (NASA Glenn Research Center) for collaboration and support of the mission; Anna Green and Paul Harbon (University of Sydney) for financial and organizational support of the mission; Neil Loveland and Paul Kulmar (Gurit, Australia) for the prepreg samples and useful discussions; Robert Davis (University of Sydney) for the preparation of the payload equipment; and Paul Wilson (St. Phillip College, Alice Springs) for help with preparation of the epoxy resin mixtures. NR 26 TC 0 Z9 0 U1 1 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV PY 2016 VL 53 IS 6 SI SI BP 1019 EP 1027 DI 10.2514/1.A33478 PG 9 WC Engineering, Aerospace SC Engineering GA EJ0DG UT WOS:000392878200004 ER PT J AU Tsay, SC Maring, HB Lin, NH Buntoung, S Chantara, S Chuang, HC Gabriel, PM Goodloe, CS Holben, BN Hsiao, TC Hsu, NC Janjai, S Lau, WKM Lee, CT Lee, J Loftus, AM Nguyen, AX Nguyen, CM Pani, SK Pantina, P Sayer, AM Tao, WK Wang, SH Welton, EJ Wiriya, W Yen, MC AF Tsay, Si-Chee Maring, Hal B. Lin, Neng-Huei Buntoung, Sumaman Chantara, Somporn Chuang, Hsiao-Chi Gabriel, Philip M. Goodloe, Colby S. Holben, Brent N. Hsiao, Ta-Chih Hsu, N. Christina Janjai, Serm Lau, William K. M. Lee, Chung-Te Lee, Jaehwa Loftus, Adrian M. Nguyen, Anh X. Nguyen, Cuong M. Pani, Shantanu K. Pantina, Peter Sayer, Andrew M. Tao, Wei-Kuo Wang, Sheng-Hsiang Welton, Ellsworth J. Wiriya, Wan Yen, Ming-Cheng TI Satellite-Surface Perspectives of Air Quality and Aerosol-Cloud Effects on the Environment: An Overview of 7-SEAS/BASELInE SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE 7-SEAS; BASELInE; Biomass-burning; Air Quality; Aerosol; Cloud ID BIOMASS-BURNING AEROSOLS; SOUTHEAST-ASIA; PARTICULATE MATTER; RELATIVE-HUMIDITY; EXHAUST PARTICLES; OPTICAL DEPTH; WATER-UPTAKE; POLLUTION; SIZE; CARBON AB The objectives of 7-SEAS/BASELInE (Seven SouthEast Asian Studies/Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment) campaigns in spring 2013-2015 were to synergize measurements from uniquely distributed ground-based networks (e.g., AERONET, MPLNET) and sophisticated platforms (e.g., SMARTLabs, regional contributing instruments), along with satellite observations/retrievals and regional atmospheric transport/chemical models to establish a critically needed database, and to advance our understanding of biomass-burning aerosols and trace gases in Southeast Asia (SEA). We present a satellite-surface perspective of 7-SEAS/BASELInE and highlight scientific findings concerning: (1) regional meteorology of moisture fields conducive to the production and maintenance of low-level stratiform clouds over land, (2) atmospheric composition in a biomass-burning environment, particularly tracers/markers to serve as important indicators for assessing the state and evolution of atmospheric constituents, (3) applications of remote sensing to air quality and impact on radiative energetics, examining the effect of diurnal variability of boundary-layer height on aerosol loading, (4) aerosol hygroscopicity and ground-based cloud radar measurements in aerosol-cloud processes by advanced cloud ensemble models, and (5) implications of air quality, in terms of toxicity of nanoparticles and trace gases, to human health. This volume is the third 7-SEAS special issue (after Atmospheric Research, vol. 122, 2013; and Atmospheric Environment, vol. 78, 2013) and includes 27 papers published, with emphasis on air quality and aerosol-cloud effects on the environment. BASELInE observations of stratiform clouds over SEA are unique, such clouds are embedded in a heavy aerosol-laden environment and feature characteristically greater stability over land than over ocean, with minimal radar surface clutter at a high vertical spatial resolution. To facilitate an improved understanding of regional aerosol-cloud effects, we envision that future BASELInE-like measurement/modeling needs fall into two categories: (1) efficient yet critical in-situ profiling of the boundary layer for validating remote-sensing/retrievals and for initializing regional transport/chemical and cloud ensemble models, and (2) fully utilizing the high observing frequencies of geostationary satellites for resolving the diurnal cycle of the boundary-layer height as it affects the loading of biomass-burning aerosols, air quality and radiative energetics. C1 [Tsay, Si-Chee; Goodloe, Colby S.; Holben, Brent N.; Hsu, N. Christina; Lee, Jaehwa; Loftus, Adrian M.; Pantina, Peter; Sayer, Andrew M.; Tao, Wei-Kuo; Welton, Ellsworth J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Maring, Hal B.] NASA Headquarters, Washington, DC USA. [Lin, Neng-Huei; Hsiao, Ta-Chih; Lee, Chung-Te; Pani, Shantanu K.; Wang, Sheng-Hsiang; Yen, Ming-Cheng] Natl Cent Univ, Chungli, Taiwan. [Buntoung, Sumaman; Janjai, Serm] Silpakorn Univ, Fac Sci, Nakhon Pathom, Thailand. [Lin, Neng-Huei; Chantara, Somporn; Wiriya, Wan] Chiang Mai Univ, Fac Sci, Chiang Mai 50000, Thailand. [Chuang, Hsiao-Chi] Taipei Med Univ, Sch Resp Therapy, Taipei, Taiwan. [Gabriel, Philip M.] Gen Analyt LLC, Ft Collins, CO USA. [Lau, William K. M.; Lee, Jaehwa; Loftus, Adrian M.] Univ Maryland, ESSIC, College Pk, MD 20742 USA. [Nguyen, Anh X.] Vietnam Acad Sci & Technol, Hanoi, Vietnam. [Nguyen, Cuong M.] Natl Res Council Canada, Ottawa, ON, Canada. [Pantina, Peter] Sci Syst & Applicat Inc, Lanham, MD USA. [Sayer, Andrew M.] USRA, GESTAR, Columbia, MD USA. RP Tsay, SC (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Lin, NH (reprint author), Natl Cent Univ, Chungli, Taiwan.; Lin, NH (reprint author), Chiang Mai Univ, Fac Sci, Chiang Mai 50000, Thailand. EM si-chee.tsay@nasa.gov; nhlin@cc.ncu.edu.tw RI Sayer, Andrew/H-2314-2012; Chuang, Hsiao-Chi/E-7912-2010 OI Sayer, Andrew/0000-0001-9149-1789; Chuang, Hsiao-Chi/0000-0003-4651-5192 FU Taiwan Environmental Protection Administration [EPA-102-U1L1-02-101, EPA-103-U1L1-02-101, EPA-104-U1L1-02-101]; Ministry of Science and Technology of Taiwan [103-2111-M-008-001, 104-2111-M-008-002]; NASA FX The lead author thanks the continuous support of SMARTLabs deployment and research in Southeast Asia, as part of NASA Radiation Sciences Program (RSP) and Interdisciplinary Studies project. NASA EOS and RSP support deployments of AERONET and MPLNET. The authors thank the continuous support and assistance by the Taiwan Environmental Protection Administration (Contract No.: EPA-102-U1L1-02-101, EPA-103-U1L1-02-101, EPA-104-U1L1-02-101), and the Ministry of Science and Technology of Taiwan (Grant No. 103-2111-M-008-001, 104-2111-M-008-002). We also gratefully acknowledge the team efforts of logistic supports and assistance for instrument deployments provided by the National Central University (Taiwan), Vietnam Academy of Science and Technology (Vietnam, VAST.HTQT.NGA.04/15-16), National Hydro-Meteorological Service of Vietnam, Silpakorn University (Thailand), Chiang Mai University (Thailand), and the Doi Angkhang Meteorological Station (Thailand). Thanks are also given to all assistants and graduate students involving in the site operation, data analysis and technical support for making field campaigns successful. NR 114 TC 8 Z9 8 U1 3 U2 3 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 EI 2071-1409 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD NOV PY 2016 VL 16 IS 11 SI SI BP 2581 EP 2602 DI 10.4209/aaqr.2016.08.0350 PG 22 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI2HI UT WOS:000392307100002 ER PT J AU Pantina, P Tsay, SC Hsiao, TC Loftus, AM Kuo, F Ou-Yang, CF Sayer, AM Wang, SH Lin, NH Hsu, NC Janjai, S Chantara, S Nguyen, AX AF Pantina, Peter Tsay, Si-Chee Hsiao, Ta-Chih Loftus, Adrian M. Kuo, Ferret Ou-Yang, Chang-Feng Sayer, Andrew M. Wang, Shen-Hsiang Lin, Neng-Huei Hsu, N. Christina Janjai, Serm Chantara, Somporn Nguyen, Anh X. TI COMMIT in 7-SEAS/BASELInE: Operation of and Observations from a Novel, Mobile Laboratory for Measuring In-Situ Properties of Aerosols and Gases SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE Biomass-burning; Aerosol; In-situ; 7-SEAS; BASELInE; Air quality; Hygroscopicity ID BIOMASS-BURNING AEROSOLS; OUTDOOR AIR-POLLUTION; INTEGRATING NEPHELOMETER; HYGROSCOPIC GROWTH; SOUTHEAST-ASIA; CONDENSATION NUCLEI; EAST-ASIA; BASE-ASIA; PARTICLES; TRANSPORT AB Trace gases and aerosols (particularly biomass-burning aerosols) have important implications for air quality and climate studies in Southeast Asia (SEA). This paper describes the purpose, operation, and datasets collected from NASA Goddard Space Flight Center's (NASA/GSFC) Chemical, Optical, and Microphysical Measurements of In-situ Troposphere (COMMIT) laboratory, a mobile platform designed to measure trace gases and optical/microphysical properties of naturally occurring and anthropogenic aerosols. More importantly, the laboratory houses a specialized humidification system to characterize hygroscopic growth/enhancement, a behavior that affects aerosol properties and cloud-aerosol interactions and is generally underrepresented in the current literature. A summary of the trace gas and optical/microphysical measurements is provided, along with additional detail and analysis of data collected from the hygroscopic system during the 2015 Seven South-East Asian Studies (7-SEAS) field campaign. The results suggest that data from the platform are reliable and will complement future studies of aerosols and air quality in SEA and other regions of interest. C1 [Pantina, Peter] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Pantina, Peter; Tsay, Si-Chee; Loftus, Adrian M.; Sayer, Andrew M.; Hsu, N. Christina] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Hsiao, Ta-Chih] Natl Cent Univ, Grad Inst Environm Engn, Chungli 32001, Taiwan. [Loftus, Adrian M.] Univ Maryland, ESSIC, College Pk, MD USA. [Kuo, Ferret; Ou-Yang, Chang-Feng; Wang, Shen-Hsiang; Lin, Neng-Huei] Natl Cent Univ, Dept Atmospher Sci, Chungli 32001, Taiwan. [Sayer, Andrew M.] GESTAR USRA, Columbia, MD USA. [Janjai, Serm] Silpakorn Univ, Nakhon Pathom, Thailand. [Chantara, Somporn] Chiang Mai Univ, Fac Sci, Chiang Mai, Thailand. [Nguyen, Anh X.] Vietnam Acad Sci & Technol, Hanoi, Vietnam. RP Pantina, P (reprint author), Sci Syst & Applicat Inc, Lanham, MD 20706 USA.; Pantina, P (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM peter.pantina@nasa.gov RI Sayer, Andrew/H-2314-2012; Ou-Yang, Chang-Feng/R-2271-2016 OI Sayer, Andrew/0000-0001-9149-1789; Ou-Yang, Chang-Feng/0000-0002-8477-3013 FU Vietnam Academy of Science and Technology [DTDL.3-2011-NCCB, VT/CB-02/14-15] FX We acknowledge the continuous support of SMARTLabs by the NASA Radiation Sciences Program managed by Dr. Hal B. Maring. We thank staff at Silpakorn University, Chiang Mai University, and the DAK meteorological station in Thailand, and staff at National Central University in Taiwan for their collaboration and support during various international field campaigns. Finally we recognize the Vietnam Ministry of Science and Technology and Vietnam Academy of Science and Technology (project DTDL.3-2011-NCCB and project VT/CB-02/14-15 under Vietnam Program of Space Technology) and the SL meteorological station in Vietnam. NR 51 TC 5 Z9 5 U1 2 U2 2 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 EI 2071-1409 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD NOV PY 2016 VL 16 IS 11 SI SI BP 2728 EP 2741 DI 10.4209/aaqr.2015.011.0630 PG 14 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI2HI UT WOS:000392307100012 ER PT J AU Loftus, AM Tsay, SC Pantina, P Nguyen, C Gabriel, PM Nguyen, XA Sayer, AM Tao, WK Matsui, T AF Loftus, Adrian M. Tsay, Si-Chee Pantina, Peter Cuong Nguyen Gabriel, Philip M. Nguyen, Xuan A. Sayer, Andrew M. Tao, Wei-Kuo Matsui, Toshi TI Coupled Aerosol-Cloud Systems over Northern Vietnam during 7-SEAS/BASELInE: A Radar and Modeling Perspective SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE Aerosol-cloud interactions; Radar observations; 7-SEAS; Cloud modeling ID SINGLE-PARAMETER REPRESENTATION; CONDENSATION NUCLEUS ACTIVITY; BIOMASS-BURNING AEROSOLS; MARINE BOUNDARY-LAYER; SOUTHEAST-ASIA; PART I; STRATIFORM CLOUDS; MICROPHYSICS PARAMETERIZATION; STRATOCUMULUS CLOUDS; SATELLITE SIMULATOR AB The 2013 7-SEAS/BASELInE campaign over northern Southeast Asia (SEA) provided, for the first time ever, comprehensive ground-based W-band radar measurements of the low-level stratocumulus (Sc) systems that often exist during the spring over northern Vietnam in the presence of biomass-burning aerosols. Although spatially limited, ground-based remote sensing observations are generally free of the surface contamination and signal attenuation effects that often hinder space-borne measurements of these low-level cloud systems. Such observations permit detailed measurements of structures and lifecycles of these clouds as part of a broader effort to study potential impacts of these coupled aerosol-cloud systems on local and regional weather and air quality. Introductory analyses of the W-band radar data show these Sc systems generally follow a diurnal cycle, with peak occurrences during the nighttime and early morning hours, often accompanied by light precipitation. Preliminary results from idealized simulations of Sc development over land based on the observations reveal the familiar response of increased numbers and smaller sizes of cloud droplets, along with suppressed drizzle formation, as aerosol concentrations increase. Slight reductions in simulated W-band reflectivity values also are seen with increasing aerosol concentrations and result primarily from decreased droplet sizes. As precipitation can play a large role in removing aerosol from the atmosphere, and thereby improving air quality locally, quantifying feedbacks between aerosols and cloud systems over this region are essential, particularly given the negative impacts of biomass burning on human health in SEA. Such an endeavor should involve improved modeling capabilities along with comprehensive measurements of time-dependent aerosol and cloud profiles. C1 [Loftus, Adrian M.; Matsui, Toshi] Univ Maryland, College Pk, MD 20742 USA. [Loftus, Adrian M.; Tsay, Si-Chee; Pantina, Peter; Sayer, Andrew M.; Tao, Wei-Kuo; Matsui, Toshi] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pantina, Peter] Sci Syst & Applicat Inc, Lanham, MD USA. [Cuong Nguyen] CNR, Ottawa, ON, Canada. [Cuong Nguyen; Gabriel, Philip M.] Colorado State Univ, Ft Collins, CO USA. [Gabriel, Philip M.] Gen Analyt LLC, Ft Collins, CO USA. [Nguyen, Xuan A.] Vietnam Acad Sci & Technol, Hanoi, Vietnam. [Sayer, Andrew M.] GESTAR USRA, Columbia, MD USA. RP Loftus, AM (reprint author), Univ Maryland, College Pk, MD 20742 USA.; Loftus, AM (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM adrian.m.loftus@nasa.gov RI Sayer, Andrew/H-2314-2012 OI Sayer, Andrew/0000-0001-9149-1789 FU Vietnam Academy of Science and Technology [VT/CB-02/14-15]; NASA Postdoctoral Program; NASA [NNX14AL96G] FX The authors would like to thank the Vietnam Ministry of Science and Technology, the Vietnam Academy of Science and Technology (project VT/CB-02/14-15 under Vietnam Program of Space and Technology), and the National Hydrometeorological Service of Vietnam staff at the Yen Bai station for arranging the site for ACHIEVE and assisting the SMARTLabs team during deployment. We additionally thank the manufacturer of the W-band radar, ProSensing Inc., for help in troubleshooting technical issues during the deployment as well as assisting in the on-site calibration of the W-band. Thanks also to Jaewha Lee (NASA/GSFC) for providing Fig. 2. We are grateful for the continuous support of SMARTLabs by the NASA Radiation Sciences Program managed by Dr. Hal B. Maring. The lead author of this work was also partially supported by the NASA Postdoctoral Program administered by Oak Ridge Associated Universities, and NASA grant NNX14AL96G under the NASA New Investigator Program managed by Dr. Ming-Ying Wei. NR 108 TC 4 Z9 4 U1 0 U2 0 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 EI 2071-1409 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD NOV PY 2016 VL 16 IS 11 SI SI BP 2768 EP 2785 DI 10.4209/aaqr.2015.11.0631 PG 18 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI2HI UT WOS:000392307100015 ER PT J AU Sayer, AM Hsu, NC Hsiao, TC Pantina, P Kuo, F Ou-Yang, CF Holben, BN Janjai, S Chantara, S Wang, SH Loftus, AM Lin, NH Tsay, SC AF Sayer, Andrew M. Hsu, N. Christina Hsiao, Ta-Chih Pantina, Peter Kuo, Ferret Ou-Yang, Chang-Feng Holben, Brent N. Janjai, Serm Chantara, Somporn Wang, Shen-Hsiang Loftus, Adrian M. Lin, Neng-Huei Tsay, Si-Chee TI In-Situ and Remotely-Sensed Observations of Biomass Burning Aerosols at Doi Ang Khang, Thailand during 7-SEAS/BASELInE 2015 SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE Biomass burning; Aerosol; Remote sensing; In situ; 7-SEAS BASELInE ID SKY RADIANCE MEASUREMENTS; OPTICAL-PROPERTIES; SOUTHEAST-ASIA; AERONET; SATELLITE; ALGORITHM; CLOUDS; SUN; INSTRUMENT; RETRIEVAL AB The spring 2015 deployment of a suite of instrumentation at Doi Ang Khang (DAK) in northwestern Thailand enabled the characterization of air masses containing smoke aerosols from burning predominantly in Myanmar. Aerosol Robotic Network (AERONET) Sun photometer data were used to validate Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 'Deep Blue' aerosol optical depth (AOD) retrievals; MODIS Terra and Aqua provided results of similar quality, with correlation coefficients of 0.93-0.94 and similar agreement within expected uncertainties to global-average performance. Scattering and absorption measurements were used to compare surface and total column aerosol single scatter albedo (SSA); while the two were well-correlated, and showed consistent positive relationships with moisture (increasing SSA through the season as surface relative humidity and total columnar water vapor increased), insitu surface-level SSA was nevertheless significantly lower by 0.12-0.17. This could be related to vertical heterogeneity and/or instrumental issues. DAK is at similar to 1,500 m above sea level in heterogeneous terrain, and the resulting strong diurnal variability in planetary boundary layer depth above the site leads to high temporal variability in both surface and column measurements, and acts as a controlling factor to the ratio between surface particulate matter (PM) levels and column AOD. In contrast, while some hygroscopic effects were observed relating to aerosol particle size and angstrom ngstrom exponent, relative humidity variations appear to be less important for the PM: AOD ratio here. C1 [Sayer, Andrew M.] GESTAR USRA, Columbia, MD 21046 USA. [Sayer, Andrew M.; Hsu, N. Christina; Pantina, Peter; Holben, Brent N.; Loftus, Adrian M.; Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hsiao, Ta-Chih] Natl Cent Univ, Grad Inst Environm Engn, Chungli 32001, Taiwan. [Pantina, Peter] Sci Syst & Applicat Inc, Lanham, MD USA. [Kuo, Ferret; Ou-Yang, Chang-Feng; Wang, Shen-Hsiang; Lin, Neng-Huei] Natl Cent Univ, Dept Atmospher Sci, Chungli 32001, Taiwan. [Janjai, Serm] Silpakorn Univ, Nakhon Pathom, Thailand. [Chantara, Somporn] Chiang Mai Univ, Fac Sci, Chiang Mai, Thailand. [Loftus, Adrian M.] Univ Maryland, ESSIC, College Pk, MD USA. RP Sayer, AM (reprint author), GESTAR USRA, Columbia, MD 21046 USA.; Sayer, AM (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM andrew.sayer@nasa.gov RI Sayer, Andrew/H-2314-2012; Ou-Yang, Chang-Feng/R-2271-2016 OI Sayer, Andrew/0000-0001-9149-1789; Ou-Yang, Chang-Feng/0000-0002-8477-3013 FU EOS program FX This study was funded by the EOS program, managed by H. Maring. Further information about Deep Blue is available at http://deepblue.gsfc.nasa.gov. AERONET data are available from http://aeronet.gsfc.nasa.gov. MODIS atmospheric data are available from http://ladsweb.nascom.nasa.gov. The SMARTLabs website is http://smartlabs.gsfc.nasa.gov; data can be requested from PI S. C. Tsay. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model (http://www.ready.arl.noaa.gov) used in this publication. GTOPO30 data are provided by USGS at https://lta.cr.usgs.gov/GTOPO30. L. Ellison is thanked for assistance obtaining the MODIS fire counts used in this study. The NASA Global Modeling and Assimilation Office and GES DISC are acknowledged for the creation and dissemination of MERRA2 (http://gmao.gsfc.nasa.gov), and A. da Silva and R. Govindaraju are thanked for assistance with, and discussions about, MERRA and MERRA2. The authors are grateful for the constructive comments of the two anonymous reviewers of this manuscript. NR 41 TC 8 Z9 8 U1 0 U2 0 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 EI 2071-1409 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD NOV PY 2016 VL 16 IS 11 SI SI BP 2786 EP 2801 DI 10.4209/aaqr.2015.08.0500 PG 16 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI2HI UT WOS:000392307100016 ER PT J AU Pani, SK Wang, SH Lin, NH Lee, CT Tsay, SC Holben, BN Janjai, S Hsiao, TC Chuang, MT Chantara, S AF Pani, Shantanu Kumar Wang, Sheng-Hsiang Lin, Neng-Huei Lee, Chung-Te Tsay, Si-Chee Holben, Brent N. Janjai, Serm Hsiao, Ta-Chih Chuang, Ming-Tung Chantara, Somporn TI Radiative Effect of Springtime Biomass-Burning Aerosols over Northern Indochina during 7-SEAS/BASELInE 2013 Campaign SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE Biomass-burning; Near-source; Aerosol optical properties; Radiative effects; 7-SEAS ID OPTICAL-PROPERTIES; 7-SEAS/DONGSHA EXPERIMENT; ATMOSPHERIC CHEMISTRY; CHEMICAL-PROPERTIES; SOUTHERN AFRICA; SMOKE AEROSOLS; TRACE GASES; SAFARI 2000; BASE-ASIA; AMAZONIA AB The direct aerosol radiative effects of biomass-burning (BB) aerosols over northern Indochina were estimated by using aerosol properties (physical, chemical, and optical) along with the vertical profile measurements from ground-based measurements with integration of an optical and a radiative transfer model during the Seven South East Asian Studies/ Biomass-Burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment (7-SEAS/ BASELInE) conducted in spring 2013. Cluster analysis of backward trajectories showed the air masses arriving at mountainous background site (Doi Ang Khang; 19.93 degrees N, 99.05 degrees E, 1536 m above mean sea level) in northern Indochina, mainly from near-source inland BB activities and being confined in the planetary boundary layer. The PM10 and black carbon (BC) mass were 87 +/- 28 and 7 +/- 2 mu g m(-3), respectively. The aerosol optical depth (AOD(500)) was found to be 0.26-1.13 (0.71 +/- 0.24). Finer (fine mode fraction approximate to 0.95, angstrom-exponent at 440-870 nm approximate to 1.77) and significantly absorbing aerosols (single-scattering albedo approximate to 0.89, asymmetry-parameter approximate to 0.67, and absorption AOD approximate to 0.1 at 440 nm) dominated over this region. BB aerosols (water soluble and BC) were the main contributor to the aerosol radiative forcing (ARF), while others (water insoluble, sea salt and mineral dust) were negligible mainly due to their low extinction efficiency. BC contributed only 6% to the surface aerosol mass but its contribution to AOD was 12% (2 times higher). The overall mean ARF was 8.0 and -31.4 W m(-2) at top-of-atmosphere (TOA) and at the surface (SFC), respectively. Likely, ARF due to BC was + 10.7 and -18.1 W m(-2) at TOA and SFC, respectively. BC imposed the heating rate of + 1.4 K d(-1) within the atmosphere and highlighting its pivotal role in modifying the radiation budget. We propose that to upgrade our knowledge on BB aerosol radiative effects in BB source region, the long-term and extensive field measurements are needed. C1 [Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei] Natl Cent Univ, Dept Atmospher Sci, Chungli 32001, Taiwan. [Lin, Neng-Huei; Chantara, Somporn] Chiang Mai Univ, Fac Sci, Environm Sci Program, Chiang Mai, Thailand. [Lee, Chung-Te; Hsiao, Ta-Chih; Chuang, Ming-Tung] Natl Cent Univ, Grad Inst Environm Engn, Chungli 32001, Taiwan. [Tsay, Si-Chee; Holben, Brent N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Janjai, Serm] Silpakorn Univ, Fac Sci, Dept Phys, Nakhon Pathom, Thailand. RP Wang, SH; Lin, NH (reprint author), Natl Cent Univ, Dept Atmospher Sci, Chungli 32001, Taiwan.; Lin, NH (reprint author), Chiang Mai Univ, Fac Sci, Environm Sci Program, Chiang Mai, Thailand. EM carlo@cc.ncu.edu.tw; nhlin@cc.ncu.edu.tw FU Ministry of Science and Technology of Taiwan [MOST 103-2111-M-008-001, 104-2111-M-008-002]; Taiwan Environmental Protection Administration [EPA-104-U1L1-02-101]; NASA Earth Observing System and Radiation Sciences Program FX This work was supported by the Ministry of Science and Technology of Taiwan (MOST 103-2111-M-008-001 and 104-2111-M-008-002) and by the Taiwan Environmental Protection Administration (EPA-104-U1L1-02-101). The 7-SEAS/BASELInE, MPLNET and AERONET project was supported by the NASA Earth Observing System and Radiation Sciences Program. The authors also gratefully acknowledge the NOAA Air Resources Laboratory for the provision of the HYSPLIT transport and dispersion model used in this publication. NR 89 TC 6 Z9 6 U1 0 U2 0 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 EI 2071-1409 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD NOV PY 2016 VL 16 IS 11 SI SI BP 2802 EP 2817 DI 10.4209/aaqr.2016.03.0130 PG 16 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI2HI UT WOS:000392307100017 ER PT J AU Chew, BN Campbell, JR Hyer, EJ Salinas, SV Reid, JS Welton, EJ Holben, BN Liew, SC AF Chew, Boon Ning Campbell, James R. Hyer, Edward J. Salinas, Santo V. Reid, Jeffrey S. Welton, Ellsworth J. Holben, Brent N. Liew, Soo Chin TI Relationship between Aerosol Optical Depth and Particulate Matter over Singapore: Effects of Aerosol Vertical Distributions SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE Air pollution; Air quality; Aerosol optical depth ID SUN-PHOTOMETER DATA; MICROPULSE LIDAR; AIR-QUALITY; MARITIME CONTINENT; FORECAST MODEL; UNITED-STATES; HONG-KONG; MODIS; PROFILES; PM2.5 AB As part of the Seven Southeast Asian Studies (7SEAS) program, an Aerosol Robotic Network (AERONET) sun photometer and a Micro-Pulse Lidar Network (MPLNET) instrument have been deployed at Singapore to study the regional aerosol environment of the Maritime Continent (MC). In addition, the Navy Aerosol Analysis and Prediction System (NAAPS) is used to model aerosol transport over the region. From 24 September 2009 to 31 March 2011, the relationships between ground-, satellite-and model-based aerosol optical depth (AOD) and particulate matter with aerodynamic equivalent diameters less than 2.5 mu m (PM2.5) for air quality applications are investigated. When MPLNET-derived aerosol scale heights are applied to normalize AOD for comparison with surface PM2.5 data, the empirical relationships are shown to improve with an increased 11%, 10% and 5% in explained variances, for AERONET, MODIS and NAAPS respectively. The ratios of root mean square errors to standard deviations for the relationships also show corresponding improvements of 8%, 6% and 2%. Aerosol scale heights are observed to be bimodal with a mode below and another above the strongly-capped/ deep near-surface layer (SCD; 0-1.35 km). Aerosol extinctions within the SCD layer are well-correlated with surface PM2.5 concentrations, possibly due to strong vertical mixing in the region. C1 [Chew, Boon Ning; Salinas, Santo V.; Liew, Soo Chin] Natl Univ Singapore, Ctr Remote Imaging Sensing & Proc, Singapore 119076, Singapore. [Campbell, James R.; Hyer, Edward J.; Reid, Jeffrey S.] US Navy, Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. [Welton, Ellsworth J.] NASA, Goddard Space Flight Ctr, Micro Pulse Lidar Network, Code 613-1, Greenbelt, MD 20771 USA. [Holben, Brent N.] NASA, Goddard Space Flight Ctr, Code 618, Greenbelt, MD 20771 USA. RP Chew, BN (reprint author), Natl Univ Singapore, Ctr Remote Imaging Sensing & Proc, Singapore 119076, Singapore. EM chew.boon.ning@gmail.com RI Campbell, James/C-4884-2012 OI Campbell, James/0000-0003-0251-4550 FU NASA; Office of Naval Research (ONR); ONR Global FX AERONET and MPLNET are supported with funding from the NASA Earth Observing System and Radiation Sciences Programs. The AERONET and MPLNET instruments are deployed to Singapore as part of the Seven Southeast Asian Studies (7SEAS) field campaign, as sponsored by the Office of Naval Research (ONR), ONR Global and NASA. The authors would like to thank Singapore's National Environment Agency (NEA) for collecting and archiving the surface air quality data. NR 78 TC 1 Z9 1 U1 3 U2 3 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 EI 2071-1409 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD NOV PY 2016 VL 16 IS 11 SI SI BP 2818 EP 2830 DI 10.4209/aaqr.2015.07.0457 PG 13 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI2HI UT WOS:000392307100018 ER PT J AU Lee, J Hsu, NC Bettenhausen, C Sayer, AM Seftor, CJ Jeong, MJ Tsay, SC Welton, EJ Wang, SH Chen, WN AF Lee, Jaehwa Hsu, N. Christina Bettenhausen, Corey Sayer, Andrew M. Seftor, Colin J. Jeong, Myeong-Jae Tsay, Si-Chee Welton, Ellsworth J. Wang, Sheng-Hsiang Chen, Wei-Nai TI Evaluating the Height of Biomass Burning Smoke Aerosols Retrieved from Synergistic Use of Multiple Satellite Sensors over Southeast Asia SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE Aerosol height; Satellite; Biomass burning; Southeast Asia; 7-SEAS ID SKY RADIANCE MEASUREMENTS; OPTICAL-PROPERTIES; AERONET; ALGORITHM; NETWORK; SUN; VALIDATION; CLOUDS; INDEX; MODIS AB This study evaluates the height of biomass burning smoke aerosols retrieved from a combined use of Visible Infrared Imaging Radiometer Suite (VIIRS), Ozone Mapping and Profiler Suite (OMPS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The retrieved heights are compared against spaceborne and ground-based lidar measurements during the peak biomass burning season (March and April) over Southeast Asia from 2013 to 2015. Based on the comparison against CALIOP, a quality assurance (QA) procedure is developed. It is found that 74% (81-84%) of the retrieved heights fall within 1 km of CALIOP observations for unfiltered (QA-filtered) data, with root-mean-square error (RMSE) of 1.1 km (0.8-1.0 km). Eliminating the requirement for CALIOP observations from the retrieval process significantly increases the temporal coverage with only a slight decrease in the retrieval accuracy; for best QA data, 64% of data fall within 1 km of CALIOP observations with RMSE of 1.1 km. When compared with Micro-Pulse Lidar Network (MPLNET) measurements deployed at Doi Ang Khang, Thailand, the retrieved heights show RMSE of 1.7 km (1.1 km) for unfiltered (QA-filtered) data for the complete algorithm, and 0.9 km (0.8 km) for the simplified algorithm. C1 [Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Tsay, Si-Chee; Welton, Ellsworth J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lee, Jaehwa] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA. [Bettenhausen, Corey; Seftor, Colin J.] Sci Syst & Applicat Inc, Lanham, MD USA. [Sayer, Andrew M.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA. [Jeong, Myeong-Jae] Gangneung Wonju Natl Univ, Dept Atmospher & Environm Sci, Kangnung, South Korea. [Wang, Sheng-Hsiang] Natl Cent Univ, Dept Atmospher Sci, Chungli 32001, Taiwan. [Chen, Wei-Nai] Acad Sinica, Res Ctr Environm Changes, Taipei 11529, Taiwan. RP Lee, J (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Lee, J (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA. EM jaehwa.lee@nasa.gov RI Sayer, Andrew/H-2314-2012 OI Sayer, Andrew/0000-0001-9149-1789 FU NASA Earth Observing System program FX This project is funded by the NASA Earth Observing System program, managed by H. Maring, and the NASA Micro-Pulse Lidar Network by the NASA Earth Observing System and Radiation Sciences Program. The VIIRS, OMPS, and CALIOP science teams are gratefully acknowledged for their efforts to create and maintain the data records used in this investigation. We thank the PIs and managers (Holben, B.N., Janjai, S. and Lin, N.H.) for establishing and maintaining the AERONET sites used in this study. NR 40 TC 3 Z9 3 U1 1 U2 1 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 EI 2071-1409 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD NOV PY 2016 VL 16 IS 11 SI SI BP 2831 EP 2842 DI 10.4209/aaqr.2015.08.0506 PG 12 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI2HI UT WOS:000392307100019 ER PT J AU Hee, WS Lim, HS Jafri, MZM Lolli, S Ying, KW AF Hee, Wan Shen Lim, Hwee San Jafri, Mohd Zubir Mat Lolli, Simone Ying, Khor Wei TI Vertical Profiling of Aerosol Types Observed across Monsoon Seasons with a Raman Lidar in Penang Island, Malaysia SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE Raman LIDAR; LIDAR ratio; Aerosol; Monsoon season; Haze ID ELASTIC-BACKSCATTER LIDAR; EXTINCTION; RATIO; AERONET; SITE AB Although technology has advanced in the past few decades, the understanding of the effect of aerosol on Earth's climate has remained largely unknown. Even if considerable effort has been made by researchers around the world to study this pressing issue, the non-uniform distribution of aerosols is still a huge challenge on global aerosol characterization studies. Without extensive and reliable measurements from most regions in the world, a complete understanding of aerosol characteristics cannot be achieved. In this study, a Raman LIDAR was used to acquire data to calculate the range-dependent extinction-to-backscattering ratio during a very particular period: when the Northeast monsoon season shifts to the Southwest monsoon season. During this time period, monsoonal winds change direction, leading to changes in aerosol type and properties above Penang Island due to the global atmospheric circulation. From the retrieved extinction-to-backscattering ratio, it is possible to differentiate the aerosol types present at various altitudes. It was found that background marine and urban aerosols were present above Penang Island, as marine and urban aerosols were present both below and above the PBL height regardless of the monsoon season. Additionally, biomass burning aerosols and aged forest fire aerosols were occasionally found, which were normally associated with cases of pollution, such as those in early March 2014 and June 2014. Finally, it was found that during a haze episode, the entire atmospheric column was dominated by wood burning aerosols. AERONET sunphotometer data have been used to validate LIDAR findings. Radiative effect of background and transported aerosols are evaluated with the Fu-Liou-Gu radiative transfer model. C1 [Hee, Wan Shen; Lim, Hwee San; Jafri, Mohd Zubir Mat; Ying, Khor Wei] Univ Sains Malaysia, Sch Phys, Gelugor, Penang, Malaysia. [Lolli, Simone] NASA, GSFC JCET, Code 923, Greenbelt, MD 20771 USA. RP Lim, HS (reprint author), Univ Sains Malaysia, Sch Phys, Gelugor, Penang, Malaysia. EM hslim@usm.my RI Lim, Hwee San/F-6580-2010 OI Lim, Hwee San/0000-0002-4835-8015 FU RUI, Investigation Of The Impacts Of Summertime Monsoon Circulation To The Aerosols Transportation And Distribution In Southeast Asia Which Can Lead To Global Climate Change [1001/PFIZIK/811228] FX This project was conducted with financial support from RUI, Investigation Of The Impacts Of Summertime Monsoon Circulation To The Aerosols Transportation And Distribution In Southeast Asia Which Can Lead To Global Climate Change, 1001/PFIZIK/811228. NR 27 TC 1 Z9 1 U1 0 U2 0 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 EI 2071-1409 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD NOV PY 2016 VL 16 IS 11 SI SI BP 2843 EP 2854 DI 10.4209/aaqr.2015.07.0450 PG 12 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI2HI UT WOS:000392307100020 ER PT J AU Chuang, HC Hsiao, TC Wang, SH Tsay, SC Lin, NH AF Hsiao-Chi Chuang Ta-Chih Hsiao Wang, Sheng-Hsiang Tsay, Si-Chee Neng-Huei, Lin TI Characterization of Particulate Matter Profiling and Alveolar Deposition from Biomass Burning in Northern Thailand: The 7-SEAS Study SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE Air pollution; Alveoli; Biomass burning; Black carbon; Nanoparticle ID RESPIRATORY-TRACT DEPOSITION; DIESEL EXHAUST PARTICLES; ULTRAFINE PARTICLES; SURFACE-AREA; AEROSOL-PARTICLES; INFLAMMATORY RESPONSE; ATMOSPHERIC AEROSOLS; PULMONARY TOXICITY; SOUTHEAST-ASIA; CLIMATE-CHANGE AB Biomass burning (BB) frequently occurs in SouthEast Asia (SEA), which significantly affects the air quality and could consequently lead to adverse health effects. The aim of this study was to characterize particulate matter (PM) and black carbon (BC) emitted from BB source regions in SEA and their potential of deposition in the alveolar region of human lungs. A 31-day characterization of PM profiling was conducted at the Doi Ang Khang (DAK) meteorology station in northern Thailand in March 2013. Substantial numbers of PM (10147 +/- 5800 # cm(-3)) with a geometric mean diameter (GMD) of 114.4 +/- 9.2 nm were found at the study site. The PM of less than 2.5 mu m in aerodynamic diameter (PM2.5) hourly-average mass concentration was 78.0 +/- 34.5 mu g m(-3), whereas the black carbon (BC) mass concentration was 4.4 +/- 2.6 mu g m(-3). Notably, high concentrations of nanoparticle surface area (100.5 +/- 54.6 mu m(2) cm(-3)) emitted from biomass burning can be inhaled into the human alveolar region. Significant correlations with fire counts within different ranges around DAK were found for particle number, the surface area concentration of alveolar deposition, and BC. In conclusion, biomass burning is an important PM source in SEA, particularly nanoparticles, which has high potency to be inhaled into the lung environment and interact with alveolar cells, leading to adverse respiratory effects. The fire counts within 100 to 150 km shows the highest Pearson's r for particle number and surface area concentration. It suggests 12 to 24 hr could be a fair time scale for initial aging process of BB aerosols. Importantly, the people lives in this region could have higher risk for PM exposure. C1 [Hsiao-Chi Chuang] Taipei Med Univ, Sch Resp Therapy, Coll Med, Taipei 11031, Taiwan. [Hsiao-Chi Chuang] Taipei Med Univ, Shuang Ho Hosp, Dept Internal Med, Div Pulm Med, New Taipei 11031, Taiwan. [Ta-Chih Hsiao] Natl Cent Univ, Grad Inst Environm Engn, Chungli 32001, Taiwan. [Wang, Sheng-Hsiang; Neng-Huei, Lin] Natl Cent Univ, Dept Atmospher Sci, Chungli 32001, Taiwan. [Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Hsiao, TC (reprint author), Natl Cent Univ, Grad Inst Environm Engn, Chungli 32001, Taiwan. EM tchsiao@ncu.edu.tw RI Chuang, Hsiao-Chi/E-7912-2010 OI Chuang, Hsiao-Chi/0000-0003-4651-5192 FU National Science Council of Taiwan [NSC 102-2221-E-008-004-MY3]; Taiwan EPA [EPA-103-U1L1-02-101, EPA-102-FA11-03-A217]; NASA Radiation Sciences Program FX This work was supported by the National Science Council of Taiwan under grant no. NSC 102-2221-E-008-004-MY3 and by the Taiwan EPA under contracts no. EPA-103-U1L1-02-101 and EPA-102-FA11-03-A217. Deployment of 7-SEAS/BASELInE in Southeast Asia was supported by NASA Radiation Sciences Program, managed by Dr. Hal B. Maring. We also thank all assistants from the region and many graduate students involved in the site operations, data analyses, and technical support for making the 7-SEAS/BASELInE campaign a success. NR 55 TC 1 Z9 1 U1 5 U2 5 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 EI 2071-1409 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD NOV PY 2016 VL 16 IS 11 SI SI BP 2897 EP 2906 DI 10.4209/aaqr.2015.08.0502 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI2HI UT WOS:000392307100024 ER PT J AU Barmatz, MB Collas, P AF Barmatz, Martin B. Collas, Peter TI Acoustic levitation in the presence of gravity (vol 86. pg 777, 1989) SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Correction C1 [Barmatz, Martin B.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Collas, Peter] Calif State Univ Northridge, Dept Phys & Astron, 18111 Nordhoff St, Northridge, CA 91330 USA. RP Collas, P (reprint author), Calif State Univ Northridge, Dept Phys & Astron, 18111 Nordhoff St, Northridge, CA 91330 USA. EM peter.collas@csun.edu NR 1 TC 0 Z9 0 U1 2 U2 2 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD NOV PY 2016 VL 140 IS 5 BP 3518 EP 3518 DI 10.1121/1.4966110 PG 1 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA EH3YJ UT WOS:000391707700019 PM 27908043 ER PT J AU Barmatz, MB Collas, P AF Barmatz, Martin B. Collas, Peter TI Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing waves (vol 77, pg 928, 1985) SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Correction C1 [Barmatz, Martin B.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Collas, Peter] Calif State Univ Northridge, Dept Phys & Astron, 18111 Nordhoff St, Northridge, CA 91330 USA. RP Collas, P (reprint author), Calif State Univ Northridge, Dept Phys & Astron, 18111 Nordhoff St, Northridge, CA 91330 USA. EM peter.collas@csun.edu NR 1 TC 0 Z9 0 U1 0 U2 0 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD NOV PY 2016 VL 140 IS 5 BP 3519 EP 3519 DI 10.1121/1.4966109 PG 1 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA EH3YJ UT WOS:000391707700020 PM 27908044 ER PT J AU Barge, LM Cardoso, SSS Cartwright, JHE Doloboff, IJ Flores, E Macias-Sanchez, E Sainz-Diaz, CI Sobron, P AF Barge, Laura M. Cardoso, Silvana S. S. Cartwright, Julyan H. E. Doloboff, Ivria J. Flores, Erika Macias-Sanchez, Elena Ignacio Sainz-Diaz, C. Sobron, Pablo TI Self-assembling iron oxyhydroxide/oxide tubular structures: laboratory-grown and field examples from Rio Tinto SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE Rio Tinto; astrobiology; chemical gardens; tubular structures; iron oxide; chemobrionics ID HYDROXYSULPHATE GREEN RUST; NATURAL-CONVECTION; SALNIKOVS-REACTION; MERIDIANI-PLANUM; MARINE CORROSION; CHEMICAL GARDENS; MARS; SPAIN; ECOLOGY; FLUID AB Rio Tinto in southern Spain has become of increasing astrobiological significance, in particular for its similarity to environments on early Mars. We present evidence of tubular structures from sampled terraces in the stream bed at the source of the river, as well as ancient, now dry, terraces. This is the first reported finding of tubular structures in this particular environment. We propose that some of these structures could be formed through self-assembly via an abiotic mechanism involving templated precipitation around a fluid jet, a similar mechanism to that commonly found in so-called chemical gardens. Laboratory experiments simulating the formation of self-assembling iron oxyhydroxide tubes via chemical garden/chemobrionic processes form similar structures. Fluid-mechanical scaling analysis demonstrates that the proposed mechanism is plausible. Although the formation of tube structures is not itself a biosignature, the iron mineral oxidation gradients across the tube walls in laboratory and field examples may yield information about energy gradients and potentially habitable environments. C1 [Barge, Laura M.; Doloboff, Ivria J.; Flores, Erika] CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Barge, Laura M.; Doloboff, Ivria J.; Flores, Erika] NASA, Astrobiol Inst, Icy Worlds, Pasadena, CA 91109 USA. [Cardoso, Silvana S. S.] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB2 3RA, England. [Cartwright, Julyan H. E.; Macias-Sanchez, Elena; Ignacio Sainz-Diaz, C.] CSIC, IACT, UGR, Av Palmeras 4, Granada 18100, Spain. [Cartwright, Julyan H. E.] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain. [Macias-Sanchez, Elena] Univ Granada, Dept Estratig & Paleontol, E-18071 Granada, Spain. [Sobron, Pablo] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Sobron, Pablo] Impossible Sensing, St Louis, MO 63101 USA. RP Barge, LM (reprint author), CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Barge, LM (reprint author), NASA, Astrobiol Inst, Icy Worlds, Pasadena, CA 91109 USA.; Cardoso, SSS (reprint author), Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB2 3RA, England.; Cartwright, JHE; Sainz-Diaz, CI (reprint author), CSIC, IACT, UGR, Av Palmeras 4, Granada 18100, Spain.; Cartwright, JHE (reprint author), Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain.; Sobron, P (reprint author), SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA.; Sobron, P (reprint author), Impossible Sensing, St Louis, MO 63101 USA. EM Laura.M.Barge@jpl.nasa.gov; sssc1@cam.ac.uk; julyan.cartwright@csic.es; ignacio.sainz@iact.ugr-csic.es; psobron@seti.org OI Cartwright, Julyan/0000-0001-7392-0957 FU National Aeronautics and Space Administration; NASA Astrobiology Institute (NAI) Icy Worlds; NAI SETI Institute Fingerprints of Life; UK Leverhulme Trust [RPG-2015-002]; Spanish Ministerio de Ciencia e Innovacion [FIS2013-48444-C2-2-P]; Andalusian PAIDI [RNM363] FX L.M.B., I.J.D. and E.F.'s research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. L.M.B., I.J.D. and E.F. were supported by the NASA Astrobiology Institute (NAI) Icy Worlds and PS was supported by the NAI SETI Institute Fingerprints of Life. S.S.S.C. acknowledges the financial support of the UK Leverhulme Trust project RPG-2015-002. J.H.E.C. and C.I.S.D. acknowledge the Spanish Ministerio de Ciencia e Innovacion grant FIS2013-48444-C2-2-P and the Andalusian PAIDI group grant no. RNM363. NR 50 TC 0 Z9 0 U1 7 U2 7 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 EI 1471-2946 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD NOV 1 PY 2016 VL 472 IS 2195 AR 20160466 DI 10.1098/rspa.2016.0466 PG 19 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EG5RL UT WOS:000391101900008 PM 27956875 ER PT J AU Williams, RH Mcgee, D Kinsley, CW Ridley, DA Hu, SN Fedorov, A Tal, I Murray, RW deMenocal, PB AF Williams, Ross H. McGee, David Kinsley, Christopher W. Ridley, David A. Hu, Shineng Fedorov, Alexey Tal, Irit Murray, Richard W. deMenocal, Peter B. TI Glacial to Holocene changes in trans-Atlantic Saharan dust transport and dust-climate feedbacks SO SCIENCE ADVANCES LA English DT Article ID TROPICAL NORTH-ATLANTIC; AFRICAN MINERAL DUST; SEA-SURFACE TEMPERATURE; GREAT BAHAMA BANK; NITROGEN-FIXATION; GLOBAL DISTRIBUTION; EQUATORIAL PACIFIC; PROVIDENCE CHANNEL; OCEAN CIRCULATION; HEAT-TRANSPORT AB Saharan mineral dust exported over the tropical North Atlantic is thought to have significant impacts on regional climate and ecosystems, but limited data exist documenting past changes in long-range dust transport. This data gap limits investigations of the role of Saharan dust in past climate change, in particular during the mid-Holocene, when climate models consistently underestimate the intensification of the West African monsoon documented by paleorecords. We present reconstructions of African dust deposition in sediments from the Bahamas and the tropical North Atlantic spanning the last 23,000 years. Both sites show early and mid-Holocene dust fluxes 40 to 50% lower than recent values and maximum dust fluxes during the deglaciation, demonstrating agreement with records from the northwest African margin. These quantitative estimates of trans-Atlantic dust transport offer important constraints on past changes in dust-related radiative and biogeochemical impacts. Using idealized climate model experiments to investigate the response to reductions in Saharan dust's radiative forcing over the tropical North Atlantic, we find that small (0.15 degrees C) dust-related increases in regional sea surface temperatures are sufficient to cause significant northward shifts in the Atlantic Intertropical Convergence Zone, increased precipitation in the western Sahel and Sahara, and reductions in easterly and northeasterly winds over dust source regions. Our results suggest that the amplifying feedback of dust on sea surface temperatures and regional climate may be significant and that accurate simulation of dust's radiative effects is likely essential to improving model representations of past and future precipitation variations in North Africa. C1 [Williams, Ross H.; McGee, David; Kinsley, Christopher W.; Tal, Irit] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Kinsley, Christopher W.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Ridley, David A.] MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Hu, Shineng; Fedorov, Alexey] Yale Univ, Dept Geol & Geophys, POB 6666, New Haven, CT 06511 USA. [Murray, Richard W.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. [deMenocal, Peter B.] Columbia Univ, Dept Earth & Environm Sci, New York, NY 10027 USA. [deMenocal, Peter B.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Williams, Ross H.] Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Williams, Ross H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Williams, Ross H.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Mcgee, D (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM davidmcg@mit.edu FU NSF [OCE-1030784, OCE-09277247, AGS-1116885]; NASA [NN14AP38G]; Columbia University Center for Climate and Life; National Oceanic and Atmospheric Administration (NOAA) [NA14OAR4310277]; NASA Earth and Space Sciences Fellowship FX This study was supported, in part, by NSF awards OCE-1030784 (to D.M. and P.B.d.) and OCE-09277247 (to P.B.d.); NASA grant NN14AP38G (to C. Heald, Massachusetts Institute of Technology), which supports D.A.R.; and the Columbia University Center for Climate and Life. A.F. is supported by the NSF grant AGS-1116885 and the National Oceanic and Atmospheric Administration (NOAA) grant NA14OAR4310277. S.H. is supported by the NASA Earth and Space Sciences Fellowship. We also acknowledge computational support from the NSF/NCAR Yellowstone Supercomputing Center and the Yale University High Performance Computing Center. Portions of this material are based on work supported while R.W.M. was serving at the NSF. NR 94 TC 1 Z9 1 U1 4 U2 4 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD NOV PY 2016 VL 2 IS 11 AR e1600445 DI 10.1126/sciadv.1600445 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EG7WS UT WOS:000391267800008 PM 28138515 ER PT J AU Toti, G Vilalta, R Lindner, P Lefer, B Macias, C Price, D AF Toti, Giulia Vilalta, Ricardo Lindner, Peggy Lefer, Barry Macias, Charles Price, Daniel TI Analysis of correlation between pediatric asthma exacerbation and exposure to pollutant mixtures with association rule mining SO ARTIFICIAL INTELLIGENCE IN MEDICINE LA English DT Article DE Association rule mining; Rule redundancy; Risk assessment; Multiple exposures; Pediatric asthma; Outdoor pollution ID AMBIENT AIR-POLLUTION; HEALTH; CHILDREN; DISCOVERY; OZONE AB Objectives: Traditional studies on effects of outdoor pollution on asthma have been criticized for questionable statistical validity and inefficacy in exploring the effects of multiple air pollutants, alone and in combination. Association rule mining (ARM), a method easily interpretable and suitable for the analysis of the effects of multiple exposures, could be of use, but the traditional interest metrics of support and confidence need to be substituted with metrics that focus on risk variations caused by different exposures. Methods: We present an ARM-based methodology that produces rules associated with relevant odds ratios and limits the number of final rules even at very low support levels (0.5%), thanks to post-pruning criteria that limit rule redundancy and control for statistical significance. The methodology has been applied to a case-crossover study to explore the effects of multiple air pollutants on risk of asthma in pediatric subjects. Results: We identified 27 rules with interesting odds ratio among more than 10,000 having the required support. The only rule including only one chemical is exposure to ozone on the previous day of the reported asthma attack (OR=1.14). 26 combinatory rules highlight the limitations of air quality policies based on single pollutant thresholds and suggest that exposure to mixtures of chemicals is more harmful, with odds ratio as high as 1.54 (associated with the combination day0 SO2, dap0 NO, day0 NO2, day1 PM). Conclusions: The proposed method can be used to analyze risk variations caused by single and multiple exposures. The method is reliable and requires fewer assumptions on the data than parametric approaches. Rules including more than one pollutant highlight interactions that deserve further investigation, while helping to limit the search field. (C) 2016 Elsevier B.V. All rights reserved. C1 [Toti, Giulia; Vilalta, Ricardo] Univ Houston, Dept Comp Sci, Philip Guthrie Hoffman Hall,3551 Cullen Blvd, Houston, TX 77204 USA. [Lefer, Barry] Univ Houston, Dept Earth & Atmospher Sci, Sci & Res Bldg 1,3507 Cullen Blvd,Room 312, Houston, TX 77204 USA. [Lefer, Barry] NASA Headquarters, Div Earth Sci, 300 E St SW, Washington, DC 20546 USA. [Lindner, Peggy; Price, Daniel] Univ Houston, MD Anderson Lib, Honors Coll, 4333 Univ Dr,Room 212, Houston, TX 77204 USA. [Macias, Charles] Texas Childrens Hosp, Baylor Coll Med, Dept Pediat, One Baylor Plaza, Houston, TX 77030 USA. RP Toti, G (reprint author), Honors Coll, MD Anderson Lib, 4333 Univ Dr,Room 212, Houston, TX 77204 USA. EM giulia.toti@kcl.ac.uk RI Lefer, Barry/B-5417-2012 OI Lefer, Barry/0000-0001-9520-5495 FU Data Analytics in Student Hands Program at the Honors College of the University of Houston FX We would like to acknowledge the financial support of the Data Analytics in Student Hands Program at the Honors College of the University of Houston. We would also like to acknowledge the reviewers for their valuable input during the publication process. NR 47 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0933-3657 EI 1873-2860 J9 ARTIF INTELL MED JI Artif. Intell. Med. PD NOV PY 2016 VL 74 BP 44 EP 52 DI 10.1016/j.artmed.2016.11.003 PG 9 WC Computer Science, Artificial Intelligence; Engineering, Biomedical; Medical Informatics SC Computer Science; Engineering; Medical Informatics GA EG3TP UT WOS:000390967900005 PM 27964802 ER PT J AU Braun, SA Newman, PA Heymsfield, GM AF Braun, Scott A. Newman, Paul A. Heymsfield, Gerald M. TI NASA'S HURRICANE AND SEVERE STORM SENTINEL (HS3) INVESTIGATION SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID TROPICAL CYCLONES; RAPID INTENSIFICATION; GPS DROPWINDSONDE; ATLANTIC BASIN; INNER-CORE; PART I; WIND; PREDICTION; EVOLUTION; PROFILES AB The National Aeronautics and Space Administration's (NASA) Hurricane and Severe Storm Sentinel (HS3) investigation was a multiyear field campaign designed to improve understanding of the physical processes that control hurricane formation and intensity change, specifically the relative roles of environmental and inner core processes. Funded as part of NASA's Earth Venture program, HS3 conducted 5-week campaigns during the hurricane seasons of 2012-14 using the NASA Global Hawk aircraft, along with a second Global Hawk in 2013 and a WB-57f aircraft in 2014. Flying from a base at Wallops Island, Virginia, the Global Hawk could be on station over storms for up to 18 h off the East Coast of the United States and up to about 6 h off the western coast of Africa. Over the 3 years, HS3 flew 21 missions over nine named storms, along with flights over two nondeveloping systems and several Saharan air layer (SAL) outbreaks. This article summarizes the HS3 experiment, the missions flown, and some preliminary findings related to the rapid intensification and outflow structure of Hurricane Edouard (2014) and the interaction of Hurricane Nadine (2012) with the SAL. C1 [Braun, Scott A.; Newman, Paul A.; Heymsfield, Gerald M.] NASA, Goddard Space Flight Ctr, Code 612, Greenbelt, MD 20771 USA. RP Braun, SA (reprint author), NASA, Goddard Space Flight Ctr, Code 612, Greenbelt, MD 20771 USA. EM scott.a.braun@nasa.gov FU NASA's Earth Venture Suborbital program at NASA Headquarters FX We thank James Franklin, Robert Rogers, and an anonymous reviewer for their very helpful reviews. Paul Reasor and Robert Rogers provided the P-3 dual-Doppler radar data used in Fig. 4. NOAA P-3 dropsonde data were provided by NOAAs Physical Oceanography Division (PHOD) of Atlantic Oceanographic and Meteorological Laboratory. Dennis Hlavka and John Yorks from Goddard provided the CPL data. Peter Black, James Doyle, and Jon Moskaitis provided valuable discussions related to storm outflow. The HS3 mission was funded by NASA's Earth Venture Suborbital program at NASA Headquarters. NR 47 TC 7 Z9 7 U1 3 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD NOV PY 2016 VL 97 IS 11 BP 2085 EP 2102 DI 10.1175/BAMS-D-15-00186.