FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Abadie, J Abbott, BP Abbott, R Abernathy, M Accadia, T Acernese, F Adams, C Adhikari, R Affeldt, C Allen, B Allen, GS Ceron, EA Amariutei, D Amin, RS Anderson, SB Anderson, WG Antonucci, F Arai, K Arain, MA Araya, MC Aston, SM Astone, P Atkinson, D Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, P Ballardin, G Ballmer, S Barker, D Barnum, S Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Basti, A Bauchrowitz, J Bauer, TS Behnke, B Bejger, M Beker, MG Bell, AS Belletoile, A Belopolski, I Benacquista, M Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bilenko, IA Billingsley, G Birch, J Birindelli, S Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Bock, O Bodiya, TP Bogan, C Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bosi, L Bouhou, B Boyle, M Braccini, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Breyer, J Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Brummit, A Budzynski, R Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Burmeister, O Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cain, J Calloni, E Camp, JB Campagna, E Campsie, P Cannizzo, J Cannon, K Canuel, B Cao, J Capano, C Carbognani, F Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chaibi, O Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chelkowski, S Chen, Y Chincarini, A Christensen, N Chua, SSY Chung, CTY Chung, S Clara, F Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TR Cornish, N Corsi, A Costa, CA Coughlin, M Coulon, JP Coward, DM Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Das, K Dattilo, V Daudert, B Daveloza, H Davier, M Davies, G Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Debreczeni, G Degallaix, J del Prete, M Dent, T Dergachev, V DeRosa, R DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Dorsher, S Douglas, ESD Drago, M Drever, RWP Driggers, JC Dumas, JC Dwyer, S Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Engel, R Etzel, T Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flanigan, M Foley, S Forsi, E Forte, LA Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fulda, P Fyffe, M Galimberti, M Gammaitoni, L Garcia, J Garofoli, JA Garufi, F Gaspar, ME Gemme, G Genin, E Gennai, A Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gill, C Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Granata, M Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Guido, C Gupta, R Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Hartman, MT Haughian, K Hayama, K Hayau, JF Hayler, T Heefner, J Heitmann, H Hello, P Hendry, MA Heng, IS Heptonstall, AW Herrera, V Hewitson, M Hild, S Hoak, D Hodge, KA Holt, K Hong, T Hooper, S Hosken, DJ Hough, J Howell, EJ Huet, D Hughey, B Husa, S Huttner, SH Ingram, DR Inta, R Isogai, T Ivanov, A Jaranowski, P Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, JB Katsavounidis, E Katzman, W Kawabe, K Kawamura, S Kawazoe, F Kells, W Kelner, M Keppel, DG Khalaidovski, A Khalili, FY Khazanov, EA Kim, H Kim, N King, PJ Kinzel, DL Kissel, JS Klimenko, S Kondrashov, V Kopparapu, R Koranda, S Korth, WZ Kowalska, I Kozak, D Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kumar, R Kwee, P Landry, M Lantz, B Lastzka, N Lazzarini, A Leaci, P Leong, J Leonor, I Leroy, N Letendre, N Li, J Li, TGF Liguori, N Lindquist, PE Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lu, P Luan, J Lubinski, M Luck, H Lundgren, AP Macdonald, E Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Majorana, E Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marandi, A Marchesoni, F Marion, F Marka, S Marka, Z Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McIntyre, G McKechan, DJA Meadors, G Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Mercer, RA Merill, L Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mino, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Moesta, P Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreno, G Morgado, N Morgia, A Mosca, S Moscatelli, V Mossavi, K Mours, B Mow-Lowry, CM Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murray, PG Nash, T Nawrodt, R Nelson, J Neri, I Newton, G Nishida, E Nishizawa, A Nocera, F Nolting, D Ochsner, E O'Dell, J Ogin, GH Oldenburg, RG O'Reilly, B O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parameswaran, A Pardi, S Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pathak, D Pedraza, M Pekowsky, L Penn, S Peralta, C Perreca, A Persichetti, G Phelps, M Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Podkaminer, J Poggiani, R Pold, J Postiglione, F Prato, M Predoi, V Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Rakhmanov, M Ramet, CR Rankins, B Rapagnani, P Raymond, V Re, V Redwine, K Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Ryan, K Sakata, S Sakosky, M Salemi, F Salit, M Sammut, L de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Santiago-Prieto, I Santostasi, G Saraf, S Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Schilling, R Schlamminger, S Schnabel, R Schofield, RMS Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shaddock, DA Shaltev, M Shapiro, B Shawhan, P Weerathunga, TS Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Singer, L Sintes, AM Skelton, G Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Smith, R Somiya, K Sorazu, B Soto, J Speirits, FC Sperandio, L Stefszky, M Stein, AJ Steinlechner, J Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, AS Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Szokoly, GP Tacca, M Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuring, A Titsler, C Tokmakov, KV Toncelli, A Tonelli, M Torre, O Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Trias, M Tseng, K Turner, L Ugolini, D Urbanek, K Vahlbruch, H Vaishnav, B Vajente, G Vallisneri, M van den Brand, JFJ Van den Broeck, C van der Putten, S van der Sluys, MV van Veggel, AA Vass, S Vasuth, M Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, AE Vinet, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Wanner, A Ward, RL Was, M Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, D Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Yablon, J Yakushin, I Yamamoto, H Yamamoto, K Yang, H Yeaton-Massey, D Yoshida, S Yu, P Yvert, M Zanolin, M Zhang, L Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J Buchner, S Hotan, A Palfreyman, J AF Abadie, J. Abbott, B. P. Abbott, R. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adhikari, R. Affeldt, C. Allen, B. Allen, G. S. Ceron, E. Amador Amariutei, D. Amin, R. S. Anderson, S. B. Anderson, W. G. Antonucci, F. Arai, K. Arain, M. A. Araya, M. C. Aston, S. M. Astone, P. Atkinson, D. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, D. Barnum, S. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Basti, A. Bauchrowitz, J. Bauer, Th S. Behnke, B. Bejger, M. Beker, M. G. Bell, A. S. Belletoile, A. Belopolski, I. Benacquista, M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Birch, J. Birindelli, S. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Bock, O. Bodiya, T. P. Bogan, C. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, S. Bosi, L. Bouhou, B. Boyle, M. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Breyer, J. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Brummit, A. Budzynski, R. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Burmeister, O. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cain, J. Calloni, E. Camp, J. B. Campagna, E. Campsie, P. Cannizzo, J. Cannon, K. Canuel, B. Cao, J. Capano, C. Carbognani, F. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chaibi, O. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Chung, S. Clara, F. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. Coulon, J-P. Coward, D. M. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Das, K. Dattilo, V. Daudert, B. Daveloza, H. Davier, M. Davies, G. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Debreczeni, G. Degallaix, J. del Prete, M. Dent, T. Dergachev, V. DeRosa, R. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Dorsher, S. Douglas, E. S. D. Drago, M. Drever, R. W. P. Driggers, J. C. Dumas, J-C. Dwyer, S. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Engel, R. Etzel, T. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flanigan, M. Foley, S. Forsi, E. Forte, L. A. Fotopoulos, N. Fournier, J-D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Galimberti, M. Gammaitoni, L. Garcia, J. Garofoli, J. A. Garufi, F. Gaspar, M. E. Gemme, G. Genin, E. Gennai, A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gill, C. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Granata, M. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Guido, C. Gupta, R. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Hartman, M. T. Haughian, K. Hayama, K. Hayau, J-F. Hayler, T. Heefner, J. Heitmann, H. Hello, P. Hendry, M. A. Heng, I. S. Heptonstall, A. W. Herrera, V. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Holt, K. Hong, T. Hooper, S. Hosken, D. J. Hough, J. Howell, E. J. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Jaranowski, P. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. B. Katsavounidis, E. Katzman, W. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Kelner, M. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, H. Kim, N. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kondrashov, V. Kopparapu, R. Koranda, S. Korth, W. Z. Kowalska, I. Kozak, D. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kumar, R. Kwee, P. Landry, M. Lantz, B. Lastzka, N. Lazzarini, A. Leaci, P. Leong, J. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Liguori, N. Lindquist, P. E. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lu, P. Luan, J. Lubinski, M. Lueck, H. Lundgren, A. P. Macdonald, E. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Majorana, E. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marandi, A. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McKechan, D. J. A. Meadors, G. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Mercer, R. A. Merill, L. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mino, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Moesta, P. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreno, G. Morgado, N. Morgia, A. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murray, P. G. Nash, T. Nawrodt, R. Nelson, J. Neri, I. Newton, G. Nishida, E. Nishizawa, A. Nocera, F. Nolting, D. Ochsner, E. O'Dell, J. Ogin, G. H. Oldenburg, R. G. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parameswaran, A. Pardi, S. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pathak, D. Pedraza, M. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Persichetti, G. Phelps, M. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Podkaminer, J. Poggiani, R. Poeld, J. Postiglione, F. Prato, M. Predoi, V. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Rakhmanov, M. Ramet, C. R. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Redwine, K. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sakata, S. Sakosky, M. Salemi, F. Salit, M. Sammut, L. Sancho de la Jordana, L. Sandberg, V. Sannibale, V. Santamaria, L. Santiago-Prieto, I. Santostasi, G. Saraf, S. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Schilling, R. Schlamminger, S. Schnabel, R. Schofield, R. M. S. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shaddock, D. A. Shaltev, M. Shapiro, B. Shawhan, P. Weerathunga, T. Shihan Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Singer, L. Sintes, A. M. Skelton, G. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Smith, R. Somiya, K. Sorazu, B. Soto, J. Speirits, F. C. Sperandio, L. Stefszky, M. Stein, A. J. Steinlechner, J. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Szokoly, G. P. Tacca, M. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Titsler, C. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torre, O. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Tseng, K. Turner, L. Ugolini, D. Urbanek, K. Vahlbruch, H. Vaishnav, B. Vajente, G. Vallisneri, M. van den Brand, J. F. J. Van den Broeck, C. van der Putten, S. van der Sluys, M. V. van Veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. E. Vinet, J-Y. Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Wanner, A. Ward, R. L. Was, M. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Yablon, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yang, H. Yeaton-Massey, D. Yoshida, S. Yu, P. Yvert, M. Zanolin, M. Zhang, L. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. Buchner, S. Hotan, A. Palfreyman, J. CA LIGO Sci Collaboration Virgo Collaboration TI BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational waves; pulsars: individual (PSR J0835-4510); stars: neutron ID NEUTRON-STARS; TIMING PACKAGE; DEFORMATIONS; SEARCH; TEMPO2 AB We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, 1.9 x 10(-24) and 2.2 x 10(-24), with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of 2.1 x 10(-24), with 95% degree of belief. These limits are below the indirect spin-down limit of 3.3 x 10(-24) for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of similar to 10(-3). Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and the wave polarization angles are unknown. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Arai, K.; Araya, M. C.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K.; Cepeda, C.; Chalermsongsak, T.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Parameswaran, A.; Patel, P.; Pedraza, M.; Phelps, M.; Privitera, S.; Robertson, N. A.; Sannibale, V.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Turner, L.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bell, A. S.; Beveridge, N.; Campsie, P.; Cumming, A.; Cunningham, L.; Edgar, M.; Gill, C.; Grant, A.; Hammond, G.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Macdonald, E.; Martin, I. W.; Miller, J.; Murray, P. G.; Nawrodt, R.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Santiago-Prieto, I.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Verkindt, D.; Yvert, M.] Univ Savoie, CNRS IN2P3, Lab Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Acernese, F.; Barone, F.; Calloni, E.; Conte, R.; De Rosa, R.; Di Fiore, L.; Forte, L. A.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Parisi, M.; Persichetti, G.; Pinto, I. M.; Postiglione, F.; Principe, M.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Adams, C.; Birch, J.; Bridges, D. O.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C.; Hanson, J.; Holt, K.; Katzman, W.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Ramet, C. R.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wen, S.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Graef, C.; Grote, H.; Hage, B.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Meier, T.; Messenger, C.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Scott, J.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Graef, C.; Grote, H.; Hage, B.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Meier, T.; Messenger, C.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Scott, J.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Biswas, R.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Oldenburg, R. G.; Papa, M. A.; Price, L. R.; Schlamminger, S.; Scott, S. M.; Siemens, X.; Skelton, G.; Vaulin, R.; Wiseman, A. G.; Yu, P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G. S.; Byer, R. L.; Clark, D.; DeBra, D.; Herrera, V.; Kim, N.; Lantz, B.; Lu, P.; Marandi, A.; Tseng, K.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Amariutei, D.; Arain, M. A.; Das, K.; Dooley, K. L.; Feldbaum, D.; Hartman, M. T.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Amin, R. S.; Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Antonucci, F.; Astone, P.; Colla, A.; Corsi, A.; Frasca, S.; Majorana, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Aston, S. M.; Aylott, B. E.; Chalkley, E.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Fulda, P.; Hallam, J. M.; Lodhia, D.; Page, A.; Perreca, A.; Smith, R.; Vecchio, A.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Atkinson, D.; Barker, D.; Barton, M. A.; Bland, B.; Clara, F.; Cook, D.; Douglas, E. S. D.; Flanigan, M.; Garcia, J.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sakosky, M.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Moesta, P.; Papa, M. A.; Peralta, C.; Robinson, E. L.; Santamaria, L.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] EGO, I-56021 Cascina, PI, Italy. [Barnum, S.; Christensen, N.; Coughlin, M.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Barriga, P.; Blair, D.; Chung, S.; Coward, D. M.; Dumas, J-C.; Fan, Y.; Gras, S.; Hooper, S.; Howell, E. J.; Ju, L.; Merill, L.; Miao, H.; Susmithan, S.; Wen, L.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Soto, J.; Stein, A. J.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.; Ward, R. L.] Univ Paris Diderot, CNRS IN2P3, CEA DSM IRFU, Lab AstroParticule & Cosmol APC,Observ Paris, F-75013 Paris, France. [Bartos, I.; Belopolski, I.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Redwine, K.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Bauer, Th S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; van der Putten, S.] Nikhef, Amsterdam, Netherlands. [Bejger, M.; Bulik, T.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Benacquista, M.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Grosso, R.; Li, J.; Mohanty, S. D.; Mukherjee, S.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Weerathunga, T. Shihan; Stone, R.; Vaishnav, B.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Birindelli, S.; Brillet, A.; Chaibi, O.; Cleva, F.; Coulon, J-P.; Fournier, J-D.; Greverie, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J-Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91898 Orsay, France. [Bondarescu, R.; Finn, L. S.; Kopparapu, R.; O'Shaughnessy, R.; Owen, B. J.; Titsler, C.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Bondu, F.; Hayau, J-F.; Heitmann, H.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] IN2P3 CNRS, LMA, F-69622 Lyon, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Boyle, M.; Chen, Y.; Hong, T.; Luan, J.; Mino, Y.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.; Yang, H.] Caltech CaRT, Pasadena, CA 91125 USA. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA. [Brown, D. A.; Capano, C.; Garofoli, J. A.; Lundgren, A. P.; Pekowsky, L.; Saulson, P. R.; Schutz, B. F.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Brummit, A.; Greenhalgh, R. J. S.; Hayler, T.; O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Budzynski, R.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Kanner, J. B.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Hoak, D.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cagnoli, G.; Campagna, E.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Cain, J.; Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, I-80126 Naples, Italy. [Camp, J. B.; Cannizzo, J.; Stroeer, A. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Campagna, E.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Cao, J.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Goetz, E.; Gustafson, R.; Meadors, G.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Chua, S. S. Y.; Inta, R.; McClelland, D. E.; Mow-Lowry, C. M.; Mullavey, A.; Satterthwaite, M.; Schulz, B.; Shaddock, D. A.; Slagmolen, B. J. J.; Stefszky, M.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Davies, G.; Dent, T.; Edwards, M.; Fairhurst, S.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Pathak, D.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Sutton, P. J.; Van den Broeck, C.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Milan, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Colla, A.; Colombini, M.; Frasca, S.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Daw, E. J.; White, D.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, H-1121 Budapest, Hungary. [del Prete, M.; Mantovani, M.; Torre, O.] Univ Siena, I-53100 Siena, Italy. [Dhurandhar, S.; Gupta, R.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Dorsher, S.; Kandhasamy, S.; Mandic, V.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Drago, M.; Vedovato, G.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Drago, M.] Univ Padua, I-35131 Padua, Italy. [Farr, B. F.; Fazi, D.; Kalogera, V.; Kelner, M.; Krishnamurthy, S.; Mandel, I.; Raymond, V.; Salit, M.; van der Sluys, M. V.; Yablon, J.] Northwestern Univ, Evanston, IL 60208 USA. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, Z.; Raffai, P.; Szokoly, G. P.] Eotvos Lorand Univ, H-1117 Budapest, Hungary. [Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Hayama, K.; Kawamura, S.; Miyakawa, O.; Nishida, E.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Husa, S.; Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Krolak, A.] IPJ, PL-05400 Otwock, Poland. [Liguori, N.; Prodi, G. A.] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38050 Trento, Italy. [Liguori, N.; Prodi, G. A.] Univ Trent, I-38050 Trento, Italy. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Penn, S.; Podkaminer, J.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Buchner, S.] Hartebeesthoek Radio Astron Observ, ZA-1740 Krugersdorp, South Africa. [Buchner, S.] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. [Hotan, A.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Palfreyman, J.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Ward, Robert/I-8032-2014; Frasconi, Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Tacca, Matteo/J-1599-2015; Graef, Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Shaddock, Daniel/A-7534-2011; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Howell, Eric/H-5072-2014; Ott, Christian/G-2651-2011; mosca, simona/I-7116-2012; Parisi, Maria/D-2817-2013; Steinlechner, Sebastian/D-5781-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Neri, Igor/F-1482-2010; Vocca, Helios/F-1444-2010; prodi, giovanni/B-4398-2010; Acernese, Fausto/E-4989-2010; Gammaitoni, Luca/B-5375-2009; Khalili, Farit/D-8113-2012; Prato, Mirko/D-8531-2012; Santamaria, Lucia/A-7269-2012; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Marchesoni, Fabio/A-1920-2008; Kawabe, Keita/G-9840-2011; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Hammond, Giles/A-8168-2012; Bell, Angus/E-7312-2011; Strain, Kenneth/D-5236-2011; Hild, Stefan/A-3864-2010; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Freise, Andreas/F-8892-2011; Abernathy, Matthew/G-1113-2011; OI Vetrano, Flavio/0000-0002-7523-4296; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Husa, Sascha/0000-0002-0445-1971; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Milano, Leopoldo/0000-0001-9487-5876; Swinkels, Bas/0000-0002-3066-3601; Drago, Marco/0000-0002-3738-2431; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Fairhurst, Stephen/0000-0001-8480-1961; Frasconi, Franco/0000-0003-4204-6587; Sigg, Daniel/0000-0003-4606-6526; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Palfreyman, Jim/0000-0001-8691-8039; Kanner, Jonah/0000-0001-8115-0577; Wette, Karl/0000-0002-4394-7179; Finn, Lee Samuel/0000-0002-3937-0688; Tacca, Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Shaddock, Daniel/0000-0002-6885-3494; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Howell, Eric/0000-0001-7891-2817; Ott, Christian/0000-0003-4993-2055; mosca, simona/0000-0001-7869-8275; Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Miao, Haixing/0000-0003-4101-9958; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Vicere, Andrea/0000-0003-0624-6231; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Neri, Igor/0000-0002-9047-9822; Vocca, Helios/0000-0002-1200-3917; prodi, giovanni/0000-0001-5256-915X; Acernese, Fausto/0000-0003-3103-3473; Gammaitoni, Luca/0000-0002-4972-7062; Prato, Mirko/0000-0002-2188-8059; Gorodetsky, Michael/0000-0002-5159-2742; Punturo, Michele/0000-0001-8722-4485; Marchesoni, Fabio/0000-0001-9240-6793; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; Bell, Angus/0000-0003-1523-0821; Strain, Kenneth/0000-0002-2066-5355; Lueck, Harald/0000-0001-9350-4846; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Douglas, Ewan/0000-0002-0813-4308; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Pathak, Devanka/0000-0002-1768-8353; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610 FU United States National Science Foundation; Science and Technology Facilities Council of the United Kingdom; Max-Planck-Society; State of Niedersachsen/Germany; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. NR 40 TC 50 Z9 51 U1 3 U2 35 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 93 DI 10.1088/0004-637X/737/2/93 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600047 ER PT J AU Goldsmith, PF Liseau, R Bell, TA Black, JH Chen, JH Hollenbach, D Kaufman, MJ Li, D Lis, DC Melnick, G Neufeld, D Pagani, L Snell, R Benz, AO Bergin, E Bruderer, S Caselli, P Caux, E Encrenaz, P Falgarone, E Gerin, M Goicoechea, JR Hjalmarson, A Larsson, B Le Bourlot, J Le Petit, F De Luca, M Nagy, Z Roueff, E Sandqvist, A van der Tak, F van Dishoeck, EF Vastel, C Viti, S Yildiz, U AF Goldsmith, Paul F. Liseau, Rene Bell, Tom A. Black, John H. Chen, Jo-Hsin Hollenbach, David Kaufman, Michael J. Li, Di Lis, Dariusz C. Melnick, Gary Neufeld, David Pagani, Laurent Snell, Ronald Benz, Arnold O. Bergin, Edwin Bruderer, Simon Caselli, Paola Caux, Emmanuel Encrenaz, Pierre Falgarone, Edith Gerin, Maryvonne Goicoechea, Javier R. Hjalmarson, Ake Larsson, Bengt Le Bourlot, Jacques Le Petit, Franck De Luca, Massimo Nagy, Zsofia Roueff, Evelyne Sandqvist, Aage van der Tak, Floris van Dishoeck, Ewine F. Vastel, Charlotte Viti, Serena Yildiz, Umut TI HERSCHEL* MEASUREMENTS OF MOLECULAR OXYGEN IN ORION SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; ISM: abundances; ISM: individual objects (Orion); ISM: molecules; submillimeter: ISM ID DENSE INTERSTELLAR CLOUDS; WAVE-ASTRONOMY-SATELLITE; INTER-STELLAR CLOUDS; GAS-PHASE CHEMISTRY; DISSOCIATIVE RECOMBINATION; APERTURE SYNTHESIS; O-2 ABUNDANCE; UPPER LIMITS; ROTATIONAL-EXCITATION; INELASTIC-COLLISIONS AB We report observations of three rotational transitions of molecular oxygen (O-2) in emission from the H-2 Peak 1 position of vibrationally excited molecular hydrogen in Orion. We observed the 487 GHz, 774 GHz, and 1121 GHz lines using the Heterodyne Instrument for the Far Infrared on the Herschel Space Observatory, having velocities of 11 km s(-1) to 12 km s(-1) and widths of 3 km s(-1). The beam-averaged column density is N(O-2) = 6.5 x 10(16) cm(-2), and assuming that the source has an equal beam-filling factor for all transitions (beam widths 44, 28, and 19 ''), the relative line intensities imply a kinetic temperature between 65 K and 120 K. The fractional abundance of O-2 relative to H-2 is (0.3-7.3) x 10(-6). The unusual velocity suggests an association with a similar to 5 '' diameter source, denoted Peak A, the Western Clump, or MF4. The mass of this source is similar to 10 M-circle dot and the dust temperature is >= 150 K. Our preferred explanation of the enhanced O-2 abundance is that dust grains in this region are sufficiently warm (T >= 100 K) to desorb water ice and thus keep a significant fraction of elemental oxygen in the gas phase, with a significant fraction as O-2. For this small source, the line ratios require a temperature >= 180 K. The inferred O-2 column density similar or equal to 5 x 10(18) cm(-2) can be produced in Peak A, having N(H-2) similar or equal to 4 x 10(24) cm(-2). An alternative mechanism is a low-velocity (10-15 km s(-1)) C-shock, which can produce N(O-2) up to 10(17) cm(-2). C1 [Goldsmith, Paul F.; Chen, Jo-Hsin; Li, Di] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Liseau, Rene; Black, John H.; Hjalmarson, Ake] Chalmers, Onsala Space Observ, Dept Earth & Space Sci, SE-43992 Onsala, Sweden. [Bell, Tom A.; Goicoechea, Javier R.] CSIC INTA, Ctr Astrobiol, Madrid 28850, Spain. [Hollenbach, David] SETI Inst, Mountain View, CA 94043 USA. [Kaufman, Michael J.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Lis, Dariusz C.] CALTECH, Cahill Ctr Astron & Astrophys 301 17, Pasadena, CA 91125 USA. [Melnick, Gary] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Neufeld, David] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Pagani, Laurent; Encrenaz, Pierre] Observ Paris, CNRS, UMR8112, F-75014 Paris, France. [Pagani, Laurent; Encrenaz, Pierre] LERMA, F-75014 Paris, France. [Snell, Ronald] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Benz, Arnold O.; Bruderer, Simon] ETH, Inst Astron, CH-8092 Zurich, Switzerland. [Bergin, Edwin] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Caselli, Paola] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Caux, Emmanuel; Vastel, Charlotte] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Caux, Emmanuel; Vastel, Charlotte] IRAP, CNRS, F-31028 Toulouse 4, France. [Falgarone, Edith; Gerin, Maryvonne] Ecole Normale Super, F-75231 Paris 05, France. [Falgarone, Edith; Gerin, Maryvonne] Observ Paris, UMR8112, CNRS, LRA LERMA, F-75231 Paris 05, France. [Larsson, Bengt; Sandqvist, Aage] Stockholm Univ, AlbaNova Univ Ctr, Stockholm Observ, SE-10691 Stockholm, Sweden. [Le Bourlot, Jacques; Le Petit, Franck; De Luca, Massimo; Roueff, Evelyne] LUTH, Observ Paris, Paris, France. [Nagy, Zsofia; van der Tak, Floris] Univ Groningen, Kapteyn Astron Inst, Groningen, Netherlands. [Nagy, Zsofia; van der Tak, Floris] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [van Dishoeck, Ewine F.; Yildiz, Umut] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Dishoeck, Ewine F.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Viti, Serena] UCL, Dept Phys & Astron, London, England. RP Goldsmith, PF (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Paul.F.Goldsmith@jpl.nasa.gov RI Yildiz, Umut/C-5257-2011; Goldsmith, Paul/H-3159-2016 OI Yildiz, Umut/0000-0001-6197-2864; FU NSF [AST-0540882]; National Aeronautics and Space Administration FX We are indebted to the many people who worked so hard and for so long to make the Herschel mission and the HIFI instrument a success. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the US under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands with major contributions from Germany, France, and the US Consortium members are Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA); Sweden: Chalmers University of Technology-MC2, RSS, & GARD, Onsala Space Observatory, Swedish National Space Board, Stockholm University-Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. The O2 excitation calculations were carried out using the RADEX code (Van der Tak et al. 2007). We appreciate the effort that went into making critical spectroscopic data available through the Jet Propulsion Laboratory Molecular Spectroscopy Data Base (http://spec.jpl.nasa.gov/), the Cologne Database for Molecular Spectroscopy, (http://www.astro.uni-koeln.de/cdms/and Muller et al. 2001) and the Leiden Atomic and Molecular Database (http://www.strw.leidenuniv.nl/similar to moldata/ and Schoier et al. 2005). We thank Holger Muller for helpful discussions about molecular spectroscopy. Colin Borys of the NASA Herschel Science Center gave us valuable assistance in unraveling the pointing offsets of the two HIFI polarization beams. We thank Nathaniel Cuningham and John Bally for sending us the FITS image used to make Figure 2. We appreciate the input from John Pearson and Harshal Gupta in terms of useful discussions about molecular structure and astrophysics. Volker Tolls provided valuable information about the WBS noise bandwidth and noise after combining WBS spectral channels. We have benefited from discussions with D. Quan about grain warmup and its impact on molecular cloud chemistry. The Caltech Submillimeter Observatory is supported by the NSF under award AST-0540882. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank K. Oberg for helpful information on desorption of molecules from grains, and the referee for a number of valuable suggestions. NR 116 TC 59 Z9 59 U1 2 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 96 DI 10.1088/0004-637X/737/2/96 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600050 ER PT J AU Gralla, MB Sharon, K Gladders, MD Marrone, DP Barrientos, LF Bayliss, M Bonamente, M Bulbul, E Carlstrom, JE Culverhouse, T Gilbank, DG Greer, C Hasler, N Hawkins, D Hennessy, R Joy, M Koester, B Lamb, J Leitch, E Miller, A Mroczkowski, T Muchovej, S Oguri, M Plagge, T Pryke, C Woody, D AF Gralla, Megan B. Sharon, Keren Gladders, Michael D. Marrone, Daniel P. Barrientos, L. Felipe Bayliss, Matthew Bonamente, Massimiliano Bulbul, Esra Carlstrom, John E. Culverhouse, Thomas Gilbank, David G. Greer, Christopher Hasler, Nicole Hawkins, David Hennessy, Ryan Joy, Marshall Koester, Benjamin Lamb, James Leitch, Erik Miller, Amber Mroczkowski, Tony Muchovej, Stephen Oguri, Masamune Plagge, Tom Pryke, Clem Woody, David TI SUNYAEV-ZEL'DOVICH EFFECT OBSERVATIONS OF STRONG LENSING GALAXY CLUSTERS: PROBING THE OVERCONCENTRATION PROBLEM SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: clusters: intracluster medium ID X-RAY; EINSTEIN RADII; PROFILE; MASS; HALO; THERMODYNAMICS; SPECTROSCOPY; IMPACT; SAMPLE; CORES AB We have measured the Sunyaev-Zel'dovich (SZ) effect for a sample of 10 strong lensing selected galaxy clusters using the Sunyaev-Zel'dovich Array (SZA). The SZA is sensitive to structures on spatial scales of a few arcminutes, while the strong lensing mass modeling constrains the mass at small scales (typically <30 ''). Combining the two provides information about the projected concentrations of the strong lensing clusters. The Einstein radii we measure are twice as large as expected given the masses inferred from SZ scaling relations. A Monte Carlo simulation indicates that a sample randomly drawn from the expected distribution would have a larger median Einstein radius than the observed clusters about 3% of the time. The implied overconcentration has been noted in previous studies and persists for this sample, even when we take into account that we are selecting large Einstein radius systems, suggesting that the theoretical models still do not fully describe the observed properties of strong lensing clusters. C1 [Gralla, Megan B.; Gladders, Michael D.; Marrone, Daniel P.; Bayliss, Matthew; Carlstrom, John E.; Greer, Christopher; Hennessy, Ryan; Koester, Benjamin; Leitch, Erik; Plagge, Tom; Pryke, Clem] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Gralla, Megan B.; Sharon, Keren; Gladders, Michael D.; Marrone, Daniel P.; Bayliss, Matthew; Carlstrom, John E.; Greer, Christopher; Hennessy, Ryan; Leitch, Erik; Plagge, Tom; Pryke, Clem] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Barrientos, L. Felipe] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago, Chile. [Bonamente, Massimiliano; Bulbul, Esra; Hasler, Nicole] Univ Alabama, Dept Phys, Huntsville, AL 35812 USA. [Carlstrom, John E.; Pryke, Clem] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carlstrom, John E.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Culverhouse, Thomas; Hawkins, David; Lamb, James; Woody, David] CALTECH, Owens Valley Radio Observ, Big Pine, CA 93513 USA. [Gilbank, David G.; Muchovej, Stephen] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Joy, Marshall] NASA, George C Marshall Space Flight Ctr, VP62, Space Sci Off, Huntsville, AL 35812 USA. [Miller, Amber] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Miller, Amber] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Mroczkowski, Tony] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Oguri, Masamune] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Oguri, Masamune] Natl Astron Observ Japan, Div Theoret Astron, Tokyo 1818588, Japan. RP Gralla, MB (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. RI Oguri, Masamune/C-6230-2011; OI Marrone, Daniel/0000-0002-2367-1080; Mroczkowski, Tony/0000-0003-3816-5372 FU NSF [AST-0838187, PHY-0114422]; Gordon and Betty Moore Foundation; Kenneth T. and Eileen L. Norris Foundation; James S. McDonnell Foundation; Associates of the California Institute of Technology; University of Chicago; state of California; state of Illinois; state of Maryland; National Science Foundation; NASA [HF-51259.01, PF0-110077] FX Support for this work is provided by NSF through award AST-0838187 and PHY-0114422 at the University of Chicago. Support for CARMA construction was derived from the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the James S. McDonnell Foundation, the Associates of the California Institute of Technology, the University of Chicago, the states of California, Illinois, and Maryland, and the National Science Foundation. Ongoing CARMA development and operations are supported by the National Science Foundation under a cooperative agreement, and by the CARMA partner universities. S.M. acknowledges support from an NSF Astronomy and Astrophysics Fellowship; C.G. and S.M. from NSF Graduate Research Fellowships; D.P.M. from NASA Hubble Fellowship grant HF-51259.01 Support for T.M. was provided by NASA through the Einstein Fellowship Program, grant PF0-110077. NR 40 TC 22 Z9 22 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 74 DI 10.1088/0004-637X/737/2/74 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600028 ER PT J AU Jee, MJ Dawson, KS Hoekstra, H Perlmutter, S Rosati, P Brodwin, M Suzuki, N Koester, B Postman, M Lubin, L Meyers, J Stanford, SA Barbary, K Barrientos, F Eisenhardt, P Ford, HC Gilbank, DG Gladders, MD Gonzalez, A Harris, DW Huang, X Lidman, C Rykoff, ES Rubin, D Spadafora, AL AF Jee, M. J. Dawson, K. S. Hoekstra, H. Perlmutter, S. Rosati, P. Brodwin, M. Suzuki, N. Koester, B. Postman, M. Lubin, L. Meyers, J. Stanford, S. A. Barbary, K. Barrientos, F. Eisenhardt, P. Ford, H. C. Gilbank, D. G. Gladders, M. D. Gonzalez, A. Harris, D. W. Huang, X. Lidman, C. Rykoff, E. S. Rubin, D. Spadafora, A. L. TI SCALING RELATIONS AND OVERABUNDANCE OF MASSIVE CLUSTERS AT z greater than or similar to 1 FROM WEAK-LENSING STUDIES WITH THE HUBBLE SPACE TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; dark matter; galaxies: clusters: general; galaxies: high-redshift; gravitational lensing: weak; X-rays: galaxies: clusters ID IRAC SHALLOW SURVEY; CHANDRA X-RAY; CHARGE-TRANSFER INEFFICIENCY; RELAXED GALAXY CLUSTERS; COLOR-MAGNITUDE DIAGRAM; HIGH-REDSHIFT CLUSTERS; PIXEL-BASED CORRECTION; DARK-MATTER; ADVANCED CAMERA; RED-SEQUENCE AB We present weak gravitational lensing analysis of 22 high-redshift (z greater than or similar to 1) clusters based on Hubble Space Telescope images. Most clusters in our sample provide significant lensing signals and are well detected in their reconstructed two-dimensional mass maps. Combining the current results and our previous weak-lensing studies of five other high-z clusters, we compare gravitational lensing masses of these clusters with other observables. We revisit the question whether the presence of the most massive clusters in our sample is in tension with the current. CDM structure formation paradigm. We find that the lensing masses are tightly correlated with the gas temperatures and establish, for the first time, the lensing mass-temperature relation at z greater than or similar to 1. For the power-law slope of the M-T-X relation (M proportional to T-alpha), we obtain alpha = 1.54 +/- 0.23. This is consistent with the theoretical self-similar prediction alpha = 3/2 and with the results previously reported in the literature for much lower redshift samples. However, our normalization is lower than the previous results by 20%-30%, indicating that the normalization in the M-T-X relation might evolve. After correcting for Eddington bias and updating the discovery area with a more conservative choice, we find that the existence of the most massive clusters in our sample still provides a tension with the current. CDM model. The combined probability of finding the four most massive clusters in this sample after the marginalization over cosmological parameters is less than 1%. C1 [Jee, M. J.; Lubin, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Dawson, K. S.; Harris, D. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Hoekstra, H.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Perlmutter, S.; Suzuki, N.; Meyers, J.; Barbary, K.; Huang, X.; Rykoff, E. S.; Rubin, D.; Spadafora, A. L.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rosati, P.] European So Observ, D-85748 Garching, Germany. [Brodwin, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Koester, B.; Gladders, M. D.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Postman, M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Barbary, K.; Rubin, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Barrientos, F.] Univ Catolica Chile, Dept Astron & Astrophys, Santiago, Chile. [Eisenhardt, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ford, H. C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Gilbank, D. G.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Gonzalez, A.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Lidman, C.] Australian Astron Observ, Epping, NSW 1710, Australia. RP Jee, MJ (reprint author), Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA. RI Perlmutter, Saul/I-3505-2015; OI Perlmutter, Saul/0000-0002-4436-4661; Hoekstra, Henk/0000-0002-0641-3231 FU NASA [NAS 5-26555, 9290, 9919, 10496, GO-10496]; TABASGO foundation; Office of Science, Office of High Energy and Nuclear Physics, of the U.S. Department of Energy [AC02-05CH11231]; JSPS [20040003]; Netherlands Organisation for Scientific Research (NWO); Marie Curie International Reintegration Grant; DFG; W. M. Keck Foundation; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48]; [DE-AC52-07NA27344] FX Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555, under program 9290, 9919, and 10496.; M.J.J. acknowledges support for the current research from the TABASGO foundation presented in the form of the Large Synoptic Survey Telescope Cosmology Fellowship. Financial support for this work was in part provided by NASA through program GO-10496 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. This work was also supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the U. S. Department of Energy under Contract No. AC02-05CH11231, as well as a JSPS core-to-core program "International Research Network for Dark Energy" and by JSPS research grant 20040003. H.H. acknowledges support from the Netherlands Organisation for Scientific Research (NWO) through a VIDI grant. H. H. is also supported by a Marie Curie International Reintegration Grant. P. R. acknowledges partial support by the DFG cluster of excellence Origin and Structure of the Universe. Support for M. B. was provided by the W. M. Keck Foundation. The work of S.A.S. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The work of P. E. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 106 TC 70 Z9 70 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 59 DI 10.1088/0004-637X/737/2/59 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600013 ER PT J AU Kane, SR Dragomir, D Ciardi, DR Lee, JW Lo Curto, G Lovis, C Naef, D Mahadevan, S Pilyavsky, G Udry, S Wang, XS Wright, J AF Kane, Stephen R. Dragomir, Diana Ciardi, David R. Lee, Jae-Woo Lo Curto, Gaspare Lovis, Christophe Naef, Dominique Mahadevan, Suvrath Pilyavsky, Genady Udry, Stephane Wang, Xuesong Wright, Jason TI STELLAR VARIABILITY OF THE EXOPLANET HOSTING STAR HD 63454 SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; stars: individual (HD 63454); techniques: photometric; techniques: radial velocities ID PLANET SEARCH PROGRAM; RADIAL-VELOCITY; GIANT PLANETS; EMISSION; MODELS AB Of the hundreds of exoplanets discovered using the radial velocity ( RV) technique, many are orbiting close to their host stars with periods less than 10 days. One of these, HD 63454, is a young active K dwarf which hosts a Jovian planet in a 2.82 day period orbit. The planet has a 14% transit probability and a predicted transit depth of 1.2%. Here we provide a re-analysis of the RV data to produce an accurate transit ephemeris. We further analyze 8 nights of time series data to search for stellar activity both intrinsic to the star and induced by possible interactions of the exoplanet with the stellar magnetospheres. We establish the photometric stability of the star at the 3 mmag level despite strong Ca II emission in the spectrum. Finally, we rule out photometric signatures of both star-planet magnetosphere interactions and planetary transit signatures. From this we are able to place constraints on both the orbital and physical properties of the planet. C1 [Kane, Stephen R.; Dragomir, Diana; Ciardi, David R.] NASA, Exoplanet Sci Inst, CALTECH, Pasadena, CA 91125 USA. [Dragomir, Diana] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Lee, Jae-Woo] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea. [Lo Curto, Gaspare] ESO, Garching, Germany. [Lovis, Christophe; Naef, Dominique; Udry, Stephane] Univ Geneva, Observ Geneva, CH-1290 Sauverny, Switzerland. [Mahadevan, Suvrath; Pilyavsky, Genady; Wang, Xuesong; Wright, Jason] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Mahadevan, Suvrath; Wright, Jason] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. RP Kane, SR (reprint author), NASA, Exoplanet Sci Inst, CALTECH, MS 100-22,770 S Wilson Ave, Pasadena, CA 91125 USA. EM skane@ipac.caltech.edu RI Kane, Stephen/B-4798-2013; OI Dragomir, Diana/0000-0003-2313-467X; Wright, Jason/0000-0001-6160-5888; Ciardi, David/0000-0002-5741-3047 FU Pennsylvania State University; Eberly College of Science; Pennsylvania Space Grant Consortium; Basic Science Research Program [20100024954]; Center for Galaxy Evolution Research through the National Research Foundation of Korea; National Aeronautics and Space Administration FX The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. J.-W.L. acknowledges financial support from the Basic Science Research Program (grant no. 20100024954) and the Center for Galaxy Evolution Research through the National Research Foundation of Korea. This research has made use of the NASA/IPAC/NExScI Star and Exoplanet Database, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 26 TC 3 Z9 3 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 58 DI 10.1088/0004-637X/737/2/58 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600012 ER PT J AU Marriage, TA Acquaviva, V Ade, PAR Aguirre, P Amiri, M Appel, JW Barrientos, LF Battistelli, ES Bond, JR Brown, B Burger, B Chervenak, J Das, S Devlin, MJ Dicker, SR Doriese, WB Dunkley, J Dunner, R Essinger-Hileman, T Fisher, RP Fowler, JW Hajian, A Halpern, M Hasselfield, M Hernandez-Monteagudo, C Hilton, GC Hilton, M Hincks, AD Hlozek, R Huffenberger, KM Hughes, DH Hughes, JP Infante, L Irwin, KD Juin, JB Kaul, M Klein, J Kosowsky, A Lau, JM Limon, M Lin, YT Lupton, RH Marsden, D Martocci, K Mauskopf, P Menanteau, F Moodley, K Moseley, H Netterfield, CB Niemack, MD Nolta, MR Page, LA Parker, L Partridge, B Quintana, H Reese, ED Reid, B Sehgal, N Sherwin, BD Sievers, J Spergel, DN Staggs, ST Swetz, DS Switzer, ER Thornton, R Trac, H Tucker, C Warne, R Wilson, G Wollack, E Zhao, Y AF Marriage, Tobias A. Acquaviva, Viviana Ade, Peter A. R. Aguirre, Paula Amiri, Mandana Appel, John William Felipe Barrientos, L. Battistelli, Elia S. Bond, J. Richard Brown, Ben Burger, Bryce Chervenak, Jay Das, Sudeep Devlin, Mark J. Dicker, Simon R. Doriese, W. Bertrand Dunkley, Joanna Duenner, Rolando Essinger-Hileman, Thomas Fisher, Ryan P. Fowler, Joseph W. Hajian, Amir Halpern, Mark Hasselfield, Matthew Hernandez-Monteagudo, Carlos Hilton, Gene C. Hilton, Matt Hincks, Adam D. Hlozek, Renee Huffenberger, Kevin M. Handel Hughes, David Hughes, John P. Infante, Leopoldo Irwin, Kent D. Baptiste Juin, Jean Kaul, Madhuri Klein, Jeff Kosowsky, Arthur Lau, Judy M. Limon, Michele Lin, Yen-Ting Lupton, Robert H. Marsden, Danica Martocci, Krista Mauskopf, Phil Menanteau, Felipe Moodley, Kavilan Moseley, Harvey Netterfield, Calvin B. Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Parker, Lucas Partridge, Bruce Quintana, Hernan Reese, Erik D. Reid, Beth Sehgal, Neelima Sherwin, Blake D. Sievers, Jon Spergel, David N. Staggs, Suzanne T. Swetz, Daniel S. Switzer, Eric R. Thornton, Robert Trac, Hy Tucker, Carole Warne, Ryan Wilson, Grant Wollack, Ed Zhao, Yue TI THE ATACAMA COSMOLOGY TELESCOPE: SUNYAEV-ZEL'DOVICH-SELECTED GALAXY CLUSTERS AT 148 GHz IN THE 2008 SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general; radio continuum: general; surveys ID SOUTH-POLE TELESCOPE; BACKGROUND POWER SPECTRUM; COSMIC DISTANCE SCALE; X-RAY MEASUREMENTS; HUBBLE CONSTANT; LENSING MEASUREMENTS; PRESSURE PROFILE; SOURCE CATALOG; DARK ENERGY; CONSTRAINTS AB We report on 23 clusters detected blindly as Sunyaev-Zel'dovich (SZ) decrements in a 148 GHz, 455 deg(2) map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL J0102-4915, with a redshift of 0.75 ( photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure. The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6 x 10(14) solar masses referenced to the cluster volume characterized by 500 times the critical density. The Compton y-X-ray luminosity mass comparison for the 11 best-detected clusters visually agrees with both self-similar and non-adiabatic, simulation-derived scaling laws. C1 [Marriage, Tobias A.; Acquaviva, Viviana; Das, Sudeep; Dunkley, Joanna; Hajian, Amir; Lin, Yen-Ting; Lupton, Robert H.; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Acquaviva, Viviana; Hughes, John P.; Menanteau, Felipe] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Ade, Peter A. R.; Mauskopf, Phil; Tucker, Carole] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aguirre, Paula; Felipe Barrientos, L.; Duenner, Rolando; Infante, Leopoldo; Baptiste Juin, Jean; Lin, Yen-Ting; Quintana, Hernan] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Amiri, Mandana; Battistelli, Elia S.; Burger, Bryce; Halpern, Mark; Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Appel, John William; Das, Sudeep; Dunkley, Joanna; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D.; Lau, Judy M.; Limon, Michele; Martocci, Krista; Niemack, Michael D.; Page, Lyman A.; Parker, Lucas; Reid, Beth; Sherwin, Blake D.; Staggs, Suzanne T.; Switzer, Eric R.; Zhao, Yue] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Battistelli, Elia S.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Bond, J. Richard; Hajian, Amir; Nolta, Michael R.; Sievers, Jon] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Brown, Ben; Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Chervenak, Jay; Moseley, Harvey; Wollack, Ed] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Das, Sudeep] Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Devlin, Mark J.; Dicker, Simon R.; Kaul, Madhuri; Klein, Jeff; Limon, Michele; Marsden, Danica; Reese, Erik D.; Swetz, Daniel S.; Thornton, Robert] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Doriese, W. Bertrand; Fowler, Joseph W.; Hilton, Gene C.; Irwin, Kent D.; Niemack, Michael D.; Swetz, Daniel S.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Dunkley, Joanna; Hlozek, Renee] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Hernandez-Monteagudo, Carlos] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hilton, Matt; Moodley, Kavilan; Warne, Ryan] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Hilton, Matt; Moodley, Kavilan] Ctr High Performance Comp, Rosebank, Cape Town, South Africa. [Huffenberger, Kevin M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Handel Hughes, David] INAOE, Puebla, Mexico. [Lau, Judy M.; Sehgal, Neelima] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Lau, Judy M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Limon, Michele] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Lin, Yen-Ting] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Martocci, Krista] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Netterfield, Calvin B.; Switzer, Eric R.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Reid, Beth] Univ Barcelona, ICC, E-08028 Barcelona, Spain. [Thornton, Robert] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Trac, Hy] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Trac, Hy] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Wilson, Grant] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. RP Marriage, TA (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. RI Klein, Jeffrey/E-3295-2013; Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013; Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012; OI Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Huffenberger, Kevin/0000-0001-7109-0099; Menanteau, Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074; Limon, Michele/0000-0002-5900-2698 FU U.S. National Science Foundation [AST-0408698, PHY-0355328, AST-0707731, PIRE-0507768]; Comision Nacional de Investigacion Cientifica y Technologica de Chile (CONICYT); Princeton University; University of Pennsylvania; Canada Foundation for Innovation under the Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; NASA [NNX08AH30G]; FONDECYT [3085031]; Natural Science and Engineering Research Council of Canada (NSERC); NSF [AST-0546035, AST-0606975]; FONDAP Centro de Astrofisica; U.S. Department of Energy [DE-AC3-76SF00515]; CONICYT; MECESUP; Fundacion Andes; Rhodes Trust; NSF Physics Frontier Center [PHY-0114422]; World Premier International Research Center Initiative, MEXT, Japan FX The ACT project was proposed in 2000 and funded by the U.S. National Science Foundation on 2004 January 1. Many have contributed to the project since its inception. We especially wish to thank Asad Aboobaker, Christine Allen, Dominic Benford, Paul Bode, Kristen Burgess, Angelica de Oliveira-Costa, Sean Frazier, Nick Hand, Peter Hargrave, Norm Jarosik, Amber Miller, Carl Reintsema, Felipe Rojas, Uros Seljak, Martin Spergel, Johannes Staghun, Carl Stahle, Max Tegmark, Masao Uehara, Katerina Visnjic, and Ed Wishnow. It is a pleasure to acknowledge Bob Margolis, ACT's project manager. Reed Plimpton and David Jacobson worked at the telescope during the 2008 season. Naoki Itoh and Satoshi Nozawa provided code for calculating relativistic corrections to the SZ. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of Programa de Astronomia, a program of the Comision Nacional de Investigacion Cientifica y Technologica de Chile (CONICYT).; This work was supported by the U.S. National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731, and PIRE-0507768. Funding was also provided by Princeton University and the University of Pennsylvania. The PIRE program made possible exchanges between Chile, South Africa, Spain, and the United States that enabled this research program. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund-Research Excellence; and the University of Toronto.; T.M. was supported through NASA grant NNX08AH30G. J.B.J. was supported by the FONDECYT grant 3085031. A.D.H. received additional support from a Natural Science and Engineering Research Council of Canada (NSERC) PGS-D scholarship. A.K. and B.P. were partially supported through NSF AST-0546035 and AST-0606975, respectively, for work on ACT. H.Q. and L.I. acknowledge partial support from FONDAP Centro de Astrofisica. N.S. is supported by the U.S. Department of Energy contract to SLAC no. DE-AC3-76SF00515. R.D. was supported by CONICYT, MECESUP, and Fundacion Andes. R.H. was supported by the Rhodes Trust. E.S. acknowledges support by NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics. Y.T.L. acknowledges support from the World Premier International Research Center Initiative, MEXT, Japan. The ACT data will be made public through LAMBDA (http://lambda.gsfc.nasa.gov/) and the ACT Web site (http://www.physics.princeton.edu/act/). NR 72 TC 153 Z9 153 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 61 DI 10.1088/0004-637X/737/2/61 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600015 ER PT J AU Venters, TM Pavlidou, V AF Venters, Tonia M. Pavlidou, Vasiliki TI THE EFFECT OF BLAZAR SPECTRAL BREAKS ON THE BLAZAR CONTRIBUTION TO THE EXTRAGALACTIC GAMMA-RAY BACKGROUND SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; gamma rays: diffuse background; gamma rays: galaxies ID LARGE-AREA TELESCOPE; ACTIVE GALACTIC NUCLEI; STAR-FORMING GALAXIES; RADIO-LOUD AGN; LUMINOSITY FUNCTION; SPACE-TELESCOPE; FERMI-LAT; EGRET OBSERVATIONS; X-RAY; EMISSION AB The spectral shapes of the contributions of different classes of unresolved gamma-ray emitters can provide insight into their relative contributions to the extragalactic gamma-ray background (EGB) and the natures of their spectra at GeV energies. We calculate the spectral shapes of the contributions to the EGB arising from BL Lac objects and flat-spectrum radio quasars assuming blazar spectra can be described as broken power laws. We fit the resulting total blazar spectral shape to the Fermi Large Area Telescope measurements of the EGB, finding that the best-fit shape reproduces well the shape of the Fermi EGB for various break scenarios. We conclude that a scenario in which the contribution of blazars is dominant cannot be excluded on spectral grounds alone, even if spectral breaks are shown to be common among Fermi blazars. We also find that while the observation of a featureless (within uncertainties) power-law EGB spectrum by Fermi does not necessarily imply a single class of contributing unresolved sources with featureless individual spectra, such an observation and the collective spectra of the separate contributing populations determine the ratios of their contributions. As such, a comparison with studies including blazar gamma-ray luminosity functions could have profound implications for the blazar contribution to the EGB, blazar evolution, and blazar gamma-ray spectra and emission. C1 [Venters, Tonia M.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Pavlidou, Vasiliki] CALTECH, Dept Astron, Pasadena, CA 91125 USA. RP Venters, TM (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. EM tonia.m.venters@nasa.gov RI Venters, Tonia/D-2936-2012; Pavlidou, Vasiliki/C-2944-2011 OI Pavlidou, Vasiliki/0000-0002-0870-1368 FU NASA [PF8-90060, NNX09AT74G]; Chandra X-ray Center; Smithsonian Astrophysical Observatory [NAS8-03060] FX We gratefully acknowledge enlightening discussions with Floyd Stecker. T.M.V. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. V.P. acknowledges support for this work provided by NASA through Einstein Postdoctoral Fellowship grant number PF8-90060 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. This work was partially supported by NASA through the Fermi GI Program grant number NNX09AT74G. NR 52 TC 15 Z9 15 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 80 DI 10.1088/0004-637X/737/2/80 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600034 ER PT J AU Volk, K Hrivnak, BJ Matsuura, M Bernard-Salas, J Szczerba, R Sloan, GC Kraemer, KE van Loon, JT Kemper, F Woods, PM Zijlstra, AA Sahai, R Meixner, M Gordon, KD Gruendl, RA Tielens, AGGM Indebetouw, R Marengo, M AF Volk, Kevin Hrivnak, Bruce J. Matsuura, Mikako Bernard-Salas, Jeronimo Szczerba, Ryszard Sloan, G. C. Kraemer, Kathleen E. van Loon, Jacco Th. Kemper, F. Woods, Paul M. Zijlstra, Albert A. Sahai, Raghvendra Meixner, Margaret Gordon, Karl D. Gruendl, Robert A. Tielens, Alexander G. G. M. Indebetouw, Remy Marengo, Massimo TI DISCOVERY AND ANALYSIS OF 21 mu m FEATURE SOURCES IN THE MAGELLANIC CLOUDS (vol 735, pg 127, 2011) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Volk, Kevin; Meixner, Margaret; Gordon, Karl D.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Hrivnak, Bruce J.] Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA. [Matsuura, Mikako] UCL, UCL Inst Origins, Dept Phys & Astron, London WC1E 6BT, England. [Bernard-Salas, Jeronimo] Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Szczerba, Ryszard] Nicholas Copernicus Astron Ctr, PL-87100 Torun, Poland. [Sloan, G. C.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Kraemer, Kathleen E.] USAF, Res Lab, AFRL RVBYB, Hanscom AFB, MA 01731 USA. [van Loon, Jacco Th.] Univ Keele, Lennard Jones Labs, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Kemper, F.; Woods, Paul M.; Zijlstra, Albert A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Sahai, Raghvendra] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gruendl, Robert A.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Tielens, Alexander G. G. M.] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Indebetouw, Remy] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Marengo, Massimo] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Matsuura, Mikako] Univ Coll London, Mullard Space Sci Lab, UCL Inst Origins, Dorking RH5 6NT, Surrey, England. [Kemper, F.] Acad Sinica, Inst Astron & Astrophys, Taipei 10647, Taiwan. [Woods, Paul M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Indebetouw, Remy] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Marengo, Massimo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Volk, K (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM volk@stsci.edu NR 1 TC 0 Z9 0 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 107 DI 10.1088/0004-637X/737/2/107 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600061 ER PT J AU Crow, WT van den Berg, MJ Huffman, GJ Pellarin, T AF Crow, W. T. van den Berg, M. J. Huffman, G. J. Pellarin, T. TI Correcting rainfall using satellite-based surface soil moisture retrievals: The Soil Moisture Analysis Rainfall Tool (SMART) SO WATER RESOURCES RESEARCH LA English DT Article ID ENSEMBLE KALMAN FILTER; REMOTE-SENSING DATA; DATA ASSIMILATION; SAMPLING ERROR; AMSR-E; MODEL; PRECIPITATION; UNCERTAINTY; SENSITIVITY; PRODUCTS AB Recently, Crow et al. (2009) developed an algorithm for enhancing satellite-based land rainfall products via the assimilation of remotely sensed surface soil moisture retrievals into a water balance model. As a follow-up, this paper describes the benefits of modifying their approach to incorporate more complex data assimilation and land surface modeling methodologies. Specific modifications improving rainfall estimates are assembled into the Soil Moisture Analysis Rainfall Tool (SMART), and the resulting algorithm is applied outside the contiguous United States for the first time, with an emphasis on West African sites instrumented as part of the African Monsoon Multidisciplinary Analysis experiment. Results demonstrate that the SMART algorithm is superior to the Crow et al. baseline approach and is capable of broadly improving coarse-scale rainfall accumulations measurements with low risk of degradation. Comparisons with existing multisensor, satellite-based precipitation data products suggest that the introduction of soil moisture information from the Advanced Microwave Scanning Radiometer via SMART provides as much coarse-scale (3 day, 1 degrees) rainfall accumulation information as thermal infrared satellite observations and more information than monthly rain gauge observations in poorly instrumented regions. C1 [Crow, W. T.] ARS, Hydrol & Remote Sensing Lab, USDA, Beltsville, MD 20705 USA. [van den Berg, M. J.] Univ Ghent, Lab Hydrol & Water Management, B-9000 Ghent, Belgium. [Huffman, G. J.] SSAI, Greenbelt, MD USA. [Huffman, G. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pellarin, T.] Lab Etud Transferts Hydrol & Environm, F-38041 Grenoble 9, France. RP Crow, WT (reprint author), ARS, Hydrol & Remote Sensing Lab, USDA, 10300 Baltimore Ave,Rm 104,Bldg 007,BARC W, Beltsville, MD 20705 USA. EM wade.crow@ars.usda.gov RI Huffman, George/F-4494-2014 OI Huffman, George/0000-0003-3858-8308 FU NASA FX Support for this study was provided by the NASA Precipitation Measurement Missions Program through a grant to W. T. Crow. On the basis of a French initiative, AMMA was built by an international scientific group and is currently funded by a large number of agencies, especially from France, the United Kingdom, the United States, and Africa. NR 44 TC 32 Z9 32 U1 2 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD AUG 20 PY 2011 VL 47 AR W08521 DI 10.1029/2011WR010576 PG 15 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 810LX UT WOS:000294127900007 ER PT J AU Kug, JS Ham, YG AF Kug, Jong-Seong Ham, Yoo-Geun TI Are there two types of La Nina? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TONGUE EL-NINO; SOUTHERN-OSCILLATION; PACIFIC RIM; WARM POOL; CLIMATE; EVENTS; MODOKI; TEMPERATURE; ANOMALIES; IMPACTS AB In this study, the existence of two types of La Nina events is examined using observations and model output. We find that cold events in the central and eastern Pacific SST, are highly correlated unlike the corresponding warm events. When two types of La Nina are defined based on the same criteria for the types of warm events, the SST and precipitation patterns between the two types of La Nina are much less distinctive or less independent. In other words, there is a strong asymmetric character between warm and cold events. This asymmetric character is also examined in 20 climate models that participate in the CMIP3. Most climate models have difficulty in simulating independently the two types of El Nino and La Nina events; however, they simulate the two types of El Nino more independently than they simulate the two types of La Nina, supporting our observational arguments to some degree. Citation: Kug, J.-S., and Y.-G. Ham (2011), Are there two types of La Nina?, Geophys. Res. Lett., 38, L16704, doi: 10.1029/2011GL048237. C1 [Kug, Jong-Seong] Korea Ocean Res & Dev Inst, Ansan 425600, South Korea. [Ham, Yoo-Geun] NASA GSFC, Global Modeling & Assimilat Off, Greenbelt, MD USA. [Ham, Yoo-Geun] Univ Space Res Assoc, Columbia, MD USA. RP Kug, JS (reprint author), Korea Ocean Res & Dev Inst, Ansan 425600, South Korea. EM yoo-geun.ham@nasa.gov RI KUG, JONG-SEONG/A-8053-2013 FU Korea Metrological Administration Research and Development Program [RACS 2010-2007]; KORDI [PE98563, PE98651] FX This work is supported by Korea Metrological Administration Research and Development Program under Grant RACS 2010-2007. The first author is also supported by KORDI (PE98563, PE98651). NR 21 TC 35 Z9 43 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 19 PY 2011 VL 38 AR L16704 DI 10.1029/2011GL048237 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 810MU UT WOS:000294130200002 ER PT J AU Adames, AF Reynolds, M Smirnov, A Covert, DS Ackerman, TP AF Adames, A. F. Reynolds, M. Smirnov, A. Covert, D. S. Ackerman, T. P. TI Comparison of Moderate Resolution Imaging Spectroradiometer ocean aerosol retrievals with ship-based Sun photometer measurements from the Around the Americas expedition SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OPTICAL DEPTH; TROPOSPHERIC AEROSOLS; SPATIAL VARIABILITY; ANGSTROM EXPONENT; WIND-SPEED; MODIS; VALIDATION; INSTRUMENT; THICKNESS; AERONET AB The Around the Americas expedition was a 25,000 mile sailing circumnavigation of the North and South American continents, in coastal waters, that took place from June 2009 to June 2010. The broad geographical span of the voyage made it possible to measure marine aerosol optical depths in regions where surface measurements are not frequently taken. These were measured with a handheld Microtops II Sun photometer. In this study we compare these measurements with the ocean aerosol product from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua and Terra platforms. Results for aerosol optical depth (AOD) show a strong relationship between both measurements, with most values from MODIS falling within published expectations. However, MODIS values are biased high relative to surface observations for small optical depth values. There appears to be a relationship between these discrepancies in measurements and surface wind speed, with a group of values showing overestimation at wind speeds near and over 6 m/s and a second, smaller group showing underestimation for calmer conditions. For derived Angstrom exponents, it is found that higher differences occur at low AOD. No relationship between these differences and wind speed is found. C1 [Adames, A. F.; Covert, D. S.; Ackerman, T. P.] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98195 USA. [Adames, A. F.; Covert, D. S.; Ackerman, T. P.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Reynolds, M.] Remote Res & Measurement Co LLC, Seattle, WA 98122 USA. [Smirnov, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Smirnov, A.] Sigma Space Corp, Lanham, MD USA. RP Adames, AF (reprint author), Univ Washington, Joint Inst Study Atmosphere & Ocean, 408 ATG Bldg, Seattle, WA 98195 USA. RI Smirnov, Alexander/C-2121-2009; OI Smirnov, Alexander/0000-0002-8208-1304; Adames, Angel/0000-0003-3822-5347 FU Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA [NA17RJ1232] FX This research is funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA cooperative agreement NA17RJ1232. The crew of Ocean Watch supported this work with enthusiasm. In particular, David Logan and David Thoreson took measurements when at-sea scientists were not available. NR 49 TC 5 Z9 5 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 19 PY 2011 VL 116 AR D16303 DI 10.1029/2010JD015440 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 810MN UT WOS:000294129500001 ER PT J AU Turyshev, SG Toth, VT Ellis, J Markwardt, CB AF Turyshev, Slava G. Toth, Viktor T. Ellis, Jordan Markwardt, Craig B. TI Support for Temporally Varying Behavior of the Pioneer Anomaly from the Extended Pioneer 10 and 11 Doppler Data Sets SO PHYSICAL REVIEW LETTERS LA English DT Article AB The Pioneer anomaly is a small sunward anomalous acceleration found in the trajectory analysis of the Pioneer 10 and 11 spacecraft. As part of the investigation of the effect, the analysis of recently recovered Doppler data for both spacecraft has been completed. The presence of a small anomalous acceleration is confirmed by using data spans more than twice as long as those that were previously analyzed. We examine the constancy and direction of the Pioneer anomaly and conclude that (i) the data favor a temporally decaying anomalous acceleration (similar to 2 X 10(-11) m/s(2)/yr) with an over 10% improvement in the residuals compared to a constant acceleration model, (ii) although the direction of the acceleration remains imprecisely determined, we find no support in favor of a Sun- pointing direction over the Earthpointing or along the spin- axis directions, and (iii) support for an early "onset" of the acceleration remains weak in the pre- Saturn Pioneer 11 tracking data. We present these new findings and discuss their implications for the nature of the Pioneer anomaly. C1 [Turyshev, Slava G.; Ellis, Jordan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Markwardt, Craig B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Turyshev, SG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Ellis, John/J-2222-2012; Toth, Viktor/D-3502-2009 OI Ellis, John/0000-0002-7399-0813; Toth, Viktor/0000-0003-3651-9843 FU Planetary Society; ISSI; National Aeronautics and Space Administration FX We thank G. L. Goltz, K. J. Lee, and N. A. Mottinger of JPL for their indispensable help with the Pioneer Doppler data recovery. We thank S. W. Asmar, W. M. Folkner, T. P. McElrath, M. M. Watkins, and J. G. Williams of JPL for their interest, support, and encouragement during the work and preparation of this manuscript. We also thank The Planetary Society for their continuing interest in the Pioneer anomaly and their support. Some aspects of this work were developed at the International Space Science Institute (ISSI), Bern, Switzerland, for which ISSI's hospitality and support are kindly acknowledged. This work in part was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 9 TC 26 Z9 26 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 19 PY 2011 VL 107 IS 8 AR 081103 DI 10.1103/PhysRevLett.107.081103 PG 5 WC Physics, Multidisciplinary SC Physics GA 809OV UT WOS:000294067500003 PM 21929157 ER PT J AU Argus, DF Blewitt, G Peltier, WR Kreemer, C AF Argus, Donald F. Blewitt, Geoffrey Peltier, W. Richard Kreemer, Corne TI Rise of the Ellsworth mountains and parts of the East Antarctic coast observed with GPS SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GLACIAL ISOSTATIC-ADJUSTMENT; SEA-LEVEL DATA; ICE-SHEET; SPACE GEODESY; EARTH; MODEL; VELOCITY; HISTORY; SURFACE; GRACE AB Using GPS observations from 1996 to 2011, we constrain postglacial rebound in Antarctica. Sites in the Ellsworth mountains, West Antarctica, are rising at approximate to 5 +/- 4 mm/yr (95% confidence limits), as in the postglacial rebound model of Peltier, but approximate to 10 mm/yr slower than in the model of Ivins and James. Therefore significant ice loss from the Ellsworth mountains ended by 4 ka, and current ice loss there is less than inferred from GRACE gravity observations in studies assuming the model of Ivins and James. Three sites along the coast of East Antarctica are rising at 3 to 4 +/- 2 mm/yr, in viscous response to Holocene unloading of ice along the Queen Maud Land coast and elsewhere. Kerguelen island and seven sites along the coast of East Antarctic are part of a rigid Antarctica plate. O'Higgins, northern Antarctic peninsula, is moving southeast at 2.3 +/- 0.6 mm/yr relative to the Antarctic plate. Citation: Argus, D. F., G. Blewitt, W. R. Peltier, and C. Kreemer (2011), Rise of the Ellsworth mountains and parts of the East Antarctic coast observed with GPS, Geophys. Res. Lett., 38, L16303, doi:10.1029/2011GL048025. C1 [Argus, Donald F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Blewitt, Geoffrey; Kreemer, Corne] Univ Nevada, Nevada Bur Mines & Geol, Reno, NV 89557 USA. [Blewitt, Geoffrey; Kreemer, Corne] Univ Nevada, Seismol Lab, Reno, NV 89557 USA. [Peltier, W. Richard] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. RP Argus, DF (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 238-600, Pasadena, CA 91109 USA. EM donald.f.argus@jpl.nasa.gov RI Argus, Donald/F-7704-2011; Peltier, William/A-1102-2008 FU NASA under National Science Foundation [EAR-0735156]; (NASA) National Aeronautics and Space Administration; NASA [NNX09AM74G]; University of Toronto under NSERC [A9627] FX We are grateful to the enthusiastic scientists who deployed GPS sites in the harsh Antarctica terrain. We thank Michael Bevis for providing us with the WAGN data and informing us how to connect the WAGN to the ANET benchmarks. We are grateful to T. J. Wilson and the ANET principal investigators. We thank Karen Simon, Thomas James, and Erik Ivins for sharing the predictions of their postglacial rebound model. We thank Michael Bevis and an anonymous reviewer for their constructive criticism. UNAVCO operates the Global GNSS Network at the direction of JPL for NASA with support from NASA under National Science Foundation Cooperative Agreement EAR-0735156. D. F. Argus completed research at Jet Propulsion Laboratory, California Institute of Technology, under contract with the (NASA) National Aeronautics and Space Administration; G. Blewitt performed research under NASA grant NNX09AM74G; W. R. Peltier performed research at the University of Toronto under NSERC Discovery grant A9627. NR 30 TC 18 Z9 19 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 17 PY 2011 VL 38 AR L16303 DI 10.1029/2011GL048025 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 810MP UT WOS:000294129700002 ER PT J AU Rice, R Bales, RC Painter, TH Dozier, J AF Rice, Robert Bales, Roger C. Painter, Thomas H. Dozier, Jeff TI Snow water equivalent along elevation gradients in the Merced and Tuolumne River basins of the Sierra Nevada SO WATER RESOURCES RESEARCH LA English DT Article ID SPATIAL-DISTRIBUTION; MOUNTAIN BASINS; COVERED AREA; ALBEDO; MODEL; MODIS; INTERPOLATION; VARIABILITY; PERSISTENCE; CALIFORNIA AB We used daily remotely sensed fractional snow-covered area (SCA) at 500 m resolution to estimate snow water equivalent (SWE) across the Upper Merced and Tuolumne River basins of the Sierra Nevada of California for 2004 (dry and warm) and 2005 (wet and cool). From 1800 to 3900 m, each successively higher 300 m elevation band consistently melts out 2-3 weeks later than the one below it. We compared two methods of estimating SWE from SCA: (1) blending the fractional SCA with SWE interpolated from snow-pillow measurements; and (2) retrospectively estimating cumulative snowmelt based on a degree-day calculation after the snow disappeared. The interpolation approach estimates a lower snowmelt volume above 3000 m and a higher snowmelt contribution at elevations between 1500 and 2100 m. Snowmelt timing from the depletion approach matches observed streamflow timing much better than snowmelt estimated by the interpolation method. The snow-pillow sites used in the interpolation method do not cover the highest elevations and melted out several weeks before the basin itself was free of snow. Middle elevations (2100-3000 m) contributed 40%-60% of the annual snowmelt in both basins, the lower elevations (1500-2100 m) 10%-15%, and elevations above 3000 m the remaining 30%-40%. The presence of snow in the highest elevations highlights their critical buffering effect in accumulating snow every year. Variability in lower-elevation snow illustrates its susceptibility to climate variability and change. C1 [Rice, Robert; Bales, Roger C.] Univ Calif, Sierra Nevada Res Inst, Merced, CA 95343 USA. [Painter, Thomas H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dozier, Jeff] Univ Calif Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA. RP Rice, R (reprint author), Univ Calif, Sierra Nevada Res Inst, 5200 N Lake Rd, Merced, CA 95343 USA. EM rrice@ucmerced.edu RI Dozier, Jeff/B-7364-2009; Painter, Thomas/B-7806-2016 OI Dozier, Jeff/0000-0001-8542-431X; FU NASA [NNG04GC52A]; Naval Postgraduate School [N00244-07-1-0013]; [EAR 0610112] FX Support for this research was provided by NASA Cooperative Agreement NNG04GC52A, grant EAR 0610112, and Naval Postgraduate School Award N00244-07-1-0013. We also acknowledge the contributions of X. Meng and P. Slaughter. Comments from the four anonymous reviewers greatly improved this manuscript. NR 39 TC 28 Z9 28 U1 4 U2 30 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD AUG 17 PY 2011 VL 47 AR W08515 DI 10.1029/2010WR009278 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 810LS UT WOS:000294127400001 ER PT J AU Martinez-Garcia, J Braginsky, L Shklover, V Lawson, JW AF Martinez-Garcia, Jorge Braginsky, Leonid Shklover, Valery Lawson, John W. TI Correlation function analysis of fiber networks: Implications for thermal conductivity SO PHYSICAL REVIEW B LA English DT Article ID C/C COMPOSITE PREFORM; TRANSPORT-PROPERTIES AB Transport properties of highly porous fiber structures are investigated. The fibers are assumed to be thin, but long, so that the number of interfiber connections along each fiber is large. We show that the effective conductivity of such structures can be found from the correlation length of the two-point correlation function of the local conductivities. The correlation function in the most interesting cases can be estimated from two-dimensional (2D) images of the structures. This means that the three-dimensional conductivity problem can be considered using 2D digital images of the structure. We apply this approach to analyze the parameters that determine the thermal conductivity of fiber structures. C1 [Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery] ETH, Dept Mat, Crystallog Lab, CH-8093 Zurich, Switzerland. [Braginsky, Leonid] Inst Semicond Phys, RU-630090 Novosibirsk, Russia. [Lawson, John W.] NASA, Thermal Protect Mat Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Martinez-Garcia, J (reprint author), ETH, Dept Mat, Crystallog Lab, CH-8093 Zurich, Switzerland. RI Braginsky, Leonid/B-5278-2008 OI Braginsky, Leonid/0000-0002-2508-8876 FU Swiss National Science Foundation [200021 - 130274/1] FX This work was supported by the Swiss National Science Foundation (Grant 200021 - 130274/1). NR 23 TC 2 Z9 2 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 17 PY 2011 VL 84 IS 5 AR 054208 DI 10.1103/PhysRevB.84.054208 PG 8 WC Physics, Condensed Matter SC Physics GA 808JE UT WOS:000293973200002 ER PT J AU Chanover, NJ Miller, C Hamilton, RT Suggs, RM McMillan, R AF Chanover, N. J. Miller, C. Hamilton, R. T. Suggs, R. M. McMillan, R. TI Results from the NMSU-NASA Marshall Space Flight Center LCROSS observational campaign SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID LUNAR POLES; WATER ICE; IMPACT; PLUME; MOON AB We observed the Lunar Crater Observation and Sensing Satellite (LCROSS) lunar impact on 9 October 2009 using three telescope and instrument combinations in southern New Mexico: the Agile camera with a V filter on the Astrophysical Research Consortium 3.5 m telescope at Apache Point Observatory (APO), a StellaCam video camera with an R filter on the New Mexico State University (NMSU) 1 m telescope at APO, and a Goodrich near-IR (J and H band) video camera on the NMSU 0.6 m telescope at Tortugas Mountain Observatory. The three data sets were analyzed to search for evidence of the debris plume that rose above the Cabeus crater shortly after the LCROSS impact. Although we saw no evidence of the plume in any of our data sets, we constrained its surface brightness through analysis of our photometrically calibrated data. The minimum surface brightness that we could have detected in our Agile data was 9.69 magnitudes arc sec(-2), which is 177 times fainter than the brightest part of the foreground ridge of Cabeus. In our near-IR data, our minimum detectable surface brightness was 8.58 magnitudes arc sec(-2), which is 370 times fainter than the brightest part of the foreground ridge in the J and H bands. The debris plume was detected by the LCROSS shepherding spacecraft and the Diviner radiometer on the Lunar Reconnaissance Orbiter. Given the plume radiance observed by LCROSS, we cannot distinguish between a conical or cylindrical plume geometry because when seen from Earth, both are below our detection thresholds. C1 [Chanover, N. J.] New Mexico State Univ, Dept Astron, Dept 4500, Las Cruces, NM 88003 USA. [Suggs, R. M.] NASA, George C Marshall Space Flight Ctr, NASA MSFC, Huntsville, AL 35812 USA. [McMillan, R.] Apache Point Observ, Sunspot, NM 88349 USA. RP Chanover, NJ (reprint author), New Mexico State Univ, Dept Astron, Dept 4500, Box 30001, Las Cruces, NM 88003 USA. EM nchanove@nmsu.edu FU Universities Space Research Association [03450-32]; NASA Meteoroid Environment Office FX We thank the additional members of our observing team, without whom we could not have made three successful sets of observations from three different telescopes: E. Ramesh, C. Wu, R. J. Suggs, E. Klimek, and J. Coughlin. We also thank the staff at the Apache Point Observatory for their tireless efforts in supporting the instrument modifications and the numerous observing runs required for this project. We thank P. Strycker for producing the Vega spectrum we used in our analysis of the plume brightness. We are grateful to A. Colaprete, J. Heldmann, and D. Wooden, whose commitment to involving ground-based astronomers in the LCROSS mission provided the impetus for these observations. Finally, we thank the two referees who reviewed this manuscript and provided valuable suggestions for improvement. This work was supported by contract 03450-32 from the Universities Space Research Association. The NASA MSFC team acknowledges partial support from the NASA Meteoroid Environment Office. NR 16 TC 2 Z9 2 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD AUG 16 PY 2011 VL 116 AR E08003 DI 10.1029/2010JE003761 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 810OB UT WOS:000294133500001 ER PT J AU Zelenyi, L Korablev, O Martynov, M Popov, GA Blanc, M Lebreton, JP Pappalardo, R Clark, K Fedorova, A Akim, EL Simonov, AA Lomakin, IV Sukhanov, A Eismont, N AF Zelenyi, L. Korablev, O. Martynov, M. Popov, G. A. Blanc, M. Lebreton, J. P. Pappalardo, R. Clark, K. Fedorova, A. Akim, E. L. Simonov, A. A. Lomakin, I. V. Sukhanov, A. Eismont, N. CA Europa Lander Team TI Europa Lander mission and the context of international cooperation SO ADVANCES IN SPACE RESEARCH LA English DT Review DE Europa; Lander; Mission concept; Spacecraft design ID ICE SHELL; GALILEAN SATELLITES; POLAR WANDER; SUBSURFACE OCEAN; SURFACE; JUPITER; LIFE; CONSTRAINTS; CALLISTO; SALTS AB From 2007 the Russian Academy of Sciences and Roscosmos consider to develop a Europa surface element, in coordination with the Europa Jupiter System Mission (EJSM) international project planned to study the Jupiter system. The main scientific objectives of the Europa Lander are to search for the signatures of possible present and extinct life, in situ studies of the Europa internal structure, the surface and the environment. The mission includes the lander, and the relay orbiter, to be launched by Proton and carried to Jupiter with electric propulsion. The mass of scientific instruments on the lander is similar to 50 kg, and its planned lifetime is 60 days. A dedicated international Europa Lander Workshop (ELW) was held in Moscow in February 2009. Following the ELW materials and few recent developments, the paper describes the planned mission, including the science goals, technical design of the mission elements, the ballistic scheme, and the synergy between the Europa Lander and the EJSM. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Zelenyi, L.; Korablev, O.; Fedorova, A.; Sukhanov, A.; Eismont, N.] Space Res Inst IKI, Moscow 117997, Russia. [Martynov, M.; Simonov, A. A.; Lomakin, I. V.] Lavochkin Assoc, Chimki 141400, Moscow Region, Russia. [Popov, G. A.] NII PME, Moscow 125080, Russia. [Blanc, M.] Ecole Polytech, F-91128 Palaiseau, France. [Lebreton, J. P.] European Space Res Technol Ctr ESTEC, ESA, NL-2200 AG Noordwijk, Netherlands. [Pappalardo, R.; Clark, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Akim, E. L.] MV Keldysh Appl Math Inst, Moscow 125047, Russia. RP Fedorova, A (reprint author), Space Res Inst IKI, Profsoyuznaya 84-32, Moscow 117997, Russia. EM lzelenyi@iki.rssi.ru; fedorova@iki.rssi.ru RI Fedorova, Anna/L-5116-2013; Korablev, Oleg/L-5083-2013; OI Korablev, Oleg/0000-0003-1115-0656 NR 59 TC 5 Z9 5 U1 1 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD AUG 16 PY 2011 VL 48 IS 4 BP 615 EP 628 DI 10.1016/j.asr.2010.11.027 PG 14 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 802ZX UT WOS:000293550600002 ER PT J AU Clark, K Boldt, J Greeley, R Hand, K Jun, I Lock, R Pappalardo, R Van Houten, T Yan, T AF Clark, K. Boldt, J. Greeley, R. Hand, K. Jun, I. Lock, R. Pappalardo, R. Van Houten, T. Yan, T. TI Return to Europa: Overview of the Jupiter Europa orbiter mission SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Europa; Jovian system; Jupiter; Io; Ganymede; Callisto; Habitability; Ice; Subsurface ocean; Orbiter; Galilean satellites; Radiation; Planetary protection ID THERMAL ANOMALIES; ENCELADUS; EVOLUTION; ORIGIN AB Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, the Galileo spacecraft supplied fascinating new insights into this satellite of Jupiter. Now, an international team is proposing a return to the Jupiter system and Europa with the Europa Jupiter System Mission (EJSM). Currently, NASA and ESA are designing two orbiters that would explore the Jovian system and then each would settle into orbit around one of Jupiter's icy satellites, Europa and Ganymede. In addition, the Japanese Aerospace eXploration Agency (JAXA) is considering a Jupiter magnetospheric orbiter and the Russian Space Agency is investigating a Europa lander. The Jupiter Europa Orbiter (JEO) would be the NASA-led portion of the EJSM; JEO would address a very important subset of the complete EJSM science objectives and is designed to function alone or in conjunction with ESA's Jupiter Ganymede Orbiter (JGO). The JEO mission concept uses a single orbiter flight system that would travel to Jupiter by means of a multiple-gravity-assist trajectory and then perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. The JEO mission would investigate various options for future surface landings. The JEO mission science objectives, as defined by the international EJSM Science Definition Team, include: A. Europa's ocean: Characterize the extent of the ocean and its relation to the deeper interior. B. Europa's ice shell: Characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface ice ocean exchange. C. Europa's chemistry: Determine global surface compositions and chemistry, especially as related to habitability. D. Europa's geology: Understand the formation of surface features, including sites of recent or current activity, and identify and characterize candidate sites for future in situ exploration. E. Jupiter system: Understand Europa in the context of the Jupiter system. The JEO orbital mission would provide critical measurements to support the scientific and technical selection of future landed options. The primary challenge of a Europa mission is to perform in Jupiter's radiation environment, radiation damage being the life-limiting parameter for the flight system. Instilling a system-level radiation-hardened-by-design approach very early in the mission concept would mitigate the pervasive mission and system-level impacts (including trajectory, configuration, fault protection, operational scenarios, and circuit design) that can otherwise result in runaway growth of cost and mass. This paper addresses the JEO mission concept developed by a joint team from JPL and the Applied Physics Laboratory to address the science objectives defined by an international science definition team formed in 2008, while designing for the Jupiter environment. Published by Elsevier Ltd. on behalf of COSPAR. C1 [Clark, K.; Hand, K.; Jun, I.; Lock, R.; Pappalardo, R.; Van Houten, T.; Yan, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boldt, J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Greeley, R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP Clark, K (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Blvd, Pasadena, CA 91109 USA. EM Karla.B.Clark@jpl.nasa.gov; John.Boldt@jhuapl.edu; greeley@asu.edu; Kevin.P.Hand@jpl.na-sa.gov; Insoo.Jun@jpl.nasa.gov; Robert.E.Lock@jpl.nasa.gov; Robert.Pappalardo@jpl.nasa.gov; Tracy.J.VanHouten@jpl.nasa.gov; Tsun-Yee.Yan@jpl.nasa.gov FU National Aeronautics and Space Administration; Johns Hopkins University Applied Physics Laboratory FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and in partnership with the Johns Hopkins University Applied Physics Laboratory. The authors would like to acknowledge the hard work completed by all of the members of the JJSDT, the NASA JEO study team, and the ESA JGO study team. NR 27 TC 12 Z9 12 U1 2 U2 48 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD AUG 16 PY 2011 VL 48 IS 4 BP 629 EP 650 DI 10.1016/j.asr.2010.04.011 PG 22 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 802ZX UT WOS:000293550600003 ER PT J AU Ivanov, MA Prockter, LM Dalton, B AF Ivanov, M. A. Prockter, L. M. Dalton, B. TI Landforms of Europa and selection of landing sites SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Europa; Terrain types; Landing sites ID ICY GALILEAN SATELLITES; GEOLOGICAL EVIDENCE; CRATERING RATES; IMPACT FEATURES; SOLAR-SYSTEM; SHELL; CONVECTION; MISSION; ORIGIN; BANDS AB Three major features make Europa a unique scientific target for a lander-oriented interplanetary mission: (1) the knowledge of the composition of the surface of Europa is limited to interpretations of the spectral data, (2) a lander could provide unique new information about outer parts of the solar system, and (3) Europa may have a subsurface ocean that potentially may harbor life, the traces of which may occur on the surface and could be sampled directly by a lander. These characteristics of Europa bring the requirement of safe landing to the highest priority level because any successful landing on the surface of this moon will yield scientific results of fundamental importance. The safety requirements include four major components. (1) A landing site should preferentially be on the anti-Jovian hemisphere of Europa in order to facilitate the orbital maneuvers of the spacecraft. (2) A landing site should be on the leading hemisphere of Europa in order to extend the lifetime of a lander and sample pristine material of the planet. (3) Images with the highest possible resolution must be available for the selection of landing sites. (4) The terrain for landing must have morphology (relief) that minimizes the risk of landing and represents a target that is important from a scientific point of view. These components severely restrict the selection of regions for landing on the surface of Europa. After the photogeologic analysis of all Galileo images with a resolution of better than about 70 m/pixel taken for the leading hemisphere of Europa, we propose one primary and two secondary (backup) landing sites. The primary site (51.8 degrees S, 177.2 degrees W) is within a pull-apart zone affected by a small chaos. The first backup site (68.1 degrees S, 196.7 degrees W) is also inside of a pull-apart zone and is covered by images of the lower resolution (51.4 m/pixel). The second backup site (2.4 degrees N, 181.1 degrees W) is imaged by relatively low-resolution images (similar to 70 m/pixel) and corresponds to a cluster of small patches of dark and probably smooth plains that may represent landing targets of the highest scientific priority from the scientific point of view. The lack of the high-resolution images for this region prevents, however, its selection as the primary landing target. (C) 2011 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Ivanov, M. A.] RAS, VI Vernadsky Inst Geochem & Analyt Chem, Lab Comparat Planetol, Moscow, Russia. [Prockter, L. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Dalton, B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ivanov, MA (reprint author), RAS, VI Vernadsky Inst Geochem & Analyt Chem, Lab Comparat Planetol, Moscow, Russia. EM mikhail_ivanov@brown.edu NR 49 TC 6 Z9 6 U1 0 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD AUG 16 PY 2011 VL 48 IS 4 BP 661 EP 677 DI 10.1016/j.asr.2011.05.016 PG 17 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 802ZX UT WOS:000293550600005 ER PT J AU Lorenz, RD Gleeson, D Prieto-Ballesteros, O Gomez, F Hand, K Bulat, S AF Lorenz, Ralph D. Gleeson, Damhnait Prieto-Ballesteros, Olga Gomez, Felipe Hand, Kevin Bulat, Sergey TI Analog environments for a Europa lander mission SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Europa; Ice; Astrobiology; Analog field studies; Antarctica ID INFRARED MAPPING SPECTROMETER; SURFACE; SALTS; ICE; LAKE; MICROORGANISMS; ANTARCTICA; ENERGY; MODELS; ORIGIN AB This paper reviews the utility of analog environments in preparations for a Europa lander mission. Such analogs are useful in the demonstration and rehearsal of engineering functions such as sample acquisition from an icy surface, as well as in the exercise of the scientific protocols needed to identify organic, inorganic and possible biological impurities in ice. Particular attention is drawn to Antarctic and Arctic analog sites where progress in these latter areas has been significant in recent years. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Lorenz, Ralph D.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Gleeson, Damhnait] Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA. [Prieto-Ballesteros, Olga; Gomez, Felipe] Ctr Astrobiol INTA CSIC, Madrid 28850, Spain. [Hand, Kevin] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bulat, Sergey] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia. RP Lorenz, RD (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM Ralph.lorenz@jhuapl.edu RI Gomez, Felipe/L-7315-2014; Lorenz, Ralph/B-8759-2016 OI Gomez, Felipe/0000-0001-9977-7060; Lorenz, Ralph/0000-0001-8528-4644 NR 37 TC 7 Z9 7 U1 1 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD AUG 16 PY 2011 VL 48 IS 4 BP 689 EP 696 DI 10.1016/j.asr.2010.05.006 PG 8 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 802ZX UT WOS:000293550600007 ER PT J AU Korablev, O Gerasimov, M Dalton, JB Hand, K Lebreton, JP Webster, C AF Korablev, Oleg Gerasimov, Mikhail Dalton, J. Brad Hand, Kevin Lebreton, Jean-Pierre Webster, Chris TI Methods and measurements to assess physical and geochemical conditions at the surface of Europa SO ADVANCES IN SPACE RESEARCH LA English DT Review DE Europa; Icy satellite; Lander; Instrumentation ID INFRARED MAPPING SPECTROMETER; ICY GALILEAN SATELLITES; SUBSURFACE OCEAN; SOLAR-SYSTEM; INTERNAL STRUCTURE; MOON EUROPA; WATER FROST; MU-M; CALLISTO; MAGNETOMETER AB An international effort dedicated to the science exploration of Jupiter system planned by ESA and NASA in the beginning of the next decade includes in-depth science investigation of Europa. In parallel to EJSM (Europa-Jupiter System Mission) Russia plans a Laplace-Europa Lander mission, which will include another orbiter and the surface element: Europa Lander. In-situ methods on the lander provide the only direct way to assess environmental conditions, and to perform the search for signatures of life. A critical advantage of such in situ analysis is the possibility to enhance concentration and detection limits and to provide ground truth for orbital measurements. The science mission of the lander is biological, geophysical, chemical, and environmental characterizations of the Europa surface. This review is dedicated to methods and strategies of geophysical and environmental measurements to be performed at the surface of Europa, and their significance for the biological assessment, basing on the concept of a relatively large softly landed module, allowing to probe a shallow subsurface. Many of the discussed methods were presented on the workshop "Europa Lander: Science Goals and Experiments" held in Moscow in February 2009. Methods and instruments are grouped into geophysical package, means of access to the subsurface, methods of chemical and structural characterization, and methods to assess physical conditions on the surface. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Korablev, Oleg; Gerasimov, Mikhail] Space Res Inst IKI, Moscow 117997, Russia. [Dalton, J. Brad; Hand, Kevin; Webster, Chris] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lebreton, Jean-Pierre] Estec, ESA Sci Directorate, NL-2200 AG Noordwijk, Netherlands. RP Korablev, O (reprint author), Space Res Inst IKI, Profsoyuznaya 84-32, Moscow 117997, Russia. EM korab@iki.rssi.ru RI Korablev, Oleg/L-5083-2013; OI Korablev, Oleg/0000-0003-1115-0656 FU Roscomos [2334/0901-1332/312-2010] FX The authors are grateful to all participants of Europa Lander Workshop (ELW) held in Moscow in February 2009, in particular to Sergey Pavlov and Sergey Bulat whose proposals and discussions have helped us in preparation of the present paper. The authors acknowledge Ralf Lorenz, and two anonymous reviewers for useful comments, which helped to improve the manuscript. The work of the Russian team was supported by Roscomos in the frame of R&D activity Laplace-Europa P (TSNIIMASH contracts 2334/0901-1332/312-2010). NR 92 TC 3 Z9 3 U1 1 U2 31 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD AUG 16 PY 2011 VL 48 IS 4 BP 702 EP 717 DI 10.1016/j.asr.2010.12.010 PG 16 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 802ZX UT WOS:000293550600009 ER PT J AU Gowen, RA Smith, A Fortes, AD Barber, S Brown, P Church, P Collinson, G Coates, AJ Collins, G Crawford, IA Dehant, V Chela-Flores, J Griffiths, AD Grindrod, PM Gurvits, LI Hagermann, A Hussmann, H Jaumann, R Jones, AP Joy, KH Karatekin, O Miljkovic, K Palomba, E Pike, WT Prieto-Ballesteros, O Raulin, F Sephton, MA Sheridan, S Sims, M Storrie-Lombardi, MC Ambrosi, R Fielding, J Fraser, G Gao, Y Jones, GH Kargl, G Karl, WJ Macagnano, A Mukherjee, A Muller, JP Phipps, A Pullan, D Richter, L Sohl, F Snape, J Sykes, J Wells, N AF Gowen, R. A. Smith, A. Fortes, A. D. Barber, S. Brown, P. Church, P. Collinson, G. Coates, A. J. Collins, G. Crawford, I. A. Dehant, V. Chela-Flores, J. Griffiths, A. D. Grindrod, P. M. Gurvits, L. I. Hagermann, A. Hussmann, H. Jaumann, R. Jones, A. P. Joy, K. H. Karatekin, O. Miljkovic, K. Palomba, E. Pike, W. T. Prieto-Ballesteros, O. Raulin, F. Sephton, M. A. Sheridan, S. Sims, M. Storrie-Lombardi, M. C. Ambrosi, R. Fielding, J. Fraser, G. Gao, Y. Jones, G. H. Kargl, G. Karl, W. J. Macagnano, A. Mukherjee, A. Muller, J. P. Phipps, A. Pullan, D. Richter, L. Sohl, F. Snape, J. Sykes, J. Wells, N. TI Penetrators for in situ subsurface investigations of Europa SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Penetrators; Europa; Astrobiology; EJSM ID ICY GALILEAN SATELLITES; JUPITERS MOON EUROPA; HEAT-FLOW; WATER-ICE; HYDROGEN-PEROXIDE; SULFURIC-ACID; SURFACE MATERIAL; MICROBIAL LIFE; LAKE VOSTOK; OCEAN AB We present the scientific case for inclusion of penetrators into the Europan surface, and the candidate instruments which could significantly enhance the scientific return of the joint ESA/NASA Europa-Jupiter System Mission (EJSM). Moreover, a surface element would provide an exciting and inspirational mission highlight which would encourage public and political support for the mission. Whilst many of the EJSM science goals can be achieved from the proposed orbital platform, only surface elements can provide key exploration capabilities including direct chemical sampling and associated astrobiological material detection, and sensitive habitability determination. A targeted landing site of upwelled material could provide access to potential biological material originating from deep beneath the ice. Penetrators can also enable more capable geophysical investigations of Europa (and Ganymede) interior body structures, mineralogy, mechanical, magnetic, electrical and thermal properties. They would provide ground truth, not just for the orbital observations of Europa, but could also improve confidence of interpretation of observations of the other Jovian moons. Additionally, penetrators on both Europa and Ganymede, would allow valuable comparison of these worlds, and gather significant information relevant to future landed missions. The advocated low mass penetrators also offer a comparatively low cost method of achieving these important science goals. A payload of two penetrators is proposed to provide redundancy, and improve scientific return, including enhanced networked seismometer performance and diversity of sampled regions. We also describe the associated candidate instruments, penetrator system architecture, and technical challenges for such penetrators, and include their current status and future development plans. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Gowen, R. A.; Smith, A.; Collinson, G.; Coates, A. J.; Griffiths, A. D.; Jones, G. H.; Muller, J. P.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Barber, S.; Hagermann, A.; Sheridan, S.] Open Univ, Planetary & Space Sci Res Inst, Milton Keynes MK7 6AA, Bucks, England. [Crawford, I. A.] Univ London, Birkbeck Coll, Dept Earth & Planetary Sci, London WC1E 7HX, England. [Gao, Y.] Univ Surrey, Surrey Space Ctr, Surrey GU2 7XH, England. [Brown, P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Sims, M.; Ambrosi, R.; Fraser, G.; Pullan, D.; Sykes, J.] Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Fortes, A. D.; Grindrod, P. M.; Jones, A. P.; Miljkovic, K.; Snape, J.] UCL, Dept Earth Sci, London WC1E 6BT, England. [Pike, W. T.; Karl, W. J.; Mukherjee, A.] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England. [Church, P.] QinetiQ Ltd, Sevenoaks TN14 7BP, Kent, England. [Wells, N.] QinetiQ Ltd, Farnborough GU14 0LX, Hants, England. [Palomba, E.] INAF, Ist Fis Spazio Interplanetario, I-00133 Rome, Italy. [Hussmann, H.; Jaumann, R.; Sohl, F.] Inst Planetary Res, DLR, D-12489 Berlin, Germany. [Macagnano, A.] CNR, Inst Microelect & Microsyst, I-00133 Rome, Italy. [Raulin, F.] Univ Paris 12, LISA, F-94010 Creteil, France. [Raulin, F.] Univ Paris 07, LISA, F-94010 Creteil, France. [Prieto-Ballesteros, O.] CSIC, INTA, Ctr Astrobiol, E-28850 Madrid, Spain. [Chela-Flores, J.] Abdus Salam Int Ctr Theoret Phys ICTP, I-34151 Trieste, Italy. [Richter, L.] Inst Space Syst, DLR, D-28199 Bremen, Germany. [Gurvits, L. I.] Joint Inst VLBI Europe JIVE, NL-7991 PD Dwingeloo, Netherlands. [Kargl, G.] Space Res Inst, IWF, A-8042 Graz, Austria. [Dehant, V.; Karatekin, O.] ROB, BE-1180 Brussels, Belgium. [Phipps, A.] SSTL, Guildford GU2 7YE, Surrey, England. [Storrie-Lombardi, M. C.] Kinohi Inst Inc, Pasadena, CA 91101 USA. [Joy, K. H.] Univ Space Res Assoc, Lunar & Planetary Inst, Ctr Lunar Sci & Explorat, Houston, TX 77058 USA. [Joy, K. H.] NASA, Lunar Sci Inst, Greenbelt, MD 20771 USA. [Fielding, J.] Astrium Ltd, Stevenage SG1 2AS, Herts, England. [Collinson, G.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Collins, G.; Sephton, M. A.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England. RP Gowen, RA (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM rag@mssl.ucl.ac.uk RI Crawford, Ian/H-7510-2012; Coates, Andrew/C-2396-2008; Miljkovic, Katarina/D-4844-2013; Grindrod, Peter/F-5819-2011; Fortes, Andrew/C-1349-2011; Collinson, Glyn/D-5700-2012; Jones, Geraint/C-1682-2008; Macagnano, Antonella/B-8410-2015; OI Crawford, Ian/0000-0001-5661-7403; Coates, Andrew/0000-0002-6185-3125; Miljkovic, Katarina/0000-0001-8644-8903; Grindrod, Peter/0000-0002-0934-5131; Fortes, Andrew/0000-0001-5907-2285; Macagnano, Antonella/0000-0002-6015-4832; Sephton, Mark/0000-0002-2190-5402; Joy, Katherine/0000-0003-4992-8750; Collins, Gareth/0000-0002-6087-6149; Jones, Geraint/0000-0002-5859-1136; Palomba, Ernesto/0000-0002-9101-6774 FU UK Science and Technology Facilities Council; LPI [1507] FX This work was supported by the UK Science and Technology Facilities Council, and other international funding agencies including contribution 1507 from LPI. NR 122 TC 25 Z9 25 U1 3 U2 37 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD AUG 16 PY 2011 VL 48 IS 4 BP 725 EP 742 DI 10.1016/j.asr.2010.06.026 PG 18 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 802ZX UT WOS:000293550600011 ER PT J AU Tian, F Kasting, JF Zahnle, K AF Tian, Feng Kasting, J. F. Zahnle, K. TI Revisiting HCN formation in Earth's early atmosphere SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE early earth; HCN; photochemistry; ammonia ID CARBON-DIOXIDE CONCENTRATIONS; NITROGEN-FIXATION; ORGANIC HAZES; ARCHEAN EARTH; SOUTH-AFRICA; EVOLUTION; METHANE; LIFE; PHOTOCHEMISTRY; CONSTRAINTS AB Using a new photochemical model, the HCN chemistry in Earth's early atmosphere is revisited. We find that HCN production in a CH(4)-rich early atmosphere could have been efficient, similar to the results of a previous study (Zahnle, 1986). For an assumed CH(4) mixing ratio of 1000 ppmv, HCN surface deposition increases from 2 x 10(9) cm(-2) s(-1) at fCO(2) = 3% to more than 1 x 10(10) cm(-2) s(-1) (30 Tg/yr) at fCO(2) = 0.3% and 1%. These conditions may well have applied throughout much of the Archean eon, 3.8-2.5 Ga. Prior to the origin of life and the advent of methanogens. HCN production rates would likely have been at 1 x 10(7) cm(-2) s(-1) or lower, thereby providing a modest source of HCN for prebiotic synthesis. (C) 2011 Elsevier B.V. All rights reserved. C1 [Tian, Feng] Univ Colorado, Boulder, CO 80309 USA. [Tian, Feng] Chinese Acad Sci, Natl Astron Observ, Beijing 100864, Peoples R China. [Kasting, J. F.] Penn State Univ, University Pk, PA 16802 USA. [Zahnle, K.] NASA, Ames Res Ctr, Washington, DC USA. RP Tian, F (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM feng.tian@colorado.edu RI Tian, Feng/C-1344-2015 OI Tian, Feng/0000-0002-9607-560X FU NASA [NNX10AR17G] FX We thank 3 anonymous reviewers for their constructive comments. F.T. thanks Dr. R.V. Yelle for helpful discussions on HCN chemistry in Titan's atmosphere and Dr. V. Veronique for help with HCN photolysis cross sections. F.T. and O.B.T. are partially supported by NASA Award# NNX10AR17G. NR 44 TC 23 Z9 23 U1 3 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD AUG 15 PY 2011 VL 308 IS 3-4 BP 417 EP 423 DI 10.1016/j.epsl.2011.06.011 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 807VR UT WOS:000293931600017 ER PT J AU Ajello, M Atwood, WB Baldini, L Barbiellini, G Bastieri, D Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bottacini, E Bouvier, A Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Cecchi, C Charles, E Chekhtman, A Ciprini, S Claus, R Cohen-Tanugi, J Cutini, S de Angelis, A de Palma, F Dermer, CD Digel, SW Silva, EDE Drell, PS Favuzzi, C Fegan, SJ Focke, WB Fukazawa, Y Fusco, P Gargano, F Gehrels, N Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Guiriec, S Gustafsson, M Hadasch, D Iafrate, G Johannesson, G Johnson, AS Kamae, T Katagiri, H Kataoka, J Kuss, M Latronico, L Lionetto, AM Longo, F Loparco, F Lovellette, MN Lubrano, P Mazziotta, MN McEnery, JE Michelson, PF Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Pesce-Rollins, M Pierbattista, M Piron, F Raino, S Rando, R Razzano, M Reimer, A Reimer, O Ritz, S Schalk, TL Sgro, C Siegal-Gaskins, J Siskind, EJ Smith, PD Spandre, G Spinelli, P Suson, DJ Takahashi, H Tanaka, T Thayer, JG Thayer, JB Tibaldo, L Tosti, G Troja, E Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vilchez, N Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Zimmer, S AF Ajello, M. Atwood, W. B. Baldini, L. Barbiellini, G. Bastieri, D. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bottacini, E. Bouvier, A. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Cecchi, C. Charles, E. Chekhtman, A. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cutini, S. de Angelis, A. de Palma, F. Dermer, C. D. Digel, S. W. Silva, E. do Couto e Drell, P. S. Favuzzi, C. Fegan, S. J. Focke, W. B. Fukazawa, Y. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Guiriec, S. Gustafsson, M. Hadasch, D. Iafrate, G. Johannesson, G. Johnson, A. S. Kamae, T. Katagiri, H. Kataoka, J. Kuss, M. Latronico, L. Lionetto, A. M. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Mazziotta, M. N. McEnery, J. E. Michelson, P. F. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Pesce-Rollins, M. Pierbattista, M. Piron, F. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Ritz, S. Schalk, T. L. Sgro, C. Siegal-Gaskins, J. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. G. Thayer, J. B. Tibaldo, L. Tosti, G. Troja, E. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vilchez, N. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Zimmer, S. CA Fermi LAT Collaboration TI Constraints on dark matter models from a Fermi LAT search for high-energy cosmic-ray electrons from the Sun SO PHYSICAL REVIEW D LA English DT Article ID LARGE-AREA TELESCOPE; DAMA/LIBRA; EMISSION AB During its first year of data taking, the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope has collected a large sample of high-energy cosmic-ray electrons and positrons (CREs). We present the results of a directional analysis of the CRE events, in which we searched for a flux excess correlated with the direction of the Sun. Two different and complementary analysis approaches were implemented, and neither yielded evidence of a significant CRE flux excess from the Sun. We derive upper limits on the CRE flux from the Sun's direction, and use these bounds to constrain two classes of dark matter models which predict a solar CRE flux: (1) models in which dark matter annihilates to CREs via a light intermediate state, and (2) inelastic dark matter models in which dark matter annihilates to CREs. C1 [Ajello, M.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Claus, R.; Digel, S. W.; Silva, E. do Couto e; Drell, P. S.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Johnson, A. S.; Kamae, T.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ajello, M.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Claus, R.; Digel, S. W.; Silva, E. do Couto e; Drell, P. S.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Johnson, A. S.; Kamae, T.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Bouvier, A.; Ritz, S.; Schalk, T. L.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Bouvier, A.; Ritz, S.; Schalk, T. L.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Barbiellini, G.; Iafrate, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.] CSIC, IEEE, Inst Ciencies Espai, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chekhtman, A.] Artep Inc, Ellicott City, MD 21042 USA. [Ciprini, S.; Cutini, S.] ASI Sci Data Ctr, I-00044 Rome, Italy. [Cohen-Tanugi, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Univers & Particules Montpellier, Montpellier, France. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dermer, C. D.; Lovellette, M. N.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Fukazawa, Y.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; McEnery, J. E.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Grenier, I. A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, CEA IRFU, CNRS,Serv Astrophys,Lab AIM, F-91191 Gif Sur Yvette, France. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Iafrate, G.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Katagiri, H.] Ibaraki Univ, Coll Sci, Mito, Ibaraki 3108512, Japan. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Lionetto, A. M.; Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Lionetto, A. M.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Norris, J. P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ozaki, M.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Kanagawa 2525210, Japan. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siegal-Gaskins, J.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Vilchez, N.] IRAP, CNRS, F-31028 Toulouse 4, France. [Vilchez, N.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Troja, E.] NASA, Washington, DC USA. [Yang, Z.; Zimmer, S.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Yang, Z.; Zimmer, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. RP Ajello, M (reprint author), Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. EM loparco@ba.infn.it; mazziotta@ba.infn.it; jsg@mps.ohio-state.edu RI Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Orlando, E/R-5594-2016; Morselli, Aldo/G-6769-2011; Rando, Riccardo/M-7179-2013; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013 OI Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Cutini, Sara/0000-0002-1271-2924; Berenji, Bijan/0000-0002-4551-772X; Baldini, Luca/0000-0002-9785-7726; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Giordano, Francesco/0000-0002-8651-2394; De Angelis, Alessandro/0000-0002-3288-2517; Iafrate, Giulia/0000-0002-6185-8292; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Morselli, Aldo/0000-0002-7704-9553; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; lubrano, pasquale/0000-0003-0221-4806; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; NR 45 TC 13 Z9 13 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 15 PY 2011 VL 84 IS 3 AR 032007 DI 10.1103/PhysRevD.84.032007 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 806VQ UT WOS:000293844100001 ER PT J AU Vilozny, B Actis, P Seger, RA Vallmajo-Martin, Q Pourmand, N AF Vilozny, Boaz Actis, Paolo Seger, R. Adam Vallmajo-Martin, Queralt Pourmand, Nader TI Reversible Cation Response with a Protein-Modified Nanopipette SO ANALYTICAL CHEMISTRY LA English DT Article ID SOLID-STATE NANOPORES; ION-BINDING; METAL-IONS; CALCIUM; POLYELECTROLYTES; CALMODULIN AB The calcium ion response of a quartz nanopipette was enhanced by immobilization of calmodulin to the nanopore surface. Binding to the analyte is rapidly reversible in neutral buffer and requires no change in media or conditions to regenerate the receptor. The signal remained reproducible over numerous measurements. The modified nanopipette was used to measure binding affinity to calcium ions, with a K-d of 6.3 +/- 0.8 x 10(-5) M. This affinity is in good agreement with reported values of the solution-state protein. The behavior of such reversible nanopore-based sensors can be used to study proteins in a confined environment and may lead to new devices for continuous monitoring. C1 [Vilozny, Boaz; Actis, Paolo; Seger, R. Adam; Vallmajo-Martin, Queralt; Pourmand, Nader] Univ Calif Santa Cruz, Dept Biomol Engn, Santa Cruz, CA 95064 USA. [Vilozny, Boaz; Actis, Paolo; Seger, R. Adam; Pourmand, Nader] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Vilozny, Boaz; Actis, Paolo; Seger, R. Adam; Pourmand, Nader] UC Santa Cruz, Adv Studies Labs, Moffett Field, CA 94035 USA. [Actis, Paolo] Texas So Univ, Dept Biol, Houston, TX 77004 USA. RP Pourmand, N (reprint author), Univ Calif Santa Cruz, Dept Biomol Engn, 1156 High St, Santa Cruz, CA 95064 USA. RI Actis, Paolo/A-7694-2012 FU National Aeronautics and Space Administration [NCC9-165, NNX08BA47A]; National Institutes of Health [P01-HG000205] FX This work was supported in part by grants from the National Aeronautics and Space Administration Cooperative Agreements NCC9-165 and NNX08BA47A and the National Institutes of Health [Grant P01-HG000205]. NR 32 TC 32 Z9 33 U1 7 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD AUG 15 PY 2011 VL 83 IS 16 BP 6121 EP 6126 DI 10.1021/ac201322v PG 6 WC Chemistry, Analytical SC Chemistry GA 805WD UT WOS:000293758800001 PM 21761859 ER PT J AU Anderson, K Dungan, JL MacArthur, A AF Anderson, K. Dungan, J. L. MacArthur, A. TI On the reproducibility of field-measured reflectance factors in the context of vegetation studies SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Hemispherical Conical Reflectance Factors (HCRF); Vegetation; Standard uncertainty; Spectroradiometer; Noise equivalent delta radiance; Uncertainty propagation ID EMPIRICAL LINE METHOD; RADIOMETRIC CALIBRATION; ATMOSPHERIC CORRECTION; SPECTRAL REFLECTANCE; LANDSAT-7 ETM+; LEAVES; VARIABILITY; SURFACES; METHODOLOGIES; RETRIEVAL AB This paper describes a study aimed at quantifying uncertainty in field measurements of vegetation canopy hemispherical conical reflectance factors (HCRF). The use of field spectroradiometers is common for this purpose, but the reliability of such measurements is still in question. In this paper we demonstrate the impact of various measurement uncertainties on vegetation canopy HCRF, using a combined laboratory and field experiment employing three spectroradiometers of the same broad specification (GER 1500). The results show that all three instruments performed similarly in the laboratory when a stable radiance source was measured (NE Delta L<1 mW m(-2) sr(-1) nm(-1) in the range of 400-1000 nm). In contrast, field-derived standard uncertainties (u=SD of 10 consecutive measurements of the same surface measured in ideal atmospheric conditions) significantly differed from the lab-based uncertainty characterisation for two targets: a control (75% Spectralon panel) and a cropped grassland surface. Results indicated that field measurements made by a single instrument of the vegetation surface were reproducible to within +/- 0.015 HCRF and of the control surface to within +/- 0.006 HCRF (400-1000 nm (+/- 1 sigma)). Field measurements made by all instruments of the vegetation surface were reproducible to within +/- 0.019 HCRF and of the control surface to within +/- 0.008 HCRF (400-1000 nm (+/- 1 sigma)). Statistical analysis revealed that even though the field conditions were carefully controlled and the absolute values of u were small, different instruments yielded significantly different reflectance values for the same target. The results also show that laboratory-derived uncertainty quantities do not present a useful means of quantifying all uncertainties in the field. The paper demonstrates a simple method for u characterisation, using internationally accepted terms, in field scenarios. This provides an experiment-specific measure of u that helps to put measurements in context and forms the basis for comparison with other studies. (C) 2011 Elsevier Inc. All rights reserved. C1 [Anderson, K.] Univ Exeter, Dept Geog, Coll Life & Environm Sci, Exeter TR10 9EZ, Devon, England. [Dungan, J. L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [MacArthur, A.] Univ Edinburgh, Sch GeoSci, NERC Field Spect Facil, Edinburgh EH9 3JW, Midlothian, Scotland. RP Anderson, K (reprint author), Univ Exeter, Dept Geog, Coll Life & Environm Sci, Cornwall Campus, Exeter TR10 9EZ, Devon, England. EM Karen.Anderson@exeter.ac.uk; Jennifer.L.Dungan@nasa.gov; fsf@nerc.ac.uk RI Dungan, Jennifer/G-9921-2016; OI Dungan, Jennifer/0000-0002-4863-1616; Anderson, Karen/0000-0002-3289-2598 FU Winston Churchill Memorial Trust FX The Winston Churchill Memorial Trust provided funding for Karen Anderson's (KA) research sabbatical to NASA Ames. NASA Ames Research Center hosted KA during the study. NERC FSF loaned the GER #2002 and #2003 to KA, and provided some calibration data. Ames' Airborne Science and Technology Lab made other calibration measurements possible. Dr. Liane Guild (NASA Ames) loaned GER #2085 for the study and is thanked for her support to the project. Dr. Ted Hildum, Bradley Lobitz and Dr. Vern Vanderbilt (all NASA Ames) are thanked for their assistance and technical insight during the field and laboratory experiments. NR 48 TC 7 Z9 7 U1 3 U2 18 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG 15 PY 2011 VL 115 IS 8 BP 1893 EP 1905 DI 10.1016/j.rse.2011.03.012 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 785NJ UT WOS:000292235400009 ER PT J AU Hall, FG Hilker, T Coops, NC AF Hall, Forrest G. Hilker, Thomas Coops, Nicholas C. TI PHOTOSYNSAT, photosynthesis from space: Theoretical foundations of a satellite concept and validation from tower and spaceborne data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE PRI; LUE; Light-use efficiency; CHRIS-PROBA AMSPEC; Eddy covariance; Shadow fraction; GPP; SOA; DF49; Douglas-fir; Aspen ID LIGHT-USE EFFICIENCY; RADIATION-USE EFFICIENCY; PHOTOCHEMICAL REFLECTANCE INDEX; FOREST BIOPHYSICAL STRUCTURE; LEAF PIGMENT CONTENT; DOUGLAS-FIR FOREST; SPECTRAL REFLECTANCE; CANOPY REFLECTANCE; CHLOROPHYLL FLUORESCENCE; SOLAR-RADIATION AB We develop herein the theoretical foundations for a new satellite concept, utilizing multi-angle, along track spectral measurements to infer photosynthesis and gross primary production, at the landscape level over time. We validate the theory using both tower and space-borne sensors. The concept, originated in Hall et al. (2008), and Hilker et al. (2008a) and is based on two principles: (1) The first derivative of the photochemical reflectance index (PRI) with respect to shadow fraction viewed by the sensor partial derivative PRI/partial derivative alpha(s), is proportional to light-use efficiency c. (2) This behavior can be shown both theoretically and empirically to be independent of vegetation structure and optical properties. These two principles provide the basis for a robust photosynthesis algorithm that can be applied consistently both spatially and temporally. We develop the general theoretical concept using a canopy reflectance model that incorporates a dependence of leaf reflectance on illumination strength, permitting the leaf reflectance at 531 nm to depend on the intensity of photosynthetic down-regulation. Using this model we are able to show that using PRI alone to infer e is confounded by the shadow fraction viewed by a sensor, the PRI value in a non-down-regulated physiological state, and the sunlit canopy reflectance. We are able to demonstrate that these difficulties are mitigated by using partial derivative PRI/partial derivative alpha(s)-not PRI-as the primary measure of canopy level c. We demonstrate our concept using tower and satellite data acquired over three years, in two distinct biomes and vegetation types to show that PRI/partial derivative alpha(s) and c are related by a single function. Building on these ideas we propose the development of a new satellite concept that can utilize a spatially and temporally robust algorithm to map photosynthesis at landscape scales and its temporal variation. (C) 2011 Elsevier Inc. All rights reserved. C1 [Hall, Forrest G.] Univ Maryland, Joint Ctr Earth Syst Technol, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hilker, Thomas; Coops, Nicholas C.] Univ British Columbia, Fac Forest Resources Management, Vancouver, BC V6T 1Z4, Canada. RP Hall, FG (reprint author), Univ Maryland, Joint Ctr Earth Syst Technol, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Forrest.G.Hall@nasa.gov RI Coops, Nicholas/J-1543-2012 OI Coops, Nicholas/0000-0002-0151-9037 FU Natural Sciences and Engineering Research Council of Canada (NSERC); BIOCAP; NERC (Natural Environment Research Council, UK) [NE/G000360/1]; [NNH07ZDA001N-TE] FX We are grateful to Dr Andy Black, Zoran Nesic, Dominic Lessard, Andrew Hum and Rick Ketler of the Micrometeorology Group of UBC Faculty of Land and Food Systems (LFS) for providing the eddy flux data for this study and their assistance in technical design, installation, and maintenance of AMSPEC and AMSPEC II. This research is partially funded by the Canadian Carbon Program, the Natural Sciences and Engineering Research Council of Canada (NSERC) and BIOCAP, and an NSERC-Accelerator grant to Dr. Coops. The Terrestrial Ecology Program under Dr. Diane Wickland also contributed to funding under grant NNH07ZDA001N-TE. The CHRIS PROBA data used in this research were acquired through Dr. Caroline Nichol, from the University of Edinburgh, Scotland. LiDAR data for the Old Aspen site was kindly provided by Dr. Natascha Kljun, Swansea University, UK and was acquired through a NERC (Natural Environment Research Council, UK) grant, number NE/G000360/1. NR 57 TC 37 Z9 38 U1 0 U2 25 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG 15 PY 2011 VL 115 IS 8 BP 1918 EP 1925 DI 10.1016/j.rse.2011.03.014 PG 8 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 785NJ UT WOS:000292235400011 ER PT J AU Brucker, L Royer, A Picard, G Langlois, A Fily, M AF Brucker, L. Royer, A. Picard, G. Langlois, A. Fily, M. TI Hourly simulations of the microwave brightness temperature of seasonal snow in Quebec, Canada, using a coupled snow evolution-emission model SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Snow; Surface-based radiometer; Microwave brightness temperature; Crocus snow model; MEMLS radiative transfer model ID WATER EQUIVALENT; PASSIVE MICROWAVE; DRY SNOW; LAYERED SNOWPACKS; DEPTH ALGORITHM; NUMERICAL-MODEL; SATELLITE DATA; CLPX 2003; IN-SITU; PARAMETERS AB To interpret the snowpack evolution, and in particular to estimate snow water equivalent (SWE), passive microwave remote sensing has proved to be a useful tool given its sensitivity to snow properties. However, the main uncertainties using existing SWE algorithms arise from snow metamorphism which evolves during the winter season, and changes the snow emissivity. To consider the evolution in snow emissivity a coupled snow evolution-emission model can be used to simulate the brightness temperature (T-B) of the snowpack. During a dedicated campaign in the winter season. from November to April, of 2007-2008 two surface-based radiometers operating at 19 GHz and 37 GHz continuously measured the passive microwave radiation emitted through a seasonal snowpack in southern Quebec (Canada). This paper aims at modeling and interpreting this time series of T-B over the whole season, with an hourly step, using a coupled multi-layer snow evolution-emission model. The thermodynamic snow evolution model, referred as to Crocus, was driven by local meteorological measurements. Results from this model provided, in turn, the input variables to run the Microwave Emission Model of Layered Snowpacks (MEMLS) in order to predict T-B at 19 GHz and 37 GHz for both vertical (V) and horizontal (H) polarizations. The accuracy of T-B predicted by the Crocus-MEMLS coupled model was evaluated using continuous measurements from the surface-based radiometers. The weather conditions observed during the winter season were diverse, including several warm periods with melting snow and rain-on-snow events, producing very complex variations in the time series of T-B. To aid our analysis, we identified days with melting snow versus days with dry snow. The Crocus-MEMLS coupled model was able to accurately predict melt events with a success rate of 86%. The residual error was due to an overestimation of the duration of several melt events simulated by Crocus. This problem was explained by 1) a limitation of percolation, and 2) a very long-acting melt of lower layers due to geothermal flux. When the snowpack was completely dry, the global trend of T-B during the season was characterized by a decrease of T-B due to growth in the snow grain size. During most of the season, Crocus-MEMLS correctly predicted the evolution of T-B resulting from temperature gradient metamorphism; the root mean square errors ranged between 2.8 K for the 19 GHz vertical polarization (19V) and 6.9 K for the 37 GHz horizontal polarization (37H). However, during dry periods near the end of the season, the values of T-B were strongly overestimated. This overestimation was mainly due to a limitation of the growth of large snow grains in the wet snowpack simulated by Crocus. This effect was confirmed by estimating snow grain sizes from the observed T-B and the coupled model. The estimated snow grain sizes were larger and more realistic than those initially predicted by the Crocus model. (C) 2011 Elsevier Inc. All rights reserved. C1 [Brucker, L.; Picard, G.; Fily, M.] Univ Grenoble 1, CNRS, Lab Glaciol & Geophys Environm, F-38041 Grenoble, France. [Royer, A.; Langlois, A.] Univ Sherbrooke, Ctr Applicat & Rech Teledetect, Quebec City, PQ, Canada. RP Brucker, L (reprint author), NASA, Goddard Space Flight Ctr, Cryospher Sci Branch, Code 614-1, Greenbelt, MD 20771 USA. EM ludovic.brucker@nasa.gov RI Picard, Ghislain/D-4246-2013; Brucker, Ludovic/A-8029-2010 OI Picard, Ghislain/0000-0003-1475-5853; Brucker, Ludovic/0000-0001-7102-8084 FU Natural Sciences and Engineering Research Council of Canada (NSERC); French remote sensing program (Programme National de Teledetection Spatiale); Collaboration France-Quebec and the Centre Jacques Cartier FX This project was funded by the Government of Canada Program for International Polar Year, the Natural Sciences and Engineering Research Council of Canada (NSERC), the French remote sensing program (Programme National de Teledetection Spatiale). The radiometers were provided by Environment Canada (principal investigator: Anne Walker). This work was done during the stay of L Brucker at CARTEL during the winter of 2007-2008, which was supported by the Collaboration France-Quebec and the Centre Jacques Cartier. We thank Christian Matzler for the MEMLS code and the Centre d'Etudes de la Neige (Meteo France) for the Crocus code. Patrick Cliche (CARTEL) and Ken Asmus (Environment Canada) are acknowledged for their contributions to maintain the various sensors at the SIRENE station. The authors also thank Samuel Morin (Meteo France) and the anonymous reviewers for their constructive comments. NR 71 TC 18 Z9 18 U1 3 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG 15 PY 2011 VL 115 IS 8 BP 1966 EP 1977 DI 10.1016/j.rse.2011.03.019 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 785NJ UT WOS:000292235400016 ER PT J AU Hill, MJ Roman, MO Schaaf, CB Hutley, L Brannstrom, C Etter, A Hanan, NP AF Hill, Michael J. Roman, Miguel O. Schaaf, Crystal B. Hutley, Lindsay Brannstrom, Christian Etter, Andres Hanan, Niall P. TI Characterizing vegetation cover in global savannas with an annual foliage clumping index derived from the MODIS BRDF product SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Savanna; Clumping index; Canopy; Woody cover; Global; Physiognomy; Shadow ID AUSTRALIAN TROPICAL SAVANNA; LEAF-AREA INDEX; BIDIRECTIONAL REFLECTANCE; LAND-COVER; SURFACE HETEROGENEITY; AFRICAN SAVANNAS; SEMIARID SAVANNA; BURKINA-FASO; WEST-AFRICA; TREE COVER AB The global savanna biome is characterized by enormous diversity in the physiognomy and spatial structure of the vegetation. The foliage clumping index can be calculated from bidirectional reflectance distribution function (BRDF) data. It measures the response of the darkspot reflectance to increased shadow associated with clumped vegetation and is related to leaf area index. Clumping index theoretically declines with increasing woody cover until the tree canopy begins to become uniform. In this study, clumping index is calculated for Moderate Resolution Imaging Spectroradiometer BRDF data for the Australian tropical savanna, the tropical savannas of South America, and the tropical savannas of east, west and southern Africa and compared with site-based measurements of tree canopy cover, and with area-based classifications of land cover. There were differences in sensitivity of clumping index between red and near-infrared reflectance channels, and between savanna systems with markedly different woody vegetation physiognomy. Clumping index was broadly related to foliage cover from historical site data in Australia and in West Africa and Kenya, but not in Southern Africa nor with detailed site-based demographic data in the cerrado of Brazil. However, clumping index decreased with proportion of woody cover in land cover datasets for east Africa, Australia and the Colombian Llanos. There was overlap in the range of clumping index values for forest, cerrado and campo land covers in Brazil. Clumping index was generally negatively correlated with percentage tree cover from the MODIS Vegetation Continuous Fields product, but regional differences in the relationship were evident. There were large differences in the frequency distributions of clumping index from savanna, woody savanna and grassland land cover classes between global ecoregions. The clumping index shows differing sensitivity to savanna woody cover for red and NIR reflectance, and requires regional calibration for application as a universal indicator. (C) 2011 Elsevier Inc. All rights reserved. C1 [Hill, Michael J.] Univ N Dakota, Grand Forks, ND 58202 USA. [Roman, Miguel O.] NASA, Goddard Space Flight Ctr, Terr Informat Syst Branch, Greenbelt, MD 20771 USA. [Schaaf, Crystal B.] Boston Univ, Ctr Remote Sensing, Dept Geog & Environm, Boston, MA 02215 USA. [Hutley, Lindsay] Charles Darwin Univ, Sch Environm & Life Sci, Darwin, NT 0909, Australia. [Brannstrom, Christian] Texas A&M Univ, Dept Geog, College Stn, TX USA. [Etter, Andres] Univ Javeriana, Fac Estudios Ambientales & Rurales, Grp Ecol & Terr, Bogota, DC, Colombia. [Hanan, Niall P.] Colorado State Univ, Nat Resources & Environm Lab, Ft Collins, CO 80523 USA. RP Hill, MJ (reprint author), Univ N Dakota, Clifford Hall,Stop 9011, Grand Forks, ND 58202 USA. EM hillmj@aero.und.edu RI Etter, Andres/E-1860-2011; Hutley, Lindsay/A-7925-2011; Roman, Miguel/D-4764-2012; OI Hanan, Niall/0000-0002-9130-5306; Etter, Andres/0000-0003-0665-9300; Hutley, Lindsay/0000-0001-5533-9886; Roman, Miguel/0000-0003-3953-319X; Hill, Michael/0000-0003-4570-7467; Brannstrom, Christian/0000-0002-6619-2020 NR 74 TC 18 Z9 20 U1 3 U2 38 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG 15 PY 2011 VL 115 IS 8 BP 2008 EP 2024 DI 10.1016/j.rse.2011.04.003 PG 17 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 785NJ UT WOS:000292235400019 ER PT J AU Li, AM Huang, CQ Sun, GQ Shi, H Toney, C Zhu, ZL Rollins, MG Goward, SN Masek, JG AF Li, Among Huang, Chengquan Sun, Guoqing Shi, Hua Toney, Chris Zhu, Zhiliang Rollins, Matthew G. Goward, Samuel N. Masek, Jeffrey G. TI Modeling the height of young forests regenerating from recent disturbances in Mississippi using Landsat and ICESat data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Young forest; Disturbance; Height modeling; VCT; LTSS; GLAS ID CHANGE TRACKER MODEL; CANOPY HEIGHT; LASER ALTIMETER; TOPOGRAPHY MISSION; MAPPING VEGETATION; NATURE-RESERVE; SHUTTLE RADAR; STAND VOLUME; ETM+ DATA; LIDAR AB Many forestry and earth science applications require spatially detailed forest height data sets. Among the various remote sensing technologies, lidar offers the most potential for obtaining reliable height measurement. However, existing and planned spaceborne lidar systems do not have the capability to produce spatially contiguous, fine resolution forest height maps over large areas. This paper describes a Landsat-lidar fusion approach for modeling the height of young forests by integrating historical Landsat observations with lidar data acquired by the Geoscience Laser Altimeter System (GLAS) instrument onboard the Ice, Cloud, and land Elevation (ICESat) satellite. In this approach, "young" forests refer to forests reestablished following recent disturbances mapped using Landsat time-series stacks (LTSS) and a vegetation change tracker (VCT) algorithm. The GLAS lidar data is used to retrieve forest height at sample locations represented by the footprints of the lidar data. These samples are used to establish relationships between lidar-based forest height measurements and LTSS-VCT disturbance products. The height of "young" forest is then mapped based on the derived relationships and the LTSS-VCT disturbance products. This approach was developed and tested over the state of Mississippi. Of the various models evaluated, a regression tree model predicting forest height from age since disturbance and three cumulative indices produced by the LTSS-VCT method yielded the lowest cross validation error. The R(2) and root mean square difference (RMSD) between predicted and GLAS-based height measurements were 0.91 and 1.97 m, respectively. Predictions of this model had much higher errors than indicated by cross validation analysis when evaluated using field plot data collected through the Forest Inventory and Analysis Program of USDA Forest Service. Much of these errors were due to a lack of separation between stand clearing and non-stand clearing disturbances in current LTSS-VCT products and difficulty in deriving reliable forest height measurements using GLAS samples when terrain relief was present within their footprints. In addition, a systematic underestimation of about 5 m by the developed model was also observed, half of which could be explained by forest growth that occurred between field measurement year and model target year. The remaining difference suggests that tree height measurements derived using waveform lidar data could be significantly underestimated, especially for young pine forests. Options for improving the height modeling approach developed in this study were discussed. (C) 2011 Elsevier Inc. All rights reserved. C1 [Li, Among; Huang, Chengquan; Sun, Guoqing; Goward, Samuel N.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Li, Among] Chinese Acad Sci, Inst Mt Hazards & Environm, Chengdu 610041, Sichuan, Peoples R China. [Shi, Hua] ASRC Res & Technol Solut ARTS, Sioux Falls, SD 57198 USA. [Toney, Chris] USDA, Forest Serv, Rocky Mt Res Stn, Missoula, MT 59808 USA. [Zhu, Zhiliang] US Geol Survey, Reston, VA USA. [Rollins, Matthew G.] US Geol Survey, Ctr Earth Resources Observat & Sci, Sioux Falls, SD 57198 USA. [Masek, Jeffrey G.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. RP Huang, CQ (reprint author), Univ Maryland, Dept Geog, College Pk, MD 20742 USA. EM cqhuang@umd.edu RI Masek, Jeffrey/D-7673-2012; OI Huang, Chengquan/0000-0003-0055-9798 FU U.S. Geological Survey; NASA's Terrestrial Ecology, Carbon Cycle Science, and Applied Sciences; Chinese Academy of Sciences [KZCX2-YW-QN313]; intergovernmental Wildland Fire Leadership Council of the United States FX Funding support for this study was provided by the U.S. Geological Survey, and by NASA's Terrestrial Ecology, Carbon Cycle Science, and Applied Sciences Programs. Partial support was also provided by the Knowledge Innovation Program of the Chinese Academy of Sciences (grant no. KZCX2-YW-QN313). It contributes to the North American Carbon Program, and the joint USDA-DOI LANDFIRE project sponsored by the intergovernmental Wildland Fire Leadership Council of the United States. Portions of this work were performed in accordance with a memorandum of understanding between the Forest Inventory and Analysis program of USDA Forest Service and the interagency LANDFIRE program, in support of vegetation structure mapping in LANDFIRE. NR 89 TC 25 Z9 29 U1 1 U2 39 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG 15 PY 2011 VL 115 IS 8 BP 1837 EP 1849 DI 10.1016/j.rse.2011.03.001 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 785NJ UT WOS:000292235400005 ER PT J AU Long, DA Bielska, K Lisak, D Havey, DK Okumura, M Miller, CE Hodges, JT AF Long, David A. Bielska, Katarzyna Lisak, Daniel Havey, Daniel K. Okumura, Mitchio Miller, Charles E. Hodges, Joseph T. TI The air-broadened, near-infrared CO2 line shape in the spectrally isolated regime: Evidence of simultaneous Dicke narrowing and speed dependence SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DIFFERENTIAL ABSORPTION LIDAR; O-2 A-BAND; CONSTRAINED MULTISPECTRUM ANALYSIS; PRESSURE SHIFT COEFFICIENTS; RING-DOWN SPECTROSCOPY; MU-M REGION; CARBON-DIOXIDE; ATMOSPHERIC CO2; LINESHAPE MODELS; HIGH-RESOLUTION AB Frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) was employed to measure air-broadened CO2 line shape parameters for transitions near 1.6 mu m over a pressure range of 6.7-33 kPa. The high sensitivity of FS-CRDS allowed for the first measurements in this wavelength range of air-broadened line shape parameters on samples with CO2 mixing ratios near those of the atmosphere. The measured air-broadening parameters show several percent deviations (0.9%-2.7%) from values found in the HITRAN 2008 database. Spectra were fit with a variety of models including the Voigt, Galatry, Nelkin-Ghatak, and speed-dependent Nelkin-Ghatak line profiles. Clear evidence of line narrowing was observed, which if unaccounted for can lead to several percent biases. Furthermore, it was observed that only the speed-dependent Nelkin-Ghatak line profile was able to model the spectra to within the instrumental noise level because of the concurrent effects of collisional narrowing and speed dependence of collisional broadening and shifting. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3624527] C1 [Hodges, Joseph T.] Natl Inst Stand & Technol, Chem & Biochem Reference Data Div, Gaithersburg, MD 20899 USA. [Long, David A.; Okumura, Mitchio] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Bielska, Katarzyna; Lisak, Daniel] Uniwersytet Mikolaja Kopernika, Inst Fizyki, PL-87100 Torun, Poland. [Havey, Daniel K.] James Madison Univ, Dept Chem & Biochem, Harrisonburg, VA 22807 USA. [Miller, Charles E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hodges, JT (reprint author), Natl Inst Stand & Technol, Chem & Biochem Reference Data Div, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM joseph.hodges@nist.gov RI Okumura, Mitchio/I-3326-2013; Sanders, Susan/G-1957-2011; Lisak, Daniel/E-1470-2014; Bielska, Katarzyna/G-4532-2014 OI Okumura, Mitchio/0000-0001-6874-1137; FU NIST Greenhouse Gas Measurements and Climate Research Program; NASA Earth System Science Pathfinder (ESSP); Orbiting Carbon Observatory (OCO); National Science Foundation; National Defense Science and Engineering; National Research Council at the National Institute of Technology (NIST), Gaithersburg, MD; Polish MNISW [N N202 1255 35]; National Aeronautics and Space Administration (NASA) [NNG06GD88G, NNX09AE21G]; NASA Atmospheric Carbon Observations from Space (ACOS) [104127-04.02.02] FX David A. Long was supported by the National Science Foundation and National Defense Science and Engineering Graduate Fellowships. Daniel K. Havey was supported by a National Research Council postdoctoral fellowship at the National Institute of Technology (NIST), Gaithersburg, MD, and Katarzyna Bielska and Daniel Lisak were supported by the Polish MNISW Project No. N N202 1255 35. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). Additional support was provided by the Orbiting Carbon Observatory (OCO) project, a NASA Earth System Science Pathfinder (ESSP) mission; the NASA Upper Atmospheric Research Program grants NNG06GD88G and NNX09AE21G; the NASA Atmospheric Carbon Observations from Space (ACOS) grant 104127-04.02.02; and the NIST Greenhouse Gas Measurements and Climate Research Program. NR 64 TC 42 Z9 42 U1 2 U2 35 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 14 PY 2011 VL 135 IS 6 AR 064308 DI 10.1063/1.3624527 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 808DD UT WOS:000293955000018 PM 21842934 ER PT J AU McPhaden, MJ Lee, T McClurg, D AF McPhaden, M. J. Lee, T. McClurg, D. TI El Nino and its relationship to changing background conditions in the tropical Pacific Ocean SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ENSO; VARIABILITY; CLIMATE; IMPACT AB This paper addresses the question of whether the increased occurrence of central Pacific (CP) versus Eastern Pacific (EP) El Ninos is consistent with greenhouse gas forced changes in the background state of the tropical Pacific as inferred from global climate change models. Our analysis uses high-quality satellite and in situ ocean data combined with wind data from atmospheric reanalyses for the past 31 years (1980-2010). We find changes in background conditions that are opposite to those expected from greenhouse gas forcing in climate models and opposite to what is expected if changes in the background state are mediating more frequent occurrences of CP El Ninos. A plausible interpretation of these results is that the character of El Nino over the past 31 years has varied naturally and that these variations projected onto changes in the background state because of the asymmetric spatial structures of CP and EP El Ni os. Citation: McPhaden, M. J., T. Lee, and D. McClurg (2011), El Nino and its relationship to changing background conditions in the tropical Pacific Ocean, Geophys. Res. Lett., 38, L15709, doi: 10.1029/2011GL048275. C1 [McPhaden, M. J.; McClurg, D.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Lee, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP McPhaden, MJ (reprint author), NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way NE, Seattle, WA 98115 USA. EM michael.j.mcphaden@noaa.gov RI McPhaden, Michael/D-9799-2016 FU NOAA Climate Program Office, at the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) [NA17RJ1232]; Jet Propulsion Laboratory, California Institute of Technology; NASA FX This research was carried out at NOAA Pacific Marine Environmental Laboratory with support from the NOAA Climate Program Office, at the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA17RJ1232, and at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This is PMEL publication 3732 and JISAO contribution 1879. NR 23 TC 138 Z9 140 U1 8 U2 35 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 13 PY 2011 VL 38 AR L15709 DI 10.1029/2011GL048275 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 807PG UT WOS:000293911600005 ER PT J AU Solomon, S Daniel, JS Neely, RR Vernier, JP Dutton, EG Thomason, LW AF Solomon, S. Daniel, J. S. Neely, R. R., III Vernier, J. -P. Dutton, E. G. Thomason, L. W. TI The Persistently Variable "Background" Stratospheric Aerosol Layer and Global Climate Change SO SCIENCE LA English DT Article ID MAUNA-LOA AB Recent measurements demonstrate that the "background" stratospheric aerosol layer is persistently variable rather than constant, even in the absence of major volcanic eruptions. Several independent data sets show that stratospheric aerosols have increased in abundance since 2000. Near-global satellite aerosol data imply a negative radiative forcing due to stratospheric aerosol changes over this period of about -0.1 watt per square meter, reducing the recent global warming that would otherwise have occurred. Observations from earlier periods are limited but suggest an additional negative radiative forcing of about -0.1 watt per square meter from 1960 to 1990. Climate model projections neglecting these changes would continue to overestimate the radiative forcing and global warming in coming decades if these aerosols remain present at current values or increase. C1 [Solomon, S.; Daniel, J. S.; Neely, R. R., III] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO 80305 USA. [Solomon, S.; Neely, R. R., III] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80305 USA. [Vernier, J. -P.; Thomason, L. W.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Vernier, J. -P.] Univ Paris 06, Univ Versailles St Quentin, Lab Atmospheres, CNRS,Inst Natl Sci Univers, F-75252 Paris 05, France. [Neely, R. R., III; Dutton, E. G.] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO 80305 USA. [Neely, R. R., III] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. RP Solomon, S (reprint author), NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO 80305 USA. EM susan.solomon@colorado.edu RI Daniel, John/D-9324-2011; Neely, Ryan/F-8702-2010; Manager, CSD Publications/B-2789-2015; OI Neely, Ryan/0000-0003-4560-4812; Thomason, Larry/0000-0002-1902-0840 FU Centre National de la Recherche Scientifique at LATMOS/Universite de Versailles St Quentin; NOAA FX The satellite aerosol observations were analyzed by J.P.V. during his fellowship through the NASA Postdoctoral Program at Langley Research Center, administrated by Oak Ridge Associated Universities. It is also a part of his Ph.D. thesis financed by the Centre National de la Recherche Scientifique at LATMOS/Universite de Versailles St Quentin. The CALIPSO data were made available at the ICARE data center (www-icare.univ-lille1.fr/). The authors also acknowledge help from A. Hauchecorne, J. P. Pommereau, J. Pelon, and A. Garnier in the analysis of the GOMOS and CALIPSO data sets; J. Barnes for Mauna Loa lidar data; and C. Wehrli for Precision Filter Radiometer data. Funding has also been provided by the Atmospheric Composition and Climate Program of NOAA's Climate Program. Helpful discussions with J. Gregory and D. M. Murphy are gratefully acknowledged. NR 28 TC 187 Z9 196 U1 7 U2 75 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD AUG 12 PY 2011 VL 333 IS 6044 BP 866 EP 870 DI 10.1126/science.1206027 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 806DJ UT WOS:000293785400037 PM 21778361 ER PT J AU Lim, YK Schubert, SD AF Lim, Young-Kwon Schubert, Siegfried D. TI The impact of ENSO and the Arctic Oscillation on winter temperature extremes in the southeast United States SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID PRECIPITATION; VARIABILITY; PATTERNS; FLORIDA AB Interannual variations of the winter mean temperature and the number of days of warm and cold extremes were investigated for the southeast United States to identify the relative influence of El Nino-Southern Oscillation (ENSO) and the Arctic Oscillation (AO). Generalized extreme value theory was used to estimate the probability distribution function (PDF) of warm and cold extremes and their return values for different phases of ENSO and the AO. An analysis of the temperature observations for the past 58 years (1951-2008) reveals that both the winter mean temperature anomalies and the number of days of extreme cold are most closely linked to variations in the AO especially in the recent past (1981-2008). In contrast, the number of days of extreme warmth are linked to both ENSO and the AO. Citation: Lim, Y.-K., and S. D. Schubert (2011), The impact of ENSO and the Arctic Oscillation on winter temperature extremes in the southeast United States, Geophys. Res. Lett., 38, L15706, doi:10.1029/2011GL048283. C1 [Lim, Young-Kwon] IM Syst Grp Inc, Goddard Earth Sci Technol & Res, Greenbelt, MD 20771 USA. [Lim, Young-Kwon; Schubert, Siegfried D.] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lim, YK (reprint author), IM Syst Grp Inc, Goddard Earth Sci Technol & Res, Greenbelt, MD 20771 USA. EM young-kwon.lim@nasa.gov; siegfried.d.schubert@nasa.gov FU NASA; CATER (Center for Atmospheric Sciences and Earthquake Research) [2010-1185] FX This work was supported by both the NASA MAP (Modeling, Analysis and Prediction) program "Simulating and Predicting Sub-seasonal and Longer-term Changes in Tropical Storm Characteristics using High-Resolution Climate Models" (PI: S. Schubert) and the Korean Meteorological Administration Research and Development program under grant CATER (Center for Atmospheric Sciences and Earthquake Research) 2010-1185. NR 16 TC 15 Z9 15 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 11 PY 2011 VL 38 AR L15706 DI 10.1029/2011GL048283 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 807PD UT WOS:000293911300003 ER PT J AU Orphan, VJ Hoehler, TM AF Orphan, Victoria J. Hoehler, Tori M. TI MICROBIOLOGY Hydrogen for dinner SO NATURE LA English DT Editorial Material ID RIFTIA-PACHYPTILA JONES; VENT TUBE WORM C1 [Orphan, Victoria J.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Hoehler, Tori M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Orphan, VJ (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM vorphan@gps.caltech.edu; tori.m.hoehler@nasa.gov RI Orphan, Victoria/K-1002-2014 OI Orphan, Victoria/0000-0002-5374-6178 NR 8 TC 1 Z9 1 U1 3 U2 38 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD AUG 11 PY 2011 VL 476 IS 7359 BP 154 EP 155 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 805MU UT WOS:000293731900021 PM 21833075 ER PT J AU Melin, H Stallard, T Miller, S Gustin, J Galand, M Badman, SV Pryor, WR O'Donoghue, J Brown, RH Baines, KH AF Melin, H. Stallard, T. Miller, S. Gustin, J. Galand, M. Badman, S. V. Pryor, W. R. O'Donoghue, J. Brown, R. H. Baines, K. H. TI Simultaneous Cassini VIMS and UVIS observations of Saturn's southern aurora: Comparing emissions from H, H-2 and H-3(+) at a high spatial resolution SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ATMOSPHERE; ELECTRONS; LOCATION; MOLECULE; JUPITER; IONS AB Here, for the first time, temporally coincident and spatially overlapping Cassini VIMS and UVIS observations of Saturn's southern aurora are presented. Ultraviolet auroral H and H-2 emissions from UVIS are compared to infrared H-3(+) emission from VIMS. The auroral emission is structured into three arcs - H, H-2 and H-3(+) are morphologically identical in the bright main auroral oval (similar to 73 degrees S), but there is an equatorward arc that is seen predominantly in H (similar to 70 degrees S), and a poleward arc (similar to 74 degrees S) that is seen mainly in H-2 and H-3(+). These observations indicate that, for the main auroral oval, UV emission is a good proxy for the infrared H-3(+) morphology (and vice versa), but for emission either poleward or equatorward this is no longer true. Hence, simultaneous UV/IR observations are crucial for completing the picture of how the atmosphere interacts with the magnetosphere. Citation: Melin, H., T. Stallard, S. Miller, J. Gustin, M. Galand, S. V. Badman, W. R. Pryor, J. O'Donoghue, R. H. Brown, and K. H. Baines (2011), Simultaneous Cassini VIMS and UVIS observations of Saturn's southern aurora: Comparing emissions from H, H2 and H-3(+) at a high spatial resolution, Geophys. Res. Lett., 38, L15203, doi:10.1029/2011GL048457. C1 [Melin, H.; Stallard, T.; O'Donoghue, J.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Melin, H.; Pryor, W. R.] Space Environm Technol, Los Angeles, CA USA. [Galand, M.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Miller, S.] UCL, Dept Phys & Astron, London WC1 6BT, England. [Gustin, J.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Badman, S. V.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Kanagawa 2525210, Japan. [Pryor, W. R.] Cent Arizona Coll, Coolidge, AZ 85228 USA. [Brown, R. H.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Baines, K. H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Melin, H (reprint author), Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. EM h.melin@ion.le.ac.uk; tss@ion.le.ac.uk; s.miller@ucl.ac.uk; gustin@astro.ulg.ac.be; m.galand@imperial.ac.uk; s.badman@stp.isas.jaxa.jp; wayne.pryor@centralaz.edu; jod3@ion.le.ac.uk; kbaines@scn.jpl.nasa.gov OI Stallard, Tom/0000-0003-3990-670X FU University of Leicester by the Science and Technology Facilities Council (STFC) [PP/E/000983/1, ST/G0022223/1]; RCUK; SET by NASA CDAP [NNX10AG35G]; STFC FX This work was supported at the University of Leicester by the Science and Technology Facilities Council (STFC) grant PP/E/000983/1 and ST/G0022223/1 for H. M. and T. S., and a RCUK Fellowship for T. S. Supported at SET by NASA CDAP grant NNX10AG35G. M. G. was partially supported by the STFC rolling grant to Imperial College. We thank G. Holeslaw at LASP for supplying the UVIS calibration routines. NR 25 TC 26 Z9 26 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 10 PY 2011 VL 38 AR L15203 DI 10.1029/2011GL048457 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 807PC UT WOS:000293911200004 ER PT J AU Tian, BJ Waliser, DE Kahn, RA Wong, S AF Tian, Baijun Waliser, Duane E. Kahn, Ralph A. Wong, Sun TI Modulation of Atlantic aerosols by the Madden-Julian Oscillation SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RESOLUTION IMAGING SPECTRORADIOMETER; WEST-AFRICAN MONSOON; SAHARAN DUST; INTRASEASONAL VARIABILITY; TROPICAL ATLANTIC; NORTH-ATLANTIC; OCEAN; RETRIEVALS; VALIDATION; TRANSPORT AB Our previous study found large intraseasonal variations in satellite-derived aerosol products over the tropical Atlantic Ocean associated with the Madden-Julian Oscillation (MJO). This study aims to investigate the physical mechanism of these aerosol anomalies through analyzing aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board the Aqua satellite, precipitation from the Tropical Rainfall Measuring Mission (TRMM) satellite, and low-level (averaged from 925 hPa to 700 hPa) horizontal winds from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. We first show that the intraseasonal variance related to the MJO accounts for about 25% of the total variance of MODIS AOT over the tropical Atlantic. Thus, the intraseasonal variability is one of the important forms of Atlantic aerosol variability. Second, although still inconclusive, our research indicates that precipitation anomalies may play a small role in AOT anomalies through the wet scavenging effect. Third, we show that the AOT anomalies are negatively correlated with the low-level zonal wind anomalies over most parts of the tropical Atlantic, especially over the equatorial Atlantic (60 degrees W-10 degrees W, 10 degrees S-15 degrees N), when the low-level zonal wind anomalies lead the AOT anomalies by about one MJO phase (6 days). When enhanced MJO convection is located over the equatorial Indian Ocean (western Pacific), persistent low-level westerly (easterly) anomalies over the equatorial Atlantic suppress (enhance) the background trade winds that cause the negative (positive) AOT anomalies over the Atlantic region. These results indicate that the AOT anomalies over the tropical Atlantic are very likely produced by the low-level zonal wind anomalies there, although the detailed mechanisms are still to be determined. This study implies that Atlantic aerosol concentration might have predictable components with lead times of 2-4 weeks given the predictability of the MJO and Atlantic trade winds. C1 [Tian, Baijun; Waliser, Duane E.; Wong, Sun] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kahn, Ralph A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Tian, BJ (reprint author), CALTECH, Jet Prop Lab, M-S 183-501,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM baijun.tian@jpl.nasa.gov RI Tian, Baijun/A-1141-2007; Kahn, Ralph/D-5371-2012 OI Tian, Baijun/0000-0001-9369-2373; Kahn, Ralph/0000-0002-5234-6359 FU NASA; Atmospheric Infrared Sounder (AIRS) at the University of California, Los Angeles [ATM-0840755] FX This research was performed at Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with NASA. It was supported in part by the Atmospheric Infrared Sounder (AIRS) project at JPL and National Science Foundation (NSF) grant ATM-0840755 at the University of California, Los Angeles. Comments from three anonymous reviewers, discussions with Lorraine Remer and Robert Levy on the MODIS AOT data, help from Bryan Weare on the statistical significance test, and help from Xun Jiang on the spectrum analysis are gratefully acknowledged. The first author would like to dedicate this paper to his father, HongFang Tian, who passed away in March 2011. Without his father's support and encouragement, there would have been no way for B.T. to grow up in a poor rural village in China and become a scientist in the USA. NR 38 TC 16 Z9 16 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 10 PY 2011 VL 116 AR D15108 DI 10.1029/2010JD015201 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 807NT UT WOS:000293906700002 ER PT J AU Makela, P Gopalswamy, N Akiyama, S Xie, H Yashiro, S AF Maekelae, P. Gopalswamy, N. Akiyama, S. Xie, H. Yashiro, S. TI Energetic storm particle events in coronal mass ejection-driven shocks SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PERPENDICULAR COLLISIONLESS SHOCKS; TRANSIENT INTERPLANETARY SHOCKS; II RADIO-BURSTS; ELECTRON ACCELERATION; SOLAR ERUPTIONS; PROTON EVENTS; NEAR-SUN; SPACECRAFT; ASYMMETRY; FLARE AB We investigate the variability in the occurrence of energetic storm particle (ESP) events associated with shocks driven by coronal mass ejections (CMEs). The interplanetary shocks were detected during the period from 1996 to 2006. First, we analyze the CME properties near the Sun. The CMEs with an ESP-producing shock are faster (< V-CME > = 1088 km/s) than those driving shocks without an ESP event (< V-CME > = 771 km/s) and have a larger fraction of halo CMEs (67% versus 38%). The Alfvenic Mach numbers of shocks with an ESP event are on average 1.6 times higher than those of shocks without. We also contrast the ESP event properties and frequency in shocks with and without a type II radio burst by dividing the shocks into radio-loud (RL) and radio-quiet (RQ) shocks, respectively. The shocks seem to be organized into a decreasing sequence by the energy content of the CMEs: RL shocks with an ESP event are driven by the most energetic CMEs, followed by RL shocks without an ESP event, then RQ shocks with and without an ESP event. The ESP events occur more often in RL shocks than in RQ shocks: 52% of RL shocks and only similar to 33% of RQ shocks produced an ESP event at proton energies above 1.8 MeV; in the keV energy range the ESP frequencies are 80% and 65%, respectively. Electron ESP events were detected in 19% of RQ shocks and 39% of RL shocks. In addition, we find that (1) ESP events in RQ shocks are less intense than those in RL shocks; (2) RQ shocks with ESP events are predominately quasi-perpendicular shocks; (3) their solar sources are located slightly to the east of the central meridian; and (4) ESP event sizes show a modest positive correlation with the CME and shock speeds. The observation that RL shocks tend to produce more frequently ESP events with larger particle flux increases than RQ shocks emphasizes the importance of type II bursts in identifying solar events prone to producing high particle fluxes in the near-Earth space. However, the trend is not definitive. If there is no type II emission, an ESP event is less likely but not absent. The variability in the probability and size of ESP events most likely reflects differences in the shock formation in the low corona and changes in the properties of the shocks as they propagate through interplanetary space and the escape efficiency of accelerated particles from the shock front. C1 [Maekelae, P.; Akiyama, S.; Xie, H.; Yashiro, S.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Maekelae, P.; Gopalswamy, N.; Akiyama, S.; Xie, H.; Yashiro, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Makela, P (reprint author), Catholic Univ Amer, Dept Phys, 620 Michigan Ave NE, Washington, DC 20064 USA. EM pertti.makela@nasa.gov; nat.gopalswamy@nasa.gov; sachiko.akiyama@nasa.gov; hong.xie@nasa.gov; seiji.yashiro@nasa.gov RI Gopalswamy, Nat/D-3659-2012; OI Gopalswamy, Nat/0000-0001-5894-9954 FU NASA [NNX08AD60A, NNX10AL50A] FX This research was supported by NASA grants NNX08AD60A and NNX10AL50A. SOHO is an international cooperation project between ESA and NASA. NR 41 TC 7 Z9 7 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 10 PY 2011 VL 116 AR A08101 DI 10.1029/2011JA016683 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 807SY UT WOS:000293921200004 ER PT J AU Venable, DD Whiteman, DN Calhoun, MN Dirisu, AO Connell, RM Landulfo, E AF Venable, Demetrius D. Whiteman, David N. Calhoun, Monique N. Dirisu, Afusat O. Connell, Rasheen M. Landulfo, Eduardo TI Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system SO APPLIED OPTICS LA English DT Article ID LONG-TERM MEASUREMENTS; CROSS-SECTIONS; APPLICABILITY; EQUATIONS; ACCURACY AB We have investigated a technique that allows for the independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system. This technique utilizes a procedure whereby a light source of known spectral characteristics is scanned across the aperture of the lidar system's telescope and the overall optical efficiency of the system is determined. Direct analysis of the temperature-dependent differential scattering cross sections for vibration and vibration-rotation transitions (convolved with narrowband filters) along with the measured efficiency of the system, leads to a theoretical determination of the water vapor mixing ratio calibration factor. A calibration factor was also obtained experimentally from lidar measurements and radiosonde data. A comparison of the theoretical and experimentally determined values agrees within 5%. We report on the sensitivity of the water vapor mixing ratio calibration factor to uncertainties in parameters that characterize the narrowband transmission filters, the temperature-dependent differential scattering cross section, and the variability of the system efficiency ratios as the lamp is scanned across the aperture of the telescope used in the Howard University Raman Lidar system. (C) 2011 Optical Society of America C1 [Venable, Demetrius D.; Calhoun, Monique N.; Connell, Rasheen M.] Howard Univ, Dept Phys & Astron, Washington, DC 20059 USA. [Whiteman, David N.; Dirisu, Afusat O.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Landulfo, Eduardo] IPEN CNEN SP, Ctr Lasers & Aplicacoes, Sao Paulo, Brazil. RP Venable, DD (reprint author), Howard Univ, Dept Phys & Astron, Washington, DC 20059 USA. EM dvenable@howard.edu RI Landulfo, Eduardo/B-7979-2012 OI Landulfo, Eduardo/0000-0002-9691-5306 FU National Aeronautics and Space Administration (NASA) [NNX07AF22, NNX08BA42]; National Oceanic and Atmospheric Administration (NOAA) [NA06OAR4810172] FX This research was supported in part by National Aeronautics and Space Administration (NASA) Cooperative Agreements NNX07AF22 and NNX08BA42 and National Oceanic and Atmospheric Administration (NOAA) Cooperative Agreement NA06OAR4810172. NR 13 TC 10 Z9 10 U1 0 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD AUG 10 PY 2011 VL 50 IS 23 BP 4622 EP 4632 DI 10.1364/AO.50.004622 PG 11 WC Optics SC Optics GA 805MP UT WOS:000293731300009 PM 21833140 ER PT J AU Bongiorno, SD Falcone, AD Stroh, M Holder, J Skilton, JL Hinton, JA Gehrels, N Grube, J AF Bongiorno, S. D. Falcone, A. D. Stroh, M. Holder, J. Skilton, J. L. Hinton, J. A. Gehrels, N. Grube, J. TI A NEW TeV BINARY: THE DISCOVERY OF AN ORBITAL PERIOD IN HESS J0632+057 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma rays: general; X-rays: binaries; X-rays: individual (HESS J0632+057) ID RAY; SWIFT; COUNTERPART AB HESS J0632+057 is a variable, point-like source of very high energy (> 100 GeV) gamma rays located in the Galactic plane. It is positionally coincident with a Be star, it is a variable radio and X-ray source, has a hard X-ray spectrum, and has low radio flux. These properties suggest that the object may be a member of the rare class of TeV/X-ray binary systems. The definitive confirmation of this would be the detection of a periodic orbital modulation of the flux at any wavelength. We have obtained Swift X-Ray Telescope observations of the source from MJD 54857 to 55647 (2009 January-2011 March) to test the hypothesis that HESS J0632+057 is an X-ray/TeV binary. We show that these data exhibit flux modulation with a period of 321 +/- 5 days and we evaluate the significance of this period by calculating the null hypothesis probability, allowing for stochastic flaring. This periodicity establishes the binary nature of HESS J0632+057. C1 [Bongiorno, S. D.; Falcone, A. D.; Stroh, M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Skilton, J. L.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hinton, J. A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Grube, J.] Alder Planetarium, Chicago, IL 60605 USA. RP Bongiorno, SD (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. EM sdb210@astro.psu.edu; afalcone@astro.psu.edu RI Gehrels, Neil/D-2971-2012 FU NASA at Pennsylvania State University [NNX10AK92G, NAS5-00136, NNX09AU07G] FX This work is supported at Pennsylvania State University by NASA grant NNX10AK92G, contract NAS5-00136, and grant NNX09AU07G. NR 19 TC 37 Z9 37 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L11 DI 10.1088/2041-8205/737/1/L11 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800011 ER PT J AU Carlton, AK Borkowski, KJ Reynolds, SP Hwang, U Petre, R Green, DA Krishnamurthy, K Willett, R AF Carlton, Ashley K. Borkowski, Kazimierz J. Reynolds, Stephen P. Hwang, Una Petre, Robert Green, David A. Krishnamurthy, Kalyani Willett, Rebecca TI EXPANSION OF THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE ISM: individual objects (G1.9+0.3); ISM: supernova remnants; X-rays: ISM ID EMISSION; SURROUNDINGS; EJECTA AB We present a measurement of the expansion and brightening of G1.9 + 0.3, the youngest Galactic supernova remnant (SNR), comparing Chandra X-ray images obtained in 2007 and 2009. A simple uniform-expansion model describes the data well, giving an expansion rate of 0.642% +/- 0.049% yr(-1) and a flux increase of 1.7% +/- 1.0% yr(-1). Without deceleration, the remnant age would then be 156 +/- 11 yr, consistent with earlier results. Since deceleration must have occurred, this age is an upper limit; we estimate an age of about 110 yr or an explosion date of about 1900. The flux increase is comparable to reported increases at radio wavelengths. G1.9+0.3 is the only Galactic SNR increasing in flux, with implications for the physics of electron acceleration in shock waves. C1 [Carlton, Ashley K.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. [Borkowski, Kazimierz J.; Reynolds, Stephen P.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Hwang, Una; Petre, Robert] NASA GSFC, Greenbelt, MD 20771 USA. [Green, David A.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Krishnamurthy, Kalyani; Willett, Rebecca] Duke Univ, Durham, NC 27708 USA. RP Carlton, AK (reprint author), Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. EM carlak7@wfu.edu RI Green, David/E-9609-2010; Willett, Rebecca/G-6930-2012; OI Green, David/0000-0003-3189-9998; , /0000-0002-7463-6007; Willett, Rebecca/0000-0002-8109-7582 FU NASA [G09-0062X] FX This work was supported by NASA through Chandra General Observer Program grant G09-0062X. A. K. C. thanks E. Carlson for discussions and helpful comments on the manuscript. NR 20 TC 16 Z9 16 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L22 DI 10.1088/2041-8205/737/1/L22 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800022 ER PT J AU Harra, LK Sterling, AC Gomory, P Veronig, A AF Harra, Louise K. Sterling, Alphonse C. Goemoery, Peter Veronig, Astrid TI SPECTROSCOPIC OBSERVATIONS OF A CORONAL MORETON WAVE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: coronal mass ejections (CMEs) ID MASS EJECTION; SOLAR-FLARE; EIT WAVES; HINODE; STEREO; VIEW AB We observed a coronal wave (EIT wave) on 2011 February 16, using EUV imaging data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) and EUV spectral data from the Hinode/EUV Imaging Spectrometer (EIS). The wave accompanied an M1.6 flare that produced a surge and a coronal mass ejection (CME). EIS data of the wave show a prominent redshifted signature indicating line-of-sight velocities of similar to 20 km s(-1) or greater. Following the main redshifted wave front, there is a low-velocity period (and perhaps slightly blueshifted), followed by a second redshift somewhat weaker than the first; this progression may be due to oscillations of the EUV atmosphere set in motion by the initial wave front, although alternative explanations may be possible. Along the direction of the EIS slit the wave front's velocity was similar to 500 km s(-1), consistent with its apparent propagation velocity projected against the solar disk as measured in the AIA images, and the second redshifted feature had propagation velocities between similar to 200 and 500 km s(-1). These findings are consistent with the observed wave being generated by the outgoing CME, as in the scenario for the classic Moreton wave. This type of detailed spectral study of coronal waves has hitherto been a challenge, but is now possible due to the availability of concurrent AIA and EIS data. C1 [Harra, Louise K.] UCL Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Sterling, Alphonse C.] NASA, George C Marshall Space Flight Ctr, VP62, Space Sci Off, Huntsville, AL 35812 USA. [Goemoery, Peter] Slovak Acad Sci, Astron Inst, SK-05960 Tatranska Lomnica, Slovakia. [Veronig, Astrid] Graz Univ, Inst Phys, A-8010 Graz, Austria. RP Harra, LK (reprint author), UCL Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. EM lkh@mssl.ucl.ac.uk; alphonse.sterling@nasa.gov; gomory@astro.sk; astrid.veronig@uni-graz.at RI Veronig, Astrid/B-8422-2009; OI Harra, Louise/0000-0001-9457-6200 FU NASA's Science Mission Directorate through the LWS TRT; Solar Physics Supporting Research and Technology programs; Austrian Science Fund (FWF) [P20867-N16]; VEGA [2/0064/09] FX We are grateful to the anonymous referee for helping us improve the clarity of the Letter. We thank R. L. Moore and N. Gopalswamy for helpful discussions. A.C.S. was supported by NASA's Science Mission Directorate through the LWS TR&T and the Solar Physics Supporting Research and Technology programs. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner and NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (UK), NASA (USA), ESA, and NSC (Norway). A. V. acknowledges the Austrian Science Fund (FWF): P20867-N16. P. G. acknowledges the support of the VEGA grant 2/0064/09. NR 22 TC 25 Z9 26 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L4 DI 10.1088/2041-8205/737/1/L4 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800004 ER PT J AU Jennings, DE Cottini, V Nixon, CA Flasar, FM Kunde, VG Samuelson, RE Romani, PN Hesman, BE Carlson, RC Gorius, NJP Coustenis, A Tokano, T AF Jennings, D. E. Cottini, V. Nixon, C. A. Flasar, F. M. Kunde, V. G. Samuelson, R. E. Romani, P. N. Hesman, B. E. Carlson, R. C. Gorius, N. J. P. Coustenis, A. Tokano, T. TI SEASONAL CHANGES IN TITAN'S SURFACE TEMPERATURES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: individual (Titan); planets and satellites: surfaces; radiation mechanisms: thermal; radiative transfer ID COMPOSITE INFRARED SPECTROMETER; MIDLATITUDE CLOUDS; ATMOSPHERE; SPECTRA; DYNAMICS; CIRCULATION; TROPOSPHERE; PAIRS AB Seasonal changes in Titan's surface brightness temperatures have been observed by Cassini in the thermal infrared. The Composite Infrared Spectrometer measured surface radiances at 19 mu m in two time periods: one in late northern winter (LNW; L(s) = 335 degrees) and another centered on northern spring equinox (NSE; L(s) = 0 degrees). In both periods we constructed pole-to-pole maps of zonally averaged brightness temperatures corrected for effects of the atmosphere. Between LNW and NSE a shift occurred in the temperature distribution, characterized by a warming of similar to 0.5 K in the north and a cooling by about the same amount in the south. At equinox the polar surface temperatures were both near 91 K and the equator was at 93.4 K. We measured a seasonal lag of Delta L(S) similar to 9 degrees in the meridional surface temperature distribution, consistent with the post-equinox results of Voyager 1 as well as with predictions from general circulation modeling. A slightly elevated temperature is observed at 65 degrees S in the relatively cloud-free zone between the mid-latitude and southern cloud regions. C1 [Jennings, D. E.; Cottini, V.; Nixon, C. A.; Flasar, F. M.; Kunde, V. G.; Samuelson, R. E.; Romani, P. N.; Hesman, B. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cottini, V.; Nixon, C. A.; Kunde, V. G.; Samuelson, R. E.; Hesman, B. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Carlson, R. C.; Gorius, N. J. P.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Coustenis, A.] LESIA, Observ Paris Meudon, F-92195 Meudon, France. [Tokano, T.] Univ Cologne, Inst Geophys & Meteorol, D-50923 Cologne, Germany. RP Jennings, DE (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM donald.e.jennings@nasa.gov RI Nixon, Conor/A-8531-2009; Flasar, F Michael/C-8509-2012; Romani, Paul/D-2729-2012; Jennings, Donald/D-7978-2012 OI Nixon, Conor/0000-0001-9540-9121; FU NASA's Cassini mission; DFG FX We acknowledge support from NASA's Cassini mission and Cassini Data Analysis Program. T. T. was supported by DFG. NR 37 TC 22 Z9 22 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L15 DI 10.1088/2041-8205/737/1/L15 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800015 ER PT J AU Mainzer, A Grav, T Masiero, J Bauer, J Wright, E Cutri, RM Walker, R McMillan, RS AF Mainzer, A. Grav, T. Masiero, J. Bauer, J. Wright, E. Cutri, R. M. Walker, R. McMillan, R. S. TI THERMAL MODEL CALIBRATION FOR MINOR PLANETS OBSERVED WITH WISE/NEOWISE: COMPARISON WITH INFRARED ASTRONOMICAL SATELLITE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE atlases; catalogs; infrared: general; minor planets, asteroids: general ID NEAR-EARTH ASTEROIDS; SURVEY-EXPLORER; PHOTOMETRY; IRAS AB With thermal infrared observations detected by the NEOWISE project, we have measured diameters for 1742 minor planets that were also observed by the Infrared Astronomical Satellite (IRAS). We have compared the diameters and albedo derived by applying a spherical thermal model to the objects detected by NEOWISE and find that they are generally in good agreement with the IRAS values. We have shown that diameters computed from NEOWISE data are often less systematically biased than those found with IRAS. This demonstrates that the NEOWISE data set can provide accurate physical parameters for the > 157,000 minor planets that were detected by NEOWISE. C1 [Mainzer, A.; Masiero, J.; Bauer, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Grav, T.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Bauer, J.; Cutri, R. M.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Wright, E.] UCLA Astron, Los Angeles, CA 90095 USA. [Walker, R.] Monterey Inst Res Astron, Monterey, CA USA. [McMillan, R. S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Mainzer, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM amainzer@jpl.nasa.gov OI Masiero, Joseph/0000-0003-2638-720X FU National Aeronautics and Space Administration; Planetary Science Division of the National Aeronautics and Space Administration FX This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This publication also makes use of data products from NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology, funded by the Planetary Science Division of the National Aeronautics and Space Administration. We gratefully acknowledge the extraordinary services specific to NEOWISE contributed by the International Astronomical Union's Minor Planet Center, operated by the Harvard-Smithsonian Center for Astrophysics, and the Central Bureau for Astronomical Telegrams, operated by Harvard University. We acknowledge use of NASA's Planetary Data System. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of NASA's Astrophysics Data System. NR 23 TC 21 Z9 21 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L9 DI 10.1088/2041-8205/737/1/L9 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800009 ER PT J AU Paquette, JA Nuth, JA AF Paquette, John A. Nuth, Joseph A., III TI THE LACK OF CHEMICAL EQUILIBRIUM DOES NOT PRECLUDE THE USE OF CLASSICAL NUCLEATION THEORY IN CIRCUMSTELLAR OUTFLOWS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrochemistry; circumstellar matter; methods: numerical; stars: AGB and post-AGB; stars: winds, outflows ID ASTROPHYSICAL ENVIRONMENTS; VAPOR-PRESSURE; DUST FORMATION; STARS; CONDENSATION; GROWTH; GRAINS; WINDS; SIO AB Classical nucleation theory (CNT) has been used in models of dust nucleation in circumstellar outflows around oxygen-rich asymptotic giant branch stars. One objection to the application of CNT to astrophysical systems of this sort is that an equilibrium distribution of clusters (assumed by CNT) is unlikely to exist in such conditions due to a low collision rate of condensable species. A model of silicate grain nucleation and growth was modified to evaluate the effect of a nucleation flux orders of magnitude below the equilibrium value. The results show that a lack of chemical equilibrium has only a small effect on the ultimate grain distribution. C1 [Paquette, John A.] NASA, Goddard Space Flight Ctr, Astrochem Lab, Greenbelt, MD 20771 USA. [Nuth, Joseph A., III] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. RP Paquette, JA (reprint author), NASA, Goddard Space Flight Ctr, Astrochem Lab, Code 691, Greenbelt, MD 20771 USA. RI Nuth, Joseph/E-7085-2012 FU NASA FX J.A.P. acknowledges support from NASA's Astrophysics Data Program. J.A.N. acknowledges support from NASA's Cosmochemistry Program. NR 21 TC 6 Z9 6 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L6 DI 10.1088/2041-8205/737/1/L6 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800006 ER PT J AU Stello, D Huber, D Kallinger, T Basu, S Mosser, B Hekker, S Mathur, S Garcia, RA Bedding, TR Kjeldsen, H Gilliland, RL Verner, GA Chaplin, WJ Benomar, O Meibom, S Grundahl, F Elsworth, YP Molenda-Zakowicz, J Szabo, R Christensen-Dalsgaard, J Tenenbaum, P Twicken, JD Uddin, K AF Stello, Dennis Huber, Daniel Kallinger, Thomas Basu, Sarbani Mosser, Benoit Hekker, Saskia Mathur, Savita Garcia, Rafael A. Bedding, Timothy R. Kjeldsen, Hans Gilliland, Ronald L. Verner, Graham A. Chaplin, William J. Benomar, Othman Meibom, Soren Grundahl, Frank Elsworth, Yvonne P. Molenda-Zakowicz, Joanna Szabo, Robert Christensen-Dalsgaard, Jorgen Tenenbaum, Peter Twicken, Joseph D. Uddin, Kamal TI AMPLITUDES OF SOLAR-LIKE OSCILLATIONS: CONSTRAINTS FROM RED GIANTS IN OPEN CLUSTERS OBSERVED BY KEPLER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: general; open clusters and associations: individual (NGC 6791, NGC 6819, NGC 6811); stars: interiors; stars: oscillations ID MAIN-SEQUENCE STARS; MULTISITE CAMPAIGN; ASTEROSEISMOLOGY; EVOLUTION; PROCYON; MODELS; ISOCHRONES; PARAMETERS; PHYSICS AB Scaling relations that link asteroseismic quantities to global stellar properties are important for gaining understanding of the intricate physics that underpins stellar pulsations. The common notion that all stars in an open cluster have essentially the same distance, age, and initial composition implies that the stellar parameters can be measured to much higher precision than what is usually achievable for single stars. This makes clusters ideal for exploring the relation between the mode amplitude of solar-like oscillations and the global stellar properties. We have analyzed data obtained with NASA's Kepler space telescope to study solar-like oscillations in 100 red giant stars located in either of the three open clusters, NGC 6791, NGC 6819, and NGC 6811. By fitting the measured amplitudes to predictions from simple scaling relations that depend on luminosity, mass, and effective temperature, we find that the data cannot be described by any power of the luminosity-to-mass ratio as previously assumed. As a result we provide a new improved empirical relation which treats luminosity and mass separately. This relation turns out to also work remarkably well for main-sequence and subgiant stars. In addition, the measured amplitudes reveal the potential presence of a number of previously unknown unresolved binaries in the red clump in NGC 6791 and NGC 6819, pointing to an interesting new application for asteroseismology as a probe into the formation history of open clusters. C1 [Stello, Dennis; Huber, Daniel; Bedding, Timothy R.; Benomar, Othman] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Kallinger, Thomas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Kallinger, Thomas] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Basu, Sarbani] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Mosser, Benoit] Univ Paris 07, Univ Paris 06, CNRS, Observ Paris,LESIA, F-92195 Meudon, France. [Hekker, Saskia] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Mathur, Savita] NCAR, High Altitude Observ, Boulder, CO 80307 USA. [Garcia, Rafael A.] Univ Paris 7 Diderot, IRFU SAp, Lab AIM, Ctr Saclay,CEA DSM CNRS, F-91191 Gif Sur Yvette, France. [Kjeldsen, Hans; Grundahl, Frank; Christensen-Dalsgaard, Jorgen] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Verner, Graham A.; Chaplin, William J.; Elsworth, Yvonne P.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Verner, Graham A.] Queen Mary Univ London, Astron Unit, London, England. [Meibom, Soren] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Molenda-Zakowicz, Joanna] Uniwersytetu Wroclawskiego, Inst Astronomiczny, PL-51622 Wroclaw, Poland. [Szabo, Robert] Hungarian Acad Sci, Konkoly Observ, H-1121 Budapest, Hungary. [Tenenbaum, Peter; Twicken, Joseph D.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. NASA, Ames Res Ctr, Orbital Sci Corp, Moffett Field, CA 94035 USA. RP Stello, D (reprint author), Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. OI Kallinger, Thomas/0000-0003-3627-2561; Bedding, Timothy/0000-0001-5943-1460; Szabo, Robert/0000-0002-3258-1909; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776 FU NASA's Science Mission Directorate; ARC; NWO; NSF; Polish-Ministry [N N203 405139]; Lendulet-program OTKA [K83790, MB08C 81013] FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. We thank the entire Kepler team without whom this investigation would not have been possible. We acknowledge support from the ARC, NWO, NSF, Polish-Ministry grant N N203 405139, and Lendulet-program OTKA grants K83790 and MB08C 81013. NR 50 TC 33 Z9 33 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L10 DI 10.1088/2041-8205/737/1/L10 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800010 ER PT J AU Winn, JN Matthews, JM Dawson, RI Fabrycky, D Holman, MJ Kallinger, T Kuschnig, R Sasselov, D Dragomir, D Guenther, DB Moffat, AFJ Rowe, JF Rucinski, S Weiss, WW AF Winn, Joshua N. Matthews, Jaymie M. Dawson, Rebekah I. Fabrycky, Daniel Holman, Matthew J. Kallinger, Thomas Kuschnig, Rainer Sasselov, Dimitar Dragomir, Diana Guenther, David B. Moffat, Anthony F. J. Rowe, Jason F. Rucinski, Slavek Weiss, Werner W. TI A SUPER-EARTH TRANSITING A NAKED-EYE STAR SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; planets and satellites: formation; planets and satellites: interiors; stars: individual (55 Cnc) ID FINE GUIDANCE SENSOR; LIGHT-CURVE PROJECT; 55 CANCRI; HD 17156; LOW-MASS; PLANETS; SYSTEM; TELESCOPE; PHOTOMETRY; SEARCH AB We have detected transits of the innermost planet "e" orbiting 55 Cnc (V = 6.0), based on two weeks of nearly continuous photometric monitoring with the MOST space telescope. The transits occur with the period (0.74 days) and phase that had been predicted by Dawson & Fabrycky, and with the expected duration and depth for the crossing of a Sun-like star by a hot super-Earth. Assuming the star's mass and radius to be 0.963(-0.029)(+0.051) M-circle dot and 0.943+/-0.010 R-circle dot, the planet's mass, radius, and mean density are 8.63+/-0.35 M-circle plus, 2.00+/-0.14 R-circle plus, and 5.9(-1.1)(+1.5) g cm(-3), respectively. The mean density is comparable to that of Earth, despite the greater mass and consequently greater compression of the interior of 55 Cnc e. This suggests a rock-iron composition supplemented by a significant mass of water, gas, or other light elements. Outside of transits, we detected a sinusoidal signal resembling the expected signal due to the changing illuminated phase of the planet, but with a full range (168 +/- 70 ppm) too large to be reflected light or thermal emission. This signal has no straightforward interpretation and should be checked with further observations. The host star of 55 Cnc e is brighter than that of any other known transiting planet, which will facilitate future investigations. C1 [Winn, Joshua N.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Winn, Joshua N.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Matthews, Jaymie M.; Kallinger, Thomas; Dragomir, Diana] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Dawson, Rebekah I.; Holman, Matthew J.; Sasselov, Dimitar] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Fabrycky, Daniel] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Kallinger, Thomas; Kuschnig, Rainer; Weiss, Werner W.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Guenther, David B.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Moffat, Anthony F. J.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Rowe, Jason F.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Rucinski, Slavek] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. RP Winn, JN (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. OI Kallinger, Thomas/0000-0003-3627-2561; Dragomir, Diana/0000-0003-2313-467X; Fabrycky, Daniel/0000-0003-3750-0183 FU NSERC (Canada); Austrian Science Fund; FQRNT scholarship; National Science Foundation; NASA [HF-51272.01-A, NNX09AB33G] FX J.M., D.G., A.M., and S.R. thank NSERC (Canada) for financial support. T. K. is supported by a contract to the Canadian Space Agency. R. K. and W. W. were supported by the Austrian Science Fund. D. D. is supported by a FQRNT scholarship. R. D. is supported by a National Science Foundation Graduate Research Fellowship, and D. C. F. by NASA Hubble Fellowship HF-51272.01-A. M. H. and J.W. were supported by NASA Origins award NNX09AB33G. NR 33 TC 110 Z9 110 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L18 DI 10.1088/2041-8205/737/1/L18 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800018 ER PT J AU Burlaga, LF Ness, NF AF Burlaga, L. F. Ness, N. F. TI TRANSITION FROM THE SECTOR ZONE TO THE UNIPOLAR ZONE IN THE HELIOSHEATH: VOYAGER 2 MAGNETIC FIELD OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic fields; solar wind; Sun: heliosphere ID DISTANT HELIOSPHERE; TERMINATION SHOCK; SOLAR-WIND; INTERPLANETARY; AU; STATISTICS; EVOLUTION; PLASMA AB The magnetic polarity pattern observed by Voyager 2 (V2) evolved with time from a nearly equal mixture of positive and negative polarity sectors in the sector zone from 2007.00 to 2007.67 to nearly uniform positive polarity (magnetic fields directed away from the Sun) in the unipolar zone from 2009.6 to 2010.3. This change was caused by the decreasing latitudinal extent of the sector zone, when the minimum extent of the heliospheric current sheet moved northward toward the solar equator as the solar activity associated with solar cycle 23 decreased a minimum in 2010. In the heliosheath, the distribution of daily averages of the magnetic field strength B was lognormal in the sector zone from 2008.83 to 2009.57 and Gaussian in the unipolar zone from 2009.57 to 2010.27. The distribution of daily increments of B was a Tsallis distribution (q-Gaussian distribution) with q = 1.66 +/- 0.01 in the sector zone and approximate to Gaussian (q = 1.01 +/- 0.29) in the unipolar zone. The unipolar region appears to be in a relatively undisturbed equilibrium state. C1 [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ness, N. F.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. RP Burlaga, LF (reprint author), NASA, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA. EM lburlagahsp@verizon.net; nfnudel@yahoo.com FU NASA [NASA NNX 07AW09G, NASA NNX 09AT41G] FX T. McClanahan and S. Kramer provided support for the processing of the data. Daniel Berdichevsky computed the zero level offsets for the instruments. N. F. Ness was partially supported by NASA Grants NASA NNX 07AW09G and NASA NNX 09AT41G to the Catholic University of America. NR 26 TC 15 Z9 15 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2011 VL 737 IS 1 AR 35 DI 10.1088/0004-637X/737/1/35 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800BM UT WOS:000293332200035 ER PT J AU Madhusudhan, N Burrows, A Currie, T AF Madhusudhan, Nikku Burrows, Adam Currie, Thayne TI MODEL ATMOSPHERES FOR MASSIVE GAS GIANTS WITH THICK CLOUDS: APPLICATION TO THE HR 8799 PLANETS AND PREDICTIONS FOR FUTURE DETECTIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; planets and satellites: general; planets and satellites: individual (HR 8799b, HR 8799c, HR 8799d) ID YOUNG SOLAR ANALOG; BROWN DWARFS; T-DWARF; PHOTOSPHERIC ENVIRONMENT; CHEMICAL-EQUILIBRIUM; EVOLUTIONARY MODELS; DUST FORMATION; SPECTROSCOPY; COMPANION; STARS AB We have generated an extensive new suite of massive giant planet atmosphere models and used it to obtain fits to photometric data for the planets HR 8799b, c, and d. We consider a wide range of cloudy and cloud-free models. The cloudy models incorporate different geometrical and optical thicknesses, modal particle sizes, and metallicities. For each planet and set of cloud parameters, we explore grids in gravity and effective temperature, with which we determine constraints on the planet's mass and age. Our new models yield statistically significant fits to the data, and conclusively confirm that the HR 8799 planets have much thicker clouds than those required to explain data for typical L and T dwarfs. Both models with (1) physically thick forsterite clouds and a 60 mu m modal particle size and (2) clouds made of 1 mu m sized pure iron droplets and 1% supersaturation fit the data. Current data are insufficient to accurately constrain the microscopic cloud properties, such as composition and particle size. The range of best-estimated masses for HR 8799b, HR 8799c, and HR 8799d conservatively span 2-12 M-J, 6-13 M-J, and 3-11 M-J, respectively, and imply coeval ages between similar to 10 and similar to 150 Myr, consistent with previously reported stellar ages. The best-fit temperatures and gravities are slightly lower than values obtained by Currie et al. using even thicker cloud models. Finally, we use these models to predict the near-to-mid-IR colors of soon-to-be imaged planets. Our models predict that planet-mass objects follow a locus in some near-to-mid-IR color-magnitude diagrams that is clearly separable from the standard L/T dwarf locus for field brown dwarfs. C1 [Madhusudhan, Nikku; Burrows, Adam] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Currie, Thayne] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Madhusudhan, N (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM nmadhu@astro.princeton.edu; burrows@astro.princeton.edu; thayne.m.currie@nasa.gov FU NASA ATP [NNX07AG80G]; HST [HST-GO-12181.04-A, HST-GO-12314.03-A]; JPL/Spitzer [1417122, 1348668, 1371432, 1377197] FX The authors acknowledge support in part under NASA ATP grant NNX07AG80G, HST grants HST-GO-12181.04-A and HST-GO-12314.03-A, and JPL/Spitzer Agreements 1417122, 1348668, 1371432, and 1377197. We thank David Spiegel, Mike McElwain, Ivan NR 54 TC 79 Z9 79 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2011 VL 737 IS 1 AR 34 DI 10.1088/0004-637X/737/1/34 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800BM UT WOS:000293332200034 ER PT J AU Moses, JI Visscher, C Fortney, JJ Showman, AP Lewis, NK Griffith, CA Klippenstein, SJ Shabram, M Friedson, AJ Marley, MS Freedman, RS AF Moses, Julianne I. Visscher, C. Fortney, J. J. Showman, A. P. Lewis, N. K. Griffith, C. A. Klippenstein, S. J. Shabram, M. Friedson, A. J. Marley, M. S. Freedman, R. S. TI DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; planets and satellites: atmospheres; planets and satellites: composition; planets and satellites: individual (HD 189733b, HD 209458b); stars: individual (HD 189733, HD 209458) ID EXTRASOLAR GIANT PLANETS; INFRARED-EMISSION-SPECTRUM; HOT JUPITER ATMOSPHERES; HUBBLE-SPACE-TELESCOPE; EVALUATED KINETIC-DATA; TITANS UPPER-ATMOSPHERE; DWARF GLIESE 229B; NEPTUNE GJ 436B; BROWN DWARFS; MU-M AB We have developed a one-dimensional photochemical and thermochemical kinetics and diffusion model to study the effects of disequilibrium chemistry on the atmospheric composition of "hot-Jupiter" exoplanets. Here we investigate the coupled chemistry of neutral carbon, hydrogen, oxygen, and nitrogen species on HD 189733b and HD 209458b and we compare the model results with existing transit and eclipse observations. We find that the vertical profiles of molecular constituents are significantly affected by transport-induced quenching and photochemistry, particularly on the cooler HD 189733b; however, the warmer stratospheric temperatures on HD 209458b help maintain thermochemical equilibrium and reduce the effects of disequilibrium chemistry. For both planets, the methane and ammonia mole fractions are found to be enhanced over their equilibrium values at pressures of a few bar to less than an mbar due to transport-induced quenching, but CH4 and NH3 are photochemically removed at higher altitudes. Disequilibrium chemistry also enhances atomic species, unsaturated hydrocarbons (particularly C2H2), some nitriles (particularly HCN), and radicals like OH, CH3, and NH2. In contrast, CO, H2O, N-2, and CO2 more closely follow their equilibrium profiles, except at pressures less than or similar to 1 mu bar, where CO, H2O, and N-2 are photochemically destroyed and CO2 is produced before its eventual high-altitude destruction. The enhanced abundances of CH4, NH3, and HCN are expected to affect the spectral signatures and thermal profiles of HD 189733b and other relatively cool, transiting exoplanets. We examine the sensitivity of our results to the assumed temperature structure and eddy diffusion coefficients and discuss further observational consequences of these models. C1 [Moses, Julianne I.] Space Sci Inst, Boulder, CO 80301 USA. [Visscher, C.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Fortney, J. J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Showman, A. P.; Lewis, N. K.; Griffith, C. A.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Showman, A. P.; Lewis, N. K.; Griffith, C. A.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Klippenstein, S. J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Shabram, M.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Friedson, A. J.] CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91109 USA. [Marley, M. S.; Freedman, R. