FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Peslier, AH AF Peslier, Anne H. TI A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE water; hydrogen; mantle; peridotite; melt; Mars; Moon ID QUANTITATIVE ABSORBENCY SPECTROSCOPY; LIGHT LITHOPHILE ELEMENTS; BENEATH SOUTHERN AFRICA; MID-ATLANTIC RIDGE; ORTHO-PYROXENE; HIGH-PRESSURE; HYDROGEN INCORPORATION; LITHOSPHERIC MANTLE; SUBDUCTION ZONES; BASALTIC GLASSES AB Olivine, pyroxene and garnet are nominally anhydrous but can accommodate tens to hundreds of parts per million (ppm) H2O or "water" in the form of protons incorporated in defects in their mineral structure. This review concerns the amount of water in nominally anhydrous minerals from mantle and mantle-derived rocks: peridotites, eclogites, megacrysts, basalts and kimberlites. Trends between internal and external parameters and water content in olivine, pyroxene, and garnet of mantle rocks allow us to identify what controls their H intake. The water content of pyroxenes and garnets in peridotites appears to depend primarily on mineral chemistry, while that of olivines may more readily reflect water activity and water fugacity conditions in the mantle. In eclogites, both mineral chemistry and metamorphic pressure control the water intake of pyroxene and garnet. The water content of minerals in crystallized melts (basalt and kimberlite phenocrysts, xenocrysts, and megacrysts) is determined by the degree of differentiation, the amount of water in the parent melt, and degassing. Basalt and cumulate minerals from Martian meteorites may be as water-rich as their Earth equivalents. No water has been detected at present in Moon minerals but low amounts in degassed basaltic glasses signify that deep Moon reservoirs may still retain water. The presence of water in mantle minerals, typically amounts of tens to hundreds of ppm, enhances their deformation properties. Water contents of peridotite minerals in the oceanic upper mantle, in and around cratons, and in subduction zones may have tremendous influence on Earth's geodynamics. (C) 2009 Elsevier B.V. All rights reserved. C1 [Peslier, Anne H.] Jacobs Technol, ESCG, Houston, TX 77058 USA. [Peslier, Anne H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Peslier, AH (reprint author), Jacobs Technol, ESCG, Mail Code JE23,2224 Bay Area Blvd, Houston, TX 77058 USA. EM anne.h.peslier@nasa.gov RI Peslier, Anne/F-3956-2010 NR 233 TC 61 Z9 65 U1 4 U2 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 EI 1872-6097 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD NOV 30 PY 2010 VL 197 IS 1-4 SI SI BP 239 EP 258 DI 10.1016/j.jvolgeores.2009.10.006 PG 20 WC Geosciences, Multidisciplinary SC Geology GA 702MP UT WOS:000285899100015 ER PT J AU Bera, PP Francisco, JS Lee, TJ AF Bera, Partha P. Francisco, Joseph S. Lee, Timothy J. TI Reply to Wallington et al.: Differences in electronic structure of global warming molecules lead to different molecular properties SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter ID RADIATIVE EFFICIENCY C1 [Bera, Partha P.; Lee, Timothy J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Francisco, Joseph S.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Francisco, Joseph S.] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. RP Lee, TJ (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. EM Timothy.J.Lee@nasa.gov RI Lee, Timothy/K-2838-2012; Bera, Partha /K-8677-2012 NR 6 TC 1 Z9 1 U1 0 U2 8 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 30 PY 2010 VL 107 IS 48 BP E180 EP E180 DI 10.1073/pnas.1008576107 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 687ET UT WOS:000284762400002 ER PT J AU Wallington, TJ Andersen, MPS Nielsen, OJ AF Wallington, T. J. Andersen, M. P. Sulbaek Nielsen, O. J. TI Relative integrated IR absorption in the atmospheric window is not the same as relative radiative efficiency SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter C1 [Nielsen, O. J.] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark. [Wallington, T. J.] Ford Motor Co, Syst Analyt & Environm Sci Dept, Dearborn, MI 48121 USA. [Andersen, M. P. Sulbaek] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Nielsen, OJ (reprint author), Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark. EM ojn@kiku.dk RI Sulbaek Andersen, Mads/C-4708-2008; Nielsen, Ole/B-9988-2011 OI Sulbaek Andersen, Mads/0000-0002-7976-5852; Nielsen, Ole/0000-0002-0088-3937 NR 5 TC 3 Z9 3 U1 0 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 30 PY 2010 VL 107 IS 48 BP E178 EP E179 DI 10.1073/pnas.1008011107 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 687ET UT WOS:000284762400001 PM 21084630 ER PT J AU Dehghani, M Zoej, MJV Entezam, I Saatchi, S Shemshaki, A AF Dehghani, Maryam Zoej, Mohammad Javad Valadan Entezam, Iman Saatchi, Sassan Shemshaki, Amir TI Interferometric measurements of ground surface subsidence induced by overexploitation of groundwater SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE Subsidence; radar interferometry; time series analysis ID SYNTHETIC-APERTURE RADAR; LAND SUBSIDENCE; LAS-VEGAS; DEFORMATION; VALLEY; CALIFORNIA AB Precise leveling surveys across southwest of Tehran have revealed a significant subsidence due to the overexploitation of groundwater. In order to monitor the temporal evolution of the deformation, Interferometric SAR time series analysis was applied using ENVISAT ASAR images recorded between 2003 and 2005. Only Interferograms with small temporal baselines are processed to decrease the temporal decorrelation effect caused by the agricultural fields. However, the spatial baselines of the processed interferograms are not as small as in the conventional Small Baseline Subset (SBAS) method. Coherence analysis reveals that the spatial decorrelation is insignificant. However, since the constructed interferograms are affected by topographic artifacts caused by the large spatial baselines, a multi-step procedure was used in order to refine the interferometric phase. Smoothed time series analysis was then carried out to retrieve the atmospheric-error free deformation corresponding to every acquisition time. The mean displacement velocity map extracted from the time series results indicates a maximum subsidence rate of 24 cm/yr. Chronological sequence of the computed deformations for several points located in the subsidence area shows the permanent aquifer system compaction at a long-term constant rate on which the seasonal effects are superimposed. Sustained hydraulic head declines reveal a relatively low correlation with InSAR derived information. Comparison of the subsidence rate to soil type profiles in different parts of the subsidence area was then used to interpret the deformation signal. C1 [Dehghani, Maryam; Zoej, Mohammad Javad Valadan] KN Toosi Univ Technol, Fac Geodesy & Geomatics, Tehran, Iran. [Entezam, Iman; Shemshaki, Amir] Geol Survey Iran, Engn Geol Grp, Tehran, Iran. [Saatchi, Sassan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Dehghani, M (reprint author), KN Toosi Univ Technol, Fac Geodesy & Geomatics, 1346 Vali Asr St, Tehran, Iran. EM dehghani_rsgsi@yahoo.com RI chen, zhu/K-5923-2013; Valadan Zoej, M. J./A-4313-2009 OI Valadan Zoej, M. J./0000-0003-4325-8741 NR 26 TC 3 Z9 3 U1 0 U2 15 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD NOV 29 PY 2010 VL 4 AR 041864 DI 10.1117/1.3527999 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 704RE UT WOS:000286069300001 ER PT J AU Stott, AC Brauer, JI Garg, A Pepper, SV Abel, PB DellaCorte, C Noebe, RD Glennon, G Bylaska, E Dixon, DA AF Stott, Amanda C. Brauer, Jonathan I. Garg, Anita Pepper, Stephen V. Abel, Philip B. DellaCorte, Christopher Noebe, Ronald D. Glennon, Glenn Bylaska, Eric Dixon, David A. TI Bonding and Microstructural Stability in Ni55Ti45 Studied by Experimental and Theoretical Methods SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SHAPE-MEMORY ALLOYS; GENERALIZED GRADIENT APPROXIMATION; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; MECHANICAL-PROPERTIES; PHASE-STABILITY; IN-SITU; TRANSFORMATION BEHAVIOR; ELECTRONIC-PROPERTIES AB Spiral orbit tribometry friction tests performed on Ni-rich Ni55Ti45 titanium ball bearings indicate that this alloy is a promising candidate for future aerospace bearing applications. Microstructural characterization of the bearing specimens was performed using transmission electron microscopy and energy dispersive spectroscopy, with NiTi, Ni4Ti3, Ni3Ti, and Ni2Ti4Ox phases identified within the microstructure of the alloy. Density functional theory was applied to predict the electronic structure of the NixTiy phases, including the band structure and site projected density of states. Ultraviolet photoemission spectroscopy was used to verify the density of states results from the density functional theory calculations, with good agreement observed between experiment and theory. C1 [Stott, Amanda C.; Brauer, Jonathan I.; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Stott, Amanda C.; Pepper, Stephen V.; Abel, Philip B.; DellaCorte, Christopher] NASA, Glenn Res Ctr, Tribol & Mech Components Branch, Cleveland, OH 44135 USA. [Garg, Anita; Noebe, Ronald D.] NASA, Glenn Res Ctr, Adv Metall Branch, Cleveland, OH 44135 USA. [Glennon, Glenn] Abbott Ball Co, Hartford, CT 06133 USA. [Bylaska, Eric] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Dixon, DA (reprint author), Univ Alabama, Dept Chem, Shelby Hall,Box 870336, Tuscaloosa, AL 35487 USA. EM dadixon@bama.ua.edu FU NASA [NNX08AY65H]; U.S. Department of Energy, Office of Basic Energy Sciences; National Science Foundation; University of Alabama FX A. Stott thanks NASA Training Grant NNX08AY65H for funding this work. D. A. Dixon thanks the U.S. Department of Energy, Office of Basic Energy Sciences, the National Science Foundation, and the Robert Ramsay Fund of The University of Alabama for partial support of this work. NR 76 TC 6 Z9 6 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 25 PY 2010 VL 114 IS 46 BP 19704 EP 19713 DI 10.1021/jp103552s PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 681CU UT WOS:000284287900022 ER PT J AU Anchukaitis, KJ Buckley, BM Cook, ER Cook, BI D'Arrigo, RD Ammann, CM AF Anchukaitis, K. J. Buckley, B. M. Cook, E. R. Cook, B. I. D'Arrigo, R. D. Ammann, C. M. TI Influence of volcanic eruptions on the climate of the Asian monsoon region SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EL-NINO-LIKE; PAST MILLENNIUM; MODEL AB Several state-of-the-art general circulation models (GCMs) predict that large volcanic eruptions should result in anomalous dry conditions throughout much of monsoon Asia. Here, we use long and well-validated proxy reconstructions of Asian droughts and pluvials to detect the influence of volcanic radiative forcing on the hydroclimate of the region since the late Medieval period. Superposed epoch analysis reveals significantly wetter conditions over mainland southeast Asia in the year of an eruption, with drier conditions in central Asia. Our proxy and model comparison suggests that GCMs may not yet capture all of the important ocean-atmosphere dynamics responsible for the influence of explosive volcanism on the climate of Asia. Citation: Anchukaitis, K. J., B. M. Buckley, E. R. Cook, B. I. Cook, R. D. D'Arrigo, and C. M. Ammann (2010), Influence of volcanic eruptions on the climate of the Asian monsoon region, Geophys. Res. Lett., 37, L22703, doi:10.1029/2010GL044843. C1 [Anchukaitis, K. J.; Buckley, B. M.; Cook, E. R.; Cook, B. I.; D'Arrigo, R. D.] Columbia Univ, Lamont Doherty Earth Observ, Earth Inst, Palisades, NY 10946 USA. [Ammann, C. M.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA. [Cook, B. I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Anchukaitis, KJ (reprint author), Columbia Univ, Lamont Doherty Earth Observ, Earth Inst, 61 Route 9W, Palisades, NY 10946 USA. EM kja@ldeo.columbia.edu RI Cook, Benjamin/H-2265-2012; OI Anchukaitis, Kevin/0000-0002-8509-8080 FU NSF [ATM 0402474, AGS 0908971] FX This work was supported by NSF grants ATM 0402474 and AGS 0908971. This is LDEO Contribution 7403. NR 24 TC 35 Z9 37 U1 4 U2 29 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 25 PY 2010 VL 37 AR L22703 DI 10.1029/2010GL044843 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 686NO UT WOS:000284703200002 ER PT J AU Moore, JM Howard, AD AF Moore, Jeffrey M. Howard, Alan D. TI Are the basins of Titan's Hotei Regio and Tui Regio sites of former low latitude seas? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SURFACE; ATMOSPHERE; LAKES; MARS AB Features observed in the low-latitude basins of Hotei Regio and Tui Regio on Titan have attracted the attention of the Cassini-era investigators. At both locations, Visual Infrared Mapping Spectrometer (VIMS) observed isolated 5-mu m bright similar to 500 km wide features described as lobate in shape. Several studies have proposed that these materials are cryo-volcanic flows. We propose an alternative explanation. Recently published topographic profiles across Hotei Regio and Tui Regio indicate these features appear to occur in large regional basins, at least along the direction of the profiles. Cassini Synthetic Aperture Radar (SAR) images show that the terrains surrounding both topographically low-lying 5-mu m bright features exhibit fluvial networks that appear to converge into the probable basins. The 5-mu m bright features themselves correspond to fields of discrete radar-bright depressions whose bounding edges are commonly rounded and cumulate in planform in SAR images. These fields of discrete radar-bright depressions strongly resemble fields of features seen at Titan's high latitudes identified as dry lakes. Thus the combination of (1) the resemblance to high-latitude dry lakes, (2) location in the centers of regional depressions, and (3) convergence of fluvial networks are inferred by us to best explain the features of Hotei Regio and Tui Regio as sites of paleolake clusters (and perhaps former, now dry seas). These low-latitude paleolake clusters or former seas, if real, may be evidence of substantially larger inventories of liquid alkanes in Titan's past. Citation: Moore, J. M., and A. D. Howard (2010), Are the basins of Titan's Hotei Regio and Tui Regio sites of former low latitude seas?, Geophys. Res. Lett., 37, L22205, doi:10.1029/2010GL045234. C1 [Howard, Alan D.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. [Moore, Jeffrey M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Moore, JM (reprint author), NASA, Ames Res Ctr, M-S 245-3, Moffett Field, CA 94035 USA. EM jeff.moore@nasa.gov; ah6p@cms.mail.virginia.edu OI Howard, Alan/0000-0002-5423-1600 FU NASA FX We are grateful for the two excellent anonymous reviews, and useful reviews and conversations with Charlie Barnhart, Chris McKay, Bill McKinnon, Bob Pappalardo and Kevin Zahnle. This work was supported by NASA's Outer Planets Research Program. NR 27 TC 22 Z9 22 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 25 PY 2010 VL 37 AR L22205 DI 10.1029/2010GL045234 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 686NO UT WOS:000284703200003 ER PT J AU Schneider, P Hook, SJ AF Schneider, Philipp Hook, Simon J. TI Space observations of inland water bodies show rapid surface warming since 1985 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLIMATE-CHANGE; LAKE TAHOE; TEMPERATURE; SEA; VALIDATION; DATABASE; TREND AB Surface temperatures were extracted from nighttime thermal infrared imagery of 167 large inland water bodies distributed worldwide beginning in 1985 for the months July through September and January through March. Results indicate that the mean nighttime surface water temperature has been rapidly warming for the period 1985-2009 with an average rate of 0.045 +/- 0.011 degrees C yr(-1) and rates as high as 0.10 +/- 0.01 degrees C yr(-1). Worldwide the data show far greater warming in the mid- and high latitudes of the northern hemisphere than in low latitudes and the southern hemisphere. The analysis provides a new independent data source for assessing the impact of climate change throughout the world and indicates that water bodies in some regions warm faster than regional air temperature. The data have not been homogenized into a single unified inland water surface temperature dataset, instead the data from each satellite instrument have been treated separately and cross compared. Future work will focus on developing a single unified dataset which may improve uncertainties from any inter-satellite biases. Citation: Schneider, P., and S. J. Hook (2010), Space observations of inland water bodies show rapid surface warming since 1985, Geophys. Res. Lett., 37, L22405, doi: 10.1029/2010GL045059. C1 [Schneider, Philipp; Hook, Simon J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Schneider, P (reprint author), CALTECH, Jet Prop Lab, MS 183-501,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM simon.j.hook@jpl.nasa.gov FU National Aeronautics and Space Administration; NASA Earth Observing System; ESA FX The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors wish to acknowledge funding by the NASA Earth Observing System, support from ESA, and contributions by Robert Radocinski, Gary Corlett, Glynn Hulley, and Geoff Schladow. NR 21 TC 89 Z9 91 U1 4 U2 43 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 24 PY 2010 VL 37 AR L22405 DI 10.1029/2010GL045059 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 686NK UT WOS:000284702800003 ER PT J AU Fear, RC Milan, SE Raeder, J Sibeck, DG AF Fear, R. C. Milan, S. E. Raeder, J. Sibeck, D. G. TI Asymmetry in the bipolar signatures of flux transfer events SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SINGLE-X-LINE; WIND DYNAMIC PRESSURE; DAYSIDE MAGNETOPAUSE; RECONNECTION; MOTION; ONSET; MODEL; MAGNETOSPHERE; THICKNESS; IMF AB Several conceptual models have been proposed for the formation of flux transfer events (FTEs), including models based on reconnection at a single reconnection line (X line) and at multiple X lines. Two-dimensional magnetohydrodynamic models have previously been used to simulate both scenarios and have found a tendency for FTEs generated by single X line reconnection to exhibit an asymmetry in the bipolar B-N signature that is the major in situ signature of FTE structures, with the leading peak being substantially smaller than the trailing peak. On the other hand, simulated FTEs generated by multiple X line reconnection led to more symmetric signatures. We present a comparison of these simulation results with observations made at the Earth's magnetopause by the Cluster spacecraft, using a data set of 213 FTEs which were observed by all four spacecraft in 2002/2003 at the high-latitude magnetopause near local noon and at low latitudes on the flanks, and 36 FTEs which were observed by one or more Cluster spacecraft near the subsolar point in 2007 and 2008. A tendency is found for the B-N signatures to be asymmetric but with the leading peak larger in amplitude than the trailing peak, opposite to the prediction made by the 2-D single X line simulations. This tendency is weaker in the subsolar FTEs. Therefore, the observations are not consistent with 2-D MHD simulations of single X line reconnection. The signatures observed near the subsolar point are more consistent with those predicted by 2-D simulations of multiple X line reconnection, although the multiple X line simulation studies did not report any net asymmetry. We propose that the observed asymmetry can be explained by a compression of magnetic flux ahead of the propagating FTE structure and a rarefaction behind it. The weaker tendency nearer the subsolar point is consistent with a weaker compression and rarefaction due to lower FTE velocities. C1 [Fear, R. C.; Milan, S. E.