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EG1YY UT WOS:000390831500009 ER PT J AU Devasthale, A Sedlar, J Kahn, BH Tjernstrom, M Fetzer, EJ Tian, B Teixeira, J Pagano, TS AF Devasthale, Abhay Sedlar, Joseph Kahn, Brian H. Tjernstrom, Michael Fetzer, Eric J. Tian, Baijun Teixeira, Joao Pagano, Thomas S. TI A DECADE OF SPACEBORNE OBSERVATIONS OF THE ARCTIC ATMOSPHERE Novel. Insights from NASA's AIRS Instrument SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID TROPOSPHERIC HUMIDITY INVERSIONS; SEA-ICE; TEMPERATURE INVERSION; INFRARED SOUNDER; CLOUD; STRENGTH; SUMMER; OCEAN; REANALYSIS; SURFACE AB Arctic sea ice is declining rapidly and its annual ice extent minima reached record lows twice during the last decade. Large environmental and socioeconomic implications related to sea ice reduction in a warming world necessitate realistic simulations of the Arctic climate system, not least to formulate relevant environmental policies on an international scale. However, despite considerable progress in the last few decades, future climate projections from numerical models still exhibit the largest uncertainties over the polar regions. The lack of sufficient observations of essential climate variables is partly to blame for the poor representation of key atmospheric processes, and their coupling to the surface, in climate models. Observations from the hyper spectral Atmospheric Infrared Sounder (AIRS) instrument on board National Aeronautics and Space Administration (NASA)'s Aqua satellite are contributing toward improved understanding of the vertical structure of the atmosphere over the poles since 2002, including the lower troposphere. This part of the atmosphere is especially important in the Arctic, as it directly impacts sea ice and its short-term variability. Although in situ measurements provide invaluable ground truth, they are spatially and temporally inhomogeneous and sporadic over the Arctic. A growing number of studies are exploiting AIRS data to investigate the thermodynamic structure of the Arctic atmosphere, with applications ranging from understanding processes to deriving climatologies; all of which are also useful to test and improve parameterizations in climate models. As the AIRS data record now extends more than a decade, a select few of many such noteworthy applications of AIRS data over this challenging and rapidly changing landscape are highlighted here. C1 [Devasthale, Abhay] Swedish Meteorol & Hydrol Inst, Res & Dev, Atmospher Remote Sensing Unit, Folkborgsvagen 17, S-60176 Norrkoping, Sweden. [Sedlar, Joseph; Tjernstrom, Michael] Stockholm Univ, Dept Meteorol, Stockholm, Sweden. [Sedlar, Joseph; Tjernstrom, Michael] Stockholm Univ, Bolin Ctr Climate Res, Stockholm, Sweden. [Kahn, Brian H.; Fetzer, Eric J.; Tian, Baijun; Teixeira, Joao; Pagano, Thomas S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Devasthale, A (reprint author), Swedish Meteorol & Hydrol Inst, Res & Dev, Atmospher Remote Sensing Unit, Folkborgsvagen 17, S-60176 Norrkoping, Sweden. EM abhay.devasthale@smhi.se RI Tian, Baijun/A-1141-2007; OI Tian, Baijun/0000-0001-9369-2373; Devasthale, Abhay/0000-0002-6717-8343 FU Swedish National Space Board (SNSB); NASA [NNN13D455T] FX AD gratefully acknowledges the Swedish National Space Board (SNSB) for supporting the ArcticClim and GlobRAD projects. BHK was supported by the NASA Science of Terra and Aqua program under Grant NNN13D455T. The authors would like to thank the AIRS Science Team for its contributions in preparing the AIRS data record. NR 73 TC 1 Z9 1 U1 3 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD NOV PY 2016 VL 97 IS 11 BP 2163 EP 2176 DI 10.1175/BAMS-D-14-00202.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EG1YY UT WOS:000390831500014 ER PT J AU Rundle, JB Turcotte, DL Donnellan, A Grant Ludwig, L Luginbuhl, M Gong, G AF Rundle, J. B. Turcotte, D. L. Donnellan, A. Grant Ludwig, L. Luginbuhl, M. Gong, G. TI Nowcasting earthquakes SO EARTH AND SPACE SCIENCE LA English DT Article DE earthquakes; nowcasting; hazard AB Nowcasting is a term originating from economics and finance. It refers to the process of determining the uncertain state of the economy or markets at the current time by indirect means. We apply this idea to seismically active regions, where the goal is to determine the current state of the fault system and its current level of progress through the earthquake cycle. In our implementation of this idea, we use the global catalog of earthquakes, using small earthquakes to determine the level of hazard from large earthquakes in the region. Our method does not involve any model other than the idea of an earthquake cycle. Rather, we define a specific region and a specific large earthquake magnitude of interest, ensuring that we have enough data to span at least similar to 20 or more large earthquake cycles in the region. We then compute the earthquake potential score (EPS) which is defined as the cumulative probability distribution P(n500 mu m in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550-850 nm on Mars and around 0.5 % in the wavelength range from 300-1100 nm on Earth. The removal of an equivalent layer thickness around 1 mu m is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns. C1 [Reiss, Dennis] Westfal Wilhelms Univ, Inst Planetol, Wilhelm Klemm Str 10, D-48149 Munster, Germany. [Fenton, Lori] SETI Inst, 189 Bernardo Ave Suite 100, Mountain View, CA 94043 USA. [Neakrase, Lynn] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Zimmerman, Michael] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Statella, Thiago] Inst Fed Educ Ciencia & Tecnol Mato Grosso IFMT, 95 Zulmira Canavarro, BR-78002520 Cuiaba, Brazil. [Whelley, Patrick] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Rossi, Angelo Pio] Jacobs Univ Bremen, Dept Earth & Space Sci, Bremen, Germany. [Balme, Matthew] Open Univ, Dept Phys Sci, Milton Keynes, Bucks, England. RP Reiss, D (reprint author), Westfal Wilhelms Univ, Inst Planetol, Wilhelm Klemm Str 10, D-48149 Munster, Germany. EM dennis.reiss@uni-muenster.de; lfenton@seti.org; lneakras@nmsu.edu; Michael.Zimmerman@jhuapl.edu; thiago.statella@cba.ifmt.edu.br; patrick.l.whelley@nasa.gov; an.rossi@jacobs-university.de; Matt.Balme@open.ac.uk OI Reiss, Dennis/0000-0002-1836-596X NR 149 TC 0 Z9 0 U1 3 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2016 VL 203 IS 1-4 BP 143 EP 181 DI 10.1007/s11214-016-0308-6 PG 39 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EE2LO UT WOS:000389415800005 ER PT J AU Harrison, RG Barth, E Esposito, F Merrison, J Montmessin, F Aplin, KL Borlina, C Berthelier, JJ Deprez, G Farrell, WM Houghton, IMP Renno, NO Nicoll, KA Tripathi, SN Zimmerman, M AF Harrison, R. G. Barth, E. Esposito, F. Merrison, J. Montmessin, F. Aplin, K. L. Borlina, C. Berthelier, J. J. Deprez, G. Farrell, W. M. Houghton, I. M. P. Renno, N. O. Nicoll, K. A. Tripathi, S. N. Zimmerman, M. TI Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity SO SPACE SCIENCE REVIEWS LA English DT Review DE Planetary electrostatics; Lightning discharge; Particle electrification; Global circuit ID WIND-BLOWN SAND; GRANULAR INSULATOR SYSTEMS; CONTACT ELECTRIFICATION; PARTICLE-SIZE; ELECTROSTATIC DISCHARGES; OXIDANT ENHANCEMENT; ION MEASUREMENTS; SOLAR-SYSTEM; FIELD METER; MARS AB Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m(-1) to 100 kV m(-1) have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m(-1) can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)-MicroARES (Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ electrical measurements. C1 [Harrison, R. G.; Nicoll, K. A.] Univ Reading, Dept Meteorol, Reading, Berks, England. [Barth, E.] Southwest Res Inst, Boulder, CO USA. [Esposito, F.] INAF Osservatorio Astron Capodimonte, Naples, Italy. [Merrison, J.] Univ Aarhus, Aarhus, Denmark. [Montmessin, F.; Berthelier, J. J.; Deprez, G.] Lab Atmospheres Milieux Observat Spatiales LATMOS, Guyancourt, France. [Aplin, K. L.; Houghton, I. M. P.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Borlina, C.; Renno, N. O.] Univ Michigan, Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Farrell, W. M.] NASA Goddard, Greenbelt, MD USA. [Tripathi, S. N.] Indian Inst Technol, Ctr Environm Sci & Engn, Kanpur, Uttar Pradesh, India. [Zimmerman, M.] Johns Hopkins Univ, Baltimore, MD USA. RP Harrison, RG (reprint author), Univ Reading, Dept Meteorol, Reading, Berks, England. EM r.g.harrison@reading.ac.uk RI Farrell, William/I-4865-2013; Tripathi, Sachchida/J-4840-2016 FU UK's Natural Environment Research Council [NE/L011514/1] FX KAN acknowledges the support of the UK's Natural Environment Research Council through an Independent Research Fellowship (NE/L011514/1). This work was facilitated by a workshop on dust devils hosted by the International Space Science Institute in Bern. NR 172 TC 4 Z9 4 U1 2 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2016 VL 203 IS 1-4 BP 299 EP 345 DI 10.1007/s11214-016-0241-8 PG 47 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EE2LO UT WOS:000389415800010 ER PT J AU Klose, M Jemmett-Smith, BC Kahanpaa, H Kahre, M Knippertz, P Lemmon, MT Lewis, SR Lorenz, RD Neakrase, LDV Newman, C Patel, MR Reiss, D Spiga, A Whelley, PL AF Klose, Martina Jemmett-Smith, Bradley C. Kahanpaa, Henrik Kahre, Melinda Knippertz, Peter Lemmon, Mark T. Lewis, Stephen R. Lorenz, Ralph D. Neakrase, Lynn D. V. Newman, Claire Patel, Manish R. Reiss, Dennis Spiga, Aymeric Whelley, Patrick L. TI Dust Devil Sediment Transport: From Lab to Field to Global Impact SO SPACE SCIENCE REVIEWS LA English DT Review DE Dust devils; Dust emission; Lab experiments; Field measurements; Modeling; Dust environmental impact; Sediment transport; Earth; Mars; Planetary atmospheres ID LARGE-EDDY SIMULATION; PLANETARY BOUNDARY-LAYER; GENERAL-CIRCULATION MODEL; CONVECTIVE MIXED-LAYER; INTERANNUAL VARIABILITY; OPTICAL DEPTH; AUSTRALIAN LANDSCAPE; MARTIAN ATMOSPHERE; WILLY-WILLIES; SOUTHERN PERU AB The impact of dust aerosols on the climate and environment of Earth and Mars is complex and forms a major area of research. A difficulty arises in estimating the contribution of small-scale dust devils to the total dust aerosol. This difficulty is due to uncertainties in the amount of dust lifted by individual dust devils, the frequency of dust devil occurrence, and the lack of statistical generality of individual experiments and observations. In this paper, we review results of observational, laboratory, and modeling studies and provide an overview of dust devil dust transport on various spatio-temporal scales as obtained with the different research approaches. Methods used for the investigation of dust devils on Earth and Mars vary. For example, while the use of imagery for the investigation of dust devil occurrence frequency is common practice for Mars, this is less so the case for Earth. Modeling approaches for Earth and Mars are similar in that they are based on the same underlying theory, but they are applied in different ways. Insights into the benefits and limitations of each approach suggest potential future research focuses, which can further reduce the uncertainty associated with dust devil dust entrainment. The potential impacts of dust devils on the climates of Earth and Mars are discussed on the basis of the presented research results. C1 [Klose, Martina] Univ Cologne, Inst Geophys & Meteorol, Cologne, Germany. [Klose, Martina] USDA ARS Jornada Expt Range, Las Cruces, NM USA. [Jemmett-Smith, Bradley C.] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds, W Yorkshire, England. [Kahanpaa, Henrik] Finnish Meteorol Inst, Helsinki, Finland. [Kahre, Melinda] NASA Ames Res Ctr, Moffett Field, CA USA. [Knippertz, Peter] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Karlsruhe, Germany. [Lemmon, Mark T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX USA. [Lewis, Stephen R.; Patel, Manish R.] Open Univ, Dept Phys Sci, Milton Keynes, Bucks, England. [Lorenz, Ralph D.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Neakrase, Lynn D. V.] New Mexico State Univ, Dept Astron, Las Cruces, NM USA. [Newman, Claire] Aeolis Res, Suite 205,600 North Rosemead Blvd, Pasadena, CA 91107 USA. [Reiss, Dennis] Westfal Wilhelms Univ, Inst Planetol, Munster, Germany. [Spiga, Aymeric] Univ Paris 06, Meteorol Dynam Lab, Paris, France. [Whelley, Patrick L.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. RP Klose, M (reprint author), Univ Cologne, Inst Geophys & Meteorol, Cologne, Germany.; Klose, M (reprint author), USDA ARS Jornada Expt Range, Las Cruces, NM USA. EM mklose@nmsu.edu; b.jemmett-smith@leeds.ac.uk; henrik.kahanpaa@fmi.fi; melinda.a.kahre@nasa.gov; peter.knippertz@kit.edu; lemmon@tamu.edu; stephen.lewis@open.ac.uk; Ralph.Lorenz@jhuapl.edu; lneakras@nmsu.edu; claire@aeolisresearch.com; manish.patel@open.ac.uk; dennis.reiss@uni-muenster.de; spiga@lmd.jussieu.fr; patrick.l.whelley@nasa.gov RI Spiga, Aymeric/O-4858-2014; OI Spiga, Aymeric/0000-0002-6776-6268; Reiss, Dennis/0000-0002-1836-596X; Klose, Martina/0000-0001-8190-3700; Lewis, Stephen/0000-0001-7237-6494 FU European Research Council [257543]; NASA [NNX12AI04G] FX We wish to thank Luca Montabone, one anonymous reviewer, and two editors for their careful review and valuable comments, and Bruce Cantor for his permission to reuse Fig. 4 of Cantor et al. (2006) in this paper. Bradley Jemmett-Smith and Peter Knippertz would like to acknowledge funding from the European Research Council Grant 257543 "Desert Storms". Ralph Lorenz acknowledges the support of NASA Mars Fundamental Research Program grant NNX12AI04G. Not least, we are grateful to the International Space Science Institute (ISSI), Bern, Switzerland, and to the conveners for organizing the workshop "Dust Devils on Mars and Earth" (www.issibern.ch/workshops/dustdevils/). NR 151 TC 4 Z9 4 U1 5 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2016 VL 203 IS 1-4 BP 377 EP 426 DI 10.1007/s11214-016-0261-4 PG 50 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EE2LO UT WOS:000389415800012 ER PT J AU Jones, RH McCubbin, FM Guan, YB AF Jones, Rhian H. McCubbin, Francis M. Guan, Yunbin TI Phosphate minerals in the H group of ordinary chondrites, and fluid activity recorded by apatite heterogeneity in the Zag H3-6 regolith breccia SO AMERICAN MINERALOGIST LA English DT Article DE Merrillite; apatite; meteorite; ordinary chondrite; H chondrite; Avanhandava; Estacado; Oro Grande; Richardton; Zag ID EARLY SOLAR-SYSTEM; CHLORINE ISOTOPE COMPOSITION; SHOCK METAMORPHISM; PARENT BODIES; MONAHANS 1998; HALITE; METEORITE; CHONDRULES; ASTEROIDS; CLASTS AB Phosphate minerals in ordinary chondrites provide a record of fluids that were present during metamorphic heating of the chondrite parent asteroids. We have carried out a petrographic study of the phosphate minerals, merrillite and apatite, in metamorphosed H group ordinary chondrites of petrologic type 4-6, to understand development of phosphate minerals and associated fluid evolution during metamorphism. In unbrecciated chondrites, apatite is Cl rich and shows textural evolution from fine-grained apatite-merrillite assemblages in type 4 toward larger, uniform grains in type 6. The Cl/F ratio in apatite shows a similar degree of heterogeneity in all petrologic types, and no systematic change in compositions with metamorphic grade, which suggests that compositions in each meteorite are dictated by localized conditions, possibly because of a limited fluid/rock ratio. The development of phosphate minerals in H chondrites is similar to that of L and LL chondrites, despite the fact that feldspar equilibration resulting from albitization is complete in H4 chondrites but not in L4 or LL4 chondrites. This suggests that albitization took place during an earlier period of the metamorphic history than that recorded by preserved apatite compositions, and chemical equilibrium was not achieved throughout the H chondrite parent body or bodies during the late stages of metamorphism. A relict igneous clast in the H5 chondrite, Oro Grande has apatite rims on relict phenocrysts of (possibly) diopside that have equilibrated with the host chondrite. Apatite in the Zag H3-6 regolith breccia records a complex fluid history, which is likely related to the presence of halite in this meteorite. The porous dark H4 matrix of Zag, where halite is observed, has a high apatite/merrillite ratio, and apatite is extremely Cl rich. One light H6 clast contains similarly Cl-rich apatite. In a second light H6 clast, apatite compositions are very heterogeneous and more F-rich. Apatites in both H4 matrix and H6 clasts have very low H2O contents. Heterogeneous apatite compositions in Zag record multiple stages of regolith processing and shock at the surface of the H chondrite parent body, and apatite records either the passage of fluids of variable compositions resulting from different impact-related processes, or the passage of a single fluid whose composition evolved as it interacted with the chondrite regolith. Unraveling the history of apatite can potentially help to interpret the internal structure of chondrite parent bodies, with implications for physical and mechanical properties of chondritic asteroids. The behavior of halogens recorded by apatite is important for understanding the behavior of volatile elements in general: if impact-melt materials close to the surface of a chondritic asteroid are readily degassed, the volatile inventories of terrestrial planets could be considerably more depleted than the CI carbonaceous chondrite abundances that are commonly assumed. C1 [Jones, Rhian H.] Univ Manchester, Sch Earth & Environm Sci, Manchester M13 9PL, Lancs, England. [Jones, Rhian H.; McCubbin, Francis M.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [McCubbin, Francis M.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [McCubbin, Francis M.] NASA, Johnson Space Ctr, Mailcode XI2,2101 NASA Pkwy, Houston, TX 77058 USA. [Guan, Yunbin] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Jones, RH (reprint author), Univ Manchester, Sch Earth & Environm Sci, Manchester M13 9PL, Lancs, England.; Jones, RH (reprint author), Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. EM Rhian.jones-2@manchester.ac.uk FU NASA [NNX12AH61G, NNX14AK43G] FX We thank reviewers S. Itoh and A. Rubin for useful comments, Michael Spilde for assistance with electron microprobe analyses, and Jonathan Lewis for helpful discussions. Electron microprobe and SEM work was carried out in the Electron Microbeam Analysis Facility, Department of Earth and Planetary Sciences, and Institute of Meteoritics, University of New Mexico. The work was partially funded by NASA grant NNX12AH61G (PI R.H.J.). F.M.M. acknowledges support from the NASA Cosmochemistry Program through grant NNX14AK43G (PI F.M.M.). NR 55 TC 0 Z9 0 U1 2 U2 2 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD NOV PY 2016 VL 101 IS 11 BP 2452 EP 2467 DI 10.2138/am-2016-5728 PG 16 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA EC8BP UT WOS:000388365300008 ER PT J AU Skrunes, S Brekke, C Jones, CE Holt, B AF Skrunes, Stine Brekke, Camilla Jones, Cathleen E. Holt, Benjamin TI A Multisensor Comparison of Experimental Oil Spills in Polarimetric SAR for High Wind Conditions SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Characterization; detection; high wind; multifrequency; multipolarization features; oil slick; sensor comparison; synthetic aperture radar (SAR) ID SURFACE; RADAR; FEATURES; FILMS; BACKSCATTER; SIGNATURES; FIELDS; SLICKS AB In this paper, we present the experimental setup and data collection during the Norwegian Radar oil Spill Experiment 2015, followed by a comparison of a subset of the multisensory synthetic aperture radar (SAR) imagery collected during the experiment. Multipolarization SAR data acquired by Radarsat-2, TerraSAR-X, and the uninhabited aerial vehicle synthetic aperture radar (UAVSAR) less than 6 min apart are investigated and compared. All three sensors detect the four slicks of varying physiochemical composition under challenging conditions posed by small slicks in high wind conditions of similar to 12 m/s. The detectability is best in TerraSAR-X and UAVSAR. The high wind allows for large signal-to-noise ratios over the slicks, even in the satellite data and in cross-polarization channels. Although detection is possible, discrimination between slick types, using multipolarization parameters previously found useful for this purpose, is not possible under these conditions for the acquisitions in the instance studied. C1 [Skrunes, Stine; Brekke, Camilla] Univ Tromso, Dept Phys & Technol, N-9037 Tromso, Norway. [Jones, Cathleen E.; Holt, Benjamin] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. RP Skrunes, S (reprint author), Univ Tromso, Dept Phys & Technol, N-9037 Tromso, Norway. EM stine.skrunes@uit.no; camilla.brekke@uit.no; cathleen.e.jones@jpl.nasa.gov; benjamin.m.holt@jpl.nasa.gov FU RCN project GlobOilRisk [235444/O30]; RCN project CIRFA [237906]; National Aeronautics and Space Administration FX This work was supported by the RCN projects GlobOilRisk (BIA, project 235444/O30) and CIRFA (RCN Grant 237906). The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. UAVSAR data are courtesy of NASA/JPL-Caltech. Radarsat-2 data are provided by NSC/KSAT under the Norwegian-Canadian Radarsat agreement 2015. TerraSAR-X (c) 2015 Distribution Airbus DS, Infoterra GmbH. (Corresponding author: Stine Skrunes.) NR 49 TC 3 Z9 3 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD NOV PY 2016 VL 9 IS 11 SI SI BP 4948 EP 4961 DI 10.1109/JSTARS.2016.2565063 PG 14 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA ED5DJ UT WOS:000388871500007 ER PT J AU Brown, ST Misra, S AF Brown, Shannon T. Misra, Sidharth TI Characterizing Drifts in Spaceborne L-Band Radiometers Using Stable Reference Regions: Application to the Aquarius Mission SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Calibration; microwave; radiometer; salinity ID MICROWAVE RADIOMETERS; DOME-C; CALIBRATION; ANTARCTICA; STABILITY; EMISSION; MODEL; SNOW AB The global measurement of sea-surface salinity and more precise measurements of soil moisture from space has been enabled by L-band observations from the Soil Moisture and Ocean Salinity (SMOS) mission, the Aquarius mission, and the Soil Moisture Active Passive (SMAP) mission. These measurements are key components of the global water cycle and the ability to resolve climate scale variations in these variables is extremely valuable for improved understanding of how the hydrologic cycle varies in a changing climate system. It is therefore imperative that the radiometer systems making these measurements be calibrated to remove any spurious instrument temporal drifts. In this paper, models are developed over Antarctica and rainforest regions to track the gain and offset drifts in spaceborne L-band radiometer brightness-temperature (TB) measurements. The Antarctica region is found to be best for tracking small variations (0.1 K over 10 days) for vertically polarized observations near the Brewster angle. The rainforest regions are found to be best for tracking longer term variations (>60 days) in all channels, due to larger uncertainty in the surface temperature knowledge, and excellent for tracking shorter term variations between channels (<10 days). These reference regions were used to separate a long-term gain drift and a quasi-monthly offset variation in the Aquarius radiometer. These observations eventually led to the characterization of the root cause for the drift and are contributing to improved correction methods based on models for the hardware behavior. C1 [Brown, Shannon T.; Misra, Sidharth] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Brown, ST (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM shannon.t.brown@jpl.nasa.gov NR 23 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD NOV PY 2016 VL 9 IS 11 SI SI BP 5239 EP 5251 DI 10.1109/JSTARS.2016.2518629 PG 13 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA ED5DJ UT WOS:000388871500034 ER PT J AU Sudbrack, CK AF Sudbrack, Chantal K. TI Advances in High-Temperature Alloys SO JOM LA English DT Editorial Material C1 [Sudbrack, Chantal K.] NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. RP Sudbrack, CK (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM chantal.k.sudbrack@nasa.gov NR 4 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD NOV PY 2016 VL 68 IS 11 BP 2768 EP 2769 DI 10.1007/s11837-016-2107-7 PG 2 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA ED4KG UT WOS:000388816100010 ER PT J AU Gerbi, GP Boss, E Werdell, PJ Proctor, CW Haentjens, N Lewis, MR Brown, K Sorrentino, D Zaneveld, JRV Barnard, AH Koegler, J Fargher, H Dedonato, M Wallace, W AF Gerbi, Gregory P. Boss, Emmanuel Werdell, P. Jeremy Proctor, Christopher W. Haentjens, Nils Lewis, Marlon R. Brown, Keith Sorrentino, Diego Zaneveld, J. Ronald V. Barnard, Andrew H. Koegler, John Fargher, Hugh Dedonato, Matthew Wallace, William TI Validation of Ocean Color Remote Sensing Reflectance Using Autonomous Floats SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID WATER-LEAVING RADIANCE; VICARIOUS CALIBRATION; ATMOSPHERIC CORRECTION; RAMAN-SCATTERING; SATELLITE; REQUIREMENTS; RADIOMETRY; IRRADIANCE; PRODUCTS; SURFACE AB The use of autonomous profiling floats for observational estimates of radiometric quantities in the ocean is explored, and the use of this platformfor validation of satellite-based estimates of remote sensing reflectance in the ocean is examined. This effort includes comparing quantities estimated from float and satellite data at nominal wavelengths of 412, 443, 488, and 555 nm, and examining sources and magnitudes of uncertainty in the float estimates. This study had 65 occurrences of coincident high-quality observations from floats and MODIS Aqua and 15 occurrences of coincident high-quality observations floats and Visible Infrared Imaging Radiometer Suite (VIIRS). The float estimates of remote sensing reflectance are similar to the satellite estimates, with disagreement of a few percent in most wavelengths. The variability of the float-satellite comparisons is similar to the variability of in situ-satellite comparisons using a validation dataset from the Marine Optical Buoy (MOBY). This, combined with the agreement of float-based and satellite-based quantities, suggests that floats are likely a good platform for validation of satellite-based estimates of remote sensing reflectance. C1 [Gerbi, Gregory P.] Skidmore Coll, Saratoga Springs, NY 12866 USA. [Boss, Emmanuel; Haentjens, Nils] Univ Maine, Orono, ME USA. [Werdell, P. Jeremy; Proctor, Christopher W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Proctor, Christopher W.] Sci Syst & Applicati Inc, Lanham, MD USA. [Lewis, Marlon R.] Dalhousie Univ, Halifax, NS, Canada. [Lewis, Marlon R.; Brown, Keith; Sorrentino, Diego] Satlantic, Halifax, NS, Canada. [Zaneveld, J. Ronald V.; Barnard, Andrew H.; Koegler, John] WET Labs, Philomath, OR USA. [Fargher, Hugh; Dedonato, Matthew; Wallace, William] Teledyne Webb Res, N Falmouth, MA USA. RP Gerbi, GP (reprint author), Skidmore Coll, Dept Phys, 815 North Broadway, Saratoga Springs, NY 12866 USA. EM ggerbi@skidmore.edu OI Boss, Emmanuel/0000-0002-8334-9595 FU NASA; National Oceanographic Partnership Program [NNX09AP51G] FX The success of this endeavor owes much to many people. At Laboratoire d'Oceanographie de Villefranche-sur-Mer we thank David Antoine, Herve Claustre, Emilie Diamond, Yann Hello, Antoine Poteau, and other members of the BOUSSOLE group for their considerable assistance with early testing and deployment of these floats in the Mediterranean; and Edouard Leymarie, for providing access to his SimulO software. For other deployments we appreciate the help of the MOBY operations team (Hawaii floats) and Ben Van Mooy (Atlantic floats). We thank Ronnie van Dommelen at Satlantic for the detailed discussion of radiometer calibration, Bill Woodward and Seth Ornstein of CLS America for their work on communications and telemetry, and Bob Fleming at UMaine for help with deployments and with handling of incoming data. Becca Conneely and Anastasia Rodzianko, then at Skidmore College, helped in early phases of the data analysis. Giuseppe Zibordi and two anonymous reviewers gave many helpful comments and criticisms that greatly improved this work. The work was funded by NASA and the National Oceanographic Partnership Program under Grant NNX09AP51G to the University of Maine. NR 43 TC 0 Z9 0 U1 3 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD NOV PY 2016 VL 33 IS 11 BP 2331 EP 2352 DI 10.1175/JTECH-D-16-0067.1 PG 22 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA ED4HG UT WOS:000388808000005 ER PT J AU Bhatt, R Doelling, DR Scarino, BR Gopalan, A Haney, CO Minnis, P Bedka, KM AF Bhatt, Rajendra Doelling, David R. Scarino, Benjamin R. Gopalan, Arun Haney, Conor O. Minnis, Patrick Bedka, Kristopher M. TI A Consistent AVHRR Visible Calibration Record Based on Multiple Methods Applicable for the NOAA Degrading Orbits. Part I: Methodology SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID NEAR-INFRARED CHANNELS; HIGH-RESOLUTION RADIOMETER; ABSOLUTE CALIBRATION; BIDIRECTIONAL REFLECTANCE; OPERATIONAL CALIBRATION; DEGRADATION RATES; SOLAR CHANNELS; DESERT; BANDS; SPACECRAFT AB The 35-yr NOAA Advanced Very High Resolution Radiometer (AVHRR) observation record offers an excellent opportunity to study decadal climate variability, provided that all participating AVHRR instruments are calibrated on a consistent radiometric scale. Because of the lack of onboard calibration systems, the solar imaging channels of the AVHRR must be vicariously calibrated using invariant Earth targets as a calibrated reference source. The greatest challenge in calibrating theAVHRRdataset is the orbit degradation of the NOAA satellites, which eventually drift into a terminator orbit several years after launch. Therefore, the invariant targets must be characterized over the full range of solar zenith angles (SZAs) sampled by the satellite instrument. This study outlines a multiple invariant Earth target calibration approach specifically designed to account for the degradingNOAAorbits. The desert, polar ice, and deep convective cloud (DCC) invariant targets are characterized over all observed SZAs using NOAA-16 AVHRR measurements, which are referenced to the Aqua MODIS Collection 6 calibration via direct transfer of the MODIS calibration to the NOAA-16 AVHRR instrument using simultaneous nadir overpass (SNO) observations over the North Pole. The multiple invariant target calibrations are combined using the inverse of their temporal variance to optimize the resulting calibration stability. The NOAA-18AVHRR gains derived using the desert, polar ice, and DCC targets, as well as from SNO, were found consistent within 1%, thereby validating that the Aqua MODIS calibration is effectively transferred to the reference calibration targets. The companion paper, Part II, applies the methodology across the AVHRR record to derive the sensor-specific calibration coefficients. C1 [Bhatt, Rajendra; Scarino, Benjamin R.; Gopalan, Arun; Haney, Conor O.] Sci Syst & Applicat Inc, 1 Enterprise Pkwy,Suite 200, Hampton, VA 23666 USA. [Doelling, David R.; Minnis, Patrick; Bedka, Kristopher M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Bhatt, R (reprint author), Sci Syst & Applicat Inc, 1 Enterprise Pkwy,Suite 200, Hampton, VA 23666 USA. EM rajendra.bhatt@nasa.gov FU NOAA Climate Data Record Program [NOAA-IA1-17982] FX The AVHRR satellite data were obtained from NOAA CLASS. The authors thank Karl-Goran Karlsson for independently comparing the MITRAM and PATMOS-X calibration coefficients, and Aisheng Wu for providing the MODTRAN-derived atmospheric transmittance data. Thanks to A. Heidinger for the helpful discussions. This research was supported by the NOAA Climate Data Record Program under Interagency Agreement NOAA-IA1-17982. The AVHRR calibration coefficients from this study are contained in the NOAA CDR of visible and near-infrared reflectance from GOES and AVHRR, version 1.0 (AVHRR radiances, NASA; doi:10.789/V5NK3C0J), and were used to produce the NOAA CDR of cloud and clear-sky radiation properties, version 1.0 (AVHRR cloud properties, NASA; doi: 10.789/V5HT2M8T) An algorithm theoretical basis document (ATBD) is also available (Doelling and Minnis 2016). NR 59 TC 2 Z9 2 U1 1 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD NOV PY 2016 VL 33 IS 11 BP 2499 EP 2515 DI 10.1175/JTECH-D-16-0044.1 PG 17 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA ED4HG UT WOS:000388808000014 ER PT J AU Doelling, DR Bhatt, R Scarino, BR Gopalan, A Haney, CO Minnis, P Bedka, KM AF Doelling, David R. Bhatt, Rajendra Scarino, Benjamin R. Gopalan, Arun Haney, Conor O. Minnis, Patrick Bedka, Kristopher M. TI A Consistent AVHRR Visible Calibration Record Based on Multiple Methods Applicable for the NOAA Degrading Orbits. Part II: Validation SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID HIGH-RESOLUTION RADIOMETER; NEAR-INFRARED CHANNELS; OPERATIONAL CALIBRATION; MODIS; REFLECTANCE; SITES; SPACECRAFT; STABILITY; SEAWIFS; TARGET AB Consistent cross-sensor Advanced Very High Resolution Radiometer (AVHRR) calibration coefficients are determined using desert, polar ice, and deep convective cloud (DCC) invariant Earth targets. The greatest AVHRR calibration challenge is the slow orbit degradation of the host satellite, which precesses toward a terminator orbit. This issue is solved by characterizing the invariant targets with NOAA-16 AVHRR observed radiances that have been referenced to the Aqua Moderate Resolution Imaging Spectrometer (MODIS) calibration using simultaneous nadir overpass (SNO) observations. Another benefit of the NOAA-16 invariant target-modeled reflectance method is that, because of the similarities among the AVHRR spectral response functions, a smaller spectral band adjustment factor is required than when establishing calibrations relative to a non-AVHRR reference instrument. The sensor-and band-specific calibration uncertainties, with respect to the calibration reference, are, on average, 2% and 3% for channels 1 and 2, respectively. The uncertainties are smaller for sensors that are in afternoon orbits, have longer records, and spend less time in terminator conditions. The multiple invariant targets referenced to Aqua MODIS (MITRAM) AVHRR calibration coefficients are evaluated for individual target consistency, compared against Aqua MODIS/AVHRR SNOs, and selected published calibration gains. The MITRAM and SNO relative calibration biases mostly agree to within 1% for channels 1 and 2, respectively. The individual invariant target and MITRAM sensor relative calibration biases are mostly consistent to within 1% and 2% for channels 1 and 2, respectively. The differences between the MITRAM and other published calibrations are mostly attributed to the reference instrument calibration differences. C1 [Doelling, David R.; Minnis, Patrick; Bedka, Kristopher M.] NASA, Langley Res Ctr, MS 420, Hampton, VA 23681 USA. [Bhatt, Rajendra; Scarino, Benjamin R.; Gopalan, Arun; Haney, Conor O.] Sci Syst & Applicat Inc, Hampton, VA USA. RP Doelling, DR (reprint author), NASA, Langley Res Ctr, MS 420, Hampton, VA 23681 USA. EM david.r.doelling@nasa.gov FU NOAA Climate Data Record Program [NOAA-NCDC-CDR-0002] FX The AVHRR satellite data were obtained from NOAA CLASS. The authors thank Karl-Goran Karlsson for independently comparing the MITRAM and PATMOS-X calibration coefficients. Thanks to A. Heidinger for the helpful discussions. This research is supported by the NOAA Climate Data Record Program under Interagency Agreement NOAA-NCDC-CDR-0002. The AVHRR calibration coefficients from this study are contained in the NOAA Climate Data Record (CDR) of Visible and Near Infrared Reflectance from GOES and AVHRR, Version 1.0 (https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/ iso/xml/C00860.xml&view=getDataView&header=none#Documentation). An algorithm theoretical basis document (ATBD) is also available (Doelling and Minnis 2016). NR 37 TC 1 Z9 1 U1 1 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD NOV PY 2016 VL 33 IS 11 BP 2517 EP 2534 DI 10.1175/JTECH-D-16-0042.1 PG 18 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA ED4HG UT WOS:000388808000015 ER PT J AU Kolev, OI Reschke, MF AF Kolev, Ognyan I. Reschke, Millard F. TI Acquisition of Predictable Vertical Visual Targets: Eye-Head Coordination and the Triggering Effect SO JOURNAL OF MOTOR BEHAVIOR LA English DT Article DE eye-head coordination; predictable; target acquisition; trigger effect; vertical; vestibular ID GAZE SHIFTS; VESTIBULOOCULAR REFLEX; OPTOKINETIC NYSTAGMUS; VESTIBULAR-NYSTAGMUS; RHESUS-MONKEYS; MOVEMENTS; CAT AB The study was designed to investigate target acquisition in the vertical plane with emphasis on establishing strategy differences associated with acquisition triggering methods. Eight subjects were tested. Measurements consisted of target acquisition time, eye-head latency differences, velocity of gaze, eyes and head, and head amplitude. Using 3-way repeated measures analyses of variance the results show that the strategy for acquisition of predictable visual targets in vertical plane with the head unrestrained significantly depended on (a) the direction of the gaze motion with respect to the gravity vector (i.e., there is significant up-down asymmetry), (b) the angular distance of the target, and (c) the method of triggering the command to acquire the targetexternal versus internal. The data also show that when vertical acquisition is compared with triggering methods in the horizontal plane there is a difference in overall strategy for the acquisition of targets with the same spatial distances from straight ahead gaze when both the eyes and head are used. Among the factors contributing to the difference in strategy for vertical target acquisition are the gravitational vector, the relationship of target displacement and vestibular activitation, biomechanical and neural control asymmetries, and the difference in the vertical field of view. C1 [Kolev, Ognyan I.; Reschke, Millard F.] NASA Johnson Space Ctr, Neurosci Labs, Houston, TX USA. [Kolev, Ognyan I.] Med Univ Sofia, Univ Hosp Neurol & Psychiat St Naum, Sofia, Bulgaria. RP Kolev, OI (reprint author), Univ Hosp Neurol & Psychiat St Naum, Neurol, 4th Km,Tzarigradsko Shosse Blvd, Sofia 1113, Bulgaria. EM kolev_ogi@yahoo.com NR 29 TC 0 Z9 0 U1 0 U2 0 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0022-2895 EI 1940-1027 J9 J MOTOR BEHAV JI J. Mot. Behav. PD NOV-DEC PY 2016 VL 48 IS 6 BP 552 EP 561 DI 10.1080/00222895.2016.1161589 PG 10 WC Neurosciences; Psychology; Psychology, Experimental; Sport Sciences SC Neurosciences & Neurology; Psychology; Sport Sciences GA EC0IU UT WOS:000387784500010 PM 27362612 ER PT J AU Glass, DE Capriotti, DP Reimer, T Kutemeyer, M Smart, M AF Glass, David E. Capriotti, Diego P. Reimer, Thomas Kuetemeyer, Marius Smart, Michael TI Testing of Refractory Composites for Scramjet Combustors SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference CY JUL 11-13, 2014 CL Atlanta, GA SP AIAA AB Flat panels of carbon/carbon-silicon carbide and carbon/carbon were installed downstream of a hydrogen-fueled dual-mode scramjet combustor and tested for several minutes at conditions simulating flight at Mach 5 and Mach 6. The most severe test involved a carbon/carbon-silicon carbide panel that experienced three cycles totaling over 153s at Mach 6 enthalpy, with fueling at an equivalence ratio of 1.0 for 118s. Based on embedded thermocouple measurements and one-dimensional transient thermal analysis, the inside wall temperature was calculated to reach a maximum of 1400 degrees C during the test program. Both the carbon/carbon-silicon carbide and carbon/carbon panels experienced minimal erosion during the tests, giving strong confidence that both would be a viable material system for use in a scramjet combustor for short-duration test flights. C1 [Glass, David E.] NASA, Langley Res Ctr, Struct Mech & Concepts Branch, MS 190, Hampton, VA 23681 USA. [Capriotti, Diego P.] NASA, Langley Res Ctr, Hyperson Airbreathing Prop Branch, MS 168, Hampton, VA 23681 USA. [Reimer, Thomas; Kuetemeyer, Marius] German Aerosp Ctr, DLR, Inst Struct & Design, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany. Univ Queensland, Sch Mech & Min Engn, Hyperson Prop, Brisbane, Qld 4072, Australia. RP Glass, DE (reprint author), NASA, Langley Res Ctr, Struct Mech & Concepts Branch, MS 190, Hampton, VA 23681 USA. NR 6 TC 0 Z9 0 U1 1 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 EI 1533-3876 J9 J PROPUL POWER JI J. Propul. Power PD NOV PY 2016 VL 32 IS 6 BP 1550 EP 1556 DI 10.2514/1.B36147 PG 7 WC Engineering, Aerospace SC Engineering GA EC0QS UT WOS:000387806300025 ER PT J AU Al-Hamdan, MZ Quattrochi, DA Bounoua, L Lachir, A Zhang, P AF Al-Hamdan, Mohammad Z. Quattrochi, Dale A. Bounoua, Lahouari Lachir, Asia Zhang, Ping TI Using Landsat, MODIS, and a Biophysical Model to Evaluate LST in Urban Centers SO REMOTE SENSING LA English DT Article DE land surface temperature; Landsat; MODIS; SiB2 model ID SURFACE-TEMPERATURE; UNITED-STATES; EMISSIVITY; SPACE AB In this paper, we assessed and compared land surface temperature (LST) in urban centers using data from Landsat, MODIS, and the Simple Biosphere model (SiB2). We also evaluated the sensitivity of the model's LST to different land cover types, fractions (percentages), and emissivities compared to reference points derived from Landsat thermal data. This was demonstrated in three climatologically- and morphologically-different cities of Atlanta, GA, New York, NY, and Washington, DC. Our results showed that in these cities SiB2 was sensitive to both the emissivity and the land cover type and fraction, but much more sensitive to the latter. The practical implications of these results are rather significant since they imply that the SiB2 model can be used to run different scenarios for evaluating urban heat island (UHI) mitigation strategies. This study also showed that using detailed emissivities per land cover type and fractions from Landsat-derived data caused a convergence of the model results towards the Landsat-derived LST for most of the studied cases. This study also showed that SiB2 LSTs are closer in magnitude to Landsat-derived LSTs than MODIS-derived LSTs. It is important, however, to emphasize that both Landsat and MODIS LSTs are not direct observations and, as such, do not represent a ground truth. More studies will be needed to compare these results to in situ LST data and provide further validation. C1 [Al-Hamdan, Mohammad Z.] NASA, Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr, Univ Space Res Assoc, Huntsville, AL 35805 USA. [Quattrochi, Dale A.] NASA, Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr, Earth Sci Off, Huntsville, AL 35805 USA. [Bounoua, Lahouari; Lachir, Asia; Zhang, Ping] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. [Zhang, Ping] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Zhang, Ping] Sci Syst Applicat Inc, Lanham, MD 20706 USA. RP Al-Hamdan, MZ (reprint author), NASA, Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr, Univ Space Res Assoc, Huntsville, AL 35805 USA. EM mohammad.alhamdan@nasa.gov; dale.quattrochi@nasa.gov; lahouari.bounoua-1@nasa.gov; asialachir@gmail.com; ping.zhang-1@nasa.gov FU NASA Land-Cover/Land-Use Change Program FX The authors acknowledge the generous support of the NASA Land-Cover/Land-Use Change Program. NR 22 TC 0 Z9 0 U1 9 U2 9 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD NOV PY 2016 VL 8 IS 11 AR 952 DI 10.3390/rs8110952 PG 16 WC Remote Sensing SC Remote Sensing GA ED4DS UT WOS:000388798400072 ER PT J AU Baghdadi, N Choker, M Zribi, M El Hajj, M Paloscia, S Verhoest, NEC Lievens, H Baup, F Mattia, F AF Baghdadi, Nicolas Choker, Mohammad Zribi, Mehrez El Hajj, Mohammad Paloscia, Simonetta Verhoest, Niko E. C. Lievens, Hans Baup, Frederic Mattia, Francesco TI A New Empirical Model for Radar Scattering from Bare Soil Surfaces SO REMOTE SENSING LA English DT Article DE new backscattering model; Dubois model; SAR images; soil parameters ID TERRASAR-X DATA; SIR-C/X-SAR; L-BAND SAR; MOISTURE ESTIMATION; C-BAND; AGRICULTURAL FIELDS; MULTI-POLARIZATION; ROUGHNESS; RETRIEVAL; BACKSCATTERING AB The objective of this paper is to propose a new semi-empirical radar backscattering model for bare soil surfaces based on the Dubois model. A wide dataset of backscattering coefficients extracted from synthetic aperture radar (SAR) images and in situ soil surface parameter measurements (moisture content and roughness) is used. The retrieval of soil parameters from SAR images remains challenging because the available backscattering models have limited performances. Existing models, physical, semi-empirical, or empirical, do not allow for a reliable estimate of soil surface geophysical parameters for all surface conditions. The proposed model, developed in HH, HV, and VV polarizations, uses a formulation of radar signals based on physical principles that are validated in numerous studies. Never before has a backscattering model been built and validated on such an important dataset as the one proposed in this study. It contains a wide range of incidence angles (18 degrees-57 degrees) and radar wavelengths (L, C, X), well distributed, geographically, for regions with different climate conditions (humid, semi-arid, and arid sites), and involving many SAR sensors. The results show that the new model shows a very good performance for different radar wavelengths (L, C, X), incidence angles, and polarizations (RMSE of about 2 dB). This model is easy to invert and could provide a way to improve the retrieval of soil parameters. C1 [Baghdadi, Nicolas; Choker, Mohammad; El Hajj, Mohammad] IRSTEA, UMR TETIS, 500 Rue Francois Breton, F-34093 Montpellier 5, France. [Zribi, Mehrez; Baup, Frederic] CESBIO, 18 Ave Edouard Belin,Bpi 2801, F-31401 Toulouse 9, France. [Paloscia, Simonetta] CNR, IFAC, Via Madonna del Piano 10, I-50019 Florence, Italy. [Verhoest, Niko E. C.; Lievens, Hans] Univ Ghent, Lab Hydrol & Water Management, B-9000 Ghent, Belgium. [Lievens, Hans] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Mattia, Francesco] CNR, ISSIA, Via Amendola 122-D, I-70126 Bari, Italy. RP Baghdadi, N (reprint author), IRSTEA, UMR TETIS, 500 Rue Francois Breton, F-34093 Montpellier 5, France. EM nicolas.baghdadi@teledetection.fr; mohammad.choker@teledetection.fr; mehrez.zribi@ird.fr; mohammad.el-hajj@teledetection.fr; s.paloscia@ifac.cnr.it; niko.verhoest@UGent.be; hans.lievens@UGent.be; frederic.baup@cesbio.cnes.fr; mattia@ba.issia.cnr.it RI Verhoest, Niko/C-9726-2010 OI Verhoest, Niko/0000-0003-4116-8881 FU IRSTEA (National Research Institute of Science and Technology for Environment and Agriculture); French Space Study Center (CNES, TOSCA); Belgian Science Policy Office [SR/00/302] FX This research was supported by IRSTEA (National Research Institute of Science and Technology for Environment and Agriculture), the French Space Study Center (CNES, TOSCA 2016) and the Belgian Science Policy Office (Contract SR/00/302). Hans Lievens is a postdoctoral research fellow of the Research Foundation Flanders (FWO). Authors thank the space agencies that provided AIRSAR, SIR-C, JERS-1, ERS-1/2, RADARSAT-1/2, ASAR, PALSAR-1, TerraSAR-X, COSMO-SkyMed, and ESAR data. NR 46 TC 0 Z9 0 U1 9 U2 9 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD NOV PY 2016 VL 8 IS 11 AR 920 DI 10.3390/rs8110920 PG 14 WC Remote Sensing SC Remote Sensing GA ED4DS UT WOS:000388798400041 ER PT J AU Currey, C Bartle, A Lukashin, C Roithmayr, C Gallagher, J AF Currey, Chris Bartle, Aron Lukashin, Constantine Roithmayr, Carlos Gallagher, James TI Multi-Instrument Inter-Calibration (MIIC) System SO REMOTE SENSING LA English DT Article DE inter-calibration; CLARREO; OPeNDAP AB In order to have confidence in the long-term records of atmospheric and surface properties derived from satellite measurements it is important to know the stability and accuracy of the actual radiance or reflectance measurements. Climate quality measurements require accurate calibration of space-borne instruments. Inter-calibration is the process that ties the calibration of a target instrument to a more accurate, preferably SI-traceable, reference instrument by matching measurements in time, space, wavelength, and view angles. A major challenge for any inter-calibration study is to find and acquire matched samples from within the large data volumes distributed across Earth science data centers. Typically less than 0.1% of the instrument data are required for inter-calibration analysis. Software tools and networking middleware are necessary for intelligent selection and retrieval of matched samples from multiple instruments on separate spacecraft. This paper discusses the Multi-Instrument Inter-Calibration (MIIC) system, a web-based software framework used by the Climate Absolute Radiance and Refractivity Observatory (CLARREO) Pathfinder mission to simplify the data management mechanics of inter-calibration. MIIC provides three main services: (1) inter-calibration event prediction; (2) data acquisition; and (3) data analysis. The combination of event prediction and powerful server-side functions reduces the data volume required for inter-calibration studies by several orders of magnitude, dramatically reducing network bandwidth and disk storage needs. MIIC provides generic retrospective analysis services capable of sifting through large data volumes of existing instrument data. The MIIC tiered design deployed at large institutional data centers can help international organizations, such as Global Space Based Inter-Calibration System (GSICS), more efficiently acquire matched data from multiple data centers. In this paper we describe the MIIC architecture and services. C1 [Currey, Chris; Lukashin, Constantine; Roithmayr, Carlos] NASA, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. [Bartle, Aron] Mechdyne Corp, Virginia Beach, VA 23462 USA. [Gallagher, James] OPeNDAP Inc, Butte, MT 59701 USA. RP Currey, C (reprint author), NASA, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. EM jon.c.currey@nasa.gov; aron.bartle@mechdyne.com; constantine.lukashin-1@nasa.gov; carlos.m.roithmayr@nasa.gov; jgallagher@opendap.org FU NASA Advancing Collaborative Connections for Earth System Science (ACCESS) Program; NASA CLARREO project FX This research has been supported by the NASA Advancing Collaborative Connections for Earth System Science (ACCESS) Program and the NASA CLARREO project. The CERES and CALIPSO datasets were obtained from the NASA Langley Atmospheric Sciences Data Center. VIIRS and MODIS data were obtained from the GSFC Level 1 and Atmosphere Archive and Distribution System (LAADS). In the near future MIIC software will be available from the NASA Earth Observing System Data and Information System (EOSDIS) Earthdata Code Collaborative repository. NR 11 TC 0 Z9 0 U1 3 U2 3 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD NOV PY 2016 VL 8 IS 11 AR 902 DI 10.3390/rs8110902 PG 18 WC Remote Sensing SC Remote Sensing GA ED4DS UT WOS:000388798400023 ER PT J AU Sanders, AFJ Verstraeten, WW Kooreman, ML van Leth, TC Beringer, J Joiner, J AF Sanders, Abram F. J. Verstraeten, Willem W. Kooreman, Maurits L. van Leth, Thomas C. Beringer, Jason Joiner, Joanna TI Spaceborne Sun-Induced Vegetation Fluorescence Time Series from 2007 to 2015 Evaluated with Australian Flux Tower Measurements SO REMOTE SENSING LA English DT Article DE sun-induced fluorescence; GOME-2; gross primary productivity; time series; flux towers; principal component analysis; OzFlux ID INDUCED CHLOROPHYLL FLUORESCENCE; LIGHT-USE-EFFICIENCY; C-FIX MODEL; INTERANNUAL VARIABILITY; SATELLITE MEASUREMENTS; SEMIARID ECOSYSTEMS; SPATIAL VARIABILITY; STRESS DETECTION; CARBON-CYCLE; PHOTOSYNTHESIS AB A global, monthly averaged time series of Sun-induced Fluorescence (SiF), spanning January 2007 to June 2015, was derived from Metop-A Global Ozone Monitoring Experiment 2 (GOME-2) spectral measurements. Far-red SiF was retrieved using the filling-in of deep solar Fraunhofer lines and atmospheric absorption bands based on the general methodology described by Joiner et al, AMT, 2013. A Principal Component (PC) analysis of spectra over non-vegetated areas was performed to describe the effects of atmospheric absorption. Our implementation (SiF KNMI) is an independent algorithm and differs from the latest implementation of Joiner et al, AMT, 2013 (SiF NASA, v26), because we used desert reference areas for determining PCs (as opposed to cloudy ocean and some desert) and a wider fit window that covers water vapour and oxygen absorption bands (as opposed to only Fraunhofer lines). As a consequence, more PCs were needed (35 as opposed to 12). The two time series (SiF KNMI and SiF NASA, v26) correlate well (overall R of 0.78) except for tropical rain forests. Sensitivity experiments suggest the strong impact of the water vapour absorption band on retrieved SiF values. Furthermore, we evaluated the SiF time series with Gross Primary Productivity (GPP) derived from twelve flux towers in Australia. Correlations for individual towers range from 0.37 to 0.84. They are particularly high for managed biome types. In the de-seasonalized Australian SiF time series, the break of the Millennium Drought during local summer of 2010/2011 is clearly observed. C1 [Sanders, Abram F. J.; Verstraeten, Willem W.; Kooreman, Maurits L.; van Leth, Thomas C.] Royal Netherlands Meteorol Inst KNMI, R&D Satellite Observat, Utrechtseweg 297, NL-3731 GA De Bilt, Netherlands. [Sanders, Abram F. J.] Univ Bremen, Inst Umweltphys IUP, Otto Hahn Allee 1, D-28359 Bremen, Germany. [Verstraeten, Willem W.] Royal Meteorol Inst KMI, Ringlaan 3, B-1180 Uccle, Belgium. [Verstraeten, Willem W.] Wageningen Univ, Meteorol & Air Qual Grp, Droevendaalsesteeg 4, NL-6708 PB Wageningen, Netherlands. [Beringer, Jason] Univ Western Australia, Sch Earth & Environm, 35 Stirling Highway, Crawley, WA 6009, Australia. [Joiner, Joanna] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Sanders, AFJ; Verstraeten, WW (reprint author), Royal Netherlands Meteorol Inst KNMI, R&D Satellite Observat, Utrechtseweg 297, NL-3731 GA De Bilt, Netherlands.; Sanders, AFJ (reprint author), Univ Bremen, Inst Umweltphys IUP, Otto Hahn Allee 1, D-28359 Bremen, Germany.; Verstraeten, WW (reprint author), Royal Meteorol Inst KMI, Ringlaan 3, B-1180 Uccle, Belgium.; Verstraeten, WW (reprint author), Wageningen Univ, Meteorol & Air Qual Grp, Droevendaalsesteeg 4, NL-6708 PB Wageningen, Netherlands. EM bram.sanders@uni-bremen.de; willem.verstraeten@meteo.be; maurits.kooreman@knmi.nl; tommy.vanleth@wur.nl; jason.beringer@uwa.edu.au; joanna.joiner@nasa.gov RI Beringer, Jason/B-8528-2008; OI Beringer, Jason/0000-0002-4619-8361; Sanders, Bram/0000-0001-9915-0209 FU Netherlands Organization for Scientific Research, NWO Vidi grant [864.09.001]; Australian Research Council [DP0772981, LP0990038, DP130101566, DP0451247, DP0344744, LP100100073, LE0882936]; ARC Future Fellowship [FT110100602] FX This work has been co-funded by the Netherlands Organization for Scientific Research, NWO Vidi grant 864.09.001. This work utilized flux tower data collected by grants funded by the Australian Research Council (DP0772981, LP0990038, DP130101566, DP0451247, DP0344744, LP100100073, LE0882936). Beringer is funded under an ARC Future Fellowship (FT110100602). Some support for OzFlux is provided through the Australia Terrestrial Ecosystem Research Network (TERN) (http://www.tern.org.au). EUMETSAT is acknowledged for making available GOME-2 level-1b data. The Global Land Cover Characterization database was provided by the U.S. Geological Survey. FRESCO data were obtained through http://www.temis.nl. MODIS NDVI data were obtained through NASA's Land Processes Distributed Active Archive Center (LP DAAC). NR 82 TC 0 Z9 0 U1 16 U2 16 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD NOV PY 2016 VL 8 IS 11 AR 895 DI 10.3390/rs8110895 PG 24 WC Remote Sensing SC Remote Sensing GA ED4DS UT WOS:000388798400016 ER PT J AU Wen, YX Behrangi, A Lambrigtsen, B Kirstetter, PE AF Wen, Yixin Behrangi, Ali Lambrigtsen, Bjorn Kirstetter, Pierre-Emmanuel TI Evaluation and Uncertainty Estimation of the Latest Radar and Satellite Snowfall Products Using SNOTEL Measurements over Mountainous Regions in Western United States SO REMOTE SENSING LA English DT Article DE QPE; SWE; weather radar; GPM ID NATIONAL MOSAIC QPE; PRECIPITATION ESTIMATION; COMPLEX TERRAIN; REAL-TIME; SYSTEM; REFLECTIVITY; IDENTIFICATION; TEMPERATURE; PROFILES; DENSITY AB Snow contributes to regional and global water budgets, and is of critical importance to water resources management and our society. Along with advancement in remote sensing tools and techniques to retrieve snowfall, verification and refinement of these estimates need to be performed using ground-validation datasets. A comprehensive evaluation of the Multi-Radar/Multi-Sensor (MRMS) snowfall products and Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement) (IMERG) precipitation products is conducted using the Snow Telemetry (SNOTEL) daily precipitation and Snow Water Equivalent (SWE) datasets. Severe underestimations are found in both radar and satellite products. Comparisons are conducted as functions of air temperature, snowfall intensity, and radar beam height, in hopes of resolving the discrepancies between measurements by remote sensing and gauge, and finally developing better snowfall retrieval algorithms in the future. C1 [Wen, Yixin; Behrangi, Ali; Lambrigtsen, Bjorn] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Kirstetter, Pierre-Emmanuel] Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73019 USA. [Kirstetter, Pierre-Emmanuel] NOAA, Natl Severe Storms Lab, Norman, OK 73019 USA. RP Wen, YX (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM yixin.wen@jpl.nasa.gov; Ali.Behrangi@jpl.nasa.gov; Bjorn.H.Lambrigtsen@jpl.nasa.gov; pierre.kirstetter@noaa.gov RI Kirstetter, Pierre/E-2305-2013 OI Kirstetter, Pierre/0000-0002-7381-0229 FU NASA GRACE/GRACE-FO; NASA WEATHER awards FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Government sponsorship is acknowledged. Ali Behrangi was supported by NASA GRACE/GRACE-FO and NASA WEATHER awards. NR 40 TC 0 Z9 0 U1 3 U2 3 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD NOV PY 2016 VL 8 IS 11 AR 904 DI 10.3390/rs8110904 PG 11 WC Remote Sensing SC Remote Sensing GA ED4DS UT WOS:000388798400025 ER PT J AU Ahnen, ML Ansoldi, S Antonelli, LA Antoranz, P Arcaro, C Babic, A Banerjee, B Bangale, P de Almeida, UB Barrio, JA Gonzalez, JB Bednarek, W Bernardini, E Berti, A Biasuzzi, B Biland, A Blanch, O Bonnefoy, S Bonnoli, G Borracci, F Bretz, T Buson, S Carosi, A Chatterjee, A Clavero, R Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Da Vela, P Dazzi, F De Angelis, A De Lotto, B Wilhelmi, ED Di Pierro, F Doert, M Dominguez, A Prester, DD Dorner, D Doro, M Einecke, S Glawion, DE Elsaesser, D Engelkemeier, M Ramazani, VF Fernandez-Barral, A Fidalgo, D Fonseca, MV Font, L Frantzen, K Fruck, C Galindo, D Lopez, RJG Garczarczyk, M Terrats, DG Gaug, M Giammaria, P Godinovic, N Gora, D Guberman, D Hadasch, D Hahn, A Hayashida, M Herrera, J Hose, J Hrupec, D Hughes, G Idec, W Kodani, K Konno, Y Kubo, H Kushida, J La Barbera, A Lelas, D Lindfors, E Lombardi, S Longo, F Lopez, M Lopez-Coto, R Majumdar, P Makariev, M Mallot, K Maneva, G Manganaro, M Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazin, D Menzel, U Miranda, JM Mirzoyan, R Moralejo, A Moretti, E Nakajima, D Neustroev, V Niedzwiecki, A Rosillo, MN Nilsson, K Nishijima, K Noda, K Nogues, L Paiano, S Palacio, J Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Pedaletti, G Peresano, M Perri, L Persic, M Poutanen, J Moroni, PGP Prandini, E Puljak, I Garcia, JR Reichardt, I Rhode, W Ribo, M Rico, J Saito, T Satalecka, K Schroeder, S Schweizer, T Shore, SN Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Stamerra, A Strzys, M Suric, T Takalo, L Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshima, M Torres, DF Toyama, T Treves, A Vanzo, G Verguilov, V Vovk, I Ward, JE Will, M Wu, MH Zanin, R Desiante, R AF Ahnen, M. L. Ansoldi, S. Antonelli, L. A. Antoranz, P. Arcaro, C. Babic, A. Banerjee, B. Bangale, P. Barres de Almeida, U. Barrio, J. A. Becerra Gonzalez, J. Bednarek, W. Bernardini, E. Berti, A. Biasuzzi, B. Biland, A. Blanch, O. Bonnefoy, S. Bonnoli, G. Borracci, F. Bretz, T. Buson, S. Carosi, A. Chatterjee, A. Clavero, R. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Da Vela, P. Dazzi, F. De Angelis, A. De Lotto, B. de Ona Wilhelmi, E. Di Pierro, F. Doert, M. Dominguez, A. Prester, D. Dominis Dorner, D. Doro, M. Einecke, S. Glawion, D. Eisenacher Elsaesser, D. Engelkemeier, M. Ramazani, V. Fallah Fernandez-Barral, A. Fidalgo, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Galindo, D. Garcia Lopez, R. J. Garczarczyk, M. Garrido Terrats, D. Gaug, M. Giammaria, P. Godinovic, N. Gora, D. Guberman, D. Hadasch, D. Hahn, A. Hayashida, M. Herrera, J. Hose, J. Hrupec, D. Hughes, G. Idec, W. Kodani, K. Konno, Y. Kubo, H. Kushida, J. La Barbera, A. Lelas, D. Lindfors, E. Lombardi, S. Longo, F. Lopez, M. Lopez-Coto, R. Majumdar, P. Makariev, M. Mallot, K. Maneva, G. Manganaro, M. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazin, D. Menzel, U. Miranda, J. M. Mirzoyan, R. Moralejo, A. Moretti, E. Nakajima, D. Neustroev, V. Niedzwiecki, A. Nievas Rosillo, M. Nilsson, K. Nishijima, K. Noda, K. Nogues, L. Paiano, S. Palacio, J. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Pedaletti, G. Peresano, M. Perri, L. Persic, M. Poutanen, J. Moroni, P. G. Prada Prandini, E. Puljak, I. Garcia, J. R. Reichardt, I. Rhode, W. Ribo, M. Rico, J. Saito, T. Satalecka, K. Schroeder, S. Schweizer, T. Shore, S. N. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Stamerra, A. Strzys, M. Suric, T. Takalo, L. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshima, M. Torres, D. F. Toyama, T. Treves, A. Vanzo, G. Verguilov, V. Vovk, I. Ward, J. E. Will, M. Wu, M. H. Zanin, R. Desiante, R. TI Detection of very high energy gamma-ray emission from the gravitationally lensed blazar QSO B0218+357 with the MAGIC telescopes SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma rays: galaxies; gravitational lensing: strong; galaxies: jets; radiation mechanisms: non-thermal; quasars: individual: QSO B0218+357 ID EXTRAGALACTIC BACKGROUND LIGHT; LARGE-AREA TELESCOPE; EINSTEIN RING B0218+357; ACTIVE GALACTIC NUCLEI; JVAS B0218+357; MAJOR UPGRADE; PKS 1441+25; TIME-DELAY; SPECTRA; ABSORPTION AB Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components that are spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z similar to 1 very high energy gamma-ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z similar to 1. Methods. MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data obtained by Fermi-LAT and MAGIC are used to set constraints on the extragalactic background light. Results. Very high energy gamma-ray emission was detected from the direction of QSO B0218 +357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray source detected to date. The observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broadband emission can be modeled in the framework of a two-zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region. C1 [Ahnen, M. L.; Biland, A.; Hughes, G.; Prandini, E.] ETH, CH-8093 Zurich, Switzerland. [Ansoldi, S.; Berti, A.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Peresano, M.; Persic, M.; Treves, A.; Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Ansoldi, S.; Berti, A.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.; Treves, A.; Desiante, R.] INFN Trieste, I-33100 Udine, Italy. [Antonelli, L. A.; Carosi, A.; Covino, S.; Di Pierro, F.; Giammaria, P.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Perri, L.; Stamerra, A.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Bonnoli, G.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; Bonnoli, G.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] INFN Pisa, I-53100 Siena, Italy. [Arcaro, C.; Buson, S.; De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Reichardt, I.; Tescaro, D.] Univ Padua, I-35131 Padua, Italy. [Arcaro, C.; Buson, S.; De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Reichardt, I.; Tescaro, D.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Suric, T.; Terzic, T.] Univ Split, Univ Rijeka, Rudjer Boskov Inst, CroatianMAGIC Consortium, Split, Croatia. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Suric, T.; Terzic, T.] Univ Zagreb, Zagreb 41000, Croatia. [Banerjee, B.; Chatterjee, A.; Majumdar, P.] Saha Inst Nucl Phys, 1-AF Bidhannagar,Sect 1, Kolkata 700064, India. [Bangale, P.; Barres de Almeida, U.; Borracci, F.; Colin, P.; Dazzi, F.; Fruck, C.; Hahn, A.; Hose, J.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moretti, E.; Noda, K.; Paneque, D.; Garcia, J. R.; Schweizer, T.; Strzys, M.; Teshima, M.; Toyama, T.; Vovk, I.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Dominguez, A.; Fidalgo, D.; Fonseca, M. V.; Lopez, M.] Univ Complutense, E-28040 Madrid, Spain. [Becerra Gonzalez, J.; Clavero, R.; Colombo, E.; Herrera, J.; Manganaro, M.; Garcia, J. R.; Vanzo, G.; Will, M.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Becerra Gonzalez, J.; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Vanzo, G.; Will, M.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Bednarek, W.; Idec, W.; Niedzwiecki, A.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardini, E.; Garczarczyk, M.; Gora, D.; Mallot, K.; Pedaletti, G.; Satalecka, K.] DESY, D-15738 Zeuthen, Germany. [Blanch, O.; Cortina, J.; Fernandez-Barral, A.; Guberman, D.; Lopez-Coto, R.; Martinez, M.; Moralejo, A.; Nogues, L.; Palacio, J.; Rico, J.; Ward, J. E.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, Bellaterra 08193, Barcelona, Spain. [Bretz, T.; Dorner, D.; Glawion, D. Eisenacher; Mannheim, K.] Univ Wurzburg, D-97074 Wurzburg, Germany. [de Ona Wilhelmi, E.; Wu, M. H.] CSIC IEEC, Inst Space Sci, Barcelona 08193, Spain. [Doert, M.; Einecke, S.; Elsaesser, D.; Engelkemeier, M.; Frantzen, K.; Rhode, W.; Schroeder, S.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Ramazani, V. Fallah; Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Turku, Tuorla Observ, Finnish MAGIC Consortium, SF-20500 Turku, Finland. [Ramazani, V. Fallah; Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Astron Div, Oulu, Finland. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, Unitat Fis Radiac, Dept Fis, Bellaterra 08193, Spain. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, CERES IEEC, Bellaterra 08193, Spain. [Galindo, D.; Marcote, B.; Paredes, J. M.; Paredes-Fortuny, X.; Ribo, M.; Zanin, R.] Univ Barcelona, ICC, IEEC UB, E-08028 Barcelona, Spain. [Hadasch, D.; Hayashida, M.; Kodani, K.; Konno, Y.; Kushida, J.; Nakajima, D.; Nishijima, K.; Saito, T.] Univ Tokyo, Japanese MAGIC Consortium, ICRR, Tokyo 1138654, Japan. [Hadasch, D.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Saito, T.] Kyoto Univ, Dept Phys, Kyoto 6068501, Japan. [Hadasch, D.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Saito, T.] Kyoto Univ, Hakubi Ctr, Kyoto 6068501, Japan. [Hadasch, D.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Saito, T.] Tokai Univ, Hiratsuka, Kanagawa 25912, Japan. [Hadasch, D.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Saito, T.] Univ Tokushima, Tokushima, Tokushima, Japan. [Hadasch, D.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Saito, T.] KEK, Tsukuba, Ibaraki, Japan. [Makariev, M.; Maneva, G.; Temnikov, P.; Verguilov, V.] Inst Nucl Energy Res, Sofia 1784, Bulgaria. [Moroni, P. G. Prada; Shore, S. N.] Univ Pisa, I-56126 Pisa, Italy. [Moroni, P. G. Prada; Shore, S. N.] Ist Nazl Fis Nucl, I-56126 Pisa, Italy. [Torres, D. F.] ICREA, Barcelona 08193, Spain. [Torres, D. F.] Inst Space Sci CSIC IEEC, Barcelona 08193, Spain. [Ansoldi, S.] Kyoto Univ, Dept Phys, Kyoto 6068501, Japan. [Barres de Almeida, U.] Ctr Brasileiro Pesquisas Fis CBPF MCTI, R Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil. [Becerra Gonzalez, J.; Buson, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Becerra Gonzalez, J.; Buson, S.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Becerra Gonzalez, J.; Buson, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bernardini, E.] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany. [Berti, A.; Longo, F.] Univ Trieste, I-34127 Trieste, Italy. [Bretz, T.] Ecole Polytech Fed Lausanne, Lausanne, Switzerland. [Lopez-Coto, R.; Zanin, R.] Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany. [Mazin, D.; Teshima, M.] Japanese MAGIC Consortium, Tokyo, Japan. [Nilsson, K.] ESO FINCA, Finnish Ctr Astron, Turku, Finland. [Persic, M.] INAF Trieste, Trieste, Italy. [Persic, M.] Univ Bologna, Dept Phys & Astron, I-40126 Bologna, Italy. [Prandini, E.] ISDC Sci Data Ctr Astrophys, CH-1290 Geneva, Switzerland. RP Tavecchio, F (reprint author), INAF Natl Inst Astrophys, I-00136 Rome, Italy.; Buson, S (reprint author), Univ Padua, I-35131 Padua, Italy.; Buson, S (reprint author), Ist Nazl Fis Nucl, I-35131 Padua, Italy.; Rosillo, MN (reprint author), Univ Complutense, E-28040 Madrid, Spain.; Sitarek, J (reprint author), Univ Lodz, PL-90236 Lodz, Poland.; Buson, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Buson, S (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA. EM ara.buson@nasa.gov; mnievas@ucm.es; jsitarek@uni.lodz; fbrizio.tavecchio@brera.inaf.it RI Miranda, Jose Miguel/F-2913-2013; Barrio, Juan/L-3227-2014; GAug, Markus/L-2340-2014; Manganaro, Marina/B-7657-2011; Puljak, Ivica/D-8917-2017; OI Doro, Michele/0000-0001-9104-3214; Poutanen, Juri/0000-0002-0983-0049; Torres, Diego F./0000-0002-1522-9065; Miranda, Jose Miguel/0000-0002-1472-9690; Barrio, Juan/0000-0002-0965-0259; GAug, Markus/0000-0001-8442-7877; Manganaro, Marina/0000-0003-1530-3031; Becerra Gonzalez, Josefa/0000-0002-6729-9022; Prandini, Elisa/0000-0003-4502-9053 FU German BMBF; MPG; Italian INFN; INAF; Swiss National Fund SNF; ERDF under the Spanish MINECO [FPA2012-39502]; Japanese JSPS; MEXT; Centro de Excelencia Severo Ochoa [SEV-2012-0234, CPAN CSD2007-00042, MultiDark CSD2009-00064]; Academy of Finland [268740]; Croatian Science Foundation (HrZZ) Project [09/176]; University of Rijeka [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823, SFB876]; Polish MNiSzW grant [745/N-HESS-MAGIC/2010/0]; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX We would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2012-39502), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0. The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 70 TC 1 Z9 1 U1 8 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2016 VL 595 AR A98 DI 10.1051/0004-6361/201629461 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED0ZP UT WOS:000388573500135 ER PT J AU Amundsen, DS Mayne, NJ Baraffe, I Manners, J Tremblin, P Drummond, B Smith, C Acreman, DM Homeier, D AF Amundsen, David S. Mayne, Nathan J. Baraffe, Isabelle Manners, James Tremblin, Pascal Drummond, Benjamin Smith, Chris Acreman, David M. Homeier, Derek TI The UK Met Office global circulation model with a sophisticated radiation scheme applied to the hot Jupiter HD 209458b SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planets and satellites: gaseous planets; planets and satellites: atmospheres; methods: numerical; radiative transfer; hydrodynamics ID TIDALLY LOCKED EXOPLANETS; ATMOSPHERIC CIRCULATION; EXTRASOLAR PLANET; BROWN DWARF; TRANSMISSION SPECTRUM; DISEQUILIBRIUM CARBON; MULTIPLE-SCATTERING; THERMAL INVERSION; REFRACTIVE-INDEX; MOLECULAR LINE AB To study the complexity of hot Jupiter atmospheres revealed by observations of increasing quality, we have adapted the UK Met Office Global Circulation Model (GCM), the Unified Model (UM), to these exoplanets. The UM solves the full 3D Navier-Stokes equations with a height-varying gravity, avoiding the simplifications used in most GCMs currently applied to exoplanets. In this work we present the coupling of the UM dynamical core to an accurate radiation scheme based on the two-stream approximation and correlated-k method with state-of-the-art opacities from ExoMol. Our first application of this model is devoted to the extensively studied hot Jupiter HD 209458b. We have derived synthetic emission spectra and phase curves, and compare them to both previous models also based on state-of-the-art radiative transfer, and to observations. We find a reasonable agreement between observations and both our days side emission and hot spot offset, however, our night side emissions is too large. Overall our results are qualitatively similar to those found by Showman et al. (2009, ApJ, 699, 564) with the SPARC/MITgcm, however, we note several quantitative differences: Our simulations show significant variation in the position of the hottest part of the atmosphere with pressure, as expected from simple timescale arguments, and in contrast to the "vertical coherency" found by Showman et al. (2009). We also see significant quantitative differences in calculated synthetic observations. Our comparisons strengthen the need for detailed intercomparisons of dynamical cores, radiation schemes and post-processing tools to understand these differences. This effort is necessary in order to make robust conclusions about these atmospheres based on GCM results. C1 [Amundsen, David S.; Mayne, Nathan J.; Baraffe, Isabelle; Manners, James; Tremblin, Pascal; Drummond, Benjamin; Smith, Chris; Acreman, David M.] Univ Exeter, Astrophys Grp, Exeter EX4 4QL, Devon, England. [Amundsen, David S.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA. [Amundsen, David S.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Baraffe, Isabelle; Homeier, Derek] Univ Lyon 1, Univ Lyon, ENS Lyon, CNRS,CRAL,UMR5574, F-69007 Lyon, France. [Manners, James; Smith, Chris] Met Off, Exeter EX1 3PB, Devon, England. [Tremblin, Pascal] CEA CNRS INRIA UPS UVSQ, Maison Simulat, USR 3441, Ctr Etud Saclay, F-91191 Gif Sur Yvette, France. [Homeier, Derek] Heidelberg Univ, Zentrum Astron, Konigstuhl 12, D-69117 Heidelberg, Germany. RP Amundsen, DS (reprint author), Univ Exeter, Astrophys Grp, Exeter EX4 4QL, Devon, England.; Amundsen, DS (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA.; Amundsen, DS (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM d.s.amundsen@columbia.edu FU European Research Council under the European Community's Seventh Framework Programme (FP7 Grant) [247060-PEPS, 320478-TOFU]; NASA Astrobiology Program through the Nexus for Exoplanet System Science; Leverhulme Trust; Met Office Academic Partnership secondment; DFG through the Collaborative Research Centre "The Milky Way System" [SFB 881]; STFC; Large Facilities Capital Fund of BIS; University of Exeter FX We would like to thank Jonathan Tennyson and Travis Barman for insightful discussions. This work is partly supported by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013 Grant Agreement No. 247060-PEPS and grant No. 320478-TOFU). DSA acknowledges support from the NASA Astrobiology Program through the Nexus for Exoplanet System Science. NM acknowledges funding from the Leverhulme Trust via a Research Project Grant. JM and CS acknowledge the support of a Met Office Academic Partnership secondment. DH acknowledges funding from the DFG through the Collaborative Research Centre SFB 881 "The Milky Way System". The calculations for this paper were performed on the University of Exeter Supercomputer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS, and the University of Exeter. NR 90 TC 1 Z9 1 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2016 VL 595 AR A36 DI 10.1051/0004-6361/201629183 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED0ZP UT WOS:000388573500118 ER PT J AU Barucci, MA Filacchione, G Fornasier, S Raponi, A Deshapriya, JDP Tosi, F Feller, C Ciarniello, M Sierks, H Capaccioni, F Pommerol, A Massironi, M Oklay, N Merlin, F Vincent, JB Fulchignoni, M Guilbert-Lepoutre, A Perna, D Capria, MT Hasselmann, PH Rousseau, B Barbieri, C Bockelee-Morvan, D Lamy, PL De Sanctis, C Rodrigo, R Erard, S Koschny, D Leyrat, C Rickman, H Drossart, P Keller, HU A'Hearn, MF Arnold, G Bertaux, JL Bertini, I Cerroni, P Cremonese, G Da Deppo, V Davidsson, BJR El-Maarry, MR Fonti, S Fulle, M Groussin, O Guttler, C Hviid, SF Ip, W Jorda, L Kappel, D Knollenberg, J Kramm, JR Kuhrt, E Kuppers, M Lara, LM Lazzarin, M Lopez-Moreno, JJ Mancarella, F Marzari, F Mottola, S Naletto, G Pajola, M Palomba, E Quirico, E Schmitt, B Thomas, N Tubiana, C AF Barucci, M. A. Filacchione, G. Fornasier, S. Raponi, A. Deshapriya, J. D. P. Tosi, F. Feller, C. Ciarniello, M. Sierks, H. Capaccioni, F. Pommerol, A. Massironi, M. Oklay, N. Merlin, F. Vincent, J. -B. Fulchignoni, M. Guilbert-Lepoutre, A. Perna, D. Capria, M. T. Hasselmann, P. H. Rousseau, B. Barbieri, C. Bockelee-Morvan, D. Lamy, P. L. De Sanctis, C. Rodrigo, R. Erard, S. Koschny, D. Leyrat, C. Rickman, H. Drossart, P. Keller, H. U. A'Hearn, M. F. Arnold, G. Bertaux, J. -L. Bertini, I. Cerroni, P. Cremonese, G. Da Deppo, V. Davidsson, B. J. R. El-Maarry, M. R. Fonti, S. Fulle, M. Groussin, O. Guettler, C. Hviid, S. F. Ip, W. Jorda, L. Kappel, D. Knollenberg, J. Kramm, J. -R. Kuehrt, E. Kuppers, M. Lara, L. M. Lazzarin, M. Lopez-Moreno, J. J. Mancarella, F. Marzari, F. Mottola, S. Naletto, G. Pajola, M. Palomba, E. Quirico, E. Schmitt, B. Thomas, N. Tubiana, C. TI Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko as observed by Rosetta OSIRIS and VIRTIS instruments SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE comets: individual: 67P/Churyumov-Gerasimenko; techniques: imaging spectroscopy; techniques: photometric techniques; image processing; methods: data analysis ID WATER ICE; OPTICAL-CONSTANTS; PHOTOMETRIC PROPERTIES; IMAGING SPECTROMETER; CRYSTALLINE H2O-ICE; ONBOARD ROSETTA; IMHOTEP REGION; 103P/HARTLEY 2; CASSINI-VIMS; MU-M AB Context. Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet's nucleus. Aims. The aim of this work is to search for the presence of H2O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting images of the bright spots which could be good candidates to search for H2O ice, taken at high resolution by OSIRIS, we check for spectral cubes of the selected coordinates to identify these spots observed by VIRTIS. Methods. The selected OSIRIS images were processed with the OSIRIS standard pipeline and corrected for the illumination conditions for each pixel using the Lommel-Seeliger disk law. The spots with higher I/F were selected and then analysed spectrophotometrically and compared with the surrounding area. We selected 13 spots as good targets to be analysed by VIRTIS to search for the 2 mu m absorption band of water ice in the VIRTIS spectral cubes. Results. Out of the 13 selected bright spots, eight of them present positive H2O ice detection on the VIRTIS data. A spectral analysis was performed and the approximate temperature of each spot was computed. The H2O ice content was confirmed by modeling the spectra with mixing (areal and intimate) of H2O ice and dark terrain, using Hapke's radiative transfer modeling. We also present a detailed analysis of the detected spots. C1 [Barucci, M. A.; Fornasier, S.; Deshapriya, J. D. P.; Feller, C.; Merlin, F.; Perna, D.; Hasselmann, P. H.; Rousseau, B.; Bockelee-Morvan, D.; Leyrat, C.; Drossart, P.] UPMC Univ Paris 06, Univ Paris Diderot, CNRS, Observ Paris,LESIA, 5 Pl J Janssen, F-92195 Meudon, France. [Filacchione, G.; Raponi, A.; Tosi, F.; Ciarniello, M.; Capaccioni, F.; Capria, M. T.; De Sanctis, C.; Cerroni, P.; Palomba, E.] INAF IAPS, I-00133 Rome, Italy. [Fornasier, S.; Feller, C.; Merlin, F.; Fulchignoni, M.] Univ Paris Diderot, Sorbonne Paris Cite, 4 Rue Elsa Morante, F-75205 Paris 13, France. [Sierks, H.; Oklay, N.; Vincent, J. -B.; Guettler, C.; Kramm, J. -R.; Tubiana, C.] Max Planck Inst Sonnensyst Forsch, Justus von Liebig Weg 3, D-37077 Gottingen, Germany. [Pommerol, A.; El-Maarry, M. R.] Univ Bern, Inst Phys, Sidlerstr 5, CH-3012 Bern, Switzerland. [Massironi, M.] Univ Padua, Dipartimento Geosci, I-35122 Padua, Italy. [Guilbert-Lepoutre, A.] Observ Sci Univers, F-25000 Besancon, France. [Barbieri, C.] Univ Padua, Dept Phys & Astron G Galilei, Vic Osservatorio 3, I-35122 Padua, Italy. [Groussin, O.; Jorda, L.] CNRS, Lab Astrophys Marseille, UMR 7326, F-13388 Marseille 13, France. [Lamy, P. L.; Groussin, O.; Jorda, L.] Aix Marseille Univ, F-13388 Marseille 13, France. [Rodrigo, R.] CSIC INTA, Ctr Astrobiol, Madrid 28850, Spain. [Rodrigo, R.] Univ Bern, Int Space Sci Inst, Hallerstr 6, CH-3012 Bern, Switzerland. [Koschny, D.] European Space Agcy, Res & Sci Support Dept, NL-2201 Noordwijk, Netherlands. [Rickman, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Rickman, H.] PAS Space Res Ctr, Bartycka 18A, PL-00716 Warsaw, Poland. [Keller, H. U.] TU Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [A'Hearn, M. F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Arnold, G.; Hviid, S. F.; Kappel, D.; Knollenberg, J.; Kuehrt, E.; Mottola, S.] DLR, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany. [Bertaux, J. -L.] CNRS, UVSQ, IPSL, LATMOS, 11 Blvd Alembert, F-78280 Guyancourt, France. [Bertini, I.; Cremonese, G.; Lazzarin, M.; Marzari, F.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Da Deppo, V.; Naletto, G.] Univ Padua, Dept Informat Engn, Via Gradenigo 6, I-35131 Padua, Italy. [Davidsson, B. J. R.] JPL, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Fonti, S.; Mancarella, F.] Univ Salento, Dipartimento Fis, Lecce, LE, Italy. [Fulle, M.] Osserv Astron Trieste, INAF, Via Tiepolo 11, I-34143 Trieste, Italy. [Ip, W.] Natl Cent Univ, Inst Space Sci, Chungli 32054, Taiwan. [Kuppers, M.] ESA ESAC, POB 78, Villanueva De La Canada 28691, Spain. [Lara, L. M.; Lopez-Moreno, J. J.] CSIC, Inst Astrofis Andalucia, Granada 18080, Spain. [Pajola, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Quirico, E.; Schmitt, B.] UJF Grenoble 1, CNRS INSU, F-38400 St Martin Dheres, France. RP Barucci, MA (reprint author), UPMC Univ Paris 06, Univ Paris Diderot, CNRS, Observ Paris,LESIA, 5 Pl J Janssen, F-92195 Meudon, France. EM antonella.barucci@obspm.fr RI Naletto, Giampiero/S-6329-2016; Schmitt, Bernard/A-1064-2009; quirico, eric/K-9650-2013; OI Naletto, Giampiero/0000-0003-2007-3138; Schmitt, Bernard/0000-0002-1230-6627; quirico, eric/0000-0003-2768-0694; Filacchione, Gianrico/0000-0001-9567-0055 FU CNES; DLR (Germany); Germany (DLR); France (CNES); Italy (ASI); Spain (MEC); Sweden (SNSB); ESA Technical Directorate FX OSIRIS was built by a consortium of the Max-Planck-Institut fur Sonnensystemforschung, Gottingen, Germany, CISAS-University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofisica de Andalucia, CSIC, Granada, Spain, the Research and Scientific Support Department of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain, the Universidad Politechnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut fur Datentechnik und Kommunikationsnetze der Technischen Universitat Braunschweig, Germany. VIRTIS was built by a consortium from Italy, France, and Germany, under the scientific responsibility of IAPS, Istituto di Astrofisica e Planetologia Spaziali of INAF, Rome, which lead also the scientific operations. The VIRTIS instrument development for ESA has been funded and managed by ASI (Italy), with contributions from Observatoire de Meudon (France) financed by CNES and from DLR (Germany). The VIRTIS instrument industrial prime contractor was former Officine Galileo, now Finmeccanica in Campi Bisenzio, Florence, Italy. The support of the national funding agencies of Germany (DLR), France (CNES), Italy (ASI), Spain (MEC), Sweden (SNSB), and the ESA Technical Directorate is gratefully acknowledged. NR 53 TC 1 Z9 1 U1 11 U2 11 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2016 VL 595 AR A102 DI 10.1051/0004-6361/201628764 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED0ZP UT WOS:000388573500070 ER PT J AU Beuther, H Bihr, S Rugel, M Johnston, K Wang, Y Walter, F Brunthaler, A Walsh, AJ Ott, J Stil, J Henning, T Schierhuber, T Kainulainen, J Heyer, M Goldsmith, PF Anderson, LD Longmore, SN Klessen, RS Glover, SCO Urquhart, JS Plume, R Ragan, SE Schneider, N McClure-Griffiths, NM Menten, KM Smith, R Roy, N Shanahan, R Nguyen-Luong, Q Bigiel, F AF Beuther, H. Bihr, S. Rugel, M. Johnston, K. Wang, Y. Walter, F. Brunthaler, A. Walsh, A. J. Ott, J. Stil, J. Henning, Th. Schierhuber, T. Kainulainen, J. Heyer, M. Goldsmith, P. F. Anderson, L. D. Longmore, S. N. Klessen, R. S. Glover, S. C. O. Urquhart, J. S. Plume, R. Ragan, S. E. Schneider, N. McClure-Griffiths, N. M. Menten, K. M. Smith, R. Roy, N. Shanahan, R. Nguyen-Luong, Q. Bigiel, F. TI The HI/OH/Recombination line survey of the inner Milky Way (THOR) Survey overview and data release 1 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; ISM: clouds; ISM: structure; ISM: kinematics and dynamics; ISM: magnetic fields; stars: evolution ID GALACTIC PLANE SURVEY; INTERSTELLAR ATOMIC-HYDROGEN; GIANT MOLECULAR FILAMENTS; NARROW SELF-ABSORPTION; DUST CONTINUUM SOURCES; MASS STAR-FORMATION; I-21 CM ABSORPTION; H II REGIONS; COLUMN DENSITY; SUPERNOVA-REMNANTS AB Context. The past decade has witnessed a large number of Galactic plane surveys at angular resolutions below 20 ''. However, no comparable high-resolution survey exists at long radio wavelengths around 21 cm in line and continuum emission. Aims. We remedy this situation by studying the northern Galactic plane at similar to 20 '' resolution in emission of atomic, molecular, and ionized gas. Methods. Employing the Karl G. Jansky Very Large Array (VLA) in the C-array configuration and a large program, we observe the HI 21 cm line, four OH lines, nineteen Hn alpha radio recombination lines as well as the continuum emission from 1 to 2 GHz in full polarization over a large part of the first Galactic quadrant. Results. Covering Galactic longitudes from 14.5 to 67.4 deg and latitudes between +/- 1.25 deg, we image all of these lines and the continuum at similar to 20 '' resolution. These data allow us to study the various components of the interstellar medium (ISM): from the atomic phase, traced by the HI line, to the molecular phase, observed by the OH transitions, to the ionized medium, revealed by the cm continuum and the Hn alpha radio recombination lines. Furthermore, the polarized continuum emission enables magnetic field studies. In this overview paper, we discuss the survey outline and present the first data release as well as early results from the different datasets. We now release the first half of the survey; the second half will follow later after the ongoing data processing has been completed. The data in fits format (continuum images and line data cubes) can be accessed through the project web-page. Conclusions. The HI/OH/Recombination line survey of the Milky Way (THOR) opens a new window to the different parts of the ISM. It enables detailed studies of molecular cloud formation, conversion of atomic to molecular gas, and feedback from HII regions as well as the magnetic field in the Milky Way. It is highly complementary to other surveys of our Galaxy, and comparing the different datasets will allow us to address many open questions. C1 [Beuther, H.; Bihr, S.; Rugel, M.; Johnston, K.; Wang, Y.; Walter, F.; Henning, Th.; Schierhuber, T.; Kainulainen, J.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Johnston, K.; Ragan, S. E.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Brunthaler, A.; Menten, K. M.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Walsh, A. J.] Curtin Univ, Int Ctr Radio Astron Res, GPO Box U1987, Perth, WA 6845, Australia. [Ott, J.] Natl Radio Astron Observ, POB O,1003 Lopezville Rd, Socorro, NM 87801 USA. [Stil, J.; Plume, R.] Univ Calgary, Dept Phys & Astron, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. [Heyer, M.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Goldsmith, P. F.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Anderson, L. D.] West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. [Longmore, S. N.] Liverpool John Moores Univ, Astrophys Res Inst, 146 Brownlow Hill, Liverpool L3 5RF, Merseyside, England. [Glover, S. C. O.; Bigiel, F.] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, Albert Ueberle Str 2, D-69120 Heidelberg, Germany. [Schneider, N.] Univ Cologne, Inst Phys 1, Zilpicher Str 77, D-50937 Cologne, Germany. [McClure-Griffiths, N. M.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT, Australia. [Smith, R.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Roy, N.] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India. [Nguyen-Luong, Q.] Natl Astron Observ Japan, Chile Observ, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Urquhart, J. S.] Univ Kent, Sch Phys Sci, Ingram Bldg, Canterbury CT2 7NH, Kent, England. RP Beuther, H (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM beuther@mpia.de FU European Research Council [CSF-648505, 339177]; DFG [SFB 881, SPP 1573] FX The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. We like to thank Juan Pablo Perez-Beaupuits for providing the ionized, atomic, and molecular data of M17 presented in Fig. 13. H.B. acknowledges support from the European Research Council under the Horizon 2020 Framework Program via the ERC Consolidator Grant CSF-648505. R.S.K. and S.C.O.G. acknowledge support from the European Research Council via the ERC Advanced Grant STARLIGHT (project number 339177). R.S.K. and S.C.O.G. furthermore thank for financial help from the DFG via SFB 881 "The MilkyWay System" (subprojects B1, B2, and B8) and SPP 1573 "Physics of the Interstellar Medium". NR 113 TC 2 Z9 2 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2016 VL 595 AR A32 DI 10.1051/0004-6361/201629143 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED0ZP UT WOS:000388573500113 ER PT J AU Bjerkeli, P Jorgensen, JK Bergin, EA Frimann, S Harsono, D Jacobsen, SK Lindberg, JE Persson, M Sakai, N van Dishoeck, EF Visser, R Yamamoto, S AF Bjerkeli, P. Jorgensen, J. K. Bergin, E. A. Frimann, S. Harsono, D. Jacobsen, S. K. Lindberg, J. E. Persson, M. Sakai, N. van Dishoeck, E. F. Visser, R. Yamamoto, S. TI Water around IRAS 15398-3359 observed with ALMA SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: individual objects: IRAS 15398; ISM: molecules; ISM: jets and outflows; stars: winds, outflows; stars: formation ID STAR-FORMING REGIONS; LOW-MASS PROTOSTARS; SUBMILLIMETER CONTINUUM OBSERVATIONS; CARBON-CHAIN-CHEMISTRY; PROTOSTELLAR ACCRETION; HERSCHEL-WISH; EPISODIC ACCRETION; BURST MODE; OUTFLOWS; EVOLUTION AB Context. Understanding how protostars accrete their mass is one of the fundamental problems of star formation. High dust column densities and complex kinematical structures make direct observations challenging. Moreover, direct observations only provide a snapshot. Chemical tracers provide an interesting alternative to characterise the infall histories of protostars. Aims. We aim to map the distribution and kinematics of gaseous water towards the low-mass embedded protostar IRAS 15398-3359. Previous observations of (HCO+)-C-13 showed a depression in the abundance towards IRAS 15398-3359. This is a sign of destruction of HCO+ by an enhanced presence of gaseous water in an extended region, possibly related to a recent burst in the accretion. Direct observations of water vapour can determine the exact extent of the emission and confirm the hypothesis that HCO+ is indeed a good tracer of the water snow-line. Methods. IRAS 15398-3359 was observed using the Atacama Large Millimeter/submillimeter Array (ALMA) at 0.5 '' resolution in two setups at 390 and 460 GHz. Maps of HDO(1(01)-0(00)) and (H2O)-O-18(4(14)-3(21)) were taken simultaneously with observations of the CS (8-7) and N2H+ (5-4) lines and continuum at 0.65 and 0.75 mm. The maps were interpreted using dust radiative transfer calculations of the protostellar infalling envelope with an outflow cavity. Results. HDO is clearly detected and extended over the scales of the (HCO+)-C-13 depression, although it is displaced by similar to 500 AU in the direction of the outflow. (H2O)-O-18 is tentatively detected towards the red-shifted outflow lobe, but otherwise it is absent from the mapped region, which suggests that temperatures are low. Although we cannot entirely exclude a shock origin, this indicates that another process is responsible for the water emission. Conclusions. Based on the temperature structure obtained from dust radiative transfer models, we conclude that the water was most likely released from the grains in an extended hour-glass configuration during a recent accretion burst. HDO is only detected in the region closest to the protostar, at distances of up to 500 AU. These signatures can only be explained if the luminosity has recently been increased by orders of magnitudes. Additionally, the densities in the outflow cones must be sufficiently low. C1 [Bjerkeli, P.; Jorgensen, J. K.; Frimann, S.; Jacobsen, S. K.] Univ Copenhagen, Niels Bohr Inst, Ctr Star & Planet Format, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark. [Bjerkeli, P.; Jorgensen, J. K.; Frimann, S.; Jacobsen, S. K.] Univ Copenhagen, Nat Hist Museum Denmark, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark. [Bjerkeli, P.] Chalmers, Onsala Space Observ, Dept Earth & Space Sci, S-43992 Onsala, Sweden. [Bergin, E. A.; Visser, R.] Univ Michigan, Dept Astron, 1085 S Univ Ave, Ann Arbor, MI 48109 USA. [Harsono, D.; Persson, M.; van Dishoeck, E. F.] Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. [Lindberg, J. E.] NASA, Goddard Space Flight Ctr, Astrochem Lab, Mail Code 691,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Sakai, N.] RIKEN, Inst Phys & Chem Res, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [van Dishoeck, E. F.] Max Planck Inst Extraterr Phys, Giessenbachstr 2, D-85478 Garching, Germany. [Yamamoto, S.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. RP Bjerkeli, P (reprint author), Univ Copenhagen, Niels Bohr Inst, Ctr Star & Planet Format, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.; Bjerkeli, P (reprint author), Univ Copenhagen, Nat Hist Museum Denmark, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.; Bjerkeli, P (reprint author), Chalmers, Onsala Space Observ, Dept Earth & Space Sci, S-43992 Onsala, Sweden. EM per.bjerkeli@nbi.dk RI Sakai, Nami/N-7438-2015; OI Sakai, Nami/0000-0002-3297-4497; Persson, Magnus Vilhelm/0000-0002-1100-5734 FU Swedish Research Council (VR) [637-2013-472]; Lundbeck Foundation; European Research Council (ERC) under the European Union's Horizon research and innovation programme through ERC Consolidator Grant "S4F" [646908]; Danish National Research Foundation; Deutsche Forschungsgemeinschaft Schwerpunktprogramm [DFG SPP 1385] FX This paper makes use of the following ALMA data: ADS/JAO.ALMA#2013.1.00244.S and #2011.0.00628.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. We also thank Ivan Marti-Vidal, Wouter Vlemmings and the staff at the Nordic ARC node in Onsala for valuable support in reducing the dataset presented in this paper. This research was supported by the Swedish Research Council (VR) through the contract 637-2013-472 to Per Bjerkeli. Jes Jorgensen acknowledges support by a Lundbeck Foundation Junior Group Leader Fellowship as well as the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 646908) through ERC Consolidator Grant "S4F". The Centre for Star and Planet Formation is funded by the Danish National Research Foundation. Daniel Harsono is funded by Deutsche Forschungsgemeinschaft Schwerpunktprogramm (DFG SPP 1385) "The First 10 Million Years of the Solar System - a Planetary Materials Approach". NR 42 TC 1 Z9 1 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2016 VL 595 AR A39 DI 10.1051/0004-6361/201628795 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED0ZP UT WOS:000388573500077 ER PT J AU Catalan, EV Huby, E Forsberg, P Jolivet, A Baudoz, P Carlomagno, B Delacroix, C Habraken, S Mawet, D Surdej, J Absil, O Karlsson, M AF Catalan, E. Vargas Huby, E. Forsberg, P. Jolivet, A. Baudoz, P. Carlomagno, B. Delacroix, C. Habraken, S. Mawet, D. Surdej, J. Absil, O. Karlsson, M. TI Optimizing the subwavelength grating of L-band annular groove phase masks for high coronagraphic performance SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE instrumentation: high angular resolution; planetary systems; planets and satellites: detection ID VECTOR VORTEX CORONAGRAPH; 1ST LIGHT; DIAMOND; FABRICATION; SURFACES AB Context. The annular groove phase mask (AGPM) is one possible implementation of the vector vortex coronagraph, where the helical phase ramp is produced by a concentric subwavelength grating. For several years, we have been manufacturing AGPMs by etching gratings into synthetic diamond substrates using inductively coupled plasma etching. Aims. We aim to design, fabricate, optimize, and evaluate new L-band AGPMs that reach the highest possible coronagraphic performance, for applications in current and forthcoming infrared high-contrast imagers. Methods. Rigorous coupled wave analysis (RCWA) is used for designing the subwavelength grating of the phase mask. Coronagraphic performance evaluation is performed on a dedicated optical test bench. The experimental results of the performance evaluation are then used to accurately determine the actual profile of the fabricated gratings, based on RCWA modeling. Results. The AGPM coronagraphic performance is very sensitive to small errors in etch depth and grating profile. Most of the fabricated components therefore show moderate performance in terms of starlight rejection (a few 100: 1 in the best cases). Here we present new processes for re-etching the fabricated components in order to optimize the parameters of the grating and hence significantly increase their coronagraphic performance. Starlight rejection up to 1000: 1 is demonstrated in a broadband L filter on the coronagraphic test bench, which corresponds to a raw contrast of about 10 5 at two resolution elements from the star for a perfect input wave front on a circular, unobstructed aperture. Conclusions. Thanks to their exquisite performance, our latest L-band AGPMs are good candidates for installation in state of the art and future high-contrast thermal infrared imagers, such as METIS for the E-ELT. C1 [Catalan, E. Vargas; Forsberg, P.; Karlsson, M.] Uppsala Univ, Dept Engn Sci, Angstrom Lab, POB 534, S-75121 Uppsala, Sweden. [Huby, E.; Jolivet, A.; Carlomagno, B.; Habraken, S.; Surdej, J.; Absil, O.] Univ Liege, Space Sci Technol & Astrophys Res STAR Inst, 19c Allee Six Aout, B-4000 Liege, Belgium. [Baudoz, P.] Univ Paris Diderot, UPMC Univ Paris 06, CNRS, LESIA Observ Paris, 5 Pl J Janssen, F-92195 Meudon, France. [Delacroix, C.] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Mawet, D.] CALTECH, Dept Astron, 1200 E Calif Blvd,MC 249-17, Pasadena, CA 91125 USA. [Mawet, D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Karlsson, M (reprint author), Uppsala Univ, Dept Engn Sci, Angstrom Lab, POB 534, S-75121 Uppsala, Sweden. EM mikael.karlsson@angstrom.uu.se OI Delacroix, Christian/0000-0003-0150-4430 FU European Research Council under the European Union's Seventh Framework Programme (ERC Grant) [337569]; French Community of Belgium through an ARC grant for Concerted Research Action; Swedish Research Council (VR) [621-2014-5959] FX The authors are grateful to Jerome Parisot (LESIA, Observatoire de Paris), who manages the YACADIRE test bench, for his availability and help during every AGPM test campaigns. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (ERC Grant Agreement No. 337569), the French Community of Belgium through an ARC grant for Concerted Research Action, and the Swedish Research Council (VR) through project grant 621-2014-5959. NR 20 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2016 VL 595 AR A127 DI 10.1051/0004-6361/201628739 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED0ZP UT WOS:000388573500066 ER PT J AU Crouzier, A Malbet, F Henault, F Leger, A Cara, C LeDuigou, JM Preis, O Kern, P Delboulbe, A Martin, G Feautrier, P Stadler, E Lafrasse, S Rochat, S Ketchazo, C Donati, M Doumayrou, E Lagage, PO Shao, M Goullioud, R Nemati, B Zhai, C Behar, E Potin, S Saint-Pe, M Dupont, J AF Crouzier, A. Malbet, F. Henault, F. Leger, A. Cara, C. LeDuigou, J. M. Preis, O. Kern, P. Delboulbe, A. Martin, G. Feautrier, P. Stadler, E. Lafrasse, S. Rochat, S. Ketchazo, C. Donati, M. Doumayrou, E. Lagage, P. O. Shao, M. Goullioud, R. Nemati, B. Zhai, C. Behar, E. Potin, S. Saint-Pe, M. Dupont, J. TI A detector interferometric calibration experiment for high precision astrometry SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrometry; space vehicles: instruments; instrumentation: high angular resolution; methods: data analysis; techniques: interferometric ID CHARGE-COUPLED-DEVICE; PLANETS; VALIDATION; DISCOVERY; SYSTEMS; LIMITS; SUN AB Context. Exoplanet science has made staggering progress in the last two decades, due to the relentless exploration of new detection methods and refinement of existing ones. Yet astrometry offers a unique and untapped potential of discovery of habitable-zone low-mass planets around all the solar-like stars of the solar neighborhood. To fulfill this goal, astrometry must be paired with high precision calibration of the detector. Aims. We present a way to calibrate a detector for high accuracy astrometry. An experimental testbed combining an astrometric simulator and an interferometric calibration system is used to validate both the hardware needed for the calibration and the signal processing methods. The objective is an accuracy of 5 x 10(-6) pixel on the location of a Nyquist sampled polychromatic point spread function. Methods. The interferometric calibration system produced modulated Young fringes on the detector. The Young fringes were parametrized as products of time and space dependent functions, based on various pixel parameters. The minimization of function parameters was done iteratively, until convergence was obtained, revealing the pixel information needed for the calibration of astrometric measurements. Results. The calibration system yielded the pixel positions to an accuracy estimated at 4 x 10(-4) pixel. After including the pixel position information, an astrometric accuracy of 6 x 10(-5) pixel was obtained, for a PSF motion over more than five pixels. In the static mode (small jitter motion of less than 1 x 10(-3) pixel), a photon noise limited precision of 3 x 10(-5) pixel was reached. C1 [Crouzier, A.; Malbet, F.; Henault, F.; Preis, O.; Kern, P.; Delboulbe, A.; Martin, G.; Feautrier, P.; Stadler, E.; Lafrasse, S.; Rochat, S.; Behar, E.; Potin, S.; Saint-Pe, M.; Dupont, J.] Inst Planetol & Astrophys Grenoble, 414 Rue Piscine,Domaine Univ, F-38400 St Martin Dheres, France. [Cara, C.; Ketchazo, C.; Donati, M.; Doumayrou, E.; Lagage, P. O.] Ctr Etud Nucl Saclay, Commissariat Energie Atom & Energies Alternat, Paris, France. [Leger, A.] Ctr Univ Orsay, Inst Astrophys Spatiale, Paris, France. [LeDuigou, J. M.] Ctr Natl Etud Spatiales, 2 Pl Maurice Quentin, Paris, France. [Shao, M.; Goullioud, R.; Nemati, B.; Zhai, C.] Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Crouzier, A (reprint author), Inst Planetol & Astrophys Grenoble, 414 Rue Piscine,Domaine Univ, F-38400 St Martin Dheres, France. EM antoine.crouzier@gmail.com NR 50 TC 0 Z9 0 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2016 VL 595 AR A108 DI 10.1051/0004-6361/201526321 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED0ZP UT WOS:000388573500007 ER PT J AU Ferrigno, C Ducci, L Bozzo, E Kretschmar, P Kuhnel, M Malacaria, C Pottschmidt, K Santangelo, A Savchenko, V Wilms, J AF Ferrigno, Carlo Ducci, Lorenzo Bozzo, Enrico Kretschmar, Peter Kuehnel, Matthias Malacaria, Christian Pottschmidt, Katja Santangelo, Andrea Savchenko, Volodymyr Wilms, Joern TI Two giant outbursts of V0332+53 observed with INTEGRAL SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: neutron; X-rays: binaries; pulsars: individual: V0332+53 ID RAY TRANSIENT V0332+53; CYCLOTRON LINE ENERGY; ORBITAL PARAMETERS; ABSORPTION FEATURE; DISCOVERY; LUMINOSITY; BINARY; SPECTROMETER; HERCULES-X-1; V-0332+53 AB Context. In July 2015, the high-mass X-ray binary V0332+53 underwent a giant outburst, a decade after the previous one. V0332+53 hosts a strongly magnetized neutron star. During the 2004-2005 outburst, an anti-correlation between the centroid energy of its fundamental cyclotron resonance scattering features (CRSFs) and the X-ray luminosity was observed. Aims. The long (approximate to 100 d) and bright (L-x approximate to 10(38) erg s(-1)) 2015 outburst provided the opportunity to study the unique properties of the fundamental CRSF during another outburst and to study its dependence on the X-ray luminosity. Methods. The source was observed by the INTEGRAL satellite for similar to 330 ks. We exploit the spectral resolution at high energies of the SPectrometer on INTEGRAL (SPI) and the Joint European X-ray Monitors to characterize its spectral properties, focusing in particular on the CRSF-luminosity dependence. We complement the data of the 2015 outburst with those collected by SPI in 20042005, which have so far been left unpublished. Results. We find a highly significant anti-correlation of the centroid energy of the fundamental CRSF and the 3-100 keV luminosity of E-1 proportional to -0.095(8) L-37 keV. This trend is observed for both outbursts. We confirm the correlation between the width of the fundamental CRSF and the X-ray luminosity previously found in the JEM-X and IBIS dataset of the 2004-2005 outburst. By exploiting the RXTE/ASM and Swift/BAT monitoring data, we also report on the detection of a similar to 34 d modulation superimposed on the mean profiles and roughly consistent with the orbital period of the pulsar. We discuss possible interpretations of such variability. C1 [Ferrigno, Carlo; Ducci, Lorenzo; Bozzo, Enrico] Univ Geneva, ISDC, Chemin Ecol 16, CH-1290 Versoix, Switzerland. [Ducci, Lorenzo; Malacaria, Christian; Santangelo, Andrea] Eberhard Karls Univ Tubingen, Kepler Ctr Astro & Particle Phys, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany. [Kretschmar, Peter] European Space Astron Ctr ESA ESAC, Sci Operat Dept, Madrid 28691, Spain. [Kuehnel, Matthias; Wilms, Joern] D Karl Remeis Sternwarte & Erlangen Ctr Astropart, Sternwartstr 7, D-96049 Bamberg, Germany. [Pottschmidt, Katja] UMBC, CRESST, Dept Phys, Baltimore, MD 21250 USA. [Pottschmidt, Katja] UMBC, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Pottschmidt, Katja] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Savchenko, Volodymyr] Univ Paris Diderot, Sorbonne Paris Cite, APC Astroparticule & Cosmol, Francois Arago Ctr,CNRS IN2P3,CEA Irfu,Observ Par, Paris, France. RP Ferrigno, C (reprint author), Univ Geneva, ISDC, Chemin Ecol 16, CH-1290 Versoix, Switzerland. EM carlo.ferrigno@unige.ch RI Savchenko, V/C-6191-2016; Wilms, Joern/C-8116-2013 OI Savchenko, V/0000-0001-8188-5557; Wilms, Joern/0000-0003-2065-5410 FU Bundesministerium fur Wirtschaft und Technologie; Deutsches Zentrum fur Luft und Raumfahrt [FKZ 50 OG 1602, 50 OR 1207]; ESA member state (Denmark); ESA member state (France); ESA member state (Germany); ESA member state (Italy); ESA member state (Spain); ESA member state (Switzerland) FX C.F. thanks G. Cusumano for his constructive comments on our manuscript and for discussing Swift/BAT results. L.D. acknowledges Jean-Pierre Roques, Elisabeth Jourdain, and James Rodi for their precious help on the use of SPIDAI. L.D. and M.K. acknowledge support by the Bundesministerium fur Wirtschaft und Technologie and the Deutsches Zentrum fur Luft und Raumfahrt through the grants FKZ 50 OG 1602 and 50 OR 1207, respectively. This paper is based on data from observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), Czech Republic and Poland, and with the participation of Russia and the USA. NR 53 TC 1 Z9 1 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2016 VL 595 AR A17 DI 10.1051/0004-6361/201628865 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED0ZP UT WOS:000388573500088 ER PT J AU Ginsburg, A Goss, WM Goddi, C Galvan-Madrid, R Dale, JE Bally, J Battersby, CD Youngblood, A Sankrit, R Smith, R Darling, J Kruijssen, JMD Liu, HB AF Ginsburg, A. Goss, W. M. Goddi, C. Galvan-Madrid, R. Dale, J. E. Bally, J. Battersby, C. D. Youngblood, A. Sankrit, R. Smith, R. Darling, J. Kruijssen, J. M. D. Liu, H. B. TI Toward gas exhaustion in the W51 high-mass protoclusters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE H II regions; circumstellar matter; radio continuum: ISM; radio lines: ISM; stars: massive; stars: protostars ID H-II REGIONS; GIANT MOLECULAR CLOUD; STAR-FORMING REGIONS; YOUNG STELLAR OBJECTS; R-CORONAE-AUSTRALIS; RHO-OPHIUCHI CLOUD; FORMALDEHYDE EMISSION; CLUSTER PROGENITORS; CONTINUUM EMISSION; RADIO-CONTINUUM AB We present new JVLA observations of the high-mass cluster-forming region W51A from 2 to 16 GHz with resolution theta(fwhm) approximate to 0.3-0.5 ''. The data reveal a wealth of observational results: (1) Currently forming, very massive (proto-O) stars are traced by o-H2CO 2(1,1)-2(1,2) emission, suggesting that this line can be used efficiently as a massive protostar tracer; (2) there is a spatially distributed population of. less than or similar to mJy continuum sources, including hypercompact H II regions and candidate colliding wind binaries, in and around the W51 proto-clusters; and (3) there are two clearly detected protoclusters, W51e and W51 IRS2, that are gas-rich but may have most of their mass in stars within their inner. 