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Moses, JI (reprint author), Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. EM jmoses@spacescience.org RI Moses, Julianne/I-2151-2013; Marley, Mark/I-4704-2013; OI Moses, Julianne/0000-0002-8837-0035; Marley, Mark/0000-0002-5251-2943; Klippenstein, Stephen/0000-0001-6297-9187; Fortney, Jonathan/0000-0002-9843-4354 FU NASA [NNX10AF65G, NNX10AF64G, NNH09AK24I, NNX11AD64G]; Lunar and Planetary Institute, USRA (NASA) [NCC5-679] FX We thank A. Garcia Munoz for sending us his HD 209458b thermospheric model results, and Michael Line, Kevin Zahnle, and Roger Yelle for interesting chemistry discussions. We gratefully acknowledge support from the NASA Planetary Atmospheres Program grant numbers NNX10AF65G (J.M.), NNX10AF64G (C. V.), NNH09AK24I (S. K.), and now NNX11AD64G. Support for C. V. also provided by the Lunar and Planetary Institute, USRA (NASA Cooperative Agreement NCC5-679). LPI Contribution Number 1622. NR 207 TC 118 Z9 119 U1 8 U2 38 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2011 VL 737 IS 1 AR 15 DI 10.1088/0004-637X/737/1/15 PG 37 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800BM UT WOS:000293332200015 ER PT J AU Nelson, T Mukai, K Orio, M Luna, GJM Sokoloski, JL AF Nelson, T. Mukai, K. Orio, M. Luna, G. J. M. Sokoloski, J. L. TI X-RAY AND ULTRAVIOLET EMISSION FROM THE RECURRENT NOVA RS OPHIUCHI IN QUIESCENCE: SIGNATURES OF ACCRETION AND SHOCKED GAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE novae, cataclysmic variables; ultraviolet: stars; white dwarfs; X-rays: stars ID SYMBIOTIC STARS; CATACLYSMIC VARIABLES; 1985 OUTBURST; WHITE-DWARFS; SPECTROSCOPY; BINARIES; ROSAT; SIMULATIONS; VARIABILITY; EXTINCTION AB RS Ophiuchi is a recurrent nova system that experiences outbursts every similar to 20 years, implying accretion at a high rate onto a massive white dwarf. However, previous X-ray observations of the system in quiescence have detected only faint emission that is difficult to reconcile with the high accretion rate (>2 x 10(-8) M-circle dot yr(-1)) predicted by nova theory for such frequent outbursts. Here, we use new Chandra and XMM-Newton observations obtained 537 and 744 days after the 2006 outburst to constrain both the accretion rate onto the white dwarf and the properties of the nova ejecta at these times. We detect low level UV variability with the XMM-Newton Optical Monitor on day 744 that is consistent with accretion disk flickering, and use this to place a lower limit on the accretion rate at this epoch. The X-ray spectra in both observations are well described by a two component thermal plasma model. We identify the first component as the nova shell, which can emit X-rays for up to a decade after the outburst. The other component likely arises in the accretion disk boundary layer, and can be equally well fit by a single temperature plasma or a cooling flow model. Although the flux of the single temperature model implies an accretion rate that is 40 times too low to power the observed nova outburst rate (assuming that half of the accretion luminosity is emitted as X-rays in the boundary layer), the best-fit cooling flow model implies (M)over dot < 1.2 x 10(-8) M-circle dot yr(-1) 537 days after the outburst, which is within a factor of two of the theoretical accretion rate required to power an outburst every 20 years. Furthermore, we place an upper limit on the accretion rate through an optically thick region of the boundary layer of 2.0 x 10(-8) M-circle dot yr(-1). Thus, these new quiescence data are consistent with the accretion rate expectations of nova theory. Finally, we discuss the possible origins of the low temperature associated with the accretion component, which is a factor of 10 lower than in T CrB, an otherwise similar recurrent nova. C1 [Nelson, T.; Mukai, K.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Nelson, T.; Mukai, K.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Nelson, T.; Mukai, K.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Orio, M.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Orio, M.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Luna, G. J. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Sokoloski, J. L.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. RP Nelson, T (reprint author), Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. EM thomas.nelson@nasa.gov FU NASA [GO9-0027X, NAS8-03060, NNX09AF82G]; NASA-GSFC FX We thank the anonymous referee for detailed comments and suggestions. Support for this work was provided by NASA through Chandra award GO9-0027X issued by the Chandra X-ray Observatory Center, which is operated by the SAO for and on behalf of NASA under contract NAS8-03060, and through award NNX09AF82G (to J.L.S.). This research made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center. T.N. and M.O. acknowledge the support of the NASA-GSFC XMM-Newton program. NR 54 TC 9 Z9 9 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2011 VL 737 IS 1 AR 7 DI 10.1088/0004-637X/737/1/7 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800BM UT WOS:000293332200007 ER PT J AU Hsu, HW Kempf, S Postberg, F Trieloff, M Burton, M Roy, M Moragas-Klostermeyer, G Srama, R AF Hsu, H. -W. Kempf, S. Postberg, F. Trieloff, M. Burton, M. Roy, M. Moragas-Klostermeyer, G. Srama, R. TI Cassini dust stream particle measurements during the first three orbits at Saturn SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; SOLAR-WIND; MAGNETOSPHERIC DYNAMICS; JUPITER; EJECTION; DETECTOR; GRAINS; RING AB Stream particles are nanometer-scale dust particles ejected with speeds >= 100 km s(-1) from both the Jovian and Saturnian systems. Here we report the dynamical analysis of Saturnian stream particles on the basis of observations made by the Cosmic Dust Analyzer on board the Cassini spacecraft during its first three orbits around Saturn. The time span of the presented measurements covers from the beginning of orbit A to the end of orbit C (from the Saturn orbit insertion on 1 July 2004 UTC to 16 January 2005 UTC). During these orbits the Cassini spacecraft was usually located outside but not far from Saturn's magnetosphere. The Cassini observations therefore provide important information on the dynamics of stream particles just ejected from the system. As with earlier observations, two impact populations are identified. These appear as faint but continuous impacts as well as semiregular and energetic impact bursts. Faint impacts from directions close to the Saturn line of sight are recognized as recently ejected stream particles, while energetic dust bursts most probably consist of previously ejected particles that experienced significant acceleration within the solar wind. The presented measurements not only confirm the previous proposed stream particle ejection scenario but also serve as essential inputs for detailed dynamical modeling. C1 [Hsu, H. -W.; Kempf, S.; Postberg, F.; Moragas-Klostermeyer, G.; Srama, R.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hsu, H. -W.; Postberg, F.; Trieloff, M.] Univ Heidelberg, Inst Geowissensch, D-69120 Heidelberg, Germany. [Hsu, H. -W.; Moragas-Klostermeyer, G.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Kempf, S.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, Braunschweig, Germany. [Burton, M.; Roy, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Srama, R.] Univ Stuttgart, Inst Raumfahrtsyst, Stuttgart, Germany. RP Hsu, HW (reprint author), Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany. EM sean.hsu@lasp.colorado.edu OI KEMPF, SASCHA/0000-0001-5236-3004 FU Deutsche Forschungsgemeinschaft at the Max-Planck-Institut fur Kernphysik [KE 1384/1-1]; Deutsche Forschungsgemeinschaft [1385] FX This project was supported by the Deutsche Forschungsgemeinschaft under grant KE 1384/1-1 at the Max-Planck-Institut fur Kernphysik. We acknowledge anonymous referees for their valuable comments. H. W. H thanks his family and Chun-Yu. M. T. and F. P. acknowledge support from Priority Programme 1385, "The first 10 million years of the solar system-a planetary materials approach," funded by the Deutsche Forschungsgemeinschaft. NR 22 TC 9 Z9 9 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 9 PY 2011 VL 116 AR A08213 DI 10.1029/2010JA015959 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 807ST UT WOS:000293920700001 ER PT J AU Thiruppathiraja, C Kumar, S Murugan, V Adaikkappan, P Sankaran, K Alagar, M AF Thiruppathiraja, Chinnasamy Kumar, Subramani Murugan, Vidhyapriya Adaikkappan, Periyakaruppan Sankaran, Krishnan Alagar, Muthukaruppan TI An enhanced immuno-dot blot assay for the detection of white spot syndrome virus in shrimp using antibody conjugated gold nanoparticles probe SO AQUACULTURE LA English DT Article DE White spot syndrome virus; Shrimp; Gold nanoparticles; Antibody; Immunodot-blot assay ID ENVELOPE PROTEIN; WSSV; INFECTION; DIAGNOSIS; ELISA; INDIA; GENE; TIME; PCR AB White Spot Syndrome (WSS) is a worldwide ailment of penaeid shrimp, a lethal and contagious disease in shrimp caused by the White Spot Syndrome Virus (WSSV). It is essential to control; handle early findings and routine screenings under field conditions. Though PCR affirmed sensing of the causative viral nucleic acid has many advantages, for its routine use custom necessitate an advanced equipment and technical expertise. In comparison, protein-based immuno detecting methods are easier to perform by a commoner, but lack of sensitivity due to inadequate signal amplification. In this study, we focused on a sensitive immuno detection method which developed by gold nanoparticles coupled with alkaline phosphatase conjugated secondary antibody in turn recognized primary anti-serum raised against WSSV. We successfully enhanced the sensitivity of immuno-dot blot assay by 80 fold over the conventional method and visually it can be detected up to 1 ng/mL of purified WSSV. The approach described in this study is a prototype for the development of simple and inexpensive diagnostic tool will provide the routine screening of WSS in shrimp farms. (C) 2011 Elsevier B.V. All rights reserved. C1 [Thiruppathiraja, Chinnasamy; Alagar, Muthukaruppan] Anna Univ, Dept Chem Engn, Madras 600025, Tamil Nadu, India. [Kumar, Subramani; Murugan, Vidhyapriya; Sankaran, Krishnan] Anna Univ, Ctr Biotechnol, Madras 600025, Tamil Nadu, India. [Adaikkappan, Periyakaruppan] NASA, Ames Res Ctr, Ctr Nanosci & Nanotechnol, Moffett Field, CA 94035 USA. RP Alagar, M (reprint author), Anna Univ, Dept Chem Engn, Madras 600025, Tamil Nadu, India. EM mkalagar@yahoo.com RI Periyakaruppan, Adaikkappan/B-7398-2013 OI Periyakaruppan, Adaikkappan/0000-0002-0395-6564 FU University Grants Commission and Department of Biotechnology, New Delhi FX Authors dedicate this article to Dr. V. Murugan, Center for Biotechnology, Anna University Chennai for his sweet memories and the authors thank the University Grants Commission and Department of Biotechnology, New Delhi, for their financial support. NR 31 TC 5 Z9 5 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0044-8486 J9 AQUACULTURE JI Aquaculture PD AUG 8 PY 2011 VL 318 IS 3-4 BP 262 EP 267 DI 10.1016/j.aquaculture.2011.06.008 PG 6 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 799DR UT WOS:000293264200002 ER PT J AU Stroeer, A Blackburn, L Camp, J AF Stroeer, A. Blackburn, L. Camp, J. TI Comparison of signals from gravitational wave detectors with instantaneous time-frequency maps SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article ID EMPIRICAL MODE DECOMPOSITION; LIGO AB Gravitational wave astronomy relies on the use of multiple detectors, so that coincident detections may distinguish real signals from instrumental artifacts, and also so that relative timing of signals can provide the sky position of sources. We show that the comparison of instantaneous time-frequency and time-amplitude maps provided by the Hilbert-Huang Transform (HHT) can be used effectively for relative signal timing of common signals, to discriminate between the case of identical coincident signals and random noise coincidences and to provide a classification of signals based on their time-frequency trajectories. The comparison is done with chi(2) goodness-of-fit method which includes contributions from both the instantaneous amplitude and frequency components of the HHT to match two signals in the time domain. This approach naturally allows the analysis of waveforms with strong frequency modulation. C1 [Stroeer, A.] Univ Maryland, CRESST, College Pk, MD 20742 USA. [Stroeer, A.; Blackburn, L.; Camp, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Stroeer, A (reprint author), Univ Texas Brownsville, Ctr Gravitat Wave Astron, 80 Ft Brown, Brownsville, TX 78520 USA. EM astroeer@phys.utb.edu NR 21 TC 2 Z9 2 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD AUG 7 PY 2011 VL 28 IS 15 AR 155001 DI 10.1088/0264-9381/28/15/155001 PG 12 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 788NZ UT WOS:000292453000004 ER PT J AU Hwang, KJ Kuznetsova, MM Sahraoui, F Goldstein, ML Lee, E Parks, GK AF Hwang, K. -J. Kuznetsova, M. M. Sahraoui, F. Goldstein, M. L. Lee, E. Parks, G. K. TI Kelvin-Helmholtz waves under southward interplanetary magnetic field SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID LATITUDE BOUNDARY-LAYER; MAGNETOSPHERIC BOUNDARY; SOLAR-WIND; MAGNETOTAIL BOUNDARY; EARTHS MAGNETOSPHERE; CLUSTER OBSERVATIONS; GEOTAIL OBSERVATIONS; PLASMA TRANSPORT; ENERGY-TRANSFER; MAGNETOPAUSE AB The Kelvin-Helmholtz waves have been observed along the Earth's low-latitude magnetopause and have been suggested to play a certain role in the entry of solar wind plasma into Earth's magnetosphere. In situ observations of the KH waves (KHW) and, in particular, a nonlinear stage of the KH instability, i.e., rolled-up KH vortices (KHVs), have been reported to occur preferentially for northward interplanetary magnetic field (IMF). Using Cluster data, we present the first in situ observation of nonlinearly developed KHW during southward IMF. The analysis reveals that there is a mixture of less-developed and more-developed KHW that shows inconsistent variations in scale size and the magnetic perturbations in the context of the expected evolution of KH structures. A coherence analysis implies that the observed KHW under southward IMF appear to be irregular and intermittent. These irregular and turbulent characteristics are more noticeable than previously reported KHW events that have been detected preferentially during northward IMF. This suggests that under southward IMF KHVs become easily irregular and temporally intermittent, which might explain the preferential in situ detection of KHVs when the IMF is northward. MHD simulation of the present event shows that during southward IMF dynamically active subsolar environments can cause KHV that evolve with considerable intermittency. The MHD simulations appear to reproduce well the qualitative features of the Cluster observations. C1 [Hwang, K. -J.; Kuznetsova, M. M.; Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hwang, K. -J.] Univ Maryland, Goddard Planetary & Heliophys Inst, Baltimore, MD 21201 USA. [Sahraoui, F.] Observ St Maur, Lab Phys Plasmas, CNRS, Ecole Polytech, F-94107 St Maur, France. [Lee, E.] Kyung Hee Univ, Sch Space Res, Yongin 446701, Gyeonggi, South Korea. [Parks, G. K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Hwang, KJ (reprint author), NASA, Goddard Lab Space Flight Ctr, Greenbelt, MD 20771 USA. EM Kyoung-Joo.Hwang@nasa.gov; Maria.M.Kuznetsova@nasa.gov; fouad.sahraoui@lpp.polytechnique.fr; melvyn.l.goldstein@nasa.gov; eslee@khu.ac.kr; parks@ssl.berkeley.edu RI Goldstein, Melvyn/B-1724-2008; Kuznetsova, Maria/F-6840-2012; Lee, Ensang/E-2356-2013; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU NASA; Goddard Space Flight Center; Goddard grant [67394324/NCC5-494] FX This study was supported, in part, by NASA's Cluster mission and, in part, by a Magnetospheric Multiscale Interdisciplinary Science grant at the Goddard Space Flight Center and by Goddard grant 67394324/NCC5-494 to the UMBC/GEST program. We acknowledge all Cluster instrument teams, including PEACE, CIS, STAFF, and FGM staffs and the Cluster Active Archive (http://caa.estec.esa.int/caa) from which all the processed science-level data were downloaded except the CIS data. Simulation results have been provided by the Community Coordinated Modeling Center at Goddard Space Flight Center through their public Runs on Request system (http://ccmc.gsfc.nasa.gov). K.-J. Hwang appreciates helpful advice from Hiroshi Hasegawa. NR 56 TC 31 Z9 31 U1 2 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 5 PY 2011 VL 116 AR A08210 DI 10.1029/2011JA016596 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 804JM UT WOS:000293650100004 ER PT J AU McEwen, AS Ojha, L Dundas, CM Mattson, SS Byrne, S Wray, JJ Cull, SC Murchie, SL Thomas, N Gulick, VC AF McEwen, Alfred S. Ojha, Lujendra Dundas, Colin M. Mattson, Sarah S. Byrne, Shane Wray, James J. Cull, Selby C. Murchie, Scott L. Thomas, Nicolas Gulick, Virginia C. TI Seasonal Flows on Warm Martian Slopes SO SCIENCE LA English DT Article ID GULLY ACTIVITY; MARS; STABILITY; EVAPORATION; STREAKS; BRINES; WET AB Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25 degrees to 40 degrees) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48 degrees S to 32 degrees S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from similar to 250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood. C1 [McEwen, Alfred S.; Ojha, Lujendra; Mattson, Sarah S.; Byrne, Shane] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Dundas, Colin M.] US Geol Survey, Flagstaff, AZ 86001 USA. [Wray, James J.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Cull, Selby C.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Murchie, Scott L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Thomas, Nicolas] Univ Bern, Inst Phys, Bern, Switzerland. [Gulick, Virginia C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gulick, Virginia C.] SETI Inst, Moffett Field, CA 94035 USA. RP McEwen, AS (reprint author), Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. EM mcewen@lpl.arizona.edu RI Byrne, Shane/B-8104-2012; Ojha, Lujendra/B-2805-2013; Wray, James/B-8457-2008; Murchie, Scott/E-8030-2015; OI Wray, James/0000-0001-5559-2179; Murchie, Scott/0000-0002-1616-8751; Dundas, Colin/0000-0003-2343-7224 FU NASA FX This research was supported by NASA's MRO project; we thank them along with the reviewers. All original data reported in this paper are tabulated in the SOM and archived by NASA's Planetary Data System. NR 31 TC 153 Z9 155 U1 11 U2 80 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD AUG 5 PY 2011 VL 333 IS 6043 BP 740 EP 743 DI 10.1126/science.1204816 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 802LH UT WOS:000293512100038 PM 21817049 ER PT J AU Rubincam, DP AF Rubincam, David Parry TI Mars seasonal polar caps as a test of the equivalence principle SO PHYSICAL REVIEW D LA English DT Article ID GRAVITATIONAL-FIELD; ROTATION AB The seasonal polar caps of Mars can be used to test the equivalence principle in general relativity. The north and south caps, which are composed of carbon dioxide, wax and wane with the seasons. If the ratio of the inertial (passive) to gravitational (active) masses of the caps differs from the same ratio for the rest of Mars, then the equivalence principle fails, Newton's third law fails, and the caps will pull Mars one way and then the other with a force aligned with the planet's spin axis. This leads to a secular change in Mars's along-track position in its orbit about the Sun, and to a secular change in the orbit's semimajor axis. The caps are a poor Eotvos test of the equivalence principle, being 4 orders-of-magnitude weaker than laboratory tests and 7 orders-of-magnitude weaker than that found by lunar laser ranging; the reason is the small mass of the caps compared to Mars as a whole. The principal virtue of using Mars is that the caps contain carbon, an element not normally considered in such experiments. The Earth with its seasonal snow cover can also be used for a similar test. C1 NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. RP Rubincam, DP (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. RI Rubincam, David/D-2918-2012 FU NASA FX The paper by David. F. Bartlett and Dave Van Buren [3] and subsequent discussions of it with Bahman Shahid-Saless inspired the present work. I thank an anonymous referee for comments. The support from NASA through a SALMON Proposal by is gratefully acknowledged. NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 4 PY 2011 VL 84 IS 4 AR 042001 DI 10.1103/PhysRevD.84.042001 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 803CC UT WOS:000293556900001 ER PT J AU Chatterjee, A Wayner, PC Plawsky, JL Chao, DF Sicker, RJ Lorik, T Chestney, L Eustace, J Margie, R Zoldak, J AF Chatterjee, Arya Wayner, Peter C., Jr. Plawsky, Joel L. Chao, David F. Sicker, Ronald J. Lorik, Tibor Chestney, Louis Eustace, John Margie, Raymond Zoldak, John TI The Constrained Vapor Bubble Fin Heat Pipe in Microgravity SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID TRIANGULAR MICROGROOVES; CORRELATING EQUATION; FREE CONVECTION; LAMINAR; LIQUIDS AB The Constrained Vapor Bubble (CVB) is a wickless, grooved heat pipe and is the first, full-scale fluids experiment flown on the U.S. module of the International Space Station. The CVB promises to provide new insight into the operation of a heat pipe in space. It is a relatively simple device constructed from a spectrophotometer cuvette and uses pentane as the working fluid. The pentane flows within the corners of the cuvette due to a curvature gradient in the liquid menisci associated with the cuvette corners. The curvature of the liquid interface can be determined by viewing the meniscus through the transparent quartz walls. Extremely accurate temperature and pressure measurements were obtained in addition to the images. In the article, the results from the first two CVB modules-a dry calibration module and a wet heat pipe module-are presented. We show that the axial temperature profiles are significantly different in space. The heat pipes were seen to operate at a higher pressure and higher temperature in space primarily because radiation was the only heat loss mechanism. A fin model was developed to model the data, and Churchill's correlations for natural convection were used to determine the external heat transfer coefficient. Inside evaporation and condensation heat transfer coefficients were regressed from the temperature data. We show that the heat transfer coefficient in microgravity was higher. C1 [Chatterjee, Arya; Wayner, Peter C., Jr.; Plawsky, Joel L.] Rensselaer Polytech Inst, Troy, NY 12181 USA. [Chao, David F.; Sicker, Ronald J.] NASA Glenn Res Ctr, Cleveland, OH USA. [Lorik, Tibor; Chestney, Louis; Eustace, John; Margie, Raymond; Zoldak, John] Zin Technol, Cleveland, OH USA. RP Plawsky, JL (reprint author), Rensselaer Polytech Inst, Troy, NY 12181 USA. EM plawsky@rpi.edu FU National Aeronautics and Space Administration [NNX09AL98G] FX The authors wish to acknowledge NASA astronaut T. J. Creamer for contributing his time voluntarily for this project. We also acknowledge the people from ZIN Technologies for their efforts in the design, construction, and operation of the experiment. NASA's Glenn Research Center provided engineering and science support for this project through many years at NASA. We also would like to acknowledge the Lead Increment Scientist for increment 23-24, for giving us extra crew and operations time. This material is based on work supported by the National Aeronautics and Space Administration under Grant No. NNX09AL98G. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of NASA. NR 15 TC 11 Z9 11 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD AUG 3 PY 2011 VL 50 IS 15 SI SI BP 8917 EP 8926 DI 10.1021/ie102072m PG 10 WC Engineering, Chemical SC Engineering GA 798IN UT WOS:000293196700013 ER PT J AU Le, G Chi, PJ Strangeway, RJ Slavin, JA AF Le, G. Chi, P. J. Strangeway, R. J. Slavin, J. A. TI Observations of a unique type of ULF wave by low-altitude Space Technology 5 satellites SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ION-CYCLOTRON WAVES; HF DOPPLER SOUNDER; GEOMAGNETIC-PULSATIONS; MAGNETIC-FIELD; PI2 PULSATIONS; MAGNETOSPHERE; IONOSPHERE; PLASMA; FREQUENCY; CHAMP AB We report a unique type of ULF waves observed by low-altitude Space Technology 5 (ST-5) constellation mission. ST-5 is a three-microsatellite constellation deployed into a 300 x 4500 km dawn-dusk and Sun-synchronous polar orbit with 105.6 degrees inclination angle. Because of the Earth's rotation and the dipole tilt effect, the spacecraft's dawn-dusk orbit track can reach as low as subauroral latitudes during the course of a day. Whenever the spacecraft traverse the dayside closed field line region at subauroral latitudes, they frequently observe strong transverse oscillations at 30-200 mHz, or in the Pc2-3 frequency range. These Pc2-3 waves appear as wave packets with durations in the order of 5-10 min. As the maximum separations of the ST-5 spacecraft are in the order of 10 min, the three ST-5 satellites often observe very similar wave packets, implying these wave oscillations occur in a localized region. The coordinated ground-based magnetic observations at the spacecraft footprints, however, do not see waves in the Pc2-3 band; instead, the waves appear to be the common Pc4-5 waves associated with field line resonances. We suggest that these unique Pc2-3 waves seen by ST-5 are in fact the Doppler-shifted Pc4-5 waves as a result of rapid traverse of the spacecraft across the resonant field lines azimuthally at low altitudes. The observations with the unique spacecraft dawn-dusk orbits at proper altitudes and magnetic latitudes reveal the azimuthal characteristics of field line resonances. C1 [Le, G.; Slavin, J. A.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Chi, P. J.; Strangeway, R. J.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. RP Le, G (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Code 661, Greenbelt, MD 20771 USA. EM guan.le@nasa.gov; pchi@igpp.ucla.edu; strange@igpp.ucla.edu; james.a.slavin@nasa.gov RI Le, Guan/C-9524-2012; Slavin, James/H-3170-2012 OI Le, Guan/0000-0002-9504-5214; Slavin, James/0000-0002-9206-724X FU NASA [NNX08AF31G]; Canadian Space Agency FX Support to P. Chi at UCLA was in part through NASA grant NNX08AF31G. CARISMA magnetometer data are provided by the Canadian Space Agency. The authors thank I. R. Mann, D. K. Milling, and the rest of the CARISMA team for ground-based magnetometer data. CARISMA is operated by the University of Alberta, funded by the Canadian Space Agency. The authors thank S.-H. Chen for helping with some figures. NR 54 TC 9 Z9 9 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 2 PY 2011 VL 116 AR A08203 DI 10.1029/2011JA016574 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 804JG UT WOS:000293649500004 ER PT J AU Scott, JM Khakoo, A Mackey, JR Haykowsky, MJ Douglas, PS Jones, LW AF Scott, Jessica M. Khakoo, Aarif Mackey, John R. Haykowsky, Mark J. Douglas, Pamela S. Jones, Lee W. TI Modulation of Anthracycline-Induced Cardiotoxicity by Aerobic Exercise in Breast Cancer Current Evidence and Underlying Mechanisms SO CIRCULATION LA English DT Article DE cardioprotection; cardiotoxicity; exercise; women ID CHRONIC HEART-FAILURE; MAGNETIC-RESONANCE SPECTROSCOPY; RANDOMIZED CONTROLLED-TRIAL; ACTIVATED PROTEIN-KINASE; ACETYL-COA CARBOXYLASE; MYOSIN HEAVY-CHAIN; MUSCLE MALONYL-COA; SKELETAL-MUSCLE; DOXORUBICIN CARDIOTOXICITY; VOLUNTARY EXERCISE C1 [Scott, Jessica M.] NASA, Lyndon B Johnson Space Ctr, Univ Space Res Assoc, Houston, TX 77058 USA. [Khakoo, Aarif] Univ Texas MD, Amgen Inc, San Francisco, CA USA. [Mackey, John R.; Haykowsky, Mark J.] Univ Alberta, Edmonton, AB, Canada. [Douglas, Pamela S.; Jones, Lee W.] Duke Univ, Med Ctr, Durham, NC USA. RP Scott, JM (reprint author), NASA, Lyndon B Johnson Space Ctr, Univ Space Res Assoc, 2101 NASA Pkwy, Houston, TX 77058 USA. EM jessica.m.scott@nasa.gov FU Natural Sciences and Engineering Research Council; National Institutes of Health [CA143254, CA142566, CA138634, CA133895, CA125458]; George and Susan Beischer FX This work was supported in part by a Natural Sciences and Engineering Research Council Postdoctoral Fellowship (Dr Scott); National Institutes of Health grants CA143254, CA142566, CA138634, CA133895, and CA125458; and funds from George and Susan Beischer (Dr Jones). NR 92 TC 57 Z9 59 U1 2 U2 8 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0009-7322 J9 CIRCULATION JI Circulation PD AUG 2 PY 2011 VL 124 IS 5 BP 642 EP 650 DI 10.1161/CIRCULATIONAHA.111.021774 PG 9 WC Cardiac & Cardiovascular Systems; Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA 800CZ UT WOS:000293338400025 PM 21810673 ER PT J AU Hunt, LA Mlynczak, MG Marshall, BT Mertens, CJ Mast, JC Thompson, RE Gordley, LL Russell, JM AF Hunt, Linda A. Mlynczak, Martin G. Marshall, B. Thomas Mertens, Christopher J. Mast, Jeffrey C. Thompson, R. Earl Gordley, Larry L. Russell, James M., III TI Infrared radiation in the thermosphere at the onset of solar cycle 24 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID KINETIC TEMPERATURE; SABER EXPERIMENT; LIMB EMISSION AB The effects of solar cycle 24 are now clearly evident in the infrared radiative cooling of the thermosphere as observed by the SABER instrument on the NASA TIMED satellite. After reaching a minimum in 2009, infrared radiative cooling of the thermosphere by nitric oxide (NO) and carbon dioxide (CO(2)) has been steadily increasing. The global infrared power radiated by NO in mid-April 2011 is about four times the minimum value while the CO(2) power is about 15% larger than at the minimum. In addition, the short-term variability of the NO emission has increased and is strongly correlated with increased geomagnetic variability as inferred from the Ap index. The increasing levels of infrared emission are indicative of a warming thermosphere and possibly increasing levels of atomic oxygen and nitric oxide. However the infrared power presently radiated by NO is only about 40% of the maximum value observed by the SABER instrument in late 2002 while the CO(2) power is now about 80% of the maximum observed value. The SABER infrared time series, now approaching 10 years in length, is a unique climate data record for testing the radiative and chemical physics of upper atmosphere general circulation models. Citation: Hunt, L. A., M. G. Mlynczak, B. T. Marshall, C. J. Mertens, J. C. Mast, R. E. Thompson, L. L. Gordley, and J. M. Russell III (2011), Infrared radiation in the thermosphere at the onset of solar cycle 24, Geophys. Res. Lett., 38, L15802, doi:10.1029/2011GL048061. C1 [Hunt, Linda A.; Mast, Jeffrey C.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Mlynczak, Martin G.; Mertens, Christopher J.] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Marshall, B. Thomas; Thompson, R. Earl; Gordley, Larry L.] G&A Tech Software, Newport News, VA 23606 USA. [Russell, James M., III] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. RP Hunt, LA (reprint author), Sci Syst & Applicat Inc, 1 Enterprise Pkwy,Ste 200, Hampton, VA 23666 USA. EM m.g.mlynczak@nasa.gov RI Mlynczak, Martin/K-3396-2012 NR 8 TC 7 Z9 7 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 2 PY 2011 VL 38 AR L15802 DI 10.1029/2011GL048061 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 804GL UT WOS:000293642200004 ER PT J AU Llovel, W Meyssignac, B Cazenave, A AF Llovel, W. Meyssignac, B. Cazenave, A. TI Steric sea level variations over 2004-2010 as a function of region and depth: Inference on the mass component variability in the North Atlantic Ocean SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SATELLITE ALTIMETRY; CIRCULATION; OSCILLATION; RAINFALL; BUDGET; ENSO AB We investigate the regional-ocean depth layer (down to 2000 m) contributions to global mean steric sea level from January 2004 to March 2010, using Argo-based ocean temperature and salinity data from the SCRIPPS Oceanographic Institution database. We find that Indian ocean warming is almost compensated by Atlantic ocean cooling, so that the total global mean steric sea level increases only slightly over the considered period (0.35 +/- 0.30 mm/yr). Salinity variations also contribute, at lower rate, to the observed steric compensation. Meanwhile, the Pacific steric sea level increases only slightly (0.35 +/- 0.25 mm/yr). In the North Atlantic region, the mass component (estimated by the difference between satellite altimetry-based minus steric sea level over the same area) is negatively correlated over 2004-2010 with the steric component. During that period, North Atlantic sea level variability seems mostly driven by the North Atlantic Oscillation (NAO). This is unlike during the previous years (1997 to 2004), a period during which we observe significant correlation between North Atlantic sea level and El Nino-Southern Oscillation (ENSO), with positive sea level corresponding to ENSO cold phases (La Nina). Citation: Llovel, W., B. Meyssignac, and A. Cazenave (2011), Steric sea level variations over 2004-2010 as a function of region and depth: Inference on the mass component variability in the North Atlantic Ocean, Geophys. Res. Lett., 38, L15608, doi:10.1029/2011GL047411. C1 [Llovel, W.; Meyssignac, B.; Cazenave, A.] UPS, IRD, CNRS, CNES,LEGOS, F-31400 Toulouse, France. [Llovel, W.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Llovel, W (reprint author), UPS, IRD, CNRS, CNES,LEGOS, 14 Av Edouard Belin, F-31400 Toulouse, France. EM william.llovel@jpl.nasa.gov RI Meyssignac, Benoit/O-1910-2015; LLOVEL, William/G-6930-2016 NR 21 TC 11 Z9 11 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 2 PY 2011 VL 38 AR L15608 DI 10.1029/2011GL047411 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 804GL UT WOS:000293642200001 ER PT J AU Barnes, NP Walsh, BM Amzajerdian, F Reichle, DJ Busch, GE Carrion, WA AF Barnes, Norman P. Walsh, Brian M. Amzajerdian, Farzin Reichle, Donald J. Busch, George E. Carrion, William A. TI Up conversion measurements in Er:YAG; comparison with 1.6 mu m laser performance SO OPTICAL MATERIALS EXPRESS LA English DT Article ID ENERGY-TRANSFER; IONS AB Up conversion significantly affects Er:YAG lasers. Measurements performed here for low Er concentration are markedly different than reported high Er concentration. The results obtained here are used to predict laser performance and are compared with experimental results. (C) 2011 Optical Society of America C1 [Barnes, Norman P.; Walsh, Brian M.; Amzajerdian, Farzin; Reichle, Donald J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Busch, George E.; Carrion, William A.] Coherent Applicat Inc, Hampton, VA 23681 USA. RP Barnes, NP (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM norman.p.barnes@nasa.gov NR 12 TC 4 Z9 4 U1 0 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2159-3930 J9 OPT MATER EXPRESS JI Opt. Mater. Express PD AUG 1 PY 2011 VL 1 IS 4 BP 678 EP 685 PG 8 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA 875QG UT WOS:000299048100017 ER PT J AU Bristow, TF Milliken, RE AF Bristow, Thomas F. Milliken, Ralph E. TI TERRESTRIAL PERSPECTIVE ON AUTHIGENIC CLAY MINERAL PRODUCTION IN ANCIENT MARTIAN LAKES SO CLAYS AND CLAY MINERALS LA English DT Article DE Authigenic Clay Minerals; Lacustrine Clay Minerals; Martian Phyllosilicates; Mineral Facies; Neoformation; Transformation ID GREEN RIVER FORMATION; OLDUVAI-GORGE; MG-SMECTITE; SALINE LAKE; TRIOCTAHEDRAL SMECTITES; SEPIOLITE-PALYGORSKITE; NONTRONITE FORMATION; CONNECTICUT-VALLEY; SOUTHERN HIGHLANDS; NORTHERN TANZANIA AB The discovery of phyllosilicates in terrains of Noachian age (>3.5 Ga) on Mars implies a period in the planet's history that was characterized by wetter, warmer conditions that may have been more hospitable for life than the cold and dry conditions prevalent today. More specific information about the original locations and mechanisms of clay mineral formation on Mars is not as well constrained, however, in part because the origin of particular clay minerals is often non-unique. For example, Fe and Mg smectite-bearing deposits on Mars may have formed in various environments, including the weathering profiles of basic volcanic rocks, impact-induced hydrothermal sites, or in bodies of standing water. The identification of lacustrine deposits on Mars is of great interest due to their potential for the preservation of organic material, but identifying any given suite of sedimentary rocks as such is difficult when limited to mineralogy and morphology derived from orbital data. Here, the processes and conditions leading to clay mineral formation in lakes and evaporative marine basins on Earth are reviewed, with a focus on the spatial and stratigraphic distribution of clays in these settings. The goal is to provide criteria to determine if certain Martian clay deposits are consistent with such an origin, which in turn will aid in the identification of possible ancient habitable environments on Mars. C1 [Bristow, Thomas F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Milliken, Ralph E.] Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. RP Bristow, TF (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM thomas.f.bristow@nasa.gov NR 127 TC 25 Z9 25 U1 1 U2 19 PU CLAY MINERALS SOC PI CHANTILLY PA 3635 CONCORDE PKWY, STE 500, CHANTILLY, VA 20151-1125 USA SN 0009-8604 EI 1552-8367 J9 CLAY CLAY MINER JI Clay Clay Min. PD AUG PY 2011 VL 59 IS 4 BP 339 EP 358 DI 10.1346/CCMN.2011.0590401 PG 20 WC Chemistry, Physical; Geosciences, Multidisciplinary; Mineralogy; Soil Science SC Chemistry; Geology; Mineralogy; Agriculture GA 858KB UT WOS:000297794500002 ER PT J AU Sakamoto, JS Schock, H Caillat, T Fleurial, JP Maloney, R Lyle, M Ruckle, T Timm, E Zhang, L AF Sakamoto, Jeff S. Schock, H. Caillat, T. Fleurial, J-P. Maloney, R. Lyle, M. Ruckle, T. Timm, E. Zhang, L. TI Skutterudite-Based Thermoelectric Technology for Waste Heat Recovery: Progress Towards a 1 kW Generator SO SCIENCE OF ADVANCED MATERIALS LA English DT Article DE Thermoelectric Generator; Couple; Skutterudite; Aerogel AB The development of skutterudite-based thermoelectric power generation technology described in this work was supported by the DOE Energy Efficiency and Renewable Energy program over the course of the last 6 years. This paper is focused on the initial steps towards the development of kilowatt scale thermoelectric generators for use in waste heat recovery from internal combustion engines. Specifically, the design, development and testing of skutterudite couples and subassemblies as well as the integration of aerogel-based thermal insulation at the device level are reported. It is believed that the data reported herein are some of the first that demonstrate the ability to generate electrical power from skutterudite couples over multiple thermal cycles with negligible degradation in performance. A thermal gradient from 650 C to 50 C was used to generate nominally 1 watt per couple at an estimated 9% efficiency. While the couples in this work were designed to match the heat and electrical flux of the experimental test bed for this work, the essence of the couple technology is believed to be scalable and adaptable for a wide variety of thermoelectric power applications. C1 [Sakamoto, Jeff S.; Maloney, R.; Zhang, L.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Schock, H.; Lyle, M.; Ruckle, T.; Timm, E.] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA. [Caillat, T.; Fleurial, J-P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sakamoto, JS (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. RI Maloney, Ryan/G-3834-2012 OI Maloney, Ryan/0000-0002-6158-1537 NR 20 TC 16 Z9 16 U1 1 U2 27 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1947-2935 J9 SCI ADV MATER JI Sci. Adv. Mater. PD AUG PY 2011 VL 3 IS 4 SI SI BP 621 EP 632 DI 10.1166/sam.2011.1192 PG 12 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 843LH UT WOS:000296672800013 ER PT J AU Uvarov, CA Abdusalyamova, MN Makhmudov, F Star, K Fleurial, JP Kauzlarich, SM AF Uvarov, Catherine A. Abdusalyamova, M. N. Makhmudov, F. Star, Kurt Fleurial, Jean-Pierre Kauzlarich, Susan M. TI The Effect of Tm Substitution on the Thermoelectric Performance of Yb14MnSb11 SO SCIENCE OF ADVANCED MATERIALS LA English DT Article DE 14-1-11; Antimonide; High Temperature Thermoelectric; High zT; Power Generation; Zintl ID TRANSPORT-PROPERTIES; ZINTL PHASES; EFFICIENCY; YB14MN1-XALXSB11; TRANSITION; CHEMISTRY AB The Zintl phase, Yb14MnSb11, has been recently identified as a potential thermoelectric material because of its high figure of merit (zT) above 1000 K. Tuning the carrier concentration with La3+ provided an improved zT at high temperatures. Rare earth elements provide additional tuning through size, electron donor properties, and effects on bonding. The solubility of the rare earth, Tm, was explored to provide chemical pressure and enhance the Seebeck coefficient of Yb14MnSb11. Crystals were prepared via Sn flux synthesis with the compositional fluxes of Yb14-xTmxMnSb11 (x = 0.3 (1), 0.5 (2), 0.7 (3)). The incorporation of Tm does not significantly alter the unit cell parameters of Yb14MnSb11. The content of Tm was probed with wavelength dispersive microprobe analysis and showed that the maximum amount of Tm is 0.44 with the composition being Yb13.34(6)Tm0.44(1)Mn1.04(2)Sb11.19(6). Single crystal compositions of Yb14-xTmxMnSb11 (x = 0.29 (1), 0.40 (2), and 0.44 (3)) were measured. Samples were hot pressed and thermoelectric properties measured from 300-1200 K. The hot pressed pellets showed very similar Tm composition of approximately x = 0.4. All the samples show enhanced Seebeck coefficients and slightly higher electrical resistivity as compared with Yb14MnSb11, as expected for the addition of Tm3+ in this p-type compound. Total thermal conductivity is approximately the same as Yb14MnSb11 leading to a maximum zT of 0.81 at 1195 K for sample 2 with nominal composition Yb13.35(4)Tm0.44(1)Mn1.027(6)Sb11.18(4). C1 [Uvarov, Catherine A.; Kauzlarich, Susan M.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Abdusalyamova, M. N.; Makhmudov, F.] Tajik Acad Sci, Inst Chem, Dushanbe 734063, Tajikistan. [Star, Kurt] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Fleurial, Jean-Pierre] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kauzlarich, SM (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. FU NSF [DMR-0600742]; International Science and Technology Center (ISTC) [T-1597]; NASA FX This research was funded by NSF, DMR-0600742, International Science and Technology Center (ISTC) Project #T-1597, and NASA. The authors gratefully acknowledge Dr. Sarah Roeske and Brian Joy for the microprobe analysis, Bruce Dunn for useful discussion, and the Jet Propulsion Laboratory for hot pressing facilities and the thermoelectric measurements. NR 28 TC 11 Z9 11 U1 1 U2 17 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1947-2935 J9 SCI ADV MATER JI Sci. Adv. Mater. PD AUG PY 2011 VL 3 IS 4 SI SI BP 652 EP 658 DI 10.1166/sam.2011.1196 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 843LH UT WOS:000296672800017 ER PT J AU Kedar, S AF Kedar, Sharon TI Source distribution of ocean microseisms and implications for time-dependent noise tomography SO COMPTES RENDUS GEOSCIENCE LA English DT Article DE Ocean microseism; Time-dependent noise tomography; USA ID AMBIENT SEISMIC NOISE; RAYLEIGH-WAVES; ATLANTIC-OCEAN; NORTH-AMERICA; ATTENUATION AB A qualitative analysis of ocean microseism source distribution observed in North America during fall and winter months was carried out. I review the theory of the origin of ocean microseisms and show that it can be used in conjunction with wave-wave interaction maps to quantify the source distribution anisotropy. It is demonstrated that microseisms generation in the North Atlantic and in the North Pacific Oceans are inherently different. North Atlantic microseisms are generated predominantly in the deep ocean, while North Pacific microseisms are dominated by coastal reflections. In spite of these differences both result from repeated ocean wave patterns that give rise to an anisotropic noise pattern, which cannot be randomized by time averaging. Considering time-varying ambient noise imaging, which aims to resolve a fraction of a percent changes in the crust over short distances, the source anisotropy would introduce a relatively significant error that needs to be accounted for. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kedar, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Sharon.Kedar@jpl.nasa.gov FU National Aeronautics and Space Administration; National Science Foundation [EAR-0838247]; internal Research and Technology Development program FX The work presented here is based in part on work done in collaboration with Dr Michael Longuet-Higgins, Dr Frank Webb, Dr Nicholas Graham, Dr Robert Clayton, and Dr Cathleen Jones. The author wishes to thank Dr Anthony Sibthorpe of the Jet Propulsion Laboratory for his helpful suggestions. The author wishes to also thank the reviewers and editor for their thorough review. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the National Science Foundation Geophysics Program, Project # EAR-0838247, and through internal Research and Technology Development program. NR 27 TC 12 Z9 12 U1 0 U2 5 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0713 J9 CR GEOSCI JI C. R. Geosci. PD AUG-SEP PY 2011 VL 343 IS 8-9 BP 548 EP 557 DI 10.1016/j.crte.2011.04.005 PG 10 WC Geosciences, Multidisciplinary SC Geology GA 843JA UT WOS:000296666900007 ER PT J AU Fischer, T Mercer, E Rungta, N AF Fischer, Topher Mercer, Eric Rungta, Neha TI Symbolically Modeling Concurrent MCAPI Executions SO ACM SIGPLAN NOTICES LA English DT Article DE Languages; Verification; MCAPI; Symbolic Analysis; Multicore; SMT AB Improper use of Inter-Process Communication (IPC) within concurrent systems often creates data races which can lead to bugs that are challenging to discover. Techniques that use Satisfiability Modulo Theories (SMT) problems to symbolically model possible executions of concurrent software have recently been proposed for use in the formal verification of software. In this work we describe a new technique for modeling executions of concurrent software that use a message passing API called MCAPI. Our technique uses an execution trace to create an SMT problem that symbolically models all possible concurrent executions and follows the same sequence of conditional branch outcomes as the provided execution trace. We check if there exists a satisfying assignment to the SMT problem with respect to specific safety properties. If such an assignment exists, it provides the conditions that lead to the violation of the property. We show how our method models behaviors of MCAPI applications that are ignored in previously published techniques. C1 [Fischer, Topher; Mercer, Eric] Brigham Young Univ, Provo, UT 84602 USA. [Rungta, Neha] NASA, Ames Res Ctr, Washington, DC USA. RP Fischer, T (reprint author), Brigham Young Univ, Provo, UT 84602 USA. EM javert42@cs.byu.edu; egm@cs.byu.edu; neha.s.rungta@nasa.gov FU NSF [CCF-0903491]; SRC [2009-TJ-1994] FX This work is supported by NSF CCF-0903491 and SRC 2009-TJ-1994. NR 6 TC 0 Z9 0 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0362-1340 J9 ACM SIGPLAN NOTICES JI ACM Sigplan Not. PD AUG PY 2011 VL 46 IS 8 BP 307 EP 308 PG 2 WC Computer Science, Software Engineering SC Computer Science GA 838CR UT WOS:000296264900037 ER PT J AU Schubert, G Anderson, J Zhang, KK Kong, D Helled, R AF Schubert, Gerald Anderson, John Zhang, Keke Kong, D. Helled, Ravit TI Shapes and gravitational fields of rotating two-layer Maclaurin ellipsoids: Application to planets and satellites SO PHYSICS OF THE EARTH AND PLANETARY INTERIORS LA English DT Article DE Maclaurin spheroid; Planetary interiors; Planetary shape; Rotational flattening of planets; Theory of figures ID NEPTUNE; URANUS; MODELS AB The exact solution for the shape and gravitational field of a rotating two-layer Maclaurin ellipsoid of revolution is compared with predictions of the theory of figures up to third order in the small rotational parameter of the theory of figures. An explicit formula is derived for the external gravitational coefficient J(2) of the exact solution. A new approach to the evaluation of the theory of figures based on numerical integration of ordinary differential equations is presented. The classical Radau-Darwin formula is found not to be valid for the rotational parameter epsilon(2) = Omega(2)/(2 pi G rho(2)) >= 0.17 since the formula then predicts a surface eccentricity that is smaller than the eccentricity of the core-envelope boundary. Interface eccentricity must be smaller than surface eccentricity. In the formula for epsilon(2), Omega is the angular velocity of the two-layer body, rho(2) is the density of the outer layer, and G is the gravitational constant. For an envelope density of 3000 kg m(-3) the failure of the Radau-Darwin formula corresponds to a rotation period of about 3 h. Application of the exact solution and the theory of figures is made to models of Earth, Mars, Uranus, and Neptune. The two-layer model with constant densities in the layers can provide realistic approximations to terrestrial planets and icy outer planet satellites. The two-layer model needs to be generalized to allow for a continuous envelope (outer layer) radial density profile in order to realistically model a gas or ice giant planet. (C) 2011 Elsevier B.V. All rights reserved. C1 [Schubert, Gerald; Helled, Ravit] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Anderson, John] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, Keke; Kong, D.] Univ Exeter, Coll Engn Math & Phys Sci, Dept Math Sci, Exeter EX4 4QF, Devon, England. RP Schubert, G (reprint author), Univ Calif Los Angeles, Dept Earth & Space Sci, 595 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM schubert@ucla.edu FU NSF [0909206]; UK NERC; Leverhulme Trust FX GS and RH acknowledge support from NSF 0909206. KZ is supported by UK NERC and Leverhulme Trust grants. NR 15 TC 6 Z9 6 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-9201 J9 PHYS EARTH PLANET IN JI Phys. Earth Planet. Inter. PD AUG PY 2011 VL 187 IS 3-4 SI SI BP 364 EP 379 DI 10.1016/j.pepi.2011.05.014 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 837MM UT WOS:000296207900025 ER PT J AU Lu, YJ Meyyappan, M Li, J AF Lu, Yijang Meyyappan, M. Li, Jing TI Fabrication of carbon-nanotube-based sensor array and interference study SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID ELECTRONIC NOSE; GAS; SYSTEM AB An array of 32 sensor elements with single-walled carbon nanotubes (SWCNTs) as the sensing medium has been fabricated. The microfabrication approach used allows reduction of the chip size and increases the number of sensor elements in a chip and is amenable for large wafer scale-up. The sensor array chip is designed as an electronic nose for use with the aid of a pattern recognition algorithm. The sensor chips were tested for NO(2) sensing and interfering effects from humidity and a background of chlorine. The results indicate that NO(2) can be detected at low concentration levels of 0.5 ppm in the presence of chlorine at 30 times higher concentrations. The sensor response is affected by humidity, which implies that the training data set for NO(2) detection needs to be generated for multiple humidity levels for interpolation purposes during field use. C1 [Lu, Yijang; Meyyappan, M.; Li, Jing] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Li, J (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Jing.Li-1@nasa.gov NR 24 TC 4 Z9 4 U1 1 U2 7 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD AUG PY 2011 VL 26 IS 16 BP 2017 EP 2023 DI 10.1557/jmr.2011.225 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 836BO UT WOS:000296082300002 ER PT J AU Thompson, DJ AF Thompson, D. J. CA Fermi Large Area Telescope Collabo TI Fermi Gamma-ray Space Telescope: Highlights of the GeV Sky SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Neutrino Oscillation Workshop (NOW) CY SEP 05-11, 2010 CL Otranto, ITALY SP Dept Phys, Sect Istituto Nazl Fisica Nucleare (INFN), Universita Ricerca (MIUR), Italian Ministero Istruzione, Univ Bari & Salento ID LARGE-AREA TELESCOPE; EMISSION; CATALOG; PULSARS; LAT; NEBULA; GALAXY AB Because high-energy gamma rays can be produced by processes that also produce neutrinos, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of potential targets for neutrino observations. Gamma-ray bursts, active galactic nuclei, and supernova remnants are all sites where hadronic, neutrino-producing interactions are plausible. Pulsars, pulsar wind nebulae, and binary sources are all phenomena. that reveal leptonic particle acceleration through their gamma-ray emission. While important to gamma-ray astrophysics, such sources are of less interest to neutrino studies. This talk will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft. C1 [Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Thompson, DJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Thompson, David/D-2939-2012 OI Thompson, David/0000-0001-5217-9135 NR 27 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD AUG PY 2011 VL 217 BP 249 EP 254 DI 10.1016/j.nuclphysbps.2011.04.112 PG 6 WC Physics, Particles & Fields SC Physics GA 825QI UT WOS:000295296500059 ER PT J AU Korolev, AV Emery, EF Strapp, JW Cober, SG Isaac, GA Wasey, M Marcotte, D AF Korolev, A. V. Emery, E. F. Strapp, J. W. Cober, S. G. Isaac, G. A. Wasey, M. Marcotte, D. TI Small Ice Particles in Tropospheric Clouds: Fact or Artifact? Airborne Icing Instrumentation Evaluation Experiment SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Editorial Material ID OPTICAL ARRAY PROBES; CRYSTALS; FSSP C1 [Korolev, A. V.; Strapp, J. W.; Cober, S. G.; Isaac, G. A.; Wasey, M.] Environm Canada, Cloud Phys & Severe Weather Res Sect, Toronto, ON M3H 5T4, Canada. [Emery, E. F.] NASA, Glenn Res Ctr, Cleveland, OH USA. [Marcotte, D.] Natl Res Council Canada, Ottawa, ON, Canada. RP Korolev, AV (reprint author), Environm Canada, Cloud Phys & Severe Weather Res Sect, 4905 Dufferin St, Toronto, ON M3H 5T4, Canada. EM Alexei.Korolev@ec.gc.ca NR 17 TC 119 Z9 121 U1 3 U2 18 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD AUG PY 2011 VL 92 IS 8 BP 967 EP 973 DI 10.1175/2010BAMS3141.1 PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 821CE UT WOS:000294951600002 ER PT J AU Schoch, GC Chao, Y Colas, F Farrara, J McCammon, M Olsson, P Singhal, G AF Schoch, G. Carl Chao, Yi Colas, Francois Farrara, John McCammon, Molly Olsson, Peter Singhal, Gaurav TI AN OCEAN OBSERVING AND PREDICTION EXPERIMENT IN PRINCE WILLIAM SOUND, ALASKA SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID FORECASTING SYSTEM; MODELING SYSTEM; COASTAL CURRENT; VARIABILITY AB Twenty years after the Exxon Valdez oil spill in Alaska a unique field experiment demonstrated an integrated ocean observing system with advanced technologies to enable weather, wave, and ocean circulation forecasting. C1 [Schoch, G. Carl; McCammon, Molly] Alaska Ocean Observing Syst, Anchorage, AK USA. [Chao, Yi] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Chao, Yi; Colas, Francois; Farrara, John] Univ Calif Los Angeles, Los Angeles, CA USA. [Olsson, Peter] Univ Alaska, Alaska Expt Forecast Facil, Anchorage, AK USA. [Singhal, Gaurav] Texas A&M Univ, College Stn, TX USA. [Schoch, G. Carl] Coastwise Serv, Anchorage, AK USA. RP Schoch, GC (reprint author), 1199 Bay Ave, Homer, AK 99603 USA. EM cschoch@alaska.net RI Colas, Francois/B-4920-2012 OI Colas, Francois/0000-0002-5859-6586 FU Alaska Ocean Observing System; Prince William Sound Oil Spill Recovery Institute; National Aeronautics and Space Administration (NASA) Earth Science; Prince William Sound Science Center; Prince William Sound Regional Citizens' Advisory Council FX Funding was provided by the Alaska Ocean Observing System and the Prince William Sound Oil Spill Recovery Institute. Additional funding was provided by the National Aeronautics and Space Administration (NASA) Earth Science. We are especially grateful for the support from NASA Public Health program managers John Haynes and Sue Estes. Support was also provided by the Prince William Sound Science Center and the Prince William Sound Regional Citizens' Advisory Council. The research for Y. Chao was carried out, in part, at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The demonstration project and field experiment investigators include A. Allen, C. Belanger, M. Burdette, R. Campbell, F. Chai, J. Ewald, M. Halverson, E. Howlett, M. Johnson, P. Li, Z. Li, R. McClure, M. Moline, J. C. McWilliams, C. Ohlmann, S. Okkonen, V. Panchang, S. Pegau, and T. Weingartner. We thank the three anonymous reviewers for suggestions that greatly improved an earlier version of this manuscript. NR 17 TC 3 Z9 4 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD AUG PY 2011 VL 92 IS 8 BP 997 EP 1007 DI 10.1175/2011BAMS3023.1 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 821CE UT WOS:000294951600005 ER PT J AU Alvarez-Candal, A Pinilla-Alonso, N Licandro, J Cook, J Mason, E Roush, T Cruikshank, D Gourgeot, F Dotto, E Perna, D AF Alvarez-Candal, A. Pinilla-Alonso, N. Licandro, J. Cook, J. Mason, E. Roush, T. Cruikshank, D. Gourgeot, F. Dotto, E. Perna, D. TI The spectrum of (136199) Eris between 350 and 2350 nm: results with X-Shooter SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Kuiper belt objects: individual: (136199) Eris; instrumentation: spectrographs; techniques: spectroscopic ID TRANS-NEPTUNIAN OBJECTS; DWARF PLANET ERIS; VISIBLE SPECTROSCOPY; LIQUID METHANE; KUIPER-BELT; 2003 UB313; N-2 ICE; PLUTO; SURFACE; IRRADIATION AB Context. X-Shooter is the first second-generation instrument for the ESO-Very Large Telescope. It is a spectrograph covering the entire 300-2480 nm spectral range at once with a high resolving power. These properties enticed us to observe the well-known trans-Neptunian object (136199) Eris during the science verification of the instrument. The target has numerous absorption features in the optical and near-infrared domain that have been observed by different authors, showing differences in these features' positions and strengths. Aims. Besides testing the capabilities of X-Shooter to observe minor bodies, we attempt to constrain the existence of super-volatiles, e. g., CH4, CO and N-2, and in particular we try to understand the physical-chemical state of the ices on Eris' surface. Methods. We observed Eris in the 300-2480 nm range and compared the newly obtained spectra with those available in the literature. We identified several absorption features, measured their positions and depth, and compare them with those of the reflectance of pure methane ice obtained from the optical constants of this ice at 30 K to study shifts in these features' positions and find a possible explanation for their origin. Results. We identify several absorption bands in the spectrum that are all consistent with the presence of CH4 ice. We do not identify bands related to N-2 or CO. We measured the central wavelengths of the bands and compared to those measured in the spectrum of pure CH4 at 30 K finding variable spectral shifts. Conclusions. Based on these wavelength shifts, we confirm the presence of a dilution of CH4 in other ice on the surface of Eris and the presence of pure CH4 that is spatially segregated. The comparison of the centers and shapes of these bands with previous works suggests that the surface is heterogeneous. The absence of the 2160 nm band of N-2 can be explained if the surface temperature is below 35.6 K, the transition temperature between the alpha and beta phases of this ice. Our results, including the reanalysis of data published elsewhere, point to a heterogeneous surface on Eris. C1 [Alvarez-Candal, A.; Gourgeot, F.] European So Observ, Santiago 19, Chile. [Pinilla-Alonso, N.; Cook, J.] NASA, Ames Res Ctr, NASA Post Doctoral Program, Moffett Field, CA 94035 USA. [Licandro, J.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Licandro, J.] Univ La Laguna, Dept Astrofis, Tenerife 38205, Spain. [Mason, E.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Dotto, E.] Osserv Astron Roma, Ist Nazl Astrofis INAF, Rome, Italy. [Perna, D.] Osserv Astron Capodimonte, Ist Nazl Astrofis INAF, Naples, Italy. RP Alvarez-Candal, A (reprint author), European So Observ, Alonso Cordova 3107,Casilla 19001, Santiago 19, Chile. EM aalvarez@eso.org RI Alvarez-Candal, Alvaro/M-4834-2013; OI Dotto, Elisabetta/0000-0002-9335-1656; mason, elena/0000-0003-3877-0484 FU NASA; Spanish "Ministerio de Ciencia e Innovacion" [AYA2008-06202-C03-02]; NPP program FX We would like to thank the X-Shooter team, who made these data available for us. N.P.A. acknowledges the support from NASA Postdoctoral Program administered by Oak Ridge Associated Universities through a contract with NASA. J.L. gratefully acknowledges support from the Spanish "Ministerio de Ciencia e Innovacion" project AYA2008-06202-C03-02. J.C. acknowledges support of the NPP program. We also thank C. Dumas and F. Merlin, who kindly made their (reduced) data available to us, and an anonymous referee for the comments that helped to improve the quality of the manuscript. NR 35 TC 13 Z9 13 U1 2 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2011 VL 532 AR A130 DI 10.1051/0004-6361/201117069 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 807ZS UT WOS:000293942700029 ER PT J AU Leitet, E Bergvall, N Piskunov, N Andersson, BG AF Leitet, E. Bergvall, N. Piskunov, N. Andersson, B. -G. TI Analyzing low signal-to-noise FUSE spectra Confirmation of Lyman continuum escape from Haro 11 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE intergalactic medium; galaxies: starburst; galaxies: fundamental parameters; galaxies: evolution; diffuse radiation; ultraviolet: galaxies ID ULTRAVIOLET-SPECTROSCOPIC-EXPLORER; STAR-FORMING GALAXIES; LY-ALPHA EMITTERS; SPACE-TELESCOPE SEARCH; HIGH-REDSHIFT GALAXIES; BLUE COMPACT GALAXIES; FAR-ULTRAVIOLET; IONIZING-RADIATION; STARBURST GALAXIES; COSMIC REIONIZATION AB Context. Galaxies are believed to be the main providers of Lyman continuum (LyC) photons during the early phases of the cosmic reionization. Little is known however, when it comes to escape fractions and the mechanisms behind the leakage. To learn more, one may look at local objects, but so far only one low-z galaxy has shown any signs of emitting LyC radiation. With data from the Far Ultraviolet Spectroscopic Explorer (FUSE), we previously found an absolute escape fraction of ionizing photons (f(esc)) of 4-10% for the blue compact galaxy Haro 11. However, using a revised version of the reduction pipeline on the same data set, Grimes and collaborators were unable to confirm this and derived an upper limit of f(esc) less than or similar to 2%. Aims. We attempt to determine whether Haro 11 is emitting ionizing radiation to a significant level or not. We also investigate the performance of the reduction pipeline for faint targets such as Haro 11, and introduce a new approach to the background subtraction. Methods. The final version of the reduction pipeline, CalFUSE v3.2, was applied to the same Haro 11 data set as the two previous authors used. At these faint flux levels, both FUSE and CalFUSE are pushed to their limits, and a detailed analysis was undertaken to monitor the performance of the pipeline. We show that non-simultaneous background estimates are insuffient when working with data of low signal-to-noise ratio (S/N), and a new background model was developed based on a direct fit to the detector response. Results. We find that one has to be very careful when using CalFUSE v3.2 on low S/N data, and especially when dealing with sources where signal might originate from off-center regions. Applying the new background fit, a significant signal is detected in the LyC in both detector segments covering these wavelengths. Thus, the leakage is confirmed with a flux density of f(900) = 4.0 x 10(-15) erg s(-1) cm(-2) angstrom(-1) (S/N = 4.6), measured on the airglow free regions in the LyC for the night-only data. This corresponds to an absolute escape fraction of ionizing photons from Haro 11 of f(esc) = 3.3 +/- 0.7%. We confirm these results by investigating the two-dimensional data, the count rates, and the residual flux in CII lambda 1036 angstrom. C1 [Leitet, E.; Bergvall, N.; Piskunov, N.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Andersson, B. -G.] NASA, Ames Res Ctr, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. RP Leitet, E (reprint author), Uppsala Univ, Dept Phys & Astron, Box 515, S-75120 Uppsala, Sweden. EM elisabet.leitet@fysast.uu.se; nils.bergvall@fysast.uu.se; nikolai.piskunov@fysast.uu.se; bgandersson@sofia.usra.edu OI Andersson, B-G/0000-0001-6717-0686 FU Swedish Space Board; Swedish Research Council; NASA [NAS5-26555]; NASA Office of Space Science [NAG5-7584] FX This work was supported by the Swedish Space Board. N.B. also acknowledges support from the Swedish Research Council.; Some of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts. NR 59 TC 23 Z9 23 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2011 VL 532 AR A107 DI 10.1051/0004-6361/201015654 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 807ZS UT WOS:000293942700006 ER PT J AU Rosenberg, MJF Berne, O Boersma, C Allamandola, LJ Tielens, AGGM AF Rosenberg, M. J. F. Berne, O. Boersma, C. Allamandola, L. J. Tielens, A. G. G. M. TI Coupled blind signal separation and spectroscopic database fitting of the mid infrared PAH features SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; photon-dominated region (PDR); ISM: lines and bands; infrared: ISM ID POLYCYCLIC AROMATIC-HYDROCARBONS; EMISSION FEATURES; INTERSTELLAR-MEDIUM; PHOTODISSOCIATION REGIONS; MICRON REGION; SMALL GRAINS; FAR-IR; MOLECULES; SPECTRA; BANDS AB Context. The aromatic infrared bands (AIBs) observed in the mid infrared spectrum of galactic and extragalactic sources are attributed to polycyclic aromatic hydrocarbons (PAHs). Recently, two new approaches have been developed to analyze the variations of AIBs in terms of chemical evolution of PAH species: blind signal separation (BSS) and the NASA Ames PAH IR Spectroscopic Database fitting tool. Aims. We aim to study AIBs in a photo-dissociation region (PDR) since in these regions, as the radiation environment changes, the evolution of AIBs are observed. Methods. We observe the NGC 7023-north west (NW) PDR in the mid-infrared (10-19.5 mu m) using the InfraRed Spectrometer (IRS), on board Spitzer, in the high-resolution, short wavelength mode. Clear variations are observed in the spectra, most notably the ratio of the 11.0 to 11.2 mu m bands, the peak position of the 11.2 and 12.0 mu m bands, and the degree of asymmetry of the 11.2 mu m band. The observed variations appear to change as a function of position within the PDR. We aim to explain these variations by a change in the abundances of the emitting components of the PDR. A blind signal separation (BSS) method, i.e. a Non-Negative Matrix Factorization algorithm is applied to separate the observed spectrum into components. Using the NASA Ames PAH IR Spectroscopic Database, these extracted signals are fit. The observed signals alone were also fit using the database and these components are compared to the BSS components. Results. Three component signals were extracted from the observation using BSS. We attribute the three signals to ionized PAHs, neutral PAHs, and very small grains (VSGs). The fit of the BSS extracted spectra with the PAH database further confirms the attribution to PAH(+) and PAH(0) and provides confidence in both methods for producing reliable results. Conclusions. The 11.0 mu m feature is attributed to PAH(+) while the 11.2 mu m band is attributed to PAH(0). The VSG signal shows a characteristically asymmetric broad feature at 11.3 mu m with an extended red wing. By combining the NASA Ames PAH IR Spectroscopic Database fit with the BSS method, the independent results of each method can be confirmed and some limitations of each method are overcome. C1 [Rosenberg, M. J. F.; Berne, O.; Tielens, A. G. G. M.] Leiden Univ, Sterrewacht Leiden, NL-2333 CA Leiden, Netherlands. [Rosenberg, M. J. F.] Int Space Univ, F-67400 Illkirch Graffenstaden, France. [Boersma, C.; Allamandola, L. J.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP Rosenberg, MJF (reprint author), Leiden Univ, Sterrewacht Leiden, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. EM rosenberg@strw.leidenuniv.nl; Christiaan.Boersma@nasa.gov; Louis.J.Allamandola@nasa.gov RI Boersma, Christiaan/L-7696-2014 OI Boersma, Christiaan/0000-0002-4836-217X FU NASA; ISU; National Aeronautics and SPace Administration's Earth Science Technology Office [NCC5-626]; California Institute of Technology; European Research Council [246976] FX This work was conducted by M. Rosenberg in part fulfillment of the M.Sc. Degree in Space Studies at the International Space University (ISU), Strasbourg, France. The author also acknowledges M.Sc. scholarship support from ISU. L. J. Allamandola acknowledges support from NASA's Astrobiology and Laboratory Astrophysics Program. We acknowledge B. Joalland for fruitful discussions on the spectral properties of SiPAH complexes. This research made use of Montage, funded by the National Aeronautics and SPace Administration's Earth Science Technology Office, Computation Technologies Project, under Cooperative Agreement Number NCC5-626 between NASA and the California Institute of Technology. Montage is maintained by the NASA/IPAC Infrared Science Archive. C. Boersma acknowledges support by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. ERC grant: studies of interstellar PAH at Leiden Observatory are supported through advanced-ERC grant 246976 from the European Research Council. The authors also thank the referee for his/her time, comments, and suggestions. NR 50 TC 23 Z9 23 U1 0 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2011 VL 532 AR A128 DI 10.1051/0004-6361/201016340 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 807ZS UT WOS:000293942700027 ER PT J AU Aihara, H Prieto, CA An, D Anderson, SF Aubourg, E Balbinot, E Beers, TC Berlind, AA Bickerton, SJ Bizyaev, D Blanton, MR Bochanski, JJ Bolton, AS Bovy, J Brandt, WN Brinkmann, J Brown, PJ Brownstein, JR Busca, NG Campbell, H Carr, MA Chen, YM Chiappini, C Comparat, J Connolly, N Cortes, M Croft, RAC Cuesta, AJ da Costa, LN Davenport, JRA Dawson, K Dhital, S Ealet, A Ebelke, GL Edmondson, EM Eisenstein, DJ Escoffier, S Esposito, M Evans, ML Fan, XH Castella, BF Font-Ribera, A Frinchaboy, PM Ge, J Gillespie, BA Gilmore, G Hernandez, JIG Gott, JR Gould, A Grebel, EK Gunn, JE Hamilton, JC Harding, P Harris, DW Hawley, SL Hearty, FR Ho, S Hogg, DW Holtzman, JA Honscheid, K Inada, N Ivans, II Jiang, LH Johnson, JA Jordan, C Jordan, WP Kazin, EA Kirkby, D Klaene, MA Knapp, GR Kneib, JP Kochanek, CS Koesterke, L Kollmeier, JA Kron, RG Lampeitl, H Lang, D Le Goff, JM Lee, YS Lin, YT Long, DC Loomis, CP Lucatello, S Lundgren, B Lupton, RH Ma, ZB MacDonald, N Mahadevan, S Maia, MAG Makler, M Malanushenko, E Malanushenko, V Mandelbaum, R Maraston, C Margala, D Masters, KL McBride, CK McGehee, PM McGreer, ID Menard, B Miralda-Escude, J Morrison, HL Mullally, F Muna, D Munn, JA Murayama, H Myers, AD Naugle, T Neto, AF Nguyen, DC Nichol, RC O'Connell, RW Ogando, RLC Olmstead, MD Oravetz, DJ Padmanabhan, N Palanque-Delabrouille, N Pan, KK Pandey, P Paris, I Percival, WJ Petitjean, P Pfaffenberger, R Pforr, J Phleps, S Pichon, C Pieri, MM Prada, F Price-Whelan, AM Raddick, MJ Ramos, BHF Reyle, C Rich, J Richards, GT Rix, HW Robin, AC Rocha-Pinto, HJ Rockosi, CM Roe, NA Rollinde, E Ross, AJ Ross, NP Rossetto, BM Sanchez, AG Sayres, C Schlegel, DJ Schlesinger, KJ Schmidt, SJ Schneider, DP Sheldon, E Shu, YP Simmerer, J Simmons, AE Sivarani, T Snedden, SA Sobeck, JS Steinmetz, M Strauss, MA Szalay, AS Tanaka, M Thakar, AR Thomas, D Tinker, JL Tofflemire, BM Tojeiro, R Tremonti, CA Vandenberg, J Magana, MV Verde, L Vogt, NP Wake, DA Wang, J Weaver, BA Weinberg, DH White, M White, SDM Yanny, B Yasuda, N Yeche, C Zehavi, I AF Aihara, Hiroaki Allende Prieto, Carlos An, Deokkeun Anderson, Scott F. Aubourg, Eric Balbinot, Eduardo Beers, Timothy C. Berlind, Andreas A. Bickerton, Steven J. Bizyaev, Dmitry Blanton, Michael R. Bochanski, John J. Bolton, Adam S. Bovy, Jo Brandt, W. N. Brinkmann, J. Brown, Peter J. Brownstein, Joel R. Busca, Nicolas G. Campbell, Heather Carr, Michael A. Chen, Yanmei Chiappini, Cristina Comparat, Johan Connolly, Natalia Cortes, Marina Croft, Rupert A. C. Cuesta, Antonio J. da Costa, Luiz N. Davenport, James R. A. Dawson, Kyle Dhital, Saurav Ealet, Anne Ebelke, Garrett L. Edmondson, Edward M. Eisenstein, Daniel J. Escoffier, Stephanie Esposito, Massimiliano Evans, Michael L. Fan, Xiaohui Femenia Castella, Bruno Font-Ribera, Andreu Frinchaboy, Peter M. Ge, Jian Gillespie, Bruce A. Gilmore, G. Gonzalez Hernandez, Jonay I. Gott, J. Richard Gould, Andrew Grebel, Eva K. Gunn, James E. Hamilton, Jean-Christophe Harding, Paul Harris, David W. Hawley, Suzanne L. Hearty, Frederick R. Ho, Shirley Hogg, David W. Holtzman, Jon A. Honscheid, Klaus Inada, Naohisa Ivans, Inese I. Jiang, Linhua Johnson, Jennifer A. Jordan, Cathy Jordan, Wendell P. Kazin, Eyal A. Kirkby, David Klaene, Mark A. Knapp, G. R. Kneib, Jean-Paul Kochanek, C. S. Koesterke, Lars Kollmeier, Juna A. Kron, Richard G. Lampeitl, Hubert Lang, Dustin Le Goff, Jean-Marc Lee, Young Sun Lin, Yen-Ting Long, Daniel C. Loomis, Craig P. Lucatello, Sara Lundgren, Britt Lupton, Robert H. Ma, Zhibo MacDonald, Nicholas Mahadevan, Suvrath Maia, Marcio A. G. Makler, Martin Malanushenko, Elena Malanushenko, Viktor Mandelbaum, Rachel Maraston, Claudia Margala, Daniel Masters, Karen L. McBride, Cameron K. McGehee, Peregrine M. McGreer, Ian D. Menard, Brice Miralda-Escude, Jordi Morrison, Heather L. Mullally, F. Muna, Demitri Munn, Jeffrey A. Murayama, Hitoshi Myers, Adam D. Naugle, Tracy Neto, Angelo Fausti Duy Cuong Nguyen Nichol, Robert C. O'Connell, Robert W. Ogando, Ricardo L. C. Olmstead, Matthew D. Oravetz, Daniel J. Padmanabhan, Nikhil Palanque-Delabrouille, Nathalie Pan, Kaike Pandey, Parul Paris, Isabelle Percival, Will J. Petitjean, Patrick Pfaffenberger, Robert Pforr, Janine Phleps, Stefanie Pichon, Christophe Pieri, Matthew M. Prada, Francisco Price-Whelan, Adrian M. Raddick, M. Jordan Ramos, Beatriz H. F. Reyle, Celine Rich, James Richards, Gordon T. Rix, Hans-Walter Robin, Annie C. Rocha-Pinto, Helio J. Rockosi, Constance M. Roe, Natalie A. Rollinde, Emmanuel Ross, Ashley J. Ross, Nicholas P. Rossetto, Bruno M. Sanchez, Ariel G. Sayres, Conor Schlegel, David J. Schlesinger, Katharine J. Schmidt, Sarah J. Schneider, Donald P. Sheldon, Erin Shu, Yiping Simmerer, Jennifer Simmons, Audrey E. Sivarani, Thirupathi Snedden, Stephanie A. Sobeck, Jennifer S. Steinmetz, Matthias Strauss, Michael A. Szalay, Alexander S. Tanaka, Masayuki Thakar, Aniruddha R. Thomas, Daniel Tinker, Jeremy L. Tofflemire, Benjamin M. Tojeiro, Rita Tremonti, Christy A. Vandenberg, Jan Magana, M. Vargas Verde, Licia Vogt, Nicole P. Wake, David A. Wang, Ji Weaver, Benjamin A. Weinberg, David H. White, Martin White, Simon D. M. Yanny, Brian Yasuda, Naoki Yeche, Christophe Zehavi, Idit TI THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III (vol 193, pg 29, 2011) SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Correction ID CATALOG C1 [Aihara, Hiroaki; Lin, Yen-Ting; Menard, Brice; Murayama, Hitoshi; Tanaka, Masayuki; Yasuda, Naoki] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan. [Allende Prieto, Carlos; Esposito, Massimiliano; Femenia Castella, Bruno; Gonzalez Hernandez, Jonay I.] Inst Astrofis Canarias, E-38205 Tenerife, Spain. [Allende Prieto, Carlos; Esposito, Massimiliano; Femenia Castella, Bruno] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [An, Deokkeun] Ewha Womans Univ, Dept Sci Educ, Seoul 120750, South Korea. [Anderson, Scott F.; Davenport, James R. A.; Evans, Michael L.; Hawley, Suzanne L.; MacDonald, Nicholas; Sayres, Conor; Schmidt, Sarah J.; Tofflemire, Benjamin M.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Aubourg, Eric; Busca, Nicolas G.; Hamilton, Jean-Christophe; Magana, M. Vargas] Univ Paris Diderot, Astroparticule & Cosmol APC, F-75205 Paris 13, France. [Aubourg, Eric; Le Goff, Jean-Marc; Palanque-Delabrouille, Nathalie; Rich, James; Yeche, Christophe] CEA, Ctr Saclay, Irfu SPP, F-91191 Gif Sur Yvette, France. [Balbinot, Eduardo; Neto, Angelo Fausti] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Balbinot, Eduardo; Chiappini, Cristina; da Costa, Luiz N.; Maia, Marcio A. G.; Makler, Martin; Neto, Angelo Fausti; Ogando, Ricardo L. C.; Ramos, Beatriz H. F.; Rocha-Pinto, Helio J.; Rossetto, Bruno M.] Lab Interinst E Astron LIneA, BR-20921400 Rio De Janeiro, Brazil. [Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, JINA Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Berlind, Andreas A.; Dhital, Saurav; McBride, Cameron K.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Bickerton, Steven J.; Carr, Michael A.; Gott, J. Richard; Gunn, James E.; Knapp, G. R.; Lang, Dustin; Loomis, Craig P.; Lupton, Robert H.; Mandelbaum, Rachel; Mullally, F.; Strauss, Michael A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Bizyaev, Dmitry; Brinkmann, J.; Ebelke, Garrett L.; Gillespie, Bruce A.; Jordan, Cathy; Jordan, Wendell P.; Klaene, Mark A.; Long, Daniel C.; Malanushenko, Elena; Malanushenko, Viktor; Naugle, Tracy; Oravetz, Daniel J.; Pan, Kaike; Simmons, Audrey E.; Snedden, Stephanie A.] Apache Point Observ, Sunspot, NM 88349 USA. [Blanton, Michael R.; Bovy, Jo; Hogg, David W.; Kazin, Eyal A.; Muna, Demitri; Price-Whelan, Adrian M.; Tinker, Jeremy L.; Weaver, Benjamin A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Bochanski, John J.; Brandt, W. N.; Mahadevan, Suvrath; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Bolton, Adam S.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle; Harris, David W.; Ivans, Inese I.; Olmstead, Matthew D.; Pandey, Parul; Shu, Yiping; Simmerer, Jennifer] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Campbell, Heather; Edmondson, Edward M.; Lampeitl, Hubert; Maraston, Claudia; Masters, Karen L.; Nichol, Robert C.; Percival, Will J.; Pforr, Janine; Ross, Ashley J.; Thomas, Daniel; Tojeiro, Rita] Univ Portsmouth, Inst Cosmol & Gravitat ICG, Portsmouth PO1 3FX, Hants, England. [Chen, Yanmei; Tremonti, Christy A.] Univ Wisconsin, Dept Astron, Madison, WI 53703 USA. [Chiappini, Cristina; Steinmetz, Matthias] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Chiappini, Cristina] Ist Nazl Astrofis, I-34143 Trieste, Italy. [Comparat, Johan; Kneib, Jean-Paul] Univ Aix Marseille 1, Lab Astrophys Marseille, CNRS, F-13388 Marseille 13, France. [Connolly, Natalia] Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. [Cortes, Marina; Ho, Shirley; Roe, Natalie A.; Ross, Nicholas P.; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Croft, Rupert A. C.] Carnegie Mellon Univ, Bruce & Astrid McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Cuesta, Antonio J.; Lundgren, Britt; Padmanabhan, Nikhil; Wake, David A.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Ramos, Beatriz H. F.] Observ Nacl, BR-20921400 Rio De Janeiro, Brazil. [Ealet, Anne; Escoffier, Stephanie] Aix Marseille Univ, Ctr Phys Particules Marseille, CNRS IN2P3, Marseille, France. [Ebelke, Garrett L.; Jordan, Wendell P.; Pfaffenberger, Robert; Vogt, Nicole P.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Eisenstein, Daniel J.; Fan, Xiaohui; Jiang, Linhua; McGreer, Ian D.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Eisenstein, Daniel J.] Harvard Coll Observ, Cambridge, MA 02138 USA. [Font-Ribera, Andreu] Inst Ciencies Espai IEEC CSIC, E-08193 Barcelona, Spain. [Frinchaboy, Peter M.] Texas Christian Univ, Dept Phys & Astron, Ft Worth, TX 76129 USA. [Ge, Jian; Duy Cuong Nguyen; Sivarani, Thirupathi; Wang, Ji] Univ Florida, Dept Astron, Bryant Space Sci Ctr, Gainesville, FL 32611 USA. [Gilmore, G.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Gould, Andrew; Johnson, Jennifer A.; Kochanek, C. S.; Pieri, Matthew M.; Schlesinger, Katharine J.; Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Grebel, Eva K.] Univ Heidelberg, Astron Rechen Inst, Zentrum Astron, D-69120 Heidelberg, Germany. [Harding, Paul; Holtzman, Jon A.; Ma, Zhibo; Morrison, Heather L.; Zehavi, Idit] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. [Hearty, Frederick R.; O'Connell, Robert W.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Honscheid, Klaus] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Inada, Naohisa] Univ Tokyo, Res Ctr Early Universe, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Kirkby, David; Margala, Daniel] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Koesterke, Lars] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78758 USA. [Kollmeier, Juna A.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Kron, Richard G.; Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Kron, Richard G.; Sobeck, Jennifer S.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Lin, Yen-Ting] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Lucatello, Sara] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Mahadevan, Suvrath; Schneider, Donald P.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, Davey Lab 525, University Pk, PA 16802 USA. [Makler, Martin] Ctr Brasileiro Pesquisas Fis, ICRA, BR-22290180 Rio De Janeiro, Brazil. [McGehee, Peregrine M.] CALTECH, IPAC, Pasadena, CA 91125 USA. [Menard, Brice] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Menard, Brice; Raddick, M. Jordan; Szalay, Alexander S.; Thakar, Aniruddha R.; Vandenberg, Jan] Johns Hopkins Univ, Ctr Astrophys Sci, Dept Phys & Astron, Baltimore, MD 21218 USA. [Miralda-Escude, Jordi; Verde, Licia] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Miralda-Escude, Jordi; Verde, Licia] Univ Barcelona IEEC, Inst Ciencies Cosmos, Barcelona 08028, Spain. [Mullally, F.] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Munn, Jeffrey A.] USN Observ, Flagstaff Stn, Flagstaff, AZ 86001 USA. [Myers, Adam D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Paris, Isabelle; Petitjean, Patrick; Pichon, Christophe; Rollinde, Emmanuel] Univ Paris 06, Inst Astrophys Paris, CNRS, UMR7095, F-75014 Paris, France. [Phleps, Stefanie; Sanchez, Ariel G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Pieri, Matthew M.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Prada, Francisco] Inst Astrofis Andalucia CSIC, E-18008 Granada, Spain. [Reyle, Celine; Robin, Annie C.] Univ Franche Comte, Inst Utinam, Observ Besancon, F-25010 Besancon, France. [Richards, Gordon T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Rix, Hans-Walter] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Rocha-Pinto, Helio J.; Rossetto, Bruno M.] Univ Fed Rio de Janeiro, Observ Valongo, BR-20080090 Rio De Janeiro, Brazil. [Rockosi, Constance M.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Sheldon, Erin] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sivarani, Thirupathi] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [White, Simon D. M.] Max Planck Inst Astrophys, D-85748 Garching, Germany. RP Aihara, H (reprint author), Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan. RI White, Martin/I-3880-2015; Brandt, William/N-2844-2015; Rocha-Pinto, Helio/C-2719-2008; Padmanabhan, Nikhil/A-2094-2012; Yasuda, Naoki/A-4355-2011; Aihara, Hiroaki/F-3854-2010; Murayama, Hitoshi/A-4286-2011; Le Goff, Jean-Marc/E-7629-2013; Tecnologias espaciai, Inct/I-2415-2013; Gonzalez Hernandez, Jonay I./L-3556-2014; Ogando, Ricardo/A-1747-2010; Mandelbaum, Rachel/N-8955-2014; Ho, Shirley/P-3682-2014; Balbinot, Eduardo/E-8019-2015; Kneib, Jean-Paul/A-7919-2015; Pforr, Janine/J-3967-2015 OI White, Martin/0000-0001-9912-5070; Brandt, William/0000-0002-0167-2453; Aihara, Hiroaki/0000-0002-1907-5964; Gonzalez Hernandez, Jonay I./0000-0002-0264-7356; Ogando, Ricardo/0000-0003-2120-1154; Mandelbaum, Rachel/0000-0003-2271-1527; Ho, Shirley/0000-0002-1068-160X; Balbinot, Eduardo/0000-0002-1322-3153; Kneib, Jean-Paul/0000-0002-4616-4989; Pforr, Janine/0000-0002-3414-8391 NR 5 TC 49 Z9 49 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD AUG PY 2011 VL 195 IS 2 AR 26 DI 10.1088/0067-0049/195/2/26 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 818RP UT WOS:000294773000015 ER PT J AU Ciufolini, I Paolozzi, A Pavlis, EC Ries, J Koenig, R Matzner, R Sindoni, G Neumayer, H AF Ciufolini, Ignazio Paolozzi, Antonio Pavlis, Erricos C. Ries, John Koenig, Rolf Matzner, Richard Sindoni, Giampiero Neumayer, Hans TI Testing gravitational physics with satellite laser ranging SO EUROPEAN PHYSICAL JOURNAL PLUS LA English DT Article ID EARTH GRAVITY MODELS; GRAVITOMAGNETIC FIELD; GENERAL-RELATIVITY; INERTIAL FRAMES; TIME-DELAY; ARTIFICIAL-SATELLITES; ACCELERATING UNIVERSE; DARK ENERGY; LAGEOS-II; IMPACT AB Laser ranging, both Lunar (LLR) and Satellite Laser Ranging (SLR), is one of the most accurate techniques to test gravitational physics and Einstein's theory of General Relativity. Lunar Laser Ranging has provided very accurate tests of both the strong equivalence principle, at the foundations of General Relativity, and of the weak equivalence principle, at the basis of any metric theory of gravity; it has provided strong limits to the values of the so-called PPN (Parametrized Post-Newtonian) parameters, that are used to test the post-Newtonian limit of General Relativity, strong limits to conceivable deviations to the inverse square law for very weak gravity and accurate measurements of the geodetic precession, an effect predicted by General Relativity. Satellite laser ranging has provided strong limits to deviations to the inverse square gravity law, at a different range with respect to LLR, and in particular has given the first direct test of the gravitomagnetic field by measuring the gravitomagnetic shift of the node of a satellite, a frame-dragging effect also called Lense-Thirring effect. Here, after an introduction to gravitomagnetism and frame-dragging, we describe the latest results in measuring the Lense-Thirring effect using the LAGEOS satellites and the latest gravity field models obtained by the space mission GRACE. Finally, we describe an update of the LARES (LAser RElativity Satellite) mission. LARES is planned for launch in 2011 to further improve the accuracy in the measurement of frame-dragging. C1 [Ciufolini, Ignazio] Univ Salento, Dipartimento Ingn Innovaz, Salento, Italy. [Paolozzi, Antonio; Sindoni, Giampiero] Sapienza Univ Roma, Scuola Ingn Aerospaziale, Rome, Italy. [Pavlis, Erricos C.] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Ries, John] Univ Texas Austin, Ctr Space Res, Austin, TX 78712 USA. [Koenig, Rolf; Neumayer, Hans] Geoforschungszentrum Potsdam, D-14473 Potsdam, Germany. [Matzner, Richard] Univ Texas Austin, Ctr Relat, Austin, TX 78712 USA. RP Ciufolini, I (reprint author), Univ Salento, Dipartimento Ingn Innovaz, Salento, Italy. EM ignazio.ciufolini@unisalento.it FU Italian Space Agency [I/043/08/0, I/016/07/0]; NASA [NNX09AU86G, NNG06DA07C] FX The authors acknowledge the International Laser Ranging Service for providing high-quality laser ranging tracking of the two LAGEOS satellites. I. Ciufolini and A. Paolozzi gratefully acknowledge the support of the Italian Space Agency, grants I/043/08/0 and I/016/07/0, E. C. Pavlis the support of NASA grant NNX09AU86G and J.C. Ries the support of NASA Contract NNG06DA07C. We would also like to thank the anonymous referee for useful suggestions and comments to improve the paper. NR 105 TC 29 Z9 29 U1 0 U2 6 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 2190-5444 J9 EUR PHYS J PLUS JI Eur. Phys. J. Plus PD AUG PY 2011 VL 126 IS 8 AR 72 DI 10.1140/epjp/i2011-11072-2 PG 19 WC Physics, Multidisciplinary SC Physics GA 817OU UT WOS:000294684500007 ER PT J AU Savin, S Budaev, V Zelenyi, L Amata, E Sibeck, D Lutsenko, V Borodkova, N Zhang, H Angelopoulos, V Safrankova, J Nemecek, Z Blecki, J Buechner, J Kozak, L Romanov, S Skalsky, A Krasnoselsky, V AF Savin, S. Budaev, V. Zelenyi, L. Amata, E. Sibeck, D. Lutsenko, V. Borodkova, N. Zhang, H. Angelopoulos, V. Safrankova, J. Nemecek, Z. Blecki, J. Buechner, J. Kozak, L. Romanov, S. Skalsky, A. Krasnoselsky, V. TI Anomalous Interaction of a Plasma Flow with the Boundary Layers of a Geomagnetic Trap SO JETP LETTERS LA English DT Article ID EARTHS BOW SHOCK; STATISTICS; TURBULENCE AB Using the data from the Interball-1, GEOTAIL, THEMIS and CLUSTER satellites, we propose a mechanism of anomalous magnetosheath dynamics. This mechanism yields that plasma boundaries can be locally deformed over distances comparable to its thickness. In particular, the magnetospheric boundary, the magnetopause, is deformed over distances up to a few Earth radii (R(E)) under the pressure of supermagnetosonic plasma streams (SPSs), instead of reacting to plasma pressure decreases, as it was previously thought. Supermagnetosonic plasma streams having a kinetic pressure a few times larger than the solar wind pressure and the magnetic pressure behind the magnetopause, can crush the magnetopause and even push it outside the mean bow shock position, as determined through the average pressures balance. Anomalous magnetosheath dynamics is initiated by plasma flow anomalies (FAs), triggered by rotational discontinuities, by jumps in the solar wind pressure and by interplanetary shocks, which all interact with the bow shock. We show that the generation mechanism for SPSs, adjacent to the FA, is connected with the compensation of the FA flow reduction by the SPS enhanced flow, which is produced by polarization electric fields at the FA edges. Statistically, SPSs are extreme events, relayed with intermittency and multifractality inside the boundary layers of the geomagnetic trap. In this way, SPSs provide "long-range" interactions between global and microscales. A similar role may be played by fast concentrated flows in the geomagnetic tail, in fusion devices, in astrophysical plasmas and in hydrodynamics. C1 [Savin, S.; Budaev, V.; Zelenyi, L.; Lutsenko, V.; Borodkova, N.; Romanov, S.; Skalsky, A.] Russian Acad Sci, Space Res Inst, Moscow 117997, Russia. [Budaev, V.] IV Kurchatov Atom Energy Inst, Natl Res Ctr, Moscow 123182, Russia. [Amata, E.] Interplanetary Space Phys Inst, Rome, Italy. [Sibeck, D.; Zhang, H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Angelopoulos, V.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Safrankova, J.; Nemecek, Z.] Charles Univ Prague, Prague, Czech Republic. [Blecki, J.] Polish Acad Sci, Space Res Ctr, PL-01237 Warsaw, Poland. [Buechner, J.] Max Planck Inst Solar Phys, Katlenburg Lindau, Germany. [Kozak, L.] Taras Shevchenko Natl Univ, Dept Astron & Space Phys, Kiev, Ukraine. [Krasnoselsky, V.] Lab Phys Chem Envir, Orleans, France. RP Savin, S (reprint author), Russian Acad Sci, Space Res Inst, Ul Profsoyuznaya 84-32, Moscow 117997, Russia. RI Buechner, Joerg/B-1213-2009; Sibeck, David/D-4424-2012; Budaev, Viacheslav/N-6987-2016 FU Branch of Physical Sciences, Russian Academy of Sciences [15, P-4]; Ministerstwo Nauki i Szkolnictwa Wyzszego [307 101 935]; Russian Foundation for Basic Research [10-02-00135, 11-02-90494] FX This work was supported by the Branch of Physical Sciences, Russian Academy of Sciences (project nos. 15 and P-4), Ministerstwo Nauki i Szkolnictwa Wyzszego (grant no. 307 101 935), and the Russian Foundation for Basic Research (project nos. 10-02-00135 and 11-02-90494). We are grateful to G. Zastenker for plasma flux data (Interball-1) and experimental groups measuring magnetic fields and plasma parameters on the WIND, ACE, GEOTAIL, CLUSTER, and THEMIS satellites for their data obtained through CDAWeb. NR 17 TC 7 Z9 7 U1 0 U2 2 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0021-3640 J9 JETP LETT+ JI Jetp Lett. PD AUG PY 2011 VL 93 IS 12 BP 754 EP 762 DI 10.1134/S0021364011120137 PG 9 WC Physics, Multidisciplinary SC Physics GA 818NM UT WOS:000294759000015 ER PT J AU Unnikrishnan, K Kawamura, S Saito, A Yokoyama, T Fukao, S AF Unnikrishnan, K. Kawamura, S. Saito, A. Yokoyama, T. Fukao, S. TI Multi-instrumental observation of weak magnetic storms occurred during the period, 18-21 March 2002 SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Weak geomagnetic storms; Multi-instrumental analysis; Mid-latitude ionosphere; FLIP-model ID TRAVELING IONOSPHERIC DISTURBANCES; GLOBAL POSITIONING SYSTEM; F-REGION; GPS NETWORK; MU RADAR; ELECTRIC-FIELDS; SPREAD-F; MIDLATITUDE IONOSPHERE; GEOMAGNETIC STORMS; AMERICAN SECTOR AB Multi-instrumental observation of ionospheric responses to two weak magnetic storms occurred during the period, 18-21 March 2002, was conducted using GPS network, MU radar, and ionosondes, over the mid-latitude sector, and compared with the output generated by FLIP model. Latitudinal and temporal variations of GPS-TEC exhibit poleward expansion up to 35 degrees N, during day time hours (around 1000-1300 JST), of 19 and 21 March after the SSCs. It is interesting to note that, although the second storm considered here is very weak, on 20 March after the SSC around mid-night, MU radar observed that neutral wind increases rapidly up to 200 m/s, towards equator and simultaneously, a perturbation component of about 2 TECU is observed by GPS network, around 0100 JST of 21 March, which propagate from north to equator. lonosondes also revealed that, after the second SSC, around 0200 JST on 21 March, F-layer height increases at Wakkanai, and Kokubunji which propagates to Okinawa, exhibiting a latitudinal dispersion feature, showing the influence of equatorward neutral wind/propagating nature of a powerful wind surge. The equivalent neutral wind derived from FLIP model by including vibrationally excited nitrogen, N-2* and without its inclusion are almost identical and in good agreement with the MU radar neutral wind. The interplanetary-magnetosphere scenario of the initial and main phase of the two weak geomagnetic storms considered in the present study are quite different, which is reflected in the ionospheric responses to these events. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Unnikrishnan, K.] NSS Hindu Coll, Dept Phys, Changanacheri 686102, Kerala, India. [Unnikrishnan, K.] Mahatma Gandhi Univ, Sch Pure & Appl Phys, Kottayam 686560, Kerala, India. [Kawamura, S.] Natl Inst Informat & Commun Technol, Okinawa Subtrop Remote Sensing Ctr, Okinawa 9040411, Japan. [Saito, A.] Kyoto Univ, Grad Sch Sci, Dept Geophys, Kyoto 6068502, Japan. [Yokoyama, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yokoyama, T.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Fukao, S.] Kyoto Univ, Res Inst Sustainable Humanosphere, Kyoto 6110011, Japan. RP Unnikrishnan, K (reprint author), NSS Hindu Coll, Dept Phys, Changanacheri 686102, Kerala, India. EM kaleekkalunni@gmail.com FU JSPS FX K. Unnikrishnan has conducted this work partially at RISH, Kyoto University, by availing JSPS post-doctoral fellowship. The MU radar belongs to and is operated by RISH, Kyoto University, Japan. Authors are thankful to Dr. Phil Richards for providing files related with FLIP model. K.U acknowledges the Geographical Survey Institute, Japan, for providing GEONET data. Authors express sincere thanks to National Institute of Information and Communication Technology (NICT), Japan, for providing ionosonde data. Also, we thank the ACE MAG instrument team and the ACE Science Center for providing the ACE data. Authors express sincere thanks to both Reviewers for giving valuable suggestions during the review process. NR 52 TC 1 Z9 1 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD AUG PY 2011 VL 73 IS 13 BP 1653 EP 1664 DI 10.1016/j.jastp.2011.02.019 PG 12 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 816IL UT WOS:000294591800006 ER PT J AU Kishore, P Ratnam, MV Namboothiri, SP Velicogna, I Basha, G Jiang, JH Igarashi, K Rao, SVB Sivakumar, V AF Kishore, P. Ratnam, M. Venkat Namboothiri, S. P. Velicogna, Isabella Basha, Ghouse Jiang, J. H. Igarashi, K. Rao, S. V. B. Sivakumar, V. TI Global (50 degrees S-50 degrees N) distribution of water vapor observed by COSMIC GPS RO: Comparison with GPS radiosonde, NCEP, ERA-Interim, and JRA-25 reanalysis data sets SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Water vapor; Radiosonde; GPS RO; Reanalysis ID LOWER TROPOSPHERE; TEMPERATURE DATA; TEMPORAL HOMOGENIZATION; OCCULTATION SIGNALS; REFRACTIVITY BIAS; RELATIVE-HUMIDITY; ATMOSPHERE; CLIMATE; TRENDS; VALIDATION AB In this study, global (50 degrees S-50 degrees N) distribution of water vapor is investigated using COSMIC GPS RO measurements. Detailed comparisons have been made between COSMIC and high resolution GPS radiosonde measurements across 13 tropical stations and model outputs (ERA-Interim, NCEP, and JRA-25 reanalyses data sets). In comparison with independent techniques like radiosonde (Vaisala), it is found that COSMIC GPS RO wet profiles are accurate up to 7-8 km (assuming radiosonde as standard technique). In general, comparisons with corresponding seasonal means of model outputs are qualitatively in good agreement, although they differ quantitatively especially over convective regions of South America, Africa, and Indonesia. In tropical latitudes, the COSMIC specific humidity values are higher than the model outputs. Among various model outputs, ERA-Interim data set show near realistic features to that observed by COSMIC GPS RO measurements. Large asymmetry in the specific humidity distribution is observed between northern and southern hemispheres. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Ratnam, M. Venkat; Basha, Ghouse] Govt India, Dept Space, Natl Atmospher Res Lab, Tirupati, Andhra Pradesh, India. [Kishore, P.; Velicogna, Isabella] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Namboothiri, S. P.] SASTRA Univ, Sch Elect & Elect Engn, Tanjavur, India. [Jiang, J. H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Igarashi, K.] Assoc Radio Ind & Business ARIB, Tokyo, Japan. [Rao, S. V. B.] Sri Venkateswara Univ, Dept Phys, Tirupati 517502, Andhra Pradesh, India. [Sivakumar, V.] CSIR, Natl Laser Ctr, ZA-0001 Pretoria, South Africa. RP Ratnam, MV (reprint author), Govt India, Dept Space, Natl Atmospher Res Lab, Tirupati, Andhra Pradesh, India. EM vratnam@narl.gov.in RI VENKATARAMAN, SIVAKUMAR/B-4570-2009 OI VENKATARAMAN, SIVAKUMAR/0000-0003-2462-681X NR 49 TC 24 Z9 26 U1 1 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD AUG PY 2011 VL 73 IS 13 BP 1849 EP 1860 DI 10.1016/j.jastp.2011.04.017 PG 12 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 816IL UT WOS:000294591800028 ER PT J AU Ikarashi, S Kohno, K Aguirre, JE Aretxaga, I Arumugam, V Austermann, JE Bock, JJ Bradford, CM Cirasuolo, M Earle, L Ezawa, H Furusawa, H Furusawa, J Glenn, J Hatsukade, B Hughes, DH Iono, D Ivison, RJ Johnson, S Kamenetzky, J Kawabe, R Lupu, R Maloney, P Matsuhara, H Mauskopf, PD Motohara, K Murphy, EJ Nakajima, K Nakanishi, K Naylor, BJ Nguyen, HT Perera, TA Scott, KS Shimasaku, K Takagi, T Takata, T Tamura, Y Tanaka, K Tsukagoshi, T Wilner, DJ Wilson, GW Yun, MS Zmuidzinas, J AF Ikarashi, S. Kohno, K. Aguirre, J. E. Aretxaga, I. Arumugam, V. Austermann, J. E. Bock, J. J. Bradford, C. M. Cirasuolo, M. Earle, L. Ezawa, H. Furusawa, H. Furusawa, J. Glenn, J. Hatsukade, B. Hughes, D. H. Iono, D. Ivison, R. J. Johnson, S. Kamenetzky, J. Kawabe, R. Lupu, R. Maloney, P. Matsuhara, H. Mauskopf, P. D. Motohara, K. Murphy, E. J. Nakajima, K. Nakanishi, K. Naylor, B. J. Nguyen, H. T. Perera, T. A. Scott, K. S. Shimasaku, K. Takagi, T. Takata, T. Tamura, Y. Tanaka, K. Tsukagoshi, T. Wilner, D. J. Wilson, G. W. Yun, M. S. Zmuidzinas, J. TI Detection of an ultrabright submillimetre galaxy in the Subaru/XMM-Newton Deep Field using AzTEC/ASTE SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: high-redshift; galaxies: ISM; galaxies: starburst; submillimetre: galaxies ID DEGREE EXTRAGALACTIC SURVEY; CLERK-MAXWELL-TELESCOPE; 1200-MU-M MAMBO SURVEY; STAR-FORMATION HISTORY; HIGH-REDSHIFT GALAXIES; GOODS-N FIELD; NUMBER COUNTS; MOLECULAR GAS; PHOTOMETRIC REDSHIFTS; SOURCE CATALOG AB We report on the detection of an extremely bright (similar to 37 mJy at 1100 mu m and similar to 91 mJy at 880 mu m) submillimetre galaxy (SMG), AzTEC-ASTE-SXDF1100.001 (hereafter referred to as SXDF1100.001 or Orochi), discovered in the 1100 mu m observations of the Subaru/XMM-Newton Deep Field using AzTEC on ASTE. Subsequent CARMA 1300-mu m and SMA 880-mu m observations successfully pinpoint the location of Orochi and suggest that it has two components, one extended [full width at half-maximum (FWHM) of similar to 4 arcsec] and one compact (unresolved). Z-Spec on CSO has also been used to obtain a wide-band spectrum from 190 to 308 GHz, although no significant emission/absorption lines were found. The derived upper limit to the line-to-continuum flux ratio is 0.1-0.3 (2 sigma) across the Z-Spec band. Based on the analysis of the derived spectral energy distribution from optical to radio wavelengths of possible counterparts near the SMA/CARMA peak position, we suggest that Orochi is a lensed, optically dark SMG lying at z similar to 3.4 behind a foreground, optically visible (but red) galaxy at z similar to 1.4. The deduced apparent (i.e., no correction for magnification) infrared luminosity (L-IR) and star formation rate (SFR) are 6 x 10(13) L-circle dot and 11 000 M-circle dot yr(-1), respectively, assuming that the L-IR is dominated by star formation. These values suggest that Orochi will consume its gas reservoir within a short time-scale (3 x 10(7) yr), which is indeed comparable to those in extreme starbursts like the centres of local ultraluminous infrared galaxies (ULIRGs). C1 [Kohno, K.; Shimasaku, K.] Univ Tokyo, Sch Sci, Research Ctr Early Universe, Bunkyo Ku, Tokyo 1130033, Japan. [Aguirre, J. E.; Lupu, R.; Scott, K. S.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Aretxaga, I.; Hughes, D. H.] INAOE, Puebla 72000, Pue, Mexico. [Arumugam, V.; Cirasuolo, M.; Ivison, R. J.; Matsuhara, H.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Austermann, J. E.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Ikarashi, S.; Kohno, K.; Motohara, K.; Tsukagoshi, T.] Univ Tokyo, Inst Astron, Tokyo 1810015, Japan. [Bock, J. J.; Bradford, C. M.; Naylor, B. J.; Nguyen, H. T.; Zmuidzinas, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, J. J.; Bradford, C. M.; Murphy, E. J.; Zmuidzinas, J.] CALTECH, Pasadena, CA 91125 USA. [Cirasuolo, M.; Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Earle, L.; Glenn, J.; Kamenetzky, J.; Maloney, P.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Ezawa, H.; Nakanishi, K.] Natl Astron Observ, ALMA Project Off, Mitaka, Tokyo 1818588, Japan. [Furusawa, H.; Furusawa, J.; Takata, T.] Natl Astron Observ, Astron Data Ctr, Mitaka, Tokyo 1818588, Japan. [Hatsukade, B.; Iono, D.; Kawabe, R.; Tamura, Y.] Nobeyama Radio Observ, Minamisa Ku, Minamimaki, Nagano 3841305, Japan. [Johnson, S.; Wilson, G. W.; Yun, M. S.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Takagi, T.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Mauskopf, P. D.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Nakajima, K.; Shimasaku, K.] Univ Tokyo, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Perera, T. A.] Illinois Wesleyan Univ, Bloomington, IL 61701 USA. [Tanaka, K.] Keio Univ, Fac Sci & Technol, Dept Phys, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan. [Wilner, D. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Ikarashi, S (reprint author), Univ Tokyo, Inst Astron, 2-21-1 Osawa, Tokyo 1810015, Japan. EM ikarashi@ioa.s.u-tokyo.ac.jp RI MOTOHARA, KENTARO/G-4905-2014; Lupu, Roxana/P-9060-2014; Ivison, R./G-4450-2011 OI MOTOHARA, KENTARO/0000-0002-0724-9146; Lupu, Roxana/0000-0003-3444-5908; Ivison, R./0000-0001-5118-1313 FU MEXT; Smithsonian Institution; Academia Sinica; National Science Foundation; CARMA partner universities FX We would like to thank everyone who helped staff and support the AzTEC/ASTE 2008 operations and data calibration, including N. Ukita, M. Tashiro, M. Uehara, S. Doyle, P. Horner, J. Cortes, J. Karakla, and G. Wallace. The ASTE project is driven by the Nobeyama Radio Observatory (NRO), a branch of the National Astronomical Observatory of Japan (NAOJ), in collaboration with the University of Chile and Japanese institutions including the University of Tokyo, Nagoya University, Osaka Prefecture University, Ibaraki University and Hokkaido University. Partial observations with ASTE were carried out remotely from Japan using NTT's GEMnet2 and its partner R&E networks, which are based on the AccessNova collaboration of the University of Chile, NTT Laboratories and the NAOJ. This study was supported in part by the MEXT Grant-in-Aid for Specially Promoted Research (No. 20001003). The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. Support for CARMA construction was derived from the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the James S. McDonnell Foundation, the Associates of the California Institute of Technology, the University of Chicago, the states of California, Illinois, and Maryland, and the National Science Foundation. The ongoing CARMA development and operations are supported by the National Science Foundation under a cooperative agreement, and by the CARMA partner universities. NR 107 TC 22 Z9 22 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 4 BP 3081 EP 3096 DI 10.1111/j.1365-2966.2011.18918.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811JK UT WOS:000294204900010 ER PT J AU Gressel, O Nelson, RP Turner, NJ AF Gressel, Oliver Nelson, Richard P. Turner, Neal J. TI On the dynamics of planetesimals embedded in turbulent protoplanetary discs with dead zones SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; MHD; methods: numerical; protoplanetary discs ID 3-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS; SHEARING BOX APPROXIMATION; WEAKLY MAGNETIZED DISKS; LOW-MASS PROTOPLANETS; SPIRAL DENSITY WAVES; MRI CHANNEL FLOWS; X-RAY IONIZATION; ACCRETION DISKS; PROTOSTELLAR DISKS; MAGNETOROTATIONAL INSTABILITY AB Accretion in protoplanetary discs is thought to be driven by magnetohydrodynamic (MHD) turbulence via the magnetorotational instability. Recent work has shown that a planetesimal swarm embedded in a fully turbulent disc is subject to strong excitation of the velocity dispersion, leading to collisional destruction of bodies with radii R-p < 100 km. Significant diffusion of planetesimal semimajor axes also arises, leading to large-scale spreading of the planetesimal population throughout the inner regions of the protoplanetary disc, in apparent contradiction of constraints provided by the distribution of asteroids within the asteroid belt. In this paper, we examine the dynamics of planetesimals embedded in vertically stratified turbulent discs, with and without dead zones. Our main aims are to examine the turbulent excitation of the velocity dispersion, and the radial diffusion, of planetesimals in these discs. We employ 3D MHD simulations using the shearing box approximation, along with an equilibrium chemistry model that is used to calculate the ionization fraction of the disc gas as a function of time and position. Ionization is assumed to arise because of stellar X-rays, galactic cosmic rays and radioactive nuclei. In agreement with our previous study, we find that planetesimals in fully turbulent discs develop large random velocities that will lead to collisional destruction/erosion for bodies with sizes below 100 km, and undergo radial diffusion on a scale similar to 2.5 au over a 5 Myr disc lifetime. But planetesimals in a dead zone experience a much reduced excitation of their random velocities, and equilibrium velocity dispersions lie between the disruption thresholds for weak and strong aggregates for sizes R-p <= 100 km. We also find that radial diffusion occurs over a much reduced length-scale similar to 0.25 au over the disc lifetime, this being consistent with Solar system constraints. We conclude that planetesimal growth via mutual collisions between smaller bodies cannot occur in a fully turbulent disc. By contrast, a dead zone may provide a safe haven in which km-sized planetesimals can avoid mutual destruction through collisions. C1 [Gressel, Oliver; Nelson, Richard P.] Univ London, Astron Unit, London E1 4NS, England. [Turner, Neal J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gressel, O (reprint author), Univ London, Astron Unit, Mile End Rd, London E1 4NS, England. EM o.gressel@qmul.ac.uk; r.p.nelson@qmul.ac.uk; neal.turner@jpl.nasa.gov RI Gressel, Oliver/D-3683-2014; OI Gressel, Oliver/0000-0002-5398-9225; Turner, Neal/0000-0001-8292-1943 FU Jet Propulsion Laboratory, California Institute of Technology; NASA; Alexander von Humboldt Foundation FX This work used the NIRVANA-III code developed by Udo Ziegler at the Astrophysical Institute Potsdam. All computations were performed on the QMUL HPC facility, purchased under the SRIF initiative. RPN and OG acknowledge the hospitality of the Isaac Newton Institute for Mathematical Sciences, where part of the work presented in this paper was completed during the 'Dynamics of Discs and Planets' research programme. NJT was supported by the Jet Propulsion Laboratory, California Institute of Technology, the NASA Origins and Outer Planets programs, and the Alexander von Humboldt Foundation. We thank the referee, Stuart Weidenschilling, for useful comments that led to improvements to this paper. NR 92 TC 29 Z9 29 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 4 BP 3291 EP 3307 DI 10.1111/j.1365-2966.2011.18944.x PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811JK UT WOS:000294204900028 ER PT J AU Cohen, DH Gagne, M Leutenegger, MA MacArthur, JP Wollman, EE Sundqvist, JO Fullerton, AW Owocki, SP AF Cohen, David H. Gagne, Marc Leutenegger, Maurice A. MacArthur, James P. Wollman, Emma E. Sundqvist, Jon O. Fullerton, Alex W. Owocki, Stanley P. TI Chandra X-ray spectroscopy of the very early O supergiant HD 93129A: constraints on wind shocks and the mass-loss rate SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: early-type; stars: individual: HD 93129A; stars: mass-loss; stars: winds, outflows; X-rays: stars ID HOT-STAR WINDS; DRIVEN STELLAR WINDS; EMISSION-LINE PROFILES; ZETA-PUPPIS; QUANTITATIVE-ANALYSIS; COLLIDING WINDS; CARINA; MODELS; SIMULATIONS; INSTABILITY AB We present an analysis of both the resolved X-ray emission-line profiles and the broad-band X-ray spectrum of the O-2 If* star HD 93129A, measured with the Chandra High Energy Transmission Grating Spectrometer ( HETGS). This star is among the earliest and most massive stars in the Galaxy, and provides a test of the embedded wind-shock scenario in a very dense and powerful wind. A major new result is that continuum absorption by the dense wind is the primary cause of the hardness of the observed X-ray spectrum, while intrinsically hard emission from colliding wind shocks contributes less than 10 per cent of the X-ray flux. We find results consistent with the predictions of numerical simulations of the line-driving instability, including line broadening indicating an onset radius of X-ray emission of several tenths of R-*. Helium-like forbidden-to-intercombination line ratios are consistent with this onset radius, and inconsistent with being formed in a wind-collision interface with the star's closest visual companion at a distance of 100 au. The broad-band X-ray spectrum is fitted with a dominant emission temperature of just kT = 0.6 keV along with significant wind absorption. The broad-band wind absorption and the line profiles provide two independent measurements of the wind mass-loss rate:. M = 5.2(-1.5)(+1.8) x 10(-6) and 6.8(-2.2)(+2.8) x 10(-6) M-circle dot yr(-1), respectively. This is the first consistent modelling of the X-ray line-profile shapes and broad-band X-ray spectral energy distribution in a massive star, and represents a reduction of a factor of 3-4 compared to the standard H alpha mass-loss rate that assumes a smooth wind. C1 [Cohen, David H.; MacArthur, James P.; Wollman, Emma E.] Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA. [Gagne, Marc] W Chester Univ, Dept Geol & Astron, W Chester, PA 19383 USA. [Leutenegger, Maurice A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Leutenegger, Maurice A.] CRESST, Baltimore, MD 21250 USA. [Leutenegger, Maurice A.] Univ Maryland, Baltimore, MD 21250 USA. [Wollman, Emma E.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Sundqvist, Jon O.; Owocki, Stanley P.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Fullerton, Alex W.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Cohen, DH (reprint author), Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA. EM cohen@astro.swarthmore.edu RI Gagne, Marc/C-1130-2013; OI Wollman, Emma/0000-0002-5474-3745 FU National Aeronautics and Space Administration [AR7-8002X, GO0-11002B, ATP NNX11AC40G]; Provost's Office at Swarthmore College FX Support for this work was provided by the National Aeronautics and Space Administration through Chandra award numbers AR7-8002X and GO0-11002B to Swarthmore College. EEW was supported by a Lotte Lazarsfeld Bailyn Summer Research Fellowship, and JPM was supported by a Surdna Summer Research Fellowship, both from the Provost's Office at Swarthmore College. MAL is supported by an appointment to the NASA Postdoctoral Programme at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. JOS and SPO acknowledge support from NASA award ATP NNX11AC40G to the University of Delaware. The authors thank Veronique Petit for her careful reading of the manuscript and several useful suggestions. NR 49 TC 25 Z9 25 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 4 BP 3354 EP 3364 DI 10.1111/j.1365-2966.2011.18952.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811JK UT WOS:000294204900034 ER PT J AU Valtchanov, I Virdee, J Ivison, RJ Swinyard, B van der Werf, P Rigopoulou, D da Cunha, E Lupu, R Benford, DJ Riechers, D Smail, I Jarvis, M Pearson, C Gomez, H Hopwood, R Altieri, B Birkinshaw, M Coia, D Conversi, L Cooray, A De Zotti, G Dunne, L Frayer, D Leeuw, L Marston, A Negrello, M Portal, MS Scott, D Thompson, MA Vaccari, M Baes, M Clements, D Michalowski, MJ Dannerbauer, H Serjeant, S Auld, R Buttiglione, S Cava, A Dariush, A Dye, S Eales, S Fritz, J Ibar, E Maddox, S Pascale, E Pohlen, M Rigby, E Rodighiero, G Smith, DJB Temi, P Carpenter, J Bolatto, A Gurwell, M Vieira, JD AF Valtchanov, I. Virdee, J. Ivison, R. J. Swinyard, B. van der Werf, P. Rigopoulou, D. da Cunha, E. Lupu, R. Benford, D. J. Riechers, D. Smail, Ian Jarvis, M. Pearson, C. Gomez, H. Hopwood, R. Altieri, B. Birkinshaw, M. Coia, D. Conversi, L. Cooray, A. De Zotti, G. Dunne, L. Frayer, D. Leeuw, L. Marston, A. Negrello, M. Portal, M. Sanchez Scott, D. Thompson, M. A. Vaccari, M. Baes, M. Clements, D. Michalowski, M. J. Dannerbauer, H. Serjeant, S. Auld, R. Buttiglione, S. Cava, A. Dariush, A. Dye, S. Eales, S. Fritz, J. Ibar, E. Maddox, S. Pascale, E. Pohlen, M. Rigby, E. Rodighiero, G. Smith, D. J. B. Temi, P. Carpenter, J. Bolatto, A. Gurwell, M. Vieira, J. D. TI Physical conditions of the interstellar medium of high-redshift, strongly lensed submillimetre galaxies from the Herschel-ATLAS SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: individual: SDP.81: H-ATLAS J090311.6+003906; galaxies: individual: SDP.130: H-ATLAS J091305.0-005343; infrared: galaxies; radio continuum: galaxies; submillimetre: ISM ID FAR-INFRARED/RADIO CORRELATION; C-II LINE; STAR-FORMATION; MU-M; PHOTODISSOCIATION REGIONS; EXTRAGALACTIC SOURCES; PHOTOMETRIC REDSHIFTS; SPIRE INSTRUMENT; EARLY UNIVERSE; MOLECULAR GAS AB We present Herschel-Spectral and Photometric Imaging Receiver (SPIRE) Fourier transform spectrometer (FTS) and radio follow-up observations of two Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS)-detected strongly lensed distant galaxies. In one of the targeted galaxies H-ATLAS J090311.6+003906 (SDP. 81), we detect [O III] 88 mu m and [C II] 158 mu m lines at a signal-to-noise ratio of similar to 5. We do not have any positive line identification in the other fainter target H-ATLAS J091305.0-005343 (SDP. 130). Currently, SDP. 81 is the faintest submillimetre galaxy with positive line detections with the FTS, with continuum flux just below 200 mJy in the 200-600 mu m wavelength range. The derived redshift of SDP. 81 from the two detections is z = 3.043 +/- 0.012, in agreement with ground-based CO measurements. This is the first detection by Herschel of the [O III] 88 mu m line in a galaxy at redshift higher than 0.05. Comparing the observed lines and line ratios with a grid of photodissociation region (PDR) models with different physical conditions, we derive the PDR cloud density n approximate to 2000 cm(-3) and the far-ultraviolet ionizing radiation field G(0) approximate to 200 (in units of the Habing field - the local Galactic interstellar radiation field of 1.6 x 10(-6) W m(-2)). Using the CO-derived molecular mass and the PDR properties, we estimate the effective radius of the emitting region to be 500-700 pc. These characteristics are typical for star-forming, high-redshift galaxies. The radio observations indicate that SDP. 81 deviates significantly from the local far-infrared/radio (FIR/radio) correlation, which hints that some fraction of the radio emission is coming from an active galactic nucleus (AGN). The constraints on the source size from millimetre-wave observations put a very conservative upper limit of the possible AGN contribution to less than 33 per cent. These indications, together with the high [OIII]/FIR ratio and the upper limit of [O I] 63 mu m/[C II] 158 mu m, suggest that some fraction of the ionizing radiation is likely to originate from the AGN. C1 [Valtchanov, I.; Altieri, B.; Coia, D.; Conversi, L.; Marston, A.; Portal, M. Sanchez] ESA, European Space Astron Ctr, Herschel Sci Ctr, Villanueva De La Canada 28691, Spain. [Virdee, J.; Swinyard, B.; Rigopoulou, D.; Pearson, C.] STFC Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Virdee, J.; Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Ivison, R. J.; Ibar, E.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.; van der Werf, P.; Michalowski, M. J.] Univ Edinburgh, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Swinyard, B.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [van der Werf, P.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [da Cunha, E.] Univ Crete, Dept Phys, Iraklion 71003, Greece. [da Cunha, E.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Lupu, R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Benford, D. J.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab Code 665, Greenbelt, MD 20771 USA. [Riechers, D.; Carpenter, J.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [Smail, Ian] Univ Durham, Inst Computat Cosmol, Dept Phys, Durham DH1 3LE, England. [Jarvis, M.] Univ Hertfordshire, Sci & Technol Res Ctr, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Gomez, H.; Auld, R.; Dariush, A.; Dye, S.; Eales, S.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Hopwood, R.; Clements, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Birkinshaw, M.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [De Zotti, G.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [De Zotti, G.] Scuola Int Super Studi Avanzati, I-34136 Trieste, Italy. [Dunne, L.; Thompson, M. A.; Maddox, S.; Rigby, E.; Smith, D. J. B.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Frayer, D.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Leeuw, L.] Univ Johannesburg, Dept Phys, ZA-2006 Auckland Pk, South Africa. [Leeuw, L.] SETI Inst, Mountain View, CA 94043 USA. [Negrello, M.; Serjeant, S.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Vaccari, M.; Buttiglione, S.; Rodighiero, G.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Baes, M.; Fritz, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Dannerbauer, H.] CEA Saclay, DAPNIA Serv Astrophys, F-91191 Gif Sur Yvette, France. [Cava, A.] Univ Complutense Madrid, Fac CC Fis, Dept Astrofis, E-28040 Madrid, Spain. [Dariush, A.] Inst Res Fundamental Sci IPM, Sch Astron, Tehran, Iran. [Temi, P.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Bolatto, A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Gurwell, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Valtchanov, I (reprint author), ESA, European Space Astron Ctr, Herschel Sci Ctr, Villanueva De La Canada 28691, Spain. EM ivaltchanov@sciops.esa.int RI Benford, Dominic/D-4760-2012; Gomez, Haley/C-2800-2009; Baes, Maarten/I-6985-2013; Smail, Ian/M-5161-2013; Lupu, Roxana/P-9060-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Dye, Simon/0000-0002-1318-8343; Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296; da Cunha, Elisabete/0000-0001-9759-4797; Altieri, Bruno/0000-0003-3936-0284; Benford, Dominic/0000-0002-9884-4206; Baes, Maarten/0000-0002-3930-2757; Smail, Ian/0000-0003-3037-257X; Lupu, Roxana/0000-0003-3444-5908; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Maddox, Stephen/0000-0001-5549-195X; Scott, Douglas/0000-0002-6878-9840 FU BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain); CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA) FX The Herschel-ATLAS is a project with Herschel, which is an ESA space observatory with science instruments provided by Europeanled Principal Investigator consortia and with important participation from NASA. The H-ATLAS website is http://www.h-atlas.org/. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, University of Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). NR 77 TC 41 Z9 41 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 4 BP 3473 EP 3484 DI 10.1111/j.1365-2966.2011.18959.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811JK UT WOS:000294204900045 ER PT J AU Balona, LA Guzik, JA Uytterhoeven, K Smith, JC Tenenbaum, P Twicken, JD AF Balona, L. A. Guzik, J. A. Uytterhoeven, K. Smith, J. C. Tenenbaum, P. Twicken, J. D. TI The Kepler view of gamma Doradus stars SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: oscillations; stars: variables: general ID DELTA-SCUTI; MODE; OSCILLATIONS; FREQUENCIES; EXCITATION; PULSATIONS; PULSATORS; MISSION; SCIENCE AB Visual classification of over 10 000 stars in the Kepler data base has revealed a class of stars with almost monoperiodic light variations and characteristic beating. A subset of these stars have a larger light amplitude and asymmetric light curves with larger variation in maximum brightness than in minimum brightness. The beating is mostly a result of two dominant, closely spaced frequencies. A third group of stars shows multiple low frequencies of comparable amplitudes. All three types of star fall in the region of the Hertzsprung-Russell diagram where gamma Dor stars are found and we therefore identify them as gamma Dor variables. However, stars with migrating star-spots also have symmetric light curves with beats, so it is likely that the sample is contaminated by non-pulsating stars of this type. If we assume that the dominant frequency in stars with beats is the rotational frequency, the resulting distribution of equatorial rotational velocities matches that of field stars of similar temperature and luminosity. We therefore conclude that the pulsation periods of these stars must be close to their rotational periods. The third group with multiple frequencies may be slowly rotating gamma Dor stars. This investigation is closely related to the presence of low frequencies in delta Scuti stars which we briefly discuss. C1 [Balona, L. A.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Guzik, J. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Uytterhoeven, K.] Univ Paris Diderot, CEA DSM CNRS, IRFU SAp, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Uytterhoeven, K.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Smith, J. C.; Tenenbaum, P.; Twicken, J. D.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Balona, LA (reprint author), S African Astron Observ, POB 9, ZA-7935 Cape Town, South Africa. EM lab@saao.ac.za FU NASA's Science Mission Directorate; South African Astronomical Observatory; Deutsche Forschungsgemeinschaft (DFG) [UY 52/1-1] FX The authors wish to thank the Kepler team for their generosity in allowing the data to be released to the Kepler Asteroseismic Science Consortium (KASC) ahead of public release and for their outstanding efforts which have made these results possible. Funding for the Kepler mission is provided by NASA's Science Mission Directorate.; LAB wishes to thank the South African Astronomical Observatory for financial support. KU acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG) in the framework of project UY 52/1-1. NR 30 TC 44 Z9 44 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 4 BP 3531 EP 3538 DI 10.1111/j.1365-2966.2011.18973.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811JK UT WOS:000294204900049 ER PT J AU Verner, GA Elsworth, Y Chaplin, WJ Campante, TL Corsaro, E Gaulme, P Hekker, S Huber, D Karoff, C Mathur, S Mosser, B Appourchaux, T Ballot, J Bedding, TR Bonanno, A Broomhall, AM Garcia, RA Handberg, R New, R Stello, D Regulo, C Roxburgh, IW Salabert, D White, TR Caldwell, DA Christiansen, JL Fanelli, MN AF Verner, G. A. Elsworth, Y. Chaplin, W. J. Campante, T. L. Corsaro, E. Gaulme, P. Hekker, S. Huber, D. Karoff, C. Mathur, S. Mosser, B. Appourchaux, T. Ballot, J. Bedding, T. R. Bonanno, A. Broomhall, A. -M. Garcia, R. A. Handberg, R. New, R. Stello, D. Regulo, C. Roxburgh, I. W. Salabert, D. White, T. R. Caldwell, D. A. Christiansen, J. L. Fanelli, M. N. TI Global asteroseismic properties of solar-like oscillations observed by Kepler: a comparison of complementary analysis methods SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: fundamental parameters; stars: interiors; stars: oscillations; stars: solar-type ID STELLAR OSCILLATIONS; LARGE SEPARATIONS; GLOBULAR-CLUSTER; MAIN-SEQUENCE; HR DIAGRAM; RED GIANTS; STARS; PARAMETERS; MISSION; RATIO AB We present the asteroseismic analysis of 1948 F-, G- and K-type main-sequence and subgiant stars observed by the National Aeronautics and Space Administration Kepler mission. We detect and characterize solar-like oscillations in 642 of these stars. This represents the largest cohort of main-sequence and subgiant solar-like oscillators observed to date. The photometric observations are analysed using the methods developed by nine independent research teams. The results are combined to validate the determined global asteroseismic parameters and calculate the relative precision by which the parameters can be obtained. We correlate the relative number of detected solar-like oscillators with stellar parameters from the Kepler Input Catalogue and find a deficiency for stars with effective temperatures in the range 5300 less than or similar to T-eff less than or similar to 5700 K and a drop-off in detected oscillations in stars approaching the red edge of the classical instability strip. We compare the power-law relationships between the frequency of peak power, nu(max), the mean large frequency separation, Delta nu, and the maximum mode amplitude, A(max), and show that there are significant method-dependent differences in the results obtained. This illustrates the need for multiple complementary analysis methods to be used to assess the robustness and reproducibility of results derived from global asteroseismic parameters. C1 [Verner, G. A.; Roxburgh, I. W.] Queen Mary Univ London, Astron Unit, London E1 4NS, England. [Verner, G. A.; Elsworth, Y.; Chaplin, W. J.; Hekker, S.; Broomhall, A. -M.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Campante, T. L.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Campante, T. L.; Karoff, C.; Handberg, R.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Corsaro, E.; Bonanno, A.] INAF Osservatorio Astrofis Catania, I-95123 Cantania, Italy. [Gaulme, P.; Appourchaux, T.] Univ Paris 11, UMR 8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Hekker, S.; Stello, D.] Univ Amsterdam, Astron Inst, NL-1098 XH Amsterdam, Netherlands. [Huber, D.; Bedding, T. R.; White, T. R.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Mathur, S.] Natl Ctr Atmospher Res, Div Comp Sci, Boulder, CO 80307 USA. [Mathur, S.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Mosser, B.] Univ Paris 06, Univ Denis Diderot, CNRS, Observ Paris,LESIA, F-92195 Meudon, France. [Ballot, J.] CNRS, Inst Rech Astrophys & Planetol, F-31400 Toulouse, France. Univ Toulouse, UPS OMP, IRAP, F-31400 Toulouse, France. [Garcia, R. A.] Orme Merisiers, IRFU SAp, CEA DSM CNRS U, Lab AIM, F-91191 Gif Sur Yvette, France. [New, R.] Sheffield Hallam Univ, Fac Arts Comp Engn & Sci, Sheffield S1 1WB, S Yorkshire, England. [Regulo, C.; Salabert, D.] Inst Astrofis Canarias, Tenerife 38205, Spain. [Regulo, C.; Salabert, D.] Univ La Laguna, Dpto Astrofis, Tenerife 38206, Spain. [Caldwell, D. A.; Christiansen, J. L.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Fanelli, M. N.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. RP Verner, GA (reprint author), Queen Mary Univ London, Astron Unit, Mile End Rd, London E1 4NS, England. EM g.verner@qmul.ac.uk RI Ballot, Jerome/G-1019-2010; Caldwell, Douglas/L-7911-2014; Karoff, Christoffer/L-1007-2013; OI Caldwell, Douglas/0000-0003-1963-9616; Karoff, Christoffer/0000-0003-2009-7965; Bonanno, Alfio/0000-0003-3175-9776; Bedding, Timothy/0000-0001-5943-1460; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776 FU UK Science and Technology Facilities Council (STFC); NASA's Science Mission Directorate FX GAV, YE, WJC, SH and IWR acknowledge the support of the UK Science and Technology Facilities Council (STFC). The authors are grateful to IRFU/SAp at CEA-Saclay for providing support for useful meetings in the development of this work. Funding for the Kepler mission is provided by NASA's Science Mission Directorate. The authors wish to thank the entire Kepler team, without whom these results would not be possible. We also thank all funding councils and agencies that have supported the activities of KASC Working Group 1. NR 57 TC 64 Z9 64 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 4 BP 3539 EP 3551 DI 10.1111/j.1365-2966.2011.18968.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811JK UT WOS:000294204900050 ER PT J AU Di Mauro, MP Cardini, D Catanzaro, G Ventura, R Barban, C Bedding, TR Christensen-Dalsgaard, J De Ridder, J Hekker, S Huber, D Kallinger, T Miglio, A Montalban, J Mosser, B Stello, D Uytterhoeven, K Kinemuchi, K Kjeldsen, H Mullally, F Still, M AF Di Mauro, M. P. Cardini, D. Catanzaro, G. Ventura, R. Barban, C. Bedding, T. R. Christensen-Dalsgaard, J. De Ridder, J. Hekker, S. Huber, D. Kallinger, T. Miglio, A. Montalban, J. Mosser, B. Stello, D. Uytterhoeven, K. Kinemuchi, K. Kjeldsen, H. Mullally, F. Still, M. TI Solar-like oscillations from the depths of the red-giant star KIC 4351319 observed with Kepler SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: AGB and post-AGB; stars: evolution; stars: fundamental parameters; stars: individual: KIC 4351319; stars: oscillations; stars: solar-type ID ALPHA URSAE MAJORIS; STELLAR OSCILLATIONS; CONVECTIVE CORES; WIRE PHOTOMETRY; POWER SPECTRA; ETA-BOOTIS; XI-HYA; MODES; VELOCITY; GRAVITY AB We present the results of the asteroseismic analysis of the red-giant star KIC 4351319 (TYC 3124-914-1), observed for 30 d in short-cadence mode with the Kepler satellite. The analysis has allowed us to determine the large and small frequency separations, Delta nu(0) = 24.6 +/- 0.2 mu Hz and Delta nu(02) = 2.2 +/- 0.3 mu Hz, respectively, and the frequency of maximum oscillation power, nu(max) = 386.5 +/- 4.0 mu Hz. The high signal-to-noise ratio of the observations allowed us to identify 25 independent pulsation modes whose frequencies range approximately from 300 to 500 mu Hz. The observed oscillation frequencies together with the accurate determination of the atmospheric parameters (effective temperature, gravity and metallicity), provided by additional ground-based spectroscopic observations, enabled us to theoretically interpret the observed oscillation spectrum. KIC 4351319 appears to oscillate with a well-defined solar-type p-mode pattern due to radial acoustic modes and non-radial nearly pure p modes. In addition, several non-radial mixed modes have been identified. Theoretical models well reproduce the observed oscillation frequencies and indicate that this star, located at the base of the ascending red-giant branch, is in the hydrogen-shell-burning phase, with a mass of similar to 1.3 M-circle dot, a radius of similar to 3.4 R-circle dot and an age of similar to 5.6 Gyr. The main parameters of this star have been determined with an unprecedented level of precision for a red-giant star, with uncertainties of 2 per cent for mass, 7 per cent for age, 1 per cent for radius and 4 per cent for luminosity. C1 [Di Mauro, M. P.; Cardini, D.] Ist Astrofis Spaziale & Fis Cosm, INAF, ISAF, I-00133 Rome, Italy. [Catanzaro, G.; Ventura, R.] Osserv Astrofis Catania, INAF, I-95123 Catania, Italy. [Barban, C.; Mosser, B.] Univ Denis, Univ Paris 06, Observ Paris, LESIA,CNRS, F-92195 Meudon, France. [Bedding, T. R.; Huber, D.; Stello, D.] Univ Sydney, Sch Phys, SIfA, Sydney, NSW 2006, Australia. [Christensen-Dalsgaard, J.; Kjeldsen, H.] Aarhus Univ, Inst Fys Astron, DK-8000 Aarhus C, Denmark. [De Ridder, J.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Hekker, S.; Miglio, A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Hekker, S.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Kallinger, T.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Kallinger, T.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Miglio, A.; Montalban, J.] Univ Liege, Inst Astron & Geofis, B-4000 Liege, Belgium. [Uytterhoeven, K.] Univ Paris Diderot, CNRS, Lab AIM, CEA DSM,CEA,IRFU,SAp,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Uytterhoeven, K.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Kinemuchi, K.; Still, M.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Mullally, F.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Di Mauro, MP (reprint author), Ist Astrofis Spaziale & Fis Cosm, INAF, ISAF, Via Fosso Cavaliere 100, I-00133 Rome, Italy. EM mariapia.dimauro@iasf-roma.inaf.it RI Ventura, Rita/B-7524-2016; OI Ventura, Rita/0000-0002-5152-0482; Kallinger, Thomas/0000-0003-3627-2561; Catanzaro, Giovanni/0000-0003-4337-8612; Bedding, Timothy/0000-0001-5943-1460; Bedding, Tim/0000-0001-5222-4661; Di Mauro, Maria Pia/0000-0001-7801-7484 FU NASA's Science Mission Directorate; UK Science and Technology Facilities Council (STFC); Netherlands Organization for Scientific Research (NWO); Deutsche Forschungsgemeinschaft (DFG) [UY 52/1-1]; Canadian Space Agency; Austrian Science Fund (FWF) [P22691-N16] FX Funding for this mission is provided by NASA's Science Mission Directorate. We thank the entire Kepler team for the development and operations of this outstanding mission.; SH acknowledges financial support from the UK Science and Technology Facilities Council (STFC). SH acknowledges financial support from the Netherlands Organization for Scientific Research (NWO).; KU acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG) in the framework of project UY 52/1-1.; TK is supported by the Canadian Space Agency and the Austrian Science Fund (FWF P22691-N16). NR 90 TC 31 Z9 31 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 4 BP 3783 EP 3797 DI 10.1111/j.1365-2966.2011.18996.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811JK UT WOS:000294204900070 ER PT J AU Baker, DMH Head, JW Fassett, CI Kadish, SJ Smith, DE Zuber, MT Neumann, GA AF Baker, David M. H. Head, James W. Fassett, Caleb I. Kadish, Seth J. Smith, Dave E. Zuber, Maria T. Neumann, Gregory A. TI The transition from complex crater to peak-ring basin on the Moon: New observations from the Lunar Orbiter Laser Altimeter (LOLA) instrument SO ICARUS LA English DT Article DE Moon; Mercury; Cratering; Impact processes ID IMPACT CRATERS; CHICXULUB CRATER; SCHEMATIC MODEL; TOPOGRAPHY; GRAVITY; MERCURY; RECORD; VENUS AB Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. A power-law fit to ring diameters (D-ring) and rim-crest diameters (D-r) of peak-ring basins on the Moon [D-ring = 0.14 +/- 0.10(D-r)(1.21 +/- 0.13)] reveals a trend that is very similar to a power-law fit to peak-ring basin diameters on Mercury [D-ring = 0.25 +/- 0.14(D-rim)(1.13 +/- 0.10)] [Baker, D.M.H. et al. [2011]. Planet. Space Sci., in press]. Plots of ring/rim-crest ratios versus rim-crest diameters for peak-ring basins and protobasins on the Moon also reveal a continuous, nonlinear trend that is similar to trends observed for Mercury and Venus and suggest that protobasins and peak-ring basins are parts of a continuum of basin morphologies. The surface density of peak-ring basins on the Moon (4.5 x 10(-7) per km(2)) is a factor of two less than Mercury (9.9 x 10(-7) per km(2)), which may be a function of their widely different mean impact velocities (19.4 km/s and 42.5 km/s, respectively) and differences in peak-ring basin onset diameters. New calculations of the onset diameter for peak-ring basins on the Moon and the terrestrial planets re-affirm previous analyses that the Moon has the largest onset diameter for peak-ring basins in the inner Solar System. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onet diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets. (C) 2011 Elsevier Inc. All rights reserved. C1 [Baker, David M. H.; Head, James W.; Fassett, Caleb I.; Kadish, Seth J.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Smith, Dave E.; Zuber, Maria T.; Neumann, Gregory A.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD USA. [Smith, Dave E.; Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Baker, DMH (reprint author), Brown Univ, Dept Geol Sci, Box 1846, Providence, RI 02912 USA. EM david_baker@brown.edu RI Neumann, Gregory/I-5591-2013; OI Neumann, Gregory/0000-0003-0644-9944; Fassett, Caleb/0000-0001-9155-3804 FU NASA [NNX09AM54G] FX We thank Ian Garrick-Bethell for use of the code to calculate the averaged LOLA topography profiles and Sam Schon for productive discussions on the populations of impact basins on Mercury. We also thank Mark Cintala for helpful discussions on the scaling of impact melting and the LOLA and LROC teams for their efforts in acquiring and processing the data. Reviews by Gordon Osinski and an anonymous reviewer helped to improve the quality of the manuscript. Thanks are extended to the NASA Lunar Reconnaissance Obiter Mission, Lunar Orbiter Laser Altimeter (LOLA) instrument for financial assistance (NNX09AM54G). NR 53 TC 25 Z9 25 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 377 EP 393 DI 10.1016/j.icarus.2011.05.030 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500003 ER PT J AU Thomson, BJ Bridges, NT Milliken, R Baldridge, A Hook, SJ Crowley, JK Marion, GM de Souza, CR Brown, AJ Weitz, CM AF Thomson, B. J. Bridges, N. T. Milliken, R. Baldridge, A. Hook, S. J. Crowley, J. K. Marion, G. M. de Souza Filho, C. R. Brown, A. J. Weitz, C. M. TI Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data SO ICARUS LA English DT Article DE Mars, Surface; Geological processes; Cratering; Infrared observations ID MEDUSAE FOSSAE FORMATION; MARTIAN GEOLOGIC RECORD; LASER ALTIMETER DATA; ART. NO. 5111; MERIDIANI-PLANUM; PALEOMAGNETIC POLES; POLAR WANDER; DEPOSITS; STRATIGRAPHY; REGION AB Gale Crater contains a 5.2 km-high central mound of layered material that is largely sedimentary in origin and has been considered as a potential landing site for both the MER (Mars Exploration Rover) and MSL (Mars Science Laboratory) missions. We have analyzed recent data from Mars Reconnaissance Orbiter to help unravel the complex geologic history evidenced by these layered deposits and other landforms in the crater. Results from imaging data from the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) confirm geomorphic evidence for fluvial activity and may indicate an early lacustrine phase. Analysis of spectral data from the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) instrument shows clay-bearing units interstratified with sulfate-bearing strata in the lower member of the layered mound, again indicative of aqueous activity. The formation age of the layered mound, derived from crater counts and superposition relationships, is similar to 3.6-3.8 Ga and straddles the Noachian-Hesperian time-stratigraphic boundary. Thus Gale provides a unique opportunity to investigate global environmental change on Mars during a period of transition from an environment that favored phyllosilicate deposition to a later one that was dominated by sulfate formation. (C) 2011 Elsevier Inc. All rights reserved. C1 [Thomson, B. J.; Bridges, N. T.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Milliken, R.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Baldridge, A.; Weitz, C. M.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Hook, S. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Marion, G. M.] Desert Res Inst, Reno, NV 89512 USA. [de Souza Filho, C. R.] Univ Estadual Campinas, BR-13083970 Campinas, SP, Brazil. [Brown, A. J.] SETI Inst, Mountain View, CA 94043 USA. RP Thomson, BJ (reprint author), Boston Univ, Ctr Remote Sensing, 725 Commonwealth Ave,Rm 433, Boston, MA 02155 USA. EM bjt@bu.edu RI Bridges, Nathan/D-6341-2016; OI Thomson, Bradley/0000-0001-8635-8932 FU NASA FX This manuscript was improved by thoughtful reviews from Rossman Irwin and an anonymous reviewer. This research was supported in part by a NASA Interdisciplinary Exploration Science grant to Simon J. Hook. NR 70 TC 93 Z9 94 U1 2 U2 37 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 413 EP 432 DI 10.1016/j.icarus.2011.05.002 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500006 ER PT J AU Sanchez-Lavega, A Orton, GS Hueso, R Perez-Hoyos, S Fletcher, LN Garcia-Melendo, E Gomez-Forrellad, JM de Pater, I Wong, M Hammel, HB Yanamandra-Fisher, P Simon-Miller, A Barrado-Izagirre, N Marchis, F Mousis, O Ortiz, JL Garcia-Rojas, J Cecconi, M Clarke, JT Noll, K Pedraz, S Wesley, A Kalas, P McConnell, N Golisch, W Griep, D Sears, P Volquardsen, E Reddy, V Shara, M Binzel, R Grundy, W Emery, J Rivkin, A Thomas, C Trilling, D Bjorkman, K Burgasser, AJ Campins, H Sato, TM Kasaba, Y Ziffer, J Mirzoyan, R Fitzgerald, M Bouy, H AF Sanchez-Lavega, A. Orton, G. S. Hueso, R. Perez-Hoyos, S. Fletcher, L. N. Garcia-Melendo, E. Gomez-Forrellad, J. M. de Pater, I. Wong, M. Hammel, H. B. Yanamandra-Fisher, P. Simon-Miller, A. Barrado-Izagirre, N. Marchis, F. Mousis, O. Ortiz, J. L. Garcia-Rojas, J. Cecconi, M. Clarke, J. T. Noll, K. Pedraz, S. Wesley, A. Kalas, P. McConnell, N. Golisch, W. Griep, D. Sears, P. Volquardsen, E. Reddy, V. Shara, M. Binzel, R. Grundy, W. Emery, J. Rivkin, A. Thomas, C. Trilling, D. Bjorkman, K. Burgasser, A. J. Campins, H. Sato, T. M. Kasaba, Y. Ziffer, J. Mirzoyan, R. Fitzgerald, M. Bouy, H. CA International Outer Planet Watch T TI Long-term evolution of the aerosol debris cloud produced by the 2009 impact on Jupiter SO ICARUS LA English DT Article DE Atmospheres, Dynamics; Jupiter, Atmosphere; Impact processes ID COMET SHOEMAKER-LEVY-9; HST IMAGES; FEATURES; MODEL; JET; SIMULATIONS; DISTURBANCE; ULTRAVIOLET; TRANSPORT; MOTIONS AB We present a study of the long-term evolution of the cloud of aerosols produced in the atmosphere of Jupiter by the impact of an object on 19 July 2009 (Sanchez-Lavega, A. et al. [2010]. Astrophys. J. 715, L155-L159). The work is based on images obtained during 5 months from the impact to 31 December 2009 taken in visible continuum wavelengths and from 20 July 2009 to 28 May 2010 taken in near-infrared deep hydrogen-methane absorption bands at 2.1-2.3 pm. The impact cloud expanded zonally from similar to 5000 km (July 19) to 225,000 km (29 October, about 180 degrees in longitude), remaining meridionally localized within a latitude band from 53.5 degrees S to 61.5 degrees S planetographic latitude. During the first two months after its formation the site showed heterogeneous structure with 500-1000 km sized embedded spots. Later the reflectivity of the debris field became more homogeneous due to clump mergers. The cloud was mainly dispersed in longitude by the dominant zonal winds and their meridional shear, during the initial stages, localized motions may have been induced by thermal perturbation caused by the impact's energy deposition. The tracking of individual spots within the impact cloud shows that the westward jet at 56.5 degrees S latitude increases its eastward velocity with altitude above the tropopause by 5-10 m s(-1). The corresponding vertical wind shear is low, about 1 m s(-1) per scale height in agreement with previous thermal wind estimations. We found evidence for discrete localized meridional motions with speeds of 1-2 ms(-1). Two numerical models are used to simulate the observed cloud dispersion. One is a pure advection of the aerosols by the winds and their shears. The other uses the EPIC code, a nonlinear calculation of the evolution of the potential vorticity field generated by a heat pulse that simulates the impact. Both models reproduce the observed global structure of the cloud and the dominant zonal dispersion of the aerosols, but not the details of the cloud morphology. The reflectivity of the impact cloud decreased exponentially with a characteristic timescale of 15 days; we can explain this behavior with a radiative transfer model of the cloud optical depth coupled to an advection model of the cloud dispersion by the wind shears. The expected sedimentation time in the stratosphere (altitude levels 5-100 mbar) for the small aerosol particles forming the cloud is 45-200 days, thus aerosols were removed vertically over the long term following their zonal dispersion. No evidence of the cloud was detected 10 months after the impact. (C) 2011 Elsevier Inc. All rights reserved. C1 [Sanchez-Lavega, A.; Hueso, R.; Perez-Hoyos, S.] Univ Basque Country, Dept Fis Aplicada 1, ETS Ingn, Bilbao 48013, Spain. [Orton, G. S.; Yanamandra-Fisher, P.] CALTECH, Jet Prop Lab, MS 169237, Pasadena, CA 91109 USA. [Fletcher, L. N.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Garcia-Melendo, E.; Gomez-Forrellad, J. M.] Fundacio Privada Observ Esteve Duran, Seva 08553, Spain. [de Pater, I.; Wong, M.; Marchis, F.; Kalas, P.; McConnell, N.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Hammel, H. B.] Space Sci Inst, Boulder, CO 80301 USA. [Simon-Miller, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Barrado-Izagirre, N.] Univ Basque Country, Dept Matemat Aplicada, EUITI, E-48080 Bilbao, Spain. [Marchis, F.] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Mousis, O.] CNRS, UMR 6213, Inst UTINAM, Observ Besancon, F-25010 Besancon, France. [Ortiz, J. L.] CSIC, Inst Astrofis Andalucia, Granada, Spain. [Garcia-Rojas, J.] Inst Astrofis Canarias, San Cristobal la Laguna, Tenerife, Spain. [Garcia-Rojas, J.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Cecconi, M.] Fdn Galileo Galilei, INAF, San Antonio De Brena Baj 738712, La Palma, Spain. [Clarke, J. T.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Noll, K.] Space Sci Inst, Ridgefield, CT 06877 USA. [Pedraz, S.] Calar Alto Ohs Centro Astron Hispano Aleman, Almeria 04004, Spain. [Wesley, A.] Acquerra Pty Ltd, Murrumbateman, NSW, Australia. [Golisch, W.; Griep, D.; Sears, P.; Volquardsen, E.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Reddy, V.] Univ N Dakota, Dept Space Studies, Grand Forks, ND 58202 USA. [Shara, M.] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Binzel, R.] MIT, Dept Earth & Planetary Sci, MS 54410, Cambridge, MA 02139 USA. [Grundy, W.] Lowell Observ, Flagstaff, AZ 86001 USA. [Emery, J.] Univ Tennessee, Knoxville, TN 37996 USA. [Rivkin, A.] Johns Hopkins Univ, Appl Phys Lab, NP3 E169, Laurel, MD 20723 USA. [Thomas, C.; Trilling, D.] No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ 86011 USA. [Bjorkman, K.] Univ Toledo, Dept Phys & Astron, MS 111, Toledo, OH 43606 USA. [Burgasser, A. J.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Campins, H.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Sato, T. M.; Kasaba, Y.] Tohoku Univ, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Ziffer, J.] Univ So Maine, Portland, ME 04104 USA. [Mirzoyan, R.] Glendale Community Coll, Glendale, CA 91208 USA. [Fitzgerald, M.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Noll, K.; Fitzgerald, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Fletcher, L. N.; Bouy, H.] Ctr Astrobiol INTA CSIC, Madrid 28691, Spain. RP Sanchez-Lavega, A (reprint author), Univ Basque Country, Dept Fis Aplicada 1, ETS Ingn, Alameda Urquijo S-N, Bilbao 48013, Spain. EM agustin.sanchez@ehu.es RI Rivkin, Andrew/B-7744-2016; Simon, Amy/C-8020-2012; Noll, Keith/C-8447-2012; Fletcher, Leigh/D-6093-2011; Marchis, Franck/H-3971-2012; Clarke, John/C-8644-2013; Bouy, Herve/H-2913-2012; Perez-Hoyos, Santiago/L-7543-2014; Barrado-Izagirre, Naiara/H-2807-2015; Fitzgerald, Michael/C-2642-2009 OI Hueso, Ricardo/0000-0003-0169-123X; Garcia-Rojas, Jorge/0000-0002-6138-1869; Thomas, Cristina/0000-0003-3091-5757; Rivkin, Andrew/0000-0002-9939-9976; Simon, Amy/0000-0003-4641-6186; Fletcher, Leigh/0000-0001-5834-9588; Bouy, Herve/0000-0002-7084-487X; Perez-Hoyos, Santiago/0000-0002-2587-4682; Barrado-Izagirre, Naiara/0000-0001-6319-8577; Sanchez-Lavega, Agustin/0000-0001-7355-1522; Fitzgerald, Michael/0000-0002-0176-8973 FU Spanish MICIIN [AYA2009-10701]; Grupos Gobierno Vasco [IT-464-07]; National Aeronautics and Space Administration; University of Oxford; NASA through Space Telescope Science Institute [GO/DD-12003, GO/DD-12045, GO-11559, NAS 5-26555] FX This work was supported by the Spanish MICIIN Project AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07. This research made use of the computing facilities at CESCA in Barcelona with the help of the Ministerio de Educacion y Ciencia. The research described in this paper that was performed by Orton and Yanamandra-Fisher was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Fletcher was supported by a Glasstone Science Fellowship at the University of Oxford. A.J. Burgasser is a Hellman Fellow. We thank IRTF staff members Schelte ("Bobby") Bus and Tony Denault for their help in creating a command script (macro) that provided minimal interference with the primary programs scheduled on several nights of observation using SpeX. The 1.52 m Carlos Sanchez Telescope is operated on the island of Tenerife by the Instituto de Astrofisica de Canarias in the Spanish Observatorio del Teide. The Hubble Space Telescope data were obtained under GO/DD-12003, GO/DD-12045, and GO-11559 with support provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA Contract NAS 5-26555. NR 48 TC 6 Z9 6 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 462 EP 476 DI 10.1016/j.icarus.2011.03.015 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500009 ER PT J AU Fletcher, LN Baines, KH Momary, TW Showman, AP Irwin, PGJ Orton, GS Roos-Serote, M Merlet, C AF Fletcher, Leigh N. Baines, Kevin H. Momary, Thomas W. Showman, Adam P. Irwin, Patrick G. J. Orton, Glenn S. Roos-Serote, Maarten Merlet, C. TI Saturn's tropospheric composition and clouds from Cassini/VIMS 4.6-5.1 mu m nightside spectroscopy SO ICARUS LA English DT Article DE Saturn; Atmospheres, Composition; Atmospheres, Structure ID ROTOTRANSLATIONAL ABSORPTION-SPECTRA; HUBBLE-SPACE-TELESCOPE; ISO-SWS OBSERVATIONS; RADIATIVE-TRANSFER; EQUATORIAL REGION; ATMOSPHERIC COMPOSITION; JUPITERS ATMOSPHERE; OUTER PLANETS; GIANT PLANETS; VERTICAL-DISTRIBUTION AB The latitudinal variation of Saturn's tropospheric composition (NH3, PH3 and AsH3) and aerosol properties (cloud altitudes and opacities) are derived from Cassini/VIMS 4.6-5.1 mu m thermal emission spectroscopy on the planet's nightside (April 22, 2006). The gaseous and aerosol distributions are used to trace atmospheric circulation and chemistry within and below Saturn's cloud decks (in the 1- to 4-bar region). Extensive testing of VIMS spectral models is used to assess and minimise the effects of degeneracies between retrieved variables and sensitivity to the choice of aerosol properties. Best fits indicate cloud opacity in two regimes: (a) a compact cloud deck centred in the 2.5-2.8 bar region, symmetric between the northern and southern hemispheres, with small-scale opacity variations responsible for numerous narrow light/dark axisymmetric lanes; and (b) a hemispherically asymmetric population of aerosols at pressures less than 1.4 bar (whose exact altitude and vertical structure is not constrained by nightside spectra) which is 1.5-2.0x more opaque in the summer hemisphere than in the north and shows an equatorial maximum between +/- 10 degrees (planetocentric). Saturn's NH3 spatial variability shows significant enhancement by vertical advection within +/- 5 degrees of the equator and in axisymmetric bands at 23-25 degrees S and 42-47 degrees N. The latter is consistent with extratropical upwelling in a dark band on the poleward side of the prograde jet at 41 degrees N (planetocentric). PH3 dominates the morphology of the VIMS spectrum, and high-altitude PH3 at p < 1.3 bar has an equatorial maximum and a mid-latitude asymmetry (elevated in the summer hemisphere), whereas deep PH3 is latitudinally-uniform with off-equatorial maxima near +/- 10 degrees. The spatial distribution of AsH3 shows similar off-equatorial maxima at +/- 7 degrees with a global abundance of 2-3 ppb. VIMS appears to be sensitive to both (i) an upper tropospheric circulation (sensed by NH3 and upper-tropospheric PH3 and hazes) and (ii) a lower tropospheric circulation (sensed by deep PH3, AsH3 and the lower cloud deck). (C) 2011 Elsevier Inc. All rights reserved. C1 [Fletcher, Leigh N.; Irwin, Patrick G. J.; Merlet, C.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Baines, Kevin H.] Univ Wisconsin, SSEC, Madison, WI 53706 USA. [Momary, Thomas W.; Orton, Glenn S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Showman, Adam P.] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Roos-Serote, Maarten] Lisbon Astron Observ, P-1349018 Lisbon, Portugal. RP Fletcher, LN (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM fletcher@atm.ox.ac.uk RI Fletcher, Leigh/D-6093-2011 OI Fletcher, Leigh/0000-0001-5834-9588 FU University of Oxford; UK Science and Technology Facilities Council; NASA; Cassini Project FX Fletcher was supported during this research by a Glasstone Science Fellowship at the University of Oxford. Irwin acknowledges the support of the UK Science and Technology Facilities Council. Orton carried out part of this research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, and acknowledges support from the Cassini Project. We thank the members of the VIMS investigation team who have assisted in the design of the imaging sequences, instrument commands and other vital operational tasks, and the Ground Systems Operations for the Cassini Project. This research has made use of the USGS Integrated Software for Imagers and Spectrometers (ISIS). NR 108 TC 29 Z9 29 U1 1 U2 15 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 510 EP 533 DI 10.1016/j.icarus.2011.06.006 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500012 ER PT J AU Buratti, BJ Faulk, SP Mosher, J Baines, KH Brown, RH Clark, RN Nicholson, PD AF Buratti, B. J. Faulk, S. P. Mosher, J. Baines, K. H. Brown, R. H. Clark, R. N. Nicholson, P. D. TI Search for and limits on plume activity on Mimas, Tethys, and Dione with the Cassini Visual Infrared Mapping Spectrometer (VIMS) SO ICARUS LA English DT Article DE Saturn, Satellites; Satellites, Surfaces; Geological processes ID WATER-VAPOR; SATURNIAN SATELLITES; ISS IMAGES; ENCELADUS; PHOTOMETRY; RHEA; ATMOSPHERE; SYSTEM; JETS; RING AB Cassini Visual Infrared Mapping Spectrometer (VIMS) observations of Mimas, Tethys, and Dione obtained during the nominal and extended missions at large solar phase angles were analyzed to search for plume activity. No forward scattered peaks in the solar phase curves of these satellites were detected. The upper limit on water vapor production for Mimas and Tethys is one order of magnitude less than the production for Enceladus. For Dione, the upper limit is two orders of magnitude less, suggesting this world is as inert as Rhea (Pitman, KM., Buratti, B.J., Mosher, J.A., Bauer, J.M., Momary, T., Brown, R.H., Nicholson, P.O.. Hedman, M.M. [2008]. Astrophys. J. Lett. 680, L65-L68). Although the plumes are best seen at similar to 2.0 mu m, Imaging Science Subsystem (ISS) Narrow Angle Camera images obtained at the same time as the VIMS data were also inspected for these features. None of the Cassini ISS images shows evidence for plumes. The absence of evidence for any Enceladus-like plumes on the medium-sized saturnian satellites cannot absolutely rule out current geologic activity. The activity may below our threshold of detection, or it may be occurring but not captured on the handful of observations at large solar phase angles obtained for each moon. Many VIMS and ISS images of Enceladus at large solar phase angles, for example, do not contain plumes, as the active "tiger stripes" in the south pole region are pointed away from the spacecraft at these times. The 7-year Cassini Solstice Mission is scheduled to gather additional measurements at large solar phase angles that are capable of revealing activity on the saturnian moons. (C) 2011 Elsevier Inc. All rights reserved. C1 [Buratti, B. J.; Mosher, J.; Baines, K. H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Faulk, S. P.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Brown, R. H.] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Clark, R. N.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Nicholson, P. D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Buratti, BJ (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91001 USA. EM Bonnie.Buratti@jpl.nasa.gov FU National Aeronautics and Space Administration; Cassini project; Cassini Data Analysis Program FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration, and was sponsored by NASA'S Undergraduate Student Research Program, the Cassini project, and the Cassini Data Analysis Program. We thank David Blackburn, Joseph Spitale, and an anonymous reviewer for helpful conversations and reviews. Copyright 2011 all rights reserved. NR 25 TC 5 Z9 6 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 534 EP 540 DI 10.1016/j.icarus.2011.04.030 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500013 ER PT J AU Ciarniello, M Capaccioni, F Filacchione, G Clark, RN Cruikshank, DP Cerroni, P Coradini, A Brown, RH Buratti, BJ Tosi, F Stephan, K AF Ciarniello, M. Capaccioni, F. Filacchione, G. Clark, R. N. Cruikshank, D. P. Cerroni, P. Coradini, A. Brown, R. H. Buratti, B. J. Tosi, F. Stephan, K. TI Hapke modeling of Rhea surface properties through Cassini-VIMS spectra SO ICARUS LA English DT Article DE Saturn, Satellites; Spectrophotometry; Ices; Radiative transfer; Satellites, Surfaces ID BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; INFRARED MAPPING SPECTROMETER; OPTICAL-CONSTANTS; RADIATIVE-TRANSFER; ICY SATELLITES; MU-M; COHERENT BACKSCATTER; CRYSTALLINE H2O-ICE; GALILEAN SATELLITES; ALBEDO DICHOTOMY AB The surface properties of the icy bodies in the saturnian system have been investigated by means of the Cassini-VIMS (Visual Infrared Mapping Spectrometer) hyperspectral imager which operates in the 0.35-5.1 mu m wavelength range. In particular, we have analyzed 111 full disk hyperspectral images of Rhea ranging in solar phase between 0.08 degrees and 109.8 degrees. These data have been previously analyzed by Filacchione et al. (Filacchione, G. et al. [2007]. Icarus 186, 259-290; Filacchione, G. et al. [2010]. Icarus 206, 507-523) to study, adopting various "spectral indicators" (such as spectral slopes, band depth, and continuum level), the relations among various saturnian satellites. As a further step we proceed in this paper to a quantitative evaluation of the physical parameters determining the spectrophotometric properties of Rhea's surface. To do this we have applied Hapke (Hapke, B. [1993]. Theory of Reflectance and Emittance Spectroscopy, Topics in Remote Sensing: 3. Springer, Berlin) IMSA model (Isotropic Multiple Scattering Approximation) which allow us to model the phase function at VIS-IR (visible-infrared) wavelengths as well as the spectra taking into account various types of mixtures of surface materials. Thanks to this method we have been able to constrain the size of water ice particles covering the surface, the amount of organic contaminants, the large scale surface roughness and the opposition effect surge. From our analysis it appears that wavelength dependent parameters, e.g. opposition surge width (h) and single-particle phase function parameters (b, v), are strongly correlated to the estimated single-scattering albedo of particles. For Rhea the best fit solution is obtained by assuming: (1) an intraparticle mixture of crystalline water ice and a small amount (0.4%) of Triton tholin; (2) a monodisperse grain size distribution having a particle diameter a(m) = 38 mu m; and (3) a surface roughness parameter value of 33 degrees. The study of phase function shows that both shadow hiding and coherent backscattering contribute to the opposition surge. This study represents the first attempt, in the case of Rhea, to join the spectral and the photometric analysis. The surface model we derived gives a good quantitative description of both spectrum and phase curve of the satellite. The same approach and model, with appropriate modifications, shall be applied to VIMS data of the other icy satellites of Saturn, in order to reveal similarities and differences in the surface characteristics to understand how these bodies interact with their environment. (C) 2011 Elsevier Inc. All rights reserved. C1 [Ciarniello, M.; Capaccioni, F.; Filacchione, G.; Cerroni, P.] INAF IASF, I-00133 Rome, Italy. [Clark, R. N.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Cruikshank, D. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Coradini, A.; Tosi, F.] INAF IFSI, I-00133 Rome, Italy. [Brown, R. H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Brown, R. H.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Buratti, B. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Stephan, K.] DLR, Inst Planetary Explorat, Berlin, Germany. RP Ciarniello, M (reprint author), INAF IASF, Via Fosso Cavaliere 100, I-00133 Rome, Italy. EM mauro.ciarniello@iasf-roma.inaf.it OI Ciarniello, Mauro/0000-0002-7498-5207; Cerroni, Priscilla/0000-0003-0239-2741; Capaccioni, Fabrizio/0000-0003-1631-4314; Filacchione, Gianrico/0000-0001-9567-0055; Tosi, Federico/0000-0003-4002-2434 FU Italian Space Agency FX The authors M.C., F.C., G.F., P.C., A.C. and F.T. acknowledge support from an Italian Space Agency grant. The authors wish to thank the referees for their constructive comments. NR 64 TC 22 Z9 22 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 541 EP 555 DI 10.1016/j.icarus.2011.05.010 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500014 ER PT J AU Greathouse, TK Richter, M Lacy, J Moses, J Orton, G Encrenaz, T Hammel, HB Jaffe, D AF Greathouse, Thomas K. Richter, Matthew Lacy, John Moses, Julianne Orton, Glenn Encrenaz, Therese Hammel, H. B. Jaffe, Dan TI A spatially resolved high spectral resolution study of Neptune's stratosphere SO ICARUS LA English DT Article DE Neptune; Abundances, atmospheres; Infrared observations; Neptune, atmosphere ID ROTOTRANSLATIONAL ABSORPTION-SPECTRA; MERIDIONAL VARIATIONS; SATURNS STRATOSPHERE; VOYAGER MEASUREMENTS; CIRS/CASSINI LIMB; THERMAL STRUCTURE; GIANT PLANETS; ATMOSPHERE; TEMPERATURE; ETHANE AB Using TEXES, the Texas Echelon cross Echelle Spectrograph, mounted on the Gemini North 8-m telescope we have mapped the spatial variation of H-2, CH4, C2H2 and C2H6 thermal-infrared emission of Neptune. These high-spectral-resolution, spatially resolved, thermal-infrared observations of Neptune offer a unique glimpse into the state of Neptune's stratosphere in October 2007, L-S = 275.4 degrees just past Neptune's southern summer solstice (L-S = 270 degrees). We use observations of the S(1) pure rotational line of molecular hydrogen and a portion of the v(4) band of methane to retrieve detailed information on Neptune's stratospheric vertical and meridional thermal structure. We find global-average temperatures of 163.8 +/- 0.8, 155.0 +/- 0.9, and 123.8 +/- 0.8 K at the 7.0 x 10(-3)-, 0.12-, and 2.1-mbar levels with no meridional variations within the errors. We then use the inferred temperatures to model the emission of C2H2 and C2H6 in order to derive stratospheric volume mixing ratios (hence forth, VMR) as a function of pressure and latitude. There is a subtle meridional variation of the C2H2 VMR at the 0.5-mbar level with the peak abundance found at 28 latitude, falling off to the north and south. However, the observations are consistent within error to a meridionally constant C2H2 VMR of 3.3(-0.9)(+1.2) x 10(-8) at 0.5 mbar. We find that the VMR of C2H6 at 1-mbar peaks at the equator and falls by a factor of 1.6 at -70 degrees latitude. However, a meridionally constant VMR of 9.3(-2.6)(+3.5) x 10(-7) at the 1-mbar level for C2H6 is also statistically consistent with the retrievals. Temperature predictions from a radiative-seasonal climate model of Neptune that assumes the hydrocarbon abundances inferred in this paper are lower than the measured temperatures by 40K at 7 x 10(-3) mbar, 30 K at 0.12 mbar and 25 K at 2.1 mbar. The radiative-seasonal model also predicts meridional temperature variations on the order of 10 K from equator to pole, which are not observed. Assuming higher stratospheric CH4 abundance at the equator relative to the south pole would bring the meridional trends of the inferred temperatures and radiative-seasonal model into closer agreement. We have also retrieved observations of C2H4 emission from Neptune's stratosphere using TEXES on the NASA Infrared Telescope Facility (IRTF) in June 2003, L-S = 266 degrees. Using the observations from the middle of the planet and an average of the middle three latitude temperature profiles from the 2007 observations (9.5 degrees of L-S later, the seasonal equivalent of 9.5 Earth days within Earth's seasonal cycle), we infer a C2H4 VMR of 5.9(-0.8)(+1.0) x 10(-7) at 1.5 x 10(-3) mbar, a value that is 3.25 times that predicted by global-average photochemical models. (C) 2011 Elsevier Inc. All rights reserved. C1 [Greathouse, Thomas K.] SW Res Inst, San Antonio, TX 78228 USA. [Richter, Matthew] Univ Calif Davis, Davis, CA 95616 USA. [Lacy, John; Jaffe, Dan] Univ Texas Austin, Austin, TX 78712 USA. [Moses, Julianne; Hammel, H. B.] Space Sci Inst, Boulder, CO 80301 USA. [Orton, Glenn] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Encrenaz, Therese] Observ Paris, F-92195 Meudon, France. [Hammel, H. B.] AURA, Washington, DC 20005 USA. RP Greathouse, TK (reprint author), SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA. EM tgreathouse@swri.edu RI Moses, Julianne/I-2151-2013; OI Moses, Julianne/0000-0002-8837-0035; Greathouse, Thomas/0000-0001-6613-5731 FU National Aeronautics and Space Administration, Office of Space Science [NCC 5-538]; NASA [NNX08AW33G, NNX08AL95G, NNX10AF65G]; NSF [AST-0708074]; National Science Foundation (United States); Science and Technology Facilities Council (United Kingdom); National Research Council (Canada); CONICYT (Chile); Australian Research Council (Australia); Ministerio da Ciencia e Tecnologia (Brazil); Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina) FX Greathouse, Encrenaz, Richter and Lacy were visiting astronomers at the Infrared Telescope Facility, which is operated by the University of Hawaii under cooperative agreement NCC 5-538 with the National Aeronautics and Space Administration, Office of Space Science, Planetary Astronomy Program. Greathouse acknowledges funding by NASA PAST grant NNX08AW33G and NASA PATM grant NNX08AL95G. Hammel acknowledges support from NASA grants NNX06AD12G and NNA07CN65A. JM gratefully acknowledges supports from NASA Planetary Atmospheres grant NNX10AF65G. The results presented here are based on observations (GN-2007B-C-8) obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). Richter acknowledges NSF grant AST-0708074 for TEXES support. A portion of this work was performed by Orton at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We recognize the significant cultural role of Mauna Kea within the indigenous Hawaiian community, and we appreciate the opportunity to conduct observations from this revered site. Special thanks go to Bruno Bezard for supplying us with line parameters for H2. We would also like to thank the reviewers for their insight and suggestions. NR 53 TC 15 Z9 15 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 606 EP 621 DI 10.1016/j.icarus.2011.05.028 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500020 ER PT J AU Lellouch, E Stansberry, J Emery, J Grundy, W Cruikshank, DP AF Lellouch, Emmanuel Stansberry, John Emery, Josh Grundy, Will Cruikshank, Dale P. TI Thermal properties of Pluto's and Charon's surfaces from Spitzer observations SO ICARUS LA English DT Article DE Pluto; Pluto, Surface; Charon; Infrared observations ID MULTIBAND IMAGING PHOTOMETER; NEAR-EARTH ASTEROIDS; MU-M; ABSOLUTE CALIBRATION; SPACE-TELESCOPE; TRITON; MODEL; TEMPERATURES; NITROGEN; INERTIA AB We report on thermal observations of the Pluto-Charon system acquired by the Spitzer observatory in August-September 2004. The observations, which consist of (i) photometric measurements (8 visits) with the Multiband Imaging Photometer (MIPS) at 24, 70 and 160 mu m and (ii) low-resolution spectra (8 visits) over 20-37 mu m with the Infrared Spectrometer (IRS), clearly exhibit the thermal lightcurve of Pluto/Charon at a variety of wavelengths. They further indicate a steady decrease of the system brightness temperature with increasing wavelength. Observations are analyzed by means of a thermophysical model, including the effects of thermal conduction and surface roughness, and using a multi-terrain description of Pluto and Charon surfaces in accordance with visible imaging and lightcurves, and visible and near-infrared spectroscopy. Three units are considered for Pluto, respectively covered by N(2) ice, CH(4) ice, and a tholin/H(2)O mix. Essential model parameters are the thermal inertia of Pluto and Charon surfaces and the spectral and bolometric emissivity of the various units. A new and improved value of Pluto's surface thermal inertia, referring to the CH(4) and tholin/H(2)O areas, is determined to be Gamma(Pl) = 20-30 J m(-2) s(-1/2) K(-1) (MKS). The high-quality 24-mu m lightcurve permits a precise assessment of Charon's thermal emission, indicating a mean surface temperature of 55.4 +/- 2.6 K. Although Charon is on average warmer than Pluto, it is also not in instantaneous equilibrium with solar radiation. Charon's surface thermal inertia is in the range Gamma(Ch) = 10-150 MKS, though most model solutions point to Gamma(Ch) = 10-20 MKS. Pluto and Charon thermal inertias appear much lower than values expected for compact ices, probably resulting from high surface porosity and poor surface consolidation. Comparison between Charon's thermal inertia and even lower values estimated for two other H(2)O-covered Kuiper-Belt objects suggests that a vertical gradient of conductivity exists in the upper surface of these bodies. Finally, the observations indicate that the spectral emissivity of methane ice is close to unity at 24 mu m and decreases with increasing wavelength to similar to 0.6 at 100 mu m. Future observations of thermal lightcurves over 70-500 mu m by Herschel should be very valuable to further constrain the emissivity behavior of the Pluto terrains. (C) 2011 Elsevier Inc. All rights reserved. C1 [Lellouch, Emmanuel] Observ Paris, LESIA, F-92195 Meudon, France. [Stansberry, John] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Emery, Josh] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Grundy, Will] Lowell Observ, Flagstaff, AZ 86001 USA. [Cruikshank, Dale P.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. RP Lellouch, E (reprint author), Observ Paris, LESIA, 5 Pl Jules Janssen, F-92195 Meudon, France. EM emmanuel.lellouch@obspm.fr NR 71 TC 25 Z9 25 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 701 EP 716 DI 10.1016/j.icarus.2011.05.035 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500027 ER PT J AU Hodyss, R Howard, HR Johnson, PV Goguen, JD Kanik, I AF Hodyss, Robert Howard, Heather R. Johnson, Paul V. Goguen, Jay D. Kanik, Isik TI Formation of radical species in photolyzed CH4:N-2 ices SO ICARUS LA English DT Article DE Ices; Ices, IR spectroscopy; Ices, UV spectroscopy; Satellites, Surfaces; Pluto, Surface; Photochemistry; Triton ID VACUUM-ULTRAVIOLET PHOTOLYSIS; MATRIX-ISOLATION; SPACE-TELESCOPE; TRITON; SPECTRA; SPECTROSCOPY; METHANE; PLUTO; RELEVANT; PRODUCTS AB We report photochemical studies of thin cryogenic ice films composed of N-2, CH4 and CO in ratios analogous to those on the surfaces of Neptune's largest satellite, Triton, and on Pluto. Experiments were performed using a hydrogen discharge lamp, which provides an intense source of ultraviolet light to simulate the sunlight-induced photochemistry on these icy bodies. Characterization via infrared spectroscopy showed that C2H6 and C2H2, and HCO are formed by the dissociation of CH4 into H, CH2 and CH3 and the subsequent reaction of these radicals within the ice. Other radical species, such as C-2, C-2(-), CN, and CNN, are observed in the visible and ultraviolet regions of the spectrum. These species imply a rich chemistry based on formation of radicals from methane and their subsequent reaction with the N-2 matrix. We discuss the implications of the formation of these radicals for the chemical evolution of Triton and Pluto. Ultimately, this work suggests that C-2(-), CN, HCO, and CNN may be found in significant quantities on the surfaces of Triton and Pluto and that new observations of these objects in the appropriate wavelength regions are warranted. (C) 2011 Elsevier Inc. All rights reserved. C1 [Hodyss, Robert; Howard, Heather R.; Johnson, Paul V.; Goguen, Jay D.; Kanik, Isik] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hodyss, Robert; Johnson, Paul V.; Kanik, Isik] NASA, Astrobiol Inst, Washington, DC 20546 USA. RP Hodyss, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Robert.P.Hodyss@jpl.nasa.gov FU National Aeronautics and Space Administration; internal Research and Technology Development program; NASA Astrobiology Institute (Icy Worlds) FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the internal Research and Technology Development program. We also acknowledge support from the NASA Astrobiology Institute (Icy Worlds). HRH participated in this work as an intern sponsored by the NASA Undergraduate Student Research Program. NR 42 TC 11 Z9 11 U1 1 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 748 EP 753 DI 10.1016/j.icarus.2011.05.023 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500031 ER PT J AU Metzger, SM Balme, MR Towner, MC Bos, BJ Ringrose, TJ Patel, MR AF Metzger, S. M. Balme, M. R. Towner, M. C. Bos, B. J. Ringrose, T. J. Patel, M. R. TI In situ measurements of particle load and transport in dust devils SO ICARUS LA English DT Article DE Mars; Mars, Atmosphere; Atmospheres, Dynamics; Earth ID MARS PATHFINDER; TERRESTRIAL; AEROSOLS AB In situ (mobile) sampling of 33 natural dust devil vortices reveals very high total suspended particle (TSP) mean values of 296 mg m(-3) and fine dust loadings (PM10) mean values ranging from 15.1 to 43.8 mg m(-3) (milligrams per cubic meter). Concurrent three-dimensional wind profiles show mean tangential rotation of 12.3 m s(-1) and vertical uplift of 2.7 m s(-1) driving mean vertical TSP flux of 1689 mg m(-3) s(-1) and fine particle flux of similar to 1.0 to similar to 50 mg m(-3) s(-1). Peak PM10 dust loading and flux within the dust column are three times greater than mean values, suggesting previous estimates of dust devil flux might be too high. We find that deflation rates caused by dust devil erosion are similar to 2.5-50 mu m per year in dust devil active zones on Earth. Similar values are expected for Mars, and may be more significant there where competing erosional mechanisms are less likely. (C) 2011 Elsevier Inc. All rights reserved. C1 [Metzger, S. M.; Balme, M. R.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Balme, M. R.] Open Univ, Dept Earth Environm Sci, Milton Keynes MK7 6AA, Bucks, England. [Towner, M. C.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London, England. [Bos, B. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ringrose, T. J.; Patel, M. R.] Open Univ, Planetary & Space Sci Res Inst, Milton Keynes MK7 6AA, Bucks, England. RP Balme, MR (reprint author), Planetary Sci Inst, 1700 E Ft Lowell Rd,Suite 106, Tucson, AZ 85719 USA. EM metzger@psi.edu; balme@psi.edu; m.towner@imperial.ac.uk; brent.j.bos@nasa.gov; t.j.ringro-se@open.ac.uk; m.r.patel@open.ac.uk OI Balme, Matthew/0000-0001-5871-7475 FU NASA [NNX08AP32G] FX We wish to thank the Desert Research Institute, Ron Greeley at Arizona State University, and John Zarnecki at the Open University for material and logistical support. We thank Asmin Pathare at the Planetary Science Institute for helpful discussion. This is PSI contribution number 502. Balme and Metzger were supported in part by NASA Mars Fundamental Research Program grant NNX08AP32G. NR 36 TC 22 Z9 22 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 766 EP 772 DI 10.1016/j.icarus.2011.03.013 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500033 ER PT J AU Shaw, TA Perlwitz, J Harnik, N Newman, PA Pawson, S AF Shaw, Tiffany A. Perlwitz, Judith Harnik, Nili Newman, Paul A. Pawson, Steven TI The Impact of Stratospheric Ozone Changes on Downward Wave Coupling in the Southern Hemisphere SO JOURNAL OF CLIMATE LA English DT Article ID CLIMATE-CHANGE; INTERANNUAL VARIABILITY; PLANETARY-WAVES; POLAR VORTICES; HIGH-LATITUDES; TROPOSPHERE; TEMPERATURE; PROPAGATION; CIRCULATION AB The impact of stratospheric ozone changes on downward wave coupling between the stratosphere and troposphere in the Southern Hemisphere is investigated using a suite of Goddard Earth Observing System chemistry-climate model (GEOS CCM) simulations. Downward wave coupling occurs when planetary waves reflected in the stratosphere impact the troposphere. In reanalysis data, the climatological coupling occurs from September to December when the stratospheric basic state has a well-defined high-latitude meridional waveguide in the lower stratosphere that is bounded above by a reflecting surface, called a bounded wave geometry. Reanalysis data suggests that downward wave coupling during November-December has increased during the last three decades. The GEOS CCM simulation of the recent past captures the main features of downward wave coupling in the Southern Hemisphere. Consistent with the Modern Era Retrospective-Analysis for Research and Application (MERRA) dataset, wave coupling in the model maximizes during October-November when there is a bounded wave geometry configuration. However, the wave coupling in the model is stronger than in the MERRA dataset, and starts earlier and ends later in the seasonal cycle. The late season bias is caused by a bias in the timing of the stratospheric polar vortex breakup. Temporal changes in stratospheric ozone associated with past depletion and future recovery significantly impact downward wave coupling in the model. During the period of ozone depletion, the spring bounded wave geometry, which is favorable for downward wave coupling, extends into early summer, due to a delay in the vortex breakup date, and leads to increased downward wave coupling during November-December. During the period of ozone recovery, the stratospheric basic state during November-December shifts from a spring configuration back to a summer configuration, where waves are trapped in the troposphere, and leads to a decrease in downward wave coupling. Model simulations with chlorine fixed at 1960 values and increasing greenhouse gases show no significant changes in downward wave coupling and confirm that the changes in downward wave coupling in the model are caused by ozone changes. The results reveal a new mechanism wherein stratospheric ozone changes can affect the tropospheric circulation. C1 [Shaw, Tiffany A.] Columbia Univ, Lamont Doherty Earth Observ, New York, NY USA. [Shaw, Tiffany A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Perlwitz, Judith] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Harnik, Nili] Tel Aviv Univ, Dept Geophys & Planetary Sci, IL-69978 Tel Aviv, Israel. [Pawson, Steven] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Shaw, TA (reprint author), Columbia Univ, Lamont Doherty Earth Observ, POB 1000,61 Route 9W, Palisades, NY 10964 USA. EM tas2163@columbia.edu RI Perlwitz, Judith/B-7201-2008; Newman, Paul/D-6208-2012; Pawson, Steven/I-1865-2014 OI Perlwitz, Judith/0000-0003-4061-2442; Newman, Paul/0000-0003-1139-2508; Pawson, Steven/0000-0003-0200-717X FU NASA; National Sciences and Engineering Research Council of Canada; Israeli Science Foundation [1370/08] FX We thank NASA's Global Modeling and Assimilation Office for providing the MERRA dataset. This work was supported by the NASA Modeling and Analysis Program and used high-end computational resources provided by NASA's Columbia Project. TAS's contribution was supported by the National Sciences and Engineering Research Council of Canada through a Post Doctoral Fellowship. NH's contribution was funded by Grant 1370/08 from the Israeli Science Foundation. The authors are grateful to two anonymous reviewers for their helpful comments. NR 35 TC 11 Z9 11 U1 0 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD AUG PY 2011 VL 24 IS 16 BP 4210 EP 4229 DI 10.1175/2011JCLI4170.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 814XN UT WOS:000294490600002 ER PT J AU Wong, S Fetzer, EJ Tian, BJ Lambrigtsen, B Ye, HC AF Wong, Sun Fetzer, Eric J. Tian, Baijun Lambrigtsen, Bjorn Ye, Hengchun TI The Apparent Water Vapor Sinks and Heat Sources Associated with the Intraseasonal Oscillation of the Indian Summer Monsoon SO JOURNAL OF CLIMATE LA English DT Article ID TRMM PR DATA; MOIST THERMODYNAMIC STRUCTURE; TROPICAL CLOUD CLUSTERS; SPECTRAL RETRIEVAL; ENERGY BUDGET; PART II; PROFILES; PRECIPITATION; PERSPECTIVE; ALGORITHM AB The possibility of using remote sensing retrievals to estimate apparent water vapor sinks and heat sources is explored. The apparent water vapor sinks and heat sources are estimated from a combination of remote sensing, specific humidity, and temperature from the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit (AIRS) and wind fields from the National Aeronautics and Space Administration (NASA)'s Goddard Space Flight Center (GSFC)'s Modern Era Retrospective-Analysis for Research and Applications (MERRA). The intraseasonal oscillation (ISO) of the Indian summer monsoon is used as a test bed to evaluate the apparent water vapor sink and heat source. The ISO-related northward movement of the column-integrated apparent water vapor sink matches that of precipitation observed by the Tropical Rainfall Measuring Mission (TRMM) minus the MERRA surface evaporation, although the amplitude of the variation is underestimated by 50%. The diagnosed water vapor and heat budgets associated with convective events during various phases of the ISO agree with the moisture-convection feedback mechanism. The apparent heat source moves northward coherently with the apparent water vapor sink associated with the deep convective activity, which is consistent with the northward migration of the precipitation anomaly. The horizontal advection of water vapor and dynamical warming are strong north of the convective area, causing the northward movement of the convection by the destabilization of the atmosphere. The spatial distribution of the apparent heat source anomalies associated with different phases of the ISO is consistent with that of the diabatic heating anomalies from the trained heating (TRAIN Q1) dataset. Further diagnostics of the TRAIN Q1 heating anomalies indicate that the ISO in the apparent heat source is dominated by a variation in latent heating associated with the precipitation. C1 [Wong, Sun; Fetzer, Eric J.; Tian, Baijun; Lambrigtsen, Bjorn] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ye, Hengchun] Calif State Univ Los Angeles, Dept Geog & Urban Anal, Los Angeles, CA 90032 USA. RP Wong, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM sun.wong@jpl.nasa.gov RI Tian, Baijun/A-1141-2007 OI Tian, Baijun/0000-0001-9369-2373 FU National Aeronautics and Space Administration; NASA AIRS validation; NEWS; MEASURES FX We are grateful to William Olson at NASA's Goddard Space Flight Center and Tristan L'Ecuyer at Colorado State University for providing and helping with the usage of the TRAIN dataset. We thank Duane Waliser and Xianan Jiang at JPL, Andrew Dessler and Courtney Shumacher at Texas A&M University, Shoichi Shige at Osaka Prefecture University, and two anonymous reviewers for comments that helped improve the manuscript. The research described in this paper was carried out at the Jet Propulsion Laboratory at the California Institute of Technology under a contract with the National Aeronautics and Space Administration. This work was supported by NASA AIRS validation, NEWS, and MEASURES projects at JPL. NR 40 TC 13 Z9 13 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD AUG PY 2011 VL 24 IS 16 BP 4466 EP 4479 DI 10.1175/2011JCLI4076.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 814XN UT WOS:000294490600016 ER PT J AU Ubelmann, C Fu, LL AF Ubelmann, Clement Fu, Lee-Lueng TI Vorticity Structures in the Tropical Pacific from a Numerical Simulation SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID EQUATORIAL PACIFIC; INSTABILITY WAVES; LONG WAVES; OCEAN; EDDIES; MODEL; VARIABILITY; DISPERSION; SATELLITE; ATLANTIC AB The small-scale variability of the tropical Pacific is studied with the simulations from a numerical model in terms of vorticity structures. A Lagrangian method based on the Okubo-Weiss parameter is used to identify the structures and track their main characteristics. Between 8 degrees S and 8 degrees N, the structure characteristics are spatially inhomogeneous compared to higher latitudes. They can be grouped into three categories: anticyclonic and cyclonic structures off the equator and the equatorial structures between 2 degrees S and 2 degrees N. They all have a strong annual cycle with maximum presence from September to March, except during strong El Nino years, when the number of structures becomes very low. Off the equator from 2 degrees to 8 degrees, the anticyclonic structures dominate, but with drastically different characteristics north and south of the equator. In the north, large nonlinear vortices develop (known as the tropical instability vortices) in phase with the 30-35-day oscillation related to an unstable first-meridional-mode Rossby waves. In the south, mostly fragmentary linear structures are present, with lower propagation speeds. The equatorial structures are mostly counterclockwise. The larger ones tend to be linear and are clearly associated with Yanai waves. The large majority of the cyclonic structures off the equator are also quite linear and smaller and less numerous than the anticyclonic structures. However, some of them are nonlinear with vorticity values higher than 2 times the Coriolis parameter. C1 [Ubelmann, Clement; Fu, Lee-Lueng] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ubelmann, C (reprint author), CALTECH, Jet Prop Lab, MS 300-323,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM clement.ubelmann@jpl.nasa.gov FU National Aeronautic and Space Administration; Jason-1; OSTM/Jason-2 FX The authors are indebted to Dimitris Menemenlis and the ECCO-2 group for their help with providing the model simulation products. PO.DAAC is acknowledged for providing high-resolution sea surface temperature observations. The research presented in the paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautic and Space Administration. Support from the Jason-1 and OSTM/Jason-2 projects is acknowledged. The authors would also like to thank Dr. Ted Durland of Oregon State University and an anonymous reviewer for their constructive reviews. NR 25 TC 2 Z9 2 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD AUG PY 2011 VL 41 IS 8 BP 1455 EP 1464 DI 10.1175/2011JPO4507.1 PG 10 WC Oceanography SC Oceanography GA 813ZY UT WOS:000294411600002 ER PT J AU Xu, YS Fu, LL Tulloch, R AF Xu, Yongsheng Fu, Lee-Lueng Tulloch, Ross TI The Global Characteristics of the Wavenumber Spectrum of Ocean Surface Wind SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID ATMOSPHERIC ENERGY-SPECTRUM; STRATIFIED TURBULENCE; 2-DIMENSIONAL TURBULENCE; GEOSTROPHIC TURBULENCE; SIMULATION; DYNAMICS; FEATURES; CASCADE; SCALES; MODEL AB The wavenumber spectra of wind kinetic energy over the ocean from Quick Scatterometer (QuikSCAT) observations have revealed complex spatial variability in the wavelength range of 1000-3000 km, with spectral slopes varying from -1.6 to -2.9. Here the authors performed a spectral analysis of QuikSCAT winds over the global ocean and found that (i) the spectral slopes become steeper toward the Poles in the Pacific and in the South Atlantic, and the slopes exhibit minimal longitudinal dependence in the South Pacific; (ii) the steepest slopes are in the tropical Indian Ocean and the shallowest slopes are in the tropical Pacific and Atlantic; and (iii) the spectra are steeper in winter than summer in most regions of the midlatitude Northern Hemisphere. The new findings reported in the paper provide a test bed for theoretical studies and atmospheric general circulation models. C1 [Xu, Yongsheng; Fu, Lee-Lueng] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tulloch, Ross] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, England. RP Xu, YS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM yongsheng.xu@jpl.nasa.gov FU National Aeronautics and Space Administration FX The research presented in the paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The authors thank Ernesto Rodriguez, Jerome Patoux, Shafer Smith, Peter Bartello, Yuji Kitamura, and Erik Lindborg for their comments. Government sponsorship acknowledged. NR 25 TC 5 Z9 5 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD AUG PY 2011 VL 41 IS 8 BP 1576 EP 1582 DI 10.1175/JPO-D-11-059.1 PG 7 WC Oceanography SC Oceanography GA 813ZY UT WOS:000294411600009 ER PT J AU Zhang, LN Pejakovic, DA Marschall, J Gasch, M AF Zhang, Luning Pejakovic, Dusan A. Marschall, Jochen Gasch, Matthew TI Thermal and Electrical Transport Properties of Spark Plasma-Sintered HfB2 and ZrB2 Ceramics SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID HIGH-TEMPERATURE CERAMICS; LASER FLASH METHOD; DIFFUSIVITY MEASUREMENTS; ZIRCONIUM DIBORIDE; HAFNIUM DIBORIDE; METAL DIBORIDES; GRAIN-SIZE; TIN OXIDE; CONDUCTIVITY; RESISTANCE AB The thermal and electrical transport properties of various spark plasma-sintered HfB2- and ZrB2-based polycrystalline ceramics were investigated experimentally over the 298-700 K temperature range. Measurements of thermal diffusivity, electrical resistivity, and Hall coefficient are reported, as well as the derived properties of thermal conductivity, charge carrier density, and charge carrier mobility. Hall coefficients were negative confirming electrons as the dominant charge carrier, with carrier densities and mobilities in the 3-5 x 10(21) cm(-3) and 100-250 cm(2). (V. s)(-1) ranges, respectively. Electrical resistivities were lower, and temperature coefficients of resistivity higher, than those typically reported for HfB2 and ZrB2 materials manufactured by the conventional hot pressing. A Wiedemann-Franz analysis confirms the dominance of electronic contributions to heat transport. The thermal conductivity was found to decrease with increasing temperature for all materials. Results are discussed in terms of sample morphology and compared with data previously reported in the scientific literature. C1 [Zhang, Luning; Pejakovic, Dusan A.; Marschall, Jochen] SRI Int, Mol Phys Lab, Menlo Pk, CA 94025 USA. [Gasch, Matthew] NASA, Ames Res Ctr, Thermal Protect Mat & Syst Branch, Moffett Field, CA 94035 USA. RP Marschall, J (reprint author), SRI Int, Mol Phys Lab, Menlo Pk, CA 94025 USA. EM jochen.marschall@sri.com OI Pejakovic, Dusan/0000-0001-6067-6529 FU United States Air Force Office of Scientific Research [FA9550-08-C-0049] FX This work was financially supported by the United States Air Force Office of Scientific Research, under contract FA9550-08-C-0049. NR 45 TC 28 Z9 28 U1 2 U2 25 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2011 VL 94 IS 8 BP 2562 EP 2570 DI 10.1111/j.1551-2916.2011.04411.x PG 9 WC Materials Science, Ceramics SC Materials Science GA 805AP UT WOS:000293698700054 ER PT J AU Masi, E Bellan, J AF Masi, Enrica Bellan, Josette TI The subgrid-scale scalar variance under supercritical pressure conditions SO PHYSICS OF FLUIDS LA English DT Article ID LARGE-EDDY SIMULATION; TURBULENT REACTING FLOWS; APPROXIMATE DECONVOLUTION MODEL; TRANSITIONAL MIXING LAYERS; FILTERED-DENSITY-FUNCTION; COMPRESSIBLE TURBULENCE; HEAT RELEASE; A-PRIORI; COMBUSTION; JET AB To model the subgrid-scale (SGS) scalar variance under supercritical-pressure conditions, an equation is first derived for it. This equation is considerably more complex than its equivalent for atmospheric-pressure conditions. Using a previously created direct numerical simulation (DNS) database of transitional states obtained for binary-species systems in the context of temporal mixing layers, the activity of terms in this equation is evaluated, and it is found that some of these new terms have magnitude comparable to that of governing terms in the classical equation. Most prominent among these new terms are those expressing the variation of diffusivity with thermodynamic variables and Soret terms having dissipative effects. Since models are not available for these new terms that would enable solving the SGS scalar variance equation, the adopted strategy is to directly model the SGS scalar variance. Two models are investigated for this quantity, both developed in the context of compressible flows. The first one is based on an approximate deconvolution approach and the second one is a gradient-like model which relies on a dynamic procedure using the Leonard term expansion. Both models are successful in reproducing the SGS scalar variance extracted from the filtered DNS database, and moreover, when used in the framework of a probability density function (PDF) approach in conjunction with the beta-PDF, they excellently reproduce a filtered quantity which is a function of the scalar. For the dynamic model, the proportionality coefficient spans a small range of values through the layer cross-stream coordinate, boding well for the stability of large eddy simulations using this model. (C) 2011 American Institute of Physics. [doi:10.1063/1.3609282] C1 [Masi, Enrica; Bellan, Josette] CALTECH, Pasadena, CA 91125 USA. [Bellan, Josette] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Masi, E (reprint author), CALTECH, Pasadena, CA 91125 USA. EM josette.bellan@jpl.nasa.gov FU U.S. Department of Energy; U.S. Air Force Office of Scientific Research FX This study was conducted at the Jet Propulsion Laboratory (JPL) of the California Institute of Technology (Caltech) under sponsorship of the U.S. Department of Energy and of the U.S. Air Force Office of Scientific Research. Computational resources were provided by the supercomputing facility at JPL. NR 48 TC 0 Z9 0 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD AUG PY 2011 VL 23 IS 8 AR 085101 DI 10.1063/1.3609282 PG 22 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 814UU UT WOS:000294483500029 ER PT J AU Arslan, BK Boyd, ES Dolci, WW Dodson, KE Boldt, MS Pilcher, CB AF Arslan, Betuel K. Boyd, Eric S. Dolci, Wendy W. Dodson, K. Estelle Boldt, Marco S. Pilcher, Carl B. TI Workshops without Walls: Broadening Access to Science around the World SO PLOS BIOLOGY LA English DT Editorial Material AB The National Aeronautics and Space Administration (NASA) Astrobiology Institute (NAI) conducted two "Workshops Without Walls" during 2010 that enabled global scientific exchange-with no travel required. The second of these was on the topic "Molecular Paleontology and Resurrection: Rewinding the Tape of Life." Scientists from diverse disciplines and locations around the world were joined through an integrated suite of collaborative technologies to exchange information on the latest developments in this area of origin of life research. Through social media outlets and popular science blogs, participation in the workshop was broadened to include educators, science writers, and members of the general public. In total, over 560 people from 31 US states and 30 other nations were registered. Among the scientific disciplines represented were geochemistry, biochemistry, molecular biology and evolution, and microbial ecology. We present this workshop as a case study in how interdisciplinary collaborative research may be fostered, with substantial public engagement, without sustaining the deleterious environmental and economic impacts of travel. C1 [Arslan, Betuel K.] NASA, Astrobiol Inst, Ctr Ribosomal Origins & Evolut, Georgia Inst Technol, Atlanta, GA 30301 USA. [Arslan, Betuel K.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. [Boyd, Eric S.] Montana State Univ, NASA, Astrobiol Inst, Astrobiol Biogeocatalysis Res Ctr, Bozeman, MT 59717 USA. [Boyd, Eric S.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Dolci, Wendy W.; Dodson, K. Estelle; Boldt, Marco S.; Pilcher, Carl B.] NASA, Astrobiol Inst, Ames Res Ctr, Moffett Field, CA USA. RP Arslan, BK (reprint author), NASA, Astrobiol Inst, Ctr Ribosomal Origins & Evolut, Georgia Inst Technol, Atlanta, GA 30301 USA. EM carl.b.pilcher@nasa.gov NR 15 TC 2 Z9 2 U1 0 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1544-9173 J9 PLOS BIOL JI PLoS. Biol. PD AUG PY 2011 VL 9 IS 8 AR e1001118 DI 10.1371/journal.pbio.1001118 PG 5 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 814UP UT WOS:000294483000002 PM 21829326 ER PT J AU Eimer, JR Bennett, CL Chuss, DT Wollack, EJ AF Eimer, J. R. Bennett, C. L. Chuss, D. T. Wollack, E. J. TI Note: Vector reflectometry in a beam waveguide SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MEASUREMENT SYSTEM; NETWORK ANALYZER; CALIBRATION; DESIGN AB We present a one-port calibration technique for characterization of beam waveguide components with a vector network analyzer. This technique involves using a set of known delays to separate the responses of the instrument and the device under test. We demonstrate this technique by measuring the reflected performance of a millimeter-wave variable-delay polarization modulator. (C) 2011 American Institute of Physics. [doi:10.1063/1.3622522] C1 [Eimer, J. R.; Chuss, D. T.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Eimer, J. R.; Bennett, C. L.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Eimer, JR (reprint author), NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. EM eimer@pha.jhu.edu RI Chuss, David/D-8281-2012; Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 NR 16 TC 5 Z9 5 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2011 VL 82 IS 8 AR 086101 DI 10.1063/1.3622522 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 814VZ UT WOS:000294486600054 PM 21895279 ER PT J AU Han, JW Kim, B Park, YC Meyyappan, M AF Han, Jin-Woo Kim, Beomseok Park, Yun Chang Meyyappan, M. TI Note: Two-dimensional resistivity mapping method for characterization of thin films and nanomaterials SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ELECTRICAL-IMPEDANCE TOMOGRAPHY; RECONSTRUCTION ALGORITHMS; IMAGE-RECONSTRUCTION; ELECTRODES; TRANSISTORS; ZNO AB A two-dimensional resistivity mapping method is presented as an analysis tool for thin films. The spatial distribution of resistivity in the interior of the film is reconstructed with the data measured on its periphery. A square window with four electrodes on each side is fabricated as the test vehicle. While the current is applied to one electrode, the potentials on the other electrodes are monitored and an iterative method generates the resistivity map. The technique is demonstrated by measurements on a homogeneous organic PEDOT:PSS film and an inhomogeneous ZnO nanoparticle coating. (C) 2011 American Institute of Physics. [doi:10.1063/1.3626797] C1 [Han, Jin-Woo; Kim, Beomseok; Meyyappan, M.] NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA. [Park, Yun Chang] Natl Nanofab Ctr, Taejon 305806, South Korea. RP Han, JW (reprint author), NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA. EM jin-woo.han@nasa.gov NR 14 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2011 VL 82 IS 8 AR 086117 DI 10.1063/1.3626797 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 814VZ UT WOS:000294486600070 PM 21895295 ER PT J AU Qiu, S Clausen, B Padula, SA Noebe, RD Vaidyanathan, R AF Qiu, S. Clausen, B. Padula, S. A., II Noebe, R. D. Vaidyanathan, R. TI On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi SO ACTA MATERIALIA LA English DT Article DE Elastic modulus; Martensite; Shape memory; Anisotropy; Neutron diffraction ID ACQUIRED IN-SITU; DIFFRACTION SPECTRA; RIETVELD REFINEMENT; SUPERELASTIC NITI; TEXTURE; STRAIN; STRESSES AB A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Qiu, S.; Vaidyanathan, R.] Univ Cent Florida, AMPAC, Mech Mat & Aerosp Engn Dept, Orlando, FL 32816 USA. [Clausen, B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Padula, S. A., II; Noebe, R. D.