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Raeder, J.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Fear, RC (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. EM r.fear@ion.le.ac.uk RI Sibeck, David/D-4424-2012; OI Fear, Robert/0000-0003-0589-7147 FU ISSI; STFC [PP/E000983/1] FX This study was carried out as part of the International Space Science Institute (ISSI) international team on "Advances in understanding of the structure and dynamics of magnetic flux transfer at the Earth's magnetopause"; we gratefully acknowledge ISSI's support and discussions with other team members (A. Marchaudon, K. A. McWilliams, C. J. Owen, Y. Wang, and J. A. Wild). We thank E. A. Lucek and the Cluster Active Archive (http://caa.estec.esa.int/) for data from the Cluster FGM instrument. Work at the University of Leicester was supported by STFC grant PP/E000983/1. We also thank the referees for their constructive suggestions. NR 33 TC 6 Z9 6 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 23 PY 2010 VL 115 AR A11217 DI 10.1029/2010JA015363 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 686PN UT WOS:000284708300001 ER PT J AU Tam, CKW Ju, H Jones, MG Watson, WR Parrott, TL AF Tam, Christopher K. W. Ju, H. Jones, M. G. Watson, W. R. Parrott, T. L. TI A computational and experimental study of resonators in three dimensions SO JOURNAL OF SOUND AND VIBRATION LA English DT Article ID ACOUSTIC-IMPEDANCE AB In a previous work by the present authors, a computational and experimental investigation of the acoustic properties of two-dimensional slit resonators was carried out. The present paper reports the results of a study extending the previous work to three dimensions. This investigation has two basic objectives. The first is to validate the computed results from direct numerical simulations of the flow and acoustic fields of slit resonators in three dimensions by comparing with experimental measurements in a normal incidence impedance tube. The second objective is to study the flow physics of resonant liners responsible for sound wave dissipation. Extensive comparisons are provided between computed and measured acoustic liner properties with both discrete frequency and broadband sound sources. Good agreements are found over a wide range of frequencies and sound pressure levels. Direct numerical simulation confirms the previous finding in two dimensions that vortex shedding is the dominant dissipation mechanism at high sound pressure intensity. However, it is observed that the behavior of the shed vortices in three dimensions is quite different from those of two dimensions. In three dimensions, the shed vortices tend to evolve into ring (circular in plan form) vortices, even though the slit resonator opening from which the vortices are shed has an aspect ratio of 2.5. Under the excitation of discrete frequency sound, the shed vortices align themselves into two regularly spaced vortex trains moving away from the resonator opening in opposite directions. This is different from the chaotic shedding of vortices found in two-dimensional simulations. The effect of slit aspect ratio at a fixed porosity is briefly studied. For the range of liners considered in this investigation, it is found that the absorption coefficient of a liner increases when the open area of the single slit is subdivided into multiple, smaller slits. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Tam, Christopher K. W.; Ju, H.] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA. [Jones, M. G.; Watson, W. R.; Parrott, T. L.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Tam, CKW (reprint author), Florida State Univ, Dept Math, Tallahassee, FL 32306 USA. EM tam@math.fsu.edu FU NASA [NNL04AA01A] FX The work of CKWT and HJ was supported initially by a NASA Cooperative Agreement NNL04AA01A. NR 19 TC 13 Z9 14 U1 0 U2 8 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X J9 J SOUND VIB JI J. Sound Vibr. PD NOV 22 PY 2010 VL 329 IS 24 BP 5164 EP 5193 DI 10.1016/j.jsv.2010.06.005 PG 30 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 643KS UT WOS:000281295900010 ER PT J AU Mauerhan, JC Wachter, S Morris, PW Van Dyk, SD Hoard, DW AF Mauerhan, Jon C. Wachter, Stefanie Morris, Patrick W. Van Dyk, Schuyler D. Hoard, D. W. TI DISCOVERY OF TWIN WOLF-RAYET STARS POWERING DOUBLE RING NEBULAE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; stars: Wolf-Rayet ID MASSIVE STARS; MU-M; RED SUPERGIANTS; SPECTRAL ATLAS; GALACTIC PLANE; O-STARS; SUPERNOVA REMNANT; INFRARED-SPECTRA; CLUSTER; SPECTROSCOPY AB We have spectroscopically discovered a pair of twin, nitrogen-type, hydrogen-rich, Wolf-Rayet stars (WN8-9h) that are both surrounded by circular, mid-infrared-bright nebulae detected with the Spitzer Space Telescope and MIPS instrument. The emission is probably dominated by a thermal continuum from cool dust, but alsomay contain contributions from atomic line emission. There is no counterpart at shorter Spitzer/IRAC wavelengths, indicating a lack of emission from warm dust. The two nebulae are probably wind-swept stellar ejecta released by the central stars during a prior evolutionary phase. The nebulae partially overlap on the sky and we speculate on the possibility that they are in the early stage of a collision. Two other evolved massive stars have also been identified within the area subtended by the nebulae, including a carbon-type Wolf-Rayet star (WC8) and an O7-8 III-I star, the latter of which appears to be embedded in one of the larger WN8-9h nebulae. The derived distances to these stars imply that they are coeval members of an association lying 4.9 +/- 1.2 kpc from Earth, near the intersection of the Galaxy's Long Bar and the Scutum-Centaurus spiral arm. This new association represents an unprecedented display of complex interactions between multiple stellar winds, outflows, and the radiation fields of evolved massive stars. C1 [Mauerhan, Jon C.; Wachter, Stefanie; Van Dyk, Schuyler D.; Hoard, D. W.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Morris, Patrick W.] CALTECH, NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. RP Mauerhan, JC (reprint author), CALTECH, Spitzer Sci Ctr, Mail Code 220-6,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM mauerhan@ipac.caltech.edu OI Hoard, Donald W./0000-0002-6800-6519; Van Dyk, Schuyler/0000-0001-9038-9950 NR 37 TC 14 Z9 14 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2010 VL 724 IS 1 BP L78 EP L83 DI 10.1088/2041-8205/724/1/L78 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HM UT WOS:000284152500017 ER PT J AU Yusef-Zadeh, F Wardle, M Bushouse, H Dowell, CD Roberts, DA AF Yusef-Zadeh, F. Wardle, M. Bushouse, H. Dowell, C. D. Roberts, D. A. TI OCCULTATION OF THE QUIESCENT EMISSION FROM Sgr A* BY IR FLARES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; black hole physics; Galaxy: center ID X-RAY; FLARING ACTIVITY; STELLAR ORBITS; BLACK-HOLE; SAGITTARIUS; MULTIWAVELENGTH; MODEL AB We have investigated the nature of flare emission from Sgr A* during multi-wavelength observations of this source that took place in 2004, 2005, and 2006. We present evidence for dimming of submillimeter and radio flux during the peak of near-IR flares. This suggests that the variability of Sgr A* across its wavelength spectrum is phenomenologically related. The model explaining this new behavior of flare activity could be consistent with adiabatically cooling plasma blobs that are expanding but also partially eclipsing the background quiescent emission from Sgr A*. When a flare is launched, the plasma blob is most compact and is brightest in the optically thin regime whereas the emission in radio/submillimeter wavelengths has a higher opacity. Absorption in the observed light curve of Sgr A* at radio/submillimeter flux is due to the combined effects of lower brightness temperature of plasma blobs with respect to the quiescent brightness temperature and high opacity of plasma blobs. This implies that plasma blobs are mainly placed in the magnetosphere of a disk-like flow or further out in the flow. The depth of the absorption being larger in submillimeter than in radio wavelengths implies that the intrinsic size of the quiescent emission increases with increasing wavelength which is consistent with previous size measurements of Sgr A*. Lastly, we believe that occultation of the quiescent emission of Sgr A* at radio/submillimeter by IR flares can be used as a powerful tool to identify flare activity at its earliest phase of its evolution. C1 [Yusef-Zadeh, F.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Wardle, M.] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia. [Bushouse, H.] STScI, Baltimore, MD 21218 USA. [Dowell, C. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Roberts, D. A.] Adler Planetarium & Astron Museum, Chicago, IL 60605 USA. RP Yusef-Zadeh, F (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. OI Wardle, Mark/0000-0002-1737-0871 FU NSF [AST-0807400] FX This work is partially supported by the grant AST-0807400 from the NSF. We are grateful to D. Marrone, S. Hornstein, and F. Baganoff for providing us with their data. NR 22 TC 8 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2010 VL 724 IS 1 BP L9 EP L15 DI 10.1088/2041-8205/724/1/L9 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HM UT WOS:000284152500003 ER PT J AU Schnittman, JD AF Schnittman, Jeremy D. TI THE LAGRANGE EQUILIBRIUM POINTS L-4 AND L-5 IN BLACK HOLE BINARY SYSTEM SO ASTROPHYSICAL JOURNAL LA English DT Article DE black hole physics; galaxies: nuclei; gravitational waves; relativistic processes ID RESTRICTED 3-BODY PROBLEM; TIDAL DISRUPTION; TROJAN ASTEROIDS; ACCRETION; STARS; STABILITY; JUPITER; FLARES; DISKS; RESONANCES AB We calculate the location and stability of the L-4 and L-5 Lagrange equilibrium points in the circular restricted three-body problem as the binary system evolves via gravitational radiation losses. Relative to the purely Newtonian case, we find that the L-4 equilibrium point moves toward the secondary mass and becomes slightly less stable, while the L-5 point moves away from the secondary and gains in stability. We discuss a number of astrophysical applications of these results, in particular as amechanism for producing electromagnetic counterparts to gravitational-wave signals. C1 [Schnittman, Jeremy D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Schnittman, Jeremy D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Schnittman, JD (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RI Schnittman, Jeremy/D-3168-2012 FU Chandra Postdoctoral Fellowship FX The author thanks Doug Hamilton, Matthew Holman, Scott Hughes, Julian Krolik, David Merritt, and Cole Miller for helpful discussions and comments. The anonymous referee provided invaluable comments and suggestions. This work was supported by the Chandra Postdoctoral Fellowship Program. NR 55 TC 22 Z9 22 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 39 EP 48 DI 10.1088/0004-637X/724/1/39 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900004 ER PT J AU Cahoy, KL Marley, MS Fortney, JJ AF Cahoy, Kerri L. Marley, Mark S. Fortney, Jonathan J. TI EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: numerical; planets and satellites: general; radiative transfer; scattering ID EXTRASOLAR GIANT PLANETS; LIGHT CURVES; T-DWARFS; MONOCHROMATIC RADIATION; TERRESTRIAL PLANETS; THERMAL STRUCTURE; ROTATING EARTH; JOVIAN PLANETS; BROWN DWARFS; SOLAR-SYSTEM AB First generation space-based optical coronagraphic telescopes will obtain images of cool gas-and ice-giant exoplanets around nearby stars. Exoplanets lying at planet-star separations larger than about 1 AU-where an exoplanet can be resolved from its parent star-have spectra that are dominated by reflected light to beyond 1 mu m and punctuated by molecular absorption features. Here, we consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 mu m. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, and Neptune analogs with 10x and 30x the solar abundance of heavy elements. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are found to be cloud-free at 0.8 AU, possess H(2)O clouds at 2 AU, and have both NH(3) and H(2)O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution (R = lambda/Delta lambda similar to 800) albedo spectra as a function of phase. We also consider low-resolution spectra and colors that are more consistent with the capabilities of early direct imaging capabilities. As expected, the presence and vertical structure of clouds strongly influence the albedo spectra since cloud particles not only affect optical depth but also have highly directional scattering properties. Observations at different phases also probe different volumes of atmosphere as the source-observer geometry changes. Because the images of the planets themselves will be unresolved, their phase will not necessarily be immediately obvious, and multiple observations will be needed to discriminate between the effects of planet-star separation, metallicity, and phase on the observed albedo spectra. We consider the range of these combined effects on spectra and colors. For example, we find that the spectral influence of clouds depends more on planet-star separation and hence atmospheric temperature than metallicity, and it is easier to discriminate between cloudy 1x and 3x Jupiters than between 10x and 30x Neptunes. In addition to alkalis and methane, our Jupiter models show H(2)O absorption features near 0.94 mu m. While solar system giant planets are well separated by their broadband colors, we find that arbitrary giant exoplanets can have a large range of possible colors and that color alone cannot be relied upon to characterize planet types. We also predict that giant exoplanets receiving greater insolation than Jupiter will exhibit higher equator-to-pole temperature gradients than are found on Jupiter and thus may exhibit differing atmospheric dynamics. These results are useful for future interpretation of direct imaging exoplanet observations as well as for deriving requirements and designing filters for optical direct imaging instrumentation. C1 [Cahoy, Kerri L.; Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Cahoy, KL (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM kerri.l.cahoy@nasa.gov RI Marley, Mark/I-4704-2013; OI Marley, Mark/0000-0002-5251-2943; Fortney, Jonathan/0000-0002-9843-4354 FU NASA FX The authors thank Richard Freedman for providing the opacity tables used in this work, and Katharina Lodders for the elemental abundances and the condensation curves. We thank Olivier Guyon for making the initial version of the PIAA coronagraph simulation available for our use. We thank Chris McKay for several useful discussions regarding the development of the radiative transfer model. K. C. is supported by an appointment to the NASA Postdoctoral Program at NASA Ames, administered by Oak Ridge Associated Universities through a contract with NASA. M. M. and J.F. acknowledge support from the NASA Planetary Atmospheres program. NR 98 TC 53 Z9 53 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 189 EP 214 DI 10.1088/0004-637X/724/1/189 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900019 ER PT J AU Perez, LM Lamb, JW Woody, DP Carpenter, JM Zauderer, BA Isella, A Bock, DC Bolatto, AD Carlstrom, J Culverhouse, TL Joy, M Kwon, W Leitch, EM Marrone, DP Muchovej, SJ Plambeck, RL Scott, SL Teuben, PJ Wright, MCH AF Perez, Laura M. Lamb, James W. Woody, David P. Carpenter, John M. Zauderer, B. Ashley Isella, Andrea Bock, Douglas C. Bolatto, Alberto D. Carlstrom, John Culverhouse, Thomas L. Joy, Marshall Kwon, Woojin Leitch, Erik M. Marrone, Daniel P. Muchovej, Stephen J. Plambeck, Richard L. Scott, Stephen L. Teuben, Peter J. Wright, Melvyn C. H. TI ATMOSPHERIC PHASE CORRECTION USING CARMA-PACS: HIGH ANGULAR RESOLUTION OBSERVATIONS OF THE FU ORIONIS STAR PP 13S* SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; stars: individual (PP 13S*); stars: pre-main sequence; techniques: interferometric ID CIRCUMSTELLAR DUST DISKS; PAIRED ANTENNAS METHOD; WATER-VAPOR; COMPENSATION EXPERIMENTS; SUBMILLIMETER; ACCRETION; DISCS; VIEW AB We present 0 ''.15 resolution observations of the 227 GHz continuum emission from the circumstellar disk around the FU Orionis star PP 13S*. The data were obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) Paired Antenna Calibration System (C-PACS), which measures and corrects the atmospheric delay fluctuations on the longest baselines of the array in order to improve the sensitivity and angular resolution of the observations. A description of the C-PACS technique and the data reduction procedures are presented. C-PACS was applied to CARMA observations of PP 13S*, which led to a factor of 1.6 increase in the observed peak flux of the source, a 36% reduction in the noise of the image, and a 52% decrease in the measured size of the source major axis. The calibrated complex visibilities were fitted with a theoretical disk model to constrain the disk surface density. The total disk mass from the best-fit model corresponds to 0.06 M(circle dot), which is larger than the median mass of a disk around a classical T Tauri star. The disk is optically thick at a wavelength of 1.3 mm for orbital radii less than 48 AU. At larger radii, the inferred surface density of the PP 13S* disk is an order of magnitude lower than that needed to develop a gravitational instability. C1 [Perez, Laura M.; Carpenter, John M.; Isella, Andrea] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Lamb, James W.; Woody, David P.; Leitch, Erik M.; Muchovej, Stephen J.; Scott, Stephen L.] CALTECH, Owens Valley Radio Observ, Big Pine, CA 93513 USA. [Zauderer, B. Ashley; Bolatto, Alberto D.; Teuben, Peter J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bock, Douglas C.] Combined Array Res Millimeter Wave Astron, Big Pine, CA 93513 USA. [Carlstrom, John; Culverhouse, Thomas L.; Leitch, Erik M.; Marrone, Daniel P.