0.05 pc. The majority of the bolometric luminosity in W51 most likely comes from a third population of OB stars between these clusters. The presence of a substantial population of exposed O-stars coincident with a population of still-forming massive stars, together with a direct measurement of the low mass loss rate via ionized gas outflow from W51 IRS2, implies that feedback is ineffective at halting star formation in massive protoclusters. Instead, feedback may shut off the large-scale accretion of diffuse gas onto the W51 protoclusters, implying that they are evolving toward a state of gas exhaustion rather than gas expulsion. Recent theoretical models predict gas exhaustion to be a necessary step in the formation of gravitationally bound stellar clusters, and our results provide an observational validation of this process. C1 [Ginsburg, A.; Liu, H. B.] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Goss, W. M.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Goddi, C.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Goddi, C.] Leiden Univ, Leiden Observ, ALLEGRO, POB 9513, NL-2300 RA Leiden, Netherlands. [Galvan-Madrid, R.] UNAM, Inst Radioastron & Astrofis, AP 3-72, Morelia 58089, Michoacan, Mexico. [Dale, J. E.] Univ Observ Excellence Cluster Universe, Scheinerstr 1, D-81679 Munich, Germany. [Bally, J.; Darling, J.] Univ Colorado, CASA, 389 UCB, Boulder, CO 80309 USA. [Battersby, C. D.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Youngblood, A.] Univ Colorado, LASP, 600 UCB, Boulder, CO 80309 USA. [Sankrit, R.] NASA, Ames Res Ctr, SOFIA Sci Ctr, M-S 232-12, Moffett Field, CA 94035 USA. [Smith, R.] Univ Manchester, Sch Phys & Astron, Ctr Astrophys, Jodrell Bank, Oxford Rd, Manchester M13 9PL, Lancs, England. [Kruijssen, J. M. D.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany. [Kruijssen, J. M. D.] Heidelberg Univ, Zentrum Astron, Astron Rechen Inst, Monchhofstr 12-14, D-69120 Heidelberg, Germany. RP Ginsburg, A (reprint author), European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. EM Adam.Ginsburg@eso.org FU Deutsche Forschungsgemeinschaft (DFG) [KR4801/1-1] FX The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. J.M.D.K. gratefully acknowledges financial support in the form of a Gliese Fellowship and an Emmy Noether Research Group from the Deutsche Forschungsgemeinschaft (DFG), grant number KR4801/1-1. This research made use of: APLpy, an open-source plotting package for Python hosted at http://aplpy.github.com, Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013), ds9, a tool for data visualization supported by the Chandra X-ray Science Center (CXC) and the High Energy Astrophysics Science Archive Center (HEASARC) with support from the JWST Mission office at the Space Telescope Science Institute for 3D visualization, myRadex, an alternative implementation of RADEX (http://home.strw.leidenuniv.nl/similar to moldata/radex.html), pvextractor, a tool to extract position-velocity diagrams along arbitrary directions from data cubes, pyradex, a python wrapper of RADEX (http://home.strw.leidenuniv.nl/similar to moldata/radex.html), pyspeckit, an open-source spectral analysis and plotting package for Python hosted at http://pyspeckit.bitbucket.org (Ginsburg & Mirocha 2011), spectralcube, a library for astronomical spectral data cubes, and wcsaxes, an open-source plotting library for Python hosted at https://wcsaxes.readthedocs.io/en/latest/. NR 102 TC 1 Z9 1 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2016 VL 595 AR A27 DI 10.1051/0004-6361/201628318 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED0ZP UT WOS:000388573500037 ER PT J AU Ivarsen, MF Bull, P Llinares, C Mota, D AF Ivarsen, Magnus Fagernes Bull, Philip Llinares, Claudio Mota, David TI Distinguishing screening mechanisms with environment-dependent velocity statistics SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: theory; large-scale structure of Universe; gravitation; galaxies: distances and redshifts ID MODIFIED GRAVITY; GALAXY ENVIRONMENT; ASSEMBLY BIAS; F(R) GRAVITY; LAMBDA-CDM; HALO MASS; MATTER; COSMOLOGY; UNIVERSE; FIELDS AB Context. Alternative theories of gravity typically invoke an environment-dependent screening mechanism to allow phenomenologically interesting deviations from general relativity (GR) to manifest on larger scales, while reducing to GR on small scales. The observation of the transition from screened to unscreened behavior would be compelling evidence for beyond-GR physics. Aims. We show that pairwise peculiar velocity statistics, in particular the relative radial velocity dispersion, sigma(parallel to), can be used to observe this transition when they are binned by some measure of halo environment. Methods. We established this by measuring the radial velocity dispersion between pairs of halos in N-body simulations for three f(R) gravity and four symmetron models. We developed an estimator involving only line-of-sight velocities to show that this quantity is observable, and binned the results in halo mass, ambient density, and the isolatedness of halos. Results. Ambient density is found to be the most relevant measure of environment; it is distinct from isolatedness, and correlates well with theoretical expectations for the symmetron model. By binning sigma(parallel to) in ambient density, we find a strong environment-dependent signature for the symmetron models, with the velocities showing a clear transition from GR to non-GR behavior. No such transition is observed for f(R), as the relevant scales are deep in the unscreened regime. Conclusions. Observations of the relative radial velocity dispersion in forthcoming peculiar velocity surveys, if binned appropriately by environment, therefore offer a valuable way of detecting the screening signature of modified gravity. C1 [Ivarsen, Magnus Fagernes; Mota, David] Univ Oslo, Inst Theoret Astrophys, POB 1029, N-0315 Oslo, Norway. [Bull, Philip] CALTECH, Pasadena, CA 91125 USA. [Bull, Philip] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Llinares, Claudio] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England. RP Bull, P (reprint author), CALTECH, Pasadena, CA 91125 USA.; Bull, P (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM philip.j.bull@jpl.nasa.gov OI Bull, Philip/0000-0001-5668-3101 FU Research Council of Norway FX We are grateful to A. Barreira, B. Falck, M. Gronke, P. Lilje, H. Winther, H.-Y. Wu, and especially the referee, W. Hellwing, for useful comments and discussions, and R. O. Fauli for preliminary work during a masters project. PB's research was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Universities Space Research Association under contract with NASA. DFM is supported by the Research Council of Norway. We thank NOTUR for proving computational support. NR 67 TC 2 Z9 2 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2016 VL 595 AR A40 DI 10.1051/0004-6361/201628604 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED0ZP UT WOS:000388573500052 ER PT J AU Lallement, R Snowden, S Kuntz, KD Dame, TM Koutroumpa, D Grenier, I Casandjian, JM AF Lallement, R. Snowden, S. Kuntz, K. D. Dame, T. M. Koutroumpa, D. Grenier, I. Casandjian, J. M. TI On the distance to the North Polar Spur and the local CO-H-2 factor SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE X-rays: ISM; radio lines: ISM; local insterstellar matter; ISM: bubbles; dust, extinction; Galaxy: center ID MILKY-WAY; GALACTIC-CENTER; FERMI BUBBLES; RADIO; MAPS; EXTINCTION; GALAXY; STARS; MODEL; WIND AB Aims. Most models identify the X-ray bright North Polar Spur (NPS) with a hot interstellar (IS) bubble in the Sco-Cen star-forming region at similar or equal to 130 pc. An opposite view considers the NPS as a distant structure associated with Galactic nuclear outflows. Constraints on the NPS distance can be obtained by comparing the foreground IS gas column inferred from X-ray absorption to the distribution of gas and dust along the line of sight. Absorbing columns toward shadowing molecular clouds simultaneously constrain the CO-H-2 conversion factor. Methods. We derived the columns of X-ray absorbing matter N-Habs from spectral fitting of dedicated XMM-Newton observations toward the NPS southern terminus (l(II) similar or equal to 29 degrees, b(II) similar or equal to + 5 to + 11 degrees). The distribution of the IS matter was obtained from absorption lines in new stellar spectra, 3D dust maps, and emission data, including high spatial resolution CO measurements recorded for this purpose. Results. N-Habs varies from similar or equal to 4.3 to similar or equal to 1.3 x 10(21) cm(-2) along the 19 fields. Relationships between X-ray brightness, absorbing column, and hardness ratio demonstrate a brightness increase with latitude that is governed by increasing absorption. The comparison with absorption data and local and large-scale dust maps rules out an NPS source near-side closer than 300 pc. The correlation between N-Habs and the reddening increases with the sightline length from 300 pc to 4 kpc and is the tightest with Planck tau(353GHz)-based reddening, suggesting a much larger distance. N(H)/E(B-V)(tau) similar or equal to 4.1 x 10(21) cm(-2) mag(-1), close to Fermi-Planck determinations. N-Habs absolute values are compatible with HI-CO clouds at -5 <= V-LSR <= +25 to +45 km s(-1) and an NPS potentially far beyond the Local Arm. A shadow cast by a b = +9 degrees molecular cloud constrains X-CO in that direction to <= 1.0 x 10(20) cm(-2) K-1 km(-1) s. The average X-CO over the fields is <= 0.75 x 10(20) cm(-2) K-1 km(-1) s. C1 [Lallement, R.] GEPI Observ Paris, 5 Pl Jules Janssen, F-92195 Meudon, France. [Snowden, S.] NASA GSFC, Greenbelt, MD 20771 USA. [Kuntz, K. D.] Henry A Rowland Dept Phys & Astron, Baltimore, MD 21218 USA. [Dame, T. M.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Koutroumpa, D.] Univ Versailles St Quentin, LATMOS IPSL, INSU CNRS, 11 Bd DAlembert, F-78280 Guyancourt, France. [Grenier, I.] Univ Paris Diderot, AIM, F-91191 Gif Sur Yvette, France. [Casandjian, J. M.] CEA Saclay DSM Irfu SAp, F-91191 Gif Sur Yvette, France. RP Lallement, R (reprint author), GEPI Observ Paris, 5 Pl Jules Janssen, F-92195 Meudon, France. EM rosine.lallement@obspm.fr FU NASA [NNX15AG24G]; French National Research Agency (ANR) through the STILISM project; CNRS program (Programme National de Physique et Chimie du Milieu Interstellaire) FX K.K. acknowledges support from NASA grant NNX15AG24G. R.L. and I.G. acknowledge support from the French National Research Agency (ANR) through the STILISM project. R.L. acknowledges telescope time funding by the CNRS program (Programme National de Physique et Chimie du Milieu Interstellaire) and thanks the TBL-Narval team at Pic du Midi for their efficient support and excellent service observing. NR 54 TC 0 Z9 0 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2016 VL 595 AR A131 DI 10.1051/0004-6361/201629453 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED0ZP UT WOS:000388573500133 ER PT J AU Mizuki, T Yamada, T Carson, JC Kuzuhara, M Nakagawa, T Nishikawa, J Sitko, ML Kudo, T Kusakabe, N Hashimoto, J Abe, L Brander, W Brandt, TD Egner, S Feldt, M Goto, M Grady, CA Guyon, O Hayano, Y Hayashi, M Hayashi, SS Henning, T Hodapp, KW Ishii, M Iye, M Janson, M Kandori, R Knapp, GR Kwon, J Matsuo, T McElwain, MW Miyama, S Morino, J Moro-Martin, A Nishimura, T Pyo, T Serabyn, E Suenaga, T Suto, H Suzuki, R Takahashi, YH Takami, M Takato, N Terada, H Thalmann, C Turner, EL Watanabe, M Wisniewski, J Takami, H Usuda, T Tamura, M AF Mizuki, T. Yamada, T. Carson, J. C. Kuzuhara, M. Nakagawa, T. Nishikawa, J. Sitko, M. L. Kudo, T. Kusakabe, N. Hashimoto, J. Abe, L. Brander, W. Brandt, T. D. Egner, S. Feldt, M. Goto, M. Grady, C. A. Guyon, O. Hayano, Y. Hayashi, M. Hayashi, S. S. Henning, T. Hodapp, K. W. Ishii, M. Iye, M. Janson, M. Kandori, R. Knapp, G. R. Kwon, J. Matsuo, T. McElwain, M. W. Miyama, S. Morino, J. Moro-Martin, A. Nishimura, T. Pyo, T. Serabyn, E. Suenaga, T. Suto, H. Suzuki, R. Takahashi, Y. H. Takami, M. Takato, N. Terada, H. Thalmann, C. Turner, E. L. Watanabe, M. Wisniewski, J. Takami, H. Usuda, T. Tamura, M. TI High-contrast imaging of epsilon Eridani with ground-based instruments SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planets and satellites: general; stars: individual: epsilon Eridani; instrumentation: adaptive optics; techniques: image processing ID ELEMENT-OF ERIDANI; EXTRASOLAR GIANT PLANETS; LONG-PERIOD PLANETS; M-BAND SURVEY; BROWN DWARFS; NEARBY STARS; EVOLUTIONARY MODELS; DETERMINISTIC MODEL; DEBRIS DISKS; EXOPLANETS AB epsilon Eridani is one of the nearest solar-type stars. Its proximity and relatively young age allow high-contrast imaging observations to achieve sensitivities to planets at narrow separations down to an inner radius of similar to 5 AU. Previous observational studies of the system report a dust disk with asymmetric morphology as well as a giant planet with large orbital eccentricity, which may require another massive companion to induce the peculiar morphology and to enhance the large orbital eccentricity. In this paper, we report results from deep high-contrast imaging observations to detect the previously reported planet and search for other unseen less massive companions with Subaru/HiCIAO, Gemini-South/NICI, and VLT/NACO. No positive detection was made, but high-contrast measurements with the CH4S narrow-band filter of HiCIAO achieved sensitivities at 14.7 mag differential magnitude level, at an angular separation of 1.0 ''. In terms of planetary mass, as determined by cooling evolutionary models, the highest sensitivities were achieved by the Lp broad-band filter of NACO, resulting in sensitivities corresponding to 1.8, 2.8, and 4.5 M-jup at the projected separation of 3 AU, if 200, 400, and 800 Myr is assumed for the age of the system, respectively. We also discuss origins of the dust disk from the detection sensitivity in the planetary mass and find that a less massive eccentric planet is preferred for disk stirring, which is consistent with the orbital parameters of epsilon Eri b claimed from the previous long-term radial velocity monitoring. C1 [Mizuki, T.; Yamada, T.] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Yamada, T.; Nakagawa, T.; Kwon, J.] JAXA, Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa, Japan. [Carson, J. C.] Coll Charleston, Dept Phys & Astron, Charleston, SC 29424 USA. [Kuzuhara, M.] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan. [Kuzuhara, M.; Nishikawa, J.; Kusakabe, N.; Hashimoto, J.; Suto, H.; Tamura, M.] Astrobiol Ctr NINS, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Nishikawa, J.; Hayashi, M.; Ishii, M.; Iye, M.; Kandori, R.; Kwon, J.; Morino, J.; Suenaga, T.; Suto, H.; Suzuki, R.; Takahashi, Y. H.; Terada, H.; Takami, H.; Usuda, T.; Tamura, M.] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Sitko, M. L.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Kudo, T.; Egner, S.; Guyon, O.; Hayano, Y.; Hayashi, S. S.; Nishimura, T.; Pyo, T.; Takato, N.] Natl Astron Observ Japan, Subaru Telescope, 650 North Aohoku Pl, Hilo, HI 96720 USA. [Abe, L.] Univ Nice Sophia Antipolis, Lab Lagrange, Observ Cote Azur, CNRS,UMR 7293, 28 Ave Valrose, F-06108 Nice 2, France. [Brander, W.; Feldt, M.; Henning, T.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Brandt, T. D.] Inst Adv Study, Dept Astrophys, Princeton, NJ 08540 USA. [Goto, M.] Ludwig Maximilians Univ Munchen, Univ Sternwarte Munchen, Scheinerstr 1, D-81679 Munich, Germany. [Grady, C. A.; McElwain, M. W.] Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. [Grady, C. A.] Eureka Sci, 2452 Delmer,Suite 100, Oakland, CA 96002 USA. [Grady, C. A.] Goddard Ctr Astrobiol, Greenbelt, MD USA. [Hodapp, K. W.] Univ Hawaii, Inst Astron, 640 N Aohoku Pl, Hilo, HI 96720 USA. [Janson, M.; Knapp, G. R.; Moro-Martin, A.; Turner, E. L.] Princeton Univ, Dept Astrophys Sci, Peyton Hall,Ivy Lane, Princeton, NJ 08544 USA. [Takahashi, Y. H.; Tamura, M.] Univ Tokyo, Dept Astron, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Matsuo, T.] Osaka Univ, Dept Earth & Space Sci, Grad Sch Sci, 1-1 Machikaneyamacho, Toyonaka, Osaka 5600043, Japan. [Miyama, S.] Hiroshima Univ, 1-3-2 Kagamiyama, Higashihiroshima, Hiroshima 7398511, Japan. [Moro-Martin, A.] CAB CSIC INTA, Dept Astrophys, Madrid 28850, Spain. [Serabyn, E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Suenaga, T.] Grad Univ Adv Studies, Dept Astron Sci, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Takami, M.] Acad Sinica, Inst Astron & Astrophys, POB 23-141, Taipei 10617, Taiwan. [Thalmann, C.] Swiss Fed Inst Technol, Swiss Fed Inst Technol, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Turner, E. L.] Univ Tokyo, Kavli Inst Phys & Math Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778568, Japan. [Watanabe, M.] Hokkaido Univ, Dept Cosmosci, Kita Ku, Sapporo, Hokkaido 0600810, Japan. [Wisniewski, J.] Univ Oklahoma, HL Dodge Dept Phys & Astron, 440 WBrooks St Norman, Norman, OK 73019 USA. RP Mizuki, T (reprint author), Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan. EM mizuki@astr.tohoku.ac.jp RI MIYAMA, Shoken/A-3598-2015 FU Program for Leading Graduate Schools, "Inter-Graduate School Doctoral Degree Program on Global Safety"; Ministry of Education, Culture, Sports, Science, and Technology; US National Science Foundation [1009203]; Japan Society for Promotion of Science (JSPS); [25-8826] FX The authors thank the anonymous referee for useful comments, the Subaru Telescope staff for their assistance, David Lafreniere for generously providing the source code for the LOCI algorithm, and also Dimitri Mawet and his collaborators for providing the source code for the PCA/KLIP algorithm in their website. This work was conducted based on: (a) data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, especially "Strategic Exploration of Exoplanets and Disks with Subaru"; (b) observations obtained at the Gemini Observatory acquired through the Gemini Science Archive, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina), and Ministerio da Ciencia, Tecnologia e Inovacao (Brazil); and (c) data obtained from the ESO Science Archive Facility under request number 175360 SAF and 191119 SAF. T.M. is supported by the Program for Leading Graduate Schools, "Inter-Graduate School Doctoral Degree Program on Global Safety", by the Ministry of Education, Culture, Sports, Science, and Technology. J.C. is supported by the US National Science Foundation under Award No. 1009203. M.K. was supported by Japan Society for Promotion of Science (JSPS) Fellowship for Research, and this work was partially supported by the Grant-in-Aid for JSPS Fellows (Grant Number 25-8826). The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 48 TC 0 Z9 0 U1 3 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2016 VL 595 AR A79 DI 10.1051/0004-6361/201628544 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED0ZP UT WOS:000388573500045 ER PT J AU Relano, M Kennicutt, R Lisenfeld, U Verley, S Hermelo, I Boquien, M Albrecht, M Kramer, C Braine, J Perez-Montero, E De Looze, I Xilouris, M Kovacs, A Staguhn, J AF Relano, M. Kennicutt, R. Lisenfeld, U. Verley, S. Hermelo, I. Boquien, M. Albrecht, M. Kramer, C. Braine, J. Perez-Montero, E. De Looze, I. Xilouris, M. Kovacs, A. Staguhn, J. TI Dust properties in H II regions in M33 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: individual: M 33; galaxies: ISM; H II regions; ISM: bubbles; dust, extinction; infrared: ISM ID LARGE-MAGELLANIC-CLOUD; INTERSTELLAR RADIATION-FIELD; INITIAL MASS FUNCTION; GIANT HII-REGIONS; WOLF-RAYET STARS; M 33 HERM33ES; NGC 604; INFRARED-EMISSION; MOLECULAR CLOUDS; DWARF GALAXIES AB Context. The infrared emission (IR) of the interstellar dust has been claimed to be a tracer of the star formation rate. However, the conversion of the IR emission into star formation rate can be strongly dependent on the physical properties of the dust, which are affected by the environmental conditions where the dust is embedded. Aims. We study here the dust properties of a set of H II regions in the Local Group galaxy M33 presenting different spatial configurations between the stars, gas, and dust to understand the dust evolution in different environments. Methods. We modelled the spectral energy distribution (SED) of each region using the Dust EM tool and obtained the mass relative to hydrogen for very small grains (VSG, Y-VSG), polycyclic aromatic hydrocarbons (Y-PAH), and big grains (BG, Y-BG). We furthermore performed a pixel-by-pixel SED modelling and derived maps of the relative mass of each grain type for the whole surface of the two most luminous H II regions in M33, NGC 604 and NGC 595. Results. The relative mass of the VSGs (Y-VSG/Y-TOTAL) changes with the morphology of the region: Y-VSG/Y-TOTAL is a factor of similar to 1.7 higher for H II regions classified as filled and mixed than for regions presenting a shell structure. The enhancement in VSGs within NGC 604 and NGC 595 is correlated to expansive gas structures with velocities >= 50 km s(-1). The gas-to-dust ratio derived for the H II regions in our sample exhibits two regimes related to the H I-H-2 transition of the interstellar medium (ISM). Regions corresponding to the H I diffuse regime present a gas-to-dust ratio compatible with the expected value if we assume that the gas-to-dust ratio scales linearly with metallicity, while regions corresponding to a H-2 molecular phase present a flatter dust-gas surface density distribution. Conclusions. The fraction of VSGs can be affected by the conditions of the interstellar environment: strong shocks of similar to 50-90 km s(-1) existing in the interior of the most luminous H II regions can lead to fragmentation of BGs into smaller ones, while the more evolved shell and clear shell objects provide a more quiescent environment where reformation of dust BGs might occur. The gas-to-dust variations found in this analysis might imply that grain coagulation and/or gas-phase metal incorporation into the dust mass is occurring in the interior of the H II regions in M33. C1 [Relano, M.; Lisenfeld, U.; Verley, S.] Univ Granada, Dept Fis Teor & Cosmos, Granada 18010, Spain. [Relano, M.; Lisenfeld, U.; Verley, S.] Univ Granada, Inst Univ Carlos I Fis Teor & Computac, E-18071 Granada, Spain. [Kennicutt, R.; Boquien, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Hermelo, I.; Kramer, C.] Inst Radioastron Milimetr, Nucleo Cent, Av Divina Pastora 7, Granada 18012, Spain. [Boquien, M.] Univ Antofagasta, Fac Cs Basicas, Unidad Astron, 02800 Avda U Antofagasta, Antofagasta, Chile. [Albrecht, M.] Univ Bonn, Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany. [Braine, J.] Univ Bordeaux, Lab Astrophys Bordeaux, CNRS, LAB,UMR 5804, F-33270 Floirac, France. [Perez-Montero, E.] CSIC, Inst Astrofis & Andalucia, Apdo 3004, E-18008 Granada, Spain. [De Looze, I.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [De Looze, I.] Univ Ghent, Sterrenkundig Observ, Krijgslaan 281 S9, B-9000 Ghent, Belgium. [Xilouris, M.] Natl Observ Athens, Inst Astron & Astrophys, Athens 15236, Greece. [Kovacs, A.] Univ Minnesota, Dept Astron, 116 Church St SE, Minneapolis, MN 55414 USA. [Staguhn, J.] NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Staguhn, J.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Relano, M (reprint author), Univ Granada, Dept Fis Teor & Cosmos, Granada 18010, Spain.; Relano, M (reprint author), Univ Granada, Inst Univ Carlos I Fis Teor & Computac, E-18071 Granada, Spain. EM mrelano@ugr.es RI Xilouris, Emmanuel/K-9459-2013; OI Perez Montero, E/0000-0003-3985-4882 FU EC [PERG08-GA-2010-276813]; Junta de Andalucia Grant [FQM108]; Spanish MEC Grants [AYA-2011-24728, AYA-2014-53506-P]; MINECO of the Spanish Plan for Astronomy and Astrophysics [AYA-2013-47742-C4-1-P]; NSF ATI grant [1106284]; National Aeronautics and Space Administration's Earth Science Technology Office, Computational Technnologies Project [NCC5-626]; German Research Foundation (DFG) [1573, AL 1467/2-1] FX We would like to thank the referee for the useful comments that helped to improve the first version of this paper. Part of this research has been supported by the PERG08-GA-2010-276813 from the EC. This work was partially supported by the Junta de Andalucia Grant FQM108 and Spanish MEC Grants, AYA-2011-24728 and AYA-2014-53506-P. EPM thanks Spanish MINECO grant AYA-2013-47742-C4-1-P of the Spanish Plan for Astronomy and Astrophysics. This work was in part supported through NSF ATI grant 1106284. This research made use of Montage, funded by the National Aeronautics and Space Administration's Earth Science Technology Office, Computational Technnologies Project, under Cooperative Agreement Number NCC5-626 between NASA and the California Institute of Technology. The code is maintained by the NASA/IPAC Infrared Science Archive. M.R. would like to thank L. Vestreate and D. Paradis for their help with DustEM code. M.A. acknowledges funding by the German Research Foundation (DFG) in the framework of the priority programme 1573, "The Physics of the Interstellar Medium", through grant number AL 1467/2-1. This research made use of APLpy, an open-source plotting package for Python hosted at http://aplpy.github.com of TOPCAT & STIL: Starlink Table/VOTable Processing Software (Taylor 2005) of Matplotlib, a suite of open-source python modules that provide a framework for creating scientific plots. NR 78 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2016 VL 595 AR A43 DI 10.1051/0004-6361/201628139 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED0ZP UT WOS:000388573500029 ER PT J AU Santerne, A Beaulieu, JP Ayala, BR Boisse, I Schlawin, E Almenara, JM Batista, V Bennett, D Diaz, RF Figueira, P James, DJ Herter, T Lillo-Box, J Marquette, JB Ranc, C Santos, NC Sousa, SG AF Santerne, A. Beaulieu, J. -P. Rojas Ayala, B. Boisse, I. Schlawin, E. Almenara, J. -M. Batista, V. Bennett, D. Diaz, R. F. Figueira, P. James, D. J. Herter, T. Lillo-Box, J. Marquette, J. B. Ranc, C. Santos, N. C. Sousa, S. G. TI Spectroscopic characterisation of microlensing events Towards a new interpretation of OGLE-2011-BLG-0417 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE techniques: spectroscopic; techniques: high angular resolution; stars: individual: OGLE-2011-BLG-0417 ID EXTRASOLAR PLANET VALIDATION; INTERSTELLAR EXTINCTION; MASS; SPECTROGRAPH; EXOPLANET; STAR; OGLE-2005-BLG-169; CONFIRMATION; PERFORMANCE; CANDIDATES AB The microlensing event OGLE-2011-BLG-0417 is an exceptionally bright lens binary that was predicted to present radial velocity variation at the level of several km s(-1). Pioneer radial velocity follow-up observations with the UVES spectrograph at the ESO-VLT of this system clearly ruled out the large radial velocity variation, leaving a discrepancy between the observation and the prediction. In this paper, we further characterise the microlensing system by analysing its spectral energy distribution (SED) derived using the UVES spectrum and new observations with the ARCoIRIS (CTIO) near-infrared spectrograph and the Keck adaptive optics instrument NIRC2 in the J, H, and Ks-bands. We determine the mass and distance of the stars independently from the microlensing modelling. We find that the SED is compatible with a giant star in the Galactic bulge and a foreground star with a mass of 0.94 +/- 0.09 M-circle dot at a distance of 1.07 +/- 0.24 kpc. We find that this foreground star is likely the lens. Its parameters are not compatible with the ones previously reported in the literature (0.52 +/- 0.04 M-circle dot at 0.95 +/- 0.06 kpc), based on the microlensing light curve. A thoughtful re-analysis of the microlensing event is mandatory to fully understand the reason of this new discrepancy. More importantly, this paper demonstrates that spectroscopic follow-up observations of microlensing events are possible and provide independent constraints on the parameters of the lens and source stars, hence breaking some degeneracies in the analysis. UV-to-NIR low-resolution spectrographs like X-shooter (ESO VLT) could substantially contribute to this follow-up efforts, with magnitude limits above all microlensing events detected so far. C1 [Santerne, A.; Rojas Ayala, B.; Figueira, P.; Santos, N. C.; Sousa, S. G.] Univ Porto, Inst Astrofis & Ciencias Espaco, CAUP, Rua Estrelas, P-4150762 Oporto, Portugal. [Santerne, A.; Boisse, I.] Aix Marseille Univ, CNRS, LAM, F-13388 Marseille, France. [Beaulieu, J. -P.; Batista, V.; Marquette, J. B.; Ranc, C.] Univ Paris 06, Inst Astrophys Paris, UMR CNRS 7095, 98bis Blvd Arago, F-75014 Paris, France. [Rojas Ayala, B.] Univ Andres Bello, Dept Ciencias Fis, Fernandez Concha 700, Santiago, Chile. [Schlawin, E.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Almenara, J. -M.] UJF Grenoble 1, CNRS INSU, Inst Planetol & Astrophys Grenoble, UMR 5274, F-38041 Grenoble, France. [Bennett, D.] NASA, Goddard Space Flight Ctr, Lab Exoplanets & Stellar Astrophys, Greenbelt, MD 20771 USA. [Bennett, D.] Univ Notre Dame, Dept Phys, 225 Nieuwland Sci Hall, Notre Dame, IN 46556 USA. [Diaz, R. F.] Univ Geneva, Observ Astron, 51 Chemin Maillettes, CH-1290 Versoix, Switzerland. [James, D. J.] Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [James, D. J.] Univ Washington, Dept Astron, UW, POB 351580, Seattle, WA 98195 USA. [Herter, T.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Lillo-Box, J.] ESO, Alonso de Cordova 3107,Casilla 19001, Vitacura, Santiago De Chi, Chile. [Santos, N. C.] Univ Porto, Dept Fis & Astron, Fac Ciencias, Rua Campo Alegre, P-4169007 Oporto, Portugal. RP Santerne, A (reprint author), Univ Porto, Inst Astrofis & Ciencias Espaco, CAUP, Rua Estrelas, P-4150762 Oporto, Portugal.; Santerne, A (reprint author), Aix Marseille Univ, CNRS, LAM, F-13388 Marseille, France. EM alexandre.santerne@lam.fr RI Figueira, Pedro/J-4916-2013; OI Figueira, Pedro/0000-0001-8504-283X; Diaz, Rodrigo/0000-0001-9289-5160 FU National Science Foundation [0936648]; Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) [PTDC/FIS-AST/1526/2014 (POCI-01-0145-FEDER-016886), SFRH/BPD/87776/2012, IF/00169/2012, IF/01037/2013, IF/00028/2014, UID/FIS/04434/2013 (POCI-01-0145-FEDER-007672)]; POPH/FSE (EC) by FEDER through the program "Programa Operacional de Factores de Competitividade - COMPETE"; European Union [627202]; European Research Council under the ERC [337591-ExTrA]; CNES; DIM ACAV, Region Ile de France; PERSU Sorbonne Universite; Programme National de Planetologie; CONICYT PAI/CONCURSO NACIONAL INSERCION EN LA ACADEMIA [CONVOCATORIA 2015 79150050] FX We thank the anonymous referee for their fruitful comments. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. ARCoIRIS was made possible through supplemental funding from the National Science Foundation to the NOAO under the "Renewing Small Telescopes for Astronomical Research (ReSTAR)" Phase 1 program (US Federal Award ID: 0936648). The Porto group acknowledges the support from Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) in the form of grants and Investigador FCT contracts of reference PTDC/FIS-AST/1526/2014 (POCI-01-0145-FEDER-016886), SFRH/BPD/87776/2012, IF/00169/2012, IF/01037/2013, IF/00028/2014, and UID/FIS/04434/2013 (POCI-01-0145-FEDER-007672), as well as POPH/FSE (EC) by FEDER funding through the program "Programa Operacional de Factores de Competitividade - COMPETE". A.S. is supported by the European Union under a Marie Curie Intra-European Fellowship for Career Development with reference FP7-PEOPLE-2013-IEF, number 627202. J.M.A. acknowledges funding from the European Research Council under the ERC Grant Agreement No. 337591-ExTrA. V.B. was supported by the CNES and the DIM ACAV, Region Ile de France. V.B., J.P.B., J.B.M. acknowledge the support of PERSU Sorbonne Universite and the Programme National de Planetologie. B.R.-A. acknowledges the support from CONICYT PAI/CONCURSO NACIONAL INSERCION EN LA ACADEMIA, CONVOCATORIA 2015 79150050. NR 41 TC 0 Z9 0 U1 2 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2016 VL 595 AR L11 DI 10.1051/0004-6361/201527710 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED0ZP UT WOS:000388573500013 ER PT J AU Guiriec, S Kouveliotou, C Hartmann, DH Granot, J Asano, K Meszaros, P Gill, R Gehrels, N McEnery, J AF Guiriec, S. Kouveliotou, C. Hartmann, D. H. Granot, J. Asano, K. Meszaros, P. Gill, R. Gehrels, N. McEnery, J. TI A UNIFIED MODEL FOR GRB PROMPT EMISSION FROM OPTICAL TO gamma-RAYS; EXPLORING GRBs AS STANDARD CANDLES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE acceleration of particles; black hole physics; distance scale; gamma-ray burst: general; radiation mechanisms: non-thermal; radiation mechanisms: thermal ID PHOTOSPHERIC EMISSION; PARTICLE-ACCELERATION; BURST EMISSION; RADIATION; JETS; SPECTRA; SHOCKS; SIMULATIONS; TURBULENCE; MECHANISM AB The origin of prompt emission from gamma-ray bursts (GRBs) remains to be an open question. Correlated prompt optical and.-ray emission observed in a handful of GRBs strongly suggests a common emission region, but failure to adequately fit the broadband GRB spectrum prompted the hypothesis of different emission mechanisms for the low-and high-energy radiations. We demonstrate that our multi-component model for GRB gamma-ray prompt emission provides an excellent fit to GRB. 110205A from optical to.-ray energies. Our results show that the optical and highest.-ray emissions have the same spatial and spectral origin, which is different from the bulk of the X-and softest.-ray radiation. Finally, our accurate redshift estimate for GRB. 110205A demonstrates promise for using GRBs as cosmological standard candles. C1 [Guiriec, S.; Kouveliotou, C.] George Washington Univ, Dept Phys, 725 21st St NW, Washington, DC 20052 USA. [Guiriec, S.; Gehrels, N.; McEnery, J.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Guiriec, S.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Guiriec, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Guiriec, S.] Ctr Res & Explorat Space Sci & Technol CRESST, Greenbelt, MD 20771 USA. [Hartmann, D. H.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Granot, J.; Gill, R.] Open Univ Israel, Dept Nat Sci, 1 Univ Rd,POB 808, IL-4353701 Raanana, Israel. [Asano, K.] Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778582, Japan. [Meszaros, P.] Penn State Univ, Ctr Particle & Gravitat Astrophys, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Meszaros, P.] Penn State Univ, Ctr Particle & Gravitat Astrophys, Dept Phys, University Pk, PA 16802 USA. RP Guiriec, S (reprint author), George Washington Univ, Dept Phys, 725 21st St NW, Washington, DC 20052 USA. EM sylvain.guiriec@nasa.gov FU NASA [NNH11ZDA001N, NNH13ZDA001N, NNX13AH50G]; Israeli Science Foundation [719/14]; Outstanding Postdoctoral Researcher Fellowship at the Open University of Israel FX We thank Takanori Sakamoto for the precious help and the referee for the useful comments that helped to improve the quality of this article. To complete this project, S.G. was supported by the NASA grants NNH11ZDA001N and NNH13ZDA001N, which were awarded to S.G. during cycles 5 and 7 of the NASA Fermi Guest Investigator Program. P.M. was supported by the NASA grant NNX13AH50G. J.G. and R.G. acknowledge support from the Israeli Science Foundation under grant No. 719/14. R.G. is supported by an Outstanding Postdoctoral Researcher Fellowship at the Open University of Israel. NR 43 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2016 VL 831 IS 1 AR L8 DI 10.3847/2041-8205/831/1/L8 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED5XI UT WOS:000388926100001 ER PT J AU Burke, K Wilkinson, MJ AF Burke, Kevin Wilkinson, M. Justin TI Landscape evolution in Africa during the Cenozoic and Quaternary-the legacy and limitations of Lester C. King SO CANADIAN JOURNAL OF EARTH SCIENCES LA English DT Article DE Africa; landscape evolution; Cenozoic; therochronology; erosion surface ID SOUTH-AFRICA; CONTINENTAL-MARGIN; NAMIB DESERT; NIGER DELTA; HISTORY; PLATE; BASIN; SYSTEMS; UPLIFT; SCALE AB African landscape evolution since 66 Ma reflects interactions among parts of the Earth system from the Core to the Biosphere. We stress changes in those interactions in three events that have dominated landscape development: (i) a climatic revolution when the circumpolar current and the East Antarctic ice sheet first formed similar to 37 Ma; (ii) a tectonic revolution at similar to 32 Ma dominated by elevation of similar to 30 topographic structural swells continent-wide; and (iii) a second climatic revolution in a Northern Hemisphere cooling event (at similar to 2.7 Ma) that triggered Sahara desert initiation and the beginning of glacial cycles in the Northern Hemisphere (similar to 2.15 Ma). We recognize the following distinct features of the great Afro-Arabian continent (similar to 40 M km(2)) that show its relationship to Earth structure and processes: deep mantle structure and dynamics, plate motion with respect to that structure, especially plate-arrest (similar to 32 Ma). The topographic, erosional, geomorphic, and depositional modifications following that tectonic event were strongly influenced by changes around the continent in oceanic and atmospheric circulation that affected the entire continent. Atmospheric circulation changes since similar to 34 Ma have involved zonal winds, the ITCZ, desert formation and destruction, the evolution of the persistent (since similar to 35 Ma) Antarctic ice sheet, and since similar to 32 Ma of the rapidly cycling Eurasian ice sheets. We explain that a widely supported idea that ancient erosion surfaces have survived at high elevations in Africa is the result of a failure to recognize that the present elevations of the continent's swells are dynamically maintained, but do not display a thermochronological signature because they are young (less than similar to 32 My), so that conduction of heat from shallow convection cells has not yet reached the Earth's surface.(R) C1 [Burke, Kevin] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. [Burke, Kevin] Univ Witwatersrand, Sch Geosci, Johannesburg, South Africa. [Burke, Kevin] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Wilkinson, M. Justin] Texas State Univ, Dept Geog, San Marcos, TX USA. [Wilkinson, M. Justin] NASA, Johnson Space Ctr, Houston, TX 77058 USA. RP Wilkinson, MJ (reprint author), Texas State Univ, Dept Geog, San Marcos, TX USA.; Wilkinson, MJ (reprint author), NASA, Johnson Space Ctr, Houston, TX 77058 USA. EM justin.wilkinson-1@nasa.gov NR 80 TC 0 Z9 0 U1 3 U2 3 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 0008-4077 EI 1480-3313 J9 CAN J EARTH SCI JI Can. J. Earth Sci. PD NOV PY 2016 VL 53 IS 11 BP 1089 EP 1102 DI 10.1139/cjes-2016-0099 PG 14 WC Geosciences, Multidisciplinary SC Geology GA EC0IB UT WOS:000387782100003 ER PT J AU Wang, JB Mazloff, MR Gille, ST AF Wang, Jinbo Mazloff, Matthew R. Gille, Sarah T. TI The Effect of the Kerguelen Plateau on the Ocean Circulation SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID ANTARCTIC CIRCUMPOLAR CURRENT; SOUTHERN-OCEAN; MOMENTUM BALANCE; AGULHAS LEAKAGE; DRAKE PASSAGE; INDIAN-OCEAN; FORM STRESS; TRANSPORT; MODEL; CHANNEL AB The Kerguelen Plateau is a major topographic feature in the Southern Ocean. Located in the Indian sector and spanning nearly 2000 km in the meridional direction from the polar to the subantarctic region, it deflects the eastward-flowing Antarctic Circumpolar Current and influences the physical circulation and biogeochemistry of the Southern Ocean. The Kerguelen Plateau is known to govern the local dynamics, but its impact on the large-scale ocean circulation has not been explored. By comparing global ocean numerical simulations with and without the Kerguelen Plateau, this study identifies two major Kerguelen Plateau effects: 1) The plateau supports a local pressure field that pushes the Antarctic Circumpolar Current northward. This process reduces the warm-water transport from the Indian to the Atlantic Ocean. 2) The plateau-generated pressure field shields the Weddell Gyre from the influence of the warmer subantarctic and subtropical waters. The first effect influences the strength of the Antarctic Circumpolar Current and the Agulhas leakage, both of which are important elements in the global thermohaline circulation. The second effect results in a zonally asymmetric response of the subpolar gyres to Southern Hemisphere wind forcing. C1 [Wang, Jinbo; Mazloff, Matthew R.; Gille, Sarah T.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Wang, Jinbo] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Wang, JB (reprint author), 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jinbow@alum.mit.edu RI Wang, Jinbo/H-1174-2015 OI Wang, Jinbo/0000-0001-5034-5566 FU NSF [OCE-1234473, PLR-1425989] FX Wang, Mazloff, and Gille are supported by NSF OCE-1234473 and PLR-1425989. We thank Jessica Masich, Lynne Talley, Andy Hogg, Paola Cessi, Wei Liu, and two anonymous reviewers for their comments. NR 53 TC 0 Z9 0 U1 2 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 EI 1520-0485 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD NOV PY 2016 VL 46 IS 11 BP 3385 EP 3396 DI 10.1175/JPO-D-15-0216.1 PG 12 WC Oceanography SC Oceanography GA ED7IJ UT WOS:000389036600008 ER PT J AU Maurya, S Srivastava, PK Gupta, M Islam, T Han, D AF Maurya, Swati Srivastava, Prashant K. Gupta, Manika Islam, Tanvir Han, Dawei TI Integrating Soil Hydraulic Parameter and Microwave Precipitation with Morphometric Analysis for Watershed Prioritization SO WATER RESOURCES MANAGEMENT LA English DT Article DE Morphometric analysis; GIS; TRMMprecipitation; SRTMDEM; ROSETTA model; Prioritization ID MULTICRITERIA DECISION-ANALYSIS; GEOGRAPHIC INFORMATION-SYSTEM; PEDOTRANSFER FUNCTIONS; POTENTIAL SITES; SUPPORT-SYSTEM; GIS; INDIA; RETENTION; CONDUCTIVITY; CONSERVATION AB Morphometric analysis is a promising technique for watershed management. It provides quantitative descriptions of river basin and useful for understanding the behaviour of basin. This study is conducted in Pahuj river basin (Bundelkhand Region) Jhansi, Central India to understand the basin characteristics for watershed prioritization. The Shuttle Radar Topography Mission satellite (SRTM) is used to derive the Digital Elevation Model (DEM) and for creation of thematic layers such as drainage order, drainage density and slope map. In total, 20 mini-watersheds are generated for understanding the morphometric parameters and estimating the compound factor for mini-watersheds. For watershed prioritization, soil hydraulic parameter, compound factor and monthly average monsoon precipitation from TRMM (Tropical Rainfall Measure Mission) for 18 years period (1998-2015) are used. The overall analysis indicates that the mini-watershed numbers 18, 19 needs utmost attention for water conservation followed by mini-watershed number 20. Our results are also of considerable scientific and practical value to the wider scientific community, given the number of practical applications and research studies in which morphometric analysis are needed. C1 [Maurya, Swati; Srivastava, Prashant K.] Banaras Hindu Univ, Inst Environm & Sustainable Dev, Varanasi 221005, Uttar Pradesh, India. [Gupta, Manika] NASA, Goddard Space Flight Ctr, Hydrol Sci, Greenbelt, MD USA. [Islam, Tanvir] NASA, Jet Prop Lab, Pasadena, CA USA. [Islam, Tanvir] CALTECH, Pasadena, CA 91125 USA. [Han, Dawei] Univ Bristol, Dept Civil Engn, Bristol, Avon, England. RP Srivastava, PK (reprint author), Banaras Hindu Univ, Inst Environm & Sustainable Dev, Varanasi 221005, Uttar Pradesh, India. EM prashant.iesd@bhu.ac.in FU University Grant Commission; Banaras Hindu University FX The first author is highly thankful to the University Grant Commission for providing the research fellowship for the research work. The authors would like to thank the Banaras Hindu University for providing the seed grant for this research. NR 52 TC 0 Z9 0 U1 3 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-4741 EI 1573-1650 J9 WATER RESOUR MANAG JI Water Resour. Manag. PD NOV PY 2016 VL 30 IS 14 BP 5385 EP 5405 DI 10.1007/s11269-016-1494-4 PG 21 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA EC5NX UT WOS:000388183900026 ER PT J AU Arney, G Domagal-Goldman, SD Meadows, VS Wolf, ET Schwieterman, E Charnay, B Claire, M Hebrard, E Trainer, MG AF Arney, Giada Domagal-Goldman, Shawn D. Meadows, Victoria S. Wolf, Eric T. Schwieterman, Edward Charnay, Benjamin Claire, Mark Hebrard, Eric Trainer, Melissa G. TI The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth SO ASTROBIOLOGY LA English DT Article DE Haze; Archean Earth; Exoplanets; Spectra; Biosignatures; Planetary habitability ID MASS-INDEPENDENT FRACTIONATION; BILLION YEARS AGO; EARLY ATMOSPHERE; OPTICAL-CONSTANTS; ORGANIC HAZES; ULTRAVIOLET-RADIATION; EXTRASOLAR PLANETS; SULFUR ISOTOPES; TITAN THOLINS; OXYGEN LEVELS AB Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (tau similar to 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7-2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO2. Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets. C1 [Arney, Giada; Meadows, Victoria S.; Schwieterman, Edward; Charnay, Benjamin] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Arney, Giada; Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark] Univ Washington, Virtual Planetary Lab, NASA Astrobiol Inst, Seattle, WA 98195 USA. [Arney, Giada; Meadows, Victoria S.; Schwieterman, Edward; Charnay, Benjamin] Univ Washington, Astrobiol Program, Seattle, WA 98195 USA. [Arney, Giada; Domagal-Goldman, Shawn D.; Hebrard, Eric; Trainer, Melissa G.] NASA, Goddard Space Flight Ctr, Mail Code 699, Greenbelt, MD 20771 USA. [Arney, Giada; Schwieterman, Edward] Univ Space Res Assoc, NASA Postdoctoral Program, Columbia, MD USA. [Wolf, Eric T.] Univ Colorado, Lab Atmospher & Space Phys, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Schwieterman, Edward] Univ Calif Riverside, Riverside, CA 92521 USA. [Schwieterman, Edward; Claire, Mark] Blue Marble Inst Sci, Seattle, WA USA. [Charnay, Benjamin] Observ Paris, Paris, France. [Claire, Mark] Univ St Andrews, Dept Earth & Environm Sci, St Andrews, Fife, Scotland. [Hebrard, Eric] Univ Exeter, Exeter, Devon, England. RP Arney, G (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 699, Greenbelt, MD 20771 USA. EM giada.n.arney@nasa.gov FU National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNH12ZDA002C, NNA13AA93A]; NASA Astrobiology Institute Early Career Collaboration Award; NASA Planetary Atmospheres Program [NNH13ZDA001N-PATM]; NASA Exobiology Program [NNX10AR17G] FX This work was performed as part of the NASA Astrobiology Institute's Virtual Planetary Laboratory, supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under solicitation NNH12ZDA002C and Cooperative Agreement Number NNA13AA93A. G. Arney was supported in part by the NASA Astrobiology Institute Early Career Collaboration Award. E.T. Wolf acknowledges NASA Planetary Atmospheres Program award NNH13ZDA001N-PATM and NASA Exobiology Program award NNX10AR17G for financial support. B. Charnay acknowledges support from an appointment to the NASA Postdoctoral Program, administered by Universities Space Research Association. E. Hebrard was supported by an appointment to the NASA Postdoctoral Program at NASA Goddard Space Flight Center, administered by Universities Space Research Association through a contract with NASA. Simulations were facilitated through the use of the Hyak supercomputer system at the University of Washington eScience Institute. We are grateful to C. McKay and three other anonymous reviewers whose comments substantially improved the quality of our manuscript. We thank R. Buick, D. Crisp, N. Kiang, and M. Parenteau for conversations and advice. Spectra shown in this work will be archived at the Virtual Planetary Laboratory online spectral database. NR 142 TC 3 Z9 3 U1 16 U2 16 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD NOV PY 2016 VL 16 IS 11 BP 873 EP 899 DI 10.1089/ast.2015.1422 PG 27 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA EC6ZB UT WOS:000388284100006 PM 27792417 ER PT J AU Banados, E Venemans, BP Decarli, R Farina, EP Mazzucchelli, C Walter, F Fan, X Stern, D Schlafly, E Chambers, KC Rix, HW Jiang, L McGreer, I Simcoe, R Wang, F Yang, J Morganson, E De Rosa, G Greiner, J Balokovic, M Burgett, WS Cooper, T Draper, PW Flewelling, H Hodapp, KW Jun, HD Kaiser, N Kudritzki, RP Magnier, EA Metcalfe, N Miller, D Schindler, JT Tonry, JL Wainscoat, RJ Waters, C Yang, Q AF Banados, E. Venemans, B. P. Decarli, R. Farina, E. P. Mazzucchelli, C. Walter, F. Fan, X. Stern, D. Schlafly, E. Chambers, K. C. Rix, H-W. Jiang, L. McGreer, I. Simcoe, R. Wang, F. Yang, J. Morganson, E. De Rosa, G. Greiner, J. Balokovic, M. Burgett, W. S. Cooper, T. Draper, P. W. Flewelling, H. Hodapp, K. W. Jun, H. D. Kaiser, N. Kudritzki, R. -P. Magnier, E. A. Metcalfe, N. Miller, D. Schindler, J. -T. Tonry, J. L. Wainscoat, R. J. Waters, C. Yang, Q. TI THE PAN-STARRS1 DISTANT z > 5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: observations; quasars: emission lines; quasars: general ID DIGITAL SKY SURVEY; SIMILAR-TO 6; EMISSION-LINE QUASARS; ACTIVE GALACTIC NUCLEI; NEAR-INFRARED CAMERA; STAR-FORMATION RATE; THAN 6.5 QUASARS; 10(8) SOLAR MASS; HOST GALAXIES; HIGH-REDSHIFT AB Luminous quasars at z > 5.6 can be studied in detail with the current generation of telescopes and provide us with unique information on the first gigayear of the universe. Thus far, these studies have been statistically limited by the number of quasars known at these redshifts. Such quasars are rare, and therefore, wide-field surveys are required to identify them, and multiwavelength data are required to separate them efficiently from their main contaminants, the far more numerous cool dwarfs. In this paper, we update and extend the selection for the z similar to 6 quasars presented in Banados et al. (2014) using the Pan- STARRS1 (PS1) survey. We present the PS1 distant quasar sample, which currently consists of 124 quasars in the redshift range 5.6 less than or similar to z less than or similar to 6.7 that satisfy our selection criteria. Of these quasars, 77 have been discovered with PS1, and 63 of them are newly identified in this paper. We present the composite spectra of the PS1 distant quasar sample. This sample spans a factor of similar to 20 in luminosity and shows a variety of emission line properties. The number of quasars at z > 5.6 presented in this work almost doubles the previously known quasars at these redshifts, marking a transition phase from studies of individual sources to statistical studies of the high-redshift quasar population, which was impossible with earlier, smaller samples. C1 [Banados, E.; Venemans, B. P.; Decarli, R.; Farina, E. P.; Mazzucchelli, C.; Walter, F.; Schlafly, E.; Rix, H-W.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Banados, E.] Observ Carnegie Inst Washington, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Fan, X.; McGreer, I.; Wang, F.; Yang, J.; Schindler, J. -T.; Yang, Q.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Stern, D.; Jun, H. D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Schlafly, E.] Lawrence Berkeley Natl Lab, One Cyclotron Rd, Berkeley, CA 94720 USA. [Chambers, K. C.; Burgett, W. S.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R. -P.; Magnier, E. A.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Jiang, L.] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. [Simcoe, R.; Cooper, T.; Miller, D.] MIT Kavli Ctr Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Wang, F.; Yang, J.; Yang, Q.] Peking Univ, Sch Phys, Dept Astron, Beijing 100871, Peoples R China. [Morganson, E.] Univ Illinois, Natl Ctr Supercomp Applicat, 1205 W Clark St, Urbana, IL 61801 USA. [De Rosa, G.