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Vaidyanathan, R (reprint author), Univ Cent Florida, AMPAC, Mech Mat & Aerosp Engn Dept, Orlando, FL 32816 USA. EM raj@mail.ucf.edu RI Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X FU NASA [NNX08A-B51A]; Office of Basic Energy Sciences, DOE; Los Alamos National Security LLC under DOE [DE-AC52-06NA25396] FX The authors acknowledge funding from the NASA Fundamental Aeronautics Program, Supersonic Project (NNX08A-B51A), under the guidance of Dale Hopkins, API. The authors also thank D. Brown and T. Sisneros at LANL for experimental assistance. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences, DOE. LANL is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. NR 26 TC 46 Z9 46 U1 2 U2 51 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD AUG PY 2011 VL 59 IS 13 BP 5055 EP 5066 DI 10.1016/j.actamat.2011.04.018 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 797GX UT WOS:000293113600001 ER PT J AU Manchiraju, S Gaydosh, D Benafan, O Noebe, R Vaidyanathan, R Anderson, PM AF Manchiraju, Sivom Gaydosh, Darrell Benafan, Othmane Noebe, Ronald Vaidyanathan, Raj Anderson, Peter M. TI Thermal cycling and isothermal deformation response of polycrystalline NiTi: Simulations vs. experiment SO ACTA MATERIALIA LA English DT Article DE Shape memory alloys; Thermal cycling; Finite element ID SHAPE-MEMORY ALLOYS; TRANSFORMATION-INDUCED PLASTICITY; SINGLE-CRYSTALS; PART I; BEHAVIOR; MODEL; STRESS; REORIENTATION; DEPENDENCE; TEXTURE AB A recent microstructure-based FEM model that couples crystal-based plasticity, the B2 <-> B19' phase transformation and anisotropic elasticity at the grain scale is calibrated to recent data for polycrystalline NiTi (49.9 at.% Ni). Inputs include anisotropic elastic properties, texture and differential scanning calorimetry data, as well as a subset of recent isothermal deformation and load-biased thermal cycling data. The model is assessed against additional experimental data. Several experimental trends are captured - in particular, the transformation strain during thermal cycling monotonically increases and reaches a peak with increasing bias stress. This is achieved, in part, by modifying the martensite hardening matrix proposed by Patoor et al. [Patoor E, Eberhardt A, Berveiller M. J Phys IV 1996;6:277]. Some experimental trends are underestimated - in particular, the ratcheting of macrostrain during thermal cycling. This may reflect a model limitation that transformation plasticity coupling is captured on a coarse (grain) scale but not on a fine (martensitic plate) scale. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Manchiraju, Sivom; Anderson, Peter M.] Ohio State Univ, Columbus, OH 43210 USA. [Gaydosh, Darrell; Noebe, Ronald] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Benafan, Othmane; Vaidyanathan, Raj] Univ Cent Florida, Orlando, FL 32816 USA. RP Anderson, PM (reprint author), Ohio State Univ, Columbus, OH 43210 USA. EM anderson.1@osu.edu RI Anderson, Peter/J-8315-2014; Manchiraju, Sivom/A-8497-2015 FU NASA [NNX08AB49A, NNX08AB51A]; Department of Energy [DE-SC0001258]; Ohio Supercomputer Center [PAS676]; Florida Center for Advanced Aeropropulsion FX D.G. and R.N. acknowledge support from the NASA Fundamental Aeronautics Program (Dr. Dale Hopkins, API). P.M.A. and S.M. acknowledge Dr. Myoung-Gyu Lee (assistance with texture analysis), Dr. Michael Mills (discussions about austenite plasticity), Dr. Nick Hatcher (elastic constants), the NASA Fundamental Aeronautics Program, Supersonics Project (Grant No. NNX08AB49A), the Department of Energy (Grant No. DE-SC0001258) and the Ohio Supercomputer Center (Grant No. PAS676). R.V. and O.B. acknowledge experimental assistance from Sven Vogel at Los Alamos National Laboratory, the NASA Fundamental Aeronautics Program, Supersonics Project (Grant No. NNX08AB51A) and the Florida Center for Advanced Aeropropulsion. NR 57 TC 22 Z9 22 U1 3 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD AUG PY 2011 VL 59 IS 13 BP 5238 EP 5249 DI 10.1016/j.actamat.2011.04.063 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 797GX UT WOS:000293113600018 ER PT J AU Righter, K Sutton, S Danielson, L Pando, K Schmidt, G Yang, H Berthet, S Newville, M Choi, Y Downs, RT Malavergne, V AF Righter, K. Sutton, S. Danielson, L. Pando, K. Schmidt, G. Yang, H. Berthet, S. Newville, M. Choi, Y. Downs, R. T. Malavergne, V. TI The effect of f(O2) on the partitioning and valence of V and Cr in garnet/melt pairs and the relation to terrestrial mantle V and Cr content SO AMERICAN MINERALOGIST LA English DT Article DE Garnet; silicate melt; mantle; siderophile ID OXYGEN FUGACITY; OXIDATION-STATE; CORE FORMATION; SILICATE MELTS; SIDEROPHILE ELEMENTS; MICROPROBE ANALYSIS; METALLIC LIQUID; SOUTHERN AFRICA; VANADIUM GARNET; BASALTIC MELT AB Chromium and vanadium are stable in multiple valence states in natural systems, and their distribution between garnet and silicate melt is not well understood. Here, the partitioning and valence state of V and Cr in experimental garnet/melt pairs have been studied at 1.8-3.0 GPa, with variable oxygen fugacity between 1W-1.66 and the Ru-RuO2 (1W+9.36) buffer. In addition, the valence state of V and Cr has been measured in several high-pressure (majoritic garnet up to 20 GPa) experimental garnets, some natural megacrystic garnets from the western United States, and a suite of mantle garnets from South Africa. The results show that Cr remains in trivalent in garnet across a wide range of oxygen fugacities. Vanadium, on the other hand, exhibits variable valence state from 2.5 to 3.7 in the garnets and from 3.0 to 4.0 in the glasses. The valence state of V is always greater in the glass than in the garnet. Moreover, the garnet/melt partition coefficient, D(V), is highest when V is trivalent, at the most reduced conditions investigated (1W-1.66 to FMQ). The V-2.50 measured in high P-T experimental garnets is consistent with the reduced nature of those metal-bearing systems. The low V valence state measured in natural megacrystic garnets is consistent with f(O2) close to the 1W buffer, overlapping the range of f(O2) measured independently by Fe2+/Fe3+ techniques on similar samples. However, the valence state of V measured in a suite of mantle garnets from South Africa is constant across a 3 logf(O2) unit range (FMQ-1.8 to FMQ-4.5), suggesting that the valence state of V is controlled by the crystal chemistry of the garnets rather than f(O2) variations. The compatibility of V and Cr in garnets and other deep mantle silicates indicates that the depletion of these elements in the Earth's primitive upper mantle could be due to partitioning into lower mantle phases as well as into metal. C1 [Righter, K.; Danielson, L.; Pando, K.] NASA, Johnson Space Ctr, Houston, TX 77058 USA. [Sutton, S.; Newville, M.; Choi, Y.] Univ Chicago, GSECARS, Chicago, IL 60637 USA. [Sutton, S.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Berthet, S.; Malavergne, V.] Univ Paris Est Marne La Vallee, Lab Geomat, F-77454 Marne La Vallee, France. [Schmidt, G.; Yang, H.; Downs, R. T.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. RP Righter, K (reprint author), NASA, Johnson Space Ctr, Houston, TX 77058 USA. EM kevin.righter-1@nasa.gov FU National Science Foundation; Earth Sciences [EAR-0622171]; Department of Energy, Geosciences [DE-FG02-94ER 14466]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DF-AC02-06CH11357]; RTOP from the NASA FX Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation, Earth Sciences (EAR-0622171) and Department of Energy, Geosciences (DE-FG02-94ER 14466). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DF-AC02-06CH11357. Research at JSC was supported by a RTOP to K.R. from the NASA Cosmochemistry program. Some travel was supported by the Lanar and Planetary Institute. We thank D. Schulze and D. Canil for guidance in finding literature mantle garnet analyses, and F.J. Essene for discussions relating to site substitutions. A. Peslier, A. Woodland, and M. Lazarov kindly provided a suite of well-characterized natural garnets from South African mantle xenoliths B. Hanson and J.Jones made the Cr glass standards, and A. Martin assisted with the XANES analysis. Helpful reviews by T. Mikouchi, D. Canil, and Associate Editor M.D. Dyar are appreciated and contributed to the clarity of the presentation. NR 104 TC 7 Z9 7 U1 2 U2 22 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD AUG-SEP PY 2011 VL 96 IS 8-9 BP 1278 EP 1290 DI 10.2138/am.2011.3690 PG 13 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 808QM UT WOS:000293993500011 ER PT J AU Hartogh, P Lellouch, E Moreno, R Bockelee-Morvan, D Biver, N Cassidy, T Rengel, M Jarchow, C Cavalie, T Crovisier, J Helmich, FP Kidger, M AF Hartogh, P. Lellouch, E. Moreno, R. Bockelee-Morvan, D. Biver, N. Cassidy, T. Rengel, M. Jarchow, C. Cavalie, T. Crovisier, J. Helmich, F. P. Kidger, M. TI Direct detection of the Enceladus water torus with Herschel SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planets and satellites: individual: Saturn; planets and satellites: individual: Enceladus; techniques: spectroscopic; submillimetre: planetary system ID SATURNS ATMOSPHERE; CARBON-MONOXIDE; VAPOR; JUPITER; ORIGIN; PLUME; STRATOSPHERE; ASTRONOMY; EMISSION; SYSTEM AB Cryovolcanic activity near the south pole of Saturn's moon Enceladus produces plumes of H2O-dominated gases and ice particles, which escape and populate a torus-shaped cloud. Using submillimeter spectroscopy with Herschel, we report the direct detection of the Enceladus water vapor torus in four rotational lines of water at 557, 987, 1113, and 1670 GHz, and probe its physical conditions and structure. We determine line-of-sight H2O column densities of similar to 4 x 10(13) cm(-2) near the equatorial plane, with a similar to 50 000 km vertical scale height. The water torus appears to be rotationally cold (e.g. an excitation temperature of 16 K is measured for the 1113 GHz line) but dynamically excited, with non-Keplerian dispersion velocities of similar to 2 kms(-1), and appears to be largely shaped by molecular collisions. From estimates of the influx rates of torus material into Saturn and Titan, we infer that Enceladus' activity is likely to be the ultimate source of water in the upper atmosphere of Saturn, but not in Titan's. C1 [Hartogh, P.; Rengel, M.; Jarchow, C.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Lellouch, E.; Moreno, R.; Bockelee-Morvan, D.; Biver, N.; Crovisier, J.] Observ Paris, LESIA, F-92195 Meudon, France. [Cassidy, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91107 USA. [Cavalie, T.] Univ Bordeaux, Observ Aquitain Sci Univers, CNRS, Lab Astrophys Bordeaux,UMR 5804, Bordeaux, France. [Helmich, F. P.] Univ Groningen, SRON, Groningen, Netherlands. [Kidger, M.] European Space Astron Ctr, Herschel Sci Ctr, Madrid, Spain. RP Hartogh, P (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. EM hartogh@mps.mpg.de NR 39 TC 26 Z9 26 U1 0 U2 15 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2011 VL 532 AR L2 DI 10.1051/0004-6361/201117377 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 799JS UT WOS:000293283600004 ER PT J AU Licandro, J Campins, H Tozzi, GP de Leon, J Pinilla-Alonso, N Boehnhardt, H Hainaut, OR AF Licandro, J. Campins, H. Tozzi, G. P. de Leon, J. Pinilla-Alonso, N. Boehnhardt, H. Hainaut, O. R. TI Testing the comet nature of main belt comets. The spectra of 133P/Elst-Pizarro and 176P/LINEAR SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE minor planets, asteroids: individual: 133P/Elst-Pizarro; minor planets, asteroids: individual: 176P/LINEAR; minor planets, asteroids: general; comets: general; techniques: spectroscopic ID NEAR-EARTH ASTEROIDS; SHORT-PERIOD COMETS; JUPITER-FAMILY COMETS; WILSON-HARRINGTON; THERMAL-PROPERTIES; NUCLEAR-SPECTRA; METEOR-SHOWER; 3200 PHAETHON; SOLAR-SYSTEM; ORIGIN AB Context. Dynamically, 133P/Elst-Pizarro and 176P/LINEAR are main belt asteroids, likely members of the Themis collisional family, and unlikely of cometary origin. They have been observed with cometary-like tails, which may be produced by water-ice sublimation. They are part of a small group of objects called Main Belt Comets (MBCs, Hsieh & Jewitt 2006). Aims. We attempt to determine if these MBCs have spectral properties compatible with those of comet nuclei or with other Themis family asteroids. Methods. We present the visible spectrum of MBCs 133P and 176P, as well as three Themis family asteroids: (62) Erato, (379) Huenna and (383) Janina, obtained in 2007 using three telescopes at "El Roque de los Muchachos" Observatory, in La Palma, Spain, and the 8 m Kueyen (UT2) VLT telescope at Cerro Paranal, Chile. The spectra of the MBCs are compared with those of the Themis family asteroids, comets, likely "dormant" comets and asteroids with past cometary-like activity in the near-Earth (NEA) population. As 133P was observed active, we also look for the prominent CN emission around 0.38 mu m typically observed in comets, to test if the activity is produced by the sublimation of volatiles. Results. The spectra of 133P and 176P resemble best those of B-type asteroid and are very similar to those of Themis family members and another activated asteroid in the near-Earth asteroid population, (3200) Phaethon. On the other hand, these spectra are significantly different from the spectrum of comet 162P/Siding-Spring and most of the observed cometary nuclei. CN gas emission is not detected in the spectrum of 133P. We determine an upper limit for the CN production rate Q(CN) = 1.3 x 10(21) mol/s, three orders of magnitude lower than the Q(CN) of Jupiter family comets observed at similar heliocentric distances. Conclusions. The spectra of 133P/Elst-Pizarro and 176P/LINEAR confirm that they are likely members of the Themis family of asteroids, fragments that probably retained volatiles, and unlikely have a cometary origin in the trans-Neptunian belt or the Oort Cloud. They have similar surface properties to activated asteroids in the NEA population, which supports the hypothesis that these NEAs are scattered MBCs. The low Q(CN) of 133P means that, if water-ice sublimation is the activation mechanism, the gas production rate is very low and/or the parent molecules of CN present in the nuclei of normal comets are much less abundant in this MBC. C1 [Licandro, J.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Licandro, J.] Univ La Laguna, Dept Astrofis, Tenerife 38205, Spain. [Campins, H.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Tozzi, G. P.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [de Leon, J.] Inst Astrofis Andalucia, E-18080 Granada, Spain. [Pinilla-Alonso, N.] NASA Ames Res Ctr, NASA Postdoctoral Program, Moffett Field, CA USA. [Boehnhardt, H.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Hainaut, O. R.] ESO, D-85748 Garching, Germany. RP Licandro, J (reprint author), Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38200, Spain. EM jlicandr@iac.es RI de Leon, Julia/H-7569-2015; OI de Leon, Julia/0000-0002-0696-0411; Tozzi, Gian Paolo/0000-0003-4775-5788 FU European Southern Observatory ESO [279.C-5035]; spanish "Ministerio de Ciencia e Innovacion" [AYA2008-06202-C03-02]; NASA; NSF FX This article is based on observations made with the WHT, TNG and NOT telescopes operated on the island of La Palma by the ING, FFG-INAF and NOTSA, respectively, in the Spanish "Observatorio del Roque de los Muchachos", and with the VLT of the European Southern Observatory ESO (program number 279.C-5035). J.L. gratefully acknowledges support from the spanish "Ministerio de Ciencia e Innovacion" project AYA2008-06202-C03-02. N.P.A. acknowledges support from NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. H.C. gratefully acknowledges support from NASA and NSF. NR 80 TC 17 Z9 17 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2011 VL 532 AR A65 DI 10.1051/0004-6361/201117018 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 799JS UT WOS:000293283600076 ER PT J AU Schodel, R Morris, MR Muzic, K Alberdi, A Meyer, L Eckart, A Gezari, DY AF Schoedel, R. Morris, M. R. Muzic, K. Alberdi, A. Meyer, L. Eckart, A. Gezari, D. Y. TI The mean infrared emission of Sagittarius A SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE black hole physics; instrumentation: high angular resolution; instrumentation: adaptive optics; Galaxy: center ID SGR-A-ASTERISK; SUPERMASSIVE BLACK-HOLE; NUCLEAR STAR CLUSTER; X-RAY OBSERVATIONS; GALACTIC-CENTER; FLARE EMISSION; EXTINCTION-LAW; STELLAR ORBITS; MILKY-WAY; MU-M AB Context. The massive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*) is, in relative terms, the weakest accreting black hole accessible to observations. It has inspired the theoretical models of radiatively inefficient accretion. Unfortunately, our knowledge of the mean SED and source structure of Sgr A* is very limited owing to numerous observational difficulties. At the moment, the mean SED of Sgr A* is only known reliably in the radio to mm regimes. Aims. The goal of this paper is to provide constraints on the mean emission from Sgr A* in the near-to-mid infrared. Methods. Sensitive images of the surroundings of Sgr A* at 8.6 mu m, 4.8 mu m, and 3.8 mu m were produced by combining large quantities of imaging data. Images were produced for several observing epochs. Excellent imaging quality was reached in the MIR by using speckle imaging combined with holographic image reconstruction, a novel technique for this kind of data. Results. No counterpart of Sgr A* is detected at 8.6 mu m. At this wavelength, Sgr A* is located atop a dust ridge, which considerably complicates the search for a potential point source. An observed 3 sigma upper limit of similar to 10 mJy is estimated for the emission of Sgr A* at 8.6 mu m, a tighter limit at this wavelength than in previous work. The de-reddened 3 sigma upper limit, including the uncertainty of the extinction correction, is similar to 84 mJy. Based on the available data, it is argued that, with currently available instruments, Sgr A* cannot be detected in the MIR, not even during flares. At 4.8 mu m and 3.8 mu m, on the other hand, Sgr A* is detected at all times, at least when considering timescales of a few up to 13 min. We derive well-defined time-averaged, de-reddened flux densities of 3.8 +/- 1.3 mJy at 4.8 mu m and 5.0 +/- 0.6 mJy at 3.8 mu m. Observations with NIRC2/Keck and NaCo/VLT from the literature provide good evidence that Sgr A* also has a fairly well-defined de-reddened mean flux of 0.5-2.5 mJy at wavelengths of 2.1-2.2 mu m. Conclusions. We present well-constrained anchor points for the SED of Sgr A* on the high-frequency side of the Terahertz peak. The new data are in general agreement with published theoretical SEDs of the mean emission from Sgr A*, but we expect them to have an appreciable impact on the model parameters in future theoretical work. C1 [Schoedel, R.; Alberdi, A.] Inst Astrofis Andalucia CSIC, Granada 18008, Spain. [Morris, M. R.; Meyer, L.] Univ Calif Los Angeles, Div Astron & Astrophys, Los Angeles, CA 90095 USA. [Muzic, K.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Eckart, A.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Gezari, D. Y.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Schodel, R (reprint author), Inst Astrofis Andalucia CSIC, Glorieta Astron S-N, Granada 18008, Spain. EM rainer@iaa.es RI Schoedel, Rainer/D-4751-2014 OI Schoedel, Rainer/0000-0001-5404-797X FU Spanish Ministry of Science and Innovation [AYA2010-17631, AYA2009-13036]; Junta de Andalucia [P08-TIC-4075]; COST Action [MP0905]; PECS [98040] FX R.S. acknowledges support by the Ramon y Cajal programme, by grants AYA2010-17631 and and AYA2009-13036 of the Spanish Ministry of Science and Innovation, and by grant P08-TIC-4075 of the Junta de Andalucia. A.A. acknowledges support by grant AYA2009-13036 of the Spanish Ministry of Science and Innovation and by grant P08-TIC-4075 of the Junta de Andalucia. Part of this work was supported by the COST Action MP0905: Black Holes in a violent Universe and PECS project No. 98040. NR 63 TC 20 Z9 19 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2011 VL 532 AR A83 DI 10.1051/0004-6361/201116994 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 799JS UT WOS:000293283600094 ER PT J AU Flores, GE Campbell, JH Kirshtein, JD Meneghin, J Podar, M Steinberg, JI Seewald, JS Tivey, MK Voytek, MA Yang, ZK Reysenbach, AL AF Flores, Gilberto E. Campbell, James H. Kirshtein, Julie D. Meneghin, Jennifer Podar, Mircea Steinberg, Joshua I. Seewald, Jeffrey S. Tivey, Margaret Kingston Voytek, Mary A. Yang, Zamin K. Reysenbach, Anna-Louise TI Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID EAST PACIFIC RISE; DEEP-SEA; LUCKY-STRIKE; EPSILON-PROTEOBACTERIA; ULTRAMAFIC ROCKS; PHASE-SEPARATION; PHYLOGENETIC DIVERSITY; RARE BIOSPHERE; SEQUENCE DATA; BLACK SMOKER AB To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37 degrees 17'N, 32 degrees 16.3'W, depth 1600-1750 m) and the ultramafic-hosted Rainbow (36 degrees 13'N, 33 degrees 54.1'W, depth 2270-2330 m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes. C1 [Flores, Gilberto E.; Meneghin, Jennifer; Reysenbach, Anna-Louise] Portland State Univ, Dept Biol, Portland, OR 97201 USA. [Campbell, James H.; Podar, Mircea; Yang, Zamin K.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37830 USA. [Kirshtein, Julie D.; Voytek, Mary A.] US Geol Survey, Reston, VA 20192 USA. [Steinberg, Joshua I.] Oregon Episcopal Sch, Portland, OR 97223 USA. [Seewald, Jeffrey S.; Tivey, Margaret Kingston] Woods Hole Oceanog Inst, Marine Chem & Geochem Dept, Woods Hole, MA 02543 USA. [Voytek, Mary A.] NASA, Washington, DC 20546 USA. RP Reysenbach, AL (reprint author), Portland State Univ, Dept Biol, Portland, OR 97201 USA. EM reysenbacha@pdx.edu OI Podar, Mircea/0000-0003-2776-0205 FU United States National Science Foundation [OCE-0728391, OCE-0937404, OCE-0937392, OCE-0549829]; Water Resources Division, USGS; Oak Ridge National Laboratory (ORNL); US Department of Energy [DE-AC05-00OR22725] FX We thank the crew of the R/V Roger Revelle and the DSROV Jason II for their assistance in obtaining the samples. This research was supported by the United States National Science Foundation (OCE-0728391 and OCE-0937404 to A.-L. R.; OCE-0937392 to M. K. T.; OCE-0549829 to J.S.S.) and the US National Research Program, Water Resources Division, USGS (M. A. V. and J.D.K.). J.H.C., Z.K.Y. and M. P. were sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the US Department of Energy under Contract No. DE-AC05-00OR22725. NR 73 TC 68 Z9 70 U1 5 U2 69 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1462-2912 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD AUG PY 2011 VL 13 IS 8 BP 2158 EP 2171 DI 10.1111/j.1462-2920.2011.02463.x PG 14 WC Microbiology SC Microbiology GA 809RY UT WOS:000294075600018 PM 21418499 ER PT J AU Tripathi, RK AF Tripathi, Ram K. TI Role of Nuclear Physics in Missions to Moon, Mars and beyond SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE Nuclear physics; Space missions; Radiation exposure risks ID CROSS-SECTIONS AB Exposure from the hazards of severe space radiation in deep space/long duration human missions to Moon Mars and beyond is a critical design driver and could be a limiting factor. For space radiation protection, a huge amount of essential experimental information of nuclear data for all the ions in space, across the periodic table, for a wide range of energies of several (up to a trillion) orders of magnitude are needed that is simply not available. One is required to know how every element (and all isotopes of each element) in the periodic table interacts and fragments on every other element in the same table as a function of kinetic energy ranging over many decades. To provide input information for radiation transport codes, data are supplemented by nuclear models. As a result, very accurate and reliable analytical models/tools are needed to describe nuclear interactions that are not available so that radiation risks can be assessed and adequate shielding can be designed. Significance of the role of nuclear physics for space missions with a couple of examples is discussed. C1 NASA, Langley Res Ctr, Washington, DC 20546 USA. RP Tripathi, RK (reprint author), NASA, Langley Res Ctr, Washington, DC 20546 USA. EM ram.k.tripathi@nasa.gov NR 6 TC 0 Z9 0 U1 1 U2 3 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD AUG PY 2011 VL 59 IS 2 SI SI BP 1434 EP 1438 DI 10.3938/jkps.59.1434 PN 3 PG 5 WC Physics, Multidisciplinary SC Physics GA 809TV UT WOS:000294080500155 ER PT J AU Abreu, NM Rietmeijer, FJM Nuth, JA AF Abreu, Neyda M. Rietmeijer, Frans J. M. Nuth, Joseph A., III TI Understanding the mechanisms of formation of nanophase compounds from Stardust: Combined experimental and observational approach SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID COMET 81P/WILD 2; INTERPLANETARY DUST; AEROGEL; PARTICLES; TRACKS; SAMPLES; GRAINS; WILD-2; CAPTURE; GLASS AB We have experimentally produced nanophase sulfide compounds and magnetite embedded in Si-rich amorphous materials by flash-cooling of a gas stream. Similar assemblages are ubiquitous, and often dominant components of samples of impact-processed silica aerogel tiles and submicron grains from comet 81P/Wild 2 were retrieved by NASA's Stardust mission. Although the texture and compositions of nanosulfide compounds have been reproduced experimentally, the mechanisms of formation of these minerals and their relationship with the surrounding amorphous materials have not been established. In this study, we present evidence that both of these materials may not only be produced through cooling of a superheated liquid but they may have also been formed simultaneously by flash-cooling and subsequent deposition of a gas dominated by Fe-S-SiO-O-2. In a dust generator at the Goddard Space Flight Center, samples are produced by direct gas-phase condensation from gaseous precursors followed by deposition, which effectively isolates the effects of gas-phase reactions from the effects of melting and condensation. High-resolution transmission electron microscopy images and energy-dispersive spectroscopy analysis show that these experiments replicate key features of materials from type B and type C Stardust tracks, including textures, distribution of inclusions, nanophase size, and compositional diversity. We argue that gas-phase reactions may have played a significant role in the capture environment for nanophase materials. Our results are consistent with a potential progenitor assemblage of micron and submicron-sized sulfides and submicron silica-bearing phases, which are commonly observed in chondritic interplanetary dust particles and in the matrices of the most pristine chondritic meteorites. C1 [Abreu, Neyda M.] Penn State Univ, Earth Sci Program, Du Bois, PA 15801 USA. [Rietmeijer, Frans J. M.] 1 Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Nuth, Joseph A., III] NASA, Goddard Space Flight Ctr, Astrochem Branch, Greenbelt, MD 20771 USA. RP Abreu, NM (reprint author), Penn State Univ, Earth Sci Program, Du Bois Campus, Du Bois, PA 15801 USA. EM abreu@psu.edu RI Nuth, Joseph/E-7085-2012 FU Small Research AAS/NASA; MRSEC; DuBois Educational Foundation; Materials Summer Research Fellowship/Penn State Materials Characterization Lab; NASA [NNX07AM65G, NNX07AI39G, NNX10AK28G]; Cosmochemistry Program FX We are indebted to Dr. Elizabeth Dickey, Dr. Joseph Kulik, Dr. Trevor Clark, and Mr. Joshua Maier for their invaluable and continuous assistance at the TEM facilities. We also thank Dr. H. Leroux, Dr. L.P. Keller, and Dr. M.A. Velbel for the thorough and constructive reviews, which improved the quality of this manuscript, as well as Dr. N. Chabot for her helpful editorial management. NMA was supported by Small Research AAS/NASA, MRSEC, and DuBois Educational Foundation grants and the Materials Summer Research Fellowship/Penn State Materials Characterization Lab. Electron microscopy was carried out at the Material Characterization Lab, Material Research Institute, Penn State University. FJMR was supported by grants NNX07AM65G through the NASA Stardust Analyses Program and NNX07AI39G, and NNX10AK28G from the NASA Cosmochemistry Program. JAN acknowledges support from the Cosmochemistry Program. NR 43 TC 4 Z9 4 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2011 VL 46 IS 8 BP 1082 EP 1096 DI 10.1111/j.1945-5100.2011.01215.x PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 810ZT UT WOS:000294171100002 ER PT J AU Beck, AW Mittlefehldt, DW McSween, HY Rumble, D Lee, CTA Bodnar, RJ AF Beck, Andrew W. Mittlefehldt, David W. McSween, Harry Y., Jr. Rumble, Douglas, III Lee, Cin-Ty A. Bodnar, Robert J. TI MIL 03443, a dunite from asteroid 4 Vesta: Evidence for its classification and cumulate origin SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID DIOGENITE PARENT BODY; OXYGEN-ISOTOPE RATIOS; ORTHO-PYROXENE; OLIVINE DIOGENITES; ELEMENT CHEMISTRY; MELT INCLUSIONS; SILICATE MELTS; TRACE-ELEMENTS; GEOCHEMISTRY; PETROLOGY AB The absence of dunite (>90 vol% olivine) in the howardite, eucrite, and diogenite (HED) meteorite suite, when viewed with respect to spectroscopic and petrologic evidence for olivine on Vesta, is problematic. Herein, we present petrologic, geochemical, and isotopic evidence confirming that Miller Range (MIL) 03443, containing 91 vol% olivine, should be classified with the HED clan rather than with mesosiderites. Similarities in olivine and pyroxene FeO/MnO ratios, mineral compositions, and unusual mineral inclusions between MIL 03443 and the diogenites support their formation on a common parent body. This hypothesis is bolstered by oxygen isotopic and bulk geochemical data. Beyond evidence for its reclassification, we present observations and interpretations that MIL 03443 is probably a crustal cumulate rock like the diogenites, rather than a sample of the Vestan mantle. C1 [Beck, Andrew W.; McSween, Harry Y., Jr.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Beck, Andrew W.; McSween, Harry Y., Jr.] Univ Tennessee, Planetary Geosci Inst, Knoxville, TN 37996 USA. [Mittlefehldt, David W.] NASA, Lyndon B Johnson Space Ctr, Astromat Res Off, Houston, TX 77058 USA. [Rumble, Douglas, III] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Lee, Cin-Ty A.] Rice Univ, Dept Earth Sci, Houston, TX 77005 USA. [Bodnar, Robert J.] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. RP Beck, AW (reprint author), Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. EM abeck3@utk.edu RI Lee, Cin-Ty/A-5469-2008; Bodnar, Robert/A-1916-2009; Beck, Andrew/J-7215-2015 OI Beck, Andrew/0000-0003-4455-2299 FU NASA [NNG06GG36G] FX The authors thank L. Fedele (Virginia Tech) and P. Luffi (Rice) for their assistance in this project, and A. Yamaguchi, K. Righter, and an anonymous reviewer for thoughtful reviews that significantly improved this manuscript. We also acknowledge C. Satterwhite for providing curation information, the MWG for allocating meteorite samples, and J.A. Barrat for his comments. This work was partially supported by NASA Cosmochemistry Grant NNG06GG36G to H.Y.M. Work done at JSC was funded by the NASA Cosmochemistry Program to D.W.M. NR 107 TC 30 Z9 32 U1 1 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2011 VL 46 IS 8 BP 1133 EP 1151 DI 10.1111/j.1945-5100.2011.01219.x PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 810ZT UT WOS:000294171100005 ER PT J AU Rath, C Banday, AJ Rossmanith, G Modest, H Sutterlin, R Gorski, KM Delabrouille, J Morfill, GE AF Raeth, C. Banday, A. J. Rossmanith, G. Modest, H. Suetterlin, R. Gorski, K. M. Delabrouille, J. Morfill, G. E. TI Scale-dependent non-Gaussianities in the WMAP data as identified by using surrogates and scaling indices SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; cosmic background radiation; cosmology: observations ID MICROWAVE-ANISOTROPY-PROBE; OBSERVATIONS COSMOLOGICAL INTERPRETATION; INFLATIONARY UNIVERSE; SPHERICAL WAVELETS; POWER ASYMMETRY; K-INFLATION; SKY MAPS; FULL SKY; PERTURBATIONS; SIGNATURES AB We present a model-independent investigation of the Wilkinson Microwave Anisotropy Probe (WMAP) data with respect to scale-independent and scale-dependent non-Gaussianities (NGs). To this end, we employ the method of constrained randomization. For generating so-called surrogate maps a well-specified shuffling scheme is applied to the Fourier phases of the original data, which allows us to test for the presence of higher order correlations (HOCs) also and especially on well-defined scales. Using scaling indices as test statistics for the HOCs in the maps we find highly significant signatures for NGs when considering all scales. We test for NGs in four different l-bands Delta l, namely in the bands Delta l = [2, 20], [20, 60], [60, 120] and [120, 300]. We find highly significant signatures for both NGs and ecliptic hemispherical asymmetries for the interval Delta l = [2, 20] covering the large scales. We also obtain highly significant deviations from Gaussianity for the band Delta l = [120, 300]. The result for the full l-range can then easily be interpreted as a superposition of the signatures found in the bands Delta l = [2, 20] and [120, 300]. We find remarkably similar results when analysing different ILC-like maps based on the WMAP 3-, 5- and 7-year data. We perform a set of tests to investigate whether and to what extent the detected anomalies can be explained by systematics. While none of these tests can convincingly rule out the intrinsic nature of the anomalies for the low-l case, the ILC map making procedure and/or residual noise in the maps can also lead to NGs at small scales. Our investigations prove that there are phase correlations in the WMAP data of the cosmic microwave background. In the absence of an explanation in terms of Galactic foregrounds or known systematic artefacts, the signatures at low l must so far be taken to be cosmological at high significance. These findings would strongly disagree with predictions of isotropic cosmologies with single field slow roll inflation. The task is now to elucidate the origin of the phase correlations and to understand the physical processes leading to these scale-dependent NGs - if it turns out that systematics as a cause for them must be ruled out. C1 [Raeth, C.; Rossmanith, G.; Modest, H.; Suetterlin, R.; Morfill, G. E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Banday, A. J.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Banday, A. J.] CNRS, IRAP, F-31028 Toulouse 4, France. [Banday, A. J.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Gorski, K. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Delabrouille, J.] CNRS, Lab APC, F-75205 Paris, France. RP Rath, C (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. EM cwr@mpe.mpg.de FU NASA Office of Space Science FX Many of the results in this paper have been derived using the HEALPIX (Gorski et al. 2005) software and analysis package. We acknowledge use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. NR 51 TC 12 Z9 12 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 3 BP 2205 EP 2214 DI 10.1111/j.1365-2966.2011.18844.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811AO UT WOS:000294173900017 ER PT J AU Rigby, EE Maddox, SJ Dunne, L Negrello, M Smith, DJB Gonzalez-Nuevo, J Herranz, D Lopez-Caniego, M Auld, R Buttiglione, S Baes, M Cava, A Cooray, A Clements, DL Dariush, A De Zotti, G Dye, S Eales, S Frayer, D Fritz, J Hopwood, R Ibar, E Ivison, RJ Jarvis, M Panuzzo, P Pascale, E Pohlen, M Rodighiero, G Serjeant, S Temi, P Thompson, MA AF Rigby, E. E. Maddox, S. J. Dunne, L. Negrello, M. Smith, D. J. B. Gonzalez-Nuevo, J. Herranz, D. Lopez-Caniego, M. Auld, R. Buttiglione, S. Baes, M. Cava, A. Cooray, A. Clements, D. L. Dariush, A. De Zotti, G. Dye, S. Eales, S. Frayer, D. Fritz, J. Hopwood, R. Ibar, E. Ivison, R. J. Jarvis, M. Panuzzo, P. Pascale, E. Pohlen, M. Rodighiero, G. Serjeant, S. Temi, P. Thompson, M. A. TI Herschel-ATLAS: first data release of the Science Demonstration Phase source catalogues SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; catalogues; surveys; galaxies: general; submillimetre: galaxies ID MICROWAVE BACKGROUND MAPS; SUBMILLIMETER GALAXIES; POINT SOURCES; DEEP-FIELD; MU-M; REDSHIFT; SPIRE; PACS; FILTERS AB The Herschel Astrophysical Terahertz LargeArea Survey (Herschel-ATLAS) is a survey of 550 deg(2) with the Herschel Space Observatory in five far-infrared and submillimetre bands. The first data for the survey, observations of a field 4 x 4 deg(2) in size, were taken during the Science Demonstration Phase (SDP), and reach a 5s noise level of 33.5 mJy beam(-1) at 250 mu m. This paper describes the source extraction methods used to create the corresponding SDP catalogue, which contains 6876 sources, selected at 250 mu m, within similar to 14 deg(2). Spectral and Photometric Imaging REciever (SPIRE) sources are extracted using a new method specifically developed for Herschel data and Photodetector Array Camera and Spectrometer (PACS) counterparts of these sources are identified using circular apertures placed at the SPIRE positions. Aperture flux densities are measured for sources identified as extended after matching to optical wavelengths. The reliability of this catalogue is also discussed, using full simulated maps at the three SPIRE bands. These show that a significant number of sources at 350 and 500 mu m have undergone flux density enhancements of up to a factor of similar to 2, due mainly to source confusion. Correction factors are determined for these effects. The SDP data set and corresponding catalogue will be available from www.h-atlas.org. C1 [Rigby, E. E.; Maddox, S. J.; Dunne, L.; Smith, D. J. B.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Negrello, M.; Hopwood, R.; Serjeant, S.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Gonzalez-Nuevo, J.; De Zotti, G.] SISSA, I-34136 Trieste, Italy. [Herranz, D.; Lopez-Caniego, M.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain. [Auld, R.; Dariush, A.; Eales, S.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Baes, M.; Fritz, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Buttiglione, S.; De Zotti, G.; Rodighiero, G.] INAF Osservatorio Astronom Padova, I-35122 Padua, Italy. [Cava, A.] Univ Complutense Madrid, Dept Astrofis, Fac CC Fis, E-28040 Madrid, Spain. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Clements, D. L.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, London SW7 2AZ, England. [Frayer, D.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Ibar, E.; Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Jarvis, M.; Thompson, M. A.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Sci, Hatfield AL10 9AB, Herts, England. [Panuzzo, P.] Ctr CEA Saclay Essonne, F-921191 Gif Sur Yvette, France. [Temi, P.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. RP Rigby, EE (reprint author), Univ Nottingham, Sch Phys & Astron, Univ Pk, Nottingham NG7 2RD, England. EM emma.rigby@nottingham.ac.uk RI Baes, Maarten/I-6985-2013; Lopez-Caniego, Marcos/M-4695-2013; Herranz, Diego/K-9143-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Ivison, R./G-4450-2011; Cava, Antonio/C-5274-2017; OI Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296; Baes, Maarten/0000-0002-3930-2757; Herranz, Diego/0000-0003-4540-1417; Lopez-Caniego, Marcos/0000-0003-1016-9283; Dye, Simon/0000-0002-1318-8343; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Ivison, R./0000-0001-5118-1313; Cava, Antonio/0000-0002-4821-1275; Maddox, Stephen/0000-0001-5549-195X FU NASA; ASI/INAF [I/009/10/0] FX The Herschel-ATLAS is a project with Herschel, which is an ESA space observatory with science instruments provided by Europeanled Principal Investigator consortia and with important participation from NASA. The H-ATLAS website is http://www.h-atlas.org/1. The US participants in Herschel-ATLAS acknowledge support provided by NASA through a contract issued from JPL. The Italian group acknowledges partial financial support from ASI/INAF agreement n. I/009/10/0. NR 33 TC 79 Z9 80 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 3 BP 2336 EP 2348 DI 10.1111/j.1365-2966.2011.18864.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811AO UT WOS:000294173900028 ER PT J AU Lee, KI Looney, LW Klein, R Wang, SY AF Lee, Katherine I. Looney, Leslie W. Klein, Randolf Wang, Shiya TI Massive star formation around IRAS 05345+3157-I. The dense gas SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: interferometric; stars: formation; open clusters and associations: individual: IRAS 5345+3157; infrared: ISM; radio continuum: ISM; radio lines: ISM ID YOUNG STELLAR OBJECTS; MOLECULAR LINE; PROTOSTELLAR CANDIDATES; SUBARCSECOND SURVEY; HIGH-RESOLUTION; CORES; COLLAPSE; EMISSION; REGIONS; SEARCH AB We present observations of the intermediate to massive star-forming region I05345+3157 using the molecular line tracer CS(2-1) with the Combined Array for Research in Millimetre-wave Astronomy to reveal the properties of the dense gas cores. Seven gas cores are identified in the integrated intensity map of CS(2-1). Among these, cores 1 and 3 have counterparts in the lambda = 2.7 mm continuum data. We suggest that cores 1 and 3 are star-forming cores that may already or will very soon harbour young massive protostars. The total masses of core 1 estimated from the local thermodynamic equilibrium (LTE) method and dust emission by assuming a gas-to-dust ratio are 5 +/- 1 and 18 +/- 6M(circle dot), and that of core 3 are 15 +/- 7 and 11 +/- 3M(circle dot), respectively. The spectrum of core 3 shows blue-skewed self-absorption, which suggests gas infall - a collapsing core. The observed broad linewidths of the seven gas cores indicate non-thermal motions. These non-thermal motions can be interactions with nearby outflows or due to the initial turbulence; the former is observed, while the role of the initial turbulence is less certain. Finally, the virial masses of the gas cores are larger than the LTE masses, which, for a bound core, implies a requirement on the external pressure of similar to 10(8) K cm(-3). The cores have the potential to further form massive stars. C1 [Lee, Katherine I.; Looney, Leslie W.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Klein, Randolf] NASA, SOFIA USRA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Klein, Randolf] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wang, Shiya] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. RP Lee, KI (reprint author), Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. EM ijlee9@illinois.edu OI Klein, Randolf/0000-0002-7187-9126 FU Laboratory for Astronomical Imaging at the University of Illinois; National Science Foundation [AST-0540459]; CARMA FX We thank the anonymous referee for the valuable comments. We acknowledge support from the Laboratory for Astronomical Imaging at the University of Illinois. We thank the OVRO/CARMA staff and the CARMA observers for their assistance in obtaining the data. Support for CARMA construction was derived from the states of Illinois, California and Maryland, the Gordon and Betty Moore Foundation, the Eileen and Kenneth Norris Foundation, the Caltech Associates and the National Science Foundation. Ongoing CARMA development and operations are supported by the National Science Foundation under cooperative agreement AST-0540459, and by the CARMA partner universities. NR 42 TC 5 Z9 5 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 3 BP 2790 EP 2797 DI 10.1111/j.1365-2966.2011.18897.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811AO UT WOS:000294173900064 ER PT J AU Davidson, JM AF Davidson, John M. TI Utilizing Astrometric Orbits to Obtain Coronagraphic Images of Extrasolar Planets SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID COMPLETENESS AB We present an approach for utilizing astrometric orbit information to improve the yield of planetary images and spectra from a follow-on direct-detection mission. This approach is based on the notion-strictly hypothetical-that if a particular star could be observed continuously, the instrument would in time observe all portions of the habitable zone so that no planet residing therein could be missed. This strategy could not be implemented in any realistic mission scenario. But if an exoplanet's orbit is known from astrometric observation, then it may be possible to plan and schedule a sequence of imaging observations that is the equivalent of continuous observation. A series of images-optimally spaced in time-could be recorded to examine contiguous segments of the orbit. In time, all segments would be examined, leading to the inevitable detection of the planet. In this article, we show how astrometric orbit information can be used to construct such a sequence. We apply this methodology to seven stars taken from the target lists of proposed astrometric and direct-detection missions. In addition, we construct this sequence for the Sun-Earth system as it would appear from a distance of 10 pc. In constructing these sequences, we have assumed that the imaging instrument has an inner working angle (IWA) of 75 mas and that the planets are visible whenever they are separated from their host stars by >= IWA and are in quarter-phase or greater. In addition, we have assumed that the planets orbit at a distance of 1 AU scaled to luminosity and that the inclination of the orbit plane is 60 degrees. For the individual stars in this target pool, we find that the number of observations in this sequence ranges from two to seven, representing the maximum number of observations required to find the planet. The probable number of observations ranges from 1.5 to 3.1. These results suggest that a direct-detection mission using astrometric orbits would find all eight exoplanets in this target pool with a probability of unity and that the maximum number of visits required (i.e., the worst case) is 36 visits. The probable number of visits is considerably smaller, about 18. This is a dramatic improvement in efficiency over previous methods proposed for utilizing astrometric orbits. We examine how the implementation of this approach is complicated and limited by operational constraints and how it is impacted by formal errors. We find that it can be fully implemented for internal coronagraph and visual nuller missions, with a success rate approaching 100%. External occulter missions will also benefit, but to a lesser degree. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Davidson, JM (reprint author), CALTECH, Jet Prop Lab, Mail Stop 321-520, Pasadena, CA 91125 USA. EM johndavidson@charter.net FU National Aeronautics and Space Administration FX The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration ((c) 2010 California Institute of Technology). Government sponsorship is acknowledged. We thank Robert Brown, Joseph Catanzarite, Stephen Edberg, James Marr, David Meier, Dmitry Savransky, Stuart Shaklan, Michael Shao, Wesley Traub, and Stephen Unwin for interesting conversations and constructive comments. We particularly thank the anonymous referee for his/her thoughtful review of the manuscript. NR 14 TC 1 Z9 1 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD AUG PY 2011 VL 123 IS 906 BP 923 EP 941 DI 10.1086/661725 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811XM UT WOS:000294252100006 ER PT J AU Rauscher, BJ Lindler, DJ Mott, DB Wen, YT Ferruit, P Sirianni, M AF Rauscher, Bernard J. Lindler, Don J. Mott, David B. Wen, Yiting Ferruit, Pierre Sirianni, Marco TI The Dark Current and Hot Pixel Percentage of James Webb Space Telescope 5 mu m Cutoff HgCdTe Detector Arrays as Functions of Temperature SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article AB We measured the median dark current and "hot pixel" percentage of lambda(co) similar to 5 mu m cutoff HgCdTe James Webb Space Telescope (JWST) Near Infrared Spectrograph HAWAII-2RG (H2RG) detector arrays as functions of temperature. Although these measurements were made in the context of JWST, we believe that they will interest others using H2RGs. We found that the median dark current depended only weakly on temperature throughout the 36.5 K <= T <= 45 K temperature range (although there were some exceptions). In contrast, the hot pixel percentage depended strongly on temperature, with the percentage of hot pixels approximately doubling for each 6 K temperature increase. Moreover, the data suggest that this trend becomes stronger at warmer temperatures. These new measurements broadly confirm our previous finding that T similar to 38 K is close to optimal for current-generation lambda(co) similar to 5 mu m cutoff H2RGs, although somewhat warmer (T <= 45 K) temperatures may be used if lower pixel operability is acceptable. C1 [Rauscher, Bernard J.; Lindler, Don J.; Mott, David B.; Wen, Yiting] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ferruit, Pierre; Sirianni, Marco] Estec, Div Astrophys, NL-2200 AG Noordwijk, Netherlands. RP Rauscher, BJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Bernard.J.Rauscher@nasa.gov FU NASA; ESA FX This research was supported by NASA and ESA as part of the James Webb Space Telescope Project. We wish to thank the referee for several helpful comments and for recommending that we include a short description of detector degradation. NR 10 TC 3 Z9 3 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD AUG PY 2011 VL 123 IS 906 BP 953 EP 957 DI 10.1086/661663 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811XM UT WOS:000294252100008 ER PT J AU Zhao, M Monnier, JD Che, X Pedretti, E Thureau, N Schaefer, G ten Brummelaar, T Merand, A Ridgway, ST McAlister, H Turner, N Sturmann, J Sturmann, L Goldfinger, PJ Farrington, C AF Zhao, M. Monnier, J. D. Che, X. Pedretti, E. Thureau, N. Schaefer, G. ten Brummelaar, T. Merand, A. Ridgway, S. T. McAlister, H. Turner, N. Sturmann, J. Sturmann, L. Goldfinger, P. J. Farrington, C. TI Toward Direct Detection of Hot Jupiters with Precision Closure Phase: Calibration Studies and First Results from the CHARA Array SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID EXTRASOLAR GIANT PLANETS; UPSILON ANDROMEDAE B; EXOPLANET HOST STARS; INFRARED FLUX METHOD; ANGULAR DIAMETERS; EMISSION-SPECTRUM; THERMAL EMISSION; HD 189733B; EFFECTIVE TEMPERATURES; THEORETICAL SPECTRA AB Direct detection of thermal emission from nearby hot Jupiters has greatly advanced our knowledge of extrasolar planets in recent years. Since hot Jupiter systems can be regarded as analogs of high-contrast binaries, ground-based infrared long-baseline interferometers have the potential to resolve them and detect their thermal emission with precision closure phase-a method that is immune to the systematic errors induced by the Earth's atmosphere. In this work, we present closure-phase studies toward direct detection of nearby hot Jupiters using the CHARA interferometer array outfitted with the MIRC instrument. We carry out closure-phase simulations and conduct a large number of observations for the best candidate nu And. Our experiments suggest that the method is feasible with highly stable and precise closure phases. However, we also find much larger systematic errors than expected in the observations, most likely caused by dispersion across different wavelengths. We find that using higher spectral resolution modes (e. g., R = 150) can significantly reduce the systematics. By combining all calibrators in an observing run together, we are able to roughly recalibrate the lower spectral resolution data, allowing us to obtain upper limits of the star-planet contrast ratios of nu And b across the H band. The data also allow us to get a refined stellar radius of 1.625 +/- 0.011 R-circle dot. Our best upper limit corresponds to a contrast ratio of 2.1 x 10(3) : 1 with 90% confidence level at 1.52 mu m, suggesting that we are starting to have the capability of constraining atmospheric models of hot Jupiters with interferometry. With recent and upcoming improvements of CHARA/MIRC, the prospect of detecting emission from hot Jupiters with closure phases is promising. C1 [Zhao, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Monnier, J. D.; Che, X.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Pedretti, E.; Thureau, N.] Univ St Andrews, Scottish Univ Phys Alliance, St Andrews KY16 9AJ, Fife, Scotland. [Schaefer, G.; ten Brummelaar, T.; McAlister, H.; Turner, N.; Sturmann, J.; Sturmann, L.; Goldfinger, P. J.; Farrington, C.] Georgia State Univ, CHARA Array, Atlanta, GA 30303 USA. [Ridgway, S. T.] Natl Opt Astron Observ NOAO, Tucson, AZ USA. RP Zhao, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 169-327, Pasadena, CA 91109 USA. EM ming.zhao@jpl.nasa.gov FU Georgia State University; National Science Foundation [AST-0908253]; W. M. Keck Foundation; NASA Exoplanet Science Institute; National Aeronautics and Space Administration; University of Michigan; NASA at the Jet Propulsion Laboratory; NASA [NNG04GI33G, NNH09AK731]; Michelson Postdoctoral Fellowship; Scottish Universities Physics Association (SUPA); NSF [AST-0352723, AST-0807577] FX The CHARA Array is funded by the Georgia State University, by the National Science Foundation through grant AST-0908253, by the W. M. Keck Foundation, and by the NASA Exoplanet Science Institute. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This research was supported by the former Michelson Graduate Student Fellowship at the University of Michigan and the NASA Postdoctoral Program at the Jet Propulsion Laboratory (M. Z.). J. D. M acknowledges the NSF grants AST-0352723 and AST-0807577 and the NASA grant NNG04GI33G. E. P. was formally supported by the Michelson Postdoctoral Fellowship and is currently supported by a Scottish Universities Physics Association (SUPA) advanced fellowship. S. T. R. acknowledges partial support from NASA grant NNH09AK731. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France; the Exoplanets Encyclopedia, maintained by Jean Schneider at Paris Observatory; and the Exoplanet Orbit Database at exoplanets.org. NR 62 TC 18 Z9 18 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD AUG PY 2011 VL 123 IS 906 BP 964 EP 975 DI 10.1086/661762 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811XM UT WOS:000294252100010 ER PT J AU Vanderveld, RA Bernstein, GM Stoughton, C Rhodes, J Massey, R Johnston, D Dobke, BM AF Vanderveld, R. Ali Bernstein, Gary M. Stoughton, Chris Rhodes, Jason Massey, Richard Johnston, David Dobke, Benjamin M. TI Lossy Compression of Weak-Lensing Data SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID IMAGE SIMULATION; TELESCOPE; SHEAR; TOMOGRAPHY; SHAPELETS; COSMOS AB Future orbiting observatories will survey large areas of sky in order to constrain the physics of dark matter and dark energy using weak gravitational lensing and other methods. Lossy compression of the resultant data will improve the cost and feasibility of transmitting the images through the space communication network. We evaluate the consequences of the lossy compression algorithm of Bernstein et al. for the high-precision measurement of weak-lensing galaxy ellipticities. This square-root algorithm compresses each pixel independently, and the information discarded is, by construction, less than the Poisson error from photon shot noise. For simulated space-based images (without cosmic rays) digitized to the typical 16 bits pixel(-1), application of the lossy compression followed by imagewise lossless compression yields images with only 2.4 bits pixel(-1), a factor of 6.7 compression. We demonstrate that this compression introduces no bias in the sky background. The compression introduces a small amount of additional digitization noise to the images, and we demonstrate a corresponding small increase in ellipticity measurement noise. The ellipticity measurement method is biased by the addition of noise, so the additional digitization noise is expected to induce a multiplicative bias on the galaxies' measured ellipticities. After correcting for this known noise-induced bias, we find a residual multiplicative ellipticity bias of m approximate to -4 x 10(-4). This bias is small when compared with the many other issues that precision weak-lensing surveys must confront; furthermore, we expect it to be reduced further with better calibration of ellipticity measurement methods. C1 [Vanderveld, R. Ali] Univ Chicago, Enrico Fermi Inst, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Vanderveld, R. Ali; Rhodes, Jason; Dobke, Benjamin M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Vanderveld, R. Ali; Rhodes, Jason; Dobke, Benjamin M.] CALTECH, Pasadena, CA 91125 USA. [Bernstein, Gary M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Stoughton, Chris; Johnston, David] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Massey, Richard] Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. RP Vanderveld, RA (reprint author), Univ Chicago, Enrico Fermi Inst, Kavli Inst Cosmol Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM rav@kicp.uchicago.edu FU Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-0114422, NSF PHY-0551142]; NASA; JPL; Fermi Research Alliance, LLC [DE-AC02-07CH11359]; US Department of Energy (DOE); National Science Foundation [AST-0607667]; DOE [DE-FG02-95ER40893]; Science and Technology Facilities Council; European Research Council [MIRG-CT-208994]; Kavli Foundation FX This work was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142 and an endowment from the Kavli Foundation and its founder Fred Kavli. This work was also carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, and funded by JPL's Research and Technology Development Funds. C. S. and D. J. acknowledge support from the Fermi Research Alliance, LLC, under contract DE-AC02-07CH11359 with the US Department of Energy (DOE). G. M. B. acknowledges support from grant AST-0607667 from the National Science Foundation and DOE grant DE-FG02-95ER40893. R. M. acknowledges support from a Science and Technology Facilities Council Advanced Fellowship and from European Research Council grant MIRG-CT-208994. NR 21 TC 0 Z9 0 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD AUG PY 2011 VL 123 IS 906 BP 996 EP 1003 DI 10.1086/661748 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811XM UT WOS:000294252100013 ER PT J AU Reale, O Lau, KM da Silva, A AF Reale, Oreste Lau, K. M. da Silva, Arlindo TI Impact of an Interactive Aerosol on the African Easterly Jet in the NASA GEOS-5 Global Forecasting System SO WEATHER AND FORECASTING LA English DT Article ID SAHARAN AIR LAYER; TROPICAL CYCLOGENETIC PROCESSES; DATA ASSIMILATION; SOP-3 NAMMA; ATLANTIC; DUST; REANALYSIS; MAINTENANCE; WAVES; MODEL AB The real-time treatment of interactive, realistically varying aerosols in a global operational forecasting system, as opposed to prescribed (fixed or climatologically varying) aerosols, is a very difficult challenge that has only recently begun to be addressed. Experiment results from a recent version of the NASA's Goddard Earth Observing System (GEOS-5) forecasting system, inclusive of interactive-aerosol direct effects, are presented in this work. Five sets of 30 five-day forecasts are initialized from a high quality set of analyses previously produced and documented, to cover the period from 15 August to 16 September 2006, which corresponds to the NASA African Monsoon Multidisciplinary Analysis (NAMMA) observing campaign. Four forecast sets are at two different horizontal resolutions, with and without interactive-aerosol treatment. A fifth forecast set is performed with climatologically varying aerosols. The net impact of the interactive aerosol, associated with a strong Saharan dust outbreak, is a temperature increase at the dust level, and a decrease in the near-surface levels, in agreement with previous observational and modeling studies. Moreover, forecasts in which interactive aerosols are included depict an African easterly jet (AEJ) at slightly higher elevation, and slightly displaced northward, with respect to the forecasts in which aerosols are not included. The shift in the AEJ position goes in the direction of the observations and agrees with previous results. C1 [Reale, Oreste; Lau, K. M.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [da Silva, Arlindo] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Reale, Oreste] Univ Space Res Assoc, Columbia, MD USA. RP Reale, O (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. EM oreste.reale-1@nasa.gov RI da Silva, Arlindo/D-6301-2012; Lau, William /E-1510-2012 OI da Silva, Arlindo/0000-0002-3381-4030; Lau, William /0000-0002-3587-3691 FU NAMMA grant FX The authors thank Dr. Ramesh Kakar for support through a NAMMA grant and Dr. Tsengdar Lee for allocations on NASA High-End Computing Systems. Thanks are also due to two anonymous reviewers for their constructive and insightful comments. Finally, the authors thank Mr. Ravi Govindaraju for his valuable help with the modeling experiments. NR 39 TC 18 Z9 18 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0882-8156 J9 WEATHER FORECAST JI Weather Forecast. PD AUG PY 2011 VL 26 IS 4 BP 504 EP 519 DI 10.1175/WAF-D-10-05025.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 811VL UT WOS:000294244200005 ER PT J AU Harder, B AF Harder, Bryan TI PS-PVD Processing Varies Coating Architecture with Processing Parameters SO ADVANCED MATERIALS & PROCESSES LA English DT Article C1 NASA, Glenn Res Ctr, Durabil & Protect Coatings Branch, Cleveland, OH 44135 USA. RP Harder, B (reprint author), NASA, Glenn Res Ctr, Durabil & Protect Coatings Branch, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM bryan.harder@nasa.gov NR 5 TC 0 Z9 0 U1 1 U2 6 PU ASM INT PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 0882-7958 J9 ADV MATER PROCESS JI Adv. Mater. Process. PD AUG PY 2011 VL 169 IS 8 BP 49 EP 51 PG 3 WC Materials Science, Multidisciplinary SC Materials Science GA 809DS UT WOS:000294032600008 ER PT J AU Stapleton, SE Waas, AM Bednarcyk, BA AF Stapleton, Scott E. Waas, Anthony M. Bednarcyk, Brett A. TI Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference CY APR 12-15, 2010 CL Orlando, FL SP AIAA, AHS, ASME, ASC, ASCE, US Off Naval Res (ONR) ID STRESSES AB Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element, referred to as a bonded joint element, that is capable of modeling an array of joint types is developed. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided, while still obtaining a detailed solution for the joint. Additionally, the capability to model nonlinear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and resizing the joint as the adhesive fails. Results of the model compare favorably with available experimental and finite element results. C1 [Stapleton, Scott E.; Waas, Anthony M.] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. [Bednarcyk, Brett A.] NASA, John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA. RP Stapleton, SE (reprint author), Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. EM sstaple@umich.edu; dcw@umich.edu; Brett.A.Bednarcyk@NASA.gov NR 20 TC 3 Z9 3 U1 1 U2 10 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD AUG PY 2011 VL 49 IS 8 BP 1740 EP 1749 DI 10.2514/1.J050889 PG 10 WC Engineering, Aerospace SC Engineering GA 804UQ UT WOS:000293679900014 ER PT J AU Cooper, M La Duc, MT Probst, A Vaishampayan, P Stam, C Benardini, JN Piceno, YM Andersen, GL Venkateswaran, K AF Cooper, Moogega La Duc, Myron T. Probst, Alexander Vaishampayan, Parag Stam, Christina Benardini, James N. Piceno, Yvette M. Andersen, Gary L. Venkateswaran, Kasthuri TI Comparison of Innovative Molecular Approaches and Standard Spore Assays for Assessment of Surface Cleanliness SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID RIBOSOMAL-RNA; CLEAN ROOMS; BACTERIA; SPACECRAFT; DIVERSITY; DEEP; DNA; ENVIRONMENTS; RESISTANCE; REVEALS AB A bacterial spore assay and a molecular DNA microarray method were compared for their ability to assess relative cleanliness in the context of bacterial abundance and diversity on spacecraft surfaces. Colony counts derived from the NASA standard spore assay were extremely low for spacecraft surfaces. However, the PhyloChip generation 3 (G3) DNA microarray resolved the genetic signatures of a highly diverse suite of microorganisms in the very same sample set. Samples completely devoid of cultivable spores were shown to harbor the DNA of more than 100 distinct microbial phylotypes. Furthermore, samples with higher numbers of cultivable spores did not necessarily give rise to a greater microbial diversity upon analysis with the DNA microarray. The findings of this study clearly demonstrated that there is not a statistically significant correlation between the cultivable spore counts obtained from a sample and the degree of bacterial diversity present. Based on these results, it can be stated that validated state-of-the-art molecular techniques, such as DNA microarrays, can be utilized in parallel with classical culture-based methods to further describe the cleanliness of spacecraft surfaces. C1 [Venkateswaran, Kasthuri] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Piceno, Yvette M.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Venkateswaran, K (reprint author), CALTECH, NASA, Jet Prop Lab, Mail Stop 89,Oak Grove Dr, Pasadena, CA 91109 USA. EM kjvenkat@jpl.nasa.gov RI Andersen, Gary/G-2792-2015; Piceno, Yvette/I-6738-2016 OI Andersen, Gary/0000-0002-1618-9827; Piceno, Yvette/0000-0002-7915-4699 FU National Aeronautics and Space Administration; Mars Program Office at JPL; U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX Part of the research described in this paper was carried out by the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research was funded by the Mars Program Office at JPL. We are grateful to K. Buxbaum for funding. The DNA microarray portion of this study was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory, under contract DE-AC02-05CH11231. NR 36 TC 20 Z9 20 U1 1 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD AUG PY 2011 VL 77 IS 15 BP 5438 EP 5444 DI 10.1128/AEM.00192-11 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 798PW UT WOS:000293224500042 PM 21652744 ER PT J AU Luzum, B Capitaine, N Fienga, A Folkner, W Fukushima, T Hilton, J Hohenkerk, C Krasinsky, G Petit, G Pitjeva, E Soffel, M Wallace, P AF Luzum, Brian Capitaine, Nicole Fienga, Agnes Folkner, William Fukushima, Toshio Hilton, James Hohenkerk, Catherine Krasinsky, George Petit, Gerard Pitjeva, Elena Soffel, Michael Wallace, Patrick TI The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy SO CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY LA English DT Article DE Numerical standards; Fundamental Astronomy; Fundamental constants ID CODATA RECOMMENDED VALUES; GRAVITY-FIELD; PHYSICAL CONSTANTS; TRACKING DATA; PRECESSION; EPHEMERIS; MASSES; EARTH; ORIENTATION; SATELLITES AB In the 2006-2009 triennium, the International Astronomical Union (IAU) Working Group on Numerical Standards for Fundamental Astronomy determined a list of Current Best Estimates (CBEs). The IAU 2009 Resolution B2 adopted these CBEs as the IAU (2009) System of Astronomical Constants. Additional work continues to define the process of updating the CBEs and creating a standard electronic document. C1 [Luzum, Brian; Hilton, James] USN Observ, Washington, DC 20392 USA. [Capitaine, Nicole] UPMC, CNRS, SYRTE, Observ Paris, Paris, France. [Fienga, Agnes] Univ Franche Comte, Inst UTINAM, CNRS, UMR 6123, F-25030 Besancon, France. [Folkner, William] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Fukushima, Toshio] Natl Astron Observ, Tokyo 181, Japan. [Hohenkerk, Catherine] HM Naut Almanac Off, Taunton, Somerset, England. [Krasinsky, George; Pitjeva, Elena] RAS, Inst Appl Astron, St Petersburg, Russia. [Petit, Gerard] Bur Int Poids & Mesures, Sevres, France. [Soffel, Michael] Tech Univ Dresden, Dresden, Germany. [Wallace, Patrick] Rutherford Appleton Lab, Chilton, England. RP Luzum, B (reprint author), USN Observ, Washington, DC 20392 USA. EM brian.luzum@usno.navy.mil NR 35 TC 27 Z9 29 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0923-2958 J9 CELEST MECH DYN ASTR JI Celest. Mech. Dyn. Astron. PD AUG PY 2011 VL 110 IS 4 BP 293 EP 304 DI 10.1007/s10569-011-9352-4 PG 12 WC Astronomy & Astrophysics; Mathematics, Interdisciplinary Applications SC Astronomy & Astrophysics; Mathematics GA 801TX UT WOS:000293464600002 ER PT J AU Archinal, BA A'Hearn, MF Conrad, A Consolmagno, GJ Courtin, R Fukushima, T Hestroffer, D Hilton, JL Krasinsky, GA Neumann, G Oberst, J Seidelmann, PK Stooke, P Tholen, DJ Thomas, PC Williams, IP AF Archinal, B. A. A'Hearn, M. F. Conrad, A. Consolmagno, G. J. Courtin, R. Fukushima, T. Hestroffer, D. Hilton, J. L. Krasinsky, G. A. Neumann, G. Oberst, J. Seidelmann, P. K. Stooke, P. Tholen, D. J. Thomas, P. C. Williams, I. P. TI Reports of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2006 & 2009 (vol 98, pg 155, 2007) SO CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY LA English DT Correction AB The primary poles for (243) Ida and (134340) Pluto and its satellite (134340) Pluto : I Charon were redefined in the IAU Working Group on Cartographic Coordinates and Rotational Elements (WGCCRE) 2006 report (Seidelmann et al. in Celest Mech Dyn Astr 98:155, 2007), and 2009 report (Archinal et al. in Celest Mech Dyn Astr 109:101, 2011), respectively, to be consistent with the primary poles of similar Solar System bodies. However, the WGCCRE failed to take into account the effect of the redefinition of the poles on the values of the rotation angle W at J2000.0. The revised relationships in Table 3 of Archinal et al. 2011) are W = 274 degrees.05 + 1864 degrees.6280070 d for (243) Ida, W = 302 degrees.695 + 56 degrees.3625225 d for (134340) Pluto, and W = 122 degrees.695 + 56 degrees.3625225 d for (134340) Pluto : I Charon where d is the time in TDB days from J2000.0 (JD2451545.0). C1 [Archinal, B. A.] US Geol Survey, Flagstaff, AZ 86001 USA. [A'Hearn, M. F.] Univ Maryland, College Pk, MD 20742 USA. [Conrad, A.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Consolmagno, G. J.] Vatican Observ, Vatican City, Vatican. [Courtin, R.] LESIA, Observ Paris, CNRS, Paris, France. [Fukushima, T.] Natl Astron Observ Japan, Tokyo, Japan. [Hestroffer, D.] IMCCE, Observ Paris, CNRS, Paris, France. [Hilton, J. L.] USN Observ, Washington, DC 20392 USA. [Krasinsky, G. A.] Inst Appl Astron, St Petersburg, Russia. [Neumann, G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Oberst, J.] DLR Berlin Aldershof, Berlin, Germany. [Seidelmann, P. K.] Univ Virginia, Charlottesville, VA USA. [Stooke, P.] Univ Western Ontario, London, ON, Canada. [Tholen, D. J.] Univ Hawaii, Honolulu, HI 96822 USA. [Thomas, P. C.] Cornell Univ, Ithaca, NY USA. [Williams, I. P.] Queen Mary Univ London, London, England. RP Archinal, BA (reprint author), US Geol Survey, Flagstaff, AZ 86001 USA. EM barchinal@usgs.gov RI Neumann, Gregory/I-5591-2013 OI Neumann, Gregory/0000-0003-0644-9944 NR 3 TC 3 Z9 3 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0923-2958 J9 CELEST MECH DYN ASTR JI Celest. Mech. Dyn. Astron. PD AUG PY 2011 VL 110 IS 4 BP 401 EP 403 DI 10.1007/s10569-011-9362-2 PG 3 WC Astronomy & Astrophysics; Mathematics, Interdisciplinary Applications SC Astronomy & Astrophysics; Mathematics GA 801TX UT WOS:000293464600008 ER PT J AU Bergengren, JC Waliser, DE Yung, YL AF Bergengren, Jon C. Waliser, Duane E. Yung, Yuk L. TI Ecological sensitivity: a biospheric view of climate change SO CLIMATIC CHANGE LA English DT Article AB Climate change is often characterized in terms of climate sensitivity, the globally averaged temperature rise associated with a doubling of the atmospheric CO(2) (equivalent) concentration. In this study, we develop and apply two new ecological sensitivity metrics, analogs of climate sensitivity, to investigate the potential degree of plant community changes over the next three centuries. We use ten climate simulations from the Intergovernmental Panel on Climate Change Fourth Assessment Report, with climate sensitivities from 2-4A degrees C. The concept of climate sensitivity depends upon the continuous nature of the temperature field across the Earth's surface. For this research, the bridge between climate change and biospheric change predictions is provided by the Equilibrium Vegetation Ecology model (EVE), which simulates a continuous description of the Earth's terrestrial plant communities as a function of climate. The ecosensitivity metrics applied to the results of EVE simulations at the end of the twenty-first century result in 49% of the Earth's land surface area undergoing plant community changes and 37% of the world's terrestrial ecosystems undergoing biome-scale changes. EVE is an equilibrium model, and, although rates of ecological change are not addressed, the resultant ecological sensitivity projections provide an estimate of the degree of species turnover that must occur for ecosystems to be in equilibrium with local climates. Regardless of equilibrium timescales, the new metrics highlight the Earth's degree of ecological sensitivity while identifying ecological "hotspots" in the terrestrial biosphere's response to projected climate changes over the next three centuries. C1 [Bergengren, Jon C.; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Waliser, Duane E.] CALTECH, Jet Prop Lab, Water & Carbon Cycles Grp, Pasadena, CA USA. RP Bergengren, JC (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM globalecologist@gmail.com FU NASA FX The research described in this paper was carried out at the Jet Propulsion Laboratory, Caltech, under a contract with NASA. NR 20 TC 28 Z9 34 U1 4 U2 19 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD AUG PY 2011 VL 107 IS 3-4 BP 433 EP 457 DI 10.1007/s10584-011-0065-1 PG 25 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 799LO UT WOS:000293288400012 ER PT J AU Kaufman, IK Tindjong, R Luchinsky, DG McClintock, PVE AF Kaufman, I. Kh. Tindjong, R. Luchinsky, D. G. McClintock, P. V. E. TI Effect of charge fluctuations on the ionic escape rate from a single-site ion channel SO EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS LA English DT Meeting Abstract CT 8th EBSA European Biophysics Congress CY AUG 23-27, 2011 CL Budapest, HUNGARY SP Hungarian Biophys Soc, European Biophys Soc Assoc C1 [Kaufman, I. Kh.; Tindjong, R.; Luchinsky, D. G.; McClintock, P. V. E.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Luchinsky, D. G.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RI Luchinsky, Dmitry/N-4177-2014 NR 1 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7571 J9 EUR BIOPHYS J BIOPHY JI Eur. Biophys. J. Biophys. Lett. PD AUG PY 2011 VL 40 SU 1 BP 169 EP 169 PG 1 WC Biophysics SC Biophysics GA 804EO UT WOS:000293637300445 ER PT J AU Lee, SMC Clarke, MSF O'Connor, DP Stroud, L Ellerby, GEC Soller, BR AF Lee, Stuart M. C. Clarke, Mark S. F. O'Connor, Daniel P. Stroud, Leah Ellerby, Gwenn E. C. Soller, Babs R. TI Near infrared spectroscopy-derived interstitial hydrogen ion concentration and tissue oxygen saturation during ambulation SO EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY LA English DT Article DE NIRS; Walking; Running; Hydrogen ion threshold ID LACTATE-PROTON COTRANSPORT; EXERCISE-INDUCED HYPOXEMIA; SKELETAL-MUSCLE; BLOOD-FLOW; LEG MUSCLES; PH; PERFUSION; WALKING; HUMANS; SKIN AB The objective of this study was to determine whether walking and running at different treadmill speeds resulted in different metabolic and cardiovascular responses in the vastus lateralis (VL) and lateral gastrocnemius (LG) by examining metabolite accumulation and tissue oxygen saturation. Ten healthy subjects (6 males, 4 females) completed a submaximal treadmill exercise test, beginning at 3.2 km h(-1) and increasing by 1.6 km h(-1) increments every 3 min until reaching 85% of age-predicted maximal heart rate. Muscle tissue oxygenation (SO(2)), total hemoglobin (HbT) and interstitial hydrogen ion concentration ([H(+)]) were calculated from near infrared spectra collected from VL and LG. The [H(+)] threshold for each muscle was determined using a simultaneous bilinear regression. Muscle and treadmill speed effects were analyzed using a linear mixed model analysis. Paired t-tests were used to test for differences between muscles in the [H(+)] threshold. SO(2) decreased (P = 0.001) during running in the VL and LG, but the SO(2) response across treadmill speeds was different between muscles (P = 0.047). In both muscles, HbT and [H(+)] increased as treadmill speed increased (P < 0.001), but the response to exercise was not different between muscles. The [H(+)] threshold occurred at a lower whole-body VO(2) in the LG (1.22 +/- A 0.63 L min(-1)) than in the VL (1.46 +/- A 0.58 L min(-1), P = 0.01). In conclusion, interstitial [H(+)] and SO(2) are aggregate measures of local metabolite production and the cardiovascular response. Inferred from simultaneous SO(2) and [H(+)] measures in the VL and LG muscles, muscle perfusion is well matched to VL and LG work during walking, but not running. C1 [Lee, Stuart M. C.] NASA, Lyndon B Johnson Space Ctr, Cardiovasc Lab, Wyle Integrated Sci & Engn Grp, Houston, TX 77058 USA. [Clarke, Mark S. F.; O'Connor, Daniel P.] Univ Houston, Lab Integrated Physiol, Dept Hlth & Human Performance, Houston, TX USA. [Stroud, Leah] NASA, Lyndon B Johnson Space Ctr, Exercise Physiol & Countermeasures Project, Wyle Integrated Sci & Engn Grp, Houston, TX 77058 USA. [Ellerby, Gwenn E. C.; Soller, Babs R.] Univ Massachusetts, Sch Med, Dept Anesthesiol, Worcester, MA USA. RP Lee, SMC (reprint author), NASA, Lyndon B Johnson Space Ctr, Cardiovasc Lab, Wyle Integrated Sci & Engn Grp, 1290 Hercules Blvd, Houston, TX 77058 USA. EM stuart.lee-1@nasa.gov FU Pat Phillips; Sherry Grobstein; Luxtec; National Space Biomedical Research Institute [NCC 9-58] FX The authors wish to thank the subjects for their participation in this study; Meghan Everett, Cassie Wilson, and Jason Norcross for their assistance with data collection; Dr. Ye Yang and Peter Scott for their assistance with spectral data analysis; and Meghan Everett, Lesley Lee, and Jackie Reeves for their editorial suggestions. We also are grateful for the support of Pat Phillips, Sherry Grobstein, and Luxtec for their participation in the design, development, and fabrication of the NIRS monitor and fiber optic probe. This work was funded by the National Space Biomedical Research Institute under NASA Cooperative Agreement NCC 9-58. NR 47 TC 4 Z9 4 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1439-6319 J9 EUR J APPL PHYSIOL JI Eur. J. Appl. Physiol. PD AUG PY 2011 VL 111 IS 8 BP 1705 EP 1714 DI 10.1007/s00421-010-1797-8 PG 10 WC Physiology; Sport Sciences SC Physiology; Sport Sciences GA 808LU UT WOS:000293980000017 PM 21212975 ER PT J AU Morgan, PS AF Morgan, Paula S. TI Cassini Spacecraft Post-Launch Malfunction Correction Success SO IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE LA English DT Article AB After the launch of the Cassini "Mission-to-Saturn" Spacecraft, the volume of subsequent mission design modifications was expected to be minimal due to the rigorous testing and verification of the Flight Hardware and Flight Software. For known areas of risk where faults could potentially occur, component redundancy and/or autonomous Fault Protection (FP) routines were implemented to ensure that the integrity of the mission was maintained. the goal of Cassini's FP strategy is to ensure that no credible Single Point Failure (SPF) prevents attainment of mission objectives or results in a significantly degraded mission, with the exception of the class of faults which are exempted due to low probability of occurrence. In the case of Cassini's Propulsion Module Subsystem (PMS) design, a waiver was approved prior to launch for failure of the prime regulator to properly close; a potentially mission catastrophic single point failure. However, one month after Cassini's launch when the fuel and oxidizer tanks were pressurized for the first time, the prime regulator was determined to be leaking at a rate significant enough to require a considerable change in Main Engine (ME) burn strategy for the remainder of the mission. Crucial mission events such as the Saturn Orbit Insertion (SOI) burn task which required a characterization exercise for the PMS system 30 days before the maneuver were now impossible to achieve. This details the steps necessary to support the unexpected malfunction of the prime regulator, the introduction of new failure modes which required new FP design changes consisting of new/modified under-pressure and over-pressure algorithms; all which must be accomplished during the operation phase of the spacecraft, as a result of a presumed low probability waived failure which occurred after launch. [GRAPHICS] . C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Morgan, PS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Aeronautics and Space Administration FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This author wishes to acknowledge the following individuals who contributed to this research: Todd Barber, Carl Guernsey, Kevin Johnson, Michael Leads, Earl Maize, Shin Huh, and Richard Cowley. NR 9 TC 1 Z9 1 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8985 J9 IEEE AERO EL SYS MAG JI IEEE Aerosp. Electron. Syst. Mag. PD AUG PY 2011 VL 26 IS 8 BP 4 EP 16 DI 10.1109/MAES.2011.5980604 PG 13 WC Engineering, Aerospace; Engineering, Electrical & Electronic SC Engineering GA 807TS UT WOS:000293923400003 ER PT J AU Prieskorn, ZR Hill, JE Kaaret, PE Black, JK Jahoda, K AF Prieskorn, Zachary R. Hill, Joanne E. Kaaret, Phillip E. Black, Joel Kevin Jahoda, Keith TI Gas Gain Measurements From a Negative Ion TPC X-ray Polarimeter SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Negative ion time projection chamber; x-ray detectors; x-ray polarimetry ID LASER ETCHING TECHNIQUE; CRAB-NEBULA; POLARIZATION; MIXTURES AB Gas-based time projection chambers (TPCs) have been shown to be highly sensitive X-ray polarimeters having excellent quantum efficiency while at the same time achieving large modulation factors. To observe polarization of the prompt X-ray emission of a Gamma-ray burst (GRB), a large area detector is needed. Diffusion of the electron cloud in a standard TPC could be prohibitive to measuring good modulation when the drift distance is large. Therefore, we propose using a negative ion TPC (NITPC) with Nitromethane (CH3NO2) as the electron capture agent. The diffusion of negative ions is reduced over that of electrons due to the thermal coupling of the negative ions to the surrounding gas. This allows for larger area detectors as the drift distance can be increased without degrading polarimeter modulation. Negative ions also travel similar to 200 times slower than electrons, allowing the readout electronics to operate slower, resulting in a reduction of instrument power. To optimize the NITPC design, we have measured gas gain with SciEnergy gas electron multipliers (GEMs) in single and double GEM configurations. Each setup was tested with different gas combinations, concentrations and pressures: P10 700 Torr, Ne + CO2 700 Torr at varying concentrations of CO2 and Ne + CO2 + CH3NO2 700 Torr. We report gain as a function of total voltage, measured from top to bottom of the GEM stack and as a function of drift field strength for the gas concentrations listed above. Examples of photoelectron tracks at 5.9 keV are also presented. C1 [Prieskorn, Zachary R.; Kaaret, Phillip E.] Univ Iowa, Iowa City, IA 52240 USA. [Hill, Joanne E.; Jahoda, Keith] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Black, Joel Kevin] Rock Creek Sci, Silver Spring, MD 20910 USA. RP Prieskorn, ZR (reprint author), Univ Iowa, Iowa City, IA 52240 USA. EM zachary-prieskorn@uiowa.edu; joanne.e.hill@nasa.gov; philip-kaaret@uiowa.edu; kevin.black@nasa.gov; keith.ja-hoda@nasa.gov RI Jahoda, Keith/D-5616-2012 FU NASA [NNX08AF46G, NNX07AF21G] FX Manuscript received January 28, 2011; revised April 09, 2011; accepted April 30, 2011. Date of publication June 23, 2011; date of current version August 17, 2011. This work was supported in part by NASA Grants NNX08AF46G and NNX07AF21G. NR 20 TC 2 Z9 2 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2011 VL 58 IS 4 BP 2055 EP 2059 DI 10.1109/TNS.2011.2155083 PN 2 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 808KS UT WOS:000293977200024 ER PT J AU Yonekura, E Hall, TM AF Yonekura, Emmi Hall, Timothy M. TI A Statistical Model of Tropical Cyclone Tracks in the Western North Pacific with ENSO-Dependent Cyclogenesis SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID LARGE-SCALE CIRCULATION; EL-NINO; HURRICANE RISK; EVENTS; LANDFALL; IMPACTS; GENESIS AB A new statistical model for western North Pacific Ocean tropical cyclone genesis and tracks is developed and applied to estimate regionally resolved tropical cyclone landfall rates along the coasts of the Asian mainland, Japan, and the Philippines. The model is constructed on International Best Track Archive for Climate Stewardship (IBTrACS) 1945-2007 historical data for the western North Pacific. The model is evaluated in several ways, including comparing the stochastic spread in simulated landfall rates with historic landfall rates. Although certain biases have been detected, overall the model performs well on the diagnostic tests, for example, reproducing well the geographic distribution of landfall rates. Western North Pacific cyclogenesis is influenced by El Nino-Southern Oscillation (ENSO). This dependence is incorporated in the model's genesis component to project the ENSO-genesis dependence onto landfall rates. There is a pronounced shift southeastward in cyclogenesis and a small but significant reduction in basinwide annual counts with increasing ENSO index value. On almost all regions of coast, landfall rates are significantly higher in a negative ENSO state (La Nina). C1 [Yonekura, Emmi] Columbia Univ, Dept Earth & Environm Sci, New York, NY 10025 USA. [Hall, Timothy M.] NASA Goddard Inst Space Studies, New York, NY USA. RP Yonekura, E (reprint author), Columbia Univ, Dept Earth & Environm Sci, 2880 Broadway, New York, NY 10025 USA. EM eyonekura@giss.nasa.gov FU NASA FX This work was supported in part by a grant from the NASA Applied Sciences program. The authors are grateful to Suzana Camargo and Anthony Del Genio for helpful comments on this work. NR 29 TC 13 Z9 13 U1 1 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD AUG PY 2011 VL 50 IS 8 BP 1725 EP 1739 DI 10.1175/2011JAMC2617.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 807KQ UT WOS:000293896700010 ER PT J AU Yi, YH Kimball, JS Jones, LA Reichle, RH McDonald, KC AF Yi, Yonghong Kimball, John S. Jones, Lucas A. Reichle, Rolf H. McDonald, Kyle C. TI Evaluation of MERRA Land Surface Estimates in Preparation for the Soil Moisture Active Passive Mission SO JOURNAL OF CLIMATE LA English DT Article ID AMSR-E; DATA ASSIMILATION; MODELS; BOREAL; WATER; SIMULATIONS; RESOLUTION; RETRIEVAL; PRODUCTS; CLIMATE AB The authors evaluated several land surface variables from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) product that are important for global ecological and hydrological studies, including daily maximum (T-max) and minimum (T-min) surface air temperatures, atmosphere vapor pressure deficit (VPD), incident solar radiation (SWrad), and surface soil moisture. The MERRA results were evaluated against in situ measurements, similar global products derived from satellite microwave [the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E)] remote sensing and earlier generation atmospheric analysis [Goddard Earth Observing System version 4 (GEOS-4)] products. Relative to GEOS-4, MERRA is generally warmer (similar to 0.5 degrees C for T-min and T-max) and drier (similar to 50 Pa for VPD) for low-and middle-latitude regions (< 50 degrees N) associated with reduced cloudiness and increased SWrad. MERRA and AMSR-E temperatures show relatively large differences (> 3 degrees C) in mountainous areas, tropical forest, and desert regions. Surface soil moisture estimates from MERRA (0-2-cm depth) and two AMSR-E products (similar to 0-1-cm depth) are moderately correlated (R similar to 0.4) for middle-latitude regions with low to moderate vegetation biomass. The MERRA derived surface soil moisture also corresponds favorably with in situ observations (R = 0.53 +/- 0.01, p < 0.001) in the midlatitudes, where its accuracy is directly proportional to the quality of MERRA precipitation. In the high latitudes, MERRA shows inconsistent soil moisture seasonal dynamics relative to in situ observations. The study's results suggest that satellite microwave remote sensing may contribute to improved reanalysis accuracy where surface meteorological observations are sparse and in cold land regions subject to seasonal freeze-thaw transitions. The upcoming NASA Soil Moisture Active Passive (SMAP) mission is expected to improve MERRA-type reanalysis accuracy by providing accurate global mapping of freeze-thaw state and surface soil moisture with 2-3-day temporal fidelity and enhanced (<= 9 km) spatial resolution. C1 [Yi, Yonghong; Kimball, John S.; Jones, Lucas A.] Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA. [Yi, Yonghong; Kimball, John S.; Jones, Lucas A.] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA. [Reichle, Rolf H.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [McDonald, Kyle C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Yi, YH (reprint author), Univ Montana, Flathead Lake Biol Stn, 32135 Biostn Lane, Polson, MT 59860 USA. EM yonghong.yi@ntsg.umt.edu RI Reichle, Rolf/E-1419-2012; Yi, Yonghong/C-2395-2017 FU National Aeronautics and Space Administration (NASA); SMAP mission; U.S. Department of Energy; National Science Foundation; USDA CREES NRI [2004-35111-15057]; USDA NRI [2008-35101-19076] FX Portions of this work were conducted at the Jet Propulsion Laboratory, California Institute of Technology and the University of Montana under contract to the National Aeronautics and Space Administration (NASA). This work was supported with funding from the NASA Hydrology and Terrestrial Ecology programs and the SMAP mission. The daily surface meteorology data was kindly provided by the National Climatic Data Center. We also thank the GSFC and ISLSCP for the MERRA, GEOS-4, and GEWEX-SRB datasets. The AmeriFlux network was supported by the U.S. Department of Energy and National Science Foundation as well as many local funders for individual sites (e.g., USDA CREES NRI 2004-35111-15057 and USDA NRI 2008-35101-19076). NR 48 TC 37 Z9 37 U1 2 U2 21 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD AUG PY 2011 VL 24 IS 15 BP 3797 EP 3816 DI 10.1175/2011JCLI4034.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 806QE UT WOS:000293823900001 ER PT J AU Geller, MA Zhou, TH Ruedy, R Aleinov, I Nazarenko, L Tausnev, NL Sun, S Kelley, M Cheng, Y AF Geller, Marvin A. Zhou, Tiehan Ruedy, Reto Aleinov, Igor Nazarenko, Larissa Tausnev, Nikolai L. Sun, Shan Kelley, Maxwell Cheng, Ye TI New Gravity Wave Treatments for GISS Climate Models SO JOURNAL OF CLIMATE LA English DT Article ID GENERAL-CIRCULATION MODEL; MIDDLE-ATMOSPHERE; SPECTRAL PARAMETERIZATION; DRAG PARAMETERIZATION; MOMENTUM; PARAMETRIZATION; STRATOSPHERE; CONSERVATION; SENSITIVITY; FORMULATION AB Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested. C1 [Geller, Marvin A.] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Zhou, Tiehan; Aleinov, Igor; Nazarenko, Larissa; Kelley, Maxwell; Cheng, Ye] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Ruedy, Reto; Tausnev, Nikolai L.] SGT Inc, New York, NY USA. [Sun, Shan] MIT, Cambridge, MA 02139 USA. RP Geller, MA (reprint author), SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. EM marvin.geller@sunysb.edu RI Sun, Shan/H-2318-2015 FU NASA FX Financial support for this work came from NASA's Modeling and Analysis and Atmospheric Composition, Modeling, and Analysis programs. The authors also thank Dr. John Scinocca and an anonymous reviewer for their helpful comments, which led to an improved paper. NR 34 TC 11 Z9 11 U1 1 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD AUG PY 2011 VL 24 IS 15 BP 3989 EP 4002 DI 10.1175/2011JCLI4013.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 806QE UT WOS:000293823900014 ER PT J AU Guimond, SR Bourassa, MA Reasor, PD AF Guimond, Stephen R. Bourassa, Mark A. Reasor, Paul D. TI A Latent Heat Retrieval and Its Effects on the Intensity and Structure Change of Hurricane Guillermo (1997). Part I: The Algorithm and Observations SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID HIGH-RESOLUTION SIMULATION; INNER-CORE; TROPICAL CYCLONES; DOPPLER RADAR; WATER-BUDGET; CUMULUS CONVECTION; VERTICAL MOTION; SQUALL LINE; BONNIE 1998; FIELDS AB Despite the fact that latent heating in cloud systems drives many atmospheric circulations, including tropical cyclones, little is known of its magnitude and structure, largely because of inadequate observations. In this work, a reasonably high-resolution (2 km), four-dimensional airborne Doppler radar retrieval of the latent heat of condensation/evaporation is presented for rapidly intensifying Hurricane Guillermo (1997). Several advancements in the basic retrieval algorithm are shown, including 1) analyzing the scheme within the dynamically consistent framework of a numerical model, 2) identifying algorithm sensitivities through the use of ancillary data sources, and 3) developing a precipitation budget storage term parameterization. The determination of the saturation state is shown to be an important part of the algorithm for updrafts of; similar to 5 m s(-1) or less. The uncertainties in the magnitude of the retrieved heating are dominated by errors in the vertical velocity. Using a combination of error propagation and Monte Carlo uncertainty techniques, biases are found to be small, and randomly distributed errors in the heating magnitude are; similar to 16% for updrafts greater than 5 m s(-1) and; similar to 156% for updrafts of 1 m s(-1). Even though errors in the vertical velocity can lead to large uncertainties in the latent heating field for small updrafts/downdrafts, in an integrated sense the errors are not as drastic. In Part II, the impact of the retrievals is assessed by inserting the heating into realistic numerical simulations at 2-km resolution and comparing the generated wind structure to the Doppler radar observations of Guillermo. C1 [Guimond, Stephen R.; Bourassa, Mark A.] Florida State Univ, Ctr Ocean Atmospher Predict Studies, Tallahassee, FL 32306 USA. [Guimond, Stephen R.; Bourassa, Mark A.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. [Reasor, Paul D.] NOAA, Atlantic Oceanog & Meteorol Lab, Hurricane Res Div, Miami, FL 33149 USA. RP Guimond, SR (reprint author), NASA, Goddard Space Flight Ctr, Code 613-1, Greenbelt, MD 20771 USA. EM stephen.guimond@nasa.gov RI Reasor, Paul/B-2932-2014 OI Reasor, Paul/0000-0001-6407-017X FU Los Alamos National Laboratory; NASA; NOAA FX The first author would like to thank Drs. Chris Jeffery and Gerald Heymsfield for providing support for visits to Los Alamos National Laboratory (LANL) and NASA Goddard Space Flight Center (GSFC), respectively as well as excellent feedback on the work. We acknowledge Dr. Robert Black for the particle data and processing in Hurricane Katrina (2005), Dr. Scott Braun for providing numerical model output and discussion, Dr. Robert Hart for extensive feedback, and Dr. Matt Eastin for providing a figure or two. Finally, we thank three anonymous reviewers for providing constructive criticism. This research was supported by the Los Alamos National Laboratory through a project entitled "Flash before the Storm: Predicting Hurricane Intensification Using LANL Lightning Data" with Dr. Chris Jeffery the PI. In addition, financial support was also provided by a NASA ocean vector winds contract and a NOAA grant to Dr. Mark Bourassa. NR 41 TC 7 Z9 7 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD AUG PY 2011 VL 68 IS 8 BP 1549 EP 1567 DI 10.1175/2011JAS3700.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 803ZN UT WOS:000293622300001 ER PT J AU Mrowiec, AA Garner, ST Pauluis, OM AF Mrowiec, Agnieszka A. Garner, Stephen T. Pauluis, Olivier M. TI Axisymmetric Hurricane in a Dry Atmosphere: Theoretical Framework and Numerical Experiments SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID ICE-PHASE MICROPHYSICS; TROPICAL CYCLONES; MAXIMUM INTENSITY; MODEL; DYNAMICS; PARAMETERIZATION; SIMULATIONS; CONVECTION; STORMS; CIRCULATION AB This paper discusses the possible existence of hurricanes in an atmosphere without water vapor and analyzes the dynamic and thermodynamic structures of simulated hurricane-like storms in moist and dry environments. It is first shown that the "potential intensity" theory for axisymmetric hurricanes is directly applicable to the maintenance of a balanced vortex sustained by a combination of surface energy and momentum flux, even in the absence of water vapor. This theoretical insight is confirmed by simulations with a high-resolution numerical model. The same model is then used to compare dry and moist hurricanes. While it is found that both types of storms exhibit many similarities and fit well within the theoretical framework, there are several differences, most notably in the storm inflow and in the relationship between hurricane size and intensity. Such differences indicate that while water vapor is not necessary for the maintenance of hurricane-like vortices, moist processes directly affect the structure of these storms. C1 [Mrowiec, Agnieszka A.] Columbia Univ, New York, NY USA. [Garner, Stephen T.] GFDL, Princeton, NJ USA. [Pauluis, Olivier M.] NYU, New York, NY USA. RP Mrowiec, AA (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM asmithmrowiec@giss.nasa.gov FU NSF [ATM-0545047] FX We thank Kerry Emanuel and two anonymous reviewers for comments that helped to improve this manuscript. The simulations were performed on the GFDL High Performance Computing system. AM thanks her current employers, Columbia University and NASA/GISS, for supporting her continuing work on this subject. This work was partially supported by the NSF Grant ATM-0545047. NR 36 TC 12 Z9 12 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD AUG PY 2011 VL 68 IS 8 BP 1607 EP 1619 DI 10.1175/2011JAS3639.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 803ZN UT WOS:000293622300004 ER PT J AU Stephens, G AF Stephens, Graeme TI ATMOSPHERIC SCIENCE Storminess in a warming world SO NATURE CLIMATE CHANGE LA English DT Editorial Material ID CLIMATE-CHANGE; TRACKS; SIMULATIONS; ENERGY C1 CALTECH, Jet Prop Lab, Ctr Climate Sci, Pasadena, CA 91109 USA. RP Stephens, G (reprint author), CALTECH, Jet Prop Lab, Ctr Climate Sci, M-S 183-505,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Graeme.Stephens@jpl.nasa.gov NR 12 TC 0 Z9 0 U1 0 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD AUG PY 2011 VL 1 IS 5 BP 252 EP 253 PG 2 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 806YG UT WOS:000293853300016 ER PT J AU Thompson, WT Davila, JM Cyr, OCS Reginald, NL AF Thompson, W. T. Davila, J. M. Cyr, O. C. St. Reginald, N. L. TI STEREO SECCHI COR1-A/B Intercalibration at 180A degrees Separation SO SOLAR PHYSICS LA English DT Article DE Instrumental effects; Corona AB The twin Solar Terrestrial Relations Observatory (STEREO) spacecraft reached a separation angle of 180A degrees on 6 February 2011. This provided a unique opportunity to test the intercalibration between the Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI) telescopes on both spacecraft for areas above the limb. So long as the corona is optically thin, at 180A degrees separation each spacecraft sees the same corona from opposite directions. Thus, the data should appear as mirror images of each other. We report here on the results of the comparison of the images taken by the inner coronagraph (COR1) on the STEREO-Ahead and -Behind spacecraft in the hours when the separation was close to 180A degrees. We find that the intensity values seen by the two telescopes agree with each other to a high degree of accuracy. This validates both the radiometric intercalibration between the COR1 telescopes, and the method used to remove instrumental background from the images. The relative error between COR1-A and COR1-B is found to be less than 10(-9) B/B (aS (TM)) over most of the field-of-view, growing to a few x10(-9) B/B (aS (TM)) for the brighter pixels near the edge of the occulter. The primary source of error is the background determination. We also report on the analysis of star observations which show that the absolute radiometric calibration of either COR1 telescope has not changed significantly since launch. C1 [Thompson, W. T.] NASA, Goddard Space Flight Ctr, Adnet Syst Inc, Code 671, Greenbelt, MD 20771 USA. [Reginald, N. L.] Catholic Univ Amer, NASA Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. RP Thompson, WT (reprint author), NASA, Goddard Space Flight Ctr, Adnet Syst Inc, Code 671, Greenbelt, MD 20771 USA. EM William.T.Thompson@nasa.gov RI Thompson, William/D-7376-2012 NR 10 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD AUG PY 2011 VL 272 IS 1 BP 215 EP 225 DI 10.1007/s11207-011-9815-5 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 801UB UT WOS:000293465000012 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Cannon, A Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cutini, S de Angelis, A de Palma, F Dermer, CD Silva, EDE Drell, PS Dubois, R Dumora, D Escande, L Favuzzi, C Fegan, SJ Finke, J Focke, WB Fortin, P Frailis, M Fuhrmann, L Fukazawa, Y Fukuyama, T Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Georganopoulos, M Germani, S Giebels, B Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Guiriec, S Hadasch, D Hayashida, M Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, WN Kadler, M Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Max-Moerbeck, W Mazziotta, MN McEnery, JE Mehault, J Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nishino, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pavlidou, V Pearson, TJ Pelassa, V Pepe, M Pesce-Rollins, M Pierbattista, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Readhead, A Reimer, A Reimer, O Reyes, LC Richards, JL Ritz, S Roth, M Sadrozinski, HFW Sanchez, D Sander, A Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Stawarz, L Stevenson, M Strickman, MS Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JG Thayer, JB Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Troja, E Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vilchez, N Vitale, V Waite, AP Wang, P Wehrle, AE Winer, BL Wood, KS Yang, Z Yatsu, Y Ylinen, T Zensus, JA Ziegler, M Aleksic, J Antonelli, LA Antoranz, P Backes, M Barrio, JA Gonzalez, JB Bednarek, W Berdyugin, A Berger, K Bernardini, E Biland, A Blanch, O Bock, RK Boller, A Bonnoli, G Bordas, P Tridon, DB Bosch-Ramon, V Bose, D Braun, I Bretz, T Camara, M Carmona, E Carosi, A Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Dazzi, F de Angelis, A del Pozo, ED Mendez, CD De Lotto, B De Maria, M De Sabata, F Ortega, AD Doert, M Dominguez, A Prester, DD Dorner, D Doro, M Elsaesser, D Ferenc, D Fonseca, MV Font, L Lopez, RJG Garczarczyk, M Gaug, M Giavitto, G Godinovi, N Hadasch, D Herrero, A Hildebrand, D Hohne-Monch, D Hose, J Hrupec, D Jogler, T Klepser, S Krahenbuhl, T Kranich, D Krause, J La Barbera, A Leonardo, E Lindfors, E Lombardi, S Lopez, M Lorenz, E Majumdar, P Makariev, E Maneva, G Mankuzhiyil, N Mannheim, K Maraschi, L Mariotti, M Martinez, M Mazin, D Meucci, M Miranda, JM Mirzoyan, R Miyamoto, H Moldon, J Moralejo, A Nieto, D Nilsson, K Orito, R Oya, I Paoletti, R Paredes, JM Partini, S Pasanen, M Pauss, F Pegna, RG Perez-Torres, MA Persic, M Peruzzo, J Pochon, J Prada, F Moroni, PGP Prandini, E Puchades, N Puljak, I Reichardt, T Rhode, W Ribo, M Rico, J Rissi, M Rugamer, S Saggion, A Saito, K Saito, TY Salvati, M Sanchez-Conde, M Satalecka, K Scalzotto, V Scapin, V Schultz, C Schweizer, T Shayduk, M Shore, SN Sierpowska-Bartosik, A Sillanpaa, A Sitarek, J Sobczynska, D Spanier, F Spiro, S Stamerra, A Steinke, B Storz, J Strah, N Struebig, JC Suric, T Takalo, LO Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshima, M Vankov, H Wagner, RM Weitzel, Q Zabalza, V Zandanel, F Zanin, R Villata, M Raiteri, C Aller, HD Aller, MF Chen, WP Jordan, B Koptelova, E Kurtanidze, OM Lahteenmaki, A McBreen, B Larionov, VM Lin, CS Nikolashvili, MG Reinthal, R Angelakis, E Capalbi, M Carraminana, A Carrasco, L Cassaro, P Cesarini, A Falcone, A Gurwell, MA Hovatta, T Kovalev, YA Kovalev, YY Krichbaum, TP Krimm, HA Lister, ML Moody, JW Maccaferri, G Mori, Y Nestoras, I Orlati, A Pace, C Pagani, C Pearson, R Perri, M Piner, BG Ros, E Sadun, AC Sakamoto, T Tammi, J Zook, A AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Cannon, A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe. Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cutini, S. de Angelis, A. de Palma, F. Dermer, C. D. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Escande, L. Favuzzi, C. Fegan, S. J. Finke, J. Focke, W. B. Fortin, P. Frailis, M. Fuhrmann, L. Fukazawa, Y. Fukuyama, T. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Georganopoulos, M. Germani, S. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Guiriec, S. Hadasch, D. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kadler, M. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Max-Moerbeck, W. Mazziotta, M. N. McEnery, J. E. Mehault, J. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nishino, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pavlidou, V. Pearson, T. J. Pelassa, V. Pepe, M. Pesce-Rollins, M. Pierbattista, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Readhead, A. Reimer, A. Reimer, O. Reyes, L. C. Richards, J. L. Ritz, S. Roth, M. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stawarz, L. Stevenson, M. Strickman, M. S. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. G. Thayer, J. B. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Troja, E. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Wehrle, A. E. Winer, B. L. Wood, K. S. Yang, Z. Yatsu, Y. Ylinen, T. Zensus, J. A. Ziegler, M. Aleksic, J. Antonelli, L. A. Antoranz, P. Backes, M. Barrio, J. A. Becerra Gonzalez, J. Bednarek, W. Berdyugin, A. Berger, K. Bernardini, E. Biland, A. Blanch, O. Bock, R. K. Boller, A. Bonnoli, G. Bordas, P. Tridon, D. Borla Bosch-Ramon, V. Bose, D. Braun, I. Bretz, T. Camara, M. Carmona, E. Carosi, A. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Dazzi, F. de Angelis, A. De Cea del Pozo, E. Delgado Mendez, C. De Lotto, B. De Maria, M. De Sabata, F. Diago Ortega, A. Doert, M. Dominguez, A. Prester, D. Dominis Dorner, D. Doro, M. Elsaesser, D. Ferenc, D. Fonseca, M. V. Font, L. Garcia Lopez, R. J. Garczarczyk, M. Gaug, M. Giavitto, G. Godinovi, N. Hadasch, D. Herrero, A. Hildebrand, D. Hoehne-Moench, D. Hose, J. Hrupec, D. Jogler, T. Klepser, S. Kraehenbuehl, T. Kranich, D. Krause, J. La Barbera, A. Leonardo, E. Lindfors, E. Lombardi, S. Lopez, M. Lorenz, E. Majumdar, P. Makariev, E. Maneva, G. Mankuzhiyil, N. Mannheim, K. Maraschi, L. Mariotti, M. Martinez, M. Mazin, D. Meucci, M. Miranda, J. M. Mirzoyan, R. Miyamoto, H. Moldon, J. Moralejo, A. Nieto, D. Nilsson, K. Orito, R. Oya, I. Paoletti, R. Paredes, J. M. Partini, S. Pasanen, M. Pauss, F. Pegna, R. G. Perez-Torres, M. A. Persic, M. Peruzzo, J. Pochon, J. Prada, F. Moroni, P. G. Prada Prandini, E. Puchades, N. Puljak, I. Reichardt, T. Rhode, W. Ribo, M. Rico, J. Rissi, M. Ruegamer, S. Saggion, A. Saito, K. Saito, T. Y. Salvati, M. Sanchez-Conde, M. Satalecka, K. Scalzotto, V. Scapin, V. Schultz, C. Schweizer, T. Shayduk, M. Shore, S. N. Sierpowska-Bartosik, A. Sillanpaa, A. Sitarek, J. Sobczynska, D. Spanier, F. Spiro, S. Stamerra, A. Steinke, B. Storz, J. Strah, N. Struebig, J. C. Suric, T. Takalo, L. O. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshima, M. Vankov, H. Wagner, R. M. Weitzel, Q. Zabalza, V. Zandanel, F. Zanin, R. Villata, M. Raiteri, C. Aller, H. D. Aller, M. F. Chen, W. P. Jordan, B. Koptelova, E. Kurtanidze, O. M. Lahteenmaki, A. McBreen, B. Larionov, V. M. Lin, C. S. Nikolashvili, M. G. Reinthal, R. Angelakis, E. Capalbi, M. Carraminana, A. Carrasco, L. Cassaro, P. Cesarini, A. Falcone, A. Gurwell, M. A. Hovatta, T. Kovalev, Yu A. Kovalev, Y. Y. Krichbaum, T. P. Krimm, H. A. Lister, M. L. Moody, J. W. Maccaferri, G. Mori, Y. Nestoras, I. Orlati, A. Pace, C. Pagani, C. Pearson, R. Perri, M. Piner, B. G. Ros, E. Sadun, A. C. Sakamoto, T. Tammi, J. Zook, A. CA Fermi-LAT Collaboration MAGIC Collaboration TI FERMI LARGE AREA TELESCOPE OBSERVATIONS OF MARKARIAN 421: THE MISSING PIECE OF ITS SPECTRAL ENERGY DISTRIBUTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; BL Lacertae objects: general; BL Lacertae objects: individual (Mrk 421); galaxies: active; gamma rays: general; radiation mechanisms: non-thermal ID BL-LACERTAE OBJECTS; X-RAY-SPECTRA; ACTIVE GALAXY MARKARIAN-421; TEV BLAZAR MARKARIAN-421; LOG-PARABOLIC SPECTRA; BLACK-HOLE MASSES; MULTIWAVELENGTH OBSERVATIONS; RADIO-SOURCES; CRAB-NEBULA; 3C 454.3 AB We report on the gamma-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) gamma-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Gamma = 1.78 +/- 0.02 and average photon flux F(>0.3 GeV) = (7.23 +/- 0.16) x 10(-8) ph cm(-2) s(-1). Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor similar to 3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in gamma-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site. C1 [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Shore, S. N.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.] Univ Paris Diderot, CNRS, Lab AIM, CEA IRFU,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; De Lotto, B.; De Maria, M.; De Sabata, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.; Doro, M.; Lombardi, S.; Lopez, M.; Mariotti, M.; Peruzzo, J.; Prandini, E.; Saggion, A.; Scalzotto, V.; Schultz, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.; Doro, M.; Lombardi, S.; Lopez, M.; Mariotti, M.; Peruzzo, J.; Prandini, E.; Saggion, A.; Scalzotto, V.; Schultz, C.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Bouvier, A.; Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Bouvier, A.; Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.; De Cea del Pozo, E.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Cannon, A.; Celik, Oe.; Gehrels, N.; Hays, E.; Kadler, M.; McEnery, J. E.; Thompson, D. J.; Troja, E.; Vasileiou, V.; Krimm, H. A.; Sakamoto, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, A.; McBreen, B.] Univ Coll Dublin, Dublin 4, Ireland. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.; Gasparrini, D.; Giommi, P.; Capalbi, M.; Perri, M.] ASI, Sci Data Ctr, I-00044 Rome, Italy. [Celik, Oe.; Kadler, M.; Vasileiou, V.; Krimm, H. A.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Georganopoulos, M.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Georganopoulos, M.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Conrad, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.; Dazzi, F.; Mankuzhiyil, N.; Persic, M.; Scapin, V.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.; Dazzi, F.; Mankuzhiyil, N.; Persic, M.; Scapin, V.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dermer, C. D.; Finke, J.; Johnson, W. N.; Lovellette, M. N.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Dumora, D.; Escande, L.; Lott, B.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Escande, L.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fuhrmann, L.; Zensus, J. A.; Angelakis, E.; Kovalev, Y. Y.; Krichbaum, T. P.; Nestoras, I.; Ros, E.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Nishino, S.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Fukuyama, T.; Okumura, A.; Ozaki, M.; Stawarz, L.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Kanagawa 2525210, Japan. [Funk, S.; Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Funk, S.; Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Kadler, M.] Dr Remeis Sternwarte Bamberg, D-96049 Bamberg, Germany. [Kadler, M.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Kadler, M.; Krimm, H. A.] USRA, Columbia, MD 21044 USA. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Max-Moerbeck, W.; Pavlidou, V.; Pearson, T. J.; Readhead, A.; Richards, J. L.; Stevenson, M.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Paneque, D.; Bock, R. K.; Tridon, D. Borla; Carmona, E.; Colin, P.; Hose, J.; Jogler, T.; Krause, J.; Lorenz, E.; Mirzoyan, R.; Miyamoto, H.; Orito, R.; Saito, K.; Saito, T. Y.; Schweizer, T.; Shayduk, M.; Sitarek, J.; Steinke, B.; Teshima, M.; Wagner, R. M.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.; Rico, J.] ICREA, Barcelona, Spain. [Tramacere, A.; Vianello, G.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wehrle, A. E.] Space Sci Inst, Boulder, CO 80301 USA. [Yatsu, Y.; Mori, Y.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Aleksic, J.; Blanch, O.; Cortina, J.; Giavitto, G.; Klepser, S.; Martinez, M.; Mazin, D.; Moralejo, A.; Puchades, N.; Reichardt, T.; Rico, J.; Tescaro, D.; Zanin, R.] Univ Autonoma Barcelona, IFAE, E-08193 Bellaterra, Barcelona, Spain. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; La Barbera, A.; Salvati, M.; Spiro, S.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Leonardo, E.; Meucci, M.; Miranda, J. M.; Paoletti, R.; Partini, S.; Pegna, R. G.; Moroni, P. G. Prada; Stamerra, A.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; Leonardo, E.; Meucci, M.; Miranda, J. M.; Paoletti, R.; Partini, S.; Pegna, R. G.; Moroni, P. G. Prada; Stamerra, A.] INFN Pisa, I-53100 Siena, Italy. [Backes, M.; Doert, M.; Rhode, W.; Strah, N.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Barrio, J. A.; Bose, D.; Camara, M.; Contreras, J. L.; Fonseca, M. V.; Nieto, D.; Oya, I.] Univ Complutense, E-28040 Madrid, Spain. [Becerra Gonzalez, J.; Colombo, E.; Delgado Mendez, C.; Diago Ortega, A.; Garcia Lopez, R. J.; Garczarczyk, M.; Gaug, M.; Herrero, A.; Pochon, J.; Sanchez-Conde, M.] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Tenerife, Spain. [Becerra Gonzalez, J.; Berger, K.; Diago Ortega, A.; Garcia Lopez, R. J.; Herrero, A.; Sanchez-Conde, M.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Bednarek, W.; Sierpowska-Bartosik, A.; Sitarek, J.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Berdyugin, A.; Lindfors, E.; Pasanen, M.; Sillanpaa, A.; Takalo, L. O.; Reinthal, R.] Univ Turku, Tuorla Observ, FI-21500 Piikkio, Finland. [Bernardini, E.; Majumdar, P.; Satalecka, K.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Biland, A.; Boller, A.; Braun, I.; Dorner, D.; Hildebrand, D.; Kraehenbuehl, T.; Kranich, D.; Lorenz, E.; Pauss, F.; Rissi, M.; Weitzel, Q.] ETH, CH-8093 Zurich, Switzerland. [Bordas, P.; Bosch-Ramon, V.; Moldon, J.; Paredes, J. M.; Ribo, M.; Zabalza, V.] Univ Barcelona ICC IEEC, E-08028 Barcelona, Spain. [Bretz, T.; Elsaesser, D.; Hoehne-Moench, D.; Mannheim, K.; Ruegamer, S.; Spanier, F.; Storz, J.; Struebig, J. C.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Delgado Mendez, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Dominguez, A.; Perez-Torres, M. A.; Prada, F.; Zandanel, F.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Prester, D. Dominis; Ferenc, D.; Godinovi, N.; Hrupec, D.; Puljak, I.; Suric, T.; Terzic, T.] Univ Rijeka, Inst R Boskovic, Croatian MAGIC Consortium, HR-10000 Zagreb, Croatia. [Prester, D. Dominis; Ferenc, D.; Godinovi, N.; Hrupec, D.; Puljak, I.; Suric, T.; Terzic, T.] Univ Split, HR-10000 Zagreb, Croatia. [Font, L.] Univ Autonoma Barcelona, E-08193 Bellaterra, Spain. [Makariev, E.; Maneva, G.; Temnikov, P.; Vankov, H.] Inst Nucl Energy Res, BG-1784 Sofia, Bulgaria. [Maraschi, L.; Tavecchio, F.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. [Nilsson, K.] Univ Turku, Finnish Ctr Astron ESO FINCA, FI-21500 Piikiio, Finland. [Persic, M.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Shore, S. N.] Univ Pisa, Dipartimento Fis Enrico Fermi, I-56127 Pisa, Italy. [Villata, M.; Raiteri, C.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, TO, Italy. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Chen, W. P.; Koptelova, E.; Lin, C. S.] Natl Cent Univ, Grad Inst Astron, Jhongli 32054, Taiwan. [Jordan, B.] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 2, Ireland. [Lahteenmaki, A.; Hovatta, T.; Tammi, J.] Abastumani Observ, GE-0301 Abastumani, Rep of Georgia. [Larionov, V. M.] Isaac Newton Inst Chile, St Petersburg Branch, St Petersburg, Russia. [Larionov, V. M.] Pulkovo Observ, St Petersburg 196140, Russia. [Larionov, V. M.] St Petersburg State Univ, Astron Inst, St Petersburg, Russia. [Carraminana, A.; Carrasco, L.] Inst Nacl Astrofis Opt & Electr, Puebla 72840, Mexico. [Cassaro, P.] INAF Ist Radioastron, Sez Noto, I-96017 Noto, SR, Italy. [Cesarini, A.] Natl Univ Ireland Galway, Dept Phys, Galway, Ireland. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gurwell, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kovalev, Yu A.; Kovalev, Y. Y.] Lebedev Phys Inst, Ctr Astro Space, Moscow 117997, Russia. [Lister, M. L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Moody, J. W.; Pace, C.; Pearson, R.] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. [Maccaferri, G.; Orlati, A.] INAF Ist Radioastron, Stn Radioastron Med, I-40059 Bologna, Italy. [Pagani, C.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Piner, B. G.] Whittier Coll, Dept Phys & Astron, Whittier, CA USA. [Ros, E.] Univ Valencia, Valencia 46010, Spain. [Sadun, A. C.] Univ Colorado, Dept Phys, Denver, CO 80220 USA. [Zook, A.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA. RP Abdo, AA (reprint author), Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. EM justin.finke@nrl.navy.mil; dpaneque@mppmu.mpg.de; anita.reimer@uibk.ac.at RI Fonseca Gonzalez, Maria Victoria/I-2004-2015; Font, Lluis/L-4197-2014; Moskalenko, Igor/A-1301-2007; Contreras Gonzalez, Jose Luis/K-7255-2014; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Maneva, Galina/L-7120-2016; Backes, Michael/N-5126-2016; Torres, Diego/O-9422-2016; Temnikov, Petar/L-6999-2016; Orlando, E/R-5594-2016; Barrio, Juan/L-3227-2014; Cortina, Juan/C-2783-2017; Tosti, Gino/E-9976-2013; Larionov, Valeri/H-1349-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Lahteenmaki, Anne/L-5987-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Kurtanidze, Omar/J-6237-2014; Rico, Javier/K-8004-2014; Fernandez, Ester/K-9734-2014; Lopez Moya, Marcos/L-2304-2014; GAug, Markus/L-2340-2014; Moralejo Olaizola, Abelardo/M-2916-2014; Ribo, Marc/B-3579-2015; Morselli, Aldo/G-6769-2011; Prada Moroni, Pier Giorgio/G-5565-2011; Braun, Isabel/C-9373-2012; Reimer, Olaf/A-3117-2013; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; Mannheim, Karl/F-6705-2012; lubrano, pasquale/F-7269-2012; Kuss, Michael/H-8959-2012; Doro, Michele/F-9458-2012; giglietto, nicola/I-8951-2012; Kovalev, Yuri/J-5671-2013; Funk, Stefan/B-7629-2015; Pavlidou, Vasiliki/C-2944-2011; Antoranz, Pedro/H-5095-2015; Delgado, Carlos/K-7587-2014; Nieto, Daniel/J-7250-2015; Kovalev, Yuri/N-1053-2015; Pearson, Timothy/N-2376-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Miranda, Jose Miguel/F-2913-2013 OI Becerra Gonzalez, Josefa/0000-0002-6729-9022; Dominguez, Alberto/0000-0002-3433-4610; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Ribo, Marc/0000-0002-9931-4557; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Perri, Matteo/0000-0003-3613-4409; Angelakis, Emmanouil/0000-0001-7327-5441; Cesarini, Andrea/0000-0002-8611-8610; leonardo, elvira/0000-0003-0271-7673; Villata, Massimo/0000-0003-1743-6946; Fonseca Gonzalez, Maria Victoria/0000-0003-2235-0725; Caraveo, Patrizia/0000-0003-2478-8018; De Lotto, Barbara/0000-0003-3624-4480; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Persic, Massimo/0000-0003-1853-4900; Spanier, Felix/0000-0001-6802-4744; Raiteri, Claudia Maria/0000-0003-1784-2784; Ros, Eduardo/0000-0001-9503-4892; Cassaro, Pietro/0000-0001-5139-9662; Orlati, Andrea/0000-0001-8737-255X; Prada Moroni, Pier Giorgio/0000-0001-9712-9916; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Font, Lluis/0000-0003-2109-5961; Moskalenko, Igor/0000-0001-6141-458X; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Mazziotta, Mario /0000-0001-9325-4672; Backes, Michael/0000-0002-9326-6400; Torres, Diego/0000-0002-1522-9065; Temnikov, Petar/0000-0002-9559-3384; Barrio, Juan/0000-0002-0965-0259; Cortina, Juan/0000-0003-4576-0452; Larionov, Valeri/0000-0002-4640-4356; Rico, Javier/0000-0003-4137-1134; Lopez Moya, Marcos/0000-0002-8791-7908; GAug, Markus/0000-0001-8442-7877; Moralejo Olaizola, Abelardo/0000-0002-1344-9080; Morselli, Aldo/0000-0002-7704-9553; Braun, Isabel/0000-0002-9389-0502; Reimer, Olaf/0000-0001-6953-1385; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Doro, Michele/0000-0001-9104-3214; giglietto, nicola/0000-0002-9021-2888; Bonnoli, Giacomo/0000-0003-2464-9077; Stamerra, Antonio/0000-0002-9430-5264; Prandini, Elisa/0000-0003-4502-9053; Kadler, Matthias/0000-0001-5606-6154; Covino, Stefano/0000-0001-9078-5507; Bordas, Pol/0000-0002-0266-8536; Cutini, Sara/0000-0002-1271-2924; Paredes, Josep M./0000-0002-1566-9044; Oya, Igor/0000-0002-3881-9324; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Kovalev, Yuri/0000-0001-9303-3263; Funk, Stefan/0000-0002-2012-0080; Pavlidou, Vasiliki/0000-0002-0870-1368; Antoranz, Pedro/0000-0002-3015-3601; Delgado, Carlos/0000-0002-7014-4101; Nieto, Daniel/0000-0003-3343-0755; Pearson, Timothy/0000-0001-5213-6231; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Miranda, Jose Miguel/0000-0002-1472-9690 FU Academy of Finland [212656, 210338]; Russian RFBR foundation [09-02-00092]; RFBR [08-02-00545]; NASA [NNX08AW31G]; NSF [AST-0808050]; Smithsonian Institution; Academia Sinica; Georgian National Science Foundation [GNSF/ST07/4-180] FX We acknowledge the use of public data from the Swift and RXTE data archives. The Metsahovi team acknowledges the support from the Academy of Finland for the observing projects (numbers 212656, 210338, among others). This research has made use of data obtained from the National Radio Astronomy Observatory's Very Long Baseline Array (VLBA), projects BK150, BP143, and BL149 (MOJAVE). The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The St. Petersburg University team acknowledges support from the Russian RFBR foundation via grant 09-02-00092. AZT-24 observations are made within an agreement between Pulkovo, Rome and Teramo observatories. This research is partly based on observations with the 100 m telescope of the MPIfR (Max-Planck-Institut fur Radioastronomie) at Effelsberg, as well as with the Medicina and Noto telescopes operated by INAF-Istituto di Radioastronomia. RATAN-600 observations were supported in part by the RFBR grant 08-02-00545 and the OVRO 40 m program was funded in part by NASA (NNX08AW31G) and the NSF (AST-0808050). The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. M. Villata organized the optical-to-radio observations by GASP-WEBT as the president of the collaboration. The Abastumani Observatory team acknowledges financial support by the Georgian National Science Foundation through grant GNSF/ST07/4-180. NR 102 TC 105 Z9 106 U1 1 U2 28 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 131 DI 10.1088/0004-637X/736/2/131 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400056 ER PT J AU An, D Ramirez, SV Sellgren, K Arendt, RG Boogert, ACA Robitaille, TP Schultheis, M Cotera, AS Smith, HA Stolovy, SR AF An, Deokkeun Ramirez, Solange V. Sellgren, Kris Arendt, Richard G. Boogert, A. C. Adwin Robitaille, Thomas P. Schultheis, Mathias Cotera, Angela S. Smith, Howard A. Stolovy, Susan R. TI MASSIVE YOUNG STELLAR OBJECTS IN THE GALACTIC CENTER. I. SPECTROSCOPIC IDENTIFICATION FROM SPITZER INFRARED SPECTROGRAPH OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: nucleus; infrared: ISM; ISM: molecules; stars: formation ID 2-DIMENSIONAL RADIATIVE-TRANSFER; RECOMBINATION LINE OBSERVATIONS; SPECTRAL ENERGY-DISTRIBUTIONS; DIFFUSE INTERSTELLAR-MEDIUM; CENTER MOLECULAR CLOUDS; COMPACT RADIO-SOURCES; MU-M; CARBON-DIOXIDE; STAR-FORMATION; MILKY-WAY AB We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic center (GC). Our sample of 107 YSO candidates was selected based on Infrared Array Camera (IRAC) colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone, which spans the central similar to 300 pc region of the Milky Way. We obtained IRS spectra over 5-35 mu m using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 mu m shoulder on the absorption profile of 15 mu m CO2 ice, suggestive of CO2 ice mixed with CH3OH ice on grains. This 15.4 mu m shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that nine massive YSOs also reveal molecular gas-phase absorption from CO2, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8-23 M-circle dot, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of similar to 0.07 M-circle dot yr(-1) at the GC. C1 [An, Deokkeun] Ewha Womans Univ, Dept Sci Educ, Seoul 120750, South Korea. [Ramirez, Solange V.; Boogert, A. C. Adwin] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Sellgren, Kris] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Arendt, Richard G.] NASA, Goddard Space Flight Ctr, CRESST, UMBC,GSFC, Greenbelt, MD 20771 USA. [Robitaille, Thomas P.; Smith, Howard A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Schultheis, Mathias] Observ Besancon, F-25000 Besancon, France. [Cotera, Angela S.] SETI Inst, Mountain View, CA 94043 USA. [Stolovy, Susan R.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RP An, D (reprint author), Ewha Womans Univ, Dept Sci Educ, Seoul 120750, South Korea. EM deokkeun@ewha.ac.kr OI Arendt, Richard/0000-0001-8403-8548; Robitaille, Thomas/0000-0002-8642-1329 FU NASA; Ministry of Education, Science, and Technology [2010-0025122] FX We thank the referee for careful and detailed comments. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (No. 2010-0025122). NR 80 TC 21 Z9 21 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 133 DI 10.1088/0004-637X/736/2/133 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400058 ER PT J AU Cotton, WD Ragland, S Danchi, WC AF Cotton, W. D. Ragland, S. Danchi, W. C. TI POLARIZED EMISSION FROM SiO MASERS IN IK Tauri SO ASTROPHYSICAL JOURNAL LA English DT Article DE radio lines: stars; stars: AGB and post-AGB; stars: atmospheres ID GIANT BRANCH STARS; DUST SHELLS; INTERFEROMETER; TELESCOPE; RADIATION AB We present high spatial and frequency resolution images of the SiO masers in Stokes I, Q, U, and V around the asymptotic giant branch star IK Tau and describe and exploit a new technique for making accurate calibration of Stokes V. This technique also resulted in improved images of Stokes I. An evaluation of the results suggests that the circular polarization is neither the result of Zeeman splitting nor an alternate propagation effect. The pattern of circular and linear polarization across the maser lines shows no tendency toward that expected for simple Zeeman splitting. The fractional circular polarization greatly exceeds that expected from the alternate mechanism. The overall shape of the masing ring has changed from the elliptical form repeatedly observed over the last decade and a half. C1 [Cotton, W. D.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Ragland, S.] WM Keck Observ, Kamuela, HI 96743 USA. [Danchi, W. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Cotton, WD (reprint author), Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. EM bcotton@nrao.edu NR 18 TC 5 Z9 5 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 96 DI 10.1088/0004-637X/736/2/96 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400021 ER PT J AU Gal-Yam, A Kasliwal, MM Arcavi, I Green, Y Yaron, O Ben-Ami, S Xu, D Sternberg, A Quimby, RM Kulkarni, SR Ofek, EO Walters, R Nugent, PE Poznanski, D Bloom, JS Cenko, SB Filippenko, AV Li, WD Silverman, JM Walker, ES Sullivan, M Maguire, K Howell, DA Mazzali, PA Frail, DA Bersier, D James, PA Akerlof, CW Yuan, F Law, N Fox, DB Gehrels, N AF Gal-Yam, Avishay Kasliwal, Mansi M. Arcavi, Iair Green, Yoav Yaron, Ofer Ben-Ami, Sagi Xu, Dong Sternberg, Assaf Quimby, Robert M. Kulkarni, Shrinivas R. Ofek, Eran O. Walters, Richard Nugent, Peter E. Poznanski, Dovi Bloom, Joshua S. Cenko, S. Bradley Filippenko, Alexei V. Li, Weidong Silverman, Jeffrey M. Walker, Emma S. Sullivan, Mark Maguire, K. Howell, D. Andrew Mazzali, Paolo A. Frail, Dale A. Bersier, David James, Phil A. Akerlof, C. W. Yuan, Fang Law, Nicholas Fox, Derek B. Gehrels, Neil TI REAL-TIME DETECTION AND RAPID MULTIWAVELENGTH FOLLOW-UP OBSERVATIONS OF A HIGHLY SUBLUMINOUS TYPE II-P SUPERNOVA FROM THE PALOMAR TRANSIENT FACTORY SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general; supernovae: individual (PTF10vdl) ID GAMMA-RAY BURSTS; SHOCK BREAKOUT; LIGHT CURVES; SN 2005CS; IA SUPERNOVAE; TELESCOPE; EVOLUTION; PHOTOMETRY; COLLAPSE; PLATEAU AB The Palomar Transient Factory (PTF) is an optical wide-field variability survey carried out using a camera with a 7.8 deg(2) field of view mounted on the 48 inch Oschin Schmidt telescope at Palomar Observatory. One of the key goals of this survey is to conduct high-cadence monitoring of the sky in order to detect optical transient sources shortly after they occur. Here, we describe the real-time capabilities of the PTF and our related rapid multiwavelength follow-up programs, extending from the radio to the. gamma-ray bands. We present as a case study observations of the optical transient PTF10vdl (SN 2010id), revealed to be a very young core-collapse (Type II-P) supernova having a remarkably low luminosity. Our results demonstrate that the PTF now provides for optical transients the real-time discovery and rapid-response follow-up capabilities previously reserved only for high-energy transients like gamma-ray bursts. C1 [Gal-Yam, Avishay; Arcavi, Iair; Green, Yoav; Yaron, Ofer; Ben-Ami, Sagi; Xu, Dong; Sternberg, Assaf] Weizmann Inst Sci, Fac Phys, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Kasliwal, Mansi M.; Quimby, Robert M.; Kulkarni, Shrinivas R.; Ofek, Eran O.; Walters, Richard] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Nugent, Peter E.; Poznanski, Dovi] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Bloom, Joshua S.; Cenko, S. Bradley; Filippenko, Alexei V.; Li, Weidong; Silverman, Jeffrey M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Walker, Emma S.; Mazzali, Paolo A.] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Sullivan, Mark; Maguire, K.] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England. [Howell, D. Andrew] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Mazzali, Paolo A.] INAF Osservatorio Astron, I-35122 Padua, Italy. [Mazzali, Paolo A.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Frail, Dale A.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Bersier, David; James, Phil A.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Akerlof, C. W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Yuan, Fang] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Law, Nicholas] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Fox, Derek B.] Penn State Univ, Eberly Coll Sci, University Pk, PA 16802 USA. [Gehrels, Neil] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Gal-Yam, A (reprint author), Weizmann Inst Sci, Fac Phys, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. EM avishay.gal-yam@weizmann.ac.il RI Gehrels, Neil/D-2971-2012; Green, Yoav/L-5874-2015; OI Green, Yoav/0000-0002-0809-6575; Yuan, Fang/0000-0001-8315-4176; Sullivan, Mark/0000-0001-9053-4820; James, Philip/0000-0003-4131-5183; Gal-Yam, Avishay/0000-0002-3653-5598 FU Israeli Science Foundation (ISF); Binational Science Foundation; Weizmann-UK; Weizmann-MINERVA; EU/FP7 Marie Curie IRG Fellowship; US National Science Foundation (NSF) [AST-0908886]; TABASGO Foundation; Gary and Cynthia Bengier; Richard and Rhoda Goldman Fund; MPIA; German Israeli Science Foundation; ISF; Sun Microsystems, Inc.; Hewlett-Packard Company, AutoScope Corporation, Lick Observatory; NSF; University of California; Sylvia & Jim Katzman Foundation; U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy Scientific [DE-FG02-06ER06-04]; W. M. Keck Foundation FX The Palomar Transient Factory project is a scientific collaboration between the California Institute of Technology, Columbia University, Las Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, the University of Oxford, and the Weizmann Institute of Science. Weizmann Institute participation in PTF is supported in part by grants from the Israeli Science Foundation (ISF) to A.G.-Y. Joint Weizmann-Caltech activity is supported by a grant from the Binational Science Foundation to A.G.-Y. and S.R.K. Support for Weizmann-UK collaborative work is provided by a Weizmann-UK "making connections" grant to A.G.-Y. and M.S. Joint activity by A.G.-Y. and P.A.M. is supported by a Weizmann-MINERVA grant. A.G.-Y. further acknowledges support from an EU/FP7 Marie Curie IRG Fellowship. E.O.O. and D.P. are grateful to NASA for Einstein Fellowships. The work of A.V.F.'s group at UC Berkeley is funded by US National Science Foundation (NSF) grant AST-0908886, the TABASGO Foundation, Gary and Cynthia Bengier, and the Richard and Rhoda Goldman Fund.; LAIWO, a wide-angle camera operating on the 1 m telescope at the Wise Observatory, Israel, was built at the Max Planck Institute for Astronomy (MPIA) in Heidelberg, Germany, with financial support from the MPIA, grants from the German Israeli Science Foundation for Research and Development, and the ISF. KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia & Jim Katzman Foundation, and the TABASGO Foundation. The National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, provided staff, computational resources, and data storage for this project. P.E.N. acknowledges support from the U.S. Department of Energy Scientific Discovery through Advanced Computing program under contract DE-FG02-06ER06-04.; Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. We thank the staffs of the many observatories at which data were obtained for their excellent assistance. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 48 TC 38 Z9 38 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 159 DI 10.1088/0004-637X/736/2/159 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400084 ER PT J AU Gavriil, FP Dib, R Kaspi, VM AF Gavriil, Fotis P. Dib, Rim Kaspi, Victoria M. TI THE 2006-2007 ACTIVE PHASE OF ANOMALOUS X-RAY PULSAR 4U 0142+61: RADIATIVE AND TIMING CHANGES, BURSTS, AND BURST SPECTRAL FEATURES SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (4U 0142+61); stars: neutron; X-rays: bursts; X-rays: stars ID SOFT GAMMA-REPEATERS; MAGNETIZED NEUTRON-STARS; LONG-TERM VARIABILITY; CHANDRA OBSERVATIONS; TRANSIENT MAGNETAR; 1E 1048.1-5937; XTE J1810-197; 2002 OUTBURST; SGR 1900+14; SPIN-DOWN AB After at least six years of quiescence, anomalous X-ray pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the first seen from this AXP in > 11 yr of Rossi X-Ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from (0.4-1.8) x 10(3) s. The first five burst spectra are well modeled by blackbodies, with temperatures kT similar to 2-9 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus two emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase, the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9 +/- 0.4) x 10(-7) Hz, which recovered with a decay time of 17 +/- 2 days by more than the initial jump, implying a net spin-down of the pulsar. Within the framework of the magnetar model, the net spin-down of the star could be explained by regions of the superfluid that rotate slower than the rest. The bursts, flux enhancements, and pulse morphology changes can be explained as arising from crustal deformations due to stresses imposed by the highly twisted internal magnetic field. However, unlike other AXP outbursts, we cannot account for a major twist being implanted in the magnetosphere. C1 [Gavriil, Fotis P.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Gavriil, Fotis P.] Univ Maryland Baltimore Cty, Ctr Res & Explorat Space Sci & Technol, Baltimore, MD 21250 USA. [Dib, Rim; Kaspi, Victoria M.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. RP Gavriil, FP (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 662, Greenbelt, MD 20771 USA. FU NSERC; Canadian Institute for Advanced Research; Le Fonds Quebecois de la Recherche sur la Nature et les Technologies; Canada Research Chairs program; Lorne Trottier Chair in Observational Astrophysics FX We thank P. M. Woods and A. M. Beloborodov for useful discussions. This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center. This work has been supported by an NSERC Discovery Grant, the Canadian Institute for Advanced Research, and Le Fonds Quebecois de la Recherche sur la Nature et les Technologies, by the Canada Research Chairs program, and by the Lorne Trottier Chair in Observational Astrophysics. NR 55 TC 35 Z9 35 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 138 DI 10.1088/0004-637X/736/2/138 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400063 ER PT J AU Janson, M Bonavita, M Klahr, H Lafreniere, D Jayawardhana, R Zinnecker, H AF Janson, Markus Bonavita, Mariangela Klahr, Hubert Lafreniere, David Jayawardhana, Ray Zinnecker, Hans TI HIGH-CONTRAST IMAGING SEARCH FOR PLANETS AND BROWN DWARFS AROUND THE MOST MASSIVE STARS IN THE SOLAR NEIGHBORHOOD SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; planetary systems; stars: massive ID EXTRASOLAR GIANT PLANETS; HR 8799; GRAVITATIONAL-INSTABILITY; SUBSTELLAR COMPANION; EVOLUTIONARY MODELS; DISK INSTABILITY; EPSILON-ERIDANI; BETA-PICTORIS; BINARY STARS; SYSTEM AB There has been a long-standing discussion in the literature as to whether core accretion or disk instability is the dominant mode of planet formation. Over the last decade, several lines of evidence have been presented showing that core accretion is most likely the dominant mechanism for the close-in population of planets probed by radial velocity and transits. However, this does not by itself prove that core accretion is the dominant mode for the total planet population, since disk instability might conceivably produce and retain large numbers of planets in the far-out regions of the disk. If this is a relevant scenario, then the outer massive disks of B-stars should be among the best places for massive planets and brown dwarfs to form and reside. In this study, we present high-contrast imaging of 18 nearby massive stars of which 15 are in the B2-A0 spectral-type range and provide excellent sensitivity to wide companions. By comparing our sensitivities to model predictions of disk instability based on physical criteria for fragmentation and cooling, and using Monte Carlo simulations for orbital distributions, we find that similar to 85% of such companions should have been detected in our images on average. Given this high degree of completeness, stringent statistical limits can be set from the null-detection result, even with the limited sample size. We find that < 30% of massive stars form and retain disk instability planets, brown dwarfs, and very low mass stars of < 100 M-jup within 300 AU, at 99% confidence. These results, combined with previous findings in the literature, lead to the conclusion that core accretion is likely the dominant mode of planet formation. C1 [Janson, Markus; Bonavita, Mariangela; Jayawardhana, Ray] Univ Toronto, Dept Astron, Toronto, ON, Canada. [Klahr, Hubert] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Lafreniere, David] Univ Montreal, Dept Phys, Montreal, ON, Canada. [Zinnecker, Hans] Astrophys Inst Potsdam, Potsdam, Germany. [Zinnecker, Hans] NASA Ames, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. RP Janson, M (reprint author), Univ Toronto, Dept Astron, Toronto, ON, Canada. EM janson@astro.utoronto.ca OI Lafreniere, David/0000-0002-6780-4252 FU Reinhardt; NSERC FX The authors thank Jonathan Fortney for providing thermal evolution tracks. We thank Ewan Cameron for useful comments on binomial statistics. We also thank the staff at the Gemini, Keck, and Subaru telescopes for their help in performing these observations. The Gemini telescope is operated by the Association of Universities for Research in Astronomy, under a cooperative agreement with the NSF on behalf of the Gemini partnership. The Keck observatory is operated by the California Institute of Technology, the University of California and the National Aeronautics and Space Administration, and was made possible by a generous donation by the W. M. Keck foundation. The Keck time was allocated by NOAO. The Subaru telescope is operated by the National Astronomical Observatory of Japan. We acknowledge the cultural significance that the summit of Mauna Kea has to the indigenous Hawaiian community. M. J. is funded by the Reinhardt fellowship. R. J.' s research is supported by NSERC grants. NR 89 TC 44 Z9 44 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 89 DI 10.1088/0004-637X/736/2/89 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400014 ER PT J AU Kahler, SW Haggerty, DK Richardson, IG AF Kahler, S. W. Haggerty, D. K. Richardson, I. G. TI MAGNETIC FIELD-LINE LENGTHS IN INTERPLANETARY CORONAL MASS EJECTIONS INFERRED FROM ENERGETIC ELECTRON EVENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; interplanetary medium; Sun: coronal mass ejections (CMEs); Sun: particle emission ID NEAR-RELATIVISTIC ELECTRONS; SOLAR-WIND; RADIO-BURSTS; FLUX ROPES; 13 CME; CLOUDS; WAVE; ACCELERATION; DIMMINGS; FLARES AB About one quarter of the observed interplanetary coronal mass ejections (ICMEs) are characterized by enhanced magnetic fields that smoothly rotate in direction over timescales of about 10-50 hr. These ICMEs have the appearance of magnetic flux ropes and are known as "magnetic clouds" (MCs). The total lengths of MC field lines can be determined using solar energetic particles of known speeds when the solar release times and the 1 AU onset times of the particles are known. A recent examination of about 30 near-relativistic (NR) electron events in and near 8 MCs showed no obvious indication that the field-line lengths were longest near the MC boundaries and shortest at the MC axes or outside the MCs, contrary to the expectations for a flux rope. Here we use the impulsive beamed NR electron events observed with the Electron Proton and Alpha Monitor instrument on the Advanced Composition Explorer spacecraft and type III radio bursts observed on the Wind spacecraft to determine the field-line lengths inside ICMEs included in the catalog of Richardson & Cane. In particular, we extend this technique to ICMEs that are not MCs and compare the field-line lengths inside MCs and non-MC ICMEs with those in the ambient solar wind outside the ICMEs. No significant differences of field-line lengths are found among MCs, ICMEs, and the ambient solar wind. The estimated number of ICME field-line turns is generally smaller than those deduced for flux-rope model fits to MCs. We also find cases in which the electron injections occur in solar active regions (ARs) distant from the source ARs of the ICMEs, supporting CME models that require extensive coronal magnetic reconnection with surrounding fields. The field-line lengths are found to be statistically longer for the NR electron events classified as ramps and interpreted as shock injections somewhat delayed from the type III bursts. The path lengths of the remaining spike and pulse electron events are compared with model calculations of solar wind field-line lengths resulting from turbulence and found to be in good agreement. C1 [Kahler, S. W.] USAF, Res Lab, RVBXS, Hanscom Afb, MA 01731 USA. [Haggerty, D. K.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Richardson, I. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Richardson, I. G.] CRESST, College Pk, MD 20742 USA. [Richardson, I. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Kahler, SW (reprint author), USAF, Res Lab, RVBXS, 29 Randolph Rd, Hanscom Afb, MA 01731 USA. EM AFRL.RVB.PA@hanscom.af.mil OI Richardson, Ian/0000-0002-3855-3634 NR 74 TC 18 Z9 18 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 106 DI 10.1088/0004-637X/736/2/106 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400031 ER PT J AU Mahmud, NI Crockett, CJ Johns-Krull, CM Prato, L Hartigan, PM Jaffe, DT Beichman, CA AF Mahmud, Naved I. Crockett, Christopher J. Johns-Krull, Christopher M. Prato, L. Hartigan, Patrick M. Jaffe, Daniel T. Beichman, Charles A. TI STARSPOT-INDUCED OPTICAL AND INFRARED RADIAL VELOCITY VARIABILITY IN T TAURI STAR HUBBLE I 4 SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: activity; stars: individual (Hubble I 4); starspots; stars: pre-main sequence; stars: variables:T Tauri, Herbig Ae/Be; techniques: radial velocities ID TIME-SERIES ANALYSIS; LOW-MASS STARS; PLANET SEARCH; COOL STARS; MAGNETOSPHERIC ACCRETION; MAGNETIC ACTIVITY; STELLAR ACTIVITY; 51 PEGASI; PRECISION; JUPITER AB We report optical (similar to 6150 angstrom) and K-band (2.3 mu m) radial velocities obtained over two years for the pre-main-sequence weak-lined T Tauri star Hubble I 4. We detect periodic and near-sinusoidal radial velocity variations at both wavelengths, with a semi-amplitude of 1395 +/- 94 m s(-1) in the optical and 365 +/- 80 m s(-1) in the infrared. The lower velocity amplitude at the longer wavelength, combined with bisector analysis and spot modeling, indicates that there are large, cool spots on the stellar surface that are causing the radial velocity modulation. The radial velocities maintain phase coherence over hundreds of days suggesting that the starspots are long-lived. This is one of the first active stars where the spot-induced velocity modulation has been resolved in the infrared. C1 [Mahmud, Naved I.; Johns-Krull, Christopher M.; Hartigan, Patrick M.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Crockett, Christopher J.; Prato, L.] Lowell Observ, Flagstaff, AZ 86001 USA. [Crockett, Christopher J.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Jaffe, Daniel T.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Beichman, Charles A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Beichman, Charles A.] CALTECH, NASA Exoplanet Sci Inst NExScI, Pasadena, CA 91125 USA. RP Mahmud, NI (reprint author), Rice Univ, Dept Phys & Astron, 6100 Main St,MS 108, Houston, TX 77005 USA. EM naved@rice.edu; crockett@lowell.edu; cmj@rice.edu; lprato@lowell.edu; hartigan@rice.edu; dtj@astro.as.utexas.edu; chas@pop.jpl.nasa.gov FU University of Hawaii [NNX-08AE38A]; National Aeronautics and Space Administration, Science Mission Directorate; NASA [05-SSO05-86, 07-SSO07-86]; SIM Young Planets Key Project FX Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NNX-08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program.; This work was partially supported by NASA Origins Grants 05-SSO05-86 and 07-SSO07-86; we also acknowledge the SIM Young Planets Key Project for research support. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and NASA's Astrophysics Data System. The authors wish to thank Wei Chen, Wilson Cauley, and Jennifer Blake-Mahmud for observing assistance at McDonald Observatory. We recognize the significant cultural role that Mauna Kea plays in the Hawaiian community and are grateful for the opportunity to observe there. NR 54 TC 17 Z9 17 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 123 DI 10.1088/0004-637X/736/2/123 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400048 ER PT J AU Mainzer, A Grav, T Masiero, J Bauer, J Wright, E Cutri, RM McMillan, RS Cohen, M Ressler, M Eisenhardt, P AF Mainzer, A. Grav, T. Masiero, J. Bauer, J. Wright, E. Cutri, R. M. McMillan, R. S. Cohen, M. Ressler, M. Eisenhardt, P. TI THERMAL MODEL CALIBRATION FOR MINOR PLANETS OBSERVED WITH WIDE-FIELD INFRARED SURVEY EXPLORER/NEOWISE SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; minor planets, asteroids: general; surveys ID NEAR-EARTH ASTEROIDS; SPECTRAL IRRADIANCE CALIBRATION; PHOTOMETRIC SURVEY; RADAR OBSERVATIONS; OBJECT SURVEY; SATELLITES; ARECIBO; BINARY; IMAGES AB With the Wide-field Infrared Survey Explorer (WISE), we have observed over 157,000 minor planets. Included in these are a number of near-Earth objects, main-belt asteroids, and irregular satellites which have well measured physical properties (via radar studies and in situ imaging) such as diameters. We have used these objects to validate models of thermal emission and reflected sunlight using the WISE measurements, as well as the color corrections derived in Wright et al. for the four WISE bandpasses as a function of effective temperature. We have used 50 objects with diameters measured by radar or in situ imaging to characterize the systematic errors implicit in using the WISE data with a faceted spherical near-Earth asteroid thermal model (NEATM) to compute diameters and albedos. By using the previously measured diameters and H magnitudes with a spherical NEATM model, we compute the predicted fluxes (after applying the color corrections given in Wright et al.) in each of the four WISE bands and compare them to the measured magnitudes. We find minimum systematic flux errors of 5%-10%, and hence minimum relative diameter and albedo errors of similar to 10% and similar to 20%, respectively. Additionally, visible albedos for the objects are computed and compared to the albedos at 3.4 mu m and 4.6 mu m, which contain a combination of reflected sunlight and thermal emission for most minor planets observed by WISE. Finally, we derive a linear relationship between subsolar temperature and effective temperature, which allows the color corrections given in Wright et al. to be used for minor planets by computing only subsolar temperature instead of a faceted thermophysical model. The thermal models derived in this paper are not intended to supplant previous measurements made using radar or spacecraft imaging; rather, we have used them to characterize the errors that should be expected when computing diameters and albedos of minor planets observed by WISE using a spherical NEATM model. C1 [Mainzer, A.; Masiero, J.; Bauer, J.; Ressler, M.; Eisenhardt, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Grav, T.] Johns Hopkins Univ, Dept Phys & Astron, Bloomberg Ctr 366, Baltimore, MD 21218 USA. [Bauer, J.; Cutri, R. M.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Wright, E.] UCLA Astron, Los Angeles, CA 90095 USA. [McMillan, R. S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Cohen, M.] Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. RP Mainzer, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM amainzer@jpl.nasa.gov OI Masiero, Joseph/0000-0003-2638-720X FU National Aeronautics and Space Administration; Planetary Science Division of the National Aeronautics and Space Administration FX We thank L. Benner, M. Busch, and M. Shepard for useful discussions and for providing diameter information on a number of objects in advance of publication. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This publication also makes use of data products from NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology, funded by the Planetary Science Division of the National Aeronautics and Space Administration. We thank our referee, A. W. Harris of Pasadena, California, for constructive comments that materially improved this work. We gratefully acknowledge the extraordinary services specific to NEOWISE contributed by the International Astronomical Union's Minor Planet Center, operated by the Harvard-Smithsonian Center for Astrophysics, and the Central Bureau for Astronomical Telegrams, operated by Harvard University. We also thank the worldwide community of dedicated amateur and professional astronomers devoted to minor planet follow-up observations. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of NASA's Astrophysics Data System. NR 50 TC 43 Z9 43 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 100 DI 10.1088/0004-637X/736/2/100 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400025 ER PT J AU Paolillo, M Puzia, TH Goudfrooij, P Zepf, SE Maccarone, TJ Kundu, A Fabbiano, G Angelini, L AF Paolillo, Maurizio Puzia, Thomas H. Goudfrooij, Paul Zepf, Stephen E. Maccarone, Thomas J. Kundu, Arunav Fabbiano, Giuseppina Angelini, Lorella TI PROBING THE GC-LMXB CONNECTION IN NGC 1399: A WIDE-FIELD STUDY WITH THE HUBBLE SPACE TELESCOPE AND CHANDRA SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: elliptical and lenticular, cD; galaxies: individual (NGC 1399); galaxies: star clusters: general; X-rays: binaries; X-rays: galaxies; X-rays: individual (NGC 1399) ID X-RAY BINARIES; GLOBULAR-CLUSTER SYSTEM; EARLY-TYPE GALAXIES; ELLIPTIC GALAXIES; LUMINOSITY FUNCTION; STAR-CLUSTERS; FORNAX; NGC-1399; CAMERA; SPECTROSCOPY AB We present a wide-field study of the globular cluster (GC)/low-mass X-ray binary (LMXB) connection in the giant elliptical NGC 1399. The large field of view of the Advanced Camera for Surveys/WFC, combined with Hubble Space Telescope and Chandra high resolution, allow us to constrain the LMXB formation scenarios in elliptical galaxies. We confirm that NGC 1399 has the highest LMXB fraction in GCs of all nearby elliptical galaxies studied so far, even though the exact value depends on galactocentric distance due to the interplay of a differential GC versus galaxy light distribution and the GC color dependence. In fact, LMXBs are preferentially hosted by bright, red GCs out to > 5R(eff) of the galaxy light. The finding that GCs hosting LMXBs follow the radial distribution of their parent GC population argues against the hypothesis that the external dynamical influence of the galaxy affects the LMXB formation in GCs. On the other hand, field-LMXBs closely match the host galaxy light, thus indicating that they are originally formed in situ and not inside GCs. We measure GC structural parameters, finding that the LMXB formation likelihood is influenced independently by mass, metallicity, and GC structural parameters. In particular, the GC central density plays a major role in predicting which GCs host accreting binaries. Finally, our analysis shows that LMXBs in GCs are marginally brighter than those in the field, and in particular the only color-confirmed GC with L-X > 10(39) erg s(-1) shows no variability, which may indicate a superposition of multiple LMXBs in these systems. C1 [Paolillo, Maurizio] Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy. [Paolillo, Maurizio] Ist Nazl Fis Nucl, Napoli Unit, Dept Phys Sci, I-80126 Naples, Italy. [Puzia, Thomas H.] Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Puzia, Thomas H.] Pontificia Univ Catolica Chile, Dept Astron & Astrophys, Santiago, Chile. [Goudfrooij, Paul] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Zepf, Stephen E.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Maccarone, Thomas J.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Kundu, Arunav] Eureka Sci, Oakland, CA 94602 USA. [Fabbiano, Giuseppina] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Angelini, Lorella] NASA, High Energy Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Paolillo, M (reprint author), Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy. EM paolillo@na.infn.it RI Paolillo, Maurizio/J-1733-2012 OI Paolillo, Maurizio/0000-0003-4210-7693 FU Herzberg Institute of Astrophysics of the National Research Council of Canada; ASI-INAF [I/009/10/0]; HST [HST-AR-11264]; NASA [NNX08AJ60G, NAS5-26555]; Space Telescope Science Institute [GO-10129] FX We thank E. Flaccomio, A. Zezas for useful suggestions and comments, and T. Richtler for providing access to his ground-based photometric catalogs. T. H. P. acknowledges financial support in form of the Plaskett Research Fellowship at the Herzberg Institute of Astrophysics of the National Research Council of Canada. He is also grateful for the support and warm hospitality at the Federico II University of Naples where parts of this work were conducted. We thank the anonymous referee for many useful suggestions. M. P. acknowledges support from the ASI-INAF contract I/009/10/0.; A. K. acknowledges support from HST archival program HST-AR-11264. S.E.Z. acknowledges support for this work from the NASA ADP grant NNX08AJ60G.; Support for HST Program GO-10129 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. NR 58 TC 28 Z9 28 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 90 DI 10.1088/0004-637X/736/2/90 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400015 ER PT J AU Roy, R Kumar, B Benetti, S Pastorello, A Yuan, F Brown, PJ Immler, S Fatkhullin, TA Moskvitin, AS Maund, J Akerlof, CW Wheeler, JC Sokolov, VV Quimby, RM Bufano, F Kumar, B Misra, K Pandey, SB Elias-Rosa, N Roming, PWA Sagar, R AF Roy, Rupak Kumar, Brijesh Benetti, Stefano Pastorello, Andrea Yuan, Fang Brown, Peter J. Immler, Stefan Fatkhullin, Timur A. Moskvitin, Alexander S. Maund, Justyn Akerlof, Carl W. Wheeler, J. Craig Sokolov, Vladimir V. Quimby, Rorbert M. Bufano, Filomena Kumar, Brajesh Misra, Kuntal Pandey, S. B. Elias-Rosa, Nancy Roming, Peter W. A. Sagar, Ram TI SN 2008in-BRIDGING THE GAP BETWEEN NORMAL AND FAINT SUPERNOVAE OF TYPE IIP SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general; supernovae: individual (2008in) ID CORE-COLLAPSE SUPERNOVAE; SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; LIGHT CURVES; SHOCK BREAKOUT; X-RAY; PLATEAU SUPERNOVAE; P SUPERNOVAE; PROGENITOR; 2005CS; STARS AB We present optical photometric and low-resolution spectroscopic observations of the Type II plateau supernova (SN) 2008in, which occurred in the outskirts of the nearly face-on spiral galaxy M61. Photometric data in the X-ray, ultraviolet, and near-infrared bands have been used to characterize this event. The SN field was imaged with the ROTSE-IIIb optical telescope about seven days before the explosion. This allowed us to constrain the epoch of the shock breakout to JD = 2454825.6. The duration of the plateau phase, as derived from the photometric monitoring, was similar to 98 days. The spectra of SN 2008in show a striking resemblance to those of the archetypal low-luminosity IIP SNe 1997D and 1999br. A comparison of ejecta kinematics of SN 2008in with the hydrodynamical simulations of Type IIP SNe by Dessart et al. indicates that it is a less energetic event (similar to 5 x 10(50) erg). However, the light curve indicates that the production of radioactive 56Ni is significantly higher than that in the low-luminosity SNe. Adopting an interstellar absorption along the SN direction of AV similar to 0.3 mag and a distance of 13.2Mpc, we estimated a synthesized 56Ni mass of similar to 0.015 M-circle dot. Employing semi-analytical formulae derived by Litvinova and Nadezhin, we derived a pre-SN radius of similar to 126R(circle dot), an explosion energy of similar to 5.4x10(50) erg, and a total ejected mass of similar to 16.7M(circle dot). The latter indicates that the zero-age main-sequence mass of the progenitor did not exceed 20M(circle dot). Considering the above properties of SN 2008in and its occurrence in a region of sub-solar metallicity ([O/H] similar to 8.44 dex), it is unlikely that fall-back of the ejecta onto a newly formed black hole occurred in SN 2008in. We therefore favor a low-energy explosion scenario of a relatively compact, moderate-mass progenitor star that generates a neutron star. C1 [Roy, Rupak; Kumar, Brijesh; Kumar, Brajesh; Pandey, S. B.; Sagar, Ram] Aryabhatta Res Inst Observat Sci ARIES, Naini Tal 263129, India. [Benetti, Stefano; Bufano, Filomena] Astron Observ Padova, Ist Nazl Astrofis, I-35122 Padua, Italy. [Pastorello, Andrea] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Yuan, Fang; Akerlof, Carl W.; Pandey, S. B.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Yuan, Fang] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Brown, Peter J.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Immler, Stefan] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Immler, Stefan] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Fatkhullin, Timur A.; Moskvitin, Alexander S.; Sokolov, Vladimir V.] Special Astrophys Observ, Nizhnii Arkhyz 369167, Karachaevo Cher, Russia. [Maund, Justyn] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Wheeler, J. Craig] Univ Texas Austin, Dept Astron, Austin, TX USA. [Quimby, Rorbert M.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Kumar, Brajesh] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Misra, Kuntal] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Misra, Kuntal] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Elias-Rosa, Nancy] Inst Ciencies Espai IEEC CSIC, Bellaterra 08193, Spain. [Roming, Peter W. A.] Space Sci & Engn Div, San Antonio, TX 78238 USA. RP Roy, R (reprint author), Aryabhatta Res Inst Observat Sci ARIES, Naini Tal 263129, India. EM roy@aries.res.in RI Elias-Rosa, Nancy/D-3759-2014; OI Elias-Rosa, Nancy/0000-0002-1381-9125; Yuan, Fang/0000-0001-8315-4176; Benetti, Stefano/0000-0002-3256-0016; Maund, Justyn/0000-0003-0733-7215 FU Federal Agency of Education of Russia; President of the Russian Federation [MK-405.2010.2]; European Southern Observatory, Chile [083.D-0970(A)]; PRIN-INAF; NSF [AST-0707669, PHY-0801007]; Texas Advanced Research Program [ASTRO-ARP-0094]; NASA [NNX08AV63G]; Indo-Russian (DST-RFBR) [RUSP-836 (RFBR-08-02:91314)] FX We thank all the observers at the Aryabhatta Research Institute of Observational Sciences (ARIES) who provided their valuable time and support for the observations of this event. We are thankful to the observing staffs of ROTSE, REM, 2m IGO, 3.6m NTT, 6m BTA, and 9.2m HET for their kind cooperation in the observation of SN 2008in. This work was supported by the grant RNP 2.1.1.3483 of the Federal Agency of Education of Russia. Timur A. Fatkhullin and Alexander S. Moskvitin were supported by the grant of the President of the Russian Federation (MK-405.2010.2). This is also partially based on observations collected at the European Southern Observatory, Chile under the program 083.D-0970(A). Stefano Benetti and Filomena Bufano are partially supported by the PRIN-INAF 2009 with the project "Supernovae Variety and Nucleosynthesis Yields." The research of J. Craig Wheeler is supported in part by NSF Grant AST-0707669 and by the Texas Advanced Research Program grant ASTRO-ARP-0094. This research is supported by NASA grant NNX08AV63G and NSF grant PHY-0801007. This work is partially based on observations made with the REM Telescope, INAF Chile. This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center. We are indebted to the Indo-Russian (DST-RFBR) project No. RUSP-836 (RFBR-08-02:91314) for the completion of this research work. NR 86 TC 27 Z9 27 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 76 DI 10.1088/0004-637X/736/2/76 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400001 ER PT J AU Terzo, S Reale, F Miceli, M Klimchuk, JA Kano, R Tsuneta, S AF Terzo, Sergio Reale, Fabio Miceli, Marco Klimchuk, James A. Kano, Ryouhei Tsuneta, Saku TI WIDESPREAD NANOFLARE VARIABILITY DETECTED WITH HINODE/X-RAY TELESCOPE IN A SOLAR ACTIVE REGION SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: corona; Sun: X-rays, gamma rays ID HOT PLASMA; LOOPS; CORONA; MODEL; GASDYNAMICS; EMISSION; DYNAMICS; MISSION; CORE; XRT AB It is generally agreed that small impulsive energy bursts called nanoflares are responsible for at least some of the Sun's hot corona, but whether they are the explanation for most of the multimillion-degree plasma has been a matter of ongoing debate. We present here evidence that nanoflares are widespread in an active region observed by the X-Ray Telescope on board the Hinode mission. The distributions of intensity fluctuations have small but important asymmetries, whether taken from individual pixels, multipixel subregions, or the entire active region. Negative fluctuations (corresponding to reduced intensity) are greater in number but weaker in amplitude, so that the median fluctuation is negative compared to a mean of zero. Using Monte Carlo simulations, we show that only part of this asymmetry can be explained by Poisson photon statistics. The remainder is explainable through a tendency for exponentially decreasing intensity, such as would be expected from a cooling plasma produced from a nanoflare. We suggest that nanoflares are a universal heating process within active regions. C1 [Terzo, Sergio; Reale, Fabio; Miceli, Marco] Univ Palermo, Dipartimento Fis, Sez Astron, I-90134 Palermo, Italy. [Klimchuk, James A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kano, Ryouhei; Tsuneta, Saku] Natl Astron Observ, Tokyo 1818588, Japan. [Terzo, Sergio; Reale, Fabio; Miceli, Marco] INAF Osservatorio Astron Palermo GS Vaiana, I-90134 Palermo, Italy. RP Terzo, S (reprint author), Univ Palermo, Dipartimento Fis, Sez Astron, Piazza Parlamento 1, I-90134 Palermo, Italy. EM terzo@astropa.unipa.it RI Klimchuk, James/D-1041-2012; OI Klimchuk, James/0000-0003-2255-0305; Reale, Fabio/0000-0002-1820-4824; Miceli, Marco/0000-0003-0876-8391 FU JAXA; NAOJ (Japan); STFC (UK); NASA; ESA; NSC (Norway); Italian Ministero dell'Universita e Ricerca; Agenzia Spaziale Italiana (ASI) [I/015/07/0, I/023/09/0]; LWS Targeted Research and Technology programs FX We thank the anonymous referee for very useful suggestions. We also thank M. Caramazza and Y. Sakamoto for help with data analysis. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner and NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team consists mainly of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (UK), NASA, ESA, and NSC (Norway). F. R., S.Te., and M. M. acknowledge support from Italian Ministero dell'Universita e Ricerca and Agenzia Spaziale Italiana (ASI), contracts I/015/07/0 and I/023/09/0. The work of J.A.K. was supported by the NASA Supporting Research and Technology and LWS Targeted Research and Technology programs. NR 27 TC 18 Z9 18 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 111 DI 10.1088/0004-637X/736/2/111 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400036 ER PT J AU Voyer, EN Gardner, JP Teplitz, HI Siana, BD de Mello, DF AF Voyer, Elysse N. Gardner, Jonathan P. Teplitz, Harry I. Siana, Brian D. de Mello, Duilia F. TI FAR-ULTRAVIOLET NUMBER COUNTS OF FIELD GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: evolution; galaxies: statistics; ultraviolet: galaxies ID TELESCOPE IMAGING SPECTROGRAPH; DEEP FIELD; SPACE-TELESCOPE; BACKGROUND-RADIATION; LYMAN CONTINUUM; LOCAL UNIVERSE; LUMINOSITY FUNCTION; STAR-FORMATION; 2000 ANGSTROM; DUST AB The far-ultraviolet (FUV) number counts of galaxies constrain the evolution of the star formation rate density of the universe. We report the FUV number counts computed from FUV imaging of several fields including the Hubble Ultra Deep Field, the Hubble Deep Field North, and small areas within the GOODS-North and South fields. These data were obtained with the Hubble Space Telescope (HST) Solar Blind Channel of the Advance Camera for Surveys. The number counts sample an FUV AB magnitude range from 21 to 29 and cover a total area of 15.9 arcmin(2), similar to 4 times larger than the most recent HST FUV study. Our FUV counts intersect bright FUV Galaxy Evolution Explorer counts at 22.5 mag and they show good agreement with recent semi-analytic models based on dark matter "merger trees" by R. S. Somerville et al. We show that the number counts are similar to 35% lower than in previous HST studies that use smaller areas. The differences between these studies are likely the result of cosmic variance; our new data cover more lines of sight and more area than previous HST FUV studies. The integrated light from field galaxies is found to contribute between 65.9(-8)(+8) and 82.6(-12)(+12) photons s(-1) cm(-2) sr(-1) angstrom(-1) to the FUV extragalactic background. These measurements set a lower limit for the total FUV background light. C1 [Gardner, Jonathan P.; de Mello, Duilia F.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Teplitz, Harry I.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Voyer, Elysse N.; de Mello, Duilia F.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Voyer, EN (reprint author), NASA, Res Program, Greenbelt, MD 20771 USA. EM 48voyer@cardinalmail.cua.edu FU Space Telescope Science Institute [GO-10403, GO-10872]; Association of Universities for Research in Astronomy; NASA [NAS5-26555, NNX08AR95H]; National Aeronautics and Space Administration FX We are grateful to the anonymous referee for their helpful comments that improved this paper. We thank R. S. Somerville and R. C. Gilmore for providing us with their semi-analytic model and for numerous helpful discussions and comments on this paper. We also thank D. Hammer for useful science discussions and sharing number count results, and C. K. Xu for providing us with theoretical number count models. Support for Program numbers GO-10403 and GO-10872 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. E.N.V. was funded by the NASA Graduate Student Research Program grant no. NNX08AR95H.; This research has made use of data obtained from the Chandra Source Catalog, provided by the Chandra X-ray Center (CXC) as part of the Chandra Data Archive.; This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 56 TC 6 Z9 6 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 80 DI 10.1088/0004-637X/736/2/80 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400005 ER PT J AU Currie, T Thalmann, C Matsumura, S Madhusudhan, N Burrows, A Kuchner, M AF Currie, Thayne Thalmann, Christian Matsumura, Soko Madhusudhan, Nikku Burrows, Adam Kuchner, Marc TI A 5 mu m IMAGE OF beta PICTORIS b AT A SUB-JUPITER PROJECTED SEPARATION: EVIDENCE FOR A MISALIGNMENT BETWEEN THE PLANET AND THE INNER, WARPED DISK SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; stars: early-type; stars: individual (beta Pictoris) ID ORBITING HR 8799; CORONAGRAPHIC OBSERVATIONS; ADAPTIVE OPTICS; GJ 758; COMPANION; STAR; MASS AB We present and analyze a new M' detection of the young exoplanet beta Pictoris b from 2008 VLT/NaCo data at a separation of approximate to 4 AU and a high signal-to-noise rereduction of L' data taken in 2009 December. Based on our orbital analysis, the planet's orbit is viewed almost perfectly edge-on (i similar to 89 deg) and has a Saturn-like semimajor axis of 9.50 AU(-1.7AU)(+3.93AU). Intriguingly, the planet's orbit is aligned with the major axis of the outer disk (Omega similar to 31 deg) but is probably misaligned with the warp/inclined disk at 80 AU, often cited as a signpost for the planet's existence. Our results motivate new studies to clarify how beta Pic b sculpts debris disk structures and whether a second planet is required to explain the warp/inclined disk. C1 [Currie, Thayne; Kuchner, Marc] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Thalmann, Christian] Univ Amsterdam, Anton Pannekoek Inst, NL-1012 WX Amsterdam, Netherlands. [Matsumura, Soko] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Madhusudhan, Nikku; Burrows, Adam] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RP Currie, T (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Kuchner, Marc/E-2288-2012 FU NASA [NNX07AG80G]; HST [HST-GO-12181.04-A]; JPL/Spitzer [1417122, 1348668, 1371432]; Astronomy Center for Theory and Computation FX We thank David Ehrenreich, Karl Stapelfeldt, Scott Kenyon, Justin Crepp, and the anonymous referee for suggested improvements to the manuscript and Michael McElwain, Sally Heap, Sarah Maddison, and Aki Roberge for other useful discussions. T.C. is supported by a NASA Postdoctoral Fellowship. A.B. is supported in part under NASA ATP grant NNX07AG80G, HST grant HST-GO-12181.04-A, and JPL/Spitzer Agreements 1417122, 1348668, and 1371432. S.M. is supported by an Astronomy Center for Theory and Computation Prize Fellowship. NR 32 TC 33 Z9 33 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2011 VL 736 IS 2 AR L33 DI 10.1088/2041-8205/736/2/L33 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OZ UT WOS:000293138500010 ER PT J AU Ostensen, RH Bloemen, S Vuckovic, M Aerts, C Oreiro, R Kinemuchi, K Still, M Koester, D AF Ostensen, R. H. Bloemen, S. Vuckovic, M. Aerts, C. Oreiro, R. Kinemuchi, K. Still, M. Koester, D. TI AT LAST-A V777 HER PULSATOR IN THE KEPLER FIELD SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: individual (GALEX J192904.6+444708); stars: oscillations; stars: variables: general; white dwarfs ID WHITE-DWARF STARS; SUBDWARF-B STARS; WHOLE EARTH TELESCOPE; COMPACT PULSATORS; SURVEY PHASE; DB; ASTEROSEISMOLOGY; EVOLUTIONARY; AMPLITUDE; BINARIES AB We present the discovery of the first-and so far the only-pulsating white dwarf star located in the field of view of the Kepler spacecraft. During our ongoing effort to search for compact pulsator candidates that can benefit from the near-continuous coverage of Kepler, we recently identified a faint DB star from spectroscopy obtained with the William Herschel Telescope. After establishing its physical parameters to be T-eff = 24,950 K and log g = 7.91 dex, placing it right in the middle of the V777 Her instability strip, we immediately submitted the target for follow-up space observations. The Kepler light curve reveals a pulsation spectrum consisting of five modes that follow a sequence roughly equally spaced in period with a mean spacing of 37 s. The three strongest modes show a triplet structure with a mean splitting of 3.3 mu Hz. We conclude that this object is a V777 Her pulsator with a mass of similar to 0.56 M-circle dot, and very similar to the class prototype. C1 [Ostensen, R. H.; Bloemen, S.; Vuckovic, M.; Aerts, C.; Oreiro, R.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Vuckovic, M.] European So Observ, Santiago 19, Chile. [Aerts, C.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Oreiro, R.] Inst Astrofis Andalucia, Granada 18008, Spain. [Kinemuchi, K.; Still, M.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Koester, D.] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany. RP Ostensen, RH (reprint author), Katholieke Univ Leuven, Inst Sterrenkunde, Celestijnenlaan 200D, B-3001 Louvain, Belgium. EM roy@ster.kuleuven.be OI Oreiro Rey, Raquel/0000-0002-4899-6199 FU European Research Council under the European Community [227224]; Research Council of K. U. Leuven [GOA/2008/04] FX The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 227224 (PROSPERITY), as well as from the Research Council of K. U. Leuven grant agreement GOA/2008/04. NR 34 TC 26 Z9 26 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2011 VL 736 IS 2 AR L39 DI 10.1088/2041-8205/736/2/L39 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OZ UT WOS:000293138500016 ER PT J AU Vercellone, S Striani, E Vittorini, V Donnarumma, I Pacciani, L Pucella, G Tavani, M Raiteri, CM Villata, M Romano, P Fiocchi, M Bazzano, A Bianchin, V Ferrigno, C Maraschi, L Pian, E Turler, M Ubertini, P Bulgarelli, A Chen, AW Giuliani, A Longo, F Barbiellini, G Cardillo, M Cattaneo, PW Del Monte, E Evangelista, Y Feroci, M Ferrari, A Fuschino, F Gianotti, F Giusti, M Lazzarotto, F Pellizzoni, A Piano, G Pilia, M Rapisarda, M Rappoldi, A Sabatini, S Soffitta, P Trifoglio, M Trois, A Giommi, P Lucarelli, F Pittori, C Santolamazza, P Verrecchia, F Agudo, I Aller, HD Aller, MF Arkharov, AA Bach, U Berdyugin, A Borman, GA Chigladze, R Efimov, YS Efimova, NV Gomez, JL Gurwell, MA McHardy, IM Joshi, M Kimeridze, GN Krajci, T Kurtanidze, OM Kurtanidze, SO Larionov, VM Lindfors, E Molina, SN Morozova, DA Nazarov, SV Nikolashvili, MG Nilsson, K Pasanen, M Reinthal, R Ros, JA Sadun, AC Sakamoto, T Sallum, S Sergeev, SG Schwartz, RD Sigua, LA Sillanpaa, A Sokolovsky, KV Strelnitski, V Takalo, L Taylor, B Walker, G AF Vercellone, S. Striani, E. Vittorini, V. Donnarumma, I. Pacciani, L. Pucella, G. Tavani, M. Raiteri, C. M. Villata, M. Romano, P. Fiocchi, M. Bazzano, A. Bianchin, V. Ferrigno, C. Maraschi, L. Pian, E. Tuerler, M. Ubertini, P. Bulgarelli, A. Chen, A. W. Giuliani, A. Longo, F. Barbiellini, G. Cardillo, M. Cattaneo, P. W. Del Monte, E. Evangelista, Y. Feroci, M. Ferrari, A. Fuschino, F. Gianotti, F. Giusti, M. Lazzarotto, F. Pellizzoni, A. Piano, G. Pilia, M. Rapisarda, M. Rappoldi, A. Sabatini, S. Soffitta, P. Trifoglio, M. Trois, A. Giommi, P. Lucarelli, F. Pittori, C. Santolamazza, P. Verrecchia, F. Agudo, I. Aller, H. D. Aller, M. F. Arkharov, A. A. Bach, U. Berdyugin, A. Borman, G. A. Chigladze, R. Efimov, Yu S. Efimova, N. V. Gomez, J. L. Gurwell, M. A. McHardy, I. M. Joshi, M. Kimeridze, G. N. Krajci, T. Kurtanidze, O. M. Kurtanidze, S. O. Larionov, V. M. Lindfors, E. Molina, S. N. Morozova, D. A. Nazarov, S. V. Nikolashvili, M. G. Nilsson, K. Pasanen, M. Reinthal, R. Ros, J. A. Sadun, A. C. Sakamoto, T. Sallum, S. Sergeev, S. G. Schwartz, R. D. Sigua, L. A. Sillanpaa, A. Sokolovsky, K. V. Strelnitski, V. Takalo, L. Taylor, B. Walker, G. TI THE BRIGHTEST GAMMA-RAY FLARING BLAZAR IN THE SKY: AGILE AND MULTI-WAVELENGTH OBSERVATIONS OF 3C 454.3 DURING 2010 NOVEMBER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: active; galaxies: jets; radiation mechanisms: non-thermal; quasars: general; quasars: individual (3C 454.3) ID CRAZY-DIAMOND; WEBT; OUTBURST; CAMPAIGN; 3C-454.3; TELESCOPE; SPECTRUM; RADIO; PHASE; POWER AB Since 2005, the blazar 3C 454.3 has shown remarkable flaring activity at all frequencies, and during the last four years it has exhibited more than one gamma-ray flare per year, becoming the most active gamma-ray blazar in the sky. We present for the first time the multi-wavelength AGILE, Swift, INTEGRAL, and GASP-WEBT data collected in order to explain the extraordinary gamma-ray flare of 3C 454.3 which occurred in 2010 November. On 2010 November 20 (MJD 55520), 3C 454.3 reached a peak flux (E > 100 MeV) of F(gamma)(p) = (6.8 +/- 1.0) x 10(-5) photons cm(-2) s(-1) on a timescale of about 12 hr, more than a factor of six higher than the flux of the brightest steady gamma-ray source, the Vela pulsar, and more than a factor of three brighter than its previous super-flare on 2009 December 2-3. The multi-wavelength data make possible a thorough study of the present event: the comparison with the previous outbursts indicates a close similarity to the one that occurred in 2009. By comparing the broadband emission before, during, and after the gamma-ray flare, we find that the radio, optical, and X-ray emission varies within a factor of 2-3, whereas the gamma-ray flux by a factor of 10. This remarkable behavior is modeled by an external Compton component driven by a substantial local enhancement of soft seed photons. C1 [Striani, E.; Tavani, M.; Cardillo, M.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Striani, E.; Tavani, M.] INFN Roma Tor Vergata, I-00133 Rome, Italy. [Vittorini, V.; Donnarumma, I.; Pacciani, L.; Tavani, M.; Fiocchi, M.; Bazzano, A.; Ubertini, P.; Cardillo, M.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Giusti, M.; Lazzarotto, F.; Piano, G.; Sabatini, S.; Soffitta, P.] INAF IASF Roma, I-00133 Rome, Italy. [Pucella, G.; Rapisarda, M.] ENEA Frascati, I-00044 Rome, Italy. [Tavani, M.; Ferrari, A.] CIFS Torino, I-10133 Turin, Italy. [Raiteri, C. M.; Villata, M.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, Italy. [Bianchin, V.; Bulgarelli, A.; Fuschino, F.; Gianotti, F.; Trifoglio, M.] INAF IASF Bologna, I-40129 Bologna, Italy. [Ferrigno, C.; Tuerler, M.] Univ Geneva, ISDC, CH-1290 Versoix, Switzerland. [Maraschi, L.] Osserv Astron Brera, INAF, I-23807 Merate, Italy. [Pian, E.] Osserv Astron Trieste, INAF, I-34143 Trieste, Italy. [Pian, E.] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Pian, E.] ESO, D-85748 Garching, Germany. [Chen, A. W.; Giuliani, A.] INAF IASF Milano, I-20133 Milan, Italy. [Longo, F.; Barbiellini, G.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Longo, F.; Barbiellini, G.] Dipartimento Fis, I-34127 Trieste, Italy. [Cattaneo, P. W.; Rappoldi, A.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Ferrari, A.] Univ Turin, Dipartimento Fis Gen, I-10125 Turin, Italy. [Pellizzoni, A.; Pilia, M.; Trois, A.] Osservatorio Astron Cagliari, INAF, I-09012 Capoterra, Italy. [Pilia, M.] Univ Insubria, Dipartimento Fis, I-22100 Como, Italy. [Giommi, P.; Lucarelli, F.; Pittori, C.; Santolamazza, P.; Verrecchia, F.] ASI ASDC, I-00044 Rome, Italy. [Agudo, I.; Gomez, J. L.; Molina, S. N.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Agudo, I.; Joshi, M.; Taylor, B.] Boston Univ, Inst Astrophys Res, Boston, MA 02215 USA. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Arkharov, A. A.; Efimova, N. V.; Larionov, V. M.] Pulkovo Observ, St Petersburg, Russia. [Bach, U.; Sokolovsky, K. V.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Berdyugin, A.; Lindfors, E.; Pasanen, M.; Reinthal, R.; Sillanpaa, A.; Takalo, L.] Univ Turku, Tuorla Observ, FIN-21500 Piikkio, Finland. [Borman, G. A.; Efimov, Yu S.; Nazarov, S. V.; Sergeev, S. G.] Crimean Astrophys Observ, UA-98049 Nauchnyi, Crimea, Ukraine. [Chigladze, R.; Kimeridze, G. N.; Kurtanidze, O. M.; Kurtanidze, S. O.; Nikolashvili, M. G.; Sigua, L. A.] Abastumani Observ, GE-0301 Mt Kanobili, Abastumani, Rep of Georgia. [Efimova, N. V.; Larionov, V. M.; Morozova, D. A.] St Petersburg State Univ, Astron Inst, St Petersburg, Russia. [Gurwell, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [McHardy, I. M.] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England. [Krajci, T.] Astrokolkhoz Observ, Cloudcroft, NM 88317 USA. [Larionov, V. M.] Isaac Newton Inst Chile, St Petersburg Branch, St Petersburg, Russia. [Nilsson, K.] Univ Turku, Finnish Ctr Astron ESO FINCA, FIN-21500 Piikkio, Finland. [Ros, J. A.] Agrupacio Astron Sabadell, Sabadell, Spain. [Sadun, A. C.] Univ Colorado Denver, Dept Phys, Denver, CO 80217 USA. [Sakamoto, T.] NASA, GSFC, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Sallum, S.; Strelnitski, V.; Walker, G.] Maria Mitchell Observ, Nantucket, MA 02554 USA. [Sallum, S.] MIT, Cambridge, MA 02139 USA. [Schwartz, R. D.] Galaxy View Observ, Sequim, WA 98382 USA. [Taylor, B.] Lowell Observ, Flagstaff, AZ 86001 USA. [Vercellone, S.; Romano, P.] INAF IASF Palermo, I-90146 Palermo, Italy. RP Vercellone, S (reprint author), INAF IASF Palermo, Via Ugo La Malfa 153, I-90146 Palermo, Italy. EM stefano.vercellone@iasf-palermo.inaf.it RI Morozova, Daria/H-1298-2013; Ferrigno, Carlo/H-4139-2012; Pittori, Carlotta/C-7710-2016; Lazzarotto, Francesco/J-4670-2012; Larionov, Valeri/H-1349-2013; Efimova, Natalia/I-2196-2013; Kurtanidze, Omar/J-6237-2014; Sokolovsky, Kirill/D-2246-2015; Trifoglio, Massimo/F-5302-2015; Molina, Sol Natalia/F-9968-2015; Agudo, Ivan/G-1701-2015; OI Morozova, Daria/0000-0002-9407-7804; Pittori, Carlotta/0000-0001-6661-9779; Villata, Massimo/0000-0003-1743-6946; Pellizzoni, Alberto Paolo/0000-0002-4590-0040; Larionov, Valeri/0000-0002-4640-4356; Efimova, Natalia/0000-0002-8071-4753; Sokolovsky, Kirill/0000-0001-5991-6863; Trifoglio, Massimo/0000-0002-2505-3630; Molina, Sol Natalia/0000-0002-4112-2157; Agudo, Ivan/0000-0002-3777-6182; Bulgarelli, Andrea/0000-0001-6347-0649; Pacciani, Luigi/0000-0001-6897-5996; Cardillo, Martina/0000-0001-8877-3996; giommi, paolo/0000-0002-2265-5003; trois, alessio/0000-0002-3180-6002; Feroci, Marco/0000-0002-7617-3421; Soffitta, Paolo/0000-0002-7781-4104; Fuschino, Fabio/0000-0003-2139-3299; Lucarelli, Fabrizio/0000-0002-6311-764X; Pian, Elena/0000-0001-8646-4858; Verrecchia, Francesco/0000-0003-3455-5082; Gianotti, Fulvio/0000-0003-4666-119X; Lazzarotto, Francesco/0000-0003-4871-4072; Donnarumma, Immacolata/0000-0002-4700-4549; Sabatini, Sabina/0000-0003-2076-5767; Vercellone, Stefano/0000-0003-1163-1396; Raiteri, Claudia Maria/0000-0003-1784-2784; Fiocchi, Mariateresa/0000-0001-5697-6019; Tavani, Marco/0000-0003-2893-1459 FU ASI-INAF [I/009/10/0]; RFBR [09-02-00092]; MICIIN [AYA2010-14844]; CEIC [P09-FQM-4784]; NSF [AST-0907893]; NASA [NNX08AV65G, NNX10AU15G]; NSF/REU [AST-0851892]; Nantucket Maria Mitchell Association; ASI [I/089/06/2]; [GNSF/ST08/4-404] FX We thank the referee for useful comments. We thank A. P. Marscher and S. G. Jorstad for Perkins and Liverpool Telescopes optical data. We acknowledge financial contribution from agreement ASI-INAF I/009/10/0, ASI contract I/089/06/2, RFBR Foundation grant 09-02-00092, MICIIN grant AYA2010-14844, CEIC grant P09-FQM-4784, NSF grant AST-0907893, NASA Fermi GI grants NNX08AV65G and NNX10AU15G, NSF/REU grant AST-0851892, the Nantucket Maria Mitchell Association, and grant GNSF/ST08/4-404. NR 36 TC 35 Z9 35 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2011 VL 736 IS 2 AR L38 DI 10.1088/2041-8205/736/2/L38 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OZ UT WOS:000293138500015 ER PT J AU Daw, MS Lawson, JW Bauschlicher, CW AF Daw, Murray S. Lawson, John W. Bauschlicher, Charles W., Jr. TI Interatomic potentials for Zirconium Diboride and Hafnium Diboride SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Interatomic potential; Tersoff potential; Zirconium Diboride; Hafnium Diboride ID EMBEDDED-ATOM METHOD; MOLECULAR-DYNAMICS; TRANSITION-METALS; SILICON; SYSTEMS; HCP; PSEUDOPOTENTIALS; CONSTANTS; DEFECTS; ENERGY AB We report on the first interatomic potentials for Zirconium Diboride and Hafnium Diboride. The potentials are of the Tersoff form, and are obtained by fitting to a first-principles database of basic properties of elemental Zr, Hf, B, and the compounds ZrB(2) and HfB(2). Two variants of the Zr-B potentials have been obtained, and one for Hf-B. The potentials have been tested against a variety of properties of the compound, with the conclusion that they are stable and provide a reasonable representation of the desired properties of the two diborides. (C) 2011 Elsevier B.V. All rights reserved. C1 [Daw, Murray S.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Bauschlicher, Charles W., Jr.] NASA, Ames Res Ctr, Space Technol Div, Moffett Field, CA 94035 USA. RP Daw, MS (reprint author), Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. EM daw@clemson.edu FU NASA FX MSD was supported under a NASA prime contract to ELORET Corporation. NR 37 TC 5 Z9 5 U1 1 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD AUG-SEP PY 2011 VL 50 IS 10 BP 2828 EP 2835 DI 10.1016/j.commatsci.2011.04.038 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 802CM UT WOS:000293486900009 ER PT J AU Pavone, M Arsie, A Frazzoli, E Bullo, F AF Pavone, Marco Arsie, Alessandro Frazzoli, Emilio Bullo, Francesco TI Distributed Algorithms for Environment Partitioning in Mobile Robotic Networks SO IEEE TRANSACTIONS ON AUTOMATIC CONTROL LA English DT Article DE Autonomous systems; cooperative control; decentralized control; multirobot systems; sensor networks ID PLANE AB A widely applied strategy for workload sharing is to equalize the workload assigned to each resource. In mobile multiagent systems, this principle directly leads to equitable partitioning policies whereby: 1) the environment is equitably divided into subregions of equal measure; 2) one agent is assigned to each subregion; and 3) each agent is responsible for service requests originating within its own subregion. The current lack of distributed algorithms for the computation of equitable partitions limits the applicability of equitable partitioning policies to limited-size multiagent systems operating in known, static environments. In this paper, first we design provably correct and spatially distributed algorithms that allow a team of agents to compute a convex and equitable partition of a convex environment. Second, we discuss how these algorithms can be extended so that a team of agents can compute, in a spatially distributed fashion, convex and equitable partitions with additional features, e.g., equitable and median Voronoi diagrams. Finally, we discuss two application domains for our algorithms, namely dynamic vehicle routing for mobile robotic networks and wireless ad hoc networks. Through these examples, we show how one can couple the algorithms presented in this paper with equitable partitioning policies to make these amenable to distributed implementation. More in general, we illustrate a systematic approach to devise spatially distributed control policies for a large variety of multiagent coordination problems. Our approach is related to the classic Lloyd algorithm and exploits the unique features of power diagrams. C1 [Pavone, Marco] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Arsie, Alessandro] Univ Toledo, Dept Math, Toledo, OH 43606 USA. [Frazzoli, Emilio] MIT, Lab Informat & Decis Syst, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. [Bullo, Francesco] Univ Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USA. RP Pavone, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Marco.Pavone@jpl.nasa.gov; alessandro.arsie@utoledo.edu; frazzoli@mit.edu; bullo@engineering.ucsb.edu RI Bullo, Francesco/B-8146-2013 FU National Science Foundation [0705451, 0705453]; Office of Naval Research [N00014-07-1-0721] FX Manuscript received October 05, 2010; revised December 06, 2010; accepted January 28, 2011. Date of publication February 07, 2011; date of current version August 03, 2011. This work was supported in part by the National Science Foundation under Grants #0705451 and #0705453 and the Office of Naval Research under Grant N00014-07-1-0721. Recommended by Associate Editor M. Egerstedt. NR 22 TC 31 Z9 32 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9286 EI 1558-2523 J9 IEEE T AUTOMAT CONTR JI IEEE Trans. Autom. Control PD AUG PY 2011 VL 56 IS 8 BP 1834 EP 1848 DI 10.1109/TAC.2011.2112410 PG 15 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA 805SZ UT WOS:000293750600007 ER PT J AU Feng, Q Hsu, NC Yang, P Tsay, SC AF Feng, Qian Hsu, N. Christina Yang, Ping Tsay, Si-Chee TI Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Dust aerosols; MODIS; optical depth; thin cirrus ID LIGHT-SCATTERING; TROPOSPHERIC AEROSOLS; RADIATIVE PROPERTIES; MINERAL AEROSOL; PHASE FUNCTIONS; ICE CRYSTALS; OCEANS; PARTICLES; CHANNELS; RATIO AB The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles in computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds. C1 [Feng, Qian; Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77845 USA. [Hsu, N. Christina; Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Feng, Q (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77845 USA. EM fengqian@ariel.met.tamu.edu; Christina.Hsu@nasa.gov; pyang@ariel.met.tamu.edu; si-chee.tsay-1@nasa.gov RI Yang, Ping/B-4590-2011; Hsu, N. Christina/H-3420-2013; Tsay, Si-Chee/J-1147-2014 FU National Aeronautics and Space Administration [NNX08AP29G]; National Science Foundation [ATM-0803779] FX The work of P. Yang was supported in part by the National Aeronautics and Space Administration under Grant NNX08AP29G and in part by the National Science Foundation under Grant ATM-0803779. NR 31 TC 1 Z9 1 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD AUG PY 2011 VL 49 IS 8 BP 2819 EP 2827 DI 10.1109/TGRS.2011.2118762 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 805EM UT WOS:000293709200001 ER PT J AU Toure, AM Goita, K Royer, A Kim, EJ Durand, M Margulis, SA Lu, HZ AF Toure, Ally M. Goita, Kalifa Royer, Alain Kim, Edward J. Durand, Michael Margulis, Steven A. Lu, Huizhong TI A Case Study of Using a Multilayered Thermodynamical Snow Model for Radiance Assimilation SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Assimilation; melt-refreeze crusts; radiance; snow; snowpack model (SM) ID MICROWAVE EMISSION MODEL; ENSEMBLE KALMAN FILTER; CORRELATION LENGTH; LAYERED SNOWPACKS; WATER EQUIVALENT; GRANULAR MEDIA; SCATTERING; COVER; COLLECTION; RADIATION AB A microwave radiance assimilation (RA) scheme for the retrieval of snow physical state variables requires a snow-pack physical model (SM) coupled to a radiative transfer model. In order to assimilate microwave brightness temperatures (Tbs) at horizontal polarization (h-pol), an SM capable of resolving melt-refreeze crusts is required. To date, it has not been shown whether an RA scheme is tractable with the large number of state variables present in such an SM or whether melt-refreeze crust densities can be estimated. In this paper, an RA scheme is presented using the CROCUS SM which is capable of resolving melt-refreeze crusts. We assimilated both vertical (v) and horizontal (h) Tbs at 18.7 and 36.5 GHz. We found that assimilating Tb at both h-pol and vertical polarization (v-pol) into CROCUS dramatically improved snow depth estimates, with a bias of 1.4 cm compared to -7.3 cm reported by previous studies. Assimilation of both h-pol and v-pol led to more accurate results than assimilation of v-pol alone. The snow water equivalent (SWE) bias of the RA scheme was 0.4 cm, while the bias of the SWE estimated by an empirical retrieval algorithm was -2.9 cm. Characterization of melt-refreeze crusts via an RA scheme is demonstrated here for the first time; the RA scheme correctly identified the location of melt-refreeze crusts observed in situ. C1 [Toure, Ally M.; Kim, Edward J.] NASA, Goddard Space Flight Ctr, Natl Aeronaut & Space Adm, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Goita, Kalifa; Royer, Alain; Lu, Huizhong] Univ Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada. [Durand, Michael] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Margulis, Steven A.] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA. RP Toure, AM (reprint author), NASA, Goddard Space Flight Ctr, Natl Aeronaut & Space Adm, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. EM ally.toure@nasa.gov; kalifa.goita@usherbrooke.ca; Alain.Royer@USherbrooke.ca; edward.j.kim@nasa.gov; durand.8@osu.edu; margulis@seas.ucla.edu; huizhong.lu@usherbrooke.ca RI Durand, Michael/D-2885-2013 FU National Science and Engineering Research Council of Canada; National Aeronautics and Space Administration; Environment Canada FX This work was supported in part by the National Science and Engineering Research Council of Canada, by Environment Canada (Cryosphere System in Canada Program), and by the National Aeronautics and Space Administration Terrestrial Hydrology Program. NR 34 TC 21 Z9 21 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD AUG PY 2011 VL 49 IS 8 BP 2828 EP 2837 DI 10.1109/TGRS.2011.2118761 PG 10 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 805EM UT WOS:000293709200002 ER PT J AU Wijesinghe, DB da Cunha, E Hopkins, AM Dunne, L Sharp, R Gunawardhana, M Brough, S Sadler, EM Driver, S Baldry, I Bamford, S Liske, J Loveday, J Norberg, P Peacock, J Popescu, CC Tuffs, R Andrae, E Auld, R Baes, M Bland-Hawthorn, J Buttiglione, S Cava, A Cameron, E Conselice, CJ Cooray, A Croom, S Dariush, A DeZotti, G Dye, S Eales, S Frenk, C Fritz, J Hill, D Hopwood, R Ibar, E Ivison, R Jarvis, M Jones, DH van Kampen, E Kelvin, L Kuijken, K Maddox, SJ Madore, B Michalowski, MJ Nichol, B Parkinson, H Pascale, E Pimbblet, KA Pohlen, M Prescott, M Rhodighiero, G Robotham, ASG Rigby, EE Seibert, M Sergeant, S Smith, DJB Temi, P Sutherland, W Taylor, E Thomas, D van der Werf, P AF Wijesinghe, D. B. da Cunha, E. Hopkins, A. M. Dunne, L. Sharp, R. Gunawardhana, M. Brough, S. Sadler, E. M. Driver, S. Baldry, I. Bamford, S. Liske, J. Loveday, J. Norberg, P. Peacock, J. Popescu, C. C. Tuffs, R. Andrae, E. Auld, R. Baes, M. Bland-Hawthorn, J. Buttiglione, S. Cava, A. Cameron, E. Conselice, C. J. Cooray, A. Croom, S. Dariush, A. DeZotti, G. Dye, S. Eales, S. Frenk, C. Fritz, J. Hill, D. Hopwood, R. Ibar, E. Ivison, R. Jarvis, M. Jones, D. H. van Kampen, E. Kelvin, L. Kuijken, K. Maddox, S. J. Madore, B. Michalowski, M. J. Nichol, B. Parkinson, H. Pascale, E. Pimbblet, K. A. Pohlen, M. Prescott, M. Rhodighiero, G. Robotham, A. S. G. Rigby, E. E. Seibert, M. Sergeant, S. Smith, D. J. B. Temi, P. Sutherland, W. Taylor, E. Thomas, D. van der Werf, P. TI GAMA/H-ATLAS: the ultraviolet spectral slope and obscuration in galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: formation; galaxies: general ID STAR-FORMATION RATE; INITIAL MASS FUNCTION; DIGITAL SKY SURVEY; UV-CONTINUUM SLOPE; FORMATION RATES; STARBURST GALAXIES; FORMATION HISTORY; DUST OBSCURATION; ASSEMBLY GAMA; ENERGY-DISTRIBUTIONS AB We use multiwavelength data from the Galaxy And Mass Assembly (GAMA) and Herschel-ATLAS (H-ATLAS) surveys to compare the relationship between various dust obscuration measures in galaxies. We explore the connections between the ultraviolet (UV) spectral slope, beta, the Balmer decrement and the far-infrared (FIR) to 150 nm far/ultraviolet (FUV) luminosity ratio. We explore trends with galaxy mass, star formation rate (SFR) and redshift in order to identify possible systematics in these various measures. We reiterate the finding of other authors that there is a large scatter between the Balmer decrement and the beta parameter, and that beta may be poorly constrained when derived from only two broad passbands in the UV. We also emphasize that FUV-derived SFRs, corrected for dust obscuration using beta, will be overestimated unless a modified relation between beta and the attenuation factor is used. Even in the optimum case, the resulting SFRs have a significant scatter, well over an order of magnitude. While there is a stronger correlation between the IR-to-FUV luminosity ratio and beta parameter than with the Balmer decrement, neither of these correlations are particularly tight, and dust corrections based on beta for high-redshift galaxy SFRs must be treated with caution. We conclude with a description of the extent to which the different obscuration measures are consistent with each other as well as the effects of including other galactic properties on these correlations. C1 [Wijesinghe, D. B.; Gunawardhana, M.; Sadler, E. M.; Bland-Hawthorn, J.; Croom, S.; Taylor, E.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [da Cunha, E.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Hopkins, A. M.; Brough, S.; Jones, D. H.] Australian Astron Observ, Epping, NSW 1710, Australia. [Dunne, L.; Conselice, C. J.; Maddox, S. J.; Rigby, E. E.; Smith, D. J. B.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Sharp, R.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Driver, S.; Hill, D.; Kelvin, L.; Robotham, A. S. G.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Baldry, I.; Prescott, M.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Bamford, S.] Univ Nottingham, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. [Liske, J.; van Kampen, E.] European So Observ, D-85748 Garching, Germany. [Loveday, J.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Norberg, P.; Peacock, J.; Michalowski, M. J.; Parkinson, H.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Popescu, C. C.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Tuffs, R.; Andrae, E.] Max Planck Inst Nucl Phys MPIK, D-69117 Heidelberg, Germany. [Auld, R.; Dariush, A.; Dye, S.; Eales, S.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Baes, M.] Univ Ghent, Sterrenkundig Observatorium, B-9000 Ghent, Belgium. [Buttiglione, S.; DeZotti, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Cava, A.