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Joy, Marshall] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Kwon, Woojin] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Plambeck, Richard L.; Wright, Melvyn C. H.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Perez, LM (reprint author), CALTECH, Dept Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA. OI Marrone, Daniel/0000-0002-2367-1080 FU Gordon and Betty Moore Foundation; Kenneth T. and Eileen L. Norris Foundation; James S. McDonnell Foundation; Associates of the California Institute of Technology; University of Chicago; State of California; State of Maryland; National Science Foundation [AST 08-38260]; CARMA; NSF; Fulbright-CONICYT; State of Illinois FX Support for CARMA construction was derived from the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the James S. McDonnell Foundation, the Associates of the California Institute of Technology, the University of Chicago, the states of California, Illinois, and Maryland, and the National Science Foundation. Ongoing CARMA development and operations are supported by the National Science Foundation under a cooperative agreement (grant AST 08-38260), and by the CARMA partner universities. L.M.P. acknowledges support for graduate studies through a Fulbright-CONICYT scholarship. S.M. acknowledges support from an NSF Astronomy and Astrophysics Fellowship. NR 39 TC 15 Z9 15 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 493 EP 501 DI 10.1088/0004-637X/724/1/493 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900043 ER PT J AU Auger, MW Treu, T Bolton, AS Gavazzi, R Koopmans, LVE Marshall, PJ Moustakas, LA Burles, S AF Auger, M. W. Treu, T. Bolton, A. S. Gavazzi, R. Koopmans, L. V. E. Marshall, P. J. Moustakas, L. A. Burles, S. TI THE SLOAN LENS ACS SURVEY. X. STELLAR, DYNAMICAL, AND TOTAL MASS CORRELATIONS OF MASSIVE EARLY-TYPE GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: elliptical and lenticular, cD; galaxies: fundamental parameters; galaxies: structure; gravitational lensing: strong ID DIGITAL SKY SURVEY; DARK-MATTER HALOS; TO-LIGHT RATIOS; FUNDAMENTAL PLANE; ELLIPTIC GALAXIES; SCALING RELATIONS; INTERNAL STRUCTURE; HUBBLE CONSTANT; VELOCITY DISPERSIONS; GRAVITATIONAL LENSES AB We use stellar masses, surface photometry, strong-lensing masses, and stellar velocity dispersions (sigma(e/2)) to investigate empirical correlations for the definitive sample of 73 early-type galaxies (ETGs) that are strong gravitational lenses from the SLACS survey. The traditional correlations (fundamental plane (FP) and its projections) are consistent with those found for non-lens galaxies, supporting the thesis that SLACS lens galaxies are representative of massive ETGs (dimensional mass M(dim) = 10(11)-10(12) M(circle dot)). The addition of high-precision strong-lensing estimates of the total mass allows us to gain further insights into their internal structure: (1) the average slope of the total mass-density profile (rho(tot) alpha r(-gamma)') is = 2.078 +/- 0.027 with an intrinsic scatter of 0.16 +/- 0.02; (2) gamma' correlates with effective radius (r(e)) and central mass density, in the sense that denser galaxies have steeper profiles; (3) the dark matter (DM) fraction within r(e)/2 is a monotonically increasing function of galaxy mass and size (due to a mass-dependent central cold DM distribution or due to baryonic DM-stellar remnants or low-mass stars-if the initial mass function is non-universal and its normalization increases with mass); (4) the dimensional mass M(dim) equivalent to 5r(e)sigma(2)(e/2)/G is proportional to the total (lensing) mass M(re/2), and both increase more rapidly than stellar mass M(*) (M(*) alpha M(re/2)(0.8)); (5) the mass plane (MP), obtained by replacing surface brightness with surface mass density in the FP, is found to be tighter and closer to the virial relation than the FP and the M(*)P, indicating that the scatter of those relations is dominated by stellar population effects; (6) we construct the fundamental hyper-plane by adding stellar masses to the MP and find the M(*) coefficient to be consistent with zero and no residual intrinsic scatter. Our results demonstrate that the dynamical structure of ETGs is not scale invariant and that it is fully specified by M(re/2), r(e), and sigma(e/2). Although the basic trends can be explained qualitatively in terms of varying star formation efficiency as a function of halo mass and as the result of dry and wet mergers, reproducing quantitatively the observed correlations and their tightness may be a significant challenge for galaxy formation models. C1 [Auger, M. W.; Treu, T.; Marshall, P. J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bolton, A. S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Gavazzi, R.] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Gavazzi, R.] Univ Paris 06, F-75014 Paris, France. [Koopmans, L. V. E.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Marshall, P. J.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Moustakas, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Burles, S.] DE Shaw & Co LP, Cupertino, CA 95014 USA. RP Auger, MW (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM mauger@physics.ucsb.edu OI Moustakas, Leonidas/0000-0003-3030-2360 FU NSF [NSF-0642621]; Sloan Foundation; Packard Foundation; NWO-VIDI [639.042.505]; Centre National des Etudes Spatiales; NASA [NAS5-26555]; NASA through Space Telescope Science Institute [10494, 10798, 11202]; Space Telescope Science Institute [10494, 10798, 11202]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX T.T. acknowledges support from NSF thorough CAREER award NSF-0642621, by the Sloan Foundation through a Sloan Research Fellowship and by the Packard Foundation through a Packard Fellowship. L.K. is supported through an NWO-VIDI program subsidy (project number 639.042.505). R.G. acknowledges support from the Centre National des Etudes Spatiales. The work of L.A.M. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for programs 10494, 10798, and 11202 was provided by NASA through grants from the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for programs 10494, 10798, and 11202 was provided by NASA through grants from the Space Telescope Science Institute. This work has made use of the SDSS database. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. NR 94 TC 158 Z9 158 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 511 EP 525 DI 10.1088/0004-637X/724/1/511 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900045 ER PT J AU Lehmer, BD Alexander, DM Bauer, FE Brandt, WN Goulding, AD Jenkins, LP Ptak, A Roberts, TP AF Lehmer, B. D. Alexander, D. M. Bauer, F. E. Brandt, W. N. Goulding, A. D. Jenkins, L. P. Ptak, A. Roberts, T. P. TI A CHANDRA PERSPECTIVE ON GALAXY-WIDE X-RAY BINARY EMISSION AND ITS CORRELATION WITH STAR FORMATION RATE AND STELLAR MASS: NEW RESULTS FROM LUMINOUS INFRARED GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: starburst; infrared: galaxies; X-rays: binaries; X-rays: galaxies ID ACTIVE GALACTIC NUCLEUS; FORMATION RATE INDICATOR; SKY LIRG SURVEY; NGC 1365; NEARBY GALAXIES; OPTICAL CLASSIFICATION; STARBURST GALAXIES; SOURCE POPULATION; FORMING GALAXIES; SPIRAL GALAXIES AB We present new Chandra observations that complete a sample of seventeen (17) luminous infrared galaxies (LIRGs) with D < 60 Mpc and low Galactic column densities of N(H) less than or similar to 5 x 10(20) cm(-2). The LIRGs in our sample have total infrared (8-1000 mu m) luminosities in the range of L(IR) approximate to (1-8) x 10(11) L(circle dot). The high-resolution imaging and X-ray spectral information from our Chandra observations allow us to measure separately X-ray contributions from active galactic nuclei and normal galaxy processes (e. g., X-ray binaries and hot gas). We utilized total infrared plus UV luminosities to estimate star formation rates (SFRs) and K-band luminosities and optical colors to estimate stellar masses (M(star)) for the sample. Under the assumption that the galaxy-wide 2-10 keV luminosity (L(HX)(gal)) traces the combined emission from high-mass X-ray binaries (HMXBs) and low-mass X-ray binaries, and that the power output from these components is linearly correlated with SFR and M(star), respectively, we constrain the relation L(HX)(gal) = alpha M(star) + beta SFR. To achieve this, we construct a Chandra-based data set composed of our new LIRG sample combined with additional samples of less actively star-forming normal galaxies and more powerful LIRGs and ultraluminous infrared galaxies (ULIRGs) from the literature. Using these data, we measure best-fit values of alpha = (9.05 +/- 0.37) x 10(28) erg s(-1) M(circle dot)(-1) and beta = (1.62 +/- 0.22) x 10(39) erg s(-1) (M(circle dot) yr(-1))(-1). This scaling provides a more physically meaningful estimate of L(HX)(gal), with approximate to 0.1-0.2 dex less scatter, than a direct linear scaling with SFR. Our results suggest that HMXBs dominate the galaxy-wide X-ray emission for galaxies with SFR/M(star) greater than or similar to 5.9 x 10(-11) yr(-1), a factor of approximate to 2.9 times lower than previous estimates. We find that several of the most powerful LIRGs and ULIRGs, with SFR/M(star) greater than or similar to 10(-9) yr(-1), appear to be X-ray underluminous with respect to our best-fit relation. We argue that these galaxies are likely to contain X-ray binaries residing in compact star-forming regions that are buried under thick galactic columns large enough to attenuate emission in the 2-10 keV band (N(H) greater than or similar to 10(23) cm(-2)). C1 [Lehmer, B. D.; Jenkins, L. P.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Lehmer, B. D.; Jenkins, L. P.; Ptak, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Alexander, D. M.; Goulding, A. D.; Roberts, T. P.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Bauer, F. E.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA. [Brandt, W. N.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. RP Lehmer, BD (reprint author), Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA. RI Ptak, Andrew/D-3574-2012; Brandt, William/N-2844-2015; OI Alexander, David/0000-0002-5896-6313; Brandt, William/0000-0002-0167-2453; Jenkins, Leigh/0000-0001-9464-0719 FU Einstein Fellowship Program; Royal Society; Leverhulme Trust; Chandra X-ray Center [G09-0134A, G09-0134B]; NASA [NNX10AC99G] FX We thank the referee for helpful comments that have improved the manuscript. We thank Kazushi Iwasawa for generously sharing data and Lee Armus and Joseph Mazzarella for helpful discussions. We gratefully acknowledge financial support from the Einstein Fellowship Program (B.D.L.), the Royal Society (D.M.A.), the Leverhulme Trust (D.M.A.), Chandra X-ray Center grants G09-0134A (W.N.B.) and G09-0134B (F.E.B.), and NASA ADP grant NNX10AC99G (W.N.B.). This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 84 TC 117 Z9 117 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 559 EP 571 DI 10.1088/0004-637X/724/1/559 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900049 ER PT J AU D'Angelo, G Lubow, SH AF D'Angelo, Gennaro Lubow, Stephen H. TI THREE-DIMENSIONAL DISK-PLANET TORQUES IN A LOCALLY ISOTHERMAL DISK SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; hydrodynamics; methods: numerical; planet-disk interactions; planets and satellites: formation; protoplanetary disks ID PROTOPLANET MIGRATION; HORSESHOE DRAG; GASEOUS DISK; ORBITAL MIGRATION; COROTATION TORQUE; LAMINAR DISKS; ACCRETION; MASS; SIMULATIONS; EVOLUTION AB We determine an expression for the Type I planet migration torque involving a locally isothermal disk, with moderate turbulent viscosity (5 x 10(-4) less than or similar to alpha less than or similar to 0.05), based on three-dimensional nonlinear hydrodynamical simulations. The radial gradients (in a dimensionless logarithmic form) of density and temperature are assumed to be constant near the planet. We find that the torque is roughly equally sensitive to the surface density and temperature radial gradients. Both gradients contribute to inward migration when they are negative. Our results indicate that two-dimensional calculations with a smoothed planet potential, used to account for the effects of the third dimension, do not accurately determine the effects of density and temperature gradients on the three-dimensional torque. The results suggest that substantially slowing or stopping planet migration by means of changes in disk opacity or shadowing is difficult and appears unlikely for a disk that is locally isothermal. The scalings of the torque and torque density with planet mass and gas sound speed follow the expectations of linear theory. We also determine an improved formula for the torque density distribution that can be used in one-dimensional long-term evolution studies of planets embedded in locally isothermal disks. This formula can be also applied in the presence of mildly varying radial gradients and of planets that open gaps. We illustrate its use in the case of migrating super-Earths and determine some conditions sufficient for survival. C1 [D'Angelo, Gennaro] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [D'Angelo, Gennaro] Univ Calif Santa Cruz, UCO Lick Observ, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Lubow, Stephen H.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Lubow, Stephen H.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. RP D'Angelo, G (reprint author), NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 94035 USA. EM gennaro.dangelo@nasa.gov; lubow@stsci.edu RI D'Angelo, Gennaro/L-7676-2014 OI D'Angelo, Gennaro/0000-0002-2064-0801 FU NASA [NNX08AH82G, NNX07AI72G]; National Science Foundation [NSF PHY05-51164] FX We benefitted from discussions with Frederic Masset and Kristen Menou at the KITP program entitled "The Theory and Observation of Exoplanets." We are grateful to Gordon Ogilvie and Jim Pringle for helpful discussions and useful feedback on this work. We thank Hui Li and Shengtai Li for running some two-dimensional models and for informative discussions. We acknowledge support from NASA Origins of Solar Systems Program grants NNX08AH82G (G.D.) and NNX07AI72G (S.L. and G.D.). G.D. was also supported in part by the National Science Foundation under grant No. NSF PHY05-51164. S.L. acknowledges visitor support from the IoA and Newton Institute at Cambridge University and many beneficial discussions at the Newton Institute program "Dynamics of Discs and Planets." Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. NR 43 TC 29 Z9 29 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 730 EP 747 DI 10.1088/0004-637X/724/1/730 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900062 ER PT J AU Kane, SR Gelino, DM AF Kane, Stephen R. Gelino, Dawn M. TI PHOTOMETRIC PHASE VARIATIONS OF LONG-PERIOD ECCENTRIC PLANETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; techniques: photometric; techniques: radial velocities ID EXTRASOLAR GIANT PLANETS; HUBBLE-SPACE-TELESCOPE; HOBBY-EBERLY TELESCOPE; TAU-BOOTIS-B; REFLECTED STARLIGHT; UPSILON ANDROMEDAE; TRANSITING PLANET; LIGHT CURVES; HOT JUPITER; UPPER LIMIT AB The field of exoplanetary science has diversified rapidly over recent years as the field has progressed from exoplanet detection to exoplanet characterization. For those planets known to transit, the primary transit and secondary eclipse observations have a high yield of information regarding planetary structure and atmospheres. The current restriction of these information sources to short-period planets may be abated in part through refinement of orbital parameters. This allows precision targeting of transit windows and phase variations which constrain the dynamics of the orbit and the geometric albedo of the atmosphere. Here, we describe the expected phase function variations at optical wavelengths for long-period planets, particularly those in the high-eccentricity regime and multiple systems in resonant and non-coplanar orbits. We apply this to the known exoplanets and discuss detection prospects and how observations of these signatures may be optimized by refining the orbital parameters. C1 [Kane, Stephen R.; Gelino, Dawn M.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. RP Kane, SR (reprint author), CALTECH, NASA, Exoplanet Sci Inst, MS 100-22,770 S Wilson Ave, Pasadena, CA 91125 USA. EM skane@ipac.caltech.edu RI Kane, Stephen/B-4798-2013 NR 40 TC 24 Z9 24 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 818 EP 826 DI 10.1088/0004-637X/724/1/818 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900068 ER PT J AU Cull, SC Arvidson, RE Catalano, JG Ming, DW Morris, RV Mellon, MT Lemmon, M AF Cull, Selby C. Arvidson, Raymond E. Catalano, Jeffrey G. Ming, Douglas W. Morris, Richard V. Mellon, Michael T. Lemmon, Mark TI Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID THEORETICAL PREDICTION; THERMODYNAMIC BEHAVIOR; AQUEOUS ELECTROLYTES; HIGH PRESSURES; TEMPERATURES; ZEOLITES; CHEMISTRY; SYSTEMS; SOIL AB NASA's Phoenix mission, which landed on the northern plains of Mars in 2008, returned evidence of the perchlorate anion distributed evenly throughout the soil column at the landing site. Here, we use spectral data from Phoenix's Surface Stereo Imager to map the distribution of perchlorate salts at the Phoenix landing site, and find that perchlorate salt has been locally concentrated into subsurface patches, similar to salt patches that result from aqueous dissolution and redistribution on Earth. We propose that thin films of liquid water are responsible for translocating perchlorate from the surface to the subsurface, and for concentrating it in patches. The thin films are interpreted to result from melting of minor ice covers related to seasonal and long-term obliquity cycles. Citation: Cull, S.C., R.E. Arvidson, J.G. Catalano, D.W. Ming, R.V. Morris, M.T. Mellon, and M. Lemmon (2010), Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars, Geophys. Res. Lett., 37, L22203, doi:10.1029/2010GL045269. C1 [Cull, Selby C.; Arvidson, Raymond E.; Catalano, Jeffrey G.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63112 USA. [Ming, Douglas W.; Morris, Richard V.] NASA, Lyndon B Johnson Space Ctr, ARES, Houston, TX 77058 USA. [Mellon, Michael T.