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Greiner, J.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Balokovic, M.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Draper, P. W.; Metcalfe, N.] Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England. RP Banados, E (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany.; Banados, E (reprint author), Observ Carnegie Inst Washington, 813 Santa Barbara St, Pasadena, CA 91101 USA. EM ebanados@carnegiescience.edu OI Venemans, Bram/0000-0001-9024-8322; Farina, Emanuele Paolo/0000-0002-6822-2254; Banados, Eduardo/0000-0002-2931-7824; Chambers, Kenneth /0000-0001-6965-7789 FU NSF [AST-9987045]; NSF Telescope System Instrumentation Program; Ohio Board of Regents; Ohio State University Office of Research; Leibniz Prize (DFG) [HA 1850/28-1]; National Aeronautics and Space Administration FX The LBT is an international collaboration among institutions in the United States, Italy, and Germany. The LBT Corporation partners are the University of Arizona, on behalf of the Arizona University System; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; the Ohio State University; and Research Corporation, on behalf of the University of Notre Dame, the University of Minnesota, and the University of Virginia. This paper used data obtained with the MODS spectrograph, built with funding from NSF grant AST-9987045 and the NSF Telescope System Instrumentation Program and with additional funds from the Ohio Board of Regents and the Ohio State University Office of Research.; Part of the funding for GROND (both hardware and personnel) was generously granted from the Leibniz Prize to Prof. G. Hasinger (DFG grant HA 1850/28-1).; This publication makes use of data products from the WideField Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 119 TC 1 Z9 1 U1 5 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2016 VL 227 IS 1 AR 11 DI 10.3847/0067-0049/227/1/11 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED1MA UT WOS:000388608400004 ER PT J AU Filiberto, J Baratoux, D Beaty, D Breuer, D Farcy, BJ Grott, M Jones, JH Kiefer, WS Mane, P McCubbin, FM Schwenzer, SP AF Filiberto, Justin Baratoux, David Beaty, David Breuer, Doris Farcy, Benjamin J. Grott, Matthias Jones, John H. Kiefer, Walter S. Mane, Prajkta McCubbin, Francis M. Schwenzer, Susanne P. TI A review of volatiles in the Martian interior SO METEORITICS & PLANETARY SCIENCE LA English DT Review ID MAGMATIC-HYDROTHERMAL FLUIDS; CARBON-DIOXIDE SOLUBILITIES; RIDGE BASALTIC LIQUIDS; HOSTED MELT INCLUSIONS; NORTHWEST AFRICA 7034; DEEP SULFUR CYCLE; FE-RICH ALLOY; O-H VOLATILES; NOBLE-GASES; ALUMINOSILICATE MELTS AB Multiple observations from missions to Mars have revealed compelling evidence for a volatile-rich Martian crust. A leading theory contends that eruption of basaltic magmas was the ultimate mechanism of transfer of volatiles from the mantle toward the surface after an initial outgassing related to the crystallization of a magma ocean. However, the concentrations of volatile species in ascending magmas and in their mantle source regions are highly uncertain. This work and this special issue of Meteoritics & Planetary Science summarize the key findings of the workshop on Volatiles in the Martian Interior (Nov. 3-4, 2014), the primary open questions related to volatiles in Martian magmas and their source regions, and the suggestions of the community at the workshop to address these open questions. C1 [Filiberto, Justin; Farcy, Benjamin J.] Southern Illinois Univ, Dept Geol, Carbondale, IL 62901 USA. [Filiberto, Justin; Schwenzer, Susanne P.] Open Univ, Sch Environm Earth & Ecosyst Sci, Milton Keynes MK7 6AA, Bucks, England. [Baratoux, David] Univ Toulouse, Inst Rec Dev, Geosci Environm Toulouse, 14 Ave Edouard Belin, F-31400 Toulouse, France. [Baratoux, David] Univ Toulouse, CNRS, 14 Ave Edouard Belin, F-31400 Toulouse, France. [Baratoux, David] Inst Fondamental Afrique Noire Cheikh Anta Diop, Dakar, Senegal. [Beaty, David] CALTECH, Jet Prop Lab, Mars Program Off, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Breuer, Doris; Grott, Matthias] German Aerosp Ctr DLR, Inst Planetary Res, Berlin, Germany. [Jones, John H.] NASA Johnson Space Ctr Houston, Houston, TX 77058 USA. [Kiefer, Walter S.] Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. [Mane, Prajkta] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Mane, Prajkta] Arizona State Univ, Ctr Meteorite Studies, Tempe, AZ 85287 USA. [McCubbin, Francis M.] NASA Johnson Space Ctr, Mail Code XI2,2101 NASA Pkwy, Houston, TX 77058 USA. [Farcy, Benjamin J.] NASA Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Filiberto, J (reprint author), Southern Illinois Univ, Dept Geol, Carbondale, IL 62901 USA.; Filiberto, J (reprint author), Open Univ, Sch Environm Earth & Ecosyst Sci, Milton Keynes MK7 6AA, Bucks, England. EM filiberto@siu.edu OI Kiefer, Walter/0000-0001-6741-5460 FU NASA's Mars Fundamental Research Program [NNX13AG35G, NNX13AG44G, NNX14AJ94G, NNX14AG41G]; NASA's Cosmochemistry Program [NNX11AK75G]; Open University Research Investment Fellowship FX The authors would like to thank the staff at the Lunar and Planetary Institute for providing logistical support for the workshop, the Mars Program Office for travel support for students BJF and PM, and the LPI for travel support for DB. The authors would like to thank T. Swindle and J. Mustard as well as the AE C. Goodrich for their constructive reviews which greatly improved the manuscript. The authors acknowledge support in part from NASA's Mars Fundamental Research Program grants NNX13AG35G to JF, NNX13AG44G to FMM, NNX14AJ94G to SPS and JF, and NNX14AG41G to WSK, and NASA's Cosmochemistry Program grant #NNX11AK75G to M. Wadhwa in support of PM. SPS also acknowledges support from an Open University Research Investment Fellowship. NR 297 TC 3 Z9 3 U1 5 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD NOV PY 2016 VL 51 IS 11 BP 1935 EP 1958 DI 10.1111/maps.12680 PG 24 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC6XL UT WOS:000388279900001 ER PT J AU Farcy, BJ Gross, J Carpenter, P Hicks, J Filiberto, J AF Farcy, Benjamin J. Gross, Juliane Carpenter, Paul Hicks, Jacob Filiberto, Justin TI Effect of chlorine on near-liquidus crystallization of olivine-phyric shergottite NWA 6234 at 1 GPa: Implication for volatile-induced melting of the Martian mantle SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID ALUMINOSILICATE MELTS; HIGH-TEMPERATURE; OXYGEN FUGACITY; BASALTIC MELTS; 50 KILOBARS; CL; FLUORINE; WATER; VISCOSITY; BEHAVIOR AB Martian magmas are thought to be rich in chlorine compared with their terrestrial counterparts. Here, we experimentally investigate the effect of chlorine on liquidus depression and near-liquidus crystallization of olivine-phyric shergottite NWA 6234 and compare these results with previous experimental results on the effect of chlorine on near-liquidus crystallization of the surface basalts Humphrey and Fastball. Previous experimental results showed that the change in liquidus temperature is dependent on the bulk composition of the basalt. The effect of chlorine on liquidus depression is greater for lower SiO2 and higher Al2O3 magmas than for higher SiO2 and lower Al2O3 magmas. The bulk composition for this study has lower Al2O3 and higher FeO contents than previous work; therefore, we provide additional constraints on the effect of the bulk composition on the influence of chlorine on near-liquidus crystallization. High pressure and temperature crystallization experiments were performed at 1 GPa on a synthetic basalt, of the bulk composition of NWA 6234, with 0-4 wt% Cl added to the sample as AgCl. The results are consistent with previous notions that with increasing wt% Cl in the melt, the crystallization temperature decreases. Importantly, our results have a liquidus depression Delta T (degrees C) from added chlorine that is consistent with the difference in bulk composition and suggest a dependence on both the bulk Al2O3 and FeO content. Our results suggest that the addition of chlorine to the Martian mantle may lower magma genesis temperatures and potentially aid in the petrogenesis of Martian magmas. C1 [Farcy, Benjamin J.; Hicks, Jacob; Filiberto, Justin] Southern Illinois Univ, Dept Geol, Parkinson Lab, 1263 Lincoln Dr, Carbondale, IL 62901 USA. [Farcy, Benjamin J.] NASA Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Gross, Juliane] Rutgers State Univ, Dept Earth & Planetary Sci, 610 Taylor Rd, Piscataway, NJ 08854 USA. [Gross, Juliane] Amer Museum Nat Hist, Dept Earth & Planetary Sci, Cent Pk West & 79th St, New York, NY 10024 USA. [Carpenter, Paul] Washington Univ, Dept Earth & Planetary Sci, One Brookings Dr, St Louis, MO 63130 USA. [Hicks, Jacob] Weatherford Int, 10000 Pilot Ave, Midland, TX 79706 USA. RP Filiberto, J (reprint author), Southern Illinois Univ, Dept Geol, Parkinson Lab, 1263 Lincoln Dr, Carbondale, IL 62901 USA. EM filiberto@siu.edu FU NASA MFR grant [NNX13AG35G]; Depths of the Earth Company; Porter Joblings Fellowship at Southern Illinois University FX We thank reviewers J. F. Rapp and A. Patino Douce, as well as AE F. McCubbin, for their detailed reviews, which helped clarify and significantly strengthen the article. This work was supported by NASA MFR grant no. NNX13AG35G to J. F. and J.G. We acknowledge the Depths of the Earth Company and the Porter Joblings Fellowship at Southern Illinois University for their generous contributions to help fund this project. We also thank D. Beaty and the Mars Program Office for travel support to the Volatiles in the Martian Interior Workshop. NR 66 TC 0 Z9 0 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD NOV PY 2016 VL 51 IS 11 BP 2011 EP 2022 DI 10.1111/maps.12662 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC6XL UT WOS:000388279900004 ER PT J AU Filiberto, J Gross, J McCubbin, FM AF Filiberto, Justin Gross, Juliane McCubbin, Francis M. TI Constraints on the water, chlorine, and fluorine content of the Martian mantle SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID LIGHT LITHOPHILE ELEMENTS; LITHIUM ISOTOPE COMPOSITIONS; NORTHWEST AFRICA 7034; SNC METEORITES; MAGMATIC WATER; CHASSIGNY METEORITE; HYDROGEN ISOTOPES; MELT INCLUSIONS; NAKHLITE METEORITES; SHERGOTTY METEORITE AB Previous estimates of the volatile contents of Martian basalts, and hence their source regions, ranged from nearly volatile-free through estimates similar to those found in terrestrial subduction zones. Here, we use the bulk chemistry of Martian meteorites, along with Martian apatite and amphibole chemistry, to constrain the volatile contents of the Martian interior. Our estimates show that the volatile content of the source region for the Martian meteorites is similar to the terrestrial Mid-Ocean-Ridge Mantle source. Chlorine is enriched compared with the depleted terrestrial mantle but is similar to the terrestrial enriched source region; fluorine is similar to the terrestrial primitive mantle; and water is consistent with the terrestrial mantle. Our results show that Martian magmas were not volatile saturated; had water/chlorine and water/fluorine ratios similar to 0.4-18; and are most similar, in terms of volatiles, to terrestrial MORBs. Presumably, there are variations in volatile content in the Martian interior as suggested by apatite compositions, but more bulk chemical data, especially for fluorine and water, are required to investigate these variations. Finally, the Noachian Martian interior, as exemplified by surface basalts and NWA 7034, may have had higher volatile contents. C1 [Filiberto, Justin] Southern Illinois Univ, Dept Geol, 1259 Lincoln Dr,MC 4324, Carbondale, IL 62901 USA. [Gross, Juliane] Rutgers State Univ, Dept Earth & Planetary Sci, 610 Taylor Rd, Piscataway, NJ 08854 USA. [Gross, Juliane] Amer Museum Nat Hist, Dept Earth & Planetary Sci, New York, NY 10024 USA. [McCubbin, Francis M.] NASA Johnson Space Ctr, Mail Code XI2,2101 NASA Pkwy, Houston, TX 77058 USA. RP Filiberto, J (reprint author), Southern Illinois Univ, Dept Geol, 1259 Lincoln Dr,MC 4324, Carbondale, IL 62901 USA. EM filiberto@siu.edu FU NASA Mars Fundamental Research Program grant [NNX13AG35G]; NASA's Mars Fundamental Research Program [NNX13AG44G] FX The authors thank Tomo Usui and Hap McSween as well as the Guest AE Walter Kiefer for their constructive reviews, which greatly improved the manuscript. This work was supported by NASA Mars Fundamental Research Program grant # NNX13AG35G to JF and JG. FMM acknowledges support from NASA's Mars Fundamental Research Program grant NNX13AG44G. NR 115 TC 5 Z9 5 U1 1 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD NOV PY 2016 VL 51 IS 11 BP 2023 EP 2035 DI 10.1111/maps.12624 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC6XL UT WOS:000388279900005 ER PT J AU McCubbin, FM Boyce, JW Srinivasan, P Santos, AR Elardo, SM Filiberto, J Steele, A Shearer, CK AF McCubbin, Francis M. Boyce, Jeremy W. Srinivasan, Poorna Santos, Alison R. Elardo, Stephen M. Filiberto, Justin Steele, Andrew Shearer, Charles K. TI Heterogeneous distribution of H2O in the Martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID NORTHWEST AFRICA 7034; ELECTRON-MICROPROBE ANALYSIS; SULFUR ISOTOPIC COMPOSITIONS; ERUPTIVE WATER CONTENTS; HOSTED MELT INCLUSIONS; LARKMAN NUNATAK 06319; TERRESTRIAL PLANETS; LUNAR APATITE; SNC METEORITES; PARTITIONING BEHAVIOR AB We conducted a petrologic study of apatite within 12 Martian meteorites, including 11 shergottites and one basaltic regolith breccia. These data were combined with previously published data to gain a better understanding of the abundance and distribution of volatiles in the Martian interior. Apatites in individual Martian meteorites span a wide range of compositions, indicating they did not form by equilibrium crystallization. In fact, the intrasample variation in apatite is best described by either fractional crystallization or crustal contamination with a Cl-rich crustal component. We determined that most Martian meteorites investigated here have been affected by crustal contamination and hence cannot be used to estimate volatile abundances of the Martian mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite source has 36-73 ppm H2O and the depleted source has 14-23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the Martian mantle. We also estimated the H2O, Cl, and F content of the Martian crust using known crust-mantle distributions for incompatible lithophile elements. We determined that the bulk Martian crust has similar to 1410 ppm H2O, 450 ppm Cl, and 106 ppm F, and Cl and H2O are preferentially distributed toward the Martian surface. The estimate of crustal H2O results in a global equivalent surface layer (GEL) of similar to 229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface. C1 [McCubbin, Francis M.] NASA Johnson Space Ctr, Mailcode XI2,2101 NASA Pkwy, Houston, TX 77058 USA. [McCubbin, Francis M.; Srinivasan, Poorna; Santos, Alison R.; Shearer, Charles K.] Univ New Mexico, Dept Earth & Planetary Sci, Inst Meteorit, Albuquerque, NM 87131 USA. [Boyce, Jeremy W.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Elardo, Stephen M.; Steele, Andrew] Carnegie Inst Sci, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. [Filiberto, Justin] Southern Illinois Univ, Dept Geol, 1259 Lincoln Dr,MC 4324, Carbondale, IL 62901 USA. RP McCubbin, FM (reprint author), NASA Johnson Space Ctr, Mailcode XI2,2101 NASA Pkwy, Houston, TX 77058 USA.; McCubbin, FM (reprint author), Univ New Mexico, Dept Earth & Planetary Sci, Inst Meteorit, Albuquerque, NM 87131 USA. EM francis.m.mccubbin@nasa.gov RI Elardo, Stephen/E-5865-2010 FU NASA's Mars Fundamental Research Program [NNX13AG44G, NNX13AG35G]; NASA's Cosmochemistry Program [NNX14AI23G, NNX13AH85G] FX We acknowledge the curation staff at NASA Johnson Space Center for allocations of Martian meteorites from the Antarctic Meteorite Collection. We also thank the curation staff at the University of New Mexico for loaning Martian meteorites from the collections within the Institute of Meteoritics. We are grateful for constructive reviews by Lydia Hallis and G. Jeffrey Taylor, which improved the quality of our article. We also thank Walter Kiefer for the editorial handling of our article. FMM, PS, and JF acknowledge support from NASA's Mars Fundamental Research Program through grant NNX13AG44G awarded to FMM and grant NNX13AG35G awarded to JF. AS and CKS acknowledge support from NASA's Cosmochemistry Program through grant NNX14AI23G awarded to Carl Agee and grant NNX13AH85G awarded to CKS. NR 208 TC 13 Z9 13 U1 9 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD NOV PY 2016 VL 51 IS 11 BP 2036 EP 2060 DI 10.1111/maps.12639 PG 25 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC6XL UT WOS:000388279900006 ER PT J AU Howarth, GH Liu, Y Chen, Y Pernet-Fisher, JF Taylor, LA AF Howarth, Geoffrey H. Liu, Yang Chen, Yang Pernet-Fisher, John F. Taylor, Lawrence A. TI Postcrystallization metasomatism in shergottites: Evidence from the paired meteorites LAR 06319 and LAR 12011 SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID CL-RICH FLUIDS; LUNAR APATITE; PARTITIONING BEHAVIOR; HALOGEN GEOCHEMISTRY; PETROGENETIC MODEL; BUSHVELD COMPLEX; MELT INCLUSIONS; MARTIAN BASALT; CHLORINE; WATER AB Apatite is the major volatile-bearing phase in Martian meteorites, containing structurally bound fluorine, chlorine, and hydroxyl ions. In apatite, F is more compatible than Cl, which in turn is more compatible than OH. During degassing, Cl strongly partitions into the exsolved phase, whereas F remains in the melt. For these reasons, the volatile concentrations within apatite are predictable during magmatic differentiation and degassing. Here, we present compositional data for apatite and merrillite in the paired enriched, olivine-phyric shergottites LAR 12011 and LAR 06319. In addition, we calculate the relative volatile fugacities of the parental melts at the time of apatite formation. The apatites are dominantly OH-rich (calculated by stoichiometry) with variable yet high Cl contents. Although several other studies have found evidence for degassing in the late-stage mineral assemblage of LAR 06319, the apatite evolutionary trends cannot be reconciled with this interpretation. The variable Cl contents and high OH contents measured in apatites are not consistent with fractionation either. Volatile fugacity calculations indicate that water and fluorine activities remain relatively constant, whereas there is a large variation in the chlorine activity. The Martian crust is Cl-rich indicating that changes in Cl contents in the apatites may be related to an external crustal source. We suggest that the high and variable Cl contents and high OH contents of the apatite are the results of postcrystallization interaction with Cl-rich, and possibly water-rich, crustal fluids circulating in the Martian crust. C1 [Howarth, Geoffrey H.; Pernet-Fisher, John F.; Taylor, Lawrence A.] Univ Tennessee, Planetary Geosci Inst, Earth & Planetary Sci Dept, Knoxville, TN 37996 USA. [Howarth, Geoffrey H.] Univ Cape Town, Dept Geol Sci, ZA-7701 Rondebosch, South Africa. [Liu, Yang; Chen, Yang] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Liu, Yang; Chen, Yang] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Howarth, GH (reprint author), Univ Tennessee, Planetary Geosci Inst, Earth & Planetary Sci Dept, Knoxville, TN 37996 USA.; Howarth, GH (reprint author), Univ Cape Town, Dept Geol Sci, ZA-7701 Rondebosch, South Africa. EM ghhowarth@gmail.com FU NASA [NNX11AG58G, NNN13D465T]; Jet Propulsion Laboratory FX This work was supported by NASA Cosmochemistry grant NNX11AG58G, awarded to LAT. We thank Allen Patchen for assistance with electron microprobe analyses. YL acknowledge the partial support by NASA Cosmochemistry grants NNN13D465T, and support from the Jet Propulsion Laboratory, which is managed by the California Institute of Technology under the contract with NASA. We are extremely grateful to Francis McCubbin and Justin Filiberto for detailed and thorough reviews, which greatly aided the overall content and discussion of this manuscript. We also thank Cyrena Goodrich for editorial handling. NR 40 TC 1 Z9 1 U1 4 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD NOV PY 2016 VL 51 IS 11 BP 2061 EP 2072 DI 10.1111/maps.12576 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC6XL UT WOS:000388279900007 ER PT J AU Williams, JT Shearer, CK Sharp, ZD Burger, PV McCubbin, FM Santos, AR Agee, CB McKeegan, KD AF Williams, J. T. Shearer, C. K. Sharp, Z. D. Burger, P. V. McCubbin, F. M. Santos, A. R. Agee, C. B. McKeegan, K. D. TI The chlorine isotopic composition of Martian meteorites 1: Chlorine isotope composition of Martian mantle and crustal reservoirs and their interactions SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID NORTHWEST AFRICA 7034; HOSTED MELT INCLUSIONS; LARKMAN NUNATAK 06319; NAKHLITE METEORITES; OXYGEN FUGACITY; RB-SR; DIFFERENTIATION HISTORY; PETROGENETIC LINKAGES; DEPLETED SHERGOTTITES; MINERAL ASSEMBLAGES AB The Martian meteorites record a wide diversity of environments, processes, and ages. Much work has been done to decipher potential mantle sources for Martian magmas and their interactions with crustal and surface environments. Chlorine isotopes provide a unique opportunity to assess interactions between Martian mantle-derived magmas and the crust. We have measured the Cl-isotopic composition of 17 samples that span the range of known ages, Martian environments, and mantle reservoirs. The Cl-37 of the Martian mantle, as represented by the olivine-phyric shergottites, NWA 2737 (chassignite), and Shergotty (basaltic shergottite), has a low value of approximately -3.8 parts per thousand. This value is lower than that of all other planetary bodies measured thus far. The Martian crust, as represented by regolith breccia NWA 7034, is variably enriched in the heavy isotope of Cl. This enrichment is reflective of preferential loss of Cl-35 to space. Most basaltic shergottites (less Shergotty), nakhlites, Chassigny, and Allan Hills 84001 lie on a continuum between the Martian mantle and crust. This intermediate range is explained by mechanical mixing through impact, fluid interaction, and assimilation-fractional crystallization. C1 [Williams, J. T.; Shearer, C. K.; Sharp, Z. D.; Burger, P. V.; Santos, A. R.; Agee, C. B.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Williams, J. T.; Sharp, Z. D.] Univ New Mexico, Ctr Stable Isotopes, Albuquerque, NM 87131 USA. [Shearer, C. K.; Burger, P. V.; McCubbin, F. M.; Santos, A. R.; Agee, C. B.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [McCubbin, F. M.] NASA Johnson Space Ctr, Mailcode XI2,2101 NASA Pkwy, Houston, TX 77058 USA. [McKeegan, K. D.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 94607 USA. RP Williams, JT (reprint author), Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA.; Williams, JT (reprint author), Univ New Mexico, Ctr Stable Isotopes, Albuquerque, NM 87131 USA. EM jtw14@unm.edu RI UCLA, SIMS/A-1459-2011 FU NASA [NNX14AG44G]; Humboldt Fellowship; NSF Instrumentation and Facilities Program; NASA Mars Fundamental Research Program [NNX13AG44G] FX This work was supported by NASA under award # NNX14AG44G to Sharp and Shearer and a Humboldt Fellowship to Sharp. The UCLA ion microprobe laboratory is partially supported by a grant from the NSF Instrumentation and Facilities Program. FMM acknowledges support from the NASA Mars Fundamental Research Program during this study through grant NNX13AG44G awarded to FMM. NR 148 TC 6 Z9 6 U1 4 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD NOV PY 2016 VL 51 IS 11 BP 2092 EP 2110 DI 10.1111/maps.12647 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC6XL UT WOS:000388279900009 ER PT J AU Schwenzer, SP Bridges, JC Wiens, RC Conrad, PG Kelley, SP Leveille, R Mangold, N Martin-Torres, J McAdam, A Newsom, H Zorzano, MP Rapin, W Spray, J Treiman, AH Westall, F Fairen, G Meslin, PY AF Schwenzer, S. P. Bridges, J. C. Wiens, R. C. Conrad, P. G. Kelley, S. P. Leveille, R. Mangold, N. Martin-Torres, J. McAdam, A. Newsom, H. Zorzano, M. P. Rapin, W. Spray, J. Treiman, A. H. Westall, F. Fairen, G. Meslin, P. -Y. TI Fluids during diagenesis and sulfate vein formation in sediments at Gale crater, Mars SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID GENERATED HYDROTHERMAL SYSTEMS; NAKHLITE MARTIAN METEORITES; PHOENIX LANDING SITE; MERIDIANI-PLANUM; OMEGA/MARS EXPRESS; ALTERATION ASSEMBLAGES; MINERAL ASSEMBLAGES; AQUEOUS-SOLUTIONS; SATURATION STATE; YELLOWKNIFE BAY AB We model the fluids involved in the alteration processes recorded in the Sheepbed Member mudstones of Yellowknife Bay (YKB), Gale crater, Mars, as revealed by the Mars Science Laboratory Curiosity rover investigations. We compare the Gale crater waters with fluids modeled for shergottites, nakhlites, and the ancient meteorite ALH 84001, as well as rocks analyzed by the Mars Exploration rovers, and with terrestrial ground and surface waters. The aqueous solution present during sediment alteration associated with phyllosilicate formation at Gale was high in Na, K, and Si; had low Mg, Fe, and Al concentrations-relative to terrestrial groundwaters such as the Deccan Traps and other modeled Mars fluids; and had near neutral to alkaline pH. Ca and S species were present in the 10(-3) to 10(-2) concentration range. A fluid local to Gale crater strata produced the alteration products observed by Curiosity and subsequent evaporation of this groundwater-type fluid formed impure sulfate-and silica-rich deposits-veins or horizons. In a second, separate stage of alteration, partial dissolution of this sulfate-rich layer in Yellowknife Bay, or beyond, led to the pure sulfate veins observed in YKB. This scenario is analogous to similar processes identified at a terrestrial site in Triassic sediments with gypsum veins of the Mercia Mudstone Group in Watchet Bay, UK. C1 [Schwenzer, S. P.; Kelley, S. P.] Open Univ, Dept Environm Earth & Ecosyst, Milton Keynes MK7 6AA, Bucks, England. [Schwenzer, S. P.; Treiman, A. H.] Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. [Bridges, J. C.] Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Wiens, R. C.] Los Alamos Natl Lab, Space Remote Sensing, Los Alamos, NM 87544 USA. [Conrad, P. G.; McAdam, A.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Leveille, R.] Canadian Space Agcy, St Hubert, PQ J3Y 8Y9, Canada. [Mangold, N.] CNRS, LPGN, UMR6112, F-44322 Nantes, France. [Mangold, N.] Univ Nantes, F-44322 Nantes, France. [Martin-Torres, J.; Zorzano, M. P.] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Kiruna, Sweden. [Martin-Torres, J.] UGR, CSIC, Inst Andaluz Ciencias Tierra, Granada, Spain. [Newsom, H.] 1 Univ New Mexico, Inst Meteorit, MSC03-2050, Albuquerque, NM 87131 USA. [Newsom, H.] 1 Univ New Mexico, Dept Earth & Planetary Sci, MSC03-2050, Albuquerque, NM 87131 USA. [Zorzano, M. P.] INTA, CSIC, Ctr Astrobiol, Madrid, Spain. [Rapin, W.] Univ Toulouse, UPS OMP, Toulouse, France. [Spray, J.] CNRS, Inst Rech Astrophys & Planetol, UMR 5277, Toulouse, France. [Spray, J.] Univ New Brunswick, Planetary & Space Sci Ctr, 2 Bailey Dr, Fredericton, NB E3B 5A3, Canada. [Westall, F.] CNRS, Ctr Biophys Mol, Rue Charles Sadron, F-45071 Orleans 2, France. [Fairen, G.] INTA, CSIC, Ctr Astrobiol, Dept Planetol & Habitabil, Madrid 28850, Spain. [Fairen, G.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Meslin, P. -Y.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse, France. RP Schwenzer, SP (reprint author), Open Univ, Dept Environm Earth & Ecosyst, Milton Keynes MK7 6AA, Bucks, England.; Schwenzer, SP (reprint author), Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. EM susanne.schwenzer@open.ac.uk RI Zorzano, Maria-Paz/F-2184-2015 OI Zorzano, Maria-Paz/0000-0002-4492-9650 FU UK Space Agency; Open University Research Investment Fellowship; CNES FX We thank the two reviewers Brian Hynek and Sally Potter-McIntyre and AE Justin Filiberto for their insightful comments, which improved the presentation of this article. We are grateful to Mark H. Reed and his team for providing CHIM-XPT for this study. Support from the engineers, colleagues in operations roles, and staff of NASA Mars Science Laboratory Mission are gratefully acknowledged. JCB and SPS acknowledge funding from the UK Space Agency, SPS additional funding through an Open University Research Investment Fellowship. F.W. acknowledges CNES funding. NR 142 TC 0 Z9 0 U1 10 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD NOV PY 2016 VL 51 IS 11 BP 2175 EP 2202 DI 10.1111/maps.12668 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC6XL UT WOS:000388279900013 ER PT J AU Steele, A McCubbin, FM Fries, MD AF Steele, Andrew McCubbin, Francis M. Fries, Marc D. TI The provenance, formation, and implications of reduced carbon phases in Martian meteorites SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID C-O-H; ALLAN HILLS 84001; POLYCYCLIC AROMATIC-HYDROCARBONS; NORTHWEST AFRICA 7034; FISCHER-TROPSCH SYNTHESIS; ENDOGENOUS AMINO-ACIDS; ELEPHANT MORAINE 79001; OXYGEN FUGACITY; ORGANIC-MATTER; HYDROTHERMAL SYSTEMS AB This review is intended to summarize the current observations of reduced carbon in Martian meteorites, differentiating between terrestrial contamination and carbon that is indigenous to Mars. Indeed, the identification of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade, including the Mars Science Laboratory and Mars 2020. Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance; however, not all forms of reduced carbon are conducive to biological systems. This paper discusses the significance of reduced organic carbon (including methane) in Martian geological and astrobiological systems. Specifically, it summarizes current thinking on the nature, sources, and sinks of Martian organic carbon, a key component to Martian habitability. Based on this compilation, reduced organic carbon on Mars, including detections of methane in the Martian atmosphere, is best described through a combination of abiotic organic synthesis on Mars and infall of extraterrestrial carbonaceous material. Although conclusive signs of Martian life have yet to be revealed, we have developed a strategy for life detection on Mars that can be utilized in future life-detection studies. C1 [Steele, Andrew] Carnegie Inst Sci, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. [McCubbin, Francis M.; Fries, Marc D.] NASA Johnson Space Ctr, Mail Code XI2,2101 NASA Pkwy, Houston, TX 77058 USA. RP Steele, A (reprint author), Carnegie Inst Sci, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM asteele@ciw.edu FU NASA's Mars Fundamental Research Program [NNH12ZDA001N, NNX13AG44G] FX AS acknowledges the many coauthors on papers that enabled this review to be written. This research was supported financially by NASA's Mars Fundamental Research Program through grants NNH12ZDA001N awarded to AS and NNX13AG44G awarded to FMM. NR 213 TC 1 Z9 1 U1 11 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD NOV PY 2016 VL 51 IS 11 BP 2203 EP 2225 DI 10.1111/maps.12670 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC6XL UT WOS:000388279900014 ER PT J AU Draine, BT Hensley, BS AF Draine, B. T. Hensley, Brandon S. TI QUANTUM SUPPRESSION OF ALIGNMENT IN ULTRASMALL GRAINS: MICROWAVE EMISSION FROM SPINNING DUST WILL BE NEGLIGIBLY POLARIZED SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; dust, extinction; ISM: magnetic fields; molecular processes; polarization; solid state: refractory ID PERSEUS MOLECULAR-COMPLEX; INTERSTELLAR GRAINS; RADIATIVE TORQUES; INFRARED-EMISSION; THERMAL EMISSION; GALACTIC DUST; RELAXATION; ROTATION; SPECTRUM; ENERGY AB The quantization of energy levels in small, cold, free-flying nanoparticles suppresses dissipative processes that convert grain rotational kinetic energy into heat. For interstellar grains small enough to have similar to GHz rotation rates, the suppression of dissipation can be extreme. As a result, alignment of such grains is suppressed. This applies both to alignment of the grain body with its angular momentum J, and to alignment of J with the local magnetic field B-0. If the anomalous microwave emission is rotational emission from spinning grains, then it will be negligibly polarized at GHz frequencies, with P less than or similar to 10(-6) at nu > 10 GHz. C1 [Draine, B. T.] Princeton Univ Observ, Peyton Hall, Princeton, NJ 08544 USA. [Hensley, Brandon S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Draine, BT (reprint author), Princeton Univ Observ, Peyton Hall, Princeton, NJ 08544 USA. EM draine@astro.princeton.edu FU NSF [AST-1408723] FX We thank C.J. Cutler, R. Genova-Santos, T. Hoang, and C. H. Lopez-Caraballo for helpful discussions, and the anonymous referee for a careful reading and helpful suggestions. This work was supported in part by NSF grant AST-1408723, and was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 56 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 59 DI 10.3847/0004-637X/831/1/59 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC0KD UT WOS:000387788600002 ER PT J AU Farrah, D Balokovic, M Stern, D Harris, K Kunimoto, M Walton, DJ Alexander, DM Arevalo, P Ballantyne, DR Bauer, FE Boggs, S Brandt, WN Brightman, M Christensen, F Clements, DL Craig, W Fabian, A Hailey, C Harrison, F Koss, M Lansbury, GB Luo, B Paine, J Petty, S Pitchford, K Ricci, C Zhang, W AF Farrah, Duncan Balokovic, Mislav Stern, Daniel Harris, Kathryn Kunimoto, Michelle Walton, Dominic J. Alexander, David M. Arevalo, Patricia Ballantyne, David R. Bauer, Franz E. Boggs, Steven Brandt, William N. Brightman, Murray Christensen, Finn Clements, David L. Craig, William Fabian, Andrew Hailey, Charles Harrison, Fiona Koss, Michael Lansbury, George B. Luo, Bin Paine, Jennie Petty, Sara Pitchford, Kate Ricci, Claudio Zhang, William TI THE GEOMETRY OF THE INFRARED AND X-RAY OBSCURER IN A DUSTY HYPERLUMINOUS QUASAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: individual (IRAS 09104+4109); galaxies: Seyfert; galaxies: starburst; infrared: galaxies; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; SPITZER-SPACE-TELESCOPE; STAR-FORMING GALAXIES; DIGITAL-SKY-SURVEY; SPECTRAL ENERGY-DISTRIBUTIONS; ZCOSMOS-BRIGHT SURVEY; BLACK-HOLE ACCRETION; CORONAL LINE REGION; SIMILAR-TO 2; IRAS 09104+4109 AB We study the geometry of the active galactic nucleus (AGN) obscurer in IRAS 09104+4109, an IR-luminous, radio-intermediate FR-I source at z = 0.442, using infrared data from Spitzer and Herschel, X-ray data from NuSTAR, Swift, Suzaku, and Chandra, and an optical spectrum from Palomar. The infrared data imply a total rest-frame 1-1000 mu m luminosity of 5.5 x 10(46) erg s(-1) and require both an AGN torus and a starburst model. The AGN torus has an anisotropy-corrected IR luminosity of 4.9 x 10(46) erg s(-1). and a viewing angle and half-opening angle both of approximately 36 degrees from pole-on. The starburst has a star formation rate of (110 +/- 34)M-circle dot yr(-1) and an age of <50 Myr. These results are consistent with two epochs of luminous activity in IRAS 09104+4109: one approximately 150 Myr ago, and one ongoing. The X-ray data suggest a photon index of Gamma similar or equal to 1.8 and a line-of-sight column density of N-H similar or equal to 5 x 10(23) cm(-2). This argues against a reflection-dominated hard X-ray spectrum, which would have implied a much higher NH and luminosity. The X-ray and infrared data are consistent with a bolometric AGN luminosity of L-bol similar to (0.5-2.5) x 10(47) erg s(-1). The X-ray and infrared data are further consistent with coaligned AGN obscurers in which the line of sight "skims" the torus. This is also consistent with the optical spectra, which show both coronal iron lines and broad lines in polarized but not direct light. Combining constraints from the X-ray, optical, and infrared data suggest. that the AGN obscurer is within a vertical height of 20 pc, and a radius of 125 pc, of the nucleus. C1 [Farrah, Duncan; Harris, Kathryn; Paine, Jennie; Pitchford, Kate] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Balokovic, Mislav; Brightman, Murray; Harrison, Fiona] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Stern, Daniel; Walton, Dominic J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Harris, Kathryn] IAC, E-38200 Tenerife, Spain. [Harris, Kathryn] ULL, Dept Astrofis, E-38205 Tenerife, Spain. [Kunimoto, Michelle] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Alexander, David M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Arevalo, Patricia] Univ Valparaiso, Fac Ciencias, Inst Fis & Astron, Gran Bretana N 1111, Valparaiso, Chile. [Ballantyne, David R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, 837 State St, Atlanta, GA 30332 USA. [Bauer, Franz E.; Ricci, Claudio] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile. [Bauer, Franz E.] MAS, Millennium Inst Astrophys, Nuncio Monsenor Sotero Sanz 100, Santiago, Chile. [Bauer, Franz E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Bauer, Franz E.; Craig, William; Ricci, Claudio] EMBIGGEN Anillo, Concepcion, Chile. [Boggs, Steven] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Brandt, William N.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Brandt, William N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, William N.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Christensen, Finn] Tech Univ Denmark, DTU Space, Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Craig, William] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fabian, Andrew] Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Hailey, Charles] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Koss, Michael] ETH, Dept Phys, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Luo, Bin] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210093, Jiangsu, Peoples R China. [Luo, Bin] Nanjing Univ, Key Lab Modern Astron & Astrophys, Minist Educ, Nanjing 210093, Jiangsu, Peoples R China. [Petty, Sara] Green Sci Policy Inst, Berkeley, CA 94709 USA. [Zhang, William] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Farrah, D (reprint author), Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. EM farrah@vt.edu OI Ballantyne, David/0000-0001-8128-6976 FU NASA [NNG08FD60C, NNX14AQ07H]; National Aeronautics and Space Administration; BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain); NASA; CONICYT-Chile grants Basal-CATA [PFB-06/2007]; FONDECYT [1141218]; "EMBIGGEN" Anillo [ACT1101]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC120009]; ERC [340442] FX We thank the referee for a very helpful report. This work was supported under NASA Contract No. NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); and IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Part of this work is based on archival data, software, and online services provided by the ASDC. This research has made use of NASA's Astrophysics Data System. We acknowledge support from the NASA Earth and Space Science Fellowship Program grant NNX14AQ07H (M.B.), CONICYT-Chile grants Basal-CATA PFB-06/2007 (F.E.B., C.R.), FONDECYT Regular 1141218 (F.E.B., C.R.), "EMBIGGEN" Anillo ACT1101 (F.E.B., C.R.), and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (F.E.B.). A.C.F. acknowledges ERC Advanced Grant Feedback 340442. NR 152 TC 1 Z9 1 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 76 DI 10.3847/0004-637X/831/1/76 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC0KD UT WOS:000387788600019 ER PT J AU Maltseva, E Petrignani, A Candian, A Mackie, CJ Huang, XC Lee, TJ Tielens, AGGM Oomens, J Buma, WJ AF Maltseva, Elena Petrignani, Annemieke Candian, Alessandra Mackie, Cameron J. Huang, Xinchuan Lee, Timothy J. Tielens, Alexander G. G. M. Oomens, Jos Buma, Wybren Jan TI HIGH-RESOLUTION IR ABSORPTION SPECTROSCOPY OF POLYCYCLIC AROMATIC HYDROCARBONS IN THE 3 mu m REGION: ROLE OF PERIPHERY SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; ISM: molecules; line: identification; methods: laboratory: molecular; techniques: spectroscopic ID ANHARMONIC-FORCE FIELDS; PHASE PAH MOLECULES; INFRARED-SPECTROSCOPY; EMISSION FEATURES; RED RECTANGLE; PHOTOCHEMICAL EVOLUTION; REFLECTION NEBULAE; STATISTICAL-LIMIT; SPECTRA; GAS AB In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3 mu m absorption band. For this purpose, we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 cm(-1) range. The experimental spectra are compared with standard harmonic calculations and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3 mu m region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive data set of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3 mu m band, and on features such as the two-component emission character of this band and the 3 mu m emission plateau. C1 [Maltseva, Elena; Petrignani, Annemieke; Buma, Wybren Jan] Univ Amsterdam, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. [Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Tielens, Alexander G. G. M.] Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. [Petrignani, Annemieke; Oomens, Jos] Radboud Univ Nijmegen, Toernooiveld 7, NL-6525 ED Nijmegen, Netherlands. [Huang, Xinchuan] SETI Inst, 189 Bernardo Ave,Suite 100, Mountain View, CA 94043 USA. [Lee, Timothy J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Buma, WJ (reprint author), Univ Amsterdam, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. EM w.j.buma@uva.nl RI Buma, Wybren Jan/F-6691-2011; Lee, Timothy/K-2838-2012; HUANG, XINCHUAN/A-3266-2013 OI Buma, Wybren Jan/0000-0002-1265-8016; FU Netherlands Organization for Scientific Research (NWO); NWO [723.014.007, 639.041.543]; Advanced European Research Council [246976]; Spinoza award; NWO Exacte Wetenschappen [MP-270-13, MP-264-14]; NASA [12-APRA12-0107]; NASA/SETI [NNX15AF45A]; National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNH13ZDA017C] FX The experimental work was supported by The Netherlands Organization for Scientific Research (NWO). A.P. acknowledges NWO for a VIDI grant (723.014.007). Studies of interstellar PAHs at Leiden Observatory have been supported through the Advanced European Research Council Grant 246976 and a Spinoza award. Computing time has been made available by NWO Exacte Wetenschappen (project MP-270-13 and MP-264-14), and calculations were performed at the LISA Linux cluster and Cartesius supercomputer (SurfSARA, Almere, NL). A.C. acknowledges NWO for a VENI grant (639.041.543). X.H. and T.J.L. gratefully acknowledge support from the NASA 12-APRA12-0107 grant. X.H. acknowledges support from the NASA/SETI Co-op Agreement NNX15AF45A. Some of this material is based upon work supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement Notice NNH13ZDA017C issued through the Science Mission Directorate. NR 48 TC 0 Z9 0 U1 10 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 58 DI 10.3847/0004-637X/831/1/58 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC0KD UT WOS:000387788600001 ER PT J AU Manoj, P Green, JD Megeath, ST Evans, NJ Stutz, AM Tobin, JJ Watson, DM Fischer, WJ Furlan, E Henning, T AF Manoj, P. Green, J. D. Megeath, S. T. Evans, N. J., II Stutz, A. M. Tobin, J. J. Watson, D. M. Fischer, W. J. Furlan, E. Henning, T. TI THE EVOLUTION OF FAR-INFRARED CO EMISSION FROM PROTOSTARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: jets and outflows; stars: jets; stars: protostars; stars: winds, outflows ID YOUNG STELLAR OBJECTS; T-TAURI STARS; TIME DIGIT HERSCHEL; MAGNETOCENTRIFUGALLY DRIVEN FLOWS; MASS ACCRETION RATES; FU ORIONIS OBJECTS; MOLECULAR OUTFLOWS; DISK ACCRETION; MAGNETOSPHERIC ACCRETION; CONTINUUM OBSERVATIONS AB We investigate the evolution of far-IR CO emission from protostars observed with Herschel/PACS for 50 sources from the combined sample of HOPS and DIGIT Herschel key programs. From the uniformly sampled spectral energy distributions, whose peaks are well sampled, we computed the L-bol, T-bol, and L-bol/L-smm for these sources to search for correlations between far-IR CO emission and protostellar properties. We find a strong and tight correlation between far-IR CO luminosity (L-CO(fir)) and the bolometric luminosity (L-bol) of the protostars with L-CO(fir) proportional to L-bol(0.7). We, however, do not find a strong correlation between L-CO(fir) and protostellar evolutionary indicators, T-bol and L-bol/L-smm. FIR. CO emission from protostars traces the currently shocked gas by jets/outflows, and far-IR CO luminosity, L-CO(fir), is proportional to the instantaneous mass-loss rate, (M) over dot(out). The correlation between L-CO(fir) and L-bol, then, is indicative of instantaneous (M) over dot(out) tracking instantaneous (M) over dot(acc). The lack of a correlation between L-CO(fir) and evolutionary indicators T-bol and L-bol L-smm suggests that (M) over dot(out) and, therefore, (M) over dot(acc) do not show any clear evolutionary trend. These results are consistent with mass accretion/ejection in protostars being episodic. Taken together with the previous finding that the time-averaged mass-ejection/accretion rate declines during the protostellar phase, our results suggest that the instantaneous accretion/ejection rate of protostars is highly time variable and episodic, but the amplitude and/or frequency of this variability decreases with time such that the time-averaged accretion/ejection rate declines with system age. C1 [Manoj, P.] Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. [Green, J. D.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Megeath, S. T.] Univ Toledo, Dept Phys & Astron, 2801 West Bancroft St, Toledo, OH 43606 USA. [Evans, N. J., II] Univ Texas Austin, Dept Astron, 2515 Speedway,Stop C1400, Austin, TX 78712 USA. [Stutz, A. M.; Henning, T.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Tobin, J. J.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [Watson, D. M.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Fischer, W. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Furlan, E.] CALTECH, Infrared Proc & Anal Ctr, 770 S Wilson Ave, Pasadena, CA 91125 USA. RP Manoj, P (reprint author), Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. EM manoj.puravankara@tifr.res.in OI Green, Joel/0000-0003-1665-5709; Evans , Neal/0000-0001-5175-1777; Tobin, John/0000-0002-6195-0152; Stutz, Amelia/0000-0003-2300-8200; Furlan, Elise/0000-0001-9800-6248 FU NASA; NSF [AST-1109116] FX Support for this work, part of the Herschel Open Time Key Project Program, was provided by NASA through an award issued by the Jet Propulsion Laboratory, California Institute of Technology. This work was supported by NSF grant AST-1109116 to the University of Texas at Austin. This work is based on observations made with the Herschel Space Observatory, a European Space Agency Cornerstone Mission with significant participation by NASA; it is also on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology (Caltech), under a contract with NASA. We also include data from the Atacama Pathfinder Experiment, a collaboration between the Max-Planck Institut fur Radio-astronomie, the European Southern Observatory, and the Onsala Space Observatory. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/Caltech, funded by NASA and the NSF. NR 98 TC 1 Z9 1 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 69 DI 10.3847/0004-637X/831/1/69 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC0KD UT WOS:000387788600012 ER PT J AU Morales, FY Bryden, G Werner, MW Stapelfeldt, KR AF Morales, F. Y. Bryden, G. Werner, M. W. Stapelfeldt, K. R. TI HERSCHEL-RESOLVED OUTER BELTS OF TWO-BELT DEBRIS DISKS-EVIDENCE OF ICY GRAINS SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: planetary systems; planets and satellites: formation ID SPITZER-SPACE-TELESCOPE; ANALOG HD 107146; SUN-LIKE STARS; HR 8799; PLANETARY SYSTEMS; MASS STARS; DUST; DISCS; RING; FOMALHAUT AB We present dual-band Herschel/PACS imaging for 59 main-sequence stars with known warm dust (T-warm similar to 200 K), characterized by Spitzer. Of 57 debris disks detected at Herschel wavelengths (70 and/or 100 and 160 mu m), about half have spectral energy distributions (SEDs) that suggest two-ring disk architectures mirroring that of the asteroid-Kuiper Belt geometry; the rest are consistent with single belts of warm, asteroidal material. Herschel observations spatially resolve the outer/cold dust component around 14 A-type and 4 solar-type stars with two-belt systems, 15 of which for the first time. Resolved disks are typically observed with radii > 100 AU, larger than expected from a simple blackbody fit. Despite the absence of narrow spectral features for ice, we find that the shape of the continuum, combined with resolved outer/cold dust locations, can help constrain the grain size distribution and hint at the dust's composition for each resolved system. Based on the combined Spitzer/IRS+Multiband Imaging Photometer (5-to-70 mu m) and Herschel/PACS (70-to-160 mu m) data set, and under the assumption of idealized spherical grains, we find that over half of resolved outer/cold belts are best fit with a mixed ice/rock composition. Minimum grain sizes are most often equal to the expected radiative blowout limit, regardless of composition. Three of four resolved systems around the solar-type stars, however, tend to have larger minimum grains compared to expectation from blowout (f(MB) = a(min)/a(BOS) similar to 5). We also probe the disk architecture of 39 Herschel-unresolved systems by modeling their SEDs uniformly, and find them to be consistent with 31 single- and 8 two-belt debris systems. C1 [Morales, F. Y.; Bryden, G.; Werner, M. W.; Stapelfeldt, K. R.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Morales, F. Y.] Moorpark Coll, Dept Phys & Astron, 7075 Campus Rd, Moorpark, CA 93021 USA. RP Morales, FY (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.; Morales, FY (reprint author), Moorpark Coll, Dept Phys & Astron, 7075 Campus Rd, Moorpark, CA 93021 USA. EM Farisa@jpl.nasa.gov NR 65 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 97 DI 10.3847/0004-637X/831/1/97 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC0KD UT WOS:000387788600040 ER PT J AU Holzmann, GJ AF Holzmann, Gerard J. TI Hi Maintenance SO IEEE SOFTWARE LA English DT Editorial Material C1 [Holzmann, Gerard J.] Jet Prop Lab, Pasadena, CA 91125 USA. RP Holzmann, GJ (reprint author), Jet Prop Lab, Pasadena, CA 91125 USA. EM gholzmann@acm.org NR 5 TC 0 Z9 0 U1 1 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0740-7459 EI 1937-4194 J9 IEEE SOFTWARE JI IEEE Softw. PD NOV-DEC PY 2016 VL 33 IS 6 BP 98 EP 101 PG 4 WC Computer Science, Software Engineering SC Computer Science GA EC1VF UT WOS:000387895500018 ER PT J AU Moon, DI Han, JW Meyyappan, M AF Moon, Dong-Il Han, Jin-Woo Meyyappan, M. TI Comparative Study of Field Effect Transistor Based Biosensors SO IEEE TRANSACTIONS ON NANOTECHNOLOGY LA English DT Article DE Bio-field effect transistor (FET); biosensor; nanogap transistor; numerical simulation ID ELECTRICAL DETECTION; SUBTHRESHOLD SLOPE; AVIAN INFLUENZA; SENSITIVITY; IMMUNODETECTION; SENSOR AB A comparative study of biosensors based on a field effect transistor(FET) configuration is conducted using numerical analysis. A conventional back-gated device and three different nanogap-based structures are evaluated in terms of their performance metrics including response, sensitivity, detection limit, and dynamic range. An electrostatic model is used to address the sensing principle. The biochemical reaction is emulated simply by a change in the negative charge density and permittivity. The back-gated silicon nanoribbon FET (SiNR-FET) is used as a reference for comparison. The SiNR-FET is not affected by the permittivity change due to the biochemical reaction, whereas other nanogap-based structures are influenced by both the charge density and the permittivity shifts. Among the nanogap-based structures, a dielectric modulated FET (DM-FET) exhibits the widest dynamic range and a strong permittivity dependency. An underlap gate FET (UG-FET) and a fingered gate FET (FG-FET) show the highest sensitivity and detection limit. But the dynamic ranges of the UG-FET and FG-FET are narrower than that of the DM-FET. Nevertheless, by the nature of independent controllability of two gates, the FG-FET allows a tunable dynamic range. This comparative study offers application-specific guidelines for making appropriate choices for the sensor structure. C1 [Moon, Dong-Il; Han, Jin-Woo; Meyyappan, M.] NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Moon, DI (reprint author), NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA. EM dong-il.moon@nasa.gov; jin-woo.han@nasa.gov; m.meyyappan@nasa.gov NR 27 TC 0 Z9 0 U1 8 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1536-125X EI 1941-0085 J9 IEEE T NANOTECHNOL JI IEEE Trans. Nanotechnol. PD NOV PY 2016 VL 15 IS 6 BP 956 EP 961 DI 10.1109/TNANO.2016.2615855 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Science & Technology - Other Topics; Materials Science; Physics GA EC2SK UT WOS:000387974000016 ER PT J AU Raouafi, NE Patsourakos, S Pariat, E Young, PR Sterling, AC Savcheva, A Shimojo, M Moreno-Insertis, F DeVore, CR Archontis, V Torok, T Mason, H Curdt, W Meyer, K Dalmasse, K Matsui, Y AF Raouafi, N. E. Patsourakos, S. Pariat, E. Young, P. R. Sterling, A. C. Savcheva, A. Shimojo, M. Moreno-Insertis, F. DeVore, C. R. Archontis, V. Torok, T. Mason, H. Curdt, W. Meyer, K. Dalmasse, K. Matsui, Y. TI Solar Coronal Jets: Observations, Theory, and Modeling SO SPACE SCIENCE REVIEWS LA English DT Review DE Plasmas; Sun: activity; Sun: corona; Sun: magnetic fields; Sun: UV radiation; Sun: X-rays ID X-RAY JETS; ENERGETIC PARTICLE EVENTS; H-ALPHA SURGES; MAGNETIC RECONNECTION MODEL; MICHELSON DOPPLER IMAGER; TRANSITION REGION; MASS EJECTIONS; FLUX EMERGENCE; PHYSICAL PARAMETERS; BLOWOUT JET AB Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems. C1 [Raouafi, N. E.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Patsourakos, S.] Univ Ioannina, Dept Phys, Ioannina, Greece. [Pariat, E.; Dalmasse, K.] Observ Paris, LESIA, Meudon, France. [Young, P. R.