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Cameron, E.] ETH, Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Dariush, A.] Inst Res Fundamental Sci IPM, Sch Astron, Tehran, Iran. [Frenk, C.] Univ Durham, Inst Computat Cosmol, Dept Phys, Durham DH1 3LE, England. [Fritz, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Hopwood, R.; Sergeant, S.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Ibar, E.; Ivison, R.; Thomas, D.] Royal Observ Edinburgh, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Jarvis, M.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys, Hatfield AL10 9AB, Herts, England. [Kuijken, K.; van der Werf, P.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Madore, B.; Seibert, M.] Carnegie Inst Sci, Pasadena, CA 91101 USA. [Nichol, B.] Univ Portsmouth, Inst Cosmol & Gravitat ICG, Portsmouth PO1 3FX, Hants, England. [Pimbblet, K. A.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Rhodighiero, G.] Univ Padua, Vicolo Osservatorio, I-35122 Padua, Italy. [Temi, P.] NASA, Astrophys Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. [Sutherland, W.] Queen Mary Univ London, Astron Unit, London E1 4NS, England. RP Wijesinghe, DB (reprint author), Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. EM d.wijesinghe@physics.usyd.edu.au RI Conselice, Christopher/B-4348-2013; Baes, Maarten/I-6985-2013; Robotham, Aaron/H-5733-2014; Driver, Simon/H-9115-2014; Ivison, R./G-4450-2011; Bamford, Steven/E-8702-2010; Cava, Antonio/C-5274-2017; OI Dye, Simon/0000-0002-1318-8343; Smith, Daniel/0000-0001-9708-253X; Liske, Jochen/0000-0001-7542-2927; da Cunha, Elisabete/0000-0001-9759-4797; Baldry, Ivan/0000-0003-0719-9385; Baes, Maarten/0000-0002-3930-2757; Robotham, Aaron/0000-0003-0429-3579; Driver, Simon/0000-0001-9491-7327; Ivison, R./0000-0001-5118-1313; Bamford, Steven/0000-0001-7821-7195; Cava, Antonio/0000-0002-4821-1275; Maddox, Stephen/0000-0001-5549-195X; Conselice, Christopher/0000-0003-1949-7638; Sadler, Elaine/0000-0002-1136-2555 FU School of Physics; STFC (UK); ARC (Australia); AAO FX DBW acknowledges the support provided by the Denison Scholarship from the School of Physics. GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalogue is based on data taken from the SDSS and the UKIDSS. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programs including GALEX MIS, VST KIDS, VISTA VIKING, WISE, H-ATLAS, GMRT and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO and the participating institutions. The GAMA web site is http://www.gama-survey.org/. The H-ATLAS is a project with Herschel, which is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. The H-ATLAS web site is http://www.h-atlas.org/ NR 67 TC 24 Z9 25 U1 1 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 2 BP 1002 EP 1012 DI 10.1111/j.1365-2966.2011.18615.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 805VE UT WOS:000293756300002 ER PT J AU Redaelli, M Kepler, SO Costa, JES Winget, DE Handler, G Castanheira, BG Kanaan, A Fraga, L Henrique, P Giovannini, O Provencal, JL Shipman, HL Dalessio, J Thompson, SE Mullally, F Brewer, MM Childers, D Oksala, ME Rosen, R Wood, MA Reed, MD Walter, B Strickland, W Chandler, D Watson, TK Nather, RE Montgomery, MH Bischoff-Kim, A Hansen, CJ Nitta, A Kleinman, SJ Claver, CF Brown, TM Sullivan, DJ Kim, SL Chen, WP Yang, M Shih, CY Zhang, X Jiang, X Fu, JN Seetha, S Ashoka, BN Marar, TMK Baliyan, KS Vats, HO Chernyshev, AV Ibbetson, P Leibowitz, E Hemar, S Sergeev, AV Andreev, MV Janulis, R Meistas, EG Moskalik, P Pajdosz, G Baran, A Winiarski, M Zola, S Ogloza, W Siwak, M Bognar, Z Solheim, JE Sefako, R Buckley, D O'Donoghue, D Nagel, T Silvotti, R Bruni, I Fremy, JR Vauclair, G Chevreton, M Dolez, N Pfeiffer, B Barstow, MA Creevey, OL Kawaler, SD Clemens, JC AF Redaelli, M. Kepler, S. O. Costa, J. E. S. Winget, D. E. Handler, G. Castanheira, B. G. Kanaan, A. Fraga, L. Henrique, P. Giovannini, O. Provencal, J. L. Shipman, H. L. Dalessio, J. Thompson, S. E. Mullally, F. Brewer, M. M. Childers, D. Oksala, M. E. Rosen, R. Wood, M. A. Reed, M. D. Walter, B. Strickland, W. Chandler, D. Watson, T. K. Nather, R. E. Montgomery, M. H. Bischoff-Kim, A. Hansen, C. J. Nitta, A. Kleinman, S. J. Claver, C. F. Brown, T. M. Sullivan, D. J. Kim, S. -L. Chen, W. -P. Yang, M. Shih, C. -Y. Zhang, X. Jiang, X. Fu, J. N. Seetha, S. Ashoka, B. N. Marar, T. M. K. Baliyan, K. S. Vats, H. O. Chernyshev, A. V. Ibbetson, P. Leibowitz, E. Hemar, S. Sergeev, A. V. Andreev, M. V. Janulis, R. Meistas, E. G. Moskalik, P. Pajdosz, G. Baran, A. Winiarski, M. Zola, S. Ogloza, W. Siwak, M. Bognar, Zs. Solheim, J. -E. Sefako, R. Buckley, D. O'Donoghue, D. Nagel, T. Silvotti, R. Bruni, I. Fremy, J. R. Vauclair, G. Chevreton, M. Dolez, N. Pfeiffer, B. Barstow, M. A. Creevey, O. L. Kawaler, S. D. Clemens, J. C. TI The pulsations of PG 1351+489 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: evolution; stars: individual: PG 1351+489; stars: oscillations; white dwarfs ID WHITE-DWARF STARS; WHOLE EARTH TELESCOPE; TIME-SERIES ANALYSIS; PERIOD CHANGE; EVOLUTION; PG-1351+489; GD-358; GD358 AB PG 1351+489 is one of the 20 DBVs - pulsating helium-atmosphere white dwarf stars - known and has the simplest power spectrum for this class of star, making it a good candidate to study cooling rates. We report accurate period determinations for the main peak at 489.334 48 s and two other normal modes using data from the Whole Earth Telescope (WET) observations of 1995 and 2009. In 2009, we detected a new pulsation mode and the main pulsation mode exhibited substantial change in its amplitude compared to all previous observations. We were able to estimate the star's rotation period, of 8.9 h, and discuss a possible determination of the rate of period change of (2.0 +/- 0.9) x 10(-13) s s(-1), the first such estimate for a DBV. C1 [Redaelli, M.; Kepler, S. O.; Costa, J. E. S.; Castanheira, B. G.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Winget, D. E.; Castanheira, B. G.; Nather, R. E.; Montgomery, M. H.; Baran, A.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Winget, D. E.; Castanheira, B. G.; Nather, R. E.; Montgomery, M. H.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Handler, G.; Castanheira, B. G.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Kanaan, A.; Henrique, P.] Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil. [Fraga, L.] So Observ Astrophys Res, La Serena, Chile. [Giovannini, O.] Univ Caxias Sul, Dept Quim & Fis, BR-95070560 Caxias Do Sul, RS, Brazil. [Provencal, J. L.; Shipman, H. L.; Dalessio, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Provencal, J. L.; Thompson, S. E.] Mt Cuba Observ, Delaware Asteroseism Res Ctr, Greenville, DE 19807 USA. [Thompson, S. E.; Mullally, F.] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Brewer, M. M.] William Jewell Coll, Liberty, MO 64048 USA. [Childers, D.] Delaware Cty Community Coll, Dept Math & Sci, Media, DE USA. [Oksala, M. E.] Univ Delaware, Bartol Res Inst, Newark, DE USA. [Rosen, R.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Wood, M. A.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32901 USA. [Reed, M. D.] Missouri State Univ, Springfield, MO 65897 USA. [Reed, M. D.] Baker Observ, Springfield, MO 65897 USA. [Walter, B.; Strickland, W.; Chandler, D.] Meyer Observ, Waco, TX USA. [Walter, B.; Strickland, W.; Chandler, D.] Cent Texas Astron Soc, Waco, TX USA. [Watson, T. K.] Southwestern Univ, Georgetown, TX USA. [Bischoff-Kim, A.] Georgia Coll & State Univ, Dept Chem Phys & Astron, Milledgeville, GA USA. [Hansen, C. J.] Univ Colorado, Joint Inst Lab Astrophys, Boulder, CO 80309 USA. [Nitta, A.; Kleinman, S. J.] Gemini Observ, Hilo, HI 96720 USA. [Claver, C. F.] Kitt Peak Natl Observ, Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Brown, T. M.] Las Cumbres Observ Global Telescope Network Inc, Santa Barbara, CA 93117 USA. [Sullivan, D. J.] Victoria Univ Wellington, Wellington, New Zealand. [Kim, S. -L.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Chen, W. -P.; Yang, M.; Shih, C. -Y.] Natl Cent Univ, Lulin Observ, Taipei, Taiwan. [Zhang, X.; Jiang, X.] Natl Astron Observ, Beijing 100012, Peoples R China. [Fu, J. N.] Beijing Normal Univ, Dept Astron, Beijing, Peoples R China. [Seetha, S.; Ashoka, B. N.; Marar, T. M. K.] Indian Space Res Org, Bangalore 560017, Karnataka, India. [Baliyan, K. S.; Vats, H. O.] Phys Res Lab, Ahmadabad 380009, Gujarat, India. [Chernyshev, A. V.] Astron Inst, Tashkent, Uzbekistan. [Ibbetson, P.; Leibowitz, E.; Hemar, S.] Tel Aviv Univ, Wise Observ, IL-69978 Tel Aviv, Israel. [Leibowitz, E.; Hemar, S.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Sergeev, A. V.; Andreev, M. V.] Natl Acad Sci, Main Astron Observ, UA-02225265 Kiev, Ukraine. [Janulis, R.; Meistas, E. G.] Vilnius Univ, Inst Theoret Phys & Astron, Vilnius, Lithuania. [Moskalik, P.; Pajdosz, G.] Copernicus Astron Ctr, Warsaw, Poland. [Baran, A.; Winiarski, M.; Zola, S.; Ogloza, W.] Cracow Pedag Univ, Mt Suhora Observ, Krakow, Poland. [Zola, S.; Siwak, M.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Bognar, Zs.] Konkoly Observ Budapest, H-1525 Budapest, Hungary. [Solheim, J. -E.] Univ Oslo, Inst Theoret Astrophys, NO-0315 Oslo, Norway. [Sefako, R.; Buckley, D.; O'Donoghue, D.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Nagel, T.] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Silvotti, R.; Bruni, I.] INAF Osservatorio Astron Torino, I-10025 Pino Torinese, Italy. [Fremy, J. R.; Chevreton, M.] Observ Paris, LESIA, Meudon, France. [Vauclair, G.; Dolez, N.; Pfeiffer, B.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, UMR5572, Toulouse, France. [Barstow, M. A.] Univ Leicester, Dept Astron, Leicester LE1 7RH, Leics, England. [Creevey, O. L.] Inst Astrofis Canarias, Tenerife, Spain. [Kawaler, S. D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50211 USA. [Clemens, J. C.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. RP Redaelli, M (reprint author), Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. EM maukeyboard@gmail.com RI Kepler, S. O. /H-5901-2012; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Fraga, Luciano/K-9075-2013; Oksala, Mary/G-9902-2014; OI Kepler, S. O. /0000-0002-7470-5703; Silvotti, Roberto/0000-0002-1295-8174; Bruni, Ivan/0000-0002-1560-4590; /0000-0003-0180-8231; Kawaler, Steven/0000-0002-6536-6367 NR 34 TC 8 Z9 8 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 2 BP 1220 EP 1227 DI 10.1111/j.1365-2966.2011.18743.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 805VE UT WOS:000293756300018 ER PT J AU Way, M Nussbaumer, H AF Way, Michael Nussbaumer, Harry TI Lemaitre's Hubble relationship SO PHYSICS TODAY LA English DT Letter C1 [Way, Michael] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Nussbaumer, Harry] ETH, Zurich, Switzerland. RP Way, M (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM michael.j.way@nasa.gov; nussbaumer@astro.phys.ethz.ch RI Way, Michael/D-5254-2012 NR 5 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD AUG PY 2011 VL 64 IS 8 BP 8 EP 8 PG 1 WC Physics, Multidisciplinary SC Physics GA 805ZB UT WOS:000293768500001 ER PT J AU Tsai, M Polk, JD AF Tsai, Mitchell Polk, James D. TI The Hidden Cost of Variability SO ANESTHESIA AND ANALGESIA LA English DT Letter ID NURSES C1 [Tsai, Mitchell] Univ Vermont, Coll Med, Fletcher Allen Hlth Care, Burlington, VT 05405 USA. [Polk, James D.] NASA, Lyndon B Johnson Space Ctr, Space Med Div, Houston, TX 77058 USA. RP Tsai, M (reprint author), Univ Vermont, Coll Med, Fletcher Allen Hlth Care, Burlington, VT 05405 USA. EM mitchell.tsai@vtmednet.org NR 9 TC 3 Z9 3 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0003-2999 J9 ANESTH ANALG JI Anesth. Analg. PD AUG PY 2011 VL 113 IS 2 BP 431 EP 431 DI 10.1213/ANE.0b013e318222030c PG 1 WC Anesthesiology SC Anesthesiology GA 796PQ UT WOS:000293064500045 PM 21788332 ER PT J AU Green, C Johnston, JC Ruthruff, E AF Green, Collin Johnston, James C. Ruthruff, Eric TI Attentional Limits in Memory Retrieval-Revisited SO JOURNAL OF EXPERIMENTAL PSYCHOLOGY-HUMAN PERCEPTION AND PERFORMANCE LA English DT Article DE memory; attention; dual task; psychological refractory period; cognitive bottleneck ID PSYCHOLOGICAL REFRACTORY-PERIOD; DUAL-TASK INTERFERENCE; VISUAL WORD RECOGNITION; LONG-TERM-MEMORY; GREATER AUTOMATICITY; CENTRAL BOTTLENECK; DIVIDED ATTENTION; PARALLEL MEMORY; PERFORMANCE; MODEL AB Carrier and Pashler (1995) concluded-based on locus-of-slack dual-task methodology-that memory retrieval was subject to a central bottleneck. However, this conclusion conflicts with evidence from other lines of research suggesting that memory retrieval proceeds autonomously, in parallel with many other mental processes. In the present experiments we explored the possibility that Carrier and Pashler's conclusions were distorted by use of an experimental method unfavorable to parallel memory retrieval. New locus-of-slack experiments were performed that encouraged parallel memory retrieval strategies with instructions and feedback, along with the use of "preferred" stimulus-response modality mappings. Results from two psychological refractory period experiments showed that the effect of Task 2 recognition difficulty was consistently absorbed into cognitive slack, with both word and picture recognition. We conclude that the memory retrieval stage of recognition tasks can proceed in parallel with central operations of another task, at least under favorable conditions. Our new findings bring results from dual-task locus-of-slack methodology into agreement with other evidence that memory retrieval is not subject to severe, generic central resource limitations. C1 [Green, Collin; Johnston, James C.] NASA, Ames Res Ctr, Human Syst Integrat Div, Moffett Field, CA 94035 USA. [Ruthruff, Eric] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA. RP Green, C (reprint author), NASA, Ames Res Ctr, Human Syst Integrat Div, Mailstop 262-4,Bldg 262,Room 196B,POB 1, Moffett Field, CA 94035 USA. EM collin.b.green@nasa.gov FU National Research Council FX Part of this research was conducted while Collin Green held a National Research Council Research Associate Award at NASA Ames Research Center. Preliminary data from Experiment 1 were presented at the 46th annual meeting of the Psychonomic Society in Toronto, Canada, November 2005. Data from Experiment 2 were presented at the 29th annual meeting of the Cognitive Science Society in Nashville, TN, August 2007. We thank Gordon Logan, Derek Besner, Joel Lachter, Roger Remington, and Shu-Chieh Wu for their insights and comments regarding this work. We thank Jamie Carlson, Naomi Philips, Scott Heckenlively, and Natalya Kurilovich, Shane Sestito, and Eric Landrum for their work in the laboratory and Xander Mathews for his assistance with programming. Thanks to Mark Carrier for providing materials and source code from Carrier and Pashler (1995). NR 66 TC 4 Z9 4 U1 5 U2 10 PU AMER PSYCHOLOGICAL ASSOC PI WASHINGTON PA 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA SN 0096-1523 J9 J EXP PSYCHOL HUMAN JI J. Exp. Psychol.-Hum. Percept. Perform. PD AUG PY 2011 VL 37 IS 4 BP 1083 EP 1098 DI 10.1037/a0023095 PG 16 WC Psychology; Psychology, Experimental SC Psychology GA 800SI UT WOS:000293386700008 PM 21517217 ER PT J AU Stothers, R AF Stothers, Richard TI The Ancient Colour of Saturn SO OBSERVATORY LA English DT Letter C1 NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Stothers, R (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM rstothers@giss.nasa.gov NR 6 TC 3 Z9 3 U1 0 U2 0 PU OBSERVATORY PI OXFORD PA RUTHERFORD APPLETON LAB, CHILTON DIDCOT,, OXFORD OX11 OQX, ENGLAND SN 0029-7704 J9 OBSERVATORY JI Observatory PD AUG PY 2011 VL 131 IS 1223 BP 254 EP 255 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800MM UT WOS:000293365000004 ER PT J AU Hackney, KJ Cook, SB Ploutz-Snyder, LL AF Hackney, Kyle J. Cook, Summer B. Ploutz-Snyder, Lori L. TI Nutrition and Resistance Exercise During Reconditioning From Unloading SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE disuse; reloading; strength training; countermeasures; hypertrophy ID HUMAN SKELETAL-MUSCLE; ADAPTATIONS AB HACKNEY KJ, COOK SB, PLOUTZ-SNYDER LL. Nutrition and resistance exercise during reconditioning from unloading. Aviat Space Environ Med 2011; 82:805-9. Introduction: The recovery of muscle size and function following musculoskeletal unloading has received little attention in the scientific literature. Nutritional factors such as total energy, protein intake, and the pre- and/or post-exercise consumption of amino acid-carbohydrate (AACHO) have been shown to be important for enhancing training adaptations in recreational exercisers. Purpose: A preliminary study was conducted to explore the interaction between nutrition and resistance exercise during reconditioning from unloading. Methods: Muscle CSA, strength, and endurance were measured during a control period following 30 d of unilateral lower limb suspension (Post-ULLS) and after 18 d of reconditioning (ReCon). Six participants consumed either AACHO (979 kJ, 36 g carbohydrate, 22.5 g protein) or placebo (PLAC) prior to resistance exercise (3 d . wk(-1)) during reconditioning. Total daily energy and macronutrient intake were evaluated from dietary journals. Results: From Post-ULLS to ReCon, muscle endurance increased 1.1 +/- 0.6 min in AACHO and decreased 1.3 +/- 0.7 min in PLAC. Muscle CSA (6 +/- 2 vs. 5 +/- 3 cm(2)) and strength (105 +/- 53 vs. 81 +/- 37 N) increased similarly in AACHO and PLAC, respectively. When groups were pooled there was a significant correlation between daily protein intake and the recovery of muscle CSA (r = 0.81). Discussion: Although our findings are preliminary, timing AACHO intake during reconditioning was beneficial for muscular endurance, while overall protein intake was associated with increased muscle size. A systematic evaluation into the synergistic relationship between nutrition and exercise during muscular recovery from prolonged unloading is warranted. C1 [Hackney, Kyle J.] Syracuse Univ, Dept Exercise Sci, Syracuse, NY USA. NASA, Lyndon B Johnson Space Ctr, Exercise Physiol & Countermeasures Project, Houston, TX 77058 USA. RP Hackney, KJ (reprint author), 820 Comstock Ave,Womens Bldg,Rm 201, Syracuse, NY 13244 USA. EM kjhackne@syr.edu FU NASA [NNX08AW71H, NNX06AG26H, NNX079AP79H, NNX079AP79H2]; Joan Burstyn Endowed Foundation, College of Education, Syracuse University FX The authors would like to thank the research participants for their great committed to this project. This investigation was supported in part by NASA Graduate Student Research Program Training Grants (NNX08AW71H, NNX06AG26H, NNX079AP79H, NNX079AP79H2) and the Joan Burstyn Endowed Foundation Research Award, College of Education, Syracuse University. NR 14 TC 0 Z9 0 U1 0 U2 9 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD AUG PY 2011 VL 82 IS 8 BP 805 EP 809 DI 10.3357/ASEM.2892.2011 PG 5 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 797TK UT WOS:000293152800007 PM 21853859 ER PT J AU Druyan, LM AF Druyan, Leonard M. TI Studies of 21st-century precipitation trends over West Africa SO INTERNATIONAL JOURNAL OF CLIMATOLOGY LA English DT Review DE West African monsoon; Sahel droughts; climate change ID CLIMATE-CHANGE; 20TH-CENTURY; NORTHERN; SIMULATIONS; MONSOON; DROUGHT; MODELS; SYSTEM AB West Africa includes a semi-arid zone between the Sahara Desert and the humid Gulf of Guinea coast, approximately between 10 degrees N and 20 degrees N, which is irrigated by summer monsoon rains. This article refers to the region as the Sahel. Rain-fed agriculture is the primary sustenance for Sahel populations, and severe droughts (in the 1970s and 1980s), therefore, have devastating negative societal impacts. The future frequency of Sahel droughts and the evolution of its hydrological balance are therefore of great interest. The article reviews 10 recent research studies that attempt to discover how climate changes will affect the hydrology of the Sahel throughout the 21st century. All 10 studies rely on atmosphere-ocean global climate model (AOGCM) simulations based on a range of greenhouse gas emissions scenarios. Many of the simulations are contained in the Intergovernmental Panel on Climate Change archives for Assessment Reports #3 and #4. Two of the studies use AOGCM data to drive regional climate models. Seven studies make projections for the first half of the 21st century and eight studies make projections for the second half. Some studies make projections of wetter conditions and some predict more frequent droughts, and each describes the atmospheric processes associated with its prediction. Only one study projects more frequent droughts before 2050, and that is only for continent-wide degradation in vegetation cover. The challenge to correctly simulate Sahel rainfall decadal trends is particularly daunting because multiple physical mechanisms compete to drive the trend upwards or downwards. A variety of model deficiencies, regarding the simulation of one or more of these physical processes, taints models' climate change projections. Consequently, no consensus emerges regarding the impact of anticipated greenhouse gas forcing on the hydrology of the Sahel in the second half of the 21st century. Copyright (C) 2010 Royal Meteorological Society C1 [Druyan, Leonard M.] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Druyan, Leonard M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Druyan, LM (reprint author), Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. EM ldruyan@giss.nasa.gov FU National Science Foundation [ATM-0652518]; National Aeronautics and Space Administration (NAMMA) [NNX07A193G]; National Aeronautics and Space Administration FX This review was supported by National Science Foundation grant ATM-0652518, National Aeronautics and Space Administration (NAMMA) grant NNX07A193G and by the National Aeronautics and Space Administration Climate and Earth Observing System Program. The author acknowledges the significant contributions of two anonymous reviewers who made constructive suggestions that improved the review. NR 22 TC 47 Z9 47 U1 9 U2 45 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0899-8418 J9 INT J CLIMATOL JI Int. J. Climatol. PD AUG PY 2011 VL 31 IS 10 BP 1415 EP 1424 DI 10.1002/joc.2180 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 798YH UT WOS:000293247600001 ER PT J AU Kawamoto, H Uchiyama, M Cooper, BL McKay, DS AF Kawamoto, H. Uchiyama, M. Cooper, B. L. McKay, D. S. TI Mitigation of lunar dust on solar panels and optical elements utilizing electrostatic traveling-wave SO JOURNAL OF ELECTROSTATICS LA English DT Article DE Aerospace Engineering; Lunar dust; Traveling wave; Lunar exploration ID CORONA DISCHARGE SYSTEM; IONIC WIND; TRANSPORT; PARTICLES AB A system for removing lunar dust from the surface of solar panels and optical elements is of great importance for lunar exploration. We have developed a method of removing lunar dust using electrostatic traveling-waves generated by four-phase rectangular voltage applied to a transparent conveyer consisting of parallel ITO (indium tin oxide) electrodes printed on a glass substrate. On the basis of basic investigations, we have demonstrated the removal of actual lunar dust. A numerical investigation predicts that the performance will improve in the low-gravity environment on the Moon. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kawamoto, H.; Uchiyama, M.] Waseda Univ, Dept Appl Mech & Aerosp Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Cooper, B. L.] Oceaneering Space Syst, Houston, TX 77058 USA. [McKay, D. S.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Kawamoto, H (reprint author), Waseda Univ, Dept Appl Mech & Aerosp Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan. EM kawa@waseda.jp FU Japan Society for the Promotion of Science FX The authors would like to express their gratitude to Suhei Yamazaki and Keita Shirai (Waseda University) for their support in carrying out the experiments. The lunar soil simulant FJS-1 was provided by Shimiz Corporation. A part of this study was supported by a Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science. NR 27 TC 13 Z9 14 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3886 J9 J ELECTROSTAT JI J. Electrost. PD AUG PY 2011 VL 69 IS 4 BP 370 EP 379 DI 10.1016/j.elstat.2011.04.016 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 799VD UT WOS:000293313300016 ER PT J AU Wasylkiwskyj, W Shiri, S AF Wasylkiwskyj, Wasyl Shiri, Shahram TI Limits on achievable intensity reduction with an optical occulter SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID EARTH-LIKE PLANETS AB Deep shadowing of a normally incident plane wave by an opaque circular disk is partially negated by the formation of a region of strong intensity surrounding the axis passing normally through the disk center. This local intensity enhancement, historically referred to as the Poisson Spot (also known as the Spot of Arago), has been the principal source of difficulties in applications where a significant reduction of the incident intensity is essential. In particular, the NASA Terrestrial Planet Finder's (TPF) mission requires suppression of direct starlight by at least 10 orders of magnitude over the entire visible spectral range. One technique that has been proposed for blocking the direct starlight is to use a rotationally symmetric disk with petallike segments along its boundary. We find that, even though such configurations could, indeed, theoretically provide the desired intensity reduction, they would require unreasonably small radii of curvature at the petals' tips (in the range of micrometers). When the radii of curvature are increased to 3 mm, the intensity reduction drops to a modest 5 to 6 orders of magnitude. Given that for the NASA's TPF mission the proposed occulter radius would be on the order of 25 m, even the 3 mm radius of curvature would be too small for any practical implementation. Further increases of the radius of curvature result in progressively poorer intensity suppression. As an alternative solution we propose an apodized circular disk. We show that with an optimized apodization function, intensity reductions of at least 10 orders of magnitude can be achieved over the entire visible spectral range. Numerical results are presented for parameters appropriate to the NASA TPF mission. (C) 2011 Optical Society of America C1 [Wasylkiwskyj, Wasyl] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20037 USA. [Shiri, Shahram] NASA, Opt Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Wasylkiwskyj, W (reprint author), George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20037 USA. EM wasylkiw@gwu.edu NR 9 TC 7 Z9 7 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD AUG PY 2011 VL 28 IS 8 BP 1668 EP 1676 PG 9 WC Optics SC Optics GA 800AJ UT WOS:000293328600016 PM 21811329 ER PT J AU Petro, N AF Petro, Noah TI PLANETARY SCIENCE More surprises from the Moon SO NATURE GEOSCIENCE LA English DT News Item ID LUNAR; VOLCANISM C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Petro, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM noah.e.petro@nasa.gov RI Petro, Noah/F-5340-2013 NR 6 TC 0 Z9 0 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD AUG PY 2011 VL 4 IS 8 BP 499 EP 501 DI 10.1038/ngeo1225 PG 3 WC Geosciences, Multidisciplinary SC Geology GA 799HJ UT WOS:000293277100005 ER PT J AU Jolliff, BL Wiseman, SA Lawrence, SJ Tran, TN Robinson, MS Sato, H Hawke, BR Scholten, F Oberst, J Hiesinger, H van der Bogert, CH Greenhagen, BT Glotch, TD Paige, DA AF Jolliff, Bradley L. Wiseman, Sandra A. Lawrence, Samuel J. Tran, Thanh N. Robinson, Mark S. Sato, Hiroyuki Hawke, B. Ray Scholten, Frank Oberst, Juergen Hiesinger, Harald van der Bogert, Carolyn H. Greenhagen, Benjamin T. Glotch, Timothy D. Paige, David A. TI Non-mare silicic volcanism on the lunar farside at Compton-Belkovich SO NATURE GEOSCIENCE LA English DT Article ID QUARTZ MONZODIORITE; MOON; CRYSTALLIZATION; GRUITHUISEN; RADIOMETER; SURFACE; SUITE; DOMES; CRUST AB Non-basaltic volcanism is rare on the Moon. The best known examples occur on the lunar nearside in the compositionally evolved Procellarum KREEP terrane. However, there is an isolated thorium-rich area-the Compton-Belkovich thorium anomaly-on the lunar farside for which the origin is enigmatic. Here we use images from the Lunar Reconnaissance Orbiter Cameras, digital terrain models and spectral data from the Diviner lunar radiometer to assess the morphology and composition of this region. We identify a central feature, 25 by 35 km across, that is characterized by elevated topography and relatively high reflectance. The topography includes a series of domes that range from less than 1 km to more than 6 km across, some with steeply sloping sides. We interpret these as volcanic domes formed from viscous lava. We also observe arcuate to irregular circular depressions, which we suggest result from collapse associated with volcanism. We find that the volcanic feature is also enriched in silica or alkali-feldspar, indicative of compositionally evolved, rhyolitic volcanic materials. We suggest that the Compton-Belkovich thorium anomaly represents a rare occurrence of non-basaltic volcanism on the lunar farside. We conclude that compositionally evolved volcanism did occur far removed from the Procellarum KREEP terrane. C1 [Jolliff, Bradley L.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Jolliff, Bradley L.] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA. [Wiseman, Sandra A.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Lawrence, Samuel J.; Tran, Thanh N.; Robinson, Mark S.; Sato, Hiroyuki] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Hawke, B. Ray] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Scholten, Frank; Oberst, Juergen] German Aerosp Ctr DLR, Inst Planetary Res, D-12489 Berlin, Germany. [Hiesinger, Harald; van der Bogert, Carolyn H.] Univ Munster, Inst Planetol, D-48149 Munster, Germany. [Greenhagen, Benjamin T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Glotch, Timothy D.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Paige, David A.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. RP Jolliff, BL (reprint author), Washington Univ, Dept Earth & Planetary Sci, 1 Brookings Dr, St Louis, MO 63130 USA. EM blj@wustl.edu RI Greenhagen, Benjamin/C-3760-2016 FU NASA ESMD; SMD FX The authors thank the LRO, LROC, and Diviner operations teams for their work and NASA ESMD and SMD for support of the LRO mission. The authors thank N. Petro for comments, which led to significant improvements in the manuscript. NR 38 TC 37 Z9 39 U1 2 U2 10 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD AUG PY 2011 VL 4 IS 8 BP 566 EP 571 DI 10.1038/NGEO1212 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 799HJ UT WOS:000293277100022 ER PT J AU Clayton, GC De Marco, O Whitney, BA Babler, B Gallagher, JS Nordhaus, J Speck, AK Wolff, MJ Freeman, WR Camp, KA Lawson, WA Roman-Duval, J Misselt, KA Meade, M Sonneborn, G Matsuura, M Meixner, M AF Clayton, Geoffrey C. De Marco, O. Whitney, B. A. Babler, B. Gallagher, J. S. Nordhaus, J. Speck, A. K. Wolff, M. J. Freeman, W. R. Camp, K. A. Lawson, W. A. Roman-Duval, J. Misselt, K. A. Meade, M. Sonneborn, G. Matsuura, M. Meixner, M. TI THE DUST PROPERTIES OF TWO HOT R CORONAE BOREALIS STARS AND A WOLF-RAYET CENTRAL STAR OF A PLANETARY NEBULA: IN SEARCH OF A POSSIBLE LINK SO ASTRONOMICAL JOURNAL LA English DT Article DE dust, extinction; stars: evolution; stars: mass-loss ID LARGE-MAGELLANIC-CLOUD; HYDROGEN-DEFICIENT CARBON; 2-DIMENSIONAL RADIATIVE-TRANSFER; SPITZER-SPACE-TELESCOPE; WC CENTRAL STARS; T-TAURI STARS; V605 AQUILAE; PROTOSTELLAR ENVELOPES; INFRARED SPECTROGRAPH; HYDROCARBON EMISSION AB We present new Spitzer/IRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy, V348 Sgr, and one lying in the LargeMagellanic Cloud, HV 2671. These two objects may constitute a link between the RCB stars and the late Wolf-Rayet ([WCL]) class of central stars of planetary nebulae (CSPNe), such as CPD -56 degrees 8032, that has little or no hydrogen in their atmospheres. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but shares the traits of hydrogen deficiency and dust formation that define the cooler RCB stars. The [WC] CSPN star, CPD -56 degrees 8032, displays evidence of dual-dust chemistry showing both polycyclic aromatic hydrocarbons (PAHs) and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from that of CPD -56 degrees 8032 and HV 2671. The PAH emission seen strongly in the other two stars is not present. Instead, the spectrum is dominated by a broad emission centered at about 8.2 mu m. This feature is not identified with either PAHs or silicates. Several other cool RCB stars, novae, and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56 degrees 8032 shows emission features that may be associated with C-60. The other two stars do not show evidence of C-60. The different nature of the dust around these stars does not help us in establishing further links that may indicate a common origin. HV 2671 has also been detected by Herschel/PACS and SPIRE. V348 Sgr and CPD -56 degrees 8032 have been detected by AKARI/Far-Infrared Surveyor. These data were combined with Spitzer, IRAS, Two Micron All Sky Survey, and other photometry to produce their spectral energy distributions (SEDs) from the visible to the far-IR. Monte Carlo radiative transfer modeling was used to study the circumstellar dust around these stars. HV 2671 and CPD -56 degrees 8032 require both a flared inner disk with warm dust and an extended diffuse envelope with cold dust to fit their SEDs. The SED of V348 Sgr can be fit with a much smaller disk and envelope. The cold dust in the extended diffuse envelopes inferred around HV 2671 and CPD -56 degrees 8032 may consist of interstellar medium swept up during mass-loss episodes. C1 [Clayton, Geoffrey C.; Gallagher, J. S.; Freeman, W. R.; Camp, K. A.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [De Marco, O.] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia. [Whitney, B. A.; Wolff, M. J.] Space Sci Inst, Boulder, CO 80301 USA. [Whitney, B. A.; Babler, B.; Meade, M.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Gallagher, J. S.] Univ Cincinnati, Raymond Walters Coll, Dept Math Phys & Comp Sci, Blue Ash, OH 45236 USA. [Nordhaus, J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Speck, A. K.] Univ Missouri, Columbia, MO 65211 USA. [Lawson, W. A.] Univ New S Wales, Australian Def Force Acad, Sch PEMS, Canberra, ACT 2610, Australia. [Roman-Duval, J.; Meixner, M.] STScI, Baltimore, MD 21218 USA. [Misselt, K. A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Sonneborn, G.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab Code 665, Greenbelt, MD 20771 USA. [Matsuura, M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Matsuura, M.] Univ Coll London, MSSL, Dorking RH5 6NT, Surrey, England. RP Clayton, GC (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM gclayton@fenway.phys.lsu.edu; orsola@science.mq.edu.au; bwhitney@spacescience.org; brian@astro.wisc.edu; gallagjl@ucmail.uc.edu; nordhaus@astro.princeton.edu; speckan@missouri.edu; mjwolff@spacescience.org; wfreem2@lsu.edu; kcamp5@tigers.lsu.edu; w.lawson@adfa.edu.au; duval@stsci.edu; misselt@as.arizona.edu; meade@astro.wisc.edu; george.sonneborn-1@nasa.gov; mikako.matsuura@ucl.ac.uk; meixner@stsci.edu OI Babler, Brian/0000-0002-6984-5752 FU Spitzer Space Telescope RSA, Caltech/JPL [1287524]; NASA Herschel Science Center, JPL [1381522, 1381650]; National Aeronautics and Space Administration; National Science Foundation; European Space Agency (ESA); PACS team; SPIRE team; Herschel Science Center; NASA Herschel Science Center; PACS/SPIRE instrument control center at CEA-Saclay FX We thank the referee for making suggestions that improved the paper. This work was supported by Spitzer Space Telescope RSA 1287524 issued by Caltech/JPL. We acknowledge financial support from the NASA Herschel Science Center, JPL contract nos. 1381522 and 1381650. We thank Warren Reid and Quentin Parker for providing access to their LMC Ha survey data. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research is based on observations with AKARI, a JAXA project with the participation of ESA. We appreciate the contributions and support from the European Space Agency (ESA), the PACS and SPIRE teams, the Herschel Science Center and the NASA Herschel Science Center (especially A. Barbar and K. Xu), and the PACS/SPIRE instrument control center at CEA-Saclay, which made this work possible. NR 84 TC 17 Z9 17 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2011 VL 142 IS 2 AR 54 DI 10.1088/0004-6256/142/2/54 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 794IH UT WOS:000292888200021 ER PT J AU Fleming, SW Maxted, PFL Hebb, L Stassun, KG Ge, J Cargile, PA Ghezzi, L De Lee, NM Wisniewski, J Gary, B de Mello, GFP Ferreira, L Zhao, B Anderson, DR Wan, XK Hellier, C Guo, PC West, RG Mahadevan, S Pollacco, D Lee, B Cameron, AC van Eyken, JC Skillen, I Crepp, JR Nguyen, DC Kane, SR Paegert, M da Costa, LN Maia, MAG Santiago, BX AF Fleming, Scott W. Maxted, Pierre F. L. Hebb, Leslie Stassun, Keivan G. Ge, Jian Cargile, Phillip A. Ghezzi, Luan De Lee, Nathan M. Wisniewski, John Gary, Bruce Porto de Mello, G. F. Ferreira, Leticia Zhao, Bo Anderson, David R. Wan, Xiaoke Hellier, Coel Guo, Pengcheng West, Richard G. Mahadevan, Suvrath Pollacco, Don Lee, Brian Cameron, Andrew Collier van Eyken, Julian C. Skillen, Ian Crepp, Justin R. Duy Cuong Nguyen Kane, Stephen R. Paegert, Martin da Costa, Luiz Nicolaci Maia, Marcio A. G. Santiago, Basilio X. TI ECLIPSING BINARY SCIENCE VIA THE MERGING OF TRANSIT AND DOPPLER EXOPLANET SURVEY DATA-A CASE STUDY WITH THE MARVELS PILOT PROJECT AND SuperWASP SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: eclipsing; binaries: spectroscopic ID EXTERNALLY DISPERSED INTERFEROMETER; STELLAR ATMOSPHERE MODELS; LIMB-DARKENING LAW; LOW-MASS STARS; LIGHT CURVES; ECHELLE SPECTROGRAPH; RADIAL-VELOCITIES; SURFACE GRAVITIES; MAGNETIC ACTIVITY; RESONANCE LINES AB Exoplanet transit and Doppler surveys discover many binary stars during their operation that can be used to conduct a variety of ancillary science. Specifically, eclipsing binary stars can be used to study the stellar mass-radius relationship and to test predictions of theoretical stellar evolution models. By cross-referencing 24 binary stars found in the MARVELS Pilot Project with SuperWASP photometry, we find two new eclipsing binaries, TYC 0272-00458-1 and TYC 1422-01328-1, which we use as case studies to develop a general approach to eclipsing binaries in survey data. TYC0272-00458-1 is a single-lined spectroscopic binary for which we calculate amass of the secondary and radii for both components using reasonable constraints on the primary mass through several different techniques. For a primary mass of M-1 = 0.92 +/- 0.1 M-circle dot, we find M-2 = 0.610 +/- 0.036 M-circle dot, R-1 = 0.932 +/- 0.076 R-circle dot, and R-2 = 0.559 +/- 0.102R(circle dot), and find that both stars have masses and radii consistent with model predictions. TYC 1422-01328-1 is a triple-component system for which we can directly measure the masses and radii of the eclipsing pair. We find that the eclipsing pair consists of an evolved primary star (M-1 = 1.163 +/- 0.034 M-circle dot, R-1 = 2.063 +/- 0.058R(circle dot)) and a G-type dwarf secondary (M-2 = 0.905 +/- 0.067 M-circle dot, R-2 = 0.887 +/- 0.037R(circle dot)). We provide the framework necessary to apply this analysis to much larger data sets C1 [Fleming, Scott W.; Ge, Jian; De Lee, Nathan M.; Zhao, Bo; Wan, Xiaoke; Guo, Pengcheng; Lee, Brian; van Eyken, Julian C.; Crepp, Justin R.; Duy Cuong Nguyen; Kane, Stephen R.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Maxted, Pierre F. L.; Anderson, David R.; Hellier, Coel] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Hebb, Leslie; Stassun, Keivan G.; Cargile, Phillip A.; Gary, Bruce; Paegert, Martin] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Stassun, Keivan G.] Fisk Univ, Dept Phys, Nashville, TN 37208 USA. [Ghezzi, Luan; da Costa, Luiz Nicolaci; Maia, Marcio A. G.] Observ Nacl, BR-20921400 Rio De Janeiro, Brazil. [Ghezzi, Luan; Porto de Mello, G. F.; Ferreira, Leticia; da Costa, Luiz Nicolaci; Maia, Marcio A. G.; Santiago, Basilio X.] Lab Interinst & Astron LIneA, BR-20921400 Rio De Janeiro, Brazil. [Wisniewski, John] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Porto de Mello, G. F.; Ferreira, Leticia] Univ Fed Rio de Janeiro, Observ Valongo, BR-20080090 Rio De Janeiro, Brazil. [West, Richard G.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Mahadevan, Suvrath] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Mahadevan, Suvrath] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Pollacco, Don] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Cameron, Andrew Collier] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews, Fife, Scotland. [van Eyken, Julian C.; Kane, Stephen R.] NASA, Exoplanet Sci Inst, CALTECH, Pasadena, CA 91125 USA. [Skillen, Ian] Isaac Newton Grp Telescopes, E-38700 Santa Cruz De La Palma, Spain. [Crepp, Justin R.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Santiago, Basilio X.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. RP Fleming, SW (reprint author), Univ Florida, Dept Astron, Gainesville, FL 32611 USA. EM scfleming@astro.ufl.edu RI Kane, Stephen/B-4798-2013; Tecnologias espaciai, Inct/I-2415-2013; OI Fleming, Scott/0000-0003-0556-027X; Cameron, Andrew/0000-0002-8863-7828 FU PAPDRJ-CAPES/FAPERJ; CAPES; CNPq [476909/2006-6, 474972/2009-7]; FAPERJ [APQ1/26/170.687/2004]; W. M. Keck Foundation; NSF [AST-0705139]; NASA [NNX07AP14G]; University of Florida; Consortium Universities; UK's Science and Technology Facilities Council; Alfred P. Sloan Foundation; U.S. Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; Pennsylvania State University; Eberly College of Science; Pennsylvania Space Grant Consortium FX We thank Roger Cohen for useful discussions on theoretical isochrones. L. G. thanks Dr. Simone Daflon and Dr. Herman Hensberge for the helpful discussions. L. G. acknowledges financial support provided by the PAPDRJ-CAPES/FAPERJ Fellowship. L. Dutra-Ferreira acknowledges financial support provided by CAPES fellowship. G. F. P. M. acknowledges financial support from CNPq grant nos. 476909/2006-6 and 474972/2009-7, plus a FAPERJ grant no. APQ1/26/170.687/2004. Funding for the multi-object Doppler instrument was provided by the W. M. Keck Foundation. The pilot survey was funded by NSF with grant AST-0705139, NASA with grant NNX07AP14G and the University of Florida. The SuperWASP Consortium consists of astronomers primarily from the Queen's University Belfast, St. Andrews, Keele, Leicester, The Open University, Isaac Newton Group La Palma, and Instituto de Astrofisica de Canarias. The SuperWASP Cameras were constructed and operated with funds made available from Consortium Universities and the UK's Science and Technology Facilities Council. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. Based on observations with the SDSS 2.5 m telescope. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. This work is based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. This work was conducted in part using the resources of the Advanced Computing Center for Research and Education at Vanderbilt University, Nashville, TN. NR 70 TC 1 Z9 1 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2011 VL 142 IS 2 AR 50 DI 10.1088/0004-6256/142/2/50 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 794IH UT WOS:000292888200017 ER PT J AU Gelino, CR Kirkpatrick, JD Cushing, MC Eisenhardt, PR Griffith, RL Mainzer, AK Marsh, KA Skrutskie, MF Wright, EL AF Gelino, Christopher R. Kirkpatrick, J. Davy Cushing, Michael C. Eisenhardt, Peter R. Griffith, Roger L. Mainzer, Amanda K. Marsh, Kenneth A. Skrutskie, Michael F. Wright, Edward L. TI WISE BROWN DWARF BINARIES: THE DISCOVERY OF A T5+T5 AND A T8.5+T9 SYSTEM SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: general; brown dwarfs; stars: fundamental parameters; stars: individual (WISEPA J045853.90+643452.6; WISEPA J075003.78+272544.8; WISEPA J132233.67-234017.0; WISEPA J161441.46+173935.3; WISEPA J161705.75+180714.0; WISEPA J162725.64+325524.1; WISEPA J165311.05+444423.0; WISEPA J174124.27+255319.6; WISEPA J184124.73+700038.0); stars: low-mass ID STAR ADAPTIVE OPTICS; INFRARED SURVEY EXPLORER; T-DWARFS; SPECTRAL CLASSIFICATION; DYNAMICAL MASS; FILTER SET; TRANSITION; TEMPERATURE; ATMOSPHERES; PERFORMANCE AB The multiplicity properties of brown dwarfs are critical empirical constraints for formation theories, while multiples themselves provide unique opportunities to test evolutionary and atmospheric models and examine empirical trends. Studies using high-resolution imaging cannot only uncover faint companions, but they can also be used to determine dynamical masses through long-term monitoring of binary systems. We have begun a search for the coolest brown dwarfs using preliminary processing of data from the Wide-field Infrared Survey Explorer and have confirmed many of the candidates as late-type T dwarfs. In order to search for companions to these objects, we are conducting observations using the Laser Guide Star Adaptive Optics system on Keck II. Here we present the first results of that search, including a T5 binary with nearly equal mass components and a faint companion to a T8.5 dwarf with an estimated spectral type of T9. C1 [Gelino, Christopher R.; Kirkpatrick, J. Davy; Griffith, Roger L.; Marsh, Kenneth A.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Cushing, Michael C.; Eisenhardt, Peter R.; Mainzer, Amanda K.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Skrutskie, Michael F.] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Wright, Edward L.] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90095 USA. RP Gelino, CR (reprint author), CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. FU W. M. Keck Foundation; National Aeronautics and Space Administration; NASA FX Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.; The authors acknowledge telescope operators Julie Rivera, Heather Hershley, and Gary Punawai, and instrument specialists Al Conrad, Marc Kassis, and Scott Dahm at Keck, for their assistance during the observations. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research was supported in part by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency's scientific partnership with the California Institute of Technology and the University of California. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 39 TC 26 Z9 26 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2011 VL 142 IS 2 AR 57 DI 10.1088/0004-6256/142/2/57 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 794IH UT WOS:000292888200024 ER PT J AU Petrov, L Kovalev, YY Fomalont, EB Gordon, D AF Petrov, L. Kovalev, Y. Y. Fomalont, E. B. Gordon, D. TI THE VERY LONG BASELINE ARRAY GALACTIC PLANE SURVEY-VGaPS SO ASTRONOMICAL JOURNAL LA English DT Article DE astrometry; catalogs; surveys ID VLBA CALIBRATOR SURVEY; CELESTIAL REFERENCE FRAME; LARGE-AREA TELESCOPE; INTERFEROMETRY; ASTROMETRY; SPECTRA; PROGRAM; CATALOG; OBJECTS; NUCLEI AB This paper presents accurate absolute positions from a 24 GHz Very Long Baseline Array (VLBA) search for compact extragalactic sources in an area where the density of known calibrators with precise coordinates is low. The goals were to identify additional sources suitable for use as phase calibrators for galactic sources, determine their precise positions, and produce radio images. In order to achieve these goals, we developed a new software package, PIMA, for determining group delays from wide-band data with much lower detection limits. With the use of PIMA, we have detected 327 sources out of 487 targets observed in three 24 hr VLBA experiments. Among the 327 detected objects, 176 are within 10. of the Galactic plane. This VGaPS catalog of source positions, plots of correlated flux density versus projected baseline length, contour plots, as well as weighted CLEAN images, and calibrated visibility data are available on the Web in FITS format. Approximately one-half of objects from the 24 GHz catalog were observed at dual-band 8.6 GHz and 2.3 GHz experiments. Position differences at 24 GHz versus 8.6/2.3 GHz for all but two objects on average are strictly within reported uncertainties. We found that for two objects with complex structures, positions at different frequencies correspond to different components of a source. C1 [Petrov, L.] NASA, Goddard Space Flight Ctr, ADNET Syst Inc, Greenbelt, MD 20771 USA. [Kovalev, Y. Y.] PN Lebedev Phys Inst, Ctr Astro Space, Moscow 117997, Russia. [Kovalev, Y. Y.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Fomalont, E. B.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Gordon, D.] NASA, Goddard Space Flight Ctr, NVI Inc, Greenbelt, MD 20771 USA. RP Petrov, L (reprint author), NASA, Goddard Space Flight Ctr, ADNET Syst Inc, Greenbelt, MD 20771 USA. EM Leonid.Petrov@lpetrov.net; yyk@asc.rssi.ru; efomalon@nrao.edu; David.Gordon-1@nasa.gov RI Kovalev, Yuri/J-5671-2013 OI Kovalev, Yuri/0000-0001-9303-3263 FU JSPS [S-09143]; Russian Foundation for Basic Research [08-02-00545, 11-02-00368]; NASA FX We thank Leonid Kogan for fruitful discussions about hidden secrets of correlators. We used the data set MAI6NPANA provided by the NASA/Global Modeling and Assimilation Office (GMAO) in the framework of the MERRA atmospheric reanalysis project. This project was started when Y.Y.K. was working as a Jansky Fellow of the National Radio Astronomy Observatory in Green Bank. Y.Y.K. was supported in part by the JSPS Invitation Fellowship for Research in Japan (S-09143) and Russian Foundation for Basic Research (08-02-00545 and 11-02-00368). The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The authors made use of the database CATS of the Special Astrophysical Observatory (Verkhodanov et al. 2005). This research has made use of the NASA/IPAC Extragalactic Database (NED; Eichhorn et al. 2002) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the NASA. NR 49 TC 28 Z9 28 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2011 VL 142 IS 2 AR 35 DI 10.1088/0004-6256/142/2/35 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 794IH UT WOS:000292888200002 ER PT J AU van Eyken, JC Ciardi, DR Rebull, LM Stauffer, JR Akeson, RL Beichman, CA Boden, AF von Braun, K Gelino, DM Hoard, DW Howell, SB Kane, SR Plavchan, P Ramirez, SV Bloom, JS Cenko, SB Kasliwal, MM Kulkarni, SR Law, NM Nugent, PE Ofek, EO Poznanski, D Quimby, RM Grillmair, CJ Laher, R Levitan, D Mattingly, S Surace, JA AF van Eyken, Julian C. Ciardi, David R. Rebull, Luisa M. Stauffer, John R. Akeson, Rachel L. Beichman, Charles A. Boden, Andrew F. von Braun, Kaspar Gelino, Dawn M. Hoard, D. W. Howell, Steve B. Kane, Stephen R. Plavchan, Peter Ramirez, Solange V. Bloom, Joshua S. Cenko, S. Bradley Kasliwal, Mansi M. Kulkarni, Shrinivas R. Law, Nicholas M. Nugent, Peter E. Ofek, Eran O. Poznanski, Dovi Quimby, Robert M. Grillmair, Carl J. Laher, Russ Levitan, David Mattingly, Sean Surace, Jason A. TI THE PALOMAR TRANSIENT FACTORY ORION PROJECT: ECLIPSING BINARIES AND YOUNG STELLAR OBJECTS SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: close; binaries: eclipsing; open clusters and associations: individual (25 Ori); planets and satellites: detection; stars: pre-main sequence; techniques: photometric ID ABSOLUTE MAGNITUDE CALIBRATIONS; SPITZER-SPACE-TELESCOPE; MAJORIS TYPE BINARIES; SKY SURVEY 2MASS; LOW-MASS; CONTACT BINARIES; MONITOR PROJECT; ADDITIONAL COMPONENTS; DETACHED BINARIES; ANGULAR-MOMENTUM AB The Palomar Transient Factory (PTF) Orion project is one of the experiments within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide (3 degrees.5 x 2 degrees.3) field of view available using the PTF camera installed at the Palomar 48 inch telescope, 40 nights were dedicated in 2009 December to 2010 January to perform continuous high-cadence differential photometry on a single field containing the young (7-10 Myr) 25 Ori association. Little is known empirically about the formation of planets at these young ages, and the primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper, we describe the survey and the data reduction pipeline, and present some initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which are good candidate 25 Ori or Orion OB1a association members. Of these, two are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include six of the candidate young systems. Forty-five of the binary systems are close (mainly contact) systems, and one of these shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 +/- 0.0000071 days, with flat-bottomed primary eclipses, and a derived distance that appears consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known (CVSO 35) and one previously reported as a candidate weak-line T-Tauri star (SDSS J052700.12+010136.8). C1 [van Eyken, Julian C.; Ciardi, David R.; Akeson, Rachel L.; Beichman, Charles A.; von Braun, Kaspar; Gelino, Dawn M.; Kane, Stephen R.; Plavchan, Peter; Ramirez, Solange V.] NASA, Exoplanet Sci Inst, CALTECH, Pasadena, CA 91125 USA. [Rebull, Luisa M.; Stauffer, John R.; Hoard, D. W.] Spitzer Sci Ctr Caltech, Pasadena, CA 91125 USA. [Boden, Andrew F.] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. [Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Bloom, Joshua S.; Cenko, S. Bradley; Poznanski, Dovi] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Ofek, Eran O.; Quimby, Robert M.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Law, Nicholas M.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Nugent, Peter E.; Poznanski, Dovi] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Grillmair, Carl J.; Laher, Russ; Surace, Jason A.] CALTECH, Jet Prop Lab, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Levitan, David] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Mattingly, Sean] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP van Eyken, JC (reprint author), NASA, Exoplanet Sci Inst, CALTECH, Pasadena, CA 91125 USA. EM vaneyken@ipac.caltech.edu RI Kane, Stephen/B-4798-2013; OI Rebull, Luisa/0000-0001-6381-515X; Ciardi, David/0000-0002-5741-3047 FU Richard and Rhoda Goldman Fund; National Aeronautics and Space Administration (NASA) [NNX10AI21G, NNX1OA057G]; National Science Foundation (NSF) [AST-0908886]; JPL/Caltech FX The authors thank Cesar Briceno for providing the reference stars for zero-point calibration, and for his advice regarding field selection; and Tim Lister, Rachel Street, Andrej Prsa, David Bradstreet, Ed Guinan, and Adam Krauss, for valuable discussions and input. S. B. C. wishes to acknowledge generous support from Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund, National Aeronautics and Space Administration (NASA)/Swift grant NNX10AI21G, NASA/Fermi grant NNX1OA057G, and National Science Foundation (NSF) grant AST-0908886. Observations obtained with the Samuel Oschin Telescope at the Palomar Observatory as part of the PTF project, a scientific collaboration between the California Institute of Technology, Columbia University, Las Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, the University of Oxford, and the Weizmann Institute of Science. This publication makes use of data products from the Two Micron All-Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This work is based in part on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research has made use of the NASA/IPAC/NExScI Star and Exoplanet Database, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France. Support for this work was provided by an award issued by JPL/Caltech. NR 71 TC 20 Z9 20 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2011 VL 142 IS 2 AR 60 DI 10.1088/0004-6256/142/2/60 PG 35 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 794IH UT WOS:000292888200027 ER PT J AU Loughner, CP Allen, DJ Pickering, KE Zhang, DL Shou, YX Dickerson, RR AF Loughner, Christopher P. Allen, Dale J. Pickering, Kenneth E. Zhang, Da-Lin Shou, Yi-Xuan Dickerson, Russell R. TI Impact of fair-weather cumulus clouds and the Chesapeake Bay breeze on pollutant transport and transformation SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Community Multiscale Air Quality (CMAQ) model; Horizontal grid resolution; Fair-weather cumulus clouds; Sulfur dioxide; Bay breeze; Ozone ID CMAQ MODELING SYSTEM; NONLOCAL CLOSURE-MODEL; BOUNDARY-LAYER; AIR-POLLUTION; UNITED-STATES; PART I; OZONE; RESOLUTION; SENSITIVITY; METEOROLOGY AB Two fine-scale meteorological processes, fair-weather cumulus cloud development and a bay breeze, are examined along with their impacts on air chemistry. The impact of model resolution on fair-weather cumulus cloud development, transport of pollutants through clouds, sulfur dioxide to sulfate conversion in clouds, and the development of the Chesapeake Bay breeze are examined via 13.5, 4.5, 1.5, and 0.5 km resolution simulations covering the Washington - Baltimore area. Results show that as the resolution increases, more pollutants are transported aloft through fair-weather cumulus clouds causing an increase in the rate of oxidation of sulfur dioxide to sulfate aerosols. The high resolution model runs more nearly match observations of a local pollutant maximum near the top of the boundary layer and produce an increase in boundary layer venting with subsequent pollutant export. The sensitivity of sulfur dioxide to sulfate conversion rates to cloud processing is examined by comparing sulfur dioxide and sulfate concentrations from simulations that use two different methods to diagnose clouds. For this particular event, a diagnostic method produces the most clouds and the most realistic cloud cover, has the highest oxidation rates, and generates sulfur dioxide and sulfate concentrations that agree best with observations. The differences between the simulations show the importance of accurately simulating clouds in sulfate simulations. The fidelity of the model's representation of the bay breeze is examined as a function of resolution. As the model resolution increases, a larger temperature gradient develops along the shoreline of the Chesapeake Bay causing the bay breeze to form sooner, push farther inland, and loft more pollutants upward. This stronger bay breeze results in low-level convergence, a buildup of near surface ozone over land and a decrease in the land-to-sea flux of ozone and ozone precursors as seen in measurements. The resulting 8 h maximum ozone concentration over the Bay is 10 ppbv lower in the 0.5 km simulation than in the 13.5 km simulation. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Loughner, Christopher P.; Allen, Dale J.; Zhang, Da-Lin; Dickerson, Russell R.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Pickering, Kenneth E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Shou, Yi-Xuan] China Meteorol Adm, Natl Satellite Meteorol Ctr, Beijing 100081, Peoples R China. RP Loughner, CP (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. EM loughner@atmos.umd.edu RI Zhang, Da-Lin/F-2634-2010; Pickering, Kenneth/E-6274-2012; Dickerson, Russell/F-2857-2010; Allen, Dale/F-7168-2010; OI Zhang, Da-Lin/0000-0003-1725-283X; Dickerson, Russell/0000-0003-0206-3083; Allen, Dale/0000-0003-3305-9669; Loughner, Christopher/0000-0002-3833-2014 FU NASA [NNG066J046, NNX06AF57H] FX This work was funded by NASA grant NNG066J046 and NASA Earth System Science Fellowship NNX06AF57H. Daewon Byun generously provided profound insight into the workings of CMAQ that helped make this research possible. Contributions from Dr. Jeff Stehr are gratefully acknowledged. Observations were supported by MDE. NR 53 TC 29 Z9 29 U1 0 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD AUG PY 2011 VL 45 IS 24 BP 4060 EP 4072 DI 10.1016/j.atmosenv.2011.04.003 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 796IU UT WOS:000293045800017 ER PT J AU Smith, TB Thomassen, HA Freedman, AH Sehgal, RNM Buermann, W Saatchi, S Pollinger, J Mila, B Pires, D Valkiunas, G Wayne, RK AF Smith, Thomas B. Thomassen, Henri A. Freedman, Adam H. Sehgal, Ravinder N. M. Buermann, Wolfgang Saatchi, Sassan Pollinger, John Mila, Borja Pires, Debra Valkiunas, Gediminas Wayne, Robert K. TI Patterns of divergence in the olive sunbird Cyanomitra olivacea (Aves: Nectariniidae) across the African rainforest-savanna ecotone SO BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY LA English DT Article DE allopatry; diversification; ecological speciation; ecotone; parapatry; remote sensing ID GENE FLOW; ECOLOGICAL SPECIATION; PARAPATRIC SPECIATION; POPULATION-STRUCTURE; BIODIVERSITY; EVOLUTION; BIRD; DIVERSIFICATION; DIFFERENTIATION; STATISTICS AB In the debate over modes of vertebrate diversification in tropical rainforests, two competing hypotheses of speciation predominate: those that emphasize the role of geographical isolation during glacial periods and those that stress the role of ecology and diversifying selection across ecotones or environmental gradients. To investigate the relative roles of selection versus isolation in refugia, we contrasted genetic and morphologic divergence of the olive sunbird (Cyanomitra olivacea) at 18 sites (approximately 200 individuals) across the forest-savanna ecotone of Central Africa in a region considered to have harboured three hypothesized refugia during glacial periods. Habitats were characterized using bioclimatic and satellite remote-sensing data. We found relatively high levels of gene flow between ecotone and forest populations and between refugia. Consistent with a pattern of divergence-with-gene-flow, we found morphological characters to be significantly divergent across the gradient [forest versus ecotone (mean +/- SD): wing length 60.47 +/- 1.81 mm versus 62.18 +/- 1.35 mm; tarsus length 15.51 +/- 0.82 mm versus 16.00 +/- 0.57 mm; upper mandible length 21.77 +/- 1.09 mm versus 23.19 +/- 0.98 mm, respectively]. Within-habitat comparisons across forest and ecotone sites showed no significant differences in morphology. The results show that divergence in morphological traits is tied to environmental variables across the gradient and is occurring despite gene flow. The pattern of divergence-with-gene-flow found is similar to that described for other rainforest species across the gradient. These results suggest that neither refugia, nor isolation-by-distance have played a major role in divergence in the olive sunbird, although ecological differences along the forest and savanna ecotone may impose significant selection pressures on the phenotype and potentially be important in diversification. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103, 821-835. C1 [Smith, Thomas B.; Freedman, Adam H.; Pollinger, John; Mila, Borja; Pires, Debra; Wayne, Robert K.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. [Smith, Thomas B.; Thomassen, Henri A.; Freedman, Adam H.; Sehgal, Ravinder N. M.; Buermann, Wolfgang; Saatchi, Sassan; Pollinger, John; Mila, Borja; Pires, Debra; Valkiunas, Gediminas; Wayne, Robert K.] Univ Calif Los Angeles, Ctr Trop Res, Inst Environm & Sustainabil, Los Angeles, CA 90095 USA. [Thomassen, Henri A.] Univ Tubingen, Inst Evolut & Ecol, D-72076 Tubingen, Germany. [Sehgal, Ravinder N. M.] San Francisco State Univ, Dept Biol, San Francisco, CA 94132 USA. [Saatchi, Sassan] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Mila, Borja] CSIC, Museo Nacl Ciencias Nat, E-28006 Madrid, Spain. [Valkiunas, Gediminas] Nat Res Ctr, Inst Ecol, LT-08412 Vilnius, Lithuania. RP Smith, TB (reprint author), Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. EM tbsmith@ucla.edu RI SEHGAL, Ravinder/F-9216-2010; OI Freedman, Adam /0000-0003-4714-3925; SEHGAL, Ravinder/0000-0002-5255-4641; Mila, Borja/0000-0002-6446-0079 FU National Geographic Society; National Environmental Research Council; National Science Foundation [DEB-9726425, IRCEB9977072] FX We thank the governments of the Republic of Cameroon and Equatorial Guinea for permission to conduct the field research. This research was supported by grants from the National Geographic Society, National Environmental Research Council, and the National Science Foundation DEB-9726425 and IRCEB9977072 to T. B. S. T. B. S. conceived the study and collected and took the lead in analyzing the data and writing the manuscript; H. A. T. conducted the GDM analysis; A. M. performed the demographic analysis; R.N.M.S. and G. V. assisted with the field work; J.P., B. M., D. P., and R. K. W. assisted with the molecular genetic analysis; and W. B. and S. S. compiled the remote sensing data. All authors contributed to the writing of the manuscript. NR 70 TC 14 Z9 14 U1 6 U2 41 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0024-4066 J9 BIOL J LINN SOC JI Biol. J. Linnean Soc. PD AUG PY 2011 VL 103 IS 4 BP 821 EP 835 DI 10.1111/j.1095-8312.2011.01674.x PG 15 WC Evolutionary Biology SC Evolutionary Biology GA 794AD UT WOS:000292865000006 ER PT J AU Goossens, S Matsumoto, K Rowlands, DD Lemoine, FG Noda, H Araki, H AF Goossens, S. Matsumoto, K. Rowlands, D. D. Lemoine, F. G. Noda, H. Araki, H. TI Orbit determination of the SELENE satellites using multi-satellite data types and evaluation of SELENE gravity field models SO JOURNAL OF GEODESY LA English DT Article DE Orbit determination; Lunar satellite orbits; Lunar gravity; Laser altimetry crossovers ID LASER-ALTIMETER; DIFFERENTIAL VLBI; LUNAR; MISSION; KAGUYA AB The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18 m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether 1-day data overlaps or 1-day predictions are used. C1 [Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.] Natl Astron Observ Japan, RISE Project, Oshu, Iwate 0230861, Japan. [Rowlands, D. D.; Lemoine, F. G.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. RP Goossens, S (reprint author), Natl Astron Observ Japan, RISE Project, 2-12 Hoshigaoka, Oshu, Iwate 0230861, Japan. EM sander@miz.nao.ac.jp RI Rowlands, David/D-2751-2012; Lemoine, Frank/D-1215-2013; Goossens, Sander/K-2526-2015 OI Goossens, Sander/0000-0002-7707-1128 FU Japan Society for the Promotion of Science [20244073] FX We would like to express our thanks to the entire staff of the SELENE project. This work benefited from a Grant-in-Aid for Scientific Research (A) (No. 20244073) from the Japan Society for the Promotion of Science that was granted to Sho Sasaki of RISE Project, NAOJ. Rune Floberghagen (ESA) and Oliver Montenbruck (DLR) are thanked for the use of the LP Weilheim tracking data. We acknowledge three anonymous reviewers for their constructive comments. All figures were drawn using the free software package GMT (Wessel and Smith 1991). NR 41 TC 15 Z9 19 U1 2 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 J9 J GEODESY JI J. Geodesy PD AUG PY 2011 VL 85 IS 8 BP 487 EP 504 DI 10.1007/s00190-011-0446-2 PG 18 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 795UT UT WOS:000293002100003 ER PT J AU Sibthorpe, A Bertiger, W Desai, SD Haines, B Harvey, N Weiss, JP AF Sibthorpe, Ant Bertiger, Willy Desai, Shailen D. Haines, Bruce Harvey, Nate Weiss, Jan P. TI An evaluation of solar radiation pressure strategies for the GPS constellation SO JOURNAL OF GEODESY LA English DT Article DE Solar radiation pressure (SRP); Satellite orbits; IGS; Final combination; GPS ID GLOBAL-POSITIONING-SYSTEM; GEODETIC APPLICATIONS; LOADING DATA; MODEL; SATELLITES; RESOLUTION; SERVICE AB The subtle effects of different Global Positioning System (GPS) satellite force models are becoming apparent now that mature processing strategies are reaching new levels of accuracy and precision. For this paper, we tested several approaches to solar radiation pressure (SRP) modeling that are commonly used by International GNSS Service (IGS) analysis centers. These include the GPS Solar Pressure Model (GSPM; Bar-Sever and Kuang in The Interplanetary Network Progress Report 42-160, 2005) and variants of the so-called DYB model (Springer et al. in Adv Space Res 23:673-676, 1999). Our results show that currently observed differences between GPS orbit solutions from the various IGS analysis centers are in large part explained by differences between their respective approaches to modeling SRP. DYB-based strategies typically generate orbit solutions that have the smallest differences with respect to the IGS final combined solution, largely because the DYB approach is most commonly used by the contributing analysis centers. However, various internal and external metrics, including ambiguity resolution statistics and satellite laser ranging observations, support continued use of the GSPM-based approach for precise orbit determination of the GPS constellation, at least when using the GIPSY-OASIS software. C1 [Sibthorpe, Ant; Bertiger, Willy; Desai, Shailen D.; Haines, Bruce; Harvey, Nate; Weiss, Jan P.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Sibthorpe, A (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM anthony.j.sibthorpe@jpl.nasa.gov RI Sibthorpe, Ant/C-1940-2012 FU California Institute of Technology; National Aeronautics and Space Administration FX The research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology ((c) 2010 California Institute of Technology, government sponsorship acknowledged), under a contract with the National Aeronautics and Space Administration. Our thanks go to Gerd Gendt and Tim Springer for providing additional information about the solar radiation pressure modeling and estimation strategies used by GFZ and ESA, respectively. We are grateful to the IGS for making available their final combined orbit products (Dowet al. 2009), Minkang Cheng, Da Kuang, Yoaz Bar-Sever and the four anonymous reviewers who helped to improve this article. NR 39 TC 8 Z9 9 U1 1 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 EI 1432-1394 J9 J GEODESY JI J. Geodesy PD AUG PY 2011 VL 85 IS 8 BP 505 EP 517 DI 10.1007/s00190-011-0450-6 PG 13 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 795UT UT WOS:000293002100004 ER PT J AU Plante, I AF Plante, Ianik TI A Monte-Carlo step-by-step simulation code of the non-homogeneous chemistry of the radiolysis of water and aqueous solutions. Part I: theoretical framework and implementation SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Article ID RADIATION-INDUCED SPURS; LIQUID WATER; SMOLUCHOWSKI EQUATION; PERMITTIVITY SOLVENTS; STOCHASTIC SIMULATION; ELECTRON TRACKS; PROTON TRACKS; DIFFUSION; KINETICS; RECOMBINATION AB The importance of the radiolysis of water in irradiation of biological systems has motivated considerable theoretical and experimental work in the radiation chemistry of water and aqueous solutions. In particular, Monte-Carlo simulations of radiation track structure and non-homogeneous chemistry have greatly contributed to the understanding of experimental results in radiation chemistry of heavy ions. Actually, most simulations of the non-homogeneous chemistry are done using the Independent Reaction Time (IRT) method, a very fast technique. The main limitation of the IRT method is that the positions of the radiolytic species are not calculated as a function of time, which is needed to simulate the irradiation of more complex systems. Step-by-step (SBS) methods, which are able to provide such information, have been used only sparsely because these are time consuming in terms of calculation. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry. In the present paper, the first of a series of two, the SBS method is reviewed in detail. To these ends, simulation of diffusion of particles and chemical reactions in aqueous solutions is reviewed, and implementation of the program is discussed. Simulation of model systems is then performed to validate the adequacy of stepwise diffusion and reaction schemes. In the second paper, radiochemical yields of simulated radiation tracks calculated by the SBS program in different conditions of LET, pH, and temperature are compared with results from the IRT program and experimental data. C1 [Plante, Ianik] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Plante, Ianik] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. RP Plante, I (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM Ianik.Plante-1@nasa.gov FU National Science and Engineering Research Council of Canada; Canadian Space Agency FX Most of this work was done during the PhD program of the author under the supervision of Prof. Jean-Paul Jay-Gerin at the University of Sherbrooke. The author would like to thank Profs. Luc Devroye and Razi Naqvi, and Dr. Francis A. Cucinotta for useful discussions. The help of the Center for Scientific Computing of the University of Sherbrooke is greatly acknowledged. The author would also like to thank the National Science and Engineering Research Council of Canada and the Canadian Space Agency for granting this work. NR 46 TC 11 Z9 11 U1 0 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0301-634X J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD AUG PY 2011 VL 50 IS 3 BP 389 EP 403 DI 10.1007/s00411-011-0367-8 PG 15 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 794VV UT WOS:000292930300008 PM 21562854 ER PT J AU Plante, I AF Plante, Ianik TI A Monte-Carlo step-by-step simulation code of the non-homogeneous chemistry of the radiolysis of water and aqueous solutions-Part II: calculation of radiolytic yields under different conditions of LET, pH, and temperature SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Article ID FERROUS SULFATE DOSIMETER; LET ION RADIOLYSIS; LIQUID WATER; PULSE-RADIOLYSIS; RADIATION-CHEMISTRY; MOLECULAR YIELDS; ELECTRON RADIOLYSIS; HYDRATED ELECTRON; SOLVATED ELECTRON; TRANSIENT YIELDS AB The importance of the radiolysis of water in the initial events following irradiation of biological systems has motivated considerable theoretical and experimental work in the field of radiation chemistry of water and aqueous systems. These studies include Monte-Carlo simulations of the radiation track structure and of the non-homogeneous chemical stage, which have been successfully used to calculate the yields of radiolytic species (H-center dot, (OH)-O-center dot, H-2, H2O2, e (aq) (-) , aEuro broken vertical bar). Most techniques used for the simulation of the non-homogeneous chemical stage such as the independent reaction time (IRT) technique and diffusion kinetics methods do not calculate the time evolution of the positions of the radiolytic species. This is a major limitation to their extension to the simulation of the irradiation of radiobiological systems. Step-by-step (SBS) simulation programs provide such information, but they are very demanding in term of computer power and storage capacity. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry simulations. In the first of a series of two papers, the SBS method has been reviewed in details and the implementation of a SBS code has been discussed. In this second paper, the results of several studies are presented: (1) the time evolution of the radiolytic yields from the formation of the radiation track to 10(-6) s; (2) the effect of pH on yields (pH similar to 0.4-7.0); (3) the effect of proton energy (and LET) on yields (300 MeV-0.1 MeV), and iv) the effect of the ion type (H-1(+), He-4(2+), C-12(6+)) on yields. Nonbiological applications, i.e., the study of the temperature on the yields (about 25-300A degrees C) and the simulation of the time evolution of G(Fe3+) in the Fricke dosimeter are also discussed. C1 [Plante, Ianik] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Plante, Ianik] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. RP Plante, I (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM Ianik.Plante-1@nasa.gov FU National Science and Engineering Council of Canada; Canadian Space Agency FX Most of this work was done during the PhD program of the author under the supervision of Prof. Jean-Paul Jay-Gerin at the University of Sherbrooke. The author would like to thank Profs. Luc Devroye and Razi Naqvi, and Dr. Francis A. Cucinotta for useful discussions. The help of the Center for Scientific Computing of the University of Sherbrooke is greatly acknowledged. The author would also like to thank the National Science and Engineering Council of Canada and the Canadian Space Agency for granting this work. NR 77 TC 8 Z9 8 U1 0 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0301-634X J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD AUG PY 2011 VL 50 IS 3 BP 405 EP 415 DI 10.1007/s00411-011-0368-7 PG 11 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 794VV UT WOS:000292930300009 PM 21594646 ER PT J AU Peterson, D AF Peterson, Don TI RED PLANET MARS LIFE SO SCIENTIFIC AMERICAN LA English DT Letter C1 [Peterson, Don] USAF, El Lago, TX USA. [Peterson, Don] NASA, El Lago, TX USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0036-8733 J9 SCI AM JI Sci.Am. PD AUG PY 2011 VL 305 IS 2 BP 10 EP 10 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 794SA UT WOS:000292920400002 ER PT J AU Zaman, K McDonald, M Mahadevan, S Green, L AF Zaman, Kais McDonald, Mark Mahadevan, Sankaran Green, Lawrence TI Robustness-based design optimization under data uncertainty SO STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION LA English DT Article DE Robust design; Data uncertainty; Multi-objective optimization ID DIMENSION-REDUCTION METHOD; MULTIDIMENSIONAL INTEGRATION; STOCHASTIC MECHANICS; CONFIDENCE-INTERVALS; PROBABILITY MOMENTS; FEASIBILITY; CONSTRAINTS; FORMULATION; VARIABLES AB This paper proposes formulations and algorithms for design optimization under both aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e., imprecise probabilistic information), from the perspective of system robustness. The proposed formulations deal with epistemic uncertainty arising from both sparse and interval data without any assumption about the probability distributions of the random variables. A decoupled approach is proposed in this paper to un-nest the robustness-based design from the analysis of non-design epistemic variables to achieve computational efficiency. The proposed methods are illustrated for the upper stage design problem of a two-stage-to-orbit (TSTO) vehicle, where the information on the random design inputs are only available as sparse point data and/or interval data. As collecting more data reduces uncertainty but increases cost, the effect of sample size on the optimality and robustness of the solution is also studied. A method is developed to determine the optimal sample size for sparse point data that leads to the solutions of the design problem that are least sensitive to variations in the input random variables. C1 [Zaman, Kais; McDonald, Mark; Mahadevan, Sankaran] Vanderbilt Univ, Nashville, TN 37203 USA. [Green, Lawrence] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Mahadevan, S (reprint author), Vanderbilt Univ, Nashville, TN 37203 USA. EM sankaran.mahadevan@vanderbilt.edu FU NASA Langley Research Center [NNX08AF56A1] FX This study was supported by funds from NASA Langley Research Center under Cooperative Agreement No. NNX08AF56A1 (Technical Monitor: Mr. Lawrence Green). The support is gratefully acknowledged. NR 52 TC 13 Z9 13 U1 2 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1615-147X J9 STRUCT MULTIDISCIP O JI Struct. Multidiscip. Optim. PD AUG PY 2011 VL 44 IS 2 BP 183 EP 197 DI 10.1007/s00158-011-0622-2 PG 15 WC Computer Science, Interdisciplinary Applications; Engineering, Multidisciplinary; Mechanics SC Computer Science; Engineering; Mechanics GA 794GT UT WOS:000292884200003 ER PT J AU Svensson, G Holtslag, AAM Kumar, V Mauritsen, T Steeneveld, GJ Angevine, WM Bazile, E Beljaars, A de Bruijn, EIF Cheng, A Conangla, L Cuxart, J Ek, M Falk, MJ Freedman, F Kitagawa, H Larson, VE Lock, A Mailhot, J Masson, V Park, S Pleim, J Soderberg, S Weng, W Zampieri, M AF Svensson, G. Holtslag, A. A. M. Kumar, V. Mauritsen, T. Steeneveld, G. J. Angevine, W. M. Bazile, E. Beljaars, A. de Bruijn, E. I. F. Cheng, A. Conangla, L. Cuxart, J. Ek, M. Falk, M. J. Freedman, F. Kitagawa, H. Larson, V. E. Lock, A. Mailhot, J. Masson, V. Park, S. Pleim, J. Soderberg, S. Weng, W. Zampieri, M. TI Evaluation of the Diurnal Cycle in the Atmospheric Boundary Layer Over Land as Represented by a Variety of Single-Column Models: The Second GABLS Experiment SO BOUNDARY-LAYER METEOROLOGY LA English DT Article DE Diurnal cycle; GABLS; Model intercomparison; Single-column models; Turbulence parametrizations ID TURBULENCE CLOSURE SCHEME; LARGE-EDDY SIMULATIONS; PART I; CONTRASTING NIGHTS; MORNING TRANSITION; PARAMETERIZATION; MESOSCALE; CASES-99; SURFACE; SYSTEM AB We present the main results from the second model intercomparison within the GEWEX (Global Energy and Water cycle EXperiment) Atmospheric Boundary Layer Study (GABLS). The target is to examine the diurnal cycle over land in today's numerical weather prediction and climate models for operational and research purposes. The set-up of the case is based on observations taken during the Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99), which was held in Kansas, USA in the early autumn with a strong diurnal cycle with no clouds present. The models are forced with a constant geostrophic wind, prescribed surface temperature and large-scale divergence. Results from 30 different model simulations and one large-eddy simulation (LES) are analyzed and compared with observations. Even though the surface temperature is prescribed, the models give variable near-surface air temperatures. This, in turn, gives rise to differences in low-level stability affecting the turbulence and the turbulent heat fluxes. The increase in modelled upward sensible heat flux during the morning transition is typically too weak and the growth of the convective boundary layer before noon is too slow. This is related to weak modelled near-surface winds during the morning hours. The agreement between the models, the LES and observations is the best during the late afternoon. From this intercomparison study, we find that modelling the diurnal cycle is still a big challenge. For the convective part of the diurnal cycle, some of the first-order schemes perform somewhat better while the turbulent kinetic energy (TKE) schemes tend to be slightly better during nighttime conditions. Finer vertical resolution tends to improve results to some extent, but is certainly not the solution to all the deficiencies identified. C1 [Svensson, G.] Stockholm Univ, Dept Meteorol, S-10691 Stockholm, Sweden. [Holtslag, A. A. M.; Steeneveld, G. J.] Wageningen Univ, Meteorol & Air Qual Sect, Wageningen, Netherlands. [Kumar, V.] Johns Hopkins Univ, Dept Geog & Environm Engn, Baltimore, MD 21218 USA. [Mauritsen, T.] Max Planck Inst Meteorol, Hamburg, Germany. [Angevine, W. M.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Angevine, W. M.] NOAA, ESRL, Boulder, CO USA. [Bazile, E.; Masson, V.] Meteo France, GAME, CNRM, CNRS, Toulouse, France. [Beljaars, A.] European Ctr Medium Range Weather Forecast, Reading, Berks, England. [de Bruijn, E. I. F.] Royal Netherlands Meteorol Inst, KNMI, NL-3730 AE De Bilt, Netherlands. [Cheng, A.] Sci Syst & Applicat Inc, Hampton, VA USA. [Cheng, A.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Conangla, L.] Univ Politecn Cataluna, Dept Fis Aplicada, Manresa, Spain. [Cuxart, J.] Univ Illes Balears, Dept Fis, Grp Meteorol, Ciutat De Mallorca, Spain. [Ek, M.] NOAA, Ctr Sci, Natl Ctr Environm Predict, Environm Modeling Ctr, Camp Springs, MD USA. [Falk, M. J.; Larson, V. E.] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA. [Freedman, F.] San Jose State Univ, San Jose, CA 95192 USA. [Kitagawa, H.] Japan Meteorol Agcy, Tokyo, Japan. [Lock, A.] Met Off, Exeter, Devon, England. [Mailhot, J.] Environm Canada, Meteorol Res Div, Dorval, PQ, Canada. [Park, S.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA. [Pleim, J.] US EPA, Res Triangle Pk, NC 27711 USA. [Soderberg, S.] WeatherTech Scandinavia, Uppsala, Sweden. [Weng, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Zampieri, M.] CNR, ISAC, I-40126 Bologna, Italy. RP Svensson, G (reprint author), Stockholm Univ, Dept Meteorol, S-10691 Stockholm, Sweden. EM gunilla@misu.su.se RI Mauritsen, Thorsten/G-5880-2013; Angevine, Wayne/H-9849-2013; Steeneveld, Gert-Jan/B-2816-2010; Pleim, Jonathan Pleim/C-1331-2017; Holtslag, Albert/B-7842-2010; Manager, CSD Publications/B-2789-2015 OI Mauritsen, Thorsten/0000-0003-1418-4077; Angevine, Wayne/0000-0002-8021-7116; Steeneveld, Gert-Jan/0000-0002-5922-8179; Pleim, Jonathan Pleim/0000-0001-6190-6082; Holtslag, Albert/0000-0003-0995-2481; NR 60 TC 64 Z9 64 U1 3 U2 48 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0006-8314 J9 BOUND-LAY METEOROL JI Bound.-Layer Meteor. PD AUG PY 2011 VL 140 IS 2 BP 177 EP 206 DI 10.1007/s10546-011-9611-7 PG 30 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 789YW UT WOS:000292556600001 ER PT J AU Rietmeijer, FJM Nuth, JA AF Rietmeijer, Frans J. M. Nuth, Joseph A., III TI Deep metastable eutectic nanometer-scale particles in the MgO-Al2O3-SiO2 system SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE Nanoparticles; Chemical composition; Vapor phase condensation; Laboratory experiments; Deep metastable eutectics; Cordierite; Aerosols; Nanocomposite synthesis ID SOLID CONDENSATION; GAS; MAGNESIOSILICA; ENVIRONMENTS; OSUMILITE; SILICATE; SMOKES; VAPOR AB Laboratory vapor phase condensation experiments systematically yield amorphous, homogeneous, nanoparticles with unique deep metastable eutectic compositions. They formed during the nucleation stage in rapidly cooling vapor systems. These nanoparticles evidence the complexity of the nucleation stage. Similar complex behavior may occur during the nucleation stage in quenched-melt laboratory experiments. Because of the bulk size of the quenched system many of such deep metastable eutectic nanodomains will anneal and adjust to local equilibrium but some will persist metastably depending on the time-temperature regime and melt/glass transformation. C1 [Rietmeijer, Frans J. M.] 1 Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Nuth, Joseph A., III] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Astrochem Lab, Greenbelt, MD 20771 USA. RP Rietmeijer, FJM (reprint author), 1 Univ New Mexico, Dept Earth & Planetary Sci, MSC 03-2040, Albuquerque, NM 87131 USA. EM fransjmr@unm.edu RI Nuth, Joseph/E-7085-2012 FU NASA [NNX10AK28G]; NASA Headquarter FX This study was supported by grant NNX10AK28G from the NASA Cosmochemistry Program (FJMR). JAN is grateful for the support received from the Cosmochemistry Program at NASA Headquarters. NR 33 TC 3 Z9 3 U1 1 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 J9 J NANOPART RES JI J. Nanopart. Res. PD AUG PY 2011 VL 13 IS 8 BP 3149 EP 3156 DI 10.1007/s11051-010-0210-1 PG 8 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 792MG UT WOS:000292749100008 ER PT J AU Yang, P Wendisch, M Bi, L Kattawar, G Mishchenko, M Hu, YX AF Yang, Ping Wendisch, Manfred Bi, Lei Kattawar, George Mishchenko, Michael Hu, Yongxiang TI Dependence of extinction cross-section on incident polarization state and particle orientation SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Extinction; Polarization; Ice crystal; Orientation ID OPTICAL THEOREM; LIGHT-SCATTERING; CIRRUS CLOUDS; ICE CRYSTALS; GRAINS AB This note reports on the effects of the polarization state of an incident quasi-monochromatic parallel beam of radiation and the orientation of a hexagonal ice particle with respect to the incident direction on the extinction process. When the incident beam is aligned with the six-fold rotational symmetry axis, the extinction is independent of the polarization state of the incident light. For other orientations, the extinction cross-section for linearly polarized light can be either larger or smaller than its counterpart for an unpolarized incident beam. Therefore, the attenuation of a quasi-monochromatic radiation beam by an ice cloud depends on the polarization state of the beam if ice crystals within the cloud are not randomly oriented. Furthermore, a case study of the extinction of light by a quartz particle is also presented to illustrate the dependence of the extinction cross-section on the polarization state of the incident light. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Wendisch, Manfred] Univ Leipzig, Leipzig Inst Meteorol, D-04103 Leipzig, Germany. [Bi, Lei; Kattawar, George] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Mishchenko, Michael] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Hu, Yongxiang] NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23665 USA. RP Yang, P (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. EM pyang@tamu.edu RI Yang, Ping/B-4590-2011; Hu, Yongxiang/K-4426-2012; Wendisch, Manfred/E-4175-2013; Mishchenko, Michael/D-4426-2012; Bi, Lei/B-9242-2011 OI Wendisch, Manfred/0000-0002-4652-5561; FU NASA [SMD-09-1413, NNX08A194G, NNX08AF68G]; National Science Foundation (NSF) [ATM-0803779]; Office of Naval Research [N00014-06-1-0069] FX The authors thank M.A. Yurkin and A.G. Hoekstra for their ADDA code. A major portion of numerical computation was conducted by using the NASA High-End Computing (HEC) resources under award SMD-09-1413. Ping Yang acknowledges support from NASA Grants NNX08A194G and NNX08AF68G and the National Science Foundation (NSF) Grant ATM-0803779. George Kattawar acknowledges support by the Office of Naval Research under Contract N00014-06-1-0069. NR 24 TC 10 Z9 11 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD AUG PY 2011 VL 112 IS 12 BP 2035 EP 2039 DI 10.1016/j.jqsrt.2011.04.012 PG 5 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 791JK UT WOS:000292661300011 ER PT J AU Wilson, EL Neveu, M Riris, H Georgieva, EM Heaps, WS AF Wilson, Emily L. Neveu, Marc Riris, Haris Georgieva, Elena M. Heaps, William S. TI A hollow-waveguide gas correlation radiometer for ultra-precise column measurements of formaldehyde on Mars SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE hollow waveguide; hollow optical fiber; gas correlation radiometer; passive; remote sensing; Mars; methane; formaldehyde; water vapor; isotopic ratios ID METHANE; SUBSURFACE; ATMOSPHERE; CH4 AB We present preliminary results in the development of a miniaturized gas correlation radiometer that implements a hollow-core optical fiber (hollow-waveguide) gas correlation cell. The substantial reduction in mass and volume of the gas correlation cell makes this technology appropriate for an orbital mission-capable of pinpointing sources of trace gases in the Martian atmosphere. Here, we demonstrate a formaldehyde (H2CO) sensor and report a detection limit equivalent to similar to 30 ppb in the Martian atmosphere. The relative simplicity of the technique allows it to be expanded to measure a range of atmospheric trace gases of interest on Mars such as methane (CH4), water vapor (H2O), deuterated water vapor (HDO), and methanol (CH3OH). Performance of a formaldehyde instrument in a Mars orbit has been simulated assuming a 3 m long, 1000 mu m inner diameter hollow-core fiber gas correlation cell, a 92.8 degrees sun-synchronous orbit from 400 km with a horizontal sampling scale of 10 km x 10 km. Initial results indicate that for 1 s of averaging, a detection limit of 1 ppb is possible. C1 [Wilson, Emily L.; Riris, Haris; Heaps, William S.] NASA, Goddard Space Flight Ctr, Laser & Electroopt Branch, Greenbelt, MD 20771 USA. [Neveu, Marc] NASA Acad, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Neveu, Marc] Inst Super Aeronaut & Espace, Toulouse, France. [Georgieva, Elena M.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. RP Wilson, EL (reprint author), NASA, Goddard Space Flight Ctr, Laser & Electroopt Branch, Greenbelt, MD 20771 USA. EM Emily.L.Wilson@nasa.gov RI Wilson, Emily/C-9158-2012; Riris, Haris/D-1004-2013 OI Wilson, Emily/0000-0001-5634-3713; FU NASA; NASA Goddard Space Flight Center FX This research was supported by the NASA Planetary Instrument Definition and Development Program and the NASA Goddard Space Flight Center Internal Research and Development program. NR 17 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD AUG PY 2011 VL 22 IS 8 AR 085902 DI 10.1088/0957-0233/22/8/085902 PG 6 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 792UD UT WOS:000292775000037 ER PT J AU Leckey, CAC Hinders, MK AF Leckey, Cara A. C. Hinders, Mark K. TI NEWTONIAN VISCOUS EFFECTS IN ULTRASONIC EMBOLI REMOVAL FROM BLOOD SO ULTRASOUND IN MEDICINE AND BIOLOGY LA English DT Article DE Microemboli; Cardiopulmonary bypass; Acoustic radiation force ID FREQUENCY POWER-LAW; ACOUSTIC RADIATION PRESSURE; COMPUTATIONAL FLUID-DYNAMICS; CARDIOPULMONARY BYPASS; DOPPLER ULTRASOUND; BULK VISCOSITY; WAVE-EQUATION; SHEAR RATE; MEDIA; MICROEMBOLI AB We have modeled the removal of emboli from cardiopulmonary bypass circuits via acoustic radiation force. Unless removed, emboli can result in cognitive deficit for those undergoing heart surgery with the use of extracorporeal circuits. There are a variety of mathematical formulations in the literature describing acoustic radiation force, but a lingering question that remains is how important viscosity of the blood and/or embolus is to the process. We implemented both inviscid and viscous models for acoustic radiation force on a sphere immersed in a fluid. We found that for this specific application, the inviscid model seems to be sufficient for predicting acoustic force upon emboli when compared with the chosen viscous model. Thus, the much simpler inviscid model could be used to optimize experimental techniques for ultrasonic emboli removal. (E-mail: cara.ac.leckey@nasa.gov) Published by Elsevier Inc. on behalf of World Federation for Ultrasound in Medicine & Biology. C1 [Leckey, Cara A. C.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Hinders, Mark K.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA USA. RP Leckey, CAC (reprint author), NASA, Langley Res Ctr, MS 231, Hampton, VA 23681 USA. EM cara.ac.leckey@nasa.gov FU Virginia Space Grant Consortium FX The authors thank Dr. Ted Lynch for helpful discussions, Tom Crockett for assistance using the Sciclone computing cluster at the College of William and Mary, and the Virginia Space Grant Consortium for partial funding. NR 62 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0301-5629 J9 ULTRASOUND MED BIOL JI Ultrasound Med. Biol. PD AUG PY 2011 VL 37 IS 8 BP 1340 EP 1349 DI 10.1016/j.ultrasmedbio.2011.05.009 PG 10 WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging GA 786CT UT WOS:000292281600017 PM 21684063 ER PT J AU Ren, WJ Cebon, D Arnold, SM AF Ren, Weiju Cebon, David Arnold, Steven M. TI Effective Materials Property Information Management for the 21st Century SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article AB This paper discusses key principles for the development of material property information management software systems. The growing need for automated material information management is fueled, in part, by the demand for higher efficiency in material testing, product design, and engineering analysis. But equally important, organizations are being driven by the need for consistency, quality, and traceability of data, as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic, and multiscale engineering analyses requires both processing of large volumes of test data for the development of constitutive models and complex material data input for computer-aided engineering software. Finally, the globalization of economy often generates great needs for sharing a single "gold source" of material information between members of global engineering teams in extended supply chains. Fortunately, material property management systems have kept pace with the growing user demands and have evolved into versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export, and analysis capabilities; (iii) data "pedigree" traceability mechanisms; (iv) data searching, reporting, and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper, the important requirements for advanced material data management systems, future challenges, and opportunities, such as automated error checking, data quality characterization, identification of gaps in data sets, as well as functionalities and business models to fuel database growth and maintenance are discussed. [DOI: 10.1115/1.4002925] C1 [Ren, Weiju] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Cebon, David] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. [Arnold, Steven M.] NASA, Struct & Mat Div, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Ren, WJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, MS-6155,Bldg 4500-S, Oak Ridge, TN 37831 USA. EM renw@ornl.gov; dc@eng.cam.ac.uk; steven.m.arnold@nasa.gov FU U.S. Department of Energy, Office of Nuclear Energy Science and Technology [DE-AC05-00OR22725] FX W.R. thanks the U.S. Department of Energy, Office of Nuclear Energy Science and Technology under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed by UT-Battelle, LLC. All authors are grateful to their colleagues in the MDMC for many useful discussions on all the key issues addressed in this paper. NR 4 TC 0 Z9 0 U1 2 U2 9 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD AUG PY 2011 VL 133 IS 4 AR 044002 DI 10.1115/1.4002925 PG 8 WC Engineering, Mechanical SC Engineering GA 774RK UT WOS:000291403600016 ER PT J AU Butz, A Guerlet, S Hasekamp, O Schepers, D Galli, A Aben, I Frankenberg, C Hartmann, JM Tran, H Kuze, A Keppel-Aleks, G Toon, G Wunch, D Wennberg, P Deutscher, N Griffith, D Macatangay, R Messerschmidt, J Notholt, J Warneke, T AF Butz, A. Guerlet, S. Hasekamp, O. Schepers, D. Galli, A. Aben, I. Frankenberg, C. Hartmann, J. -M. Tran, H. Kuze, A. Keppel-Aleks, G. Toon, G. Wunch, D. Wennberg, P. Deutscher, N. Griffith, D. Macatangay, R. Messerschmidt, J. Notholt, J. Warneke, T. TI Toward accurate CO2 and CH4 observations from GOSAT SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GASES OBSERVING SATELLITE; CARBON-DIOXIDE; METHANE EMISSIONS; INFRARED-SPECTRA; CALIBRATION; DATABASE; NETWORK AB The column-average dry air mole fractions of atmospheric carbon dioxide and methane (X-CO2 and X-CH4) are inferred from observations of backscattered sunlight conducted by the Greenhouse gases Observing SATellite (GOSAT). Comparing the first year of GOSAT retrievals over land with colocated ground-based observations of the Total Carbon Column Observing Network (TCCON), we find an average difference (bias) of -0.05% and -0.30% for X-CO2 and X-CH4 with a station-to-station variability (standard deviation of the bias) of 0.37% and 0.26% among the 6 considered TCCON sites. The root-mean square deviation of the bias-corrected satellite retrievals from colocated TCCON observations amounts to 2.8 ppm for X-CO2 and 0.015 ppm for X-CH4. Without any data averaging, the GOSAT records reproduce general source/sink patterns such as the seasonal cycle of X-CO2 suggesting the use of the satellite retrievals for constraining surface fluxes. Citation: Butz, A., et al. (2011), Toward accurate CO2 and CH4 observations from GOSAT, Geophys. Res. Lett., 38, L14812, doi:10.1029/2011GL047888. C1 [Butz, A.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, D-76344 Leopoldshafen, Germany. [Butz, A.; Guerlet, S.; Hasekamp, O.; Schepers, D.; Galli, A.; Aben, I.] Netherlands Inst Space Res, Utrecht, Netherlands. [Deutscher, N.; Griffith, D.; Macatangay, R.] Univ Wollongong, Ctr Atmospher Chem, Wollongong, NSW 2522, Australia. [Frankenberg, C.; Toon, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hartmann, J. -M.; Tran, H.] Univ Paris Diderot, Inst Pierre Simon Laplace, Univ Paris Est Creteil, Lab Interuniv Syst Atmospher,UMR 7583,CNRS, F-94010 Creteil, France. [Keppel-Aleks, G.; Wunch, D.; Wennberg, P.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Kuze, A.] Japan Aerosp Explorat Agcy, Satellite Applicat & Promot Ctr, Tsukuba, Ibaraki 3058505, Japan. [Deutscher, N.; Messerschmidt, J.; Notholt, J.; Warneke, T.] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany. RP Butz, A (reprint author), Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Campus Nord,H v Helmholtz Pl 1, D-76344 Leopoldshafen, Germany. EM andre.butz@kit.edu RI Wennberg, Paul/A-5460-2012; Butz, Andre/A-7024-2013; Keppel-Aleks, Gretchen/A-3239-2013; Tran, Ha/I-5076-2013; Deutscher, Nicholas/E-3683-2015; KUZE, AKIHIKO/J-2074-2016; Frankenberg, Christian/A-2944-2013; Notholt, Justus/P-4520-2016 OI Butz, Andre/0000-0003-0593-1608; Deutscher, Nicholas/0000-0002-2906-2577; KUZE, AKIHIKO/0000-0001-5415-3377; Frankenberg, Christian/0000-0002-0546-5857; Notholt, Justus/0000-0002-3324-885X FU Dutch User Support Program [GO-2005/064, GO-AO/21]; ESA's CCI on GHGs; European Commission [218793]; DFGBU2599/1-1; NASA [NNX08A186G]; Orbiting Carbon Observatory Program [NAS7-03001]; DOE/ARM; European Commission FX Access to GOSAT data was granted through the 2nd GOSAT research announcement jointly issued by JAXA, NIES, and MOE. Funding of this research came from the Dutch User Support Program under project GO-2005/064 and GO-AO/21 (DS), from ESA's CCI on GHGs and the European Commission's 7th framework program under grant agreement 218793 (SG), from DFG's Emmy-Noether program under project RemoteC BU2599/1-1 (AB). ECMWF ERA Interim analyses are provided through http://data-portal.ecmwf.int/data/d/interim_daily/. GTOPO30 is available from the U.S. Geological Survey through the Earth Resources Observation and Science (EROS) Center (http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30_in fo). CarbonTracker data are provided by NOAA ESRL, Boulder, Colorado, USA from the Web site at http://carbontracker.noaa.gov. TM4 fields have been made available through Jan-Fokke Meirink, Royal Netherlands Meteorological Institute (KNMI). US funding for TCCON comes from NASA's Terrestrial Ecology Program (NNX08A186G), the Orbiting Carbon Observatory Program (NAS7-03001), the DOE/ARM Program and the Atmospheric CO2 Observations from Space Program. Some of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the NASA. We acknowledge the support of the European Commission within the 6th Framework Program through the Integrated Infrastructure Initiative IMECC and the Integrated Project GEOmon. We thank AeroMeteo Service, (Bialystok, Poland) and the RAMCES team at LSCE (Gif-sur-Yvette, France) for maintaining the Bialystok and Orleans FTS sites and providing station logistics. NR 22 TC 132 Z9 133 U1 4 U2 47 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 30 PY 2011 VL 38 AR L14812 DI 10.1029/2011GL047888 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 800SK UT WOS:000293386900001 ER PT J AU Milillo, A Orsini, S Hsieh, KC Baragiola, R Fama, M Johnson, R Mura, A Plainaki, C Sarantos, M Cassidy, TA De Angelis, E Desai, M Goldstein, R Ip, WH Killen, R Livi, S AF Milillo, A. Orsini, S. Hsieh, K. C. Baragiola, R. Fama, M. Johnson, R. Mura, A. Plainaki, C. Sarantos, M. Cassidy, T. A. De Angelis, E. Desai, M. Goldstein, R. Ip, W. -H. Killen, R. Livi, S. TI Observing planets and small bodies in sputtered high-energy atom fluxes SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ION MASS-SPECTROMETRY; MERCURYS EXOSPHERE; SOLAR-WIND; WATER ICE; SURFACE-COMPOSITION; MAGNETIC-FIELD; LUNAR-SURFACE; MAGNETOSPHERE; MODEL; ATMOSPHERES AB The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the solar system is caused by various processes, induced by photons, energetic ions, and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA and suggests the need for quantitative results from laboratory simulations and molecular physic modeling in order to understand SHEA data from planetary missions. In Appendix A, referenced computer simulations using existing sputtering data are reviewed. C1 [Milillo, A.; Orsini, S.; Mura, A.; Plainaki, C.; De Angelis, E.] INAF IFSI, I-00133 Rome, Italy. [Baragiola, R.; Fama, M.; Johnson, R.] Univ Virginia, Charlottesville, VA 22904 USA. [Cassidy, T. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Desai, M.; Goldstein, R.; Livi, S.] SW Res Inst, San Antonio, TX 78228 USA. [Hsieh, K. C.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Ip, W. -H.] Natl Cent Univ, Dept Astron, Jhongli 32001, Taiwan. [Killen, R.] NASA GSFC, Planetary Magnetospheres Div, Greenbelt, MD 20771 USA. [Sarantos, M.] NASA GSFC, Heliophys Div, Greenbelt, MD 20771 USA. RP Milillo, A (reprint author), INAF IFSI, Via Fosso del Cavaliere, I-00133 Rome, Italy. EM anna.milillo@ifsi-roma.inaf.it RI Killen, Rosemary/E-7127-2012; Sarantos, Menelaos/H-8136-2013; OI Plainaki, Christina /0000-0003-1483-5052; ORSINI, STEFANO/0000-0002-5588-1920; Milillo, Anna/0000-0002-0266-2556; De Angelis, Elisabetta/0000-0003-0537-6376; Fama, Marcelo/0000-0003-3476-4669; Mura, Alessandro/0000-0002-4552-4292 FU Italian Space Agency [I-081-09-0] FX This paper is supported by the Italian Space Agency I-081-09-0 agreement for the BepiColombo/SERENA scientific activity. The comprehensiveness and quality of this paper are made possible by the critical reading and advice of G. Ho, M. Hilchenbach, and S. Selci. NR 96 TC 4 Z9 5 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 30 PY 2011 VL 116 AR A07229 DI 10.1029/2011JA016530 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800PW UT WOS:000293376400003 ER PT J AU Hilker, T Coops, NC Hall, FG Nichol, CJ Lyapustin, A Black, TA Wulder, MA Leuning, R Barr, A Hollinger, DY Munger, B Tucker, CJ AF Hilker, Thomas Coops, Nicholas C. Hall, Forrest G. Nichol, Caroline J. Lyapustin, Alexei Black, T. Andrew Wulder, Michael A. Leuning, Ray Barr, Alan Hollinger, David Y. Munger, Bill Tucker, Compton J. TI Inferring terrestrial photosynthetic light use efficiency of temperate ecosystems from space SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID PHOTOCHEMICAL REFLECTANCE INDEX; CARBON-DIOXIDE FLUXES; GROSS PRIMARY PRODUCTION; BOREAL FOREST STANDS; DOUGLAS-FIR FOREST; LEAF-AREA INDEX; WATER-VAPOR; MODIS; SATELLITE; MODELS AB Terrestrial ecosystems absorb about 2.8 Gt C yr(-1), which is estimated to be about a quarter of the carbon emitted from fossil fuel combustion. However, the uncertainties of this sink are large, on the order of +/- 40%, with spatial and temporal variations largely unknown. One of the largest factors contributing to the uncertainty is photosynthesis, the process by which plants absorb carbon from the atmosphere. Currently, photosynthesis, or gross ecosystem productivity (GEP), can only be inferred from flux towers by measuring the exchange of CO(2) in the surrounding air column. Consequently, carbon models suffer from a lack of spatial coverage of accurate GEP observations. Here, we show that photosynthetic light use efficiency (epsilon), hence photosynthesis, can be directly inferred from spaceborne measurements of reflectance. We demonstrate that the differential between reflectance measurements in bands associated with the vegetation xanthophyll cycle and estimates of canopy shading obtained from multiangular satellite observations (using the CHRIS/PROBA sensor) permits us to infer plant photosynthetic efficiency, independently of vegetation type and structure (r(2) = 0.68, compared to flux measurements). This is a significant advance over previous approaches seeking to model global-scale photosynthesis indirectly from a combination of growth limiting factors, most notably pressure deficit and temperature. When combined with modeled global-scale photosynthesis, satellite-inferred epsilon can improve model estimates through data assimilation. We anticipate that our findings will guide the development of new spaceborne approaches to observe vegetation carbon uptake and improve current predictions of global CO(2) budgets and future climate scenarios by providing regularly timed calibration points for modeling plant photosynthesis consistently at a global scale. C1 [Hilker, Thomas; Coops, Nicholas C.] Univ British Columbia, Fac Forest Resources Management, Vancouver, BC V6T 1Z4, Canada. [Hilker, Thomas] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Hall, Forrest G.; Lyapustin, Alexei] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Nichol, Caroline J.] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JN, Midlothian, Scotland. [Wulder, Michael A.] Canadian Forest Serv, Victoria, BC V8Z 1M5, Canada. [Leuning, Ray] CSIRO Marine & Atmospher Res, Canberra, ACT 2601, Australia. [Barr, Alan] Environm Canada, Climate Res Branch, Saskatoon, SK 27N 3H5, Canada. [Hollinger, David Y.] US Forest Serv, NE Res Stn, Durham, NH 03824 USA. [Munger, Bill] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. RP Hilker, T (reprint author), Univ British Columbia, Fac Forest Resources Management, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM thomas.hilker@nasa.gov RI Leuning, Ray/A-2793-2008; Hollinger, David/G-7185-2012; Coops, Nicholas/J-1543-2012; Lyapustin, Alexei/H-9924-2014; Barr, Alan/H-9939-2014; Wulder, Michael/J-5597-2016 OI Coops, Nicholas/0000-0002-0151-9037; Lyapustin, Alexei/0000-0003-1105-5739; Wulder, Michael/0000-0002-6942-1896 FU Canadian Carbon Program; Natural Sciences and Engineering Research Council of Canada (NSERC); BIOCAP; NSERC FX The ESA CHRIS/PROBA images were provided by David G. Goodenough, Ray Merton, and Mathias Kneubuhler, all principal investigators of the Evaluation and Validation of CHRIS (EVC) Project. This research is partially funded by the Canadian Carbon Program, the Natural Sciences and Engineering Research Council of Canada (NSERC) and BIOCAP, and an NSERC-Accelerator grant to N.C.C. NR 62 TC 25 Z9 26 U1 3 U2 33 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD JUL 29 PY 2011 VL 116 AR G03014 DI 10.1029/2011JG001692 PG 11 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 800PR UT WOS:000293375900003 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Braun, J Brown, AM Buitink, S Carson, M Chirkin, D Christy, B Clem, J Clevermann, F Cohen, S Colnard, C Cowen, DF D'Agostino, MV Danninger, M Daughhetee, J Davis, JC De Clercq, C Demirors, L Denger, T Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dierckxsens, M Dreyer, J Dumm, JP Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Geisler, M Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Grant, D Griesel, T Gross, A Grullon, S Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Heinen, D Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Homeier, A Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kenny, P Kiryluk, J Kislat, F Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, S Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Krings, T Kroll, G Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Larson, MJ Lauer, R Lunemann, J Madsen, J Majumdar, P Marotta, A Maruyama, R Mase, K Matis, HS Meagher, K Merck, M Meszaros, P Meures, T Middell, E Milke, N Miller, J Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Naumann, U Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M O'Murchadha, A Ono, M Panknin, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Porrata, R Posselt, J Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Santander, M Sarkar, S Schatto, K Schmidt, T Schoenwald, A Schukraft, A Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoyanov, S Strahler, EA Straszheim, T Stur, M Sullivan, GW Swillens, Q Taavola, H Taboada, I Tamburro, A Tarasova, O Tepe, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A van Santen, J Vehring, M Voge, M Voigt, B Walck, C Waldenmaier, T Wallraff, M Walter, M Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wischnewski, R Wissing, H Wolf, M Woschnagg, K Xu, C Xu, XW Yodh, G Yoshida, S Zarzhitsky, P AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Braun, J. Brown, A. M. Buitink, S. Carson, M. Chirkin, D. Christy, B. Clem, J. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. D'Agostino, M. V. Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. Demiroers, L. Denger, T. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dierckxsens, M. Dreyer, J. Dumm, J. P. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Geisler, M. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Grant, D. Griesel, T. Gross, A. Grullon, S. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Heinen, D. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Homeier, A. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, S. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Krings, T. Kroll, G. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Larson, M. J. Lauer, R. Luenemann, J. Madsen, J. Majumdar, P. Marotta, A. Maruyama, R. Mase, K. Matis, H. S. Meagher, K. Merck, M. Meszaros, P. Meures, T. Middell, E. Milke, N. Miller, J. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Naumann, U. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Ono, M. Panknin, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Porrata, R. Posselt, J. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Schmidt, T. Schoenwald, A. Schukraft, A. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoyanov, S. Strahler, E. A. Straszheim, T. Stuer, M. Sullivan, G. W. Swillens, Q. Taavola, H. Taboada, I. Tamburro, A. Tarasova, O. Tepe, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Voigt, B. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wischnewski, R. Wissing, H. Wolf, M. Woschnagg, K. Xu, C. Xu, X. W. Yodh, G. Yoshida, S. Zarzhitsky, P. CA IceCube Collaboration TI Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope SO PHYSICAL REVIEW D LA English DT Article ID DWARF SPHEROIDAL GALAXIES; GAMMA-RAY EMISSION; COSMIC-RAYS; CONSTRAINTS; SUBSTRUCTURE; ANISOTROPY; PARTICLES; ELECTRONS; ENERGIES; DETECTOR AB Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of h similar or equal to 10(-22) cm(3) s(-1) for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum. C1 [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Geisler, M.; Gluesenkamp, T.; Heinen, D.; Huelss, J. -P.; Krings, T.; Laihem, K.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Williams, D. R.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Daughhetee, J.; Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Daughhetee, J.; Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Buitink, S.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Becker, J. K.; Dreyer, J.; Fedynitch, A.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Denger, T.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.; Stuer, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Seunarine, S.] Univ W Indies, Dept Phys, BB-11000 Bridgetown, Barbados. [Bechet, S.; Bertrand, D.; Dierckxsens, M.; Hanson, K.; Marotta, A.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [Bose, D.; De Clercq, C.; Depaepe, O.; Hubert, D.; Labare, M.; Rizzo, A.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Ishihara, A.; Mase, K.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.; Gross, A.; Han, K.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Clevermann, F.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.; Wolf, M.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; O'Murchadha, A.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Larson, M. J.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Engdegard, O.; Hallgren, A.; Miller, J.; Olivo, M.; de los Heros, C. Perez; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Auffenberg, J.; Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Kopper, S.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Montaruli, T.] Univ Bari, I-70126 Bari, Italy. [Montaruli, T.] Sezione Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rott, C (reprint author), Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. EM carott@mps.ohio-state.edu RI Taavola, Henric/B-4497-2011; Beatty, James/D-9310-2011; Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011 OI Taavola, Henric/0000-0002-2604-2810; Buitink, Stijn/0000-0002-6177-497X; Carson, Michael/0000-0003-0400-7819; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Beatty, James/0000-0003-0481-4952; Perez de los Heros, Carlos/0000-0002-2084-5866; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI); National Science and Engineering Research Council of Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; EU; Capes Foundation, Ministry of Education of Brazil FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; A. Gross acknowledges support by the EU Marie Curie OIF Program; J. P. Rodrigues acknowledges support by the Capes Foundation, Ministry of Education of Brazil. NR 62 TC 67 Z9 67 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 29 PY 2011 VL 84 IS 2 AR 022004 DI 10.1103/PhysRevD.84.022004 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 800BK UT WOS:000293331900001 ER PT J AU Cummer, SA Lu, GP Briggs, MS Connaughton, V Xiong, SL Fishman, GJ Dwyer, JR AF Cummer, Steven A. Lu, Gaopeng Briggs, Michael S. Connaughton, Valerie Xiong, Shaolin Fishman, Gerald J. Dwyer, Joseph R. TI The lightning-TGF relationship on microsecond timescales SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GAMMA-RAY FLASHES; AIR BREAKDOWN; DISCHARGES AB We analyze the count rates of two terrestrial gamma-ray flashes (TGFs) detected by the Fermi Gamma-ray Burst Monitor (GBM) with the broadband magnetic fields (1 to 300 kHz) produced by the simultaneous lightning processes. The microsecond-scale absolute time accuracy for these data, combined with independent geolocations of the source lightning, enable this analysis with higher accuracy than previously possible. In both events, fast discharge-like processes occur within several tens of microseconds of the gamma-ray generation, although not with a consistent relationship. The magnetic field data also show a slower signal component produced by a source current that in both events mirrors the gamma-ray count rate closely in shape and time. This indicates electromagnetic radiation directly associated with the gamma-ray generation process and thus provides a new means for probing the internal physics of this enigmatic phenomenon. Citation: Cummer, S. A., G. Lu, M. S. Briggs, V. Connaughton, S. Xiong, G. J. Fishman, and J. R. Dwyer (2011), The lightning-TGF relationship on microsecond timescales, Geophys. Res. Lett., 38, L14810, doi: 10.1029/2011GL048099. C1 [Cummer, Steven A.; Lu, Gaopeng] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. [Briggs, Michael S.; Connaughton, Valerie; Xiong, Shaolin] Univ Alabama, CSPAR, Huntsville, AL 35805 USA. [Dwyer, Joseph R.] Florida Inst Technol, Melbourne, FL 32901 USA. [Fishman, Gerald J.] NASA, Space Sci Off, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Cummer, SA (reprint author), Duke Univ, Dept Elect & Comp Engn, Box 90291, Durham, NC 27708 USA. EM cummer@ee.duke.edu; michael.briggs@nasa.gov; jerry.fishman@nasa.gov; jdwyer@fit.edu RI Lu, Gaopeng/D-9011-2012; Cummer, Steven/A-6118-2008 OI Cummer, Steven/0000-0002-0002-0613 FU DARPA; NSF; Fermi Guest Investigation Program FX This work was supported by the DARPA NIMBUS program, the NSF Physical and Dynamic Meteorology program, and the Fermi Guest Investigation Program. We thank the GBM Operations and TGF Search Teams for their support. NR 26 TC 43 Z9 43 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 28 PY 2011 VL 38 AR L14810 DI 10.1029/2011GL048099 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 800SE UT WOS:000293385900005 ER PT J AU Worden, HM Bowman, KW Kulawik, SS Aghedo, AM AF Worden, H. M. Bowman, K. W. Kulawik, S. S. Aghedo, A. M. TI Sensitivity of outgoing longwave radiative flux to the global vertical distribution of ozone characterized by instantaneous radiative kernels from Aura-TES SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPOSPHERIC EMISSION SPECTROMETER; NADIR RETRIEVALS; SATELLITE; CLIMATE; MISSION AB We calculate the sensitivity of outgoing longwave radiation (OLR) to the global vertical distribution of tropospheric ozone using ozone profile estimates from Aura Tropospheric Emission Spectrometer (Aura-TES) along with the partial derivatives of spectral radiance with respect to ozone from the Aura-TES operational retrieval algorithm. Accounting for anisotropy, we calculate top of atmosphere instantaneous radiative kernels (IRKs), in W/m(2)/ppb, for infrared ozone absorption from 985 to 1080 cm(-1). Zonal mean distributions for August 2006 show significant variations in the IRK between clear and cloudy sky, ocean and land, and day and night over land. For all sky (clear and cloudy conditions), OLR is significantly less sensitive to ozone in the middle and lower troposphere due to clouds, especially in the tropics. We also compute the longwave radiative effect (LWRE), i.e., the reduction in OLR due to absorption by tropospheric ozone, and find a global average LWRE of 0.33 +/- 0.02(-0.007)(+0.018) W/m(2) (with uncertainty and bias) for tropospheric ozone with significant variability (sigma = 0.23W/m(2)) under all sky conditions for August 2006. For clear sky, tropical conditions we examine the effect of water vapor in reducing the LWRE from tropospheric ozone. C1 [Worden, H. M.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80301 USA. [Bowman, K. W.; Kulawik, S. S.; Aghedo, A. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Worden, HM (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, 3450 Mitchell Ln, Boulder, CO 80301 USA. EM hmw@ucar.edu FU NASA ROSES; National Science Foundation FX This work would not be possible without the contributions of the TES team at the Jet Propulsion Laboratory. We also thank A. Conley and J. F. Lamarque at NCAR as well as Xianglei Huang at University of Michigan for their helpful suggestions. The research described in this paper was funded under a NASA ROSES contract received by K.W.B. and H.M.W. and partially carried out at the Jet Propulsion Laboratory, California Institute of Technology. The National Center for Atmospheric Research (NCAR) is sponsored by the National Science Foundation. NR 47 TC 15 Z9 15 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 28 PY 2011 VL 116 AR D14115 DI 10.1029/2010JD015101 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 800HQ UT WOS:000293350800001 ER PT J AU Tan, LC Shao, X Sharma, AS Fung, SF AF Tan, Lun C. Shao, X. Sharma, A. S. Fung, Shing F. TI Relativistic electron acceleration by compressional-mode ULF waves: Evidence from correlated Cluster, Los Alamos National Laboratory spacecraft, and ground-based magnetometer measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SOLAR-WIND; GEOMAGNETIC-FIELD; IONOSPHERE; PULSATIONS; MAGNETOSPHERE; INSTRUMENT; RESONANCES; PARTICLES; DENSITY; ARRAY AB Simultaneous observations by Cluster and Los Alamos National Laboratory (LANL) spacecraft and Canadian Array for Real-Time Investigations of Magnetic Activity and International Monitor for Auroral Geomagnetic Effects magnetometer arrays during a sudden storm commencement on 25 September 2001 show evidence of relativistic electron acceleration by compressional-mode ULF waves. The waves are driven by the quasiperiodic solar wind dynamical pressure fluctuations that continuously buffet the magnetosphere for similar to 3 h. The compressional-mode ULF waves are identified by comparing the power of magnetic field magnitude fluctuations with the total magnetic field power. The radial distribution and azimuthal propagation of both toroidal and poloidal-mode ULF waves are derived from ground-based magnetometer data. The energetic electron fluxes measured by LANL show modulation of low-energy electrons and acceleration of high-energy electrons by the compressional poloidal-mode electric field oscillations. The energy threshold of accelerated electrons at the geosynchronous orbit is similar to 0.4 MeV, which is roughly consistent with drift-resonant interaction of magnetospheric electrons with compressional-mode ULF waves. C1 [Tan, Lun C.; Shao, X.; Sharma, A. S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Fung, Shing F.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. RP Tan, LC (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM xshaoup@yahoo.com RI Fung, Shing/F-5647-2012 FU NASA [NNX06AE88G, NNX07AF42G]; ONR MURI grant [N000140710789]; NSF [ATM-0741841] FX We acknowledge the use of data provided by the NASA/Space Physics Data Facility (SPDF) CDAWeb, Cluster, LANL, and IMAGE data centers. The authors thank I. R. Mann, D. K. Milling, and the rest of the CARISMA team for data. CARISMA is operated by the University of Alberta, funded by the Canadian Space Agency. We thank K. Papadopoulos (University of Maryland), I. Rae (University of Alberta), D. Vassiliadis (University of West Virginia), and M. K. Hudson (Dartmouth College) for fruitful discussions. We thank helpful comments from two referees. This work is partially supported by NASA grants NNX06AE88G and NNX07AF42G, ONR MURI grant N000140710789, and NSF grant ATM-0741841. NR 42 TC 16 Z9 16 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 28 PY 2011 VL 116 AR A07226 DI 10.1029/2010JA016226 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800EL UT WOS:000293342500004 ER PT J AU Gull, TR AF Gull, Theodore R. TI ASTRONOMY A census of the Carina complex SO NATURE LA English DT Editorial Material ID OB STARS; PROJECT; NEBULA C1 NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Gull, TR (reprint author), NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM ted.gull@nasa.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 28 PY 2011 VL 475 IS 7357 BP 460 EP 461 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 797ZA UT WOS:000293167900030 PM 21796200 ER PT J AU Halekas, JS Delory, GT Farrell, WM Angelopoulos, V McFadden, JP Bonnell, JW Fillingim, MO Plaschke, F AF Halekas, J. S. Delory, G. T. Farrell, W. M. Angelopoulos, V. McFadden, J. P. Bonnell, J. W. Fillingim, M. O. Plaschke, F. TI First remote measurements of lunar surface charging from ARTEMIS: Evidence for nonmonotonic sheath potentials above the dayside surface SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PLASMA; THEMIS; INSTRUMENT; SPACE; LAYER AB During an early lunar encounter, ARTEMIS-P2 passed earthward from the Moon in the terrestrial magnetotail. Fortuitously, though more than 8000 km away, magnetic field lines connected the spacecraft to the dayside lunar surface during several time periods in both the lobe and plasma sheet. During these intervals, ARTEMIS made the first accurate and quantitative remote measurements of lunar surface charging from an observation point almost 100 times more distant than previous remote measurements of surface potentials. ARTEMIS also measured incident plasma, including hot tenuous electrons from a source deeper in the tail, portions of that population mirrored near the Earth, and cold ions from the terrestrial ionosphere. The spatial and temporal variation of these sources, combined with shadowing by the lunar obstacle and motion and curvature of magnetotail field lines, leads to highly variable charging currents to the surface. ARTEMIS measurements provide evidence for negative dayside surface potentials, likely indicative of nonmonotonic sheath potentials above the sunlit surface, in the plasma sheet and, for the first time, in the tail lobe. These nonmonotonic potentials, and the resulting accelerated outward going beams of lunar photoelectrons, may help maintain quasi-neutrality along magnetic field lines connected to the Moon. C1 [Halekas, J. S.; Delory, G. T.; McFadden, J. P.; Bonnell, J. W.; Fillingim, M. O.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Farrell, W. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Plaschke, F.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [Angelopoulos, V.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Halekas, J. S.; Delory, G. T.; Farrell, W. M.] NASA, Ames Res Ctr, Lunar Sci Inst, Moffett Field, CA 94035 USA. RP Halekas, JS (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM jazzman@ssl.berkeley.edu RI Farrell, William/I-4865-2013; OI Halekas, Jasper/0000-0001-5258-6128 FU NASA Lunar Science Institute; NASA [NAS5-02099]; DLR [50 OC 0302]; FGM Lead Investigator Team at the Technical University of Braunschweig by the German Ministerium fur Wirtschaft und Technologie; Deutsches Zentrum fur Luft- und Raumfahrt [50OC1001] FX We thank the NASA Lunar Science Institute for supporting this work and acknowledge NASA contract NAS5-02099. FGM was supported by DLR contract 50 OC 0302. Financial support for the work of the FGM Lead Investigator Team at the Technical University of Braunschweig by the German Ministerium fur Wirtschaft und Technologie and the Deutsches Zentrum fur Luft- und Raumfahrt under grant 50OC1001 is acknowledged. NR 22 TC 9 Z9 9 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 27 PY 2011 VL 116 AR A07103 DI 10.1029/2011JA016542 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800EJ UT WOS:000293342300001 ER PT J AU Korotova, GI Sibeck, DG Weatherwax, A Angelopoulos, V Styazhkin, V AF Korotova, G. I. Sibeck, D. G. Weatherwax, A. Angelopoulos, V. Styazhkin, V. TI THEMIS observations of a transient event at the magnetopause SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID FLUX-TRANSFER EVENTS; WIND DYNAMIC PRESSURE; MAGNETIC-FIELD SIGNATURES; SOLAR-WIND; MAGNETOSPHERIC BOUNDARY; GEOSYNCHRONOUS ORBIT; DAYSIDE MAGNETOSPHERE; EARTHS MAGNETOPAUSE; PLASMA TRANSPORT; HIGH-LATITUDES AB This study focuses on Time History of Events and Macroscale Interactions During Substorms (THEMIS) observations of a long-duration transient event in the vicinity of the dayside magnetopause at similar to 15: 34 UT on 18 July 2008 that was characterized by features typical of a magnetospheric flux transfer event (FTE): a bipolar negative-positive 5-7 nT signature in the Bn component, a positive monopolar variation in the Bl and Bm components, a similar to 5-7 nT enhancement in the total magnetic field strength, and a transient density and flow enhancement. The interplanetary magnetic field (IMF) was mostly radial and disturbed during the intervals studied; that is, it was favorable for the repeated formation, disappearance and reformation of the foreshock just upstream from the subsolar bow shock. We show that varying IMF directions and solar wind pressures created significant effects that caused the compressions of the magnetosphere and the bow shock and magnetopause motions and triggered the transient event. Global signatures of magnetic impulse events (MIEs) in ground magnetograms during the period suggest a widespread pressure pulse instead of a localized FTE as the cause of the event in the magnetosphere. The directions of propagation and the flow patterns associated with the event also suggest an interpretation in terms of pressure pulses. C1 [Korotova, G. I.; Styazhkin, V.] IZMIRAN, Troitsk 142190, Moscow Region, Russia. [Angelopoulos, V.] Univ Calif Los Angeles, IGPP, ESS, Los Angeles, CA 90095 USA. [Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Korotova, G. I.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20740 USA. [Weatherwax, A.] Siena Coll, Dept Phys & Astron, Loudonville, NY 12211 USA. RP Korotova, GI (reprint author), IZMIRAN, Troitsk 142190, Moscow Region, Russia. EM gkorotov@umd.edu RI Sibeck, David/D-4424-2012 FU NASA [NAS5-02099, GSFC NNX09AV52G]; NSF [ANT638587, ANT0840158] FX We express our gratitude to J. McFadden for useful discussions. THEMIS is supported by NASA NAS5-02099. We are grateful to the ESA, FGM, and SST teams for supplying the THEMIS software and data, which we obtained in part from NASA's CDA Web service. We thank the Technical University of Denmark for providing the Greenland magnetomer data. Work at GSFC was supported by the THEMIS project, while work by G. I. K. at the University of Maryland was supported by a grant from NASA GSFC NNX09AV52G. Siena College gratefully acknowledges support from NSF grants ANT638587 and ANT0840158. NR 66 TC 6 Z9 6 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 26 PY 2011 VL 116 AR A07224 DI 10.1029/2011JA016606 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800EF UT WOS:000293341900001 ER PT J AU Quinn, RC Chittenden, JD Kounaves, SP Hecht, MH AF Quinn, Richard C. Chittenden, Julie D. Kounaves, Samuel P. Hecht, Michael H. TI The oxidation-reduction potential of aqueous soil solutions at the Mars Phoenix landing site SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MARTIAN SOIL AB Results from the Mars Phoenix mission Wet Chemistry Laboratory (WCL) are used to determine the oxidation-reduction potential (E(h)) of the Phoenix WCL Rosy Red sample soil solution. The measured E(h) of the Rosy Red sample in the WCL aqueous test solution was 253 +/- 6 mV at a pH of 7.7 +/- 0.1. Measured solution E(h) changes correspond to changes in solution H(+) activity, which is controlled mainly by changes in headspace P(CO2) and solution CO(3)(2-), HCO(3)(-), and CO(2) concentrations. If measured at a P(CO2) of 8 mbar in water, rather than in WCL test solution, the E(h) of the Rosy Red soil solution would be similar to 300 mV. The results of laboratory experiments using analog salt mixtures are compatible with the possible presence of low levels (ppm) of metal peroxides or other oxidants and indicate that levels of readily soluble ferrous iron in the soil are below 1 ppm. Citation: Quinn, R. C., J. D. Chittenden, S. P. Kounaves, and M. H. Hecht (2011), The oxidation-reduction potential of aqueous soil solutions at the Mars Phoenix landing site, Geophys. Res. Lett., 38, L14202, doi: 10.1029/2011GL047671. C1 [Quinn, Richard C.] NASA, Ames Res Ctr, Carl Sagan Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Kounaves, Samuel P.] Tufts Univ, Dept Chem, Medford, MA 02155 USA. [Hecht, Michael H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Quinn, RC (reprint author), NASA, Ames Res Ctr, Carl Sagan Ctr, SETI Inst, Moffett Field, CA 94035 USA. EM richard.c.quinn@nasa.gov OI Kounaves, Samuel/0000-0002-2629-4831 NR 10 TC 9 Z9 9 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 23 PY 2011 VL 38 AR L14202 DI 10.1029/2011GL047671 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 797ML UT WOS:000293131900001 ER PT J AU Angal, A Chander, G Xiong, XX Choi, T Wu, AS AF Angal, Amit Chander, Gyanesh Xiong, Xiaoxiong Choi, Taeyoung Wu, Aisheng TI Characterization of the Sonoran desert as a radiometric calibration target for Earth observing sensors SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE Sonoran; calibration; bidirectional reflectance distribution function; ETM; Libya4; Hyperion; characterization; moderate resolution imaging spectroradiometer ID CHANNELS AB To provide highly accurate quantitative measurements of the Earth's surface, a comprehensive calibration and validation of the satellite sensors is required. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) Characterization Support Team, in collaboration with United States Geological Survey, Earth Resources Observation and Science Center, has previously demonstrated the use of African desert sites to monitor the long-term calibration stability of Terra MODIS and Landsat 7 (L7) Enhanced Thematic Mapper plus (ETM+). The current study focuses on evaluating the suitability of the Sonoran Desert test site for post-launch long-term radiometric calibration as well as cross-calibration purposes. Due to the lack of historical and on-going in situ ground measurements, the Sonoran Desert is not usually used for absolute calibration. An in-depth evaluation (spatial, temporal, and spectral stability) of this site using well calibrated L7 ETM+ measurements and local climatology data has been performed. The Sonoran Desert site produced spatial variability of about 3 to 5% in the reflective solar regions, and the temporal variations of the site after correction for view-geometry impacts were generally around 3%. The results demonstrate that, barring the impacts due to occasional precipitation, the Sonoran Desert site can be effectively used for cross-calibration and longterm stability monitoring of satellite sensors, thus, providing a good test site in the western hemisphere. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3613963] C1 [Angal, Amit] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Chander, Gyanesh] SGT Inc, US Geol Survey, Earth Resources Observat & Sci Ctr, Sioux Falls, SD 57198 USA. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. [Choi, Taeyoung; Wu, Aisheng] Sigma Space Corp, Lanham, MD 20706 USA. RP Angal, A (reprint author), Sci Syst & Applicat Inc, 10210 Greenbelt Rd, Lanham, MD 20706 USA. EM amit.angal@ssaihq.com RI Choi, Taeyoung/E-4437-2016 OI Choi, Taeyoung/0000-0002-4596-989X FU U.S. Geological Survey [G10PC00044] FX The authors thank Thomas Adamson (SGT) and Brian Wenny (MCST) for providing helpful comments in the technical review of this manuscript. Work at SGT, Inc. performed under U.S. Geological Survey contract G10PC00044. NR 11 TC 6 Z9 8 U1 2 U2 7 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD JUL 22 PY 2011 VL 5 AR 059502 DI 10.1117/1.3613963 PG 6 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 807GE UT WOS:000293883500001 ER PT J AU Liu, YM Ecke, RE AF Liu, Yuanming Ecke, Robert E. TI Local temperature measurements in turbulent rotating Rayleigh-Benard convection SO PHYSICAL REVIEW E LA English DT Article ID ASPECT-RATIO DEPENDENCE; HEAT-TRANSFER; SCALING LAWS; GEOMETRY; REGIMES; SOLIDS; MOTION; NUMBER; FLUIDS; LAYER AB We present local temperature measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number about 6, was confined in a cell with a square cross section of 7.3 x 7.3 cm(2) and a height of 9.4 cm. Temperature fluctuations and boundary-layer profiles were measured for Rayleigh numbers 1 x 10(7) < Ra < 5 x 10(8) and Taylor numbers 0 < Ta < 5 x 10(9). We present statistics of the temperature field measured by a single thermistor located along the vertical centerline of the cell or by an array of thermistors distributed laterally from that centerline. The statistics include the mean temperature, standard deviation, skewness, and the probability distribution functions at various locations in the cell, especially near and inside the thermal boundary layer. The effects of rotation on these quantities are discussed including the presence of a rotation-dependent mean vertical temperature gradient, the negative skewness of temperature fluctuations in the boundary layer, and the horizontal homogenization of temperature. C1 [Liu, Yuanming; Ecke, Robert E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Liu, Yuanming; Ecke, Robert E.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA. RP Liu, YM (reprint author), CALTECH, Jet Prop Lab, Low Temp Sci & Engn Grp, 4800 Oak Grove Dr,MS 79-24, Pasadena, CA 91109 USA. OI Ecke, Robert/0000-0001-7772-5876 FU US Department of Energy [W-7405-ENG-36, DE-AC52-06NA25396]; National Science Foundation [NSF PHY05-51164] FX We thank Joe Werne, Keith Julien, Peter Vorobieff, Phil Marcus, Detlef Lohse, and Richard Stevens for helpful discussions. This work was supported by the US Department of Energy under Contract Nos. W-7405-ENG-36 and DE-AC52-06NA25396. One of us (R.E.E.) acknowledges support by the National Science Foundation under Grant No. NSF PHY05-51164 associated with the Kavli Institute for Theoretical Physics Program "Nature of Turbulence." NR 41 TC 8 Z9 8 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL 22 PY 2011 VL 84 IS 1 AR 016311 DI 10.1103/PhysRevE.84.016311 PN 2 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 801OV UT WOS:000293450700003 PM 21867308 ER PT J AU Grimald, S El-Lemdani-Mazouz, F Foullon, C Decreau, PME Boardsen, SA Vallieres, X AF Grimald, S. El-Lemdani-Mazouz, F. Foullon, C. Decreau, P. M. E. Boardsen, Scott A. Vallieres, Xavier TI Study of nonthermal continuum patches: Wave propagation and plasmapause study SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; CLUSTER OBSERVATIONS; DENSITY STRUCTURES; WHISTLER EVIDENCE; ELECTRIC-FIELD; RADIATION; TERRESTRIAL; PLASMASPHERE; EMISSIONS; EARTH AB Nonthermal continuum (NTC) radiation is believed to be emitted at the plasmapause and near the magnetic equator. We present a particular type of NTC radiation, referred to as NTC patch, which appears over a wide frequency range and within a relatively short time interval. NTC patches are observed in all magnetospheric plasma environments of the Cluster 2 orbit and are shown to represent a quarter of the NTC events observed in 2003. A statistical analysis of the frequency pattern performed on the 2003 Cluster 2 Waves of High frequency and Sounder for Probing of Electron Density by Relaxation data indicates that the NTC patches can be divided into two classes: Those with banded emission in frequency are only observed close to the source region and are thus termed "plasmaspheric," while the others, nonbanded, are termed "outer magnetospheric." In an event on 26 September 2003, we localize the sources positions and study the expected propagation of each NTC frequency beam of a plasmaspheric patch. From the observations, we show that the sources are located very close to the satellite and to each other at positions projected on the XY GSE plane. Using a ray tracing code, we demonstrate that, close to the source regions, the satellite observes all frequency rays at the same time which overlap in the spectrogram making up the plasmaspheric patch. After the satellite crossing, the rays follow diverging paths and cannot therefore be observed further out by the same satellite simultaneously. Plasmaspheric patches are thus specific signatures of close and distorted source regions. C1 [Grimald, S.] Univ Toulouse 3, CNRS, Ctr Etud Spatiale Rayonnements, F-31000 Toulouse, France. [El-Lemdani-Mazouz, F.] CNRS, Lab Atmosphere Milieux Observat Spatiales, F-78280 Guyancourt, France. [Foullon, C.] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England. [Decreau, P. M. E.; Vallieres, Xavier] CNRS, Lab Phys & Chim Environm & Espace, F-45071 Orleans 02, France. [Boardsen, Scott A.] NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD USA. [Boardsen, Scott A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Catonsville, MD 21228 USA. RP Grimald, S (reprint author), Univ Toulouse 3, Inst Rech Astrophys & Planetol, CNRS, F-31000 Toulouse, France. EM grimald@cesr.fr RI Foullon, Claire/A-3539-2009 OI Foullon, Claire/0000-0002-2532-9684 FU Centre National des Etudes Spatiales (CNES); UK Science and Technology Facilities Council (STFC); STFC FX S.G. and F. E. acknowledge financial support from the Centre National des Etudes Spatiales (CNES). C.F. acknowledges financial support from the UK Science and Technology Facilities Council (STFC) on the CFSA Rolling Grant. We would like to thank the WEC, JSOC, and ESOC teams for continuous support of Cluster operations. S.G., F.E., and C.F. thank P. Decreau, J. G. Trotignon and the WHISPER team, E. Lucek and the FGM team. Data analysis was done with the QSAS science analysis system provided by the UK Cluster Science Centre (Imperial College London and Queen Mary, University of London) supported by STFC. NR 50 TC 4 Z9 4 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 21 PY 2011 VL 116 AR A07219 DI 10.1029/2011JA016476 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 796ZE UT WOS:000293091200008 ER PT J AU Taori, A Dashora, N Raghunath, K Russell, JM Mlynczak, MG AF Taori, A. Dashora, N. Raghunath, K. Russell, J. M., III Mlynczak, Martin G. TI Simultaneous mesosphere-thermosphere-ionosphere parameter measurements over Gadanki (13.5 degrees N, 79.2 degrees E): First results SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EQUATORIAL SPREAD-F; GRAVITY-WAVES; PLASMA DEPLETIONS; LOW-LATITUDE; AIRGLOW; REGION; INITIATION; CAMPAIGN; BUBBLES; LIDAR AB We report first simultaneous airglow, lidar, and total electron content measurements in the mesosphere-thermosphere-ionosphere system behavior from Gadanki (13.5 degrees N, 79.2 degrees E). The observed variability in mesospheric temperatures and 630 nm thermospheric emission intensity shows large variations from one night to another with clear upward propagating waves at mesospheric altitudes. The deduced mesospheric temperatures compare well with Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER)-derived temperatures, while the variability agrees well with lidar temperatures (on the night of simultaneous observations). The 630.0 nm thermospheric emission intensity and GPS-total electron content data exhibit occurrence of plasma depletions on the nights of 22-23 October and 22-23 May 2009, while no depletions are noted on the nearby nights of 23-24 October and 21-22 May 2009. These first simultaneous data reveal strong gravity-wave growth at upper mesospheric altitudes on the nights when plasma depletions were noted. C1 [Taori, A.; Dashora, N.; Raghunath, K.] Natl Atmospher Res Lab, Gadanki 517112, India. [Russell, J. M., III] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. [Mlynczak, Martin G.] NASA, Sci Mission Directorate, Langley Res Ctr, Hampton, VA 23681 USA. RP Taori, A (reprint author), Natl Atmospher Res Lab, Gadanki 517112, India. EM alok.taori@gmail.com RI Mlynczak, Martin/K-3396-2012 FU Department of Space, Government of India FX This work is supported by the Department of Space, Government of India. A. Taori thanks the director of NARL for his support toward airglow research. The present work is carried out under the umbrella of SAFAR and CAWSES India Phase II, Team 3. Assistance of ISA Impex, Bangalore, India, with fabrication and installation of MLTP is duly acknowledged. NR 33 TC 11 Z9 11 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 21 PY 2011 VL 116 AR A07308 DI 10.1029/2010JA016154 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 796ZE UT WOS:000293091200001 ER PT J AU Boul, PJ Nikolaev, P Sosa, E Arepalli, S AF Boul, Peter J. Nikolaev, Pavel Sosa, Edward Arepalli, Sivaram TI Potentially Scalable Conductive-Type Nanotube Enrichment Through Covalent Chemistry SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID WALLED CARBON NANOTUBES; DENSITY DIFFERENTIATION; SEPARATION; DIAZONIUM; CATALYST; SAMPLES AB Metallic single-wall carbon nanotubes, synthesized through a pulsed-laser vaporization process, were selectively reacted with dodecyl-oxybenzene-diazonium tetrafluoroborate to yield tetrahydrofuran (THF) suspensions of nanotubes enriched in metallic content. The nanotube material that did not suspend in THE displayed a lower DIG ratio in Raman spectroscopy indicating less covalent functionalization and corresponds to an increase in semiconducting nanotube population. After the THF suspendable nanotubes were extracted from the unsuspendable nanotube material, the two separate nanotube populations were stripped of the dodecyloxybenzene functional groups through an annealing process. In this way, the functionalization process was made to be reversible whereby the nanotubes from both semiconducting and metallically enriched populations could have their original band gap properties restored. C1 [Boul, Peter J.; Sosa, Edward] NASA, Lyndon B Johnson Space Ctr, ERC Inc, Houston, TX 77058 USA. [Nikolaev, Pavel; Arepalli, Sivaram] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, South Korea. RP Boul, PJ (reprint author), NASA, Lyndon B Johnson Space Ctr, ERC Inc, POB 58561, Houston, TX 77058 USA. EM peter.boul@gmail.com RI Nikolaev, Pavel/B-9960-2009 FU NASA [NNJ05HI05C]; NRF of Korea [R31-2008-10029] FX This research was supported by NASA under Contract No. NNJ05HI05C and by WCU program through the NRF of Korea, R31-2008-10029. NR 36 TC 2 Z9 3 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 21 PY 2011 VL 115 IS 28 BP 13592 EP 13596 DI 10.1021/jp202251r PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 794JQ UT WOS:000292892600008 ER PT J AU Richardson, IG Cane, HV AF Richardson, I. G. Cane, H. V. TI Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995-2009 and implications for storm forecasting SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID MAJOR GEOMAGNETIC STORMS; COSMIC-RAY DECREASES; WIND MAGNETIC CLOUDS; SOLAR-WIND; SEMIANNUAL VARIATION; PARAMETERS; MAXIMUM; SOLAR-CYCLE-23; DISTURBANCES; SIGNATURES AB We summarize the geoeffectiveness (based on the Dst and Kp indices) of the more than 300 interplanetary coronal mass ejections (ICMEs) that passed the Earth during 1996-2009, encompassing solar cycle 23. We subsequently estimate the probability that an ICME will generate geomagnetic activity that exceeds certain thresholds of Dst or Kp, including the NOAA "G" storm scale, based on maximum values of the southward magnetic field component (B-s), the solar wind speed (V), and the y component (E-y) of the solar wind convective electric field E = -V x B, in the ICME or sheath ahead of the ICME. Consistent with previous studies, the geoeffectiveness of an ICME is correlated with B-s or E-y approximate to VBs in the ICME or sheath, indicating that observations from a solar wind monitor upstream of the Earth are likely to provide the most reliable forecasts of the activity associated with an approaching ICME. There is also a general increase in geoeffectiveness with ICME speed, though the overall event-to-event correlation is weaker than for B-s and E-y. Nevertheless, using these results, we suggest that the speed of an ICME approaching the Earth inferred, for example, from routine remote sensing by coronagraphs on spacecraft well separated from the Earth or by all-sky imagers, could be used to estimate the likely geoeffectiveness of the ICME (our "comprehensive" ICME database provides a proxy for ICMEs identified in this way) with a longer lead time than may be possible using an upstream monitor. C1 [Richardson, I. G.; Cane, H. V.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Richardson, I. G.] Univ Maryland, CRESST, College Pk, MD 20742 USA. [Richardson, I. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Cane, H. V.] Univ Tasmania, Sch Math & Phys, Hobart, Tas, Australia. RP Richardson, IG (reprint author), NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Code 661, Greenbelt, MD 20771 USA. EM ian.g.richardson@nasa.gov; hilary.cane@utas.edu.au OI Richardson, Ian/0000-0002-3855-3634 NR 55 TC 16 Z9 16 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD JUL 21 PY 2011 VL 9 AR S07005 DI 10.1029/2011SW000670 PG 9 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 796YX UT WOS:000293090500002 ER PT J AU Hoffman, J Berendzen, R AF Hoffman, Jascha Berendzen, Richard TI Q&A Richard Berendzen The sci-fi adviser SO NATURE LA English DT Editorial Material C1 [Berendzen, Richard] NASA, Space Grant Consortium, Washington, DC 20546 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 21 PY 2011 VL 475 IS 7356 BP 295 EP 295 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 794PA UT WOS:000292911200018 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bonamente, E Borgland, AW Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Camilo, F Caraveo, PA Cecchi, C Charles, E Chaty, S Chekhtman, A Chernyakova, M Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Corbel, S Cutini, S D'Ammando, F de Angelis, A den Hartog, PR de Palma, F Dermer, CD Digel, SW Silva, EDE Dormody, M Drell, PS Drlica-Wagner, A Dubois, R Dubus, G Dumora, D Enoto, T Espinoza, CM Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Fortin, P Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Grundstrom, E Guiriec, S Gwon, C Hadasch, D Harding, AK Hayashida, M Hays, E Johannesson, G Johnson, AS Johnson, TJ Johnston, S Kamae, T Katagiri, H Kataoka, J Keith, M Kerr, M Knodlseder, J Kramer, M Kuss, M Lande, J Lee, SH Lemoine-Goumard, M Longo, F Loparco, F Lovellette, MN Lubrano, P Manchester, RN Marelli, M Mazziotta, MN Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Neronov, A Nolan, PL Norris, JP Noutsos, A Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Paneque, D Parent, D Pesce-Rollins, M Pierbattista, M Piron, F Porter, TA Possenti, A Raino, S Rando, R Ray, PS Razzano, M Razzaque, S Reimer, A Reimer, O Reposeur, T Ritz, S Sadrozinski, HFW Scargle, JD Sgro, C Shannon, R Siskind, EJ Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Takahashi, H Tanaka, T Thayer, JG Thayer, JB Thompson, DJ Thorsett, SE Tibaldo, L Tibolla, O Torres, DF Tosti, G Troja, E Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vitale, V Waite, AP Wang, P Winer, BL Wolff, MT Wood, DL Wood, KS Yang, Z Ziegler, M Zimmer, S AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Camilo, F. Caraveo, P. A. Cecchi, C. Charles, E. Chaty, S. Chekhtman, A. Chernyakova, M. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Corbel, S. Cutini, S. D'Ammando, F. de Angelis, A. den Hartog, P. R. de Palma, F. Dermer, C. D. Digel, S. W. do Couto e Silva, E. Dormody, M. Drell, P. S. Drlica-Wagner, A. Dubois, R. Dubus, G. Dumora, D. Enoto, T. Espinoza, C. M. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Fortin, P. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Grundstrom, E. Guiriec, S. Gwon, C. Hadasch, D. Harding, A. K. Hayashida, M. Hays, E. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnston, S. Kamae, T. Katagiri, H. Kataoka, J. Keith, M. Kerr, M. Knodlseder, J. Kramer, M. Kuss, M. Lande, J. Lee, S. -H. Lemoine-Goumard, M. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Manchester, R. N. Marelli, M. Mazziotta, M. N. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Neronov, A. Nolan, P. L. Norris, J. P. Noutsos, A. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Paneque, D. Parent, D. Pesce-Rollins, M. Pierbattista, M. Piron, F. Porter, T. A. Possenti, A. Raino, S. Rando, R. Ray, P. S. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Sadrozinski, H. F. -W. Scargle, J. D. Sgro, C. Shannon, R. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. G. Thayer, J. B. Thompson, D. J. Thorsett, S. E. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Troja, E. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wolff, M. T. Wood, D. L. Wood, K. S. Yang, Z. Ziegler, M. Zimmer, S. TI DISCOVERY OF HIGH-ENERGY GAMMA-RAY EMISSION FROM THE BINARY SYSTEM PSR B1259-63/LS 2883 AROUND PERIASTRON WITH FERMI SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: eclipsing; gamma rays: stars; pulsars: individual (PSR B1259-63); X-rays: binaries ID PULSAR; RADIO; TELESCOPE; PASSAGE; PSR-B1259-63/SS2883; PSR-1259-63; RADIATION; CATALOG; WIND AB We report on the discovery of >= 100 MeV gamma-rays from the binary system PSR B1259-63/LS 2883 using the Large Area Telescope (LAT) on board Fermi. The system comprises a radio pulsar in orbit around a Be star. We report on LAT observations from near apastron to similar to 128 days after the time of periastron, t(p), on 2010 December 15. No gamma-ray emission was detected from this source when it was far from periastron. Faint gamma-ray emission appeared as the pulsar approached periastron. At similar to t(p) + 30 days, the >= 100 MeV gamma-ray flux increased over a period of a few days to a peak flux 20-30 times that seen during the pre-periastron period, but with a softer spectrum. For the following month, it was seen to be variable on daily timescales, but remained at similar to(1-4) x 10(-6) cm(-2) s(-1) before starting to fade at similar to t(p) + 57 days. The total gamma-ray luminosity observed during this period is comparable to the spin-down power of the pulsar. Simultaneous radio and X-ray observations of the source showed no corresponding dramatic changes in radio and X-ray flux between the pre-periastron and post-periastron flares. We discuss possible explanations for the observed gamma-ray-only flaring of the source. C1 [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; den Hartog, P. R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Enoto, T.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Kerr, M.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; den Hartog, P. R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Enoto, T.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Kerr, M.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Ballet, J.; Chaty, S.; Corbel, S.; Focke, W. B.; Grenier, I. A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, Lab AIM, CEA,IRFU,CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bellazzini, R.; Bregeon, J.; Kuss, M.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] CSIC, IEEC, Inst Ciencias Espai, Barcelona 08193, Spain. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chekhtman, A.] Artep Inc, Ellicott City, MD 21042 USA. [Chernyakova, M.] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 2, Ireland. [Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Cohen-Tanugi, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Univers & Particules Montpellier, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Corbel, S.] Inst Univ France, F-75005 Paris, France. [Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy. [D'Ammando, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Abdo, A. A.; Dermer, C. D.; Grove, J. E.; Gwon, C.; Lovellette, M. N.; Ray, P. S.; Strickman, M. S.; Wolff, M. T.; Wood, D. L.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Dormody, M.; Ritz, S.; Sadrozinski, H. F. -W.; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Dormody, M.; Ritz, S.; Sadrozinski, H. F. -W.; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Dubus, G.] Univ Grenoble 1, Inst Planetol & Astrophys Grenoble, CNRS, INSU,UMR 5274, F-38041 Grenoble, France. [Dumora, D.; Lemoine-Goumard, M.; Reposeur, T.] Univ Bordeaux 1, Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, F-33175 Gradignan, France. [Espinoza, C. M.; Kramer, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; Moiseev, A. A.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Grondin, M. -H.] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Grundstrom, E.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37240 USA. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Abdo, A. A.; Parent, D.; Razzaque, S.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Johnston, S.; Keith, M.; Manchester, R. N.; Shannon, R.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knodlseder, J.] IRAP, CNRS, F-31028 Toulouse 4, France. [Knodlseder, J.] Univ Toulouse, UPS OMP, IRAP, GAHEC, Toulouse, France. [Kramer, M.; Noutsos, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Neronov, A.] ISDC Data Ctr Astrophys, CH-1290 Versoix, Switzerland. [Norris, J. P.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Kanagawa 2525210, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Possenti, A.] INAF Cagliari Astron Observ, I-09012 Capoterra, CA, Italy. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Torres, D. F.] ICREA, Barcelona, Spain. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Yang, Z.; Zimmer, S.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Yang, Z.; Zimmer, S.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM aous.abdo@nrl.navy.mil; Simon.Johnston@atnf.csiro.au; Andrii.Neronov@unige.ch; dmnparent@gmail.com; kent.wood@nrl.navy.mil RI Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Morselli, Aldo/G-6769-2011; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; Harding, Alice/D-3160-2012; lubrano, pasquale/F-7269-2012; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015 OI Gasparrini, Dario/0000-0002-5064-9495; Ray, Paul/0000-0002-5297-5278; Marelli, Martino/0000-0002-8017-0338; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Chaty, Sylvain/0000-0002-5769-8601; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Cutini, Sara/0000-0002-1271-2924; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Grundstrom, Erika/0000-0002-5130-0260; Giordano, Francesco/0000-0002-8651-2394; Thorsett, Stephen/0000-0002-2025-9613; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Shannon, Ryan/0000-0002-7285-6348; Caraveo, Patrizia/0000-0003-2478-8018; Morselli, Aldo/0000-0002-7704-9553; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036 FU European Community [ERC-StG-200911]; International Doctorate on Astroparticle Physics (IDAPP) program; NASA, United States; DOE, United States; CEA/Irfu, France; IN2P3/CNRS, France; ASI, Italy; INFN, Italy; MEXT, Japan; KEK, Japan; JAXA, Japan; K. A. Wallenberg Foundation; Swedish Research Council; National Space Board in Sweden; Commonwealth Government; NASA FX Funded by contract ERC-StG-200911 from the European Community.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; The Fermi-LAT Collaboration acknowledges support from a number of agencies and institutes for both the development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. The Parkes radio telescope is part of the Australia Telescope which is funded by the Commonwealth Government for operation as a National Facility managed by CSIRO. We thank our colleagues for their assistance with the radio timing observations. This work was supported in part by a NASA Fermi Guest Investigator Program. NR 28 TC 57 Z9 58 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 20 PY 2011 VL 736 IS 1 AR L11 DI 10.1088/2041-8205/736/1/L11 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OX UT WOS:000293138300011 ER PT J AU Gopalswamy, N Yashiro, S AF Gopalswamy, Nat Yashiro, Seiji TI THE STRENGTH AND RADIAL PROFILE OF THE CORONAL MAGNETIC FIELD FROM THE STANDOFF DISTANCE OF A CORONAL MASS EJECTION-DRIVEN SHOCK SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE shock waves; solar wind; Sun: corona; Sun: coronal mass ejections; Sun: heliosphere ID FARADAY-ROTATION MEASUREMENTS; SOLAR CORONA; ELECTRON-DENSITY; LARGE-ANGLE; NEAR-SUN; LASCO; WAVES AB We determine the coronal magnetic field strength in the heliocentric distance range 6-23 solar radii (Rs) by measuring the shock standoff distance and the radius of curvature of the flux rope during the 2008 March 25 coronal mass ejection imaged by white-light coronagraphs. Assuming the adiabatic index, we determine the Alfven Mach number, and hence the Alfven speed in the ambient medium using the measured shock speed. By measuring the upstream plasma density using polarization brightness images, we finally get the magnetic field strength upstream of the shock. The estimated magnetic field decreases from similar to 48 mG around 6 Rs to 8 mG at 23 Rs. The radial profile of the magnetic field can be described by a power law in agreement with other estimates at similar heliocentric distances. C1 [Gopalswamy, Nat] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yashiro, Seiji] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Gopalswamy, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Gopalswamy, Nat/D-3659-2012 FU NASA FX We thank P. Makela and H. Xie for verifying the height-time measurements. This work was supported by NASA's LWS TR&T program. We thank the SOHO and STEREO teams for making the data available online. We thank the referee for helpful comments. NR 26 TC 47 Z9 47 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 20 PY 2011 VL 736 IS 1 AR L17 DI 10.1088/2041-8205/736/1/L17 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OX UT WOS:000293138300017 ER PT J AU Griffith, RL Tsai, CW Stern, D Blain, A Eisenhardt, PRM Harrison, F Jarrett, TH Madsen, K Stanford, SA Wright, EL Wu, JW Wu, Y Yan, L AF Griffith, Roger L. Tsai, Chao-Wei Stern, Daniel Blain, Andrew Eisenhardt, Peter R. M. Harrison, Fiona Jarrett, Thomas H. Madsen, Kristin Stanford, Spencer A. Wright, Edward L. Wu, Jingwen Wu, Yanling Yan, Lin TI WISE DISCOVERY OF LOW-METALLICITY BLUE COMPACT DWARF GALAXIES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: abundances; galaxies: dwarf; galaxies: individual (WISEP J080103.93+264053.9, WISEP J170233.53+180306.4); galaxies: starburst ID INFRARED SURVEY EXPLORER; DIGITAL SKY SURVEY; EMISSION-LINE GALAXIES; METAL-POOR GALAXIES; SBS 0335-052; STAR-FORMATION; PRIMORDIAL HELIUM; DUST; ABUNDANCE; SPITZER AB We report two new low-metallicity blue compact dwarf galaxies (BCDs), WISEP J080103.93+264053.9 (hereafter W0801+26) and WISEP J170233.53+180306.4 (hereafter W1702+18), discovered using the Wide-field Infrared Survey Explorer (WISE). We identified these two BCDs from their extremely red colors at mid-infrared wavelengths and obtained follow-up optical spectroscopy using the Low Resolution Imaging Spectrometer on Keck I. The mid-infrared properties of these two sources are similar to the well-studied, extremely low metallicity galaxy SBS 0335-052E. We determine metallicities of 12+log (O/H) = 7.75 and 7.63 for W0801+26 and W1702+18, respectively, placing them among a very small group of very metal deficient galaxies (Z <= 1/10Z(circle dot)). Their >300 angstrom H beta equivalent widths, similar to SBS 0335-052E, imply the existence of young (<5Myr) star-forming regions. We measure star formation rates of 2.6 and 10.9M(circle dot) yr(-1) for W0801+26 and W1702+18, respectively. These BCDs, showing recent star formation activity in extremely low metallicity environments, provide new laboratories for studying star formation in extreme conditions and are low-redshift analogs of the first generation of galaxies to form in the universe. Using the all-sky WISE survey, we discuss a new method to identify similar star-forming, low-metallicity BCDs. C1 [Griffith, Roger L.; Tsai, Chao-Wei; Jarrett, Thomas H.; Wu, Yanling; Yan, Lin] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Stern, Daniel; Eisenhardt, Peter R. M.; Wu, Jingwen] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Blain, Andrew] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Harrison, Fiona; Madsen, Kristin] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Stanford, Spencer A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Wright, Edward L.] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90095 USA. RP Griffith, RL (reprint author), CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. OI Madsen, Kristin/0000-0003-1252-4891 FU National Aeronautics and Space Administration; W. M. Keck Foundation FX The authors thank the anonymous referee for timely and beneficial comments that have improved the manuscript. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory, California Institute of Technology, funded by the National Aeronautics and Space Administration. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors also recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community; we are most fortunate to have the opportunity to conduct observations from this mountain. NR 38 TC 16 Z9 16 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 20 PY 2011 VL 736 IS 1 AR L22 DI 10.1088/2041-8205/736/1/L22 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OX UT WOS:000293138300022 ER PT J AU Liu, W Title, AM Zhao, JW Ofman, L Schrijver, CJ Aschwanden, MJ De Pontieu, B Tarbell, TD AF Liu, Wei Title, Alan M. Zhao, Junwei Ofman, Leon Schrijver, Carolus J. Aschwanden, Markus J. De Pontieu, Bart Tarbell, Theodore D. TI DIRECT IMAGING OF QUASI-PERIODIC FAST PROPAGATING WAVES OF similar to 2000 km s(-1) IN THE LOW SOLAR CORONA BY THE SOLAR DYNAMICS OBSERVATORY ATMOSPHERIC IMAGING ASSEMBLY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: activity; Sun: corona; Sun: coronal mass ejections; Sun: flares; Sun: oscillations; waves ID TRANSITION-REGION; MAGNETOACOUSTIC WAVE; LOOP OSCILLATIONS; ALFVEN WAVES; TRANSVERSE-WAVES; MASS EJECTION; FLARE; RECONNECTION; PULSATIONS; CHROMOSPHERE AB Quasi-periodic propagating fast mode magnetosonic waves in the solar corona were difficult to observe in the past due to relatively low instrument cadences. We report here evidence of such waves directly imaged in EUV by the new Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. In the 2010 August 1 C3.2 flare/coronal mass ejection event, we find arc-shaped wave trains of 1%-5% intensity variations (lifetime similar to 200 s) that emanate near the flare kernel and propagate outward up to similar to 400 Mm along a funnel of coronal loops. Sinusoidal fits to a typical wave train indicate a phase velocity of 2200 +/- 130 km s(-1). Similar waves propagating in opposite directions are observed in closed loops between two flare ribbons. In the k-omega diagram of the Fourier wave power, we find a bright ridge that represents the dispersion relation and can be well fitted with a straight line passing through the origin. This k-omega ridge shows a broad frequency distribution with power peaks at 5.5, 14.5, and 25.1 mHz. The strongest signal at 5.5 mHz (period 181 s) temporally coincides with quasi-periodic pulsations of the flare, suggesting a common origin. The instantaneous wave energy flux of (0.1-2.6) x 10(7) erg cm(-2) s(-1) estimated at the coronal base is comparable to the steady-state heating requirement of active region loops. C1 [Liu, Wei; Title, Alan M.; Schrijver, Carolus J.; Aschwanden, Markus J.; De Pontieu, Bart; Tarbell, Theodore D.] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA. [Liu, Wei; Zhao, Junwei] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ofman, Leon] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ofman, Leon] Catholic Univ Amer, Greenbelt, MD 20771 USA. RP Liu, W (reprint author), Lockheed Martin Solar & Astrophys Lab, Bldg 252,3251 Hanover St, Palo Alto, CA 94304 USA. RI Zhao, Junwei/A-1177-2007 FU NASA [NWX08AV88G, NNX09AG10G]; AIA [NNG04EA00C] FX L.O. was supported by NASA grants NWX08AV88G and NNX09AG10G. Wavelet software, available at http://atoc.colorado.edu/research/wavelets, was provided by C. Torrence and G. Compo. We thank Nariaki Nitta for helpful discussions. This work was supported by AIA contract NNG04EA00C. NR 46 TC 57 Z9 57 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 20 PY 2011 VL 736 IS 1 AR L13 DI 10.1088/2041-8205/736/1/L13 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OX UT WOS:000293138300013 ER PT J AU Rinehart, SA Benford, DJ Cataldo, G Dwek, E Henry, R Kinzer, RE Nuth, J Silverberg, R Wheeler, C Wollack, E AF Rinehart, Stephen A. Benford, Dominic J. Cataldo, Giuseppe Dwek, Eliahu Henry, Ross Kinzer, Raymond E., Jr. Nuth, Joseph Silverberg, Robert Wheeler, Caleb Wollack, Edward TI Measuring the optical properties of astrophysical dust analogues: instrumentation and methods SO APPLIED OPTICS LA English DT Article ID TEMPERATURE-DEPENDENCE; SILICATE GRAINS; STARS; ABSORPTION; PARTICLES; EMISSION AB Dust is found throughout the universe and plays an important role for a wide range of astrophysical phenomena. In recent years, new IR facilities have provided powerful new data for understanding these phenomena. However, interpretation of these data is often complicated by a lack of complementary information about the optical properties of astronomically relevant materials. The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program at NASA's Goddard Space Flight Center is designed to provide new high-quality laboratory data from which we can derive the optical properties of astrophysical dust analogues. This program makes use of multiple instruments, including new equipment designed and built specifically for this purpose. The suite of instruments allows us to derive optical properties over a wide wavelength range, from the near-IR through the millimeter, also providing the capability for exploring how these properties depend upon the temperature of the sample. In this paper, we discuss the overall structure of the research program, describe the new instruments that have been developed to meet the science goals, and demonstrate the efficacy of these tools. (c) 2011 Optical Society of America C1 [Rinehart, Stephen A.; Benford, Dominic J.; Cataldo, Giuseppe; Dwek, Eliahu; Henry, Ross; Kinzer, Raymond E., Jr.; Nuth, Joseph; Silverberg, Robert; Wollack, Edward] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wheeler, Caleb] Arizona State Univ, Tempe, AZ 85287 USA. RP Rinehart, SA (reprint author), NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. EM Stephen.A.Rinehart@nasa.gov RI Dwek, Eli/C-3995-2012; Benford, Dominic/D-4760-2012; Nuth, Joseph/E-7085-2012; Wollack, Edward/D-4467-2012 OI Benford, Dominic/0000-0002-9884-4206; Wollack, Edward/0000-0002-7567-4451 FU NASA Science Mission Directorate; NASA through the NASA Herschel Science Center Laboratory; NASA FX The material presented in this paper is based upon work supported by NASA Science Mission Directorate through the ROSES/APRA program. Additional support for this work was provided by NASA through the NASA Herschel Science Center Laboratory Astrophysics Program. Samples were prepared under support provided to J. Nuth by NASA's cosmochemistry program. R. Kinzer is supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center (GSFC), administered by the Oak Ridge Associated Universities under contract with NASA. Contributions to this project were also made by several students funded through NASA's Undergraduate Student Research Program (USRP): N. Lourie, J. Wheeler, N. Mihalko, and T. Chisholm. Laboratory support was also provided by Manuel Quijada in the Optics Branch at GSFC. NR 23 TC 4 Z9 4 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUL 20 PY 2011 VL 50 IS 21 BP 4115 EP 4123 DI 10.1364/AO.50.004115 PG 9 WC Optics SC Optics GA 795JN UT WOS:000292970600047 PM 21772399 ER PT J AU Hamden, ET Greer, F Hoenk, ME Blacksberg, J Dickie, MR Nikzad, S Martin, DC Schiminovich, D AF Hamden, Erika T. Greer, Frank Hoenk, Michael E. Blacksberg, Jordana Dickie, Matthew R. Nikzad, Shouleh Martin, D. Christopher Schiminovich, David TI Ultraviolet antireflection coatings for use in silicon detector design SO APPLIED OPTICS LA English DT Article ID OPTICAL-CONSTANTS; THIN-FILMS; EXPLORER; MISSION; OZONE; AL2O3; LAYER AB We report on the development of coatings for a charged-coupled device (CCD) detector optimized for use in a fixed dispersion UV spectrograph. Because of the rapidly changing index of refraction of Si, single layer broadband antireflection (AR) coatings are not suitable to increase quantum efficiency at all wavelengths of interest. Instead, we describe a creative solution that provides excellent performance over UV wavelengths. We describe progress in the development of a coated CCD detector with theoretical quantum efficiencies (QEs) of greater than 60% at wavelengths from 120 to 300nm. This high efficiency may be reached by coating a backside-illuminated, thinned, delta-doped CCD with a series of thin film AR coatings. The materials tested include MgF2 (optimized for highest performance from 120-150 nm), SiO2 (150-180 nm), Al2O3 (180-240 nm), MgO (200-250 nm), and HfO2 (240-300 nm). A variety of deposition techniques were tested and a selection of coatings that minimized reflectance on a Si test wafer were applied to functional devices. We also discuss future uses and improvements, including graded and multilayer coatings. (C) 2011 Optical Society of America C1 [Hamden, Erika T.; Schiminovich, David] Columbia Univ, Dept Astron, New York, NY 10025 USA. [Greer, Frank; Hoenk, Michael E.; Blacksberg, Jordana; Dickie, Matthew R.; Nikzad, Shouleh] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Martin, D. Christopher] CALTECH, Dept Astron, Pasadena, CA 91125 USA. RP Hamden, ET (reprint author), Columbia Univ, Dept Astron, 550 W 120th St, New York, NY 10025 USA. EM hamden@astro.columbia.edu FU National Aeronautics and Space Administration (NASA); Columbia University FX The research described here was funded in part by a National Aeronautics and Space Administration (NASA) Space Grant. The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, and was supported in part by internal funding from Columbia University. The authors wish to thank Blake Jacquot, Todd Jones, and Patrick Morrissey for their help and advice in the writing of this paper. NR 31 TC 14 Z9 14 U1 1 U2 18 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUL 20 PY 2011 VL 50 IS 21 BP 4180 EP 4188 DI 10.1364/AO.50.004180 PG 9 WC Optics SC Optics GA 795JN UT WOS:000292970600054 PM 21772406 ER PT J AU Katz, A Wissink, AM Sankaran, V Meakin, RL Chan, WM AF Katz, Aaron Wissink, Andrew M. Sankaran, Venkateswaran Meakin, Robert L. Chan, William M. TI Application of strand meshes to complex aerodynamic flow fields SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Computational fluid dynamics; Aerodynamics; High-order methods; Adaptive mesh refinement; Mesh generation ID CIRCULAR-CYLINDER; GRID GENERATION AB We explore a new approach for viscous computational fluid dynamics calculations for external aerodynamics around geometrically complex bodies that incorporates nearly automatic mesh generation and efficient flow solution methods. A prismatic-like grid using "strands" is grown a short distance from the body surface to capture the viscous boundary layer, and adaptive Cartesian grids are used throughout the rest of the domain. The approach presents several advantages over established methods: nearly automatic grid generation from triangular or quadrilateral surface tessellations, very low memory overhead, automatic mesh adaptivity for time-dependent problems, and fast and efficient solvers from structured data in both the strand and Cartesian grids. The approach is evaluated for complex geometries and flow fields. We investigate the effects of strand length and strand vector smoothing to understand the effects on computed solutions. Results of three applications using the strand-adaptive Cartesian approach are given, including a NACA wing, isolated V-22 (TRAM) rotor in hover, and the DLR-F6 wing-body transport. The results from these cases show that the strand approach can successfully resolve near-body and off-body features as well as or better than established methods. (C) 2011 Elsevier Inc. All rights reserved. C1 [Katz, Aaron; Chan, William M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Katz, Aaron; Wissink, Andrew M.; Sankaran, Venkateswaran] USA, Aeroflightdynam Directorate AMRDEC, Moffett Field, CA 94035 USA. [Meakin, Robert L.] Univ Alabama, Dept Mech Engn, Birmingham, AL 35294 USA. RP Katz, A (reprint author), NASA, Ames Res Ctr, M-S 215-1, Moffett Field, CA 94035 USA. EM akatz@merlin.arc.nasa.gov RI Katz, Aaron/I-8244-2015 OI Katz, Aaron/0000-0003-2739-9384 FU Department of Defense High Performance Computing Modernization Office (HPCMO); HPCMO FX Development was performed at the HPC Institute for Advanced Rotorcraft Modeling and Simulation (HIARMS) located at the US Army Aeroflightdynamics Directorate at Moffett Field, CA, which is supported by the Department of Defense High Performance Computing Modernization Office (HPCMO). Material presented in this paper is a product of the CREATE-AV Element of the Computational Research and Engineering for Acquisition Tools and Environments (CREATE) Program sponsored by the HPCMO. NR 33 TC 9 Z9 9 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 20 PY 2011 VL 230 IS 17 BP 6512 EP 6530 DI 10.1016/j.jcp.2011.04.036 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 796EO UT WOS:000293034800008 ER PT J AU Baylor, RN Cassak, PA Christe, S Hannah, IG Krucker, S Mullan, DJ Shay, MA Hudson, HS Lin, RP AF Baylor, R. N. Cassak, P. A. Christe, S. Hannah, I. G. Krucker, Saem Mullan, D. J. Shay, M. A. Hudson, H. S. Lin, R. P. TI ESTIMATES OF DENSITIES AND FILLING FACTORS FROM A COOLING TIME ANALYSIS OF SOLAR MICROFLARES OBSERVED WITH RHESSI SO ASTROPHYSICAL JOURNAL LA English DT Article DE conduction; radiative transfer; Sun: activity; Sun: corona; Sun: flares ID X-RAY FLARE; ACTIVE-REGION LOOPS; WHITE-LIGHT FLARES; TRANSITION-REGION; STELLAR FLARES; FREQUENCY-DISTRIBUTIONS; SPECTROSCOPIC-IMAGER; CORONAL-EXPLORER; EMISSION MEASURE; IMPULSIVE PHASE AB We usemore than 4500 microflares from the RHESSI microflare data set to estimate electron densities and volumetric filling factors of microflare loops using a cooling time analysis. We show that if the filling factor is assumed to be unity, the calculated conductive cooling times are much shorter than the observed flare decay times, which in turn are much shorter than the calculated radiative cooling times. This is likely unphysical, but the contradiction can be resolved by assuming that the radiative and conductive cooling times are comparable, which is valid when the flare loop temperature is a maximum and when external heating can be ignored. We find that resultant radiative and conductive cooling times are comparable to observed decay times, which has been used as an assumption in some previous studies. The inferred electron densities have a mean value of 10(11.6) cm(-3) and filling factors have a mean of 10(-3.7). The filling factors are lower and densities are higher than previous estimates for large flares, but are similar to those found for two microflares by Moore et al. C1 [Baylor, R. N.; Cassak, P. A.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Christe, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hannah, I. G.; Hudson, H. S.] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Krucker, Saem; Hudson, H. S.; Lin, R. P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Krucker, Saem] Univ Appl Sci N Western Switzerland, Sch Engn, Inst Technol 4D, CH-5210 Windisch, Switzerland. [Mullan, D. J.; Shay, M. A.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Mullan, D. J.; Shay, M. A.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Lin, R. P.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lin, R. P.] Kyung Hee Univ, Sch Space Res, Seoul, South Korea. RP Baylor, RN (reprint author), W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. EM rbaylor@mix.wvu.edu RI Hannah, Iain/F-1972-2011; Christe, Steven/D-4648-2012; Shay, Michael/G-5476-2013; OI Hannah, Iain/0000-0003-1193-8603; Christe, Steven/0000-0001-6127-795X FU NSF [PHY-0902479]; NASA [NAS 5-98033]; West Virginia University Faculty Senate Research; Delaware Space Grant; European Commission through the SOLAIRE Network [MTRN-CT-2006-035484]; Korean Ministry of Education, Science and Technology [R31-10016] FX The authors thank G. Holman and B. Dennis for helpful conversations. R.N.B. and P.A.C. gratefully acknowledge support by NSF grant PHY-0902479, NASA's EPSCoR Research Infrastructure Development Program, and the West Virginia University Faculty Senate Research Grant program. D.J.M. is supported in part by the Delaware Space Grant. I.G.H. is supported by an STFC rolling grant and by the European Commission through the SOLAIRE Network (MTRN-CT-2006-035484). R.P.L. is supported in part by the WCU grant (No. R31-10016) funded by the Korean Ministry of Education, Science and Technology. H.S.H., R.P.L., and S.K. are supported through NASA contract NAS 5-98033 for RHESSI. NR 69 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 75 DI 10.1088/0004-637X/736/1/75 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600075 ER PT J AU Borucki, WJ Koch, DG Basri, G Batalha, N Brown, TM Bryson, ST Caldwell, D Christensen-Dalsgaard, J Cochran, WD DeVore, E Dunham, EW Gautier, TN Geary, JC Gilliland, R Gould, A Howell, SB Jenkins, JM Latham, DW Lissauer, JJ Marcy, GW Rowe, J Sasselov, D Boss, A Charbonneau, D Ciardi, D Doyle, L Dupree, AK Ford, EB Fortney, J Holman, MJ Seager, S Steffen, JH Tarter, J Welsh, WF Allen, C Buchhave, LA Christiansen, JL Clarke, BD Das, S Desert, JM Endl, M Fabrycky, D Fressin, F Haas, M Horch, E Howard, A Isaacson, H Kjeldsen, H Kolodziejczak, J Kulesa, C Li, J Lucas, PW Machalek, P McCarthy, D MacQueen, P Meibom, S Miquel, T Prsa, A Quinn, SN Quintana, EV Ragozzine, D Sherry, W Shporer, A Tenenbaum, P Torres, G Twicken, JD Van Cleve, J Walkowicz, L Witteborn, FC Still, M AF Borucki, William J. Koch, David G. Basri, Gibor Batalha, Natalie Brown, Timothy M. Bryson, Stephen T. Caldwell, Douglas Christensen-Dalsgaard, Jorgen Cochran, William D. DeVore, Edna Dunham, Edward W. Gautier, Thomas N., III Geary, John C. Gilliland, Ronald Gould, Alan Howell, Steve B. Jenkins, Jon M. Latham, David W. Lissauer, Jack J. Marcy, Geoffrey W. Rowe, Jason Sasselov, Dimitar Boss, Alan Charbonneau, David Ciardi, David Doyle, Laurance Dupree, Andrea K. Ford, Eric B. Fortney, Jonathan Holman, Matthew J. Seager, Sara Steffen, Jason H. Tarter, Jill Welsh, William F. Allen, Christopher Buchhave, Lars A. Christiansen, Jessie L. Clarke, Bruce D. Das, Santanu Desert, Jean-Michel Endl, Michael Fabrycky, Daniel Fressin, Francois Haas, Michael Horch, Elliott Howard, Andrew Isaacson, Howard Kjeldsen, Hans Kolodziejczak, Jeffery Kulesa, Craig Li, Jie Lucas, Philip W. Machalek, Pavel McCarthy, Donald MacQueen, Phillip Meibom, Soren Miquel, Thibaut Prsa, Andrej Quinn, Samuel N. Quintana, Elisa V. Ragozzine, Darin Sherry, William Shporer, Avi Tenenbaum, Peter Torres, Guillermo Twicken, Joseph D. Van Cleve, Jeffrey Walkowicz, Lucianne Witteborn, Fred C. Still, Martin TI CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; stars: statistics; planets and satellites: detection; surveys ID TERRESTRIAL PLANETS; INITIAL CHARACTERISTICS; TRANSITING PLANET; TARGET STARS; CADENCE DATA; DWARF STARS; LOW-DENSITY; HABITABILITY; SYSTEM; FIELD AB On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (R-p < 1.25 R-circle plus), 288 super-Earth-size (1.25 R-circle plus <= R-p < 2 R-circle plus), 662 Neptune-size (2 R-circle plus <= R-p < 6 R-circle plus), 165 Jupiter-size (6 R-circle plus <= R-p < 15 R-circle plus), and 19 up to twice the size of Jupiter (15 R-circle plus <= R-p < 22 R-circle plus). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems. C1 [Borucki, William J.; Koch, David G.; Bryson, Stephen T.; Lissauer, Jack J.; Rowe, Jason; Haas, Michael] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Basri, Gibor; Marcy, Geoffrey W.; Howard, Andrew; Isaacson, Howard; Walkowicz, Lucianne] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Batalha, Natalie] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Brown, Timothy M.; Shporer, Avi] Las Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Caldwell, Douglas; DeVore, Edna; Jenkins, Jon M.; Doyle, Laurance; Tarter, Jill; Christiansen, Jessie L.; Clarke, Bruce D.; Li, Jie; Machalek, Pavel; Quintana, Elisa V.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey; Still, Martin] SETI Inst, Mountain View, CA 94043 USA. [Christensen-Dalsgaard, Jorgen; Kjeldsen, Hans] Aarhus Univ, Danish Asteroseismol Ctr, Aarhus, Denmark. [Cochran, William D.; Endl, Michael; MacQueen, Phillip] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Dunham, Edward W.] Lowell Observ, Flagstaff, AZ 86001 USA. [Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Geary, John C.; Latham, David W.; Sasselov, Dimitar; Charbonneau, David; Dupree, Andrea K.; Holman, Matthew J.; Buchhave, Lars A.; Desert, Jean-Michel; Fressin, Francois; Meibom, Soren; Quinn, Samuel N.; Ragozzine, Darin; Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Gilliland, Ronald] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Gould, Alan] Lawrence Hall Sci, Berkeley, CA 94720 USA. [Howell, Steve B.; Sherry, William] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Boss, Alan] Carnegie Inst Washington, Washington, DC 20015 USA. [Ciardi, David] CALTECH, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Ford, Eric B.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Fortney, Jonathan; Fabrycky, Daniel] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Seager, Sara] MIT, Cambridge, MA 02139 USA. [Steffen, Jason H.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Welsh, William F.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. [Allen, Christopher; Witteborn, Fred C.] Orbital Sci Corp, Mountain View, CA 94043 USA. [Das, Santanu] Univ Calif Santa Cruz, Univ Affiliated Res Ctr, Santa Cruz, CA 95064 USA. [Horch, Elliott] So Connecticut State Univ, New Haven, CT 06515 USA. [Kolodziejczak, Jeffery] MSFC, Huntsville, AL 35805 USA. [Kulesa, Craig; McCarthy, Donald] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Kulesa, Craig; McCarthy, Donald] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Lucas, Philip W.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Miquel, Thibaut] French Space Agcy, CNES, Toulouse, France. [Prsa, Andrej] Villanova Univ, Dept Astron, Villanova, PA 19085 USA. RP Borucki, WJ (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM William.J.Borucki@nasa.gov; Fred.C.Witteborn@nasa.gov; Martin.Still@nasa.gov RI Ragozzine, Darin/C-4926-2013; Caldwell, Douglas/L-7911-2014; Howard, Andrew/D-4148-2015; OI Caldwell, Douglas/0000-0003-1963-9616; Howard, Andrew/0000-0001-8638-0320; Fortney, Jonathan/0000-0002-9843-4354; Buchhave, Lars A./0000-0003-1605-5666; Ciardi, David/0000-0002-5741-3047; /0000-0001-6545-639X; Fabrycky, Daniel/0000-0003-3750-0183 FU NASA's Science Mission Directorate; W. M. Keck Foundation FX Kepler was competitively selected as the tenth Discovery mission. Funding for this mission is provided by NASA's Science Mission Directorate. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We sincerely thank Andrew Gould for his timely, thorough, and very helpful review of this paper. The authors thank many people who gave so generously of their time to make this mission a success. NR 46 TC 528 Z9 528 U1 25 U2 106 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 19 DI 10.1088/0004-637X/736/1/19 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600019 ER PT J AU Cucchiara, A Levan, AJ Fox, DB Tanvir, NR Ukwatta, TN Berger, E Kruhler, T Yoldas, AK Wu, XF Toma, K Greiner, J Olivares, F Rowlinson, A Amati, L Sakamoto, T Roth, K Stephens, A Fritz, A Fynbo, JPU Hjorth, J Malesani, D Jakobsson, P Wiersema, K O'Brien, PT Soderberg, AM Foley, RJ Fruchter, AS Rhoads, J Rutledge, RE Schmidt, BP Dopita, MA Podsiadlowski, P Willingale, R Wolf, C Kulkarni, SR D'Avanzo, P AF Cucchiara, A. Levan, A. J. Fox, D. B. Tanvir, N. R. Ukwatta, T. N. Berger, E. Kruehler, T. Yoldas, A. Kuepcue Wu, X. F. Toma, K. Greiner, J. Olivares E, F. Rowlinson, A. Amati, L. Sakamoto, T. Roth, K. Stephens, A. Fritz, Alexander Fynbo, J. P. U. Hjorth, J. Malesani, D. Jakobsson, P. Wiersema, K. O'Brien, P. T. Soderberg, A. M. Foley, R. J. Fruchter, A. S. Rhoads, J. Rutledge, R. E. Schmidt, B. P. Dopita, M. A. Podsiadlowski, P. Willingale, R. Wolf, C. Kulkarni, S. R. D'Avanzo, P. TI A PHOTOMETRIC REDSHIFT OF z similar to 9.4 FOR GRB 090429B SO ASTROPHYSICAL JOURNAL LA English DT Article DE early universe; galaxies: high-redshift; gamma-ray burst: individual (GRB 090429R); techniques: photometric ID GAMMA-RAY BURSTS; GALAXY LUMINOSITY FUNCTION; CORE-COLLAPSE SUPERNOVAE; DIGITAL SKY SURVEY; SWIFT-ERA; HOST GALAXIES; LIGHT CURVES; DUST; AFTERGLOW; TELESCOPE AB Gamma-ray bursts (GRBs) serve as powerful probes of the early universe, with their luminous afterglows revealing the locations and physical properties of star-forming galaxies at the highest redshifts, and potentially locating first-generation (Population III) stars. Since GRB afterglows have intrinsically very simple spectra, they allow robust redshifts from low signal-to-noise spectroscopy, or photometry. Here we present a photometric redshift of z similar to 9.4 for the Swift detected GRB 090429B based on deep observations with Gemini-North, the Very Large Telescope, and the GRB Optical and Near-infrared Detector. Assuming a Small Magellanic Cloud dust law (which has been found in a majority of GRB sight lines), the 90% likelihood range for the redshift is 9.06 < z < 9.52, although there is a low-probability tail toward somewhat lower redshifts. Adopting Milky Way or Large Magellanic Cloud dust laws leads to very similar conclusions, while a Maiolino law does allow somewhat lower redshift solutions, though in all cases the most likely redshift is found to be z > 7. The non-detection of the host galaxy to deep limits (Y (AB) similar to 28, which would correspond roughly to 0.001L* at z = 1) in our late-time optical and infrared observations with the Hubble Space Telescope strongly supports the extreme-redshift origin of GRB 090429B, since we would expect to have detected any low-z galaxy, even if it were highly dusty. Finally, the energetics of GRB 090429B are comparable to those of other GRBs and suggest that its progenitor is not greatly different from those of lower redshift bursts. C1 [Cucchiara, A.; Fox, D. B.; Wu, X. F.; Toma, K.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Cucchiara, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Cucchiara, A.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Levan, A. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Tanvir, N. R.; Rowlinson, A.; Wiersema, K.; O'Brien, P. T.; Willingale, R.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Ukwatta, T. N.] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Ukwatta, T. N.; Sakamoto, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Berger, E.; Soderberg, A. M.; Foley, R. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kruehler, T.; Greiner, J.; Olivares E, F.] Max Planck Inst Extraterr Phys, D-85740 Garching, Germany. [Kruehler, T.] Tech Univ Munich, D-85748 Garching, Germany. [Yoldas, A. Kuepcue] European So Observ, D-85748 Garching, Germany. [Yoldas, A. Kuepcue] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Wu, X. F.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Amati, L.] INAF IASF Bologna, I-40129 Bologna, Italy. [Roth, K.; Stephens, A.; Fritz, Alexander] Gemini Observ, Hilo, HI 96720 USA. [Fynbo, J. P. U.; Hjorth, J.; Malesani, D.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Jakobsson, P.] Univ Iceland, Inst Sci, Ctr Astrophys & Cosmol, IS-107 Reykjavik, Iceland. [Fruchter, A. S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Rhoads, J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Rutledge, R. E.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Schmidt, B. P.; Dopita, M. A.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Podsiadlowski, P.; Wolf, C.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Kulkarni, S. R.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [D'Avanzo, P.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. RP Cucchiara, A (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. EM acucchiara@lbl.gov RI Fynbo, Johan/L-8496-2014; Hjorth, Jens/M-5787-2014; Dopita, Michael/P-5413-2014; Jakobsson, Pall/L-9950-2015; Amati, Lorenzo/N-5586-2015; Wu, Xuefeng/G-5316-2015; OI Fynbo, Johan/0000-0002-8149-8298; Hjorth, Jens/0000-0002-4571-2306; Dopita, Michael/0000-0003-0922-4986; Jakobsson, Pall/0000-0002-9404-5650; Amati, Lorenzo/0000-0001-5355-7388; Wu, Xuefeng/0000-0002-6299-1263; Kruehler, Thomas/0000-0002-8682-2384 FU NSF [GN-2009A-Q-26]; NASA [NAS 5-26555]; DFG [HA 1850/28-1]; Science and Technology Funding Council; Danish National Research Foundation; Deutscher Akademischer Austausch-Dienst (DAAD) FX The Gemini data, acquired under the program ID GN-2009A-Q-26, are based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute. STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. Data presented in this paper is associated with programme GO-11189. Part of the funding for GROND (both hardware as well as personnel) was generously granted by the Leibniz-Prize to Prof. G. Hasinger (DFG grant HA 1850/28-1). T. K. acknowledges support by the DFG cluster of excellence "Origin and Structure of the Universe." A. R. acknowledges funding from the Science and Technology Funding Council. The Dark Cosmology Centre is funded by the Danish National Research Foundation. F.O.E. acknowledges funding of his Ph.D. through the Deutscher Akademischer Austausch-Dienst (DAAD). NR 70 TC 175 Z9 176 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 7 DI 10.1088/0004-637X/736/1/7 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600007 ER PT J AU Hand, N Appel, JW Battaglia, N Bond, JR Das, S Devlin, MJ Dunkley, J Dunner, R Essinger-Hileman, T Fowler, JW Hajian, A Halpern, M Hasselfield, M Hilton, M Hincks, AD Hlozek, R Hughes, JP Irwin, KD Klein, J Kosowsky, A Lin, YT Marriage, TA Marsden, D McLaren, M Menanteau, F Moodley, K Niemack, MD Nolta, MR Page, LA Parker, L Partridge, B Plimpton, R Reese, ED Rojas, F Sehgal, N Sherwin, BD Sievers, JL Spergel, DN Staggs, ST Swetz, DS Switzer, ER Thornton, R Trac, H Visnjic, K Wollack, E AF Hand, Nick Appel, John W. Battaglia, Nick Bond, J. Richard Das, Sudeep Devlin, Mark J. Dunkley, Joanna Duenner, Rolando Essinger-Hileman, Thomas Fowler, Joseph W. Hajian, Amir Halpern, Mark Hasselfield, Matthew Hilton, Matt Hincks, Adam D. Hlozek, Renee Hughes, John P. Irwin, Kent D. Klein, Jeff Kosowsky, Arthur Lin, Yen-Ting Marriage, Tobias A. Marsden, Danica McLaren, Mike Menanteau, Felipe Moodley, Kavilan Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Parker, Lucas Partridge, Bruce Plimpton, Reed Reese, Erik D. Rojas, Felipe Sehgal, Neelima Sherwin, Blake D. Sievers, Jonathan L. Spergel, David N. Staggs, Suzanne T. Swetz, Daniel S. Switzer, Eric R. Thornton, Robert Trac, Hy Visnjic, Katerina Wollack, Ed TI THE ATACAMA COSMOLOGY TELESCOPE: DETECTION OF SUNYAEV-ZEL'DOVICH DECREMENT IN GROUPS AND CLUSTERS ASSOCIATED WITH LUMINOUS RED GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general ID DIGITAL SKY SURVEY; SPECTROSCOPIC TARGET SELECTION; SOUTH-POLE TELESCOPE; BACKGROUND POWER SPECTRUM; DATA RELEASE; SCALING RELATIONS; HOT-MODEL; 148 GHZ; SAMPLE; CONSTRAINTS AB We present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the luminous red galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope. The LRG sample is divided by luminosity into four bins, and estimates for the central SZ temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y-200 and clustering properties to relate the galaxy luminosity to halo mass. We also use a relation between brightest cluster galaxy luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be around 10(14) M-circle dot. C1 [Appel, John W.; Das, Sudeep; Dunkley, Joanna; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D.; Niemack, Michael D.; Page, Lyman A.; Parker, Lucas; Sherwin, Blake D.; Staggs, Suzanne T.; Switzer, Eric R.; Visnjic, Katerina] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Battaglia, Nick; Bond, J. Richard; Hajian, Amir; Nolta, Michael R.; Sievers, Jonathan L.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Hand, Nick; Dunkley, Joanna; Hajian, Amir; Marriage, Tobias A.; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Das, Sudeep] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBL, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Devlin, Mark J.; Klein, Jeff; Marsden, Danica; McLaren, Mike; Plimpton, Reed; Reese, Erik D.; Swetz, Daniel S.; Thornton, Robert] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Dunkley, Joanna; Hlozek, Renee] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Duenner, Rolando; Lin, Yen-Ting; Rojas, Felipe] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Fowler, Joseph W.; Irwin, Kent D.; Niemack, Michael D.; Swetz, Daniel S.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Halpern, Mark; Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Hilton, Matt; Moodley, Kavilan] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Sci, ZA-4041 Durban, South Africa. [Hilton, Matt] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Lin, Yen-Ting] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Lin, Yen-Ting] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Sehgal, Neelima] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Switzer, Eric R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Thornton, Robert] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Trac, Hy] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Wollack, Ed] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hand, N (reprint author), Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. RI Trac, Hy/N-8838-2014; Klein, Jeffrey/E-3295-2013; Wollack, Edward/D-4467-2012; Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013 OI Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Menanteau, Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074; McLaren, Michael/0000-0003-1575-473X; FU Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT); U.S. National Science Foundation [AST-0408698, PHY-0355328, AST-0707731, PIRE-0507768]; Princeton University; University of Pennsylvania; RCUK; Canada Foundation for Innovation under Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; NASA [NNX08AH30G]; Natural Science and Engineering Research Council of Canada (NSERC); NSF [AST-0546035, AST-0606975]; NSF Physics Frontier Center [PHY-0114422]; U.S. Department of Energy [DE-AC3-76SF00515]; Berkeley Center for Cosmological Physics FX This paper is part of a senior thesis supervised by D. Spergel. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of Programa de Astronomia, a program of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). We thank Masao Uehara for coordinating ACT's operations in Chile and Paula Aguirre, Bill Page, David Sanchez, and Omean Stryzak for assistance in operating the telescope. We also thank Eyal Kazin, Will Percival, Beth Reid, and Reina Reyes for useful discussions during the development of this work.; This work was supported by the U.S. National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731 and PIRE-0507768. Funding was also provided by Princeton University and the University of Pennsylvania. J.D. acknowledges support from a RCUK Fellowship. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research Fund-Research Excellence, and the University of Toronto. S. D., A. H., and T. M. were supported through NASA grant NNX08AH30G. A. D. H. received additional support from a Natural Science and Engineering Research Council of Canada (NSERC) PGSD scholarship. A. K. was partially supported through NSF AST-0546035 and AST-0606975 for work on ACT. E. S. acknowledges support by NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics. N.S. is supported by the U.S. Department of Energy contract to SLAC no. DE-AC3-76SF00515. S. D. acknowledges support from the Berkeley Center for Cosmological Physics. NR 73 TC 33 Z9 33 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 39 DI 10.1088/0004-637X/736/1/39 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600039 ER PT J AU Harrison, TE McNamara, BJ Bornak, J Gelino, DM Wachter, S Rupen, MP Gelino, CR AF Harrison, Thomas E. McNamara, Bernard J. Bornak, Jillian Gelino, Dawn M. Wachter, Stefanie Rupen, Michael P. Gelino, Christopher R. TI SPITZER OBSERVATIONS OF GX17+2: CONFIRMATION OF A PERIODIC SYNCHROTRON SOURCE SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: stars; stars: individual (GX17+2); stars: neutron; X-rays: binaries ID X-RAY BINARIES; NEUTRON-STAR; CIRCINUS X-1; CYGNUS X-2; GX 17+2; SCORPIUS X-1; CIR X-1; Z-TRACK; MASS; JETS AB GX17+2 is a low-mass X-ray binary (LMXB) that is also a member of a small family of LMXBs known as "Z-sources" that are believed to have persistent X-ray luminosities that are very close to the Eddington limit. GX17+2 is highly variable at both radio and X-ray frequencies, a feature common to Z-sources. What sets GX17+2 apart is its dramatic variability in the near-infrared, where it changes by Delta K similar to 3 mag. Previous investigations have shown that these brightenings are periodic, recurring every 3.01 days. Given its high extinction (A(V) >= 9 mag), it has not been possible to ascertain the nature of these events with ground-based observations. We report mid-infrared Spitzer observations of GX17+2 which indicate a synchrotron spectrum for the infrared brightenings. In addition, GX17+2 is highly variable in the mid-infrared during these events. The combination of the large-scale outbursts, the presence of a synchrotron spectrum, and the dramatic variability in the mid-infrared suggest that the infrared brightening events are due to the periodic transit of a synchrotron jet across our line of sight. An analysis of both new, and archival, infrared observations has led us to revise the period for these events to 3.0367 days. We also present new Rossi X-Ray Timing Explorer (RXTE) data for GX17+2 obtained during two predicted infrared brightening events. Analysis of these new data, and data from the RXTE archive, indicates that there is no correlation between the X-ray behavior of this source and the observed infrared brightenings. We examine various scenarios that might produce periodic jet emission. C1 [Harrison, Thomas E.; McNamara, Bernard J.; Bornak, Jillian] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Gelino, Dawn M.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Wachter, Stefanie] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Rupen, Michael P.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Gelino, Christopher R.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. RP Harrison, TE (reprint author), New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. EM tharriso@nmsu.edu; bmcnamar@nmsu.edu; jbornak@nmsu.edu; dawn@ipac.caltech.edu; wachter@ipac.caltech.edu; mrupen@aoc.nrao.edu; cgelino@ipac.caltech.edu NR 57 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 54 DI 10.1088/0004-637X/736/1/54 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600054 ER PT J AU Huang, XC Lee, TJ AF Huang, Xinchuan Lee, Timothy J. TI SPECTROSCOPIC CONSTANTS FOR C-13 AND DEUTERIUM ISOTOPOLOGUES OF CYCLIC AND LINEAR C3H3+ SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; circumstellar matter; ISM: molecules; molecular data; molecular processes ID QUARTIC FORCE-FIELD; VIBRATIONAL FREQUENCIES; BASIS-SETS; CYCLOPROPENYLIDENE; IDENTIFICATION; PROPADIENYLIDENE; IRC+10216; MOLECULES; ENERGIES; SPECTRA AB Recently, we reported ab initio quartic force fields (QFFs) for the cyclic and linear forms of the C3H3+ molecular cation, referred to as c-C3H3+ and l-C3H3+. These were computed using high levels of theory. Specifically the singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, CCSD(T), was used in conjunction with extrapolation to the one-particle basis set limit, and corrections for scalar relativity and core correlation were included. In the present study, we use these QFFs to compute highly accurate fundamental vibrational frequencies and other spectroscopic constants for the c-(CC2H3+)-C-13, c-C3H2D+, c-(CC2H2D+)-C-13 isotoplogues of c-C3H3+, and the H2CCCD+, HDCCCH+, (H2CCCH+)-C-13, (H2CCCH+)-C-13, and (H2CCCH+)-C-13 isotopologues of l-C3H3+. Improvements in ab intitio methods have now made it possible to identify small molecules in an astronomical observation without the aid of high-resolution experimental data. We also report dipole moment values and show that the above-mentioned cyclic isotopologues have values of 0.094, 0.225, and 0.312 D, respectively, while the l-C3H3+ isotopologues have values that range between 0.325 and 0.811 D. Thus, it is hoped that the highly accurate spectroscopic constants and data provided herein for the C-13 and deuterium isotopologues of the cyclic and linear forms of C3H3+ will enable their identification in astronomical observations from the Herschel Space Observatory, the Stratospheric Observatory for Infrared Astronomy, the Atacama Large Millimeter Array, and in the future, the James Webb Space Telescope. C1 [Lee, Timothy J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Huang, Xinchuan] SETI Inst, Mountain View, CA 94043 USA. RP Lee, TJ (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Xinchuan.Huang-1@nasa.gov; Timothy.J.Lee@nasa.gov RI HUANG, XINCHUAN/A-3266-2013; Lee, Timothy/K-2838-2012 FU NASA [08-APRA08-0050]; NASA/SETI Institute [NNX09AI49A]; [Cycle 0 TR/LA PID 1022] FX The authors gratefully acknowledge support from the NASA Herschel GO Program, Cycle 0 TR/LA PID 1022, and the NASA grant 08-APRA08-0050. X. H. acknowledges the financial support by NASA/SETI Institute Cooperative Agreement NNX09AI49A. NR 30 TC 14 Z9 14 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 33 DI 10.1088/0004-637X/736/1/33 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600033 ER PT J AU Kennea, JA Romano, P Mangano, V Beardmore, AP Evans, PA Curran, PA Krimm, HA Markwardt, CB Yamaoka, K AF Kennea, J. A. Romano, P. Mangano, V. Beardmore, A. P. Evans, P. A. Curran, P. A. Krimm, H. A. Markwardt, C. B. Yamaoka, K. TI SWIFT OBSERVATIONS OF MAXI J1659-152: A COMPACT BINARY WITH A BLACK HOLE ACCRETOR SO ASTROPHYSICAL JOURNAL LA English DT Article DE X-rays: binaries; X-rays: individual (MAXI J1659-152) ID X-RAY BINARIES; MULTIWAVELENGTH OBSERVATIONS; OPTICAL OBSERVATIONS; LIGHT CURVES; SPACED DATA; MASS; OUTBURST; STATE; TELESCOPE; CANDIDATE AB We report on the detection and follow-up high-cadence monitoring observations of MAXI J1659-152, a bright Galactic X-ray binary transient with a likely black hole accretor, by Swift over a 27 day period after its initial outburst detection. MAXI J1659-152 was discovered almost simultaneously by Swift and the Monitor of All-sky X-ray Image on 2010 September 25, and was monitored intensively from the early stages of the outburst through the rise to a brightness of similar to 0.5 Crab by the Swift X-ray, UV/Optical, and the hard X-ray Burst Alert Telescopes. We present temporal and spectral analysis of the Swift observations. The broadband light curves show variability characteristic of black hole candidate transients. We present the evolution of thermal and non-thermal components of the 0.5-150 keV combined X-ray spectra during the outburst. MAXI J1659-152 displays accretion state changes typically associated with black hole binaries, transitioning from its initial detection in the hard state, to the steep power-law state, followed by a slow evolution toward the thermal state, signified by an increasingly dominant thermal component associated with the accretion disk, although this state change did not complete before Swift observations ended. We observe an anti-correlation between the increasing temperature and decreasing radius of the inner edge of the accretion disk, suggesting that the inner edge of the accretion disk infalls toward the black hole as the disk temperature increases. We observed significant evolution in the absorption column during the initial rise of the outburst, with the absorption almost doubling, suggestive of the presence of an evolving wind from the accretion disk. We detect quasi-periodic oscillations that evolve with the outburst, as well as irregular shaped dips that recur with a period of 2.42 +/- 0.09 hr, strongly suggesting an orbital period that would make MAXI J1659-152 the shortest period black hole binary yet known. C1 [Kennea, J. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Romano, P.; Mangano, V.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-90146 Palermo, Italy. [Beardmore, A. P.; Evans, P. A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Curran, P. A.] Ctr Saclay, Irfu SAP, CEA DSM CNRS, AIM, FR-91191 Gif Sur Yvette, France. [Krimm, H. A.] NASA, CRESST, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Markwardt, C. B.] NASA, Astroparticle Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yamaoka, K.] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2525258, Japan. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD 21044 USA. RP Kennea, JA (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. EM kennea@swift.psu.edu RI Curran, Peter/B-5293-2013 OI Curran, Peter/0000-0003-3003-4626 FU NASA [NNX10AK40G]; UK Space Agency; [ASI-INAF I/009/10/0] FX This work is supported by NASA grant NNX10AK40G, through the Swift Guest Investigator Program. P. R. and V. M. acknowledge financial contribution from the agreement ASI-INAF I/009/10/0. A. P. B. and P. A. E. acknowledge the support of the UK Space Agency. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. We acknowledge the use of public data from the Swift data archive. NR 59 TC 20 Z9 20 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 22 DI 10.1088/0004-637X/736/1/22 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600022 ER PT J AU Lee, KS Moon, YJ Kim, S Choe, GS Cho, KS Imada, S AF Lee, K. -S. Moon, Y. -J. Kim, Sujin Choe, G. S. Cho, Kyung-Suk Imada, S. TI TWO TYPES OF EXTREME-ULTRAVIOLET BRIGHTENINGS IN AR 10926 OBSERVED BY HINODE/EIS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: UV radiation; techniques: spectroscopic ID EUV IMAGING SPECTROMETER; SOLAR TRANSITION REGION; CORONAL DIAGNOSTIC SPECTROMETER; FLUX CANCELLATION SITES; X-RAY TELESCOPE; ACTIVE-REGION; QUIET-SUN; EXPLOSIVE EVENTS; MAGNETIC-FIELD; TRANSIENT BRIGHTENINGS AB We have investigated seven extreme-ultraviolet (EUV) brightenings in the active region AR 10926 on 2006 December 2 observed by the EUV Imaging Spectrometer on board the Hinode spacecraft. We have determined their Doppler velocities and non-thermal velocities from 15 EUV spectral lines (log T = 4.7-6.4) by fitting each line profile to a Gaussian function. The Doppler velocity maps for different temperatures are presented to show the height dependence of the Doppler shifts. It is found that the active region brightenings show two distinct Doppler shift patterns. The type 1 brightening shows a systematic increase of Doppler velocity from -68 km s(-1) (strong blueshift) at log T = 4.7 to -2 km s(-1) (weak blueshift) at log T = 6.4, while the type 2 brightenings have Doppler velocities in the range from -20 km s(-1) to 20 km s(-1). The type 1 brightening point is considered to sit in an upward reconnection outflow whose speed decreases with height. In both types of brightenings, the non-thermal velocity is found to be significantly enhanced at log T = 5.8 compared to the background region. We have also determined electron densities from line ratios and derived temperatures from emission measure loci using the CHIANTI atomic database. The electron densities of all brightenings are comparable to typical values in active regions (log N-e = 9.9-10.4). The emission measure loci plots indicate that these brightenings should be multi-thermal whereas the background is isothermal. The differential emission measure as a function of temperature shows multiple peaks in the EUV brightening regions, while it has only a single peak (log T = 6.0) in the background region. Using Michelson Doppler Imager magnetograms, we have found that the type 1 brightening is associated with a canceling magnetic feature with a flux canceling rate of 2.4 x 10(18) Mx hr(-1). We also found the canceling magnetic feature and chromospheric brightenings in the type 1 brightening from the Hinode SOT and Transition Region and Coronal Explorer data. This observation corroborates our argument that brightening is caused by magnetic reconnection in a low atmosphere. C1 [Lee, K. -S.] Kyung Hee Univ, Dept Astron & Space Sci, Yongin 446701, South Korea. [Moon, Y. -J.; Choe, G. S.] Kyung Hee Univ, Sch Space Res, Yongin 446701, South Korea. [Moon, Y. -J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kim, Sujin; Cho, Kyung-Suk] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Kim, Sujin] Natl Inst Nat Sci, Natl Astron Observ Japan, Nobeyama Solar Radio Observ, Minamisa Ku, Minamimaki, Nagano 3841305, Japan. [Imada, S.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. RP Lee, KS (reprint author), Kyung Hee Univ, Dept Astron & Space Sci, Yongin 446701, South Korea. EM lksun@khu.ac.kr RI Moon, Yong-Jae/E-1711-2013; Choe, Gwangson/E-2366-2013 FU Kyung Hee University [KHU-20101183]; Ministry of Education, Science and Technology [R31-10016]; Korean Government (MOEHRD) [KRF-2008-314-C00158, 20090071744, 20100014501]; NASA [NNX10AL50A] FX We greatly appreciate the referee's constructive comments. The authors extend their thanks to Professor Jongchul Chae and K. Ichimoto for their helpful suggestions. This research was also supported by the Kyung Hee University Research Fund (KHU-20101183) in 2010. This work has been supported by the WCU Program (No. R31-10016) though the National Research Foundation of the Republic of Korea funded by the Ministry of Education, Science and Technology and by the Korea Research Foundation Grant (KRF-2008-314-C00158, 20090071744, and 20100014501) funded by the Korean Government (MOEHRD, Basic Research Promotion Fund). Y.-J.M. is partially supported by NASA (NNX10AL50A). Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with ESA and NSC (Norway). CHIANTI is a collaborative project involving researchers at NRL (USA), RAL (UK), and the Universities of Cambridge (UK), George Mason (USA), and Florence (Italy). We also acknowledge the use of solar data from the SOHO/MDI and TRACE. NR 62 TC 5 Z9 5 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 15 DI 10.1088/0004-637X/736/1/15 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600015 ER PT J AU Mennesson, B Serabyn, E Hanot, C Martin, SR Liewer, K Mawet, D AF Mennesson, B. Serabyn, E. Hanot, C. Martin, S. R. Liewer, K. Mawet, D. TI NEW CONSTRAINTS ON COMPANIONS AND DUST WITHIN A FEW AU OF VEGA SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; instrumentation: high angular resolution; stars: individual (Vega) ID INFRARED INTERFEROMETRIC SURVEY; RAPIDLY ROTATING STAR; DEBRIS DISK; EXTRASOLAR PLANETS; EPSILON-ERIDANI; NEARBY STARS; AB-AURIGAE; HOT DUST; CHARA/FLUOR; EMISSION AB We report on high contrast near-infrared (similar to 2.2 mu m) observations of Vega obtained with the Palomar Fiber Nuller, a dual sub-aperture rotating coronagraph installed at the Palomar Hale telescope. The data show consistent astrophysical null depth measurements at the similar or equal to 10(-3) level or below for three different baseline orientations spanning 60 deg in azimuth, with individual 1 sigma uncertainties <= 7 x 10(-4). These high cancellation and accuracy levels translate into a dynamic range greater than 1000: 1 inside the diffraction limit of the 5 m telescope beam. Such high contrast performance is unprecedented in the near-infrared and provides improved constraints on Vega's immediate (similar or equal to 20 to 250 mas, or similar or equal to 0.15 to 2 AU) environment. In particular, our measurements rule out any potential companion in the [0.25-1 AU] region contributing more than 1% of the overall near-infrared stellar flux, with limits as low as 0.2% near 0.6 AU. These are the best upper limits established so far by direct detection for a companion to Vega in this inner region. We also conclude that any dust population contributing a significant (>= 1%) near-infrared thermal excess can arise only within 0.2 AU of the star, and that it must consist of much smaller grains than in the solar zodiacal cloud. Dust emission from farther than similar or equal to 2 AU is also not ruled out by our observations, but would have to originate in strong scattering, pointing again to very small grains. C1 [Mennesson, B.; Serabyn, E.; Martin, S. R.; Liewer, K.; Mawet, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hanot, C.] Univ Liege, AEOS, B-4000 Liege, Belgium. RP Mennesson, B (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM bertrand.mennesson@jpl.nasa.gov FU NASA FX This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The data presented are based on observations obtained at the Hale Telescope, Palomar Observatory, as part of a continuing collaboration between Caltech, NASA/JPL, and Cornell University. We thank the Palomar Observatory staff for their assistance in mounting the PFN and conducting the observations at the Hale telescope. NR 43 TC 11 Z9 11 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 14 DI 10.1088/0004-637X/736/1/14 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600014 ER PT J AU Pascucci, I Sterzik, M Alexander, RD Alencar, SHP Gorti, U Hollenbach, D Owen, J Ercolano, B Edwards, S AF Pascucci, I. Sterzik, M. Alexander, R. D. Alencar, S. H. P. Gorti, U. Hollenbach, D. Owen, J. Ercolano, B. Edwards, S. TI THE PHOTOEVAPORATIVE WIND FROM THE DISK OF TW Hya SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; infrared: stars; protoplanetary disks; stars: individual (TW Hya) ID X-RAY-RADIATION; NE-II EMISSION; CIRCUMSTELLAR DISKS; TAURI STAR; PROTOPLANETARY DISCS; EXTREME-ULTRAVIOLET; TRANSITIONAL DISKS; PLANET FORMATION; FAR-ULTRAVIOLET; LINE EMISSION AB Photoevaporation driven by the central star is expected to be a ubiquitous and important mechanism for dispersing the circumstellar dust and gas from which planets form. Here, we present a detailed study of the circumstellar disk surrounding the nearby star TW Hya and provide observational constraints to its photoevaporative wind. Our new high-resolution (R similar to 30,000) mid-infrared spectroscopy in the [Ne II] 12.81 mu m line confirms that this gas diagnostic traces the unbound wind component within 10 AU of the star. From the blueshift and asymmetry in the line profile, we estimate that most (> 80%) of the [Ne II] emission arises from disk radii where the midplane is optically thick to the redshifted outflowing gas, meaning beyond the 1 or 4 AU dust rim inferred from other observations. We re-analyze high-resolution (R similar to 48,000) archival optical spectra searching for additional transitions that may trace the photoevaporative flow. Unlike the [Ne II] line, optical forbidden lines from O I, S II, and Mg I are centered at stellar velocity and have symmetric profiles. The only way these lines can trace the photoevaporative flow is if they arise from a disk region physically distinct from that traced by the [Ne II] line, specifically from within the optically thin dust gap. However, the small (similar to 10 km s(-1)) FWHM of these lines suggests that most of the emitting gas traced at optical wavelengths is bound to the system rather than unbound. We discuss the implications of our results for a planet-induced gap versus a photoevaporation-induced gap. C1 [Pascucci, I.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Sterzik, M.] European So Observ, Santiago 19, Chile. [Alexander, R. D.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Alencar, S. H. P.] Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30270901 Belo Horizonte, MG, Brazil. [Gorti, U.; Hollenbach, D.] SETI Inst, Mountain View, CA 94043 USA. [Owen, J.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Ercolano, B.] Univ Observ Munich, Fac Phys, D-81679 Munich, Germany. [Edwards, S.] Smith Coll, Dept Astron, Northampton, MA 01063 USA. [Pascucci, I.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Gorti, U.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Pascucci, I (reprint author), Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. EM pascucci@lpl.arizona.edu RI Alencar, Silvia/C-2803-2013; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013 FU National Science Foundation (NSF) [AST0908479]; Science & Technology Facilities Council (STFC) [ST/G00711X/1]; Fapemig; CAPES; BIS FX I.P. is pleased to acknowledge support from the National Science Foundation (NSF) through an Astronomy & Astrophysics research grant (AST0908479). I. P. thanks E. Flaccomio for making the VISIR spectra of Titan and K. Pontoppidan available for valuable discussions. R. D. A. acknowledges support from the Science & Technology Facilities Council (STFC) through an Advanced Fellowship (ST/G00711X/1). S.H.P.A. acknowledges support from Fapemig and CAPES, Brazilian research agencies. This research used the ALICE High Performance Computing Facility at the University of Leicester. Some resources on ALICE form part of the DiRAC Facility jointly funded by STFC and the Large Facilities Capital Fund of BIS. NR 78 TC 36 Z9 36 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 13 DI 10.1088/0004-637X/736/1/13 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600013 ER PT J AU Rahoui, F Lee, JC Heinz, S Hines, DC Pottschmidt, K Wilms, J Grinberg, V AF Rahoui, Farid Lee, Julia C. Heinz, Sebastian Hines, Dean C. Pottschmidt, Katja Wilms, Joern Grinberg, Victoria TI A MULTIWAVELENGTH STUDY OF CYGNUS X-1: THE FIRST MID-INFRARED SPECTROSCOPIC DETECTION OF COMPACT JETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; dust, extinction; infrared: stars; stars: individual (Cygnus X-1); X-rays: binaries ID LONG-TERM VARIABILITY; RAY-TIMING-EXPLORER; EARLY-TYPE STARS; SPITZER-SPACE-TELESCOPE; ACCRETING BLACK-HOLES; X-RAY; LOW/HARD STATE; MASS-LOSS; GX 339-4; SYNCHROTRON EMISSION AB We report on a Spitzer/InfraRed Spectrograph (mid-infrared), RXTE/PCA+HEXTE (X-ray), and Ryle (radio) simultaneous multiwavelength study of the microquasar Cygnus X-1, which aimed at an investigation of the origin of its mid-infrared emission. Compact jets were present in two out of three observations, and we show that they strongly contribute to the mid-infrared continuum. During the first observation, we detect the spectral break-where the transition from the optically thick to the optically thin regime takes place-at about 2.9x10(13) Hz. We then show that the jet's optically thin synchrotron emission accounts for Cygnus X-1's emission beyond 400 keV, although it cannot alone explain its 3-200 keV continuum. A compact jet was also present during the second observation, but we do not detect the break, since it has likely shifted to higher frequencies. In contrast, the compact jet was absent during the last observation, and we show that the 5-30 mu m mid-infrared continuum of Cygnus X-1 stems from the blue supergiant companion star HD 226868. Indeed, the emission can then be understood as the combination of the photospheric Rayleigh-Jeans tail and the bremsstrahlung from the expanding stellar wind. Moreover, the stellar wind is found to be clumpy, with a filling factor f(infinity) approximate to 0.09-0.10. Its bremsstrahlung emission is likely anti-correlated to the soft X-ray emission, suggesting an anti-correlation between the mass-loss and mass-accretion rates. Nevertheless, we do not detect any mid-infrared spectroscopic evidence of interaction between the jets and Cygnus X-1's environment and/or the companion star's stellar wind. C1 [Rahoui, Farid; Lee, Julia C.] Harvard Univ, Dept Astron, Cambridge, MA 02138 USA. [Rahoui, Farid; Lee, Julia C.] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Heinz, Sebastian] Univ Wisconsin Madison, Dept Astron, Madison, WI 53706 USA. [Hines, Dean C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Pottschmidt, Katja] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pottschmidt, Katja] UMBC, CRESST, Greenbelt, MD 20771 USA. [Wilms, Joern; Grinberg, Victoria] Univ Erlangen Nurnberg, Dr Karl Remeis Observ, D-96049 Bamberg, Germany. [Wilms, Joern; Grinberg, Victoria] Univ Erlangen Nurnberg, ECAP, D-96049 Bamberg, Germany. RP Rahoui, F (reprint author), Harvard Univ, Dept Astron, 60 Garden St, Cambridge, MA 02138 USA. EM frahoui@cfa.harvard.edu; jclee@cfa.harvard.edu; heinzs@astro.wisc.edu; hines@stsci.edu; katja@milkyway.gsfc.nasa.gov; joern.wilms@sternwarte.uni-erlangen.de; victoria.grinberg@sternwarte.uni-erlangen.de RI Wilms, Joern/C-8116-2013; Lee, Julia/G-2381-2015; OI Wilms, Joern/0000-0003-2065-5410; Lee, Julia/0000-0002-7336-3588; Heinz, Sebastian/0000-0002-8433-8652 FU Harvard Faculty of Arts and Sciences and the Harvard College Observatory; JPL-NASA [1292543]; Bundesministerium fur Wirtschaft und Technologie through Deutsches Zentrum fur Luft- und Raumfahrt [50 OR 1007]; European Commission [ITN 215212] FX We thank the anonymous referee for his/her useful comments. F.R. thanks J. Rodriguez for providing the INTEGRAL/IBIS data. J.C.L. thanks the Harvard Faculty of Arts and Sciences and the Harvard College Observatory. S.H. acknowledges support from JPL-NASA contract no. 1292543. This work was partially funded by the Bundesministerium fur Wirtschaft und Technologie through Deutsches Zentrum fur Luft- und Raumfahrt grant 50 OR 1007 and by the European Commission through contract ITN 215212 "Black Hole Universe." This research has made use of NASA's Astrophysics Data System, of the SIMBAD, and VizieR databases operated at CDS, Strasbourg, France. NR 60 TC 29 Z9 29 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 63 DI 10.1088/0004-637X/736/1/63 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600063 ER PT J AU Shirokoff, E Reichardt, CL Shaw, L Millea, M Ade, PAR Aird, KA Benson, BA Bleem, LE Carlstrom, JE Chang, CL Cho, HM Crawford, TM Crites, AT de Haan, T Dobbs, MA Dudley, J George, EM Halverson, NW Holder, GP Holzapfel, WL Hrubes, JD Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Lueker, M Luong-Van, D McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Padin, S Plagge, T Pryke, C Ruhl, JE Schaffer, KK Spieler, HG Staniszewski, Z Stark, AA Story, K Vanderlinde, K Vieira, JD Williamson, R Zahn, O AF Shirokoff, E. Reichardt, C. L. Shaw, L. Millea, M. Ade, P. A. R. Aird, K. A. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Cho, H. M. Crawford, T. M. Crites, A. T. de Haan, T. Dobbs, M. A. Dudley, J. George, E. M. Halverson, N. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Lueker, M. Luong-Van, D. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Padin, S. Plagge, T. Pryke, C. Ruhl, J. E. Schaffer, K. K. Spieler, H. G. Staniszewski, Z. Stark, A. A. Story, K. Vanderlinde, K. Vieira, J. D. Williamson, R. Zahn, O. TI IMPROVED CONSTRAINTS ON COSMIC MICROWAVE BACKGROUND SECONDARY ANISOTROPIES FROM THE COMPLETE 2008 SOUTH POLE TELESCOPE DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; large-scale structure of universe ID ZELDOVICH POWER SPECTRUM; ATACAMA COSMOLOGY TELESCOPE; STAR-FORMING GALAXIES; INTRACLUSTER MEDIUM; DUST EMISSION; EXTRAGALACTIC SOURCES; GAS MOTIONS; CLUSTERS; PROBE; SIMULATIONS AB We report measurements of the cosmic microwave background (CMB) power spectrum from the complete 2008 South Pole Telescope (SPT) data set. We analyze twice as much data as the first SPT power spectrum analysis, using an improved cosmological parameter estimator which fits multi-frequency models to the SPT 150 and 220 GHz bandpowers. We find an excellent fit to the measured bandpowers with a model that includes lensed primary CMB anisotropy, secondary thermal (tSZ) and kinetic (kSZ) Sunyaev-Zel'dovich anisotropies, unclustered synchrotron point sources, and clustered dusty point sources. In addition to measuring the power spectrum of dusty galaxies at high signal-to-noise, the data primarily constrain a linear combination of the kSZ and tSZ anisotropy contributions at 150 GHz and l = 3000: D-3000(tSZ) + 0.5 D-3000(kSZ) = 4.5 +/- 1.0 mu K-2. The 95% confidence upper limits on secondary anisotropy power are D-3000(tSZ) < 5.3 mu K-2 and D-3000(kSZ) < 6.5 mu K-2. We also consider the potential correlation of dusty and tSZ sources and find it incapable of relaxing the tSZ upper limit. These results increase the significance of the lower than expected tSZ amplitude previously determined from SPT power spectrum measurements. We find that models including non-thermal pressure support in groups and clusters predict tSZ power in better agreement with the SPT data. Combining the tSZ power measurement with primary CMB data halves the statistical uncertainty on sigma(8). However, the preferred value of sigma(8) varies significantly between tSZ models. Improved constraints on cosmological parameters from tSZ power spectrum measurements require continued progress in the modeling of the tSZ power. C1 [Shirokoff, E.; Reichardt, C. L.; Benson, B. A.; George, E. M.; Holzapfel, W. L.; Lee, A. T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Millea, M.; Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Keisler, R.; Leitch, E. M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Schaffer, K. K.; Story, K.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Story, K.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Leitch, E. M.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Cho, H. M.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [de Haan, T.; Dobbs, M. A.; Dudley, J.; Holder, G. P.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Lueker, M.; Padin, S.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.] Excellence Cluster Universe, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Zahn, O.] Lawrence Berkeley Natl Labs, Berkeley, CA 94720 USA. RP Shirokoff, E (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM shiro@berkeley.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation [ANT-0638937, ANT-0130612, 0709498]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; Alfred P. Sloan Research Fellowship; Yale University; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NASA Office of Space Science FX The South Pole Telescope is supported by the National Science Foundation through grants ANT-0638937 and ANT-0130612. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. M. Dobbs acknowledges support from an Alfred P. Sloan Research Fellowship. L. Shaw acknowledges the support of Yale University and NSF grant AST-1009811. M. Millea and L. Knox acknowledge the support of NSF grant 0709498. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Some of the results in this paper have been derived using the HEALPix (Gorski et al. 2005) package. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. NR 54 TC 73 Z9 74 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 61 DI 10.1088/0004-637X/736/1/61 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600061 ER PT J AU Stecker, FW Venters, TM AF Stecker, Floyd W. Venters, Tonia M. TI COMPONENTS OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: general; gamma rays: diffuse background; gamma rays: galaxies ID LARGE-AREA TELESCOPE; DARK-MATTER ANNIHILATION; ACTIVE GALACTIC NUCLEI; STAR-FORMATION HISTORY; LOCAL GROUP GALAXIES; NEUTRAL-PION DECAY; RADIO-LOUD AGN; LUMINOSITY FUNCTION; FERMI-LAT; SPACE-TELESCOPE AB We present new theoretical estimates of the relative contributions of unresolved blazars and star-forming galaxies to the extragalactic gamma-ray background (EGB) and discuss constraints on the contributions from alternative mechanisms such as dark matter annihilation and truly diffuse gamma-ray production. We find that the Fermi source count data do not rule out a scenario in which the EGB is dominated by emission from unresolved blazars, though unresolved star-forming galaxies may also contribute significantly to the background, within order-of-magnitude uncertainties. In addition, we find that the spectrum of the unresolved star-forming galaxy contribution cannot explain the EGB spectrum found by EGRET at energies between 50 and 200 MeV, whereas the spectrum of unresolved flat spectrum radio quasars, when accounting for the energy-dependent effects of source confusion, could be consistent with the combined spectrum of the low-energy EGRET EGB measurements and the Fermi-Large Area Telescope EGB measurements. C1 [Stecker, Floyd W.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Stecker, FW (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. EM floyd.w.stecker@nasa.gov RI Stecker, Floyd/D-3169-2012; Venters, Tonia/D-2936-2012 FU NASA FX We thank David Thompson, Stan Hunter, and Olaf Reimer for discussions of the EGRET detector characteristics and EGRET data. We thank Marco Ajello for sending the results of his Monte Carlo simulations of the Fermi-LAT efficiency versus source flux. We also thank Dawn Erb for comments regarding the infrared surveys of star-forming galaxies at high redshifts and Matt Malkan, Vasiliki Pavlidou, Jane Rigby, and the anonymous referee for helpful discussions. T. M. V. acknowledges support by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 119 TC 58 Z9 58 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 40 DI 10.1088/0004-637X/736/1/40 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600040 ER PT J AU Velli, M Lionello, R Linker, JA Mikic, Z AF Velli, Marco Lionello, Roberto Linker, Jon A. Mikic, Zoran TI CORONAL PLUMES IN THE FAST SOLAR WIND SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: heliosphere; solar wind ID HELIOSPHERIC MAGNETIC-FIELD; ULYSSES OBSERVATIONS; POLAR PLUMES; WHITE-LIGHT; HOLES; ORIGIN; WAVES; SIMULATIONS; INVERSIONS; VELOCITY AB The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfven waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of similar to 50 km s(-1), such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat deposition profiles in different plumes. Statistical pressure balance in the fast wind data may be masked by the large variety of body and surface waves which the higher density filaments may carry, so the absence of pressure balance in the microstreams should not rule out their interpretation as the extension of coronal plumes into interplanetary space. Mixing of plume-interplume material via the Kelvin-Helmholtz instability seems to be possible within the parameter ranges of the models defined here, only at large distances from the Sun, beyond 0.2-0.3 AU. Plasma and composition measurements in the inner heliosphere, such as those which will become available with Solar Orbiter and Solar Probe Plus, should therefore definitely be able to identify plume remnants in the solar wind. C1 [Velli, Marco] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lionello, Roberto; Linker, Jon A.; Mikic, Zoran] Predict Sci Inc, San Diego, CA 92121 USA. RP Velli, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mvelli@mail.jpl.nasa.gov; lionel@predsci.com; linkerj@predsci.com; mikicz@predsci.com FU NASA; AFOSR; NSF through Center for Integrated Space Weather Modeling FX This work was supported by NASA SHP, HTP, and LWS contracts, by AFOSR and by NSF through the Center for Integrated Space Weather Modeling. We thank S. Suess for many stimulating discussions. NR 38 TC 8 Z9 8 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 32 DI 10.1088/0004-637X/736/1/32 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600032 ER PT J AU Vieregg, AG Palladino, K Allison, P Baughman, BM Beatty, JJ Belov, K Besson, DZ Bevan, S Binns, WR Chen, C Chen, P Clem, JM Connolly, A Detrixhe, M De Marco, D Dowkontt, PF DuVernois, M Gorham, PW Grashorn, EW Hill, B Hoover, S Huang, M Israel, MH Javaid, A Liewer, KM Matsuno, S Mercurio, BC Miki, C Mottram, M Nam, J Nichol, RJ Romero-Wolf, A Ruckman, L Saltzberg, D Seckel, D Varner, GS Wang, Y AF Vieregg, A. G. Palladino, K. Allison, P. Baughman, B. M. Beatty, J. J. Belov, K. Besson, D. Z. Bevan, S. Binns, W. R. Chen, C. Chen, P. Clem, J. M. Connolly, A. Detrixhe, M. De Marco, D. Dowkontt, P. F. DuVernois, M. Gorham, P. W. Grashorn, E. W. Hill, B. Hoover, S. Huang, M. Israel, M. H. Javaid, A. Liewer, K. M. Matsuno, S. Mercurio, B. C. Miki, C. Mottram, M. Nam, J. Nichol, R. J. Romero-Wolf, A. Ruckman, L. Saltzberg, D. Seckel, D. Varner, G. S. Wang, Y. TI THE FIRST LIMITS ON THE ULTRA-HIGH ENERGY NEUTRINO FLUENCE FROM GAMMA-RAY BURSTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; neutrinos ID COSMIC-RAYS; AFTERGLOW; FIREBALLS AB We set the first limits on the ultra-high energy (UHE) neutrino fluence at energies greater than 10(9) GeV from gamma-ray bursts (GRBs) based on data from the second flight of the Antarctic Impulsive Transient Antenna (ANITA). During the 31 day flight of ANITA-II, 26 GRBs were recorded by Swift or Fermi. Of these, we analyzed the 12 GRBs which occurred during quiet periods when the payload was away from anthropogenic activity. In a blind analysis, we observe 0 events on a total background of 0.0044 events in the combined prompt window for all 12 low-background bursts. We also observe 0 events from the remaining 14 bursts. We place a 90% confidence level limit on the E-4 prompt neutrino fluence between 10(8) GeV < E < 10(12) GeV of E-4 Phi = 2.5 x 10(17) GeV3 cm(-2) from GRB090107A. This is the first reported limit on the UHE neutrino fluence from GRBs above 10(9) GeV, and the strongest limit above 10(8) GeV. C1 [Palladino, K.; Allison, P.; Baughman, B. M.; Beatty, J. J.; Connolly, A.; Grashorn, E. W.; Mercurio, B. C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Besson, D. Z.; Detrixhe, M.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bevan, S.; Mottram, M.; Nichol, R. J.] UCL, Dept Phys & Astron, London, England. [Binns, W. R.; Dowkontt, P. F.; Israel, M. H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Chen, C.; Chen, P.; Huang, M.; Nam, J.; Wang, Y.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Clem, J. M.; De Marco, D.; Javaid, A.; Seckel, D.] Univ Delaware, Dept Phys, Newark, DE 19716 USA. [DuVernois, M.; Gorham, P. W.; Hill, B.; Matsuno, S.; Miki, C.; Romero-Wolf, A.; Ruckman, L.; Varner, G. S.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Liewer, K. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Vieregg, A. G.; Belov, K.; Hoover, S.; Saltzberg, D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Vieregg, AG (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM avieregg@cfa.harvard.edu RI Vieregg, Abigail/D-2287-2012; Belov, Konstantin/D-2520-2013; Connolly, Amy/J-3958-2013; Beatty, James/D-9310-2011 OI Beatty, James/0000-0003-0481-4952 NR 22 TC 11 Z9 11 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 50 DI 10.1088/0004-637X/736/1/50 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600050 ER PT J AU Strekalov, DV Thompson, RJ Baumgartel, LM Grudinin, IS Yu, N AF Strekalov, D. V. Thompson, R. J. Baumgartel, L. M. Grudinin, I. S. Yu, N. TI Temperature measurement and stabilization in a birefringent whispering gallery mode resonator SO OPTICS EXPRESS LA English DT Article ID OPTICAL RESONATORS; LASER; MICROCAVITIES; CAVITY AB Temperature measurement with nano-Kelvin resolution is demonstrated at room temperature, based on the thermal dependence of an optical crystal anisotropy in a high quality whispering gallery mode resonator. As the resonator's TE and TM modes frequencies have different temperature coefficients, their differential shift provides a sensitive measurement of the temperature variation, which is used for active stabilization of the temperature. (C) 2011 Optical Society of America C1 [Strekalov, D. V.; Thompson, R. J.; Baumgartel, L. M.; Grudinin, I. S.; Yu, N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Strekalov, DV (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM dmitry.v.strekalov@jpl.nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology, under NASA FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the NASA. NR 15 TC 39 Z9 40 U1 1 U2 18 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 18 PY 2011 VL 19 IS 15 BP 14495 EP 14501 DI 10.1364/OE.19.014495 PG 7 WC Optics SC Optics GA 794EF UT WOS:000292877600081 PM 21934812 ER PT J AU Cook, BI Seager, R Miller, RL AF Cook, B. I. Seager, R. Miller, R. L. TI The impact of devegetated dune fields on North American climate during the late Medieval Climate Anomaly SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID DUST BOWL DROUGHT; TROPICAL PACIFIC; FEEDBACK MECHANISM; SOIL-MOISTURE; GREAT-PLAINS; MEGADROUGHTS; SSTS AB During the Medieval Climate Anomaly, North America experienced severe droughts and widespread mobilization of dune fields that persisted for decades. We use an atmosphere general circulation model, forced by a tropical Pacific sea surface temperature reconstruction and changes in the land surface consistent with estimates of dune mobilization (conceptualized as partial devegetation), to investigate whether the devegetation could have exacerbated the medieval droughts. Presence of devegetated dunes in the model significantly increases surface temperatures, but has little impact on precipitation or drought severity, as defined by either the Palmer Drought Severity Index or the ratio of precipitation to potential evapotranspiration. Results are similar to recent studies of the 1930s Dust Bowl drought, suggesting bare soil associated with the dunes, in and of itself, is not sufficient to amplify droughts over North America. Citation: Cook, B. I., R. Seager, and R. L. Miller (2011), The impact of devegetated dune fields on North American climate during the late Medieval Climate Anomaly, Geophys. Res. Lett., 38, L14704, doi:10.1029/2011GL047566. C1 [Cook, B. I.; Miller, R. L.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Cook, B. I.; Seager, R.] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. RP Cook, BI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM bc9z@ldeo.columbia.edu RI Miller, Ron/E-1902-2012; Cook, Benjamin/H-2265-2012 FU NSF [ATMO9-02716, ATM-06-20066]; NOAA [NA100AR-4310137]; National Aeronautics and Space Administration FX The authors thank Joe Mason and two anonymous reviewers for their helpful comments and acknowledge the support of NSF grant ATMO9-02716, NOAA grant NA100AR-4310137, NSF grant ATM-06-20066, as well as the National Aeronautics and Space Administration Atmospheric Composition Program. Special thanks to R. Burgman for providing information on the coral SST reconstruction. LDEO Contribution No. 7469. NR 21 TC 6 Z9 7 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 16 PY 2011 VL 38 AR L14704 DI 10.1029/2011GL047566 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 793PH UT WOS:000292835100003 ER PT J AU Gong, J Wu, DL AF Gong, Jie Wu, Dong L. TI View-angle dependent AIRS cloud radiances: Implications for tropical anvil structures SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MOMENTUM TRANSPORT; CIRRUS; PRECIPITATION; CONVECTION; HEAT AB Tropical anvil clouds play important roles in redistributing energy, water in the troposphere. Interacting with dynamics at a wide range of spatial and temporal scales, they can become organized internally and form structured cells, transporting momentum vertically and laterally. To quantify small-scale structures inside cirrus and anvils, we study view-dependence of the cloud-induced radiance from Atmospheric Infrared Sounder (AIRS) using channels near CO2 absorption line. The analysis of tropical eight-year (30 degrees S-30 degrees N, 2003-2010) data suggests that AIRS east-views observe 10% more anvil clouds than west-views during day (13:30 LST), whereas east-views and west-views observe equally amount of clouds at midnight (1:30 LST). For entire tropical averages, AIRS oblique views observe more anvils than the nadir views, while the opposite is true for deep convective clouds. The dominance of cloudiness in the east-view cannot be explained by AIRS sampling and cloud microphysical differences. Tilted and banded anvil structures from convective scale to mesoscale are likely the cause of the observed view-dependent cloudiness, and gravity wave-cloud interaction is a plausible explanation for the observed structures. Effects of the tilted and banded cloud features need to be further evaluated and taken into account potentially in large-scale model parameterizations because of the vertical momentum transport through cloud wave breaking. Citation: Gong, J., and D. L. Wu (2011), View-angle dependent AIRS cloud radiances: Implications for tropical anvil structures, Geophys. Res. Lett., 38, L14802, doi:10.1029/2011GL047910. C1 [Gong, Jie; Wu, Dong L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gong, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Jie.Gong@jpl.nasa.gov RI Gong, Jie/H-2436-2011; Wu, Dong/D-5375-2012 NR 24 TC 4 Z9 4 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 16 PY 2011 VL 38 AR L14802 DI 10.1029/2011GL047910 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 793PH UT WOS:000292835100006 ER PT J AU Cheng, AN Xu, KM AF Cheng, Anning Xu, Kuan-Man TI Improved low-cloud simulation from a multiscale modeling framework with a third-order turbulence closure in its cloud-resolving model component SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BOUNDARY-LAYER CLOUDS; CONVECTION PARAMETERIZATION CRCP; COMMUNITY ATMOSPHERE MODEL; PDF-BASED MODEL; VERSION 3 CAM3; CLIMATE SIMULATIONS; MOIST CONVECTION; PART I; CUMULUS; VARIABILITY AB In the original multiscale modeling framework (MMF), the Community Atmosphere Model (CAM3.5) is used as the host general circulation model (GCM), and the System for Atmospheric Modeling model with a first-order turbulence closure is used as the cloud resolving model (CRM) for representing cloud physical processes in each grid column of the GCM. This study introduces an upgrade of the MMF in which the first-order turbulence closure scheme is replaced by an advanced third-order turbulence closure in its CRM component. The results are compared between the upgraded and original MMFs, CAM3.5, and observations. The global distributions of low-level cloud amounts in the subtropics in the upgraded MMF show substantial improvement relative to the original MMF when both are compared with observations. The improved simulation of low-level clouds is attributed not only to the representation of subgrid-scale condensation in the embedded CRM but also is closely related to the increased surface sensible and latent heat fluxes, the increased lower tropospheric stability (LTS), and stronger longwave radiative cooling. Both MMF simulations show close agreement in the vertical structures of cloud amount and liquid water content of midlatitude storm-track clouds and subtropical low-level clouds, compared with observations, with the upgraded MMF being better at simulating the low-level cumulus regime. Since the upgraded MMF produces more subtropical low-level clouds and does not produce an excessive amount of optically thick high-level clouds in either the tropics or midlatitudes as the original MMF does, the global mean albedo decreases. The positive bias in albedo and longwave cloud radiative forcing (CRF) and negative bias in shortwave CRF are reduced in the tropical convective regions. C1 [Cheng, Anning] SSAI, Hampton, VA 23666 USA. [Xu, Kuan-Man] NASA, Climate Sci Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Cheng, AN (reprint author), SSAI, 1 Enterprise Pkwy,Ste 200, Hampton, VA 23666 USA. EM anning.cheng@nasa.gov RI Xu, Kuan-Man/B-7557-2013 OI Xu, Kuan-Man/0000-0001-7851-2629 FU NSF Science and Technology Center for Multiscale Modeling of Atmospheric Processes (CMMAP) [ATM-0425247]; NASA FX This work has been supported by the NSF Science and Technology Center for Multiscale Modeling of Atmospheric Processes (CMMAP), managed by Colorado State University under cooperative agreement ATM-0425247. This work was also partially supported by NASA Modeling, Analysis and Prediction program managed by David Considine. The computation resources from NCAR BlueGene supercomputer were provided by the Teragrid organization. Special thanks go to Marat Khairoutdinov of Stony Brook University for providing SPCAM, Seiji Kato for providing the C3M data set, and Kirk Ayers and Zachary Eitzen of SSAI for reading drafts of this paper. Helpful discussions with David Randall of Colorado State University are appreciated. The editor and three anonymous reviewers are thanked for their constructive comments and suggestions. NR 50 TC 21 Z9 22 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2011 VL 116 AR D14101 DI 10.1029/2010JD015362 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 793RK UT WOS:000292840600002 ER PT J AU Vay, SA Choi, Y Vadrevu, KP Blake, DR Tyler, SC Wisthaler, A Hecobian, A Kondo, Y Diskin, GS Sachse, GW Woo, JH Weinheimer, AJ Burkhart, JF Stohl, A Wennberg, PO AF Vay, S. A. Choi, Y. Vadrevu, K. P. Blake, D. R. Tyler, S. C. Wisthaler, A. Hecobian, A. Kondo, Y. Diskin, G. S. Sachse, G. W. Woo, J. -H. Weinheimer, A. J. Burkhart, J. F. Stohl, A. Wennberg, P. O. TI Patterns of CO2 and radiocarbon across high northern latitudes during International Polar Year 2008 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID FOSSIL-FUEL CO2; ARCTIC AIR-POLLUTION; PEM-WEST-B; CARBON-MONOXIDE; BOREAL FOREST; ISOTOPIC COMPOSITION; BIOMASS FIRES; ATMOSPHERIC CHEMISTRY; AIRBORNE MEASUREMENTS; ANTHROPOGENIC CO2 AB High-resolution in situ CO2 measurements were conducted aboard the NASA DC-8 aircraft during the ARCTAS/POLARCAT field campaign, a component of the wider 2007-2008 International Polar Year activities. Data were recorded during large-scale surveys spanning the North American sub-Arctic to the North Pole from 0.04 to 12 km altitude in spring and summer of 2008. Influences on the observed CO2 concentrations were investigated using coincident CO, black carbon, CH3CN, HCN, O-3, C2Cl4, and Delta(CO2)-C-14 data, and the FLEXPART model. In spring, the CO2 spatial distribution from 55 degrees N to 90 degrees N was largely determined by the long-range transport of air masses laden with Asian anthropogenic pollution intermingled with Eurasian fire emissions evidenced by the greater variability in the mid-to-upper troposphere. At the receptor site, the enhancement ratios of CO2 to CO in pollution plumes ranged from 27 to 80 ppmv ppmv(-1) with the highest anthropogenic content registered in plumes sampled poleward of 80 degrees N. In summer, the CO2 signal largely reflected emissions from lightning-ignited wildfires within the boreal forests of northern Saskatchewan juxtaposed with uptake by the terrestrial biosphere. Measurements within fresh fire plumes yielded CO2 to CO emission ratios of 4 to 16 ppmv ppmv(-1) and a mean CO2 emission factor of 1698 +/- 280 g kg(-1) dry matter. From the C-14 in CO2 content of 48 whole air samples, mean spring (46.6 +/- 4.4%) and summer (51.5 +/- 5%) Delta(CO2)-C-14 values indicate a 5% seasonal difference. Although the northern midlatitudes were identified as the emissions source regions for the majority of the spring samples, depleted Delta(CO2)-C-14 values were observed in <1% of the data set. Rather, ARCTAS Delta(CO2)-C-14 observations (54%) revealed predominately a pattern of positive disequilibrium (1-7%) with respect to background regardless of season owing to both heterotrophic respiration and fire-induced combustion of biomass. Anomalously enriched Delta(CO2)-C-14 values (101-262%) measured in emissions from Lake Athabasca and Eurasian fires speak to biomass burning as an increasingly important contributor to the mass excess in Delta(CO2)-C-14 observations in a warming Arctic, representing an additional source of uncertainty in the quantification of fossil fuel CO2. C1 [Vay, S. A.; Diskin, G. S.] NASA, Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23681 USA. [Choi, Y.; Sachse, G. W.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Vadrevu, K. P.] Univ Maryland, Dept Geog, College Pk, MD 20740 USA. [Blake, D. R.; Tyler, S. C.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Tyler, S. C.] Norco Coll, Chem Program, Norco, CA 92860 USA. [Wisthaler, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria. [Hecobian, A.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Kondo, Y.] Univ Tokyo, Dept Earth & Planetary Sci, Tokyo 1130033, Japan. [Woo, J. -H.] Konkuk Univ, Dept Adv Technol Fus, Seoul 143701, South Korea. [Weinheimer, A. J.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Burkhart, J. F.; Stohl, A.] Norwegian Inst Air Res, N-2027 Kjeller, Norway. [Wennberg, P. O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Vay, SA (reprint author), NASA, Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23681 USA. EM Stephanie.A.Vay@nasa.gov RI Stohl, Andreas/A-7535-2008; Wennberg, Paul/A-5460-2012; Hecobian, Arsineh/A-9743-2012; Kondo, Yutaka/D-1459-2012; Burkhart, John/B-7095-2008; OI Stohl, Andreas/0000-0002-2524-5755; Hecobian, Arsineh/0000-0001-9511-4868; Burkhart, John/0000-0002-5587-1693; Vadrevu, Krishna/0000-0003-4407-5605 FU NASA; Austrian Research Promotion Agency (FFG-ALR); Tiroler Zukunftstiftung FX The authors wish to thank Xiaomei Xu, Scott Lehman, and Ingeborg Levin for use of the Point Barrow, Niwot Ridge, and Jungfraujoch Delta14CO2 data, respectively. We also appreciate the CO2 data provided by Doug Worthy of Environment Canada and NOAA ESRL, as well as contributions from Melissa Yang. We are most grateful to Jimmy Geiger, Jim Plant, and the DC-8 crew whose valuable contributions ensured a successful and safe mission. This research was funded by NASA's Global Tropospheric Chemistry and Radiation Sciences Programs. CH3CN measurements were supported by the Austrian Research Promotion Agency (FFG-ALR) and the Tiroler Zukunftstiftung, and carried out with the help/support of T. Mikoviny, M. Graus, A. Hansel, and T. D. Maerk. NR 97 TC 17 Z9 17 U1 1 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2011 VL 116 AR D14301 DI 10.1029/2011JD015643 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 793RM UT WOS:000292840800001 ER PT J AU Actis, P Rogers, A Nivala, J Vilozny, B Seger, RA Jejelowo, O Pourmand, N AF Actis, Paolo Rogers, Adam Nivala, Jeff Vilozny, Boaz Seger, R. Adam Jejelowo, Olufisayo Pourmand, Nader TI Reversible thrombin detection by aptamer functionalized STING sensors SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE Nanopipette; Label-free; Nanopore; Aptamer; Thrombin; STING ID CURRENT RECTIFICATION; NANOPIPETTE; MOLECULES; NANOPORES; SELECTION; LIGANDS; BIND AB Signal Transduction by Ion NanoGating (STING) is a label-free technology based on functionalized quartz nanopipettes. The nanopipette pore can be decorated with a variety of recognition elements and the molecular interaction is transduced via a simple electrochemical system. A STING sensor can be easily and reproducibly fabricated and tailored at the bench starting from inexpensive quartz capillaries. The analytical application of this new biosensing platform, however, was limited due to the difficult correlation between the measured ionic current and the analyte concentration in solution. Here we show that STING sensors functionalized with aptamers allow the quantitative detection of thrombin. The binding of thrombin generates a signal that can be directly correlated to its concentration in the bulk solution. (C) 2011 Elsevier B.V. All rights reserved. C1 [Actis, Paolo; Rogers, Adam; Nivala, Jeff; Vilozny, Boaz; Seger, R. Adam; Pourmand, Nader] Univ Calif Santa Cruz, Dept Biomol Engn, Santa Cruz, CA 95064 USA. [Actis, Paolo; Jejelowo, Olufisayo] Texas So Univ, Dept Biol, Houston, TX 77004 USA. [Actis, Paolo; Vilozny, Boaz; Seger, R. Adam; Pourmand, Nader] UC Santa Cruz, Adv Studies Labs, Moffett Field, CA 94035 USA. [Actis, Paolo; Vilozny, Boaz; Seger, R. Adam; Pourmand, Nader] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Pourmand, N (reprint author), Univ Calif Santa Cruz, Dept Biomol Engn, 1156 High St, Santa Cruz, CA 95064 USA. EM pourmand@soe.ucsc.edu RI Actis, Paolo/A-7694-2012 FU National Aeronautics and Space Administration [NNX08BA47A, NNX10AQ16A]; National Institutes of Health [P01-HG000205] FX This work was supported in part by grants from the National Aeronautics and Space Administration Cooperative Agreements [NNX08BA47A and NNX10AQ16A], and the National Institutes of Health [P01-HG000205]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Aeronautics and Space Administration or the National Institutes of Health. The authors want to acknowledge Robert Hoelle for technical assistance with the SEM imaging. NR 30 TC 19 Z9 20 U1 7 U2 45 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD JUL 15 PY 2011 VL 26 IS 11 BP 4503 EP 4507 DI 10.1016/j.bios.2011.05.010 PG 5 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA 797DG UT WOS:000293104100039 PM 21636261 ER PT J AU Thiruppathiraja, C Kamatchiammal, S Adaikkappan, P Alagar, M AF Thiruppathiraja, Chinnasamy Kamatchiammal, Senthilkumar Adaikkappan, Periyakaruppan Alagar, Muthukaruppan TI An advanced dual labeled gold nanoparticles probe to detect Cryptosporidium parvum using rapid immuno-dot blot assay SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE Gold nanoparticles; Cryptosporidium parvum; Drinking water; Antibody; Alkaline phosphatase; Immuno-dot blot assay ID GIARDIA-LAMBLIA; IMMUNOCHROMATOGRAPHIC ASSAY; COLLOIDAL GOLD; OOCYSTS; WATER; ANTIBODIES; PCR; IDENTIFICATION; AMPLIFICATION; BIOSENSOR AB The zoonotic protozoan parasite Cryptosporidium parvum poses a significant risk to public health. Due to the low infectious dose of C. parvum, remarkably sensitive detection methods are required for water and food industries analysis. However PCR affirmed sensing method of the causative nucleic acid has numerous advantages, still criterion demands for simple techniques and expertise understanding to extinguish its routine use. In contrast, protein based immuno detecting techniques are simpler to perform by a commoner, but lack of sensitivity due to inadequate signal amplification. In this paper, we focused on the development of a mere sensitive immuno detection method by coupling anti-cyst antibody and alkaline phosphatase on gold nanoparticle for C. parvum is described. Outcome of the sensitivity in an immuno-dot blot assay detection is enhanced by 500 fold (using conventional method) and visually be able to detect up to 10 oocysts/mL with minimal processing period. Techniques reported in this paper substantiate the convenience of immuno-dot blot assay for the routine screening of C. parvum in water/environmental examines and most importantly, demonstrates the potential of a prototype development of simple and inexpensive diagnostic technique. (C) 2011 Elsevier B.V. All rights reserved. C1 [Thiruppathiraja, Chinnasamy; Alagar, Muthukaruppan] Anna Univ, Dept Chem Engn, Nanocomposites Res Grp, Madras 600025, Tamil Nadu, India. [Kamatchiammal, Senthilkumar] Natl Environm Engn Res Inst, Chennai Zonal Lab, Madras 600113, Tamil Nadu, India. [Adaikkappan, Periyakaruppan] NASA, Ctr Nanosci & Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Alagar, M (reprint author), Anna Univ, Dept Chem Engn, Nanocomposites Res Grp, Madras 600025, Tamil Nadu, India. EM mkalagar@yahoo.com RI Periyakaruppan, Adaikkappan/B-7398-2013 OI Periyakaruppan, Adaikkappan/0000-0002-0395-6564 FU Council of Scientific and Industrial Research, New Delhi, India FX Authors thank to Supra Institutional Project, Council of Scientific and Industrial Research, New Delhi, India for funding to execute this study successfully. NR 37 TC 6 Z9 7 U1 3 U2 23 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 EI 1873-4235 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD JUL 15 PY 2011 VL 26 IS 11 BP 4624 EP 4627 DI 10.1016/j.bios.2011.05.006 PG 4 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA 797DG UT WOS:000293104100060 PM 21641786 ER PT J AU van Acken, D Brandon, AD Humayun, M AF van Acken, David Brandon, Alan D. Humayun, Munir TI High-precision osmium isotopes in enstatite and Rumuruti chondrites SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID EARLY SOLAR-SYSTEM; SILICON-CARBIDE GRAINS; PLATINUM-GROUP ELEMENTS; R-PROCESS COMPONENTS; GIANT BRANCH STARS; S-PROCESS; CARBONACEOUS CHONDRITES; PRIMITIVE CHONDRITES; MURCHISON METEORITE; NEUTRON-CAPTURE AB Isotopic heterogeneity within the solar nebula has been a long-standing issue. Studies on primitive chondrites and chondrite components for Ba, Sm, Nd, Mo, Ru, Hf, Ti, and Os yielded conflicting results, with some studies suggesting large-scale heterogeneity. Low-grade enstatite and Rumuruti chondrites represent the most extreme ends of the chondrite meteorites in terms of oxidation state, and might thus also present extremes if there is significant isotopic heterogeneity across the region of chondrite formation. Osmium is an ideal tracer because of its multiple isotopes generated by a combination of p-, r-, and s-process and, as a refractory element; it records the earliest stages of condensation. Some grade 3-4 enstatite and Rumuruti chondrites show similar deficits of s-process components as revealed by high-precision Os isotope studies in some low-grade carbonaceous and ordinary chondrites. Enstatite chondrites of grades 5-6 have Os isotopic composition identical within error to terrestrial and solar composition. This supports the view of digestion-resistant presolar grains, most likely SiC, as the major carrier of these anomalies. Destruction of presolar grains during parent body processing, which all high-grade enstatite chondrites, but also some low-grade chondrites seemingly underwent, makes the isotopically anomalous Os accessible for analysis. The magnitude of the anomalies is consistent with the presence of a few ppm of presolar SiC with a highly unusual isotopic composition, produced in a different stellar environment like asymptotic giant branch stars (AGB) and injected into the solar nebula. The presence of similar Os isotopic anomalies throughout all major chondrite groups implies that carriers of Os isotopic anomalies were homogeneously distributed in the solar nebula, at least across the formation region of chondrites. (C) 2011 Elsevier Ltd. All rights reserved. C1 [van Acken, David; Brandon, Alan D.] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. [van Acken, David] NASA, Lyndon B Johnson Space Ctr, MS KR, Houston, TX 77058 USA. [Humayun, Munir] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Humayun, Munir] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32310 USA. RP van Acken, D (reprint author), Univ Alberta, Dept Earth & Atmospher Sci, 1-26 Earth Sci Bldg, Edmonton, AB T6G 2E3, Canada. EM vanacken@ualberta.ca OI Humayun, Munir/0000-0001-8516-9435 FU ORAU NASA; NASA [NNX09AG87G, NNX10AI37G] FX Meteorite loans from the Meteorite Working Group at Johnson Space Center, Houston (Antarctic samples), Arizona State University, Tempe (Shallowater), Field Museum of Natural History, Chicago (Abee, Atlanta, Yilmia), American Museum of Natural History, New York (Daniel's Kuil, Khairpur), and National Museum of Natural History; Smithsonian Institution; Washington, DC (Indarch, St. Marks) are appreciated. Review comments by T. Yokoyama, L. Reisberg, and an anonymous reviewer improved the manuscript. S. Huang is thanked for editorial handling. D. v. A. was supported by an ORAU NASA postdoctoral fellowship. This work was supported by NASA Cosmochemistry awards to A. D. B. and M. H. (NNX09AG87G, NNX10AI37G). We thank T. J. Lapen, M. Righter, Y. Gao, and J. I. Simon for technical assistance. NR 97 TC 20 Z9 20 U1 3 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 15 PY 2011 VL 75 IS 14 BP 4020 EP 4036 DI 10.1016/j.gca.2011.04.019 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 796YT UT WOS:000293090100009 ER PT J AU Smith, GL Priestley, KJ Loeb, NG Wielicki, BA Charlock, TP Minnis, P Doelling, DR Rutan, DA AF Smith, G. L. Priestley, K. J. Loeb, N. G. Wielicki, B. A. Charlock, T. P. Minnis, P. Doelling, D. R. Rutan, D. A. TI Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future SO ADVANCES IN SPACE RESEARCH LA English DT Review DE Earth Radiation Budget; CERES; Radiometry; Remote sensing ID RADIATION BUDGET EXPERIMENT; ANGULAR-DISTRIBUTION MODELS; MEASURING MISSION SATELLITE; FLUX ESTIMATION; SENSORS; CLIMATE; METHODOLOGY; VALIDATION; INSTRUMENT; TERRA AB The Clouds and Earth Radiant Energy System (CERES) project's objectives are to measure the reflected solar radiance (shortwave) and Earth-emitted (longwave) radiances and from these measurements to compute the shortwave and longwave radiation fluxes at the top of the atmosphere (TOA) and the surface and radiation divergence within the atmosphere. The fluxes at TOA are to be retrieved to an accuracy of 2%. Improved bidirectional reflectance distribution functions (BRDFs) have been developed to compute the fluxes at TOA from the measured radiances with errors reduced from ER BE by a factor of two or more. Instruments aboard the Terra and Aqua spacecraft provide sampling at four local times. In order to further reduce temporal sampling errors, data are used from the geostationary meteorological satellites to account for changes of scenes between observations by the CERES radiometers. A validation protocol including in-flight calibrations and comparisons of measurements has reduced the instrument errors to less than 1%. The data are processed through three editions. The first edition provides a timely flow of data to investigators and the third edition provides data products as accurate as possible with resources available. A suite of cloud properties retrieved from the MODerate-resolution Imaging Spectroradiometer (MODIS) by the CERES team is used to identify the cloud properties for each pixel in order to select the BRDF for each pixel so as to compute radiation fluxes from radiances. Also, the cloud information is used to compute radiation at the surface and through the atmosphere and to facilitate study of the relationship between clouds and the radiation budget. The data products from CERES include, in addition to the reflected solar radiation and Earth emitted radiation fluxes at TOA, the upward and downward shortwave and longwave radiation fluxes at the surface and at various levels in the atmosphere. Also at the surface the photosynthetically active radiation and ultraviolet radiation (total, UVA and UVB) are computed. The CERES instruments aboard the Terra and Aqua spacecraft have served well past their design life times. A CERES instrument has been integrated onto the NPP platform and is ready for launch in 2011. Another CERES instrument is being built for launch in 2014, and plans are being made for a series of follow-on missions. (C) 2011 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Smith, G. L.; Priestley, K. J.; Loeb, N. G.; Wielicki, B. A.; Charlock, T. P.; Minnis, P.; Doelling, D. R.] Langley Res Ctr, Hampton, VA 23681 USA. [Rutan, D. A.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. RP Smith, GL (reprint author), Langley Res Ctr, MS 420, Hampton, VA 23681 USA. EM George.I.Smith@nasa.gov; Kory.J.Priestley@nasa.gov; Norman.B.Loeb@nasa.gov; Bruce.A.Wielicki@nasa.gov; Thomas.P.Charlock@nasa.gov; P.Minnis@nasa.gov; David.R.Doelling@nasa.gov; David.A.Rutan@nasa.gov RI Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU Science Directorate of Langley Research Centre; Science Mission Directorate of the Earth Science Division of NASA FX The authors are grateful to the Science Directorate of Langley Research Centre and to the Science Mission Directorate of the Earth Science Division of NASA for the support of the CERES Project. They also acknowledge the excellent work performed by the people of Northrop-Grumman Space Technology, under the leadership of Steve Carman and Tom Evert to achieve the performance which has been demonstrated by the CERES instruments. NR 40 TC 15 Z9 15 U1 3 U2 30 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JUL 15 PY 2011 VL 48 IS 2 BP 254 EP 263 DI 10.1016/j.asr.2011.03.009 PG 10 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 791MV UT WOS:000292670200005 ER PT J AU Kar, A Stroscio, MA Meyyappan, M Gosztola, DJ Wiederrecht, GP Dutta, M AF Kar, Ayan Stroscio, Michael A. Meyyappan, M. Gosztola, David J. Wiederrecht, Gary P. Dutta, Mitra TI Tailoring the surface properties and carrier dynamics in SnO2 nanowires SO NANOTECHNOLOGY LA English DT Article ID TEMPERATURE; ELECTRON; SENSORS; OXYGEN; ZNO; CO AB We report a study of the role of mid-gap defect levels due to surface states in SnO2 nanowires on carrier trapping. Ultrafast pump-probe spectroscopy provides carrier relaxation time constants that reveal the nature and positions of various defect levels due to the surface states which in turn provide details on how the carriers relax after their injection. The effect of oxygen annealing on carrier concentration is also studied through XPS valence band photoemission spectroscopy, a sensitive non-contact surface characterization technique. These measurements show that charge transfer associated with chemisorption of oxygen in different forms produces an upward band bending and leads to an increase in the depletion layer width by approximately 70 nm, thereby decreasing surface conductivity and forming the basis for the molecular sensing capability of the nanowires. C1 [Kar, Ayan; Stroscio, Michael A.; Dutta, Mitra] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA. [Stroscio, Michael A.; Dutta, Mitra] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Stroscio, Michael A.] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA. [Meyyappan, M.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. [Gosztola, David J.; Wiederrecht, Gary P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Kar, A (reprint author), Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA. EM dutta@ece.uic.edu RI Gosztola, David/D-9320-2011 OI Gosztola, David/0000-0003-2674-1379 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX AK would like to thank Dr Ke-Bin Low and Dr Alan Nichols of the Research Resource Center at UIC for helpful discussions of the XPS and TEM data and insightful comments. AK would also like to thank Dr Prashanth Upadhya for his comments on the ultrafast spectroscopic data. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 28 TC 14 Z9 14 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JUL 15 PY 2011 VL 22 IS 28 AR 285709 DI 10.1088/0957-4484/22/28/285709 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 775NX UT WOS:000291468000040 PM 21654029 ER PT J AU Chuong, MC Prasad, D LeDuc, B Du, B Putcha, L AF Chuong, Monica C. Prasad, Dev LeDuc, Barbara Du, Brian Putcha, Lakshmi TI Stability of vitamin B complex in multivitamin and multimineral supplement tablets after space flight SO JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS LA English DT Article DE Pharmaceutical stability; Vitamin B complex; International Space Station; High performance liquid chromatography AB The effect of storage in space on the stability of vitamin B complex in two commercial vitamin tablets was examined. Multiple vitamin samples returned after storage on the space shuttle and International Space Station (ISS) along with two ground control and three positive control groups were included in the study. Content of vitamin B(3) in the tablets and in vitro dissolution rate were determined using a modified high performance liquid chromatographic assay from USP/NF 2010. Results indicate that vitamin B(3) in one of the brands tested (#2) may be subject to marginal degradation after storage on ISS for 4 months as indicated by the chromatograms for all six tablets showing a split peak appearing as a notch at the peak tip. Chromatograms were not different for ground and flight samples for Brand #1 suggesting that this may be more suitable for use in space. (C) 2011 Elsevier B.V. All rights reserved. C1 [Chuong, Monica C.; Prasad, Dev; LeDuc, Barbara] Massachusetts Coll Pharm & Hlth Sci, Boston, MA 02115 USA. [Du, Brian; Putcha, Lakshmi] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Chuong, MC (reprint author), Massachusetts Coll Pharm & Hlth Sci, 179 Longwood Ave, Boston, MA 02115 USA. EM monica.chuong@mcphs.edu FU National Aeronautics and Space Administration - Johnson Space Center [T71048, T71495] FX This research was supported by National Aeronautics and Space Administration - Johnson Space Center under Contracts T71048 and T71495. NR 6 TC 2 Z9 2 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0731-7085 J9 J PHARMACEUT BIOMED JI J. Pharm. Biomed. Anal. PD JUL 15 PY 2011 VL 55 IS 5 BP 1197 EP 1200 DI 10.1016/j.jpba.2011.03.030 PG 4 WC Chemistry, Analytical; Pharmacology & Pharmacy SC Chemistry; Pharmacology & Pharmacy GA 771AN UT WOS:000291129700044 PM 21515013 ER PT J AU Houborg, R Anderson, MC Daughtry, CST Kustas, WP Rodell, M AF Houborg, Rasmus Anderson, Martha C. Daughtry, C. S. T. Kustas, W. P. Rodell, Matthew TI Using leaf chlorophyll to parameterize light-use-efficiency within a thermal-based carbon, water and energy exchange model SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Leaf chlorophyll; Light-use-efficiency; Thermal infrared; Carbon flux; Energy balance; Vegetation stress; Shortwave reflectance ID GROSS PRIMARY PRODUCTION; CANOPY REFLECTANCE; AREA INDEX; PHOTOSYNTHETIC PARAMETERS; ATMOSPHERIC CORRECTION; REMOTE ESTIMATION; BALANCE CLOSURE; VAPOR EXCHANGE; SATELLITE DATA; MODIS DATA AB Chlorophylls absorb photosynthetically active radiation and thus function as vital pigments for photosynthesis, which makes leaf chlorophyll content (C-ab) useful for monitoring vegetation productivity and an important indicator of the overall plant physiological condition. This study investigates the utility of integrating remotely sensed estimates of C-ab into a thermal-based Two-Source Energy Balance (TSEB) model that estimates land-surface CO2 and energy fluxes using an analytical, light-use-efficiency (LUE) approach to estimating bulk canopy resistance. The LUE model component computes canopy-scale carbon assimilation and transpiration fluxes, internally estimating fluctuations in effective LUE from a nominal (species-dependent) value (LUEn) in response to short-term variations in environmental conditions. LUEn, however, may vary on a daily timescale, responding to changes in plant phenology, physiological condition and nutrient status. Therefore, remote sensing methodologies for improving daily estimates of LUEn have been investigated. Day-to-day variations in LUEn were assessed for a heterogeneous corn crop field in Maryland, U.S.A. through model optimization with eddy covariance CO2 flux tower observations. The optimized daily LUEn values were then compared to gridded estimates of C-ab over the tower flux footprint, retrieved from a canopy reflectance model driven by green, red and near-infrared imagery acquired with an aircraft imaging system. The tower-calibrated LUEn data were generally well correlated with airborne retrievals of C-ab, and hourly water, energy and carbon flux estimation accuracies from TSEB were significantly improved when using C-ab for delineating spatio-temporal variations in LUEn. The study highlights the potential synergy between thermal infrared and shortwave reflective wavebands in producing valuable remote sensing data for estimating carbon, water and heat fluxes within a two-source energy balance framework. (C) 2011 Elsevier Inc. All rights reserved. C1 [Houborg, Rasmus] Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, Climate Change & Air Qual Unit, I-21020 Ispra, Italy. [Houborg, Rasmus] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Anderson, Martha C.; Daughtry, C. S. T.; Kustas, W. P.] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD USA. [Rodell, Matthew] NASA, Hydrol Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Houborg, R (reprint author), Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, Climate Change & Air Qual Unit, I-21020 Ispra, Italy. EM rasmus.houborg@jrc.ec.europa.eu RI Rodell, Matthew/E-4946-2012; Anderson, Martha/C-1720-2015 OI Rodell, Matthew/0000-0003-0106-7437; Anderson, Martha/0000-0003-0748-5525 FU USDA Agricultural Research Service Research Associate; NASA's Energy and Water Cycle Study (NEWS) FX Funding for this research was provided by the USDA Agricultural Research Service Research Associate Program and NASA's Energy and Water Cycle Study (NEWS) program. The authors would like to thank the logistical support in operating and maintaining the OPE3 site as well as data collection and archiving efforts of Dr. Timothy Gish of the USDA-ARS Hydrology and Remote Sensing Lab. The micrometeorological tower data were made available through the efforts of remote sensing specialist Mr. Andrew Russ of the Hydrology and Remote Sensing laboratory and Dr. John Prueger from the USDA-ARS National Laboratory for Agriculture and the Environment in Ames Iowa. NR 62 TC 24 Z9 26 U1 3 U2 37 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUL 15 PY 2011 VL 115 IS 7 BP 1694 EP 1705 DI 10.1016/j.rse.2011.02.027 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 762UI UT WOS:000290506600008 ER PT J AU Morton, DC DeFries, RS Nagol, J Souza, CM Kasischke, ES Hurtt, GC Dubayah, R AF Morton, Douglas C. DeFries, Ruth S. Nagol, Jyoteshwar Souza, Carlos M., Jr. Kasischke, Eric S. Hurtt, George C. Dubayah, Ralph TI Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Forest degradation; REDD; Deforestation; Fire; Time series ID BRAZILIAN AMAZON; EASTERN AMAZON; TROPICAL FORESTS; TREE MORTALITY; DEFORESTATION; WILDFIRES; BIOMASS; IMAGES; SCALE; SUSCEPTIBILITY AB Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars < 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (> 500 ha) burn scars that accounted for the majority of all fire-damaged forests in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Undsat-based understory fire damages in 1999 (1508 km(2)) were an order of magnitude higher than during the 1997-1998 El Nino event (124 km(2) and 39 km(2), respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by applying the BDR algorithm over larger areas and longer image time series. Published by Elsevier Inc. C1 [Morton, Douglas C.; Nagol, Jyoteshwar; Kasischke, Eric S.; Dubayah, Ralph] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [DeFries, Ruth S.] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA. [DeFries, Ruth S.] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Souza, Carlos M., Jr.] Inst Homem & Meio Ambiente Amazonia IMAZON, Belem, Para, Brazil. [Hurtt, George C.] Univ New Hampshire, Inst Study Earth Oceans & Space EOS, Durham, NH 03824 USA. [Hurtt, George C.] Univ New Hampshire, Dept Nat Resources, Durham, NH 03824 USA. RP Morton, DC (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Code 614-4, Greenbelt, MD 20771 USA. EM douglas.morton@nasa.gov; rd2402@columbia.edu; jnagol@geog.umd.edu; souzajr@imazon.org.br; ekasisch@mail.umd.edu; george.hurtt@unh.edu; dubayah@umd.edu RI Hurtt, George/A-8450-2012; Morton, Douglas/D-5044-2012; Nagol, Jyoteshwar/P-2026-2015 OI Nagol, Jyoteshwar/0000-0003-0497-7874 FU NASA FX This work was supported by the NASA Large-scale Biosphere-Atmosphere Experiment in Amazonia (LBA-ECO) and Land-Cover and Land-Use Change Programs (LCLUC). Support for D. Morton was also provided under the NASA Earth and Space Science Fellowship (ESSF) and NASA Postdoctoral Program (NPP). Data on selective logging were graciously provided by Greg Asner and David Knapp. The authors thank Ane Alencar, Liana Anderson, Matthew Hansen, Marcelo Latorre, Ellen Jasinski, Britaldo Soares-Filho, and Yosio Shimabukuro for their support and assistance with field data collection. In addition, we thank Louis Giglio and Wilfrid Schroeder for the productive discussions on fire and fire mapping related to the BDR approach and two anonymous reviewers for helpful feedback on a previous version of this manuscript. NR 63 TC 30 Z9 31 U1 4 U2 48 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUL 15 PY 2011 VL 115 IS 7 BP 1706 EP 1720 DI 10.1016/j.rse.2011.03.002 PG 15 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 762UI UT WOS:000290506600009 ER PT J AU Zhang, GQ Xie, HJ Kang, SC Yi, DH Ackley, SF AF Zhang, Guoqing Xie, Hongjie Kang, Shichang Yi, Donghui Ackley, Stephen F. TI Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009) SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Tibetan Plateau; Lake level; ICESat; Salt lake; Glacier melting ID RECENT GLACIAL RETREAT; DONGKEMADI GLACIER; RECENT DECADES; SOURCE REGIONS; YELLOW RIVERS; CHINA; CLIMATE; YANGTZE; IMPACT; OCEAN AB In this study. ICESat altimetry data are used to provide precise lake elevations of the Tibetan Plateau (IF) during the period of 2003-2009. Among the 261 lakes examined ICESat data are available on 111 lakes: 74 lakes with ICESat footprints for 4-7 years and 37 lakes with footprints for 1-3 years. This is the first time that precise lake elevation data are provided for the 111 lakes. Those ICESat elevation data can be used as baselines for future changes in lake levels as well as for changes during the 2003-2009 period. It is found that in the 74 lakes (56 salt lakes) examined, 62 (i.e. 84%) of all lakes and 50 (i.e. 89%) of the salt lakes show tendency of lake level increase. The mean lake water level increase rate is 0.23 m/year for the 56 salt lakes and 0.27 m/year for the 50 salt lakes of water level increase. The largest lake level increase rate (0.80 m/year) found in this study is the lake Cedo Caka. The 74 lakes are grouped into four subareas based on geographical locations and change tendencies in lake levels. Three of the four subareas show increased lake levels. The mean lake level change rates for subareas I, II, III, IV, and the entire TP are 0.12, 0.26, 0.19, -0.11, and 0.2 m/year, respectively. These recent increases in lake level, particularly for a high percentage of salt lakes, supports accelerated glacier melting due to global warming as the most likely cause. (C) 2011 Elsevier Inc. All rights reserved. C1 [Zhang, Guoqing; Xie, Hongjie; Ackley, Stephen F.] Univ Texas San Antonio, Lab Remote Sensing & Geoinformat, San Antonio, TX 78249 USA. [Zhang, Guoqing] China Univ Geosci, Sch Earth Sci & Resources, Beijing 100083, Peoples R China. [Zhang, Guoqing] E China Inst Technol, State Key Lab Breeding Base Nucl Resources & Envi, Nanchang 330013, Jiangxi, Peoples R China. [Kang, Shichang] Chinese Acad Sci, Lab Tibetan Environm Changes & Land Surface Proc, Inst Tibetan Plateau Res, Beijing 100085, Peoples R China. [Kang, Shichang] Chinese Acad Sci, State Key Lab Cryospher Sci, Lanzhou 730000, Peoples R China. [Yi, Donghui] SGT Inc, Cryospher Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Xie, HJ (reprint author), Univ Texas San Antonio, Lab Remote Sensing & Geoinformat, San Antonio, TX 78249 USA. EM Hongjie.Xie@utsa.edu RI Xie, Hongjie/B-5845-2009; OI Xie, Hongjie/0000-0003-3516-1210; Zhang, Guoqing/0000-0003-2090-2813 FU U.S. NASA [NNX08AQ87G]; State Key Laboratory Breeding Base of Nuclear Resources and Environment at East China Institute of Technology [101110]; China Scholarship Council, University of Texas at San Antonio FX This work was in part supported by the U.S. NASA grant (#NNX08AQ87G), and jointly sponsored by State Key Laboratory Breeding Base of Nuclear Resources and Environment at East China Institute of Technology (No. 101110). The author G. Zhang wants to thank China Scholarship Council for funding his study for two years (2009-2011) at the University of Texas at San Antonio. Provision of ICESat data through NSIDC is sincerely appreciated. We want to thank Terri Krakower for proofreading the paper. Critical reviews and constructional comments from three anonymous reviewers and the editor to improve the quality of this manuscript are greatly appreciated. NR 65 TC 138 Z9 166 U1 15 U2 75 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUL 15 PY 2011 VL 115 IS 7 BP 1733 EP 1742 DI 10.1016/j.rse.2011.03.005 PG 10 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 762UI UT WOS:000290506600011 ER PT J AU Sasai, T Saigusa, N Nasahara, KN Ito, A Hashimoto, H Nemani, R Hirata, R Ichii, K Takagi, K Saitoh, TM Ohta, T Murakami, K Yamaguchi, Y Oikawa, T AF Sasai, Takahiro Saigusa, Nobuko Nasahara, Kenlo Nishida Ito, Akihiko Hashimoto, Hirofumi Nemani, Ramakrishna Hirata, Ryuichi Ichii, Kazuhito Takagi, Kentaro Saitoh, Taku M. Ohta, Takeshi Murakami, Kazutaka Yamaguchi, Yasushi Oikawa, Takehisa TI Satellite-driven estimation of terrestrial carbon flux over Far East Asia with 1-km grid resolution SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Terrestrial carbon cycle; Gross primary production; Net ecosystem production; Net primary production; Remote sensing; Biosphere model; BEAMS ID NET PRIMARY PRODUCTIVITY; GLOBAL VEGETATION MODEL; REMOTELY-SENSED DATA; ECOSYSTEM MODEL; INTERANNUAL VARIABILITY; DIOXIDE EXCHANGE; LARCH FOREST; DATA SETS; LAND-USE; MODIS AB The terrestrial carbon cycle is strongly affected by natural phenomena, terrain heterogeneity, and human-induced activities that alter carbon exchange via vegetation and soil activities. In order to accurately understand terrestrial carbon cycle mechanisms, it is necessary to estimate spatial and temporal variations in carbon flux and storage using process-based models with the highest possible resolution. We estimated terrestrial carbon fluxes using a biosphere model integrating eco-physiological and mechanistic approaches based on satellite data (BEAMS) and observations with 1-km grid resolution. The study area is the central Far East Asia region, which lies between 30 degrees and 50 degrees north latitude and 125 and 150 east longitude. Aiming to simulate terrestrial carbon exchanges under realistic land surface conditions, we used as many satellite-observation datasets as possible, such as the standard MODIS, TRMM, and SRTM high-level land products. Validated using gross primary productivity (GPP), net ecosystem production (NEP), net radiation and latent heat with ground measurements at six flux sites, the model estimations showed reasonable seasonal and annual patterns. In extensive analysis, the total GPP and NPP were determined to be 2.1 and 0.9 PgC/year, respectively. The total NEP estimation was + 5.6 TgC/year, meaning that the land area played a role as a carbon sink from 2001 to 2006. In analyses of areas with complicated topography, the 1-km grid estimation could prove to be effective in evaluating the effect of landscape on the terrestrial carbon cycle. The method presented here is an appropriate approach for gaining a better understanding of terrestrial carbon exchange, both spatially and temporally. (C) 2011 Elsevier Inc. All rights reserved. C1 [Sasai, Takahiro] Nagoya Univ, Dept Earth & Environm Sci, Grad Sch Environm Studies, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Saigusa, Nobuko; Ito, Akihiko] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki 3058506, Japan. [Nasahara, Kenlo Nishida; Murakami, Kazutaka; Oikawa, Takehisa] Univ Tsukuba, Grad Sch Life & Environm Sci, Tsukuba, Ibaraki 3058572, Japan. [Hashimoto, Hirofumi] Calif State Univ, Div Sci & Environm Policy, Monterey, CA 93955 USA. [Hashimoto, Hirofumi; Nemani, Ramakrishna] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hirata, Ryuichi] Hokkaido Univ, Grad Sch Agr, Sapporo, Hokkaido 0608589, Japan. [Ichii, Kazuhito] Fukushima Univ, Fac Symbiot Syst Sci, Fukushima 9601296, Japan. [Takagi, Kentaro] Hokkaido Univ, Field Sci Ctr No Biosphere, Horonobe 0982943, Japan. [Saitoh, Taku M.] Gifu Univ, River Basin Res Ctr, Gifu 5011193, Japan. [Ohta, Takeshi] Nagoya Univ, Grad Sch Bioagr Sci, Nagoya, Aichi 4648601, Japan. RP Sasai, T (reprint author), Nagoya Univ, Dept Earth & Environm Sci, Grad Sch Environm Studies, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan. EM sasai@nagoya-u.jp RI Sasai, Takahiro/E-6417-2011; Ichii, Kazuhito/D-2392-2010; Saitoh, Taku/G-8436-2011; Takagi, Kentaro/C-2222-2012 OI Ichii, Kazuhito/0000-0002-8696-8084; FU Japanese Ministry of the Environment; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) [20710018]; Global Environmental Monitoring, Center for Global Environmental Research, National Institute for Environmental Studies; JAXA [102] FX The corresponding author is deeply grateful to Dr. S. Togashi from the National Institute of Advanced Industrial Science and Technology. This study was supported in part by the Global Environment Research Fund from the Japanese Ministry of the Environment, Integrated Study for the Terrestrial Carbon Management of Asia in the 21st Century Based on Scientific Advancements, by a Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) Grant-in-Aid for Young Scientists (B) (No. 20710018), by the Global Environmental Monitoring, Center for Global Environmental Research, National Institute for Environmental Studies, and by the JAXA GCOM-C project under contract 102: "Development of integrative information of the terrestrial ecosystem". NR 70 TC 24 Z9 24 U1 2 U2 30 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUL 15 PY 2011 VL 115 IS 7 BP 1758 EP 1771 DI 10.1016/j.rse.2011.03.007 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 762UI UT WOS:000290506600013 ER PT J AU Dominguez, A Kleissl, J Luvall, JC Rickman, DL AF Dominguez, Anthony Kleissl, Jan Luvall, Jeffrey C. Rickman, Douglas L. TI High-resolution urban thermal sharpener (HUTS) SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Land surface temperature; Thermal sharpening; Urban heat island; Urban meteorology ID SURFACE TEMPERATURES; HEAT-ISLAND; EMISSIVITY; IMAGERY AB A high resolution urban thermal sharpener (HUTS) was developed that increases the resolution of thermal infrared (TIR) data to that of visible and near infrared (VNIR) data by fitting the relationship between radiometric surface temperature, normalized difference vegetation index (NDVI) and surface albedo (a). HUTS was applied to TIR data aggregated to 90 m to represent a satellite acquired dataset and validated against the measured 10 m data from an aircraft over San Juan, Puerto Rico. HUTS sharpening reduced the root mean square error of surface temperature at the high resolution by 17% compared to no sharpening and outperformed other sharpening methods. HUTS is proposed as a useful tool to study urban meteorology and climatology at the microscale using ASTER satellite data. (C) 2011 Elsevier Inc. All rights reserved. C1 [Dominguez, Anthony; Kleissl, Jan] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Luvall, Jeffrey C.; Rickman, Douglas L.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Kleissl, J (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, 9500 Gilman Dr,EBUII 580, La Jolla, CA 92093 USA. EM jkleissl@ucsd.edu OI Rickman, Doug/0000-0003-3409-2882 FU NASA, University of Puerto Rico; NASA; U.S. National Oceanic and Atmospheric Administration Cooperative Research Center of City College of New York City; NASA's Global Hydrology and Climate Center, Huntsville, Alabama; NSF FX The collection of ATLAS data was partially sponsored by the NASA-EPSCoR program of the University of Puerto Rico, NASA's Summer Faculty Fellowship Program, the U.S. National Oceanic and Atmospheric Administration Cooperative Research Center of City College of New York City, and NASA's Global Hydrology and Climate Center, Huntsville, Alabama. This work was funded by a NASA GSRP Fellowship. Kleissl was supported by a NSF CAREER award. NR 26 TC 33 Z9 36 U1 1 U2 11 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUL 15 PY 2011 VL 115 IS 7 BP 1772 EP 1780 DI 10.1016/j.rse.2011.03.008 PG 9 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 762UI UT WOS:000290506600014 ER PT J AU Calabrese, E Menegoni, E Martins, CJAP Melchiorri, A Rocha, G AF Calabrese, Erminia Menegoni, Eloisa Martins, C. J. A. P. Melchiorri, Alessandro Rocha, Graca TI Constraining variations in the fine structure constant in the presence of early dark energy SO PHYSICAL REVIEW D LA English DT Article ID HUBBLE-SPACE-TELESCOPE; TIME-VARIATION; ALPHA; QUINTESSENCE AB We discuss present and future cosmological constraints on variations of the fine structure constant alpha induced by an early dark energy component having the simplest allowed (linear) coupling to electromagnetism. We find that current cosmological data show no variation of the fine structure constant at recombination with respect to the present-day value, with alpha/alpha(0) = 0.975 +/- 0.020 at 95% C.L., constraining the energy density in early dark energy to Omega(e) < 0.060 at 95% C.L. Moreover, we consider constraints on the parameter quantifying the strength of the coupling by the scalar field. We find that current cosmological constraints on the coupling are about 20 times weaker than those obtainable locally (which come from Equivalence Principle tests). However forthcoming or future missions, such as the Planck Surveyor and the CMBPol satellite, can match and possibly even surpass the sensitivity of current local tests. C1 [Calabrese, Erminia; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Calabrese, Erminia; Melchiorri, Alessandro] Univ Roma La Sapienza, INFN, I-00185 Rome, Italy. [Menegoni, Eloisa] Univ Roma La Sapienza, ICRA, I-00185 Rome, Italy. [Menegoni, Eloisa] Univ Roma La Sapienza, INFN, I-00185 Rome, Italy. [Martins, C. J. A. P.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Martins, C. J. A. P.] Univ Cambridge, DAMTP, Cambridge CB3 0WA, England. [Rocha, Graca] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Calabrese, E (reprint author), Univ Roma La Sapienza, Dept Phys, Ple Aldo Moro 2, I-00185 Rome, Italy. OI Melchiorri, Alessandro/0000-0001-5326-6003; Martins, Carlos/0000-0002-4886-9261 FU PRIN-INAF; Ciencia2007 Research Contract; FCT/MCTES (Portugal); POPH/FSE; FCT, Portugal [PTDC/FIS/111725/2009]; Italian Space Agency through the ASI [I/031/10/0] FX This work is supported by PRIN-INAF, "Astronomy probes fundamental physics". The work of C.M. is funded by a Ciencia2007 Research Contract, funded by FCT/MCTES (Portugal) and POPH/FSE (E.C.). C.M. and G.R. also acknowledge additional support from Project No. PTDC/FIS/111725/2009 from FCT, Portugal. Support was given by the Italian Space Agency through the ASI Contracts "Euclid-IC" (I/031/10/0). We thank Eric V. Linder for useful comments. NR 39 TC 21 Z9 21 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 14 PY 2011 VL 84 IS 2 AR 023518 DI 10.1103/PhysRevD.84.023518 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 792IX UT WOS:000292738000003 ER PT J AU Stephens, P Komjathy, A Wilson, B Mannucci, A AF Stephens, P. Komjathy, A. Wilson, B. Mannucci, Anthony TI New leveling and bias estimation algorithms for processing COSMIC/FORMOSAT-3 data for slant total electron content measurements SO RADIO SCIENCE LA English DT Article ID DENSITY PROFILES; PLASMASPHERE; MODEL AB Ionospheric modeling can be improved by the inclusion of occultation data between satellites and GPS transmitters. COSMIC/FORMOSAT-3 provides a large data set of such occultations. In order to utilize these absolute measurements in an assimilative model, the data must be carefully processed; the level of the ionospheric combination and the differential biases must be accurately determined. The COSMIC GPS receivers operate in a high multipath environment; a phase leveling algorithm, utilizing the information in the multipath, improves the leveling errors by at least 0.4 total electron content units. Receiver biases are then computed from the leveled data by making some simplifying assumptions about the structure of the ionosphere and plasmasphere. This processing algorithm provides occultation measurements as slant total electron content to an accuracy of 3.55 total electron content units. C1 [Stephens, P.; Komjathy, A.; Wilson, B.; Mannucci, Anthony] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Stephens, P (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM philip.stephens@jpl.nasa.gov OI Mannucci, Anthony/0000-0003-2391-8490 FU National Aeronautics and Space Administration FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the National Aeronautics and Space Administration. NR 17 TC 8 Z9 8 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 EI 1944-799X J9 RADIO SCI JI Radio Sci. PD JUL 14 PY 2011 VL 46 AR RS0D10 DI 10.1029/2010RS004588 PG 8 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA 793QI UT WOS:000292837800001 ER PT J AU Walsh, KJ Morbidelli, A Raymond, SN O'Brien, DP Mandell, AM AF Walsh, Kevin J. Morbidelli, Alessandro Raymond, Sean N. O'Brien, David P. Mandell, Avi M. TI A low mass for Mars from Jupiter's early gas-driven migration SO NATURE LA English DT Article ID GASEOUS PROTOPLANETARY DISK; TERRESTRIAL PLANETS; ASTEROID BELT; SOLAR-SYSTEM; EVOLUTION; DYNAMICS; WATER AB Jupiter and Saturn formed in a few million years (ref. 1) from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only similar to 100,000 years (ref. 2). Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration(3-5). The terrestrial planets finished accreting much later(6), and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun(7,8) (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought. C1 [Walsh, Kevin J.; Morbidelli, Alessandro] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice 4, France. [Walsh, Kevin J.] SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA. [Raymond, Sean N.] Univ Bordeaux, Observ Aquitain Sci Univers, F-33270 Floirac, France. [Raymond, Sean N.] CNRS, UMR 5804, Lab Astrophys Bordeaux, F-33270 Floirac, France. [O'Brien, David P.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Mandell, Avi M.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Walsh, KJ (reprint author), Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, BP 4229, F-06304 Nice 4, France. EM kwalsh@boulder.swri.edu RI Mandell, Avi/F-9361-2012 FU Helmholtz Alliances; CNRS; NASA; Goddard Center for Astrobiology FX K.J.W. and A. M. were supported by the Helmholtz Alliances 'Planetary Evolution and Life' programme. S.N.R and A. M. M. were supported by the EPOV and PNP programmes of CNRS. D.P.O'B. was supported by the NASA PG&G programme. A. M. M. was also supported by the NASA post-doctoral programme and the Goddard Center for Astrobiology. We thank the Isaac Newton Institute DDP programme for hosting some of us at the initial stage of the project; we also thank J. Chambers for comments that improved the text. Computations were done on the CRIMSON Beowulf cluster at OCA. NR 30 TC 333 Z9 335 U1 8 U2 64 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 14 PY 2011 VL 475 IS 7355 BP 206 EP 209 DI 10.1038/nature10201 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 791UA UT WOS:000292690500045 PM 21642961 ER PT J AU Oman, LD Ziemke, JR Douglass, AR Waugh, DW Lang, C Rodriguez, JM Nielsen, JE AF Oman, L. D. Ziemke, J. R. Douglass, A. R. Waugh, D. W. Lang, C. Rodriguez, J. M. Nielsen, J. E. TI The response of tropical tropospheric ozone to ENSO SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID NINO SOUTHERN-OSCILLATION; 1997-1998 EL-NINO; CHEMISTRY; MODEL; PHOTOCHEMISTRY; STRATOSPHERE; MIDLATITUDES; TEMPERATURE; TRANSPORT; EXCHANGE AB We have successfully reproduced the Ozone ENSO Index (OEI) in the Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) forced by observed sea surface temperatures over a 25-year period. The vertical ozone response to ENSO is consistent with changes in the Walker circulation. We derive the sensitivity of simulated ozone to ENSO variations using linear regression analysis. The western Pacific and Indian Ocean region shows similar positive ozone sensitivities from the surface to the upper troposphere, in response to positive anomalies in the Nino 3.4 Index. The eastern and central Pacific region shows negative sensitivities with the largest sensitivity in the upper troposphere. This vertical response compares well with that derived from SHADOZ ozonesondes in each region. The OEI reveals a response of tropospheric ozone to circulation change that is nearly independent of changes in emissions and thus it is potentially useful in chemistry-climate model evaluation. Citation: Oman, L. D., J. R. Ziemke, A. R. Douglass, D. W. Waugh, C. Lang, J. M. Rodriguez, and J. E. Nielsen (2011), The response of tropical tropospheric ozone to ENSO, Geophys. Res. Lett., 38, L13706, doi:10.1029/2011GL047865. C1 [Oman, L. D.; Ziemke, J. R.; Douglass, A. R.; Rodriguez, J. M.; Nielsen, J. E.] NASA, Atmospher Chem & Dynam Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Waugh, D. W.; Lang, C.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Ziemke, J. R.] Univ Maryland Baltimore Cty, GEST, Baltimore, MD 21228 USA. [Nielsen, J. E.] Sci Syst & Applicat Inc, Lanham, MD USA. RP Oman, LD (reprint author), NASA, Atmospher Chem & Dynam Branch, Goddard Space Flight Ctr, Code 613-3, Greenbelt, MD 20771 USA. EM luke.d.oman@nasa.gov RI Douglass, Anne/D-4655-2012; Oman, Luke/C-2778-2009; Rodriguez, Jose/G-3751-2013; Waugh, Darryn/K-3688-2016 OI Oman, Luke/0000-0002-5487-2598; Rodriguez, Jose/0000-0002-1902-4649; Waugh, Darryn/0000-0001-7692-2798 FU NASA MAP; ACMAP; Aura programs FX This research was supported by the NASA MAP, ACMAP, and Aura programs. We would like to thank Paul Newman and two anonymous reviewers for some very helpful comments on this paper and Stacey Frith for helping with the model output processing. We also thank those involved in model development at GSFC, and high-performance computing resources provided by NASA's Advanced Supercomputing Division. NR 30 TC 31 Z9 34 U1 0 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 13 PY 2011 VL 38 AR L13706 DI 10.1029/2011GL047865 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 793PB UT WOS:000292834500001 ER PT J AU Giacomazzo, B Rezzolla, L Stergioulas, N AF Giacomazzo, Bruno Rezzolla, Luciano Stergioulas, Nikolaos TI Collapse of differentially rotating neutron stars and cosmic censorship SO PHYSICAL REVIEW D LA English DT Article ID EXACT RIEMANN SOLVER; RELATIVISTIC STARS; BLACK-HOLE; GRAVITATIONAL-RADIATION; PARITY PERTURBATIONS; NUMERICAL RELATIVITY; STELLAR COLLAPSE; MESH REFINEMENT; HYDRODYNAMICS; MAGNETOHYDRODYNAMICS AB We present new results on the dynamics and gravitational-wave emission from the collapse of differentially rotating neutron stars. We have considered a number of polytropic stellar models having different values of the dimensionless angular momentum J/M-2, where J andM are the asymptotic angular momentum and mass of the star, respectively. For neutron stars with J/M-2 < 1, i.e. "sub-Kerr" models, we were able to find models that are dynamically unstable and that collapse promptly to a rotating black hole. Both the dynamics of the collapse and the consequent emission of gravitational waves resemble those seen for uniformly rotating stars, although with an overall decrease in the efficiency of gravitational-wave emission. For stellar models with J/M-2 > 1, i.e. "supra-Kerr" models, on the other hand, we were not able to find models that are dynamically unstable and all of the computed supra-Kerr models were found to be far from the stability threshold. For these models a gravitational collapse is possible only after a very severe and artificial reduction of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually contracting to a stable axisymmetric stellar configuration. While this does not exclude the possibility that a naked singularity can be produced by the collapse of a differentially rotating star, it also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr progenitor do not lead to a naked singularity. C1 [Giacomazzo, Bruno] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Giacomazzo, Bruno] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Rezzolla, Luciano] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Golm, Germany. [Rezzolla, Luciano] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Stergioulas, Nikolaos] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. RP Giacomazzo, B (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RI Giacomazzo, Bruno/I-8088-2012 OI Giacomazzo, Bruno/0000-0002-6947-4023 FU DFG [SFB/Transregio 7]; European Science Foundation; NASA [NNX09AI75G]; [MNiSWN N203 511238] FX This project was initiated during the Ph.D. work of B. G. and it has benefited over the years from useful discussions and comments from L. Baiotti, R. De Pietri, I. Hawke, G. M. Manca, A. Nagar, C. D. Ott, and E. Schnetter, whom we thank. The numerical computations were performed on clusters Peyote, Belladonna, and Damiana at the AEI; Albert2 at the Physics Department of the University of Parma (Parma, Italy); CLX at CINECA (Bologna, Italy); and RANGER at TACC through the TERAGRID allocation TG-MCA02N014. This work was supported in part by the DFG Grant SFB/Transregio 7 and by "CompStar", a Research Networking Programme of the European Science Foundation. B. G. acknowledges partial support from NASA Grant No. NNX09AI75G. N. S. acknowledges partial support from Grant No. MNiSWN N203 511238. NR 68 TC 30 Z9 30 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 13 PY 2011 VL 84 IS 2 AR 024022 DI 10.1103/PhysRevD.84.024022 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 791UW UT WOS:000292693100009 ER PT J AU Gilmore, MS Thompson, DR Anderson, LJ Karamzadeh, N Mandrake, L Castano, R AF Gilmore, Martha S. Thompson, David R. Anderson, Laura J. Karamzadeh, Nader Mandrake, Lukas Castano, Rebecca TI Superpixel segmentation for analysis of hyperspectral data sets, with application to Compact Reconnaissance Imaging Spectrometer for Mars data, Moon Mineralogy Mapper data, and Ariadnes Chaos, Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID ENDMEMBER EXTRACTION; SPECTROSCOPY; ALGORITHM; REFLECTANCE; SMECTITES; CRISM; PHYLLOSILICATES; CLASSIFICATION; SERPENTINES; DIVERSITY AB We present a semiautomated method to extract spectral end-members from hyperspectral images. This method employs superpixels, which are spectrally homogeneous regions of spatially contiguous pixels. The superpixel segmentation is combined with an unsupervised end-member extraction algorithm. Superpixel segmentation can complement per pixel classification techniques by reducing both scene-specific noise and computational complexity. The end-member extraction step explores the entire spectrum, recognizes target mineralogies within spectral mixtures, and enhances the discovery of unanticipated spectral classes. The method is applied to Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) images and compared to a manual expert classification and to state-of the-art image analysis techniques. The technique successfully recognizes all classes identified by the expert, producing spectral end-members that match well to target classes. Application of the technique to CRISM multispectral data and Moon Mineralogy Mapper (M-3) hyperspectral data demonstrates the flexibility of the method in the analysis of a range of data sets. The technique is then used to analyze CRISM data in Ariadnes Chaos, Mars, and recognizes both phyllosilicates and sulfates in the chaos mounds. These aqueous deposits likely reflect changing environmental conditions during the Late Noachian/Early Hesperian. This semiautomated focus-of-attention tool will facilitate the identification of materials of interest on planetary surfaces whose constituents are unknown. C1 [Gilmore, Martha S.; Anderson, Laura J.] Wesleyan Univ, Dept Earth & Environm Sci, Middletown, CT 06459 USA. [Thompson, David R.; Karamzadeh, Nader; Mandrake, Lukas; Castano, Rebecca] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gilmore, MS (reprint author), Wesleyan Univ, Dept Earth & Environm Sci, 265 Church St, Middletown, CT 06459 USA. EM mgilmore@wesleyan.edu RI Gilmore, Martha/G-5856-2011 FU NASA AMMOS Multimission Ground Systems and Services office; NASA FX We thank the CRISM team and Brown University for the use of the CRISM Analysis Tool (CAT) and their software contributions to the community. Detailed reviews of the manuscript are appreciated. Support from the NASA AMMOS Multimission Ground Systems and Services office is acknowledged. A portion of this research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 72 TC 7 Z9 7 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUL 12 PY 2011 VL 116 AR E07001 DI 10.1029/2010JE003763 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 793OY UT WOS:000292834200001 ER PT J AU Baiotti, L Damour, T Giacomazzo, B Nagar, A Rezzolla, L AF Baiotti, Luca Damour, Thibault Giacomazzo, Bruno Nagar, Alessandro Rezzolla, Luciano TI Accurate numerical simulations of inspiralling binary neutron stars and their comparison with effective-one-body analytical models SO PHYSICAL REVIEW D LA English DT Article ID GRAVITATIONAL-RADIATION; GENERATION AB Binary neutron-star systems represent one of the most promising sources of gravitational waves. In order to be able to extract important information, notably about the equation of state of matter at nuclear density, it is necessary to have in hand an accurate analytical model of the expected waveforms. Following our recent work [L. Baiotti, T. Damour, B. Giacomazzo, A. Nagar, and L. Rezzolla, Phys. Rev. Lett. 105, 261101 (2010).], we here analyze more in detail two general-relativistic simulations spanning about 20 gravitational-wave cycles of the inspiral of equal-mass binary neutron stars with different compactnesses, and compare them with a tidal extension of the effective-one-body (EOB) analytical model. The latter tidally extended EOB model is analytically complete up to the 1.5 post-Newtonian level, and contains an analytically undetermined parameter representing a higher-order amplification of tidal effects. We find that, by calibrating this single parameter, the EOB model can reproduce, within the numerical error, the two numerical waveforms essentially up to the merger. By contrast, analytical models (either EOB or Taylor-T4) that do not incorporate such a higher-order amplification of tidal effects, build a dephasing with respect to the numerical waveforms of several radians. C1 [Baiotti, Luca] Osaka Univ, Inst Laser Engn, Suita, Osaka, Japan. [Damour, Thibault; Nagar, Alessandro] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France. [Damour, Thibault] ICRANet, Pescara, Italy. [Giacomazzo, Bruno] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Giacomazzo, Bruno] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Rezzolla, Luciano] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Potsdam, Germany. [Rezzolla, Luciano] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RP Baiotti, L (reprint author), Osaka Univ, Inst Laser Engn, Suita, Osaka, Japan. RI Giacomazzo, Bruno/I-8088-2012 OI Giacomazzo, Bruno/0000-0002-6947-4023 NR 61 TC 64 Z9 64 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL 12 PY 2011 VL 84 IS 2 AR 024017 DI 10.1103/PhysRevD.84.024017 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 791FD UT WOS:000292649100004 ER PT J AU Lang, RN Hughes, SA Cornish, NJ AF Lang, Ryan N. Hughes, Scott A. Cornish, Neil J. TI Measuring parameters of massive black hole binaries with partially aligned spins SO PHYSICAL REVIEW D LA English DT Article ID GRAVITATIONAL-RADIATION; MERGER; LISA; COALESCENCE; ACCRETION; EVOLUTION; WAVES AB The future space-based gravitational wave detector LISA will be able to measure parameters of coalescing massive black hole binaries, often to extremely high accuracy. Previous work has demonstrated that the black hole spins can have a strong impact on the accuracy of parameter measurement. Relativistic spin-induced precession modulates the waveform in a manner which can break degeneracies between parameters, in principle significantly improving how well they are measured. Recent studies have indicated, however, that spin precession may be weak for an important subset of astrophysical binary black holes: those in which the spins are aligned due to interactions with gas. In this paper, we examine how well a binary's parameters can be measured when its spins are partially aligned and compare results using waveforms that include higher post-Newtonian harmonics to those that are truncated at leading quadrupole order. We find that the weakened precession can substantially degrade parameter estimation. This degradation is particularly devastating for the extrinsic parameters sky position and distance. Absent higher harmonics, LISA typically localizes the sky position of a nearly aligned binary a factor of similar to 6 less accurately than for one in which the spin orientations are random. Our knowledge of a source's sky position will thus be worst for the gas-rich systems which are most likely to produce electromagnetic counterparts. Fortunately, higher harmonics of the waveform can make up for this degradation. By including harmonics beyond the quadrupole in our waveform model, we find that the accuracy with which most of the binary's parameters are measured can be substantially improved. In some cases, parameters can be measured as well in partially aligned binaries as they can be when the binary spins are random. C1 [Lang, Ryan N.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Hughes, Scott A.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Hughes, Scott A.] MIT, MIT Kavli Inst, Cambridge, MA 02139 USA. [Cornish, Neil J.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. RP Lang, RN (reprint author), NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. FU NASA [NNX08AL42G, NNX10AH15G]; NSF [PHY-0449884] FX We thank Cole Miller for suggesting the problem to us. We also thank Samaya Nissanke, Sean McWilliams, and Tyson Littenberg for useful discussions. R. N. L. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. This work is supported at MIT by NASA Grant NNX08AL42G and NSF Grant PHY-0449884. S. A. H. in addition gratefully acknowledges the support of the Adam J. Burgasser Chair in Astrophysics in completing this analysis. N. J. C. was supported by NASA Grant NNX10AH15G. NR 53 TC 30 Z9 30 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 12 PY 2011 VL 84 IS 2 AR 022002 DI 10.1103/PhysRevD.84.022002 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 791FD UT WOS:000292649100001 ER PT J AU Koss, M Mushotzky, R Treister, E Veilleux, S Vasudevan, R Miller, N Sanders, DB Schawinski, K Trippe, M AF Koss, Michael Mushotzky, Richard Treister, Ezequiel Veilleux, Sylvain Vasudevan, Ranjan Miller, Neal Sanders, D. B. Schawinski, Kevin Trippe, Margaret TI CHANDRA DISCOVERY OF A BINARY ACTIVE GALACTIC NUCLEUS IN Mrk 739 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: active; galaxies: individual (Mrk 739); galaxies: interactions; X-rays: galaxies ID SUPERMASSIVE BLACK-HOLES; HOST GALAXIES; MOLECULAR GAS; LUMINOSITY; IRAS; AGN; QUASARS; SEARCH; SAMPLE; MASSES AB We have discovered a binary active galactic nucleus (AGN) in the galaxy Mrk 739 using Chandra and Swift BAT. We find two luminous (L2-10 (keV) = 1.1 x 10(43) and 1.0 x 10(42) erg s(-1)), unresolved nuclei with a projected separation of 3.4 kpc (5 ''.8 +/- 0 ''.1) coincident with two bulge components in the optical image. The western X-ray source (Mrk 739W) is highly variable (x2.5) during the 4 hr Chandra observation and has a very hard spectrum consistent with an AGN. While the eastern component was already known to be an AGN based on the presence of broad optical recombination lines, Mrk 739W shows no evidence of being an AGN in optical, UV, and radio observations, suggesting the critical importance of high spatial resolution hard X-ray observations (>2 keV) in finding these binary AGNs. A high level of star formation combined with a very low L-[O (III])/L2-10 keV ratio cause the AGN to be missed in optical observations. (CO)-C-12 observations of the (3-2) and (2-1) lines indicate large amounts of molecular gas in the system that could be driven toward the black holes during the violent galaxy collision and be key to fueling the binary AGN. Mrk 739E has a high Eddington ratio of 0.71 and a small black hole (log M-BH = 7.05 +/- 0.3) consistent with an efficiently accreting AGN. Other than NGC 6240, this stands as the nearest case of a binary AGN discovered to date. C1 [Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Vasudevan, Ranjan; Miller, Neal; Trippe, Margaret] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Koss, Michael] NASA Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD USA. [Koss, Michael; Treister, Ezequiel; Sanders, D. B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Treister, Ezequiel] Univ Concepcion, Dept Astron, Concepcion, Chile. [Schawinski, Kevin] Yale Univ, Dept Phys, New Haven, CT USA. RP Koss, M (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM koss@ifa.hawaii.edu RI Koss, Michael/B-1585-2015; OI Koss, Michael/0000-0002-7998-9581; Schawinski, Kevin/0000-0001-5464-0888 NR 32 TC 48 Z9 48 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 10 PY 2011 VL 735 IS 2 AR L42 DI 10.1088/2041-8205/735/2/L42 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OU UT WOS:000293138000018 ER PT J AU Story, K Aird, KA Andersson, K Armstrong, R Bazin, G Benson, BA Bleem, LE Bonamente, M Brodwin, M Carlstrom, JE Chang, CL Clocchiatti, A Crawford, TM Crites, AT de Haan, T Desai, S Dobbs, MA Dudley, JP Foley, RJ George, EM Gladders, MD Gonzalez, AH Halverson, NW High, FW Holder, GP Holzapfel, WL Hoover, S Hrubes, JD Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Lueker, M Luong-Van, D Marrone, DP McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruel, J Ruhl, JE Saliwanchik, BR Saro, A Schaffer, KK Shaw, L Shirokoff, E Song, J Spieler, HG Stalder, B Staniszewski, Z Stark, AA Stubbs, CW Vanderlinde, K Vieira, JD Williamson, R Zenteno, A AF Story, K. Aird, K. A. Andersson, K. Armstrong, R. Bazin, G. Benson, B. A. Bleem, L. E. Bonamente, M. Brodwin, M. Carlstrom, J. E. Chang, C. L. Clocchiatti, A. Crawford, T. M. Crites, A. T. de Haan, T. Desai, S. Dobbs, M. A. Dudley, J. P. Foley, R. J. George, E. M. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. High, F. W. Holder, G. P. Holzapfel, W. L. Hoover, S. Hrubes, J. D. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Lueker, M. Luong-Van, D. Marrone, D. P. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruel, J. Ruhl, J. E. Saliwanchik, B. R. Saro, A. Schaffer, K. K. Shaw, L. Shirokoff, E. Song, J. Spieler, H. G. Stalder, B. Staniszewski, Z. Stark, A. A. Stubbs, C. W. Vanderlinde, K. Vieira, J. D. Williamson, R. Zenteno, A. TI SOUTH POLE TELESCOPE DETECTIONS OF THE PREVIOUSLY UNCONFIRMED PLANCK EARLY SUNYAEV-ZEL'DOVICH CLUSTERS IN THE SOUTHERN HEMISPHERE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: observations; galaxies: clusters: individual (PLCKESZ G255.62-46.16, PLCKESZ G225.92-19.99, PLCKESZ G264.41+19.48, PLCKESZ G283.16-29.93, PLCKESZ G304.84-41.42) ID SOURCE CATALOG; COSMOLOGY; SKY AB We present South Pole Telescope (SPT) observations of the five galaxy cluster candidates in the southern hemisphere which were reported as unconfirmed in the Planck Early Sunyaev-Zel'dovich (ESZ) sample. One cluster candidate, PLCKESZ G255.62-46.16, is located in the 2500 deg(2) SPT SZ survey region and was reported previously as SPT-CL J0411-4819. For the remaining four candidates, which are located outside of the SPT SZ survey region, we performed short, dedicated SPT observations. Each of these four candidates was strongly detected in maps made from these observations, with signal-to-noise ratios ranging from 6.3 to 13.8. We have observed these four candidates on theMagellan-Baade telescope and used these data to estimate cluster redshifts from the red sequence. Resulting redshifts range from 0.24 to 0.46. We report measurements of Y(0'.75), the integrated Comptonization within a 0'.75 radius, for all five candidates. We also report X-ray luminosities calculated from ROSAT All-Sky Survey catalog counts, as well as optical and improved SZ coordinates for each candidate. The combination of SPT SZ measurements, optical red-sequence measurements, and X-ray luminosity estimates demonstrates that these five Planck ESZ cluster candidates do indeed correspond to real galaxy clusters with redshifts and observable properties consistent with the rest of the ESZ sample. C1 [Story, K.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Hoover, S.; Keisler, R.; Leitch, E. M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Schaffer, K. K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Story, K.; Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Andersson, K.; Bazin, G.; Mohr, J. J.; Saro, A.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Andersson, K.] MIT, MIT Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Armstrong, R.; Desai, S.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Bazin, G.; Mohr, J. J.; Zenteno, A.] Excellence Cluster Universe, D-85748 Garching, Germany. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Hoover, S.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bonamente, M.] Univ Alabama, Dept Phys, Huntsville, AL 35812 USA. [Brodwin, M.; Foley, R. J.; Stalder, B.; Stark, A. A.; Stubbs, C. W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Clocchiatti, A.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Desai, S.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Reichardt, C. L.; Shirokoff, E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, Dept Space Sci, VP62, Huntsville, AL 35812 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Marrone, D. P.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Saliwanchik, B. R.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Montroy, T. E.; Ruhl, J. E.; Saliwanchik, B. R.; Staniszewski, Z.] Case Western Reserve Univ, CERCA, Cleveland, OH 44106 USA. [Padin, S.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [Rest, A.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Story, K (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM kstory@uchicago.edu RI Stubbs, Christopher/C-2829-2012; Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Stubbs, Christopher/0000-0003-0347-1724; Williamson, Ross/0000-0002-6945-2975; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU NSF [ANT-0638937, PHY-0114422, AST-1009012, AST-1009649, MRI-0723073]; Kavli Foundation; Gordon and Betty Moore Foundation; NSERC of Canada; Quebec Fonds de recherche sur la nature et les technologies; CIAR; KICP; CONICYT [Basal CATA PFB 06/09, 15010003] FX The SPT is supported by NSF grant ANT-0638937. Partial support is also provided by NSF grant PHY-0114422, the Kavli Foundation, and the Gordon and Betty Moore Foundation. The McGill group acknowledges funding from the NSERC of Canada, the Quebec Fonds de recherche sur la nature et les technologies, and the CIAR. Galaxy cluster research is supported at Harvard by NSF grant AST-1009012 and at SAO by NSF grants AST-1009649 and MRI-0723073. Benson acknowledges support from a KICP Fellowship, M. Brodwin from the W. M. Keck Foundation, A. Clocchiatti from CONICYT grants Basal CATA PFB 06/09 and FONDAP No. 15010003, R. J. Foley from a Clay Fellowship, R. Keisler from NASA Hubble Fellowship grant HF-51275.01, and B. Stalder from the Brinson Foundation. NR 18 TC 22 Z9 22 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 10 PY 2011 VL 735 IS 2 AR L36 DI 10.1088/2041-8205/735/2/L36 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OU UT WOS:000293138000012 ER PT J AU Tassis, K Yorke, HW AF Tassis, Konstantinos Yorke, Harold W. TI A NEW RECIPE FOR OBTAINING CENTRAL VOLUME DENSITIES OF PRESTELLAR CORES FROM SIZE MEASUREMENTS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE ISM: clouds; ISM: general; ISM: magnetic fields; ISM: structure; methods: analytical; stars: formation ID AMBIPOLAR DIFFUSION; STAR-FORMATION; PROTOSTELLAR CORE; MOLECULAR CLOUDS; L1544 AB We propose a simple analytical method for estimating the central volume density of prestellar molecular cloud cores from their column density profiles. Prestellar cores feature a flat central part of the column density and volume density profiles of the same size indicating the existence of a uniform-density inner region. The size of this region is set by the thermal pressure force which depends only on the central volume density and temperature of the core, and can provide a direct measurement of the central volume density. Thus, a simple length measurement can immediately yield a central density estimate independent of any dynamical model for the core and without the need for fitting. Using the radius at which the column density is 90% of the central value as an estimate of the size of the flat inner part of the column density profile yields an estimate of the central volume density within a factor of two for well-resolved cores. C1 [Tassis, Konstantinos; Yorke, Harold W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Tassis, K (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Tassis, Konstantinos/C-3155-2011; OI Tassis, Konstantinos/0000-0002-8831-2038 FU National Aeronautics and Space Administration FX We thank the referee Dr. Derek Ward-Thompson for his insightful comments. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 20 TC 3 Z9 3 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 10 PY 2011 VL 735 IS 2 AR L32 DI 10.1088/2041-8205/735/2/L32 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OU UT WOS:000293138000008 ER PT J AU Kamkar, SJ Wissink, AM Sankaran, V Jameson, A AF Kamkar, S. J. Wissink, A. M. Sankaran, V. Jameson, A. TI Feature-driven Cartesian adaptive mesh refinement for vortex-dominated flows SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Feature detection; Adaptive mesh refinement; Vortex-dominated flows; Multi-solver strategy ID CO-ROTATING VORTICES; CLASSIFICATION; EQUATIONS AB We develop locally normalized feature-detection methods to guide the adaptive mesh refinement (AMR) process for Cartesian grid systems to improve the resolution of vortical features in aerodynamic wakes. The methods include: the Q-criterion [1], the lambda(2) method [2], the lambda(ci) method [3], and the lambda(+) method [4]. Specific attention is given to automate the feature identification process by applying a local normalization based upon the shear-strain rate so that they can be applied to a wide range of flow-fields without the need for user intervention. To validate the methods, we assess tagging efficiency and accuracy using a series of static vortex-dominated flow-fields, and use the methods to drive the AMR process for several theoretical and practical simulations. We demonstrate that the adaptive solutions provide comparable accuracy to solutions obtained on uniformly refined meshes at a fraction of the computational cost. Overall, the normalized feature detection methods are shown to be effective in driving the AMR process in an automated and efficient manner. (C) 2011 Elsevier Inc. All rights reserved. C1 [Kamkar, S. J.; Jameson, A.] Stanford Univ, Dept Aeronaut, Palo Alto, CA 94305 USA. [Wissink, A. M.; Sankaran, V.] USA, Aeroflightdynam Directorate, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Kamkar, SJ (reprint author), Stanford Univ, Dept Aeronaut, Durand Bldg, Palo Alto, CA 94305 USA. EM skamkar@stanford.edu; andrew.m.wissink@us.army.mil; vsankaran@merlin.arc.nasa.gov; jameson@baboon.stanford.edu FU NASA [1125897-1-RAJJN]; U.S. Department of Defense HPC Modernization Program Office FX The first author and Prof. Jameson have been supported by the joint NASA-Stanford fellowship program (Grant # 1125897-1-RAJJN). Material presented in this paper is a product of the CREATE-AV Element of the Computational Research and Engineering for Acquisition Tools and Environments (CREATE) Program sponsored by the U.S. Department of Defense HPC Modernization Program Office. Development was performed at the HPC Institute for Advanced Rotorcraft Modeling and Simulation (HI-ARMS) located at the US Army Aeroflightdynamics Directorate at Moffett Field, CA. The authors gratefully acknowledge the contributions to this work by Prof. Jay Sitaraman and Prof. Dimitri Mavriplis at the University of Wyoming and Dr. Thomas Pulliam at NASA Ames Research Center. NR 36 TC 16 Z9 18 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 10 PY 2011 VL 230 IS 16 BP 6271 EP 6298 DI 10.1016/j.jcp.2011.04.024 PG 28 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 787GY UT WOS:000292365800005 ER PT J AU Burgasser, AJ Cushing, MC Kirkpatrick, JD Gelino, CR Griffith, RL Looper, DL Tinney, C Simcoe, RA Bochanski, JJ Skrutskie, MF Mainzer, A Thompson, MA Marsh, KA Bauer, JM Wright, EL AF Burgasser, Adam J. Cushing, Michael C. Kirkpatrick, J. Davy Gelino, Christopher R. Griffith, Roger L. Looper, Dagny L. Tinney, Christopher Simcoe, Robert A. Bochanski, John J. Skrutskie, Michael F. Mainzer, A. Thompson, Maggie A. Marsh, Kenneth A. Bauer, James M. Wright, Edward L. TI FIRE SPECTROSCOPY OF FIVE LATE-TYPE T DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; stars: fundamental parameters; stars: individual (WISEPC J161705.75+180714.0, WISEPC J181210.85+272144.3, WISEPC J201824.98-742326.1, WISEPC J231336.41-803701.4, WISEPC J235941.07-733504.8); stars: low-mass ID DIGITAL SKY SURVEY; COOL BROWN DWARF; LARGE-AREA SURVEY; BLUE L DWARF; HR 8799; SPECTRAL CLASSIFICATION; GLIESE 229B; MU-M; SDSS J141624.08+134826.7; ATMOSPHERIC PROPERTIES AB We present the discovery of five late-type T dwarfs identified with the Wide-field Infrared Survey Explorer (WISE). Low-resolution near-infrared spectroscopy obtained with the Magellan Folded-port InfraRed Echellette reveal strong H2O and CH4 absorption in all five sources, and spectral indices and comparison to spectral templates indicate classifications ranging from T5.5 to T8.5:. The spectrum of the latest-type source, WISE J1812+2721, is an excellent match to that of the T8.5 companion brown dwarf Wolf 940B. WISE-based spectrophotometric distance estimates place these T dwarfs at 12-13 pc from the Sun, assuming they are single. Preliminary fits of the spectral data to the atmosphere models of Saumon & Marley indicate effective temperatures ranging from 600 K to 930 K, both cloudy and cloud-free atmospheres, and a broad range of ages and masses. In particular, two sources show evidence of both low surface gravity and cloudy atmospheres, tentatively supporting a trend noted in other young brown dwarfs and exoplanets. In contrast, the high proper motion T dwarf WISE J2018-7423 exhibits a suppressed K-band peak and blue spectrophotometric J - K colors indicative of an old, massive brown dwarf; however, it lacks the broadened Y-band peak seen in metal-poor counterparts. These results illustrate the broad diversity of low-temperature brown dwarfs that will be uncovered with WISE. C1 [Burgasser, Adam J.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Burgasser, Adam J.; Simcoe, Robert A.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Cushing, Michael C.; Mainzer, A.; Bauer, James M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kirkpatrick, J. Davy; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Looper, Dagny L.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Tinney, Christopher] Univ New S Wales, Sch Phys, Dept Astrophys, Sydney, NSW 2052, Australia. [Bochanski, John J.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Skrutskie, Michael F.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Thompson, Maggie A.] Potomac Sch, Mclean, VA 22101 USA. [Wright, Edward L.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Burgasser, AJ (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. EM aburgasser@ucsd.edu OI Tinney, Christopher/0000-0002-7595-0970 FU Chris and Warren Hellman Fellowship; National Aeronautics and Space Administration; Planetary Science Division of the National Aeronautics and Space Administration; National Science Foundation; Space Telescope Science Institute under U.S. Government [NAGW-2166]; National Geographic Society; Sloan Foundation; Samuel Oschin Foundation; Eastman Kodak Corporation FX The authors thank telescope operators Mauricio Martinez, Sergio Vara, and Jorge Araya at Magellan for their assistance with the FIRE and LDSS-3 observations, and T. Jarrett for providing scripts and guidance for the WIRC imaging data reduction. A.J.B. acknowledges financial support from the Chris and Warren Hellman Fellowship Program. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This publication also makes use of data products from NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology, funded by the Planetary Science Division of the National Aeronautics and Space Administration. This publication makes use of data from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, and funded by the National Aeronautics and Space Administration and the National Science Foundation. 2MASS data were obtained from the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The Digitized Sky Surveys were produced at the Space Telescope Science Institute under U.S. Government grant NAGW-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The Second Palomar Observatory Sky Survey (POSS-II) was made by the California Institute of Technology with funds from the National Science Foundation, the National Geographic Society, the Sloan Foundation, the Samuel Oschin Foundation, and the Eastman Kodak Corporation. The Oschin Schmidt Telescope is operated by the California Institute of Technology and Palomar Observatory. This research has also made use of the SIMBAD database, operated at CDS, Strasbourg, France; the M, L, and T dwarf compendium housed at http://DwarfArchives.org and maintained by Chris Gelino, Davy Kirkpatrick, and Adam Burgasser; and the SpeX Prism Spectral Libraries, maintained by Adam Burgasser at http://www.browndwarfs.org/spexprism. NR 106 TC 24 Z9 24 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2011 VL 735 IS 2 AR 116 DI 10.1088/0004-637X/735/2/116 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 783NF UT WOS:000292089700049 ER PT J AU Crockett, CJ Mahmud, NI Prato, L Johns-Krull, CM Jaffe, DT Beichman, CA AF Crockett, Christopher J. Mahmud, Naved I. Prato, L. Johns-Krull, Christopher M. Jaffe, Daniel T. Beichman, Charles A. TI PRECISION RADIAL VELOCITIES WITH CSHELL SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: detection; techniques: radial velocities ID GIANT PLANET FORMATION; CLASSICAL T-TAURI; M-DWARF STARS; ECHELLE SPECTROGRAPH; STELLAR ACTIVITY; MOLECULAR CLOUD; MAGNETIC-FIELDS; CORE ACCRETION; SEARCH; MASS AB Radial velocity (RV) identification of extrasolar planets has historically been dominated by optical surveys. Interest in expanding exoplanet searches to M dwarfs and young stars, however, has motivated a push to improve the precision of near-infrared RV techniques. We present our methodology for achieving 58 m s(-1) precision in the K band on the M0 dwarf GJ 281 using the CSHELL spectrograph at the 3 m NASA Infrared Telescope Facility. We also demonstrate our ability to recover the known 4 M-JUP exoplanet Gl 86 b and discuss the implications for success in detecting planets around 1-3 Myr old T Tauri stars. C1 [Crockett, Christopher J.; Prato, L.] Lowell Observ, Flagstaff, AZ 86001 USA. [Crockett, Christopher J.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Mahmud, Naved I.; Johns-Krull, Christopher M.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Jaffe, Daniel T.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Beichman, Charles A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Beichman, Charles A.] CALTECH, NASA Exoplanet Sci Inst NExScI, Pasadena, CA 91125 USA. RP Crockett, CJ (reprint author), Lowell Observ, 1400 W Mars Hill Rd, Flagstaff, AZ 86001 USA. EM crockett@lowell.edu; naved@rice.edu; lprato@lowell.edu; cmj@rice.edu; dtj@astro.as.utexas.edu FU SIM Young Planets Key Project; NASA [05-SSO05-86, 07-SSO07-86]; NSF FX The authors thank R. White and J. Bailey for productive discussions on data reduction and our anonymous referee for offering many useful suggestions that improved the manuscript. We acknowledge the SIM Young Planets Key Project for research support; funding was also provided by NASA Origins Grants 05-SSO05-86 and 07-SSO07-86. This work made use of the SIMBAD database, the NASA Astrophysics Data System, and the Two Micron All Sky Survey, a joint project of the University of Massachusetts and IPAC/Caltech, funded by NASA and the NSF. We recognize the significant cultural role that Mauna Kea plays in the indigenous Hawaiian community and are grateful for the opportunity to observe there. NR 60 TC 13 Z9 13 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2011 VL 735 IS 2 AR 78 DI 10.1088/0004-637X/735/2/78 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 783NF UT WOS:000292089700011 ER PT J AU Flock, M Dzyurkevich, N Klahr, H Turner, NJ Henning, T AF Flock, M. Dzyurkevich, N. Klahr, H. Turner, N. J. Henning, Th. TI TURBULENCE AND STEADY FLOWS IN THREE-DIMENSIONAL GLOBAL STRATIFIED MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETION DISKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; magnetic fields; magnetic reconnection; magnetohydrodynamics (MHD); protoplanetary disks ID MAGNETO-ROTATIONAL INSTABILITY; ANGULAR-MOMENTUM TRANSPORT; LOCAL SHEAR INSTABILITY; ZERO NET FLUX; MAGNETOROTATIONAL INSTABILITY; PROTOPLANETARY DISKS; MHD SIMULATIONS; NONLINEAR EVOLUTION; PROTOSTELLAR DISKS; SATURATION LEVEL AB We present full 2 pi global three-dimensional stratified magnetohydrodynamic (MHD) simulations of accretion disks. We interpret our results in the context of protoplanetary disks. We investigate the turbulence driven by the magnetorotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and a magnetic pressure two to three orders of magnitude less than the gas pressure, while in those outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m = 5. No clear meridional circulation appears in the calculations because fluctuating radial pressure gradients lead to changes in the orbital frequency, comparable in importance to the stress gradients that drive the meridional flows in viscous models. The net mass flow rate is well reproduced by a viscous model using the mean stress distribution taken from the MHD calculation. The strength of the mean turbulent magnetic field is inversely proportional to the radius, so the fields are approximately force-free on the largest scales. Consequently, the accretion stress falls off as the inverse square of the radius. C1 [Flock, M.; Dzyurkevich, N.; Klahr, H.; Turner, N. J.; Henning, Th.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Turner, N. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Flock, M (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. FU Deutsche Forschungsgemeinschaft DFG [DFG Forschergruppe 759]; NASA Solar Systems Origins grant through the Jet Propulsion Laboratory, California Institute of Technology; Alexander von Humboldt Foundation FX We thank Andrea Mignone for very useful discussions about the numerical setup. We thank Sebastien Fromang for the helpful comments on the global models and on the manuscript. We thank Alexei Kritsuk for the discussion about turbulent spectra. We also thank Willy Kley for the comments on the viscous model. We thank Frederic A. Rasio and an anonymous referee for the fast and very professional processing of this work. H. Klahr, N. Dzyurkevich, and M. Flock have been supported in part by the Deutsche Forschungsgemeinschaft DFG through grant DFG Forschergruppe 759 "The Formation of Planets. The Critical First Growth Phase." Neal Turner was supported by a NASA Solar Systems Origins grant through the Jet Propulsion Laboratory, California Institute of Technology, and by an Alexander von Humboldt Foundation Fellowship for Experienced Researchers. Parallel computations have been performed on the PIA cluster of the MaxPlanck Institute for Astronomy Heidelberg as well as the GENIUS Blue Gene/P cluster both located at the computing center of the MaxPlanck Society in Garching. NR 86 TC 68 Z9 68 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2011 VL 735 IS 2 AR 122 DI 10.1088/0004-637X/735/2/122 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 783NF UT WOS:000292089700055 ER PT J AU Gorti, U Hollenbach, D Najita, J Pascucci, I AF Gorti, U. Hollenbach, D. Najita, J. Pascucci, I. TI EMISSION LINES FROM THE GAS DISK AROUND TW HYDRA AND THE ORIGIN OF THE INNER HOLE SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; line: formation; planet-disk interactions; protoplanetary disks; stars: individual (TW Hya) ID MAIN-SEQUENCE STARS; PHOTOEVAPORATING PROTOPLANETARY DISCS; PASSIVE CIRCUMSTELLAR DISKS; GIANT-PLANET FORMATION; X-RAY SPECTROSCOPY; TAURI STARS; YOUNG STARS; FAR-ULTRAVIOLET; EXTREME-ULTRAVIOLET; H-2 EMISSION AB We compare line emission calculated from theoretical disk models with optical to submillimeter wavelength observational data of the gas disk surrounding TW Hya and infer the spatial distribution of mass in the gas disk. The model disk that best matches observations has a gas mass ranging from similar to 10(-4) to 10(-5) M-circle dot for 0.06 AU < r < 3.5 AU and similar to 0.06 M-circle dot for 3.5 AU < r < 200 AU. We find that the inner dust hole (r < 3.5 AU) in the disk must be depleted of gas by similar to 1-2 orders of magnitude compared with the extrapolated surface density distribution of the outer disk. Grain growth alone is therefore not a viable explanation for the dust hole. CO vibrational emission arises within r similar to 0.5 AU from thermal excitation of gas. [O I] 6300 angstrom and 5577 angstrom forbidden lines and OH mid-infrared emission are mainly due to prompt emission following UV photodissociation of OH and water at r less than or similar to 0.1 AU and at r similar to 4 AU. [Ne II] emission is consistent with an origin in X-ray heated neutral gas at r less than or similar to 10 AU, and may not require the presence of a significant extreme-ultraviolet (h nu > 13.6 eV) flux from TW Hya. H-2 pure rotational line emission comes primarily from r similar to 1 to 30 AU. [O I] 63 mu m, HCO+, and CO pure rotational lines all arise from the outer disk at r similar to 30-120 AU. We discuss planet formation and photoevaporation as causes for the decrease in surface density of gas and dust inside 4 AU. If a planet is present, our results suggest a planet mass similar to 4-7 M-J situated at similar to 3 AU. Using our photoevaporation models and the best surface density profile match to observations, we estimate a current photoevaporative mass loss rate of 4 x 10(-9) M-circle dot yr(-1) and a remaining disk lifetime of similar to 5 million years. C1 [Gorti, U.; Hollenbach, D.] SETI Inst, Mountain View, CA USA. [Gorti, U.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Najita, J.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Pascucci, I.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Pascucci, I.] Johns Hopkins Univ, Dept Phys, Baltimore, MD 21218 USA. RP Gorti, U (reprint author), SETI Inst, Mountain View, CA USA. FU NASA FX We thank Suzan Edwards, Gennaro D'Angelo, Kees Dullemond, David Neufeld, Ewine van Dishoeck, Roman Krems, Colette Salyk, and Sean Brittain for helpful discussions. We are especially grateful to John Black for alerting us about the reactive nature of excited O atoms. U. G and D. H acknowledge support by a grant under the NASA Astrophysical Data Analysis Program which enabled this work. NR 114 TC 57 Z9 57 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2011 VL 735 IS 2 AR 90 DI 10.1088/0004-637X/735/2/90 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 783NF UT WOS:000292089700023 ER PT J AU Jarrett, TH Cohen, M Masci, F Wright, E Stern, D Benford, D Blain, A Carey, S Cutri, RM Eisenhardt, P Lonsdale, C Mainzer, A Marsh, K Padgett, D Petty, S Ressler, M Skrutskie, M Stanford, S Surace, J Tsai, CW Wheelock, S Yan, DL AF Jarrett, T. H. Cohen, M. Masci, F. Wright, E. Stern, D. Benford, D. Blain, A. Carey, S. Cutri, R. M. Eisenhardt, P. Lonsdale, C. Mainzer, A. Marsh, K. Padgett, D. Petty, S. Ressler, M. Skrutskie, M. Stanford, S. Surace, J. Tsai, C. W. Wheelock, S. Yan, D. L. TI THE SPITZER-WISE SURVEY OF THE ECLIPTIC POLES SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; galaxies: photometry; galaxies: statistics; stars: statistics; surveys ID SPECTRAL IRRADIANCE CALIBRATION; ACTIVE GALACTIC NUCLEI; INFRARED ARRAY CAMERA; ALL-SKY SURVEY; NEWTON-TELESCOPE LIBRARY; LARGE-MAGELLANIC-CLOUD; SPACE-TELESCOPE; X-RAY; PHOTOMETRIC CALIBRATION; MIDINFRARED SELECTION AB We have carried out a survey of the north and south ecliptic poles, EP-N and EP-S, respectively, with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE). The primary objective was to cross-calibrate WISE with the Spitzer and Midcourse Space Experiment (MSX) photometric systems by developing a set of calibration stars that are common to these infrared missions. The ecliptic poles were continuous viewing zones for WISE due to its polar-crossing orbit, making these areas ideal for both absolute and internal calibrations. The Spitzer IRAC and MIPS imaging survey covers a complete area of 0.40 deg(2) for the EP-N and 1.28 deg(2) for the EP-S. WISE observed the whole sky in four mid-infrared bands, 3.4, 4.6, 12, and 22 mu m, during its eight-month cryogenic mission, including several hundred ecliptic polar passages; here we report on the highest coverage depths achieved by WISE, an area of similar to 1.5 deg(2) for both poles. Located close to the center of the EP-N, the Sy-2 galaxy NGC 6552 conveniently functions as a standard calibrator to measure the red response of the 22 mu m channel of WISE. Observations from Spitzer-IRAC/MIPS/IRS-LL and WISE show that the galaxy has a strong red color in the mid-infrared due to star-formation and the presence of an active galactic nucleus (AGN), while over a baseline >1 year the mid-IR photometry of NGC 6552 is shown to vary at a level less than 2%. Combining NGC 6552 with the standard calibrator stars, the achieved photometric accuracy of the WISE calibration, relative to the Spitzer and MSX systems, is 2.4%, 2.8%, 4.5%, and 5.7% for W1 (3.4 mu m), W2 (4.6 mu m), W3 (12 mu m), and W4 (22 mu m), respectively. The WISE photometry is internally stable to better than 0.1% over the cryogenic lifetime of the mission. The secondary objective of the Spitzer-WISE Survey was to explore the poles at greater flux-level depths, exploiting the higher angular resolution Spitzer observations and the exceptionally deep (in total coverage) WISE observations that potentially reach down to the confusion limit of the survey. The rich Spitzer and WISE data sets were used to study the Galactic and extragalactic populations through source counts, color-magnitude and color-color diagrams. As an example of what the data sets facilitate, we have separated stars from galaxies, delineated normal galaxies from power-law-dominated AGNs, and reported on the different fractions of extragalactic populations. In the EP-N, we find an AGN source density of similar to 260 deg(-2) to a 12 mu m depth of 115 mu Jy, representing 15% of the total extragalactic population to this depth, similar to what has been observed for low-luminosity AGNs in other fields. C1 [Jarrett, T. H.; Masci, F.; Cutri, R. M.; Marsh, K.; Padgett, D.; Tsai, C. W.; Wheelock, S.; Yan, D. L.] CALTECH, IPAC, Pasadena, CA 91125 USA. [Cohen, M.] Monterey Inst Res Astron, Marina, CA 93933 USA. [Wright, E.; Petty, S.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Stern, D.; Eisenhardt, P.; Mainzer, A.; Ressler, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Benford, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blain, A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Carey, S.; Surace, J.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Lonsdale, C.] NRAO, Charlottesville, VA 22903 USA. [Skrutskie, M.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Stanford, S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Jarrett, TH (reprint author), CALTECH, IPAC, Pasadena, CA 91125 USA. RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 FU NASA; NSF FX We thank the SSC instrument teams for guidance in constructing AORs, and are especially grateful to B. T. Soifer for providing Directors Discretionary Time to carry out the bulk of the calibration observations with Spitzer. We thank M. Bessell for providing the optical spectra of the SEP calibrators, D. Kilkenny, R. Sefako, F. van Wyk, and D. Cooper of SAAO for securing and reducing their optical photometry. We thank L. Armus for providing Spitzer IRS spectra of ULIRGs to help disentangle spectral RSR response differences between stars and galaxies. We thank G. Sloan and the SAGE-SPEC team for providing newly reduced IRS spectra of our SEP and off-pole calibrators. We thank J. Krick for providing the IRAC Dark Field catalog. We are grateful to M. Cluver for helpful discussions and review of the manuscript. This work is based (in part) on observations made with Spitzer, which is operated by JPL, Caltech under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This work is also based (in part) on observations made with 2MASS, a joint collaboration between the University of Massachusetts and the Infrared Processing and Analysis Center (JPL/Caltech), with funding provided primarily by NASA and the NSF. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 70 TC 205 Z9 205 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2011 VL 735 IS 2 AR 112 DI 10.1088/0004-637X/735/2/112 PG 33 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 783NF UT WOS:000292089700045 ER PT J AU Krick, JE Bridge, C Desai, V Mihos, JC Murphy, E Rudick, C Surace, J Neill, J AF Krick, J. E. Bridge, C. Desai, V. Mihos, J. C. Murphy, E. Rudick, C. Surace, J. Neill, J. TI SPITZER/IRAC LOW SURFACE BRIGHTNESS OBSERVATIONS OF THE VIRGO CLUSTER SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: clusters: individual (Virgo); galaxies: evolution; galaxies: photometry; infrared: galaxies ID DIGITAL SKY SURVEY; DIFFUSE OPTICAL LIGHT; GALAXY CLUSTERS; INTRACLUSTER STARS; INFRARED-EMISSION; POPULATION SYNTHESIS; SOURCE EXTRACTION; DUST EMISSION; S0 GALAXIES; EVOLUTION AB We present 3.6 and 4.5 mu m Spitzer Infrared Array Camera (IRAC) imaging over 0.77 deg(2) at the Virgo cluster core for the purpose of understanding the formation mechanisms of the low surface brightness intracluster light (ICL) features. Instrumental and astrophysical backgrounds that are hundreds of times higher than the signal were carefully characterized and removed. We examine ICL plumes as well as the outer halo of the giant elliptical M87. For two ICL plumes, we use optical colors to constrain their ages to be greater than 3 and 5 Gyr, respectively. Upper limits on the IRAC fluxes constrain the upper limits to the masses, and optical detections constrain the lower limits to the masses. In this first measurement of mass of ICL plumes we find masses in the range of 5.5 x 10(8) - 4.5 x 10(9) and 2.1 x 10(8)-1.5 x 10(9) M-circle dot for the two plumes for which we have coverage. Given their expected short lifetimes, and a constant production rate for these types of streams, integrated over Virgo's lifetime, they can account for the total ICL content of the cluster, implying that we do not need to invoke ICL formation mechanisms other than gravitational mechanisms leading to bright plumes. We also examined the outer halo of the giant elliptical M87. The color profile from the inner to outer halo of M87 (160 kpc) is consistent with either a flat or optically blue gradient, where a blue gradient could be due to younger or lower metallicity stars at larger radii. The similarity of the age predicted by both the infrared and optical colors (> a few gigayears) indicates that the optical measurements are not strongly affected by dust extinction. C1 [Krick, J. E.; Desai, V.; Murphy, E.; Surace, J.] CALTECH, Jet Prop Lab, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Bridge, C.; Neill, J.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Mihos, J. C.] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. [Rudick, C.] Swiss Fed Inst Technol, Inst Astron, CH-8093 Zurich, Switzerland. RP Krick, JE (reprint author), CALTECH, Jet Prop Lab, Spitzer Sci Ctr, MS 220-6, Pasadena, CA 91125 USA. EM jkrick@caltech.edu OI Mihos, Chris/0000-0002-7089-8616 FU National Aeronautics and Space Administration (NASA); National Science Foundation FX We thank Sabrina Stierwalt and the IRAC instrument support team for useful discussions. This research has made use of data from the Infrared Processing and Analysis Center at the California Institute of Technology, funded by the National Aeronautics and Space Administration (NASA) and the National Science Foundation. This work was based on observations obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 62 TC 5 Z9 5 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2011 VL 735 IS 2 AR 76 DI 10.1088/0004-637X/735/2/76 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 783NF UT WOS:000292089700009 ER PT J AU Krimm, HA Tomsick, JA Markwardt, CB Brocksopp, C Grise, F Kaaret, P Romano, P AF Krimm, H. A. Tomsick, J. A. Markwardt, C. B. Brocksopp, C. Grise, F. Kaaret, P. Romano, P. TI DISCOVERY AND EVOLUTION OF THE NEW BLACK HOLE CANDIDATE SWIFT J1539.2-6227 DURING ITS 2008 OUTBURST SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; X-rays: binaries ID X-RAY-EMISSION; XTE J1550-564; TIMING-EXPLORER; GRO J1655-40; GX 339-4; STATE; BINARIES; TRANSITION; TELESCOPE; ACCRETION AB We report on the discovery by the Swift Gamma-Ray Burst Explorer of the black hole (BH) candidate Swift J1539.2-6227 and the subsequent course of an outburst beginning in 2008 November and lasting at least seven months. The source was discovered during normal observations with the Swift Burst Alert Telescope on 2008 November 25. An extended observing campaign with the Rossi X-Ray Timing Explorer and Swift provided near-daily coverage over 176 days, giving us a good opportunity to track the evolution of spectral and timing parameters with fine temporal resolution through a series of spectral states. The source was first detected in a hard state during which strong low-frequency quasi-periodic oscillations (QPOs) were detected. The QPOs persisted for about 35 days and a signature of the transition from the hard-to soft-intermediate states was seen in the timing data. The source entered a short-lived thermal state about 40 days after the start of the outburst. There were variations in spectral hardness as the source flux declined and returned to a hard state at the end of the outburst. The progression of spectral states and the nature of the timing features provide strong evidence that Swift J1539.2-6227 is a candidate BH in a low-mass X-ray binary system. C1 [Krimm, H. A.] CRESST, Greenbelt, MD 20771 USA. [Krimm, H. A.; Markwardt, C. B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Tomsick, J. A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Brocksopp, C.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Grise, F.; Kaaret, P.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Romano, P.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-90146 Palermo, Italy. RP Krimm, HA (reprint author), CRESST, Greenbelt, MD 20771 USA. FU Swift project; NASA [NNX08AW35G] FX H.A.K. and C.B.M. are supported by the Swift project. J.A.T. acknowledges partial support from NASA under Swift Guest Observer grant NNX08AW35G. The authors gratefully acknowledge the RXTE and Swift principal investigators for approving, and mission planners for scheduling, the many observations used for this work. NR 42 TC 6 Z9 6 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2011 VL 735 IS 2 AR 104 DI 10.1088/0004-637X/735/2/104 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 783NF UT WOS:000292089700037 ER PT J AU Lasota, JP Alexander, T Dubus, G Barret, D Farrell, SA Gehrels, N Godet, O Webb, NA AF Lasota, J. -P. Alexander, T. Dubus, G. Barret, D. Farrell, S. A. Gehrels, N. Godet, O. Webb, N. A. TI THE ORIGIN OF VARIABILITY OF THE INTERMEDIATE-MASS BLACK-HOLE ULX SYSTEM HLX-1 IN ESO 243-49 SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; binaries: close; galaxies: star clusters: general; instabilities; stars: kinematics and dynamics; X-rays: individual (ESO 243-49 HLX-1) ID X-RAY TRANSIENTS; DISC INSTABILITY MODEL; DENSE STAR-CLUSTERS; ACCRETION DISKS; BINARY-SYSTEMS; RUNAWAY COLLISIONS; GLOBULAR-CLUSTER; LIGHT CURVES; SOLAR MASSES; EVOLUTION AB The ultra-luminous (L-X less than or similar to 10(42) erg s(-1)) intermediate-mass black-hole (IMBH) system HLX-1 in the ESO 243-49 galaxy exhibits variability with a possible recurrence time of a few hundred days. Finding the origin of this variability would constrain the still largely unknown properties of this extraordinary object. Since it exhibits a hardness-intensity behavior characteristic of black-hole X-ray transients, we have analyzed the variability of HLX-1 in the framework of the disk instability model that explains outbursts of such systems. We find that the long-term variability of HLX-1 is unlikely to be explained by a model in which outbursts are triggered by thermal-viscous instabilities in an accretion disk. Possible alternatives include the instability in a radiation-pressure-dominated disk but we argue that a more likely explanation is a modulated mass transfer due to tidal stripping of a star in an eccentric orbit around the IMBH. We consider an evolutionary scenario leading to the creation of such a system and estimate the probability of its observation. We conclude, using a simplified dynamical model of the post-collapse cluster, that no more than 1/100 to 1/10 of M-lozenge less than or similar to 10(4) M-circle dot IMBHs-formed by runaway stellar mergers in the dense collapsed cores of young clusters-could have a few x 1 M-circle dot main-sequence star evolve to an asymptotic giant branch on an orbit eccentric enough for mass transfer at periapse, while avoiding collisional destruction or being scattered into the IMBH by two-body encounters. The finite but low probability of this configuration is consistent with the uniqueness of HLX-1. We note, however, that the actual response of a standard accretion disk to bursts of mass transfer may be too slow to explain the observations unless the orbit is close to parabolic (and hence even rarer). Also, increased heating, presumably linked to the highly time-dependent gravitational potential, could shorten the relevant timescales. C1 [Lasota, J. -P.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Lasota, J. -P.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Alexander, T.] Weizmann Inst Sci, Fac Phys, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Dubus, G.] UJF Grenoble 1, CNRS INSU, IPAG, UMR 5274, F-38041 Grenoble, France. [Barret, D.; Godet, O.; Webb, N. A.] Univ Toulouse 3, Univ Toulouse, Observ Midi Pyrenees, IRAP, Toulouse, France. [Barret, D.; Godet, O.; Webb, N. A.] IRAP, CNRS, F-31028 Toulouse 4, France. [Farrell, S. A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lasota, JP (reprint author), Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. EM lasota@iap.fr RI Gehrels, Neil/D-2971-2012 FU French Space Agency CNES; Polish MNiSW [N N203 380336]; United Kingdom's STFC; Australian Research Council; European Commission [ERC-StG-200911, ERC-StG-202996] FX J.P.L. thanks Ramesh Narayan, Andrzej Zdziarski, and Richard Mushotsky for inspiring discussions. We thank the referee whose report stimulated additional work on the modulated transfer model. This work was supported by the French Space Agency CNES and in part by the Polish MNiSW grant N N203 380336 (J.P.L.), the United Kingdom's STFC and the Australian Research Council (S. A. F.), and the European Commission via contracts ERC-StG-200911 (G. D.) and ERC-StG-202996 (T.A.). NR 68 TC 41 Z9 41 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2011 VL 735 IS 2 AR 89 DI 10.1088/0004-637X/735/2/89 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 783NF UT WOS:000292089700022 ER PT J AU Shin, IG Udalski, A Han, C Gould, A Dominik, M Fouque, P Kubiak, M Szymanski, MK Pietrzynki, G Soszynski, I Ulaczyk, K Wyrzykowski, L Depoy, DL Dong, S Gaudi, BS Lee, CU Park, BG Pogge, RW Albrow, MD Allan, A Beaulieu, JP Bennett, DP Bode, M Bramich, DM Brillant, S Burgdorf, M Calitz, H Cassan, A Cook, KH Corrales, E Coutures, C Desort, N Dieters, S Prester, DD Donatowicz, J Fraser, SN Greenhill, J Hill, K Hoffman, M Horne, K Jorgensen, UG Kane, SR Kubas, D Marquette, JB Martin, R Meintjes, P Menzies, J Mottram, C Naylor, T Pollard, KR Sahu, KC Snodgrass, C Steele, I Vinter, C Wambsganss, J Williams, A Woller, K AF Shin, I. -G. Udalski, A. Han, C. Gould, A. Dominik, M. Fouque, P. Kubiak, M. Szymanski, M. K. Pietrzynki, G. Soszynski, I. Ulaczyk, K. Wyrzykowski, L. DePoy, D. L. Dong, S. Gaudi, B. S. Lee, C. -U. Park, B. -G. Pogge, R. W. Albrow, M. D. Allan, A. Beaulieu, J. P. Bennett, D. P. Bode, M. Bramich, D. M. Brillant, S. Burgdorf, M. Calitz, H. Cassan, A. Cook, K. H. Corrales, E. Coutures, Ch. Desort, N. Dieters, S. Prester, D. Dominis Donatowicz, J. Fraser, S. N. Greenhill, J. Hill, K. Hoffman, M. Horne, K. Jorgensen, U. G. Kane, S. R. Kubas, D. Marquette, J. B. Martin, R. Meintjes, P. Menzies, J. Mottram, C. Naylor, T. Pollard, K. R. Sahu, K. C. Snodgrass, C. Steele, I. Vinter, C. Wambsganss, J. Williams, A. Woller, K. CA OGLE Collaboration FUN Collaboration PLANET RoboNet Collaborations TI OGLE-2005-BLG-018: CHARACTERIZATION OF FULL PHYSICAL AND ORBITAL PARAMETERS OF A GRAVITATIONAL BINARY LENS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; gravitational lensing: micro ID MICROLENSING EVENTS; JUPITER/SATURN ANALOG; MAGELLANIC CLOUDS; MASS PLANET; OGLE VIEW; DISCOVERY; STARS; ROTATION; SYSTEMS; COMMON AB We present the result of the analysis of the gravitational binary-lensing event OGLE-2005-BLG-018. The light curve of the event is characterized by two adjacent strong features and a single weak feature separated from the strong features. The light curve exhibits noticeable deviations from the best-fit model based on standard binary parameters. To explain the deviation, we test models including various higher-order effects of the motions of the observer, source, and lens. From this, we find that it is necessary to account for the orbital motion of the lens in describing the light curve. From modeling the light curve considering the parallax effect and Keplerian orbital motion, we are able to not only measure the physical parameters but also to find a complete orbital solution of the lens system. It is found that the event was produced by a binary lens located in the Galactic bulge with a distance of 6.7 +/- 0.3 kpc from the Earth. The individual lens components with masses 0.9 +/- 0.3 M-circle dot and 0.5 +/- 0.1 M-circle dot are separated with a semi-major axis of a = 2.5 +/- 1.0 AU and orbiting each other with a period P = 3.1 +/- 1.3 yr. This event demonstrates that it is possible to extract detailed information about binary lens systems from well-resolved lensing light curves. C1 [Shin, I. -G.; Han, C.] Chungbuk Natl Univ, Dept Phys, Cheongju 361763, South Korea. [Udalski, A.; Kubiak, M.; Szymanski, M. K.; Pietrzynki, G.; Soszynski, I.; Ulaczyk, K.; Wyrzykowski, L.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Gould, A.; Gaudi, B. S.; Pogge, R. W.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Dominik, M.] Univ St Andrews, SUPA Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Fouque, P.] Univ Toulouse, IRAP, CNRS, F-31400 Toulouse, France. [Pietrzynki, G.] Univ Concepcion, Dept Fis, Concepcion, Chile. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [DePoy, D. L.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Dong, S.] Inst Adv Study, Princeton, NJ 08540 USA. [Lee, C. -U.; Park, B. -G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Albrow, M. D.; Pollard, K. R.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Allan, A.; Naylor, T.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Beaulieu, J. P.; Cassan, A.; Coutures, Ch.; Marquette, J. B.] Univ Paris 06, UMR7095, CNRS, Inst Astrophys Paris, F-75014 Paris, France. [Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Bode, M.; Burgdorf, M.; Steele, I.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Bramich, D. M.] European So Observ, D-85748 Garching, Germany. [Brillant, S.; Kubas, D.] European So Observ, Santiago 19, Chile. [Burgdorf, M.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Calitz, H.; Hoffman, M.; Meintjes, P.] Univ Free State, Boyden Observ, Dept Phys, ZA-9300 Bloemfontein, South Africa. [Cook, K. H.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94551 USA. [Corrales, E.; Desort, N.] Univ Paris 06, UMR7095, CNRS, Inst Astrophys Paris, F-75014 Paris, France. [Dieters, S.; Greenhill, J.; Hill, K.] Univ Tasmania, Sch Maths & Phys, Hobart, Tas 7001, Australia. [Prester, D. Dominis] Univ Rijeka, Dept Phys, Rijeka 51000, Croatia. [Donatowicz, J.] Vienna Univ Technol, Dept Comp, A-1060 Vienna, Austria. [Fraser, S. N.; Mottram, C.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England. [Horne, K.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Jorgensen, U. G.; Vinter, C.] Astron Observ, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Kane, S. R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Martin, R.; Williams, A.] Perth Observ, Perth, WA 6076, Australia. [Menzies, J.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Wambsganss, J.] Univ Heidelberg, Zentrum Astron, Astron Rech Inst, D-69120 Heidelberg, Germany. [Woller, K.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. RP Han, C (reprint author), Chungbuk Natl Univ, Dept Phys, Cheongju 361763, South Korea. RI Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Kane, Stephen/B-4798-2013; Greenhill, John/C-8367-2013; Williams, Andrew/K-2931-2013; Naylor, Tim /A-9465-2015; OI Williams, Andrew/0000-0001-9080-0105; Dominik, Martin/0000-0002-3202-0343; Snodgrass, Colin/0000-0001-9328-2905 FU Chungbuk National University; NSF [AST-0757888]; European Research Council under the European Community [246678] FX This work was supported by the research grant of the Chungbuk National University in 2009. Work by A. G. was supported by NSF grant AST-0757888. The OGLE project has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 246678 to A.U. NR 39 TC 21 Z9 21 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2011 VL 735 IS 2 AR 85 DI 10.1088/0004-637X/735/2/85 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 783NF UT WOS:000292089700018 ER PT J AU Skillman, SW Hallman, EJ O'Shea, BW Burns, JO Smith, BD Turk, MJ AF Skillman, Samuel W. Hallman, Eric J. O'Shea, Brian W. Burns, Jack O. Smith, Britton D. Turk, Matthew J. TI GALAXY CLUSTER RADIO RELICS IN ADAPTIVE MESH REFINEMENT COSMOLOGICAL SIMULATIONS: RELIC PROPERTIES AND SCALING RELATIONSHIPS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; cosmology: theory; hydrodynamics; methods: numerical; radiation mechanisms: non-thermal ID RADIATION MAGNETOHYDRODYNAMICS CODE; PIECEWISE PARABOLIC METHOD; N-BODY SIMULATIONS; 2 SPACE DIMENSIONS; X-RAY-EMISSION; SHOCK-WAVES; COSMIC-RAYS; DARK-MATTER; PARTICLE-ACCELERATION; ASTROPHYSICAL SHOCKS AB Cosmological shocks are a critical part of large-scale structure formation, and are responsible for heating the intracluster medium in galaxy clusters. In addition, they are capable of accelerating non-thermal electrons and protons. In this work, we focus on the acceleration of electrons at shock fronts, which is thought to be responsible for radio relics-extended radio features in the vicinity of merging galaxy clusters. By combining high-resolution adaptive mesh refinement/N-body cosmological simulations with an accurate shock-finding algorithm and a model for electron acceleration, we calculate the expected synchrotron emission resulting from cosmological structure formation. We produce synthetic radio maps of a large sample of galaxy clusters and present luminosity functions and scaling relationships. With upcoming long-wavelength radio telescopes, we expect to see an abundance of radio emission associated with merger shocks in the intracluster medium. By producing observationally motivated statistics, we provide predictions that can be compared with observations to further improve our understanding of magnetic fields and electron shock acceleration. C1 [Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O.; Smith, Britton D.] Univ Colorado, Dept Astrophys & Planetary Sci, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Hallman, Eric J.] Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, Cambridge, MA 02138 USA. [O'Shea, Brian W.; Smith, Britton D.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [O'Shea, Brian W.] Michigan State Univ, Lyman Briggs Coll, E Lansing, MI 48824 USA. [O'Shea, Brian W.] Michigan State Univ, Inst Cyber Enabled Res, E Lansing, MI 48824 USA. [Burns, Jack O.] NASA, Ames Res Ctr, Lunar Sci Inst, Moffett Field, CA 94035 USA. [Turk, Matthew J.] Columbia Univ, Dept Astron, New York, NY 10025 USA. RP Skillman, SW (reprint author), Univ Colorado, Dept Astrophys & Planetary Sci, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. EM samuel.skillman@colorado.edu FU US National Science Foundation [AST-0807215]; DOE [DE-FG02-97ER25308]; NASA [NNX09AD80G, NNZ07-AG77G]; NSF AAPF [AST 07-02923]; NSF [AST0707474] FX S. W. S. thanks Matthias Hoeft and Marcus Bruggen for making their radio emission model available. S. W. S. and B.W.O. thank Megan Donahue and Mark Voit for useful conversations and comments. We also thank an anonymous referee for very helpful comments and suggestions. Computing time was provided by NRAC allocations TG-AST090040 and TG-AST090095. S. W. S., E.J.H., and J.O.B. have been supported in part by a grant from the US National Science Foundation (AST-0807215). S. W. S. has been supported by a DOE Computational Science Graduate Fellowship under grant number DE-FG02-97ER25308. B.W.O. has been supported in part by a grant from the NASA ATFP program (NNX09AD80G). E.J.H. also acknowledges support from NSF AAPF AST 07-02923. B. D. S. has been supported by NASA grant NNZ07-AG77G and NSF AST0707474. Computations described in this work were performed using the Enzo code developed by the Laboratory for Computational Astrophysics at the University of California in San Diego (http://lca.ucsd.edu) and by a community of independent developers from numerous other institutions. The yt analysis toolkit was developed primarily by Matthew Turk with contributions from many other developers, to whom we are very grateful. The LUNAR Consortium (http://lunar.colorado.edu), headquartered at the University of Colorado, is funded by the NASA Lunar Science Institute (via cooperative Agreement NNA09DB30A). The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. URL:http://www.tacc.utexas.edu. Some computations were also performed on Kraken (a Cray XT5) at the National Institute for Computational Sciences (http://www.nics.tennessee.edu/). NR 62 TC 42 Z9 42 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2011 VL 735 IS 2 AR 96 DI 10.1088/0004-637X/735/2/96 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 783NF UT WOS:000292089700029 ER PT J AU Thompson, DR Wagstaff, KL Brisken, WF Deller, AT Majid, WA Tingay, SJ Wayth, RB AF Thompson, David R. Wagstaff, Kiri L. Brisken, Walter F. Deller, Adam T. Majid, Walid A. Tingay, Steven J. Wayth, Randall B. TI DETECTION OF FAST RADIO TRANSIENTS WITH MULTIPLE STATIONS: A CASE STUDY USING THE VERY LONG BASELINE ARRAY SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: observational; pulsars: general; radio continuum: general ID BURSTS; ASKAP; SKY AB Recent investigations reveal an important new class of transient radio phenomena that occur on submillisecond timescales. Often, transient surveys' data volumes are too large to archive exhaustively. Instead, an online automatic system must excise impulsive interference and detect candidate events in real time. This work presents a case study using data from multiple geographically distributed stations to perform simultaneous interference excision and transient detection. We present several algorithms that incorporate dedispersed data from multiple sites, and report experiments with a commensal real-time transient detection system on the Very Long Baseline Array. We test the system using observations of pulsar B0329+54. The multiple-station algorithms enhanced sensitivity for detection of individual pulses. These strategies could improve detection performance for a future generation of geographically distributed arrays such as the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array. C1 [Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Brisken, Walter F.; Deller, Adam T.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Deller, Adam T.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Tingay, Steven J.; Wayth, Randall B.] Curtin Univ, Int Ctr Radio Astron Res, Perth, WA 6845, Australia. RP Thompson, DR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM david.r.thompson@jpl.nasa.gov RI Wayth, Randall/B-2444-2013; Tingay, Steven/B-5271-2013; OI Wayth, Randall/0000-0002-6995-4131; Deller, Adam/0000-0001-9434-3837; Wagstaff, Kiri/0000-0003-4401-5506 FU VLBA administration; Jet Propulsion Laboratory, California Institute of Technology FX We thank the VLBA administration and operators for their invaluable support, and for access to facilities and hardware that made possible the commensal observations described in this work. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The V-FASTR project is a trailblazer installation for the Australian Square Kilometre Array Pathfinder ' s CRAFT fast transients investigation. ICRAR and Curtin University provided key hardware for the transient detection pipeline, and support for the researchers that participated in the project. Steven J. Tingay is a Western Australian Premier's Research Fellow. Dayton Jones and Robert Preston of the Jet Propulsion Laboratory provided key institutional support and guidance for JPL participants. Adam Deller is a Jansky Fellow of the National Radio Astronomy Observatory. Peter Hall was a vital liaison to the CRAFT fast transients project. We also thank J.-P. Macquart and Sarah Burke-Spolaor for their guidance and insight. A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a Research and Technology Development Grant. Copyright 2011. All Rights Reserved. US Government Support Acknowledged. NR 37 TC 17 Z9 17 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2011 VL 735 IS 2 AR 98 DI 10.1088/0004-637X/735/2/98 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 783NF UT WOS:000292089700031 ER PT J AU Volk, K Hrivnak, BJ Matsuura, M Bernard-Salas, J Szczerba, R Sloan, GC Kraemer, KE van Loon, JT Kemper, F Woods, PM Zijlstra, AA Sahai, R Meixner, M Gordon, KD Gruendl, RA Tielens, AGGM Indebetouw, R Marengo, M AF Volk, Kevin Hrivnak, Bruce J. Matsuura, Mikako Bernard-Salas, Jeronimo Szczerba, Ryszard Sloan, G. C. Kraemer, Kathleen E. van Loon, Jacco Th. Kemper, F. Woods, Paul M. Zijlstra, Albert A. Sahai, Raghvendra Meixner, Margaret Gordon, Karl D. Gruendl, Robert A. Tielens, Alexander G. G. M. Indebetouw, Remy Marengo, Massimo TI DISCOVERY AND ANALYSIS OF 21 mu m FEATURE SOURCES IN THE MAGELLANIC CLOUDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; galaxies: individual (LMC, SMC); stars: AGB and post-AGB; stars: evolution ID GIANT BRANCH STARS; RICH PROTOPLANETARY NEBULAE; SPITZER-SPACE-TELESCOPE; POST-AGB STARS; M EMISSION FEATURE; PLANETARY-NEBULAE; INFRARED SPECTROGRAPH; EVOLVED STARS; MAGNESIUM SULFIDE; LEGACY PROGRAM AB Spitzer Space Telescope mid-infrared spectroscopy has been obtained for 15 carbon-rich protoplanetary nebulae (PPNe) in the Large Magellanic Cloud (LMC) and for two other such stars in the Small Magellanic Cloud (SMC). Of these 17 PPNe, the unidentified 21 mu m feature is strong in 7 spectra, weak in 2 spectra, and very weak or questionable in 4 spectra. Two of the four spectra without the 21 mu m feature have a very strong feature near 11 mu m, similar to a feature observed in some carbon-rich planetary nebulae (PNe) in the LMC. We attribute this feature to unusual SiC dust, although the feature-to-continuum ratio is much larger than for SiC features in Galactic or Magellanic Cloud carbon star spectra. The remaining two objects show typical carbon-rich PPNe spectra with no 21 mu m features. One of the LMC objects that lacks the 21 mu m feature and one SMC object with a questionable 21 mu m detection may have mixed dust chemistries based upon their spectral similarity to Galactic [WC] PNe. The 13 objects that either definitely or may show the 21 mu m feature have distinct dust shell properties compared to the Galactic 21 mu m objects-the 21 mu m features are weaker, the estimated dust temperatures are significantly higher, the unidentified infrared (UIR) bands are stronger, and the UIRs show more structure. Four of the 21 mu m objects appear to show normal SiC emission features in their spectra. Many of the PPNe show strong 30 mu m features, although this feature carries less of the total mid-infrared emission than is normally the case for the Galactic 21 mu m PPNe. The LMC objects are in the LMC halo rather than in the LMC bar. The estimated luminosities of these PPNe vary from 4700 to 12,500L(circle dot). C1 [Volk, Kevin; Meixner, Margaret; Gordon, Karl D.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Hrivnak, Bruce J.] Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA. [Hrivnak, Bruce J.] UCL, Inst Origins, Dept Phys & Astron, London WC1E 6BT, England. [Bernard-Salas, Jeronimo] Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Szczerba, Ryszard] Nicholas Copernicus Astron Ctr, PL-87100 Torun, Poland. [Sloan, G. C.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Kraemer, Kathleen E.] USAF, Res Lab, RVBYB, Hanscom AFB, MA 01731 USA. [van Loon, Jacco Th.] Keele Univ, Lennard Jones Labs, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Kemper, F.; Woods, Paul M.; Zijlstra, Albert A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Sahai, Raghvendra] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gruendl, Robert A.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Tielens, Alexander G. G. M.] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Indebetouw, Remy] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Marengo, Massimo] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Matsuura, Mikako] Univ Coll London, Mullard Space Sci Lab, Inst Origins, Dorking RH5 6NT, Surrey, England. [Kemper, F.] Acad Sinica, Inst Astron & Astrophys, Taipei 10647, Taiwan. [Indebetouw, Remy] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Marengo, Massimo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Volk, K (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM volk@stsci.edu RI Kemper, Francisca/D-8688-2011 OI Kemper, Francisca/0000-0003-2743-8240 FU NASA [1378453]; Polish MNiSW [N203 511838] FX This work is primarily based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this research was provided by NASA through contract 1378453 issued by JPL/Caltech. R.Sz. acknowledges support by grant N203 511838 from the Polish MNiSW. NR 84 TC 27 Z9 27 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2011 VL 735 IS 2 AR 127 DI 10.1088/0004-637X/735/2/127 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 783NF UT WOS:000292089700060 ER PT J AU Wayth, RB Brisken, WF Deller, AT Majid, WA Thompson, DR Tingay, SJ Wagstaff, KL AF Wayth, Randall B. Brisken, Walter F. Deller, Adam T. Majid, Walid A. Thompson, David R. Tingay, Steven J. Wagstaff, Kiri L. TI V-FASTR: THE VLBA FAST RADIO TRANSIENTS EXPERIMENT SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: observational; pulsars: general; radio continuum: general ID SOFTWARE CORRELATOR; PULSAR SURVEY; GIANT PULSES; ARRAY; INTERFEROMETRY; WIDEFIELD; ASTRONOMY; SCIENCE; BURSTS; ASKAP AB Recent discoveries of dispersed, non-periodic impulsive radio signals with single-dish radio telescopes have sparked significant interest in exploring the relatively uncharted space of fast transient radio signals. Here we describe V-FASTR, an experiment to perform a blind search for fast transient radio signals using the Very Long Baseline Array (VLBA). The experiment runs entirely in a commensal mode, alongside normal VLBA observations and operations. It is made possible by the features and flexibility of the DiFX software correlator that is used to process VLBA data. Using the VLBA for this type of experiment offers significant advantages over single-dish experiments, including a larger field of view, the ability to easily distinguish local radio-frequency interference from real signals, and the possibility to localize detected events on the sky to milliarcsecond accuracy. We describe our software pipeline, which accepts short integration (similar to ms) spectrometer data from each antenna in real time during correlation and performs an incoherent dedispersion separately for each antenna, over a range of trial dispersion measures. The dedispersed data are processed by a sophisticated detector and candidate events are recorded. At the end of the correlation, small snippets of the raw data at the time of the events are stored for further analysis. We present the results of our event detection pipeline from some test observations of the pulsars B0329+54 and B0531+21 (the Crab pulsar). C1 [Wayth, Randall B.; Tingay, Steven J.] Curtin Univ, Int Ctr Radio Astron Res, Perth, WA 6845, Australia. [Brisken, Walter F.; Deller, Adam T.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Deller, Adam T.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Majid, Walid A.; Thompson, David R.; Wagstaff, Kiri L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Wayth, RB (reprint author), Curtin Univ, Int Ctr Radio Astron Res, GPO Box U1987, Perth, WA 6845, Australia. EM randall.wayth@icrar.org RI Wayth, Randall/B-2444-2013; Tingay, Steven/B-5271-2013; OI Wayth, Randall/0000-0002-6995-4131; Deller, Adam/0000-0001-9434-3837; Wagstaff, Kiri/0000-0003-4401-5506 FU State Government of Western Australia; Western Australian Centre of Excellence in Radio Astronomy Science and Engineering; NRAO FX The International Centre for Radio Astronomy Research is a Joint Venture between Curtin University and The University of Western Australia, funded by the State Government of Western Australia and the Joint Venture partners. S.J.T. is a Western Australian Premier's Research Fellow. R. B. W. is supported via the Western Australian Centre of Excellence in Radio Astronomy Science and Engineering. A. T. D. is supported by an NRAO Jansky Fellowship. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the US National Aeronautics and Space Administration. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. AIPS is produced and maintained by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. NR 25 TC 25 Z9 26 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2011 VL 735 IS 2 AR 97 DI 10.1088/0004-637X/735/2/97 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 783NF UT WOS:000292089700030 ER PT J AU Sibeck, DG Lin, RQ AF Sibeck, D. G. Lin, R. -Q. TI Concerning the motion and orientation of flux transfer events produced by component and antiparallel reconnection SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; HIGH-LATITUDE MAGNETOPAUSE; DAYSIDE RECONNECTION; AMPTE/IRM OBSERVATIONS; EARTHS MAGNETOSPHERE; MAGNETOSHEATH FLOW; SIGNATURES; CONVECTION; MODEL; IMF AB We employ the Cooling et al. (2001) model to predict the location, orientation, motion, and signatures of flux transfer events (FTEs) generated at the solstices and equinoxes along extended subsolar component and high-latitude antiparallel reconnection curves for typical solar wind plasma conditions and various interplanetary magnetic field (IMF) strengths and directions. In general, events generated by the two mechanisms maintain the strikingly different orientations they begin with as they move toward the terminator in opposite pairs of magnetopause quadrants. The curves along which events generated by component reconnection form bow toward the winter cusp. Events generated by antiparallel reconnection form on the equatorial magnetopause during intervals of strongly southward IMF orientation during the equinoxes, form in the winter hemisphere and only reach the dayside equatorial magnetopause during the solstices when the IMF strength is very large and the IMF points strongly southward, never reach the equatorial dayside magnetopause when the IMF has a substantial dawnward or duskward component, and never reach the equatorial flank magnetopause during intervals of northward and dawnward or duskward IMF orientation. Magnetosheath magnetic fields typically have strong components transverse to events generated by component reconnection but only weak components transverse to the axes of events generated by antiparallel reconnection. As a result, much stronger bipolar magnetic field signatures normal to the nominal magnetopause should accompany events generated by component reconnection. The results presented in this paper suggest that events generated by component reconnection predominate on the dayside equatorial and flank magnetopause for most solar wind conditions. C1 [Sibeck, D. G.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20723 USA. [Lin, R. -Q.] USN, Ctr Surface Warfare, Carderock Div, Bethesda, MD 20084 USA. RP Sibeck, DG (reprint author), NASA Goddard Space Flight Ctr, 8800 Greenbelt Rd,Code 674, Greenbelt, MD 20723 USA. EM david.g.sibeck@nasa.gov RI Sibeck, David/D-4424-2012 FU NASA FX The research reported in this paper was funding by NASA's Heliophysics Guest Investigator Program. The authors thank Y. Wang for encouragement and numerous helpful suggestions. NR 50 TC 5 Z9 5 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 9 PY 2011 VL 116 AR A07206 DI 10.1029/2011JA016560 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 790SS UT WOS:000292610100001 ER PT J AU Wu, X Collilieux, X Altamimi, Z Vermeersen, BLA Gross, RS Fukumori, I AF Wu, X. Collilieux, X. Altamimi, Z. Vermeersen, B. L. A. Gross, R. S. Fukumori, I. TI Accuracy of the International Terrestrial Reference Frame origin and Earth expansion SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GLACIAL ISOSTATIC-ADJUSTMENT; SURFACE; DEFORMATION; GRACE; MODEL AB The International Terrestrial Reference Frame (ITRF) is a fundamental datum for high-precision orbit tracking, navigation, and global change monitoring. Accurately realizing and maintaining ITRF origin at the mean Earth system center of mass (CM) is critical to surface and spacecraft based geodetic measurements including those of sea level rise and its sources. Although ITRF combines data from satellite laser ranging (SLR), Very Long Baseline Interferometry (VLBI), Global Positioning System (GPS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), its origin is currently realized by the single technique of SLR. Consequently, it is difficult to independently evaluate the origin accuracy. Also, whether the solid Earth is expanding or shrinking has attracted persistent attention. The expansion rate, if any, has not been accurately determined before, due to insufficient data coverage on the Earth's surface and the presence of other geophysical processes. Here, we use multiple precise geodetic data sets and a simultaneous global estimation platform to determine that the ITRF2008 origin is consistent with the mean CM at the level of 0.5 mm yr(-1), and the mean radius of the Earth is not changing to within 1 sigma measurement uncertainty of 0.2 mm yr(-1). Citation: Wu, X., X. Collilieux, Z. Altamimi, B. L. A. Vermeersen, R. S. Gross, and I. Fukumori (2011), Accuracy of the International Terrestrial Reference Frame origin and Earth expansion, Geophys. Res. Lett., 38, L13304, doi: 10.1029/2011GL047450. C1 [Wu, X.; Gross, R. S.; Fukumori, I.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Collilieux, X.; Altamimi, Z.] Inst Geog Natl, F-77455 Champs Sur Marne 2, France. [Vermeersen, B. L. A.] Delft Univ Technol, Fac Aerosp Engn, DEOS, NL-2626 HS Delft, Netherlands. RP Wu, X (reprint author), CALTECH, Jet Prop Lab, MS238-600,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM xiaoping.wu@jpl.nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology under National Aeronautics and Space Administration (NASA); NASA FX Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA), and funded through NASA's International Polar Year and GRACE Science Team programs. We thank John LaBrecque of NASA for suggesting the work on Earth expansion, John Ries for discussion, and Geoff Blewitt and an anonymous reviewer for constructive reviews. The Generic Mapping Tools (GMT) are used to create Figure 1. NR 22 TC 31 Z9 32 U1 2 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 8 PY 2011 VL 38 AR L13304 DI 10.1029/2011GL047450 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 790SE UT WOS:000292608700001 ER PT J AU Fishman, GJ Briggs, MS Connaughton, V Bhat, PN Paciesas, WS von Kienlin, A Wilson-Hodge, C Kippen, RM Preece, R Meegan, CA Greiner, J AF Fishman, G. J. Briggs, M. S. Connaughton, V. Bhat, P. N. Paciesas, W. S. von Kienlin, A. Wilson-Hodge, C. Kippen, R. M. Preece, R. Meegan, C. A. Greiner, J. TI Temporal properties of the terrestrial gamma-ray flashes from the Gamma-Ray Burst Monitor on the Fermi Observatory SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID HIGH-ALTITUDE DISCHARGES; RUNAWAY BREAKDOWN; AIR BREAKDOWN; ASSOCIATION; SIMULATIONS; RADIATION; SHOWERS; SPRITES; SPACE AB The Gamma-Ray Burst Monitor (GBM) on the Fermi Gamma-Ray Space Telescope (Fermi) detected 50 terrestrial gamma-ray flashes (TGFs) during its first 20 months of operation. The high efficiency and large area of the GBM detectors, combined with their fine timing capabilities and relatively high throughput, allow unprecedented studies of the temporal properties of TGFs. The TGF pulses are observed to have durations as brief as similar to 0.05 ms, shorter than previously measured. There is a relatively narrow distribution of pulse durations; the majority of pulses have total durations between 0.10 and 0.40 ms. In some TGF events, risetimes as short as similar to 0.01 ms and falltimes as short as similar to 0.03 ms are observed. Three of the 50 TGFs presented here have well-separated, double peaks. Perhaps as many as 10 other TGFs show evidence, to varying degrees, of overlapping peaks. Weak emission is seen at the leading or trailing edges of some events. Five of the 50 TGFs are considerably longer than usual; these are believed to be caused by incident electrons transported from a TGF at the geomagnetic conjugate point. TGF temporal properties can be used to discriminate between models of the origin of TGFs and also provide some basic physical properties of the TGF process. C1 [Fishman, G. J.; Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Briggs, M. S.; Connaughton, V.; Bhat, P. N.; Paciesas, W. S.] Univ Alabama, Ctr Space Phys & Aeron, Huntsville, AL 35805 USA. [von Kienlin, A.; Greiner, J.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Kippen, R. M.; Preece, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Meegan, C. A.] Univ Space Res Assoc, Huntsville, AL 35805 USA. RP Fishman, GJ (reprint author), NASA, George C Marshall Space Flight Ctr, Space Sci Off, VP62, Huntsville, AL 35812 USA. EM jerry.fishman@msfc.nasa.gov OI Preece, Robert/0000-0003-1626-7335 NR 48 TC 31 Z9 31 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 8 PY 2011 VL 116 AR A07304 DI 10.1029/2010JA016084 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 790SQ UT WOS:000292609900002 ER PT J AU Chembo, YK Yu, N AF Chembo, Yanne K. Yu, Nan TI Reply to "Comment on 'Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators' " SO PHYSICAL REVIEW A LA English DT Editorial Material ID MICRORESONATORS AB In a Comment [Deych, Phys. Rev. A 84, 017801 (2011)] on our recent article [Chembo and Yu, Phys. Rev. A 82, 033801 (2010)] on Kerr comb generation in monolithic whispering-gallery-mode (WGM) resonators, the author claims that even though our main results "remain intact," the framework of our analysis contains some mathematical errors. In this Reply, we demonstrate that the author's criticisms and his alternative theory are incorrect, and that all the disagreeing claims come from the author's misunderstanding of the physical system under investigation. In particular, the main conceptual error in the Comment is the confusion between evanescent and radiative coupling mechanisms for WGM resonators (in terms of Q factor, this is in our case a confusion between similar to 10(9) and similar to 10(2000), respectively). This essential misconception leads for example the author to introduce a nonphysical similar to 10(2000) multiplicative correction factor for the laser pump power. We show in this Reply that our WGM resonators are radiatively closed (because of the quasi-infinite radiative Q factor), so that the Mie scattering formalism proposed by Deych, which relies on radiative coupling, can only lead to erroneous results. We also show that the modal expansion approach in our original paper is appropriate, and all our approximations are physically well justified. We therefore stand by our modeling results, which are moreover in excellent agreement with the experiments reported in [Chembo, Strekalov, and Yu, Phys. Rev. Lett. 104, 103902 (2010)]. C1 [Chembo, Yanne K.] CNRS, FEMTO ST Inst, UMR6174, Dept Opt, F-25030 Besancon, France. [Yu, Nan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Chembo, YK (reprint author), CNRS, FEMTO ST Inst, UMR6174, Dept Opt, 16 Route Gray, F-25030 Besancon, France. EM yanne.chembo@femto-st.fr NR 8 TC 0 Z9 0 U1 3 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL 8 PY 2011 VL 84 IS 1 AR 017802 DI 10.1103/PhysRevA.84.017802 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 789VI UT WOS:000292544900008 ER PT J AU Levan, AJ Tanvir, NR Cenko, SB Perley, DA Wiersema, K Bloom, JS Fruchter, AS Postigo, AD O'Brien, PT Butler, N van der Horst, AJ Leloudas, G Morgan, AN Misra, K Bower, GC Farihi, J Tunnicliffe, RL Modjaz, M Silverman, JM Hjorth, J Thone, C Cucchiara, A Ceron, JMC Castro-Tirado, AJ Arnold, JA Bremer, M Brodie, JP Carroll, T Cooper, MC Curran, PA Cutri, RM Ehle, J Forbes, D Fynbo, J Gorosabel, J Graham, J Hoffman, DI Guziy, S Jakobsson, P Kamble, A Kerr, T Kasliwal, MM Kouveliotou, C Kocevski, D Law, NM Nugent, PE Ofek, EO Poznanski, D Quimby, RM Rol, E Romanowsky, AJ Sanchez-Ramirez, R Schulze, S Singh, N van Spaandonk, L Starling, RLC Strom, RG Tello, JC Vaduvescu, O Wheatley, PJ Wijers, RAMJ Winters, JM Xu, D AF Levan, A. J. Tanvir, N. R. Cenko, S. B. Perley, D. A. Wiersema, K. Bloom, J. S. Fruchter, A. S. Postigo, A. de Ugarte O'Brien, P. T. Butler, N. van der Horst, A. J. Leloudas, G. Morgan, A. N. Misra, K. Bower, G. C. Farihi, J. Tunnicliffe, R. L. Modjaz, M. Silverman, J. M. Hjorth, J. Thoene, C. Cucchiara, A. Ceron, J. M. Castro Castro-Tirado, A. J. Arnold, J. A. Bremer, M. Brodie, J. P. Carroll, T. Cooper, M. C. Curran, P. A. Cutri, R. M. Ehle, J. Forbes, D. Fynbo, J. Gorosabel, J. Graham, J. Hoffman, D. I. Guziy, S. Jakobsson, P. Kamble, A. Kerr, T. Kasliwal, M. M. Kouveliotou, C. Kocevski, D. Law, N. M. Nugent, P. E. Ofek, E. O. Poznanski, D. Quimby, R. M. Rol, E. Romanowsky, A. J. Sanchez-Ramirez, R. Schulze, S. Singh, N. van Spaandonk, L. Starling, R. L. C. Strom, R. G. Tello, J. C. Vaduvescu, O. Wheatley, P. J. Wijers, R. A. M. J. Winters, J. M. Xu, D. TI An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy SO SCIENCE LA English DT Article ID GAMMA-RAY BURST; SWIFT-ERA AB Variable x-ray and gamma-ray emission is characteristic of the most extreme physical processes in the universe. We present multiwavelength observations of a unique gamma-ray-selected transient detected by the Swift satellite, accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source. We pinpoint the event to the center of a small, star-forming galaxy at redshift z = 0.3534. Its high-energy emission has lasted much longer than any gamma-ray burst, whereas its peak luminosity was similar to 100 times higher than bright active galactic nuclei. The association of the outburst with the center of its host galaxy suggests that this phenomenon has its origin in a rare mechanism involving the massive black hole in the nucleus of that galaxy. C1 [Levan, A. J.; Tunnicliffe, R. L.; van Spaandonk, L.; Wheatley, P. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Tanvir, N. R.; Wiersema, K.; O'Brien, P. T.; Farihi, J.; Starling, R. L. C.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Perley, D. A.; Bloom, J. S.; Butler, N.; Morgan, A. N.; Bower, G. C.; Silverman, J. M.; Cucchiara, A.; Nugent, P. E.; Poznanski, D.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Fruchter, A. S.; Misra, K.; Graham, J.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Postigo, A. de Ugarte; Leloudas, G.; Hjorth, J.; Fynbo, J.] Univ Copenhagen, Dark Cosmol Ctr, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [van der Horst, A. J.] Univ Space Res Assoc, Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. [Modjaz, M.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10024 USA. [Thoene, C.; Castro-Tirado, A. J.; Gorosabel, J.; Guziy, S.; Sanchez-Ramirez, R.; Tello, J. C.] Consejo Super Invest Cient IAA CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Ceron, J. M. Castro] European Space Agcy, European Space Astron Ctr, Herschel Sci Operat Ctr, Madrid 28691, Spain. [Arnold, J. A.; Brodie, J. P.; Kocevski, D.; Romanowsky, A. J.; Singh, N.] Univ Calif Santa Cruz, Lick Observ, Univ Calif Observ, Santa Cruz, CA 95064 USA. [Bremer, M.; Winters, J. M.] Inst RadioAstron Millimetr, F-38406 St Martin Dheres, France. [Carroll, T.; Ehle, J.; Kerr, T.] Joint Astron Ctr, Hilo, HI 96720 USA. [Cooper, M. C.] Univ Calif Irvine, Ctr Galaxy Evolut, Irvine, CA 92697 USA. [Curran, P. A.] Ctr Saclay, Irfu Serv Astrophys, Direct Sci Mat CNRS, Commissariat Energie Atom, F-91191 Gif Sur Yvette, France. [Cutri, R. M.; Hoffman, D. I.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Forbes, D.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Graham, J.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Kasliwal, M. M.; Ofek, E. O.; Quimby, R. M.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Jakobsson, P.; Schulze, S.] Univ Iceland, Inst Sci, Ctr Astrophys & Cosmol, IS-107 Reykjavik, Iceland. [Kamble, A.] Univ Wisconsin, Ctr Gravitat & Cosmol, Milwaukee, WI 53211 USA. [Kouveliotou, C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Law, N. M.