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Lemmon, Mark] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. RP Cull, SC (reprint author), Washington Univ, Dept Earth & Planetary Sci, 1 Brookings Dr, St Louis, MO 63112 USA. EM selby@levee.wustl.edu RI Lemmon, Mark/E-9983-2010; Catalano, Jeffrey/A-8322-2013; Mellon, Michael/C-3456-2016 OI Lemmon, Mark/0000-0002-4504-5136; Catalano, Jeffrey/0000-0001-9311-977X; FU Missouri Space Grant FX We thank C. Achilles for XRD analysis of perchlorate lab samples; Michael Hecht and Peter Smith for insightful reviews; the Missouri Space Grant Consortium for funding; and the Phoenix Science and Operations Teams for their dedicated imaging program. NR 27 TC 39 Z9 39 U1 1 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 20 PY 2010 VL 37 AR L22203 DI 10.1029/2010GL045269 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 683ML UT WOS:000284479800005 ER PT J AU Shugart, HH Saatchi, S Hall, FG AF Shugart, H. H. Saatchi, S. Hall, F. G. TI Importance of structure and its measurement in quantifying function of forest ecosystems SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID TROPICAL RAIN-FOREST; POLARIMETRIC SAR INTERFEROMETRY; ALLOMETRIC SCALING LAWS; LARGE-FOOTPRINT LIDAR; SIR-C/X-SAR; BOREAL FOREST; ABOVEGROUND BIOMASS; TREE HEIGHT; BIOPHYSICAL CHARACTERISTICS; CANOPY STRATIFICATION AB The structure of forests, the three-dimensional arrangement of individual trees, has a profound effect on how ecosystems function and cycle carbon, water, and nutrients. The increased need to understand local to global dynamics of ecosystems, a prerequisite to understand the coupling of the biosphere to other components of Earth systems, has created a demand for extensive ecosystem structure data. Repeated satellite observations of vegetation patterns in two dimensions have made significant contributions to our understanding of the state and dynamics of the global biosphere. Recent advances in remote sensing technology allow us to view the biosphere in three dimensions and provide us with refined measurements of horizontal, as well as vertical, structure of forests. This paper provides an introductory review of the importance of the three-dimensional characterization of terrestrial ecosystem structure of forests and woodlands and its potential measurement from space. We discuss the relevance of these measurements for reducing the uncertainties of terrestrial carbon cycle and the response of ecosystems to future climate. By relating the 3-D structure to forest biomass, carbon content, disturbance characteristics, and habitat diversity, we examine the requirements for future satellite sensors in terms of precision and spatial and temporal resolutions. In particular, we focus this review on measurements from lidar and radar sensors that provide vertical and horizontal characterization of vegetation and are currently recommended for next generation of NASA's Earth observing and European Earth Explorer systems. C1 [Shugart, H. H.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA. [Saatchi, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hall, F. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Shugart, HH (reprint author), Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA. EM hhs@virginia.edu RI Shugart, Herman/C-5156-2009 FU NASA [NNX-07AF10G, NAG5-11084, NNX-07AO63G, NNX-08AL59G, NMO-710722, NNG-05-GN69G] FX This work was performed partially at the Jet Propulsion Laboratory, California Institute of Technology, under contract from National Aeronautic and Space Administration and the support of NASA's Terrestrial Ecology Program. We would also like to acknowledge the support to H. H. Shugart from NASA under grants NNX-07AF10G, NAG5-11084, NNX-07AO63G, NNX-08AL59G, NMO-710722, and NNG-05-GN69G. NR 125 TC 40 Z9 40 U1 3 U2 51 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD NOV 20 PY 2010 VL 115 AR G00E13 DI 10.1029/2009JG000993 PG 16 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 683NL UT WOS:000284482400001 ER PT J AU Irwin, RP Watters, TR AF Irwin, Rossman P., III Watters, Thomas R. TI Geology of the Martian crustal dichotomy boundary: Age, modifications, and implications for modeling efforts SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MARS GLOBAL SURVEYOR; ORBITER LASER ALTIMETER; LOBATE DEBRIS APRONS; IMPACT CRATERS; HEMISPHERIC DICHOTOMY; EARLY DIFFERENTIATION; VALLEY NETWORKS; FRETTED TERRAIN; NORTHERN LOWLANDS; EVOLUTION AB The contrast in crustal thickness, surface age, elevation, and morphology between the southern cratered highlands and northern lowland plains of Mars is termed the crustal dichotomy. The oldest exposed sections of the crustal dichotomy boundary are ancient cratered slopes, which influenced post-Noachian fresh crater morphometry, Late Noachian valley network planform, and the degradation patterns of Middle to Late Noachian (similar to 3.92-3.7 Ga) impact craters. Noachian visible and topographically defined impact craters at the top of the cratered slope show no evidence of flexure-induced normal faulting. These observations and published geophysical data collectively require an Early to Pre-Noachian age for the crustal dichotomy, prior to the largest recognized impact basins. Late Noachian plateau deposits and more prolonged Tharsis volcanism appear to have buried parts of the old cratered slope, and fretted terrain developed in this transition zone during the Early Hesperian Epoch (similar to 3.7-3.6 Ga). Fretted/knobby terrains, lowland plains, and most visible structures (wrinkle ridges, fractures, and normal faults) postdate Noachian crater modification and are several hundred million years younger than the cratered slope of the crustal dichotomy, so they provide no valid basis or constraint for models of its formation. Long-wavelength topography in cratered terrain dates to Early to Pre-Noachian time and provides a useful model constraint. Geological and geophysical observations are thus reconciled around an early age and relatively rapid development of the Martian crustal dichotomy. C1 [Irwin, Rossman P., III] Planetary Sci Inst, Tucson, AZ USA. [Irwin, Rossman P., III] NASA, Planetary Geodynam Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Watters, Thomas R.] Smithsonian Inst, Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DC 20013 USA. RP Irwin, RP (reprint author), Planetary Sci Inst, Tucson, AZ USA. EM Irwin@psi.edu FU Mars Data Analysis Program FX This study was supported by a Mars Data Analysis Program grant to T. R. Watters. We thank Debra Buczkowski for helpful comments. NR 149 TC 6 Z9 6 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 20 PY 2010 VL 115 AR E11006 DI 10.1029/2010JE003658 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 683OZ UT WOS:000284486400003 ER PT J AU Schroder, C Herkenhoff, KE Farrand, WH Chappelow, JE Wang, W Nittler, LR Ashley, JW Fleischer, I Gellert, R Golombek, MP Johnson, JR Klingelhofer, G Li, R Morris, RV Squyres, SW AF Schroeder, Christian Herkenhoff, Kenneth E. Farrand, William H. Chappelow, John E. Wang, Wei Nittler, Larry R. Ashley, James W. Fleischer, Iris Gellert, Ralf Golombek, Matthew P. Johnson, Jeffrey R. Klingelhoefer, Goestar Li, Ron Morris, Richard V. Squyres, Steven W. TI Properties and distribution of paired candidate stony meteorites at Meridiani Planum, Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID ROVER OPPORTUNITY; LANDING SITE; MESOSIDERITE; EXPLORATION; CRATER; ORIGIN AB The Mars Exploration Rover Opportunity investigated four rocks, informally dubbed Barberton, Santa Catarina, Santorini, and Kasos, that are possible stony meteorites. Their chemical and mineralogical composition is similar to the howardite, eucrite, and diogenite group but with additional metal, similar to mesosiderite silicate clasts. Because of their virtually identical composition and because they appear to represent a relatively rare group of meteorites, they are probably paired. The four rocks were investigated serendipitously several kilometers apart, suggesting that Opportunity is driving across a larger population of similar rock fragments, maybe a meteorite strewn field. Small amounts of ferric Fe are a result of weathering. We did not observe evidence for fusion crusts. Four iron meteorites were found across the same area. Although mesosiderites are stony irons, a genetic link to these irons is unlikely. The stony meteorites probably fell later than the irons. The current atmosphere is sufficiently dense to land such meteorites at shallow entry angles, and it would disperse fragments over several kilometers upon atmospheric breakup. Alternatively, dispersion by spallation from an impacting meteoroid may have occurred. Santa Catarina and a large accumulation of similar rocks were found at the rim of Victoria crater. It is possible that they are associated with the impactor that created Victoria crater, but our limited knowledge about their distribution cannot exclude mere coincidence. C1 [Schroeder, Christian] Univ Tubingen, Ctr Appl Geosci, D-72076 Tubingen, Germany. [Schroeder, Christian] Univ Bayreuth, Dept Hydrol, Bayreuth, Germany. [Herkenhoff, Kenneth E.; Johnson, Jeffrey R.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Farrand, William H.] Space Sci Inst, Boulder, CO 80301 USA. [Chappelow, John E.] SAGA Inc, Fairbanks, AK 99709 USA. [Wang, Wei; Li, Ron] Ohio State Univ, Mapping & GIS Lab, Dept Civil & Environm Engn & Geodet Sci, Columbus, OH 43210 USA. [Nittler, Larry R.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Ashley, James W.] Arizona State Univ, Sch Earth & Space Explorat, Mars Space Flight Facil, Tempe, AZ 85287 USA. [Fleischer, Iris; Klingelhoefer, Goestar] Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55128 Mainz, Germany. [Gellert, Ralf] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Golombek, Matthew P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Morris, Richard V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Squyres, Steven W.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Schroder, C (reprint author), Univ Tubingen, Ctr Appl Geosci, Sigwartstr 10, D-72076 Tubingen, Germany. EM christian.schroeder@ifg.uni-tuebingen.de RI Schroder, Christian/B-3870-2009; Johnson, Jeffrey/F-3972-2015 OI Schroder, Christian/0000-0002-7935-6039; NR 58 TC 13 Z9 13 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 20 PY 2010 VL 115 AR E00F09 DI 10.1029/2010JE003616 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 683OZ UT WOS:000284486400002 ER PT J AU Weitz, CM Farrand, WH Johnson, JR Fleischer, I Schroder, C Yingst, A Jolliff, B Gellert, R Bell, J Herkenhoff, KE Klingelhofer, G Cohen, B Calvin, W Rutherford, M Ashley, J AF Weitz, Catherine M. Farrand, William H. Johnson, Jeffrey R. Fleischer, Iris Schroeder, Christian Yingst, Aileen Jolliff, Brad Gellert, Ralf Bell, Jim Herkenhoff, Kenneth E. Klingelhoefer, Goester Cohen, Barbara Calvin, Wendy Rutherford, Malcolm Ashley, James TI Visible and near-infrared multispectral analysis of geochemically measured rock fragments at the Opportunity landing site in Meridiani Planum SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MOSSBAUER SPECTROMETER; MARS; MINERALOGY; CHEMISTRY; ROVER AB We have used visible and near-infrared Panoramic Camera (Pancam) spectral data acquired by the Opportunity rover to analyze 15 rock fragments at the Meridiani Planum landing site. These spectral results were then compared to geochemistry measurements made by the in situ instruments Mossbauer (MB) and Alpha Particle X-ray Spectrometer (APXS) to determine the feasibility of mineralogic characterization from Pancam data. Our results suggest that dust and alteration rinds coat many rock fragments, which limits our ability to adequately measure the mineralogy of some rocks from Pancam spectra relative to the different field of view and penetration depths of MB and APXS. Viewing and lighting geometry, along with sampling size, also complicate the spectral characterization of the rocks. Rock fragments with the same geochemistry of sulfate-rich outcrops have similar spectra, although the sulfate-rich composition cannot be ascertained based upon Pancam spectra alone. FeNi meteorites have spectral characteristics, particularly ferric oxide coatings, that generally differentiate them from other rocks at the landing site. Stony meteorites and impact fragments with unknown compositions have a diverse range of spectral properties and are not well constrained nor diagnostic in Pancam data. Bounce Rock, with its unique basalt composition, is easily differentiated in the Pancam data from all other rock types at Meridiani Planum. Our Pancam analyses of small pebbles adjacent to these 15 rock fragments suggests that other rock types may exist at the landing site but have not yet been geochemically measured. C1 [Weitz, Catherine M.; Yingst, Aileen] Planetary Sci Inst, Tucson, AZ 85719 USA. [Farrand, William H.] Space Sci Inst, Boulder, CO 80301 USA. [Johnson, Jeffrey R.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Fleischer, Iris; Klingelhoefer, Goester] Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55128 Mainz, Germany. [Schroeder, Christian] Univ Bayreuth, Dept Hydrol, Bayreuth, Germany. [Schroeder, Christian] Univ Tubingen, Ctr Appl Geosci, D-72076 Tubingen, Germany. [Jolliff, Brad] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Gellert, Ralf] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Bell, Jim] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Cohen, Barbara] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Calvin, Wendy] Univ Nevada, Dept Geol Sci & Engn, Reno, NV 89557 USA. [Ashley, James] Arizona State Univ, Mars Space Flight Facil, Tempe, AZ 85287 USA. [Rutherford, Malcolm] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. RP Weitz, CM (reprint author), Planetary Sci Inst, 1700 E Ft Lowell,Ste 106, Tucson, AZ 85719 USA. EM weitz@psi.edu RI Schroder, Christian/B-3870-2009; Johnson, Jeffrey/F-3972-2015 OI Schroder, Christian/0000-0002-7935-6039; FU NASA [NNG05GB16G] FX We thank Onur Karahayit and Ron Li for producing the Opportunity traverse map and Ella Mae for providing several of the MI-Pancam color merges. Steve Ruff, Larry Soderblom, and an anonymous reviewer provided comments that improved the quality of this paper. We acknowledge the outstanding efforts of everyone on the JPL engineering and MER Athena science teams. This work was supported through NASA MDAP grant NNG05GB16G. NR 36 TC 5 Z9 5 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 20 PY 2010 VL 115 AR E00F10 DI 10.1029/2010JE003660 PG 29 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 683OZ UT WOS:000284486400004 ER PT J AU Hollingsworth, JL Kahre, MA AF Hollingsworth, J. L. Kahre, M. A. TI Extratropical cyclones, frontal waves, and Mars dust: Modeling and considerations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GENERAL-CIRCULATION MODEL; MARTIAN ATMOSPHERE; STORM ZONES; DISTURBANCES; SIMULATIONS; HEMISPHERE; DIAGNOSIS; EDDIES AB A Mars GCM is utilized to investigate dust lifting and organization associated with extratropical cyclogenesis and frontal waves. The model is applied at high resolution in simulations related to Mars' dust cycle. A single extratropical synoptic weather event is examined to ascertain lifting, transport and convergence/divergence of dust by large-scale cyclonic/anticyclonic weather systems, and the sub-synoptic frontal waves that ensue. Low-and high-pressure cores develop, travel eastward and remain mostly confined within the seasonal CO(2) polar cap. The bulk of dust lifting occurs in the northern-hemisphere western highlands associated with nocturnal down-slope drainage flows, and lifting infrequently occurs near the frontal convergence zone. Dust becomes organized and transported within circulations associated with the synoptic/sub-synoptic circulations accompanying the frontal waves. Dynamical considerations are invoked regarding frontogenesis revealing correlations with regards to dust lifting, organization and transport. Implications of large-scale extratropical weather systems on the martian dust cycle are discussed. Citation: Hollingsworth, J. L., and M. A. Kahre (2010), Extratropical cyclones, frontal waves, and Mars dust: Modeling and considerations, Geophys. Res. Lett., 37, L22202, doi:10.1029/2010GL044262. C1 [Hollingsworth, J. L.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Kahre, M. A.] BAER Inst, Sonoma, CA USA. RP Hollingsworth, JL (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-3, Moffett Field, CA 94035 USA. EM jeffery.l.hollingsworth@nasa.gov; melinda.a.kahre@nasa.gov FU NASA/HQ Planetary Science Division; Planetary Atmospheres Program (PATM) FX This research has been supported by the NASA/HQ Planetary Science Division and the Planetary Atmospheres Program (PATM). NR 26 TC 5 Z9 5 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 19 PY 2010 VL 37 AR L22202 DI 10.1029/2010GL044262 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 683MI UT WOS:000284479500001 ER PT J AU Allen, D Pickering, K Duncan, B Damon, M AF Allen, Dale Pickering, Kenneth Duncan, Bryan Damon, Megan TI Impact of lightning NO emissions on North American photochemistry as determined using the Global Modeling Initiative (GMI) model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OPTICAL TRANSIENT DETECTOR; CONTINENTAL UNITED-STATES; TROPOSPHERIC OZONE; NITROGEN-OXIDES; ACCURATE SIMULATION; TRANSPORT MODELS; CHEMICAL-MODELS; CHEMISTRY; VARIABILITY; PARAMETERIZATION AB The impact of nitric oxide (NO) emissions by lightning on summertime North American nitrogen oxides (NOx) and ozone is studied using the Global Modeling Initiative (GMI) CTM and an improved lightning NO algorithm. The spatial distributions of modeled and National Lightning Detection Network-based flash rates during the summers of 2004-2006 agree well (R-2 = 0.49, 18% low bias). Despite this reasonable agreement, 9-12 km model NOx during the Intercontinental Chemical Transport Experiment (INTEX-A) campaign is a factor of 2.2-3.6 too low for a simulation that includes a 480 mol per flash midlatitude lightning NO source, the source that provides the best agreement with measurements. Possible causes of this low bias include biases in model convection and/or too rapid NOx chemistry in the upper troposphere. Model tropospheric NO2 columns over the southeastern United States during these summers show a 7% high bias with respect to the OMI DOMINO/GEOS-Chem tropospheric column NO2 product. Observed changes between 2004 and 2006 in upper tropospheric ozone at southeastern U. S. INTEX Ozonesonde Network Study sites are captured by the model and appear to be caused by a stronger upper tropospheric anticyclone in 2006 that led to an increase from 21 to 30 ppbv between 2004 and 2006 in the amount of ozone with a lightning NO source; lightning NO emissions were 15%-20% larger in 2004. The contribution of lightning NO to monthly average summertime 300 hPa NOx over the eastern United States during 2004-2006 varies from 61%-73% (0.09-0.16 ppbv), while the contribution to ozone varies from 19%-31% (15-24 ppbv). C1 [Allen, Dale] Univ Maryland, Dept Meteorol, College Pk, MD 20742 