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Young, P. R.] NASA Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. [Sterling, A. C.] NASA Marshall Space Flight Ctr, Huntsville, AL USA. [Savcheva, A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Shimojo, M.] Natl Astron Observ Japan, Mitaka, Tokyo, Japan. [Moreno-Insertis, F.] Inst Astrofis Canarias, Tenerife, Spain. [DeVore, C. R.] NASA Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD USA. [Archontis, V.] Univ St Andrews, Sch Math & Stat, St Andrews, Fife, Scotland. [Torok, T.] Predict Sci Inc, 9990 Mesa Rim Rd,Ste 170, San Diego, CA 92121 USA. [Mason, H.] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge, England. [Curdt, W.] Max Planck Inst Sonnensyst Forsch, Gottingen, Germany. [Meyer, K.] Abertay Univ, Div Comp & Math, Dundee, Scotland. [Dalmasse, K.] NCAR, CISL HAO, POB 3000, Boulder, CO 80307 USA. [Matsui, Y.] Univ Tokyo, Dept Earth & Planetary Sci, Tokyo, Japan. RP Raouafi, NE (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. EM NourEddine.Raouafi@jhuapl.edu RI Shimojo, Masumi/J-2605-2016 OI Shimojo, Masumi/0000-0002-2350-3749 FU FP7 Marie Curie Grant [FP7-PEOPLE-2010-RG/268288]; European Union (European Social Fund-ESF); Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)-Research Funding Program: Thales; Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Targeted Research and Technology Program; Hinode Project Office at NASA/MSFC; National Science Foundation [AGS-1159353]; NASA; Computational and Information Systems Laboratory; HAO; AFOSR [FA9550-15-1-0030]; Norwegian Space Center (NSC, Norway) through an ESA PRODEX contract FX The "Solar Jets" team members are grateful for the International Space Science Institute (ISSI, Bern, Switzerland) that hosted two meetings on March 2013 and March 2014 within the frame of the international team on the "Solar Coronal Jets (http://www.issibern.ch/teams/solarjets)". This work benefited greatly from discussions held at these meetings. S. Patsourakos acknowledges support from an FP7 Marie Curie Grant (FP7-PEOPLE-2010-RG/268288) as well as European Union (European Social Fund-ESF) and Greek national funds through the Operational Program" Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)-Research Funding Program: Thales. Investing in knowledge society through the European Social Fund. A.C. Sterling thanks R.L. Moore for useful discussions. A.C. Sterling was supported by funding from the Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Targeted Research and Technology Program, and by funding from the Hinode Project Office at NASA/MSFC. P.R. Young acknowledges funding from National Science Foundation grant AGS-1159353. T. Torok was supported by NASA's HSR and LWS programs. K. Dalmasse acknowledges support from the Computational and Information Systems Laboratory and from the HAO, as well as support from the AFOSR under award FA9550-15-1-0030.; The SOHO is a mission of international cooperation between ESA and NASA. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as a domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with the ESA and NSC (Norway). The STEREO/SECCHI data used here are produced by an international consortium of the NRL (USA), LM-SAL (USA), NASA GSFC (USA), RAL (UK), Univ. Birmingham (UK), MPS (Germany), CSL (Belgium), IOTA (France), and IAS (France). SDO is the first mission to be launched for NASA's Living With a Star (LWS) Program. IRIS is a NASA small explorer mission developed and operated by LMSAL with mission operations executed at NASA Ames Research center and major contributions to downlink communications funded by the Norwegian Space Center (NSC, Norway) through an ESA PRODEX contract. NR 219 TC 5 Z9 5 U1 12 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2016 VL 201 IS 1-4 BP 1 EP 53 DI 10.1007/s11214-016-0260-5 PG 53 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC0DE UT WOS:000387767300001 ER PT J AU Abbo, L Ofman, L Antiochos, SK Hansteen, VH Harra, L Ko, YK Lapenta, G Li, B Riley, P Strachan, L von Steiger, R Wang, YM AF Abbo, L. Ofman, L. Antiochos, S. K. Hansteen, V. H. Harra, L. Ko, Y. -K. Lapenta, G. Li, B. Riley, P. Strachan, L. von Steiger, R. Wang, Y. -M. TI Slow Solar Wind: Observations and Modeling SO SPACE SCIENCE REVIEWS LA English DT Review DE Sun; Corona; Solar wind; Coronal streamers; MHD and kinetic models ID CORONAL-HOLE BOUNDARIES; ACTIVE-REGION OUTFLOWS; ANISOTROPIC VELOCITY DISTRIBUTIONS; ION COMPOSITION SPECTROMETER; DIFFERENTIAL FLOW SPEEDS; CHARGE-STATE EVOLUTION; OPEN MAGNETIC-FLUX; GLOBAL MHD MODEL; R-CIRCLE-DOT; STREAMER BELT AB While it is certain that the fast solar wind originates from coronal holes, where and how the slow solar wind (SSW) is formed remains an outstanding question in solar physics even in the post-SOHO era. The quest for the SSW origin forms a major objective for the planned future missions such as the Solar Orbiter and Solar Probe Plus. Nonetheless, results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have been derived from spectroscopic and imaging remote-sensing data and in situ data, and these results have provided crucial insights for a deeper understanding of the origin and acceleration of the SSW. Advanced models of the SSW in coronal streamers and other structures have been developed using 3D MHD and multi-fluid equations. However, the following questions remain open: What are the source regions and their contributions to the SSW? What is the role of the magnetic topology in the corona for the origin, acceleration and energy deposition of the SSW? What are the possible acceleration and heating mechanisms for the SSW? The aim of this review is to present insights on the SSW origin and formation gathered from the discussions at the International Space Science Institute (ISSI) by the Team entitled "Slow solar wind sources and acceleration mechanisms in the corona" held in Bern (Switzerland) in March 2014 and 2015. C1 [Abbo, L.] Osserv Astron Torino, Str Osservatorio 20, I-10025 Pino Torinese, Italy. [Ofman, L.] Catholic Univ Amer, Washington, DC 20064 USA. [Ofman, L.; Antiochos, S. K.] NASA Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. [Ofman, L.] Tel Aviv Univ, Dept Geosci, Tel Aviv, Israel. [Hansteen, V. H.] Univ Oslo, Inst Theoret Astrophys, PB 1029, N-0315 Oslo, Norway. [Harra, L.] UCL Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Ko, Y. -K.; Strachan, L.; Wang, Y. -M.] Naval Res Lab, Div Space Sci, Code 7682W, Washington, DC 20375 USA. [Lapenta, G.] Katholieke Univ Leuven, Ctr Plasma Astrophys, Celestijnenlaan 200b Bus 2400, B-3001 Leuven, Belgium. [Li, B.] Shandong Univ Weihai, Inst Space Sci, 180 West Wenhua Rd, Weihai 264209, Peoples R China. [Riley, P.] Predict Sci Inc, 9990 Mesa Rim Rd,Suite 170, San Diego, CA 92121 USA. [von Steiger, R.] Int Space Sci Inst, Hallerstr 6, CH-3012 Bern, Switzerland. RP Abbo, L (reprint author), Osserv Astron Torino, Str Osservatorio 20, I-10025 Pino Torinese, Italy.; Ofman, L (reprint author), Catholic Univ Amer, Washington, DC 20064 USA.; Ofman, L (reprint author), NASA Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA.; Ofman, L (reprint author), Tel Aviv Univ, Dept Geosci, Tel Aviv, Israel. EM abbo@oato.inaf.it; Leon.Ofman@nasa.gov OI Riley, Pete/0000-0002-1859-456X; Lapenta, Giovanni/0000-0002-3123-4024 FU National Institute for Astrophysics (INAF) [I/023/09/0]; Italian Space Agency (ASI) [I/023/09/0]; NSF [ATM AGS-1059838]; NASA [NNG11PL10A, NNH10AO82I]; Chief of Naval Research; National Natural Science Foundation of China [41174154, 41274176,, 41474149] FX This review has arisen from the discussions at the International Space Science Institute (ISSI) by the Team entitled "Slow solar wind sources and acceleration mechanisms in the corona" held in Bern in March 2014-2015, and we acknowledge ISSI support for the meetings. We would like to thank the referees for many helpful comments that helped to improve this review. LA acknowledges Ester Antonucci for her support and motivation in this topic and Giancarlo Noci for his input and comments during the revision of this paper. The research of LA has been funded through the contract I/023/09/0 between the National Institute for Astrophysics (INAF) and the Italian Space Agency (ASI). LO would like to acknowledge support by NSF grant ATM AGS-1059838 and NASA Cooperative Agreement grant NNG11PL10A to CUA. YKK, LS and YMW would like to acknowledge support by the Chief of Naval Research and NASA grant NNH10AO82I. BL is supported by the National Natural Science Foundation of China (41174154, 41274176, and 41474149). NR 275 TC 2 Z9 3 U1 5 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2016 VL 201 IS 1-4 BP 55 EP 108 DI 10.1007/s11214-016-0264-1 PG 54 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC0DE UT WOS:000387767300002 ER PT J AU Zeitlin, C Hassler, DM Wimmer-Schweingruber, RF Ehresmann, B Appel, J Berger, T Bohm, E Bottcher, S Brinza, DE Burmeister, S Guo, J Kohler, J Lohf, H Martin, C Matthia, D Posner, A Rafkin, S Reitz, G Tyler, YD Vincent, M Weigle, G Iwata, Y Kitamura, H Murakami, T AF Zeitlin, C. Hassler, D. M. Wimmer-Schweingruber, R. F. Ehresmann, B. Appel, J. Berger, T. Boehm, E. Boettcher, S. Brinza, D. E. Burmeister, S. Guo, J. Koehler, J. Lohf, H. Martin, C. Matthiae, D. Posner, A. Rafkin, S. Reitz, G. Tyler, Y. D. Vincent, M. Weigle, G. Iwata, Y. Kitamura, H. Murakami, T. TI Calibration and Characterization of the Radiation Assessment Detector (RAD) on Curiosity SO SPACE SCIENCE REVIEWS LA English DT Review DE Mars; Energetic particle radiation; Galactic cosmic rays; Solar particle events; Curiosity rover; Space radiation dosimetry ID MARS; TRANSIT; SILICON; MSL/RAD AB The Radiation Assessment Detector, RAD, is one of the ten instruments that make up the science payload of the Mars Science Laboratory Curiosity rover. RAD is an energetic particle detector, capable of measuring the charged and neutral particles that make significant contributions to the radiation dose that will be received by future human explorers when they visit Mars. Prior to the launch of MSL in November 2011, RAD and its near-identical twin flight spare unit were calibrated using laboratory sources, charged particle beams, and neutron fields. The initial calibration parameters obtained in these tests were used for real-time data analysis by the instrument's onboard software. These parameters have subsequently been refined using data obtained during the cruise to Mars and during Curiosity's mission on the surface of Mars. The most critical use of calibration is in the dosimetry analysis performed onboard. Calibration is also used in onboard analysis to determine which events should be stored for telemetry to Earth. Accelerator data obtained with the flight spare unit after Curiosity was launched provide detailed information about the response of the organic and inorganic scintillators to ion beams over a wide range of charge and energy. Here we report on the methods used to determine calibration parameters, the results obtained, as well as providing an overview of the modifications to the instrument's software and configuration that have been made over the course of the mission. C1 [Zeitlin, C.] Lockheed Martin Informat Syst & Global Solut, Houston, TX USA. [Zeitlin, C.] Southwest Res Inst, Earth Oceans & Space, Durham, NH USA. [Hassler, D. M.; Ehresmann, B.; Rafkin, S.; Vincent, M.] Southwest Res Inst, Boulder, CO USA. [Wimmer-Schweingruber, R. F.; Appel, J.; Boehm, E.; Boettcher, S.; Burmeister, S.; Guo, J.; Koehler, J.; Lohf, H.; Martin, C.] Univ Kiel, Kiel, Germany. [Berger, T.; Matthiae, D.; Reitz, G.] German Aerosp Agcy, Cologne, Germany. [Brinza, D. E.; Posner, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Posner, A.] NASA Headquarters, Washington, DC USA. [Tyler, Y. D.] Southwest Res Inst, San Antonio, TX USA. [Weigle, G.] Big Head Endian LLC, Burden, KS USA. [Iwata, Y.; Kitamura, H.; Murakami, T.] Natl Inst Radiol Sci, Chiba, Japan. RP Zeitlin, C (reprint author), Lockheed Martin Informat Syst & Global Solut, Houston, TX USA.; Zeitlin, C (reprint author), Southwest Res Inst, Earth Oceans & Space, Durham, NH USA. EM cary.j.zeitlin@nasa.gov OI Berger, Thomas/0000-0003-3319-5740 FU NASA (HEOMD) under JPL subcontract [1273039]; DLR and DLR's Space Administration [50QM0501, 50 QM1201]; National Aeronautics and Space Administration FX RAD is supported by NASA (HEOMD) under JPL subcontract #1273039 to Southwest Research Institute and in Germany by DLR and DLR's Space Administration grant numbers 50QM0501 and 50 QM1201 to the Christian Albrechts University, Kiel. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 20 TC 0 Z9 0 U1 6 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2016 VL 201 IS 1-4 BP 201 EP 233 DI 10.1007/s11214-016-0303-y PG 33 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC0DE UT WOS:000387767300005 ER PT J AU Flanigan, SH Rogers, GD Guo, YP Kirk, MN Weaver, HA Owen, WM Jackman, CD Bauman, J Pelletier, F Nelson, D Stanbridge, D Dumont, PJ Williams, B Stern, SA Olkin, CB Young, LA Ennico, K AF Flanigan, Sarah H. Rogers, Gabe D. Guo, Yanping Kirk, Madeline N. Weaver, Harold A. Owen, William M., Jr. Jackman, Coralie D. Bauman, Jeremy Pelletier, Frederic Nelson, Derek Stanbridge, Dale Dumont, Phillip J. Williams, Bobby Stern, S. Alan Olkin, Cathy B. Young, Leslie A. Ennico, Kimberly TI Destination pluto: New horizons performance during the approach phase SO ACTA ASTRONAUTICA LA English DT Article ID IMAGER AB The New Horizons spacecraft began its journey to the Pluto-Charon system on January 19, 2006 on-board an Atlas V rocket from Cape Canaveral, Florida. As the first mission in NASA's New Frontiers program, the objective of the New Horizons mission is to perform the first exploration of ice dwarfs in the Kuiper Belt, extending knowledge of the solar system to include the icy "third zone" for the first time. Arriving at the correct time and correct position relative to Pluto on July 14, 2015 depended on the successful execution of a carefully choreographed sequence of events. The Core command sequence, which was developed and optimized over multiple years and included the highest-priority science observations during the closest approach period, was contingent on precise navigation to the Pluto-Charon system and nominal performance of the guidance and control (G&C) subsystem. The flyby and gravity assist of Jupiter on February 28, 2007 was critical in placing New Horizons on the path to Pluto. Once past Jupiter, trajectory correction maneuvers (TCMs) became the sole source of trajectory control since the spacecraft did not encounter any other planetary bodies along its flight path prior to Pluto. During the Pluto approach phase, which formally began on January 15, 2015, optical navigation images were captured primarily with the Long Range Reconnaissance Imager to refine spacecraft and Pluto-Charon system trajectory knowledge, which in turn was used to design TCMs. Orbit determination solutions were also used to update the spacecraft's on-board trajectory knowledge throughout the approach phase. Nominal performance of the G&C subsystem, accurate TCM designs, and high-quality orbit determination solutions resulted in final Pluto-relative B-plane arrival conditions that facilitated a successful first reconnaissance of the Pluto-Charon system. (C) 2016 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Flanigan, Sarah H.; Rogers, Gabe D.; Guo, Yanping; Kirk, Madeline N.; Weaver, Harold A.] Johns Hopkins Univ, Appl Phys Lab, Baltimore, MD 21218 USA. [Owen, William M., Jr.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Jackman, Coralie D.; Bauman, Jeremy; Pelletier, Frederic; Nelson, Derek; Stanbridge, Dale; Dumont, Phillip J.; Williams, Bobby] KinetY Inc, Riviera Beach, FL USA. [Stern, S. Alan; Olkin, Cathy B.; Young, Leslie A.] Southwest Res Inst, San Antonio, TX USA. [Ennico, Kimberly] NASA, Ames Res Ctr, Washington, DC USA. RP Flanigan, SH (reprint author), Johns Hopkins Univ, Appl Phys Lab, Baltimore, MD 21218 USA. EM sarah.flanigan@jhuapl.edu FU NASA [NAS5-97271] FX Special thanks to all the flight operations teams at JHU/APL, the PNAV team at KinetX, Inc., the INAV team at JPL, and the Science Operations planning team at SwRI, who were all critical to the success of New Horizons' approach to Pluto. In addition to the science teams which provided New Horizons' purpose, the first reconnaissance of the Pluto-Charon system would not have been possible without the numerous engineers and scientists who contributed to the design, fabrication, and operation of the spacecraft, instruments, and ground systems over the years. The mission is also grateful to NASA's Deep Space Network for providing ground-to-spacecraft communications and navigation tracking support throughout the mission. The work described in this paper was performed under contract NAS5-97271 with NASA. NR 7 TC 0 Z9 0 U1 8 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD NOV-DEC PY 2016 VL 128 BP 33 EP 43 DI 10.1016/j.actaastro.2016.02.029 PG 11 WC Engineering, Aerospace SC Engineering GA EB8EX UT WOS:000387625400004 ER PT J AU Nag, S Rios, JL Gerhardt, D Pham, C AF Nag, Sreeja Rios, Joseph L. Gerhardt, David Pham, Camvu TI CubeSat constellation design for air traffic monitoring SO ACTA ASTRONAUTICA LA English DT Article AB Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space based ADS-B monitoring. It thereby provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data were obtained from NASA's Future ATM Concepts Evaluation Tool, for the Alaskan airspace over one day. The results presented were driven by MATLAB and the satellites propagated and coverage calculated using AGI's Satellite Tool. While Ad-hoc and precession spread constellations have been quantitatively evaluated, Walker constellations show the best performance in simulation. Sixteen satellites in two perpendicular orbital planes are shown to provide more than 99% coverage over representative Alaskan airspace and the maximum time gap where any airplane in Alaska is not covered is six minutes, therefore meeting the standard set by the International Civil Aviation Organization to monitor every airplane at least once every fifteen minutes. In spite of the risk of signal collision when multiple packets arrive at the satellite receiver, the proposed constellation shows 99% cumulative probability of reception within four minutes when the airplanes are transmitting every minute, and at similar to 100% reception probability if transmitting every second. Data downlink can be performed using any of the three ground stations of NASA Earth Network in Alaska. (C) 2016 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Nag, Sreeja; Rios, Joseph L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gerhardt, David] Gomspace ApS, Niels Jernes Vej 10, DK-9220 Aalborg, Denmark. [Pham, Camvu] San Jose State Univ, 1 Washington Sq, San Jose, CA 95192 USA. [Nag, Sreeja] Bay Area Environm Res Inst, Petaluma, CA 94952 USA. RP Nag, S (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.; Nag, S (reprint author), Bay Area Environm Res Inst, Petaluma, CA 94952 USA. EM sreeja.nag@nasa.gov FU NASA Ames Research Center's Center Innovation Fund (ARC CIF); Gomspace ApS FX This project was sponsored by NASA Ames Research Center's Center Innovation Fund (ARC CIF) 2014-15 and supported non-contractually by Gomspace ApS. We acknowledge Matthew Fladeland, Chad Frost, Donald Sullivan and Belgacem Jaroux at NASA Ames Research Center for engaging in very informative discussions that have improved the quality of this paper. NR 41 TC 0 Z9 0 U1 6 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD NOV-DEC PY 2016 VL 128 BP 180 EP 193 DI 10.1016/j.actaastro.2016.07.010 PG 14 WC Engineering, Aerospace SC Engineering GA EB8EX UT WOS:000387625400016 ER PT J AU Collier, MR Vondrak, RR Hoyt, RP Mesarch, MA Farrell, WM Keller, JW Clark, PE Petro, NE Hwang, KJ AF Collier, Michael R. Vondrak, Richard R. Hoyt, Robert P. Mesarch, Michael A. Farrell, William M. Keller, John W. Clark, Pamela E. Petro, Noah E. Hwang, Kyoung-Joo TI Tethered lunar subsatellites for multipoint and low altitude measurements SO ACTA ASTRONAUTICA LA English DT Article DE CubeSats; Tethers; Airless bodies ID RECONNAISSANCE ORBITER MISSION; MAGNETIC-ANOMALIES; MOON; PLASMA; DUST; CHANDRAYAAN-1; SPACECRAFT; EXPANSION; SURFACE; VACUUM AB The difficulty in making global measurements in orbit close to planetary bodies (and in particular the Moon) seriously constrains our ability to collect crucial, high-resolution data. We describe a unique and groundbreaking approach using tethered subsatellites to make measurements arbitrarily close to planetary surfaces, particularly those with no atmosphere, and to determine altitude profiles of geophysical parameters. The approach is feasible with current technology, and the subsatellite could be as small as a CubeSat. The initial results of a feasibility study and mission design for a tethered lunar CubeSat indicate that it is achievable. (C) 2016 Published by Elsevier Ltd. on behalf of IAA. C1 [Collier, Michael R.; Vondrak, Richard R.; Mesarch, Michael A.; Farrell, William M.; Keller, John W.; Petro, Noah E.] NASA, Goddard Space Flight Ctr, NASA GSFC Code 695, Greenbelt, MD 20771 USA. [Hoyt, Robert P.] Tethers Unltd Inc, Bothell, WA USA. [Clark, Pamela E.] Jet Prop Lab, Pasadena, CA USA. [Hwang, Kyoung-Joo] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. RP Collier, MR (reprint author), NASA, Goddard Space Flight Ctr, NASA GSFC Code 695, Greenbelt, MD 20771 USA. EM michael.r.collier@nasa.gov RI Farrell, William/I-4865-2013 FU Goddard Space Flight Center Internal Research and Development award from the Solar System Exploration Division FX This work was supported by a FY2015 Goddard Space Flight Center Internal Research and Development award from the Solar System Exploration Division. Special thanks to Michele Crane and Bill Fronzaglia at DSM Dyneema for helpful advice. NR 44 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD NOV-DEC PY 2016 VL 128 BP 464 EP 472 DI 10.1016/j.actaastro.2016.07.047 PG 9 WC Engineering, Aerospace SC Engineering GA EB8EX UT WOS:000387625400047 ER PT J AU Aslam, S Amato, M Bowles, N Calcutt, S Hewagama, T Howard, J Howett, C Hsieh, WT Hurford, T Hurley, J Irwin, P Jennings, DE Kessler, E Lakew, B Loeffler, M Mellon, M Nicoletti, A Nixon, CA Putzig, N Quilligan, G Rathbun, J Segura, M Spencer, J Spitale, J West, G AF Aslam, Shahid Amato, Michael Bowles, Neil Calcutt, Simon Hewagama, Tilak Howard, Joseph Howett, Carly Hsieh, Wen-Ting Hurford, Terry Hurley, Jane Irwin, Patrick Jennings, Donald E. Kessler, Ernst Lakew, Brook Loeffler, Mark Mellon, Michael Nicoletti, Anthony Nixon, Conor A. Putzig, Nathaniel Quilligan, Gerard Rathbun, Julie Segura, Marcia Spencer, John Spitale, Joseph West, Garrett TI Dual-telescope multi-channel thermal-infrared radiometer for outer planet fly-by missions SO ACTA ASTRONAUTICA LA English DT Article DE Dual-telescope; Dual-field-of-view; Filter radiometer; Icy moons; Thermal emission; Surface temperature; Europa ID MICHELSON INTERFEROMETER; SOUTH-POLE; MU-M; ENCELADUS; EUROPA; TERRAIN; FILTER; WATER AB The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8-200 mu m, in five spectral pass bands, for outer planet fly-by missions is described. The dual telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study. (C) 2016 Published by Elsevier Ltd. on behalf of IAA. C1 [Aslam, Shahid; Amato, Michael; Hewagama, Tilak; Howard, Joseph; Hsieh, Wen-Ting; Hurford, Terry; Jennings, Donald E.; Lakew, Brook; Loeffler, Mark; Nicoletti, Anthony; Nixon, Conor A.; Quilligan, Gerard; Segura, Marcia; West, Garrett] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Bowles, Neil; Calcutt, Simon; Irwin, Patrick] Univ Oxford, Clarendon Lab, Atmospher Ocean & Planetary Phys, Parks Rd, Oxford OX1 3PU, England. [Howett, Carly; Mellon, Michael; Putzig, Nathaniel; Spencer, John] Southwest Res Inst, 1050 Walnut St,Suite 300, Boulder, CO 80302 USA. [Hurley, Jane] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Kessler, Ernst] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany. [Rathbun, Julie; Spitale, Joseph] Planetary Sci Inst, 1700 East Ft Lowell,Suite 106, Tucson, AZ 85719 USA. RP Aslam, S (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM shahid.aslam-1@nasa.gov RI Loeffler, Mark/C-9477-2012; Hurford, Terry/F-2625-2012 FU National Aeronautics and Space Administration (NASA) [13-ICEE13-10] FX We wish to thank the National Aeronautics and Space Administration (NASA) for providing funds through the Instrument Concepts for Europa Exploration Program for Research Opportunities in Space and Earth Sciences (2013) award number 13-ICEE13-10, managed by Dr. Curt Niebur, to help mature the thermal radiometer optical design concept and the radiation-hard detector and readout technology presented here. We also wish to thank Carletta Missouri, Brittany Klein and David Palace from NASA, GSFC for providing the graphics. NR 40 TC 0 Z9 0 U1 3 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD NOV-DEC PY 2016 VL 128 BP 628 EP 639 DI 10.1016/j.actaastro.2016.08.009 PG 12 WC Engineering, Aerospace SC Engineering GA EB8EX UT WOS:000387625400063 ER PT J AU Guruswamy, G AF Guruswamy, Guru TI Dynamic Stability Analysis of Hypersonic Transport During Reentry SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT AIAA Atmospheric Flight Mechanics Conference CY JAN 04-08, 2016 CL San Diego, CA SP AIAA ID NAVIER-STOKES-EQUATIONS; DISTURBANCE TRANSONIC FLOW; NACA-64A006 AIRFOIL; FLUTTER ANALYSIS; COMPUTATIONS AB Dynamic stability analysis is performed for a typical future hypersonic transport vehicle during atmospheric flight. Unsteady aerodynamic data in the form of indicial responses are generated by solving the Navier-Stokes equations. Computations needed at multiple Mach numbers and associated angles of attack are computed in a single job by using dual-level parallel script. Validity of the indicial approach is established by comparing results with experiment and the time-integration method. Flutter boundaries associated with pitch and heave rigid-body degrees of freedom are computed. Effect of position of the mass center on flutter boundaries, which is more predominant in the transonic regime, is shown. This work advances stability analysis procedures for next-generation hypersonic vehicles. C1 [Guruswamy, Guru] NASA, Ames Res Ctr, Adv Supercomp Div, Computat Phys Branch, Moffett Field, CA 94035 USA. RP Guruswamy, G (reprint author), NASA, Ames Res Ctr, Adv Supercomp Div, Computat Phys Branch, Moffett Field, CA 94035 USA. NR 30 TC 0 Z9 0 U1 2 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD NOV PY 2016 VL 54 IS 11 BP 3374 EP 3381 DI 10.2514/1.J055018 PG 8 WC Engineering, Aerospace SC Engineering GA EA8BD UT WOS:000386858800005 ER PT J AU Rojo, R Tinney, CE Ruf, JH AF Rojo, Raymundo Tinney, Charles E. Ruf, Joseph H. TI Effect of Stagger on the Vibroacoustic Loads from Clustered Rockets SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 54th AIAA Aerospace Sciences Meeting / AIAA Science and Technology Forum and Exposition CY JAN 04-08, 2016 CL San Diego, CA SP AIAA ID CONVERGENT-DIVERGENT NOZZLES; RESTRICTED SHOCK SEPARATION; LAUNCH VEHICLE ACOUSTICS; SUPERSONIC JETS; NOISE; THRUST; UNSTEADINESS; TURBULENCE; SCREECH; CONTOUR AB The effect of stagger startup on the vibroacoustic loads that form during the end-effects regime of clustered rockets is studied using both full-scale (hot-gas) and laboratory-scale (cold-gas) data with vehicle geometry. Both configurations comprise three nozzles with thrust-optimized parabolic contours that undergo free-shock separated flow and restricted-shock separated flow as well as an end-effects regime before flowing full. Acoustic pressure waveforms recorded at the base of the nozzle cluster are analyzed using various statistical metrics as well as time-frequency analysis. The findings reveal a significant reduction in end-effects regime loads when engine startups are staggered. However, regardless of stagger, both the skewness and kurtosis of the acoustic pressure time derivative elevate to the same levels, thereby demonstrating the intermittence and impulsiveness of the acoustic waveforms during the end-effects regime. C1 [Rojo, Raymundo] Univ Texas Austin, Ctr Aeromech Res, Austin, TX 78712 USA. [Tinney, Charles E.] Univ Texas Austin, Appl Res Labs, Austin, TX 78713 USA. [Ruf, Joseph H.] NASA, Marshall Space Flight Ctr, Fluid Dynam Branch ER42, Huntsville, AL 35812 USA. RP Rojo, R (reprint author), Univ Texas Austin, Ctr Aeromech Res, Austin, TX 78712 USA. NR 36 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD NOV PY 2016 VL 54 IS 11 BP 3588 EP 3597 DI 10.2514/1.J055017 PG 10 WC Engineering, Aerospace SC Engineering GA EA8BD UT WOS:000386858800021 ER PT J AU Bhattacharya, A Bennett, DP Bond, IA Sumi, T Udalski, A Street, R Tsapras, Y Abe, F Freeman, M Fukui, A Hirao, Y Itow, Y Koshimoto, N Li, MCA Ling, CH Masuda, K Matsubara, Y Muraki, Y Nagakane, M Ohnishi, K Rattenbury, N Saito, T Sharan, A Sullivan, DJ Suzuki, D Tristram, PJ Skowron, J Szymanski, MK Soszynski, I Poleski, R Mroz, P Kozlowski, S Pietrukowicz, P Ulaczyk, K Wyrzykowski, L Bachelet, E Bramich, DM D'Ago, G Dominik, M Jaimes, RF Horne, K Hundertmark, M Kains, N Menzies, J Schmidt, R Snodgrass, C Steele, IA Wambsganss, J AF Bhattacharya, A. Bennett, D. P. Bond, I. A. Sumi, T. Udalski, A. Street, R. Tsapras, Y. Abe, F. Freeman, M. Fukui, A. Hirao, Y. Itow, Y. Koshimoto, N. Li, M. C. A. Ling, C. H. Masuda, K. Matsubara, Y. Muraki, Y. Nagakane, M. Ohnishi, K. Rattenbury, N. Saito, T. Sharan, A. Sullivan, D. J. Suzuki, D. Tristram, P. J. Skowron, J. Szymanski, M. K. Soszynski, I. Poleski, R. Mroz, P. Kozlowski, S. Pietrukowicz, P. Ulaczyk, K. Wyrzykowski, L. Bachelet, E. Bramich, D. M. D'Ago, G. Dominik, M. Jaimes, R. Figuera Horne, K. Hundertmark, M. Kains, N. Menzies, J. Schmidt, R. Snodgrass, C. Steele, I. A. Wambsganss, J. CA MOA Collaboration OGLE Collaboration ROBONET Collaboration TI DISCOVERY OF A GAS GIANT PLANET IN MICROLENSING EVENT OGLE-2014-BLG-1760 SO ASTRONOMICAL JOURNAL LA English DT Article DE gravitational lensing : micro; planetary systems ID GRAVITATIONAL LENSING EXPERIMENT; DIFFERENCE IMAGE-ANALYSIS; MASS-LUMINOSITY-RELATION; GALACTIC BULGE; SNOW LINE; OGLE-III; STARS; SYSTEMS; PHOTOMETRY; MOA-2011-BLG-293LB AB We present the analysis of the planetary microlensing event OGLE-2014-BLG-1760, which shows a strong light-urve signal due to the presence of a Jupiter mass ratio planet. One unusual feature of this event is that the source star is quite blue, with V - I = 1.48 +/- 0.08. This is marginally consistent with a source star in the Galactic bulge, but it could possibly indicate a young source star on the far side of the disk. Assuming a bulge source, we perform a Bayesian analysis assuming a standard Galactic model, and this indicates that the planetary system resides in or near the Galactic bulge at D-L = 6.9 +/- 1.1 kpc. It also indicates a host-star mass of M-* = 0.51(-0.28)(+0.44)M circle dot, a planet mass of m(p) = 0.56(-0.26)(+0.34)M(J), and a projected star-planet separation of a(perpendicular to) = 1.75(-0.33)(+0.34) au. The lens-source relative proper motion is mu(rel) = 6.5 +/- 1.1 mas yr(-1). The lens (and stellar host star) is estimated to be very faint compared to the source star, so it is most likely that it can be detected only when the lens and source stars start to separate. Due to the relatively high relative proper motion, the lens and source will be resolved to about similar to 46 mas in 6-8 yr after the peak magnification. So, by 2020-2022, we can hope to detect the lens star with deep, high- resolution images. C1 [Bhattacharya, A.; Bennett, D. P.] Univ Notre Dame, Dept Phys, 225 Nieuwland Sci Hall, Notre Dame, IN 46556 USA. [Bhattacharya, A.; Bennett, D. P.; Suzuki, D.] NASA, Goddard Space Flight Ctr, Code 667, Greenbelt, MD 20771 USA. [Bond, I. A.; Ling, C. H.] Massey Univ, Inst Nat & Math Sci, Auckland 0745, New Zealand. [Sumi, T.; Hirao, Y.; Koshimoto, N.; Nagakane, M.] Osaka Univ, 1-1 Yamadaoka, Suita, Osaka 5650871, Japan. [Udalski, A.; Skowron, J.; Szymanski, M. K.; Soszynski, I.; Poleski, R.; Mroz, P.; Kozlowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Wyrzykowski, L.] Univ Warsaw Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland. [Street, R.; Tsapras, Y.; Bachelet, E.] Global Telescope Network, Las Cumbres Observ, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA. [Tsapras, Y.; Schmidt, R.; Wambsganss, J.] Univ Heidelberg ZAH, Zentrum Astron, Astron Rechen Inst, D-69120 Heidelberg, Germany. [Tsapras, Y.] Queen Mary Univ London, Sch Phys & Astron, Mile End Rd, London E1 4NS, England. [Abe, F.; Itow, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y.] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi 4648601, Japan. [Freeman, M.] Univ Auckland, Dept Phys, Private Bag 92019, Auckland, New Zealand. [Fukui, A.] Natl Astron Observ Japan, Okayama Astrophys Observ, Okayama 7190232, Japan. [Li, M. C. A.; Rattenbury, N.; Sharan, A.] Univ Auckland, Dept Phys, Private Bag 92019, Auckland, New Zealand. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, T.] Tokyo Metroplitan Coll Ind Technol, Tokyo 1168523, Japan. [Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Tristram, P. J.] Mt John Univ Observ, POB 56, Lake Tekapo 8770, New Zealand. [Poleski, R.] Ohio State Univ, Dept Astron, 140 West 18th Ave, Columbus, OH 43210 USA. [Bachelet, E.; Bramich, D. M.] Qatar Fdn, HBKU, QEERI, Doha, Qatar. [D'Ago, G.] Univ Salerno, Dipartimento Fis ER Caianiello, Via Ponte Don Melillo, I-84084 Fisciano, SA, Italy. [D'Ago, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Dominik, M.; Jaimes, R. Figuera; Horne, K.; Hundertmark, M.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Jaimes, R. Figuera] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Hundertmark, M.] Univ Copenhagen, Niels Bohr Inst, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. [Kains, N.] Space Telescope Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Menzies, J.] South African Astron Observ, POB 9, ZA-7935 Observatory, South Africa. [Snodgrass, C.] Open Univ, Dept Phys Sci, Planetary & Space Sci, Milton Keynes MK7 6AA, Bucks, England. [Snodgrass, C.] Max Planck Inst Solar Syst Res, Max Planck Str 2, D-37191 Katlenburg Lindau, Germany. [Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England. [Bhattacharya, A.; Bennett, D. P.; Bond, I. A.; Sumi, T.] Microlensing Observat Astrophys, Osaka, Japan. [Udalski, A.] Opt Gravitat Lensing Expt, Tokyo, Japan. [Street, R.; Tsapras, Y.] Robonet, Ahmadabad, Gujarat, India. [Dominik, M.; Steele, I. A.] Royal Soc Univ, London, England. RP Bhattacharya, A (reprint author), Univ Notre Dame, Dept Phys, 225 Nieuwland Sci Hall, Notre Dame, IN 46556 USA.; Bhattacharya, A (reprint author), NASA, Goddard Space Flight Ctr, Code 667, Greenbelt, MD 20771 USA. EM abhatta2@nd.edu OI Street, Rachel/0000-0001-6279-0552 FU NASA [NASA-NNX12AF54G, NNX13AF64G]; Marsden Fund of Royal Society of New Zealand [MAU1104]; Royal Society of New Zealand Rutherford Discovery Fellowship; Royal Society of New Zealand; National Science Centre, Poland [MAESTRO 2014/14/A/ST9/00121]; Astrobiology Project of the Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences (NINS) [AB261005]; NPRP from the Qatar National Research Fund (a member of the Qatar Foundation) [X-019-1-006]; [JSPS23103002]; [JSPS24253004]; [JSPS26247023]; [JSPS25103508]; [23340064] FX A.B., D.P.B., and D.S. were supported by NASA through grants NASA-NNX12AF54G and NNX13AF64G. I.A.B. and P.Y. were supported by the Marsden Fund of Royal Society of New Zealand, contract no. MAU1104. N.J.R. was supported through the Royal Society of New Zealand Rutherford Discovery Fellowship. A.S., M.L., and M.D. were supported through the Royal Society of New Zealand. T.S. received support from JSPS23103002, JSPS24253004, and JSPS26247023. The MOA project received grants from JSPS25103508 and 23340064. The OGLE project received funding from the National Science Centre, Poland, grant MAESTRO 2014/14/A/ST9/00121 to A.U. The OGLE team thanks Profs. M. Kubiak and G. Pietrzynski, former members of the OGLE team, for their contribution to the collection of the OGLE photometric data over the past years. A.F. was supported by the Astrobiology Project of the Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences (NINS) (Grant Number AB261005). D.M.B. was supported by NPRP grant X-019-1-006 from the Qatar National Research Fund (a member of the Qatar Foundation). This work makes use of observations from the LCOGT network, which includes three SUPAscopes owned by the University of St Andrews. The RoboNet program is an LCOGT Key Project using time allocations from the University of St Andrews, LCOGT, and the University of Heidelberg, together with time on the Liverpool Telescope through the Science and Technology Facilities Council (STFC), UK. This research has made use of the LCOGT Archive, which is operated by the California Institute of Technology, under contract with the Las Cumbres Observatory. We thank Prof. Andrew Gould and the mu FUN team for allowing us to use their data and acknowledge their hard work and contribution in collecting the mu FUN data. NR 63 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2016 VL 152 IS 5 AR 140 DI 10.3847/0004-6256/152/5/140 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB3HP UT WOS:000387255000001 ER PT J AU Stauffer, J Marley, MS Gizis, JE Rebull, L Carey, SJ Krick, J Ingalls, JG Lowrance, P Glaccum, W Kirkpatrick, JD Simon, AA Wong, MH AF Stauffer, John Marley, Mark S. Gizis, John E. Rebull, Luisa Carey, Sean J. Krick, Jessica Ingalls, James G. Lowrance, Patrick Glaccum, William Kirkpatrick, J. Davy Simon, Amy A. Wong, Michael H. TI SPITZER SPACE TELESCOPE MID-IR LIGHT CURVES OF NEPTUNE SO ASTRONOMICAL JOURNAL LA English DT Article DE planets and satellites: individual (Neptune) ID INFRARED SURVEY EXPLORER; BROWN DWARF; TRANSMISSION SPECTRUM; L/T TRANSITION; ARRAY CAMERA; T-DWARFS; VARIABILITY; ATMOSPHERE; FIELD; MISSION AB We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 mu m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 mu m and 0.6 mag at 4.5 mu m. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 mu m) and W2 (4.6 mu m) from the Wide-feld Infrared Survey Explorer (WISE)/NEOWISE archive at six epochs in 2010-2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude similar to 0.02 mag) or at 845 nm with the Hubble Space Telescope (HST) in 2015 and at 763 nm in 2016 (amplitude similar to 0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune's atmosphere than for K2. Methane gas is the dominant opacity source in Neptune's atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 mu m filters. C1 [Stauffer, John; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William] CALTECH, SSC, Pasadena, CA 91125 USA. [Marley, Mark S.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS245-3, Moffett Field, CA 94035 USA. [Gizis, John E.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Rebull, Luisa] CALTECH, Infrared Sci Arch IRSA, 1200 E Calif Blvd,MS 314-6, Pasadena, CA 91125 USA. [Kirkpatrick, J. Davy] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. [Simon, Amy A.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div 690 0, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Wong, Michael H.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. RP Stauffer, J (reprint author), CALTECH, SSC, Pasadena, CA 91125 USA. RI Simon, Amy/C-8020-2012; OI Simon, Amy/0000-0003-4641-6186; Rebull, Luisa/0000-0001-6381-515X; Marley, Mark/0000-0002-5251-2943 FU NASA [GO13937, GO14492, NAS5-26555]; NASA Origins of Solar Systems program [11-OSS11-0074] FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), under a contract with the National Aeronautics and Space Administration (NASA). Support for this work was provided by NASA through an award issued by JPL/Caltech.; This publication makes use of data products from WISE, which is a joint project of the University of California, Los Angeles, and JPL/Caltech, funded by the NASA. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by JPL/Caltech, under contract with NASA.; This publication makes use of data products from the NASA/ESA Hubble Space Telescope, under programs GO13937 and GO14492, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555, with special thanks to the GO14492 science team (M.H. Wong, A.A. Simon, I. de Pater, J.W. Tollefson, K. de Kleer, H.B. Hammel, S. Cook, R. Hueso, A. Sanchez-Lavega, M. Delcroix, L. Sromovsky, G. Orton, and C. Baranec).; This research was carried out in part at JPL/Caltech under a contract with NASA and with the support of the NASA Origins of Solar Systems program via grant 11-OSS11-0074. NR 46 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2016 VL 152 IS 5 AR 142 DI 10.3847/0004-6256/152/5/142 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB3HP UT WOS:000387255000003 ER PT J AU Zhou, G Rodriguez, JE Collins, KA Beatty, T Oberst, T Heintz, TM Stassun, KG Latham, DW Kuhn, RB Bieryla, A Lund, MB Labadie-Bartz, J Siverd, RJ Stevens, DJ Gaudi, BS Pepper, J Buchhave, LA Eastman, J Colon, K Cargile, P James, D Gregorio, J Reed, PA Jensen, ELN Cohen, DH McLeod, KK Tan, TG Zambelli, R Bayliss, D Bento, J Esquerdo, GA Berlind, P Calkins, ML Blancato, K Manner, M Samulski, C Stockdale, C Nelson, P Stephens, D Curtis, I Kielkopf, J Fulton, BJ DePoy, DL Marshall, JL Pogge, R Gould, A Trueblood, M Trueblood, P AF Zhou, George Rodriguez, Joseph E. Collins, Karen A. Beatty, Thomas Oberst, Thomas Heintz, Tyler M. Stassun, Keivan G. Latham, David W. Kuhn, Rudolf B. Bieryla, Allyson Lund, Michael B. Labadie-Bartz, Jonathan Siverd, Robert J. Stevens, Daniel J. Gaudi, B. Scott Pepper, Joshua Buchhave, Lars A. Eastman, Jason Colon, Knicole Cargile, Phillip James, David Gregorio, Joao Reed, Phillip A. Jensen, Eric L. N. Cohen, David H. McLeod, Kim K. Tan, T. G. Zambelli, Roberto Bayliss, Daniel Bento, Joao Esquerdo, Gilbert A. Berlind, Perry Calkins, Michael L. Blancato, Kirsten Manner, Mark Samulski, Camile Stockdale, Christopher Nelson, Peter Stephens, Denise Curtis, Ivan Kielkopf, John Fulton, Benjamin J. DePoy, D. L. Marshall, Jennifer L. Pogge, Richard Gould, Andy Trueblood, Mark Trueblood, Pat TI KELT-17B: A HOT-JUPITER TRANSITING AN A-STAR IN A MISALIGNED ORBIT DETECTED WITH DOPPLER TOMOGRAPHY SO ASTRONOMICAL JOURNAL LA English DT Article DE planets and satellites: individual (KELT-17b); stars:individual (KELT-17, BD+14 1881, TYC 807-903-1) ID RAPIDLY ROTATING STARS; MAIN-SEQUENCE STARS; DIFFERENTIAL ROTATION; STELLAR MASS; GIANT STARS; F-STARS; EXTRASOLAR PLANETS; IMAGE SUBTRACTION; KEPLER STARS; LIGHT CURVES AB We present the discovery of a hot. Jupiter transiting the V =9.23 mag main-sequence A-star KELT-17(BD+14 1881). KELT-17b is a 1.31(-0.29)(+0.28)M(J), 1.525(-0.060) (+0.065) R-J hot-Jupiter in a 3.08-day period orbit misaligned at -115 degrees.9 +/- 4.degrees 1 to the rotation axis of the star. The planet is confirmed via both the detection of the radial velocity orbit, and the Doppler tomographic detection of the shadow of the planet during two transits. The nature of the spin-orbit misaligned transit geometry allows us to place a constraint on the level of differential rotation in the host star; we find that KELT-17 is consistent with both rigid-body rotation and solar differential rotation rates (alpha < 0.30 at 2 sigma significance). KELT-17 is only the fourth A-star with a confirmed transiting planet, and with a mass of 1.635 M-+0.066(-0.061)circle dot, an effective temperature of 7454 +/- 49 K, and a projected rotational velocity of nu sin I-* = 44.2(-1.3)(+1.5) km S-1 it is among the most massive, hottest, and most rapidly rotating of known planet hosts. C1 [Zhou, George; Latham, David W.; Bieryla, Allyson; Eastman, Jason; Cargile, Phillip; Esquerdo, Gilbert A.; Berlind, Perry; Calkins, Michael L.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Rodriguez, Joseph E.; Collins, Karen A.; Stassun, Keivan G.; Lund, Michael B.; Manner, Mark] Vanderbilt Univ, Dept Phys & Astron, 6301 Stevenson Ctr, Nashville, TN 37235 USA. [Collins, Karen A.; Stassun, Keivan G.] Fisk Univ, Dept Phys, 1000 17th Ave North, Nashville, TN 37208 USA. [Beatty, Thomas] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Beatty, Thomas] Penn State Univ, Ctr Exoplanets & Habitable Worlds, 525 Davey Lab, University Pk, PA 16802 USA. [Oberst, Thomas; Heintz, Tyler M.] Westminster Coll, Dept Phys, New Wilmington, PA 16172 USA. [Kuhn, Rudolf B.] South African Astron Observ, POB 9, ZA-7935 Cape Town, South Africa. [Labadie-Bartz, Jonathan; Pepper, Joshua] Lehigh Univ, Dept Phys, 16 Mem Dr East, Bethlehem, PA 18015 USA. [Siverd, Robert J.] Las Cumbres Observ Global Telescope Network, 6740 Cortona Dr,Suite 102, Santa Barbara, CA 93117 USA. [Stevens, Daniel J.; Gaudi, B. Scott; Pogge, Richard; Gould, Andy] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Buchhave, Lars A.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Colon, Knicole] NASA Ames Res Ctr, M-S 244-30, Moffett Field, CA 94035 USA. [Colon, Knicole] Bay Area Environm Res Inst, 625 2nd St Ste 209, Petaluma, CA 94952 USA. [James, David] Cerro Tololo InterAmer Observ, Casilla 603, La Serena, Chile. [Gregorio, Joao] Atalaia Grp & Crow Observ, Portalegre, Portugal. [Reed, Phillip A.] Kutztown State Univ, Dept Phys Sci, Kutztown, PA 19530 USA. [Jensen, Eric L. N.] Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA. [Cohen, David H.; McLeod, Kim K.; Blancato, Kirsten; Samulski, Camile] Wellesley Coll, Wellesley, MA 02481 USA. [Tan, T. G.] Perth Exoplanet Survey Telescope, Perth, WA, Australia. [Zambelli, Roberto] Societ Astronom Lunae, Via Montefrancio 77, I-19030 Castelnuovo Magra, Italy. [Bayliss, Daniel] Univ Geneva, Astron Observ, 51 Ch Maillettes, CH-1290 Versoix, Switzerland. [Bento, Joao] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Stockdale, Christopher] Hazelwood Observ, Hazelwood South, Vic, Australia. [Nelson, Peter] Ellinbank Observ, Ellinbank, Vic, Australia. [Stephens, Denise] BYU Dept Phys & Astron, N486 ESC, Provo, UT 84602 USA. [Curtis, Ivan] ICO, Adelaide, SA, Australia. [Kielkopf, John] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Fulton, Benjamin J.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [DePoy, D. L.; Marshall, Jennifer L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Marshall, Jennifer L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Trueblood, Mark; Trueblood, Pat] Winer Observ, Sonoita, AZ 85637 USA. RP Zhou, G (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM george.zhou@cfa.harvard.edu OI Rodriguez, Joseph/0000-0001-8812-0565; Tan, Thiam-Guan/0000-0001-5603-6895; Pepper, Joshua/0000-0002-3827-8417; Latham, David/0000-0001-9911-7388; Stassun, Keivan/0000-0002-3481-9052 FU Theodore Dunham, Jr. Grant of the Fund for Astronomical Research; National Science Foundation Graduate Research Fellowship [2014184874]; NSF CAREER Grant [AST-1056524] FX The authors thank the referee for insightful comments. K.K.M. acknowledges the Theodore Dunham, Jr. Grant of the Fund for Astronomical Research for the purchase of the SDSS filters used at Whitin Observatory. B.J.F. notes that this material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. 2014184874. Work by B.S.G. and D.J.S. was partially supported by NSF CAREER Grant AST-1056524. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation. NR 94 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2016 VL 152 IS 5 AR 136 DI 10.3847/0004-6256/152/5/136 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB0LX UT WOS:000387036400002 ER PT J AU Bulbul, E Markevitch, M Foster, A Miller, E Bautz, M Loewenstein, M Randall, SW Smith, RK AF Bulbul, Esra Markevitch, Maxim Foster, Adam Miller, Eric Bautz, Mark Loewenstein, Mike Randall, Scott W. Smith, Randall K. TI SEARCHING FOR THE 3.5 keV LINE IN THE STACKED SUZAKU OBSERVATIONS OF GALAXY CLUSTERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: clusters: general; large-scale structure of universe; line: identification ID DARK-MATTER; EMISSION-LINE; NEUTRINOS; IONS AB We perform a detailed study of the stacked Suzaku observations of 47 galaxy clusters, spanning a redshift range of 0.01-0.45, to search for the unidentified 3.5 keV line. This sample provides an independent test for the previously detected line. We detect a 2s-significant spectral feature at 3.5 keV in the spectrum of the full sample. When the sample is divided into two subsamples (cool-core and non-cool core clusters), the cool-core subsample shows no statistically significant positive residuals at the line energy. A very weak (similar to 2 sigma confidence) spectral feature at 3.5 keV is permitted by the data from the non-cool-core clusters sample. The upper limit on a neutrino decay mixing angle of sin(2)(2 theta) = 6.1 x 10(-11) from the full Suzaku sample is consistent with the previous detections in the stacked XMM-Newton sample of galaxy clusters (which had a higher statistical sensitivity to faint lines), M31, and Galactic center, at a 90% confidence level. However, the constraint from the present sample, which does not include the Perseus cluster, is in tension with previously reported line flux observed in the core of the Perseus cluster with XMM-Newton and Suzaku. C1 [Bulbul, Esra; Miller, Eric; Bautz, Mark] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Markevitch, Maxim; Loewenstein, Mike] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Foster, Adam; Randall, Scott W.; Smith, Randall K.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RP Bulbul, E (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM ebulbul@mit.edu OI Smith, Randall/0000-0003-4284-4167 FU NASA [NX14AF78G, NNX13AE77G, NNX15AC76G, NNX15AE16G]; Chandra X-ray Center through NASA [NAS8-03060]; Smithsonian Institution FX The authors thank Keith Arnaud for providing help with response remapping, and the anonymous referee for useful comments on the draft. Support for this work was provided by NASA through contracts NNX14AF78G, NNX13AE77G, and NNX15AC76G. E.M. and M. B. acknowledge support from NASA grants NNX13AE77G and NNX15AC76G. A. F. acknowledges NASA grant NNX15AE16G. Support for SWR was provided by the Chandra X-ray Center through NASA contract NAS8-03060 and the Smithsonian Institution. NR 24 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 55 DI 10.3847/0004-637X/831/1/55 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB2YU UT WOS:000387229300018 ER PT J AU Chiang, CY Morgan, RA Cackett, EM Miller, JM Bhattacharyya, S Strohmayer, TE AF Chiang, Chia-Ying Morgan, Robert A. Cackett, Edward M. Miller, Jon M. Bhattacharyya, Sudip Strohmayer, Tod E. TI ON THE EVOLUTION OF THE INNER DISK RADIUS WITH FLUX IN THE NEUTRON STAR LOW-MASS X-RAY BINARY SERPENS X-1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; stars: neutron; X-rays: binaries ID ACTIVE GALACTIC NUCLEI; RELATIVISTIC IRON LINE; SYSTEM 4U 1636-53; LOW-HARD STATE; BLACK-HOLES; ACCRETION DISK; EMISSION-LINES; SAX J1808.4-3658; XTE J1701-462; GRO J1655-40 AB We analyze the latest Suzaku observation of the bright neutron star (NS) low-mass X-ray binary Serpens X-1 taken in 2013 October and 2014 April. The observation was taken using the burst mode and only suffered mild pile-up effects. A broad iron line is clearly detected in the X-ray spectrum. We test different models and find that the iron line is asymmetric and best interpreted by relativistic reflection. The relativistically broadened iron line is generally believed to originate from the innermost regions of the accretion disk, where strong gravity causes a series of special and general relativistic effects. The iron line profile indicates an inner radius of similar to 8 R-G, which gives an upper limit on the size of the NS. The asymmetric iron line has been observed in a number of previous observations, which gives several inner radius measurements at different flux states. We find that the inner radius of Serpens X-1 does not evolve significantly over the range of L/L-Edd similar to 0.4-0.6, and the lack of flux dependence of the inner radius implies that the accretion disk may be truncated outside of. the innermost stable circular orbit by the boundary layer, rather than the stellar magnetic field. C1 [Chiang, Chia-Ying; Morgan, Robert A.; Cackett, Edward M.] Wayne State Univ, Dept Phys & Astron, 666 W Hancock, Detroit, MI 48202 USA. [Miller, Jon M.] Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA. [Bhattacharyya, Sudip] Tata Inst Fundamental Res, Dept Astron & Astrophys, Bombay 400005, Maharashtra, India. [Strohmayer, Tod E.] NASAs Goddard Space Flight Ctr, Xray Astrophys Lab, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Chiang, CY (reprint author), Wayne State Univ, Dept Phys & Astron, 666 W Hancock, Detroit, MI 48202 USA. EM ft8320@wayne.edu OI Cackett, Edward/0000-0002-8294-9281; Chiang, Chia-Ying/0000-0002-9630-4003 FU NASA through Chandra Award [GO4-15041X]; NASA [NAS8-03060]; NSF through a Research Experience for Undergraduates program at Wayne State University (NSF) [PHY1460853] FX This work was greatly expedited thanks to the help of Jeremy Sanders in optimizing the various convolution models. We thank Masahiro Tsujimoto for help with. choosing the optimal XIS observing modes. C.Y.C. and E.M.C. gratefully acknowledge support provided by NASA through Chandra Award Number GO4-15041X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. R.M. acknowledges support from the NSF through a Research Experience for Undergraduates program at Wayne State University (NSF grant number PHY1460853). NR 54 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 45 DI 10.3847/0004-637X/831/1/45 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB2YU UT WOS:000387229300008 ER PT J AU Howell, SB Mason, E Boyd, P Smith, KL Gelino, DM AF Howell, Steve B. Mason, Elena Boyd, Patricia Smith, Krista Lynne Gelino, Dawn M. TI RAPIDLY ROTATING, X-RAY BRIGHT STARS IN THE KEPLER FIELD SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: activity; stars: chromospheres; stars: evolution; stars: rotation ID FK COMAE BERENICES; MAIN-SEQUENCE; STELLAR; CATALOG; GIANTS; VARIABILITY; CALIBRATION; VELOCITY; RELEASE; PERIODS AB We present Kepler light curves and optical spectroscopy of twenty X-ray bright stars located in the Kepler field of view. The stars, spectral type F-K, show evidence for rapid rotation including chromospheric activity 100 times or more above the Sun at maximum and flaring behavior in their light curves. Eighteen of our objects appear to be (sub) giants and may belong to the class of FK Com variables, which are evolved rapidly spinning single stars with no excretion disk and high levels of chromospheric activity. Such stars are rare and are likely the result of W UMa binary mergers, a process believed to produce the FK Com class of variable and their descendants. The FK Com stage, including the presence of an excretion disk, is short lived but leads to longer-lived stages consisting of single, rapidly rotating evolved (sub) giants with high levels of stellar activity. C1 [Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Mason, Elena] INAF, OATS, Via GB Tiepolo 11, I-34143 Trieste, Italy. [Boyd, Patricia; Smith, Krista Lynne] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Smith, Krista Lynne] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Gelino, Dawn M.