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Nugent, P. E.; Poznanski, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rol, E.; Strom, R. G.; Wijers, R. A. M. J.] Univ Amsterdam, Astron Inst, NL-1098 XH Amsterdam, Netherlands. [Singh, N.] Natl Univ Ireland, Ctr Astron, Galway, Ireland. [van Spaandonk, L.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. [Strom, R. G.] Netherlands Inst Radio Astron ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Vaduvescu, O.] Isaac Newton Grp Telescopes, E-38700 Santa Cruz De La Palma, Canary Islands, Spain. [Xu, D.] Weizmann Inst Sci, Fac Phys, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. RP Levan, AJ (reprint author), Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. EM a.j.levan@warwick.ac.uk RI Curran, Peter/B-5293-2013; Fynbo, Johan/L-8496-2014; Hjorth, Jens/M-5787-2014; Jakobsson, Pall/L-9950-2015; OI Sanchez-Ramirez, Ruben/0000-0002-7158-5099; Wheatley, Peter/0000-0003-1452-2240; Curran, Peter/0000-0003-3003-4626; Fynbo, Johan/0000-0002-8149-8298; Hjorth, Jens/0000-0002-4571-2306; Jakobsson, Pall/0000-0002-9404-5650; Wijers, Ralph/0000-0002-3101-1808; Castro-Tirado, A. J./0000-0003-2999-3563; Thone, Christina/0000-0002-7978-7648; Schulze, Steve/0000-0001-6797-1889; de Ugarte Postigo, Antonio/0000-0001-7717-5085; Farihi, Jay/0000-0003-1748-602X FU Science and Technology Facilities Council. Swift; NASA mission in partnership with the Italian Space Agency and the UK Space Agency; NASA/Swift [NNX10AI21G]; NASA/Fermi [NNX1OA057G]; NSF [AST-0908886, AST-0808099, AST-0909237, AST-1008353]; NASA [NNH07ZDA001-GLAST, NAS5-26555]; Carlsberg foundation; Hubble Fellowship [HST-HF-51277.01-A]; Space Telescope Science Institute (STScI); Danish National Research Foundation; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Netherlands Foundation for Scientific Research; Institut National des Sciences de l'Univers/CNRS (France); Max-Planck-Gesellschaft (Germany); Instituto Geografico Nacional (Spain); W.M. Keck Foundation; Spanish programs [AYA-2007-63677, AYA-2008-03467/ESP, AYA-2009-14000-C03-01]; Royal Society; Spanish Ministry of Science and Innovation [AYA2008-03467/ESP, AYA2009-14000-C03-01]; European Research Council [247295]; Commonwealth of Australia FX We gratefully acknowledge the efforts of the many observatories whose data are presented here. We particularly thank D. Malesani for assistance in the calibration of the optical photometry, M. Irwin for assistance with processing the UKIRT data, D. Fox for help with the PTF data, and K. Hurley and J. Prochaska for assistance in obtaining the Keck data. A.J.L. and N.R.T. acknowledge support from the Science and Technology Facilities Council. Swift, launched in November 2004, is a NASA mission in partnership with the Italian Space Agency and the UK Space Agency. Swift is managed by NASA Goddard. Pennsylvania State University controls science and flight operations from the Mission Operations Center in University Park, Pennsylvania. Los Alamos National Laboratory provides gamma-ray imaging analysis. S.B.C. acknowledges generous support from G. Bengier and C. Bengier, the Richard and Rhoda Goldman Fund, NASA/Swift grant NNX10AI21G, NASA/Fermi grant NNX1OA057G, and NSF grant AST-0908886. A.J.vdH. was supported by NASA grant NNH07ZDA001-GLAST. G.L. is supported by a grant from the Carlsberg foundation. M.M. is supported by the Hubble Fellowship grant HST-HF-51277.01-A, awarded by the The Space Telescope Science Institute (STScI), which is operated by AURA under NASA contract NAS5-26555. The Dark Cosmology Centre is funded by the Danish National Research Foundation. This work makes use of data obtained by the Chandra X-ray Observatory (OBSID = 12920). This work is based on observations made with the NASA/ESA Hubble Space Telescope (program ID 12447), obtained from the data archive at the Space Telescope Institute. STScI is operated by the association of Universities for Research in Astronomy under the NASA contract NAS 5-26555. This work is also based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (UK), the National Research Council (Canada), Consejo Nacional de Investigaciones Cientificas y Tecnicas (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). The UK Infrared Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the UK. UKIRT data were processed by the Cambridge Astronomical Survey Unit. This work is also based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This work is also based on observations made with the GTC and on observations obtained with the Samuel Oschin Telescope at the Palomar Observatory as part of the Palomar Transient Factory project. The National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231, provided staff, computational resources, and data storage for this project. The WHT is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.; This work is also based on observations made with the Italian Telescopio Nazionale Galileo operated on the island of La Palma by the Fundacion Glileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The WSRT is operated by ASTRON, with support from the Netherlands Foundation for Scientific Research. This work is also based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by Institut National des Sciences de l'Univers/CNRS (France), Max-Planck-Gesellschaft (Germany), and Instituto Geografico Nacional (Spain). Some of the data presented here were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. J.G., A.J.C.T., R.S.R., and S.G. are partially supported by the Spanish programs AYA-2007-63677, AYA-2008-03467/ESP, and AYA-2009-14000-C03-01. R.L.C.S. is supported by a Royal Society Fellowship. We acknowledge support by the Spanish Ministry of Science and Innovation under project grants AYA2008-03467/ESP and AYA2009-14000-C03-01 (including Feder funds). J.P.B. and A.J.R. were supported by the NSF through grants AST-0808099 and AST-0909237. A.N.M. gratefully acknowledges support from a NSF Graduate Research Fellowship. A.P.K. is partially supported by NSF award AST-1008353. R.A.M.J.W. acknowledges support from the European Research Council via Advanced Investigator grant 247295. We acknowledge access to the major research facilities program supported by the Commonwealth of Australia under the International Science Linkages program. N.B. and C.P. are NASA Einstein Fellows. M.C.C. is a Hubble Fellow. Data used in this paper are presented in the SOM or taken from the literature as cited. NR 28 TC 162 Z9 162 U1 2 U2 10 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 8 PY 2011 VL 333 IS 6039 BP 199 EP 202 DI 10.1126/science.1207143 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 789GG UT WOS:000292502700043 PM 21680811 ER PT J AU Vasiliou, A Piech, KM Zhang, X Nimlos, MR Ahmed, M Golan, A Kostko, O Osborn, DL Daily, JW Stanton, JF Ellison, GB AF Vasiliou, AnGayle Piech, Krzysztof M. Zhang, Xu Nimlos, Mark R. Ahmed, Musahid Golan, Amir Kostko, Oleg Osborn, David L. Daily, John W. Stanton, John F. Ellison, G. Barney TI The products of the thermal decomposition of CH3CHO SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POTENTIAL-ENERGY SURFACE; PHOTOELECTRON-SPECTROSCOPY; INFRARED-SPECTRUM; HIGH-RESOLUTION; VINYL ALCOHOL; ACETALDEHYDE OXIDATION; SHOCK-TUBE; RADICALS; PHOTODISSOCIATION; DYNAMICS AB We have used a heated 2 cm x 1 mm SiC microtubular (mu tubular) reactor to decompose acetaldehyde: CH3CHO + Delta -> products. Thermal decomposition is followed at pressures of 75-150 Torr and at temperatures up to 1675 K, conditions that correspond to residence times of roughly 50-100 mu s in the mu tubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: vacuum ultraviolet photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH3CHO, we have studied three isotopologues, CH3CDO, CD3CHO, and CD3CDO. We have identified the thermal decomposition products CH3 (PIMS), CO (IR, PIMS), H (PIMS), H-2 (PIMS), CH2CO (IR, PIMS), CH2=CHOH (IR, PIMS), H2O (IR, PIMS), and HC CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH3CHO; namely, radical decomposition: CH3CHO + Delta -> CH3 + [HCO] -> CH3 + H + CO; elimination: CH3CHO + Delta -> H-2 + CH2=C=O; isomerization/elimination: CH3CHO + Delta -> [CH2=CH-OH] -> HC CH + H2O. An interesting result is that both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH2=C:, as an intermediate in the decomposition of vinyl alcohol: CH2=CH-OH + Delta -> [CH2=C:] + H2O -> HC CH + H2O. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3604005] C1 [Vasiliou, AnGayle; Piech, Krzysztof M.; Ellison, G. Barney] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Vasiliou, AnGayle; Nimlos, Mark R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zhang, Xu] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ahmed, Musahid; Golan, Amir; Kostko, Oleg] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Daily, John W.] Univ Colorado, Dept Mech Engn, Ctr Combust & Environm Res, Boulder, CO 80309 USA. [Stanton, John F.] Univ Texas Austin, Inst Theoret Chem, Dept Chem, Austin, TX 78712 USA. RP Ellison, GB (reprint author), Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. EM xu.zhang@jpl.nasa.gov; mark_nimlos@nrel.gov; mahmed@lbl.gov; dlosbor@sandia.gov; john.daily@colorado.edu; jfstanton@mail.utexas.edu; barney@jila.colorado.edu RI Kostko, Oleg/B-3822-2009; Ahmed, Musahid/A-8733-2009 OI Kostko, Oleg/0000-0003-2068-4991; FU United States Department of Energy [DE-FG02-93ER14364, 1544759]; National Science Foundation [CHE-0848606]; Swiss National Science Foundation; NASA; Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]; Division of Chemical Sciences, Geosciences and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy; National Nuclear Security Administration [DE-AC04-94-AL85000]; Robert A. Welch Foundation [F-1283]; United States Department of Energy, Basic Energy Sciences FX We would like to acknowledge support from the United States Department of Energy (Grant No.: DE-FG02-93ER14364), the United States Department of Energy's Office of the Biomass Program (Contract No. 1544759) and the National Science Foundation (CHE-0848606) (Grant No.: CHE-0848606) for J.W.D., J.F.S., M.R.N., and G.B.E. K.M.P. was supported by the Swiss National Science Foundation. X.Z. would like to acknowledge support from the NASA Planetary Atmospheres Program. M.A., A.G., O.K. and the A.L.S. are supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy under Contracts No. DE-AC02-05CH11231. D.L.O. is supported by the Division of Chemical Sciences, Geosciences and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract No. DE-AC04-94-AL85000. J.F.S. also acknowledges support from the Robert A. Welch Foundation (Grant F-1283) and the United States Department of Energy, Basic Energy Sciences. Finally, we would like to thank Professor John R. Barker, Professor William H. Green, Professor Anne B. McCoy, and Professor Robert J. McMahon for provocative discussions. NR 49 TC 18 Z9 18 U1 1 U2 37 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 7 PY 2011 VL 135 IS 1 AR 014306 DI 10.1063/1.3604005 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 789OC UT WOS:000292524200020 PM 21744901 ER PT J AU Longson, TJ Bhowmick, R Gu, C Cruden, BA AF Longson, Timothy J. Bhowmick, Ranadeep Gu, Claire Cruden, Brett A. TI Core-Shell Interactions in Coaxial Electrospinning and Impact on Electrospun Multiwall Carbon Nanotube Core, Poly(methyl methacrylate) Shell Fibers SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NANOFIBERS; RAMAN; ENCAPSULATION; SPECTROSCOPY; PARAMETERS; POLYMER AB The intricacies of the core shell interaction in coaxial electrospinning are explored by way of the Hansen solubility parameters in an attempt to make micrometer-sized polymer-free multiwalled carbon nanotube (MWNT) core, poly(methyl methacrylate) shell fibers. Four solution regimes are explored in which the core solvent is either miscible or immiscible of the shell solvent and in which it is either a solvent or nonsolvent of the shell polymer. It is qualitatively found that the most well-defined MWNT bundle core is achieved using a core solvent that is semi-immiscible with the shell solution, yet still a solvent of the shell polymer. Hollow fibers are found to be produced best by using a core solvent that is immiscible with the shell solvent and also a nonsolvent of the shell polymer. The resulting MWNT-bundled cores are electrically characterized and found to have conductivities up to 2 orders of magnitude greater than homogeneously electrospun MWNT/polymer composite fibers. C1 [Longson, Timothy J.; Bhowmick, Ranadeep; Cruden, Brett A.] NASA, Ctr Nanotechol, Ames Res Ctr, Moffett Field, CA 94035 USA. [Longson, Timothy J.; Gu, Claire] Univ Calif Santa Cruz, Sch Engn, Santa Cruz, CA 95064 USA. [Bhowmick, Ranadeep] Stanford Univ, Stanford, CA 94305 USA. RP Cruden, BA (reprint author), NASA, Ctr Nanotechol, Ames Res Ctr, Mail Stop 230-3,Bldg 230,Rm 206, Moffett Field, CA 94035 USA. EM Brett.A.Cruden@nasa.gov FU NASA Ames/University of California, Santa Cruz; [NAS2-03144] FX A majority of this work was supported by the NASA Ames/University of California, Santa Cruz, Aligned Research Program (ARP). Dr. Cruden was supported during this work on contract NAS2-03144 to the University Affiliated Research Center (UARC) operated by UC Santa Cruz. NR 29 TC 10 Z9 11 U1 7 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 7 PY 2011 VL 115 IS 26 BP 12742 EP 12750 DI 10.1021/jp201077p PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 786CO UT WOS:000292281100007 ER PT J AU MacDonald, I Nissanke, S Pfeiffer, HP AF MacDonald, Ilana Nissanke, Samaya Pfeiffer, Harald P. TI Suitability of post-Newtonian/numerical-relativity hybrid waveforms for gravitational wave detectors SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article; Proceedings Paper CT Conference on Theory Meets Data Analysis at Comparable and Extreme Mass Ratios (NRDA/Capra 2010) CY JUN 20-26, 2010 CL Perimeter Inst Theoret Phys, Waterloo, CANADA HO Perimeter Inst Theoret Phys ID BINARIES AB This paper presents a study of the sufficient accuracy of post-Newtonian and numerical relativity waveforms for the most demanding usage case: parameter estimation of strong sources in advanced gravitational wave detectors. For black hole binaries, these detectors require accurate waveform models which can be constructed by fusing an analytical post-Newtonian inspiral waveform with a numerical relativity merger-ringdown waveform. We perform a comprehensive analysis of errors that enter such 'hybrid waveforms'. We find that the post-Newtonian waveform must be aligned with the numerical relativity waveform to exquisite accuracy, about 1/100 of a gravitational wave cycle. Phase errors in the inspiral phase of the numerical relativity simulation must be controlled to less than or similar to 0.1 rad. (These numbers apply to moderately optimistic estimates about the number of GW sources; exceptionally strong signals require even smaller errors.) The dominant source of error arises from the inaccuracy of the investigated post-Newtonian Taylor approximants. Using our error criterion, even at 3.5th post-Newtonian order, hybridization has to be performed significantly before the start of the longest currently available numerical waveforms which cover 30 gravitational wave cycles. The current investigation is limited to the equal-mass, zero-spin case and does not take into account calibration errors of the gravitational wave detectors. C1 [MacDonald, Ilana; Nissanke, Samaya; Pfeiffer, Harald P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Nissanke, Samaya] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nissanke, Samaya] CALTECH, Pasadena, CA 91125 USA. RP MacDonald, I (reprint author), Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. EM macdonald@astro.utoronto.ca NR 61 TC 42 Z9 42 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD JUL 7 PY 2011 VL 28 IS 13 AR 134002 DI 10.1088/0264-9381/28/13/134002 PG 29 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 778GC UT WOS:000291690200003 ER PT J AU Mundim, BC Kelly, BJ Zlochower, Y Nakano, H Campanelli, M AF Mundim, Bruno C. Kelly, Bernard J. Zlochower, Yosef Nakano, Hiroyuki Campanelli, Manuela TI Hybrid black-hole binary initial data SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article; Proceedings Paper CT Conference on Theory Meets Data Analysis at Comparable and Extreme Mass Ratios (NRDA/Capra 2010) CY JUN 20-26, 2010 CL Perimeter Inst Theoret Phys, Waterloo, CANADA HO Perimeter Inst Theoret Phys ID MANY-BODY SYSTEM; NUMERICAL RELATIVITY; GRAVITATIONAL RECOIL; CANONICAL FORMALISM; MODELING KICKS; MERGER; ADM; APPROXIMATION; SIMULATIONS; EVOLUTIONS AB Traditional black-hole (BH) binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al (2010, Class. Quantum Grav. 27 114005), a new binary BH initial data with radiation content derived from post-Newtonian (PN) theory was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless 'wavy' metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesirable features: unphysical horizon mass loss and large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features. C1 [Mundim, Bruno C.; Zlochower, Yosef; Nakano, Hiroyuki; Campanelli, Manuela] Rochester Inst Technol, Ctr Computat Relat & Gravitat, Sch Math Sci, Rochester, NY 14623 USA. [Kelly, Bernard J.] NASA GSFC, CRESST, Greenbelt, MD 20771 USA. [Kelly, Bernard J.] NASA GSFC, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Kelly, Bernard J.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. RP Mundim, BC (reprint author), Rochester Inst Technol, Ctr Computat Relat & Gravitat, Sch Math Sci, Rochester, NY 14623 USA. EM bcmsma@astro.rit.edu; bernard.j.kelly@nasa.gov; yosef@astro.rit.edu; nakano@astro.rit.edu; manuela@astro.rit.edu RI Kelly, Bernard/G-7371-2011; OI Kelly, Bernard/0000-0002-3326-4454; Nakano, Hiroyuki/0000-0001-7665-0796 NR 89 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD JUL 7 PY 2011 VL 28 IS 13 AR 134003 DI 10.1088/0264-9381/28/13/134003 PG 17 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 778GC UT WOS:000291690200004 ER PT J AU Crumpler, LS Arvidson, RE Squyres, SW McCoy, T Yingst, A Ruff, S Farrand, W McSween, Y Powell, M Ming, DW Morris, RV Bell, JF Grant, J Greeley, R DesMarais, D Schmidt, M Cabrol, NA Haldemann, A Lewis, KW Wang, AE Schroder, C Blaney, D Cohen, B Yen, A Farmer, J Gellert, R Guinness, EA Herkenhoff, KE Johnson, JR Klingelhofer, G McEwen, A Rice, JW Rice, M deSouza, P Hurowitz, J AF Crumpler, L. S. Arvidson, R. E. Squyres, S. W. McCoy, T. Yingst, A. Ruff, S. Farrand, W. McSween, Y. Powell, M. Ming, D. W. Morris, R. V. Bell, J. F., III Grant, J. Greeley, R. DesMarais, D. Schmidt, M. Cabrol, N. A. Haldemann, A. Lewis, Kevin W. Wang, A. E. Schroeder, C. Blaney, D. Cohen, B. Yen, A. Farmer, J. Gellert, R. Guinness, E. A. Herkenhoff, K. E. Johnson, J. R. Klingelhoefer, G. McEwen, A. Rice, J. W., Jr. Rice, M. deSouza, P. Hurowitz, J. TI Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID GUSEV CRATER; PHYSICAL-PROPERTIES; ROCK-VARNISH; LOCALIZATION; SPECTROMETER; SOILS AB Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity. C1 [Arvidson, R. E.; Wang, A. E.; Guinness, E. A.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Squyres, S. W.; Bell, J. F., III; Rice, M.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Powell, M.; Blaney, D.; Yen, A.; Hurowitz, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [DesMarais, D.; Cabrol, N. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Cohen, B.] NASA, Marshall Spaceflight Ctr, Huntsville, AL 35812 USA. [deSouza, P.] CSIRO, Tasmanian ICT Ctr, Hobart, Tas, Australia. [Farrand, W.] Space Sci Inst, Boulder, CO 80301 USA. [Gellert, R.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [McCoy, T.; Grant, J.] Natl Museum Nat Hist, Washington, DC USA. [Ruff, S.; Greeley, R.; Farmer, J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Haldemann, A.] ESA ESTEC, NL-2200 AG Noordwijk, Netherlands. [Herkenhoff, K. E.] US Geol Survey, Flagstaff, AZ 86001 USA. [Johnson, J. R.; Klingelhoefer, G.] Johannes Gutenberg Univ Mainz, Inst Anorgan & Analyt Chem, D-55099 Mainz, Germany. [Lewis, Kevin W.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [McEwen, A.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [McSween, Y.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Ming, D. W.; Morris, R. V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Rice, J. W., Jr.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yingst, A.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Crumpler, L. S.] New Mexico Museum Nat Hist & Sci, Albuquerque, NM USA. [Schroeder, C.] Univ Bayreuth, Ctr Appl Geosci, Tubingen, Germany. Univ Bayreuth, Tubingen, Germany. [Schroeder, C.] Univ Tubingen, Tubingen, Germany. RP Crumpler, LS (reprint author), New Mexico Museum Nat Hist & Sci, 1801 Mt Rd NW, Albuquerque, NM USA. EM larry.crumpler@state.nm.us RI de Souza, Paulo/B-8961-2008; Schroder, Christian/B-3870-2009; Lewis, Kevin/E-5557-2012; Johnson, Jeffrey/F-3972-2015 OI de Souza, Paulo/0000-0002-0091-8925; Schroder, Christian/0000-0002-7935-6039; FU NASA FX This work was supported by the Mars Exploration Rover mission project through contracts with the Jet Propulsion Laboratory, California Institute of Technology, sponsored by NASA. The Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) is supported by the Mars Reconnaissance Orbiter project through the NASA contract to the Jet Propulsion Laboratory, California Institute of Technology. NR 91 TC 6 Z9 6 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUL 6 PY 2011 VL 116 AR E00F24 DI 10.1029/2010JE003749 PG 55 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 790TY UT WOS:000292613300001 ER PT J AU Petrinec, SM Dayeh, MA Funsten, HO Fuselier, SA Heirtzler, D Janzen, P Kucharek, H McComas, DJ Mobius, E Moore, TE Reisenfeld, DB Schwadron, NA Trattner, KJ Wurz, P AF Petrinec, S. M. Dayeh, M. A. Funsten, H. O. Fuselier, S. A. Heirtzler, D. Janzen, P. Kucharek, H. McComas, D. J. Moebius, E. Moore, T. E. Reisenfeld, D. B. Schwadron, N. A. Trattner, K. J. Wurz, P. TI Neutral atom imaging of the magnetospheric cusps SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MAGNETIC-FIELD CHARACTERISTICS; HIGH-ALTITUDE CUSP; RECONNECTION RATE; POLAR CUSP; MAGNETOPAUSE; SPACECRAFT; PLASMA; MODEL; LAYER AB The magnetospheric cusps separate closed dayside magnetospheric field lines from open field lines of the magnetotail mantle and lobes. All magnetospheric field lines that map to the magnetopause also pass through the cusp regions. Thus whenever magnetic reconnection occurs at the magnetopause, magnetosheath plasma can enter one or both of the cusp regions and charge exchange with the geocorona. The resulting energetic neutral atoms (ENAs) resulting from this charge exchange process propagate away from the cusps and are observed remotely by the Interstellar Boundary Explorer (IBEX). The asymmetry of the ENA intensities between the northern and southern cusps are strongly dependent upon the Earth's dipole tilt angle and are consistent with in situ cusp observations. These asymmetric fluxes in the cusp regions are suggested to be explained by the regions at the magnetopause where magnetic reconnection is expected. C1 [Petrinec, S. M.; Fuselier, S. A.; Trattner, K. J.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Dayeh, M. A.; McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Heirtzler, D.; Kucharek, H.; Moebius, E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Janzen, P.; Reisenfeld, D. B.] Univ Montana, Dept Phys & Astron, Billings, MT 59101 USA. [McComas, D. J.] Univ Texas San Antonio, Space Sci & Engn Div, San Antonio, TX USA. [Moore, T. E.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Schwadron, N. A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. RP Petrinec, SM (reprint author), Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. EM petrinec@spasci.com RI Moore, Thomas/D-4675-2012; Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; OI Moore, Thomas/0000-0002-3150-1137; Funsten, Herbert/0000-0002-6817-1039; Moebius, Eberhard/0000-0002-2745-6978 FU IBEX mission as a part of NASA FX Solar wind data are from the Wind spacecraft and provided through the NSSDC CDA Web site. Support for this study comes from the IBEX mission as a part of NASA's Explorer program. IBEX is the result of efforts from a large number of scientists, engineers, and others; all who contributed to this mission share in its success. NR 29 TC 22 Z9 23 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 6 PY 2011 VL 116 AR A07203 DI 10.1029/2010JA016357 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 790SN UT WOS:000292609600001 ER PT J AU Dunlop, MW Zhang, QH Bogdanova, YV Lockwood, M Pu, Z Hasegawa, H Wang, J Taylor, MGGT Berchem, J Lavraud, B Eastwood, J Volwerk, M Shen, C Shi, JK Constantinescu, D Frey, H Fazakerley, AN Sibeck, D Escoubet, P Wild, JA Liu, ZX AF Dunlop, M. W. Zhang, Q. -H. Bogdanova, Y. V. Lockwood, M. Pu, Z. Hasegawa, H. Wang, J. Taylor, M. G. G. T. Berchem, J. Lavraud, B. Eastwood, J. Volwerk, M. Shen, C. Shi, J. -K. Constantinescu, D. Frey, H. Fazakerley, A. N. Sibeck, D. Escoubet, P. Wild, J. A. Liu, Z. -X. TI Extended Magnetic Reconnection across the Dayside Magnetopause SO PHYSICAL REVIEW LETTERS LA English DT Article ID EARTHS MAGNETOPAUSE; INSTRUMENT; SIGNATURES; FIELD AB The extent of where magnetic reconnection (MR), the dominant process responsible for energy and plasma transport into the magnetosphere, operates across Earth's dayside magnetopause has previously been only indirectly shown by observations. We report the first direct evidence of X-line structure resulting from the operation of MR at each of two widely separated locations along the tilted, subsolar line of maximum current on Earth's magnetopause, confirming the operation of MR at two or more sites across the extended region where MR is expected to occur. The evidence results from in-situ observations of the associated ion and electron plasma distributions, present within each magnetic X-line structure, taken by two spacecraft passing through the active MR regions simultaneously. C1 [Dunlop, M. W.; Lockwood, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Zhang, Q. -H.] Polar Res Inst China, SOA Key Lab Polar Sci, Shanghai, Peoples R China. [Bogdanova, Y. V.; Fazakerley, A. N.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pu, Z.; Wang, J.] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China. [Taylor, M. G. G. T.; Escoubet, P.] ESA, ESTEC, NL-2200 AG Noordwijk, Netherlands. [Berchem, J.] Univ Calif Los Angeles, IGPP, Los Angeles, CA 90095 USA. [Constantinescu, D.] TU BS, Inst Geophys & Meteorol, D-38106 Braunschweig, Germany. [Lavraud, B.] CNRS, CESR, F-31028 Toulouse 4, France. [Volwerk, M.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Frey, H.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Dunlop, M. W.; Shen, C.; Shi, J. -K.; Liu, Z. -X.] Chinese Acad Sci, CSSAR, Beijing 100190, Peoples R China. [Sibeck, D.] NASA, GSFC, Greenbelt, MD 20771 USA. [Dunlop, M. W.; Eastwood, J.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Wild, J. A.] Univ Lancaster, Space Plasma Environm & Radio Sci Grp, Lancaster LA1 4WA, England. RP Dunlop, MW (reprint author), Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. EM m.w.dunlop@rl.ac.uk RI Zhang, Qing-He/G-4572-2014; Hasegawa, Hiroshi/A-1192-2007; Constantinescu, Ovidiu Dragos/C-4350-2012; Sibeck, David/D-4424-2012; dunlop, malcolm/F-1347-2010; Lockwood, Mike/G-1030-2011; Constantinescu, Dragos/A-6007-2013 OI Zhang, Qing-He/0000-0003-2429-4050; Hasegawa, Hiroshi/0000-0002-1172-021X; Frey, Harald/0000-0001-8955-3282; Wild, James/0000-0001-8025-8869; Lockwood, Mike/0000-0002-7397-2172; FU Chinese Academy of Sciences [2009S1-54]; Chinese Academy of Sciences through ISSI; STFC in the UK; CSOA in China [201005017]; STFC [ST/G00725X/1]; CNSF [40731056, 40974095] FX M. Dunlop is partly supported by the Chinese Academy of Sciences through grant no. 2009S1-54) and through a working group sponsored by ISSI, Berne. Q. H. Zhang was supported by the STFC in the UK and by the CSOA in China (No. 201005017). J. P. E. received support from the STFC (Grant No. ST/G00725X/1) at ICL. Z. Pu and J. Wang are supported by the CNSF grants 40731056, 40974095. NR 30 TC 15 Z9 18 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 6 PY 2011 VL 107 IS 2 AR 025004 DI 10.1103/PhysRevLett.107.025004 PG 6 WC Physics, Multidisciplinary SC Physics GA 789LI UT WOS:000292516600019 PM 21797615 ER PT J AU Karimabadi, H Dorelli, J Roytershteyn, V Daughton, W Chacon, L AF Karimabadi, H. Dorelli, J. Roytershteyn, V. Daughton, W. Chacon, L. TI Flux Pileup in Collisionless Magnetic Reconnection: Bursty Interaction of Large Flux Ropes SO PHYSICAL REVIEW LETTERS LA English DT Article AB Using fully kinetic simulations of the island coalescence problem for a range of system sizes greatly exceeding kinetic scales, the phenomenon of flux pileup in the collisionless regime is demonstrated. While small islands on the scale of lambda <= 5 ion inertial length (d(i)) coalesce rapidly and do not support significant flux pileup, coalescence of larger islands is characterized by large flux pileup and a weaker time averaged reconnection rate that scales as root d(i)/lambda while the peak rate remains nearly independent of island size. For the largest islands (lambda = 100d(i)), reconnection is bursty and nearly shuts off after the first bounce, reconnecting similar to 20% of the available flux. C1 [Karimabadi, H.; Roytershteyn, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Dorelli, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Chacon, L.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Karimabadi, H (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. RI Dorelli, John/C-9488-2012; Daughton, William/L-9661-2013; OI Roytershteyn, Vadim/0000-0003-1745-7587 FU NSF [ATM0802380, OCI 0904734]; NASA; LDRD at Los Alamos FX Authors acknowledge NSF Grants No. ATM0802380 and No. OCI 0904734, NASA Heliophysics Theory Program, and the LDRD program at Los Alamos. Simulations were performed on Kraken provided by the NSF at NICS and on Pleiades provided by NASA's HEC Program. NR 23 TC 19 Z9 19 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 6 PY 2011 VL 107 IS 2 AR 025002 DI 10.1103/PhysRevLett.107.025002 PG 4 WC Physics, Multidisciplinary SC Physics GA 789LI UT WOS:000292516600017 PM 21797613 ER PT J AU Das, S Sherwin, BD Aguirre, P Appel, JW Bond, JR Carvalho, CS Devlin, MJ Dunkley, J Dunner, R Essinger-Hileman, T Fowler, JW Hajian, A Halpern, M Hasselfield, M Hincks, AD Hlozek, R Huffenberger, KM Hughes, JP Irwin, KD Klein, J Kosowsky, A Lupton, RH Marriage, TA Marsden, D Menanteau, F Moodley, K Niemack, MD Nolta, MR Page, LA Parker, L Reese, ED Schmitt, BL Sehgal, N Sievers, J Spergel, DN Staggs, ST Swetz, DS Switzer, ER Thornton, R Visnjic, K Wollack, E AF Das, Sudeep Sherwin, Blake D. Aguirre, Paula Appel, John W. Bond, J. Richard Sofia Carvalho, C. Devlin, Mark J. Dunkley, Joanna Duenner, Rolando Essinger-Hileman, Thomas Fowler, Joseph W. Hajian, Amir Halpern, Mark Hasselfield, Matthew Hincks, Adam D. Hlozek, Renee Huffenberger, Kevin M. Hughes, John P. Irwin, Kent D. Klein, Jeff Kosowsky, Arthur Lupton, Robert H. Marriage, Tobias A. Marsden, Danica Menanteau, Felipe Moodley, Kavilan Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Parker, Lucas Reese, Erik D. Schmitt, Benjamin L. Sehgal, Neelima Sievers, Jon Spergel, David N. Staggs, Suzanne T. Swetz, Daniel S. Switzer, Eric R. Thornton, Robert Visnjic, Katerina Wollack, Ed TI Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope SO PHYSICAL REVIEW LETTERS LA English DT Article ID PROBE WMAP OBSERVATIONS; CMB POLARIZATION; RECONSTRUCTION; ANISOTROPIES; TEMPERATURE; QUAD; GHZ AB We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2 degrees angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4 sigma detection of the lensing signal measures the amplitude of density fluctuations to 12%. C1 [Das, Sudeep] Univ Calif Berkeley, Dept Phys, BCCP, Berkeley, CA 94720 USA. [Das, Sudeep; Sherwin, Blake D.; Appel, John W.; Dunkley, Joanna; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D.; Niemack, Michael D.; Page, Lyman A.; Parker, Lucas; Staggs, Suzanne T.; Switzer, Eric R.; Visnjic, Katerina] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Das, Sudeep; Dunkley, Joanna; Hajian, Amir; Lupton, Robert H.; Marriage, Tobias A.; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Aguirre, Paula; Duenner, Rolando] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Bond, J. Richard; Hajian, Amir; Nolta, Michael R.; Sievers, Jon] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Sofia Carvalho, C.] IST, IPFN, P-1049001 Lisbon, Portugal. [Sofia Carvalho, C.] Acad Athens, Res Ctr Astron, Athens 11527, Greece. [Devlin, Mark J.; Marsden, Danica; Reese, Erik D.; Schmitt, Benjamin L.; Swetz, Daniel S.; Thornton, Robert] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Dunkley, Joanna; Hlozek, Renee] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Fowler, Joseph W.; Irwin, Kent D.; Niemack, Michael D.; Swetz, Daniel S.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Halpern, Mark; Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Huffenberger, Kevin M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Hughes, John P.; Menanteau, Felipe] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Moodley, Kavilan] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Sehgal, Neelima] Stanford Univ, KIPAC, Stanford, CA 94305 USA. [Switzer, Eric R.] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Thornton, Robert] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Wollack, Ed] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Das, S (reprint author), Univ Calif Berkeley, Dept Phys, BCCP, Berkeley, CA 94720 USA. RI Klein, Jeffrey/E-3295-2013; Spergel, David/A-4410-2011; Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Carvalho, C. Sofia/0000-0002-7241-9797; Huffenberger, Kevin/0000-0001-7109-0099; Menanteau, Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074 FU U.S. NSF [AST-0408698, PHY-0355328, AST-0707731, PIRE-0507768]; Princeton University; University of Pennsylvania; RCUK; NASA [NNX08AH30G]; NSERC; NSF [AST-0546035, AST-0807790]; NSF Physics Frontier Center [PHY-0114422]; KICP; SLAC [AC3-76SF00515]; BCCP; FONDAP; Basal; Centre AIUC; CONICYT FX This work was supported by the U.S. NSF through Grants No. AST-0408698 for the ACT project, and No. PHY-0355328, No. AST-0707731, and No. PIRE-0507768, as well as by Princeton University and the University of Pennsylvania, RCUK (J. D.), NASA Grant No. NNX08AH30G (S. D., A. H., and T. M.), NSERC (A. D. H.), NSF AST-0546035 and AST-0807790 (A. K.), NSF Physics Frontier Center Grant No. PHY-0114422 (E. S.), KICP (E. S.), SLAC No. AC3-76SF00515 (N. S.), and the BCCP (S. D.). Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. Funding at the PUC from FONDAP, Basal, and the Centre AIUC is acknowledged. We thank B. Berger, R. Escribano, T. Evans, D. Faber, P. Gallardo, A. Gomez, M. Gordon, D. Holtz, M. McLaren, W. Page, R. Plimpton, D. Sanchez, O. Stryzak, M. Uehara, and the Astro-Norte group for assistance with ACT observations. We thank Thibaut Louis, Oliver Zahn and Duncan Hanson, and Kendrick Smith for discussions and draft comments. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of CONICYT. NR 40 TC 150 Z9 150 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 5 PY 2011 VL 107 IS 1 AR 021301 DI 10.1103/PhysRevLett.107.021301 PG 5 WC Physics, Multidisciplinary SC Physics GA 787QS UT WOS:000292392400005 PM 21797590 ER PT J AU Sherwin, BD Dunkley, J Das, S Appel, JW Bond, JR Carvalho, CS Devlin, MJ Dunner, R Essinger-Hileman, T Fowler, JW Hajian, A Halpern, M Hasselfield, M Hincks, AD Hlozek, R Hughes, JP Irwin, KD Klein, J Kosowsky, A Marriage, TA Marsden, D Moodley, K Menanteau, F Niemack, MD Nolta, MR Page, LA Parker, L Reese, ED Schmitt, BL Sehgal, N Sievers, J Spergel, DN Staggs, ST Swetz, DS Switzer, ER Thornton, R Visnjic, K Wollack, E AF Sherwin, Blake D. Dunkley, Joanna Das, Sudeep Appel, John W. Bond, J. Richard Sofia Carvalho, C. Devlin, Mark J. Duenner, Rolando Essinger-Hileman, Thomas Fowler, Joseph W. Hajian, Amir Halpern, Mark Hasselfield, Matthew Hincks, Adam D. Hlozek, Renee Hughes, John P. Irwin, Kent D. Klein, Jeff Kosowsky, Arthur Marriage, Tobias A. Marsden, Danica Moodley, Kavilan Menanteau, Felipe Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Parker, Lucas Reese, Erik D. Schmitt, Benjamin L. Sehgal, Neelima Sievers, Jon Spergel, David N. Staggs, Suzanne T. Swetz, Daniel S. Switzer, Eric R. Thornton, Robert Visnjic, Katerina Wollack, Ed TI Evidence for Dark Energy from the Cosmic Microwave Background Alone Using the Atacama Cosmology Telescope Lensing Measurements SO PHYSICAL REVIEW LETTERS LA English DT Article ID PROBE WMAP OBSERVATIONS; PARAMETERS; CONSTRAINTS; ANISOTROPIES; CONSTANT AB For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Omega(Lambda) confirms other measurements from supernovae, galaxy clusters, and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool. C1 [Sherwin, Blake D.; Dunkley, Joanna; Das, Sudeep; Appel, John W.; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D.; Niemack, Michael D.; Page, Lyman A.; Parker, Lucas; Staggs, Suzanne T.; Switzer, Eric R.; Visnjic, Katerina] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Dunkley, Joanna; Hlozek, Renee] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Dunkley, Joanna; Das, Sudeep; Hajian, Amir; Marriage, Tobias A.; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, BCCP, Berkeley, CA 94720 USA. [Bond, J. Richard; Hajian, Amir; Nolta, Michael R.; Sievers, Jon] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Sofia Carvalho, C.] IST, IPFN, P-1049001 Lisbon, Portugal. [Sofia Carvalho, C.] RCAAM, Acad Athens, Athens 11527, Greece. [Devlin, Mark J.; Klein, Jeff; Marsden, Danica; Reese, Erik D.; Schmitt, Benjamin L.; Swetz, Daniel S.; Thornton, Robert] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Duenner, Rolando] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Irwin, Kent D.; Niemack, Michael D.; Swetz, Daniel S.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Halpern, Mark; Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Hughes, John P.; Menanteau, Felipe] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Moodley, Kavilan] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Sehgal, Neelima] Stanford Univ, KIPAC, Stanford, CA 94305 USA. [Switzer, Eric R.] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Thornton, Robert] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Wollack, Ed] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Sherwin, BD (reprint author), Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. RI Klein, Jeffrey/E-3295-2013; Spergel, David/A-4410-2011; Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Carvalho, C. Sofia/0000-0002-7241-9797; Menanteau, Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074 FU U.S. NSF [AST-0408698, PHY-0355328, AST-0707731, PIRE-0507768]; Princeton University; University of Pennsylvania; FONDAP; Basal; Centre AIUC; RCUK; NASA [NNX08AH30G]; NSERC PGSD; Rhodes Trust; NSF [AST-0546035, AST-0807790]; NSF PFC [PHY-0114422]; KICP; SLAC [DE-AC3-76SF00515]; ERC [259505]; BCCP; NSF GRFP; Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT) FX This work was supported by the U.S. NSF through AST-0408698, PHY-0355328, AST-0707731, and PIRE-0507768, as well as by Princeton University, the University of Pennsylvania, FONDAP, Basal, Centre AIUC, RCUK (J. D.), NASA Grant No. NNX08AH30G (S. D., A. H., T. M.), NSERC PGSD (A. D. H.), the Rhodes Trust (R. H.), NSF AST-0546035 and AST-0807790 (A. K.), NSF PFC Grant No. PHY-0114422 (E. S.), KICP (E. S.), SLAC No. DE-AC3-76SF00515 (N. S.), ERC Grant No. 259505 (J. D.), BCCP (S. D.), and the NSF GRFP (B. D. S., B. L. S.). We thank B. Berger, R. Escribano, T. Evans, D. Faber, P. Gallardo, A. Gomez, M. Gordon, D. Holtz, M. McLaren, W. Page, R. Plimpton, D. Sanchez, O. Stryzak, M. Uehara, and Astro-Norte for assistance with ACT. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of the Programa de Astronomia, a program of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). We thank Alex van Engelen for discussions and thank Matias Zaldarriaga and Duncan Hanson for comments on the draft. NR 26 TC 72 Z9 72 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 5 PY 2011 VL 107 IS 1 AR 021302 DI 10.1103/PhysRevLett.107.021302 PG 5 WC Physics, Multidisciplinary SC Physics GA 787QS UT WOS:000292392400006 PM 21797591 ER PT J AU Gregory, OJ Amani, M Fralick, GC AF Gregory, Otto J. Amani, Matin Fralick, Gustave C. TI Thermoelectric power factor of In2O3:Pd nanocomposite films SO APPLIED PHYSICS LETTERS LA English DT Article ID DOPED ZNO; OXIDE AB A nanocomposite exhibiting large thermoelectric powers and capable of operating at temperatures as high as 1100 degrees C in air was fabricated by embedding palladium nanoparticles into an indium oxide matrix via co-sputtering from metal and ceramic targets. Combinatorial chemistry techniques were used to systematically investigate the effect of palladium content in these nanocomposite films on thermoelectric response. Based on these rapid screening experiments, the thermoelectric properties of the most promising nanocomposites were evaluated as a function of post-deposition heat treatment at high temperatures. An n-type nanocomposite film was developed exhibiting a power factor of 4.5 x 10(-4) W/m.K-2 at 1000 degrees C in air. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3607289] C1 [Gregory, Otto J.; Amani, Matin] Univ Rhode Isl, Dept Chem Engn, Kingston, RI 02881 USA. [Fralick, Gustave C.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Gregory, OJ (reprint author), Univ Rhode Isl, Dept Chem Engn, Kingston, RI 02881 USA. EM gregory@egr.uri.edu FU NASA Glen Research Center, Cleveland, Ohio under NASA [NNX07AB83A] FX The authors wish to thank the NASA Glen Research Center, Cleveland, Ohio for supporting this work under NASA Grant No. NNX07AB83A (Aircraft Ageing and Durability Project). NR 17 TC 8 Z9 8 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 4 PY 2011 VL 99 IS 1 AR 013107 DI 10.1063/1.3607289 PG 3 WC Physics, Applied SC Physics GA 791CN UT WOS:000292639200058 ER PT J AU Koehne, JE Stevens, RM Zink, T Deng, Z Chen, H Weng, IC Liu, FT Liu, GY AF Koehne, J. E. Stevens, R. M. Zink, T. Deng, Z. Chen, H. Weng, I. C. Liu, F. T. Liu, G. Y. TI Using carbon nanotube probes for high-resolution three-dimensional imaging of cells SO ULTRAMICROSCOPY LA English DT Article DE Atomic force microscopy; Cells; Membrane; Artifacts; Convolution; Deconvolution ID ATOMIC-FORCE MICROSCOPY; CURVATURE-RECONSTRUCTION METHOD; SCANNING PROBE; MECHANICAL-PROPERTIES; CYTOSKELETAL CHANGES; LATERAL RESOLUTION; MAST-CELLS; TIPS; AFM; SURFACE AB While atomic force microscopy (AFM) has become a promising tool for visualizing membrane morphology of cells, many studies have reported the presence of artifacts such as cliffs on the edges of cells. These artifacts shield important structural features such as lamellopodia, filopodia, microvilli and membrane ridges, which represent characteristic status in signaling processes such as spreading and activation. These cliff-like edges arise from a premature contact of the probe side contact with the cell prior to the probe top apex-cell contact. Carbon nanotube (CNT) modified AFM probes were utilized to address this drawback. Using rat basophilic leukemia (RBL) cells, this work revealed that CNT probes diminish cliff-like artifacts and enabled visualization of entire membrane morphology and structural features in three dimensions. The high aspect ratio of CNT probes provides a very effective remedy to the cliff-like artifacts as well as tip convolution of conventional probes, which shall enhance the validity and application of AFM in cellular biology research. Published by Elsevier B.V. C1 [Koehne, J. E.; Deng, Z.; Liu, G. Y.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Koehne, J. E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Stevens, R. M.] Carbon Design Innovat, Burlingame, CA 94010 USA. [Zink, T.; Liu, G. Y.] Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA. [Chen, H.; Weng, I. C.; Liu, F. T.] Univ Calif Davis, Sch Med, Dept Dermatol, Sacramento, CA 95817 USA. RP Liu, GY (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. EM liu@chem.ucdavis.edu RI Deng, Zhao/B-6555-2016 FU National Institute of General Medical Sciences [1R43GM087978]; NASA Ames Research Center; UC Davis FX This work was supported by the National Institute of General Medical Sciences under award 1R43GM087978, NASA Ames Research Center, and UC Davis. The authors also thank Mr. Alan Hicklin of UC Davis' Spectral Imaging Facility and Dr. Deron Walters of Asylum Research for their technical assistance, and Dr. Thomas J. Mullen at UCD for insightful discussions. We appreciate helpful discussions with Drs. H. Partridge, M. Meyyappan and C. Smith at NASA Ames Research Center. NR 53 TC 6 Z9 7 U1 0 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUL PY 2011 VL 111 IS 8 BP 1155 EP 1162 DI 10.1016/j.ultramic.2011.01.030 PG 8 WC Microscopy SC Microscopy GA 894XP UT WOS:000300461100025 PM 21741916 ER PT J AU Barut, A Madenci, E Nemeth, MP AF Barut, Atila Madenci, Erdogan Nemeth, Michael P. TI STRESS AND BUCKLING ANALYSES OF LAMINATES WITH A CUTOUT USING A {3,0}-PLATE THEORY SO JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES LA English DT Article DE composite; cutout; transverse shear deformation; bending; buckling ID SHEAR DEFORMATION-THEORY; HIGHER-ORDER THEORY; COMPOSITE PLATES AB A semianalytical solution method to predict stress field and structural bifurcation in laminates having a cutout by employing a simple {3, 0}-plate theory is presented. The stress analysis includes both in-plane and bending stress fields. In this theory, the in-plane and out-of-plane displacement fields are respectively assumed in the forms of cubic and uniform through-the-thickness expansions. The cubic expansion ensures the correct behavior of transverse shear deformations while satisfying the condition of zero transverse shear stresses at the laminate faces. The equations of equilibrium for the stress and buckling analysis are derived based on the principle of stationary potential energy. Comparison against the classical laminate and {1, 2}-plate theories proves this semianalytical method credible. C1 [Barut, Atila; Madenci, Erdogan] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA. [Nemeth, Michael P.] NASA Langley Res Ctr, Struct Mech & Concepts Branch, Hampton, VA 23681 USA. RP Barut, A (reprint author), Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA. EM atila@email.arizona.edu; madenci@email.arizona.edu; michael.p.nemeth@nasa.gov NR 39 TC 3 Z9 3 U1 0 U2 2 PU MATHEMATICAL SCIENCE PUBL PI BERKELEY PA UNIV CALIFORNIA, DEPT MATHEMATICS, BERKELEY, CA 94720-3840 USA SN 1559-3959 J9 J MECH MATER STRUCT JI J. Mech. Mater. Struct. PD JUL-AUG PY 2011 VL 6 IS 6 BP 827 EP 868 DI 10.2140/jomms.2011.6.827 PG 42 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 884AH UT WOS:000299676800003 ER PT J AU Kogut, A Fixsen, DJ Chuss, DT Dotson, J Dwek, E Halpern, M Hinshaw, GF Meyer, SM Moseley, SH Seiffert, MD Spergel, DN Wollack, EJ AF Kogut, A. Fixsen, D. J. Chuss, D. T. Dotson, J. Dwek, E. Halpern, M. Hinshaw, G. F. Meyer, S. M. Moseley, S. H. Seiffert, M. D. Spergel, D. N. Wollack, E. J. TI The Primordial Inflation Explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE CMBR polarisation; CMBR experiments; inflation; reionization ID SUBMILLIMETER EMISSION; SPECTRAL DISTORTIONS; INTERGALACTIC MEDIUM; ROCKET MEASUREMENT; RADIATION; ANISOTROPY; POLARIZATION; UNIVERSE; COBE; SCALE AB The Primordial Inflation Explorer (PIXIE) is a concept for an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. Rhe proposed instrument can map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 mu m wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10(-3) at 5 standard deviations. The rich PIXIE data set can also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. C1 [Kogut, A.; Fixsen, D. J.; Chuss, D. T.; Dwek, E.; Moseley, S. H.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fixsen, D. J.] Univ Maryland, College Pk, MD 20742 USA. [Dotson, J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Halpern, M.; Hinshaw, G. F.] Univ British Columbia, Vancouver, BC V67 1Z1, Canada. [Meyer, S. M.] Univ Chicago, Chicago, IL 60637 USA. [Seiffert, M. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Spergel, D. N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RP Kogut, A (reprint author), NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. EM Alan.J.Kogut@nasa.gov; Dale.J.Fixsen@nasa.gov; David.T.Chuss@nasa.gov; Jessie.Dotson@nasa.gov; Eliahu.Dwek-1@nasa.gov; halpern@physics.ubc.ca; hinshaw@physics.ubc.ca; meyer@uchicago.edu; Harvey.Moseley@nasa.gov; michael.d.seiffert@jpl.nasa.gov; dns@astro.princeton.edu; Edward.J.Wollack@nasa.gov RI Dwek, Eli/C-3995-2012; Chuss, David/D-8281-2012; Spergel, David/A-4410-2011; Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 NR 64 TC 176 Z9 176 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD JUL PY 2011 IS 7 AR 025 DI 10.1088/1475-7516/2011/07/025 PG 35 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 855CL UT WOS:000297541000026 ER PT J AU Gao, H Bohn, TJ Podest, E McDonald, KC Lettenmaier, DP AF Gao, H. Bohn, T. J. Podest, E. McDonald, K. C. Lettenmaier, D. P. TI On the causes of the shrinking of Lake Chad SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE Lake Chad; lake bathymetry; irrigation; climate variability; hydrological model; inter-basin water transfer ID TEMPORAL VARIABILITY; BASIN; PARAMETERIZATION; 20TH-CENTURY; RESOURCES; WETLANDS AB Over the last 40 years, Lake Chad, once the sixth largest lake in the world, has decreased by more than 90% in area. In this study, we use a hydrological model coupled with a lake/wetland algorithm to simulate the effects of lake bathymetry, human water use, and decadal climate variability on the lake's level, surface area, and water storage. In addition to the effects of persistent droughts and increasing irrigation withdrawals on the shrinking, we find that the lake's unique bathymetry-which allows its division into two smaller lakes-has made it more vulnerable to water loss. Unfortunately the lake's split is favored by the 1952-2006 climatology. Failure of the lake to remerge with renewed rainfall in the 1990s following the drought years of the 1970s and 1980s is a consequence of irrigation withdrawals. Under current climate and water use, a full recovery of the lake is unlikely without an inter-basin water transfer. Breaching the barrier separating the north and south lakes would reduce the amount of supplemental water needed for recovery. C1 [Gao, H.; Bohn, T. J.; Lettenmaier, D. P.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [Podest, E.; McDonald, K. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [McDonald, K. C.] CUNY, Dept Earth & Atmospher Sci, New York, NY 10031 USA. RP Gao, H (reprint author), Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. EM dennisl@u.washington.edu RI Bohn, Theodore/K-4494-2012; lettenmaier, dennis/F-8780-2011 OI Bohn, Theodore/0000-0002-1880-9129; lettenmaier, dennis/0000-0003-3317-1327 FU National Aeronautics and Space Administration (NASA) [NNX08AN40A] FX We thank S Vassolo for providing the observed discharge, and J Sheffield for the meteorological forcing data. We also thank J Lemoalle for information and explanation about the gauge measurements at Bol. This study was supported by the National Aeronautics and Space Administration (NASA) grant no. NNX08AN40A to the University of Washington under subcontract from Princeton University. Portions of the work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. NR 21 TC 16 Z9 17 U1 1 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JUL-SEP PY 2011 VL 6 IS 3 AR 034021 DI 10.1088/1748-9326/6/3/034021 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 826CB UT WOS:000295327900024 ER PT J AU Li, LM Jiang, X Chahine, MT Olsen, ET Fetzer, EJ Chen, LK Yung, YL AF Li, Liming Jiang, Xun Chahine, Moustafa T. Olsen, Edward T. Fetzer, Eric J. Chen, Luke Yung, Yuk L. TI The recycling rate of atmospheric moisture over the past two decades (1988-2009) SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE precipitation; water vapor; recycling rate; hydrological cycle ID TROPICAL PRECIPITATION; HYDROLOGICAL CYCLE; OCEAN ALGORITHM; CLIMATE-CHANGE; WATER-VAPOR; VARIABILITY; MODELS; TRENDS AB Numerical models predict that the recycling rate of atmospheric moisture decreases with time at the global scale, in response to global warming. A recent observational study (Wentz et al 2007 Science 317 233-5) did not agree with the results from numerical models. Here, we examine the recycling rate by using the latest data sets for precipitation and water vapor, and suggest a consistent view of the global recycling rate of atmospheric moisture between numerical models and observations. Our analyses show that the recycling rate of atmospheric moisture has also decreased over the global oceans during the past two decades. In addition, we find different temporal variations of the recycling rate in different regions when exploring the spatial pattern of the recycling rate. In particular, the recycling rate has increased in the high-precipitation region around the equator (i.e., the intertropical convergence zone) and decreased in the low-precipitation region located either side of the equator over the past two decades. Further exploration suggests that the temporal variation of precipitation is stronger than that of water vapor, which results in the positive trend of the recycling rate in the high-precipitation region and the negative trend of the recycling rate in the low-precipitation region. C1 [Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Li, Liming; Jiang, Xun] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77004 USA. [Chahine, Moustafa T.; Olsen, Edward T.; Fetzer, Eric J.; Chen, Luke] CALTECH, Div Sci, Jet Prop Lab, Pasadena, CA 91125 USA. RP Yung, YL (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM yly@gps.caltech.edu FU Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration FX We thank S Newman, N Heavens, R Shia, L Kuai, M Line, X Zhang, and M Gerstell for helpful comments. This work was partly supported by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Precipitation data are from GPCP V 2.1 and SSM/I. Water vapor data are from SSM/I. NR 40 TC 8 Z9 8 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JUL-SEP PY 2011 VL 6 IS 3 AR 034018 DI 10.1088/1748-9326/6/3/034018 PG 6 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 826CB UT WOS:000295327900021 ER PT J AU Potter, C Klooster, S Hiatt, C Genovese, V Castilla-Rubio, JC AF Potter, Christopher Klooster, Steven Hiatt, Cyrus Genovese, Vanessa Castilla-Rubio, Juan Carlos TI Changes in the carbon cycle of Amazon ecosystems during the 2010 drought SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE Amazon; drought; forest; NPP; MODIS ID BRAZILIAN AMAZON; SATELLITE DATA; TERRESTRIAL; DEFORESTATION; DIEBACK; FORESTS; REGION; SINKS AB Satellite remote sensing was combined with the NASA-CASA (Carnegie Ames Stanford Approach) carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon river basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to those for forests outside the main river floodplains. C1 [Potter, Christopher] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa] Calif State Univ Monterey Bay, Seaside, CA USA. [Castilla-Rubio, Juan Carlos] Planetary Skin Inst, Silicon Valley, CA USA. RP Potter, C (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM chris.potter@nasa.gov FU Planetary Skin Institute FX This work was supported by funding from the Planetary Skin Institute's program on tropical forest ecosystems. NR 17 TC 16 Z9 17 U1 6 U2 56 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JUL-SEP PY 2011 VL 6 IS 3 AR 034024 DI 10.1088/1748-9326/6/3/034024 PG 4 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 826CB UT WOS:000295327900027 ER PT J AU Nikitin, AV Daumont, L Thomas, X Regalia, L Rey, M Tyuterev, VG Brown, LR AF Nikitin, A. V. Daumont, L. Thomas, X. Regalia, L. Rey, M. Tyuterev, Vl. G. Brown, L. R. TI Preliminary assignments of 2 nu(3)-nu(4) hot band of (CH4)-C-12 in the 2 mu m transparency window from long-path FTS spectra SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Methane; Spectra; Transparency window; Hot bands; Titan; Long-path FTS; Tetradecad ID EMPIRICAL LINE PARAMETERS; SPECTROSCOPIC DATABASE; POLYATOMIC-MOLECULES; METHANE TRANSITIONS; CM(-1) REGION; CH4; POSITIONS; STRENGTHS; SPECTROMETER; FREQUENCIES AB New measurements and assignments for the rovibrational transitions of the hot band 2v(3)-v(4) of (CH4)-C-12 are reported from 4600 to 4880 cm(-1) and refer to lower part of the 2 pm methane transparency window. Three long-path spectra were recorded with a Fourier transform spectrometer (FTS) in Reims using an L = 1603 m absorption path length at 1, 7,34 h Pa for the natural samples of CH4; a spectrum of enriched (CH4)-C-13 was also used. Assignments were made for 196 lines of 2v(3)(F-2,E)-v(4). These transitions had an integrated intensity of 5 x 10(-24) cm/molecule at 296 K and improved the overall description of absorption in the 2.1 mu m region. The empirical upper state levels of these assignments belong to Tetradecad (4800-6200 cm(-1)). The new analysis provided much better accuracies of badly blended positions of 2v(3)(F-2)-ground state manifolds at 1.66 mu m. (C) 2011 Elsevier Inc. All rights reserved. C1 [Nikitin, A. V.] Russian Acad Sci, Inst Atmospher Opt, Lab Theoret Spect, Tomsk 634055, Russia. [Nikitin, A. V.; Daumont, L.; Thomas, X.; Regalia, L.; Rey, M.; Tyuterev, Vl. G.] Univ Reims, CNRS, UMR 6089, Grp Spectrometrie Mol & Atmospher,UFR Sci, F-51687 Reims 2, France. [Brown, L. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Nikitin, AV (reprint author), Russian Acad Sci, Inst Atmospher Opt, Lab Theoret Spect, 1 Akad Sky Ave, Tomsk 634055, Russia. EM avn@lts.iao.ru RI Nikitin, Andrei/K-2624-2013 OI Nikitin, Andrei/0000-0002-4280-4096 FU Groupement de Recherche International SAMIA between CNRS (France); RFBR (Russia) [09-05-92508, 09-05-93105]; CAS (China); IDRIS computer centre of CNRS France; IDRIS of the computer centre Reims-Champagne-Ardenne; CRDF (USA) [RUG1-2954-TO-09]; LEFE-CHAT INSU (CNRS, France) FX This work is part of the ANR project "CH4@Titan" (Ref: BLAN08-2_321467). The support of the Groupement de Recherche International SAMIA between CNRS (France), RFBR (Russia) and CAS (China) is acknowledged. We acknowledge the support from IDRIS computer centre of CNRS France and of the computer centre Reims-Champagne-Ardenne. A.N. acknowledges the computer centre SKIF Syberia of Tomsk. The support of RFBR (Russia) through Grants 09-05-92508 and 09-05-93105 is acknowledged. The support of CRDF (USA) through Grant RUG1-2954-TO-09 and the support of LEFE-CHAT INSU project APOA1 (CNRS, France) are acknowledged. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contracts with the National Aeronautics and Space Administration. NR 50 TC 15 Z9 15 U1 0 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD JUL-AUG PY 2011 VL 268 IS 1-2 SI SI BP 93 EP 106 DI 10.1016/j.jms.2011.04.002 PG 14 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 819NH UT WOS:000294833100014 ER PT J AU Bar-Cohen, Y AF Bar-Cohen, Yoseph TI Biomimicking Marine Mechanisms and Organizational Principles SO MARINE TECHNOLOGY SOCIETY JOURNAL LA English DT Editorial Material C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bar-Cohen, Y (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM yosi@jpl.nasa.gov NR 8 TC 0 Z9 0 U1 0 U2 4 PU MARINE TECHNOLOGY SOC INC PI COLUMBIA PA 5565 STERRETT PLACE, STE 108, COLUMBIA, MD 21044 USA SN 0025-3324 J9 MAR TECHNOL SOC J JI Mar. Technol. Soc. J. PD JUL-AUG PY 2011 VL 45 IS 4 BP 14 EP 15 PG 2 WC Engineering, Ocean; Oceanography SC Engineering; Oceanography GA 818GD UT WOS:000294738700002 ER PT J AU Mladenov, N Sommaruga, R Morales-Baquero, R Laurion, I Camarero, L Dieguez, MC Camacho, A Delgado, A Torres, O Chen, Z Felip, M Reche, I AF Mladenov, N. Sommaruga, R. Morales-Baquero, R. Laurion, I. Camarero, L. Dieguez, M. C. Camacho, A. Delgado, A. Torres, O. Chen, Z. Felip, M. Reche, I. TI Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes SO NATURE COMMUNICATIONS LA English DT Article ID ABSORPTION SPECTRAL SLOPES; HIGH-MOUNTAIN LAKES; CLIMATE-CHANGE; MEDITERRANEAN REGION; CHEMICAL-COMPOSITION; ATMOSPHERIC INPUTS; ARCTIC LAKES; SENTINELS; CARBON; TERRESTRIAL AB Remote lakes are usually unaffected by direct human influence, yet they receive inputs of atmospheric pollutants, dust, and other aerosols, both inorganic and organic. In remote, alpine lakes, these atmospheric inputs may influence the pool of dissolved organic matter, a critical constituent for the biogeochemical functioning of aquatic ecosystems. Here, to assess this influence, we evaluate factors related to aerosol deposition, climate, catchment properties, and microbial constituents in a global dataset of 86 alpine and polar lakes. We show significant latitudinal trends in dissolved organic matter quantity and quality, and uncover new evidence that this geographic pattern is influenced by dust deposition, flux of incident ultraviolet radiation, and bacterial processing. Our results suggest that changes in land use and climate that result in increasing dust flux, ultraviolet radiation, and air temperature may act to shift the optical quality of dissolved organic matter in clear, alpine lakes. C1 [Mladenov, N.; Morales-Baquero, R.; Reche, I.] Univ Granada, Fac Ciencias, Dept Ecol, E-18071 Granada, Spain. [Mladenov, N.; Morales-Baquero, R.; Reche, I.] Univ Granada, Inst Agua, E-18071 Granada, Spain. [Sommaruga, R.] Univ Innsbruck, Inst Ecol, Lab Aquat Photobiol & Plankton Ecol, A-6020 Innsbruck, Austria. [Laurion, I.] Ctr Eau Terre Environm, Inst Natl Rech Sci, Quebec City, PQ G1K 9A9, Canada. [Camarero, L.] Ctr Estudis Avancats Blanes CSIC, Blanes 17300, Spain. [Dieguez, M. C.] INIBIOMA CONICET UNComa, Lab Fotobiol, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. [Camacho, A.] Univ Valencia, Cavanilles Inst Biodivers & Evolutionary Biol, E-46100 Burjassot, Spain. [Camacho, A.] Univ Valencia, Dept Microbiol & Ecol, E-46100 Burjassot, Spain. [Delgado, A.] Inst Andaluz Ciencias Tierra IACT CSIC UGR, Granada 18100, Spain. [Torres, O.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Chen, Z.] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. [Felip, M.] Univ Barcelona, Dept Ecol, E-08028 Barcelona, Spain. RP Mladenov, N (reprint author), Univ Colorado, NSTAAR, 1560 30th St, Boulder, CO 80302 USA. EM mladenov@colorado.edu RI Sommaruga, Ruben/E-5335-2011; Reche, Isabel/K-7120-2014; Torres, Omar/G-4929-2013; Camarero, Lluis/J-9239-2012; Felip, Marisol/G-2823-2016; Delgado, Antonio/F-6866-2011; OI Sommaruga, Ruben/0000-0002-1055-2461; Reche, Isabel/0000-0003-2908-1724; Camarero, Lluis/0000-0003-4271-8988; Felip, Marisol/0000-0002-7631-8715; Delgado, Antonio/0000-0002-7240-1570; Morales Baquero, Rafael/0000-0002-7075-7899 FU OMI; Aura Validation Data Center; Fundacion BBVA-ECOSENSOR; Junta de Andalucia AEROGLOBAL; Ministerio de Medio Ambiente MICROBIOGEOGRAPHY [080/2007]; Natural Sciences and Engineering Research Council of Canada; ArcticNet; Polar Continental Shelf Project; Parks Canada; International Polar Year; Centre detudes nordiques; Spanish Ministry of Education and Science [CGL2005-06549-C02-02/ANT, CGL2005-06549-C02-01/ANT]; European FEDER; Ministerio de Medio Ambiente [011/2008, CSD2007-00067]; Austrian Science Fund (FWF) [P19245-BO3] FX We would like to thank J. Lopez-Ramos for assistance with sample collection, preparation, and analyses of SN samples; I. Perez Mazuecos, M. Teresa Serrano, A. Morales, E. Ortega, and R. McGrath for SN sample collection and analyses; E. Casamayor for intellectual contributions and assistance with field work in the Pyrenees; C. Perez and collaborators in Morocco for assistance with field work in Morocco; P. Hortnagl for collection and bacterial analyses of ALP samples; L. Retamal and C. Dupont for sample collection, preparation, and analyses of ARC samples, C. Stedmon for assistance with PARAFAC modelling, M. Ricci for assistance with spectral slope curve calculation, and R. Psenner for critical comments. We are indebted to N. Krotkov of NASA GSFC for providing clear-sky ultraviolet data for all remote sites. The authors thank the KNMI OMI team for L1B radiance data, FMI OMI team for ultraviolet data and the U.S. OMI operational team and the Aura Validation Data Center team for its support in this study. Funding was provided by Fundacion BBVA-ECOSENSOR, Junta de Andalucia AEROGLOBAL, and Ministerio de Medio Ambiente MICROBIOGEOGRAPHY (080/2007) projects; Natural Sciences and Engineering Research Council of Canada, ArcticNet, Polar Continental Shelf Project, Parks Canada, International Polar Year, Centre detudes nordiques. Work in Antarctica was supported by the projects CGL2005-06549-C02-02/ANT and CGL2005-06549-C02-01/ANT from the Spanish Ministry of Education and Science, the former co-financed by European FEDER funds. Work in the Pyrenees was partially funded by the Ministerio de Medio Ambiente ACOPLA (011/2008) project and the GRACCIE project (CSD2007-00067). The Austrian Science Fund (FWF) Project role of lake-catchment-atmosphere linkages for bacteria (P19245-BO3) supported work in the Alps and funded open access fees. NR 39 TC 43 Z9 43 U1 1 U2 48 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2011 VL 2 AR 405 DI 10.1038/ncomms1411 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 819DJ UT WOS:000294805300032 PM 21792184 ER PT J AU Li, W Shields, E Geiselhart, K AF Li, Wu Shields, Elwood Geiselhart, Karl TI Mixed-Fidelity Approach for Design of Low-Boom Supersonic Aircraft SO JOURNAL OF AIRCRAFT LA English DT Article; Proceedings Paper CT 48th AIAA Aerospace Sciences Meeting CY JAN 04-07, 2010 CL Orlando, FL SP AIAA AB This paper documents a mixed-fidelity approach for the design of low-boom supersonic aircraft with a focus on fuselage shaping. A low-boom configuration that is based on low-fidelity analysis is used as the baseline. The fuselage shape is modified iteratively to obtain a configuration with an equivalent-area distribution derived from computational fluid dynamics analysis that attempts to match a predetermined low-boom target area distribution and also yields a low-boom ground signature. The ground signature of the final configuration is calculated by using a state-Of-the-art computational-fluid-dynamics-based boom analysis method that generates accurate midfield pressure distributions for propagation to the ground with ray tracing. The ground signature that is propagated from a midfield pressure distribution has a shaped ramp front, which is similar to the ground signature that is propagated from the computational fluid dynamics equivalent-area distribution. This result supports the validity of low-boom supersonic configuration design by matching a low-boom equivalent-area target, which is easier to accomplish than matching a low-boom midfield pressure target. C1 [Li, Wu; Geiselhart, Karl] NASA, Langley Res Ctr, Aeronaut Syst Anal Branch, Hampton, VA 23681 USA. [Shields, Elwood] Alliant Techsyst Inc, Space Div, Hampton, VA 23681 USA. RP Li, W (reprint author), NASA, Langley Res Ctr, Aeronaut Syst Anal Branch, Mail Stop 442, Hampton, VA 23681 USA. RI Mavoa, Suzanne/B-5372-2010 NR 11 TC 4 Z9 4 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD JUL-AUG PY 2011 VL 48 IS 4 BP 1131 EP 1135 DI 10.2514/1.C000228 PG 5 WC Engineering, Aerospace SC Engineering GA 807EI UT WOS:000293876700002 ER PT J AU Slemp, WCH Bird, RK Kapania, RK Havens, D Norris, A Olliffe, R AF Slemp, Wesley C. H. Bird, R. Keith Kapania, Rakesh K. Havens, David Norris, Ashley Olliffe, Robert TI Design, Optimization, and Evaluation of Integrally Stiffened Al-7050 Panel with Curved Stiffeners SO JOURNAL OF AIRCRAFT LA English DT Article AB A curvilinear stiffened panel was designed, manufactured, and tested at NASA Langley Research Center in the combined load test fixture. The panel was optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure, using a new analysis tool named EBF3PanelOpt. The panel was designed for a combined compression-shear loading configuration, which is a realistic load case for a typical aircraft wing panel. The panel was loaded beyond buckling and strains, and out-of-plane displacements were extracted from a total of 32 strain gages and 5 linear variable displacement transducers. A digital photogrammetic system was used to obtain full-field displacements/strains in the lower half of the stiffened side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high-fidelity nonlinear finite element analysis. The experimental data were also compared with linear elastic finite element results of the panel/test fixture assembly. The numerical results indicated that the panel buckled at the linearly elastic buckling eigenvalue predicted by the panel/test fixture assembly. The out-of-plane displacement measured by the digital photogrammetic system compared well both qualitatively and quantitatively with the nonlinear finite element solution in the postbuckling regime. Furthermore, the experimental strains compared well with both the linear and nonlinear finite element model before buckling. For the postbuckling regime, the nonlinear model compared well at some locations and poorly at others. C1 [Slemp, Wesley C. H.; Kapania, Rakesh K.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Bird, R. Keith] NASA, Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23681 USA. [Havens, David; Norris, Ashley; Olliffe, Robert] Lockheed Martin Aeronaut Co, Adv Dev Programs, Marietta, GA 30063 USA. RP Slemp, WCH (reprint author), Virginia Polytech Inst & State Univ, 215 Randolph Hall, Blacksburg, VA 24061 USA. FU NASA subsonic fixed wing hybrid body technologies NASA research announcement (NRA) [NASA NN L08AA02C] FX The work presented here was funded under NASA subsonic fixed wing hybrid body technologies NASA research announcement (NRA) NASA NN L08AA02C, with Karen M. Brown Taminger as the associate principal investigator and Cynthia Lach as the contract monitor. We are thankful to both Taminger and Lach for their suggestions. The authors would like to thank our partners in the NRA project, John Barnes and Steve Englestad, of Lockheed Martin Aeronautics Co. of Marietta, Georgia, for technical discussions. Compression-shear tests were conducted at NASA Langley Research Center, under the subsonic fixed wing program. NR 20 TC 5 Z9 6 U1 0 U2 12 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD JUL-AUG PY 2011 VL 48 IS 4 BP 1163 EP 1175 DI 10.2514/1.C031118 PG 13 WC Engineering, Aerospace SC Engineering GA 807EI UT WOS:000293876700005 ER PT J AU Pak, CG Lung, SF AF Pak, Chan-gi Lung, Shun-fat TI Flutter Analysis of Aerostructures Test Wing with Test Validated Structural Dynamic Model SO JOURNAL OF AIRCRAFT LA English DT Article AB Tuning a finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. A test-validated finite element model can provide a reliable flutter analysis to define the flutter placard speed to which the aircraft can be flown before flight flutter testing. Minimizing the difference between numerical and experimental results is a type of optimization problem. Through the use of the NASA Dryden Flight Research Center's multidisciplinary design, analysis, and optimization tool to optimize the objective function and constraints, the mass properties, natural frequencies, and mode shapes are matched to the target data and the mass matrix orthogonality is retained. The approach in this study has been applied to minimize the model uncertainties for the structural dynamic model of the Aerostructures Test Wing, which was designed, built, and tested at the NASA Dryden Flight Research Center. A 25% change in flutter speed has been shown after reducing the uncertainties. Therefore, without reducing the uncertainties, 40% of the flutter margin (15% MIL-SPEC requirement + 25% modeling uncertainties) would be needed for the safety of flight test. C1 [Pak, Chan-gi] NASA, Dryden Flight Res Ctr, Struct Dynam Grp, Aerostruct Branch, Edwards AFB, CA 93523 USA. [Lung, Shun-fat] NASA, Dryden Flight Res Ctr, Tybrin Corp, Edwards AFB, CA 93523 USA. RP Pak, CG (reprint author), NASA, Dryden Flight Res Ctr, Struct Dynam Grp, Aerostruct Branch, Edwards AFB, CA 93523 USA. FU Aeronautics Research Mission Directorate FX This object-oriented multidisciplinary design, analysis, and optimization tool development was supported mainly by the Aeronautics Research Mission Directorate Subsonic Fixed Wing project and partly by the Aeronautics Research Mission Directorate Supersonics project under the Fundamental Aeronautics program. NR 19 TC 4 Z9 4 U1 0 U2 4 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD JUL-AUG PY 2011 VL 48 IS 4 BP 1263 EP 1272 DI 10.2514/1.C031257 PG 10 WC Engineering, Aerospace SC Engineering GA 807EI UT WOS:000293876700016 ER PT J AU Suhir, E Mogford, RH AF Suhir, Ephraim Mogford, Richard H. TI Two Men in a Cockpit: Casualty Likelihood if One Pilot Becomes Incapacitated SO JOURNAL OF AIRCRAFT LA English DT Article; Proceedings Paper CT AIAA ATIO Conference CY SEP 13-15, 2010 CL Fort Worth, TX ID HEART-RATE; SIMULATED FLIGHT; WORKLOAD; INDEXES; TASK AB A double-exponential probability distribution function of the extreme-value-distribution type is introduced to quantify the likelihood of a human's failure to perform his/her duties when operating a vehicle: an aircraft, a spacecraft, a boat, a helicopter, a car, etc. As a possible illustration of the general concept, a situation is considered when two pilots operate an aircraft in an ordinary (normal, routine) fashion that abruptly changes to an extraordinary (offnormal, hazardous) one if one of the pilots becomes incapacitated for one reason or another. Such a mishap is referred to,as an accident. Because of the accident, the other pilot, the pilot in charge, might have to cope with a higher mental workload. A fatal casualty will occur if both pilots become unable to perform their duties. Although this circumstance will eventually manifest itself only during landing, in order to assess the probability of the potential casualty, an en route situation (i.e., a situation that precedes descending and landing) is nonetheless considered. This probability depends on the capability of the pilot in charge to successfully cope with the increased mental workload. We determine the probability of a casualty as a function of the actual mental-workload level and the level of the human-capacity factor. The total flight time and the time after the accident are treated in the analysis as nonrandom parameters. The suggested mental-workload/human-capacity-factor model and its generalizations, after appropriate sensitivity analyses are carried out, can be helpful when developing guidelines for personnel training, when choosing the appropriate flight simulation conditions, and/or when there is a need to decide if the existing level of automation and the navigation instrumentation and equipment are adequate to cope with extraordinary (offnormal) situations. If not, additional and/or more advanced instrumentation and equipment should be considered, developed, and installed. Plenty of additional risk analyses and human-psychology-related effort will be needed, of course, to Make the guidelines based on the suggested probabilistic risk-management extreme-value-distribution model practical. C1 [Suhir, Ephraim] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Mogford, Richard H.] NASA, Ames Res Ctr, Human Syst Integrat Div, Moffett Field, CA 94035 USA. RP Suhir, E (reprint author), Univ Maryland, College Pk, MD 20742 USA. NR 22 TC 2 Z9 2 U1 0 U2 4 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD JUL-AUG PY 2011 VL 48 IS 4 BP 1309 EP 1314 DI 10.2514/1.C031263 PG 6 WC Engineering, Aerospace SC Engineering GA 807EI UT WOS:000293876700021 ER PT J AU Flagey, N Boulanger, F Noriega-Crespo, A Paladini, R Montmerle, T Carey, SJ Gagne, M Shenoy, S AF Flagey, N. Boulanger, F. Noriega-Crespo, A. Paladini, R. Montmerle, T. Carey, S. J. Gagne, M. Shenoy, S. TI Tracing the energetics and evolution of dust with Spitzer : a chapter in the history of the Eagle Nebula SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE HII regions; dust, extinction; photon-dominated region (PDR); ISM: individual objects: Eagle Nebula; ISM: bubbles ID SPECTRAL ENERGY-DISTRIBUTION; MASSIVE STELLAR POPULATIONS; INNER GALACTIC PLANE; H-II REGIONS; STAR-FORMATION; DETAILED STRUCTURE; INFRARED-EMISSION; OB ASSOCIATIONS; SPACE-TELESCOPE; TRIFID NEBULA AB Context. The Spitzer GLIMPSE and MIPSGAL surveys have revealed a wealth of details about the Galactic plane in the infrared (IR) with orders of magnitude higher sensitivity, higher resolution, and wider coverage than previous IR observations. The structure of the interstellar medium (ISM) is tightly connected to the countless star-forming regions. We use these surveys to study the energetics and dust properties of the Eagle Nebula (M16), one of the best known star-forming regions. Aims. We present MIPSGAL observations of M16 at 24 and 70 mu m and combine them with previous IR data. The mid-IR image shows a shell inside the well-known molecular borders of the nebula, as in the ISO and MSX observations from 15 to 21 mu m. The morphologies at 24 and 70 mu m are quite different, and its color ratio is unusually warm. The far-IR image resembles the one at 8 mu m that enhances the structure of the molecular cloud and the "pillars of creation". We use this set of IR data to analyze the dust energetics and properties within this template for Galactic star-forming regions. Methods. We measure IR spectral energy distributions (SEDs) across the entire nebula, both within the inner shell and the photodissociation regions (PDRs). We use the DUSTEM model to fit these SEDs and constrain the dust temperature, the dust-size distribution, and the radiation field intensity relative to that provided by the star cluster NGC 6611 (chi/chi(0)). Results. Within the PDRs, the inferred dust temperature (similar to 35 K), the dust-size distribution, and the radiation field intensity (chi/chi(0) < 1) are consistent with expectations. Within the inner shell, the dust is hotter (similar to 70 K). Moreover, the radiation field required to fit the SED is larger than that provided by NGC 6611 (chi/chi(0) > 1). We quantify two solutions to this problem: (1) The size distribution of the dust in the shell is not that of interstellar dust. There is a significant enhancement of the carbon dust-mass in stochastically heated very small grains. (2) The dust emission arises from a hot (similar to 10(6) K) plasma where both UV and collisions with electrons contribute to the heating. Within this hypothesis, the shell SED may be fit for a plasma pressure p/k similar to 5 x 10(7) Kcm(-3). Conclusions. We suggest two interpretations for the M16 inner shell: (1) The shell matter is supplied by photo-evaporative flows arising from dense gas exposed to ionized radiation. The flows renew the shell matter as it is pushed out by the pressure from stellar winds. Within this scenario, we conclude that massive-star forming regions such as M16 have a major impact on the carbon dust-size distribution. The grinding of the carbon dust could result from shattering in grain-grain collisions within shocks driven by the dynamical interaction between the stellar winds and the shell. (2) We also consider a more speculative scenario where the shell is a supernova remnant. In this case, we would be witnessing a specific time in the evolution of the remnant where the plasma pressure and temperature would enable the remnant to cool through dust emission. C1 [Flagey, N.; Noriega-Crespo, A.; Paladini, R.; Carey, S. J.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Flagey, N.; Boulanger, F.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Montmerle, T.] Inst Planetol & Astrophys Grenoble, F-38041 Grenoble 9, France. [Montmerle, T.] Inst Astrophys Paris, F-75014 Paris, France. [Gagne, M.] W Chester Univ, Dept Geol & Astron, W Chester, PA 19383 USA. [Shenoy, S.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP Flagey, N (reprint author), CALTECH, Spitzer Sci Ctr, 1200 E Calif Blvd,MC 220-6, Pasadena, CA 91125 USA. EM nflagey@jpl.nasa.gov RI Gagne, Marc/C-1130-2013 FU NASA; JPL/Caltech FX This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 52 TC 15 Z9 15 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2011 VL 531 AR A51 DI 10.1051/0004-6361/201116437 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795YZ UT WOS:000293017700082 ER PT J AU Gruber, D Greiner, J von Kienlin, A Rau, A Briggs, MS Connaughton, V Goldstein, A van der Horst, AJ Nardini, M Bhat, PN Bissaldi, E Burgess, JM Chaplin, VL Diehl, R Fishman, GJ Fitzpatrick, G Foley, S Gibby, MH Giles, MM Guiriec, S Kippen, RM Kouveliotou, C Lin, L McBreen, S Meegan, CA Olivares, F Paciesas, WS Preece, RD Tierney, D Wilson-Hodge, C AF Gruber, D. Greiner, J. von Kienlin, A. Rau, A. Briggs, M. S. Connaughton, V. Goldstein, A. van der Horst, A. J. Nardini, M. Bhat, P. N. Bissaldi, E. Burgess, J. M. Chaplin, V. L. Diehl, R. Fishman, G. J. Fitzpatrick, G. Foley, S. Gibby, M. H. Giles, M. M. Guiriec, S. Kippen, R. M. Kouveliotou, C. Lin, L. McBreen, S. Meegan, C. A. Olivares E, F. Paciesas, W. S. Preece, R. D. Tierney, D. Wilson-Hodge, C. TI Rest-frame properties of 32 gamma-ray bursts observed by the Fermi Gamma-ray Burst Monitor SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma-ray burst: general ID E-PEAK; REDSHIFT DISTRIBUTION; LUMINOSITY FUNCTION; SPECTRA; BATSE; EVOLUTION; MISSION; ENERGETICS; TELESCOPE; ASTRONOMY AB Aims. In this paper we study the main spectral and temporal properties of gamma-ray bursts (GRBs) observed by Fermi/GBM. We investigate these key properties of GRBs in the rest-frame of the progenitor and test for possible intra-parameter correlations to better understand the intrinsic nature of these events. Methods. Our sample comprises 32 GRBs with measured redshift that were observed by GBM until August 2010. 28 of them belong to the long-duration population and 4 events were classified as short/hard bursts. For all of these events we derive, where possible, the intrinsic peak energy in the nu F(nu) spectrum (E(p,rest)), the duration in the rest-frame, defined as the time in which 90% of the burst fluence was observed (T(90,rest)) and the isotropic equivalent bolometric energy (E(iso)). Results. The distribution of E(p), rest has mean and median values of 1.1 MeV and 750 keV, respectively. A log-normal fit to the sample of long bursts peaks at similar to 800 keV. No high-E(p) population is found but the distribution is biased against low E(p) values. We find the lowest possible E(p) that GBM can recover to be approximate to 15 keV. The T(90,rest) distribution of long GRBs peaks at similar to 10 s. The distribution of E(iso) has mean and median values of 8.9 x 10(52) erg and 8.2 x 10(52) erg, respectively. We confirm the tight correlation between E(p,rest) and E(iso) (Amati relation) and the one between E(p,rest) and the 1-s peak luminosity (L(p)) (Yonetoku relation). Additionally, we observe a parameter reconstruction effect, i.e. the low-energy power law index a gets softer when E(p) is located at the lower end of the detector energy range. Moreover, we do not find any significant cosmic evolution of neither E(p,rest) nor T(90,rest). C1 [Gruber, D.; Greiner, J.; von Kienlin, A.; Rau, A.; Nardini, M.; Bissaldi, E.; Diehl, R.; Foley, S.; McBreen, S.; Olivares E, F.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Briggs, M. S.; Connaughton, V.; Goldstein, A.; van der Horst, A. J.; Bhat, P. N.; Burgess, J. M.; Chaplin, V. L.; Guiriec, S.; Lin, L.; Paciesas, W. S.; Preece, R. D.] Univ Alabama, NSSTC, Huntsville, AL 35805 USA. [Fitzpatrick, G.; McBreen, S.; Tierney, D.] Univ Coll, Dublin 4, Ireland. [Fishman, G. J.; Kouveliotou, C.; Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, VP62, Huntsville, AL 35812 USA. [Gibby, M. H.; Giles, M. M.] Jacobs Technol Inc, Huntsville, AL USA. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Meegan, C. A.] NSSTC, Univ Space Res Assoc, Huntsville, AL 35805 USA. RP Gruber, D (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. EM dgruber@mpe.mpg.de RI Bissaldi, Elisabetta/K-7911-2016; OI Bissaldi, Elisabetta/0000-0001-9935-8106; Preece, Robert/0000-0003-1626-7335; Burgess, James/0000-0003-3345-9515 FU NASA [NNH07ZDA001-GLAST]; Irish Research Council for Science, Engineering and Technology; Marie Curie Actions under FP7; German Bundesministerium fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) [50 QV 0301, 50 OG 0502] FX We thank Jonathan Granot for useful discussions. A.J.v.d.H. was supported by NASA grant NNH07ZDA001-GLAST. SF acknowledges the support of the Irish Research Council for Science, Engineering and Technology, cofunded by Marie Curie Actions under FP7. The GBM project is supported by the German Bundesministerium fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) under the contract numbers 50 QV 0301 and 50 OG 0502. NR 78 TC 12 Z9 12 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2011 VL 531 AR A20 DI 10.1051/0004-6361/201116953 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795YZ UT WOS:000293017700161 ER PT J AU Guelbenzu, AN Klose, S Rossi, A Kann, DA Kruhler, T Greiner, J Rau, A Olivares, EF Afonso, PMJ Filgas, R Yoldas, AK McBreen, S Nardini, M Schady, P Schmidl, S Updike, AC Yoldas, A AF Guelbenzu, A. Nicuesa Klose, S. Rossi, A. Kann, D. A. Kruehler, T. Greiner, J. Rau, A. Olivares, F. E. Afonso, P. M. J. Filgas, R. Yoldas, A. Kuepcue McBreen, S. Nardini, M. Schady, P. Schmidl, S. Updike, A. C. Yoldas, A. TI GRB 090426: Discovery of a jet break in a short burst afterglow SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma-ray burst: individual: GRB 090426 ID GAMMA-RAY BURST; SWIFT-ERA; OPTICAL AFTERGLOWS; LIGHT CURVES; PRE-SWIFT; TELESCOPE OBSERVATIONS; 2-COMPONENT JET; HOST GALAXIES; ENERGETICS; DUST AB Context. The link between the duration of GRBs and the nature of their progenitors remains disputed. Short bursts (with durations of less than similar to 2 s) are less frequently observed, technically more difficult to localize, and exhibit significantly fainter afterglows. Aims. It is of critical importance to establish whether the burst duration can reliably distinguish the different GRB population models of collapsars and compact stellar mergers. The Swift GRB 090426 provides an unique opportunity to address this question. Its duration (T-90 = 1.28 s) places GRB 090426 firmly in the short burst population, while the high redshift (z = 2.609), host galaxy properties, and prompt emission spectral characteristics are more similar to those of long-duration GRBs. Methods. On the basis of data obtained with the Tautenburg 2 m telescope (Germany) and the 7-channel imager GROND (La Silla, Chile), we compiled the most finely sampled light curve available for a short burst optical/NIR afterglow. The light curve was then analysed in a standard fashion. GROND and XRT data were used to determine the broad-band spectral energy distribution of the afterglow across more than three orders of magnitude. Results. Our data show that a light curve break exists at 0.4 days, which is followed by a steep decay. This light curve decay is achromatic in the optical/NIR bands, and interpreted as a post-jet break phase. The X-ray data do not disagree with this interpretation. Conclusions. The half-opening angle of the suspected jet as well as the luminosity of the optical afterglow provide additional evidence that GRB 090426 is probably linked to the death of a massive star rather than to the merger of two compact objects. C1 [Guelbenzu, A. Nicuesa; Klose, S.; Rossi, A.; Kann, D. A.; Schmidl, S.] Thuringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany. [Kruehler, T.; Greiner, J.; Rau, A.; Olivares, F. E.; Afonso, P. M. J.; Filgas, R.; Nardini, M.; Schady, P.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kruehler, T.] Tech Univ Munich, D-85748 Garching, Germany. [Yoldas, A. Kuepcue; Yoldas, A.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [McBreen, S.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Updike, A. C.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Updike, A. C.] NASA, GSFC, CRESST, Greenbelt, MD 20771 USA. [Updike, A. C.] NASA, GSFC, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Updike, A. C.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Guelbenzu, AN (reprint author), Thuringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg, Germany. EM ana@tls-tautenburg.de RI Rossi, Andrea/N-4674-2015; OI Rossi, Andrea/0000-0002-8860-6538; Kruehler, Thomas/0000-0002-8682-2384 FU DFG [Kl 766/16-1, SA 2001/2-1, SA 2001/1-1, HA 1850/28-1]; MPE; BLANCEFLOR Boncompagni-Ludovisi, nee Bildt foundation; DFG cluster of excellence 'Origin and Structure of the Universe'; DAAD FX A.N.G. acknowledges useful discussions with Francisco Molleda Sanchez (Madrid, Spain) and Manuel Segura Morales (La Laguna, Spain). A.N.G., D. A. K., A. Rossi, & S. K. acknowledges support by grant DFG Kl 766/16-1. A.N.G., A. Rossi & A. U. are grateful for travel funding support through MPE. A. Rossi acknowledges support from the BLANCEFLOR Boncompagni-Ludovisi, nee Bildt foundation, T. K. by the DFG cluster of excellence 'Origin and Structure of the Universe', F.O. funding of his Ph.D. through the DAAD, M.N. support by DFG grant SA 2001/2-1 and P. S. by DFG grant SA 2001/1-1. Part of the funding for GROND (both hardware and personnel) was generously granted from the Leibniz-Prize to G. Hasinger (DFG grant HA 1850/28-1). This work made use of data supplied by the UK Swift science data center at the University of Leicester. We thank the referee for very helpful remarks. NR 45 TC 26 Z9 26 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2011 VL 531 AR L6 DI 10.1051/0004-6361/201116657 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795YZ UT WOS:000293017700110 ER PT J AU Hony, S Kemper, F Woods, PM van Loon, JT Gorjian, V Madden, SC Zijlstra, AA Gordon, KD Indebetouw, R Marengo, M Meixner, M Panuzzo, P Shiao, B Sloan, GC Roman-Duval, J Mullaney, J Tielens, AGGM AF Hony, S. Kemper, F. Woods, P. M. van Loon, J. Th. Gorjian, V. Madden, S. C. Zijlstra, A. A. Gordon, K. D. Indebetouw, R. Marengo, M. Meixner, M. Panuzzo, P. Shiao, B. Sloan, G. C. Roman-Duval, J. Mullaney, J. Tielens, A. G. G. M. TI The Spitzer discovery of a galaxy with infrared emission solely due to AGN activity SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: lines and bands; galaxies: active; galaxies: peculiar; quasars: individual: (SAGE1CJ053634.78-722658.5); infrared: galaxies ID LARGE-MAGELLANIC-CLOUD; 10 MU-M; SILICATE EMISSION; SPACE-TELESCOPE; SOURCE CATALOG; ENERGY-DISTRIBUTIONS; ELLIPTIC GALAXIES; GALACTIC NUCLEI; PAH EMISSION; SAGE SURVEY AB Aims. We present an analysis of a galaxy (SAGE1CJ053634.78-722658.5) at a redshift of 0.14 of which the infrared (IR) emission is entirely dominated by emission associated with the active galactic nucleus. Methods. We present the 5-37 mu m Spitzer/IRS spectrum and broad wavelength spectral energy distribution (SED) of SAGE1CJ053634.78-722658.5, an IR point-source detected by Spitzer/SAGE. The source was observed in the SAGE-Spec program and was included to determine the nature of sources with deviant IR colours. The spectrum shows a redshifted (z = 0.14 +/- 0.005) silicate emission feature with an exceptionally high feature-to-continuum ratio and weak polycyclic aromatic hydrocarbon (PAH) emission bands. We compare the source with models of emission from dusty tori around AGNs. We present a diagnostic diagram that will help to identify similar sources based on Spitzer/MIPS and Herschel/PACS photometry. Results. The SED of SAGE1CJ053634.78-722658.5 is peculiar because it lacks far-IR emission due to cold dust and a clear stellar counterpart. We find that the SED and the IR spectrum can be understood as emission originating from the inner similar to 10 pc around an accreting black hole. There is no need to invoke emission from the host galaxy, either from the stars or from the interstellar medium, although a possible early-type host galaxy cannot be excluded based on the SED analysis. The hot dust around the accretion disk gives rise to a continuum, which peaks at 4 mu m, whereas the strong silicate features may arise from optically thin emission of dusty clouds within similar to 10 pc around the black hole. The weak PAH emission does not appear to be linked to star formation, as star formation templates strongly over-predict the measured far-IR flux levels. Conclusions. The SED of SAGE1CJ053634.78-722658.5 is rare in the local universe but may be more common in the more distant universe. The conspicuous absence of host-galaxy IR emission places limits on the far-IR emission arising from the dusty torus alone. C1 [Hony, S.; Madden, S. C.; Panuzzo, P.; Mullaney, J.] Irfu Univ Paris Diderot, Lab AIM Paris Saclay, CNRS INSU CEA, F-91191 Gif Sur Yvette, France. [Kemper, F.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Kemper, F.; Woods, P. M.; Zijlstra, A. A.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [van Loon, J. Th.] Univ Keele, Astrophys Grp, Lennard Jones Labs, Keele ST5 5BG, Staffs, England. [Gorjian, V.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gordon, K. D.; Meixner, M.; Shiao, B.; Roman-Duval, J.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Indebetouw, R.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Marengo, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA. [Sloan, G. C.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Tielens, A. G. G. M.] Leiden Observ, NL-2300 RA Leiden, Netherlands. RP Hony, S (reprint author), Irfu Univ Paris Diderot, Lab AIM Paris Saclay, CNRS INSU CEA, Bat 709, F-91191 Gif Sur Yvette, France. EM sacha.hony@cea.fr RI Kemper, Francisca/D-8688-2011 OI Kemper, Francisca/0000-0003-2743-8240 FU National Aeronautics and Space Administration; ROSAT Data Archive of the Max-Planck-Institut fur extraterrestrische Physik (MPE) at Garching, Germany FX This research has made use of NASA's Astrophysics Data System Bibliographic Services, the VizieR catalogue access tool, CDS, Strasbourg, France, the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration and the ROSAT Data Archive of the Max-Planck-Institut fur extraterrestrische Physik (MPE) at Garching, Germany. S. H. would like to thank N. Jetha, S. Temporin and H. Aussel for interesting and very instructive discussions about active galaxies. The authors thank Neal Jackson and Ian Browne for careful reading of an earlier version of the manuscript. NR 42 TC 8 Z9 8 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2011 VL 531 AR A137 DI 10.1051/0004-6361/201116845 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795YZ UT WOS:000293017700144 ER PT J AU Schwope, AD Horne, K Steeghs, D Still, M AF Schwope, A. D. Horne, K. Steeghs, D. Still, M. TI Dissecting the donor star in the eclipsing polar HU Aquarii SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE binaries: eclipsing; stars: variables: general ID CATACLYSMIC VARIABLES; ACCRETION STREAM; WHITE-DWARF; QQ-VUL; AM-HER; SECONDARY; AQR; SPECTROSCOPY; TOMOGRAPHY; DISCOVERY AB Medium-resolution spectroscopic observations with full phase coverage of the eclipsing polar HU Aqr are presented. Na I absorption and Ca II emission lines are used to trace the secondary star. While the Na I lines seem to have contributions from both hemispheres of the donor star, the Ca II lines were found to originate from the irradiated part of its surface alone. An irradiation model was applied and the irradiation-weighted radial velocity amplitude was used to determine the mass ratio Q = M-WD/M-2 = 4.58 +/- 0.20. When combined with high-speed photometric low-state eclipse light curves, the white dwarf mass is constrained to 0.75 < M-WD/M-circle dot < 0.84 with a best-fit value of M-WD = (0.80 +/- 0.04) M-circle dot, and M-2 = (0.18 +/- 0.06) M-circle dot at an orbital inclination of i = 87(-0.5)(o+0.8). C1 [Schwope, A. D.] Leibniz Inst Astrophys Potsdam AIP, D-14482 Potsdam, Germany. [Horne, K.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Steeghs, D.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Still, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Still, M.] Bay Area Environm Res Inst, Sonoma, CA 95476 USA. RP Schwope, AD (reprint author), Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany. EM aschwope@aip.de RI Steeghs, Danny/C-5468-2009 OI Steeghs, Danny/0000-0003-0771-4746 NR 30 TC 9 Z9 9 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2011 VL 531 AR A34 DI 10.1051/0004-6361/201016373 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795YZ UT WOS:000293017700073 ER PT J AU Hurwitz, MM Braesicke, P Pyle, JA AF Hurwitz, M. M. Braesicke, P. Pyle, J. A. TI Sensitivity of the mid-winter Arctic stratosphere to QBO width in a simplified chemistry-climate model SO ATMOSPHERIC SCIENCE LETTERS LA English DT Article DE stratosphere; QBO; chemistry-climate models ID QUASI-BIENNIAL OSCILLATION; NORTHERN-HEMISPHERE; 50 MB; OZONE; CIRCULATION; DISTURBANCES; WAVES; TREND; FLOW; GCM AB This study is the first to assess the sensitivity of the mid-winter Arctic stratosphere to variability in the width of the quasi-biennial oscillation (QBO). Differences between a pair of idealised simulations with a simplified chemistry-climate model are examined. The width of the QBO appears to have equal influence on the Arctic stratosphere as does the phase (i.e. the Holton-Tan mechanism). In the model, a wider QBO acts like a preferential shift towards the easterly phase of the QBO. That is, on average, a wider QBO is associated with a weaker Arctic vortex and with enhanced total ozone at high latitudes. Copyright. 2011 Royal Meteorological Society C1 [Hurwitz, M. M.] NASA, Goddard Space Flight Ctr, NASA Postdoctoral Program, Greenbelt, MD 20771 USA. [Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.] Univ Cambridge, NCAS Climate, Cambridge, England. [Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.] Univ Cambridge, Ctr Atmospher Sci, Cambridge, England. RP Hurwitz, MM (reprint author), NASA, Goddard Space Flight Ctr, NASA Postdoctoral Program, Code 613-3, Greenbelt, MD 20771 USA. EM margaret.m.hurwitz@nasa.gov RI Braesicke, Peter/D-8330-2016 OI Braesicke, Peter/0000-0003-1423-0619 FU Emmanuel College, Cambridge; NASA; National Centre for Atmospheric Science (NCAS) FX M.M.H. acknowledges funding from Emmanuel College, Cambridge, and from the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. P.B. and J.A.P. acknowledges the National Centre for Atmospheric Science (NCAS). The authors thank NCAS-CMS for computational support. NR 23 TC 2 Z9 2 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1530-261X J9 ATMOS SCI LETT JI Atmos. Sci. Lett. PD JUL-SEP PY 2011 VL 12 IS 3 BP 268 EP 272 DI 10.1002/asl.330 PG 5 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 810PG UT WOS:000294137000004 ER PT J AU Gleeson, DF Williamson, C Grasby, SE Pappalardo, RT Spear, JR Templeton, AS AF Gleeson, D. F. Williamson, C. Grasby, S. E. Pappalardo, R. T. Spear, J. R. Templeton, A. S. TI Low temperature S-0 biomineralization at a supraglacial spring system in the Canadian High Arctic SO GEOBIOLOGY LA English DT Article ID INFRARED MAPPING SPECTROMETER; SULFUR-OXIDIZING BACTERIA; SP-NOV.; MICROBIAL COMMUNITY; FILAMENTOUS-SULFUR; ELEMENTAL SULFUR; OMEGA/MARS EXPRESS; PERENNIAL SPRINGS; EUROPAS SURFACE; SNOWBALL EARTH AB Elemental sulfur (S-0) is deposited each summer onto surface ice at Borup Fiord pass on Ellesmere Island, Canada, when high concentrations of aqueous H2S are discharged from a supraglacial spring system. 16S rRNA gene clone libraries generated from sulfur deposits were dominated by beta-Proteobacteria, particularly Ralstonia sp. Sulfur-cycling micro-organisms such as Thiomicrospira sp., and epsilon-Proteobacteria such as Sulfuricurvales and Sulfurovumales spp. were also abundant. Concurrent cultivation experiments isolated psychrophilic, sulfide-oxidizing consortia, which produce S-0 in opposing gradients of Na2S and oxygen. 16S rRNA gene analyses of sulfur precipitated in gradient tubes show stable sulfur-biomineralizing consortia dominated by Marinobacter sp. in association with Shewanella, Loktanella, Rubrobacter, Flavobacterium, and Sphingomonas spp. Organisms closely related to cultivars appear in environmental 16S rRNA clone libraries; none currently known to oxidize sulfide. Once consortia were simplified to Marinobacter and Flavobacteria spp. through dilution-to-extinction and agar removal, sulfur biomineralization continued. Shewanella, Loktanella, Sphingomonas, and Devosia spp. were also isolated on heterotrophic media, but none produced S-0 alone when reintroduced to Na2S gradient tubes. Tubes inoculated with a Marinobacter and Shewanella spp. co-culture did show sulfur biomineralization, suggesting that Marinobacter may be the key sulfide oxidizer in laboratory experiments. Light, florescence and scanning electron microscopy of mineral aggregates produced in Marinobacter experiments revealed abundant cells, with filaments and sheaths variably mineralized with extracellular submicron sulfur grains; similar biomineralization was not observed in abiotic controls. Detailed characterization of mineral products associated with low temperature microbial sulfur-cycling may provide biosignatures relevant to future exploration of Europa and Mars. C1 [Gleeson, D. F.; Pappalardo, R. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Williamson, C.; Spear, J. R.] Colorado Sch Mines, Golden, CO 80401 USA. [Grasby, S. E.; Templeton, A. S.] Geol Survey Canada, Calgary, AB T2L 2A7, Canada. [Templeton, A. S.] Univ Colorado, Boulder, CO 80309 USA. RP Gleeson, DF (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Damhnait.F.Gleeson@jpl.nasa.gov OI Grasby, Stephen/0000-0002-3910-4443; Spear, John/0000-0002-4664-7438; TEMPLETON, ALEXIS/0000-0002-9670-0647 FU Canadian Polar Continental Shelf Project; Planetary Society; Lewis and Clark Field Scholarship; NASA Astrobiology Institute; David and Lucille Packard Foundation FX The authors acknowledge Benoit Beauchamp at the University of Calgary for collaboration in the field and Katherine Wright at the University of Colorado for collaboration in the laboratory. Fieldwork was supported by the Canadian Polar Continental Shelf Project, The Planetary Society and a Lewis and Clark Field Scholarship. Laboratory work was conducted with funding from the Director's Discretionary Fund of the NASA Astrobiology Institute and the David and Lucille Packard Foundation. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 86 TC 15 Z9 15 U1 2 U2 25 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1472-4677 J9 GEOBIOLOGY JI Geobiology PD JUL PY 2011 VL 9 IS 4 BP 360 EP 375 DI 10.1111/j.1472-4669.2011.00283.x PG 16 WC Biology; Environmental Sciences; Geosciences, Multidisciplinary SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Geology GA 811AE UT WOS:000294172700006 PM 21592302 ER PT J AU Sawant, HS Gopalswamy, N Rosa, RR Sych, RA Anfinogentov, SA Fernandes, FCR Cecatto, JR Costa, JER AF Sawant, Hanumant S. Gopalswamy, Natchimuthuk Rosa, Reinaldo R. Sych, Robert A. Anfinogentov, Sergey A. Fernandes, Francisco C. R. Cecatto, Jose R. Costa, Joaquim E. R. TI The Brazilian decimetric array and space weather SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Brazilian decimetric array; CMEs; Coronal holes and eruptive prominences; Tomographic and spatial/spectral techniques ID CORONAL MASS EJECTION; LONGITUDINAL INTENSITY OSCILLATIONS; PROMINENCE ERUPTION; RADIO-BURSTS; X-RAY; MEASURED PARAMETERS; SOLAR SPECTROSCOPE; EXTENDED SYSTEMS; FLARE; WAVES AB We report on the development and current status of the Brazilian Decimetric Array (BDA), which will play a vital role in filling the existing gaps in imaging the Sun at decimetric wavelengths. The BOA will operate in the following radio bands: 1.2-1.7, 2.8, and 5.6 GHz with high spatial and temporal resolutions. BDA can observe flares and coronal mass ejections (CMEs) in a spectral range poorly covered in the past, thus providing important information to space weather science. The smallest baseline of 9 m employed by the BDA combined with high sensitivity will readily identify large-scale structures such as coronal holes and provide information on wave flows from them. New methods are being developed to analyze the solar-disk data with high time resolution by using tomographic and spatial PWF techniques that can readily identify coronal holes in their initial stage. Efforts are also being made to analyze the BOA data in real time in conjunction with SOHO data for a better understanding of CMEs and coronal holes. This paper provides a brief description of the BDA, and the new techniques of data analysis. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Fernandes, Francisco C. R.] UNIVAP, Inst Res & Dev, BR-12244000 Sao Jose Dos Campos, Brazil. [Sawant, Hanumant S.; Cecatto, Jose R.; Costa, Joaquim E. R.] INPE, Div Astrophys, BR-12227010 Sao Jose Dos Campos, Brazil. [Rosa, Reinaldo R.] INPE, Appl Math & Comp Lab, BR-12227010 Sao Jose Dos Campos, Brazil. [Sych, Robert A.; Anfinogentov, Sergey A.] Inst Solar Terr Phys, Irkutsk, Russia. [Gopalswamy, Natchimuthuk] Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Fernandes, FCR (reprint author), UNIVAP, Inst Res & Dev, BR-12244000 Sao Jose Dos Campos, Brazil. EM sawant@das.inpe.br; guga@univap.br RI Gopalswamy, Nat/D-3659-2012; Costa, Joaquim/G-3840-2012; Fernandes, Francisco/C-8929-2012; Sych, Robert/D-1499-2013; Anfinogentov, Sergey/A-6836-2014; OI Sych, Robert/0000-0003-4693-0660; Anfinogentov, Sergey/0000-0002-1107-7420; Costa, Joaquim/0000-0002-0703-4735 FU INPE; FAPESP [Proc. 06/55883-0]; CNPq [480045/2008-9]; BZG FX The BDA Project is supported by INPE and FAPESP (Proc. 06/55883-0). The authors acknowledge the support given by CNPq, INPE and FAPESP for participation in the ILWS meeting. F.C.R. Fernandes thanks CNPq for the research grant (No. 480045/2008-9).; Funded by BZG. NR 52 TC 0 Z9 0 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2011 VL 73 IS 11-12 SI SI BP 1300 EP 1310 DI 10.1016/j.jastp.2010.09.009 PG 11 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 809YV UT WOS:000294093500003 ER PT J AU Echer, E Tsurutani, BT Guarnieri, FL Kozyra, JU AF Echer, E. Tsurutani, B. T. Guarnieri, F. L. Kozyra, J. U. TI Interplanetary fast forward shocks and their geomagnetic effects: CAWSES events SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Interplanetary shocks; AE indices; Substorms; Magnetotail ID DYNAMIC PRESSURE ENHANCEMENTS; MAGNETIC-FIELD; SOLAR-WIND; MAGNETOSPHERIC SUBSTORMS; NORTHWARD TURNINGS; DISCONTINUITIES; POLAR; STORMS; PRECIPITATION; DISTURBANCES AB The seven CAWSES interplanetary fast forward shocks and their geomagnetic effects during 2004-2005 have been analyzed. It is found that the arrival time of the shocks at Earth can be estimated within an accuracy of similar to 5 min. Furthermore, AL decreases are found to occur within 10 min of shock impingement on the magnetopause. It was also determined that there is a direct correlation between the interplanetary magnetic field southward directed (IMF B-s) prior to shock arrival and substorms triggered by the shocks. If the IMF is northward prior to shock arrival, the geomagnetic activity is present but is low. One interpretation of this result is that the preconditioning energy stored in the magnetotail leaks away rapidly. A correlation between substorm peak AL and shock strength (Mach number) has also been noted, which could imply that shock strength is important for the amount of energy released into the magnetosphere/ionosphere. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Echer, E.] Inst Nacl Pesquisas Espaciais, BR-12201 Sao Jose Dos Campos, SP, Brazil. [Tsurutani, B. T.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsurutani, B. T.] Tech Univ Carolo Wilhelmina Braunschweig, Braunschweig, Germany. [Guarnieri, F. L.] Univ Vale Paraiba, Sao Jose Dos Campos, SP, Brazil. [Kozyra, J. U.] Univ Michigan, Ann Arbor, MI 48109 USA. RP Echer, E (reprint author), Inst Nacl Pesquisas Espaciais, BR-12201 Sao Jose Dos Campos, SP, Brazil. EM eecher@dge.inpe.br FU NASA; CNPq agency [PQ-300211/2008-2]; FAPESP [2008/05607-2]; NASA-SRT [NNG05GM48G, NNX08AQ15G, NNX08AV83G] FX Portions of this research were performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. EE would like to thank CNPq agency (PQ-300211/2008-2) for financial support and FLG and BTT thank FAPESP (project 2008/05607-2) for support for this work. JUK acknowledges support by NASA-SRT Grants NNG05GM48G, NNX08AQ15G and NNX08AV83G. We thank R. Skoug for help in sending low resolution ACE plasma data for a number of events when higher resolutions were not available. We acknowledge ACE magnetometer and plasma teams for solar wind data and to the World Data Center for Geomagnetism-Kyoto, for the geomagnetic index data. NR 70 TC 13 Z9 13 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2011 VL 73 IS 11-12 SI SI BP 1330 EP 1338 DI 10.1016/j.jastp.2010.09.020 PG 9 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 809YV UT WOS:000294093500006 ER PT J AU Nieves-Chinchilla, T Gomez-Herrero, R Vinas, AF Malandraki, O Dresing, N Hidalgo, MA Opitz, A Sauvaud, JA Lavraud, B Davila, JM AF Nieves-Chinchilla, T. Gomez-Herrero, R. Vinas, A. F. Malandraki, O. Dresing, N. Hidalgo, M. A. Opitz, A. Sauvaud, J. -A. Lavraud, B. Davila, J. M. TI Analysis and study of the in situ observation of the June 1st 2008 CME by STEREO SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Coronal mass ejection; Magnetic cloud; Solar wind; Energetic particles ID CORONAL MASS EJECTION; INTERPLANETARY MAGNETIC CLOUDS; COROTATING INTERACTION REGION; REVERSE SHOCK PAIRS; SOLAR-WIND; 1 AU; ULYSSES OBSERVATIONS; GEOMAGNETIC STORMS; SIGNATURES; ELECTRON AB In this work we present a combined study of the counterpart of the coronal mass ejection (CME) of June 1st of 2008 in the interplanetary medium. This event has been largely studied because of its peculiar initiation and its possible forecasting consequences for space weather. We show an in situ analysis (on days June 6th-7th of 2008) of the CME in the interplanetary medium in order to shed some light on the propagation and evolution mechanisms of the interplanetary CME (ICME). The goals of this work are twofold: gathering the whole in situ data from PLASTIC and IMPACT onboard STEREO B in order to provide a complete characterization of the ICME, and to present a model where the thermal plasma pressure is included. The isolated ICME features show a clear forward shock which we identify as an oblique forward fast shock accelerating ions to a few-hundred key during its passage. Following the shock, a flux rope is easily defined as a magnetic cloud (MC) by the magnetic field components and magnitude, and the low proton plasma-beta. During the spacecraft passage through the MC, the energetic ion intensity shows a pronounced decrease, suggesting a closed magnetic topology, and the suprathermal electron population shows a density and temperature increase, demonstrating the importance of the electrons in the MC description. The in situ evidence suggests that there is no direct magnetic connection between the forward shock and the MC, and the characteristics of the reverse shock determined suggest that the shock pair is a consequence of the propagation of the ICME in the interplanetary medium. The energetic ions measured by the SEPT instrument suggest that their enhancement is not related to any solar event, but is solely due to the interplanetary shock consistent with the fact that no flares are observed on the Sun. The changes in the polarity of the interplanetary magnetic field in the vicinity of the ICME observed by electron PADs from SWEA are in accordance with the idea that the CME originated along a neutral line over the quiet Sun. The magnetic cloud model presented in this work provides the plasma pressure as a new factor to consider in the study of the expansion and evolution of CMEs in the interplanetary medium. This model could provide a new understanding of the Sun-Earth connection because of the important role that the plasma plays in the eruption of the CME in the solar corona and the reconnection process carried out with the Earth's magnetosphere. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Nieves-Chinchilla, T.] Catholic Univ Amer, Washington, DC 20064 USA. [Nieves-Chinchilla, T.; Vinas, A. F.; Davila, J. M.] NASA, Goddard Space Flight Ctr, Heliosphys Sci Div, Greenbelt, MD 20771 USA. [Gomez-Herrero, R.; Dresing, N.] Univ Kiel, IEAP, Kiel, Germany. [Malandraki, O.] Natl Observ Athens, Inst Astron & Astrophys, Athens, Greece. [Hidalgo, M. A.] Univ Alcala De Henares, Madrid, Spain. [Opitz, A.; Sauvaud, J. -A.; Lavraud, B.] Univ Toulouse, CNRS UPS, CESR, Toulouse, France. RP Nieves-Chinchilla, T (reprint author), Catholic Univ Amer, Washington, DC 20064 USA. EM tnieves@helio.gsfc.nasa.gov RI Gomez-Herrero, Raul/B-7346-2011; Malandraki, Olga/F-3224-2010; Nieves-Chinchilla, Teresa/F-3482-2016; Hidalgo, Miguel/L-5826-2014 OI Gomez-Herrero, Raul/0000-0002-5705-9236; Nieves-Chinchilla, Teresa/0000-0003-0565-4890; Hidalgo, Miguel/0000-0003-1617-2037 FU German Bundesministerium fuer Wirtschaft through the Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) [50 OC 0902] FX The STEREO/SEPT project is supported under grant 50 OC 0902 by the German Bundesministerium fuer Wirtschaft through the Deutsches Zentrum fuer Luft- und Raumfahrt (DLR). This work utilizes data obtained by the global oscillation network group (GONG) program, managed by the National Solar Observatory, which is operated by AURA, Inc., under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofisica de Canarias, and Cerro Tololo Interamerican Observatory. NR 75 TC 4 Z9 4 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2011 VL 73 IS 11-12 SI SI BP 1348 EP 1360 DI 10.1016/j.jastp.2010.09.026 PG 13 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 809YV UT WOS:000294093500008 ER PT J AU Hidalgo, MA Blanco, JJ Alvarez, FJ Nieves-Chinchilla, T AF Hidalgo, M. A. Blanco, J. J. Alvarez, F. J. Nieves-Chinchilla, T. TI On the relationship between magnetic clouds and the great geomagnetic storms associated with the period 1995-2006 SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Geomagnetic storms; Magnetic clouds; Corotating interaction regions ID RING CURRENT; FIELD; SHOCK; DST AB The fact that magnetic clouds are one of the main sources causing geomagnetic storms is a well-established fact. One of the issues is to establish those features of magnetic clouds determinant in the intensity of the Dst corresponding to geomagnetic storms. We examine measurements of geoeffective magnetic clouds during the period 1995-2006 providing geomagnetic storms with Dst indexes lower than - 100 nT. These involve 46 geomagnetic storm events. After establishing the different characteristics of the magnetic clouds (plasma velocity, maximum magnetic intensity, etc.) we show some results about the correlations found among them and the storms intensity, finding that maximum magnetic field magnitude is a determinant factor to establish the importance of magnetic clouds in generating geomagnetic storms, having a correlation as good as the electric convective field. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Hidalgo, M. A.; Blanco, J. J.] Univ Alcala De Henares, Dept Fis, Space Res Grp, Alcala De Henares, Spain. [Nieves-Chinchilla, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Hidalgo, MA (reprint author), Univ Alcala De Henares, Dept Fis, Space Res Grp, Alcala De Henares, Spain. EM miguel.hidalgo@uah.es RI Blanco, Juan Jose/E-3627-2014; Nieves-Chinchilla, Teresa/F-3482-2016; Hidalgo, Miguel/L-5826-2014 OI Blanco, Juan Jose/0000-0002-8666-0696; Nieves-Chinchilla, Teresa/0000-0003-0565-4890; Hidalgo, Miguel/0000-0003-1617-2037 FU Comision Interministerial de Ciencia y Tecnologia (CICYT) of Spain [ESP2006-08459] FX This work has been supported by the Comision Interministerial de Ciencia y Tecnologia (CICYT) of Spain, grant ESP2006-08459. The authors thank to K. Ogilvie, R. Fitzenreiter and R. Lepping (Goddard Space Flight Center, Greenbelt, MD, USA) for the permission to use the WIND data, and the World Data Center for Geomagnetism in Kyoto (Japan) for providing Dst data. NR 31 TC 3 Z9 3 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2011 VL 73 IS 11-12 SI SI BP 1372 EP 1379 DI 10.1016/j.jastp.2011.02.017 PG 8 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 809YV UT WOS:000294093500010 ER PT J AU Tsurutani, BT Echer, E Verkhoglyadova, OP Lakhina, GS Guarnieri, FL AF Tsurutani, Bruce T. Echer, Ezequiel Verkhoglyadova, Olga P. Lakhina, Gurbax S. Guarnieri, F. L. TI Mirror instability upstream of the termination shock (TS) and in the heliosheath SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Mirror instability; Pickup ions; Heliosheath; Magnetosheaths ID MAGNETIC-FIELD OBSERVATIONS; SOLAR-WIND; MODE STRUCTURES; ALFVEN WAVES; EQUATOR-S; TERRESTRIAL MAGNETOSHEATH; BOW SHOCK; ULYSSES; HOLES; PLASMA AB We experimentally identify mirror mode (MM) structures in the Voyager 1 heliosheath data for the first time. This is done using the magnetic field data alone. The heliosheath MM structures are found to have the following characteristics: (1) quasiperiodic spacings with a typical scale size of similar to 57 rho(p), (2) little or no angular changes across the structures (similar to 3 degrees longitude and similar to 3 degrees latitude), and (3) a lack of sharp boundaries at the magnetic dip edges. It is demonstrated that the pickup of interstellar neutrals in the upstream region of the termination shock (TS) and quasiperpendicular TS plasma compression are the causes of MM instability during intervals when the IMF is nearly orthogonal to the solar wind flow direction. Concomitant additional injection of pickup ions (PUIs) throughout the heliosheath will lead to further MM amplification. MM structures in planetary magnetosheaths and interplanetary sheaths are discussed for comparative purposes. Multiple sources of free energy are often involved. (C) 2010 Published by Elsevier Ltd. C1 [Tsurutani, Bruce T.; Verkhoglyadova, Olga P.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Echer, Ezequiel] INPE, Sao Jose Dos Campos, SP, Brazil. [Verkhoglyadova, Olga P.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Lakhina, Gurbax S.] Indian Inst Geomagnetism, Navi Mumbai, India. [Guarnieri, F. L.] UNIVAP, Sao Jose Dos Campos, SP, Brazil. RP Tsurutani, BT (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM bruce.tsurutani@jpl.nasa.gov RI Lakhina, Gurbax /C-9295-2012; OI Lakhina, Gurbax /0000-0002-8956-486X; Verkhoglyadova, Olga/0000-0002-9295-9539 FU NASA; Indian National Science Academy, New Delhi; Brazilian FAPESP agency [2007/52533-1] FX This paper contains work done at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. GSL thanks the Indian National Science Academy, New Delhi, for support under the Senior Scientist Scheme. EE acknowledges Brazilian FAPESP agency 2007/52533-1 for support of this work. NR 70 TC 7 Z9 7 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2011 VL 73 IS 11-12 SI SI BP 1398 EP 1404 DI 10.1016/j.jastp.2010.06.007 PG 7 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 809YV UT WOS:000294093500014 ER PT J AU Costa, E Echer, E Alves, MV Tsurutani, BT Simoes, FJR Cardoso, FR Lakhina, GS AF Costa, E., Jr. Echer, E. Alves, M. V. Tsurutani, B. T. Simoes, F. J. R., Jr. Cardoso, F. R. Lakhina, G. S. TI A computational study of nonresonant cross-field diffusion of energetic particles due to their interaction with interplanetary magnetic decreases SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Magnetic decreases; Particles diffusion; Nonresonant interactions; Monte Carlo simulation ID NONLINEAR ALFVEN WAVES; COSMIC-RAY PROPAGATION; SOLAR-WIND; HOLES; TRANSPORT; ULYSSES AB We present a new method of calculating cross-field diffusion of charged particles due to their interactions with interplanetary magnetic decreases (MDs) in high heliospheric latitudes. We use a geometric model that evaluates perpendicular diffusion to the ambient magnetic field as a function of particle's gyroradius, MD radius, ratio between fields outside and inside the MD, and a random impact parameter. We use Ulysses magnetic field data of 1994 to identify the MDs and get the empirical size and magnetic field decrease distribution functions. We let protons with energies ranging from 100 key to 2 MeV interact with MDs. The MD characteristics are taken from the observational distribution functions using the Monte Carlo method. Calculations show that the increase in diffusion tends to saturate when particles' gyroradius becomes as large as MD radii, and that particles' gyroradius increases faster than diffusion distance as the energy of the particles is increased. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Costa, E., Jr.; Echer, E.; Alves, M. V.; Simoes, F. J. R., Jr.; Cardoso, F. R.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Tsurutani, B. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lakhina, G. S.] Indian Inst Geomagnetism, Navi Mumbai, India. [Costa, E., Jr.] IFMG, BR-35400000 Ouro Preto, MG, Brazil. RP Costa, E (reprint author), Inst Nacl Pesquisas Espaciais, POB 515, BR-12227010 Sao Jose Dos Campos, SP, Brazil. EM costajr.e@gmail.com RI Lakhina, Gurbax /C-9295-2012; Alves, Maria Virginia/G-3325-2014; OI Lakhina, Gurbax /0000-0002-8956-486X; da Costa Junior, Edio/0000-0002-2432-2691 FU Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [140441/2006-9]; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2008/01288-0]; Indian National Science Academy, New Delhi FX The authors would like to thank Brazilian agencies: Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq - project 140441/2006-9). Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP - project 2008/01288-0) for financial support. G.S.L. thanks the Indian National Science Academy, New Delhi, for the support under the Senior Scientist Scheme. NR 27 TC 3 Z9 4 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2011 VL 73 IS 11-12 SI SI BP 1405 EP 1409 DI 10.1016/j.jastp.2011.01.022 PG 5 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 809YV UT WOS:000294093500015 ER PT J AU Ukhorskiy, AY Mauk, BH Fox, NJ Sibeck, DG Grebowsky, JM AF Ukhorskiy, Aleksandr Y. Mauk, Barry H. Fox, Nicola J. Sibeck, David G. Grebowsky, Joseph M. TI Radiation belt storm probes: Resolving fundamental physics with practical consequences SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Radiation belts; Space weather ID RELATIVISTIC ELECTRON-SCATTERING; RING CURRENT; GEOMAGNETIC STORMS; INNER MAGNETOSPHERE; MAGNETIC-FIELD; PC5 WAVES; DIFFUSION; ACCELERATION; TRANSPORT; PARTICLE AB The fundamental processes that energize, transport, and cause the loss of charged particles operate throughout the universe at locations as diverse as magnetized planets, the solar wind, our Sun, and other stars. The same processes operate within our immediate environment, the Earth's radiation belts. The Radiation Belt Storm Probes (RBSP) mission will provide coordinated two-spacecraft observations to obtain understanding of these fundamental processes controlling the dynamic variability of the near-Earth radiation environment. In this paper we discuss some of the profound mysteries of the radiation belt physics that will be addressed by RBSP and briefly describe the mission and its goals. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Ukhorskiy, Aleksandr Y.; Mauk, Barry H.; Fox, Nicola J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Sibeck, David G.; Grebowsky, Joseph M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ukhorskiy, AY (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. EM aleksandr.ukhorskiy@jhuapl.edu RI Sibeck, David/D-4424-2012; Grebowsky, Joseph/I-7185-2013; Ukhorskiy, Aleksandr/E-6429-2016; Fox, Nicola/P-6692-2016; Mauk, Barry/E-8420-2017 OI Ukhorskiy, Aleksandr/0000-0002-3326-4024; Fox, Nicola/0000-0003-3411-4228; Mauk, Barry/0000-0001-9789-3797 NR 79 TC 12 Z9 13 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2011 VL 73 IS 11-12 SI SI BP 1417 EP 1424 DI 10.1016/j.jastp.2010.12.005 PG 8 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 809YV UT WOS:000294093500017 ER PT J AU Fok, MC Glocer, A Zheng, Q Horne, RB Meredith, NP Albert, JM Nagai, T AF Fok, M. -C. Glocer, A. Zheng, Q. Horne, R. B. Meredith, N. P. Albert, J. M. Nagai, T. TI Recent developments in the radiation belt environment model SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Radiation belts; Storm and substorm; Wave-particle interactions; Space weather ID PITCH-ANGLE DIFFUSION; ION-CYCLOTRON WAVES; RELATIVISTIC ELECTRONS; RING CURRENT; GEOMAGNETIC STORMS; SUBSTORM DIPOLARIZATION; INNER MAGNETOSPHERE; MAGNETIC STORMS; LOSS MECHANISMS; SOLAR-WIND AB The fluxes of energetic particles in the radiation belts are found to be strongly controlled by the solar wind conditions. In order to understand and predict the radiation particle intensities, we have developed a physics-based Radiation Belt Environment (RBE) model that considers the influences from the solar wind, ring current and plasmasphere. Recently, an improved calculation of wave-particle interactions has been incorporated. In particular, the model now includes cross diffusion in energy and pitch-angle. We find that the exclusion of cross diffusion could cause significant overestimation of electron flux enhancement during storm recovery. The RBE model is also connected to MHD fields so that the response of the radiation belts to fast variations in the global magnetosphere can be studied. We are able to reproduce the rapid flux increase during a substorm dipolarization on 4 September 2008. The timing is much shorter than the time scale of wave associated acceleration. Published by Elsevier Ltd. C1 [Fok, M. -C.; Glocer, A.; Zheng, Q.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. [Zheng, Q.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Horne, R. B.; Meredith, N. P.] British Antarctic Survey, Div Phys Sci, Cambridge CB3 0ET, England. [Albert, J. M.] USAF, Res Lab, Hanscom AFB, MA USA. [Nagai, T.] Tokyo Inst Technol, Dept Earth & Planetary Sci, Tokyo 152, Japan. RP Fok, MC (reprint author), NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. EM mei-ching.h.fok@nasa.gov RI Glocer, Alex/C-9512-2012; Fok, Mei-Ching/D-1626-2012; OI Glocer, Alex/0000-0001-9843-9094; Albert, Jay/0000-0001-9494-7630; Meredith, Nigel/0000-0001-5032-3463; Horne, Richard/0000-0002-0412-6407 FU NASA Science Mission Directorate, Heliophysics Division [936723.02.01.06.78, 936723.02.01.01.27] FX This research was supported by NASA Science Mission Directorate, Heliophysics Division, Living With a Star Targeted Research and Technology Program, under Work Breakdown Structures: 936723.02.01.06.78 and 936723.02.01.01.27. NR 69 TC 23 Z9 23 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2011 VL 73 IS 11-12 SI SI BP 1435 EP 1443 DI 10.1016/j.jastp.2010.09.033 PG 9 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 809YV UT WOS:000294093500019 ER PT J AU Gonzalez, WD Echer, E de Gonzalez, ALC Tsurutani, BT Lakhina, GS AF Gonzalez, W. D. Echer, E. Clua de Gonzalez, A. L. Tsurutani, B. T. Lakhina, G. S. TI Extreme geomagnetic storms, recent Gleissberg cycles and space era-superintense storms SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Extreme geomagnetic storms; Geomagnetic activity ID SOLAR-WIND; SPEED AB Extreme historical and space era geomagnetic storms (Delta H or Dst <= -400 nT) are studied in terms of their sunspot and Gleissberg solar cycle distributions. Interplanetary and magnetospheric processes associated with the Carrington storm are summarized and the intense storm of August 4, 1972 is discussed in the context of the possibility of having occurred as an extreme storm instead, if the polarity of the related magnetic cloud would have been opposite. We also discuss about superintense geomagnetic storms (Dst <= -250 nT) that occurred in the space era, showing their solar cycle and seasonal distributions and also providing averages for the peak values of their main associated interplanetary parameters. A discussion about the possible occurrence of more Carrington type storms is also addressed. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Gonzalez, W. D.; Echer, E.; Clua de Gonzalez, A. L.] Inst Nacl Pesquisas Espaciais, Div Geofis Espacial, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Tsurutani, B. T.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Lakhina, G. S.] Indian Inst Space Res, Bombay, Maharashtra, India. RP Gonzalez, WD (reprint author), Inst Nacl Pesquisas Espaciais, Div Geofis Espacial, Av Astronautas 1758,POB 515, BR-12227010 Sao Jose Dos Campos, SP, Brazil. EM gonzalez@dge.inpe.br; eecher@dge.inpe.br; alicia@dge.inpe.br; bruce.t.tsurutani@jpl.nasa.gov; gslakhina@gmail.com RI Lakhina, Gurbax /C-9295-2012; Tecnologias espaciai, Inct/I-2415-2013; OI Lakhina, Gurbax /0000-0002-8956-486X FU NASA FX W.D.G. would like to thank the "Fundacao de Amparo a Pesquisa do Estado de Sao Paulo", FAPESP, (2008/06650-9) and the "Conselho Nacional de Pesquisas", CNPq, (PQ-300321/2005-8). E.E. would like to thank the FAPESP (2007/52533-1) and CNPq (PQ-300211/2008-2) and A.L.C.G. would like to thank CNPq (PQ-342734/2008-2). Portions of this work were done at the Jet Propulsion Laboratory, California institute of Technology under Contract with NASA. NR 26 TC 13 Z9 14 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2011 VL 73 IS 11-12 SI SI BP 1447 EP 1453 DI 10.1016/j.jastp.2010.07.023 PG 7 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 809YV UT WOS:000294093500021 ER PT J AU Echer, E Gonzalez, WD Tsurutani, BT AF Echer, E. Gonzalez, W. D. Tsurutani, B. T. TI Statistical studies of geomagnetic storms with peak Dst <=-50 nT from 1957 to 2008 SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Geomagnetic storms; Ring current; Magnetosphere; Space weather ID INTERPLANETARY MAGNETIC-FIELD; SOLAR-WIND; SEMIANNUAL VARIATION; RING CURRENT; ORIGIN; MAGNETOSPHERE; ENERGY; MODEL; DECAY AB A catalog of 1377 geomagnetic storms with peak Dst (Dst(p)) <= -50 nT for the period 1957-2008 has been compiled. The dependence of Dst(p) on the solar cycle and annual variation are studied in this paper. It is found that geomagnetic storm peak intensity distribution can be described by an exponential form, P(Dst(p)) approximate to 1.2e(-Dstp/34) where P is the probability of geomagnetic storm occurrence with a given value Dstp. The updated solar cycle and annual distribution of geomagnetic storms have confirmed the expected behavior. For the solar cycle variation, geomagnetic storms display a two-peak distribution, with one peak close to solar maximum and the other a few years later in the beginning of the declining phase. Geomagnetic storms follow the well-known seasonal variation of geomagnetic activity. More intense storms show a peak in probability occurrence in July, confirming previous observations. These results are of practical importance for space weather applications. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Echer, E.; Gonzalez, W. D.; Tsurutani, B. T.] INPE, Sao Jose Dos Campos, SP, Brazil. [Tsurutani, B. T.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Echer, E (reprint author), INPE, Sao Jose Dos Campos, SP, Brazil. EM ezequiel.echer@gmail.com RI Tecnologias espaciai, Inct/I-2415-2013 FU CNPq [PQ-300211/2008-2]; FAPESP [2007/52533-1]; FAPESP agency [2008/06650-9]; NASA FX EE would like to thank the CNPq (PQ-300211/2008-2) and FAPESP (2007/52533-1) agencies for financial support. WDG would like to thank FAPESP agency (2008/06650-9) for financial support. Portions of this work were performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. BTT would like to thank INPE and his hosts for the hospitality during his sabbatical leave during 2010. We thank the World-Data Center for Geomagnetism-Kyoto for the Dst index data used in this study. NR 51 TC 20 Z9 22 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2011 VL 73 IS 11-12 SI SI BP 1454 EP 1459 DI 10.1016/j.jastp.2011.04.021 PG 6 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 809YV UT WOS:000294093500022 ER PT J AU Knapp, KR Ansari, S Bain, CL Bourassa, MA Dickinson, MJ Funk, C Helms, CN Hennon, CC Holmes, CD Huffman, GJ Kossin, JP Lee, HT Loew, A Magnusdottir, G AF Knapp, Kenneth R. Ansari, Steve Bain, Caroline L. Bourassa, Mark A. Dickinson, Michael J. Funk, Chris Helms, Chip N. Hennon, Christopher C. Holmes, Christopher D. Huffman, George J. Kossin, James P. Lee, Hai-Tien Loew, Alexander Magnusdottir, Gudrun TI GLOBALLY GRIDDED SATELLITE OBSERVATIONS FOR CLIMATE STUDIES SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID PACIFIC TROPICAL CYCLONES; EXTRATROPICAL TRANSITION; NORTH PACIFIC; UNITED-STATES; HIRS; PRECIPITATION; CYCLOGENESIS; DEPOSITION; RESOLUTION; VORTICITY C1 [Knapp, Kenneth R.; Ansari, Steve; Kossin, James P.] NOAA, Natl Climat Data Ctr, Asheville, NC 28801 USA. [Bain, Caroline L.; Magnusdottir, Gudrun] Univ Calif Irvine, Irvine, CA USA. [Bourassa, Mark A.] Florida State Univ, Tallahassee, FL 32306 USA. [Dickinson, Michael J.] SUNY Albany, Dept Earth & Atmospher Sci, Albany, NY 12222 USA. [Funk, Chris] USGS Ctr Earth Resource Observat & Sci, Santa Barbara, CA USA. [Helms, Chip N.; Hennon, Christopher C.] Univ N Carolina, Asheville, NC 28804 USA. [Holmes, Christopher D.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Huffman, George J.] Sci Syst & Applicat Inc, Greenbelt, MD USA. [Huffman, George J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lee, Hai-Tien] Univ Maryland, Cooperat Inst Climate & Satellites, College Pk, MD 20742 USA. [Loew, Alexander] Max Planck Inst Meteorol, Hamburg, Germany. RP Knapp, KR (reprint author), NOAA, Natl Climat Data Ctr, 151 Patton Ave, Asheville, NC 28801 USA. EM ken.knapp@noaa.gov RI Knapp, Kenneth/E-9817-2011; Holmes, Christopher/C-9956-2014; Huffman, George/F-4494-2014; Kossin, James/C-2022-2016 OI Holmes, Christopher/0000-0002-2727-0954; Huffman, George/0000-0003-3858-8308; Kossin, James/0000-0003-0461-9794 FU Cluster of Excellence 'CliSAP', University of Hamburg [EXC177] FX K. Knapp acknowledges the significant contribution of George Huffman in the design of the GridSat dataset. Many were integral in the initial rescue of the ISCCP B1 data, including Bill Rossow, John Bates, Garrett Campbell and many at the agencies that provided the B1 data: JMA, EUMETSAT, and NOAA. A. Loew acknowledges the support of the Cluster of Excellence 'CliSAP' (EXC177), University of Hamburg. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 60 TC 48 Z9 49 U1 2 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JUL PY 2011 VL 92 IS 7 BP 893 EP 907 DI 10.1175/2011BAMS3039.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 806RO UT WOS:000293827900005 ER PT J AU Ma, HY Mechoso, CR Xue, Y Xiao, H Wu, CM Li, JL De Sales, F AF Ma, H. -Y. Mechoso, C. R. Xue, Y. Xiao, H. Wu, C. -M. Li, J. -L. De Sales, F. TI Impact of land surface processes on the South American warm season climate SO CLIMATE DYNAMICS LA English DT Article DE Land surface processes; AGCM; South American monsoon; SACZ; Chaco Low ID GENERAL-CIRCULATION MODELS; PLANETARY BOUNDARY-LAYER; SOIL-MOISTURE; BIOSPHERE MODEL; LOW-LEVEL; PRECIPITATION; MONSOON; RAINFALL; PARAMETERIZATION; VARIABILITY AB The present study demonstrates that (1) the simulation of the South American warm season (December-February) climate by an atmospheric general circulation model (AGCM) is sensitive to the representation of land surface processes, (2) the sensitivity is not confined to the "hot spot" in Amazonia, and (3) upgrading the representation of those processes can produce a significant improvement in AGCM performance. The reasons for sensitivity and higher success are investigated based on comparisons between observational datasets and simulations by the AGCM coupled to either a simple land scheme that specifies soil moisture availability or to the Simplified Simple Biosphere Model (SSiB) that allows for consideration of soil and vegetation biophysical process. The context for the study is the UCLA AGCM. The most notable simulation improvements are along the lee of the Andes in the lower troposphere, where poleward flow transports abundant moisture from the Amazon basin to high latitudes, and in the monsoon region where the intensity and pattern of precipitation and upper level ice water content are more realistic. It is argued that a better depiction of the Chaco Low, which is controlled by local effects of land surface processes, decisively contributes to the superior model performance with low-level flows in central South America. The better representation of the atmospheric column static stability and large-scale moisture convergence in tropical South America contribute to more realistic precipitation over the monsoon region. The overall simulation improvement is, therefore, due to a combination of different regional processes. This finding is supported by idealized AGCM experiments. C1 [Ma, H. -Y.; Mechoso, C. R.; Xue, Y.; Xiao, H.; Wu, C. -M.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90024 USA. [Xue, Y.; De Sales, F.] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90024 USA. [Li, J. -L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Ma, HY (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90024 USA. EM hyma@atmos.ucla.edu RI De Sales, Fernando/G-6551-2013; Ma, Hsi-Yen/K-1019-2013; OI Wu, Chien-Ming/0000-0001-9295-7181 FU NOAA [NA07OAR4310236] FX We thank Dr Thomas Toniazzo for useful comments on this paper and suggesting the experiments presented in Sect. 4. We also thank the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modeling (WGCM) for making available the WCRP CMIP3 multi-model dataset. Computing resources were provided from the NCAR computational and information systems laboratory. This research was supported by NOAA under grant NA07OAR4310236. NR 60 TC 13 Z9 13 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 J9 CLIM DYNAM JI Clim. Dyn. PD JUL PY 2011 VL 37 IS 1-2 BP 187 EP 203 DI 10.1007/s00382-010-0813-3 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 800YG UT WOS:000293403000012 ER PT J AU Pan, XH Huang, BH Shukla, J AF Pan, Xiaohua Huang, Bohua Shukla, Jagadish TI Sensitivity of the tropical Pacific seasonal cycle and ENSO to changes in mean state induced by a surface heat flux adjustment in CCSM3 SO CLIMATE DYNAMICS LA English DT Article DE Mean climate; Seasonal cycle; ENSO; CCSM3; Heat flux adjustment; Pacific Ocean ID MODEL INTERCOMPARISON PROJECT; GENERAL-CIRCULATION MODELS; NINO SOUTHERN-OSCILLATION; CLIMATE SYSTEM MODEL; EL-NINO; COUPLED MODEL; EQUATORIAL PACIFIC; VARIABILITY; PREDICTION; SIMULATION AB The influence of mean climate on the seasonal cycle and the El Nino-Southern Oscillation (ENSO) in the tropical Pacific climate is investigated using the Climate Community System Model Version 3 (CCSM3). An empirical time-independent surface heat flux adjustment over the tropical ocean is applied to the oceanic component of CCSM3. In comparison with the control run, the heat flux-adjusted run simulates a more realistic mean climate not only for the sea surface temperature (SST) but also for wind stress and precipitation. Even though the heat flux adjustment is time-independent, the seasonal cycles of SST, wind stress and precipitation over the equatorial eastern Pacific are more realistic in the flux-adjusted simulation. Improvements in the representation of the ENSO variability in the heat flux-adjusted simulation include that the Nino3.4 SST index is less regular than a strong biennial oscillation in the control run. But some deficiencies also arise. For example, the amplitude of the ENSO variability is reduced in the flux-adjusted run. The impact of the mean climate on ENSO prediction is further examined by performing a series of monthly hindcasts from 1982 to 1998 using CCSM3 with and without the heat flux adjustment. The flux-adjusted hindcasts show slightly higher predictive skill than the unadjusted hindcasts with January initial conditions at lead times of 7-9 months and July initial conditions at lead times of 9-11 months. However, their differences during these months are not statistically significant. C1 [Pan, Xiaohua] NASA GSFC Code 613 3, Greenbelt, MD 20771 USA. [Pan, Xiaohua; Huang, Bohua; Shukla, Jagadish] Inst Global Environm & Soc, Ctr Ocean Land Atmosphere Studies, Calverton, MD USA. [Pan, Xiaohua; Huang, Bohua; Shukla, Jagadish] George Mason Univ, Dept Atmospher Ocean & Earth Sci, Fairfax, VA 22030 USA. RP Pan, XH (reprint author), Univ Maryland Baltimore Cty, Goddard Earth Sci Technol Ctr, Baltimore, MD 21228 USA. EM xiaohua.pan@nasa.gov FU National Science Foundation [ATM0332910, ATM0830062, ATM0830068]; National Aeronautics and Space Administration [NNG04GG46G, NNX09AN50G]; National Oceanic and Atmospheric Administration [NA04OAR4310034, NA09OAR4310058]; NOAA CVP [NA07OAR4310310] FX This paper is based on the first author's Ph.D. dissertation. The first author greatly appreciates her other advisory committee members, B. Kirtman and E. Schneider, for their guidance and support throughout her dissertation research. In addition, the authors have benefited from discussions with K. Pegion and J. Manganello. We would also like to thank B. Kirtman and D. Min for providing ocean initial conditions for the hindcast experiments. We would like to thank the three anonymous reviewers, who made very helpful suggestions to revise the paper. Their comments have improved the paper. We acknowledge the National Center for Atmospheric Research (NCAR) for providing the Climate Community System Model (CCSM) and its control simulation output. In particular, Buja Lawrence and Gokhan Danabasoglu gave valuable guidance for the model setup. We are also grateful to the NCAR Computational and Informational Systems Laboratory for providing computing resources and technical support. This research was supported by the National Science Foundation (ATM0332910, ATM0830062, ATM0830068), National Aeronautics and Space Administration (NNG04GG46G, NNX09AN50G), and the National Oceanic and Atmospheric Administration (NA04OAR4310034, NA09OAR4310058). B. Huang was also supported by the funding from NOAA CVP Program (NA07OAR4310310). NR 33 TC 6 Z9 6 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD JUL PY 2011 VL 37 IS 1-2 BP 325 EP 341 DI 10.1007/s00382-010-0923-y PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 800YG UT WOS:000293403000020 ER PT J AU Amadjikpe, AL Choudhury, D Ponchak, GE Papapolymerou, J AF Amadjikpe, Arnaud L. Choudhury, Debabani Ponchak, George E. Papapolymerou, John TI Location Specific Coverage With Wireless Platform Integrated 60-GHz Antenna Systems SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE 60-GHz; antenna integration; antenna packaging; antenna systems; embedded antenna; internal antenna; platform integrated antenna; switched-beam end-fire array ID LAPTOP COMPUTERS; FINITE-ELEMENT; PERFORMANCE; SIMULATION; AIRCRAFT AB 60-GHz antennas are embedded inside a laptop computer chassis to evaluate suitable integration scenarios for effective far-field range coverage. A broad-beam patch and a switched-beam directive quasi-Yagi array are designed and utilized to conduct experimental tests on a real laptop computer. An electromagnetic modeling tool is used to fine tune the antenna's specific position at different locations in the laptop lid and base. In general, it is found that the platform embedded antennas exhibit satisfactory performance when they illuminate a small area of the chassis in the boresight direction, which prevents unwanted surface waves radiated from the chassis discontinuities (edges, corners, apertures) from interfering with the antenna main beam. In practice, this is simply achievable by keeping the antenna within a wavelength (5 mm) or closer to the frontal cover surface. Improper antenna placement may lead to antenna beamwidth reduction, boresight gain decrease, boresight angle tilt, and shadow regions formation. The derived results are not solely specific to the laptop chassis problem, and can thus be used to design general purpose wireless platform integrated 60-GHz antenna systems. C1 [Amadjikpe, Arnaud L.; Papapolymerou, John] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30338 USA. [Choudhury, Debabani] Intel Corp, Hillsboro, OR 97124 USA. [Ponchak, George E.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Amadjikpe, AL (reprint author), Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30338 USA. EM arnaud.amadjikpe@gatech.edu FU Intel Corporation, USA FX Manuscript received April 20, 2010; revised September 07, 2010; accepted December 10, 2010. Date of publication May 10, 2011; date of current version July 07, 2011. This work was supported by Intel Corporation, USA. NR 31 TC 7 Z9 7 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD JUL PY 2011 VL 59 IS 7 BP 2661 EP 2671 DI 10.1109/TAP.2011.2152330 PG 11 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 801ME UT WOS:000293442200025 ER PT J AU Lall, P Bhat, C Hande, M More, V Vaidya, R Goebel, K AF Lall, Pradeep Bhat, Chandan Hande, Madhura More, Vikrant Vaidya, Rahul Goebel, Kai TI Prognostication of Residual Life and Latent Damage Assessment in Lead-Free Electronics Under Thermomechanical Loads SO IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS LA English DT Article DE Health monitoring; leading indicators of failure; prognostics; solder joint reliability ID SN-AG-CU; FREE SOLDER ALLOYS; MICROSTRUCTURAL EVOLUTION; BOUNDARY-SCAN; PART II; JOINTS; SYSTEM; FATIGUE; TESTABILITY; RELIABILITY AB Requirements for system availability for ultrahigh reliability electronic systems such as airborne and space electronic systems are driving the need for advanced health monitoring techniques for the early detection of the onset of damage. Aerospace electronic systems usually face a very harsh environment, requiring them to survive the high strain rates, e. g., during launch and reentry, and thermal environments, including extremely low and high temperatures. Traditional health monitoring methodologies have relied on reactive methods of failure detection often providing little or no insight into the remaining useful life of the system. In this paper, a mathematical approach for the interrogation of the system state under cyclic thermomechanical stresses has been developed for six different lead-free solder alloy systems. Data have been collected for leading indicators of failure for alloy systems, including Sn3Ag0.5Cu, Sn0.3Ag0.7Cu, Sn1Ag0.5Cu, Sn0.3Ag0.5Cu0.1Bi, Sn0.2Ag0.5Cu0.1Bi0.1Ni, and 96.5Sn3.5Ag second-level interconnects under the application of cyclic thermomechanical loads. The methodology presented resides in the prefailure space of the system in which no macroindicators such as cracks or delamination exist. Systems subjected to thermomechanical damage have been interrogated for the system state and the computed damage state correlated with the known imposed damage. The approach involves the use of condition monitoring devices which can be interrogated for damage proxies at finite time intervals. The interrogation techniques are based on the derivation of damage proxies and system prior-damage-based nonlinear least square methods, including the Levenberg-Marquardt algorithm. The system's residual life is computed based on residual-life computation algorithms. C1 [Lall, Pradeep; More, Vikrant; Vaidya, Rahul] Auburn Univ, Dept Mech Engn, Natl Sci Fdn Ctr Adv Vehicle & Extreme Environm E, Auburn, AL 36849 USA. [Bhat, Chandan] Cree Inc, Durham, NC 27703 USA. [Hande, Madhura] Intel Corp, Schaumburg, IL 60173 USA. [Goebel, Kai] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Lall, P (reprint author), Auburn Univ, Dept Mech Engn, Natl Sci Fdn Ctr Adv Vehicle & Extreme Environm E, Auburn, AL 36849 USA. EM lall@auburn.edu FU National Aeronautics and Space Administration [NNA08BA21C] FX Manuscript received January 9, 2010; revised March 22, 2010 and August 8, 2010; accepted August 25, 2010. Date of publication October 28, 2010; date of current version June 15, 2011. This paper was supported by the National Aeronautics and Space Administration Integrated Vehicle Health Management Program under Grant NNA08BA21C. NR 73 TC 6 Z9 7 U1 2 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0278-0046 J9 IEEE T IND ELECTRON JI IEEE Trans. Ind. Electron. PD JUL PY 2011 VL 58 IS 7 BP 2605 EP 2616 DI 10.1109/TIE.2010.2089936 PG 12 WC Automation & Control Systems; Engineering, Electrical & Electronic; Instruments & Instrumentation SC Automation & Control Systems; Engineering; Instruments & Instrumentation GA 806SU UT WOS:000293832600005 ER PT J AU Tartabini, PV Roithmayr, CM Toniolo, MD Karlgaard, CD Pamadi, BN AF Tartabini, Paul V. Roithmayr, Carlos M. Toniolo, Matthew D. Karlgaard, Christopher D. Pamadi, Bandu N. TI Modeling Multibody Stage Separation Dynamics Using Constraint Force Equation Methodology SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AIAA Modeling and Simulation Technologies Conference and Exhibit CY AUG 18-21, 2008 CL Honolulu, HI SP AIAA ID SIMULATION; SYSTEMS AB This paper discusses the application of the constraint force equation methodology and its implementation for multibody separation problems using three specially designed test cases. The first test case involves two rigid bodies connected by a fixed joint, the second case involves two rigid bodies connected with a universal joint, and the third test case is that of Mach 7 separation of the X-43A vehicle. For the first two cases, the solutions obtained using the constraint force equation method compare well with those obtained using industry-standard benchmark codes. For the X-43A case, the constraint force equation solutions show reasonable agreement with the flight-test data. Use of the constraint force equation method facilitates the analysis of stage separation in end-to-end simulations of launch vehicle trajectories. C1 [Tartabini, Paul V.; Roithmayr, Carlos M.; Pamadi, Bandu N.] NASA Langley Res Ctr, Vehicle Anal Branch, Hampton, VA 23681 USA. [Toniolo, Matthew D.; Karlgaard, Christopher D.] Analyt Mech Associates Inc, Hampton, VA 23681 USA. RP Tartabini, PV (reprint author), NASA Langley Res Ctr, Vehicle Anal Branch, Hampton, VA 23681 USA. NR 30 TC 1 Z9 2 U1 0 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD JUL-AUG PY 2011 VL 48 IS 4 BP 573 EP 583 DI 10.2514/1.51943 PG 11 WC Engineering, Aerospace SC Engineering GA 804UM UT WOS:000293679500004 ER PT J AU Guruswamy, G AF Guruswamy, Guru TI Large-Scale Computations for Stability Analysis of Launch Vehicles Using Cluster Computers SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference CY APR 12-15, 2010 CL Orlando, FL SP AIAA, AHS, ASME, ASC, ASCE, US Off Naval Res (ONR) AB A procedure is developed to generate a large aerodynamic database suitable for the static stability analysis of launch vehicles in the transonic regime by using the Navier-Stokes equations. Effects of structural deformations are also included using modal representation. It is shown that a large number of cases suitable for design can be computed within practical time limitations by using efficient protocols suitable for massively parallel computations on superclusters. Results are validated with wind-tunnel measurements that show good comparisons within the limits of the model size. Massive computations on superclusters reveal important observations, such as higher modes having pronounced effects near transonic regime. C1 NASA, Ames Res Ctr, Adv Supercomp Div, Appl Modeling & Simulat Branch, Moffett Field, CA 94035 USA. RP Guruswamy, G (reprint author), NASA, Ames Res Ctr, Adv Supercomp Div, Appl Modeling & Simulat Branch, Moffett Field, CA 94035 USA. EM guru.p.guruswamy@nasa.gov NR 12 TC 4 Z9 4 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD JUL-AUG PY 2011 VL 48 IS 4 BP 584 EP 588 DI 10.2514/1.51264 PG 5 WC Engineering, Aerospace SC Engineering GA 804UM UT WOS:000293679500005 ER PT J AU Guzman, D Prieto, M Sanchez, S Almena, J Rodriguez, O Meziat, D AF Guzman, David Prieto, Manuel Sanchez, Sebastian Almena, Javier Rodriguez, Oscar Meziat, Daniel TI Improving the LEON Spacecraft Computer Processor for Real-Time Performance Analysis SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article AB This paper presents an enhanced version of the LEON architecture with a performance-monitoring unit, including performance counters for different events and a trace buffer. Through this enhancement the user or system engineer is able to obtain information about the cache behavior and the execution path of a whole program or a fragment of code. This development introduces several advantages over simulators, such as allowing tests to be performed directly on the real target in a nonintrusive mode. Taking advantage of this enhancement, a suite of tests for cache characterization and evaluation has been developed. The results of this study can contribute to modeling the behavior of the LEON architecture in areas such as worst-case execution-time estimation and probabilistic analysis. The new features can be very useful during the validation and verification phase of the real-time software, supporting code coverage techniques and reducing the execution-time variability due to hardware effects such as cache and pipelines. The field-programmable gate-array resources employed by the performance-monitoring unit developed in this paper are low, on the order of 3-5%, with the exception of an increase of 37% in the use of embedded memory blocks. C1 [Guzman, David; Prieto, Manuel; Sanchez, Sebastian; Almena, Javier; Rodriguez, Oscar; Meziat, Daniel] Univ Alcala de Henares, Dept Comp Engn, Space Res Grp, Alcala De Henares 28805, Spain. RP Guzman, D (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM dguzman@srg.aut.uah.es; mpm@srg.aut.uah.es; chan@srg.aut.uah.es; jalmena@srg.aut.uah.es; opolo@srg.aut.uah.es; meziat@srg.aut.uah.es RI Prieto, Manuel/K-8822-2014; Sanchez Prieto, Sebastian/P-6130-2015 OI Sanchez Prieto, Sebastian/0000-0002-6729-7932 FU Ministerio de Ciencia e Innovacion of Spain [AYA2009-13478-C02-02] FX This work has been supported by the Ministerio de Ciencia e Innovacion of Spain (grant AYA2009-13478-C02-02). We would like to express our gratitude to all of our teammates of the OL23 laboratory for their support. We would also like to thank Adolfo Figueroa and Doug Rowland for their reviews and suggestions. The authors are also grateful to the anonymous reviewers for their. insightful and helpful comments. NR 17 TC 1 Z9 1 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD JUL-AUG PY 2011 VL 48 IS 4 BP 671 EP 678 DI 10.2514/1.50209 PG 8 WC Engineering, Aerospace SC Engineering GA 804UM UT WOS:000293679500014 ER PT J AU Jackson, TL Farrell, WM Killen, RM Delory, GT Halekas, JS Stubbs, TJ AF Jackson, T. L. Farrell, W. M. Killen, R. M. Delory, G. T. Halekas, J. S. Stubbs, T. J. TI Discharging of Roving Objects in the Lunar Polar Regions SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID PLASMA; EXPANSION; VACUUM; WAKE C1 [Jackson, T. L.; Farrell, W. M.; Killen, R. M.; Stubbs, T. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Delory, G. T.; Halekas, J. S.] Univ Calif Berkeley, Berkeley, CA 94704 USA. RP Jackson, TL (reprint author), NASA, Lunar Sci Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Telana.L.Jackson@nasa.gov RI Killen, Rosemary/E-7127-2012; Jackson, Telana/E-9102-2012; Stubbs, Timothy/I-5139-2013; Farrell, William/I-4865-2013; OI Stubbs, Timothy/0000-0002-5524-645X; Halekas, Jasper/0000-0001-5258-6128 NR 13 TC 6 Z9 6 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD JUL-AUG PY 2011 VL 48 IS 4 BP 700 EP 704 DI 10.2514/1.51897 PG 5 WC Engineering, Aerospace SC Engineering GA 804UM UT WOS:000293679500019 ER PT J AU Carballido, A Bai, XN Cuzzi, JN AF Carballido, Augusto Bai, Xue-Ning Cuzzi, Jeffrey N. TI Turbulent diffusion of large solids in a protoplanetary disc SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE diffusion; MHD; turbulence; protoplanetary discs ID RADIATION MAGNETOHYDRODYNAMICS CODE; PARTICLE-GAS-DYNAMICS; 2 SPACE DIMENSIONS; SOLAR NEBULA; MAGNETOROTATIONAL TURBULENCE; GRAVITATIONAL INSTABILITIES; PLANETESIMAL FORMATION; STREAMING INSTABILITY; RELATIVE VELOCITIES; ASTROPHYSICAL FLOWS AB We study the turbulent diffusion of solids in a protoplanetary disc, in order to discriminate between two existing analytical models of the turbulent diffusion process. These two models predict the same radial turbulent diffusion coefficient D-p,D-x for small particles (tau(s) << 1), but differ in the value of D-p,D-x for large particles (tau(s) >> 1, where tau(s) is the dimensionless particle stopping time, closely related to particle radius). The model given by Youdin & Lithwick (YL) takes into account orbital oscillations of the solids, while the other model given by Cuzzi, Dobrovolskis & Champney (CDC) does not. The CDC model predicts D-p,D-x similar to tau(-1)(s) for tau(s) >> 1, but the YL model gives D-p,D-x similar to tau(-2)(s). To investigate, we perform 3D, magnetohydrodynamic (MHD) numerical simulations. Turbulence in the disc is generated by the magnetorotational instability. The ATHENA code is used to solve the equations of ideal MHD in the shearing-box approximation, which allows us to model a local region of the disc with the relevant orbital dynamics. Solids are represented by Lagrangian particles that interact with the gas through drag, and are also subject to orbital forces. The aerodynamic coupling of particles to the gas is parametrized by tau(s). In one set of simulations, particle displacements along the radial direction are measured in a shearing box without vertical stratification of the gas density. In another simulation, the vertical component of stellar gravity is included, with a Gaussian gas density vertical profile, but the particle motion is restricted to fixed planes of constant height z. In both cases, the radial diffusion coefficient as a function of stopping time tau(s) is in very good agreement with the YL model. To study particle vertical diffusion, we use the unstratified shearing box, in which we allow the effects of vertical gravity and turbulence on the particles to balance out, resulting in particle layers whose scaleheight varies approximately as tau(-1/2)(s). Based on this result and YL, we calculate a vertical diffusion coefficient D-p,D-z that, in the limit tau(s) >> 1, varies as tau(-2)(s), similarly to radial diffusivity. C1 [Carballido, Augusto] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Bai, Xue-Ning] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Cuzzi, Jeffrey N.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Carballido, A (reprint author), Univ Nacl Autonoma Mexico, Inst Astron, AP 70-264,Cd Univ, Mexico City 04510, DF, Mexico. EM augusto@astroscu.unam.mx FU DGAPA at UNAM; NASA FX We thank James M. Stone for valuable advice during the course of this work. Comments and suggestions by an anonymous referee improved the focus of the paper. AC would like to acknowledge support from a DGAPA fellowship at UNAM. X-NB acknowledges support from the NASA Earth and Space Science Fellowship. NR 55 TC 16 Z9 17 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 415 IS 1 BP 93 EP 102 DI 10.1111/j.1365-2966.2011.18661.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 805UR UT WOS:000293755000026 ER PT J AU Hill, AB Szostek, A Corbel, S Camilo, F Corbet, RHD Dubois, R Dubus, G Edwards, PG Ferrara, EC Kerr, M Koerding, E Koziel, D Stawarz, L AF Hill, A. B. Szostek, A. Corbel, S. Camilo, F. Corbet, R. H. D. Dubois, R. Dubus, G. Edwards, P. G. Ferrara, E. C. Kerr, M. Koerding, E. Koziel, D. Stawarz, L. TI The bright unidentified gamma-ray source 1FGL J1227.9-4852: can it be associated with a low-mass X-ray binary? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE pulsars: general; galaxies: active; gamma-rays: general; radio continuum: galaxies; X-rays: individual: XSS J12270-4859 ID LARGE-AREA TELESCOPE; BLIND FREQUENCY SEARCHES; ACTIVE GALACTIC NUCLEI; SOURCE XSS J12270-4859; 1ST J102347.6+003841; FERMI LAT; MILLISECOND PULSAR; SOURCE CATALOG; SPACED DATA; SKY SURVEY AB We present an analysis of high energy (HE; 0.1-300 GeV) gamma-ray observations of 1FGL J1227.9-4852 with the Fermi Gamma-ray Space Telescope, follow-up radio observations with the Australia Telescope Compact Array, Giant Metrewave Radio Telescope and Parkes radio telescopes of the same field and follow-up optical observations with the ESO VLT. We also examine archival XMM-Newton and INTEGRAL X-ray observations of the region around this source. The gamma-ray spectrum of 1FGL J1227.9-4852 is best fitted with an exponentially cut-off power law, reminiscent of the population of pulsars observed by Fermi. A previously unknown, compact radio source within the 99.7 per cent error circle of 1FGL J1227.9-4852 is discovered and has a morphology consistent either with an AGN core/jet structure or with two roughly symmetric lobes of a distant radio galaxy. A single bright X-ray source XSS J12270-4859, a low-mass X-ray binary, also lies within the 1FGL J1227.9-4852 error circle and we report the first detection of radio emission from this source. The potential association of 1FGL J1227.9-4852 with each of these counterparts is discussed. Based upon the available data we find the association of the gamma-ray source to the compact double radio source unlikely and suggest that XSS J12270-4859 is a more likely counterpart to the new HE source. We propose that XSS J12270-4859 may be a millisecond binary pulsar and draw comparisons with PSR J1023+0038. C1 [Hill, A. B.; Szostek, A.; Dubus, G.] Univ Grenoble 1, Lab Astrophys Grenoble, UMR 5571, CNRS, F-38041 Grenoble, France. [Szostek, A.; Koziel, D.; Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Corbel, S.; Koerding, E.] CEA Saclay, Serv Astrophys, UMR AIM, F-91191 Gif Sur Yvette, France. [Corbel, S.; Koerding, E.] Univ Paris 07, F-91191 Gif Sur Yvette, France. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Corbet, R. H. D.; Ferrara, E. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Corbet, R. H. D.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Dubois, R.; Kerr, M.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Dubois, R.; Kerr, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Edwards, P. G.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Stawarz, L.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Kanagawa 2525210, Japan. RP Hill, AB (reprint author), Univ Grenoble 1, Lab Astrophys Grenoble, UMR 5571, CNRS, BP 53, F-38041 Grenoble, France. EM adam.hill@obs.ujf-grenoble.fr OI Hill, Adam/0000-0003-3470-4834 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Commonwealth of Australia; European Community [ERC-StG-200911, ITN 215212] FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; We thank the staff of the GMRT who have made these observations possible. GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. The Australia Telescope is funded by the Commonwealth of Australia for operation as a national Facility managed by CSIRO. Based on observations made with ESO Telescopes at the La Silla Observatory under programmes ID 284.B-5030 and 285.B-5020. ABH, GD and AS acknowledge funding by contract ERC-StG-200911 from the European Community. The research leading to these results has received partial funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number ITN 215212 'Black Hole Universe'. NR 42 TC 27 Z9 27 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 415 IS 1 BP 235 EP 243 DI 10.1111/j.1365-2966.2011.18692.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 805UR UT WOS:000293755000036 ER PT J AU Soria, R Broderick, JW Hao, JF Hannikainen, DC Mehdipour, M Pottschmidt, K Zhang, SN AF Soria, Roberto Broderick, Jess W. Hao, JingFang Hannikainen, Diana C. Mehdipour, Missagh Pottschmidt, Katja Zhang, Shuang-Nan TI Accretion states of the Galactic microquasar GRS1758-258 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; black hole physics; radio continuum: general; X-rays: binaries; X-rays: individual: GRS 1758-258 ID BLACK-HOLE BINARIES; X-RAY SOURCE; ADVECTION-DOMINATED ACCRETION; MAGNETICALLY DRIVEN ACCRETION; SOURCE GRS 1758-258; XTE J1550-564; RELATIVISTIC JETS; RADIO LOUDNESS; DISK ACCRETION; LARGE-SCALE AB We present the results of a radio and X-ray study of the Galactic microquasar GRS 1758-258, using unpublished archival data and new observations. We focus in particular on the 2000-2002 state transitions, and on its more quiet behaviour in 2008-2009. Our spectral and timing analysis of the XMM-Newton data shows that the source was in the canonical intermediate, soft and hard states in 2000 September 19, 2001 March 22 and 2002 September 28, respectively. We estimate the disc size, luminosity and temperature, which are consistent with a black hole mass similar to 10M(circle dot). There is much overlap between the range of total X-ray luminosities (on average similar to 0.02L(Edd)) in the hard and soft states, and probably between the corresponding mass accretion rates; in fact, the hard state is often more luminous. The extended radio lobes seen in 1992 and 1997 are still present in 2008-2009. The 5-GHz radio core flux density has shown variability between similar to 0.1 and 0.5 mJy over the last two decades. This firmly places GRS 1758-258 in the radio-quiet sequence of Galactic black holes, in the radio/X-ray plane. We note that this dichotomy is similar to the dichotomy between the radio/X-ray sequences of Seyfert and radio galaxies. We propose that the different radio efficiency of the two sequences is due to relativistic electron/positron jets in radio-loud black holes, and subrelativistic, thermally dominated outflows in radio-quiet sources. C1 [Soria, Roberto; Mehdipour, Missagh] Univ Coll London, Mullard Space Sci Lab, Surrey RH5 6NT, England. [Soria, Roberto] Curtin Univ, Curtin Inst Radio Astron, Perth, WA 6845, Australia. [Broderick, Jess W.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Hao, JingFang] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Hao, JingFang] Tsinghua Univ, Tsinghua Ctr Astrophys, Beijing 100084, Peoples R China. [Hannikainen, Diana C.] Aalto Univ Metsahovi Radio Observ, FI-02540 Kylmala, Finland. [Pottschmidt, Katja] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Pottschmidt, Katja] CRESST, Greenbelt, MD 20771 USA. [Pottschmidt, Katja] Univ Maryland, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Zhang, Shuang-Nan] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Astrophys, Beijing 100049, Peoples R China. RP Soria, R (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Surrey RH5 6NT, England. EM roberto.soria@mssl.ucl.ac.uk FU Tsinghua University (Beijing); UK Science and Technology Facilities Council FX We thank Maria Diaz-Trigo, Rob Fender, James Miller-Jones, Manfred Pakull, David Smith and Kinwah Wu for useful discussions, and Tasso Tzioumis for assistance with the ATCA observations. RS is grateful for the financial support from Tsinghua University (Beijing) during part of this research. JWB acknowledges support from the UK Science and Technology Facilities Council. NR 85 TC 11 Z9 11 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 415 IS 1 BP 410 EP 424 DI 10.1111/j.1365-2966.2011.18714.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 805UR UT WOS:000293755000052 ER PT J AU Pascale, E Auld, R Dariush, A Dunne, L Eales, S Maddox, S Panuzzo, P Pohlen, M Smith, DJB Buttiglione, S Cava, A Clements, DL Cooray, A Dye, S de Zotti, G Fritz, J Hopwood, R Ibar, E Ivison, RJ Jarvis, MJ Leeuw, L Lopez-Caniego, M Rigby, E Rodighiero, G Scott, D Smith, MWL Temi, P Vaccari, M Valtchanov, I AF Pascale, E. Auld, R. Dariush, A. Dunne, L. Eales, S. Maddox, S. Panuzzo, P. Pohlen, M. Smith, D. J. B. Buttiglione, S. Cava, A. Clements, D. L. Cooray, A. Dye, S. de Zotti, G. Fritz, J. Hopwood, R. Ibar, E. Ivison, R. J. Jarvis, M. J. Leeuw, L. Lopez-Caniego, M. Rigby, E. Rodighiero, G. Scott, D. Smith, M. W. L. Temi, P. Vaccari, M. Valtchanov, I. TI The first release of data from the Herschel ATLAS: the SPIRE images SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; techniques: image processing; surveys; submillimetre: general ID BOLOMETER ARRAYS; BLAST; PERFORMANCE AB We have reduced the data taken with the Spectral and Photometric Imaging Receiver (SPIRE) photometer on board the Herschel Space Observatory in the Science Demonstration Phase (SDP) of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We describe the data reduction, which poses specific challenges, both because of the large number of detectors which can have noise correlated in each array, and because only two scans are made for each region. We implement effective solutions to process the bolometric timelines into maps, and show that correlations among detectors are negligible, and that the photometer is stable on time scales up to 250 s. This is longer than the time the telescope takes to cross the observed sky region, and it allows us to use naive binning methods for an optimal reconstruction of the sky emission. The maps have equal contribution of confusion and white instrumental noise, and the former is estimated to 5.3, 6.4 and 6.7 mJy beam(-1) (1 sigma), at 250, 350 and 500 mu m, respectively. This pipeline is used to reduce other H-ATLAS observations, as they became available, and we discuss how it can be used with the optimal map maker implemented in the Herschel Interactive Processing Environment (HIPE), to improve computational efficiency and stability. The SDP data set is available from http://www.h-atlas.org/. C1 [Pascale, E.; Auld, R.; Dariush, A.; Eales, S.; Pohlen, M.; Dye, S.; Smith, M. W. L.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Dunne, L.; Maddox, S.; Smith, D. J. B.; Rigby, E.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Panuzzo, P.] CEA, Lab AIM, Irfu SAp, F-91191 Gif Sur Yvette, France. [Buttiglione, S.; de Zotti, G.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Cava, A.] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Spain. [Clements, D. L.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, London SW7 2AZ, England. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [de Zotti, G.] SISSA, I-34136 Trieste, Italy. [Fritz, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Hopwood, R.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Ibar, E.; Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Jarvis, M. J.] Univ Hertfordshire, STRI, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Leeuw, L.; Temi, P.] NASA, Astrophys Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. [Lopez-Caniego, M.] CSIC UC, Inst Fis Cantabria, E-39005 Santander, Spain. [Rodighiero, G.; Vaccari, M.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. RP Pascale, E (reprint author), Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. EM enzo.pascale@astro.cf.ac.uk RI Lopez-Caniego, Marcos/M-4695-2013; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Rodighiero, Giulia/0000-0002-9415-2296; Ivison, R./0000-0001-5118-1313; Dye, Simon/0000-0002-1318-8343; Vaccari, Mattia/0000-0002-6748-0577; Smith, Daniel/0000-0001-9708-253X; Cava, Antonio/0000-0002-4821-1275; Lopez-Caniego, Marcos/0000-0003-1016-9283; Maddox, Stephen/0000-0001-5549-195X; Scott, Douglas/0000-0002-6878-9840 FU NASA through JPL FX The Herschel ATLAS is a project with Herschel, which is an ESA space observatory with science instruments provided by European led Principal Investigator consortia and with important participation from NASA. US participants in Herschel ATLAS acknowledge NASA support through a contract from JPL. We would like to thank George Bendo, Matt Griffin and Andreas Papageorgiou for the helpful discussions. NR 24 TC 75 Z9 75 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 415 IS 1 BP 911 EP 917 DI 10.1111/j.1365-2966.2011.18756.x PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 805UR UT WOS:000293755000092 ER PT J AU Ash, RL Zardadkhan, I Zuckerwar, AJ AF Ash, Robert L. Zardadkhan, Irfan Zuckerwar, Allan J. TI The influence of pressure relaxation on the structure of an axial vortex SO PHYSICS OF FLUIDS LA English DT Article DE flow measurement; Navier-Stokes equations; viscosity; vortices ID TRAILING VORTEX; TIP VORTEX; NEAR-FIELD; FLOW; TURBULENCE; TORNADOES; VORTICES; SURFACE AB Governing equations including the effects of pressure relaxation have been utilized to study an incompressible, steady-state viscous axial vortex with specified far-field circulation. When sound generation is attributed to a velocity gradient tensor-pressure gradient product, the modified conservation of momentum equations that result yield an exact solution for a steady, incompressible axial vortex. The vortex velocity profile has been shown to closely approximate experimental vortex measurements in air and water over a wide range of circulation-based Reynolds numbers. The influence of temperature and humidity on the pressure relaxation coefficient in air has been examined using theoretical and empirical approaches, and published axial vortex experiments have been employed to estimate the pressure relaxation coefficient in water. Non-equilibrium pressure gradient forces have been shown to balance the viscous stresses in the vortex core region, and the predicted pressure deficits that result from this non-equilibrium balance can be substantially larger than the pressure deficits predicted using a Bernoulli equation approach. Previously reported pressure deficit distributions for dust devils and tornados have been employed to validate the non-equilibrium pressure deficit predictions. (C) 2011 American Institute of Physics. [doi:10.1063/1.3609270] C1 [Ash, Robert L.; Zardadkhan, Irfan] Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA. [Zuckerwar, Allan J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Ash, RL (reprint author), Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA. EM Rash@odu.edu; izard001@odu.edu; ajzuckerwar@yahoo.com NR 32 TC 2 Z9 2 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD JUL PY 2011 VL 23 IS 7 AR 073101 DI 10.1063/1.3609270 PG 12 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 801ZD UT WOS:000293478200017 ER PT J AU Haywood, JM Johnson, BT Osborne, SR Baran, AJ Brooks, M Milton, SF Mulcahy, J Walters, D Allan, RP Klaver, A Formenti, P Brindley, HE Christopher, S Gupta, P AF Haywood, J. M. Johnson, B. T. Osborne, S. R. Baran, A. J. Brooks, M. Milton, S. F. Mulcahy, J. Walters, D. Allan, R. P. Klaver, A. Formenti, P. Brindley, H. E. Christopher, S. Gupta, P. TI Motivation, rationale and key results from the GERBILS Saharan dust measurement campaign SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE Saharan dust; mineral dust; airborne measurements; remote sensing ID IN-SITU MEASUREMENTS; OPTICAL-PROPERTIES; RADIATIVE PROPERTIES; SAMUM 2006; IMAGING SPECTRORADIOMETER; AEROSOL PROPERTIES; SIZE DISTRIBUTION; EXPERIMENT SHADE; C-130 AIRCRAFT; SATELLITE AB The Geostationary Earth Radiation Budget Intercomparison of Longwave and Shortwave radiation (GERBILS) was an observational field experiment over North Africa during June 2007. The campaign involved 10 flights by the FAAM BAe1-46 research aircraft over southwestern parts of the Sahara Desert and coastal stretches of the Atlantic Ocean. Objectives of the GERBILS campaign included characterisation of mineral dust geographic distribution and physical and optical properties, assessment of the impact upon radiation, validation of satellite remote sensing retrievals, and validation of numerical weather prediction model forecasts of aerosol optical depths (AODs) and size distributions. We provide the motivation behind GERBILS and the experimental design and report the progress made in each of the objectives. We show that mineral dust in the region is relatively nonabsorbing (mean single scattering albedo at 550 nm of 0.97) owing to the relatively small fraction of iron oxides present (1-3%), and that detailed spectral radiances are most accurately modelled using irregularly shaped particles. Satellite retrievals over bright desert surfaces are challenging owing to the lack of spectral contrast between the dust and the underlying surface. However, new techniques have been developed which are shown to be in relatively good agreement with AERONET estimates of AOD and with each other. This encouraging result enables relatively robust validation of numerical models which treat the production, transport, and deposition of mineral dust. The dust models themselves are able to represent large-scale synoptically driven dust events to a reasonable degree, but some deficiencies remain both in the Sahara and over the Sahelian region, where cold pool outflow from convective cells associated with the intertropical convergence zone can lead to significant dust production. Copyright (C) c 2011 Royal Meteorological Society and British Crown Copyright, the Met Office C1 [Haywood, J. M.; Johnson, B. T.; Osborne, S. R.; Baran, A. J.; Brooks, M.; Milton, S. F.; Mulcahy, J.; Walters, D.] Met Off, Exeter, Devon, England. [Allan, R. P.] Univ Reading, Dept Meteorol, Reading RG6 2AH, Berks, England. [Haywood, J. M.] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QJ, Devon, England. [Klaver, A.; Formenti, P.] Univ Paris Diderot, Creteil, France. [Klaver, A.; Formenti, P.] Univ Paris Est Creteil, CNRS, LISA, Creteil, France. [Brindley, H. E.] Univ London Imperial Coll Sci Technol & Med, London, England. [Christopher, S.] Univ Alabama, Dept Atmospher Sci, Huntsville, AL 35899 USA. [Gupta, P.] Univ Maryland Baltimore Cty, NASA GSFC, Greenbelt, MD USA. RP Haywood, JM (reprint author), Met Off OBR, FitzRoy Rd, Exeter EX1 3PB, Devon, England. EM jim.haywood@metoffice.gov.uk RI Brooks, Malcolm/E-7466-2011; Gupta, Pawan/F-3624-2011; Allan, Richard/B-5782-2008; Christopher, Sundar/E-6781-2011; Milton, Sean/J-8866-2012; Johnson, Ben/A-6563-2013; OI Brooks, Malcolm/0000-0002-4773-8630; Allan, Richard/0000-0003-0264-9447; Brindley, Helen/0000-0002-7859-9207 FU Met Office; Natural Environment Research Council (NERC) FX Airborne data were obtained using the BAe-146-301 Atmospheric Research Aircraft (ARA) flown by Direct flight Ltd and managed by the Facility for Airborne Atmospheric Measurements (FAAM), which is jointly funded by the Met Office and the Natural Environment Research Council (NERC). The staff of the Met Office, FAAM, Direct flight and Avalon engineering are thanked for their dedication in making the GERBILS measurement campaign a success. NR 51 TC 35 Z9 35 U1 1 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD JUL PY 2011 VL 137 IS 658 SI SI BP 1106 EP 1116 DI 10.1002/qj.797 PN A PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 808HP UT WOS:000293968900002 ER PT J AU Wang, TJ AF Wang, Tongjiang TI Standing Slow-Mode Waves in Hot Coronal Loops: Observations, Modeling, and Coronal Seismology SO SPACE SCIENCE REVIEWS LA English DT Review DE Solar activity; Solar corona; Coronal seismology; Coronal loops ID DOPPLER-SHIFT OSCILLATIONS; SOLAR ACTIVE-REGION; LONGITUDINAL INTENSITY OSCILLATIONS; BRAGG CRYSTAL SPECTROMETER; POST-FLARE LOOPS; TRANSVERSE OSCILLATIONS; MAGNETOACOUSTIC WAVES; TRANSITION REGION; ACOUSTIC-WAVES; ALFVEN WAVES AB Strongly damped Doppler shift oscillations are observed frequently associated with flarelike events in hot coronal loops. In this paper, a review of the observed properties and the theoretical modeling is presented. Statistical measurements of physical parameters (period, decay time, and amplitude) have been obtained based on a large number of events observed by SOHO/SUMER and Yohkoh/BCS. Several pieces of evidence are found to support their interpretation in terms of the fundamental standing longitudinal slow mode. The high excitation rate of these oscillations in small- or micro-flares suggest that the slow mode waves are a natural response of the coronal plasma to impulsive heating in closed magnetic structure. The strong damping and the rapid excitation of the observed waves are two major aspects of the waves that are poorly understood, and are the main subject of theoretical modelling. The slow waves are found mainly damped by thermal conduction and viscosity in hot coronal loops. The mode coupling seems to play an important role in rapid excitation of the standing slow mode. Several seismology applications such as determination of the magnetic field, temperature, and density in coronal loops are demonstrated. Further, some open issues are discussed. C1 [Wang, Tongjiang] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wang, Tongjiang] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Wang, TJ (reprint author), NASA, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. EM tongjiang.wang@nasa.gov FU NASA [NNX08AE44G, NNG06GI55G]; NRL [N00173-06-1-G033] FX The author is grateful to Dr. Leon Ofman for his valuable comments in improving the manuscript. This work was supported by NASA grants NNX08AE44G and NNG06GI55G as well as NRL grant N00173-06-1-G033. NR 153 TC 58 Z9 58 U1 1 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUL PY 2011 VL 158 IS 2-4 BP 397 EP 419 DI 10.1007/s11214-010-9716-1 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 806QD UT WOS:000293823800009 ER PT J AU Williams, DE Lynch, JE Doshi, V Singh, GD Hargens, AR AF Williams, David E. Lynch, John E. Doshi, Vidhi Singh, G. Dave Hargens, Alan R. TI Bruxism and Temporal Bone Hypermobility in Patients with Multiple Sclerosis SO CRANIO-THE JOURNAL OF CRANIOMANDIBULAR PRACTICE LA English DT Article ID INTRACRANIAL-PRESSURE; CRANIAL BONE; VITAMIN-D; FLEXURE AB In this study, the authors investigated the link between jaw clenching/bruxism and temporal bone movement associated with multiple sclerosis (MS). Twenty-one subjects participated in this study (10 patients with MS and 11 controls). To quantify the change in intracranial dimension between the endocranial surfaces of the temporal bones during jaw clenching, an ultrasonic pulsed phase locked loop (PPLL) device was used. A sustained jaw clenching force of 100 lbs was used to measure the mean change in acoustic pathlength (Delta L) as the measure of intracranial distance. In the control subjects the mean Delta L was 0.27 mm +/- 0.24. In subjects with MS the mean Delta L was 1.71 mm +/- 1.18 (p<0.001). The increase in magnitude of bi-temporal bone intracranial expansion was approximately six times greater in subjects with MS compared to controls. Therefore, jaw clenching/bruxism is associated with more marked displacement of the temporal bones and expansion of the cranial cavity in patients with MS than in control subjects. C1 [Singh, G. Dave] BioModeling Solut LLC, Cornell Oaks Corp Ctr, Beaverton, OR 97006 USA. [Lynch, John E.] Lunas Med Prod Grp, Blacksburg, VA USA. [Singh, G. Dave] NIH Funded Program Craniofacial Res, Bethesda, MD USA. [Hargens, Alan R.] Univ Calif San Diego, Orthopaed Clin Physiol Lab, San Diego, CA 92103 USA. [Hargens, Alan R.] NASA, Washington, DC 20546 USA. [Hargens, Alan R.] Stanford Univ, Stanford, CA 94305 USA. RP Singh, GD (reprint author), BioModeling Solut LLC, Cornell Oaks Corp Ctr, 15455 NW Greenbrier Pkwy,Commons Bldg,Suite 250, Beaverton, OR 97006 USA. EM drsingh@drdavesingh.com FU Stryker Corp., Kalamazoo, MI FX This research was supported by a research grant from Stryker Corp., Kalamazoo, MI. The authors would like to thank G.W. Ellison, UCSD Department of Neurosciences, San Diego, CA, and B.R. Macias, Department of Health and Kinesiology, Texas A&M University, for technical assistance. NR 29 TC 2 Z9 2 U1 1 U2 4 PU CHROMA INC PI CHATTANOOGA PA PO BOX 8887, CHATTANOOGA, TN 37414 USA SN 0886-9634 J9 CRANIO JI Cranio-J. Craniomandib. Pract. PD JUL PY 2011 VL 29 IS 3 BP 178 EP 186 PG 9 WC Dentistry, Oral Surgery & Medicine SC Dentistry, Oral Surgery & Medicine GA 803XE UT WOS:000293614800005 PM 22586826 ER PT J AU Leonard, MJ Baroff, LE AF Leonard, Matthew J. Baroff, Lynn E. TI Transforming the Operations Paradigm of Space Exploration SO IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE LA English DT Article AB The international space community has become comfortable over the years with a model of operations based on verbal delegation of operations control from a mission control center based on Earth. This model requires near-constant telemetry regarding the status of the vehicle, as well as tasks on-board. The future long-duration exploration missions being considered will require significant changes in this operational paradigm, adjusting to situational realities, capitalizing on the evolution that has occurred in vehicle autonomous health management, and maximizing the time crew members can devote to exploration. NASA has created an exploration strategy aimed at multiple destinations, utilizing multiple assets during operations, and increasing both the distance to exploration objectives and the duration of exploration flights. While developing the Lunar Malapert Excursion as a reference mission, our team began to understand that transitioning the world's space operations community from the current paradigm of near constant and all-inclusive vehicle status and task reporting, to a more autonomous self-management paradigm, would take both time and clear explanation of the benefits of the new approach. The new paradigm will take advantage of advances in health management systems and operational planning tools that allow on-board operators the ability to self-manage a significant set of decision parameters, allowing crew the independence to set priorities and adapt their exploration activities as necessary for their situation. C1 [Leonard, Matthew J.] NASA, PMP, Explorat Missions & Syst Off, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Baroff, Lynn E.] NASA, Human Factors Tech Discipline Team, Engn & Safety Ctr, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Leonard, MJ (reprint author), NASA, PMP, Explorat Missions & Syst Off, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. NR 6 TC 0 Z9 0 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8985 J9 IEEE AERO EL SYS MAG JI IEEE Aerosp. Electron. Syst. Mag. PD JUL PY 2011 VL 26 IS 7 BP 18 EP 22 PG 5 WC Engineering, Aerospace; Engineering, Electrical & Electronic SC Engineering GA 805EE UT WOS:000293708400003 ER PT J AU Alexander, L Snape, JF Crawford, IA Joy, KH Burgess, R AF Alexander, L. Snape, J. F. Crawford, I. A. Joy, K. H. Burgess, R. TI A STUDY OF THE MINERALOGY AND TEXTURES OF BASALT FINES FROM APOLLO 12 REGOLITH SAMPLE 12023-, 155 SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbH, Royal Observ Greenwich C1 [Alexander, L.; Crawford, I. A.] Birkbeck Coll, London, England. [Alexander, L.; Snape, J. F.; Crawford, I. A.] UCL Birkbeck, CPS, London, England. [Snape, J. F.; Joy, K. H.] UCL, Dept Earth Sci, London, England. [Joy, K. H.] USRA, CLSE, Lunar & Planetary Inst, Houston, TX 77058 USA. [Joy, K. H.] NASA, Lunar Sci Inst, Washington, DC USA. [Burgess, R.] Univ Manchester, SEAES, Manchester M13 9PL, Lancs, England. EM l.alexander@bbk.ac.uk RI Crawford, Ian/H-7510-2012 OI Crawford, Ian/0000-0001-5661-7403 NR 4 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A7 EP A7 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700011 ER PT J AU Ashley, JW Golombek, MP Christensen, PR Squyres, SW McCoy, TJ Schroder, C Fleischer, I Johnson, JR Herkenhoff, KE Parker, TJ AF Ashley, J. W. Golombek, M. P. Christensen, P. R. Squyres, S. W. McCoy, T. J. Schroeder, C. Fleischer, I. Johnson, J. R. Herkenhoff, K. E. Parker, T. J. TI POST-FALL SURFACE MODIFICATION FEATURES OF IRON METEORITES FOUND BY THE OPPORTUNITY ROVER AND THEIR IMPLICATIONS FOR MARTIAN WEATHERING PROCESSES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbH, Royal Observ Greenwich C1 [Ashley, J. W.; Christensen, P. R.] Arizona State Univ, Mars Space Flight Facil, Tempe, AZ 85287 USA. [Golombek, M. P.; Parker, T. J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Squyres, S. W.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [McCoy, T. J.] Smithsonian Inst, Dept Mineral Sci, Natl Museum Nat Hist, Washington, DC 20560 USA. [Schroeder, C.] Univ Tubingen, Ctr Appl Geosci, Tubingen, Germany. [Fleischer, I.] Johannes Gutenberg Univ Mainz, Inst Anorgan & Analyt Chem, Mainz, Germany. [Johnson, J. R.; Herkenhoff, K. E.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. EM james.ashley@ser.asu.edu RI Johnson, Jeffrey/F-3972-2015; Schroder, Christian/B-3870-2009 OI Schroder, Christian/0000-0002-7935-6039 NR 3 TC 0 Z9 0 U1 1 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A13 EP A13 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700022 ER PT J AU Berger, EL Lauretta, DS Keller, LP AF Berger, E. L. Lauretta, D. S. Keller, L. P. TI HYDROTHERMAL SYNTHESIS OF CUBANITE: IMPLICATIONS FOR FLUIDS ON COMET 81P/WILD 2 AND THE CI-CHONDRITE PARENT BODY SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Berger, E. L.; Lauretta, D. S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Keller, L. P.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77573 USA. EM elberger@lpl.arizona.edu NR 6 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A18 EP A18 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700032 ER PT J AU Cartwright, JA Mittlefehldt, DW Herrin, JS Herrmann, S Ott, U AF Cartwright, J. A. Mittlefehldt, D. W. Herrin, J. S. Herrmann, S. Ott, U. TI "SOLAR-WIND-RICH'' HOWARDITES: TRUE REGOLITH VS. CM-IMPLANTED COMPONENTS SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Cartwright, J. A.; Herrmann, S.; Ott, U.] Max Planck Inst Chem, D-55128 Mainz, Germany. [Mittlefehldt, D. W.; Herrin, J. S.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM julia.cartwright@mpic.de RI Cartwright, Julia/A-8470-2013 NR 6 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A37 EP A37 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700070 ER PT J AU Changela, HG Stroud, RM De Gregorio, BT Nittler, LR Alexander, CMO Cody, GD AF Changela, H. G. Stroud, R. M. De Gregorio, B. T. Nittler, L. R. Alexander, C. M. O'D. Cody, G. D. TI NANOGLOBULE ABUNDANCES IN IOM EXTRACTS: CORRELATION WITH PARENT BODY PROCESSING SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID ORGANIC-MATTER; ORIGIN C1 [Changela, H. G.] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Changela, H. G.; Stroud, R. M.] USN, Res Lab, Washington, DC 20375 USA. [De Gregorio, B. T.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Nittler, L. R.; Alexander, C. M. O'D.; Cody, G. D.] Carnegie Inst Washington, Washington, DC 20015 USA. EM changela@anvil.nrl.navy.mil RI De Gregorio, Bradley/B-8465-2008; Stroud, Rhonda/C-5503-2008 OI De Gregorio, Bradley/0000-0001-9096-3545; Stroud, Rhonda/0000-0001-5242-8015 NR 6 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A39 EP A39 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700074 ER PT J AU Ciesla, FJ Sandford, SA Mastrapa, RM AF Ciesla, F. J. Sandford, S. A. Mastrapa, R. M. TI THE PATHS OF ICE GRAINS IN THE SOLAR NEBULA: IRRADIATION AND THE FORMATION OF ORGANICS SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID AMINO-ACIDS; ANALOGS C1 [Ciesla, F. J.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Sandford, S. A.; Mastrapa, R. M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM fciesla@uchicago.edu NR 7 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A44 EP A44 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700085 ER PT J AU Englert, P Bishop, JL Hunkins, LD Koeberl, C AF Englert, P. Bishop, J. L. Hunkins, L. D. Koeberl, C. TI MARTIAN SOIL ANALOGS FROM ANTARCTIC DRY VALLEYS: ELEMENTAL ABUNDANCES AND MINERALOGY SIGNAL WEATHERING PROCESSES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbH, Royal Observ Greenwich ID GEOCHEMICAL ANALYSES; MARS; SPECTROSCOPY; REFLECTANCE; SEDIMENTS C1 [Englert, P.] Univ Hawaii, Manoa, HI USA. [Bishop, J. L.; Hunkins, L. D.] SETI Inst, Mountain View, CA USA. [Bishop, J. L.; Hunkins, L. D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hunkins, L. D.] Univ S Florida, Tampa, FL 33620 USA. [Koeberl, C.] Nat Hist Museum, Vienna, Austria. [Koeberl, C.] Univ Vienna, Dept Lithospher Res, Vienna, Austria. EM penglert@hawaii.edu NR 8 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A64 EP A64 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700125 ER PT J AU Frank, D Zolensky, M Brearley, A Le, L AF Frank, D. Zolensky, M. Brearley, A. Le, L. TI A BI-MODAL DISTRIBUTION OF ALHA77307 MATRIX OLIVINE: EVIDENCE FOR FINE-GRAINED MIXING FROM MULTIPLE RESERVOIRS IN THE CO FORMATION ZONE SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Frank, D.; Le, L.] NASA, Lyndon B Johnson Space Ctr, ESCG, Houston, TX 77058 USA. [Zolensky, M.] NASA, Lyndon B Johnson Space Ctr, ARES, Houston, TX 77058 USA. [Brearley, A.] Univ New Mexico, Albuquerque, NM 87131 USA. EM david.r.frank@nasa.gov NR 3 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A68 EP A68 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700133 ER PT J AU Fries, M Zolensky, M Steele, A AF Fries, M. Zolensky, M. Steele, A. TI MINERAL INCLUSIONS IN MONAHANS AND ZAG HALITES: EVIDENCE OF THE ORIGINATING BODY SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID CHONDRITE; SURFACE C1 [Fries, M.] Planetary Sci Inst, Tucson, AZ USA. [Zolensky, M.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Steele, A.] Carnegie Inst Sci, Geophys Lab, Washington, DC USA. EM fries@psi.edu NR 7 TC 1 Z9 1 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A70 EP A70 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700136 ER PT J AU Gibson, EK Mckay, DS Thomas-Keprta, KL Clemett, SJ AF Gibson, E. K. McKay, D. S. Thomas-Keprta, K. L. Clemett, S. J. TI ALH 84001: THE KEY TO UNLOCKING SECRETS ABOUT MARS-15 YEARS AND COUNTING SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID MARTIAN METEORITE ALH84001; CARBONATES C1 [Gibson, E. K.; McKay, D. S.] NASA JSC, ARES, Houston, TX 77058 USA. [Thomas-Keprta, K. L.; Clemett, S. J.] NASA JSC, ESCG, Houston, TX 77058 USA. EM everett.k.gibson@nasa.gov NR 9 TC 0 Z9 0 U1 1 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A77 EP A77 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700151 ER PT J AU Hallis, LJ Taylor, GJ AF Hallis, L. J. Taylor, G. J. TI HYDROGEN ISOTOPES IN THE NAKHLITES: MAGMATIC AND ATMOSPHERIC MARTIAN RESERVIORS VERSUS TERRESTRIAL CONTAMINATION SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Hallis, L. J.; Taylor, G. J.] Univ Hawaii, HIGP SOEST, NASA Astrobiol Inst, Honolulu, HI 96822 USA. EM lydh@higp.hawaii.edu NR 6 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A86 EP A86 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700168 ER PT J AU Herd, CDK Smith, CL Grossman, JN Weisberg, MK Welzenbach, L AF Herd, C. D. K. Smith, C. L. Grossman, J. N. Weisberg, M. K. Welzenbach, L. TI NOMCOM REVIEW OF TYPE SPECIMEN REPOSITORIES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Herd, C. D. K.] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada. [Smith, C. L.] Nat Hist Museum, Dept Mineral, London SW7 5BD, England. [Grossman, J. N.] NASA Headquarters, Washington, DC 20546 USA. [Weisberg, M. K.] CUNY, Kingsborough Coll, Brooklyn, NY 11235 USA. [Welzenbach, L.] Smithsonian Inst, Natl Museum Nat Hist, Dept Mineral Sci, Washington, DC 20560 USA. EM herd@ualberta.ca NR 1 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A92 EP A92 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700181 ER PT J AU Johnson, NM Burton, AS Nuth, JA AF Johnson, N. M. Burton, A. S. Nuth, J. A., III TI METEORITES, ORGANICS AND FISCHER-TROPSCH TYPE REACTIONS: PRODUCTION AND DESTRUCTION SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Johnson, N. M.; Burton, A. S.] NASA, Goddard Space Flight Ctr, Astrochem Lab, Greenbelt, MD 20771 USA. [Nuth, J. A., III] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. EM natasha.m.johnson@nasa.gov RI Johnson, Natasha/E-3093-2012; Nuth, Joseph/E-7085-2012; Burton, Aaron/H-2212-2011 OI Burton, Aaron/0000-0002-7137-1605 NR 6 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A115 EP A115 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700226 ER PT J AU Joy, KH Kring, DA Zolensky, ME AF Joy, K. H. Kring, D. A. Zolensky, M. E. TI PETROGRAPHY OF LUNAR METEORITES DHOFAR 925 AND 961 SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID CRUST C1 [Joy, K. H.; Kring, D. A.] LPI USRA, CLSE, Houston, TX 77058 USA. [Joy, K. H.; Kring, D. A.] NASA, Lunar Sci Inst, Washington, DC USA. [Joy, K. H.; Zolensky, M. E.] NASA, Lyndon B Johnson Space Ctr, ARES, Houston, TX 77058 USA. EM joy@lpi.usra.edu NR 6 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A116 EP A116 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700229 ER PT J AU Kearsley, AT Smith, CL Spratt, J Benedix, GK Hunt, A Russell, SS Joy, KH Gounelle, M AF Kearsley, A. T. Smith, C. L. Spratt, J. Benedix, G. K. Hunt, A. Russell, S. S. Joy, K. H. Gounelle, M. TI METEORITE POLISHED SECTIONS: X-RAY MAP IMAGERY FOR DOCUMENTATION, CURATION AND 'VIRTUAL-LOAN' OF IRREPLACEABLE MATERIALS SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Kearsley, A. T.; Smith, C. L.; Spratt, J.; Benedix, G. K.; Hunt, A.; Russell, S. S.; Joy, K. H.] Nat Hist Museum, Dept Mineral, IARC, London SW7 5BD, England. [Joy, K. H.] LPI USRA, CLSE, Houston, TX 77058 USA. [Joy, K. H.] NASA, Lunar Sci Inst, Washington, DC USA. [Gounelle, M.] CNRS, MNHN, UMR 7202, F-75005 Paris, France. [Gounelle, M.] LMCM, F-75005 Paris, France. EM antk@nhm.ac.uk NR 3 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A120 EP A120 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700237 ER PT J AU Kebukawa, Y Zolensky, ME Fries, MD Steele, A Kilcoyne, ALD Cody, GD AF Kebukawa, Y. Zolensky, M. E. Fries, M. D. Steele, A. Kilcoyne, A. L. D. Cody, G. D. TI ORGANIC ANALYSIS OF XENOLITHIC CLASTS IN METEORITES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID SOLAR-SYSTEM C1 [Kebukawa, Y.; Steele, A.; Cody, G. D.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20005 USA. [Zolensky, M. E.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Fries, M. D.] Planetary Sci Inst, San Diego, CA USA. [Kilcoyne, A. L. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM ykebukawa@ciw.edu RI Kilcoyne, David/I-1465-2013 NR 4 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A121 EP A121 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700238 ER PT J AU Keller, LP Rahman, Z AF Keller, L. P. Rahman, Z. TI A FIB-TEM STUDY OF Ca- AND Fe-RICH PYROXENES IN THE MATRICES OF OXIDIZED R AND CV3 CARBONACEOUS CHONDRITES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Keller, L. P.] NASA JSC, ARES, Robert M Walker Lab Space Sci, Houston, TX 77058 USA. [Rahman, Z.] ESCG Jacobs Technol, Houston, TX 77058 USA. EM Lindsay.P.Keller@nasa.