USA. [Damon, Megan] NASA, Goddard Space Flight Ctr, Software Integrat & Visualizat Off, Greenbelt, MD 20771 USA. [Damon, Megan] Northrop Grumman Informat Technol, Greenbelt, MD 20771 USA. RP Allen, D (reprint author), Univ Maryland, Dept Meteorol, College Pk, MD 20742 USA. EM allen@atmos.umd.edu RI Duncan, Bryan/A-5962-2011; Pickering, Kenneth/E-6274-2012; Allen, Dale/F-7168-2010; Chem, GEOS/C-5595-2014 OI Allen, Dale/0000-0003-3305-9669; FU NASA [NNG06GE01G] FX This work was funded by the NASA Modeling, Analysis, and Prediction Program under NASA grant NNG06GE01G, "Effects of clouds, convection, and lightning on tropospheric chemistry in the GMI model." We thank Anne Thompson for access to the IONS ozonesonde data, Dylan Jones for guidance in applying TES averaging kernels, K. F. Boersma for guidance in the use of DOMINO NO2 fields, and L. Lamsal for access to the DP-GC NO2 data. OTD/LIS data are from NASA/MSFC. NLDN data are collected by Vaisala Inc. and are archived at NASA-MSFC. NR 92 TC 31 Z9 31 U1 3 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 19 PY 2010 VL 115 AR D22301 DI 10.1029/2010JD014062 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 683NC UT WOS:000284481500002 ER PT J AU Metz, J Grotzinger, J Okubo, C Milliken, R AF Metz, Joannah Grotzinger, John Okubo, Chris Milliken, Ralph TI Thin-skinned deformation of sedimentary rocks in Valles Marineris, Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID LAYERED DEPOSITS; MELAS-CHASMA; LACUSTRINE SEDIMENTS; MARTIAN LANDSLIDES; NORTHERN APENNINES; OUTFLOW CHANNELS; SEISMITES; IMPACT; BASIN; MORPHOLOGY AB Deformation of sedimentary rocks is widespread within Valles Marineris, characterized by both plastic and brittle deformation identified in Candor, Melas, and Ius Chasmata. We identified four deformation styles using HiRISE and CTX images: kilometer-scale convolute folds, detached slabs, folded strata, and pull-apart structures. Convolute folds are detached rounded slabs of material with alternating dark-and light-toned strata and a fold wavelength of about 1 km. The detached slabs are isolated rounded blocks of material, but they exhibit only highly localized evidence of stratification. Folded strata are composed of continuously folded layers that are not detached. Pull-apart structures are composed of stratified rock that has broken off into small irregularly shaped pieces showing evidence of brittle deformation. Some areas exhibit multiple styles of deformation and grade from one type of deformation into another. The deformed rocks are observed over thousands of kilometers, are limited to discrete stratigraphic intervals, and occur over a wide range in elevations. All deformation styles appear to be of likely thin-skinned origin. CRISM reflectance spectra show that some of the deformed sediments contain a component of monohydrated and polyhydrated sulfates. Several mechanisms could be responsible for the deformation of sedimentary rocks in Valles Marineris, such as subaerial or subaqueous gravitational slumping or sliding and soft sediment deformation, where the latter could include impact-induced or seismically induced liquefaction. These mechanisms are evaluated based on their expected pattern, scale, and areal extent of deformation. Deformation produced from slow subaerial or subaqueous landsliding and liquefaction is consistent with the deformation observed in Valles Marineris. C1 [Metz, Joannah; Grotzinger, John] CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. [Milliken, Ralph] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Okubo, Chris] US Geol Survey, Flagstaff, AZ 86001 USA. RP Metz, J (reprint author), CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. EM joannah@caltech.edu NR 90 TC 11 Z9 11 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 19 PY 2010 VL 115 AR E11004 DI 10.1029/2010JE003593 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 683OW UT WOS:000284486100001 ER PT J AU Haaser, RA Earle, GD Heelis, RA Coley, WR Klenzing, JH AF Haaser, R. A. Earle, G. D. Heelis, R. A. Coley, W. R. Klenzing, J. H. TI Low-latitude measurements of neutral thermospheric helium dominance near 400 km during extreme solar minimum SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ENERGY ACCOMMODATION; ATMOSPHERE; COEFFICIENTS; DRAG; MISSION; MODEL AB Since the middle of 2008 solar activity has been unusually low, resulting in unusual atmospheric conditions, including significant changes in the pressure and neutral constituents at altitudes near 400 km at low latitudes. These attributes have been measured by the Coupled Ion-Neutral Dynamics Investigation instruments aboard the Communication/Navigation Outage Forecast System (C/NOFS) satellite. The cross-track sensor aboard C/NOFS is designed to measure the neutral pressure in an atmosphere with pressures larger than 10 (8) Torr, from which the atmospheric scale height can be estimated. In the contracted thermosphere during the current solar minimum (analyzed from June 2008 to August 2009), the instrument data indicate a dominance of neutral helium near the satellite perigee (400 km). This conclusion is found to be consistent with the measured mean drag on the satellite, thus validating the basic functionality of the cross-track sensor. C1 [Haaser, R. A.; Earle, G. D.; Heelis, R. A.; Coley, W. R.] Univ Texas Dallas, WB Hanson Ctr Space Sci, Richardson, TX 75080 USA. [Klenzing, J. H.] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20770 USA. RP Haaser, RA (reprint author), Univ Texas Dallas, WB Hanson Ctr Space Sci, Richardson, TX 75080 USA. RI Klenzing, Jeff/E-2406-2011; OI Klenzing, Jeff/0000-0001-8321-6074; Coley, William Robin/0000-0003-2047-0002 FU NASA [NAS5-01068 (CINDI)] FX We thank Frank Marcos and Chin Lin of the Air Force Research Laboratory for giving us early critiques of methodology and results. We thank Paul Holladay for assisting with details of the physical structure of C/NOFS. We thank Marcin Pilinski for his help in determining reasonable determining approximations of drag from species known to be present at C/NOFS operating altitudes. We thank Russell Stoneback for all of his assistance preparing C/NOFS data. We also thank Tom Woods for his ideas on solar activity matching with EUV instead of F10.7 and subsequent adjustments to expected F10.7 using the MSIS model. This work has been supported by NASA grant NAS5-01068 (CINDI). NR 21 TC 10 Z9 10 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 19 PY 2010 VL 115 AR A11318 DI 10.1029/2010JA015325 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 683PP UT WOS:000284488000002 ER PT J AU Strode, S Jaegle, L Emerson, S AF Strode, Sarah Jaegle, Lyatt Emerson, Steven TI Vertical transport of anthropogenic mercury in the ocean SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID ATLANTIC-OCEAN; NORTH-ATLANTIC; PACIFIC-OCEAN; BOX-DIFFUSION; CARBON UPTAKE; MODEL; CO2; SPECIATION; EXCHANGE; SHELF AB We investigate the vertical transport of mercury (Hg) within the ocean using a simple box diffusion model to represent vertical water transport coupled with a particulate Hg flux. The particulate flux assumes that the Hg content of marine particles is proportional to the Hg concentration of surface waters via a sorption equilibrium constant, K-d. The model is forced with the observed factor of 3 increase in atmospheric Hg deposition over the industrial era. The modeled vertical profile of oceanic Hg shows a subsurface maximum at similar to 500 m depth due to remineralization of Hg bound to sinking organic particles, consistent with observations. Model results indicate that surface (top 100 m) concentrations of Hg have increased by 150% since preindustrial times. Over the past 150 years, 280 Mmol of anthropogenic Hg have accumulated in the ocean, representing a 18% increase in the total oceanic Hg content. We find that 36% of the anthropogenic Hg occurs in the top 400 m and only 7% occurs below 1500 m. Over the industrial era, we find that 14% of cumulative anthropogenic emissions have accumulated in the ocean. Our model results show that half of the accumulation of anthropogenic Hg in the ocean is due to sinking on particulates. A sensitivity analysis indicates that the model results are most dependent on the value of K-d. C1 [Strode, Sarah; Jaegle, Lyatt] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Emerson, Steven] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. RP Strode, S (reprint author), NASA, Goddard Space Flight Ctr, SAIC, Code 610-1, Greenbelt, MD 20771 USA. EM jaegle@atmos.washington.edu RI Strode, Sarah/H-2248-2012 OI Strode, Sarah/0000-0002-8103-1663 FU National Science Foundation [ATM 0238530] FX This work was supported by funding from the National Science Foundation under grant ATM 0238530. NR 38 TC 12 Z9 12 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD NOV 18 PY 2010 VL 24 AR GB4014 DI 10.1029/2009GB003728 PG 10 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 683MP UT WOS:000284480200001 ER PT J AU Golombek, M Robinson, K McEwen, A Bridges, N Ivanov, B Tornabene, L Sullivan, R AF Golombek, M. Robinson, K. McEwen, A. Bridges, N. Ivanov, B. Tornabene, L. Sullivan, R. TI Constraints on ripple migration at Meridiani Planum from Opportunity and HiRISE observations of fresh craters SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID THERMAL EMISSION SPECTROMETER; MARS ORBITER CAMERA; LANDING SITE; TERRA-MERIDIANI; SURFACE-PROPERTIES; LAYERED DEPOSITS; BURNS FORMATION; IMPACT CRATERS; ROVER; EVOLUTION AB Observations of fresh impact craters by the Opportunity rover and in high-resolution orbital images constrain the latest phase of granule ripple migration at Meridiani Planum to have occurred between similar to 50 ka and similar to 200 ka. Opportunity explored the fresh Resolution crater cluster and Concepcion crater that are superposed on and thus younger than the ripples. These fresh craters have small dark pebbles scattered across their surfaces, which are most likely fragments of the impactor, suggesting that the dark pebbles and cobbles observed by Opportunity at Meridiani Planum are a lag of impactor-derived material (either meteoritic or secondary impactors from elsewhere on Mars). Two larger, fresh-rayed craters in Meridiani Planum bracket ripple migration; secondaries from Ada crater are clearly superposed on and secondaries from an unnamed 0.84 km diameter crater have been modified and overprinted by the ripples. Three methods were used to estimate the age of these craters and thus when the latest phase of ripple migration occurred. The inactivity of the ripples over the past similar to 50 ka at Meridiani is also consistent with other evidence for the stability of the ripples, the lack of observed eolian bed forms in craters that formed in the past 20 years, and little evidence for much dune motion in the past 30 yr on Mars. Observations of crater morphology and their interaction with the ripples allow the development of a general time scale for craters in Meridiani Planum over the past million years. C1 [Golombek, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bridges, N.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Ivanov, B.] RAS, Inst Dynam Geospheres, Moscow 119334, Russia. [McEwen, A.; Tornabene, L.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Robinson, K.] SUNY Binghamton, Binghamton, NY 13902 USA. [Sullivan, R.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Golombek, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Ivanov, Boris/E-1413-2016 OI Ivanov, Boris/0000-0002-9938-9428 FU NASA FX Research described in this paper was done by the MER and HiRISE projects, Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We thank E. Schaefer, E. Snead, E. Noe Dobrea, and J. Bell for help with the figures and J. Ashley, A. Vaughan, T. Parker, J. Grotzinger, J. Wray, M. Pendleton-Hoffer, R. Kienenberger, and an anonymous reviewer for comments. NR 78 TC 29 Z9 29 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 18 PY 2010 VL 115 AR E00F08 DI 10.1029/2010JE003628 PG 34 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 683OU UT WOS:000284485900001 ER PT J AU Moore, L Mueller-Wodarg, I Galand, M Kliore, A Mendillo, M AF Moore, Luke Mueller-Wodarg, Ingo Galand, Marina Kliore, Arvydas Mendillo, Michael TI Latitudinal variations in Saturn's ionosphere: Cassini measurements and model comparisons SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID RADIO OCCULTATION; MAGNETIC-FIELDS; ATMOSPHERE; MAGNETOSPHERE; ULTRAVIOLET; PLANETS; SCIENCE; SOLAR; PHOTOCHEMISTRY; COROTATION AB We present a study of latitudinal variations in Saturn's ionosphere using Cassini Radio Science Subsystem (RSS) measurements and Saturn-Thermosphere-Ionosphere-Model (STIM) simulations. On the basis of Cassini RSS observations, the peak electron density (N-MAX) and the total electron content (TEC) both exhibit a clear increase with latitude, with a minimum at Saturn's equator. When compared with these RSS trends, current model simulations overestimate N-MAX and TEC at low latitudes and underestimate those parameters at middle and high latitudes. STIM is able to reproduce the RSS values for N-MAX and TEC at low latitude when an additional low-latitude loss process, such as a water influx, is introduced near Saturn's equator. The lack of auroral precipitation processes in the model likely explains some model/data discrepancies at high latitude; however, most of the high-latitude RSS data are from latitudes outside of Saturn's typical main auroral oval. Using Cassini RSS electron density altitude profiles combined with ion density fractions and neutral background parameters calculated in STIM, we also present estimates of the latitudinal variations of Saturn's Pedersen conductance, Sigma(P). We find Sigma(P) to be driven by ion densities in Saturn's lower ionosphere and to exhibit a latitudinal trend with a peak at mid-latitude. Model calculations are able to reproduce low-latitude conductances when an additional loss process is introduced, as before, but consistently underestimate most of the mid-and high-latitude conductances derived from Cassini observations, perhaps indicating a missing ionization source within the model. C1 [Moore, Luke; Mendillo, Michael] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Mueller-Wodarg, Ingo; Galand, Marina] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Kliore, Arvydas] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Moore, L (reprint author), Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. EM moore@bu.edu RI Galand, Marina/C-6804-2009; Mendillo, Michael /H-4397-2014; Mueller-Wodarg, Ingo/M-9945-2014; OI Mueller-Wodarg, Ingo/0000-0001-6308-7826; Moore, Luke/0000-0003-4481-9862 FU International Space Sciences Institute (ISSI) in Bern, Switzerland [166]; NASA; Planetary Atmospheres Program; Center for Space Physics; UK Science and Technology Facilities Council (STFC); UK Royal Society University FX We are very grateful to the TIMED/SEE PI, Tom Woods, and his team for providing us with the solar flux data set and associated routines for extrapolation to planets. We acknowledge the contribution of the International Space Sciences Institute (ISSI) in Bern, Switzerland, for hosting and funding the ISSI International Team on Saturn Aeronomy (166) and the constructive discussions by colleagues attending the Saturn Aeronomy meeting. Funding for this work at Boston University comes, in part, from the NASA CDAP Program (L.M.), the Planetary Atmospheres Program (M.M., M.G.), and the Center for Space Physics. In addition, M.G. was partially supported by the UK Science and Technology Facilities Council (STFC) rolling grant awarded to Imperial College London. I.M.-W. is funded by a UK Royal Society University Research Fellowship. NR 58 TC 28 Z9 28 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 18 PY 2010 VL 115 AR A11317 DI 10.1029/2010JA015692 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 683PN UT WOS:000284487800004 ER PT J AU Zhang, X Sander, SP Chaimowitz, A Ellison, GB Stanton, JF AF Zhang, Xu Sander, Stanley P. Chaimowitz, Adam Ellison, G. Barney Stanton, John F. TI Detection of Vibrational Bending Mode nu(8) and Overtone Bands of the Propargyl Radical, HCCCH2 (X)over-tilde B-2(1) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MATRIX-ISOLATION; SPECTROSCOPY; SPECTRUM; ALLENE; H2CCCH; METHYLACETYLENE; RECOMBINATION; PHOTOLYSIS; BENZENE; C3H3 AB Infrared (IR) absorption spectra of matrix-isolated HCCCH2 have been measured. Propargyl radicals were generated in a supersonic pyrolysis nozzle, using a method similar to that described in a previous study (Jochnowitz, E. B.; Zhang, X.; Nimlos, M. R.; Varner, M. E.; Stanton, J. F.; Ellison, G. B. J. Phys. Chem. A 2005, 109, 3812-3821). Besides the nine vibrational modes observed in the previous study, this investigation detected the HCCCH2 (X) over tilde B-2(1) out-of-plane bending mode (nu(8)) at 378.0 (+/-1.9) cm(-1) in a cryogenic argon matrix. This is the first experimental observation of nu(8) for the propargyl radical. In addition, seven overtone and combination bands have also been detected and assigned. Ab initio coupled-cluster anharmonic force field calculations were used to guide the analysis. Furthermore, nu(12), the HCCCH2 in-plane bending mode, has been assigned to 333 (+/-10) cm(-1) based on the detection of its overtone (2 nu(12), 667.7 +/- 1.0 cm(-1)) and a possible combination band (nu(10) + nu(12), 1339.0 +/- 0.8 cm(-1)). This is the first experimental estimation of nu(12) for the propargyl radical. C1 [Zhang, Xu; Sander, Stanley P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chaimowitz, Adam] Pomona Coll, Dept Chem, Claremont, CA 91711 USA. [Ellison, G. Barney] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Stanton, John F.] Univ Texas Austin, Inst Theoret Chem, Dept Chem, Austin, TX 78712 USA. RP Zhang, X (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM xu.zhang@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA); United States Department of Energy [DE-FG02-93ER14364]; National Science Foundation [CHE-0848606]; Prof. Fred Grieman and Pomona College FX This research was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). This work was supported by the grant from NASA planetary atmosphere program and NASA postdoctoral fellowship program. Additional support for this work comes from the US Department of Energy and the Robert A. Welch Foundations (to J. F. S.). G. B. E. acknowledges support from the Chemical Physics Program, United States Department of Energy (DE-FG02-93ER14364) and the National Science Foundation (CHE-0848606)? We would like to thank Prof. Fred Grieman and Pomona College for their support. The authors would also like to thank Dave Nazic for his laboratory support. NR 33 TC 5 Z9 5 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 18 PY 2010 VL 114 IS 45 BP 12021 EP 12027 DI 10.1021/jp105605f PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 677UU UT WOS:000284018200004 PM 20973539 ER PT J AU Ackermann, M Ajello, M Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellardi, F Bellazzini, R Belli, F Berenji, B Blandford, RD Bloom, ED Bogart, JR Bonamente, E Borgland, AW Brandt, TJ Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Burnett, TH Busetto, G Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carlson, P Carrigan, S Casandjian, JM Ceccanti, M Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Cillis, AN Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Corbet, R DeKlotz, M Dermer, CD de Angelis, A de Palma, F Digel, SW Di Bernardo, G Silva, EDE Drell, PS Drlica-Wagner, A Dubois, R Fabiani, D Favuzzi, C Fegan, SJ Fortin, P Fukazawa, Y Funk, S Fusco, P Gaggero, D Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grasso, D Grenier, IA Grondin, MH Grove, JE Guiriec, S Gustafsson, M Hadasch, D Harding, AK Hayashida, M Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, RP Johnson, WN Kamae, T Katagiri, H Kataoka, J Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McEnery, JE Mehault, J Michelson, PF Minuti, M Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Petrosian, V Pinchera, M Piron, F Porter, TA Profumo, S Raino, S Rando, R Rapposelli, E Razzano, M Reimer, A Reimer, O Reposeur, T Ripken, J Ritz, S Rochester, LS Romani, RW Roth, M Sadrozinski, HFW Saggini, N Sanchez, D Sander, A Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Stawarz, L Stephens, TE Strickman, MS Strong, AW Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Tibolla, O Torres, DF Tosti, G Tramacere, A Turri, M Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Vitale, V Waite, AP Wallace, E Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Ackermann, M. Ajello, M. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellardi, F. Bellazzini, R. Belli, F. Berenji, B. Blandford, R. D. Bloom, E. D. Bogart, J. R. Bonamente, E. Borgland, A. W. Brandt, T. J. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Busetto, G. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carlson, P. Carrigan, S. Casandjian, J. M. Ceccanti, M. Cecchi, C. Celik, Oe Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Cillis, A. N. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Corbet, R. DeKlotz, M. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Di Bernardo, G. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Dubois, R. Fabiani, D. Favuzzi, C. Fegan, S. J. Fortin, P. Fukazawa, Y. Funk, S. Fusco, P. Gaggero, D. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grasso, D. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guiriec, S. Gustafsson, M. Hadasch, D. Harding, A. K. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McEnery, J. E. Mehault, J. Michelson, P. F. Minuti, M. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Petrosian, V. Pinchera, M. Piron, F. Porter, T. A. Profumo, S. Raino, S. Rando, R. Rapposelli, E. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Ritz, S. Rochester, L. S. Romani, R. W. Roth, M. Sadrozinski, H. F. -W. Saggini, N. Sanchez, D. Sander, A. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stawarz, L. Stephens, T. E. Strickman, M. S. Strong, A. W. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Tramacere, A. Turri, M. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wallace, E. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV SO PHYSICAL REVIEW D LA English DT Article ID LARGE-AREA TELESCOPE; SPACE-TELESCOPE; ENERGY-SPECTRA; SOLAR MINIMUM; POSITRONS; PROPAGATION; MODULATION; SPECTROMETER; GALAXY AB We present the results of our analysis of cosmic-ray electrons using about 8 x 10(6) electron candidates detected in the first 12 months on-orbit by the Fermi Large Area Telescope. This work extends our previously published cosmic-ray electron spectrum down to 7 GeV, giving a spectral range of approximately 2.5 decades up to 1 TeV. We describe in detail the analysis and its validation using beam-test and on-orbit data. In addition, we describe the spectrum measured via a subset of events selected for the best energy resolution as a cross-check on the measurement using the full event sample. Our electron spectrum can be described with a power law proportional to E-3.08+/-0.05 with no prominent spectral features within systematic uncertainties. Within the limits of our uncertainties, we can accommodate a slight spectral hardening at around 100 GeV and a slight softening above 500 GeV. C1 [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Brez, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Turri, M.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Turri, M.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Johnson, R. P.; Profumo, S.; Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Profumo, S.; Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellardi, F.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ceccanti, M.; Di Bernardo, G.; Fabiani, D.; Gaggero, D.; Grasso, D.; Kuss, M.; Latronico, L.; Minuti, M.; Pesce-Rollins, M.; Pinchera, M.; Rapposelli, E.; Razzano, M.; Saggini, N.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU CNRS, Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Busetto, G.; Buson, S.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Busetto, G.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Brandt, T. J.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Belli, F.; Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Belli, F.; Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] M Merlin Univ, Dipartimento Fis, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Carlson, P.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Carlson, P.; Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Celik, Oe; Cillis, A. N.; Corbet, R.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Stephens, T. E.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] NASA, Ctr Res & Explorat Space Sci & Technol, CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Corbet, R.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Corbet, R.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC USA. [Cillis, A. N.] Parbellon IAFE, Inst Astron & Fis Espacio, Buenos Aires, DF, Argentina. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [DeKlotz, M.] Stellar Solut Inc, Palo Alto, CA 94306 USA. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI, Sci Data Ctr, I-00044 Rome, Italy. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res CSPAR, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Ozaki, M.; Stawarz, L.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Stephens, T. E.] Wyle Labs, El Segundo, CA 90245 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Ackermann, M (reprint author), Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. EM alexander.a.moiseev@nasa.gov; carmelo.sgro@pi.infn.it RI Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; Grasso, Dario/I-2440-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; OI De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Moretti, Elena/0000-0001-5477-9097; Funk, Stefan/0000-0002-2012-0080; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Stephens, Thomas/0000-0003-3065-6871; giommi, paolo/0000-0002-2265-5003; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Grasso, Dario/0000-0001-7761-7242; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726 FU K. A. Wallenberg Foundation; International Doctorate on Astroparticle Physics (IDAPP) program FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States; the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan; and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. We would like to thank the INFN GRID Data Centers of Pisa, Trieste, and CNAF-Bologna; the DOE SLAC National Accelerator Laboratory Computing Division and the CNRS/IN2P3 Computing Center (CC-IN2P3-Lyon/Villeurbanne) in partnership with CEA/DSM/Irfu for their strong support in performing the massive simulations necessary for this work. J. Conrad is Fellow of the Royal Swedish Academy of Sciences, funded by a grant from the K. A. Wallenberg Foundation. L. Tibaldo is partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program. NR 47 TC 245 Z9 247 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV 18 PY 2010 VL 82 IS 9 AR 092004 DI 10.1103/PhysRevD.82.092004 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 682KI UT WOS:000284402000002 ER PT J AU Ackermann, M Ajello, M Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cuoco, A Dermer, CD de Angelis, A de Palma, F Digel, SW Di Bernardo, G Silva, EDE Drell, PS Dubois, R Favuzzi, C Fegan, SJ Focke, WB Frailis, M Fukazawa, Y Funk, S Fusco, P Gaggero, D Gargano, F Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grasso, D Grenier, IA Grove, JE Guiriec, S Gustafsson, M Hadasch, D Harding, AK Hayashi, K Hays, E Hughes, RE Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McEnery, JE Mehault, J Michelson, PF Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nolan, PL Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Profumo, S Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Ripken, J Ritz, S Roth, M Sadrozinski, HFW Sander, A Schalk, TL Sgro, C Siegal-Gaskins, J Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Strong, AW Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Zaharijas, G Ziegler, M AF Ackermann, M. Ajello, M. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cuoco, A. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Di Bernardo, G. do Couto e Silva, E. Drell, P. S. Dubois, R. Favuzzi, C. Fegan, S. J. Focke, W. B. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gaggero, D. Gargano, F. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grasso, D. Grenier, I. A. Grove, J. E. Guiriec, S. Gustafsson, M. Hadasch, D. Harding, A. K. Hayashi, K. Hays, E. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McEnery, J. E. Mehault, J. Michelson, P. F. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Profumo, S. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Ritz, S. Roth, M. Sadrozinski, H. F. -W. Sander, A. Schalk, T. L. Sgro, C. Siegal-Gaskins, J. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Strong, A. W. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Zaharijas, G. Ziegler, M. TI Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope SO PHYSICAL REVIEW D LA English DT Article ID ARRIVAL DIRECTIONS; SPECTRUM; MILAGRO; CLUMPS AB The Large Area Telescope on board the Fermi satellite (Fermi LAT) detected more than 1.6 x 10(6) cosmic-ray electrons/positrons with energies above 60 GeV during its first year of operation. The arrival directions of these events were searched for anisotropies of angular scale extending from similar to 10 degrees up to 90 degrees, and of minimum energy extending from 60 GeV up to 480 GeV. Two independent techniques were used to search for anisotropies, both resulting in null results. Upper limits on the degree of the anisotropy were set that depended on the analyzed energy range and on the anisotropy's angular scale. The upper limits for a dipole anisotropy ranged from similar to 0.5% to similar to 10%. C1 [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Profumo, S.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Profumo, S.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Di Bernardo, G.; Gaggero, D.; Grasso, D.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU CNRS, Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Harding, A. K.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] NASA, Ctr Res & Explorat Space Sci & Technol CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.; Zaharijas, G.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.; Cuoco, A.; Garde, M. Llena; Moretti, E.; Ripken, J.; Yang, Z.; Ylinen, T.; Zaharijas, G.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Grp Collegato Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Hayashi, K.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giommi, P.] Agenzia Spaziale Italiana ASI, Sci Data Ctr, I-00044 Rome, Italy. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res CSPAR, Huntsville, AL 35899 USA. [Hughes, R. E.; Sander, A.; Siegal-Gaskins, J.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Lemoine-Goumard, M.; Reposeur, T.; Smith, D. A.] Univ Bordeaux 1, Ctr Etud Nucl Bordeaux Gradignan, CNRS IN2p3, F-33175 Gradignan, France. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Moretti, E.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Zaharijas, G.] CEA Saclay, Inst Theoret Phys, F-91191 Gif Sur Yvette, France. RP Ackermann, M (reprint author), Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. EM mazziotta@ba.infn.it; vvasilei@milkyway.gsfc.nasa.gov RI Funk, Stefan/B-7629-2015; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; Grasso, Dario/I-2440-2012; Johnson, Neil/G-3309-2014 OI Berenji, Bijan/0000-0002-4551-772X; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Moretti, Elena/0000-0001-5477-9097; Funk, Stefan/0000-0002-2012-0080; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Zaharijas, Gabrijela/0000-0001-8484-7791; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; giommi, paolo/0000-0002-2265-5003; Thompson, David/0000-0001-5217-9135; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Grasso, Dario/0000-0001-7761-7242; NR 36 TC 46 Z9 46 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV 18 PY 2010 VL 82 IS 9 AR 092003 DI 10.1103/PhysRevD.82.092003 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 682KI UT WOS:000284402000001 ER PT J AU Genc, KO Gopalakrishnan, R Kuklis, MM Maender, CC Rice, AJ Bowersox, KD Cavanagh, PR AF Genc, K. O. Gopalakrishnan, R. Kuklis, M. M. Maender, C. C. Rice, A. J. Bowersox, K. D. Cavanagh, P. R. TI Foot forces during exercise on the International Space Station SO JOURNAL OF BIOMECHANICS LA English DT Article DE Bone loss; Microgravity; Locomotion; Resistance exercise; Ergometer; Countermeasures; Spaceflight; Mechanical loading ID LONG-DURATION SPACEFLIGHT; RESISTIVE EXERCISE; BONE; GRAVITY; COUNTERMEASURES; STRENGTH; IMPACT; FLIGHT; MUSCLE AB Long-duration exposure to microgravity has been shown to have detrimental effects on the human musculoskeletal system. To date, exercise countermeasures have been the primary approach to maintain bone and muscle mass and they have not been successful. Up until 2008, the three exercise countermeasure devices available on the International Space Station (ISS) were the treadmill with vibration isolation and stabilization (TVIS), the cycle ergometer with vibration isolation and stabilization (CEVIS), and the interim resistance exercise device (iRED). This article examines the available envelope of mechanical loads to the lower extremity that these exercise devices can generate based on direct in-shoe force measurements performed on the ISS. Four male crewmembers who flew on long-duration ISS missions participated in this study. In-shoe forces were recorded during activities designed to elicit maximum loads from the various exercise devices. Data from typical exercise sessions on Earth and on-orbit were also available for comparison. Maximum on-orbit single-leg loads from TVIS were 1.77 body weight (BW) while running at 8 mph. The largest single-leg forces during resistance exercise were 0.72 BW during single-leg heel raises and 0.68 BW during double-leg squats. Forces during CEVIS exercise were small, approaching only 0.19 BW at 210W and 95 RPM. We conclude that the three exercise devices studied were not able to elicit loads comparable to exercise on Earth, with the exception of CEVIS at its maximal setting. The decrements were, on average, 77% for walking, 75% for running, and 65% for squats when each device was at its maximum setting. Future developments must include an improved harness to apply higher gravity replacement loads during locomotor exercise and the provision of greater resistance exercise capability. The present data set provides a benchmark that will enable future researchers to judge whether or not the new generation of exercise countermeasures recently added to the ISS will address the need for greater loading. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Genc, K. O.; Cavanagh, P. R.] Univ Washington, Dept Orthopaed & Sports Med, Seattle, WA 98195 USA. [Genc, K. O.] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA. [Gopalakrishnan, R.; Kuklis, M. M.; Rice, A. J.] Cleveland Clin, Dept Biomed Engn, Cleveland, OH 44106 USA. [Maender, C. C.