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. RP Howell, SB (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. OI Gelino, Dawn/0000-0003-1274-2784 FU NASA Earth and Space Sciences Fellowship (NESSF) FX We wish to thank the staff of the Kepler project at NASA Ames research Center, the NASA Exoplanet Archive, and the Mt. Palomar Observatory for their continued support of the Kepler mission and its follow-up work. K.L.S. acknowledges support from the NASA Earth and Space Sciences Fellowship (NESSF). NR 48 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 27 DI 10.3847/0004-637X/831/1/27 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB1UO UT WOS:000387141200001 ER PT J AU Tobin, JJ Stutz, AM Manoj, P Megeath, ST Karska, A Nagy, Z Wyrowski, F Fischer, WJ Watson, DM Stanke, T AF Tobin, John J. Stutz, Amelia M. Manoj, P. Megeath, S. Thomas Karska, Agata Nagy, Zsofia Wyrowski, Friedrich Fischer, William J. Watson, Dan M. Stanke, Thomas TI CHARACTERIZING THE YOUNGEST HERSCHEL-DETECTED PROTOSTARS. II. MOLECULAR OUTFLOWS FROM THE MILLIMETER AND THE FAR-INFRARED SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: jets and outflows; ISM: molecules; methods: observational; stars: formation; stars: protostars; techniques: interferometric ID 1ST HYDROSTATIC CORE; LOW-MASS PROTOSTARS; SPECTRAL ENERGY-DISTRIBUTIONS; SPITZER-SPACE-TELESCOPE; STELLAR OBJECTS; PROTOSTELLAR ENVELOPES; CONTINUUM OBSERVATIONS; PACS SPECTROSCOPY; COMPLEX STRUCTURE; STAR-FORMATION AB We present Combined Array for Research in Millimeter-wave Astronomy (CARMA) CO (J = 1 -> 0) observations and Herschel PACS spectroscopy, characterizing the outflow properties toward extremely young and deeply embedded protostars in the Orion molecular clouds. The sample comprises a subset of the Orion protostars known as the PACS Bright Red Sources (PBRS; Stutz et al.). We observed 14 PBRS with CARMA and 8 of these 14 with Herschel, acquiring full spectral scans from 55 to 200 mu m. Outflows are detected in CO (J = 1 -> 0) from 8 of 14 PBRS, with two additional tentative detections; outflows are also detected from the outbursting protostar HOPS 223 (V2775 Ori) and the Class I protostar HOPS 68. The outflows have a range of morphologies; some are spatially compact, < 10,000 au in extent, while others extend beyond the primary beam. The outflow velocities and morphologies are consistent with being dominated by intermediate inclination angles (80 degrees >= i >= 20 degrees). This confirms the interpretation of the very red 24-70 mu m colors of the PBRS as a signpost of high envelope densities, with only one (possibly two) cases of the red colors resulting from edge-on inclinations. We detect high-J (J(up) > 13) CO lines and/or H2O lines from 5 of 8 PBRS and only for those with detected CO outflows. The far-infrared CO rotation temperatures of the detected PBRS are marginally colder (similar to 230 K) than those observed for most protostars (similar to 300 K), and only one of these five PBRS has detected [O (I)] 63 mu m emission. The high envelope densities could be obscuring some [O (I)] emission and cause a similar to 20 K reduction to the CO rotation temperatures. C1 [Tobin, John J.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [Tobin, John J.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Stutz, Amelia M.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Manoj, P.] Tata Inst Fundamental Res, Dept Astron & Astrophys, Bombay 400005, Maharashtra, India. [Megeath, S. Thomas; Nagy, Zsofia; Fischer, William J.] Univ Toledo, Dept Phys & Astron, Ritter Astrophys Res Ctr, Toledo, OH 43606 USA. [Karska, Agata] Nicolaus Copernicus Univ, Ctr Astron, Fac Phys Astron & Informat, Grudziadzka 5, PL-87100 Torun, Poland. [Wyrowski, Friedrich] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Fischer, William J.] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Watson, Dan M.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Stanke, Thomas] European Southern Observ, D-85748 Garching, Germany. RP Tobin, JJ (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands.; Tobin, JJ (reprint author), Natl Radio Astron Observ, Charlottesville, VA 22903 USA. EM tobin@strw.leidenuniv.nl RI Karska, Agata/O-5311-2016; OI Karska, Agata/0000-0001-8913-925X; Tobin, John/0000-0002-6195-0152; Stutz, Amelia/0000-0003-2300-8200 FU Netherlands Organisation for Scientific Research (NWO) [639.041.439]; NASA through Hubble Fellowship grant - Space Telescope Science Institute [HST-HF-51300.01-A]; NASA [NAS 5-26555]; Deutsche Forschungsgemeinschaft [1573]; Foundation for Polish Science (FNP); Polish National Science Center grant [2013/11/N/ST9/00400]; NASA through JPL/Caltech; state of Illinois; state of California; state of Maryland; James S. McDonnell Foundation; Gordon and Betty Moore Foundation; Kenneth T. and Eileen L. Norris Foundation; University of Chicago; Associates of the California Institute of Technology; National Science Foundation; CARMA partner universities FX We wish to thank the anonymous referee for excellent suggestions, which have significantly improved the quality of the manuscript. The authors also wish to acknowledge fruitful discussions with M. Dunham, L. Kristensen, and J. Mottram regarding this work. J.J.T. is currently supported by grant 639.041.439 from the Netherlands Organisation for Scientific Research (NWO). J.J.T. acknowledges past support provided by NASA through Hubble Fellowship grant #HST-HF-51300.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. The work of A.M.S. was supported by the Deutsche Forschungsgemeinschaft priority program 1573 ("Physics of the Interstellar Medium"). AK acknowledges support from the Foundation for Polish Science (FNP) and the Polish National Science Center grant 2013/11/N/ST9/00400. This work is based in part on observations made with Herschel, a European Space Agency Cornerstone Mission with significant participation by NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. We are very grateful to have had the opportunity to conduct these follow-up observations with the CARMA array in California. The discontinuation of support for this productive facility is a loss that will continue to be felt into the future. Support for CARMA construction was derived from the states of Illinois, California, and Maryland, the James S. McDonnell Foundation, the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the University of Chicago, the Associates of the California Institute of Technology, and the National Science Foundation. Ongoing CARMA development and operations were supported by the National Science Foundation under a cooperative agreement, and by the CARMA partner universities. NR 84 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 36 DI 10.3847/0004-637X/831/1/36 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB1UO UT WOS:000387141200010 ER PT J AU Vasei, K Siana, B Shapley, AE Quider, AM Alavi, A Rafelski, M Steidel, CC Pettini, M Lewis, GF AF Vasei, Kaveh Siana, Brian Shapley, Alice E. Quider, Anna M. Alavi, Anahita Rafelski, Marc Steidel, Charles C. Pettini, Max Lewis, Geraint F. TI THE LYMAN CONTINUUM ESCAPE FRACTION OF THE COSMIC HORSESHOE: A TEST OF INDIRECT ESTIMATES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (Cosmic Horseshoe); galaxies: starburst; gravitational lensing: strong; intergalactic medium; ultraviolet: galaxies ID HUBBLE-SPACE-TELESCOPE; STAR-FORMING GALAXIES; HIGH-REDSHIFT GALAXIES; ULTRA DEEP FIELD; SIMILAR-TO 3; UV LUMINOSITY FUNCTIONS; IONIZING-RADIATION; STARBURST GALAXIES; BREAK GALAXIES; UVUDF ULTRAVIOLET AB High-redshift star-forming galaxies are likely responsible for the reionization of the universe, yet direct detection of their escaping ionizing (Lyman continuum [LyC]) photons has proven to be extremely challenging. In this study, we search for escaping LyC of the Cosmic Horseshoe, a gravitationally lensed, star-forming galaxy at z = 2.38 with a large magnification of similar to 24. Transmission at wavelengths of low-ionization interstellar absorption lines in the rest-frame ultraviolet suggests a patchy, partially transparent interstellar medium. This makes it an ideal candidate for direct detection of the LyC. We obtained a 10-orbit Hubble near-UV image using the Wide Field Camera 3 (WFC3)/UVIS F275W filter that probes wavelengths just below the Lyman limit at the redshift of the Horseshoe in an attempt to detect escaping LyC radiation. After fully accounting for the uncertainties in the opacity of the intergalactic medium (IGM) and accounting for the charge transfer inefficiency in the WFC3 CCDs, we find a 3 sigma upper limit for the relative escape fraction of integral(esc,) (rel) < 0.08. This value is a factor of five lower than the value (0.4) predicted by the 40% transmission in the low-ion absorption lines. Though possible, it is unlikely that the nondetection is due to a high-opacity line of sight through the IGM (< 20% chance). We discuss several possible causes for the discrepancy between the escape fraction and the covering fraction and consider the implications for future attempts at both direct LyC detection and indirect estimates of the escape fraction. C1 [Vasei, Kaveh; Siana, Brian; Alavi, Anahita] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Shapley, Alice E.] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90095 USA. [Quider, Anna M.; Pettini, Max] Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Rafelski, Marc] Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Steidel, Charles C.] CALTECH, Cahill Ctr Astron & Astrophys, 1216 East Calif Blvd,MS 249-17, Pasadena, CA 91125 USA. [Lewis, Geraint F.] Univ Sydney, Sydney Inst Astron, Sch Phys, A28, Sydney, NSW 2006, Australia. RP Vasei, K (reprint author), Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. EM svase001@ucr.edu FU Association of Universities for Research in Astronomy, Inc., under NASA [NAS 5-26555]; W. M. Keck Foundation; [11602]; [12266] FX Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11602 and 12266.; Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. NR 74 TC 3 Z9 3 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 38 DI 10.3847/0004-637X/831/1/38 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB2YU UT WOS:000387229300001 ER PT J AU Oh, D Hashimoto, J Carson, JC Janson, M Kwon, J Nakagawa, T Mayama, S Uyama, T Yang, Y Kudo, T Kusakabe, N Abe, L Akiyama, E Brandner, W Brandt, TD Currie, T Feldt, M Goto, M Grady, CA Guyon, O Hayano, Y Hayashi, M Hayashi, SS Henning, T Hodapp, KW Ishii, M Iye, M Kandori, R Knapp, GR Kuzuhara, M Matsuo, T Mcelwain, MW Miyama, S Morino, JI Moro-Martin, A Nishimura, T Pyo, TS Serabyn, E Suenaga, T Suto, H Suzuki, R Takahashi, YH Takato, N Terada, H Thalmann, C Turner, EL Watanabe, M Yamada, T Takami, H Usuda, T Tamura, M AF Oh, Daehyeon Hashimoto, Jun Carson, Joseph C. Janson, Markus Kwon, Jungmi Nakagawa, Takao Mayama, Satoshi Uyama, Taichi Yang, Yi Kudo, Tomoyuki Kusakabe, Nobuhiko Abe, Lyu Akiyama, Eiji Brandner, Wolfgang Brandt, Timothy D. Currie, Thayne Feldt, Markus Goto, Miwa Grady, Carol A. Guyon, Olivier Hayano, Yutaka Hayashi, Masahiko Hayashi, Saeko S. Henning, Thomas Hodapp, Klaus W. Ishii, Miki Iye, Masanori Kandori, Ryo Knapp, Gillian R. Kuzuhara, Masayuki Matsuo, Taro Mcelwain, Michael W. Miyama, Shoken Morino, Jun-Ichi Moro-Martin, Amaya Nishimura, Tetsuo Pyo, Tae-Soo Serabyn, Eugene Suenaga, Takuya Suto, Hiroshi Suzuki, Ryuji Takahashi, Yasuhiro H. Takato, Naruhisa Terada, Hiroshi Thalmann, Christian Turner, Edwin L. Watanabe, Makoto Yamada, Toru Takami, Hideki Usuda, Tomonori Tamura, Motohide TI A RESOLVED NEAR-INFRARED IMAGE OF THE INNER CAVITY IN THE GM Aur TRANSITIONAL DISK SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; protoplanetary disks; stars: individual (GM Aur); stars: pre-main sequence ID PROTOPLANETARY DISKS; SCATTERED-LIGHT; DUST FILTRATION; UPPER SCORPIUS; GAP EDGES; PLANETS; AURIGAE; MODEL; HOLES; SEEDS AB We present high-contrast H-band polarized intensity (PI) images of the transitional disk around the young solar-like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2 m Telescope and HiCIAO. An angular resolution and an inner working angle of 0 ''.07 and r similar to 0 ''.05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18 +/- 2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be caused by a 3-4M(Jup) planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner cavity is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HST/NICMOS, and this difference may indicate the grain growth process in the disk. C1 [Oh, Daehyeon; Yang, Yi; Suenaga, Takuya] Grad Univ Adv Studies, SOKENDAI, Dept Astron Sci, Mitaka, Tokyo 1818588, Japan. [Oh, Daehyeon; Akiyama, Eiji; Hayashi, Masahiko; Ishii, Miki; Iye, Masanori; Kandori, Ryo; Morino, Jun-Ichi; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Terada, Hiroshi; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Hashimoto, Jun; Kusakabe, Nobuhiko; Tamura, Motohide] NINS, Astrobiol Ctr, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Carson, Joseph C.] Coll Charleston, Dept Phys & Astron, 66 George St, Charleston, SC 29424 USA. [Janson, Markus] Stockholm Univ, AlbaNova Univ Ctr, Dept Astron, SE-10691 Stockholm, Sweden. [Kwon, Jungmi; Nakagawa, Takao] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan. [Mayama, Satoshi] Grad Univ Adv Studies, SOKENDAI, Ctr Promot Integrated Sci, Hayama Cho, Hayama, Kanagawa 2400193, Japan. [Uyama, Taichi; Takahashi, Yasuhiro H.; Tamura, Motohide] Univ Tokyo, Dept Astron, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Kudo, Tomoyuki; Currie, Thayne; Guyon, Olivier; Hayano, Yutaka; Hayashi, Saeko S.; Nishimura, Tetsuo; Pyo, Tae-Soo; Takato, Naruhisa] Natl Astron Observ Japan, Subaru Telescope, 650 North Aohoku Pl, Hilo, HI 96720 USA. [Abe, Lyu] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, Lab Lagrange UMR 7293, 28 Ave Valrose, F-06108 Nice 2, France. [Brandner, Wolfgang; Henning, Thomas] Max Planck Inst Astron, Koonigstuhl 17, D-69117 Heidelberg, Germany. [Brandt, Timothy D.; Feldt, Markus] Inst Adv Study, Dept Astrophys, Olden Lane, Princeton, NJ 08540 USA. [Goto, Miwa] Ludwig Maximilians Univ Munchen, Univ Sternwarte Munchen, Scheinerstr 1, D-81679 Munich, Germany. [Grady, Carol A.; Mcelwain, Michael W.] Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. [Hodapp, Klaus W.] Univ Hawaii, Inst Astron, 640 N Aohoku Pl, Hilo, HI 96720 USA. [Knapp, Gillian R.; Turner, Edwin L.] Princeton Univ, Dept Astrophys Sci, Peyton Hall,Ivy Lane, Princeton, NJ 08544 USA. [Kuzuhara, Masayuki] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan. [Matsuo, Taro] Kyoto Univ, Dept Astron, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto, Kyoto 6068502, Japan. [Miyama, Shoken] Hiroshima Univ, 1-3-2 Kagamiyama, Higashihiroshima, Hiroshima 7398511, Japan. [Moro-Martin, Amaya] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Serabyn, Eugene; Turner, Edwin L.] Univ Tokyo, Kavli Inst Phys & Math Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778568, Japan. [Thalmann, Christian] ETH, Swiss Fed Inst Technol, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Watanabe, Makoto] Hokkaido Univ, Dept Cosmosci, Kita Ku, Sapporo, Hokkaido 0600810, Japan. [Yamada, Toru] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Oh, Daehyeon] Natl Meteorol Satellite Ctr, 64-18 Guam Gil, Jincheon 27803, Chungbuk, South Korea. [Grady, Carol A.; Suto, Hiroshi] Eureka Sci, 2452 Delmer,Suite 100, Oakland, CA 96002 USA. [Grady, Carol A.] Goddard Ctr Astrobiol, Greenbelt, MD USA. [Moro-Martin, Amaya] Johns Hopkins Univ, Ctr Astrophys Sci, Baltimore, MD 21218 USA. RP Oh, D (reprint author), Grad Univ Adv Studies, SOKENDAI, Dept Astron Sci, Mitaka, Tokyo 1818588, Japan.; Oh, D (reprint author), Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan.; Oh, D (reprint author), Natl Meteorol Satellite Ctr, 64-18 Guam Gil, Jincheon 27803, Chungbuk, South Korea. EM daehyun.oh@nao.ac.jp RI MIYAMA, Shoken/A-3598-2015 FU U.S. National Science Foundation [1009203]; [15H02063] FX We are grateful to the referee for providing useful comments that led to an improved version of this letter. M.T. and J.C. are supported by. a Grant-in-Aid for Scientific Research (No. 15H02063) and by the U.S. National Science Foundation under award #1009203, respectively. NR 31 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2016 VL 831 IS 1 AR L7 DI 10.3847/2041-8205/831/1/L7 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EB2AM UT WOS:000387158800002 ER PT J AU Zhu, L Jacob, DJ Kim, PS Fisher, JA Yu, K Travis, KR Mickley, LJ Yantosca, RM Sulprizio, MP De Smedt, I Abad, GG Chance, K Li, C Ferrare, R Fried, A Hair, JW Hanisco, TF Richter, D Scarino, AJ Walega, J Weibring, P Wolfe, GM AF Zhu, Lei Jacob, Daniel J. Kim, Patrick S. Fisher, Jenny A. Yu, Karen Travis, Katherine R. Mickley, Loretta J. Yantosca, Robert M. Sulprizio, Melissa P. De Smedt, Isabelle Abad, Gonzalo Gonzalez Chance, Kelly Li, Can Ferrare, Richard Fried, Alan Hair, Johnathan W. Hanisco, Thomas F. Richter, Dirk Scarino, Amy Jo Walega, James Weibring, Petter Wolfe, Glenn M. TI Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC(4)RS aircraft observations over the southeast US SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID OZONE MONITORING INSTRUMENT; SPECTRAL-RESOLUTION LIDAR; ISOPRENE EMISSIONS; PROFILER SUITE; NORTH-AMERICA; MODEL; COLUMNS; TROPOSPHERE; CHEMISTRY; TRANSPORT AB Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs), but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) campaign over the southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS; for clarification of these and other abbreviations used in the paper, please refer to Appendix A.) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the southeast US (r = 0.4-0.8 on a 0.5 degrees x 0.5 degrees grid) and in their day-to-day variability (r = 0.5-0.8). However, all retrievals are biased low in the mean by 20-51 %, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA, which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation, and correcting this would eliminate its bias relative to the SEAC(4)RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved. C1 [Zhu, Lei; Jacob, Daniel J.; Yu, Karen; Travis, Katherine R.; Mickley, Loretta J.; Yantosca, Robert M.; Sulprizio, Melissa P.] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Jacob, Daniel J.; Kim, Patrick S.] Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. [Fisher, Jenny A.] Univ Wollongong, Sch Chem, Ctr Atmospher Chem, Wollongong, NSW, Australia. [Fisher, Jenny A.] Univ Wollongong, Sch Earth & Environm Sci, Wollongong, NSW, Australia. [De Smedt, Isabelle] Belgian Inst Space Aeron BIRA IASB, Brussels, Belgium. [Abad, Gonzalo Gonzalez; Chance, Kelly] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Li, Can] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Li, Can; Hanisco, Thomas F.; Wolfe, Glenn M.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Ferrare, Richard; Hair, Johnathan W.] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Fried, Alan; Richter, Dirk; Walega, James; Weibring, Petter] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Scarino, Amy Jo] Sci Syst & Applicat Inc, Hampton, VA USA. [Wolfe, Glenn M.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. RP Zhu, L (reprint author), Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM leizhu@fas.harvard.edu RI Wolfe, Glenn/D-5289-2011; Chem, GEOS/C-5595-2014 FU US National Aeronautics and Space Administration; University of Wollongong FX We acknowledge contributions from the NASA SEAC4RS science team. We would also like to thank the SEAC4RS flight crews and support staff for their outstanding efforts in the field. This work was funded by the US National Aeronautics and Space Administration. We thank Michel Van Roozendael for helpful discussions. Jenny A. Fisher acknowledges support from a University of Wollongong Vice Chancellor's Postdoctoral Fellowship. We thank three anonymous reviewers who provided thorough and thoughtful comments. NR 51 TC 0 Z9 0 U1 6 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 1 PY 2016 VL 16 IS 21 BP 13477 EP 13490 DI 10.5194/acp-16-13477-2016 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EB1NF UT WOS:000387118600002 ER PT J AU Pope, RJ Richards, NAD Chipperfield, MP Moore, DP Monks, SA Arnold, SR Glatthor, N Kiefer, M Breider, TJ Harrison, JJ Remedios, JJ Warneke, C Roberts, JM Diskin, GS Huey, LG Wisthaler, A Apel, EC Bernath, PF Feng, WH AF Pope, Richard J. Richards, Nigel A. D. Chipperfield, Martyn P. Moore, David P. Monks, Sarah A. Arnold, Stephen R. Glatthor, Norbert Kiefer, Michael Breider, Tom J. Harrison, Jeremy J. Remedios, John J. Warneke, Carsten Roberts, James M. Diskin, Glenn S. Huey, Lewis G. Wisthaler, Armin Apel, Eric C. Bernath, Peter F. Feng, Wuhu TI Intercomparison and evaluation of satellite peroxyacetyl nitrate observations in the upper troposphere-lower stratosphere SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CHEMICAL-TRANSPORT MODEL; REACTIVE NITROGEN; CLIMATE MODEL; PAN; OZONE; MIPAS; AEROSOL; INSTRUMENT; MULTIMODEL; RESOLUTION AB Peroxyacetyl nitrate (PAN) is an important chemical species in the troposphere as it aids the long-range transport of NOx and subsequent formation of O-3 in relatively clean remote regions. Over the past few decades observations from aircraft campaigns and surface sites have been used to better understand the regional distribution of PAN. However, recent measurements made by satellites allow for a global assessment of PAN in the upper troposphere-lower stratosphere (UTLS). In this study, we investigate global PAN distributions from two independent retrieval methodologies, based on measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, on board Envisat from the Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, and the Department of Physics and Astronomy, University of Leicester (UoL). Retrieving PAN from MIPAS is challenging due to the weak signal in the measurements and contamination from other species. Therefore, we compare the two MIPAS datasets with observations from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS), in situ aircraft data and the 3-D chemical transport model TOMCAT. MIPAS shows peak UTLS PAN concentrations over the biomass burning regions (e.g. ranging from 150 to >200 pptv at 150 hPa) and during the summertime Asian monsoon as enhanced convection aids the vertical transport of PAN from the lower atmosphere. At 150 hPa, we find significant differences between the two MIPAS datasets in the tropics, where IMK PAN concentrations are larger by 50-100 pptv. Comparisons between MIPAS and ACE-FTS show better agreement with the UoL MIPAS PAN concentrations at 200 hPa, but with mixed results above this altitude. TOMCAT generally captures the magnitude and structure of climatological aircraft PAN profiles within the observational variability allowing it to be used to investigate the MIPAS PAN differences. TOMCAT-MIPAS comparisons show that the model is both positively (UoL) and negatively (IMK) biased against the satellite products. These results indicate that satellite PAN observations are able to detect realistic spatial variations in PAN in the UTLS, but further work is needed to resolve differences in existing retrievals to allow quantitative use of the products. C1 [Pope, Richard J.; Richards, Nigel A. D.; Chipperfield, Martyn P.; Arnold, Stephen R.; Feng, Wuhu] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England. [Pope, Richard J.; Richards, Nigel A. D.; Chipperfield, Martyn P.] Univ Leeds, Natl Ctr Earth Observat, Leeds, W Yorkshire, England. [Moore, David P.; Harrison, Jeremy J.; Remedios, John J.] Univ Leicester, Dept Phys & Astron, Leicester, Leics, England. [Moore, David P.; Harrison, Jeremy J.; Remedios, John J.] Univ Leicester, Natl Ctr Earth Observat, Leicester, Leics, England. [Monks, Sarah A.; Warneke, Carsten; Roberts, James M.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Glatthor, Norbert; Kiefer, Michael] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Karlsruhe, Germany. [Monks, Sarah A.; Warneke, Carsten] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Breider, Tom J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Diskin, Glenn S.] NASA Langley Res Ctr, Chem & Dynam Branch, Hampton, VA USA. [Huey, Lewis G.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Wisthaler, Armin] Univ Innsbruck, Innsbruck, Austria. [Wisthaler, Armin] Univ Oslo, Oslo, Norway. [Apel, Eric C.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Bernath, Peter F.] Old Dominion Univ, Dept Chem & Biochem, Norfolk, VA USA. [Feng, Wuhu] Univ Leeds, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England. RP Pope, RJ (reprint author), Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England.; Pope, RJ (reprint author), Univ Leeds, Natl Ctr Earth Observat, Leeds, W Yorkshire, England. EM r.j.pope@leeds.ac.uk RI Bernath, Peter/B-6567-2012; FENG, WUHU/B-8327-2008; Roberts, James/A-1082-2009; Manager, CSD Publications/B-2789-2015; OI Bernath, Peter/0000-0002-1255-396X; FENG, WUHU/0000-0002-9907-9120; Roberts, James/0000-0002-8485-8172; MONKS, SARAH/0000-0003-3474-027X FU NERC National Centre for Earth Observation (NCEO); Canadian Space Agency; Austrian Space Applications Programme (ASAP); Austrian Ministry for Transport FX This work was supported by the NERC National Centre for Earth Observation (NCEO). We are grateful to Paul Young (University of Lancaster) for supplying the TOMCAT isoprene scheme. We acknowledge the use of Emmons et al. (2000) aircraft climatology of atmospheric trace gases, which is available at https://www2.acom.ucar.edu/gcm/aircraft-climatology. We also thank the NOAA Earth System Research Laboratory Chemical Sciences Division for the ARCPAC CO aircraft data. The ACE mission is funded primarily by the Canadian Space Agency (http://www.asc-csa.gc.ca/eng/). PTR-MS measurements during ARCTAS were funded through the Austrian Space Applications Programme (ASAP). ASAP is sponsored by the Austrian Ministry for Transport and administered by the Aeronautics and Space Agency (ALR) of the Austrian Research Promotion Agency (FFG). Tomas Mikoviny is acknowledged for his support in the PTR-MS data acquisition and analysis. NR 45 TC 0 Z9 0 U1 11 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 1 PY 2016 VL 16 IS 21 BP 13541 EP 13559 DI 10.5194/acp-16-13541-2016 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EB1NF UT WOS:000387118600005 ER PT J AU Travis, KR Jacob, DJ Fisher, JA Kim, PS Marais, EA Zhu, L Yu, K Miller, CC Yantosca, RM Sulprizio, MP Thompson, AM Wennberg, PO Crounse, JD St Clair, JM Cohen, RC Laughner, JL Dibb, JE Hall, SR Ullmann, K Wolfe, GM Pollack, IB Peischl, J Neuman, JA Zhou, XL AF Travis, Katherine R. Jacob, Daniel J. Fisher, Jenny A. Kim, Patrick S. Marais, Eloise A. Zhu, Lei Yu, Karen Miller, Christopher C. Yantosca, Robert M. Sulprizio, Melissa P. Thompson, Anne M. Wennberg, Paul O. Crounse, John D. St Clair, Jason M. Cohen, Ronald C. Laughner, Joshua L. Dibb, Jack E. Hall, Samuel R. Ullmann, Kirk Wolfe, Glenn M. Pollack, Illana B. Peischl, Jeff Neuman, Jonathan A. Zhou, Xianliang TI Why do models overestimate surface ozone in the Southeast United States? SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CHEMICAL-TRANSPORT MODEL; REGIONAL AIR-QUALITY; UPPER TROPOSPHERE; ISOPRENE OXIDATION; ORGANIC NITRATES; NITROGEN-OXIDES; BOUNDARY-LAYER; SATELLITE-OBSERVATIONS; INTEGRATED ANALYSIS; SPATIAL-RESOLUTION AB Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx = NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC(4)RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25 degrees x 0.3125 degrees horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC(4)RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30-60 %, dependent on the assumption of the contribution by soil NOx emissions. Upper-tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS- Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 6 +/- 14 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS- Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer. C1 [Travis, Katherine R.; Jacob, Daniel J.; Marais, Eloise A.; Zhu, Lei; Yu, Karen; Miller, Christopher C.; Yantosca, Robert M.; Sulprizio, Melissa P.] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Jacob, Daniel J.; Kim, Patrick S.] Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. [Fisher, Jenny A.] Univ Wollongong, Sch Chem, Ctr Atmospher Chem, Wollongong, NSW, Australia. [Fisher, Jenny A.] Univ Wollongong, Sch Earth & Environm Sci, Wollongong, NSW, Australia. [Thompson, Anne M.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Wennberg, Paul O.; Crounse, John D.; St Clair, Jason M.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Wennberg, Paul O.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Cohen, Ronald C.; Laughner, Joshua L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Dibb, Jack E.] Univ New Hampshire, Earth Syst Res Ctr, Durham, NH 03824 USA. [Hall, Samuel R.; Ullmann, Kirk] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Wolfe, Glenn M.] NASA Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Wolfe, Glenn M.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Pollack, Illana B.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Peischl, Jeff; Neuman, Jonathan A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Peischl, Jeff; Neuman, Jonathan A.] NOAA Earth Syst Res Lab, Boulder, CO USA. [Zhou, Xianliang] SUNY Albany, Dept Environm Hlth Sci, Albany, NY 12201 USA. [Zhou, Xianliang] New York State Dept Hlth, Wadsworth Ctr, Albany, NY USA. RP Travis, KR (reprint author), Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM ktravis@fas.harvard.edu RI Wolfe, Glenn/D-5289-2011; Peischl, Jeff/E-7454-2010; Cohen, Ronald/A-8842-2011; Chem, GEOS/C-5595-2014; Crounse, John/C-3700-2014; Manager, CSD Publications/B-2789-2015; OI Peischl, Jeff/0000-0002-9320-7101; Cohen, Ronald/0000-0001-6617-7691; Crounse, John/0000-0001-5443-729X; Fisher, Jenny/0000-0002-2921-1691 FU NASA Earth Science Division; STAR Fellowship - US Environmental Protection Agency (EPA) [91761601-0]; University of Wollongong; Australian Government FX We are grateful to the entire NASA SEAC4RS team for their help in the field. We thank Tom Ryerson for his measurements of NO and NO2 from the NOAA NOyO3 instrument. We thank L. Gregory Huey for the use of his CIMS PAN measurements. We thank Fabien Paulot and Jingqiu Mao for their helpful discussions of isoprene chemistry. We thank Christoph Keller for his help in implementing the NEI11v1 emissions into GEOS-Chem. We acknowledge the EPA for providing the 2011 North American emission inventory and in particular George Pouliot for his help and advice. These emission inventories are intended for research purposes. A technical report describing the 2011 modeling platform can be found at https://www.epa.gov/sites/production/files/2015-10/documents/nei2011v2_t sd_14aug2015.pdf. A description of the 2011 NEI can be found at https://www.epa.gov/air-emissions-inventories/national-emissions-invento ry. This work was supported by the NASA Earth Science Division and by STAR Fellowship Assistance Agreement no. 91761601-0 awarded by the US Environmental Protection Agency (EPA). It has not been formally reviewed by EPA. The views expressed in this publication are solely those of the authors. JAF acknowledges support from a University of Wollongong Vice Chancellor's Postdoctoral Fellowship. This research was undertaken with the assistance of resources provided at the NCI National Facility systems at the Australian National University through the National Computational Merit Allocation Scheme supported by the Australian Government. NR 98 TC 5 Z9 5 U1 20 U2 20 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 1 PY 2016 VL 16 IS 21 BP 13561 EP 13577 DI 10.5194/acp-16-13561-2016 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EB1NF UT WOS:000387118600006 ER PT J AU Stjern, CW Samset, BH Myhre, G Bian, H Chin, M Davila, Y Dentener, F Emmons, L Flemming, J Haslerud, AS Henze, D Jonson, JE Kucsera, T Lund, MT Schulz, M Sudo, K Takemura, T Tilmes, S AF Stjern, Camilla Weum Samset, Bjorn Hallvard Myhre, Gunnar Bian, Huisheng Chin, Mian Davila, Yanko Dentener, Frank Emmons, Louisa Flemming, Johannes Haslerud, Amund Sovde Henze, Daven Jonson, Jan Eiof Kucsera, Tom Lund, Marianne Tronstad Schulz, Michael Sudo, Kengo Takemura, Toshihiko Tilmes, Simone TI Global and regional radiative forcing from 20% reductions in BC, OC and SO4 - an HTAP2 multi-model study SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CHEMICAL-TRANSPORT MODEL; AEROCOM PHASE-II; GENERAL-CIRCULATION MODELS; BLACK CARBON; RELATIVE-HUMIDITY; INTERCONTINENTAL TRANSPORT; CUMULUS PARAMETERIZATION; ATMOSPHERIC TRANSPORT; VERTICAL-DISTRIBUTION; CLIMATE RESPONSE AB In the Hemispheric Transport of Air Pollution Phase 2 (HTAP2) exercise, a range of global atmospheric general circulation and chemical transport models performed coordinated perturbation experiments with 20% reductions in emissions of anthropogenic aerosols, or aerosol precursors, in a number of source regions. Here, we compare the resulting changes in the atmospheric load and vertically resolved profiles of black carbon (BC), organic aerosols (OA) and sulfate (SO4) from 10 models that include treatment of aerosols. We use a set of temporally, horizontally and vertically resolved profiles of aerosol forcing efficiency (AFE) to estimate the impact of emission changes in six major source regions on global radiative forcing (RF) pertaining to the direct aerosol effect, finding values between. 51.9 and 210.8 mW m(-2) Tg(-1) for BC, between -2.4 and -17.9 mW m(-2) Tg(-1) for OA and between -3.6 and -10.3 W m(-2) Tg(-1) for SO4. In most cases, the local influence dominates, but results show that mitigations in south and east Asia have substantial impacts on the radiative budget in all investigated receptor regions, especially for BC. In Russia and the Middle East, more than 80 % of the forcing for BC and OA is due to extra-regional emission reductions. Similarly, for North America, BC emissions control in east Asia is found to be more important than domestic mitigations, which is consistent with previous findings. Comparing fully resolved RF calculations to RF estimates based on vertically averaged AFE profiles allows us to quantify the importance of vertical resolution to RF estimates. We find that locally in the source regions, a 20% emission reduction strengthens the radiative forcing associated with SO4 by 25% when including the vertical dimension, as the AFE for SO4 is strongest near the surface. Conversely, the local RF from BC weakens by 37% since BC AFE is low close to the ground. The fraction of BC direct effect forcing attributable to intercontinental transport, on the other hand, is enhanced by one-third when accounting for the vertical aspect, because long-range transport primarily leads to aerosol changes at high altitudes, where the BC AFE is strong. While the surface temperature response may vary with the altitude of aerosol change, the analysis in the present study is not extended to estimates of temperature or precipitation changes. C1 [Stjern, Camilla Weum; Samset, Bjorn Hallvard; Myhre, Gunnar; Haslerud, Amund Sovde; Lund, Marianne Tronstad] CICERO Ctr Int Climate & Environm Res, Oslo, Norway. [Bian, Huisheng] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Chin, Mian] NASA Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD USA. [Davila, Yanko; Henze, Daven] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Dentener, Frank] European Commiss, Joint Res Ctr, Inst Environm & Sustainabil, Ispra, VA, Italy. [Emmons, Louisa; Tilmes, Simone] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO USA. [Jonson, Jan Eiof; Schulz, Michael] Norwegian Meteorol Inst, Oslo, Norway. [Flemming, Johannes] European Ctr Medium Range Weather Forecast ECMWF, Reading, Berks, England. [Kucsera, Tom] Univ Space Res Assoc, Greenbelt, MD USA. [Sudo, Kengo] Nagoya Univ, Chigusa Ku, Furocho, Nagoya, Aichi, Japan. [Takemura, Toshihiko] Kyushu Univ, Res Inst Appl Mech, Fukuoka, Japan. RP Stjern, CW (reprint author), CICERO Ctr Int Climate & Environm Res, Oslo, Norway. EM camilla.stjern@cicero.oslo.no RI Emmons, Louisa/R-8922-2016; Chin, Mian/J-8354-2012; Kyushu, RIAM/F-4018-2015; Takemura, Toshihiko/C-2822-2009; Myhre, Gunnar/A-3598-2008 OI Emmons, Louisa/0000-0003-2325-6212; Takemura, Toshihiko/0000-0002-2859-6067; Myhre, Gunnar/0000-0002-4309-476X FU Research Council of Norway through the grant AC/BC [240372]; Research Council of Norway through the grant NetBC [244141]; Research Council of Norway through the grant SLAC; National Science Foundation; Office of Science (BER) of the US Department of Energy; National Institute for Environmental Studies, Japan; Environment Research and Technology Development Fund of the Ministry of the Environment, Japan [S-12-3]; JSPS KAKENHI [15H01728, 15K12190]; Copernicus Atmosphere Service; Norwegian Research Council [235548, 229796] FX This work was supported by the Research Council of Norway through the grants AC/BC (240372), NetBC (244141) and SLAC. The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the US Department of Energy. The National Center for Atmospheric Research is funded by the National Science Foundation. The SPRINTARS is supported by the supercomputer system of the National Institute for Environmental Studies, Japan, the Environment Research and Technology Development Fund (S-12-3) of the Ministry of the Environment, Japan, and JSPS KAKENHI grants 15H01728 and 15K12190. Johannes Flemming's contribution has been supported by the Copernicus Atmosphere Service. This study also benefitted from the Norwegian Research Council projects no. 235548 (Role of SLCF in Global Climate Regime) and no. 229796 (AeroCom-P3). NR 79 TC 0 Z9 0 U1 14 U2 14 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 1 PY 2016 VL 16 IS 21 BP 13579 EP 13599 DI 10.5194/acp-16-13579-2016 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EB1NF UT WOS:000387118600007 ER PT J AU Joy, KH Crawford, IA Curran, NM Zolensky, M Fagan, AF Kring, DA AF Joy, Katherine H. Crawford, Ian A. Curran, Natalie M. Zolensky, Michael Fagan, Amy F. Kring, David A. TI The Moon: An Archive of Small Body Migration in the Solar System SO EARTH MOON AND PLANETS LA English DT Review DE Moon; Regolith; Meteorites; Meteorite-survivability; Impact-bombardment; Lunar exploration ID LATE HEAVY BOMBARDMENT; HIGHLY SIDEROPHILE ELEMENTS; IMPACT-MELT SPLASHES; LUNAR CATACLYSM; LATE ACCRETION; REGOLITH BRECCIAS; PLANETARY BASALTS; ISOTOPIC EVIDENCE; ASTEROID BELT; MAJOR-ELEMENT AB The Moon is an archive of impact cratering in the Solar System throughout the past 4.5 billion years. It preserves this record better than larger, more complex planets like the Earth, Mars and Venus, which have largely lost their ancient crusts through geological reprocessing and hydrospheric/atmospheric weathering. Identifying the parent bodies of impactors (i.e. asteroid bodies, comets from the Kuiper belt or the Oort Cloud) provides geochemical and chronological constraints for models of Solar System dynamics, helping to better inform our wider understanding of the evolution of the Solar System and the transfer of small bodies between planets. In this review article, we discuss the evidence for populations of impactors delivered to the Moon at different times in the past. We also propose approaches to the identification and characterisation of meteoritic material on the Moon in the context of future lunar exploration efforts. C1 [Joy, Katherine H.; Curran, Natalie M.] Univ Manchester, Sch Earth & Environm Sci, Williamson Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Crawford, Ian A.] Univ London, Dept Earth & Planetary Sci, Birkbeck Coll, Malet St, London WC1E 7HX, England. [Zolensky, Michael; Kring, David A.] Lunar & Planetary Inst USRA, Ctr Lunar Sci & Explorat, 3600 Bay Area Blvd, Houston, TX 77058 USA. [Zolensky, Michael] NASA Johnson Space Ctr, ARES, Houston, TX 77058 USA. [Fagan, Amy F.] Western Carolina Univ, Geosci & Nat Resources Dept, 331 Stillwell Bldg, Cullowhee, NC 28723 USA. RP Joy, KH (reprint author), Univ Manchester, Sch Earth & Environm Sci, Williamson Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. EM katherine.joy@manchester.ac.uk RI Crawford, Ian/H-7510-2012; OI Crawford, Ian/0000-0001-5661-7403; Joy, Katherine/0000-0003-4992-8750 FU Leverhulme Trust [2011-569, F/07 112/P]; STFC [ST/M001253/1]; Royal Society University Fellowship [RS/UF140190]; NASA Lunar Science Institute [NNA09DB33A]; Solar System Exploration Research Virtual Institute [NNA14AB07A] FX Material in this review article has been brought together from work published previously by Crawford and Joy (2014), Crawford et al. (2007), Joy et al. (2011a, b, 2012, 2014), Joy (2014), and Fagan et al. (2014). We thank two anonymous reviewers for their helpful suggestions to improve the manuscript, and Dr. Gudipati for editorial handling. We acknowledge funding from various sources including Leverhulme Trust grants 2011-569 (PI Joy) and F/07 112/P (PI Crawford), STFC grant ST/M001253/1 (Co-I Joy), Royal Society University Fellowship (PI Joy RS/UF140190), NASA Lunar Science Institute cooperative NNA09DB33A (PI Kring), Solar System Exploration Research Virtual Institute cooperative agreement NNA14AB07A (PI Kring). This is LPI publication number LPI-001978. NR 235 TC 0 Z9 0 U1 12 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-9295 EI 1573-0794 J9 EARTH MOON PLANETS JI Earth Moon Planets PD NOV PY 2016 VL 118 IS 2-3 BP 133 EP 158 DI 10.1007/s11038-016-9495-0 PG 26 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Geology GA EB2VW UT WOS:000387221700006 ER PT J AU Larour, E Utke, J Bovin, A Morlighem, M Perez, G AF Larour, Eric Utke, Jean Bovin, Anton Morlighem, Mathieu Perez, Gilberto TI An approach to computing discrete adjoints for MPI-parallelized models applied to Ice Sheet System Model 4.11 SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID DATA ASSIMILATION; SEA-LEVEL; GREENLAND; BASAL; ANTARCTICA; SURFACE; SENSITIVITY; ALGORITHM; GLACIERS; VELOCITY AB Within the framework of sea-level rise projections, there is a strong need for hindcast validation of the evolution of polar ice sheets in a way that tightly matches observational records (from radar, gravity, and altimetry observations mainly). However, the computational requirements for making hindcast reconstructions possible are severe and rely mainly on the evaluation of the adjoint state of transient iceflow models. Here, we look at the computation of adjoints in the context of the NASA/ JPL/ UCI Ice Sheet System Model (ISSM), written in C++ and designed for parallel execution with MPI. We present the adaptations required in the way the software is designed and written, but also generic adaptations in the tools facilitating the adjoint computations. We concentrate on the use of operator overloading coupled with the AdjoinableMPI library to achieve the adjoint computation of the ISSM. We present a comprehensive approach to (1) carry out type changing through the ISSM, hence facilitating operator overloading, (2) bind to external solvers such as MUMPS and GSL-LU, and (3) handle MPI-based parallelism to scale the capability. We demonstrate the success of the approach by computing sensitivities of hindcast metrics such as the misfit to observed records of surface altimetry on the northeastern Greenland Ice Stream, or the misfit to observed records of surface velocities on Upernavik Glacier, central West Greenland. We also provide metrics for the scalability of the approach, and the expected performance. This approach has the potential to enable a new generation of hindcast-validated projections that make full use of the wealth of datasets currently being collected, or already collected, in Greenland and Antarctica. C1 [Larour, Eric] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr MS 300-323, Pasadena, CA 91109 USA. [Utke, Jean] Allstate Insurance Co, 2775 Sanders Rd, Northbrook, IL 60062 USA. [Bovin, Anton] Univ Chicago, Dept Phys, 5720 South Ellis Ave, Chicago, IL 60637 USA. [Morlighem, Mathieu] Univ Calif Irvine, Dept Earth Syst Sci, Croul Hall, Irvine, CA 92697 USA. [Perez, Gilberto] Univ Calif Irvine, Sch Informat & Comp Sci, Croul Hall, Irvine, CA 92697 USA. RP Larour, E (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr MS 300-323, Pasadena, CA 91109 USA. EM eric.larour@jpl.nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology, under a contract with the NASA Cryospheric Sciences and Modeling and Analysis Programs [DE-AC02-06CH11357]; Jet Propulsion Laboratory; NASA IceBridge research program FX DE-AC02-06CH11357. Eric Larour and Jean Utke were supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the NASA Cryospheric Sciences and Modeling and Analysis Programs. Gilberto Perez was supported by a subcontract from the Jet Propulsion Laboratory to the University of California at Irvine and Mathieu Morlighem was supported under a contract with the NASA IceBridge research program. NR 39 TC 0 Z9 0 U1 1 U2 1 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PD NOV 1 PY 2016 VL 9 IS 11 BP 3907 EP 3918 DI 10.5194/gmd-9-3907-2016 PG 12 WC Geosciences, Multidisciplinary SC Geology GA EB1OA UT WOS:000387121100003 ER PT J AU Xu, F Davis, AB Diner, DJ AF Xu, Feng Davis, Anthony B. Diner, David J. TI Markov chain formalism for generalized radiative transfer in a plane-parallel medium, accounting for polarization SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Generalized radiative transfer; Polarized radiative transfer; Markov chain formalism; Stochastic optical media; Angular reciprocity; Clouds ID NONCLASSICAL PARTICLE-TRANSPORT; CORRELATED RANDOM MEDIUM; BOLTZMANN-EQUATION; ORIENTED PARTICLES; PHASE FUNCTIONS; OPTICAL MEDIA; CLOUDS; SCATTERING; ATMOSPHERES; APPROXIMATION AB A Markov chain formalism is developed for computing the transport of polarized radiation according to Generalized Radiative Transfer (GRT) theory, which was developed recently to account for unresolved random fluctuations of scattering particle density and can also be applied to unresolved spectral variability of gaseous absorption as an improvement over the standard correlated-k method. Using Gamma distribution to describe the probability density function of the extinction or absorption coefficient, a shape parameter a that quantifies the variability is introduced, defined as the mean extinction or absorption coefficient squared divided by its variance. It controls the decay rate of a power-law transmission that replaces the usual exponential Beer-Lambert-Bouguer law. Exponential transmission, hence classic RT, is recovered when a ->infinity. The new approach is verified to high accuracy against numerical benchmark results obtained with a custom Monte Carlo method. For a < infinity, angular reciprocity is violated to a degree that increases with the spatial variability, as observed for finite portions of real-world cloudy scenes. While the degree of linear polarization in liquid water cloudbows, supernumerary bows, and glories is affected by spatial heterogeneity, the positions in scattering angle of these features are relatively unchanged. As a result, a single-scattering model based on the assumption of subpixel homogeneity can still be used to derive droplet size distributions from polarimetric measurements of extended stratocumulus clouds. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Xu, Feng; Davis, Anthony B.; Diner, David J.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Xu, F (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Feng.Xu@jpl.nasa.gov RI Xu, Feng/G-3673-2013 FU NASA Remote Sensing Theory program for Earth Science FX This work was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. We acknowledge support from the NASA Remote Sensing Theory program for Earth Science, managed by Dr. Lucia Tsaoussi. We are thankful for many fruitful discussions over the years with Drs. William Collins, Larry Esposito, Martin Frank, Ed Larsen, Syd Redner, David Suszcynsky, and Robert West. Finally, we are grateful to our three anonymous reviewers, as well as the JQSRT Chief Editor, for constructive comments on the manuscript, as submitted; the revised version greatly benefited from their remarks. NR 48 TC 0 Z9 0 U1 5 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD NOV PY 2016 VL 184 BP 14 EP 26 DI 10.1016/j.jqsrt.2016.06.004 PG 13 WC Optics; Spectroscopy SC Optics; Spectroscopy GA EA9RL UT WOS:000386982300003 ER PT J AU Mishchenko, MI Alexandrov, MD Cairns, B Travis, LD AF Mishchenko, Michael I. Alexandrov, Mikhail D. Cairns, Brian Travis, Larry D. TI Multistatic aerosol-cloud lidar in space: A theoretical perspective SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Aerosols; Clouds; Multistatic lidar; Electromagnetic scattering; Polarization ID SPECTRAL-RESOLUTION LIDAR; BISTATIC IMAGING LIDAR; REFLECTED SUNLIGHT; SATELLITE RETRIEVAL; LOWER ATMOSPHERE; CAMERA LIDAR; CLIMATE; POLARIZATION; PARAMETERS; OCEAN AB Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; help relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional back scattering lidar with just one additional receiver flown in formation at a scattering angle close to 170 can dramatically increase the information content of the measurements. Although the specific subject of this Perspective is the multistatic lidar concept, all our conclusions equally apply to a multistatic radar system intended to study from space the global distribution of cloud and precipitation characteristics. Published by Elsevier Ltd. C1 [Mishchenko, Michael I.; Alexandrov, Mikhail D.; Cairns, Brian; Travis, Larry D.] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. [Alexandrov, Mikhail D.] Columbia Univ, Dept Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM michael.i.mishchenko@nasa.gov FU NASA ACE Project FX We thank an anonymous reviewer for constructive suggestions, Igor Veselovskii for instructive discussions, and Nadia Zakharova for providing Figs. 2-6. This research was supported by the NASA ACE Project managed by Hal Maring and Arlindo da Silva. NR 69 TC 2 Z9 2 U1 7 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD NOV PY 2016 VL 184 BP 180 EP 192 DI 10.1016/j.jqsrt.2016.07.015 PG 13 WC Optics; Spectroscopy SC Optics; Spectroscopy GA EA9RL UT WOS:000386982300018 ER PT J AU Predoi-Cross, A Esteki, K Rozario, H Naseri, H Latif, S Thibault, F Devi, VM Smith, MAH Mantz, AW AF Predoi-Cross, A. Esteki, K. Rozario, H. Naseri, H. Latif, S. Thibault, F. Devi, V. Malathy Smith, M. A. H. Mantz, A. W. TI Theoretical and revisited experimentally retrieved He-broadened line parameters of carbon monoxide in the fundamental band SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE CO-He widths and shifts; Infrared spectra; Temperature dependences of widths and shifts; Line mixing; Spectral line shapes; Speed dependence ID WAVE COHERENT TRANSIENTS; SPEED DEPENDENCE; MULTISPECTRUM ANALYSIS; LOW-TEMPERATURES; CO-HE; HELIUM; AR; SELF; N-2; LINEWIDTHS AB We report revisited experimentally retrieved and theoretically calculated He-broadened Lorentz half-width coefficients and He- pressure-shift coefficients of 45 carbon monoxide transitions in the 1 <- 0 band. The spectra analyzed in this study were recorded over a range of temperatures between 79 and 296 K. The He-broadened line parameters and their temperature dependences were retrieved using a multispectrum nonlinear least squares analysis program. The line shape models used in this study include Voigt, speed dependent Voigt, Rautian (to take into account confinement narrowing) and Rautian with speed dependence, all with an asymmetric component added to account for weak line mixing effects. We were unable to retrieve the temperature dependence of line mixing coefficients. A classical method was used to determine the He-narrowing parameters while quantum dynamical calculations were performed to determine He-broadening and He-pressure shifts coefficients at different temperatures. The line mixing coefficients were also derived from the exponential power gap law and the energy corrected sudden approximation. The current measurements and theoretical results are compared with other published results, where appropriate. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Predoi-Cross, A.; Esteki, K.; Rozario, H.; Naseri, H.; Latif, S.] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 6R4, Canada. [Thibault, F.] Univ Rennes 1, UMR CNRS 6251, Inst Phys Rennes, F-35042 Rennes, France. [Devi, V. Malathy] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Smith, M. A. H.] NASA, Sci Directorate, Langley Res Ctr, Hampton, VA 23681 USA. [Mantz, A. W.] Connecticut Coll, Dept Phys Astron & Geophys, New London, CT 06320 USA. [Naseri, H.] Farmers Edge, Lethbridge, AB, Canada. [Latif, S.] Univ Lethbridge, Dept Comp Sci, Lethbridge, AB T1K 6R4, Canada. RP Predoi-Cross, A (reprint author), Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 6R4, Canada. EM adriana.predoicross@uleth.ca FU Natural Sciences and Engineering Research Council of Canada through Discovery grant program; Natural Sciences and Engineering Research Council of Canada through CREATE grant program; National Aeronautics and Space Administration FX The research carried out at the University of Lethbridge is funded by the Natural Sciences and Engineering Research Council of Canada through the Discovery and CREATE grant programs. The part of the research carried out at the College of William and Mary, Connecticut College and NASA Langley Research Center has been funded by cooperative agreements and contracts with the National Aeronautics and Space Administration. We thank A. Mashwood and N. Islam for their contributions in the early stages of this project. Dr. D. Chris Benner at the College of William and Mary is thanked for allowing us to use his multispectrum fitting software in analysing the data. NR 49 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD NOV PY 2016 VL 184 BP 322 EP 340 DI 10.1016/j.jqsrt.2016.08.007 PG 19 WC Optics; Spectroscopy SC Optics; Spectroscopy GA EA9RL UT WOS:000386982300031 ER PT J AU Wingo, SM Knupp, KR AF Wingo, Stephanie M. Knupp, Kevin R. TI Kinematic Structure of Mesovortices in the Eyewall of Hurricane Ike (2008) Derived from Ground-Based Dual-Doppler Analysis SO MONTHLY WEATHER REVIEW LA English DT Article ID WIND-FIELD ANALYSIS; RADAR DATA; INNER-CORE; TROPICAL CYCLONE; PART II; RAPID INTENSIFICATION; INTENSE HURRICANES; VERTICAL MOTIONS; BONNIE 1998; EVOLUTION AB Previous work has shown that vorticity mixing in the tropical cyclone (TC) inner core can promote mesovortex (MV) formation and impact storm intensity. Observations of MVs have largely been serendipitous but are necessary to improve understanding of these features and their role in TC dynamics. This study presents nearly 10 h of ground-based dual-Doppler analysis of MVs in the eyewall of Hurricane Ike (2008) near and during landfall. Derived 3D winds, vertical vorticity, horizontal divergence, and perturbation pressures are analyzed. Results indicate persistent kinematic field arrangements and evolving vertical structures. Perturbation pressure retrievals suggest local pressure minima associated with the MVs. Preferential updraft locations appear to transition cyclonically about the local vorticity maximum as the MVs progress around the eye. Based on published observational datasets, the dual-Doppler updraft magnitudes in Ike's MVs are within the top 5%-10% of TC vertical velocities. The MVs are marked by peak vorticity in the lowest 2 km and contain vertically coherent vorticity structures extending to 8 km AGL. After prolonged land interaction, the MV structures deteriorate. First, the vertical extent of localized vorticity diminishes, followed by a deterioration in the prelandfall characteristic kinematic arrangements. This supports the notion that the replenishment of a high vorticity annulus contributes to MV production and maintenance, and when the elevated vorticity aloft is not maintained, MV kinematic patterns become less consistent. It is unclear whether the decay of the vertically coherent vorticity structures occurs in response to land interaction, TC inner core processes, or some combination of both. C1 Univ Alabama, Severe Weather Inst, Huntsville, AL 35899 USA. Univ Alabama, Radar & Lightning Labs, Huntsville, AL 35899 USA. [Wingo, Stephanie M.] NASA, Wallops Flight Facil, Sci Syst & Applicat Inc, Code 612,Bldg N-159,Room E-213, Wallops Isl, VA 23337 USA. RP Wingo, SM (reprint author), NASA, Wallops Flight Facil, Sci Syst & Applicat Inc, Code 612,Bldg N-159,Room E-213, Wallops Isl, VA 23337 USA. EM stephanie.m.wingo@nasa.gov FU NOAA [NA08OAR4600896] FX This study would not have been possible without the dedicated field operations of the UAH Ike deployment crew: Dan Cecil, Patrick Gatlin, Cody Kirkpatrick, Kevin Knupp, Ken Leppert II, and Dustin Phillips. Comments from three helpful reviewers improved the quality of this paper. Support for this research was provided by NOAA Grant NA08OAR4600896. NR 56 TC 0 Z9 0 U1 2 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD NOV PY 2016 VL 144 IS 11 BP 4245 EP 4263 DI 10.1175/MWR-D-16-0085.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EB4AS UT WOS:000387312000011 ER PT J AU Boisvert, LN Petty, AA Stroeve, JC AF Boisvert, Linette N. Petty, Alek A. Stroeve, Julienne C. TI The Impact of the Extreme Winter 2015/16 Arctic Cyclone on the Barents-Kara Seas SO MONTHLY WEATHER REVIEW LA English DT Article ID CLIMATE-CHANGE; STORM TRACKS; VARIABILITY; AMPLIFICATION; MOISTURE AB Atmospheric data from the Atmospheric Infrared Sounder (AIRS) were used to study an extreme warm and humid air mass transported over the Barents-Kara Seas region by an Arctic cyclone at the end of December 2015. Temperature and humidity in the region was similar to 10 degrees C (>3 sigma above the 2003-14 mean) warmer and similar to 1.4 g kg(-1) (>4 sigma above the 2003-14 mean) wetter than normal during the peak of this event. This anomalous air mass resulted in a large and positive flux of energy into the surface via the residual of the surface energy balance (SEB), compared to the weakly negative SEB from the surface to the atmosphere expected for that time of year. The magnitude of the downwelling longwave radiation during the event was unprecedented compared to all other events detected by AIRS in December/January since 2003. An approximate budget scaling suggests that this anomalous SEB could have resulted in up to 10 cm of ice melt. Thinning of the ice pack in the region was supported by remotely sensed and modeled estimates of ice thickness change. Understanding the impact of this anomalous air mass on a thinner, weakened sea ice state is imperative for understanding future sea ice-atmosphere interactions in a warming Arctic. C1 [Boisvert, Linette N.; Petty, Alek A.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, 5825 Univ Res Ct 4001, College Pk, MD 20740 USA. [Boisvert, Linette N.; Petty, Alek A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Stroeve, Julienne C.] Univ Colorado, Cooperat Inst Res Environm Sci, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. [Stroeve, Julienne C.] UCL, Ctr Polar Observat & Modelling, London, England. RP Boisvert, LN (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, 5825 Univ Res Ct 4001, College Pk, MD 20740 USA. EM linette.n.boisvert@nasa.gov FU NASA's Operation IceBridge project science office through ESSIC [5266970 Task 727]; NASA Grant [NNX11AF44G] FX Linette Boisvert and Alek Petty were both funded by NASA's Operation IceBridge project science office through ESSIC 5266970 Task 727. Julienne Stroeve was funded by NASA Grant NNX11AF44G. AIRS data can be obtained online at www.airs.jpl.nasa. gov or by directly e-mailing Linette Boisvert (linette.n.boisvert@nasa.gov). The melt season data and sea ice concentration/extent data can be found at NSIDC. The CERSAT/IFREMER drift data can be found online at ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/psi-drift/. MERRA-2 data can be found online at http://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/. SMOS data can be found online at http://icdc.zmaw.de/1/daten/cryosphere/l3c-smos-sit.html. We thank Axel Schweiger for providing the daily PIOMAS thickness estimates used in this study. The authors thank the three anonymous reviewers for their helpful feedback. The authors would also like to thank the various bloggers, journalists, and media outlets that first brought this extreme event to our attention! NR 27 TC 3 Z9 3 U1 5 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD NOV PY 2016 VL 144 IS 11 BP 4279 EP 4287 DI 10.1175/MWR-D-16-0234.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EB4AS UT WOS:000387312000013 ER PT J AU Molthan, AL Colle, BA Yuter, SE Stark, D AF Molthan, Andrew L. Colle, Brian A. Yuter, Sandra E. Stark, David TI Comparisons of Modeled and Observed Reflectivities and Fall Speeds for Snowfall of Varied Riming Degrees during Winter Storms on Long Island, New York SO MONTHLY WEATHER REVIEW LA English DT Article ID 2001 IMPROVE-2 EVENT; RAIN RADAR MRR; MICROPHYSICAL EVOLUTION; CLOUD MICROPHYSICS; PRECIPITATION; SCHEMES; SIZE; SIMULATIONS; TURBULENCE; PARTICLES AB Derived radar reflectivities and fall speeds for four Weather Research and Forecasting (WRF) Model bulk microphysical parameterizations (BMPs) run at 1.33-km grid spacing are compared with ground-based, vertically pointing Ku-band radar, scanning S-band radar, and in situ measurements at Stony Brook, New York. Simulations were partitioned into periods of observed riming degree as determined manually using a stereo microscope and camera during nine winter storms. Simulations were examined to determine whether the selected BMPs captured the effects of varying riming intensities, provided a reasonable match to the vertical structure of radar reflectivity or fall speed, and whether they produced reasonable surface fall speed distributions. Schemes assuming nonspherical mass-diameter relationships yielded reflectivity distributions closer to observed values. All four schemes examined in this study provided a better match to the observed, vertical structure of reflectivity during moderate riming than light riming periods. The comparison of observed and simulated snowfall speeds had mixed results. One BMP produced episodes of excessive cloud water at times, resulting in fall speeds that were too large. However, most schemes had frequent periods of little or no cloud water during moderate riming periods and thus underpredicted the snowfall speeds at lower levels. Short, 1-4-h periods with relatively steady snow conditions were used to compare BMP and observed size and fall speed distributions. These limited data suggest the examined BMPs underpredict fall speeds of cold-type snow habits and underrepresent aggregates larger than 4-mm diameter. C1 [Molthan, Andrew L.] NASA, Marshall Space Flight Ctr, Earth Sci Off, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Colle, Brian A.] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Yuter, Sandra E.] North Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC USA. [Stark, David] NOAA, Natl Weather Serv, New York, NY USA. RP Molthan, AL (reprint author), NASA, Marshall Space Flight Ctr, Earth Sci Off, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM andrew.molthan@nasa.gov FU National Science Foundation [ATM-1347491, ATM-1347499]; NASA Precipitation Measurement Missions Program [NNX13AF88G] FX The authors thank Spencer Rhodes for assistance with the processing of MRR data. Financial support for this research project was given by the National Science Foundation (ATM-1347491 for BAC and ATM-1347499 for SEY), as well as the NASA Precipitation Measurement Missions Program (NNX13AF88G for BAC and ALM). A special thanks to Dr. Gordon Taylor for allowing us to use his microscope and camera throughout the observational portion of this study. The authors also thank three anonymous reviewers who provided suggestions that improved the clarity of discussions and the related figures. NR 46 TC 0 Z9 0 U1 5 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD NOV PY 2016 VL 144 IS 11 BP 4327 EP 4347 DI 10.1175/MWR-D-15-0397.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EB4AS UT WOS:000387312000016 ER PT J AU D'Adderio, LP Cugerone, K Porcu, F De Michele, C Tokay, A AF D'Adderio, Leo Pio Cugerone, Katia Porcu, Federico De Michele, Carlo Tokay, Ali TI Capabilities of the Johnson SB distribution in estimating rain variables SO ADVANCES IN WATER RESOURCES LA English DT Article DE Drop size distribution; Integral parameters estimation; Johnson-SB distribution; Gamma distribution; Radarmeteorology ID 2-DIMENSIONAL VIDEO DISDROMETER; DROP SIZE DISTRIBUTION; CONVECTIVE CLOUDS; B DISTRIBUTION; GAMMA DSD; SPECTRA; STRATIFORM; PARAMETERS; ALGORITHM; RAINDROPS AB Numerous fields of atmospheric and hydrological sciences require the parametric form of the raindrop size distribution (DSD) to estimate the rainfall rate from radar observables as well as in cloud resolving and weather forecasting models. This study aims to investigate the capability of the Johnson SB distribution (JSB) in estimating rain integral parameters. Specifically, rainfall rate (R), reflectivity factor (Z) and mean mass diameter (D mass) estimated by JSB are compared with those estimated by a three-parameter Gamma distribution, widely used by radar meteorologists and atmospheric physicists to model natural DSD. A large dataset consisting of more than 155,0 0 0 one-minute DSD, from six field campaigns of Ground Validation (GV) program of NASA/JAXA Global Precipitation Measurement mission (GPM), is used to test the performance of both JSB and Gamma distribution. The available datasets cover a wide range of rain regimes because of the field campaigns were carried out in different seasons and locations. Correlation coefficient, bias, root mean square error (RMSE) and fractional standard error (FSE) between estimated and measured integral parameters are calculated to compare the performances of the two distributions. The capability of JSB in estimating the integral parameters, especially R and Z, resulted very close to that of Gamma distribution. In particular, for light precipitation, JSB is superior to Gamma distribution in estimating R with FSE of 11% with respect to values ranging between 25% and 37% about for Gamma. Comparison of the estimated and measured DSDs shows that the JSB distribution reproduces the natural DSD quite accurately. (C) 2016 Elsevier Ltd. All rights reserved. C1 [D'Adderio, Leo Pio] Univ Ferrara, Dept Phys & Earth Sci, Ferrara, Italy. [Cugerone, Katia; De Michele, Carlo] Politecn Milan, Dept Civil & Environm Engn DICA, Milan, Italy. [Porcu, Federico] Univ Bologna, Dept Phys & Astron, Bologna, Italy. [Tokay, Ali] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Greenbelt, MD USA. [Tokay, Ali] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP D'Adderio, LP (reprint author), Univ Ferrara, Dept Phys & Earth Sci, Ferrara, Italy. EM dadderio@fe.infn.it OI Cugerone, Katia/0000-0003-1834-0815; Porcu, Federico/0000-0003-1283-7679 FU NASA Precipitation measurement mission grant [NNX10AJ12G]; Global Precipitation Measurement Mission FX This study was funded through NASA Precipitation measurement mission grant NNX10AJ12G and funding from the Global Precipitation Measurement Mission. The authors are grateful to Patrick N. Gatlin of NASA Marshall Space Flight Center and Matthew Wingo of the University of Alabama at Huntsville for maintenance of 2DVD during NASA Global Precipitation Measurement (GPM) mission ground validation field campaigns led by Walter Petersen of NASA Wallops Flight Facility. NR 30 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD NOV PY 2016 VL 97 BP 241 EP 250 DI 10.1016/j.advwatres.2016.09.017 PG 10 WC Water Resources SC Water Resources GA EA6XW UT WOS:000386773500021 ER PT J AU Cummings, AC Stone, EC Heikkila, BC Lal, N Webber, WR Johannesson, G Moskalenko, IV Orlando, E Porter, TA AF Cummings, A. C. Stone, E. C. Heikkila, B. C. Lal, N. Webber, W. R. Johannesson, G. Moskalenko, I. V. Orlando, E. Porter, T. A. TI GALACTIC COSMIC RAYS IN THE LOCAL INTERSTELLAR MEDIUM: VOYAGER 1 OBSERVATIONS AND MODEL RESULTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; ISM: abundances; ISM: clouds ID IN-SITU OBSERVATIONS; IONIZATION RATE; ELEMENTAL COMPOSITION; ENERGETIC PARTICLES; IMPACT IONIZATION; HELIUM SPECTRA; BAYESIAN-ANALYSIS; CROSS-SECTIONS; SOLAR MINIMUM; HELIOPAUSE AB Since 2012 August Voyager 1 has been observing the local interstellar energy spectra of Galactic cosmic-ray nuclei down to 3 MeV nuc(-1) and electrons down to 2.7 MeV. The H and He spectra have the same energy dependence between 3 and 346 MeV nuc(-1), with a broad maximum in the 10-50 MeV nuc(-1) range and a H/He ratio of 12.2 +/- 0.9. The peak H intensity is similar to 15 times that observed at 1 AU, and the observed local interstellar gradient of 3-346 MeV H is -0.009 +/- 0.055% AU(-1), consistent with models having no local interstellar gradient. The energy spectrum of electrons (e(-) + e(+)) with 2.7-74 MeV is consistent with E-1.30 +/- 0.05 and exceeds the H intensity at energies below similar to 50 MeV. Propagation model fits to the observed spectra indicate that the energy density of cosmic-ray nuclei with >3 MeV nuc(-1) and electrons with >3 MeV is 0.83-1.02 eV cm(-3) and the ionization rate of atomic H is in the range of 1.51-1.64 x 10(-17) s(-1). This rate is a factor >10 lower than the ionization rate in diffuse interstellar clouds, suggesting significant spatial inhomogeneity in low-energy cosmic rays or the presence of a suprathermal tail on the energy spectrum at much lower energies. The propagation model fits also provide improved estimates of the elemental abundances in the source of Galactic cosmic rays. C1 [Cummings, A. C.; Stone, E. C.] CALTECH, Pasadena, CA 91125 USA. [Heikkila, B. C.; Lal, N.] Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Webber, W. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Johannesson, G.] Univ Iceland, Reykjavik, Iceland. [Moskalenko, I. V.; Orlando, E.; Porter, T. A.] Stanford Univ, HEPL, Stanford, CA 94305 USA. [Moskalenko, I. V.; Orlando, E.; Porter, T. A.] Stanford Univ, KIPAC, Stanford, CA 94305 USA. RP Cummings, AC (reprint author), CALTECH, Pasadena, CA 91125 USA. RI Orlando, E/R-5594-2016; OI Moskalenko, Igor/0000-0001-6141-458X FU NASA [NNN12AA01C, NNX13AC47G, NNX10AE78G, NNX16AF27G, NNX15AU79G] FX We appreciate discussions with Mark Wiedenbeck and George Gloeckler. Voyager data analysis is supported by NASA Grant NNN12AA01C. GALPROP development is supported by NASA Grants NNX13AC47G, NNX10AE78G, NNX16AF27G, and NNX15AU79G. NR 73 TC 2 Z9 2 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 18 DI 10.3847/0004-637X/831/1/18 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA7FG UT WOS:000386794900012 ER PT J AU Guzik, JA Houdek, G Chaplin, WJ Smalley, B Kurtz, DW Gilliland, RL Mullally, F Rowe, JF Bryson, ST Still, MD Antoci, V Appourchaux, T Basu, S Bedding, TR Benomar, O Garcia, RA Huber, D Kjeldsen, H Latham, DW Metcalfe, TS Papics, PI White, TR Aerts, C Ballot, J Boyajian, TS Briquet, M Bruntt, H Buchhave, LA Campante, TL Catanzaro, G Christensen-Dalsgaard, J Davies, GR Dogan, G Dragomir, D Doyle, AP Elsworth, Y Frasca, A Gaulme, P Gruberbauer, M Handberg, R Hekker, S Karoff, C Lehmann, H Mathias, P Mathur, S Miglio, A Molenda-Zakowicz, J Mosser, B Murphy, SJ Regulo, C Ripepi, V Salabert, D Sousa, SG Stello, D Uytterhoeven, K AF Guzik, J. A. Houdek, G. Chaplin, W. J. Smalley, B. Kurtz, D. W. Gilliland, R. L. Mullally, F. Rowe, J. F. Bryson, S. T. Still, M. D. Antoci, V. Appourchaux, T. Basu, S. Bedding, T. R. Benomar, O. Garcia, R. A. Huber, D. Kjeldsen, H. Latham, D. W. Metcalfe, T. S. Papics, P. I. White, T. R. Aerts, C. Ballot, J. Boyajian, T. S. Briquet, M. Bruntt, H. Buchhave, L. A. Campante, T. L. Catanzaro, G. Christensen-Dalsgaard, J. Davies, G. R. Dogan, G. Dragomir, D. Doyle, A. P. Elsworth, Y. Frasca, A. Gaulme, P. Gruberbauer, M. Handberg, R. Hekker, S. Karoff, C. Lehmann, H. Mathias, P. Mathur, S. Miglio, A. Molenda-Zakowicz, J. Mosser, B. Murphy, S. J. Regulo, C. Ripepi, V. Salabert, D. Sousa, S. G. Stello, D. Uytterhoeven, K. TI DETECTION OF SOLAR-LIKE OSCILLATIONS, OBSERVATIONAL CONSTRAINTS, AND STELLAR MODELS FOR theta CYG, THE BRIGHTEST STAR OBSERVED BY THE KEPLER MISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE asteroseismology; stars: fundamental parameters; stars: interiors; stars: solar-type ID MAIN-SEQUENCE STARS; GAMMA DORADUS STARS; F-TYPE STARS; EXOPLANET HOST STARS; INFRARED FLUX METHOD; EFFECTIVE TEMPERATURES; NEARBY STARS; DELTA SCT; A-TYPE; SPECTROSCOPIC PARAMETERS AB theta Cygni is an F3 spectral type magnitude V = 4.48 main-sequence star that was the brightest star observed by the original Kepler spacecraft mission. Short-cadence (58.8 s) photometric data using a custom aperture were first obtained during Quarter 6 ( 2010 June-September). and subsequently in Quarters 8 and 12-17. We present analyses of solar-like oscillations based on Q6 and Q8 data, identifying angular degree l = 0, 1, and 2 modes with frequencies of 1000-2700 mu Hz, a large frequency separation of 83.9 +/- 0.4 mu Hz, and maximum oscillation amplitude at frequency nu(max) = 1829 +/- 54 mu Hz. We also present analyses of new ground-based spectroscopic observations, which, combined with interferometric angular diameter measurements, give T-eff = 6697 +/- 78 K, radius 1.49 +/- 0.03 Re-circle dot, [Fe/H] = -0.02 +/- 0.06 dex, and log g = 4.23 +/- 0.03. We calculate stellar models matching these constraints using the Yale Rotating Evolution Code and the Asteroseismic Modeling Portal. The best-fit models have masses of 1.35-1.39 M-circle dot and ages of 1.0-1.6 Gyr. theta Cyg's T-eff and log g place it cooler than the red edge of the gamma Doradus instability region established from pre-Kepler ground-based observations, but just at the red edge derived from pulsation modeling. The pulsation models show gamma Dor gravity modes driven by the convective blocking mechanism, with frequencies of 1-3 cycles per day (11 to 33 mu Hz). However, gravity modes were not seen in Kepler data; one signal at 1.776 cycles per day (20.56 mu Hz) may be attributable to a faint, possibly background, binary. C1 [Guzik, J. A.] Los Alamos Natl Lab, XTD NTA, MS T-082, Los Alamos, NM 87545 USA. [Houdek, G.; Chaplin, W. J.; Antoci, V.; Bedding, T. R.; Huber, D.; Kjeldsen, H.; White, T. R.; Bruntt, H.; Campante, T. L.; Christensen-Dalsgaard, J.; Davies, G. R.; Dogan, G.; Elsworth, Y.; Handberg, R.; Hekker, S.; Karoff, C.; Miglio, A.; Murphy, S. J.; Stello, D.] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. [Chaplin, W. J.; Campante, T. L.; Davies, G. R.; Elsworth, Y.; Miglio, A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Smalley, B.; Doyle, A. P.] Keele Univ, Astrophys Grp, Sch Phys & Geog Sci, Lennard Jones Labs, Keele ST5 5BG, Staffs, England. [Kurtz, D. W.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Gilliland, R. L.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Mullally, F.; Rowe, J. F.] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Bryson, S. T.; Still, M. D.] NASA, Ames Res Ctr, Bldg 244,MS-244-30, Moffett Field, CA 94035 USA. [Still, M. D.] Bay Area Environm Res Inst, 560 Third St W, Sonoma, CA 95476 USA. [Appourchaux, T.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. [Basu, S.; Boyajian, T. S.] Yale Univ, Dept Astron, POB 208101, New Haven, CT 06520 USA. [Bedding, T. R.; Benomar, O.; Huber, D.; White, T. R.; Murphy, S. J.; Stello, D.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Benomar, O.] New York Univ Abu Dhabi, Ctr Space Sci, NYUAD Inst, POB 129188, Abu Dhabi, U Arab Emirates. [Garcia, R. A.; Davies, G. R.; Salabert, D.] Univ Paris Diderot, Lab AIM, CEA, DRF,CNRS,IRFU,SAp,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Latham, D. W.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Metcalfe, T. S.; Mathur, S.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Papics, P. I.; Aerts, C.] Katholieke Univ Leuven, Inst Sterrenkunde, Celestijnenlaan 200D, B-3001 Leuven, Belgium. [White, T. R.] Australian Astron Observ, POB 915, N Ryde, NSW 1670, Australia. [Aerts, C.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Ballot, J.; Mathias, P.] Univ Toulouse, UPS OMP, IRAP, F-65000 Tarbes, France. [Briquet, M.] Univ Liege, Inst Astrophys & Geophys, Quartier Agora, Allee 6 Aout 19C, B-4000 Liege, Belgium. [Bruntt, H.] Aarhus Katedralskole, Skolegyde 1, DK-8000 Aarhus C, Denmark. [Buchhave, L. A.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Buchhave, L. A.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Catanzaro, G.; Frasca, A.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, I-95123 Catania, Italy. [Dogan, G.; Karoff, C.] Aarhus Univ, Dept Geosci, Hoegh Guldbergs Gade 2, DK-8000 Aarhus C, Denmark. [Dogan, G.] Natl Ctr Atmospher Res, High Altitude Observ, POB 3000, Boulder, CO 80307 USA. [Dragomir, D.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Doyle, A. P.] Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England. [Gaulme, P.] Sloan Digital Sky Survey, Apache Point Observ, POB 59, Sunspot, NM 88349 USA. [Gaulme, P.] New Mexico State Univ, Dept Astron, POB 30001, Las Cruces, NM 88003 USA. [Gruberbauer, M.] St Marys Univ, Dept Phys & Astron, Inst Computat Astrophys, Halifax, NS B3H 3C3, Canada. [Hekker, S.] Max Planck Inst Solar Syst Res, SAGE Res Grp, Justus von Liebig Weg 3, D-37077 Gttingen, Germany. [Lehmann, H.] TLS, Sternwarte 5, D-07778 Tautenburg, Germany. [Mathias, P.] CNRS, IRAP, 57 Ave Azereix,BP 826, F-65008 Tarbes, France. [Molenda-Zakowicz, J.] Uniwersytetu Wroclawskiego, Inst Astron, Ul Kopernika 11, PL-51622 Wroclaw, Poland. [Mosser, B.] Univ Paris Diderot, Univ Paris 06, Sorbonne Paris Cite, LESIA,Observ Paris,CNRS,Sorbonne Univ, Paris, France. [Regulo, C.; Uytterhoeven, K.] Inst Astrofis Canarias, E-38205 Tenerife, Spain. [Regulo, C.; Uytterhoeven, K.] Univ La Laguna, Dept Astron, E-38205 Tenerife, Spain. [Ripepi, V.] INAF Osservatorio Astron Capodimonte, Via Moiariello 16, I-80131 Naples, Italy. [Sousa, S. G.] Univ Porto, Inst Astrofis & Ciencias Espaco, CAUP, Rua Estrelas, P-4150762 Oporto, Portugal. RP Guzik, JA (reprint author), Los Alamos Natl Lab, XTD NTA, MS T-082, Los Alamos, NM 87545 USA. OI Guzik, Joyce/0000-0003-1291-1533; Karoff, Christoffer/0000-0003-2009-7965 FU Kepler Guest Observer [KEPLER08-0013]; NASA Astrophysics Theory Program [12-ATP12-0130]; KITP Asteroseismology Institute at U.C. Santa Barbara; Austrian FWF Project [P21205-N16]; European Community's Seventh Framework Program (FP7) [269194]; Spanish National Plan of RD [AYA2010-17803]; NSF [AST-1514676, AST-1105930]; NASA [NNX16AI09G, NNX13AE70G, NNX12AE17G]; Belgian Science Policy Office (BELSPO) [C90309]; European Research Council under the European Community's Seventh Framework Programme (FP7)/ERC [338251]; Polish Ministry grant [NCN 2014/13/B/ST9/00902]; Danish National Research Foundation [DNRF106]; ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) - European Research Council [267864]; Fundao para a Cincia e Tecnologia (Portugal) [SFRH/BPD/47611/2008]; European Community's Seventh Framework Programme (FP7) [312844]; ANR (Agence Nationale de la Recherche, France) program IDEE [ANR-12-BS05-0008]; CNES; Kepler mission under NASA Cooperative [NNX11AB99A, NNX13AB58A]; Smithsonian Astrophysical Observatory FX We are grateful to the Kepler Guest Observer program for observing theta Cyg with a custom aperture. We thank the referee for helpful comments and suggestions. J.A.G. acknowledges support from Kepler Guest Observer grant KEPLER08-0013, NASA Astrophysics Theory Program grant 12-ATP12-0130, and the KITP Asteroseismology Institute at U.C. Santa Barbara in 2011 December. G.H. acknowledges support from the Austrian FWF Project P21205-N16. R.A.G., G.R.D., and K.U. have received funding from the European Community's Seventh Framework Program (FP7/2007-2013) under grant agreement no. 269194. K.U. acknowledges support by the Spanish National Plan of R&D for 2010, project AYA2010-17803. S.B. acknowledges support from NSF grants AST-1514676 and AST-1105930, and NASA grants NNX16AI09G and NNX13AE70G. P.I.P. is a Postdoctoral Fellow of The Research Foundation-Flanders (FWO), Belgium, and he also acknowledges funding from the Belgian Science Policy Office (BELSPO, C90309: CoRoT Data Exploitation). S.H. acknowledges funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ ERC grant agreement number 338251 (StellarAges). J.M.-Z. acknowledges the Polish Ministry grant No. NCN 2014/13/B/ST9/00902. Funding for the Stellar Astrophysics Centre is provided by the Danish National Research Foundation (Grant DNRF106). The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (Grant agreement no.: 267864). S.G.S. acknowledges support from the Fundao para a Cincia e Tecnologia (Portugal) in the form of the grant SFRH/BPD/47611/2008. R.A.G. received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 312844 (SPACEINN). B.M. and R.A.G. received funding from the ANR (Agence Nationale de la Recherche, France) program IDEE (n ANR-12-BS05-0008) "Interaction Des Etoiles et des Exoplanetes." R.A.G., G.R.D., and D.S. acknowledge support from the CNES. S.M. acknowledges support from the NASA grant NNX12AE17G. D.W.L. acknowledges partial support from the Kepler mission under NASA Cooperative Agreements NNX11AB99A and NNX13AB58A with the Smithsonian Astrophysical Observatory. NR 178 TC 0 Z9 0 U1 6 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 17 DI 10.3847/0004-637X/831/1/17 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA7FG UT WOS:000386794900011 ER PT J AU Kitiashvili, IN AF Kitiashvili, Irina N. TI DATA ASSIMILATION APPROACH FOR FORECAST OF SOLAR ACTIVITY CYCLES SO ASTROPHYSICAL JOURNAL LA English DT Article DE dynamo; Sun: activity; Sun: interior; Sun: magnetic fields; sunspots ID FLUX TRANSPORT MODEL; SOLAR-CYCLE-24 AB Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relatively new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction. C1 [Kitiashvili, Irina N.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kitiashvili, Irina N.] Bay Area Environm Res Inst, Petaluma, CA 94952 USA. RP Kitiashvili, IN (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.; Kitiashvili, IN (reprint author), Bay Area Environm Res Inst, Petaluma, CA 94952 USA. EM irina.n.kitiashvili@nasa.gov OI Kitiashvili, Irina/0000-0003-4144-2270 FU NSF SHINE program [AGS-1622341] FX The research is funded by the NSF SHINE program AGS-1622341. NR 30 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 15 DI 10.3847/0004-637X/831/1/15 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA7FG UT WOS:000386794900009 ER PT J AU Doglioni, C Pignatti, J Coleman, M AF Doglioni, Carlo Pignatti, Johannes Coleman, Max TI Why did life develop on the surface of the Earth in the Cambrian? SO GEOSCIENCE FRONTIERS LA English DT Article DE Origin of life; Inner core solidification; Solar ionizing radiations ID BILLION YEARS AGO; LATE HEAVY BOMBARDMENT; MAGNETIC-FIELD; INNER-CORE; ULTRAVIOLET-RADIATION; TERRESTRIAL PLANETS; SNOWBALL EARTH; SOLAR-ACTIVITY; COSMIC-RAYS; TIME-SCALE AB Life was limited for most of Earth's history, remaining at a primitive stage and mostly marine until about 0.55 Ga. In the Paleozoic, life eventually exploded and colonized the continental realm. Why had there been such a long period of delayed evolution of life? Early life was dominated by Archaea and Bacteria, which can survive ionizing radiation better than other organisms. The magnetic field preserves the atmosphere, which is the main shield of UV radiation. We explore the hypothesis that the Cambrian explosion of life could have been enabled by the increase of the magnetic field dipole intensity due to the solidification of the inner core, caused by the cooling of the Earth, and the concomitant decrease with time of the high-energy solar flux since the birth of the solar system. Therefore, the two phenomena could be responsible for the growth and thickening of the atmosphere and the development of land surface life. (C) 2016, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. C1 [Doglioni, Carlo; Pignatti, Johannes] Sapienza Univ, Dept Earth Sci, Ple A Moro 5, I-00185 Rome, Italy. [Coleman, Max] CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Coleman, Max] NASA, Astrobiol Inst, Pasadena, CA USA. RP Doglioni, C (reprint author), Sapienza Univ, Dept Earth Sci, Ple A Moro 5, I-00185 Rome, Italy. EM carlo.doglioni@uniroma1.it FU NASA Astrobiology Institute (NAI-WARC) FX Joseph Meert provided a very helpful and constructive review. K.-H. Glassmeier and Alessandro Minelli are thanked for fruitful discussions. Thanks also to Co Editor-in-Chief Prof. M. Santosh for his useful comments. The contribution of M.C. was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA), with support from the NASA Astrobiology Institute (NAI-WARC). NR 102 TC 0 Z9 0 U1 40 U2 40 PU CHINA UNIV GEOSCIENCES, BEIJING PI WUHAN PA 388 LUMO RD, WUHAN, 430074, PEOPLES R CHINA SN 1674-9871 J9 GEOSCI FRONT JI Geosci. Front. PD NOV PY 2016 VL 7 IS 6 BP 865 EP 873 DI 10.1016/j.gsf.2016.02.001 PG 9 WC Geosciences, Multidisciplinary SC Geology GA EA9AZ UT WOS:000386933900001 ER PT J AU Garrabos, Y Lecoutre, C Marre, S LeNeindre, B Hahn, I AF Garrabos, Yves Lecoutre, Carole Marre, Samuel LeNeindre, Bernard Hahn, Inseob TI Critical Crossover Functions for Simple Fluids: Towards the Crossover Modelling Uniqueness SO JOURNAL OF STATISTICAL PHYSICS LA English DT Article DE Critical crossover functions; Crossover models; Crossover Equation of State; Critical crossover uniqueness; Xenon ID NONASYMPTOTIC CRITICAL-BEHAVIOR; EQUATION-OF-STATE; RENORMALIZATION-GROUP; CRITICAL-POINT; THERMODYNAMIC BEHAVIOR; CRITICAL REGION; ISING-LIKE; MINIMAL RENORMALIZATION; CRITICAL EXPONENTS; EPSILON-EXPANSION AB Based on a single non-universal temperature scaling factor present in a simple fluid case, a detailed analysis of non-universal parameters involved in different critical-to-classical crossover models is given. For the infinite limit of the cutoff wave number, a set of three scaling-parameters is defined for each model such that it shows all the shapes of the theoretical crossover functions overlap on the mean crossover function shapes close to the non-trivial fixed point. The analysis of corresponding links between their fluid-dependent parameters opens a route to define a parametric model of crossover equation-of-state, closely satisfying the universal features calculated from the Ising-like limit in the massive renormalization scheme. C1 [Garrabos, Yves; Lecoutre, Carole; Marre, Samuel] CNRS, Inst Chim Matiere Condensee Bordeaux, UPR 9048, F-33608 Pessac, France. [Garrabos, Yves; Lecoutre, Carole; Marre, Samuel] Univ Bordeaux, ICMCB, UPR 9048, F-33608 Bordeaux, France. [LeNeindre, Bernard] CNRS, Lab Sci Proc & Mat, UPR 3407, F-93430 Villetaneuse, France. [LeNeindre, Bernard] Univ Paris 13, Sorbonne Paris Cite, F-93430 Villetaneuse, France. [Hahn, Inseob] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Garrabos, Y (reprint author), CNRS, Inst Chim Matiere Condensee Bordeaux, UPR 9048, F-33608 Pessac, France.; Garrabos, Y (reprint author), Univ Bordeaux, ICMCB, UPR 9048, F-33608 Bordeaux, France. EM yves.garrabos@icmcb.cnrs.fr; bernard.leneindre@lspm.cnrs.fr; inseob.hahn@jpl.nasa.gov RI Lecoutre, Carole/H-3367-2013; Garrabos, Yves/H-5404-2013 FU CNES FX Part of the work (CL, SM, YG) was supported by CNES. Part of the work (IH) was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 54 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-4715 EI 1572-9613 J9 J STAT PHYS JI J. Stat. Phys. PD NOV PY 2016 VL 165 IS 3 BP 471 EP 506 DI 10.1007/s10955-016-1627-4 PG 36 WC Physics, Mathematical SC Physics GA EA5RZ UT WOS:000386681800002 ER PT J AU Rebull, LM Stauffer, JR Bouvier, J Cody, AM Hillenbrand, LA Soderblom, DR Valenti, J Barrado, D Bouy, H Ciardi, D Pinsonneault, M Stassun, K Micela, G Aigrain, S Vrba, F Somers, G Gillen, E Cameron, AC AF Rebull, L. M. Stauffer, J. R. Bouvier, J. Cody, A. M. Hillenbrand, L. A. Soderblom, D. R. Valenti, J. Barrado, D. Bouy, H. Ciardi, D. Pinsonneault, M. Stassun, K. Micela, G. Aigrain, S. Vrba, F. Somers, G. Gillen, E. Cameron, A. Collier TI ROTATION IN THE PLEIADES WITH K2. II. MULTIPERIOD STARS SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: clusters: individual (Pleiades); stars: rotation ID GAMMA DORADUS STARS; SCALE MAGNETIC TOPOLOGIES; DELTA-SCUTI; M DWARFS; DIFFERENTIAL ROTATION; PULSATING VARIABLES; ECLIPSING BINARY; LOW-MASS; KEPLER; CLUSTER AB We use K2 to continue the exploration of the distribution of rotation periods in Pleiades that we began in Paper I. We have discovered complicated multiperiod behavior in Pleiades stars using these K2 data, and we have grouped them into categories, which are the focal part of this paper. About 24% of the sample has multiple, real frequencies in the periodogram, sometimes manifesting as obvious beating in the LCs. Those having complex and/or structured periodogram peaks, unresolved multiple periods, and resolved close multiple periods are likely due to spot/spot group evolution and/or latitudinal differential rotation; these largely compose the slowly rotating sequence in P versus. (V - K-s)(0) identified in Paper I. The fast sequence in P versus. (V - K-s)(0) is dominated by single-period stars; these are likely to be rotating as solid bodies. Paper III continues the discussion, speculating about the origin and evolution of the period distribution in the Pleiades. C1 [Rebull, L. M.] CALTECH, Infrared Sci Arch IRSA, IPAC, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Rebull, L. M.; Stauffer, J. R.] CALTECH, SSC, IPAC, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Bouvier, J.] Univ Grenoble, IPAG, F-38000 Grenoble, France. [Bouvier, J.] CNRS, IPAG, F-38000 Grenoble, France. [Cody, A. M.] NASA, Ames Res Ctr, Kepler Sci Off, Mountain View, CA 94035 USA. [Hillenbrand, L. A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Soderblom, D. R.; Valenti, J.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Soderblom, D. R.; Valenti, J.] Johns Hopkins Univ, Ctr Astrophys Sci, 3400 North Charles St, Baltimore, MD 21218 USA. [Barrado, D.; Bouy, H.] INTA CSIC, Dept Astrofis, Ctr Astrobiol, ESAC Campus, E-28692 Madrid, Spain. [Ciardi, D.] CALTECH, NASA Exoplanet Sci Inst NExScI, IPAC, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Pinsonneault, M.; Somers, G.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Pinsonneault, M.; Somers, G.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Stassun, K.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Stassun, K.] Fisk Univ, Dept Phys, Nashville, TN 37208 USA. [Micela, G.] INAF Osservatorio Astron Palermo, Piazza Parlamento 1, I-90134 Palermo, Italy. [Aigrain, S.; Gillen, E.] Univ Oxford, Dept Phys, Keble Rd, Oxford OX3 9UU, England. [Vrba, F.] US Naval Observ, Flagstaff Stn, POB 1149, Flagstaff, AZ 86002 USA. [Gillen, E.] Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Cameron, A. Collier] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. RP Rebull, LM (reprint author), CALTECH, Infrared Sci Arch IRSA, IPAC, 1200 E Calif Blvd, Pasadena, CA 91125 USA.; Rebull, LM (reprint author), CALTECH, SSC, IPAC, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM rebull@ipac.caltech.edu RI Barrado Navascues, David/C-1439-2017; OI Barrado Navascues, David/0000-0002-5971-9242; Rebull, Luisa/0000-0001-6381-515X; Ciardi, David/0000-0002-5741-3047; Soderblom, David/0000-0002-0322-8161 FU STFC [ST/M001296/1]; NASA Office of Space Science [NNX09AF08G]; NASA Science Mission directorate; National Aeronautics and Space Administration; National Science Foundation FX We thank R. Stern and T. David for helpful comments on draft manuscripts. A.C.C. acknowledges support from STFC grant ST/M001296/1.; Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate.; This research has made use of the NASA/IPAC Infrared Science Archive (IRSA), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of NASA's Astrophysics Data System (ADS) Abstract Service. and of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of data products from the Two Micron All-Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration and the National Science Foundation. The 2MASS data are served by the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 43 TC 3 Z9 3 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2016 VL 152 IS 5 AR 114 DI 10.3847/0004-6256/152/5/114 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ8RS UT WOS:000386139400002 ER PT J AU Rebull, LM Stauffer, JR Bouvier, J Cody, AM Hillenbrand, LA Soderblom, DR Valenti, J Barrado, D Bouy, H Ciardi, D Pinsonneault, M Stassun, K Micela, G Aigrain, S Vrba, F Somers, G Christiansen, J Gillen, E Cameron, AC AF Rebull, L. M. Stauffer, J. R. Bouvier, J. Cody, A. M. Hillenbrand, L. A. Soderblom, D. R. Valenti, J. Barrado, D. Bouy, H. Ciardi, D. Pinsonneault, M. Stassun, K. Micela, G. Aigrain, S. Vrba, F. Somers, G. Christiansen, J. Gillen, E. Cameron, A. Collier TI ROTATION IN THE PLEIADES WITH K2. I. DATA AND FIRST RESULTS SO ASTRONOMICAL JOURNAL LA English DT Article DE globular clusters: individual (Pleiades); stars: rotation ID LOW-MASS STARS; SPITZER-SPACE-TELESCOPE; TIME-SERIES ANALYSIS; OPEN-CLUSTER STARS; SOLAR-TYPE STARS; SKY SURVEY 2MASS; BROWN DWARFS; K-DWARFS; AM STARS; RADIAL-VELOCITIES AB Young (125 Myr), populous (> 1000 members), and relatively nearby, the Pleiades has provided an anchor for stellar angular momentum models for both younger and older stars. We used K2 to explore the distribution of rotation periods in the Pleiades. With more than 500 new periods for Pleiades members, we are vastly expanding the number of Pleiades with periods, particularly at the low-mass end. About 92% of the members in our sample have at least one measured spot-modulated rotation period. For the similar to 8% of the members without periods, non-astrophysical effects often dominate (saturation, etc.), such that periodic signals might have been detectable, all other things being equal. We now have an unusually complete view of the rotation distribution in the Pleiades. The relationship between P and (V - K-s)(0) follows the overall trends found in other Pleiades studies. There is a slowly rotating sequence for 1.1 less than or similar to (V - K-s)(0) less than or similar to 3.7. and a primarily rapidly rotating population for (V - K-s)(0) greater than or similar to 5.0. There is a region in which there seems to be a disorganized relationship between P and (V - K-s)(0) for 3.7 less than or similar to (V - K-s)(0) less than or similar to 5.0. Paper II continues the discussion, focusing on multiperiod structures, and Paper III speculates about the origin and evolution of the period distribution in the Pleiades. C1 [Rebull, L. M.] CALTECH, IPAC, Infrared Sci Arch IRSA, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Rebull, L. M.; Stauffer, J. R.] CALTECH, IPAC, SSC, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Bouvier, J.] Univ Grenoble, IPAG, F-38000 Grenoble, France. [Bouvier, J.] CNRS, IPAG, F-38000 Grenoble, France. [Cody, A. M.] NASA, Ames Res Ctr, Kepler Sci Off, Mountain View, CA 94035 USA. [Hillenbrand, L. A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Soderblom, D. R.; Valenti, J.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Soderblom, D. R.; Valenti, J.] Johns Hopkins Univ, Ctr Astrophys Sci, 3400 North Charles St, Baltimore, MD 21218 USA. [Barrado, D.; Bouy, H.] INTA CSIC, Ctr Astrobiol, Dept Astrofis, ESAC Campus, E-28692 Madrid, Spain. [Ciardi, D.; Christiansen, J.] CALTECH, NASA Exoplanet Sci Inst NExScI, IPAC, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Pinsonneault, M.; Somers, G.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Pinsonneault, M.; Somers, G.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Stassun, K.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Stassun, K.] Fisk Univ, Dept Phys, Nashville, TN 37208 USA. [Micela, G.] INAF Osservatorio Astron Palermo, Piazza Parlamento 1, I-90134 Palermo, Italy. [Aigrain, S.] Univ Oxford, Dept Phys, Keble Rd, Oxford OX3 9UU, England. [Vrba, F.] US Naval Observ, Flagstaff Stn, POB 1149, Flagstaff, AZ 86002 USA. [Gillen, E.] Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Cameron, A. Collier] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. RP Rebull, LM (reprint author), CALTECH, IPAC, Infrared Sci Arch IRSA, 1200 E Calif Blvd, Pasadena, CA 91125 USA.; Rebull, LM (reprint author), CALTECH, IPAC, SSC, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM rebull@ipac.caltech.edu RI Barrado Navascues, David/C-1439-2017; OI Barrado Navascues, David/0000-0002-5971-9242; Rebull, Luisa/0000-0001-6381-515X; Ciardi, David/0000-0002-5741-3047; Soderblom, David/0000-0002-0322-8161 FU STFC [ST/M001296/1]; NASA Office of Space Science [NNX09AF08G]; NASA Science Mission directorate; National Aeronautics and Space Administration; National Science Foundation; Jet Propulsion Laboratory, California Institute of Technology; NASA/IPAC Infrared Science Archive FX We thank R. Stern and T. David for helpful comments on draft manuscripts. A.C.C. acknowledges support from STFC grant ST/M001296/1.; Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate.; This research has made use of the NASA/IPAC Infrared Science Archive (IRSA), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of NASA's Astrophysics Data System (ADS) Abstract Service. and of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of data products from the Two Micron All-Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration and the National Science Foundation. The 2MASS data are served by the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 104 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2016 VL 152 IS 5 AR 113 DI 10.3847/0004-6256/152/5/113 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ8RS UT WOS:000386139400001 ER PT J AU Stauffer, J Rebull, L Bouvier, J Hillenbrand, LA Collier-Cameron, A Pinsonneault, M Aigrain, S Barrado, D Bouy, H Ciardi, D Cody, AM David, T Micela, G Soderblom, D Somers, G Stassun, KG Valenti, J Vrba, FJ AF Stauffer, John Rebull, Luisa Bouvier, Jerome Hillenbrand, Lynne A. Collier-Cameron, Andrew Pinsonneault, Marc Aigrain, Suzanne Barrado, David Bouy, Herve Ciardi, David Cody, Ann Marie David, Trevor Micela, Giusi Soderblom, David Somers, Garrett Stassun, Keivan G. Valenti, Jeff Vrba, Frederick J. TI ROTATION IN THE PLEIADES WITH K2. III. SPECULATIONS ON ORIGINS AND EVOLUTION SO ASTRONOMICAL JOURNAL LA English DT Article DE open clusters and associations: individual (Pleiades); stars: rotation ID LOW-MASS STARS; SOLAR-TYPE STARS; SCALE MAGNETIC TOPOLOGIES; GAMMA-DORADUS STARS; ANGULAR-MOMENTUM EVOLUTION; BROWN DWARF CANDIDATES; OPEN CLUSTER NGC-2516; ORION NEBULA CLUSTER; ALPHA-PERSEI CLUSTER; MAIN-SEQUENCE STARS AB We use high-quality K2 light curves for hundreds of stars in the Pleiades to better understand the angular momentum evolution and magnetic dynamos of young low-mass stars. The K2 light curves provide not only rotational periods but also detailed information from the shape of the phased light curve that was not available in previous studies. A slowly rotating sequence begins at (V - K-s)(0) similar to 1.1 (spectral type F5) and ends at (V - K-s)(0) similar to 3.7 (spectral type K8), with periods rising from similar to 2 to similar to 11 days in that interval. A total of. 52% of the Pleiades members in that color interval have periods within 30% of a curve defining the slow sequence; the slowly rotating fraction decreases significantly redward of (V - K-s)(0) = 2.6. Nearly all of the slow-sequence stars show light curves that evolve significantly on timescales less than the K2 campaign duration. The majority of the FGK Pleiades members identified as photometric binaries are relatively rapidly rotating, perhaps because binarity inhibits star-disk angular momentum loss mechanisms during pre-main-sequence evolution. The fully convective late M dwarf Pleiades members (5.0 < (V - K-s)(0) < 6.0) nearly always show stable light curves, with little spot evolution or evidence of differential rotation. During pre-main-sequence evolution from similar to 3 Myr (NGC 2264 age) to similar to 125 Myr (Pleiades age), stars of 0.3 M-circle dot shed about half of their angular momentum, with the fractional change in period between 3 and 125 Myr being nearly independent of mass for fully convective stars. Our data also suggest that very low mass binaries form with rotation periods more similar to each other and faster than would be true if drawn at random from the parent population of single stars. C1 [Stauffer, John; Rebull, Luisa] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Bouvier, Jerome] Univ Grenoble, IPAG, F-38000 Grenoble, France. [Bouvier, Jerome] CNRS, IPAG, F-38000 Grenoble, France. [Hillenbrand, Lynne A.; David, Trevor] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Collier-Cameron, Andrew] Univ St Andrews, SUPA, Sch Phys & Astron, St Andrews KY169SS, Fife, Scotland. [Pinsonneault, Marc; Somers, Garrett] Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43201 USA. [Aigrain, Suzanne] Univ Oxford, Dept Phys, Keble Rd, Oxford OX1 3RH, England. [Barrado, David; Bouy, Herve] INTA CSIC, Ctr Astrobiol, Dept Astrofis, ESAC Campus, E-28692 Madrid, Spain. [Ciardi, David] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Cody, Ann Marie] NASA, Ames Res Ctr, Kepler Sci Off, Mountain View, CA 94035 USA. [Micela, Giusi] INAF Osservatorio Astron Palermo, Piazza Parlamento 1, I-90134 Palermo, Italy. [Soderblom, David; Valenti, Jeff] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Soderblom, David; Valenti, Jeff] Johns Hopkins Univ, Ctr Astrophys Sci, 3400 North Charles St, Baltimore, MD 21218 USA. [Stassun, Keivan G.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Vrba, Frederick J.] US Naval Observ, Flagstaff Stn, 10391 West Naval Observ Rd, Flagstaff, AZ 86001 USA. RP Stauffer, J (reprint author), CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RI Barrado Navascues, David/C-1439-2017; OI Barrado Navascues, David/0000-0002-5971-9242; Rebull, Luisa/0000-0001-6381-515X; Ciardi, David/0000-0002-5741-3047 FU STFC [ST/M001296/1]; NASA Office of Space Science [NNX09AF08G]; NASA Science Mission directorate; National Aeronautics and Space Administration; National Science Foundation FX A.C.C. acknowledges support from STFC grant ST/M001296/1. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. This research has made use of the NASA/IPAC Infrared Science Archive (IRSA), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of NASA's Astrophysics Data System (ADS) Abstract Service. and of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of data products from the Two Micron All- Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration and the National Science Foundation. The 2MASS data are served by the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 109 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2016 VL 152 IS 5 AR 115 DI 10.3847/0004-6256/152/5/115 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ8RS UT WOS:000386139400003 ER PT J AU Koukouli, ME Balis, DS van der A, RJ Theys, N Hedelt, P Richter, A Krotkov, N Li, C Taylor, M AF Koukouli, M. E. Balis, D. S. van der A, Ronald Johannes Theys, N. Hedelt, P. Richter, A. Krotkov, N. Li, C. Taylor, M. TI Anthropogenic sulphur dioxide load over China as observed from different satellite sensors SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Sulphur dioxide; China; Satellite remote sensing; OMI; SCIAMACHY; GOME2A; Trends; Seasonality ID OZONE MONITORING INSTRUMENT; ABSORPTION CROSS-SECTION; SURFACE MEASUREMENTS; AIR-QUALITY; EAST-ASIA; SO2; SPECTROMETER; RETRIEVALS; EMISSIONS; POLLUTION AB China, with its rapid economic growth and immense exporting power, has been the focus of many studies during this previous decade quantifying its increasing emissions contribution to the Earth's atmosphere. With a population slowly shifting towards enlarged power and purchasing needs, the ceaseless inauguration of new power plants, smelters, refineries and industrial parks leads infallibly to increases in sulphur dioxide, SO2, emissions. The recent capability of next generation algorithms as well as new space-borne instruments to detect anthropogenic SO2 loads has enabled a fast advancement in this field. In the following work, algorithms providing total SO2 columns over China based on SCIAMACHY/Envisat, OMI/Aura and GOME2/MetopA observations are presented. The need for post processing and gridding of the SO2 fields is further revealed in this work, following the path of previous publications. Further, it is demonstrated that the usage of appropriate statistical tools permits studying parts of the datasets typically excluded, such as the winter months loads. Focusing on actual point sources, such as megacities and known power plant locations, instead of entire provinces, monthly mean time series have been examined in detail. The sharp decline in SO2 emissions in more than 90% -95% of the locations studied confirms the recent implementation of government desulphurisation legislation; however, locations with increases, even for the previous five years, are also identified. These belong to provinces with emerging economies which are in haste to install power plants and are possibly viewed leniently by the authorities, in favour of growth. The SO2 load seasonality has also been examined in detail with a novel mathematical tool, with 70% of the point sources having a statistically significant annual cycle with highs in winter and lows in summer, following the heating requirements of the Chinese population. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Koukouli, M. E.; Balis, D. S.; Taylor, M.] Aristotle Univ Thessaloniki, Lab Atmospher Phys, Thessaloniki, Greece. [van der A, Ronald Johannes] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands. [Theys, N.] Belgian Inst Space Aeron, Brussels, Belgium. [Hedelt, P.] German Aerosp Ctr, Remote Sensing Technol Inst, Cologne, Germany. [Richter, A.] Univ Bremen, Inst Environm Phys, Bremen, Germany. [Krotkov, N.; Li, C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Li, C.] Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA. RP Koukouli, ME (reprint author), Aristotle Univ Thessaloniki, Lab Atmospher Phys, Thessaloniki, Greece. EM mariliza@auth.gr OI Koukouli, Maria Elissavet/0000-0002-7509-4027; Taylor, Michael/0000-0002-3473-3478 FU EU FP7 MarcoPolo/Panda project [606953] FX The authors would like to acknowledge; the EU FP7 MarcoPolo/Panda project, http://www.marcopolo-panda.eu/under agreement No 606953, FP7-SPACE-2013, European Commission Research Executive Agency (REA), the EUMETSAT Satellite Application Facility for Atmospheric Composition and UV Radiation O3MSaf project, http://o3msaf.fmi.fi/, and the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) Mirador service, http://mirador.gsfc.nasa.gov/. NR 53 TC 1 Z9 1 U1 14 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2016 VL 145 BP 45 EP 59 DI 10.1016/j.atmosenv.2016.09.007 PG 15 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA EA2JI UT WOS:000386418200005 ER PT J AU Memarsadeghi, N AF Memarsadeghi, Nargess TI NASA Computational Case Study: Golomb Rulers and Their Applications SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Editorial Material ID LOWER BOUNDS; ARRAYS; GRAPHS C1 [Memarsadeghi, Nargess] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Memarsadeghi, N (reprint author), NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Nargess.Memarsa-deghi@nasa.gov NR 21 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD NOV-DEC PY 2016 VL 18 IS 6 BP 58 EP 62 PG 5 WC Computer Science, Interdisciplinary Applications SC Computer Science GA EA2GY UT WOS:000386412000008 ER EF