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A122 EP A122 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700240 ER PT J AU Keller, LP Rahman, Z AF Keller, L. P. Rahman, Z. TI IRRADIATION OF FeS: RELATIVE SPUTTERING RATES OF TROILITE AND Mg SILICATES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID IDENTIFICATION C1 [Keller, L. P.] NASA JSC, ARES, Robert M Walker Lab Space Sci, Houston, TX 77058 USA. [Rahman, Z.] ESCG Jacobs Technol, Houston, TX 77058 USA. EM Lindsay.P.Keller@nasa.gov NR 7 TC 3 Z9 3 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A121 EP A121 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700239 ER PT J AU Matsumoto, T Tsuchiyama, A Nakamura-Messenger, K Zolensky, ME Nakano, T Uesugi, K AF Matsumoto, T. Tsuchiyama, A. Nakamura-Messenger, K. Zolensky, M. E. Nakano, T. Uesugi, K. TI THREE-DIMENSIONAL OBSERVATION AND IMAGE ANALYSIS OF ORGANIC NANOGLOBULES IN CARBONACEOUS CHONDRITES USING X-RAY MICROTOMOGRAPHY SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Matsumoto, T.; Tsuchiyama, A.] Osaka Univ, Dept Earth & Space Sci, Osaka, Japan. [Nakamura-Messenger, K.; Zolensky, M. E.] NASA JSC, Houston, TX 77058 USA. EM matsumoto@as-troboy.ess.sci.osaka-u.ac.jp NR 4 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A149 EP A149 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700294 ER PT J AU McBride, KM Righter, K AF McBride, K. M. Righter, K. TI THE 100th ANNIVERSARY OF THE FALL OF NAKHLA: THE SUBDIVISION OF BM1913,25 SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID MARTIAN METEORITE C1 [McBride, K. M.] NASA, ESCG Jacobs Technol, Johnson Space Ctr, Houston, TX 77058 USA. [Righter, K.] NASA JSC, Houston, TX 77058 USA. EM kathleen.mcbride-1@nasa.gov NR 10 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A151 EP A151 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700298 ER PT J AU McFadden, LA Sykes, M Joy, S Tricarico, P O'Brien, D Li, JY Mutchler, M Memarsadeghi, N Safavi, H Gutierrez-Marques, P Nathues, A Mottola, S Sierks, H Schroder, S Polansky, C Jacobson, R Russell, CT Raymond, CA Rayman, M Weinstein-Weiss, S Palmer, E AF McFadden, L. A. Sykes, M. Joy, S. Tricarico, P. O'Brien, D. Li, J. Y. Mutchler, M. Memarsadeghi, Nargess Safavi, H. Gutierrez-Marques, P. Nathues, A. Mottola, S. Sierks, H. Schroder, S. Polansky, C. Jacobson, R. Russell, C. T. Raymond, C. A. Rayman, M. Weinstein-Weiss, S. Palmer, E. TI DOES VESTA HAVE MOONS? SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [McFadden, L. A.; Memarsadeghi, Nargess; Safavi, H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Sykes, M.; Tricarico, P.; O'Brien, D.; Palmer, E.] Planetary Sci Inst, Tucson, AZ USA. [Joy, S.; Russell, C. T.] Univ Calif Los Angeles, IGPP, Los Angeles, CA 90024 USA. [Li, J. Y.] U Maryland, Baltimore, MD 20742 USA. [Mutchler, M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Gutierrez-Marques, P.; Nathues, A.; Sierks, H.; Schroder, S.] Max Planck Inst Sonnensyst Forsch, Lindau, Germany. [Polansky, C.; Jacobson, R.; Raymond, C. A.; Rayman, M.; Weinstein-Weiss, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM lucy.mcfadden@nasa.gov RI Russell, Christopher/E-7745-2012; McFadden, Lucy-Ann/I-4902-2013 OI Russell, Christopher/0000-0003-1639-8298; McFadden, Lucy-Ann/0000-0002-0537-9975 NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A154 EP A154 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700304 ER PT J AU McKay, DS Gibson, EK Thomas-Keprta, KL Clemett, SJ Le, L Rahman, Z Wentworth, SJ AF McKay, D. S. Gibson, E. K. Thomas-Keprta, K. L. Clemett, S. J. Le, L. Rahman, Z. Wentworth, S. J. TI NAKHLA: A MARTIAN METEORITE WITH INDIGENOUS ORGANIC CARBONACEOUS FEATURES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [McKay, D. S.; Gibson, E. K.] NASA JSC, ARES, Houston, TX 77058 USA. [Thomas-Keprta, K. L.; Clemett, S. J.; Le, L.; Rahman, Z.; Wentworth, S. J.] NASA JSC, ESCG, Houston, TX 77058 USA. EM david.s.mckay@nasa.gov NR 0 TC 3 Z9 3 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A154 EP A154 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700305 ER PT J AU McSween, HY Russell, CT Raymond, CA AF McSween, H. Y. Russell, C. T. Raymond, C. A. TI DAWN ARRIVES AT VESTA SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [McSween, H. Y.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Raymond, C. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RI Russell, Christopher/E-7745-2012 OI Russell, Christopher/0000-0003-1639-8298 NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A156 EP A156 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700308 ER PT J AU Meshik, A Pravdivtseva, O Hohenberg, CM Allton, JH Burnett, DS AF Meshik, A. Pravdivtseva, O. Hohenberg, C. M. Allton, J. H. Burnett, D. S. TI FIRST ANALYSIS OF ALL XENON ISOTOPES IN GENESIS SOLAR WIND AloS COLLECTOR SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID KRYPTON C1 [Meshik, A.; Pravdivtseva, O.; Hohenberg, C. M.] Washington Univ, St Louis, MO 63130 USA. [Allton, J. H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Burnett, D. S.] CALTECH, Pasadena, CA 91125 USA. EM am@physics.wustl.edu NR 4 TC 1 Z9 1 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A159 EP A159 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700314 ER PT J AU Mikouchi, T Goodrich, CA Hoffmann, VH Zolensky, ME Sugiyama, K AF Mikouchi, T. Goodrich, C. A. Hoffmann, V. H. Zolensky, M. E. Sugiyama, K. TI ELECTRON BACK-SCATTER DIFFRACTION STUDY OF IRON METAL IN ALMAHATA SITTA UREILITE SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Mikouchi, T.] Univ Tokyo, Dept Earth & Planetary Sci, Tokyo 1130033, Japan. [Goodrich, C. A.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Hoffmann, V. H.] Univ Tubingen, Dept Geosci, D-72076 Tubingen, Germany. [Hoffmann, V. H.] Univ Munich, Dept Geog Environm Sci, D-80333 Munich, Germany. [Zolensky, M. E.] NASA JSC, Houston, TX 77058 USA. [Sugiyama, K.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9800812, Japan. EM mikouchi@eps.s.u-tokyo.ac.jp RI Sugiyama, Kazumasa/B-3447-2010 NR 5 TC 3 Z9 3 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A161 EP A161 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700318 ER PT J AU Mittlefehldt, DW Cartwright, JA Herrin, JS Johnson, KN AF Mittlefehldt, D. W. Cartwright, J. A. Herrin, J. S. Johnson, K. N. TI TOWARD A REGOLITH MATURITY INDEX FOR HOWARDITES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbH, Royal Observ Greenwich C1 [Mittlefehldt, D. W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Cartwright, J. A.] Max Planck Inst Chem, D-55128 Mainz, Germany. [Herrin, J. S.] ESGC, Lyndon B Johnson Space Ctr, Houston, TX USA. [Johnson, K. N.] Arizona State Univ, Tempe, AZ USA. EM david.w.mittlefehldt@nasa.gov RI Cartwright, Julia/A-8470-2013 NR 8 TC 0 Z9 0 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A163 EP A163 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700322 ER PT J AU Mittlefehldt, DW Herrin, JS AF Mittlefehldt, D. W. Herrin, J. S. TI IN SITU TRACE ELEMENT MEASUREMENTS ON RODA AND THE ORIGIN OF DIOGENITES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID INSIGHTS C1 [Mittlefehldt, D. W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Herrin, J. S.] ESGC, Lyndon B Johnson Space Ctr, Houston, TX USA. EM david.w.mittlefehldt@nasa.gov NR 4 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A163 EP A163 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700323 ER PT J AU Morse, AD Barber, SJ Pillinger, JM Sheridan, S Wright, IP Gibson, EK Merrifield, JA Waltham, NR Waugh, LJ Pillinger, CT AF Morse, A. D. Barber, S. J. Pillinger, J. M. Sheridan, S. Wright, I. P. Gibson, E. K. Merrifield, J. A. Waltham, N. R. Waugh, L. J. Pillinger, C. T. TI ESA LUNAR LANDER'S SEARCH FOR VOLATILES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Morse, A. D.; Barber, S. J.; Pillinger, J. M.; Sheridan, S.; Wright, I. P.; Pillinger, C. T.] Open Univ, Planetary & Space Sci Res Inst, Milton Keynes MK7 6AA, Bucks, England. [Gibson, E. K.] NASA, Astromat Res Off, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Merrifield, J. A.] Fluid Grav Engn, Emsworth PO10 7DX, England. [Waltham, N. R.] RAL Space, Didcot OX11 0QX, Oxon, England. [Waugh, L. J.] EADS Astrium Ltd, Stevenage SG1 2AS, Herts, England. EM a.d.morse@open.ac.uk NR 7 TC 0 Z9 0 U1 1 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A168 EP A168 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700332 ER PT J AU Nakamura, N Nyquist, LE Reese, Y Shih, CY Fujitani, T Okano, O AF Nakamura, N. Nyquist, L. E. Reese, Y. Shih, C. -Y. Fujitani, T. Okano, O. TI STABLE CHLORINE ISOTOPE STUDY OF MARTIAN SHERGOTTITES AND NAKHLITES; WHOLE ROCK AND ACID LEACHATES AND RESIDUES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID METEORITE; SAMPLES C1 [Nakamura, N.; Nyquist, L. E.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Reese, Y.] ESCG Muniz Engn, Houston, TX 77058 USA. [Shih, C. -Y.] ESCG Jacobs Sverdrup, Houston, TX 77058 USA. [Fujitani, T.] Marine Tech Coll, Ashiya 659, Japan. [Okano, O.] Okayama Univ, Okayama 700, Japan. [Nakamura, N.] Kobe Univ, Nada Ku, Kobe, Hyogo 657, Japan. EM noboru.nakamura@nasa.gov NR 7 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A173 EP A173 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700342 ER PT J AU Nakamura-Messenger, K Keller, LP Messenger, S Clemett, SJ Nguyen, AN Frank, D AF Nakamura-Messenger, K. Keller, L. P. Messenger, S. Clemett, S. J. Nguyen, A. N. Frank, D. TI NANO-SCALE ANATOMY OF Stardust COMETARY TRACKS CONTINUED: BULBOUS TRACKS 147 AND 168 SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID OLIVINES C1 [Nakamura-Messenger, K.; Keller, L. P.; Messenger, S.; Clemett, S. J.; Nguyen, A. N.] NASA JSC, ARES, Robert M Walker Lab Space Sci, Houston, TX USA. [Nakamura-Messenger, K.; Nguyen, A. N.] ESCG Jacobs Technol, Houston, TX USA. [Clemett, S. J.] ESCG ERC Inc, Houston, TX USA. [Frank, D.] ESCG Hamilton Sundstrand, Houston, TX USA. EM keiko.nakamura-1@nasa.gov NR 4 TC 1 Z9 1 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A173 EP A173 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700343 ER PT J AU Nathues Russell, CT Raymond, C Christensen, U Sierks, H Jaumann, R Keller, HU Mottola, S Neukum, G Hoffmann, M Le Corre, L Reddy, V Schroder, SE Li, JY Buratti, BJ Marques, PG Buettner, I Hall, I Maue, T Richards, M AF Nathues Russell, C. T. Raymond, C. Christensen, U. Sierks, H. Jaumann, R. Keller, H. U. Mottola, S. Neukum, G. Hoffmann, M. Le Corre, L. Reddy, V. Schroeder, S. E. Li, J. -Y. Buratti, B. J. Marques, P. Gutierrez Buettner, I. Hall, I. Maue, T. Richards, M. CA Dawn Sci Team TI DAWN AT VESTA: FIRST RESULTS FROM THE FRAMING CAMERAS SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbH, Royal Observ Greenwich C1 [Nathues; Christensen, U.; Sierks, H.; Hoffmann, M.; Le Corre, L.; Reddy, V.; Schroeder, S. E.; Marques, P. Gutierrez; Buettner, I.; Hall, I.; Maue, T.; Richards, M.] MPI Solar Syst Res, Katlenburg Lindau, 90024, Germany. [Russell, C. T.] Univ Calif Los Angeles, Los Angeles, CA USA. [Raymond, C.; Buratti, B. J.] JPL, Pasadena, CA USA. [Jaumann, R.; Mottola, S.] DLR, London, England. [Keller, H. U.] TUB, Berlin, Germany. [Neukum, G.] FUB, Berlin, Germany. [Li, J. -Y.] UMD, Duluth, MN USA. EM nathues@mps.mpg.de RI Russell, Christopher/E-7745-2012 OI Russell, Christopher/0000-0003-1639-8298 NR 6 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A176 EP A176 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700348 ER PT J AU Nguyen, AN Keller, LP Rahman, Z Messenger, S AF Nguyen, A. N. Keller, L. P. Rahman, Z. Messenger, S. TI MICROSTRUCTURES OF RARE SILICATE Stardust FROM NOVA AND SUPERNOVAE SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbH, Royal Observ Greenwich ID DUST C1 [Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S.] NASA JSC, ARES, Robert M Walker Lab Space Sci, Houston, TX USA. [Nguyen, A. N.; Rahman, Z.] ESCG Jacobs Technol, Houston, TX USA. EM lan-anh.n.nguyen@nasa.gov NR 8 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A177 EP A177 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700350 ER PT J AU Noguchi, T Nakamura, T Kimura, M Zolensky, ME Tanaka, M Hashimoto, T Konno, M Nakato, A Ogami, T Fujimura, A Abe, M Yada, T Mukai, T Ueno, M Okada, T Shirai, K Ishibashi, Y Okazaki, R AF Noguchi, T. Nakamura, T. Kimura, M. Zolensky, M. E. Tanaka, M. Hashimoto, T. Konno, M. Nakato, A. Ogami, T. Fujimura, A. Abe, M. Yada, T. Mukai, T. Ueno, M. Okada, T. Shirai, K. Ishibashi, Y. Okazaki, R. TI FIRST DIRECT EVIDENCE OF ASTEROIDAL SPACE WEATHERING FOUND ON THE SURFACE OF ITOKAWA PARTICLES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Noguchi, T.; Kimura, M.] Ibaraki Univ, Mito, Ibaraki, Japan. [Nakamura, T.; Nakato, A.; Ogami, T.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Zolensky, M. E.] NASA JSC, Houston, TX USA. [Tanaka, M.] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. [Hashimoto, T.; Konno, M.] Hitachi High Technol Corp, Tokyo, Japan. [Fujimura, A.; Abe, M.; Yada, T.; Mukai, T.; Ueno, M.; Okada, T.; Shirai, K.; Ishibashi, Y.] ISAS JAXA, Sagamihara, Kanagawa, Japan. [Okazaki, R.] Kyushu Univ, Fukuoka 812, Japan. EM tngc@mx.ibaraki.ac.jp NR 8 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A178 EP A178 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700353 ER PT J AU Nuth, JA Paquette, JA Farquhar, A Johnson, NM AF Nuth, J. A. Paquette, J. A. Farquhar, A. Johnson, N. M. TI A QUANTITATIVE, TIME-DEPENDENT MODEL OF OXYGEN ISOTOPES IN THE SOLAR NEBULA: STEP 1 SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID ELECTRICAL-DISCHARGE; FRACTIONATION; ANOMALIES C1 [Nuth, J. A.] NASAs, Solar Syst Explorat Div, Code 690, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Paquette, J. A.; Farquhar, A.; Johnson, N. M.] NASA GSFC, Astrochem Lab, Code 691, Greenbelt, MD USA. [Paquette, J. A.] NASA, Washington, DC USA. [Farquhar, A.] USRP, Houston, TX USA. EM joseph.a.nuth@nasa.gov RI Johnson, Natasha/E-3093-2012; Nuth, Joseph/E-7085-2012 NR 12 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A180 EP A180 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700356 ER PT J AU Nyquist, LE Shih, CY Reese, Y Takeda, H AF Nyquist, L. E. Shih, C. -Y. Reese, Y. Takeda, H. TI Rb-Sr AND Sm-Nd STUDY OF ASUKA-881394: EVIDENCE OF "LATE" METAMORPHISM SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID ANGRA-DOS-REIS C1 [Nyquist, L. E.] NASA, Lyndon B Johnson Space Ctr, KR, Houston, TX 77058 USA. [Shih, C. -Y.] ESCG Jacobs Sverdrup, Houston, TX 77058 USA. [Reese, Y.] ESCG Muniz Engn, Houston, TX 77058 USA. [Takeda, H.] Chiba Inst Tech, Narashino, Chiba 2750016, Japan. EM laurence.e.nyquist@nasa.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A180 EP A180 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700357 ER PT J AU Plescia, JB Cintala, MJ AF Plescia, J. B. Cintala, M. J. TI IMPACT MELT IN SMALL SIMPLE LUNAR HIGHLANDS CRATERS SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Plescia, J. B.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Cintala, M. J.] NASA, Lyndon B Johnson Space Ctr, Code KR, Houston, TX 77058 USA. EM jeffrey.plescia@jhuapl.edu RI Plescia, Jeffrey/B-7738-2016 NR 11 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A190 EP A190 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700376 ER PT J AU Rao, MN Nyquist, LE Ross, DK Park, J AF Rao, M. N. Nyquist, L. E. Ross, D. K. Park, J. TI NON-UNIFORM DISTRIBUTION OF THE MARTIAN REGOLITH COMPONENT IN SHERGOTTITES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID NOBLE-GASES C1 [Rao, M. N.; Ross, D. K.] Johnson Space Ctr, Jacobs ESCG, Houston, TX USA. [Nyquist, L. E.] NASA, Lyndon B Johnson Space Ctr, ARES, Houston, TX 77058 USA. [Park, J.] Rutgers State Univ, Dept Chem, Piscataway, NJ USA. EM nageswara.rao@nasa.gov NR 8 TC 0 Z9 0 U1 1 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A195 EP A195 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700387 ER PT J AU Sandford, SA Nuevo, M Milam, SN Cody, GD Kilcoyne, ALD De Gregorio, BT Stroud, RM AF Sandford, S. A. Nuevo, M. Milam, S. N. Cody, G. D. Kilcoyne, A. L. D. De Gregorio, B. T. Stroud, R. M. TI XANES ANALYSIS OF ORGANIC RESIDUES FROM THE IRRADIATION OF ASTROPHYSICAL ICE ANALOGS AND COMPARISON WITH Stardust SAMPLES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID AMINO-ACIDS; COMET 81P/WILD-2 C1 [Sandford, S. A.; Nuevo, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Milam, S. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cody, G. D.] Carnegie Inst Washington, Washington, DC 20005 USA. [Kilcoyne, A. L. D.] Adv Light Source, Berkeley, CA USA. [De Gregorio, B. T.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Stroud, R. M.] USN, Res Lab, Washington, DC 20375 USA. EM Scott.A.Sandford@nasa.gov RI Milam, Stefanie/D-1092-2012; De Gregorio, Bradley/B-8465-2008; Kilcoyne, David/I-1465-2013; Stroud, Rhonda/C-5503-2008 OI Milam, Stefanie/0000-0001-7694-4129; De Gregorio, Bradley/0000-0001-9096-3545; Stroud, Rhonda/0000-0001-5242-8015 NR 9 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A204 EP A204 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700404 ER PT J AU Satterwhite, CE McBride, KM Harrington, R Schwarz, CM Righter, K AF Satterwhite, C. E. McBride, K. M. Harrington, R. Schwarz, C. M. Righter, K. TI HANDLING HEAVENLY JEWELS-35 YEARS OF ANTARCTIC METEORITE PROCESSING AT JOHNSON SPACE CENTER SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Satterwhite, C. E.; McBride, K. M.; Harrington, R.; Schwarz, C. M.] NASA, ESCG Jacobs Technol, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Righter, K.] NASA JSC, Houston, TX 77058 USA. EM cecilia.e.satterwhite@nasa.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A205 EP A205 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700406 ER PT J AU Wozniakiewicz, PJ Bradley, JP Zolensky, ME Brownlee, DE Ishii, HA AF Wozniakiewicz, P. J. Bradley, J. P. Zolensky, M. E. Brownlee, D. E. Ishii, H. A. TI KWAJALEIN ATOLL: A NEW COLLECTION SITE FOR MICROMETEORITES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Wozniakiewicz, P. J.; Bradley, J. P.; Ishii, H. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Zolensky, M. E.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Brownlee, D. E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. EM wozniakiewic1@llnl.gov NR 9 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A253 EP A253 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700503 ER PT J AU Wozniakiewicz, PJ Bradley, JP Zolensky, ME Brownlee, DE Ishii, HA AF Wozniakiewicz, P. J. Bradley, J. P. Zolensky, M. E. Brownlee, D. E. Ishii, H. A. TI TAKING PLANETARY SCIENCE AND ASTRONOMY TO STUDENTS IN THE MIDDLE OF THE PACIFIC OCEAN SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Wozniakiewicz, P. J.; Bradley, J. P.; Ishii, H. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Zolensky, M. E.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Brownlee, D. E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. EM wozniakiewic1@llnl.gov NR 0 TC 0 Z9 0 U1 1 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A254 EP A254 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700504 ER PT J AU Yada, T Fujimura, A Abe, M Nakamura, T Noguchi, T Okazaki, R Okada, T Ishibashi, Y Shirai, K Zolensky, ME Sandford, S Uesugi, M Karouji, Y Ueno, M Mukai, T Yoshikawa, M Kawaguchi, J AF Yada, T. Fujimura, A. Abe, M. Nakamura, T. Noguchi, T. Okazaki, R. Okada, T. Ishibashi, Y. Shirai, K. Zolensky, M. E. Sandford, S. Uesugi, M. Karouji, Y. Ueno, M. Mukai, T. Yoshikawa, M. Kawaguchi, J. TI HAYABUSA SAMPLE CURATION AT PLANETARY MATERIAL SAMPLE CURATION FACILITY IN JAXA SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Yada, T.; Fujimura, A.; Abe, M.; Okada, T.; Ishibashi, Y.; Uesugi, M.; Karouji, Y.; Ueno, M.; Yoshikawa, M.; Kawaguchi, J.] JAXAs Space Explorat Ctr, Kanagawa 2525210, Japan. [Yada, T.; Fujimura, A.; Abe, M.; Okada, T.; Shirai, K.; Ueno, M.; Yoshikawa, M.; Kawaguchi, J.] Inst Space Astronaut Sci, Kanagawa 2525210, Japan. [Mukai, T.] Japan Aerosp Explorat Agcy, Kanagawa 2525210, Japan. [Nakamura, T.] Tohoku Univ, Grad Sch Sci, Dept Earth Sci, Sendai, Miyagi 9808578, Japan. [Noguchi, T.] Ibaraki Univ, Coll Sci, Mito, Ibaraki 3108512, Japan. [Okazaki, R.] Kyushu Univ, Grad Sch Sci, Dept Earth Planet Sci, Fukuoka 8128581, Japan. [Zolensky, M. E.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Sandford, S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM yada@planeta.sci.isas.jaxa.jp NR 10 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A257 EP A257 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700510 ER PT J AU Yurimoto, H Abe, K Abe, M Ebihara, M Fujimura, A Hashiguchi, M Hashizume, K Ireland, TR Itoh, S Katayama, J Kato, C Kawaguchi, J Kawasaki, N Kitajima, F Kobayashi, S Meike, T Mukai, T Nagao, K Nakamura, T Naraoka, H Noguchi, T Okazaki, R Park, C Sakamoto, N Seto, Y Takei, M Tsuchiyama, A Uesugi, M Wakaki, S Yada, T Yamamoto, K Yoshikawa, M Zolensky, ME AF Yurimoto, H. Abe, K. Abe, M. Ebihara, M. Fujimura, A. Hashiguchi, M. Hashizume, K. Ireland, T. R. Itoh, S. Katayama, J. Kato, C. Kawaguchi, J. Kawasaki, N. Kitajima, F. Kobayashi, S. Meike, T. Mukai, T. Nagao, K. Nakamura, T. Naraoka, H. Noguchi, T. Okazaki, R. Park, C. Sakamoto, N. Seto, Y. Takei, M. Tsuchiyama, A. Uesugi, M. Wakaki, S. Yada, T. Yamamoto, K. Yoshikawa, M. Zolensky, M. E. TI OXYGEN AND MAGNESIUM ISOTOPIC COMPOSITIONS OF ASTEROID 25143 ITOKAWA RETURNED BY THE HAYABUSA MISSION SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbH, Royal Observ Greenwich C1 [Yurimoto, H.; Abe, K.; Hashiguchi, M.; Itoh, S.; Katayama, J.; Kato, C.; Kawasaki, N.; Kobayashi, S.; Meike, T.; Park, C.; Sakamoto, N.; Takei, M.; Wakaki, S.; Yamamoto, K.] Hokkaido Univ, Sapporo, Hokkaido 060, Japan. [Ebihara, M.] Tokyo Metropolitan Univ, Tokyo, Japan. [Hashizume, K.; Tsuchiyama, A.] Osaka Univ, Suita, Osaka 565, Japan. [Ireland, T. R.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Kitajima, F.; Naraoka, H.; Okazaki, R.] Kyushu Univ, Fukuoka 812, Japan. [Nagao, K.] Univ Tokyo, Tokyo 1138654, Japan. [Nakamura, T.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Noguchi, T.] Ibaraki Univ, Ibaraki, Japan. [Seto, Y.] Kobe Univ, Kobe, Hyogo, Japan. [Zolensky, M. E.] NASA, Johnson Space Center, Washington, DC USA. EM yuri@ep.sci.hokudai.ac.jp RI Seto, Yusuke/D-5751-2015; Ireland, Trevor/A-4993-2008 OI Seto, Yusuke/0000-0002-5423-2136; Ireland, Trevor/0000-0001-7617-3889 NR 6 TC 2 Z9 2 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A260 EP A260 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700516 ER PT J AU Zolensky, ME Cribbs, W Le, L Ross, DK AF Zolensky, M. E. Cribbs, W. Le, L. Ross, D. K. TI HOW REPRESENTATIVE OF AN ASTEROID'S MINERALOGY ARE SAMPLES FROM ITS PONDED DEPOSITS? SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Zolensky, M. E.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Cribbs, W.] Univ Houston, Clear Lake, TX 77058 USA. [Le, L.; Ross, D. K.] Jacobs ESCG, Houston, TX 77058 USA. EM michael.e.zolensky@nasa.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A262 EP A262 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700521 ER PT J AU Yorks, JE Hlavka, DL Hart, WD McGill, MJ AF Yorks, John E. Hlavka, Dennis L. Hart, William D. McGill, Matthew J. TI Statistics of Cloud Optical Properties from Airborne Lidar Measurements SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID CIRRUS CLOUDS; MICROPHYSICAL PROPERTIES; RADIATIVE PROPERTIES; POLARIZATION LIDAR; WATER CLOUDS; COLD CIRRUS; PART II; DEPOLARIZATION; EXTINCTION; BACKSCATTER AB Accurate knowledge of cloud optical properties, such as extinction-to-backscatter ratio and depolarization ratio, can have a significant impact on the quality of cloud extinction retrievals from lidar systems because parameterizations of these variables are often used in nonideal conditions to determine cloud phase and optical depth. Statistics and trends of these optical parameters are analyzed for 4 yr (2003-07) of cloud physics lidar data during five projects that occurred in varying geographic locations and meteorological seasons. Extinction-to-backscatter ratios (also called lidar ratios) are derived at 532 nm by calculating the transmission loss through the cloud layer and then applying it to the attenuated backscatter profile in the layer, while volume depolarization ratios are computed using the ratio of the parallel and perpendicular polarized 1064-nm channels. The majority of the cloud layers yields a lidar ratio between 10 and 40 sr, with the lidar ratio frequency distribution centered at 25 sr for ice clouds and 16 sr for altocumulus clouds. On average, for ice clouds the lidar ratio slightly decreases with decreasing temperature, while the volume depolarization ratio increases significantly as temperatures decrease. Trends for liquid water clouds (altocumulus clouds) are also observed. Ultimately, these observed trends in optical properties, as functions of temperature and geographic location, should help to improve current parameterizations of extinction-to-backscatter ratio, which in turn should yield increased accuracy in cloud optical depth and radiative forcing estimates. C1 [Yorks, John E.; McGill, Matthew J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yorks, John E.; Hlavka, Dennis L.; Hart, William D.] Sci Syst & Applicat Inc, Lanham, MD USA. RP Yorks, JE (reprint author), NASA, Goddard Space Flight Ctr, Code 613-1, Greenbelt, MD 20771 USA. EM john.e.yorks@nasa.gov RI McGill, Matthew/D-8176-2012; OI Hlavka, Dennis/0000-0002-2976-7243 FU NASA FX The Cloud Physics Lidar is sponsored by NASA's Radiation Sciences Program. NR 54 TC 18 Z9 18 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JUL PY 2011 VL 28 IS 7 BP 869 EP 883 DI 10.1175/2011JTECHA1507.1 PG 15 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 803YS UT WOS:000293619700002 ER PT J AU Fridlind, AM Ackerman, AS AF Fridlind, Ann M. Ackerman, Andrew S. TI Estimating the sensitivity of radiative impacts of shallow, broken marine clouds to boundary layer aerosol size distribution parameter uncertainties for evaluation of satellite retrieval requirements (vol 28, pg 530, 2011) SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Correction C1 [Fridlind, Ann M.; Ackerman, Andrew S.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Fridlind, AM (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM ann.fridlind@nasa.gov RI Ackerman, Andrew/D-4433-2012; Fridlind, Ann/E-1495-2012 OI Ackerman, Andrew/0000-0003-0254-6253; NR 1 TC 0 Z9 0 U1 0 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JUL PY 2011 VL 28 IS 7 BP 974 EP 974 DI 10.1175/JTECH-D-11-00098.1 PG 1 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 803YS UT WOS:000293619700010 ER PT J AU Johnson, W AF Johnson, Wayne TI Milestones in Rotorcraft Aeromechanics Alexander A. Nikolsky Honorary Lecture SO JOURNAL OF THE AMERICAN HELICOPTER SOCIETY LA English DT Article ID HELICOPTER ROTOR; BLADE TIPS; PREDICTION; HOVER; AERODYNAMICS; DYNAMICS; FLIGHT; WINGS; LOADS; MODEL AB The subject of this paper is milestones in rotorcraft aeromechanics. Aeromechanics covers much of what the engineer needs: performance, loads, vibration, stability, flight dynamics, and noise. These topics cover many of the key performance attributes, and many of the often-encountered problems in rotorcraft designs. A milestone is a critical achievement, a turning point, an event marking a significant change or stage in development. The milestones identified and discussed include the beginnings of aeromechanics with autogyro analysis, ground resonance, aeromechanics books, unsteady aerodynamics and airloads, nonuniform inflow and wakes, beams and dynamics, comprehensive analysis, computational fluid dynamics, and rotor airloads tests. The focus on milestones limits the scope of the history, but allows the author to acknowledge his choices for key steps in the development of the science and engineering of rotorcraft. C1 NASA, Ames Res Ctr, Aeromech Branch, Moffett Field, CA 94035 USA. RP Johnson, W (reprint author), NASA, Ames Res Ctr, Aeromech Branch, Moffett Field, CA 94035 USA. EM wayne.johnson@nasa.gov NR 175 TC 5 Z9 5 U1 0 U2 3 PU AMER HELICOPTER SOC INC PI ALEXANDRIA PA 217 N WASHINGTON ST, ALEXANDRIA, VA 22314 USA SN 0002-8711 J9 J AM HELICOPTER SOC JI J. Am. Helicopter Soc. PD JUL PY 2011 VL 56 IS 3 AR 031001 DI 10.4050/JAHS.56.031001 PG 24 WC Engineering, Aerospace SC Engineering GA 800TU UT WOS:000293391000001 ER PT J AU Russell, DJ Hargrove, S Balazs, GH AF Russell, Dennis J. Hargrove, Stacy Balazs, George H. TI Marine Sponges, Other Animal Food, and Nonfood Items Found in Digestive Tracts of the Herbivorous Marine Turtle Chelonia mydas in Hawai'i SO PACIFIC SCIENCE LA English DT Article ID FEEDING ECOLOGY; GREEN TURTLE; ISLANDS; DIET; BEHAVIOR AB Although the usual diet of Chelonia mydas comes from algae and sea grasses (plant material), animal material has been found in samples taken over the past 35 yr. The small black-brown protein sponge Chondrosia chucalla resembles the alga codium arabicum in size, color, and texture, and both grow next to each other on the reefs. We hypothesize that turtles are actively seeking and eating these sponges and not mistaking them for C. arabicum. Both protein and silica sponges occur in the diet of Chelonia, but only 6.8% of the time are eaten in addition to their usual plant diet. Thirty different kinds of other animals were found in the samples, including Cnidaria, Mollusca, Crustacea, Insecta, Echinodermata, squid, fish, tumor flesh, and other animals but in low frequency (5%). Most of the miscellaneous nonfood debris items were terrestrial leaves, plastic, paper, string, fibers, hair, and paint chips but also in low frequency (< 7%). Among animal food items known to have nutritional value, the protein sponge C. chucalla could be contributing an important nutritive factor, but this needs further research. C1 [Russell, Dennis J.] Amer Univ Sharjah, Dept Biol & Chem, Sharjah, U Arab Emirates. [Hargrove, Stacy; Balazs, George H.] NOAA, Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, Honolulu, HI 96822 USA. RP Russell, DJ (reprint author), Amer Univ Sharjah, Dept Biol & Chem, POB 26666, Sharjah, U Arab Emirates. EM drussell@aus.edu NR 25 TC 11 Z9 11 U1 2 U2 19 PU UNIV HAWAII PRESS PI HONOLULU PA 2840 KOLOWALU ST, HONOLULU, HI 96822 USA SN 0030-8870 J9 PAC SCI JI Pac. Sci. PD JUL PY 2011 VL 65 IS 3 BP 375 EP 381 DI 10.2984/65.3.375 PG 7 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA 800OM UT WOS:000293371300007 ER PT J AU Yoonessi, M Peck, JA Bail, JL Rogers, RB Lerch, BA Meador, MA AF Yoonessi, Mitra Peck, John A. Bail, Justin L. Rogers, Richard B. Lerch, Bradley A. Meador, Michael A. TI Transparent Large-Strain Thermoplastic Polyurethane Magnetoactive Nanocomposites SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE superparamagnetic nanoparticles; polymer actuator; magnetic polymer nanocomposite; magnetomechanical responsive polymers; adaptive nanocomposites; superparamagnetic; shape memory films ID POLYMER NANOCOMPOSITES; MAGNETIC NANOPARTICLES; COMPOSITES; ACTUATORS; METAL; PARTICLES; HYDROGELS; BEHAVIOR AB Organically modified superparamagnetic MnFe2O4/thermoplastic polyurethane elastomer (TPU) nanocomposites (0.1-8 wt %) were prepared by solvent mixing followed by solution casting. Linear aliphatic alkyl chain modification of spherical MnFe2O4 provided compatibility with the TPU containing a butanediol extended polyester polyol-MDI. All MnFe2O4/TPU nanocomposite films were superparamagnetic and their saturation magnetization, a increased with increasing MnFe2O4 content. All nanocomposite films exhibited large deformations (>10 mm) under a magneto-static field. This is the first report of large actuation of magnetic nanoparticle nanocomposites at low-loading levels of 0.1 wt % (0.025 vol %). The maximum actuation deformation of the MnPe(2)O(4)/TPU nanocomposite films increased exponentially with increasing nanoparticle concentration. An empirical correlation between the maximum displacement, saturation magnetization, and magnetic nanoparticle loading is proposed. The cyclic deformation actuation of a 6 wt % surface modified MnFe2O4/TPU, in a low magnetic field 151 < B(y) <303 Oe, exhibited excellent reproducibility and controllability. MnFe2O4/TPU nanocomposite films (0.1-2 wt %) were transparent and semitransparent over the wavelengths from 350 to 700 nm. C1 [Yoonessi, Mitra; Bail, Justin L.] Ohio Aerosp Inst, Cleveland, OH USA. [Yoonessi, Mitra; Bail, Justin L.; Rogers, Richard B.; Lerch, Bradley A.; Meador, Michael A.] NASA, Glenn Res Ctr, Cleveland, OH USA. [Peck, John A.] Univ Akron, Akron, OH 44325 USA. RP Yoonessi, M (reprint author), Ohio Aerosp Inst, Cleveland, OH USA. EM mitra.yoonessi@nasa.gov FU NASA [NNC07BA13B] FX The NASA Aeronautics-Subsonic Fixed Wing Program (Contract NNC07BA13B) provided financial support for this work. Thanks go to Charles Rosenblatt of Case Western Reserve for his helpful discussions. The cryo-microtoming of JoAn Hudson of Clemson University is also greatly appreciated. Dave Hull, Terry McCue, and Daniel Scheiman of NASA-GRC and ASRC are greatly acknowledged for their lab support. NR 37 TC 14 Z9 14 U1 6 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JUL PY 2011 VL 3 IS 7 BP 2686 EP 2693 DI 10.1021/am200468t PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 798IO UT WOS:000293196800073 PM 21710967 ER PT J AU Leib, SJ Goldstein, ME AF Leib, S. J. Goldstein, M. E. TI Hybrid Source Model for Predicting High-Speed Jet Noise SO AIAA JOURNAL LA English DT Article ID ACOUSTIC ANALOGY AB This paper introduces a novel hybrid source model into an existing acoustic analogy approach to obtain improved predictions of the turbulent mixing noise from cold, round, subsonic, and supersonic jets. The model incorporates new features of the Reynolds stress autocovariance tensor components found in recent experiments. The model parameters are determined from a Reynolds-averaged Navier-Stokes flow solution and experimental data. It is shown that this model significantly improves the predictions relative to previous results, particularly at observer polar angles between 90 degrees to the jet axis and the peak noise direction, indicating the importance of properly modeling relatively subtle characteristics of the autocovariance functions. The results are used to infer the relative importance of individual terms that make up the formula for the acoustic spectrum as a function of jet Mach number, frequency, and observer location. C1 [Leib, S. J.] Ohio Aerosp Inst, Cleveland, OH 44142 USA. [Goldstein, M. E.] NASA, John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA. RP Leib, SJ (reprint author), Ohio Aerosp Inst, Cleveland, OH 44142 USA. FU NASA FX The authors would like to thank James Bridges of NASA John H. Glenn Research Center at Lewis Field for providing the acoustic data shown in Fig. 6, as well as mean flow and turbulence data for the jets considered in this paper and his help in interpreting and using the data. Nicholas Georgiadis of NASA John H.Glenn Research Center at Lewis Field provided the corresponding RANS solutions. We thank Phillip Morris of Pennsylvania State University and Khairul Zaman of NASA John H. Glenn Research Center at Lewis Field for providing early results of their experimental measurements. Abbas Khavaran of Arctic Slope Research Corporation originally suggested the use of the WKBJ approximation of introduced in Sec. III. S.J. Leib thanks E. Brian Fite of NASA John H. Glenn Research Center at Lewis Field for his support of work. Support was also provided by the NASA Fundamental Aeronautics Program Supersonics Project. NR 34 TC 16 Z9 16 U1 0 U2 5 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD JUL PY 2011 VL 49 IS 7 BP 1324 EP 1335 DI 10.2514/1.J050707 PG 12 WC Engineering, Aerospace SC Engineering GA 797GW UT WOS:000293113500002 ER PT J AU Demory, BO Seager, S Madhusudhan, N Kjeldsen, H Christensen-Dalsgaard, J Gillon, M Rowe, JF Welsh, WF Adams, ER Dupree, A McCarthy, D Kulesa, C Borucki, WJ Koch, DG AF Demory, Brice-Olivier Seager, Sara Madhusudhan, Nikku Kjeldsen, Hans Christensen-Dalsgaard, Jorgen Gillon, Michael Rowe, Jason F. Welsh, William F. Adams, Elisabeth R. Dupree, Andrea McCarthy, Don Kulesa, Craig Borucki, William J. Koch, David G. TI THE HIGH ALBEDO OF THE HOT JUPITER KEPLER-7 b SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; stars: individual (Kepler-7, KIC 5780885, 2MASS 19141956+4105233); techniques: photometric ID EXTRASOLAR GIANT PLANETS; LIGHT-CURVE PROJECT; TAU-BOOTIS-B; INITIAL CHARACTERISTICS; REFLECTED STARLIGHT; THERMAL INVERSIONS; CADENCE DATA; LOW-DENSITY; UPPER LIMIT; ATMOSPHERES AB Hot Jupiters are expected to be dark from both observations (albedo upper limits) and theory (alkali metals and/or TiO and VO absorption). However, only a handful of hot Jupiters have been observed with high enough photometric precision at visible wavelengths to investigate these expectations. The NASA Kepler mission provides a means to widen the sample and to assess the extent to which hot Jupiter albedos are low. We present a global analysis of Kepler-7 b based on Q0-Q4 data, published radial velocities, and asteroseismology constraints. We measure an occultation depth in the Kepler bandpass of 44 +/- 5 ppm. If directly related to the albedo, this translates to a Kepler geometric albedo of 0.32 +/- 0.03, the most precise value measured so far for an exoplanet. We also characterize the planetary orbital phase light curve with an amplitude of 42 +/- 4 ppm. Using atmospheric models, we find it unlikely that the high albedo is due to a dominant thermal component and propose two solutions to explain the observed planetary flux. First, we interpret the Kepler-7 b albedo as resulting from an excess reflection over what can be explained solely by Rayleigh scattering, along with a nominal thermal component. This excess reflection might indicate the presence of a cloud or haze layer in the atmosphere, motivating new modeling and observational efforts. Alternatively, the albedo can be explained by Rayleigh scattering alone if Na and K are depleted in the atmosphere by a factor of 10-100 below solar abundances. C1 [Demory, Brice-Olivier; Seager, Sara] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Madhusudhan, Nikku] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Kjeldsen, Hans; Christensen-Dalsgaard, Jorgen] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Gillon, Michael] Univ Liege, Inst Astrophys & Geophys, Liege 1, Belgium. [Rowe, Jason F.; Borucki, William J.; Koch, David G.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Welsh, William F.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. [Adams, Elisabeth R.; Dupree, Andrea] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [McCarthy, Don; Kulesa, Craig] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Demory, BO (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM demory@mit.edu OI Demory, Brice-Olivier/0000-0002-9355-5165 FU Swiss NSF; NASA [NNX10AD67G]; NASA's Science Mission Directorate FX Authors thank the Kepler Giant Planet Working Group, P.-O. Quirion, M. Holman, D. Ragozzine, J. Jenkins, J.-M. Desert, B. Benneke, and D. Latham for useful discussions. We thank E. Dunham, W. Cochran, and the referee for helpful comments that improved the manuscript. B.-O.D. acknowledges support from the Swiss NSF and thanks kindly R. Stewart, P. L. Vidale, and A. Verhoef from the University of Reading (UK), where part of this work has been carried out. M.G. is Belgian FNRS Research Associate. We acknowledge support from NASA Kepler Participating Science Program NNX10AD67G. Funding for this Discovery Mission is provided by NASA's Science Mission Directorate. NR 48 TC 47 Z9 48 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 1 PY 2011 VL 735 IS 1 AR L12 DI 10.1088/2041-8205/735/1/L12 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OT UT WOS:000293137900012 ER PT J AU McKenzie, DE Savage, SL AF McKenzie, D. E. Savage, S. L. TI DISTRIBUTION FUNCTIONS OF SIZES AND FLUXES DETERMINED FROM SUPRA-ARCADE DOWNFLOWS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE magnetic reconnection; Sun: corona; Sun: flares; Sun: X-rays, gamma rays ID ERUPTIVE SOLAR-FLARES; QUANTITATIVE EXAMINATION; RECONNECTION AB The frequency distributions of sizes and fluxes of supra-arcade downflows (SADs) provide information about the process of their creation. For example, a fractal creation process may be expected to yield a power-law distribution of sizes and/or fluxes. We examine 120 cross-sectional areas and magnetic flux estimates found by Savage & McKenzie for SADs, and find that (1) the areas are consistent with a log-normal distribution and (2) the fluxes are consistent with both a log-normal and an exponential distribution. Neither set of measurements is compatible with a power-law distribution nor a normal distribution. As a demonstration of the applicability of these findings to improved understanding of reconnection, we consider a simple SAD growth scenario with minimal assumptions, capable of producing a log-normal distribution. C1 [McKenzie, D. E.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Savage, S. L.] Oak Ridge Associated Univ, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP McKenzie, DE (reprint author), Montana State Univ, Dept Phys, POB 173840, Bozeman, MT 59717 USA. FU NASA [NNM07AB07C]; Harvard-Smithsonian Astrophysical Observatory FX This work was partially supported by NASA under contract NNM07AB07C with the Harvard-Smithsonian Astrophysical Observatory. Yohkoh data are provided courtesy of the NASA-supported Yohkoh Legacy Archive at Montana State University. We gratefully acknowledge the helpful comments of an anonymous referee. NR 15 TC 7 Z9 7 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 1 PY 2011 VL 735 IS 1 AR L6 DI 10.1088/2041-8205/735/1/L6 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OT UT WOS:000293137900006 ER PT J AU Rakowski, CE Laming, JM Hwang, U Eriksen, KA Ghavamian, P Hughes, JP AF Rakowski, Cara E. Laming, J. Martin Hwang, Una Eriksen, Kristoffer A. Ghavamian, Parviz Hughes, John P. TI THE EFFECT OF A COSMIC RAY PRECURSOR IN SN 1006? SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE acceleration of particles; cosmic rays; ISM: supernova remnants; shock waves; supernovae: individual (SN 1006) ID TYCHOS SUPERNOVA-REMNANT; DIFFUSIVE SHOCK ACCELERATION; RAYLEIGH-TAYLOR INSTABILITY; CONFINED DETONATION MODEL; PARTICLE-ACCELERATION; IA-SUPERNOVAE; BLAST WAVE; MAGNETIC-FIELD; EVOLUTION; SN-1006 AB Like many young supernova remnants, SN 1006 exhibits what appear to be clumps of ejecta close to or protruding beyond the main blast wave. In this Letter, we examine three such protrusions along the east rim. They are semi-aligned with ejecta fingers behind the shock-front and exhibit emission lines from O VII and O VIII. We first interpret them in the context of an upstream medium modified by the saturated non-resonant Bell instability which enhances the growth of Rayleigh-Taylor instabilities when advected post-shock. We discuss their apparent periodicity if the spacing is determined by properties of the remnant or by a preferred size scale in the cosmic ray precursor. We also briefly discuss the alternative that these structures have an origin in the ejecta structure of the explosion itself. In this case, the young evolutionary age of SN 1006 would imply density structure within the outermost layers of the explosion with potentially important implications for deflagration and detonation in thermonuclear supernova explosion models. C1 [Rakowski, Cara E.; Laming, J. Martin] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Hwang, Una] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Eriksen, Kristoffer A.; Hughes, John P.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Ghavamian, Parviz] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Rakowski, CE (reprint author), USN, Div Space Sci, Res Lab, Code 7671, Washington, DC 20375 USA. FU NASA [NNH10A009I]; Office of Naval Research; Chandra [GO9-0078X]; HST at STScI [GO-11184.07A] FX C.E.R and J.M.L acknowledge support from NASA contract NNH10A009I and basic research funds from the Office of Naval Research. K. A. E and J.P.H acknowledge support from Chandra grant number GO9-0078X to Rutgers University. P. G. acknowledges HST grant GO-11184.07A at STScI. NR 35 TC 13 Z9 13 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 1 PY 2011 VL 735 IS 1 AR L21 DI 10.1088/2041-8205/735/1/L21 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OT UT WOS:000293137900021 ER PT J AU Stewart, KR Kaufmann, T Bullock, JS Barton, EJ Maller, AH Diemand, J Wadsley, J AF Stewart, Kyle R. Kaufmann, Tobias Bullock, James S. Barton, Elizabeth J. Maller, Ariyeh H. Diemand, Juerg Wadsley, James TI OBSERVING THE END OF COLD FLOW ACCRETION USING HALO ABSORPTION SYSTEMS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: theory; galaxies: evolution; galaxies: formation; galaxies: halos; methods: numerical ID LAMBDA-CDM SIMULATIONS; STAR-FORMING GALAXIES; II ABSORBING GAS; INTERGALACTIC MEDIUM; ULTRAVIOLET-SPECTRA; REDSHIFTS; CLOUDS; I.; POPULATION; KINEMATICS AB We use cosmological smoothed particle hydrodynamic simulations to study the cool, accreted gas in two Milky Way size galaxies through cosmic time to z = 0. We find that gas from mergers and cold flow accretion results in significant amounts of cool gas in galaxy halos. This cool circum-galactic component drops precipitously once the galaxies cross the critical mass to form stable shocks, M(vir) = Msh similar to 10(12) M(circle dot). Before reaching M(sh), the galaxies experience cold mode accretion ( T < 10(5) K) and show moderately high covering fractions in accreted gas: f(c) similar to 30%-50% for R < 50 comoving kpc and N(HI) > 10(16) cm(-2). These values are considerably lower than observed covering fractions, suggesting that outflowing gas ( not included here) is important in simulating galaxies with realistic gaseous halos. Within similar to 500 Myr of crossing the Msh threshold, each galaxy transitions to hot mode gas accretion, and f(c) drops to similar to 5%. The sharp transition in covering fraction is primarily a function of halo mass, not redshift. This signature should be detectable in absorption system studies that target galaxies of varying host mass, and may provide a direct observational tracer of the transition from cold flow accretion to hot mode accretion in galaxies. C1 [Stewart, Kyle R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kaufmann, Tobias] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Bullock, James S.; Barton, Elizabeth J.] Univ Calif Irvine, Ctr Cosmol, Dept Phys & Astron, Irvine, CA 92697 USA. [Bullock, James S.; Barton, Elizabeth J.] Univ Calif Irvine, Ctr Galaxy Evolut, Dept Phys & Astron, Irvine, CA 92697 USA. [Maller, Ariyeh H.] New York City Coll Technol, Dept Phys, Brooklyn, NY 11201 USA. [Diemand, Juerg] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Wadsley, James] McMaster Univ, Dept Phys & Astron, Hamilton, ON L85 4M1, Canada. [Stewart, Kyle R.] NASA, Postdoctoral Program, Washington, DC USA. RP Stewart, KR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Diemand, Juerg/G-9448-2011; Bullock, James/K-1928-2015 OI Bullock, James/0000-0003-4298-5082 FU National Aeronautics and Space Administration [NNX09AG01G]; Swiss National Science Foundation (SNF) FX The simulations presented here were run on the Cosmos cluster at JPL, and the Greenplanet cluster at UCI. K.R.S. thanks all those who commented on a preliminary draft of this Letter. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. K.R.S. is supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. J.S.B. and K.R.S. were partially supported by NASA grant NNX09AG01G. T.K. and J.D. were supported by the Swiss National Science Foundation (SNF). NR 46 TC 48 Z9 48 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 1 PY 2011 VL 735 IS 1 AR L1 DI 10.1088/2041-8205/735/1/L1 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OT UT WOS:000293137900001 ER PT J AU Laurel, BJ Blood, DM AF Laurel, Benjamin J. Blood, Deborah M. TI The effects of temperature on hatching and survival of northern rock sole larvae (Lepidopsetta polyxystra) SO FISHERY BULLETIN LA English DT Article ID SOUTHEASTERN BERING-SEA; EGG SIZE; THERAGRA-CHALCOGRAMMA; WALLEYE POLLOCK; CLIMATE-CHANGE; MARINE FISH; GROWTH; TIME; HISTORY; RATES AB Northern rock sole (Lepidopsetta polyxystra) is a commercially important flatfish in Alaska and was recently classified as a distinct species from southern rock sole (L. bilineata). Taxonomic and vital rate data for northern rock sole are still not fully described, notably at early egg and larval stages. In this study, we provide new taxonomic descriptions of late-stage eggs and newly hatched larvae, as well as temperature-response models of hatching (timing, duration, success), and larval size-at-hatch and posthatch survival at four temperatures (2 degrees, 5 degrees, 9 degrees, and 12 degrees C). Time-to-first-hatch, hatch cycle duration, and overall hatching success showed a negative relationship with temperature. Early hatching larvae within each temperature treatment were smaller and had larger yolk sacs, but larvae incubated at higher temperatures (9 degrees and 12 degrees C) had the largest yolk reserves overall. Despite having smaller yolks, size-at-hatch and the maximum size achieved during the hatching cycle was highest for larvae reared at cold temperatures (2 degrees and 5 degrees C), indicating that endogenous reserves are more efficiently used for growth at these temperatures. In addition, larvae reared at high temperatures died more rapidly in the absence of food despite having more yolk reserves than cold-incubated larvae. Overall, northern rock sole eggs and larvae display early life history traits consistent with cold-water adaptation for winter spawning in the North Pacific. C1 [Laurel, Benjamin J.] Natl Marine Fisheries Serv, Fisheries Behav Ecol Program, Hatfield Marine Sci Ctr, Alaska Fisheries Sci Ctr, Newport, OR 97365 USA. [Blood, Deborah M.] NOAA, Natl Marine Fisheries Serv, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA. RP Laurel, BJ (reprint author), Natl Marine Fisheries Serv, Fisheries Behav Ecol Program, Hatfield Marine Sci Ctr, Alaska Fisheries Sci Ctr, 2030 SE Marine Sci Dr, Newport, OR 97365 USA. EM ben.laurel@noaa.gov RI Gebauer, Radek/G-6749-2015 FU AFSC FX This project was supported in part with funding from the AFSC's Habitat and Ecological Processes Research Program. We thank I. Bradbury and A. Stoner for reviewing earlier drafts of this manuscript. M. Spencer and P. Iseri collected and shipped broodstock from Kodiak, AK. Boat charters were kindly provided by T. Tripp aboard the FV Miss O. M. Ottmar and W. Clerf maintained broodstock in the laboratory and assisted with strip-spawning. Special thanks go to C. Magel for his patient image analysis of hundreds of fish larvae. Egg and larval illustrations were provided by A. Maust under contract to the AFSC. NR 36 TC 18 Z9 19 U1 0 U2 11 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 J9 FISH B-NOAA JI Fish. Bull. PD JUL PY 2011 VL 109 IS 3 BP 282 EP 291 PG 10 WC Fisheries SC Fisheries GA 799SG UT WOS:000293305800003 ER PT J AU Farley, EV Starovoytov, A Naydenko, S Heintz, R Trudel, M Guthrie, C Eisner, L Guyon, JR AF Farley, Edward V. Starovoytov, Alexander Naydenko, Svetlana Heintz, Ron Trudel, Marc Guthrie, Charles Eisner, Lisa Guyon, Jeffrey R. TI Implications of a warming eastern Bering Sea for Bristol Bay sockeye salmon SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article DE Bristol Bay; energetic status; overwinter survival; sockeye salmon ID EARLY MARINE GROWTH; PINK SALMON; CLIMATE-CHANGE; ONCORHYNCHUS-GORBUSCHA; PERIOD HYPOTHESIS; CRITICAL SIZE; COHO SALMON; MORTALITY; OCEAN; DISTRIBUTIONS AB Overwinter survival of Pacific salmon (Oncorhynchus sp.) is believed to be a function of size and energetic status they gain during their first summer at sea. We test this notion for Bristol Bay sockeye salmon (O. nerka), utilizing data from large-scale fisheries and oceanographic surveys conducted during mid-August to September 2002-2008 and from February to March 2009. The new data presented in this paper demonstrate size-selective mortality for Bristol Bay sockeye salmon between autumn and their first winter at sea. Differences in the seasonal energetic signatures for lipid and protein suggest that these fish are not starving, but instead the larger fish caught during winter apparently are utilizing energy stores to minimize predation. Energetic status of juvenile sockeye salmon was also strongly related to marine survival indices and years with lower energetic status apparently are a function of density-dependent processes associated with high abundance of juvenile sockeye salmon. Based on new information regarding eastern Bering Sea ecosystem productivity under a climate-warming scenario, we hypothesize that sustained increases in spring and summer sea temperatures may negatively affect energetic status of juvenile sockeye salmon, potentially resulting in increased overwinter mortality. C1 [Farley, Edward V.; Heintz, Ron; Guthrie, Charles; Eisner, Lisa; Guyon, Jeffrey R.] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. [Starovoytov, Alexander; Naydenko, Svetlana] TINRO Ctr, Pacific Sci Res Fisheries Ctr, Vladivostok 690950, Russia. [Trudel, Marc] Fisheries & Oceans Canada, Pacific Biol Stn, Nanaimo, BC V9T 6N7, Canada. RP Farley, EV (reprint author), NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. EM ed.farley@noaa.gov RI Trudel, Marc/H-1955-2012 FU NOAA, Alaska Fisheries Science Center; Pacific Scientific Research Fisheries Center, TINRO Center; Bering Sea Fisherman's Association; North Pacific Research Board FX The research reported here was supported by NOAA, Alaska Fisheries Science Center, the Pacific Scientific Research Fisheries Center, TINRO Center, the Bering Sea Fisherman's Association, and the North Pacific Research Board's BEST/BSIERP programmes. The findings and conclusions in the paper are those of the author(s) and do not necessarily represent the views of the National Marine Fisheries Service. NR 42 TC 25 Z9 25 U1 2 U2 25 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD JUL PY 2011 VL 68 IS 6 BP 1138 EP 1146 DI 10.1093/icesjms/fsr021 PG 9 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA 797BI UT WOS:000293097200017 ER PT J AU Hunt, GL Coyle, KO Eisner, LB Farley, EV Heintz, RA Mueter, F Napp, JM Overland, JE Ressler, PH Salo, S Stabeno, PJ AF Hunt, George L., Jr. Coyle, Kenneth O. Eisner, Lisa B. Farley, Edward V. Heintz, Ron A. Mueter, Franz Napp, Jeffrey M. Overland, James E. Ressler, Patrick H. Salo, Sigrid Stabeno, Phyllis J. TI Climate impacts on eastern Bering Sea foodwebs: a synthesis of new data and an assessment of the Oscillating Control Hypothesis SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article DE Bering Sea; climate change; crustacean zooplankton; Oscillating Control Hypothesis; sea ice cover; Theragra chalcogramma; walleye pollock; year-class strength ID POLLOCK THERAGRA-CHALCOGRAMMA; SHORT-TAILED SHEARWATERS; AGE-0 WALLEYE POLLOCK; INNER FRONT; PRIBILOF ISLANDS; REGIME SHIFTS; VARIABILITY; ECOSYSTEM; SHELF; PATTERNS AB Walleye pollock (Theragra chalcogramma) is an important component of the eastern Bering Sea ecosystem and subject to major fisheries. The Oscillating Control Hypothesis (OCH) predicted that recruitment of pollock year classes should be greatest in years with early ice retreat and late blooms in warm water, because more energy would flow into the pelagic (vs. benthic) community. The OCH further predicted that, with pollock population growth, there should be a shift from bottom-up to top-down regulation. New data support the predictions that in those years with early ice retreat, more primary production accrues to the pelagic compartment and that large numbers of age-0 pollock survive to summer. However, in these years, production of large crustacean zooplankton is reduced, depriving age-0 pollock of lipid-rich prey in summer and autumn. Consequently, age-0 pollock energy reserves (depot lipids) are low and predation on them is increased as fish switch to age-0 pollock from zooplankton. The result is weak recruitment of age-1 recruits the following year. A revised OCH indicates bottom-up constraints on pollock recruitment in very warm periods. Prolonged warm periods with decreased ice cover will likely cause diminished pollock recruitment and catches relative to recent values. C1 [Hunt, George L., Jr.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. [Napp, Jeffrey M.; Ressler, Patrick H.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA. [Coyle, Kenneth O.] Univ Alaska, Inst Marine Sci, Fairbanks, AK 99775 USA. [Eisner, Lisa B.; Farley, Edward V.; Heintz, Ron A.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Labs, Juneau, AK 99801 USA. [Mueter, Franz] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Juneau Ctr, Juneau, AK 99801 USA. [Overland, James E.; Salo, Sigrid; Stabeno, Phyllis J.] NOAA, OAR Pacific Marine Environm Lab, Seattle, WA 98115 USA. RP Hunt, GL (reprint author), Univ Washington, Sch Aquat & Fishery Sci, POB 355020, Seattle, WA 98195 USA. EM geohunt2@uw.edu OI Hunt, George/0000-0001-8709-2697 FU NOAA Alaska Fisheries Science Center; US National Science Foundation; Arctic Natural Sciences Program; North Pacific Research Board; Bering Sea Fisherman's Association; Arctic Yukon Kuskokwim Sustainable Salmon Fund; NSF [0722448, 0830146] FX GLH thanks all co-authors for generously sharing their latest, often unpublished, results. This overview would not have been possible without their collaboration. The research reported here was supported by NOAA Alaska Fisheries Science Center, the US National Science Foundation, the Arctic Natural Sciences Program, and the North Pacific Research Board. Data collection in the BASIS program was supported by the North Pacific Research Board, the Bering Sea Fisherman's Association and the Arctic Yukon Kuskokwim Sustainable Salmon Fund. GLH was supported by NSF grants 0722448 and 0830146 while preparing this paper. We thank K. Aydin, K. M. Bailey, M. B. Decker, and A. S. Kitaysky for comments on an earlier draft of the manuscript, and two anonymous reviewers for helpful comments on improving it. This is a contribution of the IMBER regional Program, Ecosystem Studies of Sub-Arctic Seas (ESSAS), contribution number 10 from the BEST/BSIERP programmes, NPRB publication number 278, and contribution number EcoFOCI-0763 from NOAA's Fisheries- Oceanography Coordinated Investigations. NR 50 TC 153 Z9 158 U1 5 U2 67 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD JUL PY 2011 VL 68 IS 6 BP 1230 EP 1243 DI 10.1093/icesjms/fsr036 PG 14 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA 797BI UT WOS:000293097200025 ER PT J AU Goebel, DM Polk, JE Mikellides, IG AF Goebel, Dan M. Polk, James E. Mikellides, Ioannis G. TI Ion Thruster Performance Impacts due to Cathode Wear SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit CY AUG 02-08, 2009 CL Denver, CO SP AIAA, ASME, SAE, ASEE AB It has been observed in ion thruster wear tests that the discharge loss increases with time and that the thruster performance correspondingly degrades. This behavior is usually attributed to an enlargement of the accelerator grid apertures during the tests due to ion erosion, which increases the grid transparency and thereby reduces the neutral gas pressure inside the thruster and decreases the ionization efficiency of the plasma generator. An analysis of thruster life test data using a discharge plasma model shows that this mechanism is insufficient to explain the observed results. Tests at Jet Propulsion Laboratory in an ion thruster simulator used in a 16,000-h discharge cathode wear test show similar increases in discharge loss with time, in spite of the fact that there are no ion accelerator or grid apertures eroding and that the average pressure in the discharge chamber is essentially constant. Experiments show that increases in keeper orifice diameter cause increases in discharge loss, and this trend is reproduced by two-dimensional numerical simulations that show a reduced ion generation rate in the near-keeper plume region as the electrode eroded. This cathode-electrode erosion mechanism is likely responsible for roughly half of the total discharge loss increases observed in ion thruster life tests. C1 [Goebel, Dan M.; Polk, James E.; Mikellides, Ioannis G.] CALTECH, Jet Prop Lab, Elect Prop Grp, Pasadena, CA 91109 USA. RP Goebel, DM (reprint author), CALTECH, Jet Prop Lab, Elect Prop Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 22 TC 2 Z9 2 U1 1 U2 11 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 EI 1533-3876 J9 J PROPUL POWER JI J. Propul. Power PD JUL-AUG PY 2011 VL 27 IS 4 BP 768 EP 776 DI 10.2514/1.B34058 PG 9 WC Engineering, Aerospace SC Engineering GA 797SF UT WOS:000293149700004 ER PT J AU Diamant, KD Pollard, JE Crofton, MW Patterson, MJ Soulas, GC AF Diamant, Kevin D. Pollard, James E. Crofton, Mark W. Patterson, Michael J. Soulas, George C. TI Thrust Stand Characterization of the NASA Evolutionary Xenon Thruster SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT AIAA/ASME/SAE/ASEE 46th Joint Propulsion Conference and Exhibit CY JUL 25-28, 2010 CL Nashville, TN SP AIAA, ASME, SAE, ASEE ID PERFORMANCE AB Direct thrust measurements have been made on the NASA Evolutionary Xenon Thruster using a standard pendulum-style thrust stand constructed specifically for this application. Values have been obtained for the full 40-level throttle table, as well as for a few offnominal operating conditions. Measurements differ from the nominal NASA throttle table 10 values by 3.1% at most, while at 30 throttle levels, the difference is less than 2.0%. When measurements are compared with throttle table 10 values that have been corrected using recently obtained ion beam current density and charge-state data, they differ by 1.2% at most, and at 37 throttle levels, they differ by 1.0% or less. Thrust correction factors calculated from direct thrust measurements and from recently acquired plume data agree to within measurement error for all but one throttle level. Measurements of thrust due to cold flow, neutralizer, and discharge-only operation are also presented. C1 [Diamant, Kevin D.; Pollard, James E.; Crofton, Mark W.] Aerosp Corp, Prop Sci, El Segundo, CA 90245 USA. [Soulas, George C.] NASA, John H Glenn Res Ctr Lewis Field, Prop & Propellants Branch, Cleveland, OH 44135 USA. RP Diamant, KD (reprint author), Aerosp Corp, Prop Sci, El Segundo, CA 90245 USA. NR 37 TC 2 Z9 2 U1 1 U2 4 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD JUL-AUG PY 2011 VL 27 IS 4 BP 777 EP 785 DI 10.2514/1.B34095 PG 9 WC Engineering, Aerospace SC Engineering GA 797SF UT WOS:000293149700005 ER PT J AU Wang, TS Lin, J Ruf, J Guidos, M AF Wang, Ten-See Lin, Jeff Ruf, Joe Guidos, Mike TI Transient Three-Dimensional Side-Load Analysis of Out-of-Round Film-Cooled Nozzles SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT AIAA/ASME/SAE/ASEE 46th Joint Propulsion Conference and Exhibit CY JUL 25-28, 2010 CL Nashville, TN SP AIAA, ASME, SAE, ASEE ID FLOW SEPARATION; ENGINE NOZZLE; PERFORMANCE; SIMULATION; REGIME AB The objective of this study was to investigate the effect of nozzle out-of-roundness on the nozzle side loads generated during an engine start transient. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses, and deformation induced by previous tests. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film-cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation and transient inlet boundary conditions from an engine system simulation. Computations were performed for engine startup with the out-of-roundness achieved by four different degrees of ovalization: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation-line jump was the source of the peak side load for the first three configurations, with the peak side load increasing as the degree of out-of-roundness increased. For the significantly-out-of-round nozzle, the peak side load was reduced to a level comparable with that of the round nozzle, due to a splitting of the separation-line jump. C1 [Wang, Ten-See; Lin, Jeff; Ruf, Joe] NASA, George C Marshall Space Flight Ctr, Prop Struct Thermal & Fluids Anal Div, Fluid Dynam Branch,ER42, Huntsville, AL 35812 USA. [Guidos, Mike] NASA, George C Marshall Space Flight Ctr, Liquid Engine & Main Prop Syst Branch, Prop Syst Design & Integrat Div,ER21, Huntsville, AL 35812 USA. RP Wang, TS (reprint author), NASA, George C Marshall Space Flight Ctr, Prop Struct Thermal & Fluids Anal Div, Fluid Dynam Branch,ER42, Huntsville, AL 35812 USA. NR 30 TC 9 Z9 9 U1 1 U2 4 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD JUL-AUG PY 2011 VL 27 IS 4 BP 899 EP 907 DI 10.2514/1.B34082 PG 9 WC Engineering, Aerospace SC Engineering GA 797SF UT WOS:000293149700018 ER PT J AU Hollis, BR AF Hollis, Brian R. TI Compression Pad Cavity Heating Augmentation on Orion Heat Shield SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT AIAA 41st Thermophysics Conference CY JUN 22-25, 2009 CL San Antonio, TX SP AIAA ID CLOSED CAVITIES; SEPARATED FLOWS; TRANSITION; VEHICLE AB An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion Crew Exploration Vehicle heat shield. Testing was conducted in Mach 6 and 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation. C1 NASA, Langley Res Ctr, Aerothermodynam Branch, Hampton, VA 23681 USA. RP Hollis, BR (reprint author), NASA, Langley Res Ctr, Aerothermodynam Branch, Hampton, VA 23681 USA. NR 22 TC 1 Z9 2 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD JUL-SEP PY 2011 VL 25 IS 3 BP 329 EP 340 DI 10.2514/1.48076 PG 12 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 799BX UT WOS:000293259600002 ER PT J AU Ferkul, PV Olson, SL AF Ferkul, Paul V. Olson, Sandra L. TI Zero-Gravity Centrifuge Used for the Evaluation of Material Flammability in Lunar Gravity SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT 40th International Conference on Environmental Systems CY JUL 11-15, 2010 CL Barcelona, SPAIN AB Experiments were conducted to examine the maximum oxygen concentration at which three different materials ignited in lunar gravity would self-extinguish. All three materials burned to lower oxygen concentrations in lunar gravity than in normal gravity, although the low-gravity extinction-limit criteria are not the same as 1 g, due to time constraints in drop testing. The margin of safety of the 1 g test method relative to actual low-gravity material performance is presented. In broader application, a modified NASA test protocol is suggested to provide the option of selecting better materials based on the best margin of safety relative to the use environment, as opposed to what would be considered just "passing" from a flammability point of view. C1 [Ferkul, Paul V.] NASA, John H Glenn Res Ctr Lewis Field, Natl Ctr Space Explorat Res, Cleveland, OH 44135 USA. RP Ferkul, PV (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Natl Ctr Space Explorat Res, 21000 Brookpk Rd,Mail Stop 110-3, Cleveland, OH 44135 USA. NR 16 TC 0 Z9 0 U1 1 U2 1 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD JUL-SEP PY 2011 VL 25 IS 3 BP 457 EP 461 DI 10.2514/1.T3651 PG 5 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 799BX UT WOS:000293259600016 ER PT J AU Jaworske, DA AF Jaworske, Donald A. TI Space Durable Solar Selective Cermet Coating SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article C1 NASA, John H Glenn Res Ctr Lewis Field, Space Environm & Expt Branch, Cleveland, OH 44135 USA. RP Jaworske, DA (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Space Environm & Expt Branch, 21000 Brookpk Rd,Mail Stop 309-2, Cleveland, OH 44135 USA. NR 8 TC 0 Z9 0 U1 1 U2 1 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD JUL-SEP PY 2011 VL 25 IS 3 BP 462 EP 463 DI 10.2514/1.T3663 PG 2 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 799BX UT WOS:000293259600017 ER PT J AU Southworth, J Zima, W Aerts, C Bruntt, H Lehmann, H Kim, SL Kurtz, DW Pavlovski, K Prsa, A Smalley, B Gilliland, RL Christensen-Dalsgaard, J Kawaler, SD Kjeldsen, H Cote, MT Tenenbaum, P Twicken, JD AF Southworth, John Zima, W. Aerts, C. Bruntt, H. Lehmann, H. Kim, S. -L. Kurtz, D. W. Pavlovski, K. Prsa, A. Smalley, B. Gilliland, R. L. Christensen-Dalsgaard, J. Kawaler, S. D. Kjeldsen, H. Cote, M. T. Tenenbaum, P. Twicken, J. D. TI Kepler photometry of KIC 10661783: a binary star with total eclipses and delta Scuti pulsations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries: eclipsing; stars: fundamental parameters; stars: oscillations; stars: variables: delta Scuti ID TRANSITING EXTRASOLAR PLANETS; ORBIT CLOSE BINARIES; INFRARED FLUX METHOD; SCT-TYPE PULSATIONS; HIGH-MASS STARS; LIGHT CURVES; ABSOLUTE DIMENSIONS; OPEN CLUSTERS; ISENTROPIC OSCILLATIONS; INITIAL CHARACTERISTICS AB We present Kepler satellite photometry of KIC 10661783, a short-period binary star system which shows total eclipses and multiperiodic delta Scuti pulsations. A frequency analysis of the eclipse-subtracted light curve reveals at least 68 frequencies, of which 55 or more can be attributed to pulsation modes. The main limitation on this analysis is the frequency resolution within the 27-d short-cadence light curve. Most of the variability signal lies in the frequency range 18-31 d(-1), with amplitudes between 0.1 and 4 mmag. One harmonic term (2f) and a few combination frequencies (f(i) + f(j)) have been detected. From a plot of the residuals versus orbital phase, we assign the pulsations to the primary star in the system. The pulsations were removed from the short-cadence data and the light curve was modelled using the Wilson-Devinney code. We are unable to get a perfect fit due to the residual effects of pulsations and also to the treatment of reflection and reprocessing in the light-curve model. A model where the secondary star fills its Roche lobe is favoured, which means that KIC 10661783 can be classified as an oEA system. Further photometric and spectroscopic observations will allow the masses and radii of the two stars to be measured to high precision and hundreds of delta Scuti pulsation frequencies to be resolved. This could lead to unique constraints on theoretical models of delta Scuti stars, if the evolutionary history of KIC 10661783 can be accounted for. C1 [Southworth, John; Pavlovski, K.; Smalley, B.] Univ Keele, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Zima, W.; Aerts, C.] Univ Louvain, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Aerts, C.] Radboud Univ Nijmegen, MAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Bruntt, H.; Christensen-Dalsgaard, J.; Kjeldsen, H.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Lehmann, H.] Thuringer Landessternwarte Tautenburg, Tautenburg, Germany. [Kim, S. -L.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Kurtz, D. W.] Univ Cent Lancashire, Jeremiah Horrocks Inst Astrophys, Preston PR1 2HE, Lancs, England. [Pavlovski, K.] Univ Zagreb, Dept Phys, Zagreb 10000, Croatia. [Prsa, A.] Villanova Univ, Dept Astron & Astrophys, Villanova, PA 19085 USA. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Kawaler, S. D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Tenenbaum, P.; Twicken, J. D.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Southworth, J (reprint author), Univ Keele, Astrophys Grp, Keele ST5 5BG, Staffs, England. EM jkt@astro.keele.ac.uk FU STFC; European Research Council under the European Community [227224]; Research Council of K.U. Leuven [GOA/2008/04]; NASA's Science Mission Directorate FX JS would like to thank the STFC for award of an Advanced Fellowship. The research of WZ and CA leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 227224 (PROSPERITY) and from the Research Council of K.U. Leuven (GOA/2008/04). We thank the referee for a timely and useful report. Funding for the Kepler mission is provided by NASA's Science Mission Directorate. We are grateful for the time and effort of all people who are directly involved in planning and operation of the Kepler satellite. The following internet-based resources were used in research for this paper: the NASA Astrophysics Data System; the SIMBAD data base operated at CDS, Strasbourg, France and the arXiv scientific paper preprint service operated by Cornell University. NR 76 TC 35 Z9 35 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 414 IS 3 BP 2413 EP 2423 DI 10.1111/j.1365-2966.2011.18559.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MF UT WOS:000292977600047 ER PT J AU Petrov, L Phillips, C Bertarini, A Murphy, T Sadler, EM AF Petrov, Leonid Phillips, Chris Bertarini, Alessandra Murphy, Tara Sadler, Elaine M. TI The LBA Calibrator Survey of southern compact extragalactic radio sources-LCS1 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE instrumentation: interferometers; catalogues; surveys; astrometry ID BASE-LINE INTERFEROMETRY; HEMISPHERE ICRF SOURCES; VLBI OBSERVATIONS; ACCURATE ASTROMETRY; GEODESY AB We present a catalogue of accurate positions and correlated flux densities for 410 flat-spectrum, compact extragalactic radio sources previously detected in the Australia Telescope 20 GHz (AT20G) survey. The catalogue spans the declination range [-90 degrees, -40 degrees] and was constructed from four 24-h very long baseline interferometry (VLBI) observing sessions with the Australian Long Baseline Array at 8.3 GHz. The VLBI detection rate in these experiments is 97 per cent, the median uncertainty of the source positions is 2.6 mas and the median correlated flux density on projected baselines longer than 1000 km is 0.14 Jy. The goals of this work are (1) to provide a pool of southern sources with positions accurate to a few milliarcsec, which can be used for phase-referencing observations, geodetic VLBI and space navigation; (2) to extend the complete flux-limited sample of compact extragalactic sources to the Southern hemisphere; and (3) to investigate the parsec-scale properties of high-frequency selected sources from the AT20G survey. As a result of this VLBI campaign, the number of compact radio sources south of declination -40 degrees which have measured VLBI correlated flux densities and positions known to milliarcsec accuracy has increased by a factor of 3.5. The catalogue and supporting material is available at http://astrogeo.org/lcs1. C1 [Petrov, Leonid] NASA, Goddard Space Flight Ctr, ADNET Syst Inc, Greenbelt, MD 20771 USA. [Phillips, Chris] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Bertarini, Alessandra] Univ Bonn, Inst Geodesy & Geoinformat, D-53115 Bonn, Germany. [Bertarini, Alessandra] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Murphy, Tara; Sadler, Elaine M.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Murphy, Tara] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia. RP Petrov, L (reprint author), NASA, Goddard Space Flight Ctr, ADNET Syst Inc, Code 610-2, Greenbelt, MD 20771 USA. EM Leonid.Petrov@lpetrov.net OI Murphy, Tara/0000-0002-2686-438X; Sadler, Elaine/0000-0002-1136-2555 FU Commonwealth of Australia FX The authors would like to thank Anastasios Tzioumis for comments which helped to improve the manuscript. The authors made use of the data base CATS of the Special Astrophysical Observatory. We used in our work the data set MAI6NPANA provided by the NASA/Global Modelling and Assimilation Office (GMAO) in the framework of the MERRA atmospheric reanalysis project. The LBA is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by the CSIRO. NR 39 TC 16 Z9 16 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 414 IS 3 BP 2528 EP 2539 DI 10.1111/j.1365-2966.2011.18570.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MF UT WOS:000292977600056 ER PT J AU Hekker, S Gilliland, RL Elsworth, Y Chaplin, WJ De Ridder, J Stello, D Kallinger, T Ibrahim, KA Klaus, TC Li, J AF Hekker, S. Gilliland, R. L. Elsworth, Y. Chaplin, W. J. De Ridder, J. Stello, D. Kallinger, T. Ibrahim, K. A. Klaus, T. C. Li, J. TI Characterization of red giant stars in the public Kepler data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: observational; techniques: photometric; stars: late type; stars: oscillations ID SOLAR-LIKE OSCILLATIONS; 1ST 4 MONTHS; RADIUS DETERMINATION; COROT; ASTEROSEISMOLOGY; PARAMETERS; LIFETIMES; PIPELINE; RELEASE AB The first public release of long-cadence stellar photometric data collected by the NASA Kepler mission has now been made available. In this paper, we characterize the red giant (G-K) stars in this large sample in terms of their solar-like oscillations. We use published methods and well-known scaling relations in the analysis. Just over 70 per cent of the red giants in the sample show detectable solar-like oscillations, and from these oscillations we are able to estimate the fundamental properties of the stars. This asteroseismic analysis reveals different populations: low-luminosity H-shell burning red giant branch stars, cool high-luminosity red giants on the red giant branch and He-core burning clump and secondary-clump giants. C1 [Hekker, S.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Hekker, S.; Elsworth, Y.; Chaplin, W. J.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [De Ridder, J.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Stello, D.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Kallinger, T.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Kallinger, T.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Ibrahim, K. A.; Klaus, T. C.] NASA, Ames Res Ctr, Orbital Sci Corp, Moffett Field, CA 94035 USA. [Li, J.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Hekker, S (reprint author), Univ Amsterdam, Astron Inst Anton Pannekoek, POB 94249, NL-1090 GE Amsterdam, Netherlands. EM s.hekker@uva.nl OI Kallinger, Thomas/0000-0003-3627-2561 FU NASA's Science Mission Directorate; UK Science and Technology Facilities Council (STFC); Netherlands Organisation for Scientific Research (NWO) FX The authors gratefully acknowledge the Kepler Science Team and all those who have contributed to making the Kepler mission possible. Funding for this Discovery mission is provided by NASA's Science Mission Directorate. SH, YE and WJC acknowledge financial support from the UK Science and Technology Facilities Council (STFC). SH also acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO). We would like to thank the anonymous referee for useful comments which improved this paper considerably. NR 30 TC 58 Z9 58 U1 1 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 414 IS 3 BP 2594 EP 2601 DI 10.1111/j.1365-2966.2011.18574.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MF UT WOS:000292977600061 ER PT J AU Braito, V Reeves, JN Sambruna, RM Gofford, J AF Braito, V. Reeves, J. N. Sambruna, R. M. Gofford, J. TI Evidence for a circumnuclear and ionized absorber in the X-ray obscured broad-line radio galaxy 3C 445 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: individual: 3C 445; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; XMM-NEWTON; BLACK-HOLE; SEYFERT-GALAXIES; COLUMN DENSITIES; ABSORPTION LINES; ALPHA LINE; NGC 4051; KEV BAND; H I AB Here we present the results of a Suzaku observation of the broad-line radio galaxy 3C 445. We confirm the results obtained with the previous X-ray observations which unveiled the presence of several soft X-ray emission lines and an overall X-ray emission which strongly resembles a typical type 2 Seyfert galaxy despite of the optical classification as an unobscured active galactic nucleus. The broad-band spectrum allowed us to measure for the first time the amount of reflection (R similar to 0.9) which together with the relatively strong neutral Fe K alpha emission line (EW similar to 100 eV) strongly supports a scenario where a Compton-thick mirror is present. The primary X-ray continuum is strongly obscured by an absorber with a column density of N-H = 2-3 x 10(23) cm(-2). Two possible scenarios are proposed for the absorber: a neutral partial covering or a mildly ionized absorber with an ionization parameter log xi similar to 1.0 erg cm s(-1). A comparison with the past and more recent X-ray observations of 3C 445 performed with XMM-Newton and Chandra is presented, which provided tentative evidence that the ionized and outflowing absorbers varied. We argue that the absorber is probably associated with an equatorial disc wind located within the parsec scale molecular torus. C1 [Braito, V.] Univ Leicester, Dept Phys & Astron, Xray Astron Observat Grp, Leicester LE1 7RH, Leics, England. [Reeves, J. N.; Gofford, J.] Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Sambruna, R. M.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Braito, V (reprint author), Univ Leicester, Dept Phys & Astron, Xray Astron Observat Grp, Leicester LE1 7RH, Leics, England. EM vb67@star.le.ac.uk RI XRAY, SUZAKU/A-1808-2009; OI Braito, Valentina/0000-0002-2629-4989 FU UK STFC research council FX This research has made use of data obtained from the Suzaku satellite and data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center. VB acknowledges support from the UK STFC research council. NR 77 TC 12 Z9 12 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 414 IS 3 BP 2739 EP 2750 DI 10.1111/j.1365-2966.2011.18590.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MF UT WOS:000292977600075 ER PT J AU Schwarz, R Haghighipour, N Eggl, S Pilat-Lohinger, E Funk, B AF Schwarz, R. Haghighipour, N. Eggl, S. Pilat-Lohinger, E. Funk, B. TI Prospects of the detection of circumbinary planets with Kepler and CoRoT using the variations of eclipse timing SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: numerical; celestial mechanics; eclipses; planet-star interactions; binaries: eclipsing ID FAST LYAPUNOV INDICATOR; EXTRA-SOLAR PLANETS; BINARY-SYSTEMS; NUMERICAL-INTEGRATION; PERIODIC-ORBITS; CM-DRACONIS; BROWN-DWARF; GG TAURI; STARS; STABILITY AB In close eclipsing binaries, measurements of the variations in binary's eclipse timing may be used to infer information about the existence of circumbinary objects. To determine the possibility of the detection of such variations with CoRoT and Kepler space telescopes, we have carried out an extensive study of the dynamics of a binary star system with a circumbinary planet, and calculated its eclipse timing variations (ETVs) for different values of the mass ratio and orbital elements of the binary and the perturbing body. Here, we present the results of our study and assess the detectability of the planet by comparing the resulting values of ETVs with the temporal sensitivity of CoRoT and Kepler. Results point to extended regions in the parameter space where the perturbation of a planet may be large enough to create measurable variations in the eclipse timing of the secondary star. Many of these variations point to potentially detectable ETVs and the possible inference of Jovian-type planets. C1 [Schwarz, R.; Eggl, S.; Pilat-Lohinger, E.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Haghighipour, N.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Haghighipour, N.] Univ Hawaii, NASA Astrobiol Inst, Honolulu, HI 96822 USA. [Funk, B.] Eotvos Lorand Univ, Dept Astron, H-1117 Budapest, Hungary. RP Schwarz, R (reprint author), Univ Vienna, Inst Astron, Turkenschanzstr 17, A-1180 Vienna, Austria. EM schwarz@astro.univie.ac.at OI Funk, Barbara/0000-0001-7233-9730 FU OFG [MOEL 386]; FWF [P18930]; NASA, Institute for Astronomy, University of Hawaii [NNA04CC08A]; NASA EXOB [NNX09AN05G]; Austrian FWF Erwin Schrodinger [J2892-N16]; Austrian FWF [P22603, P20216] FX RS acknowledges supports through the MOEL grant of the OFG (Project MOEL 386) and the FWF project P18930. NH acknowledges support from the NASA Astrobiology Institute under Cooperative Agreement NNA04CC08A at the Institute for Astronomy, University of Hawaii; and NASA EXOB grant NNX09AN05G. Supports are also acknowledged through the Austrian FWF Erwin Schrodinger grant no. J2892-N16 for BF; the Austrian FWF project no. P20216 for SE; and the Austrian FWF project no. P22603, P20216 for EP-L. We thank J. Schneider and G. Wuchterl for fruitful discussions, and the anonymous referee for his/her constructive comments. NR 48 TC 15 Z9 15 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 414 IS 3 BP 2763 EP 2770 DI 10.1111/j.1365-2966.2011.18594.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MF UT WOS:000292977600077 ER PT J AU Ostensen, RH Silvotti, R Charpinet, S Oreiro, R Bloemen, S Baran, AS Reed, MD Kawaler, SD Telting, JH Green, EM O'Toole, SJ Aerts, C Gansicke, BT Marsh, TR Breedt, E Heber, U Koester, D Quint, AC Kurtz, DW Rodriguez-Lopez, C Vuckovic, M Ottosen, TA Frimann, S Somero, A Wilson, PA Thygesen, AO Lindberg, JE Kjeldsen, H Christensen-Dalsgaard, J Allen, C McCauliff, S Middour, CK AF Ostensen, R. H. Silvotti, R. Charpinet, S. Oreiro, R. Bloemen, S. Baran, A. S. Reed, M. D. Kawaler, S. D. Telting, J. H. Green, E. M. O'Toole, S. J. Aerts, C. Gaensicke, B. T. Marsh, T. R. Breedt, E. Heber, U. Koester, D. Quint, A. C. Kurtz, D. W. Rodriguez-Lopez, C. Vuckovic, M. Ottosen, T. A. Frimann, S. Somero, A. Wilson, P. A. Thygesen, A. O. Lindberg, J. E. Kjeldsen, H. Christensen-Dalsgaard, J. Allen, C. McCauliff, S. Middour, C. K. TI First Kepler results on compact pulsators - VI. Targets in the final half of the survey phase SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; binaries: close; stars: oscillations; subdwarfs; white dwarfs ID SUBDWARF-B STARS; MAGNETIC WHITE-DWARF; SDSS J160043.6+074802.9; SPECTRAL-ANALYSIS; DATA RELEASE; SDB STARS; PERIOD; PROGENITOR; MODE; PULSATIONS AB We present results from the final 6 months of a survey to search for pulsations in white dwarfs (WDs) and hot subdwarf stars with the Kepler spacecraft. Spectroscopic observations are used to separate the objects into accurate classes, and we explore the physical parameters of the subdwarf B (sdB) stars and white dwarfs in the sample. From the Kepler photometry and our spectroscopic data, we find that the sample contains five new pulsators of the V1093 Her type, one AMCVn type cataclysmic variable and a number of other binary systems. This completes the survey for compact pulsators with Kepler. No V361 Hya type of short-period pulsating sdB stars were found in this half, leaving us with a total of one single multiperiodic V361 Hya and 13 V1093 Her pulsators for the full survey. Except for the sdB pulsators, no other clearly pulsating hot subdwarfs or white dwarfs were found, although a few low-amplitude candidates still remain. The most interesting targets discovered in this survey will be observed throughout the remainder of the Kepler mission, providing the most long-term photometric data sets ever made on such compact, evolved stars. Asteroseismic investigations of these data sets will be invaluable in revealing the interior structure of these stars and will boost our understanding of their evolutionary history. C1 [Ostensen, R. H.; Oreiro, R.; Bloemen, S.; Aerts, C.; Vuckovic, M.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Silvotti, R.] INAF Osservatorio Astron Torino, I-10025 Pino Torinese, Italy. [Charpinet, S.] Univ Toulouse, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Oreiro, R.] Inst Astrofis Andalucia, Granada 18008, Spain. [Baran, A. S.] Cracow Pedag Univ, Mt Suhora Observ, PL-30084 Krakow, Poland. [Baran, A. S.; Kawaler, S. D.; Quint, A. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Reed, M. D.] SW Missouri State Univ, Det Phys Astron & Mat Sci, Springfield, MO 65804 USA. [Telting, J. H.; Ottosen, T. A.; Frimann, S.; Somero, A.; Wilson, P. A.; Thygesen, A. O.; Lindberg, J. E.] Nord Opt Telescope, Santa Cruz De La Palma 38700, Spain. [Green, E. M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [O'Toole, S. J.] Australian Astron Observ, Epping, NSW 1710, Australia. [Aerts, C.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Gaensicke, B. T.; Marsh, T. R.; Breedt, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Heber, U.] FAU Erlangen Nuremberg, Dr Karl Remeis Observ, D-96049 Bamberg, Germany. [Heber, U.] FAU Erlangen Nuremberg, Astron Inst, ECAP, D-96049 Bamberg, Germany. [Koester, D.] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany. [Kurtz, D. W.] Univ Cent Lancashire, Jeremiah Horrocks Inst Astrophys, Preston PR1 2HE, Lancs, England. [Rodriguez-Lopez, C.] Univ Vigo, Det Fis Aplicada, Vigo 36310, Spain. [Rodriguez-Lopez, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Vuckovic, M.] European So Observ, Santiago 19001, Chile. [Ottosen, T. A.; Frimann, S.; Kjeldsen, H.; Christensen-Dalsgaard, J.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Somero, A.] Univ Turku, Dept Phys & Astron, Tuorla Observ, FI-21500 Pukkio, Finland. [Wilson, P. A.] Univ Exeter, Sch Phys, Astrophys Grp, Exeter EX4 4QL, Devon, England. [Lindberg, J. E.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Allen, C.; McCauliff, S.; Middour, C. K.] NASA, Ames Res Ctr, Orbital Sci Corp, Moffett Field, CA 94035 USA. RP Ostensen, RH (reprint author), Katholieke Univ Leuven, Inst Sterrenkunde, Celestijnenlaan 200D, B-3001 Louvain, Belgium. EM roy@ster.kuleuven.be RI Gaensicke, Boris/A-9421-2012; Heber, Ulrich/G-3306-2013; Frimann, Soren/P-5154-2015; OI Gaensicke, Boris/0000-0002-2761-3005; Kawaler, Steven/0000-0002-6536-6367; Heber, Ulrich/0000-0001-7798-6769; Frimann, Soren/0000-0001-7862-7901; Amby, Thomas Mellergaard/0000-0002-8116-1097; Lindberg, Johan/0000-0003-3811-4591; Silvotti, Roberto/0000-0002-1295-8174; Oreiro Rey, Raquel/0000-0002-4899-6199; Somero, Auni/0000-0001-6566-9192; Rodriguez-Lopez, Cristina/0000-0001-5559-7850; Charpinet, Stephane/0000-0002-6018-6180 FU NASA's Science Mission Directorate; European Research Council [227224]; Research Council of K.U. Leuven [GOA/2008/04]; Polish Ministry of Science and Higher Education [554/MOB/2009/0]; Programme National de Physique Stellaire (PNPS, CNRS/INSU, France); NASA FX The authors gratefully acknowledge the Kepler team and all who have contributed to enabling the mission. Funding for the Kepler mission is provided by NASA's Science Mission Directorate.; The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 227224 (PROSPERITY), as well as from the Research Council of K.U. Leuven grant agreement GOA/2008/04. ASB gratefully appreciates funding from the Polish Ministry of Science and Higher Education under project no 554/MOB/2009/0. SC thanks the Programme National de Physique Stellaire (PNPS, CNRS/INSU, France) for financial support. ACQ is supported by the Missouri Space Grant funded by NASA. NR 43 TC 41 Z9 41 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 414 IS 4 BP 2860 EP 2870 DI 10.1111/j.1365-2966.2011.18405.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 798CF UT WOS:000293178600007 ER PT J AU Baran, AS Kawaler, SD Reed, MD Quint, AC O'Toole, SJ Ostensen, RH Telting, JH Silvotti, R Charpinet, S Christensen-Dalsgaard, J Still, M Hall, JR Uddin, K AF Baran, A. S. Kawaler, S. D. Reed, M. D. Quint, A. C. O'Toole, S. J. Ostensen, R. H. Telting, J. H. Silvotti, R. Charpinet, S. Christensen-Dalsgaard, J. Still, M. Hall, J. R. Uddin, K. TI First Kepler results on compact pulsators - VII. Pulsating subdwarf B stars detected in the second half of the survey phase SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE asteroseismology; space vehicles; stars: oscillations; techniques: photometric; subdwarfs ID HORIZONTAL-BRANCH STARS; ECLIPSING BINARY; SDB STAR; ORIGIN; MODE; HOT; ASTEROSEISMOLOGY AB We present five new pulsating subdwarf B (sdB) stars discovered by the Kepler spacecraft during the asteroseismology survey phase. We perform time series analysis on the nearly continuous month-long Kepler data sets of these five objects; these data sets provide nearly alias-free time series photometry at unprecedented precision. Following an iterative pre-whitening process, we derive the pulsational frequency spectra of these stars, separating out artefacts of known instrumental origin. We find that these new pulsating sdB stars are multiperiodic long-period pulsators of the V1093 Her type, with the number of periodicities ranging from eight (KIC 8302197) to 53 (KIC 11558725). The frequencies and amplitudes are typical of g-mode pulsators of this type. We do not find any evidence for binarity in the five stars from their observed pulsation frequencies. As these are g-mode pulsators, we briefly looked for period spacings for mode identification and found average spacings of about 260 and 145 s. This may indicate l = 1 and 2 patterns. Some modes may show evidence of rotational splitting. These discoveries complete the list of compact pulsators found in the survey phase. Of the 13 compact pulsators, only one star was identified as a short-period (p-mode) V361 Hya pulsator, while all other new pulsators turned out to be V1093 Her class objects. Among the latter objects, two of them seemed to be pure V1093 Her while the others show additional low-amplitude peaks in the p-mode frequency range, suggesting their hybrid nature. Authenticity of these peaks will be tested with longer runs currently under analysis. C1 [Baran, A. S.; Kawaler, S. D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Baran, A. S.] Cracow Pedag Univ, Mt Suhora Observ, PL-30084 Krakow, Poland. [Reed, M. D.; Quint, A. C.] Missouri State Univ, Dept Phys Astron & Mat Sci, Springfield, MO 65897 USA. [O'Toole, S. J.] Anglo Australian Observ, Epping, NSW 1710, Australia. [Ostensen, R. H.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Telting, J. H.] Nord Opt Telescope, Santa Cruz De La Palma 38700, Spain. [Silvotti, R.] INAF Osservatorio Astron Torino, I-10025 Pino Torinese, Italy. [Charpinet, S.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Christensen-Dalsgaard, J.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Still, M.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Hall, J. R.; Uddin, K.] NASA, Ames Res Ctr, Orbital Sci Corp, Moffett Field, CA 94035 USA. RP Baran, AS (reprint author), Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA. EM asb@iastate.edu OI Silvotti, Roberto/0000-0002-1295-8174; Charpinet, Stephane/0000-0002-6018-6180; Kawaler, Steven/0000-0002-6536-6367 FU Polish Ministry of Science and Higher Education [554/MOB/2009/0]; Missouri State University; NASA; NASA's Science Mission Directorate FX ASB gratefully appreciates funding from Polish Ministry of Science and Higher Education under project no. 554/MOB/2009/0. MDR was partially funded by a Missouri State University Faculty Research Grant. ACQ is supported by the Missouri Space Grant Consortium, funded by NASA. Funding for the Kepler Mission is provided by NASA's Science Mission Directorate. The authors gratefully acknowledge the Kepler Science Team and all those who have contributed to making the Kepler Mission possible. NR 32 TC 21 Z9 21 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 414 IS 4 BP 2871 EP 2884 DI 10.1111/j.1365-2966.2011.18486.x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 798CF UT WOS:000293178600008 ER PT J AU Reed, MD Baran, A Quint, AC Kawaler, SD O'Toole, SJ Telting, J Charpinet, S Rodriguez-Lopez, C Ostensen, RH Provencal, JL Johnson, ES Thompson, SE Allen, C Middour, CK Kjeldsen, H Christensen-Dalsgaard, J AF Reed, M. D. Baran, A. Quint, A. C. Kawaler, S. D. O'Toole, S. J. Telting, J. Charpinet, S. Rodriguez-Lopez, C. Ostensen, R. H. Provencal, J. L. Johnson, E. S. Thompson, S. E. Allen, C. Middour, C. K. Kjeldsen, H. Christensen-Dalsgaard, J. TI First Kepler results on compact pulsators - VIII. Mode identifications via period spacings in g-mode pulsating subdwarf B stars SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: oscillations; subdwarfs ID ASYMPTOTIC APPROXIMATIONS; OSCILLATIONS; ASTEROSEISMOLOGY; BINARIES; SPECTROSCOPY; PG-1159-035; CONVECTION; PARAMETERS; TELESCOPE AB We investigate the possibility of nearly equally spaced periods in 13 hot subdwarf B (sdB) stars observed with the Kepler spacecraft and one observed with CoRoT. Asymptotic limits for gravity (g-) mode pulsations provide relationships between equal-period spacings of modes with differing degrees l and relationships between periods of the same radial order n but differing degrees l. Period transforms, Kolmogorov-Smirnov tests and linear least-squares fits have been used to detect and determine the significance of equal-period spacings. We have also used Monte Carlo simulations to estimate the likelihood that the detected spacings could be produced randomly. Period transforms for nine of the Kepler stars indicate l = 1 period spacings, with five also showing peaks for l = 2 modes. 12 stars indicate l = 1 modes using the Kolmogorov-Smirnov test while another shows solely l = 2 modes. Monte Carlo results indicate that equal-period spacings are significant in 10 stars above 99 per cent confidence, and 13 of the 14 are above 94 per cent confidence. For 12 stars, the various methods find consistent period spacings to within the errors, two others show some inconsistencies, likely caused by binarity, and the last has significant detections but the mode assignment disagrees between the methods. We use asymptotic period spacing relationships to associate observed periods of variability with pulsation modes for l = 1 and 2. From the Kepler first-year survey sample of 13 multiperiodic g-mode pulsators, five stars have several consecutive overtones making period spacings easy to detect, six others have fewer consecutive overtones but period spacings are readily detected, and two stars show marginal indications of equal-period spacings. We also examine a g-mode sdB pulsator observed by CoRoT with a rich pulsation spectrum, and our tests detect regular period spacings. We use Monte Carlo simulations to estimate the significance of the detections in individual stars. From the simulations, it is determined that regular period spacings in 10 of the 14 stars are very unlikely to be random, another two are moderately unlikely to be random and two are mostly unconstrained. We find a common l = 1 period spacing spanning a range from 231 to 272 s allowing us to correlate pulsation modes with 222 periodicities and that the l = 2 period spacings are related to the l = 1 spacings by the asymptotic relationship 1/root 3. We briefly discuss the impact of equal-period spacings which indicate low-degree modes with a lack of significant mode trappings. C1 [Reed, M. D.; Quint, A. C.] Missouri State Univ, Dept Phys Astron & Mat Sci, Springfield, MO 65897 USA. [Baran, A.; Kawaler, S. D.; Johnson, E. S.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Baran, A.] Suhora Observ, PL-30084 Krakow, Poland. [Baran, A.] Krakow Pedag Univ, PL-30084 Krakow, Poland. [O'Toole, S. J.] Anglo Australian Observ, Epping, NSW 1710, Australia. [Telting, J.] Nord Opt Telescope, Santa Cruz De La Palma 38700, Spain. [Charpinet, S.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Rodriguez-Lopez, C.] Univ Vigo, Dept Fis Aplicada, Vigo 36310, Spain. [Rodriguez-Lopez, C.] Univ Delaware, Dept Phys & Astron, Sharp Lab 217, Newark, DE 19716 USA. [Ostensen, R. H.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Provencal, J. L.] Delaware Asteroseism Res Ctr, Mt Cuba Observ, Greenville, DE 19807 USA. [Provencal, J. L.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Thompson, S. E.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Allen, C.; Middour, C. K.] NASA, Ames Res Ctr, Orbital Sci Corp, Moffett Field, CA 94035 USA. [Kjeldsen, H.; Christensen-Dalsgaard, J.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. RP Reed, MD (reprint author), Missouri State Univ, Dept Phys Astron & Mat Sci, 901 S Natl, Springfield, MO 65897 USA. EM mikereed@missouristate.edu OI Rodriguez-Lopez, Cristina/0000-0001-5559-7850; Charpinet, Stephane/0000-0002-6018-6180; Kawaler, Steven/0000-0002-6536-6367 FU NASA's Science Mission Directorate; Missouri State University; NASA; European Research Council [227224]; Research Council of K.U. Leuven [GOA/2008/04]; Polish Ministry [554/MOB/2009/0] FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. The authors gratefully acknowledge the entire Kepler team, whose efforts have made these results possible. MDR is partially funded by a Missouri State University Faculty Research Grant. ACQ is supported by the Missouri Space Grant Consortium, funded by NASA. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 227224 (PROSPERITY) and from the Research Council of K.U. Leuven (GOA/2008/04). AB gratefully acknowledges support from the Polish Ministry under grant no 554/MOB/2009/0. NR 44 TC 38 Z9 38 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 414 IS 4 BP 2885 EP 2892 DI 10.1111/j.1365-2966.2011.18532.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 798CF UT WOS:000293178600009 ER PT J AU Smolec, R Moskalik, P Kolenberg, K Bryson, S Cote, MT Morris, RL AF Smolec, R. Moskalik, P. Kolenberg, K. Bryson, S. Cote, M. T. Morris, R. L. TI Variable turbulent convection as the cause of the Blazhko effect - testing the Stothers model SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE convection; hydrodynamics; methods: numerical; stars: individual: RR Lyr; stars: oscillations; stars: variables: RR Lyrae ID RR-LYRAE STARS; LARGE-MAGELLANIC-CLOUD; NONRADIAL MODES; MAGNETIC-FIELD; CEPHEID MODELS; STELLAR MODELS; KEPLER; PULSATIONS; LIGHT; EXCITATION AB The amplitude and phase modulation observed in a significant fraction of the RR Lyrae variables - the Blazhko effect - represents a longstanding enigma in stellar pulsation theory. No satisfactory explanation for the Blazhko effect has been proposed so far. In this paper we focus on the Stothers idea, in which modulation is caused by changes in the structure of the outer convective zone, caused by a quasi-periodically changing magnetic field. However, up to this date no quantitative estimates were made to investigate whether such a mechanism can be operational and whether it is capable of reproducing the light variation we observe in Blazhko variables. We address the latter problem. We use a simplified model, in which the variation of turbulent convection is introduced into the non-linear hydrodynamic models in an ad hoc way, neglecting interaction with the magnetic field. We study the light-curve variation through the modulation cycle and properties of the resulting frequency spectra. Our results are compared with Kepler observations of RR Lyr. We find that reproducing the light-curve variation, as is observed in RR Lyr, requires a huge modulation of the mixing length, of the order of +/- 50 per cent, on a relatively short time-scale of less than 40 d. Even then, we are not able to reproduce all the observed relations between modulation components present in the frequency spectrum and the relations between Fourier parameters describing the shape of the instantaneous light curves. C1 [Smolec, R.; Kolenberg, K.] Univ Vienna, Inst Astron IfA, A-1180 Vienna, Austria. [Moskalik, P.] Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Morris, R. L.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Smolec, R (reprint author), Univ Vienna, Inst Astron IfA, Turkenschanzstr 17, A-1180 Vienna, Austria. EM radek.smolec@univie.ac.at RI Smolec, Radoslaw/F-1435-2013 OI Smolec, Radoslaw/0000-0001-7217-4884 FU NASA's Science Mission Directorate; Austrian Science Fund (FWF) [AP 21205-N16, T359/P19962] FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. The authors gratefully acknowledge the entire Kepler team, whose outstanding efforts have made these results possible.; Model computations presented in this paper were conducted on the psk computer cluster in the Copernicus Centre, Warsaw, Poland. We are grateful to James Nemec for comments on this manuscript. RS and KK are supported by the Austrian Science Fund (FWF projects AP 21205-N16 and T359/P19962, respectively). NR 62 TC 15 Z9 16 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 414 IS 4 BP 2950 EP 2964 DI 10.1111/j.1365-2966.2011.18592.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 798CF UT WOS:000293178600012 ER PT J AU den Brok, M Peletier, RF Valentijn, EA Balcells, M Carter, D Erwin, P Ferguson, HC Goudfrooij, P Graham, AW Hammer, D Lucey, JR Trentham, N Guzman, R Hoyos, C Kleijn, GV Jogee, S Karick, AM Marinova, I Mouhcine, M Weinzirl, T AF den Brok, M. Peletier, R. F. Valentijn, E. A. Balcells, M. Carter, D. Erwin, P. Ferguson, H. C. Goudfrooij, P. Graham, A. W. Hammer, D. Lucey, J. R. Trentham, N. Guzman, R. Hoyos, C. Kleijn, G. Verdoes Jogee, S. Karick, A. M. Marinova, I. Mouhcine, M. Weinzirl, T. TI The HST/ACS Coma Cluster Survey - VI. Colour gradients in giant and dwarf early-type galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: clusters: individual: Coma; galaxies: dwarf; galaxies: elliptical and lenticular, cD; galaxies: structure ID STELLAR POPULATION GRADIENTS; TELESCOPE ADVANCED CAMERA; BRIGHT ELLIPTIC GALAXIES; CCD SURFACE PHOTOMETRY; VIRGO-CLUSTER; STRUCTURAL PARAMETERS; METALLICITY GRADIENTS; EVOLUTION; MODELS; MASS AB Using deep, high-spatial-resolution imaging from the Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) Coma Cluster Treasury Survey, we determine colour profiles of early-type galaxies in the Coma cluster. From 176 galaxies brighter than M-F814W(AB) = -15 mag that are either spectroscopically confirmed members of Coma or identified by eye as likely members from their low surface brightness, data are provided for 142 early-type galaxies. Typically, colour profiles are linear against log (R), sometimes with a nuclear region of distinct, often bluer colour associated with nuclear clusters. Colour gradients are determined for the regions outside the nuclear components. We find that almost all colour gradients are negative, both for elliptical and for lenticular galaxies. Most likely, earlier studies that report positive colour gradients in dwarf galaxies are affected by the bluer colours of the nuclear clusters, underlining that high-resolution data are essential to disentangle the colour properties of the different morphological components in galaxies. Colour gradients of dwarf galaxies form a continuous sequence with those of elliptical galaxies, becoming shallower towards fainter magnitudes. Interpreting the colours as metallicity tracers, our data suggest that dwarfs as well as giant early-type galaxies in the Coma cluster are less metal rich in their outer parts. We do not find evidence for environmental influence on the gradients, although we note that most of our galaxies are found in the central regions of the cluster. For a subset of galaxies with known morphological types, S0 galaxies have less steep gradients than elliptical galaxies. C1 [den Brok, M.; Peletier, R. F.; Valentijn, E. A.; Kleijn, G. Verdoes] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Balcells, M.] Isaac Newton Grp Telescopes, Santa Cruz De La Palma 38700, Canary Islands, Spain. [Balcells, M.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Balcells, M.] Univ La Laguna, Dept Astrofis, Tenerife 38200, Spain. [Carter, D.; Karick, A. M.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Erwin, P.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Erwin, P.] Univ Sternwarte Munchen, D-81679 Munich, Germany. [Ferguson, H. C.; Goudfrooij, P.; Hammer, D.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Graham, A. W.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Hammer, D.] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Lucey, J. R.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Trentham, N.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Guzman, R.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Hoyos, C.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Jogee, S.; Marinova, I.; Mouhcine, M.; Weinzirl, T.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. RP den Brok, M (reprint author), Univ Groningen, Kapteyn Astron Inst, POB 800, NL-9700 AV Groningen, Netherlands. EM denbrok@astro.rug.nl RI Peletier, Reynier/B-9633-2012; Graham, Alister/G-1217-2013; OI Graham, Alister/0000-0002-6496-9414; Erwin, Peter/0000-0003-4588-9555; De Hoyos Fernandez De Cordova, Carlos/0000-0003-3120-6856 FU NASA [5-26555]; Science and Technology Facilities Council [P/E/001149/1]; Estallidos de Formacion Estelar [AYA 2007-67965-C03-03/MEC]; Spanish Ministerio de Ciencia e Innovacion [AYA2006-12955, AYA2009-11137]; National Aeronautics and Space Administration FX Based on observations made with the NASA/ESA HST obtained at the Space Telescope Science Institute, which is operated by the association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This research is primarily associated with program GO-10861. We are grateful to the anonymous referee for useful comments. We thank Mina Koleva for providing her Fornax galaxies metallicity data, and Harald Kuntschner for providing his SAURON metallicity gradients. DC and AMK acknowledge support from the Science and Technology Facilities Council, under grant PP/E/001149/1. CH acknowledges financial support from the Estallidos de Formacion Estelar. Fase III, under grant AYA 2007-67965-C03-03/MEC. MB acknowledges financial support from grants AYA2006-12955 and AYA2009-11137 from the Spanish Ministerio de Ciencia e Innovacion. This research has made use of the NASA/IPAC Extragalactic Data base (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 71 TC 18 Z9 18 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 414 IS 4 BP 3052 EP 3070 DI 10.1111/j.1365-2966.2011.18606.x PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 798CF UT WOS:000293178600021 ER PT J AU Coe, MJ Haberl, F Sturm, R Pietsch, W Townsend, LJ Bartlett, ES Filipovic, M Udalski, A Corbet, RHD Tiengo, A Ehle, M Payne, JL Burton, D AF Coe, M. J. Haberl, F. Sturm, R. Pietsch, W. Townsend, L. J. Bartlett, E. S. Filipovic, M. Udalski, A. Corbet, R. H. D. Tiengo, A. Ehle, M. Payne, J. L. Burton, D. TI The XMM-Newton survey of the Small Magellanic Cloud: XMMU J005011.2-730026=SXP 214, a Be/X-ray binary pulsar SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: neutron; X-rays: binaries ID PHOTON IMAGING CAMERA; CATALOG; LONG; STAR AB In the course of the XMM-Newton survey of the Small Magellanic Cloud, a region to the east of the emission nebula N19 was observed in 2009 November. To search for new candidates for high-mass X-ray binaries, the EPIC-pn and EPIC-MOS data of the detected point sources were investigated and their spectral and temporal characteristics identified. A new transient (XMMU J005011.2-730026 = SXP 214) with a pulse period of 214.05 s was discovered; the source had a hard X-ray spectrum with a power-law index of similar to 0.65. The accurate X-ray source location permits the identification of the X-ray source with an similar to 15th magnitude Be star, thereby confirming this system as a new Be/X-ray binary. C1 [Coe, M. J.; Townsend, L. J.; Bartlett, E. S.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Haberl, F.; Sturm, R.; Pietsch, W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Filipovic, M.; Payne, J. L.] Univ Western Sydney, Penrith, NSW 1797, Australia. [Udalski, A.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Corbet, R. H. D.] Univ Maryland Baltimore Cty, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tiengo, A.] INAF Ist Astrofis Spaziale & Fis Cosm Milano, I-20133 Milan, Italy. [Ehle, M.] European Space Agcy, XMM Newton Sci Operat Ctr, Madrid 28691, Spain. [Burton, D.] Univ So Queensland, Toowoomba, Qld 4350, Australia. RP Coe, MJ (reprint author), Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. EM mjcoe@soton.ac.uk OI Haberl, Frank/0000-0002-0107-5237; Tiengo, Andrea/0000-0002-6038-1090; Bartlett, Elizabeth/0000-0003-0634-4405 FU BMWI/DLR [FKZ 50 OR 0907]; University of Southampton; European Research Council under the European Community [246678]; Australian Government AINSTO AMNRF [10/11-O-06] FX RS acknowledges support from the BMWI/DLR grant FKZ 50 OR 0907. LJT is supported by a University of Southampton Mayflower Scholarship. As always, we are grateful to the support staff in SAAO for help in using the 1.9-m and IRSF telescopes. The Faulkes Telescope Project is an educational and research arm of the Las Cumbres Observatory Global Telescope Network (LCOGTN). The OGLE project has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 246678 to AU. MF thanks Australian Government AINSTO AMNRF for grant number 10/11-O-06. NR 34 TC 11 Z9 11 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 414 IS 4 BP 3281 EP 3287 DI 10.1111/j.1365-2966.2011.18626.x PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 798CF UT WOS:000293178600038 ER PT J AU Gofford, J Reeves, JN Turner, TJ Tombesi, F Braito, V Porquet, D Miller, L Kraemer, SB Fukazawa, Y AF Gofford, J. Reeves, J. N. Turner, T. J. Tombesi, F. Braito, V. Porquet, D. Miller, L. Kraemer, S. B. Fukazawa, Y. TI A broad-band X-ray view of the warm absorber in radio-quiet quasar MR2251-178 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: individual: MR 2251-178; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; ACCRETION DISKS; EMISSION-LINE; MR 2251-178; IONIZED-REFLECTION; ABSORPTION-LINES; SPECTROSCOPY; DISCOVERY; SPECTRUM; SUZAKU AB We present the analysis of a new broad-band X-ray spectrum (0.6-180.0 keV) of the radio-quiet quasar MR2251-178 which uses both Suzaku and Swift/Burst Alert Telescope data. In accordance with previous observations, we find that the general continuum can be well described by a power law with Gamma = 1.6 and an apparent soft excess below 1 keV. Warm absorption is clearly present, and absorption lines due to the Fe unresolved transition array, Fe L (Fe XXIII-XXIV), S XV and S XVI are detected below 3 keV. At higher energies, FeK absorption from Fe XXV-XXVI is detected and a relatively weak (EW = 25(-8)(+12) eV) narrow FeK alpha emission line is observed (E = 6.44 +/- 0.04 keV) which is well modelled by the presence of a mildly ionized (xi less than or similar to 30) reflection component with a low reflection fraction (R < 0.2). At least five ionized absorption components with 10(20) less than or similar to N-H less than or similar to 10(23) cm(-2) and 0 less than or similar to log xi/erg cm s(-1) less than or similar to 4 are required to achieve an adequate spectral fit. Alternatively, we show that the continuum can also be fit if a Gamma similar to 2.0 power law is absorbed by a column of N-H similar to 1023 cm(-2) which covers similar to 30 per cent of the source flux. Independent of which continuum model is adopted, the Fe L and Fe XXV He alpha lines are well fit by a single absorber outflowing with v(out) similar to 0.14c. Such an outflow/disc-wind is likely to be substantially clumped (b similar to 10(-3)) in order to not vastly exceed the likely accretion rate of the source. C1 [Gofford, J.; Reeves, J. N.] Keele Univ, Sch Phys Sci, Astrophys Grp, Keele ST5 8EH, Staffs, England. [Reeves, J. N.; Turner, T. J.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Tombesi, F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Tombesi, F.] Univ Maryland, CREEST, College Pk, MD 20742 USA. [Tombesi, F.] NASA, GSFC, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Braito, V.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Porquet, D.] Univ Strasbourg, CNRS, UMR 7550, Observ Astron Strasbourg, F-67000 Strasbourg, France. [Miller, L.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Kraemer, S. B.] Catholic Univ Amer, Dept Phys, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. [Fukazawa, Y.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. RP Gofford, J (reprint author), Keele Univ, Sch Phys Sci, Astrophys Grp, Keele ST5 8EH, Staffs, England. EM jag@astro.keele.ac.uk RI XRAY, SUZAKU/A-1808-2009; OI Porquet, Delphine/0000-0001-9731-0352; Braito, Valentina/0000-0002-2629-4989 FU NASA; UK STFC research council FX The Suzaku X-ray observatory is a collaborative mission between the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration (NASA). This research has made use of the NASA/IPAC Extragalactic Data base (NED) which is operated by the Jet Propulsion Laboratory, Caltech, under contract with the NASA. We would like to thank the anonymous referee for their comments on this work, and Dean McLaughlin for his suggestions. JG and VB would like to acknowledge support from the UK STFC research council. NR 79 TC 21 Z9 21 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 414 IS 4 BP 3307 EP 3321 DI 10.1111/j.1365-2966.2011.18634.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 798CF UT WOS:000293178600041 ER PT J AU Burningham, B Leggett, SK Homeier, D Saumon, D Lucas, PW Pinfield, DJ Tinney, CG Allard, F Marley, MS Jones, HRA Murray, DN Ishii, M Day-Jones, A Gomes, J Zhang, ZH AF Burningham, Ben Leggett, S. K. Homeier, D. Saumon, D. Lucas, P. W. Pinfield, D. J. Tinney, C. G. Allard, F. Marley, M. S. Jones, H. R. A. Murray, D. N. Ishii, M. Day-Jones, A. Gomes, J. Zhang, Z. H. TI The properties of the T8.5p dwarf Ross 458C SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; brown dwarfs; stars: low-mass ID LARGE-AREA SURVEY; T-DWARFS; BROWN DWARFS; BINARY-SYSTEM; PHOTOMETRIC CALIBRATION; INFRARED ASTRONOMY; DISCOVERY; UKIDSS; MASS; BENCHMARK AB We present near-infrared photometry and spectroscopy, and warm-Spitzer IRAC photometry of the young very cool T dwarf Ross 458C, which we have typed as T8.5p. By applying the fiducial age constraints (<= 1 Gyr) imposed by the properties of the active M dwarf Ross 458A, we have used these data to determine that Ross 458C has T-eff = 695 +/- 60 K, log g = 4.0-4.7 and an inferred mass of 5-20M(J). We have compared fits of the near-infrared spectrum and IRAC photometry to the BT Settl and Saumon & Marley model grids, and have found that both sets provide best fits that are consistent with our derived properties, whilst the former provide a marginally closer match to the data for all scenarios explored here. The main difference between the model grids arises in the 4.5-mu m region, where the BT Settl models are able to better predict the flux through the IRAC filter, suggesting that non-equilibrium effects on the CO-CO2 ratio are important for shaping the mid-infrared spectra of very cool T dwarfs. We have also revisited the issue of the dust opacity in the spectra of Ross 458C that was raised by Burgasser et al. We have found that the BT Settl models which also incorporate a condensate cloud model provide a better match to the near-infrared spectrum of this target than the Saumon & Marley model with f(sed) = 2 and we briefly discuss the influence of condensate clouds on T dwarf spectra. C1 [Burningham, Ben; Lucas, P. W.; Pinfield, D. J.; Jones, H. R. A.; Murray, D. N.; Gomes, J.; Zhang, Z. H.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. [Leggett, S. K.] Gemini Observ, Hilo, HI 96720 USA. [Homeier, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Saumon, D.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Tinney, C. G.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Allard, F.] Ecole Normale Super Lyon, CRAL, CNRS, UMR 5574, F-69364 Lyon 07, France. [Marley, M. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ishii, M.] Subaru Telescope, Hilo, HI 96720 USA. [Day-Jones, A.] Univ Chile, Santiago, Chile. RP Burningham, B (reprint author), Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. EM B.Burningham@herts.ac.uk OI Allard, France/0000-0003-1929-9340; Burningham, Ben/0000-0003-4600-5627; Marley, Mark/0000-0002-5251-2943; Tinney, Christopher/0000-0002-7595-0970; Homeier, Derek/0000-0002-8546-9128; Leggett, Sandy/0000-0002-3681-2989; Jones, Hugh/0000-0003-0433-3665 FU Gemini Observatory; ARC [DP0774000] FX We thank our anonymous referee for comments that have greatly improved the quality of the manuscript. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. SKL is supported by the Gemini Observatory, which is operated by the AURA, on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom and the United States of America. CGT is supported by ARC grant DP0774000. This research has made use of the SIMBAD data base operated at CDS, Strasbourg, France, and has benefitted from the SpeX Prism Spectral Libraries maintained by Adam Burgasser at http://www.browndwarfs.org/spexprism. NR 48 TC 48 Z9 48 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 414 IS 4 BP 3590 EP 3598 DI 10.1111/j.1365-2966.2011.18664.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 798CF UT WOS:000293178600063 ER PT J AU Barber, SK Geckeler, RD Yashchuk, VV Gubarev, MV Buchheim, J Siewert, F Zeschke, T AF Barber, Samuel K. Geckeler, Ralf D. Yashchuk, Valeriy V. Gubarev, Mikhail V. Buchheim, Jana Siewert, Frank Zeschke, Thomas TI Optimal alignment of mirror-based pentaprisms for scanning deflectometric devices SO OPTICAL ENGINEERING LA English DT Article DE optical metrology; surface slope metrology; surface profilometer; long trace profiler; developmental long trace profiler; pentaprism; mirror-based pentaprism; alignment; deflectometry; extended shear angle difference; nanometer optical component measuring machine ID OPTICS AB Replacement of a bulk pentaprism with a mirror-based pentaprism (MBPP) in slope-measuring instruments, such as long trace profilers and autocollimator-based deflectometers, is a well-established way to significantly improve the reliability of surface slope measurements. This is due to the elimination of systematic errors introduced by inhomogeneity of the optical material and fabrication imperfections of bulk pentaprisms. Proper use of an MBPP requires precision mutual alignment of its mirrors. In a recent work we have reported on an original experimental procedure for optimal alignment of MBPP mirrors. The procedure has been verified with numerical ray tracing simulations and via test experiments with the developmental long trace profiler, a slope measuring profiler available at the Advanced Light Source Optical Metrology Laboratory. In the present article, we provide an analytical derivation and verification of easily executed optimal alignment algorithms for two different designs of mirror-based pentaprisms. We also provide an analytical description for a mechanism for reduction of the systematic errors introduced by a typical high quality bulk pentaprism. It is also shown that residual misalignments of an MBPP introduce entirely negligible systematic errors in surface slope measurements with scanning deflectometric devices. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3598325] C1 [Barber, Samuel K.; Yashchuk, Valeriy V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Geckeler, Ralf D.] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. [Gubarev, Mikhail V.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Buchheim, Jana; Siewert, Frank; Zeschke, Thomas] Helmholtz Zentrum Berlin Mat & Energie Elektronen, D-12489 Berlin, Germany. RP Barber, SK (reprint author), Univ Calif Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095 USA. EM VVYashchuk@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; United States Government FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.; This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California. NR 18 TC 9 Z9 10 U1 4 U2 9 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD JUL PY 2011 VL 50 IS 7 AR 073602 DI 10.1117/1.3598325 PG 8 WC Optics SC Optics GA 797XZ UT WOS:000293164700024 ER PT J AU Sengupta, S Marley, MS AF Sengupta, Sujan Marley, Mark S. TI Multiple scattering polarization - Application of Chandrasekhar's formalisms to the atmosphere of brown dwarfs and extrasolar planets SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT Chandrasekhar Centenary Conference CY DEC 07-11, 2010 CL Bangalore, INDIA DE Scattering; polarization; atmosphere; brown dwarfs; extrasolar planets ID GIANT PLANETS; LINEAR POLARIMETRY; DUST SCATTERING; T DWARFS; ROTATION; STARLIGHT; CHEMISTRY; CLOUDS; STARS; LIGHT AB Chandrasekhar's formalisms for the transfer of polarized radiation are used to explain the observed dust scattering polarization of brown dwarfs in the optical band. Model polarization profiles for hot and young directly imaged extrasolar planets are presented with specific prediction of the degree of polarization in the infrared. The model invokes Chandrasekhar's formalism for the rotation-induced oblateness of the objects that gives rise to the necessary asymmetry for yielding net non-zero disk integrated linear polarization. The observed optical polarization constrains the surface gravity and could be a tool to estimate the mass of extrasolar planets. C1 [Sengupta, Sujan] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Sengupta, S (reprint author), Indian Inst Astrophys, Koramangala 2nd Block, Bangalore 560034, Karnataka, India. EM sujan@iiap.res.in OI Marley, Mark/0000-0002-5251-2943 NR 30 TC 1 Z9 1 U1 0 U2 0 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD JUL PY 2011 VL 77 IS 1 SI SI BP 157 EP 168 PG 12 WC Physics, Multidisciplinary SC Physics GA 797RM UT WOS:000293145400014 ER PT J AU Nishimura, G Sturdevant, M AF Nishimura, Gary Sturdevant, Molly TI Portable Winch Technology For Use on Smaller Vessels Lightweight, Easy-to-Install 'Sidewinder' Block Winch Allows Small Watercraft to Perform Work of Much Larger Vessels SO SEA TECHNOLOGY LA English DT Article C1 [Nishimura, Gary] Markey Machinery, Seattle, WA USA. [Sturdevant, Molly] NOAA, Auke Bay Labs, Natl Marine Fisheries Serv, Juneau, AK USA. RP Nishimura, G (reprint author), Markey Machinery, Seattle, WA USA. NR 0 TC 1 Z9 1 U1 0 U2 1 PU COMPASS PUBLICATIONS, INC PI ARLINGTON PA 1501 WILSON BLVD., STE 1001, ARLINGTON, VA 22209-2403 USA SN 0093-3651 J9 SEA TECHNOL JI Sea Technol. PD JUL PY 2011 VL 52 IS 7 BP 21 EP 24 PG 4 WC Engineering, Ocean SC Engineering GA 796NA UT WOS:000293056800005 ER PT J AU Fleck, B Couvidat, S Straus, T AF Fleck, B. Couvidat, S. Straus, T. TI On the Formation Height of the SDO/HMI Fe 6173 Doppler Signal SO SOLAR PHYSICS LA English DT Article DE Line formation; Oscillations; Photosphere; Sun ID MODEL ATMOSPHERES; SOLAR; STARS; FLUX AB The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) is designed to study oscillations and the magnetic field in the solar photosphere. It observes the full solar disk in the Fe i absorption line at 6173 . We use the output of a high-resolution, 3D, time-dependent, radiation-hydrodynamic simulation based on the CO (5) BOLD code to calculate profiles F(lambda,x,y,t) for the Fe i 6173 line. The emerging profiles F(lambda,x,y,t) are multiplied by a representative set of HMI filter-transmission profiles R (i) (lambda, 1a parts per thousand currency signia parts per thousand currency sign6) and filtergrams I (i) (x,y,t; 1a parts per thousand currency signia parts per thousand currency sign6) are constructed for six wavelengths. Doppler velocities V (HMI)(x,y,t) are determined from these filtergrams using a simplified version of the HMI pipeline. The Doppler velocities are correlated with the original velocities in the simulated atmosphere. The cross-correlation peaks near 100 km, suggesting that the HMI Doppler velocity signal is formed rather low in the solar atmosphere. The same analysis is performed for the SOHO/MDI Ni i line at 6768 . The MDI Doppler signal is formed slightly higher at around 125 km. Taking into account the limited spatial resolution of the instruments, the apparent formation height of both the HMI and MDI Doppler signal increases by 40 to 50 km. We also study how uncertainties in the HMI filter-transmission profiles affect the calculated velocities. C1 [Fleck, B.] NASA GSFC, ESA Sci Operat Dept, Greenbelt, MD USA. [Couvidat, S.] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Straus, T.] INAF Osservatorio Astron Capodimonte, I-80131 Naples, Italy. RP Fleck, B (reprint author), NASA GSFC, ESA Sci Operat Dept, Greenbelt, MD USA. EM bfleck@esa.nascom.nasa.gov; couvidat@stanford.edu; straus@oacn.inaf.it RI Fleck, Bernhard/C-9520-2012 FU NASA [NAS5-02139]; ASI FX The simulations were carried out at CINECA (Bologna, Italy) with CPU time assigned under INAF/CINECA agreement 2008/2010. SDO is part of NASA's Living With a Star (LWS) program. HMI was designed and assembled at Stanford University and Lockheed Martin Solar and Astrophysics Laboratory. We are grateful to the SDO/HMI team for making this instrument a reality. S. C. was supported by NASA Grant NAS5-02139 (HMI). Th.S. acknowledges financial support by ASI. SOHO is a mission of international cooperation between ESA and NASA. We thank G. Severino for helpful discussions and an anonymous referee for constructive comments, which helped to improve the paper. NR 26 TC 40 Z9 40 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD JUL PY 2011 VL 271 IS 1-2 BP 27 EP 40 DI 10.1007/s11207-011-9783-9 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797QT UT WOS:000293143100002 ER PT J AU Halain, JP Eyles, CJ Mazzoli, A Bewsher, D Davies, JA Mazy, E Rochus, P Defise, JM Davis, CJ Harrison, RA Crothers, SR Brown, DS Korendyke, C Moses, JD Socker, DG Howard, RA Newmark, JS AF Halain, J. -P. Eyles, C. J. Mazzoli, A. Bewsher, D. Davies, J. A. Mazy, E. Rochus, P. Defise, J. M. Davis, C. J. Harrison, R. A. Crothers, S. R. Brown, D. S. Korendyke, C. Moses, J. D. Socker, D. G. Howard, R. A. Newmark, J. S. TI Straylight-Rejection Performance of the STEREO HI Instruments SO SOLAR PHYSICS LA English DT Article DE Straylight; Lens barrel rejection; Mean solar brightness; Off-pointing ID HELIOSPHERIC IMAGER; MISSION AB The SECCHI Heliospheric Imager (HI) instruments on-board the STEREO spacecraft have been collecting images of solar wind transients, including coronal mass ejections, as they propagate through the inner heliosphere since the beginning of 2007. The scientific use of the images depends critically on the performance of the instruments and its evolution over time. One of the most important factors affecting the performance of the instrument is the rejection of straylight from the Sun and from other bright objects located both within and outside the HI fields of view. This paper presents an analysis of the evolution of the straylight-rejection performance of the HI instrument on each of the two STEREO spacecraft over the three first years of the mission. The straylight level has been evaluated and expressed in mean solar brightness units, in which such scientific observations are usually quoted, using photometric conversion factors. C1 [Halain, J. -P.; Mazzoli, A.; Mazy, E.; Rochus, P.] Univ Liege, Ctr Spatial Liege, B-4031 Angleur, Belgium. [Eyles, C. J.] Univ Valencia, Lab Proc Imagenes, Valencia 46071, Spain. [Bewsher, D.; Brown, D. S.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Defise, J. M.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Eyles, C. J.; Davies, J. A.; Davis, C. J.; Harrison, R. A.; Crothers, S. R.] STFC Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Korendyke, C.; Moses, J. D.; Socker, D. G.; Howard, R. A.; Newmark, J. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Newmark, J. S.] NASA Headquarters, Washington, DC 20546 USA. RP Halain, JP (reprint author), Univ Liege, Ctr Spatial Liege, Ave Pre Aily, B-4031 Angleur, Belgium. EM jphalain@ulg.ac.be RI Scott, Christopher/H-8664-2012; OI Scott, Christopher/0000-0001-6411-5649; Brown, Daniel/0000-0002-1618-8816; Bewsher, Danielle/0000-0002-6351-5170 FU NASA; PPARC; BELSPO FX The Heliospheric Imager (HI) instrument was developed by a collaboration which included the University of Birmingham (UB) and the Rutherford Appleton Laboratory (RAL), both in the UK, the Center Spatial de Liege (CSL), in Belgium, and the Naval Research Laboratory (NRL), in the US. We thank the US institutions, funded by NASA; the UK institutions, funded by PPARC; and the Belgian institutions, funded by BELSPO. We also thank the referees and the editor for their constructive comments. NR 12 TC 3 Z9 3 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD JUL PY 2011 VL 271 IS 1-2 BP 197 EP 218 DI 10.1007/s11207-011-9800-z PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797QT UT WOS:000293143100012 ER PT J AU Hannah, RW Jones, SA Lomeli, MJM Wakefield, WW AF Hannah, Robert W. Jones, Stephen A. Lomeli, Mark J. M. Wakefield, W. Waldo TI Trawl net modifications to reduce the bycatch of eulachon (Thaleichthys pacificus) in the ocean shrimp (Pandalus jordani) fishery SO FISHERIES RESEARCH LA English DT Article DE Bycatch reduction devices; Nordmore grate; Ocean shrimp; Shrimp trawl; Eulachon; Fish behavior; Trawl footrope ID CATCH AB Two trawl gear modifications for reducing fish bycatch (weight) in ocean shrimp (Pandalus jordani) trawls were tested in June and August September 2010. The primary focus of the study was evaluating trawl system modifications for reducing bycatch of eulachon (Thaleichthys pacificus) below levels already achieved via mandatory use of bycatch reduction devices (BRDs). An experimental footrope, modified by removing the central one third of the trawl groundline, reduced eulachon bycatch by 33.9%. It also reduced bycatch of slender sole (Lyopsetta exilis), other small flatfishes and juvenile darkblotched rockfish (Sebastes crameri) by 80% or more, but had no effect on bycatch of whitebait smelt (Allosmerus elongatus) or Pacific herring (Clupea pallasii). The experimental groundline also reduced the catch of ocean shrimp (weight) by 22.2% in hauls yielding commercial quantities of shrimp (>194 kg/haul) and by 23.2% in all hauls. Reducing bar spacing in a rigid-grate BRD from 25.4 mm to 19.1 mm reduced eulachon bycatch by 16.6%, with no reduction in ocean shrimp catch. It also reduced bycatch of slender sole, other small flatfish and juvenile darkblotched rockfish by 36.8%, 71.8% and 76.3%, respectively with no effect on bycatch of whitebait smelt or young-of-the-year (YOY) Pacific hake (Merluccius productus). Although both trawl modifications reduced eulachon bycatch, the footrope modification tested, if developed further, has the potential to also avoid trawl entrainment for some demersal fishes, as well as reduce bottom impacts from trawling. (C) 2011 Elsevier B.V. All rights reserved. C1 [Hannah, Robert W.; Jones, Stephen A.] Marine Resources Program, Oregon Dept Fish & Wildlife, Newport, OR 97365 USA. [Lomeli, Mark J. M.] Pacific States Marine Fisheries Commiss, Newport, OR 97365 USA. [Wakefield, W. Waldo] Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, Fishery Resource Anal & Monitoring Div, NW Fisheries Sci Ctr, Newport, OR 97365 USA. RP Hannah, RW (reprint author), Marine Resources Program, Oregon Dept Fish & Wildlife, 2040 SE Marine Sci Dr, Newport, OR 97365 USA. EM bob.w.hannah@state.or.us FU NOAA FX The owners and operators of the fishing vessels Miss Yvonne and Kylie Lynn provided technical expertise and served as sampling platforms for bycatch reduction studies. The Oregon shrimp fleet provided data on BRD use via fishery logbooks. Funding for these studies was provided, in part, by NOAA Fisheries Bycatch Reduction Engineering Program (BREP). NR 20 TC 6 Z9 6 U1 1 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 J9 FISH RES JI Fish Res. PD JUL PY 2011 VL 110 IS 2 BP 277 EP 282 DI 10.1016/j.fishres.2011.04.016 PG 6 WC Fisheries SC Fisheries GA 795AI UT WOS:000292943500007 ER PT J AU Hong, PK Sugita, S Okamura, N Sekine, Y Terada, H Takatoh, N Hayano, Y Fuse, T Pyo, TS Kawakita, H Wooden, DH Young, EF Lucey, PG Kurosawa, K Genda, H Haruyama, J Furusho, R Kadono, T Nakamura, R Kamata, S Hamura, T Sekiguchi, T Soma, M Noda, H Watanabe, J AF Hong, Peng K. Sugita, Seiji Okamura, Natsuko Sekine, Yasuhito Terada, Hiroshi Takatoh, Naruhisa Hayano, Yutaka Fuse, Tetsuharu Pyo, Tae-Soo Kawakita, Hideyo Wooden, Diane H. Young, Eliot F. Lucey, Paul G. Kurosawa, Kosuke Genda, Hidenori Haruyama, Junichi Furusho, Reiko Kadono, Toshihiko Nakamura, Ryosuke Kamata, Shunichi Hamura, Taiga Sekiguchi, Tomohiko Soma, Mitsuru Noda, Hirotomo Watanabe, Jun-ichi TI A ground-based observation of the LCROSS impact events using the Subaru Telescope SO ICARUS LA English DT Article DE Moon, Surface; Ices; Infrared observations; Impact processes ID LUNAR SOUTH-POLE; ICE DEPOSITS; DEEP IMPACT; WATER ICE; SURFACE; MOON; TEMPERATURES; VOLATILES; REGION; CRATER AB The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was an impact exploration searching for a volatile deposit in a permanently shadowed region (PSR) by excavating near-surface material. We conducted infrared spectral and imaging observations of the LCROSS impacts from 15 min before the first collision through 2 min after the second collision using the Subaru Telescope in order to measure ejecta dust and water. Such a ground-based observation is important because the viewing geometry and wavelength coverage are very different from the LCROSS spacecraft. We used the Echelle spectrograph with spectral resolution lambda/Delta lambda similar to 10,000 to observe the non-resonant H(2)O rotational emission lines near 2.9 mu m and the slit viewer with a K' filter for imaging observation of ejecta plumes. Pre-impact calculations using a homogeneous projectile predicted that 2000 kg of ejecta and 10 kg of H(2)O were excavated and thrown into the analyzed area immediately above the slit within the field of view (FOV) of the K' imager and the FOV of spectrometer slit, respectively. However, no unambiguous emission line of H(2)O or dust was detected. The estimated upper limits of the amount of dust and H(2)O from the main Centaur impact were 800 kg and 40 kg for the 3 sigma of noise in the analyzed area within the imager FOV and in the slit FOV, respectively. If we take 1 sigma as detection limit, the upper limits are 300 kg and 14 kg, respectively. Although the upper limit for water mass is comparable to a prediction by a standard theoretical prediction, that for dust mass is significantly smaller than that predicted by a standard impact theory. This discrepancy in ejecta dust mass between a theoretical prediction and our observation result suggests that the cratering process induced by the LCROSS impacts may have been substantially different from the standard cratering theory, possibly because of its hollow projectile structure. (C) 2011 Elsevier Inc. All rights reserved. C1 [Hong, Peng K.; Sugita, Seiji; Okamura, Natsuko; Sekine, Yasuhito; Hamura, Taiga] Univ Tokyo, Dept Complex Sci & Engn, Chiba 2778561, Japan. [Terada, Hiroshi; Takatoh, Naruhisa; Hayano, Yutaka; Pyo, Tae-Soo] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Fuse, Tetsuharu] Natl Inst Informat & Commun Technol, Kashima Space Res Ctr, Kashima, Ibaraki 3148501, Japan. [Kawakita, Hideyo] Kyoto Sangyo Univ, Dept Phys, Kita Ku, Kyoto 6038555, Japan. [Wooden, Diane H.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Young, Eliot F.] SW Res Inst, San Antonio, TX 78238 USA. [Lucey, Paul G.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Genda, Hidenori; Kamata, Shunichi] Univ Tokyo, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Kurosawa, Kosuke; Haruyama, Junichi] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Kanagawa 2525210, Japan. [Furusho, Reiko; Soma, Mitsuru; Watanabe, Jun-ichi] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Kadono, Toshihiko] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. [Nakamura, Ryosuke] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. [Sekiguchi, Tomohiko] Hokkaido Univ, Kita Ku, Sapporo, Hokkaido 0028501, Japan. [Noda, Hirotomo] Natl Inst Nat Sci, Natl Astron Observ Japan, Oshu, Iwate 0230861, Japan. RP Hong, PK (reprint author), Univ Tokyo, Dept Complex Sci & Engn, Chiba 2778561, Japan. EM hong@astrobio.k.u-tokyo.ac.jp RI Genda, Hidenori/A-7858-2014; Kurosawa, Kosuke/N-2291-2015 OI Kurosawa, Kosuke/0000-0003-4965-4585 FU Japan Society for the Promotion of Science FX The authors would thank David A. Paige for letting us use his lunar topography projection software and Mike Kelly from University of Maryland for providing a script for telescope pointing of the impact site at the Moon. This observation was conducted under Subaru Open Use Program (S09A-154) and supported partially by Grant in Aid from Japan Society for the Promotion of Science. NR 47 TC 2 Z9 2 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUL PY 2011 VL 214 IS 1 BP 21 EP 29 DI 10.1016/j.icarus.2011.05.008 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 793WC UT WOS:000292853600002 ER PT J AU Immer, C Lane, J Metzger, P Clements, S AF Immer, Christopher Lane, John Metzger, Philip Clements, Sandra TI Apollo video photogrammetry estimation of plume impingement effects SO ICARUS LA English DT Article DE Moon, Surface; Cratering; Experimental techniques; Image processing AB Future missions to the Moon may require numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the Lander ejects the granular material at high velocities. Much work is needed to understand the physics of plume impingement during landing to protect hardware surrounding the landing sites. While mostly qualitative in nature, the Apollo Lunar Module landing videos can provide a wealth of quantitative information using modern photogrammetry techniques. The authors have used the digitized videos to quantify plume impingement effects of the landing exhaust on the lunar surface. The dust ejection angle from the plume is estimated at 1 degrees-3 degrees. The lofted particle density is estimated at 10(8)-10(13) particles/m(3). Additionally, evidence for ejection of large 10-15 cm sized objects and a dependence of ejection angle on thrust are presented. Further work is ongoing to continue quantitative analysis of the landing videos. (C) 2011 Elsevier Inc. All rights reserved. C1 [Immer, Christopher; Lane, John; Clements, Sandra] ASRC Aerosp, Appl Phys Lab, Kennedy Space Ctr, FL 32899 USA. [Metzger, Philip] NASA Kennedy Space Ctr, Granular Mech & Regolith Operat Lab, Kennedy Space Ctr, FL 32899 USA. RP Lane, J (reprint author), ASRC Aerosp, Appl Phys Lab, ASRC 24, Kennedy Space Ctr, FL 32899 USA. EM christopher.d.immer@nasa.gov; john.e.lane@nasa.-gov; philip.t.metzger@nasa.gov; sandra.d.clements@nasa.gov RI Metzger, Philip/R-3136-2016 OI Metzger, Philip/0000-0002-6871-5358 NR 16 TC 7 Z9 7 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUL PY 2011 VL 214 IS 1 BP 46 EP 52 DI 10.1016/j.icarus.2011.04.018 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 793WC UT WOS:000292853600004 ER PT J AU Magri, C Howell, ES Nolan, MC Taylor, PA Fernandez, YR Mueller, M Vervack, RJ Benner, LAM Giorgini, JD Ostro, SJ Scheeres, DJ Hicks, MD Rhoades, H Somers, JM Gaftonyuk, NM Kouprianov, VV Krugly, YN Molotov, IE Busch, MW Margot, JL Benishek, V Protitch-Benishek, V Galad, A Higgins, D Kusnirak, P Pray, DP AF Magri, Christopher Howell, Ellen S. Nolan, Michael C. Taylor, Patrick A. Fernandez, Yanga R. Mueller, Michael Vervack, Ronald J., Jr. Benner, Lance A. M. Giorgini, Jon D. Ostro, Steven J. Scheeres, Daniel J. Hicks, Michael D. Rhoades, Heath Somers, James M. Gaftonyuk, Ninel M. Kouprianov, Vladimir V. Krugly, Yurij N. Molotov, Igor E. Busch, Michael W. Margot, Jean-Luc Benishek, Vladimir Protitch-Benishek, Vojislava Galad, Adrian Higgins, David Kusnirak, Peter Pray, Donald P. TI Radar and photometric observations and shape modeling of contact binary near-Earth Asteroid (8567) 1996 HW1 SO ICARUS LA English DT Article DE Asteroids; Photometry; Radar observations ID 4769 CASTALIA; LIGHTCURVE INVERSION; OPTIMIZATION METHODS; PHYSICAL MODEL; YORP; POPULATION; EVOLUTION; ITOKAWA; IMAGES; KW4 AB We observed near-Earth Asteroid (8567) 1996 HW1 at the Arecibo Observatory on six dates in September 2008, obtaining radar images and spectra. By combining these data with an extensive set of new lightcurves taken during 2008-2009 and with previously published lightcurves from 2005, we were able to reconstruct the object's shape and spin state. 1996 HW1 is an elongated, bifurcated object with maximum diameters of 3.8 x 1.6 x 1.5 km and a contact-binary shape. It is the most bifurcated near-Earth asteroid yet studied and one of the most elongated as well. The sidereal rotation period is 8.76243 +/- 0.00004 h and the pole direction is within 50 of ecliptic longitude and latitude (281 degrees, -31 degrees). Radar astrometry has reduced the orbital element uncertainties by 27% relative to the a priori orbit solution that was based on a half-century of optical data. Simple dynamical arguments are used to demonstrate that this asteroid could have originated as a binary system that tidally decayed and merged. (C) 2011 Elsevier Inc. All rights reserved. C1 [Magri, Christopher] Univ Maine, Farmington, ME 04938 USA. [Howell, Ellen S.; Nolan, Michael C.; Taylor, Patrick A.] Arecibo Observ, Arecibo, PR 00612 USA. [Fernandez, Yanga R.] Univ Cent Florida, Dept Phys, Orlando, FL 32828 USA. [Mueller, Michael] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice 4, France. [Vervack, Ronald J., Jr.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Benner, Lance A. M.; Giorgini, Jon D.; Ostro, Steven J.; Hicks, Michael D.; Rhoades, Heath] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Scheeres, Daniel J.] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. [Somers, James M.] Moorpark Coll, Moorpark, CA 93021 USA. [Gaftonyuk, Ninel M.] Crimean Astrophys Observ, Simeiz Dept, UA-98680 Crimea, Ukraine. [Kouprianov, Vladimir V.] Russian Acad Sci, Pulkovo Observ, St Petersburg 196140, Russia. [Krugly, Yurij N.] Kharkov Natl Univ, Inst Astron, UA-61022 Kharkov, Ukraine. [Molotov, Igor E.] RAS, MV Keldysh Appl Math Inst, Moscow 125047, Russia. [Busch, Michael W.; Margot, Jean-Luc] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Benishek, Vladimir; Protitch-Benishek, Vojislava] Belgrade Astron Observ, Belgrade 11060 38, Serbia. [Galad, Adrian] FMFI UK, Dept Astron Phys Earth & Meteorol, Modra Observ, SK-84248 Bratislava, Slovakia. [Galad, Adrian; Kusnirak, Peter] Acad Sci Czech Republic, Astron Inst, CZ-25165 Ondrejov, Czech Republic. [Higgins, David] Hunters Hill Observ, Canberra, ACT, Australia. [Pray, Donald P.] Carbuncle Hill Observ, Coventry, RI 02816 USA. RP Magri, C (reprint author), Univ Maine, 173 High St,Preble Hall, Farmington, ME 04938 USA. EM magri@maine.edu RI Margot, Jean-Luc/A-6154-2012; Nolan, Michael/H-4980-2012; Galad, Adrian/G-9011-2014; Vervack, Ronald/C-2702-2016; OI Mueller, Michael/0000-0003-3217-5385; Margot, Jean-Luc/0000-0001-9798-1797; Nolan, Michael/0000-0001-8316-0680; Vervack, Ronald/0000-0002-8227-9564; Fernandez, Yanga/0000-0003-1156-9721 FU NSF [AST-0808064]; National Aeronautics and Space Administration [NNX10AP87G, NNX10AP64G]; Slovak Grant Agency for Science VEGA [2/0016/09]; Grant Agency of the Czech Republic [205/09/1107] FX We thank the two anonymous reviewers for useful reviews, and the Arecibo technical staff for its help with the radar observations. C. Magri, Y.R. Fernandez, and R.J. Vervack Jr. were partially supported by NSF Grant AST-0808064. This material is based upon work supported by the National Aeronautics and Space Administration under Grants NNX10AP87G and NNX10AP64G issued through the Near-Earth Object Observation Program. A. Galad was supported by the Slovak Grant Agency for Science VEGA, Grant 2/0016/09, and the Grant Agency of the Czech Republic, Grant 205/09/1107. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation. Part of this research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). This material is based in part upon work supported by NASA under the Science Mission Directorate Research and Analysis Programs. NR 46 TC 17 Z9 18 U1 0 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUL PY 2011 VL 214 IS 1 BP 210 EP 227 DI 10.1016/j.icarus.2011.02.019 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 793WC UT WOS:000292853600015 ER PT J AU Roush, TL Marzo, GA Fonti, S Orofino, V Blanco, A Gross, C Wendt, L AF Roush, Ted L. Marzo, Giuseppe A. Fonti, Sergio Orofino, Vincenzo Blanco, Armando Gross, Christoph Wendt, Lorenz TI Assessing spectral evidence of aqueous activity in two putative martian paleolakes SO ICARUS LA English DT Article DE Mars, Surface; Infrared observations; Spectroscopy; Mineralogy; Astrobiology ID PLAYA EVAPORITE MINERALS; CARBONATE MINERALS; IMPACT CRATER; DEATH-VALLEY; MARS; REFLECTANCE; CALIFORNIA; HIGHLANDS; BASINS; CRISM AB We evaluate the evidence for the presence of mineral spectral signatures indicative of the past presence of water at two putative paleolakes on Mars using observations by the Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Image Spectrometer for Mars (CRISM). CRISM spectra of both sites are consistent with laboratory spectra of Mg-rich phyllosilicates. Our analysis represents the first detailed evaluation of these locations. The spatial occurrence and association with topographic features within the craters is distinctly different for the two sites. The occurrence of these minerals supports the conclusion that water was once active in the areas sampled by these craters. The distribution of the phyllosilicates in Luqa does not provide distinctive evidence for the presence of a previous standing body of water and is consistent with either impact emplacement or post-impact alteration. For Cankuzo, the phyllosilicate distribution provides evidence of a layer in the crater wall indicative of aqueous activity, but does not require a paleolake. Published by Elsevier Inc. C1 [Roush, Ted L.; Marzo, Giuseppe A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Marzo, Giuseppe A.] Bay Area Environm Res Inst, Sonoma, CA 95476 USA. [Fonti, Sergio; Orofino, Vincenzo; Blanco, Armando] Univ Salento, Dipartimento Fis, I-73100 Lecce, Italy. [Gross, Christoph; Wendt, Lorenz] Free Univ Berlin, Inst Geol Sci Planetary Sci & Remote Sensing, D-12449 Berlin, Germany. RP Roush, TL (reprint author), NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 94035 USA. EM ted.l.roush@nasa.gov RI Marzo, Giuseppe/A-9765-2015 FU NASA; German Science Foundation (DFG) [NE 212/11-1]; Helmholtz Association through the research alliance Planetary Evolution and Life FX This research was supported by NASA's Mars Data Analysis Program. CG and LW were supported by the German Science Foundation (DFG) through research grant NE 212/11-1 and the Helmholtz Association through the research alliance Planetary Evolution and Life. Initial reviews by Jeffrey Moore and Nathalie Cabrol helped improve the original manuscript. We also thank two anonymous reviewers for their comments. NR 46 TC 1 Z9 1 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL PY 2011 VL 214 IS 1 BP 240 EP 245 DI 10.1016/j.icarus.2011.04.017 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 793WC UT WOS:000292853600018 ER PT J AU Bills, BG Nimmo, F AF Bills, Bruce G. Nimmo, Francis TI Rotational dynamics and internal structure of Titan SO ICARUS LA English DT Article DE Rotational dynamics ID INTERIOR STRUCTURE; TIDAL DISSIPATION; SPHEROIDAL CAVITY; PRECESSION; SATELLITES; LIBRATION; NUTATION; CORE; OBLIQUITY; MERCURY AB Estimates of the moments of inertia of Titan, as separately deduced from its gravitational field and spin pole orientation, are quite different. This discrepancy can be resolved if Titan is either not precessing as a rigid body (e.g. if the shell is decoupled from the interior by an ocean), or if the spin pole is not fully damped (e.g. due to atmospheric excitation). By the end of the Cassini mission, continued monitoring of the changing spin pole orientation, by Cassini radar observations, will determine which effect dominates. (C) 2011 Elsevier Inc. All rights reserved. C1 [Bills, Bruce G.] CALTECH, Jet Prop Lab, Pasadena, CA 91009 USA. [Nimmo, Francis] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. RP Bills, BG (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91009 USA. EM bills@jpl.nasa.gov; fnimmo@es.uscs.edu FU Outer Planets Research Program FX Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Supported by the Outer Planets Research Program. NR 46 TC 16 Z9 16 U1 0 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUL PY 2011 VL 214 IS 1 BP 351 EP 355 DI 10.1016/j.icarus.2011.04.028 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 793WC UT WOS:000292853600030 ER PT J AU Sultana, J Kazanas, D AF Sultana, Joseph Kazanas, Demosthenes TI THE PROBLEM OF INERTIA IN FRIEDMANN UNIVERSES SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D LA English DT Article DE Inertia; Friedmann universes; Mach's principle ID FIELD; FLAT AB In this paper we study the origin of inertia in a curved spacetime, particularly the spatially flat, open and closed Friedmann universes. This is done using Sciama's law of inertial induction, which is based on Mach's principle, and expresses the analogy between the retarded far fields of electrodynamics and those of gravitation. After obtaining covariant expressions for electromagnetic fields due to an accelerating point charge in Friedmann models, we adopt Sciama's law to obtain the inertial force on an accelerating mass m by integrating over the contributions from all the matter in the universe. The resulting inertial force has the form F = -kma, where k < 1 depends on the choice of the cosmological parameters such as Omega(M), Omega(Lambda) and Omega(R) and is also redshift-dependent. C1 [Sultana, Joseph] Univ Malta, Fac Sci, Dept Math, Msida 2080, Malta. [Kazanas, Demosthenes] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Sultana, J (reprint author), Univ Malta, Fac Sci, Dept Math, Msida 2080, Malta. EM joseph.sultana@um.edu.mt; demos.kazanas@nasa.gov FU USRA-CRESST; University of Malta FX J. S. gratefully acknowledges financial support from USRA-CRESST and the University of Malta during his research visit at NASA-GSFC. NR 15 TC 2 Z9 2 U1 0 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-2718 J9 INT J MOD PHYS D JI Int. J. Mod. Phys. D PD JUL PY 2011 VL 20 IS 7 BP 1205 EP 1214 DI 10.1142/S0218271811019384 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 794VP UT WOS:000292929700004 ER PT J AU Christoffersen, R Keller, LP AF Christoffersen, Roy Keller, Lindsay P. TI Space radiation processing of sulfides and silicates in primitive solar systems materials: Comparative insights from in situ TEM ion irradiation experiments SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID BEAM-INDUCED AMORPHIZATION; INTERPLANETARY DUST PARTICLES; IRON-NICKEL SULFIDES; INTERSTELLAR-MEDIUM; GRAINS; DAMAGE; PYRRHOTITE; CRYSTALLINE; BOMBARDMENT; MGO-AL2O3-SIO2 AB Mineral grains that comprise dust particles in circumstellar, interstellar, and protostellar environments can potentially undergo amorphization and other solid-state transformations from exposure to energetic ions from space plasmas. The Fe-sulfide minerals troilite (FeS) and pyrrhotite (Fe(1-x)S) are important known dust components, but their potential to undergo structural changes, including amorphization, from space radiation processing in dusty space environments has not been experimentally evaluated relative to silicates. We used a transmission electron microscope (TEM) with capabilities for in situ ion irradiation to precisely follow structural changes in troilite and pyrrhotite exposed to 1.0 MeV Kr(++) ions selected to optimize the probability of inducing amorphization from nuclear elastic collisional processes. No indication of amorphization was found in either mineral up to an experimentally practical ion dose of 1 x 10(16) Kr(++) ions cm(-2), indicating that both structures can remain crystalline up to a modeled collisional damage level of at least 26 displacements-per-atom. This behavior matches that of some of the most radiation-resistant nonmetallic phases known, and is two orders of magnitude higher than the levels at which Mg-rich olivine and enstatite become amorphous under the same irradiation conditions. Although pyrrhotite retained short-range crystalline order during irradiation, its longer range vacancy-ordered superstructure is removed at modeled damage levels equivalent to those at which olivine and enstatite become amorphous. This suggests that space radiation conditions sufficient to amorphize olivine and enstatite in circumstellar and interstellar environments would convert coexisting pyrrhotite to its disordered structural form, thereby changing magnetic and possibly other properties that determine how pyrrhotite will behave in these environments. C1 [Christoffersen, Roy] Jacobs Technol ESCG, Houston, TX 77258 USA. [Keller, Lindsay P.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Christoffersen, R (reprint author), Jacobs Technol ESCG, 2224 Bay Area Blvd,Mail Stop JE23, Houston, TX 77258 USA. EM roy.christoffersen-1@nasa.gov FU Argonne National Laboratory through the U.S. Department of Energy; NASA [07-COS07-0055] FX We gratefully acknowledge the staff at the IVEM-Tandem Facility at Argonne National Laboratory for their assistance with the ion irradiation experiments. The IVEM-Tandem Facility is a national user facility supported by Argonne National Laboratory through the U.S. Department of Energy. This work was supported by NASA Cosmochemistry Grant 07-COS07-0055 to L. P. K. NR 63 TC 4 Z9 4 U1 3 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 IS 7 BP 950 EP 969 DI 10.1111/j.1945-5100.2011.01203.x PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 794OA UT WOS:000292908500007 ER PT J AU Nakamura-Messenger, K Keller, LP Clemett, SJ Messenger, S Ito, M AF Nakamura-Messenger, Keiko Keller, Lindsay P. Clemett, Simon J. Messenger, Scott Ito, Motoo TI Nanometer-scale anatomy of entire Stardust tracks SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID INTERPLANETARY DUST PARTICLES; COMET 81P/WILD-2 DUST; SOLAR-SYSTEM; KUIPER-BELT; SAMPLES; AEROGEL; CHONDRITES; METEORITES; OBJECTS; GRAINS AB We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on "carrot'' and "bulbous'' tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg-rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a (16)O-rich forsteritic grain that may have formed in a similar environment as Ca-, Al-rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron-sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating. C1 [Nakamura-Messenger, Keiko; Keller, Lindsay P.; Clemett, Simon J.; Messenger, Scott; Ito, Motoo] NASA, Robert M Walker Lab Space Sci, Astromat Res & Explorat Sci Directorate, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Nakamura-Messenger, Keiko] ESCG Jacobs Technol, Houston, TX 77058 USA. [Clemett, Simon J.] ESCG ERC Inc, Houston, TX 77058 USA. [Ito, Motoo] Lunar & Planetary Inst, Houston, TX 77058 USA. RP Nakamura-Messenger, K (reprint author), NASA, Robert M Walker Lab Space Sci, Astromat Res & Explorat Sci Directorate, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM keiko.nakamura-1@nasa.gov FU NASA FX The authors thank two anonymous referees whose suggestions helped improve the manuscript. We also thank Dr. Don Brownlee from University of Washington, Allan Cheuvront and Joseph Vellinga from Lockeed Martin, and Dr. Steven Jones from NASA/JPL for detailed discussion on the Stardust aerogel sample collector fabrication and installation. The Wild 2 samples were provided by the cosmic dust curation facility at NASA Johnson Space Center. The work was supported by a grant from the NASA LARS program to S. M. NR 49 TC 24 Z9 24 U1 1 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 IS 7 BP 1033 EP 1051 DI 10.1111/j.1945-5100.2011.01211.x PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 794OA UT WOS:000292908500012 ER PT J AU White, JW Hoogenboom, G Wilkens, PW Stackhouse, PW Hoel, JM AF White, Jeffrey W. Hoogenboom, Gerrit Wilkens, Paul W. Stackhouse, Paul W., Jr. Hoel, James M. TI Evaluation of Satellite-Based, Modeled-Derived Daily Solar Radiation Data for the Continental United States SO AGRONOMY JOURNAL LA English DT Article ID TEMPERATURE; YIELD; PRECIPITATION; ASSIMILATION; IRRADIANCE; SIMULATION; CLIMATE; IMPACT AB Decision support tools for agriculture oft en require meteorological data as inputs, but data availability and quality are oft en problematic. Difficulties arise with daily solar radiation (SRAD) because the instruments require electronic integrators, accurate sensors are expensive, and calibration standards are seldom available. NASA's Prediction of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project estimates SRAD based on satellite observations and atmospheric parameters obtained from satellite observations and assimilation models. These data are available for a global 1 degrees x 1 degrees coordinate grid. The SRAD can also be generated from atmospheric attenuation of extraterrestrial radiation (Q(0)). We compared daily solar radiation data from NASA/POWER (SRAD(NP)) with instrument readings from 295 stations (observed values of daily solar radiation, SRAD(OB)) and values estimated by Weather Generator for Solar Radiation (WGENR) generator. Two sources of air temperature and precipitation records provided inputs to WGENR: the stations reporting solar data and the NOAA Cooperative Observer Program (COOP) stations. The resulting data were identified as solar radiation valaues obtained using the Weather Generator for Solar Radiation soft ware in conjunction with daily weather data from the stations providing values of observed values of daily solar radiation (SRAD(WG)) and solar radiation values obtained using the Weather Generator for Solar Radiation soft ware in conjunction with daily weather data from NOAA COOP stations (SRAD(CO)), respectively. Values of SRAD(NP) for individual grid cells consistently showed higher correlations (typically 0.85-0.95) with SRADOB than did SRAD(WG) or SRAD(CO). Mean values of SRAD(OB), SRAD(WG), and SRAD(NP) for a grid cell usually were within 1 MJ m(-2) d(-1) of each other, but NASA/POWER values averaged 1.1 MJ m(-2) d(-1) lower than SRAD(OB). This bias increased at lower latitudes and during summer months and is partially explained by assumptions about ambient aerosol properties. The NASA/POWER solar data are a promising resource for studies requiring realistic accounting of historic variation. C1 [White, Jeffrey W.] USDA ARS, US Arid Land Agr Res Ctr, Maricopa, AZ 85138 USA. [Hoogenboom, Gerrit] Univ Georgia, Dep Biol & Agr Eng, Griffin, GA 30223 USA. [Wilkens, Paul W.] Int Fertilizer Dev Ctr, Muscle Shoals, AL 35662 USA. [Stackhouse, Paul W., Jr.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Hoel, James M.] SSAI Langley Res Ctr, Hampton, VA 23666 USA. RP White, JW (reprint author), USDA ARS, US Arid Land Agr Res Ctr, 21881 N Cardon Ln, Maricopa, AZ 85138 USA. EM jeffrey.white@ars.usda.gov RI Hoogenboom, Gerrit/F-3946-2010 OI Hoogenboom, Gerrit/0000-0002-1555-0537 FU NASA Langley Research Center with Science Systems and Applications, Inc. [NN07AA00C]; U.S. Department of Agriculture-National Institute for Food and Agriculture (NIFA) FX We acknowledge the valuable assistance of Belinda Wernau and Samuel Wright in processing of the station data. Portions of this work were funded by a grant from the NASA Langley Research Center under Contract NN07AA00C with Science Systems and Applications, Inc. and a Special Research Grant from the U.S. Department of Agriculture-National Institute for Food and Agriculture (NIFA). NR 30 TC 21 Z9 21 U1 2 U2 19 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0002-1962 J9 AGRON J JI Agron. J. PD JUL-AUG PY 2011 VL 103 IS 4 BP 1242 EP 1251 DI 10.2134/agronj2011.0038 PG 10 WC Agronomy SC Agriculture GA 791CD UT WOS:000292637800034 ER PT J AU Culverhouse, T Ade, P Bock, J Bowden, M Brown, ML Cahill, G Castro, PG Church, S Friedman, R Ganga, K Gear, WK Gupta, S Hinderks, J Kovac, J Lange, AE Leitch, E Melhuish, SJ Memari, Y Murphy, JA Orlando, A Pryke, C Schwarz, R O'Sullivan, C Piccirillo, L Rajguru, N Rusholme, B Taylor, AN Thompson, KL Turner, AH Wu, EYS Zemcov, M AF Culverhouse, T. Ade, P. Bock, J. Bowden, M. Brown, M. L. Cahill, G. Castro, P. G. Church, S. Friedman, R. Ganga, K. Gear, W. K. Gupta, S. Hinderks, J. Kovac, J. Lange, A. E. Leitch, E. Melhuish, S. J. Memari, Y. Murphy, J. A. Orlando, A. Pryke, C. Schwarz, R. O'Sullivan, C. Piccirillo, L. Rajguru, N. Rusholme, B. Taylor, A. N. Thompson, K. L. Turner, A. H. Wu, E. Y. S. Zemcov, M. CA QUaD Collaboration TI THE QUaD GALACTIC PLANE SURVEY. II. A COMPACT SOURCE CATALOG SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE Galaxy: center; Galaxy: structure; H II regions; radio continuum: ISM; stars: formation; surveys ID SAGITTARIUS A-ASTERISK; SUNYAEV-ZELDOVICH ARRAY; DUST CONTINUUM EMISSION; C2D LEGACY CLOUDS; MOLECULAR CLOUD; PHYSICAL-PROPERTIES; PRESTELLAR CORES; ACCRETION RATE; BOLOCAM SURVEY; CENTER REGION AB We present a catalog of compact sources derived from the QUaD Galactic Plane Survey. The survey covers similar to 800 deg(2) of the inner galaxy (vertical bar b vertical bar < 4 degrees) in Stokes I, Q, and U parameters at 100 and 150 GHz, with angular resolutions of 5 and 3.5 arcmin, respectively. Five hundred and twenty-six unique sources are identified in I, of which 239 are spatially matched between frequency bands, with 53 (234) detected at 100 (150) GHz alone; 170 sources are identified as ultracompact H II regions. Approximating the distribution of total intensity source fluxes as a power law, we find a slope of gamma(S, 100) = -1.8 +/- 0.4 at 100 GHz and gamma(S, 150) = -2.2 +/- 0.4 at 150 GHz. Similarly, the power-law index of the source two-point angular correlation function is gamma(theta, 100) = -1.21 +/- 0.04 and gamma(theta, 150) = -1.25 +/- 0.04. The total intensity spectral index distribution peaks at alpha(I) similar to 0.25, indicating that dust emission is not the only source of radiation produced by these objects between 100 and 150 GHz; free-free radiation is likely significant in the 100 GHz band. Four sources are detected in polarized intensity P, of which three have matching counterparts in I. Three of the polarized sources lie close to the Galactic center, Sagittarius A*, Sagittarius B2, and the Galactic Radio Arc, while the fourth is RCW 49, a bright H II region. An extended polarized source, undetected by the source extraction algorithm on account of its similar to 0 degrees.5 size, is identified visually, and is an isolated example of large-scale polarized emission oriented distinctly from the bulk Galactic dust polarization. C1 [Culverhouse, T.; Friedman, R.; Pryke, C.; Schwarz, R.] Univ Chicago, Kavli Inst Cosmol Phys, Dept Astron & Astrophys, Enrico Fermi Inst, Chicago, IL 60637 USA. [Ade, P.; Bowden, M.; Gear, W. K.; Gupta, S.; Turner, A. H.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, J.; Leitch, E.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, J.; Lange, A. E.; Leitch, E.; Orlando, A.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bowden, M.; Church, S.; Thompson, K. L.; Wu, E. Y. S.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Bowden, M.; Church, S.; Thompson, K. L.; Wu, E. Y. S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Brown, M. L.] Univ Cambridge, Cavendish Lab, Kavli Inst Cosmol, Cambridge CB3 0HE, England. [Brown, M. L.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Cahill, G.; Murphy, J. A.; O'Sullivan, C.] Natl Univ Ireland Maynooth, Dept Expt Phys, Maynooth, Kildare, Ireland. [Castro, P. G.] Univ Tecn Lisboa, CENTRA, Dept Fis, IST, P-1049001 Lisbon, Portugal. [Ganga, K.] Lab APC CNRS, F-75205 Paris 13, France. [Hinderks, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kovac, J.] Harvard Univ, Harvard Dept Astron, Cambridge, MA 02138 USA. [Memari, Y.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Rajguru, N.] UCL, Dept Phys & Astron, London WC1E 6BT, England. RP Culverhouse, T (reprint author), Owens Valley Radio Observ, Big Pine, CA 93513 USA. RI Melhuish, Simon/B-1299-2016; OI Melhuish, Simon/0000-0001-8725-4991; Orlando, Angiola/0000-0001-8004-5054 FU National Science Foundation in the USA [ANT-0338138, ANT-0338335, ANT-0338238]; Science and Technology Facilities Council (STFC) in the UK; Science Foundation Ireland; PPARC; Stanford Terman Fellowship; NSF; Stanford Graduate Fellowship; NSF [PHY-0114422]; NDSEG fellowship; John B. and Nelly L. Kilroy Foundation FX This paper is dedicated to the memory of Andrew Lange, who gave wisdom and guidance to so many members of the astrophysics and cosmology community. His presence is sorely missed. We thank our colleagues on the BICEP experiment for useful discussions. QUaD is funded by the National Science Foundation in the USA, through grants ANT-0338138, ANT-0338335, and ANT-0338238, by the Science and Technology Facilities Council (STFC) in the UK, and by the Science Foundation Ireland. We thank the staff of the Amundsen-Scott South Pole Station and all involved in the United States Antarctic Program for the superb support operation which makes the science presented here possible. Special thanks go to our intrepid winter scientist Robert Schwarz who spent three consecutive winter seasons tending the QUaD experiment. The BOOMERanG collaboration kindly allowed the use of their CMB maps for our calibration purposes. M. L. B. acknowledges the award of a PPARC Fellowship. S. E. C. acknowledges support from a Stanford Terman Fellowship. J.R.H. acknowledges the support of an NSF Graduate Research Fellowship and a Stanford Graduate Fellowship. C. P. acknowledges partial support from the Kavli Institute for Cosmological Physics through the grant NSF PHY-0114422. E.Y.W. acknowledges receipt of an NDSEG fellowship. J.M.K. acknowledges support from a John B. and Nelly L. Kilroy Foundation Fellowship. NR 49 TC 6 Z9 6 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2011 VL 195 IS 1 AR 8 DI 10.1088/0067-0049/195/1/8 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 790LT UT WOS:000292590200008 ER PT J AU Furlan, E Luhman, KL Espaillat, C D'Alessio, P Adame, L Manoj, P Kim, KH Watson, DM Forrest, WJ McClure, MK Calvet, N Sargent, BA Green, JD Fischer, WJ AF Furlan, E. Luhman, K. L. Espaillat, C. D'Alessio, P. Adame, L. Manoj, P. Kim, K. H. Watson, Dan M. Forrest, W. J. McClure, M. K. Calvet, N. Sargent, B. A. Green, J. D. Fischer, W. J. TI THE SPITZER INFRARED SPECTROGRAPH SURVEY OF T TAURI STARS IN TAURUS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE circumstellar matter; protoplanetary disks; stars: formation; stars: low-mass; stars: pre-main sequence ID MAIN-SEQUENCE STARS; YOUNG STELLAR OBJECTS; LOW-MASS STARS; INTERSTELLAR SILICATE MINERALOGY; AURIGA MOLECULAR CLOUD; HUBBLE-SPACE-TELESCOPE; BROWN DWARF DISKS; PHOTOEVAPORATING PROTOPLANETARY DISCS; SPECTRAL ENERGY-DISTRIBUTIONS; HERBIG AE/BE STARS AB We present 161 Spitzer Infrared Spectrograph (IRS) spectra of T Tauri stars and young brown dwarfs in the Taurus star-forming region. All of the targets were selected based on their infrared excess and are therefore surrounded by protoplanetary disks; they form the complete sample of all available IRS spectra of T Tauri stars with infrared excesses in Taurus. We also present the IRS spectra of seven Class 0/I objects in Taurus to complete the sample of available IRS spectra of protostars in Taurus. We use spectral indices that are not significantly affected by extinction to distinguish between envelope-and disk-dominated objects. Together with data from the literature, we construct spectral energy distributions for all objects in our sample. With spectral indices derived from the IRS spectra we infer disk properties such as dust settling and the presence of inner disk holes and gaps. We find a transitional disk frequency, which is based on objects with unusually large 13-31 mu m spectral indices indicative of a wall surrounding an inner disk hole, of about 3%, and a frequency of about 20% for objects with unusually large 10 mu m features, which could indicate disk gaps. The shape and strength of the 10 mu m silicate emission feature suggests weaker 10 mu m emission and more processed dust for very low mass objects and brown dwarfs (spectral types M6-M9). These objects also display weaker infrared excess emission from their disks, but do not appear to have more settled disks than their higher-mass counterparts. We find no difference for the spectral indices and properties of the dust between single and multiple systems. C1 [Furlan, E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Luhman, K. L.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Luhman, K. L.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Espaillat, C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [D'Alessio, P.] Univ Nacl Autonoma Mexico, Ctr Radioastron & Astrofis, Morelia 58089, Michoacan, Mexico. [Adame, L.; McClure, M. K.; Calvet, N.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Manoj, P.; Kim, K. H.; Watson, Dan M.; Forrest, W. J.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Sargent, B. A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Green, J. D.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Fischer, W. J.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. RP Furlan, E (reprint author), CALTECH, Jet Prop Lab, Mail Stop 264-723,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Elise.Furlan@jpl.nasa.gov; kluhman@astro.psu.edu; cespaillat@cfa.harvard.edu; p.dalessio@crya.unam.mx; adamel@umich.edu; manoj@pas.rochester.edu; khkim@pas.rochester.edu; dmw@pas.rochester.edu; forrest@pas.rochester.edu; melisma@umich.edu; ncalvet@umich.edu; sargent@stsci.edu; joel@astro.as.utexas.edu; wfische@utnet.utoledo.edu OI Fischer, William J/0000-0002-3747-2496; McClure, Melissa/0000-0003-1878-327X; Adame, Lucia/0000-0002-6328-6099; Furlan, Elise/0000-0001-9800-6248 FU NASA; NASA through JPL/Caltech; NASA through the Spitzer Space Telescope; National Science Foundation [AST-0544588, 0901947]; Pennsylvania State University; Eberly College of Science; Pennsylvania Space Grant Consortium; NSF FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. E. F. was supported by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by JPL/Caltech under a contract with NASA. K. L. was supported by grant AST-0544588 from the National Science Foundation. The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. C. E. was supported by the National Science Foundation under Award No. 0901947. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/Caltech, funded by NASA and the NSF. It has also made use of the SIMBAD and VizieR databases, operated at CDS (Strasbourg, France), NASA's Astrophysics Data System Abstract Service, and of the NASA/IPAC Infrared Science Archive operated by JPL, Caltech, under contract with NASA. NR 212 TC 63 Z9 63 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2011 VL 195 IS 1 AR 3 DI 10.1088/0067-0049/195/1/3 PG 45 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 790LT UT WOS:000292590200003 ER PT J AU Reiter, M Shirley, YL Wu, JW Brogan, C Wootten, A Tatematsu, K AF Reiter, Megan Shirley, Yancy L. Wu, Jingwen Brogan, Crystal Wootten, Alwyn Tatematsu, Ken'ichi TI THE PHYSICAL PROPERTIES OF HIGH-MASS STAR-FORMING CLUMPS: A SYSTEMATIC COMPARISON OF MOLECULAR TRACERS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE dust, extinction; ISM: clouds; stars: formation ID PROTOSTELLAR CORES; DUST CONTINUUM; CLOUD CORES; DENSE GAS; CHEMICAL DIFFERENTIATION; INTERSTELLAR-MOLECULES; COMPETITIVE ACCRETION; STELLAR CLUSTERS; WATER MASERS; DARK CLOUDS AB We present observations of HCO+ and (HCO+)-C-13, N2H+, HCS+, HNC and (HNC)-C-13, SO and (SO)-S-34, CCH, SO2, and CH3OH-E toward a sample of 27 high-mass clumps coincident with water maser emission. All transitions are observed with or convolved to nearly identical resolution (30 ''), allowing for inter-comparison of the clump properties derived from the mapped transitions. We find that N2H+ emission is spatially differentiated compared with the dust and the other molecules toward a few very luminous cores (10 of 27) and the N2H+ integrated intensity does not correlate well with dust continuum flux. We calculate the effective excitation density, n(eff), the density required to excite a 1 K line in T-kin = 20 K gas for each molecular tracer. The intensity of molecular tracers with larger effective excitation densities (n(eff) >= 10(5) cm(-3)) appears to correlate more strongly with the submillimeter dust continuum intensity. The median sizes of the clumps are anti-correlated with the n(eff) of the tracers (which span more than three orders of magnitude). Virial mass is not correlated with n(eff), especially where the lines are optically thick as the linewidths may be broadened significantly by non-virial motions. The median mass surface density and median volume density of the clumps are correlated with n(eff) indicating the importance of understanding the excitation conditions of the molecular tracer when deriving the average properties of an ensemble of cores. C1 [Reiter, Megan; Shirley, Yancy L.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Wu, Jingwen] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Brogan, Crystal; Wootten, Alwyn] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Tatematsu, Ken'ichi] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. RP Reiter, M (reprint author), Univ Arizona, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM mreiter@as.arizona.edu; yshirley@as.arizona.edu; jingwen.wu@jpl.nasa.gov; cbrogan@nrao.edu; awootten@nrao.edu; k.tatematsu@nao.ac.jp FU NSF [AST-1008577] FX We thank the staffs of the HHT, CSO, NRO, and JCMT for their excellent assistance. We thank Ruisheng Peng, Hiroshige Yoshida, Katelyn Allers, and Jingwen Wu for their assistance with CSO observations. Special thanks to Joe McMullian for help with glish scripting in AIPS++. We also thank the HHT operators Patrick Fimbres, Sean Keel, Bob Moulton, and John Downey for their assistance with HHT observations. Guest User, Canadian Astronomy Data Centre, which is operated by the Dominion Astrophysical Observatory for the National Research Council of Canada's Herzberg Institute of Astrophysics. Y.L.S. is partially supported by NSF grant AST-1008577. NR 74 TC 23 Z9 23 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2011 VL 195 IS 1 AR 1 DI 10.1088/0067-0049/195/1/1 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 790LT UT WOS:000292590200001 ER PT J AU Sakamoto, T Barthelmy, SD Baumgartner, WH Cummings, JR Fenimore, EE Gehrels, N Krimm, HA Markwardt, CB Palmer, DM Parsons, AM Sato, G Stamatikos, M Tueller, J Ukwatta, TN Zhang, B AF Sakamoto, T. Barthelmy, S. D. Baumgartner, W. H. Cummings, J. R. Fenimore, E. E. Gehrels, N. Krimm, H. A. Markwardt, C. B. Palmer, D. M. Parsons, A. M. Sato, G. Stamatikos, M. Tueller, J. Ukwatta, T. N. Zhang, B. TI THE SECOND SWIFT BURST ALERT TELESCOPE GAMMA-RAY BURST CATALOG SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE gamma-ray burst: general ID IN-FLIGHT PERFORMANCE; HARD X-RAY; COMPLETE SAMPLE; STAR-FORMATION; HOST GALAXIES; REDSHIFT; AFTERGLOWS; ENERGY; SPECTRA; GRB AB We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters, and time-resolved spectral parameters measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E. E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs, and S-GRBs with E. E. in the catalog are 89%, 8%, and 2%, respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX, and HETE-2 GRB samples. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T-90 and T-50 durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs. The time-averaged spectra of the BAT S-GRBs with E. E. are similar to those of the L-GRBs. Whereas, the spectra of the initial short spikes of the S-GRBs with E. E. are similar to those of the S-GRBs. We show that the BAT GRB samples are significantly softer than the BATSE bright GRBs and that the time-averaged E-peak(obs) of the BAT GRBs peaks at 80 keV, which is significantly lower energy than those of the BATSE sample, which peak at 320 keV. The time-averaged spectral properties of the BAT GRB sample are similar to those of the HETE-2 GRB samples. By time-resolved spectral analysis, we find that only 10% of the BAT observed photon indices are outside the allowed region of the synchrotron shock model. We see no obvious observed trend in the BAT T-90 and the observed spectra with redshifts. The T-90 and T-50 distributions measured at the 140-220 keV band in the GRB rest frame from the BAT known redshift GRBs peak at 19 s and 8 s, respectively. We also provide an update on the status of the on-orbit BAT calibrations. C1 [Sakamoto, T.; Baumgartner, W. H.; Cummings, J. R.; Krimm, H. A.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Sakamoto, T.; Baumgartner, W. H.; Cummings, J. R.] Univ Maryland Baltimore Cty, Joint Ctr Astrophys, Baltimore, MD 21250 USA. [Fenimore, E. E.; Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Sato, G.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Ukwatta, T. N.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Zhang, B.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. RP Sakamoto, T (reprint author), NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; Tueller, Jack/D-5334-2012; Parsons, Ann/I-6604-2012 NR 53 TC 119 Z9 119 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2011 VL 195 IS 1 AR 2 DI 10.1088/0067-0049/195/1/2 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 790LT UT WOS:000292590200002 ER PT J AU Xue, YQ Luo, B Brandt, WN Bauer, FE Lehmer, BD Broos, PS Schneider, DP Alexander, DM Brusa, M Comastri, A Fabian, AC Gilli, R Hasinger, G Hornschemeier, AE Koekemoer, A Liu, T Mainieri, V Paolillo, M Rafferty, DA Rosati, P Shemmer, O Silverman, JD Smail, I Tozzi, P Vignali, C AF Xue, Y. Q. Luo, B. Brandt, W. N. Bauer, F. E. Lehmer, B. D. Broos, P. S. Schneider, D. P. Alexander, D. M. Brusa, M. Comastri, A. Fabian, A. C. Gilli, R. Hasinger, G. Hornschemeier, A. E. Koekemoer, A. Liu, T. Mainieri, V. Paolillo, M. Rafferty, D. A. Rosati, P. Shemmer, O. Silverman, J. D. Smail, I. Tozzi, P. Vignali, C. TI THE CHANDRA DEEP FIELD-SOUTH SURVEY: 4 Ms SOURCE CATALOGS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: observations; diffuse radiation; galaxies: active; surveys; X-rays: galaxies ID X-RAY SOURCES; CCD IMAGING SPECTROMETER; POINT-SOURCE CATALOGS; CHARGE-TRANSFER INEFFICIENCY; MEDIUM-SENSITIVITY SURVEY; ACTIVE GALACTIC NUCLEUS; YALE-CHILE MUSYC; COSMOS FIELD; NORTH SURVEY; OPTICAL SPECTROSCOPY AB We present source catalogs for the 4 Ms Chandra Deep Field-South (CDF-S), which is the deepest Chandra survey to date and covers an area of 464.5 arcmin(2). We provide a main Chandra source catalog, which contains 740 X-ray sources that are detected with WAVDETECT at a false-positive probability threshold of 10(-5) in at least one of three X-ray bands (0.5-8 keV, full band; 0.5-2 keV, soft band; and 2-8 keV, hard band) and also satisfy a binomial-probability source-selection criterion of P < 0.004 (i.e., the probability of sources not being real is less than 0.004); this approach is designed to maximize the number of reliable sources detected. A total of 300 main-catalog sources are new compared to the previous 2 Ms CDF-S main-catalog sources. We determine X-ray source positions using centroid and matched-filter techniques and obtain a median positional uncertainty of approximate to 0 ''.42. We also provide a supplementary catalog, which consists of 36 sources that are detected with WAVDETECT at a false-positive probability threshold of 10(-5), satisfy the condition of 0.004 < P < 0.1, and have an optical counterpart with R < 24. Multiwavelength identifications, basic optical/infrared/radio photometry, and spectroscopic/photometric redshifts are provided for the X-ray sources in the main and supplementary catalogs. Seven hundred sixteen (approximate to 97%) of the 740 main-catalog sources have multiwavelength counterparts, with 673 (approximate to 94% of 716) having either spectroscopic or photometric redshifts. The 740 main-catalog sources span broad ranges of full-band flux and 0.5-8 keV luminosity; the 300 new main-catalog sources span similar ranges although they tend to be systematically lower. Basic analyses of the X-ray and multiwavelength properties of the sources indicate that >75% of the main-catalog sources are active galactic nuclei (AGNs); of the 300 new main-catalog sources, about 35% are likely normal and starburst galaxies, reflecting the rise of normal and starburst galaxies at the very faint flux levels uniquely accessible to the 4 Ms CDF-S. Near the center of the 4 Ms CDF-S (i.e., within an off-axis angle of 3'), the observed AGN and galaxy source densities have reached 9800(1100)(+1300) deg(-2) and 6900(900)(+1100) deg(-2), respectively. Simulations show that our main catalog is highly reliable and is reasonably complete. The mean backgrounds (corrected for vignetting and exposure-time variations) are 0.063 and 0.178 counts Ms-1 pixel(-1) (for a pixel size of 0 ''.492) for the soft and hard bands, respectively; the majority of the pixels have zero background counts. The 4 Ms CDF-S reaches on-axis flux limits of approximate to 3.2 x 10(-17), 9.1 x 10(-18), and 5.5 x 10(-17) erg cm(-2) s(-1) for the full, soft, and hard bands, respectively. An increase in the CDF-S exposure time by a factor of approximate to 2-2.5 would provide further significant gains and probe key unexplored discovery space. C1 [Xue, Y. Q.; Luo, B.; Brandt, W. N.; Broos, P. S.; Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Xue, Y. Q.; Luo, B.; Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Bauer, F. E.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA. [Lehmer, B. D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Alexander, D. M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Brusa, M.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Brusa, M.] Univ Maryland Baltimore Cty, Dept Astron, Baltimore, MD 21250 USA. [Comastri, A.; Gilli, R.] INAF Osservatorio Astron Bologna, Bologna, Italy. [Fabian, A. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Hasinger, G.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Hornschemeier, A. E.] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Koekemoer, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Liu, T.; Tozzi, P.] INAF Osservatorio Astron Trieste, I-34131 Trieste, Italy. [Liu, T.] Univ Sci & Technol China, CAS Key Lab Res Galaxies & Cosmol, Dept Astron, Hefei 230026, Anhui, Peoples R China. [Mainieri, V.; Rosati, P.] European So Observ, D-85748 Garching, Germany. [Paolillo, M.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Rafferty, D. A.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Shemmer, O.] Univ N Texas, Dept Phys, Denton, TX 76203 USA. [Silverman, J. D.] Univ Tokyo, IPMU, Kashiwa, Chiba 2778568, Japan. [Smail, I.] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England. [Vignali, C.] Univ Bologna, Bologna, Italy. RP Xue, YQ (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. EM xuey@astro.psu.edu RI Paolillo, Maurizio/J-1733-2012; Vignali, Cristian/J-4974-2012; Smail, Ian/M-5161-2013; Brandt, William/N-2844-2015; Comastri, Andrea/O-9543-2015; Gilli, Roberto/P-1110-2015; OI Koekemoer, Anton/0000-0002-6610-2048; Brusa, Marcella/0000-0002-5059-6848; Paolillo, Maurizio/0000-0003-4210-7693; Vignali, Cristian/0000-0002-8853-9611; Smail, Ian/0000-0003-3037-257X; Brandt, William/0000-0002-0167-2453; Comastri, Andrea/0000-0003-3451-9970; Gilli, Roberto/0000-0001-8121-6177; Shemmer, Ohad/0000-0003-4327-1460; Alexander, David/0000-0002-5896-6313 FU NASA [SP1-12007A, NNX10AC996]; Chile CONICYT under FONDECYT [1101024]; FONDAP (CATA) [15010003]; Royal Society; Science and Technology Facilities Council; Italian Space Agency (ASI) under the ASI-INAF [I/009/10/0, I/088/06/0]; German Deutsche Forschungsgemeinschaft [HA 1850/28-1] FX We thank the referee for helpful feedback that improved this work. We thank the Chandra Director's Office for allocating the time for these observations. We also thank L. K. Townsley for helpful discussions on data reduction and N. A. Miller for kindly providing the 5 sigma VLA 1.4 GHz radio catalog. Support for this work was provided by NASA through Chandra Award SP1-12007A (Y.Q.X., B. L., W. N. B., F. E. B.) issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory, and by NASA ADP grant NNX10AC996 (Y.Q.X., B. L., W. N. B.). We also acknowledge the financial support of the Chile CONICYT under grants FONDECYT 1101024 and FONDAP (CATA) 15010003 (F. E. B.), the Royal Society (D. M. A.), the Philip Leverhulme Prize (D. M. A.), the Science and Technology Facilities Council (D. M. A., IRS), the Italian Space Agency (ASI) under the ASI-INAF contracts I/009/10/0 and I/088/06/0 (A. C., R. G., P. T., C. V.), and the German Deutsche Forschungsgemeinschaft Leibniz Prize FKZ HA 1850/28-1 (G.H.). NR 91 TC 300 Z9 300 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2011 VL 195 IS 1 AR 10 DI 10.1088/0067-0049/195/1/10 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 790LT UT WOS:000292590200010 ER PT J AU Li, C Hsu, NC Tsay, SC AF Li, Can Hsu, N. Christina Tsay, Si-Chee TI A study on the potential applications of satellite data in air quality monitoring and forecasting SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Air pollution; Particulate matter; Satellite; Forecasting; China; Thailand ID AEROSOL OPTICAL-THICKNESS; RESOLUTION IMAGING SPECTRORADIOMETER; GROUND-LEVEL PM2.5; PARTICULATE MATTER; UNITED-STATES; PM10 CONCENTRATIONS; MODIS; POLLUTION; LAND; CITIES AB In this study we explore the potential applications of MODIS (Moderate Resolution Imaging Spectro-radiometer) -like satellite sensors in air quality research for some Asian regions. The MODIS aerosol optical thickness (AOT), NCEP global reanalysis meteorological data, and daily surface PM10 concentrations over China and Thailand from 2001 to 2009 were analyzed using simple and multiple regression models. The AOT PM10 correlation demonstrates substantial seasonal and regional difference, likely reflecting variations in aerosol composition and atmospheric conditions. Meteorological factors, particularly relative humidity, were found to influence the AOT PM10 relationship. Their inclusion in regression models leads to more accurate assessment of PM10 from spaceborne observations. We further introduced a simple method for employing the satellite data to empirically forecast surface particulate pollution. In general, AOT from the previous day (day 0) is used as a predicator variable, along with the forecasted meteorology for the following day (day 1), to predict the PM10 level for day 1. The contribution of regional transport is represented by backward trajectories combined with AOT. This method was evaluated through PM10 hindcasts for 2008-2009, using observations from 2005 to 2007 as a training data set to obtain model coefficients. For five big Chinese cities, over 50% of the hindcasts have percentage error <= 30%. Similar performance was achieved for cities in northern Thailand. The MODIS AOT data are responsible for at least part of the demonstrated forecasting skill. This method can be easily adapted for other regions, but is probably most useful for those having sparse ground monitoring networks or no access to sophisticated deterministic models. We also highlight several existing issues, including some inherent to a regression-based approach as exemplified by a case study for Beijing. Further studies will be necessary before satellite data can see more extensive applications in the operational air quality monitoring and forecasting. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Li, Can] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA. [Li, Can; Hsu, N. Christina; Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Li, C (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 613-2, Greenbelt, MD 20771 USA. EM can.li@nasa.gov RI Li, Can/F-6867-2011; Hsu, N. Christina/H-3420-2013; Tsay, Si-Chee/J-1147-2014 FU NASA FX The L3 MODIS aerosol data were downloaded from the NASA LAADS website (http://ladsweb.nascom.nasa.gov/). Surface air quality data of China and Thailand were obtained from the China MEP and Thai PCD. We thank Dr. Zhanqing Li of the University of Maryland for the use of handheld sun photometer data, and the NASA AERONET team for the use of Cimel sun photometer data, and the PI's and their staff for establishing and maintaining the AERONET sites (http://aeronet.gsfc.nasa.gov/). We also thank the anonymous reviewers for helping improve the manuscript. This study was partially supported by the NASA Radiation Sciences Program managed by Dr. Hal Maring. NR 48 TC 33 Z9 35 U1 3 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD JUL PY 2011 VL 45 IS 22 BP 3663 EP 3675 DI 10.1016/j.atmosenv.2011.04.032 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 788HP UT WOS:000292436300003 ER PT J AU Marrari, M Daly, KL Timonin, A Semenova, T AF Marrari, Marina Daly, Kendra L. Timonin, Alexander Semenova, Tatjana TI The zooplankton of Marguerite Bay, Western Antarctic Peninsula-Part I: Abundance, distribution, and population response to variability in environmental conditions SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Euphausia superba; Thysanoessa macrura; Euphausia crystallorophias; Copepods; Ostracods; Pteropods; Antarctic Peninsula; Southern Ocean ID KRILL EUPHAUSIA-SUPERBA; BRANSFIELD STRAIT REGION; DIEL VERTICAL MIGRATION; LIFE-CYCLE STRATEGIES; MARGINAL ICE-ZONE; SOUTHERN-OCEAN; WEDDELL-SEA; SCOTIA SEA; THYSANOESSA-MACRURA; METRIDIA-GERLACHEI AB The zooplankton community of Marguerite Bay was studied during austral fall of 2001 and 2002 using net and concurrent environmental data. Interannual differences were observed in zooplankton species composition, developmental stages, and abundances, which were linked to unusually high chlorophyll concentrations in the Bellingshausen Sea and Marguerite Bay during spring-summer 2000/2001. Copepod abundance was significantly higher in 2001 than in 2002 (46.3 and 28.3 ind m(-3) in 2001 and 2002, respectively). During 2001, the copepod community was dominated by two species. Calanoides acutus, a herbivore, and Metridia gerlachei, an omnivore, accounted for 46% and 45% of the community, respectively. During 2002, however, several species were relatively abundant, including M. gerlachei, Ctenocalanus spp., C acutus, Oithona spp., and Paraeuchaeta spp. Euphausiids also showed a rapid population response to high chlorophyll levels in 2001. Even though average total euphausiid (juvenile/adult) abundances were similar during both years (0.20 and 0.15 ind m(-3) for 2001 and 2002, respectively), species composition showed marked interannual differences due to varying life history strategies among species. Thysanoessa macrura, which has a relatively rapid development from larval to juvenile stages between spring and fall of the same year, was the most abundant euphausiid in 2001. In contrast, Euphausia crystallorophias and Euphausia superba juvenile/adult populations increased in 2002, owing to a slower development in which larval stages overwinter and recruit to juveniles during the following spring/summer. Other zooplankton groups those were abundant in Marguerite Bay, but showed little variability between years, included ostracods, pteropods, chaetognaths, medusae, amphipods, and mysids. Summer phytoplankton concentrations strongly influenced copepods and euphausiids; however, there were no clear associations between zooplankton distributions and fall environmental conditions (i.e., pigment concentrations and surface salinity) or bottom depth. It is notable that ostracods and pteropods had the highest abundances of non-copepod zooplankton. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Daly, Kendra L.] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA. [Marrari, Marina] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Timonin, Alexander; Semenova, Tatjana] Russian Acad Sci, PP Shirshov Oceanol Inst, Moscow 117851, Russia. RP Daly, KL (reprint author), Univ S Florida, Coll Marine Sci, 140 7th Ave S, St Petersburg, FL 33701 USA. EM marina@seawifs.gsfc.nasa.gov FU NSF [OPP-9910610, OPP-196489] FX We thank the captain and crew of the R.V. L.M. Gould for support at sea, and Meng Zhou, Yiwu Zhu, Ryan Dorland, Dan Mertes, and Joe Smith for collecting the 1 m2-MOCNESS samples. We are grateful to Jason Zimmerman for assistance with MOCNESS sample analyses, and to Kevin Arrigo and Gert van Dijken for kindly providing sea ice images. We also thank Chuanmin Hu for help with SeaWiFS data processing, and Meng Zhou for assistance with figure preparation. Chlorophyll data for 2001 provided by C. Fritsen. Funding for this research provided by NSF Grant nos. OPP-9910610 and OPP-196489. This publication represents US GLOBEC contribution no. 697. NR 80 TC 18 Z9 18 U1 2 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD JUL-AUG PY 2011 VL 58 IS 13-16 BP 1599 EP 1613 DI 10.1016/j.dsr2.2010.12.007 PG 15 WC Oceanography SC Oceanography GA 788IM UT WOS:000292438600008 ER PT J AU Marrari, M Daly, KL Timonin, A Semenova, T AF Marrari, Marina Daly, Kendra L. Timonin, Alexander Semenova, Tatjana TI The zooplankton of Marguerite Bay, western Antarctic Peninsula-Part II: Vertical distributions and habitat partitioning SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Antarctic krill; Euphausia superba; Thysanoessa macrura; Euphausia crystallorophias; Copepods; Ostracods; Pteropods; Vertical distribution ID EASTERN WEDDELL-SEA; MARGINAL ICE-ZONE; KRILL-COPEPOD INTERACTIONS; EUPHAUSIA-SUPERBA DANA; LIFE-CYCLE STRATEGIES; SOUTHERN-OCEAN; COMMUNITY STRUCTURE; AUSTRAL FALL; POPULATION-STRUCTURE; CTENOCALANUS-CITER AB The vertical distribution patterns of the dominant zooplankton in the vicinity of Marguerite Bay on the west side of the Antarctic Peninsula were studied during austral fall of 2001 and 2002, using net and concurrent environmental data. Vertical distributions of zooplankton usually were similar to those reported for other Antarctic regions. Maximum abundances of the copepods Ctenocalanus spp. and Calanus propinquus, the euphausiids Euphausia superba, Euphausia crystallorophias, and Thysanoessa macrura, and appendicularians primarily occurred in shallow Antarctic Surface Water (<100 m) or the upper pycnocline. The copepod, Oncaea spp., mysids, and ostracods had the deepest distributions (>250 m), in warmer modified Circumpolar Deep Water. Other dominant copepods (Calanoides acutus, Metridia gerlachei, Oithona spp., Paraeuchaeta spp., and Rhincalanus gigas), pteropods, and chaetognaths had depths of maximum abundance within the pycnocline or in deeper warmer waters. Overlapping depth distributions suggest that E. superba would have the highest prey encounter rates with M. gerlachei, Ctenocalanus spp., C. propinquus, and Oithona spp. during fall, although most of the copepod community was deeper than the euphausiid community. Even though the three euphausiid species occupied similar depth ranges on average, at any given location E. superba, E. crystallorophias, and T. macrura depths of maximum abundance often did not overlap, suggesting vertical habitat partitioning behavior. The vertical patterns of copepods, euphausiids, amphipods, and mysids did not have a consistent association with the distributions of pigments, temperature, salinity, or density. Instead, the observed vertical distributions are mainly attributed to different behaviors, including seasonal vertical migration to deeper water for overwintering (i.e., C. acutus, R. gigas, ostracods, chaetognaths, pteropods) and vertical habitat partitioning to reduce competition (i.e., euphausiids). Migration into deep water and aggregation behavior (i.e., euphausiids) also reduce the risk of predation. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Marrari, Marina] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Daly, Kendra L.] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA. [Timonin, Alexander; Semenova, Tatjana] Russian Acad Sci, PP Shirshov Oceanol Inst, Moscow 117218, Russia. RP Marrari, M (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM marina@seawifs.gsfc.nasa.gov NR 85 TC 10 Z9 12 U1 0 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD JUL-AUG PY 2011 VL 58 IS 13-16 BP 1614 EP 1629 DI 10.1016/j.dsr2.2010.12.006 PG 16 WC Oceanography SC Oceanography GA 788IM UT WOS:000292438600009 ER PT J AU Tierney, JE Lewis, SC Cook, BI LeGrande, AN Schmidt, GA AF Tierney, Jessica E. Lewis, Sophie C. Cook, Benjamin I. LeGrande, Allegra N. Schmidt, Gavin A. TI Model, proxy and isotopic perspectives on the East African Humid Period SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE East Africa; African Humid Period; hydrogen isotopes; Holocene climate; African climate; isotope-enabled climate model ID TROPICAL INDIAN-OCEAN; PLANT LEAF WAXES; LATE PLEISTOCENE; LAKE VICTORIA; DELTA-D; CLIMATE SIMULATIONS; EQUATORIAL AFRICA; NORTHERN AFRICA; UGANDA-CONGO; GISS MODELE AB Both North and East Africa experienced more humid conditions during the early and mid-Holocene epoch (11,000-5000 yr BP: 11-5 ka) relative to today. The North African Humid Period has been a major focus of paleoclimatic study, and represents a response of the hydrological cycle to the increase in boreal summer insolation and associated ocean, atmosphere and land surface feedbacks. Meanwhile, the mechanisms that caused the coeval East African Humid Period are poorly understood. Here, we use results from isotope-enabled coupled climate modeling experiments to investigate the cause of the East African Humid Period. The modeling results are interpreted alongside proxy records of both water balance and the isotopic composition of rainfall. Our simulations show that the orbitally-induced increase in dry season precipitation and the subsequent reduction in precipitation seasonality can explain the East African Humid Period, and this scenario agrees well with regional lake level and pollen paleoclimate data. Changes in zonal moisture flux from both the Atlantic and Indian Ocean account for the simulated increase in precipitation from June through November. Isotopic paleoclimate data and simulated changes in moisture source demonstrate that the western East African Rift Valley in particular experienced more humid conditions due to the influx of Atlantic moisture and enhanced convergence along the Congo Air Boundary. Our study demonstrates that zonal changes in moisture advection are an important determinant of climate variability in the East African region. (c) 2011 Elsevier B.V. All rights reserved. C1 [Tierney, Jessica E.; Cook, Benjamin I.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Lewis, Sophie C.] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia. [Cook, Benjamin I.; LeGrande, Allegra N.; Schmidt, Gavin A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Cook, Benjamin I.; LeGrande, Allegra N.; Schmidt, Gavin A.] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. RP Tierney, JE (reprint author), Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. EM tierney@ldeo.columbia.edu RI Schmidt, Gavin/D-4427-2012; LeGrande, Allegra/D-8920-2012; Cook, Benjamin/H-2265-2012; Lewis, Sophie/H-4968-2011 OI Schmidt, Gavin/0000-0002-2258-0486; LeGrande, Allegra/0000-0002-5295-0062; Lewis, Sophie/0000-0001-6416-0634 FU NOAA/UCAR; NSF [ATM07-53868] FX We would like to thank NASA GISS for institutional support, and two anonymous reviewers whose comments greatly improved the manuscript. This research was supported by the NOAA/UCAR Climate and Global Change Postdoctoral Fellowship to JET and NSF ATM07-53868 to ANL. This is Lamont-Doherty Earth Observatory contribution number 7467. NR 74 TC 54 Z9 56 U1 11 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUL 1 PY 2011 VL 307 IS 1-2 BP 103 EP 112 DI 10.1016/j.epsl.2011.04.038 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 793CE UT WOS:000292797200011 ER PT J AU Wen, YX Hong, Y Zhang, GF Schuur, TJ Gourley, JJ Flamig, Z Morris, KR Cao, Q AF Wen, Yixin Hong, Yang Zhang, Guifu Schuur, Terry J. Gourley, Jonathan J. Flamig, Zac Morris, K. Robert Cao, Qing TI Cross Validation of Spaceborne Radar and Ground Polarimetric Radar Aided by Polarimetric Echo Classification of Hydrometeor Types SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID TRMM PRECIPITATION RADAR; DUAL-POLARIZATION RADAR; MEASURING MISSION TRMM; CALIBRATION; SATELLITE; ALGORITHM AB Ground-based polarimetric weather radar is arguably the most powerful validation tool that provides physical insight into the development and interpretation of spaceborne weather radar algorithms and observations. This study aims to compare and resolve discrepancies in hydrometeor retrievals and reflectivity observations between the NOAA/National Severe Storm Laboratory "proof of concept" KOUN polarimetric Weather Surveillance Radar-1988 Doppler (WSR-88D) and the spaceborne precipitation radar (PR) on board NASA's Tropical Rainfall Measuring Mission (TRMM) platform. An intercomparison of PR and KOUN melting-layer heights retrieved from 2 to 5 km MSL shows a high correlation coefficient of 0.88 with relative bias of 5.9%. A resolution volume-matching technique is used to compare simultaneous TRMM PR and KOUN reflectivity observations. The comparisons reveal an overall bias of <0.2% between PR and KOUN. The bias is hypothesized to be from non-Rayleigh scattering effects and/or errors in attenuation correction procedures applied to Ku-band PR measurements. By comparing reflectivity with respect to different hydrometeor types (as determined by KOUN's hydrometeor classification algorithm), it is found that the bias is from echoes that are classified as rain-hail mixture, wet snow, graupel, and heavy rain. These results agree with expectations from backscattering calculations at Ku and S bands, but with the notable exception of dry snow. Comparison of vertical reflectivity profiles shows that PR suffers significant attenuation at lower altitudes, especially in convective rain and in the melting layer. The attenuation correction performs very well for both stratiform and convective rain, however. In light of the imminent upgrade of the U. S. national weather radar network to include polarimetric capabilities, the findings in this study will potentially serve as the basis for nationwide validation of space-based precipitation products and also invite synergistic development of coordinated space-ground multisensor precipitation products. C1 [Wen, Yixin; Hong, Yang] Univ Oklahoma, Dept Civil Engn & Environm Sci, Norman, OK 73019 USA. [Wen, Yixin; Hong, Yang; Zhang, Guifu; Cao, Qing] Univ Oklahoma, Atmospher Radar Res Ctr, Norman, OK 73019 USA. [Zhang, Guifu] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA. [Schuur, Terry J.; Gourley, Jonathan J.; Flamig, Zac] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [Schuur, Terry J.; Flamig, Zac] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA. [Morris, K. Robert] Sci Applicat Int Corp, Greenbelt, MD USA. [Morris, K. Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Wen, YX (reprint author), Univ Oklahoma, Dept Civil Engn & Environm Sci, Norman, OK 73019 USA. EM yanghong@ou.edu RI Hong, Yang/D-5132-2009; Zhang, Guifu/M-3178-2014; Gourley, Jonathan/C-7929-2016; OI Hong, Yang/0000-0001-8720-242X; Zhang, Guifu/0000-0002-0261-2815; Gourley, Jonathan/0000-0001-7363-3755; Cao, Qing/0000-0001-6660-3566 FU Atmospheric Radar Research Center (ARRC) at the University of Oklahoma; NOAA/National Severe Storms Laboratory; University of Oklahoma Cooperative Institute for Mesoscale Meteorological Studies FX This research was funded by Atmospheric Radar Research Center (ARRC) Seed Grant 2009 at the University of Oklahoma (http://arrc.ou.edu). We thank NASA Global Precipitation Measurement Ground Validation Science Manager Dr. Walter A. Petersen for his constructive comments and encouragement. We also are thankful for the support from NOAA/National Severe Storms Laboratory and University of Oklahoma Cooperative Institute for Mesoscale Meteorological Studies personnel who maintain and operate the KOUN polarimetric WSR-88D. The PR products used in this work were acquired as part of the activities of NASA's Science Mission Directorate and are archived and distributed by the Goddard Earth Sciences Data and Information Services Center (DISC). Constructive reviews provided by three anonymous reviewers improved the readability of this manuscript. Their time is appreciated. NR 28 TC 8 Z9 8 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD JUL PY 2011 VL 50 IS 7 BP 1389 EP 1402 DI 10.1175/2011JAMC2622.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 792FI UT WOS:000292725500001 ER PT J AU Mcnider, RT Christy, JR Moss, D Doty, K Handyside, C Limaye, A Garcia, ACY Hoogenboom, G AF Mcnider, Richard T. Christy, John R. Moss, Don Doty, Kevin Handyside, Cameron Limaye, Ashutosh Garcia y Garcia, Axel Hoogenboom, Gerrit TI A Real-Time Gridded Crop Model for Assessing Spatial Drought Stress on Crops in the Southeastern United States SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID INCIDENT SOLAR-RADIATION; SIMPLE PHYSICAL MODEL; CERES-MAIZE MODEL; SATELLITE DATA; SURFACE-TEMPERATURE; COMPUTER-PROGRAM; SIMULATION-MODEL; SOIL-MOISTURE; YIELD; ASSIMILATION AB The severity of drought has many implications for society. Its impacts on rain-fed agriculture are especially direct, however. The southeastern United States, with substantial rain-fed agriculture and large variability in growing-season precipitation, is especially vulnerable to drought. As commodity markets, drought assistance programs, and crop insurance have matured, more advanced information is needed on the evolution and impacts of drought. So far many new drought products and indices have been developed. These products generally do not include spatial details needed in the Southeast or do not include the physiological state of the crop, however. Here, a new type of drought measure is described that incorporates high-resolution physical inputs into a crop model (corn) that evolves based on the physical-biophysical conditions. The inputs include relatively high resolution (as compared with standard surface or NOAA Cooperative Observer Program data) (5 km) radar-derived precipitation, satellite-derived insolation, and temperature analyses. The system (referred to as CropRT for gridded crop real time) is run in real time under script control to provide daily maps of crop evolution and stress. Examples of the results from the system are provided for the 2008-10 growing seasons. Plots of daily crop water stress show small subcounty-scale variations in stress and the rapid change in stress over time. Depictions of final crop yield in comparison with seasonal average stress are provided. C1 [Mcnider, Richard T.; Christy, John R.; Moss, Don; Doty, Kevin; Handyside, Cameron] Univ Alabama, Ctr Earth Syst Sci, Huntsville, AL 35899 USA. [Limaye, Ashutosh] NASA, Marshall Space Flight Ctr, Huntsville, AL USA. [Garcia y Garcia, Axel] Univ Wyoming, Res & Extens Ctr, Powell, WY USA. [Hoogenboom, Gerrit] Univ Georgia, Dept Biol & Agr Engn, Griffin, GA USA. RP Mcnider, RT (reprint author), Univ Alabama, Ctr Earth Syst Sci, Huntsville, AL 35899 USA. EM mcnider@nsstc.uah.edu RI Hoogenboom, Gerrit/F-3946-2010; Garcia y Garcia, Axel/C-3675-2009 OI Hoogenboom, Gerrit/0000-0002-1555-0537; Garcia y Garcia, Axel/0000-0002-7263-530X FU USDA Risk Reduction in SE Agriculture [USDA 745338]; NOAA-Rosenstiel School of Marine and Atmospheric Science/University of Miami [745251]; NOAA [NOAA-NA06NES4400015]; Alabama Office of State Climatology FX This work was sponsored in part by USDA Risk Reduction in SE Agriculture Grant USDA 745338, NOAA-Rosenstiel School of Marine and Atmospheric Science/University of Miami Grant 745251, NOAA Drought Studies Grant NOAA-NA06NES4400015, and the Alabama Office of State Climatology. NR 48 TC 5 Z9 6 U1 4 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD JUL PY 2011 VL 50 IS 7 BP 1459 EP 1475 DI 10.1175/2011JAMC2476.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 792FI UT WOS:000292725500006 ER PT J AU Grecu, M Tian, L Olson, WS Tanelli, S AF Grecu, Mircea Tian, Lin Olson, William S. Tanelli, Simone TI A Robust Dual-Frequency Radar Profiling Algorithm SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID TRMM PRECIPITATION RADAR; SURFACE REFERENCE TECHNIQUE; RAINDROP SIZE DISTRIBUTION; RETRIEVAL ALGORITHM; POLARIZATION RADAR; WAVELENGTH RADAR; SPACEBORNE RADAR; MELTING LAYER; AIRBORNE; CLOUD AB In this study, an algorithm to retrieve precipitation from spaceborne dual-frequency (13.8 and 35.6 GHz, or Ku/Ka band) radar observations is formulated and investigated. Such algorithms will be of paramount importance in deriving radar-based and combined radar-radiometer precipitation estimates from observations provided by the forthcoming NASA Global Precipitation Measurement (GPM) mission. In GPM, dual-frequency Ku-/Ka-band radar observations will be available only within a narrow swath (approximately one-half of the width of the Ku-band radar swath) over the earth's surface. Therefore, a particular challenge is to develop a flexible radar retrieval algorithm that can be used to derive physically consistent precipitation profile estimates across the radar swath irrespective of the availability of Ka-band radar observations at any specific location inside that swath, in other words, an algorithm capable of exploiting the information provided by dual-frequency measurements but robust in the absence of Ka-band channel. In the present study, a unified, robust precipitation retrieval algorithm able to interpret either Ku-only or dual-frequency Ku-/Ka-band radar observations in a manner consistent with the information content of the observations is formulated. The formulation is based on 1) a generalized Hitschfeld-Bordan attenuation correction method that yields generic Ku-only precipitation profile estimates and 2) an optimization procedure that adjusts the Ku-band estimates to be physically consistent with coincident Ka-band reflectivity observations and surface reference technique-based path-integrated attenuation estimates at both Ku and Ka bands. The algorithm is investigated using synthetic and actual airborne radar observations collected in the NASA Tropical Composition, Cloud, and Climate Coupling (TC4) campaign. In the synthetic data investigation, the dual-frequency algorithm performed significantly better than a single-frequency algorithm; dual-frequency estimates, however, are still sensitive to various assumptions such as the particle size distribution shape, vertical and cloud water distributions, and scattering properties of the ice-phase precipitation. C1 [Grecu, Mircea; Tian, Lin; Olson, William S.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Grecu, Mircea; Tian, Lin] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Olson, William S.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Tanelli, Simone] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Grecu, M (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Code 613-1,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM mircea.grecu-1@nasa.gov RI Measurement, Global/C-4698-2015 FU National Aeronautics and Space Administration FX This research was supported by NASA's Precipitation Measurement Missions (PMM) program. The contribution by Dr. Simone Tanelli was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. The manuscript benefited from the constructive comments of three anonymous reviewers. NR 42 TC 16 Z9 16 U1 2 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD JUL PY 2011 VL 50 IS 7 BP 1543 EP 1557 DI 10.1175/2011JAMC2655.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 792FI UT WOS:000292725500011 ER PT J AU Taylor, PC Ellingson, RG Cai, M AF Taylor, Patrick C. Ellingson, Robert G. Cai, Ming TI Seasonal Variations of Climate Feedbacks in the NCAR CCSM3 SO JOURNAL OF CLIMATE LA English DT Article ID GENERAL-CIRCULATION MODELS; RADIATION BUDGET; SENSITIVITY AB This study investigates the annual cycle of radiative contributions to global climate feedbacks. A partial radiative perturbation (PRP) technique is used to diagnose monthly radiative perturbations at the top of atmosphere (TOA) due to CO2 forcing; surface temperature response; and water vapor, cloud, lapse rate, and surface albedo feedbacks using NCAR Community Climate System Model, version 3 (CCSM3) output from a Special Report on Emissions Scenarios (SRES) A1B emissions-scenario-forced climate simulation. The seasonal global mean longwave TOA radiative feedback was found to be minimal. However, the global mean shortwave (SW) TOA cloud and surface albedo radiative perturbations exhibit large seasonality. The largest contributions to the negative SW cloud feedback occur during summer in each hemisphere, marking the largest differences with previous results. Results suggest that intermodel spread in climate sensitivity may occur, partially from cloud and surface albedo feedback seasonality differences. Further, links between the climate feedback and surface temperature response seasonality are investigated, showing a strong relationship between the seasonal climate feedback distribution and the seasonal surface temperature response. C1 [Taylor, Patrick C.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Ellingson, Robert G.; Cai, Ming] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. RP Taylor, PC (reprint author), NASA, Langley Res Ctr, 20 Langley Blvd,Mail Stop 420, Hampton, VA 23681 USA. EM patrick.c.taylor@nasa.gov RI Taylor, Patrick/D-8696-2015 OI Taylor, Patrick/0000-0002-8098-8447 FU Office of Biological and Environmental Research of the U.S. Department of Energy [DE-FEG02-02ER63338] FX The Office of Biological and Environmental Research of the U.S. Department of Energy supported this research under Grant DE-FEG02-02ER63338 as part of the Atmospheric Radiation Measurement Program. We would also like to thank three anonymous reviewers for their useful comments. We acknowledge the Florida State University shared High-Performance Computing facility and staff for contributions to results presented in this paper. NR 24 TC 12 Z9 12 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL PY 2011 VL 24 IS 13 BP 3433 EP 3444 DI 10.1175/2011JCLI3862.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 790LW UT WOS:000292590500018 ER PT J AU Rienecker, MM Suarez, MJ Gelaro, R Todling, R Bacmeister, J Liu, E Bosilovich, MG Schubert, SD Takacs, L Kim, GK Bloom, S Chen, JY Collins, D Conaty, A Da Silva, A Gu, W Joiner, J Koster, RD Lucchesi, R Molod, A Owens, T Pawson, S Pegion, P Redder, CR Reichle, R Robertson, FR Ruddick, AG Sienkiewicz, M Woollen, J AF Rienecker, Michele M. Suarez, Max J. Gelaro, Ronald Todling, Ricardo Bacmeister, Julio Liu, Emily Bosilovich, Michael G. Schubert, Siegfried D. Takacs, Lawrence Kim, Gi-Kong Bloom, Stephen Chen, Junye Collins, Douglas Conaty, Austin Da Silva, Arlindo Gu, Wei Joiner, Joanna Koster, Randal D. Lucchesi, Robert Molod, Andrea Owens, Tommy Pawson, Steven Pegion, Philip Redder, Christopher R. Reichle, Rolf Robertson, Franklin R. Ruddick, Albert G. Sienkiewicz, Meta Woollen, Jack TI MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications SO JOURNAL OF CLIMATE LA English DT Article ID VARIATIONAL STATISTICAL-ANALYSIS; DATA ASSIMILATION SYSTEM; GENERAL-CIRCULATION; REANALYSIS PROJECT; PART I; TROPICAL STRATOSPHERE; RECURSIVE FILTERS; NUMERICAL ASPECTS; RAWINSONDE DATA; TIME-SERIES AB The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA's Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA's Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given. By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF ReAnalysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses in many aspects of climate variability, substantial differences remain in poorly constrained quantities such as precipitation and surface fluxes. These differences, due to variations both in the models and in the analysis techniques, are an important measure of the uncertainty in reanalysis products. It is also found that all reanalyses are still quite sensitive to observing system changes. Dealing with this sensitivity remains the most pressing challenge for the next generation of reanalyses. Production has now caught up to the current period and MERRA is being continued as a near-real-time climate analysis. The output is available online through the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). C1 [Rienecker, Michele M.; Suarez, Max J.; Gelaro, Ronald; Todling, Ricardo; Bacmeister, Julio; Liu, Emily; Bosilovich, Michael G.; Schubert, Siegfried D.; Takacs, Lawrence; Kim, Gi-Kong; Bloom, Stephen; Chen, Junye; Collins, Douglas; Conaty, Austin; Da Silva, Arlindo; Gu, Wei; Koster, Randal D.; Lucchesi, Robert; Molod, Andrea; Owens, Tommy; Pawson, Steven; Pegion, Philip; Redder, Christopher R.; Reichle, Rolf; Ruddick, Albert G.; Sienkiewicz, Meta] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bacmeister, Julio] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Liu, Emily; Takacs, Lawrence; Bloom, Stephen; Collins, Douglas; Conaty, Austin; Gu, Wei; Lucchesi, Robert; Owens, Tommy; Pegion, Philip; Redder, Christopher R.; Ruddick, Albert G.; Sienkiewicz, Meta] Sci Applicat Int Corp, Beltsville, MD USA. [Chen, Junye; Molod, Andrea] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Joiner, Joanna] NASA, Atmospher Chem & Dynam Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Robertson, Franklin R.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Woollen, Jack] NOAA, Natl Ctr Environm Predict, Camp Springs, MD USA. RP Rienecker, MM (reprint author), NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Code 610-1, Greenbelt, MD 20771 USA. EM michele.m.rienecker@nasa.gov RI Chen, Junye/G-4301-2011; da Silva, Arlindo/D-6301-2012; Joiner, Joanna/D-6264-2012; Reichle, Rolf/E-1419-2012; Pegion, Philip/E-5247-2012; Koster, Randal/F-5881-2012; Bosilovich, Michael/F-8175-2012; Pawson, Steven/I-1865-2014; Sienkiewicz, Meta/P-8168-2016 OI da Silva, Arlindo/0000-0002-3381-4030; Koster, Randal/0000-0001-6418-6383; Pawson, Steven/0000-0003-0200-717X; Sienkiewicz, Meta/0000-0002-9267-4568 FU NASA; NASA Center for Climate Simulation (NCCS) FX The GEOS-5 AGCM and DAS development and the MERRA project in the Global Modeling and Assimilation Office were funded by NASA's Modeling, Analysis and Prediction program. That support is gratefully acknowledged. We thank Derek van Pelt for providing some of the figures for this paper, for assembling the online atlas, and for contributing to monitoring MERRA through the production phases. We thank the many others in the GMAO who contributed in various ways to the production and monitoring of MERRA. Dana Ostrenga, of the GES DISC, worked tirelessly with us to have MERRA distributed online. We gratefully acknowledge her contributions with those of her colleagues in the GES DISC. We thank Leopold Haimberger of the University of Vienna for generating new corrections with RAOBCORE V1.4 with the corrected Vaisala RS-80 sondes. Laurie Rokke contributed to the development of the radiative transfer module used for SSU. SSM/I data produced by Remote Sensing Systems were sponsored by the NASA Earth Science MEaSUREs DISCOVER project. Data are available online (www.remss.com). Support from the NASA Center for Climate Simulation (NCCS), providing a production environment for timely delivery of MERRA, was essential to the project. We thank the MERRA User Group who provided invaluable advice during the testing phase of MERRA, helped identify the product suites needed for a broad community of users, and then gave the final approval for production. The user group was Phil Arkin (chair, University of Maryland), Alan Betts (Atmospheric Research), Robert Black (Georgia Institute of Technology), David Bromwich (Ohio State University), John Roads (Scripps Institution of Oceanography), Jose Rodriguez (Goddard Space Flight Center), Steve Running (University of Montana), Paul Stackhouse Jr. (Langley Research Center), Kevin Trenberth (National Center for Atmospheric Research), and Glenn White (NOAA/NCEP). We also thank three anonymous reviewers whose comments helped clarify and improve the manuscript. NR 73 TC 1584 Z9 1609 U1 26 U2 206 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUL PY 2011 VL 24 IS 14 BP 3624 EP 3648 DI 10.1175/JCLI-D-11-00015.1 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 793ZP UT WOS:000292863300006 ER PT J AU Brown, RA Schlegel, TT AF Brown, Ryanne A. Schlegel, Todd T. TI Diagnostic utility of the spatial versus individual planar QRS-T angles in cardiac disease detection SO JOURNAL OF ELECTROCARDIOLOGY LA English DT Article DE Electrocardiogram (ECG); Vectorcardiogram (VCG); Frontal; Horizontal; Sagittal ID CORONARY-ARTERY-DISEASE; HYPERTROPHIC CARDIOMYOPATHY; HEART-DISEASE; ELECTROCARDIOGRAM; POPULATION; MORTALITY; VECTORCARDIOGRAM; ATHEROSCLEROSIS; ADULTS; DEATH AB Introduction: We compared the diagnostic utility of various planar QRS-T angles to that of the spatial QRS-T angle in detecting various cardiac diseases. Materials and Methods: Electrocardiographic (ECG) and derived vectorcardiographic (VCG) data were analyzed from 370 patients with imaging-proven cardiac disease (coronary artery disease, hypertrophic cardiomyopathy, or left ventricular systolic dysfunction) and 210 apparently healthy controls. The areas under the curve (AUC) of the Receiver Operating Characteristic (ROC) for distinguishing cardiac health from disease for each disease condition were statistically compared for the spatial mean QRS-T angle versus the ECG-derived frontal and VCG-derived frontal, left sagittal and horizontal planar QRS-T angles. Results: The AUC ROC of the spatial mean QRS-T angle, which ranged from 0.801 +/- 0.035 to 0.987 +/- 0.007 depending on the specific comparison, was always significantly greater than that of the ECG frontal planar QRS-T angle (range from 0.680 +/- 0.043 to 0.796 +/- 0.045) and usually significantly greater than that of all other QRS-T angles for the diseases studied. Discussion: The spatial mean QRS-T angle is statistically significantly more diagnostically powerful than the ECG-derived frontal planar QRS-T angle and also generally more diagnostically powerful than all VCG-derived planar QRS-T angles in detecting cardiac disease. The ECG frontal planar QRS-T angle should not be considered an adequate diagnostic substitute for the spatial QRS-T angle. Published by Elsevier Inc. C1 [Schlegel, Todd T.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Brown, Ryanne A.] Baylor Coll Med, Houston, TX 77030 USA. [Brown, Ryanne A.] Rice Univ, Jesse H Jones Grad Sch Business, Houston, TX USA. [Brown, Ryanne A.] Natl Space Biomed Res Inst, Houston, TX USA. RP Schlegel, TT (reprint author), NASA, Lyndon B Johnson Space Ctr, Mail Code SK3, Houston, TX 77058 USA. EM todd.t.schlegel@nasa.gov FU National Space Biomedical Research Institute, Houston, TX; Johnson Space Center FX The authors are especially grateful to the patient and healthy subject participants. The authors also thank Linda Byrd, Rori Yager, Greg Poulin and Drs. Brian Arenare, Elin Tragardh-Johansson, Katarina Steding, Michael Ringborn, Stafford Warren, Hakan Arheden, Olle Pahlm, Fredrik Holmqvist, Pyotr Platonov, William McKenna, Michael Bungo, M. Atiar Rahman, Terry Bauch, Reynolds Delgado, Tulio Nunez-Medina, Diego Jugo and Ruben Medina for data collection assistance; and Drs. Walter Kulecz, E. Carl Greco, Jude DePalma and Jonas Carlson for programming assistance. This work was supported by the National Space Biomedical Research Institute, Houston, TX (Summer Student Internship Program) and Johnson Space Center Technology Investment funds. NR 23 TC 7 Z9 7 U1 0 U2 2 PU CHURCHILL LIVINGSTONE INC MEDICAL PUBLISHERS PI PHILADELPHIA PA CURTIS CENTER, INDEPENDENCE SQUARE WEST, PHILADELPHIA, PA 19106-3399 USA SN 0022-0736 J9 J ELECTROCARDIOL JI J. Electrocardiol. PD JUL-AUG PY 2011 VL 44 IS 4 BP 404 EP 409 DI 10.1016/j.jelectrocard.2011.01.001 PG 6 WC Cardiac & Cardiovascular Systems SC Cardiovascular System & Cardiology GA 790GX UT WOS:000292577600002 PM 21353236 ER PT J AU Taskinoglu, ES Bellan, J AF Taskinoglu, Ezgi S. Bellan, Josette TI Subgrid-scale models and large-eddy simulation of oxygen stream disintegration and mixing with a hydrogen or helium stream at supercritical pressure SO JOURNAL OF FLUID MECHANICS LA English DT Article DE turbulence modelling; turbulence simulation; turbulent mixing ID DIRECT NUMERICAL SIMULATIONS; A-PRIORI; EVAPORATING DROPS; SHEAR-LAYER; BINARY; TURBULENCE; NITROGEN; HEPTANE; FLOWS; TRANSITION AB For flows at supercritical pressure, p, the large-eddy simulation (LES) equations consist of the differential conservation equations coupled with a real-gas equation of state, and the equations utilize transport properties depending on the thermodynamic variables. Compared to previous LES models, the differential equations contain not only the subgrid-scale (SGS) fluxes but also new SGS terms, each denoted as a 'correction'. These additional terms, typically assumed null for atmospheric pressure flows, stem from filtering the differential governing equations and represent differences, other than contributed by the convection terms, between a filtered term and the same term computed as a function of the filtered flow field. In particular, the energy equation contains a heat-flux correction (q-correction) which is the difference between the filtered divergence of the molecular heat flux and the divergence of the molecular heat flux computed as a function of the filtered flow field. We revisit here a previous a priori study where we only had partial success in modelling the q-correction term and show that success can be achieved using a different modelling approach. This a priori analysis, based on a temporal mixing-layer direct numerical simulation database, shows that the focus in modelling the q-correction should be on reconstructing the primitive variable gradients rather than their coefficients, and proposes the approximate deconvolution model (ADM) as an effective means of flow field reconstruction for LES molecular heat-flux calculation. Furthermore, an a posteriori study is conducted for temporal mixing layers initially containing oxygen (O) in the lower stream and hydrogen (H) or helium (He) in the upper stream to examine the benefit of the new model. Results show that for any LES including SGS-flux models (constant-coefficient gradient or scale-similarity models; dynamic-coefficient Smagorinsky/Yoshizawa or mixed Smagorinsky/Yoshizawa/gradient models), the inclusion of the q-correction in LES leads to the theoretical maximum reduction of the SGS molecular heat-flux difference; the remaining error in modelling this new subgrid term is thus irreducible. The impact of the q-correction model first on the molecular heat flux and then on the mean, fluctuations, second-order correlations and spatial distribution of dependent variables is also demonstrated. Discussions on the utilization of the models in general LES are presented. C1 [Taskinoglu, Ezgi S.; Bellan, Josette] CALTECH, Dept Mech Engn, Pasadena, CA 91125 USA. [Bellan, Josette] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bellan, J (reprint author), CALTECH, Dept Mech Engn, Pasadena, CA 91125 USA. EM josette.bellan@jpl.nasa.gov FU Air Force Office of Scientific Research; National Aeronautics and Space Administration FX This work was conducted at the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech) and sponsored by the Air Force Office of Scientific Research from the program of Dr Julian Tishkoff under an agreement with the National Aeronautics and Space Administration, and of an AFOSR Grant to Caltech under the programs of Drs Mitat Birkan, Douglas Talley (of Edwards Air Force Research Laboratories - AFRL), Timothy Edwards and Campbell Carter (both of Wright Patterson AFRL). We would like to thank Dr Nora Okong'o for interesting discussions. The computational resources were provided by the JPL and NASA AMES Supercomputing Center. NR 54 TC 9 Z9 9 U1 0 U2 6 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD JUL PY 2011 VL 679 BP 156 EP 193 DI 10.1017/jfm.2011.130 PG 38 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 791DX UT WOS:000292644600007 ER PT J AU Yildiz, Y Kolmanovsky, I AF Yildiz, Yildiray Kolmanovsky, Ilya TI Stability Properties and Cross-Coupling Performance of the Control Allocation Scheme CAPIO SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article; Proceedings Paper CT AIAA Infotech at Aerospace Conference CY APR 20-22, 2010 CL Atlanta, GA ID RATE-SATURATING ACTUATORS; DESIGN AB This paper is concerned with further development of a recently proposed algorithm for control allocation to recover from pilot-induced oscillations (CAPIO). When actuators are rate-saturated due to either an aggressive pilot command, high gain of the flight control system, or some anomaly in the system, the effective time delay in the control loop may increase. This effective time-delay increase manifests itself as a phase shift between the commanded and actual signals and can instigate pilot-induced oscillations. CAPIO reduces the effective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. Theoretical stability analysis results are presented for a scalar input-signal case. Simulation results for an unstable aircraft with cross-coupling and multiple control channels demonstrate the potential of CAPIO serving as an effective pilot-induced oscillation handler in adverse conditions. C1 [Yildiz, Yildiray] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Kolmanovsky, Ilya] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. RP Yildiz, Y (reprint author), NASA, Ames Res Ctr, Mail Stop 269-1, Moffett Field, CA 94035 USA. EM yildiray.yildiz@nasa.gov; ilya@umich.edu NR 25 TC 5 Z9 5 U1 0 U2 1 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD JUL-AUG PY 2011 VL 34 IS 4 BP 1190 EP 1196 DI 10.2514/1.50310 PG 7 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 792OV UT WOS:000292757300020 ER PT J AU Yan, H Gong, Q Park, CD Ross, IM D'Souza, CN AF Yan, Hui Gong, Qi Park, Chan D. Ross, I. Michael D'Souza, Christopher N. TI High-Accuracy Trajectory Optimization for a Trans-Earth Lunar Mission SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article ID PSEUDOSPECTRAL METHOD; SINGULAR ARCS; LOW-THRUST; SEQUENCE; MODEL AB The trajectory optimization of a spacecraft subject to the gravitational effects of the moon, Earth, and sun are considered. The problem is how to achieve Earth-interface conditions from a low lunar orbit. Practical constraints of maximum thrust, fuel budget, and flight time generates a constrained, nonautonomous, nonlinear optimal control problem. Severe constraints on the fuel budget combined with high-accuracy demands on the endpoint conditions necessitate a high-accuracy solution to the trajectory optimization problem. The problem is first solved using the standard Legendre pseudospectral method. The optimality of the solution is verified by an application of the covector mapping principle. It is shown that the thrust structure consists of three finite burns with nearly linear steering-angle time histories. A singular arc is detected and is interpreted as a singular plane change maneuver. The Bellman pseudospectral method is then employed for mesh refinement to improve the accuracy of the solution. C1 [Yan, Hui; Gong, Qi] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA. [Park, Chan D.; Ross, I. Michael] USN, Postgrad Sch, Dept Mech & Aerosp Engn, Monterey, CA 93943 USA. [D'Souza, Christopher N.] NASA, Lyndon B Johnson Space Ctr, EG6, Aerosci & Flight Mech Div, Houston, TX 77058 USA. RP Yan, H (reprint author), Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA. FU U.S. Naval Postgraduate School [N00244-10-1-0049] FX We gratefully acknowledge funding for this research provided in part by U.S. Naval Postgraduate School under Grant N00244-10-1-0049. We would like to thank one of the anonymous reviewers for independently validating our results. NR 38 TC 9 Z9 10 U1 1 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD JUL-AUG PY 2011 VL 34 IS 4 BP 1219 EP 1227 DI 10.2514/1.49237 PG 9 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 792OV UT WOS:000292757300023 ER PT J AU Lee, HT Romer, TF AF Lee, Hak-Tae Romer, Thomas F. TI Automating the Process of Airport Surface Node-Link Model Generation SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article; Proceedings Paper CT AIAA Modeling and Simulation Technologies Conference and Exhibit CY AUG 18-21, 2008 CL Honolulu, HI ID IMAGES AB Currently, few detailed airport surface models for air transportation system simulation and analysis exist, because the models are complex to develop and maintain. An improved method of generating detailed models is needed to expand the set of detailed airport surface and terminal airspace models. In this paper, an efficient means to automate the procedures to develop airport surface node-link graph models is proposed. Node-link graphs were created by connecting the centroids of the polygons from geographic information system data. A principal axis-based algorithm was formulated to identify and divide complex polygons. The graph was further improved by adjusting node positions, using the known centerlines from rectangular polygons and removing redundant nodes and links. The procedures were tested on 79 United States airports and proved to be robust, accurate, and efficient. C1 [Lee, Hak-Tae] Univ Calif Santa Cruz, Moffett Field, CA 94035 USA. [Romer, Thomas F.] NASA, Ames Res Ctr, Wind Tunnel Operat Branch, Moffett Field, CA 94035 USA. RP Lee, HT (reprint author), Univ Calif Santa Cruz, Mail Stop 210-8, Moffett Field, CA 94035 USA. NR 14 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD JUL-AUG PY 2011 VL 34 IS 4 BP 1228 EP 1238 DI 10.2514/1.49184 PG 11 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 792OV UT WOS:000292757300024 ER PT J AU Dlugach, JM Mishchenko, MI Mackowski, DW AF Dlugach, Janna M. Mishchenko, Michael I. Mackowski, Daniel W. TI Numerical simulations of single and multiple scattering by fractal ice clusters SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT 12th International Conference on Electromagnetic and Light Scattering by Nonspherical Particles - Theory, Measurements, and Applications CY JUN 28-JUL 02, 2010 CL Helsinki, FINLAND DE Electromagnetic scattering; Radiative transfer; Coherent backscattering; Fractal cluster; Circular polarization ratio ID SATURNS RINGS; LIGHT-SCATTERING; SOOT PARTICLES; T-MATRIX; RADAR; ABSORPTION; MODEL AB We consider the scattering model in the form of a vertically and horizontally homogeneous particulate slab of an arbitrary optical thickness composed of widely separated fractal aggregates built of small spherical ice monomers. The aggregates are generated by applying three different approaches, including simulated cluster-cluster aggregation (CCA) and diffusion-limited aggregation (DLA) procedures. Having in mind radar remote-sensing applications, we report and analyze the results of computations of the backscattering circular polarization ratio obtained using efficient superposition T-matrix and vector radiative-transfer codes. The computations have been performed at a wavelength of 12.6 cm for fractal aggregates with the following characteristics: monomer refractive index m=1.78+i0.003, monomer radius r=1 cm, monomer packing density p=0.2, overall aggregate radii R in the range 4 <= R <= 10 cm and fractal dimensions D-f=2.5 and 3. We show that for aggregates generated with simulated CCA and DLA procedures, the respective values of the backscattering circular polarization ratio differ weakly for D-f=2.5, but the differences can increase somewhat for D-f-3, especially in case of an optically semi-infinite medium. For aggregates with a spheroidal overall shape, the dependence of the circular polarization ratio on the cluster morphology can be quite significant and increases with increasing the aspect ratio of the circumscribing spheroid. Published by Elsevier Ltd. C1 [Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Dlugach, Janna M.] Natl Acad Sci Ukraine, Main Astron Observ, UA-03680 Kiev, Ukraine. [Mackowski, Daniel W.] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM mmishchenko@giss.nasa.gov RI Mackowski, Daniel/K-1917-2013; Mishchenko, Michael/D-4426-2012 NR 25 TC 4 Z9 4 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2011 VL 112 IS 11 SI SI BP 1864 EP 1870 DI 10.1016/j.jqsrt.2011.01.038 PG 7 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 789RL UT WOS:000292533900028 ER PT J AU Opila, EJ Serra, JL AF Opila, Elizabeth J. Serra, Jessica L. TI Oxidation of Carbon Fiber-Reinforced Silicon Carbide Matrix Composites at Reduced Oxygen Partial Pressures SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID WOVEN C/SIC COMPOSITES; HIGH-TEMPERATURE; PASSIVE TRANSITION; ATOMIC OXYGEN; DEGREES-C; KINETICS; MECHANISMS; GRAPHITE; BEHAVIOR; MODEL AB Carbon fibers (Polyacrylonitrile-derived T-300) and T-300 carbon fiber-reinforced silicon carbide composites (C/SiC) were oxidized in flowing 0.1 MPa reduced oxygen partial pressure environments (50% O(2), 5% O(2), 0.5% O(2), and 0.1% O(2) in argon). Experiments were conducted at temperatures of 8161, 1149 degrees, 1343 degrees, and 1538 degrees C. The oxidation kinetics were monitored using thermogravimetric analysis. T-300 fibers were completely oxidized for times between 0.6 and 325 h. C/SiC coupons were oxidized for either 25 or 100 h. Fiber oxidation rates had an oxygen partial pressure dependence with a power-law exponent close to one but were only weakly dependent on temperature. Fiber oxidation kinetics were consistent with gas-phase diffusion control at these temperatures. The C/SiC coupon oxidation kinetics showed some variability, attributed to differences in the number and width of cracks in the SiC seal coat. Oxidation of the carbon fibers dominated the coupon oxidation behavior. For C/SiC coupons, low temperatures and high oxygen pressures resulted in the most rapid consumption of the carbon fibers. At higher temperatures, the lower oxidation rates were attributed to crack closure due to SiC thermal expansion, rather than oxidation of SiC. At the highest temperature and lowest oxygen partial pressure, active oxidation of SiC was observed. C1 [Opila, Elizabeth J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Serra, Jessica L.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Opila, EJ (reprint author), Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. EM ejo4n@eservices.virginia.edu FU NASA Aeronautics Research Mission Directorate [NRA NNL07AA20C] FX This work was financially supported by the NASA Aeronautics Research Mission Directorate, Fundamental Aeronautics Program on Hypersonics under NRA NNL07AA20C "Integrated Durability Model for Ceramic Matrix Composite Components'' awarded to Materials Research & Design Inc. NR 27 TC 11 Z9 11 U1 2 U2 27 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUL PY 2011 VL 94 IS 7 BP 2185 EP 2192 DI 10.1111/j.1551-2916.2010.04376.x PG 8 WC Materials Science, Ceramics SC Materials Science GA 790RJ UT WOS:000292606600038 ER PT J AU Zeng, XP Tao, WK Matsui, T Xie, SC Lang, S Zhang, MH Starr, DO Li, XW AF Zeng, Xiping Tao, Wei-Kuo Matsui, Toshihisa Xie, Shaocheng Lang, Stephen Zhang, Minghua Starr, David O'C Li, Xiaowen TI Estimating the Ice Crystal Enhancement Factor in the Tropics SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID RESOLVING MODEL SIMULATIONS; CUMULUS CLOUDS; TOGA COARE; PARTICLE CONCENTRATIONS; EXPLICIT MICROPHYSICS; ATMOSPHERIC RADIATION; NUCLEATION PROCESSES; CONVECTIVE SYSTEMS; RADAR OBSERVATIONS; CUMULIFORM CLOUDS AB The ice crystal enhancement (IE) factor, defined as the ratio of the ice crystal to ice nuclei (IN) number concentrations for any particular cloud condition, is needed to quantify the contribution of changes in IN to global warming. However, the ensemble characteristics of IE are still unclear. In this paper, a representation of the IE factor is incorporated into a three-ice-category microphysical scheme for use in long-term cloud-resolving model (CRM) simulations. Model results are compared with remote sensing observations, which suggest that, absent a physically based consideration of how IE comes about, the IE factor in tropical clouds is about 10 3 times larger than that in midlatitudinal ones. This significant difference in IE between the tropics and middle latitudes is consistent with the observation of stronger entrainment and detrainment in the tropics. In addition, the difference also suggests that cloud microphysical parameterizations depend on spatial resolution (or subgrid turbulence parameterizations within CRMs). C1 [Zeng, Xiping; Tao, Wei-Kuo; Matsui, Toshihisa; Lang, Stephen; Starr, David O'C; Li, Xiaowen] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Zeng, Xiping; Matsui, Toshihisa; Li, Xiaowen] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Xie, Shaocheng] Lawrence Livermore Natl Lab, Div Atmospher Sci, Livermore, CA USA. [Lang, Stephen] Sci Syst & Applicat Inc, Lanham, MD USA. [Zhang, Minghua] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. RP Zeng, XP (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, C423,Bldg 33,Mail Code 613-1, Greenbelt, MD 20771 USA. EM xiping.zeng@nasa.gov RI Xie, Shaocheng/D-2207-2013 OI Xie, Shaocheng/0000-0001-8931-5145 FU Office of Science (BER), U.S. Department of Energy/Atmospheric System Research (DOE/ASR) [DE-AI02-04ER63755, -09ER64753]; NASA MAP [NNX09AJ46G]; NASA; Stony Brook University; U.S. Department of Energy/Office of Science, Biological and Environmental Research by the University of California Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This research was supported by the Office of Science (BER), U.S. Department of Energy/Atmospheric System Research (DOE/ASR) Interagency Agreement DE-AI02-04ER63755 and -09ER64753. It was also supported by the NASA MAP project under Grant NNX09AJ46G and the NASA and DOE Atmospheric System Research Programs at the Stony Brook University. Dr. Xie, working at LLNL, was supported under the auspices of the U.S. Department of Energy/Office of Science, Biological and Environmental Research by the University of California Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors greatly appreciate the anonymous reviewers for their critical yet constructive comments. The authors acknowledge the NASA Ames Research Center and the NASA Goddard Space Flight Center for the computer time used in this research. This paper is dedicated to Dr. Joanne Simpson, who passed away on 4 March 2010. Dr. Simpson was the leader of the Goddard Mesoscale Dynamics and Modeling group from 1987 to 2004. She taught the authors (W.-K. Tao, S. Lang, X. Li, and X. Zeng) to appreciate the value of using observations to validate simulated cloud processes. NR 67 TC 12 Z9 12 U1 2 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD JUL PY 2011 VL 68 IS 7 BP 1424 EP 1434 DI 10.1175/2011JAS3550.1 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 791BH UT WOS:000292634300002 ER PT J AU Witek, ML Teixeira, J Matheou, G AF Witek, Marcin L. Teixeira, Joao Matheou, Georgios TI An Integrated TKE-Based Eddy Diffusivity/Mass Flux Boundary Layer Closure for the Dry Convective Boundary Layer SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID SHALLOW CUMULUS CONVECTION; MIXING-LENGTH FORMULATION; PART I; INCOMPRESSIBLE-FLOW; PARAMETERIZATION; MODEL; TURBULENCE; SIMULATIONS; SURFACE; ATMOSPHERE AB This study presents a new approach to the eddy diffusivity/mass flux (EDMF) framework for the modeling of convective boundary layers. At the root of EDMF lies a decomposition of turbulent transport mechanisms into strong ascending updrafts and smaller-scale turbulent motions. The turbulent fluxes can be therefore described using two conventional approaches: mass flux (MF) for the organized thermals and eddy diffusivity (ED) for the remaining turbulent field. Since the intensities of both MF and ED transports depend on the kinetic energy of the turbulent motions, it seems reasonable to formulate an EDMF framework based on turbulent kinetic energy (TKE). Such an approach allows for more physical and less arbitrary formulations of parameters in the model. In this study the EDMF-TKE coupling is achieved through the use of (i) a new parameterization for the lateral entrainment coefficient epsilon and (ii) theMF contribution to the buoyancy source of TKE. Some other important features of the EDMF parameterization presented here include a revised mixing length formulation and Monin-Obukhov stability scaling for the surface layer. The scheme is implemented in a one-dimensional (1D) model. Several cases of dry convective boundary layers (CBL) with different surface sensible heat fluxes in the free-convection limit are investigated. Results are compared to large-eddy simulation (LES). Good agreement between LES and the 1D model is achieved with respect to mean profiles, boundary layer evolution, and updraft characteristics. Some disagreements between the models are found to most likely relate to deficiencies in the TKE simulation in the 1D model. Comparison with other previously established epsilon parameterizations shows that the new TKE-based formulation leads to equally accurate, and in many respects better, simulation of the CBL. The encouraging results obtained with the proposed EDMF framework indicate that full integration of EDMF with higher-order closures is possible and can further improve boundary layer simulations. C1 [Witek, Marcin L.; Teixeira, Joao; Matheou, Georgios] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Witek, ML (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM marcin.l.witek@jpl.nasa.gov RI Witek, Marcin/G-9440-2016 FU National Aeronautics and Space Administration; Office of Naval Research [N0001408IP20064]; NASA MAP FX We thank Bjorn Stevens for providing and assisting us with the UCLA-LES code. We would also like to thank the Center for Advanced Computing Research at Caltech for technical assistance. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors acknowledge the support provided by the Office of Naval Research, Marine Meteorology Program under award N0001408IP20064 and the NASA MAP Program. NR 52 TC 10 Z9 11 U1 0 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD JUL PY 2011 VL 68 IS 7 BP 1526 EP 1540 DI 10.1175/2011JAS3548.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 791BH UT WOS:000292634300010 ER PT J AU Gilliam, AE Mckay, CP AF Gilliam, Ashley E. McKay, Christopher P. TI Titan under a red dwarf star and as a rogue planet: requirements for liquid methane SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Titan; Liquid methane; Red dwarf stars; Habitability; Gliese 581 ID ATMOSPHERE; LIFE; MODEL; ABUNDANCES; SPACE; EARTH AB Titan has a surface temperature of 94 K and a surface pressure of 1.4 atmospheres. These conditions make it possible for liquid methane solutions to be present on the surface. Here, we consider how Titan could have liquid methane while orbiting around an M4 red dwarf star, and a special case of Titan orbiting the red dwarf star Gliese 581. Because light from a red dwarf star has a higher fraction of infrared than the Sun, more of the starlight will reach the surface of Titan because its atmospheric haze is more transparent to infrared wavelengths. If Titan was placed at a distance from a red dwarf star such that it received the same average flux as it receives from the Sun, we calculate the increased infrared fraction, which will warm surface temperatures by an additional similar to 10 K. Compared to the Sun, red dwarf stars have less blackbody ultraviolet light but can have more Lyman alpha and particle radiation associated with flares. Thus depending on the details, the haze production may be much higher or much lower than for the current Titan. With the haze reduced by a factor of 100, Titan would have a surface temperature of 94 K at a distance of 0.23 AU from an M4 star and at a distance of 1.66 AU, for Gliese 581. If the haze is increased by a factor of 100 the distances become 0.08 and 0.6 AU for the M4-star and Gliese 581, respectively. As a rogue planet, with no incident stellar flux, Titan would need 1.6 W/m(2) of geothermal heat to maintain its current surface temperature, or an atmospheric opacity of 20 x its present amount with 0.1 W/m(2) of geothermal heat. Thus Titan-like worlds beyond our solar system may provide environment supporting surface liquid methane. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Gilliam, Ashley E.; McKay, Christopher P.] NASA Ames Res Ctr, Div Space Sci, Washington, DC USA. [Gilliam, Ashley E.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. RP Gilliam, AE (reprint author), NASA Ames Res Ctr, Div Space Sci, Washington, DC USA. EM agilliam@ucsc.edu; chris.mckay@nasa.gov FU NASA FX A. E. Gilliam thanks the NASA USRP for support along with Adriane Steinacker and two reviewers for useful comments and suggestions. NR 31 TC 3 Z9 3 U1 1 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUL PY 2011 VL 59 IS 9 BP 835 EP 839 DI 10.1016/j.pss.2011.03.012 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 792EA UT WOS:000292722100003 ER PT J AU Michael, M Tripathi, SN Arya, P Coates, A Wellbrock, A Young, DT AF Michael, Marykutty Tripathi, Sachchida N. Arya, Pratima Coates, Andrew Wellbrock, Anne Young, David T. TI High-altitude charged aerosols in the atmosphere of Titan SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Titan; Aerosol; Ionosphere; Heavy ion; Charging ID ELECTRICAL-CONDUCTIVITY; SPECTROMETER; ION; IONOSPHERE; MESOSPHERE; PLASMA; MASS AB Observations by several instruments onboard the Cassini spacecraft revealed the existence of heavy hydrocarbon and nitrile species with masses of several thousand atomic mass units in the ionosphere of Titan. These very large molecules are in fact aerosols. The goal of this paper is to compute the concentrations of the charged aerosols in the upper atmosphere (950-1200 km) of Titan. The charging of these aerosols has been studied using the charge balance equations, where positive ions, negative ions, electrons, neutral and charged aerosols are included. Number concentrations of charged aerosols are compared with those observed by the Cassini instruments. The present work estimates the aerosol mass density as 1-10 kg/m(3), which is within the predicted range. The results show that the aerosols must be smaller than 10 nm in order to have reasonable agreement with observations by the Cassini Plasma Spectrometer. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Michael, Marykutty; Tripathi, Sachchida N.; Arya, Pratima] Indian Inst Technol, Dept Civil Engn, Kanpur 208016, Uttar Pradesh, India. [Tripathi, Sachchida N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Coates, Andrew; Wellbrock, Anne] UCL, Mullard Space Sci Lab, London, England. [Young, David T.] SW Res Inst, Space Sci & Engn Div, San Antonio, TX USA. RP Michael, M (reprint author), Indian Inst Technol, Dept Civil Engn, Kanpur 208016, Uttar Pradesh, India. EM mary@iitk.ac.in RI Coates, Andrew/C-2396-2008; Tripathi, Sachchida/J-4840-2016 OI Coates, Andrew/0000-0002-6185-3125; FU DST; IFCPAR; NASA at Goddard Space Flight Center FX This work was supported by grants from DST and IFCPAR Programmes. SNT was supported in part by appointment to the NASA post doctoral program at Goddard Space Flight Center. NR 39 TC 15 Z9 16 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUL PY 2011 VL 59 IS 9 BP 880 EP 885 DI 10.1016/j.pss.2011.03.010 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 792EA UT WOS:000292722100008 ER PT J AU Hada, M Zhang, Y Feiveson, A Cucinotta, FA Wu, HL AF Hada, Megumi Zhang, Ye Feiveson, Alan Cucinotta, Francis A. Wu, Honglu TI Association of Inter- and Intrachromosomal Exchanges with the Distribution of Low- and High-LET Radiation-Induced Breaks in Chromosomes SO RADIATION RESEARCH LA English DT Article ID MAMMARY EPITHELIAL-CELLS; CLUSTERED DNA LESIONS; HUMAN-LYMPHOCYTES; IONIZING-RADIATION; ABERRATION BREAKPOINTS; NONRANDOM DISTRIBUTION; BOMB SURVIVORS; MBAND ANALYSIS; FISH ANALYSIS; X-CHROMOSOME AB To study the effects of low- and high-linear energy transfer (LET) radiation on break locations within a chromosome, we exposed human epithelial cells in vitro to Cs-137 gamma rays at both low and high dose rates, secondary neutrons at a low dose rate, and 600 MeV/u iron ions at a high dose rate. Breakpoints were identified using multicolor banding in situ hybridization (mBAND), which paints chromosome 3 in 23 different colored bands. For all four radiation scenarios, breakpoint distributions were found to be different from the predicted distribution based on band width. Detailed analysis of chromosome fragment ends involved in inter- or intrachromosomal exchanges revealed that the distributions of fragment ends participating in interchromosomal exchanges were similar between the two low-LET radiation dose rates and between the two high-LET radiation types, but the distributions were less similar between low- and high-LET radiations. For fragment ends participating in intrachromosomal exchanges, the distributions for all four radiation scenarios were similar, with clusters of breaks found in three regions. Analysis of the locations of the two fragment ends in chromosome 3 that joined to form an intrachromosomal exchange demonstrated that two breaks with a greater genomic separation can be more likely to rejoin than two closer breaks, indicating that chromatin folding can play an important role in the rejoining of chromosome breaks. Comparison of the breakpoint distributions to the distributions of genes indicated that the gene-rich regions do not necessarily contain more breaks. In general, breakpoint distributions depend on whether a chromosome fragment joins with another fragment in the same chromosome or with a fragment from a different chromosome. (C) 2011 by Radiation Research Society C1 [Wu, Honglu] NASA, Radiat Biophys Lab, Human Adaptat & Countermeasures Div, Johnson Space Ctr, Houston, TX 77058 USA. [Hada, Megumi] Univ Space Res Assoc, Houston, TX USA. [Zhang, Ye] Wyle Integrated Sci & Engn Grp, Houston, TX USA. RP Wu, HL (reprint author), NASA, Radiat Biophys Lab, Human Adaptat & Countermeasures Div, Johnson Space Ctr, Houston, TX 77058 USA. EM honglu.wu-1@nasa.gov FU National Aeronautics and Space Administration (NASA) FX This work was supported by the National Aeronautics and Space Administration (NASA) Space Radiation Health Program. We thank all the personnel at NASA Space Radiation Laboratory at Brookhaven National Laboratory, especially Dr. Adam Resek for the support in exposure of the samples to iron ions. We also thank Drs. Brad Gersey, Prem Saganti and Rick Wilkins of Prairie View A&M University and personnel at LANSCE for the invaluable assistance in neutron exposures. NR 65 TC 5 Z9 5 U1 3 U2 4 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 EI 1938-5404 J9 RADIAT RES JI Radiat. Res. PD JUL PY 2011 VL 176 IS 1 BP 25 EP 37 DI 10.1667/RR2433.1 PG 13 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 788JT UT WOS:000292441900004 PM 21466383 ER PT J AU Cucinotta, FA Chappell, LJ AF Cucinotta, Francis A. Chappell, Lori J. TI Updates to Astronaut Radiation Limits: Radiation Risks for Never-Smokers SO RADIATION RESEARCH LA English DT Article ID ATOMIC-BOMB SURVIVORS; LUNG-CANCER; SPACE EXPLORATION; HODGKINS-DISEASE; POOLED ANALYSIS; BREAST-CANCER; SOLID CANCER; MORTALITY; SMOKING; DOSIMETRY AB New epidemiology assessments of the life span study (LSS) of the atomic bomb survivors in Japan and of other exposed cohorts have been made by the U.S. National Academy of Sciences, the United Nations Committee on the Effects of Atomic Radiation, and the Radiation Research Effects Foundation in Japan. The National Aeronautics and Space Administration (NASA) uses a 3% risk of exposure-induced death (REID) as a basis for setting age- and gender-specific dose limits for astronauts. NASA's dose limits originate from the report of the National Council on Radiation Protection and Measurements (NCRP) in the year 2000 based on analysis of older epidemiology data. We compared the results of the recent analysis of the LSS to the earlier risk projections from the NCRP. Using tissue-specific, incidence-based risk transfer from the LSS data to a U.S. population to project REID values leads to higher risk and reduced dose limits for older astronauts (>40 years) compared to earlier models that were based on mortality risk transfer. Because astronauts and many other individuals should be considered as healthy workers, including never-smokers free of lifetime use of tobacco, we considered possible variations in risks and dose limits that would occur due to the reference population used for estimates. After adjusting cancer rates to remove smoking effects, radiation risks for lung and total cancer were estimated using a mixture model, with equal weights for additive and multiplicative transfer, to be 20% and 30% lower for males and females, respectively, for never-smokers compared to the average U.S. population. We recommend age- and gender-specific dose limits based on incidence-based risk transfer for never-smokers that could be used by NASA. Our analysis illustrates that gaining knowledge to improve transfer models, which entail knowledge of cancer initiation and promotion effects, could significantly reduce uncertainties in risk projections. (C) 2011 by Radiation Research Society C1 [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Chappell, Lori J.] USRA Div Life Sci, Houston, TX 77058 USA. RP Cucinotta, FA (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM Francis.A.Cucinotta@nasa.gov FU NASA FX Funding for this study was through the NASA Space Radiation Program. NR 43 TC 15 Z9 15 U1 0 U2 4 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUL PY 2011 VL 176 IS 1 BP 102 EP 114 DI 10.1667/RR2540.1 PG 13 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 788JT UT WOS:000292441900011 PM 21574861 ER PT J AU Atli, KC Karaman, I Noebe, RD Garg, A Chumlyakov, YI Kireeva, IV AF Atli, K. C. Karaman, I. Noebe, R. D. Garg, A. Chumlyakov, Y. I. Kireeva, I. V. TI Shape memory characteristics of Ti49.5Ni25Pd25Sc0.5 high-temperature shape memory alloy after severe plastic deformation SO ACTA MATERIALIA LA English DT Article DE Martensitic transformation; High-temperature shape memory alloys; Equal channel angular extrusion; Severe plastic deformation; Dimensional stability ID CHANNEL ANGULAR EXTRUSION; THERMOELASTIC MARTENSITIC TRANSFORMATIONS; ULTRAFINE-GRAINED METALS; PHASE-TRANSFORMATIONS; CYCLIC REVERSIBILITY; TITANIUM NICKELIDE; SITE PREFERENCE; HEAT-TREATMENT; NITI ALLOY; BEHAVIOR AB A Ti49.5Ni25Pd25Sc0.5 high-temperature shape memory alloy is thermomechanically processed to obtain enhanced shape-memory characteristics: in particular, dimensional stability upon repeated thermal cycles under constant loads. This is accomplished using severe plastic deformation via equal channel angular extrusion (ECAE) and post-processing annealing heat treatments. The results of the thermomechanical experiments reveal that the processed materials display enhanced shape memory response, exhibiting higher recoverable transformation and reduced irrecoverable strain levels upon thermal cycling compared with the unprocessed material. This improvement is attributed to the increased strength and resistance of the material against defect generation upon phase transformation as a result of the microstructural refinement due to the ECAE process, as supported by the electron microscopy observations. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Atli, K. C.; Karaman, I.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Karaman, I.] Texas A&M Univ, Mat Sci & Engn Program, College Stn, TX 77843 USA. [Noebe, R. D.; Garg, A.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Chumlyakov, Y. I.; Kireeva, I. V.] Siberian Phys Tech Inst, Tomsk 634050, Russia. RP Karaman, I (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM ikaraman@tamu.edu RI Karaman, Ibrahim/E-7450-2010; yuriy, chumlyakov/C-6033-2009; Atli, Kadri/D-6978-2013; Kireeva, Irina/E-1817-2014; Chumlyakov, Yuriy/R-6496-2016 OI Karaman, Ibrahim/0000-0001-6461-4958; Atli, Kadri/0000-0002-4807-2113; FU NASA [NNX07AB56A]; NASA Glenn Research Center FX This study was supported by the NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project, under API Janet Hurst, through Cooperative Agreement No. NNX07AB56A. The authors wish to thank Dr. Ray Guillemette of Texas A&M University Geology & Geophysics Department for the microprobe analyses and the Shape Memory Alloy and Active Structures Group at NASA Glenn Research Center for insightful discussions and support. NR 53 TC 27 Z9 28 U1 2 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUL PY 2011 VL 59 IS 12 BP 4747 EP 4760 DI 10.1016/j.actamat.2011.04.009 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 788DV UT WOS:000292426500002 ER PT J AU Walker, SA Slaba, TC Clowdsley, MS Blattnig, SR AF Walker, Steven A. Slaba, Tony C. Clowdsley, Martha S. Blattnig, Steve R. TI Investigating material approximations in spacecraft radiation analysis SO ACTA ASTRONAUTICA LA English DT Article DE Equivalent materials; Material reordering; Material scaling; Range scaling; Space radiation AB During the design process, the configuration of space vehicles and habitats changes frequently and the merits of design changes must be evaluated. Methods for rapidly assessing astronaut exposure are therefore required. Typically, approximations are made to simplify the geometry and speed-up the evaluation of each design. In this work, the error associated with two common approximations used to simplify space radiation vehicle analyses, scaling into equivalent materials and material reordering, are investigated. Over thirty materials commonly found in spacesuits, vehicles, and human bodies are considered. Each material is placed in a material group (aluminum, polyethylene, or tissue), and the error associated with scaling and reordering was quantified for each material. Of the scaling methods investigated, range scaling is shown to be the superior method, especially for shields less than 30 g/cm(2) exposed to a solar particle event. More complicated, realistic slabs are examined to quantify the separate and combined effects of using equivalent materials and reordering. The error associated with material reordering is shown to be at least comparable to, if not greater than, the error associated with range scaling. In general, scaling and reordering errors were found to grow with the difference between the average nuclear charge of the actual material and average nuclear charge of the equivalent material. Based on this result, a different set of equivalent materials (titanium, aluminum, and tissue) are substituted for the commonly used aluminum, polyethylene, and tissue. The realistic cases are scaled and reordered using the new equivalent materials, and the reduced error is shown. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Walker, Steven A.] Old Dominion Univ, Norfolk, VA 23529 USA. [Slaba, Tony C.; Clowdsley, Martha S.; Blattnig, Steve R.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Walker, SA (reprint author), Old Dominion Univ, Norfolk, VA 23529 USA. EM steven.a.walker@nasa.gov NR 7 TC 2 Z9 2 U1 2 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD JUL-AUG PY 2011 VL 69 IS 1-2 BP 6 EP 17 DI 10.1016/j.actaastro.2011.02.013 PG 12 WC Engineering, Aerospace SC Engineering GA 780HK UT WOS:000291844900003 ER PT J AU Billot, N Schisano, E Pestalozzi, M Molinari, S Noriega-Crespo, A Mottram, JC Anderson, LD Elia, D Stringfellow, G Thompson, MA Polychroni, D Testi, L AF Billot, N. Schisano, E. Pestalozzi, M. Molinari, S. Noriega-Crespo, A. Mottram, J. C. Anderson, L. D. Elia, D. Stringfellow, G. Thompson, M. A. Polychroni, D. Testi, L. TI CLUSTERING PROPERTIES OF FAR-INFRARED SOURCES IN Hi-GAL SCIENCE DEMONSTRATION PHASE FIELDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE H II regions; stars: formation; stars: protostars; submillimeter: ISM; submillimeter: stars ID TRIGGERED STAR-FORMATION; EMBEDDED CLUSTERS; MOLECULAR CLOUDS; FORMING REGIONS; MASS STARS; SPITZER; EVOLUTION; TAURUS AB We use a minimum spanning tree (MST) algorithm to characterize the spatial distribution of Galactic far-IR sources and derive their clustering properties. We aim to reveal the spatial imprint of different types of star-forming processes, e. g., isolated spontaneous fragmentation of dense molecular clouds, or events of triggered star formation around H II regions, and highlight global properties of star formation in the Galaxy. We plan to exploit the entire Herschel infrared GALactic (Hi-GAL) survey of the inner Galactic plane to gather significant statistics on the clustering properties of star-forming regions and to look for possible correlations with source properties such as mass, temperature, or evolutionary stage. In this paper, we present a pilot study based on the two 2 degrees x 2 degrees fields centered at longitudes l = 30 degrees and l = 59 degrees obtained during the science demonstration phase of the Herschel mission. We find that over half of the clustered sources are associated with H II regions and infrared dark clouds. Our analysis also reveals a smooth chromatic evolution of the spatial distribution where sources detected at short wavelengths, likely protostars surrounded by warm circumstellar material emitting in the far-infrared, tend to be clustered in dense and compact groups around H II regions while sources detected at long wavelengths, presumably cold and dusty density enhancements of the ISM emitting in the submillimeter, are distributed in larger and looser groups. C1 [Billot, N.] CALTECH, NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. [Schisano, E.; Pestalozzi, M.; Molinari, S.; Elia, D.; Polychroni, D.] INAF IFSI, Rome, Italy. [Noriega-Crespo, A.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Mottram, J. C.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Anderson, L. D.] Lab Astrophys Marseille UMR 6110, Marseille, France. [Stringfellow, G.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Thompson, M. A.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Testi, L.] European So Observ, D-8046 Garching, Germany. RP Billot, N (reprint author), CALTECH, NASA, Herschel Sci Ctr, 770 S Wilson Ave, Pasadena, CA 91125 USA. EM nbillot@ipac.caltech.edu RI Molinari, Sergio/O-4095-2016; OI Molinari, Sergio/0000-0002-9826-7525; Elia, Davide/0000-0002-9120-5890 NR 53 TC 9 Z9 9 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2011 VL 735 IS 1 AR 28 DI 10.1088/0004-637X/735/1/28 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 779OM UT WOS:000291788300028 ER PT J AU Chene, AN Moffat, AFJ Cameron, C Fahed, R Gamen, RC Lefevre, L Rowe, JF St-Louis, N Muntean, V De La Chevrotiere, A Guenther, DB Kuschnig, R Matthews, JM Rucinski, SM Sasselov, D Weiss, WW AF Chene, A. -N. Moffat, A. F. J. Cameron, C. Fahed, R. Gamen, R. C. Lefevre, L. Rowe, J. F. St-Louis, N. Muntean, V. De La Chevrotiere, A. Guenther, D. B. Kuschnig, R. Matthews, J. M. Rucinski, S. M. Sasselov, D. Weiss, W. W. TI WR 110: A SINGLE WOLF-RAYET STAR WITH COROTATING INTERACTION REGIONS IN ITS WIND? SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: individual (WR 110); stars: rotation; stars: winds, outflows; stars: Wolf-Rayet ID PERIODIC VARIABILITY; WN STARS; EMISSION AB A 30 day contiguous photometric run with the Microvariability and Oscillations of STars (MOST) satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 +/- 0.55 days along with a number of harmonics at periods P/n, with n approximate to 2, 3, 4, 5, and 6, and a few other possible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic radial velocity studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude similar to 0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base, of a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs similar to two-thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous highprecision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods. C1 [Chene, A. -N.] Herzberg Inst Astrophys, Canadian Gemini Off, Victoria, BC V9E 2E7, Canada. [Chene, A. -N.] Univ Concepcion, Dept Astron, Concepcion, Chile. [Chene, A. -N.] Univ Valparaiso, Fac Ciencias, Dept Fis & Astron, Valparaiso, Chile. [Moffat, A. F. J.; Fahed, R.; St-Louis, N.; Muntean, V.; De La Chevrotiere, A.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Moffat, A. F. J.; Fahed, R.; St-Louis, N.; Muntean, V.; De La Chevrotiere, A.] Ctr Rech Astrophys Quebec, Quebec City, PQ, Canada. [Cameron, C.; Matthews, J. M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Gamen, R. C.] Univ Nacl La Plata, Inst Astrofis La Plata, CCT CONICET, RA-1900 La Plata, Argentina. [Lefevre, L.] Observ Royal Belgique, B-1180 Brussels, Belgium. [Rowe, J. F.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Guenther, D. B.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Kuschnig, R.; Weiss, W. W.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Rucinski, S. M.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Sasselov, D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA USA. RP Chene, AN (reprint author), Herzberg Inst Astrophys, Canadian Gemini Off, 5071 W Saanich Rd, Victoria, BC V9E 2E7, Canada. EM achene@astro-udec.cl; moffat@astro.umontreal.ca RI Gamen, Roberto/A-1728-2015 FU Chilean Centro de Astrofisica FONDAP [15010003]; Chilean Centro de Excelencia en Astrofisica y Tecnologias Afines (CATA); NSERC (Canada); FQRNT (Quebec); Austrian Space Agency; Austrian Science Fund; Austrian Fonds sur Forderung der wissenschaftlichen Forschung (FWF); Austrian Academy of Sciences at the Institute of Astronomy of the University of Vienna FX A.N.C. gratefully acknowledges support from the Chilean Centro de Astrofisica FONDAP No. 15010003 and the Chilean Centro de Excelencia en Astrofisica y Tecnologias Afines (CATA). D.B.G., J.M.M., A.F.J.M., S.M.R., and N.S.L. are supported by NSERC (Canada), with additional support to A.F.J.M. and N.S.L. from FQRNT (Quebec). R.K. and W.W.W. are supported by the Austrian Space Agency and the Austrian Science Fund. K.Z. acknowledges support from the Austrian Fonds sur Forderung der wissenschaftlichen Forschung (FWF) and is recipient of an APART fellowship of the Austrian Academy of Sciences at the Institute of Astronomy of the University of Vienna. We thank the anonymous referee for useful suggestions to improve the clarity of this work. NR 21 TC 15 Z9 15 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2011 VL 735 IS 1 AR 34 DI 10.1088/0004-637X/735/1/34 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 779OM UT WOS:000291788300034 ER PT J AU Finkelstein, SL Cohen, SH Windhorst, RA Ryan, RE Hathi, NP Finkelstein, KD Anderson, J Grogin, NA Koekemoer, AM Malhotra, S Mutchler, M Rhoads, JE McCarthy, PJ O'Connell, RW Balick, B Bond, HE Calzetti, D Disney, MJ Dopita, MA Frogel, JA Hall, DNB Holtzman, JA Kimble, RA Luppino, G Paresce, F Saha, A Silk, JI Trauger, JT Walker, AR Whitmore, BC Young, ET AF Finkelstein, Steven L. Cohen, Seth H. Windhorst, Rogier A. Ryan, Russell E. Hathi, Nimish P. Finkelstein, Keely D. Anderson, Jay Grogin, Norman A. Koekemoer, Anton M. Malhotra, Sangeeta Mutchler, Max Rhoads, James E. McCarthy, Patrick J. O'Connell, Robert W. Balick, Bruce Bond, Howard E. Calzetti, Daniela Disney, Michael J. Dopita, Michael A. Frogel, Jay A. Hall, Donald N. B. Holtzman, Jon A. Kimble, Randy A. Luppino, Gerard Paresce, Francesco Saha, Abhijit Silk, Joseph I. Trauger, John T. Walker, Alistair R. Whitmore, Bradley C. Young, Erick T. TI HUBBLE SPACE TELESCOPE IMAGING OF Ly alpha EMISSION AT z approximate to 4.4 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: high-redshift; galaxies: ISM ID ULTRA-DEEP FIELD; LYMAN BREAK GALAXIES; EMITTING GALAXIES; SPECTROSCOPIC CONFIRMATION; RADIATIVE-TRANSFER; YOUNG GALAXIES; RADIO GALAXY; EMITTERS; STARBURST; CAMERA AB We present the highest redshift detections of resolved Ly alpha emission, using Hubble Space Telescope (HST)/Advanced Camera for Surveys F658N narrowband-imaging data taken in parallel with the Wide Field Camera 3 Early Release Science program in the GOODS Chandra Deep Field-South. We detect Ly alpha emission from three spectroscopically confirmed z = 4.4 Ly alpha emitting galaxies (LAEs), more than doubling the sample of LAEs with resolved Ly alpha emission. Comparing the light distribution between the rest-frame ultraviolet continuum and narrowband images, we investigate the escape of Ly alpha photons at high redshift. While our data do not support a positional offset between the Ly alpha and rest-frame ultraviolet (UV) continuum emission, the half-light radius in one out of the three galaxies is significantly (> 1 sigma) larger in Ly alpha than in the rest-frame UV continuum. Stacking the three LAEs in both the narrowband and UV continuum images, we find that the Ly alpha light appears larger than the rest-frame UV at 4.2 sigma significance. This Ly alpha flux detected with HST is a factor of 4-10 less than observed in similar filters from the ground. These results together imply that the Ly alpha emission is not strictly confined to its indigenous star-forming regions. Rather, for at least one object the Ly alpha emission is more extended, with the missing HST flux possibly existing in a diffuse outer halo. This suggests that the radiative transfer of Ly alpha photons in high-redshift LAEs is complicated, with the interstellar-medium geometry and/or outflows playing a significant role in galaxies at these redshifts. C1 [Finkelstein, Steven L.; Finkelstein, Keely D.] Texas A&M Univ, Dept Phys & Astron, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Cohen, Seth H.; Windhorst, Rogier A.; Malhotra, Sangeeta; Rhoads, James E.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Ryan, Russell E.] Univ Calif Davis, Dept Phys, Davis, CA 92616 USA. [Hathi, Nimish P.; McCarthy, Patrick J.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Anderson, Jay; Grogin, Norman A.; Koekemoer, Anton M.; Mutchler, Max; Bond, Howard E.; Whitmore, Bradley C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [O'Connell, Robert W.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Balick, Bruce] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Calzetti, Daniela] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Disney, Michael J.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Dopita, Michael A.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Frogel, Jay A.] Assoc Univ Res Astron Inc, Washington, DC 20005 USA. [Hall, Donald N. B.; Luppino, Gerard] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Holtzman, Jon A.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Kimble, Randy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Paresce, Francesco] INAF, Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Saha, Abhijit] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Silk, Joseph I.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Trauger, John T.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Walker, Alistair R.] Cerro Tololo Interamer Observ, La Serena, Chile. [Young, Erick T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Finkelstein, SL (reprint author), Texas A&M Univ, Dept Phys & Astron, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. EM stevenf@physics.tamu.edu RI Dopita, Michael/P-5413-2014; Hathi, Nimish/J-7092-2014 OI Dopita, Michael/0000-0003-0922-4986; Hathi, Nimish/0000-0001-6145-5090 FU NASA [GO-11359.0, 11359, NAS 5-26555]; Texas A&M Department of Physics and Astronomy; National Science Foundation [AST-0808165] FX We are grateful to the men and women who worked tirelessly for many years to make Wide Field Camera 3 the instrument it is today, and to the STScI Director M. Mountain for the discretionary time to make this program possible. Support for HST program 11359 was provided by NASA through grants GO-11359.0. A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. We thank the astronauts of STS-125 to HST for risking their lives to bring us a new and improved world class observatory. Their hard work and dedication is greatly appreciated. S. L. F. and K. D. F. are supported by the Texas A&M Department of Physics and Astronomy. The work of S. M. and J.E.R. is supported by the National Science Foundation grant AST-0808165. NR 44 TC 16 Z9 16 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2011 VL 735 IS 1 AR 5 DI 10.1088/0004-637X/735/1/5 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 779OM UT WOS:000291788300005 ER PT J AU Knutson, HA Madhusudhan, N Cowan, NB Christiansen, JL Agol, E Deming, D Desert, JM Charbonneau, D Henry, GW Homeier, D Langton, J Laughlin, G Seager, S AF Knutson, Heather A. Madhusudhan, Nikku Cowan, Nicolas B. Christiansen, Jessie L. Agol, Eric Deming, Drake Desert, Jean-Michel Charbonneau, David Henry, Gregory W. Homeier, Derek Langton, Jonathan Laughlin, Gregory Seager, Sara TI A SPITZER TRANSMISSION SPECTRUM FOR THE EXOPLANET GJ 436b, EVIDENCE FOR STELLAR VARIABILITY, AND CONSTRAINTS ON DAYSIDE FLUX VARIATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: eclipsing; planetary systems; stars: activity; techniques: photometric ID NEPTUNE-MASS PLANET; SECONDARY ECLIPSE PHOTOMETRY; COLLISION-INDUCED ABSORPTION; INFRARED-EMISSION SPECTRUM; NEXTGEN MODEL ATMOSPHERES; TRANSITING HOT NEPTUNE; EARTH ORBITING GJ-436; LIGHT-CURVE PROJECT; M-DWARF GJ-436; EXTRASOLAR PLANET AB In this paper, we describe a uniform analysis of eight transits and eleven secondary eclipses of the extrasolar planet GJ 436b obtained in the 3.6, 4.5, and 8.0 mu m bands using the IRAC instrument on the Spitzer Space Telescope between UT 2007 June 29 and UT 2009 February 4. We find that the best-fit transit depths for visits in the same bandpass can vary by as much as 8% of the total (4.7 sigma significance) from one epoch to the next. Although we cannot entirely rule out residual detector effects or a time-varying, high-altitude cloud layer in the planet's atmosphere as the cause of these variations, we consider the occultation of active regions on the star in a subset of the transit observations to be the most likely explanation. We find that for the deepest 3.6 mu m transit the in-transit data have a higher standard deviation than the out-of-transit data, as would be expected if the planet occulted a star spot. We also compare all published transit observations for this object and find that transits observed in the infrared typically have smaller timing offsets than those observed in visible light. In this case, the three deepest Spitzer transits are all measured within a period of five days, consistent with a single epoch of increased stellar activity. We reconcile the presence of magnetically active regions with the lack of significant visible or infrared flux variations from the star by proposing that the star's spin axis is tilted with respect to our line of sight and that the planet's orbit is therefore likely to be misaligned. In contrast to the results reported by Beaulieu et al., we find no convincing evidence for methane absorption in the planet's transmission spectrum. If we exclude the transits that we believe to be most affected by stellar activity, we find that we prefer models with enhanced CO and reduced methane, consistent with GJ 436b's dayside composition from Stevenson et al. It is also possible that all transits are significantly affected by this activity, in which case it may not be feasible to characterize the planet's transmission spectrum using broadband photometry obtained over multiple epochs. These observations serve to illustrate the challenges associated with transmission spectroscopy of planets orbiting late-type stars; we expect that other systems, such as GJ 1214, may display comparably variable transit depths. We compare the limb-darkening coefficients predicted by PHOENIX and ATLAS stellar atmosphere models and discuss the effect that these coefficients have on the measured planet-star radius ratios given GJ 436b's near-grazing transit geometry. Our measured 8 mu m secondary eclipse depths are consistent with a constant value, and we place a 1 sigma upper limit of 17% on changes in the planet's dayside flux in this band. These results are consistent with predictions from general circulation models for this planet, which find that the planet's dayside flux varies by a few percent or less in the 8 mu m band. Averaging over the eleven visits gives us an improved estimate of 0.0452% +/- 0.0027% for the secondary eclipse depth; we also examine residuals from the eclipse ingress and egress and place an upper limit on deviations caused by a non-uniform surface brightness for GJ 436b. We combine timing information from our observations with previously published data to produce a refined orbital ephemeris and determine that the best-fit transit and eclipse times are consistent with a constant orbital period. We find that the secondary eclipse occurs at a phase of 0.58672 +/- 0. 00017, correponding to e cos(omega) = 0.13754 +/- 0.00027, where e is the planet's orbital eccentricity and omega is the longitude of pericenter. We also present improved estimates for other system parameters, including the orbital inclination, a/R-star, and the planet-star radius ratio. C1 [Knutson, Heather A.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Madhusudhan, Nikku] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Cowan, Nicolas B.] Northwestern Univ, CIERA, Evanston, IL 60208 USA. [Christiansen, Jessie L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Agol, Eric] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Deming, Drake] NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA. [Desert, Jean-Michel; Charbonneau, David] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Henry, Gregory W.] Tennessee State Univ, Ctr Excellence Informat Syst, Nashville, TN 37209 USA. [Homeier, Derek; Laughlin, Gregory] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Langton, Jonathan] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Langton, Jonathan] Principia Coll, Dept Phys, Elsah, IL 62028 USA. [Seager, Sara] MIT, Dept Phys, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Knutson, HA (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM hknutson@berkeley.edu RI Agol, Eric/B-8775-2013; OI Agol, Eric/0000-0002-0802-9145; Homeier, Derek/0000-0002-8546-9128; Charbonneau, David/0000-0002-9003-484X FU NASA; Miller Institute for Basic Research in Science; National Science Foundation [0645416] FX We thank the anonymous referee for a very thoughtful report, as well as Jonathan Fortney, Megan Shabram, and Nikole Lewis for helpful discussions on the implications of our data for their published models of GJ 436b. We are also grateful to Eric Gaidos for his commentary on the nature of activity on M dwarfs, and Josh Winn for helpful discussions on spin-orbit alignment for GJ 436b. We also thank Howard Isaacson for supplying the SHKvalues for our activity study and acknowledge the Keck observers who obtained the HIRES spectra used for these measurements, including Andrew Howard, John Johnson, Debra Fischer, and Geoff Marcy. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. H.A.K. was supported by a fellowship from the Miller Institute for Basic Research in Science. E.A. was supported in part by the National Science Foundation under CAREER Grant No. 0645416. NR 118 TC 71 Z9 71 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2011 VL 735 IS 1 AR 27 DI 10.1088/0004-637X/735/1/27 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 779OM UT WOS:000291788300027 ER PT J AU Norris, JP Gehrels, N Scargle, JD AF Norris, Jay P. Gehrels, Neil Scargle, Jeffrey D. TI HETEROGENEITY IN SHORT GAMMA-RAY BURSTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general ID EXTENDED EMISSION; SHORT GRBS; OPTICAL AFTERGLOWS; STAR-FORMATION; HOST GALAXIES; LIGHT CURVES; DURATION; SWIFT; LUMINOSITY; LAG AB We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of similar to 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts (similar to 6 x 10(-10) erg cm(-2) s(-1)) is greater than or similar to 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (similar to 60,000 s) is similar to 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts. C1 [Norris, Jay P.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Gehrels, Neil] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Scargle, Jeffrey D.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. RP Norris, JP (reprint author), Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. RI Gehrels, Neil/D-2971-2012 NR 43 TC 30 Z9 31 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2011 VL 735 IS 1 AR 23 DI 10.1088/0004-637X/735/1/23 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 779OM UT WOS:000291788300023 ER PT J AU Rouillard, AP Odstrcil, D Sheeley, NR Tylka, A Vourlidas, A Mason, G Wu, CC Savani, NP Wood, BE Ng, CK Stenborg, G Szabo, A St Cyr, OC AF Rouillard, A. P. Odstrcil, D. Sheeley, N. R., Jr. Tylka, A. Vourlidas, A. Mason, G. Wu, C-C Savani, N. P. Wood, B. E. Ng, C. K. Stenborg, G. Szabo, A. St Cyr, O. C. TI INTERPRETING THE PROPERTIES OF SOLAR ENERGETIC PARTICLE EVENTS BY USING COMBINED IMAGING AND MODELING OF INTERPLANETARY SHOCKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; shock waves; Sun: coronal mass ejections (CMEs) ID CORONAL MASS EJECTION; ADVANCED COMPOSITION EXPLORER; WIND SPACECRAFT; STEREO MISSION; DRIVEN SHOCKS; ALPHA MONITOR; WHITE-LIGHT; SUN; ACCELERATION; TELESCOPE AB Images of the solar corona obtained by the Solar-Terrestrial Relations Observatory (STEREO) provide high-cadence, high-resolution observations of a compression wave forming ahead of a fast (940 km s(-1)) coronal mass ejection (CME) that erupted at similar to 9:00 UT on 2010 April 03. The passage of this wave at 1 AU is detected in situ by the Advanced Composition Explorer and Wind spacecraft at 08: 00 UT on April 05 as a shock followed by a turbulent and heated sheath. These unprecedented and complementary observations of a shock-sheath region from the Sun to 1 AU are used to investigate the onset of a Solar Energetic Particle (SEP) event measured at the first Lagrange point (L1) and at STEREO-Behind (STB). The spatial extent, radial coordinates, and speed of the ejection are measured from STEREO observations and used as inputs to a numerical simulation of the CME propagation in the background solar wind. The simulated magnetic and plasma properties of the shock and sheath region at L1 agree very well with the in situ measurements. These simulation results reveal that L1 and STB are magnetically connected to the western and eastern edges of the driven shock, respectively. They also show that the 12 hr delay between the eruption time of the ejection and the SEP onset at L1 corresponds to the time required for the bow shock to reach the magnetic field lines connected with L1. The simulated shock compression ratio increases along these magnetic field lines until the maximum flux of high-energy particles is observed. C1 [Rouillard, A. P.; Odstrcil, D.; Ng, C. K.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Rouillard, A. P.; Odstrcil, D.; Szabo, A.; St Cyr, O. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sheeley, N. R., Jr.; Tylka, A.; Vourlidas, A.; Wu, C-C; Wood, B. E.; Ng, C. K.] USN, Res Lab, Washington, DC 20375 USA. [Mason, G.] JHU Appl Phys Lab, Laurel, MD USA. [Savani, N. P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. [Stenborg, G.] Interferometrics Inc, Herndon, VA USA. RP Rouillard, AP (reprint author), George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. RI Savani, Neel/G-4066-2014; Tylka, Allan/G-9592-2014; Vourlidas, Angelos/C-8231-2009 OI Savani, Neel/0000-0002-1916-7877; Vourlidas, Angelos/0000-0002-8164-5948 FU NASA [NNX11AD40G-45527, NNXIOAT06G, NNX09AU98G, NMX07AN45G, NNH09AK79I]; University of Berkeley (STEREO SIT) [SA4889-26309] FX We thank the referee for his many constructive suggestions. We also thank Yi-Ming Wang and Judith Lean for their continual support. The STEREO SECCHI data are produced by a consortium of RAL (UK), NRL (USA), LMSAL (USA), GSFC (USA), MPS (Germany), CSL (Belgium), IOTA (France), and IAS (France). The ACE data were obtained from the ACE science center. The WIND data were obtained from the Space Physics Data Facility. The SECCHI images were obtained from the World Data Center, Chilton, UK and the Naval Research Laboratory, Washington, DC, USA. The work of A. P. R. was partly funded by NASA contracts NNX11AD40G-45527 and NNXIOAT06G and that of C.K.N. was partially supported by NASA Grant NNX09AU98G. NASA contract SA4889-26309 from University of Berkeley (STEREO SIT) and NASA grant NMX07AN45G permitted the preparation and calibration of the ULEIS and SIT data. A.J.T. was supported in part by NASA grant NNH09AK79I. The NRL employees acknowledge support from the Office of Naval Research and NASA. NR 63 TC 54 Z9 55 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2011 VL 735 IS 1 AR 7 DI 10.1088/0004-637X/735/1/7 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 779OM UT WOS:000291788300007 ER PT J AU Foing, BH Stoker, C Ehrenfreund, P AF Foing, B. H. Stoker, C. Ehrenfreund, P. TI Astrobiology field research in Moon/Mars analogue environments SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE Mars; Moon; astrobiology; desert field research sites; minerals; organics; biota; extreme environments; space instrumentation; planetary exploration AB Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on ` Astrobiology field research in Moon/Mars analogue environments' relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented. Received 29 March 2011, accepted 6 April 2011, first published online 28 April 2011 C1 [Foing, B. H.] ESA, Estec, NL-2200 AG Noordwijk, Netherlands. [Foing, B. H.] Vrije Univ Amsterdam, Fac Earth & Life Sci, NL-1081 HV Amsterdam, Netherlands. [Foing, B. H.] BH Foing, Estec, ILEWG, NL-2200 AG Noordwijk, Netherlands. [Stoker, C.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ehrenfreund, P.] Leiden Inst Chem, NL-2300 Leiden, Netherlands. [Ehrenfreund, P.] George Washington Univ, Inst Space Policy, Elliott Sch Int Affairs, Washington, DC 20052 USA. RP Foing, BH (reprint author), ESA, Estec, Postbus 299, NL-2200 AG Noordwijk, Netherlands. EM Bernard.Foing@esa.int FU ILEWG; NASA FX We thank NASA Ames, ESTEC, ILEWG, the Vrije Universiteit Amsterdam and partner institutes for experimental, operational and science support. We thank the MDRS mission support and the Mars Society and ESTEC ExoGeoLab remote support. We acknowledge research travel grants from ILEWG and NASA Spaceward bound programme, and the support from EuroGeoMars2009 teams and crew members. We also thank the crews from DOMMEX-ILEWG EuroMoonMars 2009-2010 campaigns and support from NASA, Ecole de l' Air, ESTEC and VU Amsterdam. We thank the authors and co-authors of the papers from this special issue for their coordinated contribution, all the referees for critical and constructive comments, and the IJA production staff for their efficiency. NR 12 TC 6 Z9 6 U1 2 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD JUL PY 2011 VL 10 IS 3 SI SI BP 137 EP 139 DI 10.1017/S1473550411000139 PG 3 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 777IR UT WOS:000291609600001 ER PT J AU Foing, BH Stoker, C Zavaleta, J Ehrenfreund, P Thiel, C Sarrazin, P Blake, D Page, J Pletser, V Hendrikse, J Direito, S Kotler, JM Martins, Z Orzechowska, G Gross, C Wendt, L Clarke, J Borst, AM Peters, STM Wilhelm, MB Davies, GR AF Foing, B. H. Stoker, C. Zavaleta, J. Ehrenfreund, P. Thiel, C. Sarrazin, P. Blake, D. Page, J. Pletser, V. Hendrikse, J. Direito, S. Kotler, J. M. Martins, Z. Orzechowska, G. Gross, C. Wendt, L. Clarke, J. Borst, A. M. Peters, S. T. M. Wilhelm, M. -B. Davies, G. R. CA ILEWG EuroGeoMars 2009 Team TI Field astrobiology research in Moon-Mars analogue environments: instruments and methods SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE Mars; Moon; astrobiology; instruments; exploration; technology; samples; minerals; organics; biota; endoliths ID RESOLUTION STEREO CAMERA; MERIDIANI-PLANUM; LUNAR; SURFACE; UTAH; MISSION; SELENE; SPECTROMETER; GOALS; ICE AB We describe the field demonstration of astrobiology instruments and research methods conducted in and from the Mars Desert Research Station (MDRS) in Utah during the EuroGeoMars campaign 2009 coordinated by ILEWG, ESA/ESTEC and NASA Ames, with the contribution of academic partners. We discuss the entire experimental approach from determining the geological context using remote sensing, in situ measurements, sorties with sample collection and characterization, analysis in the field laboratory, to the post sample analysis using advanced laboratory facilities. We present the rationale for terrestrial field campaigns to strengthen astrobiology research and the link between in situ and orbital remote sensing data. These campaigns are supporting the preparation for future missions such as Mars Science Laboratory, ExoMars or Mars Sample Return. We describe the EuroGeoMars 2009 campaign conducted by MDRS crew 76 and 77, focused on the investigation of surface processes in their geological context. Special emphasis was placed on sample collection and pre-screening using in-situ portable instruments. Science investigations included geological and geochemical measurements as well as detection and diagnostic of water, oxidants, organic matter, minerals, volatiles and biota. EuroGeoMars 2009 was an example of a Moon-Mars field research campaign dedicated to the demonstration of astrobiology instruments and a specific methodology of comprehensive measurements from selected sampling sites. We discuss in sequence: the campaign objectives and trade-off based on science, technical or operational constraints. This includes remote sensing data and maps, and geological context; the monitoring of environmental parameters; the geophysical context and mineralogy studies; geology and geomorphology investigations; geochemistry characterization and subsurface studies. We describe sample handling (extraction and collection) methods, and the sample analysis of soils and rocks performed in the MDRS laboratory using close inspection, initial petrological characterization, microscopy, Visible-NIR spectrometry, Raman spectrometry, X-ray diffraction/X-ray fluorescence spectrometry, soil analysis, electrochemical and biological measurements. The results from post-mission analysis of returned samples using advanced facilities in collaborator institutes are described in companion papers in this issue. We present examples of in-situ analysis, and describe an example investigation on the exploration and analysis of endolithic microbial mats (from reconnaissance, in-situ imaging, sampling, local analysis to post-mission sample analysis). Received 22 January 2011, accepted 24 January 2011, first published online 14 March 2011 C1 [Foing, B. H.; Page, J.; Pletser, V.; Hendrikse, J.] ESA, Estec, NL-2200 AG Noordwijk, Netherlands. [Foing, B. H.; Direito, S.; Borst, A. M.; Peters, S. T. M.; Davies, G. R.] Vrije Univ Amsterdam, Fac Earth & Life Sci, NL-1081 HV Amsterdam, Netherlands. [Foing, B. H.; Thiel, C.; Borst, A. M.] BH Foing, Estec, ILEWG, NL-2200 AG Noordwijk, Netherlands. [Stoker, C.; Zavaleta, J.; Blake, D.; Wilhelm, M. -B.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ehrenfreund, P.; Kotler, J. M.] Leiden Inst Chem, NL-2300 Leiden, Netherlands. [Ehrenfreund, P.] George Washington Univ, Inst Space Policy, Elliott Sch Int Affairs, Washington, DC 20052 USA. [Thiel, C.] Univ Munster, CeNTech, Inst Med Phys & Biophys, D-48149 Munster, Germany. [Sarrazin, P.] inXitu Inc, Mountain View, CA 94043 USA. [Martins, Z.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England. [Orzechowska, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gross, C.; Wendt, L.] Free Univ Berlin, Inst Geol Sci Planetary Sci & Remote Sensi, D-12249 Berlin, Germany. [Clarke, J.] Mars Soc Australia, Monash, ACT 2904, Australia. [Clarke, J.] Australian Ctr Astrobiol, Sydney, NSW, Australia. RP Foing, BH (reprint author), ESA, Estec, Postbus 299, NL-2200 AG Noordwijk, Netherlands. EM Bernard.Foing@esa.int RI Martins, Zita/H-4860-2015; OI Martins, Zita/0000-0002-5420-1081; Pletser, Vladimir/0000-0003-4884-3827 FU ILEWG FX We thank NASA Ames, ESTEC, ILEWG and partner institutes for experimental, operational and science support. We thank the MDRS mission support and Mars society (A. Westenberg and J. Edwards), ESTEC ExoGeoLab remote support (J. Page, P. Voorzaat and P. Mahapatra), NASA Ames support (C. McKay and F. Selch; CMU). B.H.F., C.T. and A.B. acknowledge a research travel grant from ILEWG. We acknowledge the support teams of EuroGeoMars 2009 from MDRS and partner universities (VU Amsterdam, FU Berlin, TU Delft, Cranfield University, Bristol University) and the EuroGeoMars 2009 crew members. We also thank the subsequent crews from ILEWG EuroMoonMars-DOMMEX 2010 campaigns and main partners (NASA, ESTEC and Ecole de l'Air) for their contribution. NR 74 TC 15 Z9 15 U1 3 U2 28 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD JUL PY 2011 VL 10 IS 3 SI SI BP 141 EP 160 DI 10.1017/S1473550411000036 PG 20 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 777IR UT WOS:000291609600002 ER PT J AU Clarke, JDA Stoker, CR AF Clarke, Jonathan D. A. Stoker, Carol R. TI Concretions in exhumed and inverted channels near Hanksville Utah: implications for Mars SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE Mars regolith; geomorphology; relief inversion; palaeochannels; concretions ID MERIDIANI-PLANUM; WESTERN-AUSTRALIA; BURNS FORMATION; IRON DEPOSITS; ANALOG; HEMATITE; GENESIS; CLASSIFICATION; ARCHITECTURE; LANDSCAPE AB The landscape near Hanksville, Utah, contains a diversity of Mars analogue features. These included segmented and inverted anastomosing palaeochannels exhumed from the Late Jurassic Brushy Basin Member of the Morrison Formation that hosts abundant small carbonate concretions. The exhumed and inverted channels closely resemble many seen on the surface of Mars in satellite imagery and which may be visited by surface missions in the near future. The channels contain a wealth of palaeoenvironmental information and are potentially of astrobiological interest, but intrinsically difficult terrain would make their study challenging on Mars. We show that an un-exhumed channel feature can be detected geophysically, and this may allow their study in more easily accessed terrain. The concretion's morphology and surface expression parallel the haematite 'blue berries' that are strewn across the surface of Meridiani Planum on Mars. They are best developed in poorly cemented medium to coarse channel sandstones and appear to have formed during deep burial. Received 17 December 2010, accepted 24 January 2011, first published online 25 February 2011 C1 [Clarke, Jonathan D. A.] Mars Soc Australia, Monash, ACT 2904, Australia. [Clarke, Jonathan D. A.] Australian Ctr Astrobiol, Sydney, NSW, Australia. [Stoker, Carol R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Clarke, JDA (reprint author), Mars Soc Australia, C-O 43 Michell St, Monash, ACT 2904, Australia. EM jon.clarke@bigpond.com FU NASA FX This project was funded through the NASA Moon and Mars Analogs programme. We thank the US Mars Society for allowing us to use the facilities at MDRS, especially Artemis Westenberg, the facility project manager. MDRS crews 89 and 92 provided essential support and assistance in the field. These crews were supported by the International Lunar Exploration Working Group (ILEWG), the European Space Research and Technology Centre (ESTEC) and the Ecole de l'Air as part of EuroMoonMars campaign. The CRUX GPR was loaned to us by Soon Sam Kim. The XRD analysis was performed using a Terra XRD on loan from David Blake, who also assisted with interpretation of the data. Geoscience Australia provided the PIMA facilities. Lastly, we thank the efforts of the anonymous reviewers whose input was of great value in the preparation of the paper. NR 48 TC 11 Z9 11 U1 0 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 EI 1475-3006 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD JUL PY 2011 VL 10 IS 3 SI SI BP 161 EP 175 DI 10.1017/S1473550411000048 PG 15 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 777IR UT WOS:000291609600003 ER PT J AU Orzechowska, GE Kidd, RD Foing, BH Kanik, I Stoker, C Ehrenfreund, P AF Orzechowska, G. E. Kidd, R. D. Foing, B. H. Kanik, I. Stoker, C. Ehrenfreund, P. TI Analysis of Mars analogue soil samples using solid-phase microextraction, organic solvent extraction and gas chromatography/mass spectrometry SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE chromatography; gas chromatograph/mass spectrometer (GC/MS); Mars; polycyclic aromatic hydrocarbons (PAHs); solid-phase microextraction (SPME) ID POLYCYCLIC AROMATIC-HYDROCARBONS; MARTIAN SOIL; PAHS; SEARCH; SURFACE; MS; MOLECULES; MISSIONS; REGION; LIFE AB Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five-and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g-1. The texture of soils is mostly sandy loam with few samples being 100 % silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions. C1 [Orzechowska, G. E.; Kidd, R. D.; Kanik, I.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Foing, B. H.] European Space Agcy, ESTEC SRE S, NL-2200 AG Noordwijk, Netherlands. [Stoker, C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ehrenfreund, P.] George Washington Univ, Inst Space Policy, Washington, DC 20052 USA. [Ehrenfreund, P.] Leiden Univ, Leiden Inst Chem, NL-2300 RA Leiden, Netherlands. RP Orzechowska, GE (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Richard.D.Kidd@jpl.nasa.gov FU NASA Astrobiology Institute (NAI); International Lunar Exploration working group (ILEWG); NASA Ames Research Center; ESA/ESTEC FX Grazyna E. Orzechowska and Pascale Ehrenfreund were supported by the NASA Astrobiology Institute (NAI). The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The EuroGeoMars 2009 campaign was organized and supported by the International Lunar Exploration working group (ILEWG), NASA Ames Research Center and ESA/ESTEC. We acknowledge the contribution of the EuroGeoMars 2009 campaign crew and the mission support team. NR 48 TC 10 Z9 10 U1 3 U2 29 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD JUL PY 2011 VL 10 IS 3 SI SI BP 209 EP 219 DI 10.1017/S1473550410000443 PG 11 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 777IR UT WOS:000291609600006 ER PT J AU Kotler, JM Quinn, RC Foing, BH Martins, Z Ehrenfreund, P AF Kotler, J. M. Quinn, R. C. Foing, B. H. Martins, Z. Ehrenfreund, P. TI Analysis of mineral matrices of planetary soil analogues from the Utah Desert SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE astrobiology; clay minerals; Mars Desert Research Station; Utah ID SMECTITE DIAGENESIS; BACTERIAL SURFACES; MERIDIANI PLANUM; ILLITE REACTION; MARS; PHYLLOSILICATES; NONTRONITE; SEDIMENTS; FEATURES; CLIMATE AB Phyllosilicate minerals and hydrated sulphate minerals have been positively identified on the surface of Mars. Studies conducted on Earth indicate that micro-organisms influence various geochemical and mineralogical transitions for the sulphate and phyllosilicate minerals. These minerals in turn provide key nutrients to micro-organisms and influence microbial ecology. Therefore, the presence of these minerals in astrobiology studies of Earth-Mars analogue environments could help scientists better understand the types and potential abundance of micro-organisms and/or biosignatures that may be encountered on Mars. Bulk X-ray diffraction of samples collected during the EuroGeoMars 2009 campaign from the Mancos Shale, the Morrison and the Dakota formations near the Mars Desert Research Station in Utah show variable but common sedimentary mineralogy with all samples containing quantities of hydrated sulphate minerals and/or phyllosilicates. Analysis of the clay fractions indicate that the phyllosilicates are interstratified illitesmectites with all samples showing marked changes in the diffraction pattern after ethylene glycol treatment and the characteristic appearance of a solvated peak at similar to 17 angstrom. The smectite phases were identified as montmorillonite and nontronite using a combination of the X-ray diffraction data and Fourier-Transform Infrared Spectroscopy. The most common sulphate mineral in the samples is hydrated calcium sulphate (gypsum), although one sample contained detectable amounts of strontium sulphate (celestine). Carbonates detected in the samples are variable in composition and include pure calcium carbonate (calcite), magnesium-bearing calcium carbonate (dolomite), magnesium, iron and manganese-bearing calcium carbonate (ankerite) and iron carbonate (siderite). The results of these analyses when combined with organic extractions and biological analysis should help astrobiologists and planetary geologists better understand the potential relationships between mineralogy and microbiology for planetary missions. C1 [Kotler, J. M.; Ehrenfreund, P.] Leiden Univ, Leiden Inst Chem, NL-2300 RA Leiden, Netherlands. [Quinn, R. C.] NASA, Carl Segan Ctr, SETI Inst, Ames Res Ctr, Moffett Field, CA USA. [Foing, B. H.] European Space Agcy, ESTEC SRE S, NL-2200 AG Noordwijk, Netherlands. [Martins, Z.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England. [Ehrenfreund, P.] George Washington Univ, Inst Space Policy, Washington, DC 20052 USA. RP Kotler, JM (reprint author), Leiden Univ, Leiden Inst Chem, NL-2300 RA Leiden, Netherlands. EM jmichellekotler@gmail.com RI Martins, Zita/H-4860-2015 OI Martins, Zita/0000-0002-5420-1081 FU NASA Astrobiology Institute (NAI); Royal Society; Science and Technology Facilities Council (STFC); International Lunar Exploration working Group (ILEWG); NASA Ames Research Centre; ESA/ESTEC FX Pascale Ehrenfreund was supported by the NASA Astrobiology Institute (NAI). Zita Martins was supported by the Royal Society. Zita Martins acknowledge the Science and Technology Facilities Council (STFC) for financial support. The EuroGeoMars 2009 campaign was organized and supported by the International Lunar Exploration working Group (ILEWG), NASA Ames Research Centre and ESA/ESTEC. We acknowledge the contribution of the EuroGeoMars 2009 campaign crew and the mission support team. This research was conducted in the framework of the Mars Express Recognized Cooperating Laboratory for geochemistry. NR 49 TC 3 Z9 3 U1 2 U2 15 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD JUL PY 2011 VL 10 IS 3 SI SI BP 221 EP 229 DI 10.1017/S1473550411000103 PG 9 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 777IR UT WOS:000291609600007 ER PT J AU Ehrenfreund, P Roling, WFM Thiel, CS Quinn, R Sephton, MA Stoker, C Kotler, JM Direito, SOL Martins, Z Orzechowska, GE Kidd, RD van Sluis, CA Foing, BH AF Ehrenfreund, P. Roling, W. F. M. Thiel, C. S. Quinn, R. Sephton, M. A. Stoker, C. Kotler, J. M. Direito, S. O. L. Martins, Z. Orzechowska, G. E. Kidd, R. D. van Sluis, C. A. Foing, B. H. TI Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE astrobiology; habitability; life detection; field analogue research; Mars; organics; clays; landing site criteria ID ATACAMA DESERT; MASS-SPECTROMETRY; BACILLUS-SUBTILIS; MERIDIANI-PLANUM; MARTIAN SOIL; LIFE; DNA; TRANSFORMATION; ORIGIN; SITE AB Several robotic exploration missions will travel to Mars during this decade to investigate habitability and the possible presence of life. Field research at Mars analogue sites such as desert environments can provide important constraints for instrument calibration, landing site strategies and expected life detection targets. We have characterized the mineralogy, organic chemistry and microbiology of ten selected sample sites from the Utah desert in close vicinity to the Mars Desert Research Station (MDRS) during the EuroGeoMars 2009 campaign (organized by International Lunar Exploration Working Group (ILEWG), NASA Ames and ESA ESTEC). Compared with extremely arid deserts (such as the Atacama), organic and biological materials can be identified in a larger number of samples and subsequently be used to perform correlation studies. Among the important findings of this field research campaign are the diversity in the mineralogical composition of soil samples even when collected in close proximity, the low abundances of detectable polycyclic aromatic hydrocarbons (PAHs) and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles, mainly Bacteria and also Archaea and Eukarya was observed. The dominant factor in measurable bacterial abundance seems to be soil porosity and lower small (clay-sized) particle content. However, correlations between many measured parameters are difficult to establish. Field research conducted during the EuroGeoMars 2009 campaign shows that the geological history and depositional environment of the region, as well as the mineralogy influence the ability to detect compounds such as amino acids and DNA. Clays are known to strongly absorb and bind organic molecules often preventing extraction by even sophisticated laboratory methods. Our results indicate the need for further development and optimization of extraction procedures that release biological compounds from host matrices to enable the effective detection of biomarkers during future sampling campaigns on Earth and Mars. C1 [Ehrenfreund, P.; Kotler, J. M.] Leiden Inst Chem, NL-2300 Leiden, Netherlands. [Ehrenfreund, P.] George Washington Univ, Inst Space Policy, Elliott Sch Int Affairs, Washington, DC 20052 USA. [Roling, W. F. M.; Direito, S. O. L.] Vrije Univ Amsterdam, Fac Earth & Life Sci, Amsterdam, Netherlands. [Thiel, C. S.] Univ Munster, CeNTech, Inst Med Phys & Biophys, D-48149 Munster, Germany. [Quinn, R.; Stoker, C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Sephton, M. A.; Martins, Z.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England. [Orzechowska, G. E.; Kidd, R. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [van Sluis, C. A.] Delft Univ Technol, Dept Biotechnol, NL-2628 BC Delft, Netherlands. [Foing, B. H.] ESA, Estec, NL-2200 AG Noordwijk, Netherlands. RP Ehrenfreund, P (reprint author), Leiden Inst Chem, POB 9502, NL-2300 Leiden, Netherlands. EM p.ehrenfreund@chem.leidenuniv.nl RI Martins, Zita/H-4860-2015; OI Martins, Zita/0000-0002-5420-1081; Sephton, Mark/0000-0002-2190-5402 FU NASA Astrobiology Institute (NAI); Royal Society; Science and Technology Facilities Council (STFC); NWO [ALW-GO-PL/07-11]; ESA; International Lunar Exploration Working Group (ILEWG); NASA Ames Research Center; ESA/ESTEC FX Pascale Ehrenfreund is supported by the NASA Astrobiology Institute (NAI). Zita Martins is supported by the Royal Society. Zita Martins and Mark A. Sephton acknowledge the Science and Technology Facilities Council (STFC) for financial support. Susana Direito and Wilfred Roling are supported by NWO grant ALW-GO-PL/07-11 ('Molecular detection of life on Mars'). Pascale Ehrenfreund and Susana Direito acknowledge financial support from ESA grant (ground-based facilities): 'Simulations of organic compounds and micro-organisms in Martian regolith analogues: SocMar'. The EuroGeoMars 2009 campaign was organized and supported by the International Lunar Exploration Working Group (ILEWG), NASA Ames Research Center and ESA/ESTEC. We acknowledge the contribution of the EuroGeoMars 2009 campaign crew, the mission support team and ExoGeoLab pilot project. This research was conducted in the framework of the Mars Express Recognized Cooperating Laboratory for geochemistry. NR 99 TC 18 Z9 19 U1 2 U2 41 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD JUL PY 2011 VL 10 IS 3 SI SI BP 239 EP 253 DI 10.1017/S1473550411000140 PG 15 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 777IR UT WOS:000291609600009 ER PT J AU Stoker, CR Clarke, J Direito, SOL Blake, D Martin, KR Zavaleta, J Foing, B AF Stoker, Carol R. Clarke, Jonathan Direito, Susana O. L. Blake, David Martin, Kevin R. Zavaleta, Jhony Foing, Bernard TI Mineralogical, chemical, organic and microbial properties of subsurface soil cores from Mars Desert Research Station (Utah, USA): Phyllosilicate and sulfate analogues to Mars mission landing sites SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE Mars Science Lander; CheMin instrument; Mars Analogue; MDRS Utah; clay minerals; organics; subsurface biology ID GRADIENT GEL-ELECTROPHORESIS; 16S RIBOSOMAL-RNA; MERIDIANI-PLANUM; MANCOS SHALE; MORRISON FORMATION; FORELAND-BASIN; SOUTHERN UTAH; SURFACE; HEMATITE; COLORADO AB We collected and analysed soil cores from four geologic units surrounding Mars Desert Research Station (MDRS) Utah, USA, including Mancos Shale, Dakota Sandstone, Morrison formation (Brushy Basin member) and Summerville formation. The area is an important geochemical and morphological analogue to terrains on Mars. Soils were analysed for mineralogy by a Terra X-ray diffractometer (XRD), a field version of the CheMin instrument on the Mars Science Laboratory (MSL) mission (2012 landing). Soluble ion chemistry, total organic content and identity and distribution of microbial populations were also determined. The Terra data reveal that Mancos and Morrison soils are rich in phyllosilicates similar to those observed on Mars from orbital measurements (montmorillonite, nontronite and illite). Evaporite minerals observed include gypsum, thenardite, polyhalite and calcite. Soil chemical analysis shows sulfate the dominant anion in all soils and SO(4)>>CO(3), as on Mars. The cation pattern Na>Ca>Mg is seen in all soils except for the Summerville where Ca>Na. In all soils, SO(4) correlates with Na, suggesting sodium sulfates are the dominant phase. Oxidizable organics are low in all soils and range from a high of 0.7% in the Mancos samples to undetectable at a detection limit of 0.1% in the Morrison soils. Minerals rich in chromium and vanadium were identified in Morrison soils that result from diagenetic replacement of organic compounds. Depositional environment, geologic history and mineralogy all affect the ability to preserve and detect organic compounds. Subsurface biosphere populations were revealed to contain organisms from all three domains (Archaea, Bacteria and Eukarya) with cell density between 3.0x10(6) and 1.8x10(7) cells ml(-1) at the deepest depth. These measurements are analogous to data that could be obtained on future robotic or human Mars missions and results are relevant to the MSL mission that will investigate phyllosilicates on Mars. Received 20 December 2010, accepted 23 February 2011, first published online 8 April 2011 C1 [Stoker, Carol R.; Blake, David; Zavaleta, Jhony] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Clarke, Jonathan] Australian Ctr Astrobiol, Sydney, NSW, Australia. [Clarke, Jonathan] Mars Soc Australia, Monash, ACT 2904, Australia. [Direito, Susana O. L.; Foing, Bernard] Vrije Univ Amsterdam, Fac Earth & Life Sci, NL-1081 HV Amsterdam, Netherlands. [Martin, Kevin R.] NASA, Ames Res Ctr, Program Anal, Moffett Field, CA 94035 USA. [Martin, Kevin R.] NASA, Ames Res Ctr, Business Integrat Div, Moffett Field, CA 94035 USA. [Foing, Bernard] European Space Agcy, ESTEC SRE S, NL-2200 AG Noordwijk, Netherlands. RP Stoker, CR (reprint author), NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. EM carol.stoker@nasa.gov FU NASA Moon and Mars Analogs (MAMA); ESA FX The work represented in this paper was funded by the NASA Moon and Mars Analogs (MAMA) research program. Susana Direito was supported by ESA grant for Ground based facilities: 'Simulations of organic compounds and microorganisms in Martian regolith analogues: SocMar'. The Mars Society provided access to the MDRS, and we thank the Director Artemis Westinberg, and volunteer staff and mission support, for their tireless efforts to provide an operational environment for human exploration related studies and training. The University of California Davis provided sample analysis and assisted with interpretation of the results for soil chemistry. We thank ILEWG and Ecole de l Air for support to the EuroMoonMars crews that contributed in the field studies. Finally, we are grateful to Mary Sue Bell, Larry Lemke, and Joshua Nelson for contributing time and energy as crew members of MDRS mission that supported our sample collection activity. Samples were acquired at MDRS crew 83 (November 2009). NR 99 TC 8 Z9 8 U1 3 U2 18 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD JUL PY 2011 VL 10 IS 3 SI SI BP 269 EP 289 DI 10.1017/S1473550411000115 PG 21 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 777IR UT WOS:000291609600011 ER PT J AU Gomez, F Walter, N Amils, R Rull, F Klingelhofer, AK Kviderova, J Sarrazin, P Foing, B Behar, A Fleischer, I Parro, V Garcia-Villadangos, M Blake, D Ramos, JDM Direito, S Mahapatra, P Stam, C Venkateswaran, K Voytek, M AF Gomez, F. Walter, N. Amils, R. Rull, F. Klingelhoefer, A. K. Kviderova, J. Sarrazin, P. Foing, B. Behar, A. Fleischer, I. Parro, V. Garcia-Villadangos, M. Blake, D. Martin Ramos, J. D. Direito, S. Mahapatra, P. Stam, C. Venkateswaran, K. Voytek, M. TI Multidisciplinary integrated field campaign to an acidic Martian Earth analogue with astrobiological interest: Rio Tinto SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE extreme environments; terrestrial analogues; astrobiology; field campaign ID CHLOROPHYLL FLUORESCENCE; MARS; BIOMARKERS; INSTRUMENT; MICROARRAY; ACIDOPHILE; IRON AB Recently reported results from latest Mars Orbiters and Rovers missions are transforming our opinion about the red planet. That dry and inhospitable planet reported in the past is becoming a wetter planet with high probabilities of water existence in the past. Nowadays, some results seem to indicate the presence of water beneath the Mars surface. But also mineralogy studies by NASA Opportunity Rover report iron oxides and hydroxides precipitates on Endurance Crater. Sedimentary deposits have been identified at Meridiani Planum. These deposits must have generated in a dune aqueous acidic and oxidizing environment. Similarities appear when we study Rio Tinto, and acidic river under the control of iron. The discovery of extremophiles on Earth widened the window of possibilities for life to develop in the Universe, and as a consequence on Mars and other planetary bodies with astrobiological interest. The compilation of data produced by the ongoing missions offers an interested view for life possibilities to exist: signs of an early wet Mars and rather recent volcanic activity as well as ground morphological characteristics that seem to be promoted by liquid water. The discovery of important accumulations of sulfates and the existence of iron minerals such as jarosite in rocks of sedimentary origin has allowed specific terrestrial models to come into focus. Rio Tinto (Southwestern Spain, Iberian Pyritic Belt) is an extreme acidic environment, product of the chemolithotrophic activity of micro-organisms that thrive in the massive pyrite-rich deposits of the Iberian Pyritic Belt. Some particular protective environments should house the organic molecules and bacterial life forms in harsh environments such as Mars surface supporting microniches inside precipitated minerals or inside rocks. Terrestrial analogues could help us to afford the comprehension of habitability (on other planetary bodies). We are reporting here the multidisciplinary study of some endolithic niches inside salt deposits used by phototrophs for taking advantage of sheltering particular light wavelengths. These acidic salts deposits located in Rio Tinto shelter life forms that are difficult to visualize by eye. This interdisciplinary field analogue campaign was conducted in the framework of the CAREX FP7 EC programme. Received 15 December 2010, accepted 24 January 2011, first published online 24 February 2011 C1 [Gomez, F.; Amils, R.; Parro, V.; Garcia-Villadangos, M.] Ctr Astrobiol INTA CSIC, Madrid 28850, Spain. [Walter, N.] European Sci Fdn, Space Sci Unit, F-67080 Strasbourg, France. [Amils, R.] Univ Autonoma Madrid, Ctr Biol Mol Severo Ochoa, E-28049 Madrid, Spain. [Rull, F.] UVA CSIC, Associated Unit, Ctr Astrobiol, Valladolid 47150, Spain. [Klingelhoefer, A. K.; Fleischer, I.] Johannes Gutenberg Univ Mainz, Inst Anorgan & Analyt Chem, D-55128 Mainz, Germany. [Kviderova, J.] Acad Sci Czech Republic, Inst Bot, CS-37982 Trebon, Czech Republic. [Sarrazin, P.] inXitu Inc, Mountain View, CA 94043 USA. [Foing, B.] ILEWG BH Foing, Estec, NL-2200 AG Noordwijk, Netherlands. [Stam, C.; Venkateswaran, K.] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91109 USA. [Blake, D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Martin Ramos, J. D.] Univ Granada, Dept Mineral & Petrol, Granada, Spain. [Direito, S.] Vrije Univ Amsterdam, Amsterdam, Netherlands. [Mahapatra, P.] Delft Univ Technol, Delft, Netherlands. [Voytek, M.] Penn State Univ, NASA HQ & Natl Ctr, Reston, VA 20192 USA. RP Gomez, F (reprint author), Ctr Astrobiol INTA CSIC, Carretera Ajalvir Km 4, Madrid 28850, Spain. EM gomezgf@cab.inta-csic.es RI Kviderova, Jana/B-1295-2009; Gomez, Felipe/L-7315-2014 OI Gomez, Felipe/0000-0001-9977-7060 NR 16 TC 9 Z9 10 U1 4 U2 28 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD JUL PY 2011 VL 10 IS 3 SI SI BP 291 EP 305 DI 10.1017/S147355041100005X PG 15 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 777IR UT WOS:000291609600012 ER PT J AU Garrison, TG Chapman, B Houston, S Roman, E Lopez, JLG AF Garrison, Thomas G. Chapman, Bruce Houston, Stephen Roman, Edwin Garrido Lopez, Jose Luis TI Discovering ancient Maya settlements using airborne radar elevation data SO JOURNAL OF ARCHAEOLOGICAL SCIENCE LA English DT Article DE Maya; Remote sensing; AIRSAR; El Zotz; La Avispa ID INTERFEROMETRY AB This report presents the results of using NASA/JPL airborne synthetic aperture radar data (AIRSAR) to detect ancient Maya settlements beneath jungle canopy in Guatemala. AIRSAR stands out from previous applications of radar remote sensing in the Maya lowlands because of its canopy-penetrating capabilities. The authors offer an overview of the AIRSAR technology, followed by a case study in which the AIRSAR data receive testing in the field. Reconnaissance in the region around the Maya site of El Zotz led to the discovery of two new sites, including the medium-sized settlement of La Avispa. AIRSAR also aided archaeologists in detecting zones of residential settlement around the site core of El Zotz. This research will serve as a guide for future applications of radar remote sensing in Maya archaeology. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Garrison, Thomas G.] Umea Univ, HUMlab, S-90187 Umea, Sweden. [Chapman, Bruce] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Houston, Stephen] Brown Univ, Dept Anthropol, Providence, RI 02912 USA. [Roman, Edwin] Univ Texas Austin, Teresa Lozano Long Inst Latin Amer Studies, Austin, TX 78712 USA. RP Garrison, TG (reprint author), Umea Univ, HUMlab, Humanisthuset A4 Korridoren, S-90187 Umea, Sweden. EM Thomas_Garrison@brown.edu; bruce.d.chapman@jpl.nasa.gov; Stephen_Houston@brown.edu; eroman@mail.utexas.edu; josgarlo156@hotmail.com FU NSF [0840930]; NEH [RZ-50680-07]; Waitt Institute [W48-09]; Brown University FX Garrison, Houston, Roman, and Garrido Lopez conducted research with funding from NSF (0840930), NEH (RZ-50680-07), the Waitt Institute (W48-09), and Brown University. Zachary Hruby aided in reconnaissance at both La Avispa and the hilltop site. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We also thank Craig Dobson of NASA HQ for his support of this work through NASA's Space Archaeology research opportunity. NR 17 TC 6 Z9 7 U1 2 U2 22 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0305-4403 J9 J ARCHAEOL SCI JI J. Archaeol. Sci. PD JUL PY 2011 VL 38 IS 7 BP 1655 EP 1662 DI 10.1016/j.jas.2011.02.031 PG 8 WC Anthropology; Archaeology; Geosciences, Multidisciplinary SC Anthropology; Archaeology; Geology GA 779IJ UT WOS:000291771000024 ER PT J AU Kleinbohl, A Schofield, JT Abdou, WA Irwin, PGJ de Kok, RJ AF Kleinboehl, Armin Schofield, John T. Abdou, Wedad A. Irwin, Patrick G. J. de Kok, Remco J. TI A single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Scattering; Infrared; Limb geometry; Mars; MCS ID THERMAL EMISSION; CASSINI/CIRS; PHOSPHINE AB We present a single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere. It is based on the assumption that the upwelling internal radiation field is dominated by a surface with a uniform brightness temperature. It allows the calculation of the scattering source function for individual aerosol types, mixtures of aerosol types, and mixtures of gas and aerosol. The approximation can be applied in a Curtis-Godson radiative transfer code and is used for operational retrievals from Mars Climate Sounder measurements. Radiance comparisons with a multiple scattering model show good agreement in the mid- and far-infrared although the approximate model tends to underestimate the radiances in realistic conditions of the Martian atmosphere. Relative radiance differences are found to be about 2% in the lowermost atmosphere, increasing to similar to 10% in the middle atmosphere of Mars. The increasing differences with altitude are mostly due to the increasing contribution to limb radiance of scattering relative to emission at the colder, higher atmospheric levels. This effect becomes smaller toward longer wavelengths at typical Martian temperatures. The relative radiance differences are expected to produce systematic errors of similar magnitude in retrieved opacity profiles. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Kleinboehl, Armin; Schofield, John T.; Abdou, Wedad A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Irwin, Patrick G. J.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [de Kok, Remco J.] SRON, NL-3584 CA Utrecht, Netherlands. RP Kleinbohl, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM armin.kleinboehl@jpl.nasa.gov OI Irwin, Patrick/0000-0002-6772-384X FU National Aeronautics and Space Administration FX We are grateful to Nicholas Teanby for help with the CO2 radiative transfer. We also would like to thank David Kass, Daniel McCleese, and Eugene Ustinov for helpful comments on the manuscript. Work at the Jet Propulsion Laboratory, California Institute of Technology, is performed under contract with the National Aeronautics and Space Administration. NR 23 TC 22 Z9 22 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2011 VL 112 IS 10 BP 1568 EP 1580 DI 10.1016/j.jqsrt.2011.03.006 PG 13 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 778OS UT WOS:000291714600008 ER PT J AU Korkin, SV Lyapustin, AI Rozanov, VV AF Korkin, Sergey V. Lyapustin, Alexei I. Rozanov, Vladimir V. TI Analysis of the radiative transfer equation with highly assymetric phase function SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Radiative transfer; Discrete ordinates method modifications; High scattering anisotropy ID SCATTERING ATMOSPHERE; THICK AB This paper considers a scalar radiative transfer problem with high scattering anisotropy. Two computational methods are presented based on decomposition of the diffuse light field into a regular and anisotropic part. The first algorithm (DOMAS) singles out the anisotropic radiance in the forward scattering peak using the Small-Angle Modification of RTE. The second algorithm (DOM2+) separates the single scattering radiance as an anisotropic part, which largely defines the fine detail of the total radiance in the backscattering directions. In both cases, the anisotropic part is represented analytically. With anisotropy subtraction, the regular part of the signal, which requires a numerical solution, is essentially smoothed as a function of angles. Further, the transport equation is obtained for the regular part that contains an additional source function from the anisotropic part of the signal. This equation is solved with the discrete ordinates method. A conducted numerical analysis of this work showed that algorithm DOMAS has a strong advantage as compared to the standard discrete ordinates method for simulation of the radiance transmission, and DOM2+ is the best of the three for the reflection computations. Both algorithms offer at least a factor of three acceleration of convergence of the azimuthal series for highly anisotropic phase functions. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Korkin, Sergey V.; Lyapustin, Alexei I.] Univ Maryland Baltimore Cty, GEST, Greenbelt, MD 20771 USA. [Korkin, Sergey V.; Lyapustin, Alexei I.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rozanov, Vladimir V.] Univ Bremen, Inst Remote Sensing, D-28334 Bremen, Germany. RP Korkin, SV (reprint author), Univ Maryland Baltimore Cty, GEST, Mail Code 614-4, Greenbelt, MD 20771 USA. EM sergey.v.korkin@nasa.gov RI Lyapustin, Alexei/H-9924-2014 OI Lyapustin, Alexei/0000-0003-1105-5739 NR 23 TC 3 Z9 4 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2011 VL 112 IS 10 BP 1595 EP 1608 DI 10.1016/j.jqsrt.2011.03.016 PG 14 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 778OS UT WOS:000291714600010 ER PT J AU Raj, SV Kerr, JA AF Raj, S. V. Kerr, Jacob A. TI Effect of Microstructural Parameters on the Relative Densities of Metal Foams SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID SINTERED FECRALY FOAMS; ACOUSTIC PROPERTIES; SOUND-ABSORPTION; CELLS AB A detailed quantitative microstructural analyses of primarily open cell FeCrAlY and 314 stainless steel metal foams with different relative densities and pores per inch (p.p.i.) were undertaken in the present investigation to determine the effect of microstructural parameters on the relative densities of metal foams. Several elements of the microstructure, such as major and minor cell sizes, cell areas and perimeters, ligament dimensions, cell shapes, and area fractions of closed and open cells, were measured. The cross-sections of the foam ligaments showed numerous pores, and their circularity factors and average sizes were determined. The area fractions of the open cells and ligaments decreased, whereas that of the closed cells increased linearly with increasing relative density. The relative densities and p.p.i. were not significantly dependent on cell size, cell perimeter, and ligament dimensions within the limits of experimental scatter. A phenomenological model is proposed to rationalize the present microstructural observations. C1 [Raj, S. V.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Kerr, Jacob A.] Penn State Univ, State Coll, PA 16801 USA. RP Raj, SV (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM sai.v.raj@nasa.gov FU NASA FX This investigation, which was completed as part of Mr. Kerr's summer internship research, was supported by NASA's Subsonic Fixed Wing Program. Mr. Jacob Kerr thanks NASA's Undergraduate Student Research Program for funding his summer internship at the Glenn Research Center. NR 30 TC 1 Z9 1 U1 2 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUL PY 2011 VL 42A IS 7 BP 2017 EP 2027 DI 10.1007/s11661-010-0573-z PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 775SS UT WOS:000291484300030 ER PT J AU Liao, ZH Hong, Y Kirschbaum, D Adler, RF Gourley, JJ Wooten, R AF Liao, Zonghu Hong, Yang Kirschbaum, Dalia Adler, Robert F. Gourley, Jonathan J. Wooten, Rick TI Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)'s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina SO NATURAL HAZARDS LA English DT Article DE Landslide; Hurricane; Hazard prediction; LiDAR ID SHALLOW LANDSLIDES; DEBRIS FLOWS; MODEL AB The key to advancing the predictability of rainfall-triggered landslides is to use physically based slope-stability models that simulate the transient dynamical response of the subsurface moisture to spatiotemporal variability of rainfall in complex terrains. TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis) is a USGS landslide prediction model, coded in Fortran, that accounts for the influences of hydrology, topography, and soil physics on slope stability. In this study, we quantitatively evaluate the spatiotemporal predictability of a Matlab version of TRIGRS (MaTRIGRS) in the Blue Ridge Mountains of Macon County, North Carolina where Hurricanes Ivan triggered widespread landslides in the 2004 hurricane season. High resolution digital elevation model (DEM) data (6-m LiDAR), USGS STATSGO soil database, and NOAA/NWS combined radar and gauge precipitation are used as inputs to the model. A local landslide inventory database from North Carolina Geological Survey is used to evaluate the MaTRIGRS' predictive skill for the landslide locations and timing, identifying predictions within a 120-m radius of observed landslides over the 30-h period of Hurricane Ivan's passage in September 2004. Results show that within a radius of 24 m from the landslide location about 67% of the landslide, observations could be successfully predicted but with a high false alarm ratio (90%). If the radius of observation is extended to 120 m, 98% of the landslides are detected with an 18% false alarm ratio. This study shows that MaTRIGRS demonstrates acceptable spatiotemporal predictive skill for landslide occurrences within a 120-m radius in space and a hurricane-event-duration (h) in time, offering the potential to serve as a landslide warning system in areas where accurate rainfall forecasts and detailed field data are available. The validation can be further improved with additional landslide information including the exact time of failure for each landslide and the landslide's extent and run out length. C1 [Liao, Zonghu; Hong, Yang] Univ Oklahoma, Ctr Nat Hazard & Disaster Res, Sch Civil Engn & Environm Sci, Natl Weather Ctr Suite 3630, Norman, OK 73019 USA. [Kirschbaum, Dalia; Adler, Robert F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gourley, Jonathan J.] NOAA Natl Severe Storm Lab, Norman, OK 73072 USA. [Wooten, Rick] N Carolina Geol Survey, Swannanoa, NC 28778 USA. RP Hong, Y (reprint author), Univ Oklahoma, Ctr Nat Hazard & Disaster Res, Sch Civil Engn & Environm Sci, Natl Weather Ctr Suite 3630, Norman, OK 73019 USA. EM yanghong@ou.edu RI Hong, Yang/D-5132-2009; Gourley, Jonathan/C-7929-2016 OI Hong, Yang/0000-0001-8720-242X; Gourley, Jonathan/0000-0001-7363-3755 FU NASA; Remote Sensing Hydrology group at University of Oklahoma FX The authors wish to thank USGS scientists make the TRIGRS materials available for research community. We also thank Rick Wooten and Anne Witt for providing critical data used in this study. We also thank Dave Jorgensen for letting the first author operating NOSS/NSSL mobile radars and learning the radar QPE algorithms. Financial support for the first author is from NASA Headquarter Applied Science Program and from Remote Sensing Hydrology group at University of Oklahoma (http://hydro.ou.edu). NR 21 TC 15 Z9 16 U1 4 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0921-030X J9 NAT HAZARDS JI Nat. Hazards PD JUL PY 2011 VL 58 IS 1 BP 325 EP 339 DI 10.1007/s11069-010-9670-y PG 15 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Water Resources SC Geology; Meteorology & Atmospheric Sciences; Water Resources GA 778IC UT WOS:000291696300019 ER PT J AU Curtis, LR Garzon, CB Arkoosh, M Collier, T Myers, MS Buzitis, J Hahn, ME AF Curtis, Lawrence R. Garzon, Claudia B. Arkoosh, Mary Collier, Tracy Myers, Mark S. Buzitis, Jon Hahn, Mark E. TI Reduced cytochrome P4501A activity and recovery from oxidative stress during subchronic benzo[a]pyrene and benzo[e]pyrene treatment of rainbow trout SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE Cytochrome P4501A activity; Oxidative stress; Benzo[a]pyrene; Benzo[e]pyrene; Aryl hydrocarbon receptor; Biliary excretion; Fish ID POLYCYCLIC AROMATIC-HYDROCARBONS; COMET ASSAY; DNA-DAMAGE; AH-RECEPTOR; BINDING; INDUCTION; LIVER; BENZO(A)PYRENE; METABOLISM; EXPOSURE AB This study assessed the role of aryl hydrocarbon receptor (AHR) affinity, and cytochrome P4501A (CYP1A) protein and activity in polyaromatic hydrocarbon (PAH)-induced oxidative stress. In the 1-100 nM concentration range benzo[a]pyrene (BaP) but not benzo[e]pyrene (BeP) competitively displaced 2 nM [(3)IH]2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin from rainbow trout AHR2 alpha. Based on appearance of fluorescent aromatic compounds in bile over 3, 7, 14, 28 or 50 days of feeding 3 kg of BaP or BeP/g fish/day, rainbow trout liver readily excreted these polyaromatic hydrocarbons (PAHs) and their metabolites at near steady state rates. CYP1A proteins catalyzed more than 98% of ethoxyresorufin-O-deethylase (EROD) activity in rainbow trout hepatic microsomes. EROD activity of hepatic microsomes initially increased and then decreased to control activities after 50 days of feeding both PAHs. Immunohistochemistry of liver confirmed CYP1A protein increased in fish fed both PAHs after 3 days and remained elevated for up to 28 days. Neither BaP nor BeP increased hepatic DNA adduct concentrations at any time up to 50 days of feeding these PAHs. Comet assays of blood cells demonstrated marked DNA damage after 14 days of feeding both PAHs that was not significant after 50 days. There was a strong positive correlation between hepatic EROD activity and DNA damage in blood cells over time for both PAHs. Neither CYP1A protein nor 3-nitrotyrosine (a biomarker for oxidative stress) immunostaining in trunk kidney were significantly altered by BaP or BeP after 3, 7, 14, or 28 days. There was no clear association between AHR2 alpha affinity and BaP and BeP-induced oxidative stress. (C) 2011 Elsevier Inc. All rights reserved. C1 [Curtis, Lawrence R.; Garzon, Claudia B.] Oregon State Univ, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA. [Arkoosh, Mary] Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Newport, OR USA. [Collier, Tracy; Myers, Mark S.; Buzitis, Jon] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. [Hahn, Mark E.] Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA. RP Curtis, LR (reprint author), Oregon State Univ, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA. EM larry.curtis@oregonstate.edu OI Hahn, Mark/0000-0003-4358-2082 FU Oregon Agricultural Experiment Station, Northwest Fisheries Science Center; National Institute of Health [RO1E5006272] FX The Oregon Agricultural Experiment Station, Northwest Fisheries Science Center, and RO1E5006272 from the National Institute of Health supported this work. NR 45 TC 14 Z9 15 U1 1 U2 30 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD JUL 1 PY 2011 VL 254 IS 1 BP 1 EP 7 DI 10.1016/j.taap.2011.04.015 PG 7 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 779KU UT WOS:000291777300001 PM 21550360 ER PT J AU Sojka, JJ Nicolls, M van Eyken, A Heinselman, C Bilitza, D AF Sojka, Jan J. Nicolls, Michael van Eyken, Anthony Heinselman, Craig Bilitza, Dieter TI 24/7 Solar minimum polar cap and auroral ion temperature observations SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Ionosphere; High-latitudes; F-region temperatures; Climatology; Measurements ID IONOSPHERE AB During the International Polar Year (IPY) two Incoherent Scatter Radars (ISRs) achieved close to 24/7 continuous observations. This presentation describes their data sets and specifically how they can provide the International Reference Ionosphere (IRI) a fiduciary E- and F-region ionosphere description for solar minimum conditions in both the auroral and polar cap regions. The ionospheric description being electron density, ion temperature and electron temperature profiles from as low as 90 km extending to several scale heights above the F-layer peak. The auroral location is Poker Flat in Alaska at 65.1 degrees N latitude, 212.5 degrees E longitude where the NSF's new Poker Flat Incoherent Scatter Radar (PFISR) is located. This location during solar minimum conditions is in the auroral region for most of the day but is at mid-latitudes, equator ward of the cusp, for about 4-8 h per day dependent upon geomagnetic activity. In contrast the polar location is Svalbard, at 78.2 degrees N latitude, 16.0 degrees E longitude where the EISCAT Svalbard Radar (ESR) is located. For most of the day the ESR is in the Northern Polar Cap with a noon sector passage often through the dayside cusp. Of unique relevance to IRI is that these extended observations have enabled the ionospheric morphology to be distinguished between quiet and disturbed geomagnetic conditions. During the IPY year, I March 2007 - 29 February 2008, about 50 solar wind Corotating Interaction Regions (CIRs) impacted geospace. Each CIR has a two to five day geomagnetic disturbance that is observed in the ESR and PFISR observations. Hence, this data set also enables the quiet-background ionospheric climatology to be established as a function of season and local time. These two separate climatologies for the ion temperature at an altitude of 300 km are presented and compared with IRI ion temperatures. The IRI ion temperatures are about 200-300 K hotter than the observed values. However, the MSIS neutral temperature at 300 km compares favorably with the quiet-background in temperature, both in magnitude and climatology. (C) 2011 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Sojka, Jan J.] Utah State Univ, Ctr Atmospher & Space Sci, Logan, UT 84322 USA. [Nicolls, Michael; van Eyken, Anthony; Heinselman, Craig] SRI Int, Menlo Pk, CA 94025 USA. [Bilitza, Dieter] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Sojka, JJ (reprint author), Utah State Univ, Ctr Atmospher & Space Sci, Logan, UT 84322 USA. EM jan.sojka@usu.edu; michael.nicolls@s-ri.com; anthony.vaneyken@sri.com; craig.h-einselman@sri.com; dieter.bilitza-l@nasa.gov RI Nicolls, Michael/N-8680-2013 OI Nicolls, Michael/0000-0001-8267-6327 FU NSF [ATM-0533543]; China (CRIRP); Finland (SA); France (CNRS); Germany (DFG); Japan (NIPR); Japan (STEL); Norway (NFR); Sweden (VR); United Kingdom (PPARC) FX This research was supported by NSF grant ATM-0533543 to Utah State University. PFISR is operated by SRI International under NSF cooperative agreement ATM-0608577. EISCAT is an international association supported by research organizations in China (CRIRP), Finland (SA), France (CNRS, until the end of 2006), Germany (DFG), Japan (NIPR and STEL), Norway (NFR), Sweden (VR), and the United Kingdom (PPARC). The solar wind data was obtained from the ACE satellite. The International Space Science Institute (ISSI) is gratefully acknowledged for its role in sponsoring IPY team meetings on this research topic. NR 11 TC 3 Z9 3 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JUL 1 PY 2011 VL 48 IS 1 BP 1 EP 11 DI 10.1016/j.asr.2011.03.005 PG 11 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 785JD UT WOS:000292224400001 ER PT J AU Israelevich, PL Ofman, L AF Israelevich, P. L. Ofman, L. TI Hybrid simulation of ion-acoustic waves excitation by non-linear Alfven wave SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Alfven waves; Ion-acoustic waves; Parallel electric field; Hybrid simulation ID PARALLEL ELECTRIC-FIELDS; AURORAL ACCELERATION REGION; IONOSPHERE; MAGNETOSPHERE; SPACECRAFT; DYNAMICS; PLASMA; BEAMS; ARCS AB The results of one dimensional hybrid simulation of standing Alfven wave in low beta plasma are presented. Plasma is accelerated from the anti-nodes toward the nodes of the standing waves with finite amplitude under the action of the variable magnetic field pressure. As a result, a sharp maximum of the number density (and electron pressure) arises near the nodes of the standing wave. The plasma flow is spatially modulated with half wavelength of the driving Alfven wave. Standing ion-acoustic waves produced by spatial modulation of the flow are observed in hybrid simulation. The effective parallel electric field E* = E + 1/ne del p(e), appears due to both electron pressure gradient near the nodes and electron pressure variations in the acoustic waves. (C) 2011 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Israelevich, P. L.; Ofman, L.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Geophys & Planetary Sci, IL-69978 Tel Aviv, Israel. [Ofman, L.] Catholic Univ Amer, Dept Phys, Greenbelt, MD 20771 USA. [Ofman, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Israelevich, PL (reprint author), Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Geophys & Planetary Sci, IL-69978 Tel Aviv, Israel. EM peteri@post.tau.ac.il FU NASA [NNX08AV88G, NNX10AC56G] FX LO would like to acknowledge support by NASA Grants NNX08AV88G and NNX10AC56G. NR 31 TC 4 Z9 4 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JUL 1 PY 2011 VL 48 IS 1 BP 25 EP 31 DI 10.1016/j.asr.2011.03.001 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 785JD UT WOS:000292224400004 ER PT J AU D'Ammando, F Bulgarelli, A Chen, AW Donnarumma, I Giuliani, A Longo, F Pacciani, L Pucella, G Striani, E Tavani, M Vercellone, S Vittorini, V Covino, S Krimm, HA Raiteri, CM Romano, P Villata, M AF D'Ammando, F. Bulgarelli, A. Chen, A. W. Donnarumma, I. Giuliani, A. Longo, F. Pacciani, L. Pucella, G. Striani, E. Tavani, M. Vercellone, S. Vittorini, V. Covino, S. Krimm, H. A. Raiteri, C. M. Romano, P. Villata, M. CA AGILE Team TI Gamma-ray blazars: The view from AGILE SO ADVANCES IN SPACE RESEARCH LA English DT Review DE Gamma-ray sources; Quasars; Active galactic nuclei; BL Lac objects; Blazars ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; QUASAR PKS 1510-089; 3C 454.3; MULTIWAVELENGTH OBSERVATIONS; CRAZY-DIAMOND; 2009 DECEMBER; RADIO JETS; XMM-NEWTON; W-COMAE AB During the first 3 years of operation the Gamma-Ray Imaging Detector onboard the AGILE satellite detected several blazars in a high gamma-ray activity: 3C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3C 273, W Comae, Mrk 421, PKS 0537-441 and 4C +21.35. Thanks to the rapid dissemination of our alerts, we were able to obtain multiwavelength data from other observatories such as Spitzer, Swift, RXTE, Suzaku, INTEGRAL, MAGIC, VERITAS, and ARGO as well as radio-to-optical coverage by means of the GASP Project of the WEBT and the REM Telescope. This large multifrequency coverage gave us the opportunity to study the variability correlations between the emission at different frequencies and to obtain simultaneous Spectral Energy Distributions of these sources from radio to gamma-ray energy bands, investigating the different mechanisms responsible for their emission and uncovering in some cases a more complex behavior with respect to the standard models. We present a review of the most interesting AGILE results on these y-ray blazars and their multifrequency data. (C) 2011 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [D'Ammando, F.; Vercellone, S.; Romano, P.] INAF IASF Palermo, I-90146 Palermo, Italy. [Bulgarelli, A.] INAF IASF Bologna, I-40129 Bologna, Italy. [Chen, A. W.; Giuliani, A.] INAF IASF Milano, I-20133 Milan, Italy. [Donnarumma, I.; Pacciani, L.; Striani, E.; Tavani, M.; Vittorini, V.] INAF IASF Roma, I-00133 Rome, Italy. [Longo, F.] Dip Fis, I-34127 Trieste, Italy. [Longo, F.] INFN, I-34127 Trieste, Italy. [Pucella, G.] ENEA Frascati, I-00044 Rome, Italy. [Covino, S.] INAF, I-23807 Merate, LC, Italy. [Krimm, H. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Raiteri, C. M.; Villata, M.] INAF, I-10025 Pino Torinese, TO, Italy. RP D'Ammando, F (reprint author), INAF IASF Palermo, Via Ugo La Malfa 153, I-90146 Palermo, Italy. EM dammando@ifc.inaf.it OI Raiteri, Claudia Maria/0000-0003-1784-2784; Bulgarelli, Andrea/0000-0001-6347-0649; Pacciani, Luigi/0000-0001-6897-5996; Villata, Massimo/0000-0003-1743-6946; Tavani, Marco/0000-0003-2893-1459; Covino, Stefano/0000-0001-9078-5507; Donnarumma, Immacolata/0000-0002-4700-4549; Vercellone, Stefano/0000-0003-1163-1396 FU ASI [I/089/06/1]; Italian Institute of Astrophysics (INAF); Italian Institute of Nuclear Physics (INFN) FX F. D'Ammando would like to thank the organizers of the E-11 Event, L. Foschini and G. Tosti, for having organized such an excellent and fruitful meeting. The AGILE Mission is funded by the ASI with scientific and programmatic participation by the Italian Institute of Astrophysics (INAF) and the Italian Institute of Nuclear Physics (INFN). We thank the GASP-WEBT Collaboration for providing the data presented here. This investigation was carried out with partial support under ASI Contract No. I/089/06/1. NR 77 TC 3 Z9 3 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JUL 1 PY 2011 VL 48 IS 1 BP 76 EP 87 DI 10.1016/j.asr.2011.02.011 PG 12 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 785JD UT WOS:000292224400011 ER PT J AU Ferl, RJ Zupanska, A Spinale, A Reed, D Manning-Roach, S Guerra, G Cox, DR Paul, AL AF Ferl, Robert J. Zupanska, Agata Spinale, April Reed, David Manning-Roach, Susan Guerra, George Cox, David R. Paul, Anna-Lisa TI The performance of KSC Fixation Tubes with RNALater for orbital experiments: A case study in ISS operations for molecular biology SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Space biology; Plant biology; International space station; Spaceflight hardware; KFT ID ARABIDOPSIS GENE-EXPRESSION; SPACEFLIGHT; PATTERNS AB Molecular biology experiments on the International Space Station (ISS) continue to face challenges of sample harvesting and sample return to earth for post flight analysis; however, the use of Kennedy Space Center Fixation Tubes filled with RNALater has proven to be a robust solution to many of these challenges. While it is clear that one direction of future spaceflight experimentation may be towards enhanced on-orbit analytical capabilities, the rapid progress of earth-bound analytical capacity dictates that facile return of molecular biology samples from the ISS will continue to be a mainstay of space life sciences research and flight operations. In this paper we present a case study of the successful performance of KFTs and RNALater over a broad set of operational conditions of ascent configuration, on-orbit experiment use, on-orbit storage and sample return configurations that are unique to ISS current operations and constraints. We also provide observations on performance limits and discuss deployment opportunities and scenarios that are consistent with continued successful ISS molecular biology experimentation. (C) 2011 COSPA R. Published by Elsevier Ltd. All rights reserved. C1 [Ferl, Robert J.] Univ Florida, Interdisciplinary Ctr Biotechnol Res, Gainesville, FL 32610 USA. [Ferl, Robert J.; Zupanska, Agata; Paul, Anna-Lisa] Univ Florida, Dept Hort Sci, Gainesville, FL 32610 USA. [Ferl, Robert J.; Zupanska, Agata; Paul, Anna-Lisa] Univ Florida, Program Plant Mol & Cellular Biol, Gainesville, FL 32610 USA. [Spinale, April; Reed, David; Manning-Roach, Susan] Bionetics Corp, Space Life Sci Lab, Kennedy Space Ctr, FL 32899 USA. [Guerra, George] Dynamac Corp, Space Life Sci Lab, Kennedy Space Ctr, FL 32899 USA. [Cox, David R.] NASA, Kennedy Space Ctr, FL 32899 USA. RP Ferl, RJ (reprint author), Univ Florida, Interdisciplinary Ctr Biotechnol Res, Gainesville, FL 32610 USA. EM robferl@ufl.edu FU NASA [NNX07AH27G, NNX09AL96G] FX The experiment work presented herein was supported by NASA grants NNX07AH27G and NNX09AL96G to ALP and RJF. The authors wish to acknowledge the efforts of many persons at KSC who contributed to the development, testing and deployment of the KFTs. The authors also gratefully acknowledge the many offices, directorates, and persons that make spaceflight experimentation possible, with a particular acknowledgement to JAXA for storing and making available to NASA and TAGES the use of the CWRW KFTs. We especially recognize and appreciate the efforts of crewmembers, especially Leland Melvin, Bob Thirsk, Jeff Williams and T.J. Creamer, all of whom enthusiastically embraced the role of astronaut scientist and provided excellent and talented on-orbit approaches to the APEX TAGES project. NR 15 TC 8 Z9 8 U1 2 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JUL 1 PY 2011 VL 48 IS 1 BP 199 EP 206 DI 10.1016/j.asr.2011.03.002 PG 8 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 785JD UT WOS:000292224400020 ER PT J AU Koehne, JE Marsh, M Boakye, A Douglas, B Kimble, CJ Bennet, KE Meyyappan, M Lee, KH AF Koehne, Jessica E. Marsh, Michael Boakye, Adwoa Douglas, Brandon Kimble, Christopher J. Bennet, Kevin E. Meyyappan, M. Lee, Kendall H. TI Carbon nanofiber (CNF) electrode and wireless instantaneous neurotransmitter concentration sensor (WINCS) system for fast scan cyclic voltammetry detection of neurochemicals SO AMINO ACIDS LA English DT Meeting Abstract C1 [Koehne, Jessica E.; Boakye, Adwoa; Douglas, Brandon; Meyyappan, M.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. [Marsh, Michael; Lee, Kendall H.] Mayo Clin, Dept Physiol & Biomed Engn, Rochester, MN USA. [Kimble, Christopher J.; Bennet, Kevin E.] Mayo Clin, Div Engn, Rochester, MN USA. [Lee, Kendall H.] Mayo Clin, Dept Neurol Surg, Rochester, MN USA. NR 0 TC 1 Z9 1 U1 2 U2 9 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0939-4451 J9 AMINO ACIDS JI Amino Acids PD JUL PY 2011 VL 41 SU 1 BP S41 EP S41 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 972JI UT WOS:000306273000128 ER PT J AU Werner, K Rauch, T Kruk, JW Kurucz, RL AF Werner, K. Rauch, T. Kruk, J. W. Kurucz, R. L. TI Iron abundance in the prototype PG1159 star, GW Vir pulsator PG1159-035, and related objects SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: abundances; stars: atmospheres; stars: evolution; stars: AGB and post-AGB; white dwarfs ID WHITE-DWARFS; ULTRAVIOLET SPECTROSCOPY; HOT; FUSE; HST; SUN AB We performed an iron abundance determination of the hot, hydrogen deficient post-AGB star PG1159-035, which is the prototype of the PG1159 spectral class and the GW Vir pulsators, and of two related objects (PG1520+525, PG1144+005), based on the first detection of Fe VIII lines in stellar photospheres. In another PG1159 star, PG1424+535, we detect Fe VII lines. In all four stars, each within T-eff = 110 000-150 000 K, we find a solar iron abundance. This result agrees with our recent abundance analysis of the hottest PG1159 stars (T-eff = 150 000-200 000 K) that exhibit Fe x lines. On the whole, we find that the PG1159 stars are not significantly iron deficient, in contrast to previous notions. C1 [Werner, K.; Rauch, T.] Univ Tubingen, Kepler Ctr Astro & Particle Phys, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Kruk, J. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kurucz, R. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Werner, K (reprint author), Univ Tubingen, Kepler Ctr Astro & Particle Phys, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany. EM werner@astro.uni-tuebingen.de RI Kruk, Jeffrey/G-4047-2012 FU NASA [NAS5-32985, NAS5-26666, NAS5-26555]; German Aerospace Centre (DLR) [05 OR0806]; NASA Office of Space Science [NNX09AF08G] FX Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE was operated for NASA by the Johns Hopkins University under NASA contract NAS5-32985. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666.; T.R. is supported by the German Aerospace Centre (DLR) under grant 05 OR0806. Some of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. NR 19 TC 49 Z9 49 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2011 VL 531 AR A146 DI 10.1051/0004-6361/201116992 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795YZ UT WOS:000293017700168 ER PT J AU Acikmese, B Corless, M AF Acikmese, Behcet Corless, Martin TI Observers for systems with nonlinearities satisfying incremental quadratic constraints SO AUTOMATICA LA English DT Article DE Nonlinear observer and filter design; Application of nonlinear analysis and design; Optimization-based controller synthesis; Linear matrix inequalities ID DESIGN; STABILITY; STATE AB We consider the problem of designing observers to asymptotically estimate the state of a system whose nonlinear time-varying terms satisfy an incremental quadratic inequality that is parameterized by a set of multiplier matrices. Observer design is reduced to solving linear matrix inequalities for the observer gain matrices. The proposed observers guarantee exponential convergence of the state estimation error to zero. In addition to considering a larger class of nonlinearities than previously considered, this paper unifies earlier related results in the literature. The results are illustrated by application to several examples. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Acikmese, Behcet] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Corless, Martin] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. RP Acikmese, B (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM behcet@jpl.nasa.gov; corless@purdue.edu RI Corless, Martin/F-2299-2011 FU Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration FX The authors gratefully acknowledge Dr. Murat Arcak of the University of California Berkeley for his valuable comments and suggestions. The work described in this paper was performed at Purdue University. The writing and publication of this paper was partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 31 TC 14 Z9 14 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0005-1098 J9 AUTOMATICA JI Automatica PD JUL PY 2011 VL 47 IS 7 BP 1339 EP 1348 DI 10.1016/j.automatica.2011.02.017 PG 10 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA 783IJ UT WOS:000292074400006 ER PT J AU Makowski, AL Lindgren, K Locke, JP AF Makowski, Andrew L. Lindgren, Kjell Locke, James P. TI Visual Side Effects of Scopolamine/Dextroamphetamine Among Parabolic Fliers SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE blurred vision; scope/dex; anticholinergic; near-point accommodation; visual acuity; reduced-gravity; simulated microgravity; antiemetic; motion sickness; vestibular ID ANTIMOTION SICKNESS DRUGS; MOTION SICKNESS; TRANSDERMAL SCOPOLAMINE; PERFORMANCE; HYOSCINE; EFFICACY; BIOAVAILABILITY; PREVENTION; VOLUNTEERS; ATROPINE AB MAKOWSKI AL, LINDGREN K, LOCKE JP. Visual side effects of scopolamine/dextroamphetamine among parabolic fliers. Aviat Space Environ Med 2011; 82:683-8. Introduction: Scopolamine/dextroamphetamine has been used to combat motion sickness generated aboard research aircraft for decades. While it has shown to be effective, previous studies differ as to the presence of visual side effects secondary to scopolamine's anticholinergic properties. This study sought to quantify any such effects in order to determine if they are operationally significant. Methods: Fliers in NASA's Reduced Gravity Program received a weight-based close of scopolamine/dextroamphetamine prior to boarding the aircraft. Measurements of pupil size, visual acuity, and accommodation were taken in identical conditions using subjects' dominant eyes prior to medication administration and again after landing. We enrolled 131 subjects ages 18-48. Pre- and postflight measurements of pupil size and acuity were available for 125 subjects. Results: Average pupil size increased by 1.1 mm (95% Cl 0.9 -1.2). Only 1.6% of subjects experienced a change in visual acuity of greater than 10 ft. The average near-point accommodation changed from 8.61 to 7.84 diopters, a difference of -0.77 (-1.01 to -0.53) diopters or 1.34 cm (0.87-1.81). Increasing age also correlated significantly with worsening change in accommodation. Discussion: This study found statistically significant changes in pupil size and near point accommodation that do not appear to be clinically important. No significant decrement in acuity was noted. While direct effects on in-flight performance could not be assessed, the use of scopolamine/dextroamphetamine among fliers aboard research aircraft does not appear to yield visual side effects sufficient to compromise later ground operations. C1 [Makowski, Andrew L.] St Joseph Reg Med Ctr, Dept Emergency Med, Milwaukee, WI USA. [Lindgren, Kjell] NASA Johnson Space Ctr, Astronaut Off, Houston, TX USA. [Locke, James P.] NASA Johnson Space Ctr, Med Operat Branch, Houston, TX USA. RP Locke, JP (reprint author), 2101 NASA Pkwy, Houston, TX 77058 USA. EM james.p.locke@nasa.gov NR 30 TC 3 Z9 3 U1 1 U2 7 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD JUL PY 2011 VL 82 IS 7 BP 683 EP 688 DI 10.3357/ASEM.2750.2011 PG 6 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 784QA UT WOS:000292172100002 PM 21748905 ER PT J AU English, SA Arakere, NK Allen, PA AF English, Shawn A. Arakere, Nagaraj K. Allen, Phillip A. TI J-Q characterized stress fields of surface-cracked metallic liners - II. Composite overwrapped pressure vessels SO ENGINEERING FRACTURE MECHANICS LA English DT Article DE Constraint effects; Finite element analysis; Ductile fracture; J-integral; Pressurized components ID TIP FIELDS; DUCTILE FRACTURE; TRIAXIALITY PARAMETER; PART II; CONSTRAINT; GROWTH; FAMILY; VOIDS AB Two-parameter J-Q elastic-plastic crack front fields are developed for surface-cracked metallic liners of composite overwrapped pressure vessels (COPV). Uniaxial tensile data from 6061-T6 aluminum coupon specimens for the metallic liner and anisotropic elastic material properties for the filament wound carbon fiber epoxy are used in three-dimensional finite element models. Modified boundary layer (MBL) finite element solutions are used to evaluate near tip dominance and parameterization limits. Semicircular surface cracks of varying depths inserted in the inner liner surface are investigated. J and Q crack front distributions, and the corresponding parameterization limits, and near tip triaxiality trends are obtained and the effects of elastic-plastic material discontinuity of the heterogeneous joint and the biaxiality of stresses are evaluated. J-Q predicted fields maintain accuracy for higher far-field loads and lower near tip deformations compared to the liner only models for angles near the free surface. However, for the critical crack growth region, Q does not maintain a radially independent measure of constraint for loads seen in a typical COPV; therefore, these fracture predictors may not be applicable. In the COPV, large-scale yielding marks a transition where triaxiality is higher as a function of constraint compared to the linear relationship common to homogeneous structures. Results from this study will facilitate the implementation of proof test logic and accurate fracture prediction of COPV liners with emphasis on geometric limits and fracture specimen applicability. (C) 2011 Elsevier Ltd. All rights reserved. C1 [English, Shawn A.; Arakere, Nagaraj K.] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA. [Allen, Phillip A.] NASA, Marshall Space Flight Ctr, Huntsville, AL USA. RP Arakere, NK (reprint author), Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA. EM shawn350@ufl.edu; nagaraj@ufl.edu; phillip.a.allen@nasa.gov FU NASA Marshall Space Flight Center (MSFC) FX The authors express their appreciation for the support provided by the NASA Marshall Space Flight Center (MSFC). Ongoing, unpublished research at MSFC concerning the deformation limits for surface crack testing laid the foundation for many of the analytical tools and techniques used in this study. The authors also thank the NASA Langley Research Center (LARC) for providing us with specimen data. NR 31 TC 1 Z9 2 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-7944 J9 ENG FRACT MECH JI Eng. Fract. Mech. PD JUL PY 2011 VL 78 IS 10 BP 2097 EP 2114 DI 10.1016/j.engfracmech.2011.02.023 PG 18 WC Mechanics SC Mechanics GA 787XR UT WOS:000292410500001 ER PT J AU Komjathy, A Wilson, BD Mannucci, AJ AF Komjathy, Attila Wilson, Brian D. Mannucci, Anthony J. TI New developments on estimating satellite interfrequency bias for SVN49 SO GPS SOLUTIONS LA English DT Article DE Ionosphere; Satellite interfrequency bias; SVN49; Global ionospheric mapping (GIM) AB In order to estimating satellite interfrequency bias T-gd for the anomalously behaving SVN49, a modified JPL GIM software suite is presented. This research assumed that the single-frequency user will not need to perform any modification in the receiver software and will not need any detailed knowledge of the satellite anomaly using the code observable. We performed a point positioning analysis and investigated the range residuals for SVN49. It was discovered that the new satellite bias estimate resulted in near zero mean residuals with the shape of P2-P1 and L1-L2 observables being consistent with shapes from other satellites. Also, computed is a 10-day average of the estimated satellite interfrequency bias T-gd, which turned out to be -19.13 ns. C1 [Komjathy, Attila; Wilson, Brian D.; Mannucci, Anthony J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Komjathy, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 138-300, Pasadena, CA 91109 USA. EM Attila.Komjathy@jpl.nasa.gov OI Mannucci, Anthony/0000-0003-2391-8490 FU Jet Propulsion Laboratory/California Institute of Technology FX This research was performed at the Jet Propulsion Laboratory/California Institute of Technology under contract to the National Aeronautics and Space Administration. Copyright 2010 California Institute of Technology. NR 8 TC 1 Z9 1 U1 0 U2 8 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1080-5370 J9 GPS SOLUT JI GPS Solut. PD JUL PY 2011 VL 15 IS 3 BP 233 EP 238 DI 10.1007/s10291-010-0185-5 PG 6 WC Remote Sensing SC Remote Sensing GA 785FG UT WOS:000292212200004 ER PT J AU Oreopoulos, L Wilson, MJ Varnai, T AF Oreopoulos, Lazaros Wilson, Michael J. Varnai, Tamas TI Implementation on Landsat Data of a Simple Cloud-Mask Algorithm Developed for MODIS Land Bands SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Cloud masking; Enhanced Thematic Mapper (ETM); Moderate Resolution Imaging Spectroradiometer (MODIS); Operational Land Imager (OLI); satellite remote sensing ID CLEAR-SKY AB This letter assesses the performance on Landsat-7 images of a modified version of a cloud-masking algorithm originally developed for clear-sky compositing of Moderate Resolution Imaging Spectroradiometer images at northern midlatitudes. While most historical Landsat data include measurements at thermal wavelengths and such measurements are also planned for the next mission, thermal tests are not included in the suggested algorithm in order to maintain greater versatility and ease of use. The evaluation of the masking algorithm takes advantage of the availability of manual (visual) cloud masks developed at the U. S. Geological Survey for a collection of Landsat scenes. As part of the evaluation, we also include the automated cloud cover assessment (ACCA) algorithm which does include thermal tests and is used operationally by the Landsat-7 mission to provide scene cloud fractions but no cloud masks. We show that the proposed algorithm performs on par with the ACCA both in terms of scene cloud fraction and pixel-level mask agreement. Specifically, the algorithm gives an error of 0.8% for the scene cloud fraction of 156 scenes and a root-mean-square error of 7.1%, while it agrees with the manual mask for 93.1% of the pixels. These performance indicators are very similar to those of the ACCA (1.2%, 7.1%, and 93.7%). C1 [Oreopoulos, Lazaros] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wilson, Michael J.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21250 USA. [Varnai, Tamas] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21250 USA. RP Oreopoulos, L (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Lazaros.Oreopoulos@nasa.gov; Michael.J.Wilson-1@nasa.gov; Tamas.Varnai@nasa.gov RI Oreopoulos, Lazaros/E-5868-2012; Wilson, Michael/G-9611-2013 OI Oreopoulos, Lazaros/0000-0001-6061-6905; FU U.S. Geological Survey [06CRCN0022] FX Manuscript received August 27, 2010; revised November 9, 2010; accepted November 16, 2010. Date of publication January 16, 2011; date of current version June 24, 2011. This work was supported in part by the U.S. Geological Survey under Contract 06CRCN0022. NR 7 TC 23 Z9 24 U1 0 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD JUL PY 2011 VL 8 IS 4 BP 597 EP 601 DI 10.1109/LGRS.2010.2095409 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 783SW UT WOS:000292105300003 ER PT J AU Durand, M Kim, EJ Margulis, SA Molotch, NP AF Durand, Michael Kim, Edward J. Margulis, Steven A. Molotch, Noah P. TI A First-Order Characterization of Errors From Neglecting Stratigraphy in Forward and Inverse Passive Microwave Modeling of Snow SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Hydrology; microwave radiometry; remote sensing; snow ID RADIATIVE-TRANSFER THEORY; QUASI-CRYSTALLINE APPROXIMATION; EMISSION MODEL; LAYERED SNOWPACKS; SCALE; COVER AB Large-scale snow hydrology has been studied via spaceborne passive microwave (PM) measurements for decades. Forward and inverse radiative transfer (RT) models of snow are utilized in this context but typically neglect snow stratigraphy. Our objective in this paper is to characterize the expected model error in PM brightness temperature (T(b)) predictions due to neglecting stratigraphy over a range of snow cover conditions. For 191 snow-pits ranging from prairie to alpine, we performed side-by-side RT model runs including and ignoring stratigraphy via mass-weighted averages across stratigraphic layers; error was estimated by comparing the two RT model runs. Neglecting stratigraphy at 37 GHz led to approximately 10-K root mean square error (RMSE) for moderately deep (alpine) snow cover and to approximately 5-K RMSE for shallower (prairie) snow. RMSE across all types of snow was 1.67 and 26.9 K at 18.7 and 89 GHz, respectively. At 37 GHz, there was a low bias for deep snowpacks and a high bias for moderate-to-shallow snowpacks. Bias magnitude bias was dependent on vertical grain size variability. Based on these results and estimates of sensitivity of Tb to snow depth, we estimated that snow depth RMSE due to neglecting stratigraphy approaches 50%. C1 [Durand, Michael] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Durand, Michael] Ohio State Univ, Byrd Polar Res Ctr, Columbus, OH 43210 USA. [Kim, Edward J.] NASA, Hydrospher & Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Margulis, Steven A.] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA. [Molotch, Noah P.] Univ Colorado, Dept Geog, Boulder, CO 80309 USA. [Molotch, Noah P.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Molotch, Noah P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Durand, M (reprint author), Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. EM durand.8@osu.edu; ed.kim@nasa.gov; margulis@seas.ucla.edu; noah.molotch@colorado.edu RI Durand, Michael/D-2885-2013; Molotch, Noah/C-8576-2009 FU NASA [NNX09AMI0G, NNX08AH18G] FX Manuscript received August 31, 2010; revised December 2, 2010; accepted December 21, 2010. Date of publication February 27, 2011; date of current version June 24, 2011. This work was supported by NASA Terrestrial Hydrology Program Grants NNX09AMI0G and NNX08AH18G. NR 21 TC 17 Z9 17 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD JUL PY 2011 VL 8 IS 4 BP 730 EP 734 DI 10.1109/LGRS.2011.2105243 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 783SW UT WOS:000292105300030 ER PT J AU Konings, AG Entekhabi, D Chan, SK Njoku, EG AF Konings, Alexandra G. Entekhabi, Dara Chan, Steven K. Njoku, Eni G. TI Effect of Radiative Transfer Uncertainty on L-Band Radiometric Soil Moisture Retrieval SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Microwave radiometry; radiative transfer; soil moisture ID SYSTEM SIMULATION EXPERIMENT; MICROWAVE EMISSION; SURFACE-TEMPERATURE; WATER-CONTENT; AMSR-E; VEGETATION; MODEL; PARAMETERIZATION; POLARIZATION; IMPACT AB Microwave radiometry soil moisture retrieval methods suffer from uncertainties about the representation of several effects, including dielectric mixing, surface roughness, and vegetation opacity. These uncertainties lead to two major types of error: systematic bias and random errors. The effect of the uncertainties is studied using the Soil Moisture Active Passive Algorithm Testbed, a simulation environment for evaluating error propagation in retrieval algorithms, and two different common retrieval algorithms (single and dual polarizations). The two types of errors are simulated by using different representations for each factor in the forward and retrieval parts. For both algorithms, this approach introduces a spatially variable bias, which is particularly large when using a single-polarization retrieval algorithm. This paper illustrates the emergence of both this bias and the random error due to uncertainty in the representation of vegetation and soil texture effects in retrieval algorithms. The dependence of these two types of error on vegetation and soil texture properties is shown through mapping them over the simulation region. The relative contribution of these errors to the total error is strongly dependent on the simulation conditions and is not necessarily indicative of what may be experienced during actual observations. Uncertainty due to roughness representation causes a lower error than uncertainty in vegetation opacity and dielectric mixing parameterizations in the simulated soil moisture retrieval. Summation and compensation of multiple errors can cause the estimate error to increase with improved radiative transfer knowledge, even after bias removal. The retrieval of soil moisture from microwave measurements depends on several other parameterizations that are also uncertain. This paper is limited to only three parameterizations that are considered to be among the larger contributors to bias. C1 [Konings, Alexandra G.] Duke Univ, Nicholas Sch Environm, Durham, NC 27705 USA. [Entekhabi, Dara] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [Chan, Steven K.; Njoku, Eni G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Konings, AG (reprint author), Duke Univ, Nicholas Sch Environm, Durham, NC 27705 USA. EM konings@alum.mit.edu; darae@mit.edu; chan@jpl.nasa.gov; eni.g.njoku@jpl.nasa.gov OI Konings, Alexandra/0000-0002-2810-1722 NR 51 TC 10 Z9 10 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUL PY 2011 VL 49 IS 7 BP 2686 EP 2698 DI 10.1109/TGRS.2011.2105495 PG 13 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 783VJ UT WOS:000292111800018 ER PT J AU Day, JO O'Dell, CW Pollock, R Bruegge, CJ Rider, D Crisp, D Miller, CE AF Day, Jason O. O'Dell, Christopher W. Pollock, Randy Bruegge, Carol J. Rider, David Crisp, David Miller, Charles E. TI Preflight Spectral Calibration of the Orbiting Carbon Observatory SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Carbon dioxide (CO2); instrument line shape (ILS); Orbiting Carbon Observatory (OCO); spectral calibration ID MISSION AB We report on the preflight spectral calibration of the first Orbiting Carbon Observatory (OCO) instrument. In particular, the instrument line shape (ILS) function as well as spectral position was determined experimentally for all OCO channels. Initial determination of these characteristics was conducted through laser-based spectroscopic measurements. The resulting spectral calibration was validated by comparing solar spectra recorded simultaneously by the OCO flight instrument and a collocated high-resolution Fourier transform spectrometer (FTS). The spectral calibration was refined by optimizing parameters of the ILS as well as the dispersion relationship, which determines spectral position, to yield the best agreement between these two measurements. The resulting ILS profiles showed agreement between the spectra recorded by the spectrometers and FTS to approximately 0.2% rms, satisfying the preflight spectral calibration accuracy requirement of better than 0.25% rms. C1 [Day, Jason O.; O'Dell, Christopher W.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Pollock, Randy; Bruegge, Carol J.; Rider, David; Crisp, David; Miller, Charles E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Day, JO (reprint author), Off US Senator Al Franken, Washington, DC 20510 USA. FU National Aeronautics and Space Administration (NASA) [1280999] FX The authors would like to thank all of the Jet Propulsion Laboratory (JPL) employees who worked tirelessly to acquire the Orbiting Carbon Observatory thermal vacuum test data. The authors would also like to thank the two anonymous reviewers for their thoughtful comments on the original manuscript. A portion of the research described in this paper was carried out at the JPL, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). The Colorado State University contributions to this work were carried out under NASA contract 1280999. NR 11 TC 11 Z9 13 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUL PY 2011 VL 49 IS 7 BP 2793 EP 2801 DI 10.1109/TGRS.2011.2107745 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 783VJ UT WOS:000292111800026 ER PT J AU McMillan, WW Evans, KD Barnet, CD Maddy, ES Sachse, GW Diskin, GS AF McMillan, W. W. Evans, Keith D. Barnet, Christopher D. Maddy, Eric S. Sachse, Glen W. Diskin, Glenn S. TI Validating the AIRS Version 5 CO Retrieval With DACOM In Situ Measurements During INTEX-A and -B SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Carbon monoxide (CO); infrared measurements; remote sensing; satellite validation ID TROPOSPHERIC CARBON-MONOXIDE; INFRARED SOUNDER TEMPERATURE; MOPITT INSTRUMENT; SPRING 2006; POLLUTION; TRANSPORT; INTERFEROMETER; AIRS/AMSU/HSB; DISTRIBUTIONS; INVENTORIES AB Herein we provide a description of the atmospheric infrared sounder (AIRS) version 5 (v5) carbon monoxide (CO) retrieval algorithm and its validation with the DACOM in situ measurements during the INTEX-A and -B campaigns. All standard and support products in the AIRS v5 CO retrieval algorithm are documented. Building on prior publications, we describe the convolution of in situ measurements with the AIRS v5 CO averaging kernel and first-guess CO profile as required for proper validation. Validation is accomplished through comparison of AIRS CO retrievals with convolved in situ CO profiles acquired during the NASA Intercontinental Chemical Transport Experiments (INTEX) in 2004 and 2006. From 143 profiles in the northern mid-latitudes during these two experiments, we find AIRS v5 CO retrievals are biased high by 6%-10% between 900 and 300 hPa with a root-mean-square error of 8%-12%. No significant differences were found between validation using spiral profiles coincident with AIRS overpasses and in-transit profiles under the satellite track but up to 13 h off in time. Similarly, no significant differences in validation results were found for ocean versus land, day versus night, or with respect to retrieved cloud top pressure or cloud fraction. C1 [McMillan, W. W.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Evans, Keith D.] Univ Maryland Baltimore Cty, UMBC JCET, Baltimore, MD 21250 USA. [Barnet, Christopher D.] NOAA, NESDIS, Ctr Satellite Applicat & Res STAR, Camp Springs, MD 20746 USA. [Maddy, Eric S.] Dell Inc, Fairfax, VA 22031 USA. [Sachse, Glen W.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Diskin, Glenn S.] NASA Langley Res Ctr, Hampton, VA 23681 USA. EM evans@umbc.edu RI Barnet, Christopher/F-5573-2010; Maddy, Eric/G-3683-2010 OI Maddy, Eric/0000-0003-1151-339X NR 59 TC 19 Z9 19 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUL PY 2011 VL 49 IS 7 BP 2802 EP 2813 DI 10.1109/TGRS.2011.2106505 PG 12 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 783VJ UT WOS:000292111800027 ER PT J AU Ditty, JG AF Ditty, James G. TI YOUNG OF LITOPENAEUS SETIFERUS, FARFANTEPENAEUS AZTECUS AND F. DUORARUM (DECAPODA: PENAEIDAE): A RE-ASSESSMENT OF CHARACTERS FOR SPECIES DISCRIMINATION AND THEIR VARIABILITY SO JOURNAL OF CRUSTACEAN BIOLOGY LA English DT Article DE antennal scale; antennular flagella; Farfantepenaeus; Litopenaeus; rostrum; spinules; sternal spines ID GULF-OF-MEXICO; BROWN SHRIMP; LARVAL DEVELOPMENT; GALVESTON BAY; GENUS PENAEUS; POSTLARVAE; TEXAS; RECRUITMENT; IVES; PENAEOIDEA AB I reviewed the penaeid literature for characters 'traditionally' used to discriminate Litopenaeus setiferus, Farfantepenaeus aztecus, and F. duorarum and examined early life stages (ELS) with 3 + 0 to 8 + 2 rostral teeth based on these characters. The species identity of most of the specimens examined were verified 'a priori' with a multiplex PCR assay that targeted the 16S rRNA mitochondrial gene. My objectives were to re-evaluate 'traditional' characters by re-examining ELS for differences in morphology and timing of character development based on number of rostral teeth rather than body size, and, to identify a reliable suite(s) of characters to discriminate taxa in areas where distributions overlap. I found the absence of spinules along the dorsal carina of the sixth pleomere in young with < 4 dorsal teeth (DT), and the supposed difference in length of the third pereopod relative to the distal margin of the eye to be unreliable characters for generic discrimination. Differences in the thoracic sternal spine pattern, rostrum depth at the third DT, and relative lengths of segment one of the inner and outer antennular flagellum are 'new' characters for genus and/or species level discrimination discussed here. Differences in antennal scale shape and sixth pleomere length can help discriminate F. aztecus from F. duorarum, but these characters should be used cautiously in areas where distributions overlap, especially during summer and early fall when water temperatures and rates of growth and development are high. Young with <= 7 - 8 + 1 teeth and a sixth pleomere length > 2.5 mm can be assigned to F. aztecus, regardless of collection date, because all comparably developed F. duorarum and L. setiferus examined had a sixth pleomere length < 2.5 mm. Given temporal and species-specific differences in rates of growth and development that contribute to morphological variability, number of rostral teeth provides a more consistent criterion than body size to determine which characters reliably discriminate taxa. C1 Natl Marine Fisheries Serv, Natl Oceanog & Atmospher Adm, Galveston, TX 77551 USA. RP Ditty, JG (reprint author), Natl Marine Fisheries Serv, Natl Oceanog & Atmospher Adm, 4700 Ave U, Galveston, TX 77551 USA. EM Jim.Ditty@NOAA.gov FU Texas Sea Grant [424013] FX Thanks to Texas Sea Grant for funding a portion of this study (Project 424013) and to NOAA's Southeast Fisheries Science Center for additional support. Thanks also to Shawn Hillen, Juan Salas and Jennifer Atchison of NOAA's Galveston Laboratory, and Dr. Ronnie Baker formerly of NOAA's Galveston Laboratory who participated in sample collection. Dr. Jim Tolan of Texas Parks and Wildlife Department provided penaeids from collections taken near Corpus Christi, Texas. Thanks to Dr. Jaime Alvarado Bremer of Texas A&M University at Galveston, and to Brandon Saxton, formerly of Texas A&M University at Galveston for assistance in molecular identification of F. aztecus, F. duorarum, and L setiferus. NR 42 TC 4 Z9 4 U1 0 U2 4 PU CRUSTACEAN SOC PI SAN ANTONIO PA 840 EAST MULBERRY, SAN ANTONIO, TX 78212 USA SN 0278-0372 EI 1937-240X J9 J CRUSTACEAN BIOL JI J. Crustac. Biol. PD JUL PY 2011 VL 31 IS 3 BP 458 EP 467 DI 10.1651/10-3419.1 PG 10 WC Marine & Freshwater Biology SC Marine & Freshwater Biology GA 785II UT WOS:000292222300012 ER PT J AU Thompson, DR Wettergreen, DS Peralta, FJC AF Thompson, David R. Wettergreen, David S. Peralta, Francisco J. Calderon TI Autonomous Science during Large-Scale Robotic Survey SO JOURNAL OF FIELD ROBOTICS LA English DT Article ID BAYESIAN EXPERIMENTAL-DESIGN; EXPLORATION; INFORMATION; TITAN AB Today's planetary exploration robots rarely travel beyond the yesterday imagery. However, advances in autonomous mobility will soon permit single-command site surveys of multiple kilometers. Here scientists cannot see the terrain in advance, and explorer robots must navigate and collect data autonomously. Onboard science data understanding can improve these surveys with image analysis, pattern recognition, learned classification, and information-theoretic planning. We report on field experiments near Amboy Crater, California, that demonstrate fundamental capabilities for autonomous surficial mapping of geologic phenomena with a visible near-infrared spectrometer. We develop an approach to "science on the fly" that adapts the robot's exploration using collected instrument data. We demonstrate feature detection and visual servoing to acquire spectra from dozens of targets without human intervention. The rover interprets spectra onboard, learning spatial models of science phenomena that guide it toward informative areas. It discovers spatial structure (correlations between neighboring regions) and cross-sensor structure (correlations between different scales). The rover uses surface observations to reinterpret satellite imagery and improve exploration efficiency. (C) 2011 Wiley Periodicals, Inc. C1 [Thompson, David R.; Wettergreen, David S.; Peralta, Francisco J. Calderon] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA. RP Thompson, DR (reprint author), CALTECH, Jet Prop Lab, M-S 306-463,4800 Oak Dr, Pasadena, CA 91109 USA. EM David.R.Thompson@jpl.nasa.gov; dsw@ri.cmu.edu; francisco.calderon@pochcorp.com FU NASA [NNG0-4GB66G] FX The authors thank Dom Jonak for his indispensable technical expertise in rover navigation, logistics, and photography. Thanks to Reid Simmons for help and advice with planning aspects and to Jeff Schneider for his help with formulating the spatial models and exploration strategy. Steve Chien provided counsel in operations modes and questions of science value. Thanks to James Teza for his assistance in data collection. Ron Greeley and Shelby Cave (Arizona State University) provided assistance in site selection. Many thanks to Phil Christensen for his understanding of the site. Rebecca Castano and the JPL AEGIS/OASIS team gave advice and inspiration. The rock detection software draws heavily on publicly available code from the Intel OpenCV libraries, courtesy Intel Co. and Gary Bradski. This work was funded through NASA ASTEP Grant #NNG0-4GB66G "Science on the Fly" and performed at Carnegie Mellon University. NR 82 TC 8 Z9 8 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1556-4959 EI 1556-4967 J9 J FIELD ROBOT JI J. Field Robot. PD JUL-AUG PY 2011 VL 28 IS 4 BP 542 EP 564 DI 10.1002/rob.20391 PG 23 WC Robotics SC Robotics GA 786BM UT WOS:000292277400005 ER PT J AU Williams, LJ Cicia, AM Pellegrin, GB Smith, KM Sulikowski, JA AF Williams, L. J. Cicia, A. M. Pellegrin, G. B. Smith, K. M. Sulikowski, J. A. TI The reproductive cycle of the roundel skate Raja texana SO JOURNAL OF FISH BIOLOGY LA English DT Article DE fishery management; life history; Rajidae ID GULF-OF-MEXICO; SOUTH-WEST ATLANTIC; SOUTHEASTERN BRAZIL; AMBLYRAJA-RADIATA; NORTHWESTERN GULF; MALACORAJA-SENTA; SEXUAL-MATURITY; AGE; MAINE; BIOLOGY AB The reproductive cycle of Raja texana was determined from 63 females (510-630 mm total length, L(T)) and 81 males (355-546 mm L(T)) collected from the Gulf of Mexico. The results, based on follicle size, mature spermatocysts and gonadosomatic index (I(G)) suggests year-round reproductive activity. (C) 2011 The Authors Journal of Fish Biology (C) 2011 The Fisheries Society of the British Isles C1 [Williams, L. J.; Cicia, A. M.; Smith, K. M.; Sulikowski, J. A.] Univ New England, Dept Marine Sci, Biddeford, ME 04005 USA. [Pellegrin, G. B.] Natl Marine Fisheries Serv, Pascagoula Lab, Pascagoula, MS 39567 USA. RP Williams, LJ (reprint author), Univ New England, Dept Marine Sci, 11 Hills Beach Rd, Biddeford, ME 04005 USA. EM lwilliams8@une.edu NR 34 TC 1 Z9 1 U1 1 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-1112 J9 J FISH BIOL JI J. Fish Biol. PD JUL PY 2011 VL 79 IS 1 BP 298 EP 305 DI 10.1111/j.1095-8649.2011.03010.x PG 8 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 786VL UT WOS:000292335900020 PM 21722126 ER PT J AU Heinkelmann, R Boehm, J Bolotin, S Engelhardt, G Haas, R Lanotte, R MacMillan, DS Negusini, M Skurikhina, E Titov, O Schuh, H AF Heinkelmann, R. Boehm, J. Bolotin, S. Engelhardt, G. Haas, R. Lanotte, R. MacMillan, D. S. Negusini, M. Skurikhina, E. Titov, O. Schuh, H. TI VLBI-derived troposphere parameters during CONT08 SO JOURNAL OF GEODESY LA English DT Article DE VLBI; Troposphere parameters; Intra-technique combination ID TERRESTRIAL REFERENCE FRAME; GEODESY; INTERFEROMETRY; GPS AB Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays (ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12-26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6 mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3 mm (unweighted), 4.4 mm (diagonal), 8.6 mm [variance component (VC) estimation], and 8.6 mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two extensions of the stochastic model is recommended. C1 [Heinkelmann, R.] Deutsch Geodat Forschunginst DGFI, D-80539 Munich, Germany. [Boehm, J.; Schuh, H.] Vienna Univ Technol, Inst Geodesy & Geophys IGG, A-1040 Vienna, Austria. [Bolotin, S.; MacMillan, D. S.] NVI Inc, Greenbelt, MD 20771 USA. [Bolotin, S.; MacMillan, D. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Engelhardt, G.] Bundesamt Kartog & Geodasie BKG, D-04105 Leipzig, Germany. [Haas, R.] Chalmers, Onsala Space Observ, Dept Earth & Space Sci, S-43992 Onsala, Sweden. [Lanotte, R.] Ctr Geodesia Spaziale CGS, I-75100 Matera, Italy. [Negusini, M.] Ist Nazl Astrofis INA, Ist Radioastron, I-40129 Bologna, Italy. [Skurikhina, E.] Inst Appl Astron IAA, St Petersburg 191187, Russia. [Titov, O.] Geosci Australia AUS, Canberra, ACT 2601, Australia. RP Heinkelmann, R (reprint author), Deutsch Geodat Forschunginst DGFI, Alfons Goppel Str 11, D-80539 Munich, Germany. EM heinkelmann@dgfi.badw.de; johannes.boehm@tuwien.ac.at; sergei.bolotin@nasa.gov; gerald.engelhardt@bkg.bund.de; rudiger.haas@chalmers.se; roberto.lanotte@e-geos.it; dsm@gemini.gsfc.nasa.gov; negusini@ira.inaf.it; sea@ipa.nw.ru; oleg.titov@ga.gov.au; harald.schuh@tuwien.ac.at RI Haas, Rudiger/G-1286-2010; Bohm, Johannes/H-9161-2013; Negusini, Monia/N-6493-2015 OI Haas, Rudiger/0000-0003-2681-9228; Bohm, Johannes/0000-0002-1208-5473; Negusini, Monia/0000-0002-0064-5533 FU FWF [P20902] FX We acknowledge the IVS (Schluter and Behrend 2007) and its components for providing excellent VLBI data. J. Bohm would like to thank the FWF for supporting this work within project P20902 (GGOS Atmosphere). The authors thank the three reviewers, whose comments helped improve the article. NR 38 TC 10 Z9 10 U1 1 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 J9 J GEODESY JI J. Geodesy PD JUL PY 2011 VL 85 IS 7 BP 377 EP 393 DI 10.1007/s00190-011-0459-x PG 17 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 781OG UT WOS:000291942300002 ER PT J AU Villac, B Chow, C Lo, M Hintz, G AF Villac, Benjamin Chow, Channing Lo, Martin Hintz, Gerald TI A Dynamical System Approach to Orbit Down-Selection of Earth-Moon Autonomous Navigation Constellations SO JOURNAL OF THE ASTRONAUTICAL SCIENCES LA English DT Article; Proceedings Paper CT AAS George H. Born Symposium CY MAY 13-14, 2010 CL Univ Colorado, Boulder, CO SP AAS HO Univ Colorado ID TRAJECTORIES AB The article develops a method for the exploration of a concept of autonomous navigation constellations in the Earth-Moon system. This concept consists of using autonomous GPS-like beacons on three-body periodic orbits to provide navigation services to an end-user in the larger Earth-Moon neighborhood. The autonomy of the constellation spacecraft would be achieved using LiAISON navigation as introduced by Hill, Born, and Lo. The article focuses on the problem of orbit down-selection for such a concept, which is approached by formulating an optimization problem. The discussion of potential cost functions and the resulting simplifications of the problem are addressed. A continuation based method that leverages the structure of periodic orbits in the circular restricted three-body problem is then proposed to analyze the problem. The method allows notably for a succinct representation of the solution space as a one-dimensional graph that highlights local and global extrema of the optimization problem. Illustration of the method using a simplified down-selection metric is discussed to balance the strengths and limitations of the approach. C1 [Villac, Benjamin] Univ Calif Irvine, Irvine, CA 92717 USA. [Chow, Channing; Hintz, Gerald] Univ So Calif, Los Angeles, CA 90089 USA. [Lo, Martin] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Villac, B (reprint author), Univ Calif Irvine, Irvine, CA 92717 USA. EM bvillac@uci.edu; channinc@usc.edu; martin.w.lo@jpl.nasa.gov; ghintz@usc.edu NR 14 TC 0 Z9 0 U1 1 U2 1 PU AMER ASTRONAUTICAL SOC PI SPRINGFIELD PA 6352 ROLLING MILL PLACE SUITE 102, SPRINGFIELD, VA 22152 USA SN 0021-9142 J9 J ASTRONAUT SCI JI J. Astronaut. Sci. PD JUL-SEP PY 2011 VL 58 IS 3 SI SI BP 365 EP 387 PN 1 PG 23 WC Engineering, Aerospace SC Engineering GA 992TL UT WOS:000307802500006 ER PT J AU Barbee, BW Carpenter, JR Heatwole, S Markley, FL Moreau, M Naasz, BJ Van Eepoel, J AF Barbee, Brent W. Carpenter, J. Russell Heatwole, Scott Markley, F. Landis Moreau, Michael Naasz, Bo J. Van Eepoel, John TI A Guidance and Navigation Strategy for Rendezvous and Proximity Operations with a Noncooperative Spacecraft in Geosynchronous Orbit SO JOURNAL OF THE ASTRONAUTICAL SCIENCES LA English DT Article; Proceedings Paper CT AAS George H. Born Symposium CY MAY 13-14, 2010 CL Univ Colorado, Boulder, CO SP AAS HO Univ Colorado AB The feasibility and benefits of various spacecraft servicing concepts are currently being assessed, and all require that servicer spacecraft perform rendezvous, proximity operations, and capture operations with the spacecraft to be serviced. There are many high-value commercial and military spacecraft located in geosynchronous orbit (GEO) which may be candidates for servicing, but GEO is a regime in which rendezvous and capture operations are not commonplace; further, most GEO spacecraft were not designed to be cooperative rendezvous targets, and some may even be completely nonfunctional and therefore potentially tumbling. In this work we present elements of a guidance and navigation strategy for rendezvous and proximity operations with a noncooperative spacecraft in GEO. Translational Ay is assessed for a passively safe co-elliptic rendezvous approach sequence that is followed by injection into a safety ellipse about a noncooperative tumbling spacecraft and, ultimately, final approach to capture. Covariance analysis is presented for a simulation of range and bearing measurements throughout the rendezvous and proximity operations sequence. C1 [Barbee, Brent W.; Carpenter, J. Russell; Markley, F. Landis; Moreau, Michael; Naasz, Bo J.; Van Eepoel, John] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Heatwole, Scott] NASA, GSFCs, Wallops Flight Facil, Wallops Isl, VA 23337 USA. RP Barbee, BW (reprint author), NASA, Goddard Space Flight Ctr, Code 595,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. NR 7 TC 7 Z9 7 U1 0 U2 8 PU AMER ASTRONAUTICAL SOC PI SPRINGFIELD PA 6352 ROLLING MILL PLACE SUITE 102, SPRINGFIELD, VA 22152 USA SN 0021-9142 J9 J ASTRONAUT SCI JI J. Astronaut. Sci. PD JUL-SEP PY 2011 VL 58 IS 3 SI SI BP 389 EP 408 PN 1 PG 20 WC Engineering, Aerospace SC Engineering GA 992TL UT WOS:000307802500007 ER PT J AU Bhaskaran, S Nandi, S Broschart, S Wallace, M Cangahuala, LA Olson, C AF Bhaskaran, Shyam Nandi, Sumita Broschart, Stephen Wallace, Mark Cangahuala, L. Alberto Olson, Corwin TI Small Body Landings Using Autonomous Onboard Optical Navigation SO JOURNAL OF THE ASTRONAUTICAL SCIENCES LA English DT Article; Proceedings Paper CT AAS George H. Born Symposium CY MAY 13-14, 2010 CL Univ Colorado, Boulder, CO SP AAS HO Univ Colorado AB Spacecraft landings on small bodies (asteroids and comets) present special challenges from a navigation perspective as the size of the bodies is relatively small, with the resultant accuracy requirement to target landing areas fairly tight. Because the accuracies obtainable from ground-based navigation processes may not be sufficient, onboard navigation techniques are needed. Recent developments in deep space navigation capability include a self-contained autonomous navigation system (used in flight on three missions) and a landmark tracking system (used experimentally on the Japanese Hayabusa mission). The merging of these two technologies forms a methodology to perform autonomous onboard navigation around small bodies. This article presents an overview of these systems, as well as the results from Monte Carlo studies to quantify the achievable landing accuracies by using these methods. Two cases are presented, a landing on a small asteroid and on a mid-size comet. C1 [Bhaskaran, Shyam; Nandi, Sumita; Broschart, Stephen; Wallace, Mark; Cangahuala, L. Alberto] CALTECH, Jet Prop Lab, Mission Design & Nav Sect, Pasadena, CA 91109 USA. [Olson, Corwin] Ai Solut, Lanham, MD 20706 USA. RP Bhaskaran, S (reprint author), CALTECH, Jet Prop Lab, Mission Design & Nav Sect, MS 264-820A,4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 11 TC 14 Z9 14 U1 1 U2 3 PU AMER ASTRONAUTICAL SOC PI SPRINGFIELD PA 6352 ROLLING MILL PLACE SUITE 102, SPRINGFIELD, VA 22152 USA SN 0021-9142 J9 J ASTRONAUT SCI JI J. Astronaut. Sci. PD JUL-SEP PY 2011 VL 58 IS 3 SI SI BP 409 EP 427 PN 1 PG 19 WC Engineering, Aerospace SC Engineering GA 992TL UT WOS:000307802500008 ER EF