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Bowersox, K. D.] Increment 6 Astronaut, Houston, TX USA. RP Cavanagh, PR (reprint author), Univ Washington, Dept Orthopaed & Sports Med, BB 1065D,1959 NE Pacific St,Box 356500, Seattle, WA 98195 USA. EM cavanagh@uw.edu RI Gopalakrishnan, Raghavan/F-1213-2015 OI Gopalakrishnan, Raghavan/0000-0002-9038-9392 FU NASA [NCC 9-153] FX This work was supported by NASA Cooperative Agreement NCC 9-153. The cooperation of the crewmembers and of Mark Guilliams in the astronaut strength, conditioning, and rehabilitation (ASCR) group is gratefully acknowledged. NR 24 TC 20 Z9 23 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-9290 J9 J BIOMECH JI J. Biomech. PD NOV 16 PY 2010 VL 43 IS 15 BP 3020 EP 3027 DI 10.1016/j.jbiomech.2010.06.028 PG 8 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 692AC UT WOS:000285122900023 PM 20728086 ER PT J AU De Witt, JK AF De Witt, John K. TI Determination of toe-off event time during treadmill locomotion using kinematic data SO JOURNAL OF BIOMECHANICS LA English DT Article DE Locomotion; Gait; Treadmill; Temporal kinematics AB Researchers collecting gait kinematic data during treadmill locomotion are often interested in determining the times of toe off and heel strike for each stride. In the absence of additional hardware, only position data collected with motion-capture equipment may be available. Others have published methods for using kinematic data for detecting overground gait events. However, during treadmill locomotion, especially running, overground methods may not possess sufficient accuracy. The purpose of this paper is to describe a method for using kinematic data to determine the time of toe off during treadmill locomotion. Ten subjects walked and ran on a treadmill while a motion-capture system collected positional data from heel and toe markers. The treadmill was equipped with force platforms that allowed an accurate determination of foot-ground contact. The time of toe off was determined using the vertical component of the toe marker, and this method was found to have greater accuracy for event detection than other published methods. Researchers can use the described method to determine times of heel strike and toe off during treadmill locomotion using only kinematic data. (C) 2010 Elsevier Ltd. All rights reserved. C1 NASA, Lyndon B Johnson Space Ctr, Wyle Integrated Sci & Engn Grp, Houston, TX 77058 USA. RP De Witt, JK (reprint author), NASA, Lyndon B Johnson Space Ctr, Wyle Integrated Sci & Engn Grp, Ste 120, Houston, TX 77058 USA. EM john.k.dewitt@nasa.gov FU NASA FX The author would like to acknowledge Melissa Scott-Pandorf for her help reviewing during the preparation of the paper and the NASA Countermeasures Evaluation Validation Project, which funded this work. NR 7 TC 18 Z9 18 U1 1 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-9290 J9 J BIOMECH JI J. Biomech. PD NOV 16 PY 2010 VL 43 IS 15 BP 3067 EP 3069 DI 10.1016/j.jbiomech.2010.07.009 PG 3 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 692AC UT WOS:000285122900030 PM 20801452 ER PT J AU Lillis, RJ Brain, DA England, SL Withers, P Fillingim, MO Safaeinili, A AF Lillis, Robert J. Brain, David A. England, Scott L. Withers, Paul Fillingim, Matthew O. Safaeinili, Ali TI Total electron content in the Mars ionosphere: Temporal studies and dependence on solar EUV flux SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MARTIAN IONOSPHERE; RADAR SOUNDINGS; MONOCHROMATIC RADIATION; GLOBAL SURVEYOR; MAGNETIC-FIELD; ROTATING EARTH; ATMOSPHERE; ABSORPTION; DENSITIES; EJECTION AB Total electron content (TEC) derived from radar signal distortions is a useful tool in probing the ionosphere of Mars. We consider 26 months of data from the subsurface mode of the Mars Express MARSIS instrument and confirm that the TEC dependence on solar zenith angle (SZA) approximately matches Chapman theory. After detrending this dependence, we find no clear trend with Martian season or dust activity but find that disturbed solar and space weather conditions can produce prolonged higher TEC values and that isolated solar energetic particle events are coincident with short-lived increases in TEC of similar to 10(15) m(-2) at all SZAs. We present the first comparison between TEC and directly measured solar EUV flux in the 30.4 nm He-II line. We find that the relationship between TEC and both He-II line irradiance and F(10.7) solar radio flux (a long-used EUV proxy) can be expressed as power laws with exponents of 0.54 and 0.44, respectively, in approximate agreement with Chapman theory. C1 [Lillis, Robert J.; Brain, David A.; England, Scott L.; Fillingim, Matthew O.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Withers, Paul] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Safaeinili, Ali] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Lillis, RJ (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM rlillis@ssl.berkeley.edu RI Withers, Paul/H-2241-2014; Lillis, Robert/A-3281-2008 OI Lillis, Robert/0000-0003-0578-517X FU NASA [NNX09AD43G, NNX08AK94G] FX This paper is dedicated to the memory of Ali Safaeinili (1961-2009), a dear colleague and excellent scientist. We would like to thank Ali's wife Lisa Safaeinili for her kind permission to put Ali's name on this paper, as he was very much involved in the planning stages of this collaboration. We would like to thank the MARSIS team in Grenoble, France (J. Mouginot and W. Kofman) for producing this very useful data set, as well as the ASPERA-3 team, without whom the SEP flux proxy would not be possible past November 2006 (when MGS was lost). We would also like to thank Amir Caspi for help in plotting the GOES X-ray data, Michael Smith for providing the THEMIS dust opacity data, Philip Chamberlin for help in accessing the TIMED-SEE data, and lastly the European Space Agency's Planetary Science Archive for kindly archiving the TEC data set. This work was supported by NASA Mars Fundamental Research Program grant NNX09AD43G and NASA Mars Data Analysis Program grant NNX08AK94G. R. J. Lillis thanks Stas Barabash and Eduard Dubinin for their assistance in evaluating and improving this paper. NR 37 TC 22 Z9 23 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 16 PY 2010 VL 115 AR A11314 DI 10.1029/2010JA015698 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 683PL UT WOS:000284487600003 ER PT J AU DeFries, R Rosenzweig, C AF DeFries, R. Rosenzweig, C. TI Toward a whole-landscape approach for sustainable land use in the tropics SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID GREENHOUSE-GAS MITIGATION; AGRICULTURAL INTENSIFICATION; CLIMATE-CHANGE; FOOD SECURITY; FOREST; CARBON; GROWTH; HUNGER; COVER; FATE AB Increasing food production and mitigating climate change are two primary but seemingly contradictory objectives for tropical landscapes. This special feature examines synergies and trade-offs among these objectives. Four themes emerge from the papers: the important roles of both forest and agriculture sectors for climate mitigation in tropical countries; the minor contribution from deforestation-related agricultural expansion to overall food production at global and continental scales; the opportunities for synergies between improved food production and reductions in greenhouse gas emissions through diversion of agricultural expansion to already-cleared lands, improved soil, crop, and livestock management, and agroforestry; and the need for targeted policy and management interventions to make these synergistic opportunities a reality. We conclude that agricultural intensification is a key factor to meet dual objectives of food production and climate mitigation, but there is no single panacea for balancing these objectives in all tropical landscapes. Place-specific strategies for sustainable land use emerge from assessments of current land use, demographics, and other biophysical and socioeconomic characteristics, using a whole-landscape, multisector perspective. C1 [DeFries, R.] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA. [Rosenzweig, C.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP DeFries, R (reprint author), Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA. EM rd2402@columbia.edu NR 47 TC 95 Z9 99 U1 9 U2 79 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 16 PY 2010 VL 107 IS 46 BP 19627 EP 19632 DI 10.1073/pnas.1011163107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 680UT UT WOS:000284261800009 PM 21081701 ER PT J AU Centrella, J Baker, JG Kelly, BJ van Meter, JR AF Centrella, Joan Baker, John G. Kelly, Bernard J. van Meter, James R. TI Black-hole binaries, gravitational waves, and numerical relativity SO REVIEWS OF MODERN PHYSICS LA English DT Article ID 3-DIMENSIONAL CARTESIAN GRIDS; MERGING COMPACT BINARIES; APPARENT-HORIZON FINDER; ACTIVE GALACTIC NUCLEI; PULSAR TIMING ARRAYS; X-RAY-PROPERTIES; RADIATION RECOIL; CIRCULAR ORBITS; STANDARD SIRENS; GENERAL-RELATIVITY AB Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events, releasing tremendous amounts of energy in the form of gravitational radiation, and are key sources for both ground-and space-based gravitational-wave detectors. The black-hole merger dynamics and the resulting gravitational wave forms can only be calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit could be simulated. Recently, however, a series of dramatic advances in numerical relativity has allowed stable, robust black-hole merger simulations. This remarkable progress in the rapidly maturing field of numerical relativity and the new understanding of black-hole binary dynamics that is emerging is chronicled. Important applications of these fundamental physics results to astrophysics, to gravitational-wave astronomy, and in other areas are also discussed. C1 [Centrella, Joan; Baker, John G.; Kelly, Bernard J.; van Meter, James R.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Kelly, Bernard J.; van Meter, James R.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Kelly, Bernard J.; van Meter, James R.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. RP Centrella, J (reprint author), NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM joan.centrella@nasa.gov; john.g.baker@nasa.gov; bernard.j.kelly@nasa.gov; james.r.vanmeter@nasa.gov RI van meter, james/E-7893-2011; Kelly, Bernard/G-7371-2011; OI Kelly, Bernard/0000-0002-3326-4454 FU NASA [06-BEFS06-19] FX This review draws on the work of a broad research community and would not have been possible without the many contributions and support of our colleagues. We especially want to thank a few individuals who have made particularly valuable contributions. William D. Boggs, Bernd Brugmann, Alessandra Buonanno, Mark Hannam, Richard Matzner, Cole Miller, and Harald Pfeiffer gave insightful and helpful comments on our paper. Manuela Campanelli and Harald Pfeiffer supplied us with figures from their simulations that were not in the published literature. We also benefited from many useful discussions with Sean McWilliams. We acknowledge support from NASA Grant No. 06-BEFS06-19. B.J.K. was supported in part by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 342 TC 101 Z9 101 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD NOV 16 PY 2010 VL 82 IS 4 BP 3069 EP 3119 DI 10.1103/RevModPhys.82.3069 PG 51 WC Physics, Multidisciplinary SC Physics GA 680UH UT WOS:000284260200001 ER PT J AU Wang, HL Schubert, S Suarez, M Koster, R AF Wang, Hailan Schubert, Siegfried Suarez, Max Koster, Randal TI The physical mechanism by which the leading patterns of SST variability impact U.S. precipitation (vol 23, pg 1815, 2010) SO JOURNAL OF CLIMATE LA English DT Correction C1 [Wang, Hailan; Schubert, Siegfried; Suarez, Max; Koster, Randal] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Sci & Explorat Directorate, Greenbelt, MD USA. [Wang, Hailan] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. RP Wang, HL (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Sci & Explorat Directorate, Greenbelt, MD USA. RI Koster, Randal/F-5881-2012 OI Koster, Randal/0000-0001-6418-6383 NR 1 TC 0 Z9 0 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD NOV 15 PY 2010 VL 23 IS 22 BP 6129 EP 6129 DI 10.1175/2010JCLI4026.1 PG 1 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 693MG UT WOS:000285227600020 ER PT J AU Manning, HLK ten Kate, IL Battel, SJ Mahaffy, PR AF Manning, H. L. K. ten Kate, I. L. Battel, S. J. Mahaffy, P. R. TI Electric discharge in the Martian atmosphere, Paschen curves and implications for future missions SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Electrical discharge; Mars; Atmosphere; Paschen curve; Space flight instrumentation ID SECONDARY IONIZATION COEFFICIENTS; STEEL COAXIAL CYLINDERS; LOW-PRESSURE; DUST DEVIL; BREAKDOWN POTENTIALS; MARS; GASES; FIELD; MODEL AB Electric discharge between two electrically charged surfaces occurs at a well-defined, gas-dependent combination of atmospheric pressure and the distance between those two surfaces, as described by Paschen's law. The understanding of when the discharge will occur in the conditions present on Mars is essential for designing space-flight hardware that will operate on the Martian surface as well as understanding electrical discharge processes occurring in the Martian atmosphere. Here, we present experimentally measured Paschen curves for a gas mixture representative of the Martian atmosphere and compare our results to breakdown voltages of carbon dioxide, nitrogen, and helium as measured with our system and from the literature. We will discuss possible implications for instrument development as well as implications for processes in the Martian atmosphere. The DC voltage at which electric discharge occurred between two stainless steel spheres was measured at pressures from 10(-2) to 100 torr in all gases. We measured a minimum voltage for discharge in the Mars ambient atmosphere of 410 +/- 10 V at 0.3 torr cm. As an application, the breakdown properties of space-qualified, electrical wires to be used in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) were studied. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Manning, H. L. K.] Concordia Coll, Moorhead, MN 56562 USA. [ten Kate, I. L.; Mahaffy, P. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [ten Kate, I. L.] UMBC, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Battel, S. J.] Battel Engn Inc, Scottsdale, AZ 85253 USA. RP Manning, HLK (reprint author), Concordia Coll, 901 8th St S, Moorhead, MN 56562 USA. EM manning@cord.edu RI Mahaffy, Paul/E-4609-2012 FU Goddard Center for Astrobiology FX The authors would like to thank E. Patrick for his help with setting up the simulation facility, M. Barciniak for his help with assembling the electrical system, and Dr. M. Benna for providing Fig. 3. Heidi Manning was funded in the framework of the Sample Analysis at Mars development; Inge ten Kate was funded by the Goddard Center for Astrobiology. NR 28 TC 6 Z9 7 U1 2 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD NOV 15 PY 2010 VL 46 IS 10 BP 1334 EP 1340 DI 10.1016/j.asr.2010.07.006 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 670DC UT WOS:000283400400013 ER PT J AU Catalanotti, G Camanho, PP Xavier, J Davila, CG Marques, AT AF Catalanotti, G. Camanho, P. P. Xavier, J. Davila, C. G. Marques, A. T. TI Measurement of resistance curves in the longitudinal failure of composites using digital image correlation SO COMPOSITES SCIENCE AND TECHNOLOGY LA English DT Article DE Polymer-matrix composites (PMCs); Fracture toughness ID CONTINUUM DAMAGE MODEL; DELAMINATION; PREDICTION; FRACTURE; TENSILE; LAWS AB This paper presents a new methodology to measure the crack resistance curves associated with fiber-dominated failure modes in polymer-matrix composites The crack resistance curves not only characterize the fracture toughness of the material, but are also the basis for the identification of the parameters of the softening laws used in the numerical simulation of fracture in composite materials The proposed method is based on the identification of the crack tip location using Digital Image Correlation and the calculation of the J-integral directly from the test data using a simple expression derived for cross-ply composite laminates It is shown that the results obtained using the proposed methodology yield crack resistance curves similar to those obtained using Finite Element based methods for compact tension carbon-epoxy specimens However, it is also shown that, while the Digital Image Correlation based technique mitigates the problems resulting from Finite Element based data reduction schemes applied to compact compression tests, the delamination that accompanies the propagation of a kink-band renders compact compression test specimens unsuitable to measure resistance curves associated with fiber kinking. (C) 2010 Elsevier Ltd All rights reserved C1 [Catalanotti, G.; Camanho, P. P.; Marques, A. T.] Univ Porto, DEMec, Fac Engn, P-4200465 Oporto, Portugal. [Xavier, J.] CITAB UTAD, Vila Real, Portugal. [Davila, C. G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Camanho, PP (reprint author), Univ Porto, DEMec, Fac Engn, Rua Dr Roberto Frias, P-4200465 Oporto, Portugal. RI Davila, Carlos/D-8559-2011; Camanho, Pedro /E-1666-2011; Xavier, Jose/A-4348-2013; Catalanotti, Giuseppe/I-7833-2015; OI Xavier, Jose/0000-0002-7836-4598; Catalanotti, Giuseppe/0000-0001-9326-9575; Marques, Antonio/0000-0001-9388-2724; Camanho, Pedro/0000-0003-0363-5207 FU European Commission [MRTN-CT-2005-019198]; Portuguese Foundation for Science and Technology (FCT) [PDCTE-EME-65099-2003] FX The first author acknowledges the financial support of the European Commission under Contract No. MRTN-CT-2005-019198. The financial support of the Portuguese Foundation for Science and Technology (FCT) under the Project PDCTE-EME-65099-2003 is acknowledged by the second author. NR 22 TC 45 Z9 45 U1 1 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-3538 J9 COMPOS SCI TECHNOL JI Compos. Sci. Technol. PD NOV 15 PY 2010 VL 70 IS 13 SI SI BP 1986 EP 1993 DI 10.1016/j.compscitech.2010.07.022 PG 8 WC Materials Science, Composites SC Materials Science GA 672TY UT WOS:000283611000029 ER PT J AU Voulgarakis, A Shindell, DT AF Voulgarakis, Apostolos Shindell, Drew T. TI Constraining the Sensitivity of Regional Climate with the Use of Historical Observations SO JOURNAL OF CLIMATE LA English DT Article ID TEMPERATURE; MODEL; 20TH-CENTURY; FEEDBACKS AB A novel method is presented for calculating how sensitive regional climate is to radiative forcings. based on global surface temperature observations. Forcings that originate in both the region of interest and outside of it are taken into account. It is found that the transient temperature sensitivity parameter (beta, defined as the observed temperature response per unit forcing) can be better constrained for 50 degrees S-25 degrees N than for the rest of the globe. The average beta in this region is 0.35 degrees C (W m(-2))(-1). The models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) 1% yr(-1) CO(2) increase experiment exhibit a p in this region that, on average, is higher by 35%. The results show that for 50 degrees S-25 degrees N beta may provide a more valuable constraint for model evaluation than global mean climate sensitivity. C1 [Voulgarakis, Apostolos] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. Columbia Univ, Ctr Climate Syst Res, New York, NY USA. RP Voulgarakis, A (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM avoulgarakis@giss.nasa.gov RI Shindell, Drew/D-4636-2012 FU NASA ACMAP FX The authors wish to thank Greg Faluvegi for his help in analyzing the data, Reto Ruedy for providing the radiative forcing data for the period examined, and NASA ACMAP for its support. NR 26 TC 4 Z9 4 U1 0 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD NOV 15 PY 2010 VL 23 IS 22 BP 6068 EP 6073 DI 10.1175/2010JCLI3623.1 PG 6 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 693MG UT WOS:000285227600011 ER PT J AU Stickle, WB Lindeberg, M Rice, SD AF Stickle, William B. Lindeberg, Mandy Rice, Stanley D. TI Seasonal freezing adaptations of the mid-intertidal gastropod Nucella lima from southeast Alaska SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY LA English DT Article DE Activity patterns; Colligative osmolytes; Freeze events; Freeze tolerance; Nucella lima; Supercooling point ID MELAMPUS-BIDENTATUS SAY; LITTORINA-LITTOREA L; PULMONATE GASTROPOD; THERMAL-STRESS; CLIMATE-CHANGE; ICE NUCLEATOR; TOLERANCE; SNAILS; INVERTEBRATES; SALINITY AB Nucella lima from the mid-intertidal zone of Bridget and Sunshine Cove, Alaska is exposed to multiple freezing emersion events during the winter. The average duration of low tide when the air temperature fell below 0 degrees C increased from 2.91 to 6.78 h between the lower limit and upper limit of the intertidal range of N. lima. Air temperatures below freezing were observed between October 20, 2007 and April 20, 2008. Snails cease feeding and move into crevices, under boulders or into the sediment at the base of rocks in the winter which potentially minimizes their exposure to freezing events. Egg capsules were also observed in the snail habitat between September 27, 2007 and March 12, 2008. Snails supercool below the freezing point of seawater which delays freezing during tidal cycle related emersion. The supercooling point of snail tissues does not vary seasonally. Air temperatures below the maximum supercooling temperature of snails (-4.94 degrees C) occurred multiple times in December 2007 and January and February 2008. The freeze tolerance of N. lima varies seasonally and is always below the supercooling point indicating that N. lima physiologically tolerates freezing. It is likely that the seasonal synthesis of cellular compatible osmolytes is responsible for the seasonal variation in freeze tolerance: Quantitatively important compatible osmolytes which are found in higher concentration in the winter versus the summer in foot tissue of snails are total free amino acids, taurine (119 mol.Kg wet(-1)), and glycine (43 mol.Kg wet(-1)). (C) 2010 Elsevier B.V. All rights reserved. C1 [Stickle, William B.] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA. [Lindeberg, Mandy; Rice, Stanley D.] Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Natl Oceanog & Atmospher Adm, Auke Bay Lab, Juneau, AK 99801 USA. RP Stickle, WB (reprint author), Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA. EM zostic@lsu.edu FU Louisiana Sea Grant FX WBS gratefully acknowledges Louisiana State University for granting him a sabbatical leave for the spring semester of the 200607 academic year which allowed him to initiate this project. We are also thankful to Louisiana Sea Grant for awarding an undergraduate research opportunities (UROP) grant to Kevin Vu who assisted with the freeze tolerance, supercooling, and snail activity experiments in June 2009 and in performing temperature probe analysis from the Pro V 2 Hobo temperature probe transects placed in the rocky intertidal zone at Bridget Cove, AK. Ms. Jinny Johnson of the Texas A&M Texas A&M University Protein Chemistry Laboratory was a pleasure to work with. [SS] NR 21 TC 5 Z9 6 U1 5 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0981 J9 J EXP MAR BIOL ECOL JI J. Exp. Mar. Biol. Ecol. PD NOV 15 PY 2010 VL 395 IS 1-2 BP 106 EP 111 DI 10.1016/j.jembe.2010.08.022 PG 6 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 683YF UT WOS:000284513500014 ER PT J AU Pan, XJ Mannino, A Russ, ME Hooker, SB Harding, LW AF Pan, Xiaoju Mannino, Antonio Russ, Mary E. Hooker, Stanford B. Harding, Lawrence W., Jr. TI Remote sensing of phytoplankton pigment distribution in the United States northeast coast SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Phytoplankton pigments; Remote sensing; US northeast coast; SeaWiFS; MODIS-Aqua ID OCEAN COLOR; CHESAPEAKE BAY; CHLOROPHYLL-A; PRIMARY PRODUCTIVITY; ABSORPTION-SPECTRUM; LIGHT-ABSORPTION; ATLANTIC BIGHT; SEAWIFS; ALGORITHMS; BLOOMS AB Phytoplankton pigments constitute many more compounds than chlorophyll a that can be applied to study phytoplankton diversity, populations, and primary production. In this study, field measurements were applied to develop ocean color satellite algorithms of phytoplankton pigments from in-water radiometry measurements. The match-up comparisons showed that the satellite-derived pigments from our algorithms agree reasonably well (e.g. 30-55% of uncertainty for SeaWiFS and 37-50% for MODIS-Aqua) to field data, with better agreement (e.g. 30-38% of uncertainty for SeaWiFS and 39-44% for MODIS-Aqua) for pigments abundant in diatoms. The seasonal and spatial variations of satellite-derived phytoplankton biomarker pigments, such as fucoxanthin, which is abundant in diatoms, peridinin, which is found only in peridinin-containing dinoflagellates, and zeaxanthin, which is primarily from cyanobacteria in coastal waters, revealed that higher densities of diatoms are more likely to occur on the inner shelf and during winter-spring and obscure other abundant phytoplankton groups. However, relatively higher densities of other phytoplankton, such as dinoflagellates and cyanobacteria, are likely to occur on the mid- to outer-continental shelf and during summer. Seasonal variation of riverine discharge may play an important role in stimulating algal blooms, in particular diatoms, while higher abundances of cyanobacteria coincide with warmer water temperatures and lower nutrient concentrations. (C) 2010 Elsevier Inc. All rights reserved. C1 [Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Harding, Lawrence W., Jr.] Univ Maryland, Horn Point Lab, Ctr Environm Sci, Cambridge, MD 21613 USA. RP Pan, XJ (reprint author), Acad Sinica, Res Ctr Environm Changes, 128 Acad Rd,Sect 2, Taipei 115, Taiwan. EM xpanx001@gmail.com RI Hooker, Stanford/E-2162-2012; Mannino, Antonio/I-3633-2014 FU NASA FX This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center (GSFC), administered by Oak Ridge Associated Universities through a contract with NASA. The work was supported by the NASA Ocean Biology and Biogeochemistry Program, Interdisciplinary Science, Biodiversity, New Investigator Program, Carbon Cycle Science and Earth Observing System programs. We thank Ru Morrison for the invitation to participate cruises in the Gulf of Maine and Mike Twardowski for planning the New York Bight cruises. We are also grateful to Dr. Tim Moore and colleagues at the University of New Hampshire Coastal Ocean Observing Center for providing their HPLC data for the Gulf of Maine. We thank the captains and crews of RN Cape Henlopen, Hugh R. Sharp, Gulf Challenger, Connecticut, and Fay Slover. We are grateful to J. Morrow, J. Brown, D. D'Alimonte, and J.-N. Druon for deploying the profiling radiometer, and to L Van Heukelem and C. Thomas for analyzing HPLC pigments, and the Ocean Biology Processing Group (OBPG) at GSFC for satellite data processing and distribution. We thank Peter Minnett (Associate Editor), and three anonymous reviewers for their thorough, thoughtful jobs and constructive comments. NR 52 TC 24 Z9 24 U1 2 U2 25 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2403 EP 2416 DI 10.1016/j.rse.2010.05.015 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000002 ER PT J AU Joseph, AT van der Velde, R O'Neill, PE Lang, R Gish, T AF Joseph, A. T. van der Velde, R. O'Neill, P. E. Lang, R. Gish, T. TI Effects of corn on C- and L-band radar backscatter: A correction method for soil moisture retrieval SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Active microwave; Vegetation effects; Soil moisture; Corn; Field campaign ID LEAF-AREA INDEX; VEGETATION WATER-CONTENT; ELECTROMAGNETIC SCATTERING; HYDROLOGY EXPERIMENT; MICROWAVE EMISSION; SURFACE-ROUGHNESS; SAR OBSERVATIONS; GROWTH-CYCLE; X-BANDS; MODEL AB This paper discusses the effects of vegetation on C- (4.75 GHz) and L- (1.6 GHz) band backscattering (sigma degrees) measured throughout a growth cycle at incidence angles of 15, 35 and 55 degrees. The utilized sigma degrees data set was collected by a truck mounted scatterometer over a corn field and is supported by a comprehensive set of ground measurements, including soil moisture and vegetation biomass. Comparison of sigma degrees measurement against simulations by the Integral Equation Method (IEM) surface scattering model (Fung et al., 1992) shows that the sigma degrees measurements are dominated either by an attenuated soil return or by scattering from vegetation depending on the antenna configuration and growth stage. Further, the measured sigma degrees is found to be sensitive to soil moisture even at peak biomass and large incidence angles, which is attributed to scattering along the soil-vegetation pathway. For the simulation of C-band sigma degrees and the retrieval of soil moisture two methods have been applied, which are the semi-empirical water cloud model (Attema & Ulaby, 1978) and a novel method. This alternative method uses the empirical relationships between the vegetation water content (W) and the ratio of the bare soil and the measured sigma degrees to correct for vegetation. It is found that this alternative method is superior in reproducing the measured sigma degrees as well as retrieving soil moisture. The highest retrieval accuracies are obtained at a 35 degrees incidence angle leading to RMSD's of 0.044 and 0.037 m(3) m(-3) for the HH and VV-polarization, respectively. In addition, the sensitivity of these soil moisture retrievals to W and surface roughness parameter uncertainties is investigated. Published by Elsevier Inc. C1 [Joseph, A. T.; O'Neill, P. E.] NASA, Hydrol Sci Branch 614 3, Hydrospher & Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [van der Velde, R.] Univ Twente, Fac Geoinjormat Sci & Earth Observat ITC, NL-7500 AA Enschede, Netherlands. [Lang, R.] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20052 USA. [Gish, T.] ARS, Hydrol & Remote Sensing Lab, USDA, Beltsville, MD 20705 USA. RP Joseph, AT (reprint author), NASA, Hydrol Sci Branch 614 3, Hydrospher & Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Alicia.T.Joseph@nasa.gov; velde@itc.nl; Peggy.E.ONeill@nasa.gov; lang@gwu.edu; Timothy.Gish@ars.usda.gov RI O'Neill, Peggy/D-2904-2013; van der Velde, Rogier /K-8623-2013 OI van der Velde, Rogier /0000-0003-2157-4110 NR 63 TC 27 Z9 31 U1 1 U2 30 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2417 EP 2430 DI 10.1016/j.rse.2010.05.017 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000003 ER PT J AU Alsdorf, D Han, SC Bates, P Melack, J AF Alsdorf, Douglas Han, Shin-Chan Bates, Paul Melack, John TI Seasonal water storage on the Amazon floodplain measured from satellites SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Amazon; Floodplain; GRACE; SAR; GPCP ID RIVER FLOODPLAIN; INUNDATION AREA; BASIN; BRAZIL; EVAPOTRANSPIRATION; VARIABILITY; HYDROLOGY; DYNAMICS; PLAIN; LAKE AB The amount of water stored and moving through the Amazon floodplain is not known, yet is necessary for understanding the role of the wetland in the regional carbon balance and the sediment and nutrient exchanged with the main river channel. Here, we separate the Amazon floodplain into six 330 km x 330 km areas and use gravimetric and imaging satellite methods (i.e., GRACE, SRTM, GPCP and JERS-1) to estimate the amounts of water filling and draining from the mainstem Amazon floodplain. We show that the amount of water stored on and subsequently drained from the mainstem Amazon floodplain each year represents about 5% of the total volume of water discharged from the Amazon River into the Atlantic Ocean. Despite a five-fold increase in mainstem discharge from upstream to downstream, the floodplain water volume exchanged with the river only doubles (based on all six 330 km reach lengths). Rates of exchange along the 330 km reach lengths vary from 5500 m(3)/s during floodplain infilling to -7500 m(3)/s during drainage. The contribution to the floodplain from local upland runoff represents less than 20% of the floodplain water volume for any given time. (C) 2010 Elsevier Inc. All rights reserved. C1 [Alsdorf, Douglas] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Alsdorf, Douglas] Ohio State Univ, Climate Water & Carbon Program, Columbus, OH 43210 USA. [Han, Shin-Chan] NASA, Planetary Geodynam Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Han, Shin-Chan] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Bates, Paul] Univ Bristol, Sch Geog Sci, Bristol, Avon, England. [Melack, John] Univ Calif Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA. RP Alsdorf, D (reprint author), Ohio State Univ, Sch Earth Sci, 125 S Oval Mall, Columbus, OH 43210 USA. EM alsdorf.1@osu.edu; Shin-Chan.Han@nasa.gov; paul.bates@bristol.ac.uk; melack@bren.ucsb.edu RI Han, Shin-Chan/A-2022-2009; Bates, Paul/C-8026-2012 OI Bates, Paul/0000-0001-9192-9963 FU NASA; OSU FX Funding was provided by NASA's programs in Terrestrial Hydrology, Large-scale Biosphere-Atmosphere, Physical Oceanography, Earth Surface and Interior, and Terrestrial Ecology. OSU's Climate, Water, & Carbon Program also supplied funding. We thank Scott Luthcke for providing GRACE KBR residual data and Ki-Weon Seo for processing GPCP pentad products. NR 35 TC 38 Z9 38 U1 2 U2 31 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2448 EP 2456 DI 10.1016/j.rse.2010.05.020 PG 9 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000006 ER PT J AU Wang, J Xu, XG Spurr, R Wang, YX Drury, E AF Wang, Jun Xu, Xiaoguang Spurr, Robert Wang, Yuxuang Drury, Easan TI Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Remote sensing of aerosols; Particulate matter air quality; Atmospheric correction in dusty condition; Air quality in China ID DEPTH; RADIANCES; TRANSPORT; MODEL AB A new algorithm, using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite reflectance and aerosol single scattering properties simulated from a chemistry transport model (GEOS-Chem), is developed to retrieve aerosol optical thickness (AOT) over land in China during the spring dust season. The algorithm first uses a "dynamic lower envelope" approach to sample the MODIS dark-pixel reflectance data in low AOT conditions, to derive the local surface visible (0.65 mu m)/near infrared (NIR, 2.1 mu m) reflectance ratio. Joint retrievals of AOT at 0.65 mu m and surface reflectance at 2.1 mu m are then performed, based on the time, location, and spectral-dependent single scattering properties of the dusty atmosphere as simulated by the GEOS-Chem. A linearized vector radiative transfer model (VLIDORT) that simultaneously computes the top-of-atmosphere reflectance and its Jacobian with respect to AOT, is used in the forward component of the inversion of MODIS reflectance to AOT. Comparison of retrieved AOT results in April and May of 2008 with AERONET observations shows a strong correlation (R = 0.83), with small bias (0.01), and small RMSE (0.17); the figures are a substantial improvement over corresponding values obtained with the MODIS Collection 5 AOT algorithm for the same study region and time period. The small bias is partially due to the consideration of dust effect at 2.1 mu m channel, without which the bias is -0.05. The surface PM10 (particulate matter with diameter less than 10 mu m) concentrations derived using this improved AOT retrieval show better agreement with ground observations than those derived from GEOS-Chem simulations alone, or those inferred from the MODIS Collection 5 AOT. This study underscores the value of using satellite reflectance to improve the air quality modeling and monitoring. (C) 2010 Elsevier Inc. All rights reserved. C1 [Wang, Jun; Xu, Xiaoguang] Univ Nebraska Lincoln, Dept Earth & Atmospher Sci, Lincoln, NE 68588 USA. [Wang, Jun] NASA Goddard Space Flight, Climate & Radiat Branch, Greenbelt, MD USA. [Spurr, Robert] RT Solut Inc, Cambridge, MA USA. [Wang, Yuxuang] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [Drury, Easan] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO USA. RP Wang, J (reprint author), Univ Nebraska Lincoln, Dept Earth & Atmospher Sci, 303 Bessey Hall, Lincoln, NE 68588 USA. EM jwang7@unl.edu RI Chem, GEOS/C-5595-2014; Wang, Yuxuan/C-6902-2014; Xu, Xiaoguang/B-8203-2016; Wang, Jun/A-2977-2008 OI Wang, Yuxuan/0000-0002-1649-6974; Xu, Xiaoguang/0000-0001-9583-980X; Wang, Jun/0000-0002-7334-0490 FU NASA FX This research is supported by the NASA Earth Sciences New Investigator Program and Radiation Science Program. We thank the data services provided by the Goddard Earth Science Data Center and the AERONET team in NASA GSFC., and the computational support provided by the Holland Computing Center of the University of Nebraska. J. Wang is grateful to Ralph Kahn for his constructive comments on the early version of this manuscript. NR 34 TC 34 Z9 36 U1 5 U2 30 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2575 EP 2583 DI 10.1016/j.rse.2010.05.034 PG 9 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000016 ER PT J AU Montes-Hugo, MA Churnside, JH Gould, RW Arnone, RA Foy, R AF Montes-Hugo, M. A. Churnside, J. H. Gould, R. W. Arnone, R. A. Foy, R. TI Spatial coherence between remotely sensed ocean color data and vertical distribution of lidar backscattering in coastal stratified waters SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Vertical structure; Inherent optical properties; Statistical modes; Ocean color; Passive optical data; Backscattering; Lidar; Alaska; Coastal waters ID DIFFUSE REFLECTANCE; NATURAL-WATERS; PHYTOPLANKTON; CHLOROPHYLL; ATLANTIC; LIGHT; MODEL; BIGHT; SHIP AB Detection of sub-surface optical layers in marine waters has important applications in fisheries management, climate modeling, and decision-based systems related to military operations. Concurrent changes in the magnitude and spatial variability of remote sensing reflectance (R(rs)) ratios and submerged scattering layers were investigated in coastal waters of the northern Gulf of Alaska during summer of 2002 based on high resolution and simultaneous passive (MicroSAS) and active (Fish Lidar Oceanic Experimental, FLOE) optical measurements. Principal Component Analysis revealed that the spatial variability of total lidar backscattering signal (5) between 2.1 and 20 m depth was weakly associated with changes in the inherent optical properties (IOPs) of surface waters. Also based on a 250-m footprint, the vertical attenuation of S was inversely related to the IOPs (Spearman Rank Correlation up to -0.43). Low (arithmetic average and standard deviation) and high (skewness and kurtosis) moments of R(rs)(443)/R(rs)(490) and R(rs)(508)/R(rs)(555) ratios were correlated with vertical changes in total lidar backscattering signal (5) at different locations. This suggests the use of sub-pixel ocean color statistics to infer the spatial distribution of sub-surface scattering layers in coastal waters characterized by stratified conditions, well defined S layers (i.e., magnitude of S maximum comparable to near surface values), and relatively high vertically integrated phytoplankton pigments in the euphotic zone (chlorophyll a concentration >150 mg m(-2)). (C) 2010 Elsevier Inc. All rights reserved. C1 [Montes-Hugo, M. A.] Mississippi State Univ, Mississippi State, MS 39529 USA. [Churnside, J. H.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Montes-Hugo, M. A.; Gould, R. W.; Arnone, R. A.] NASA, Naval Res Lab, Stennis Space Ctr, MS 39529 USA. [Foy, R.] NOAA Fisheries, Alaska Fisheries Sci Ctr, Kodiak, AK 99615 USA. RP Montes-Hugo, MA (reprint author), Mississippi State Univ, Mississippi State, MS 39529 USA. EM mmontes@ngi.msstate.edu RI Churnside, James/H-4873-2013; Manager, CSD Publications/B-2789-2015 FU NRL [PE0601153N] FX This work was supported by the NRL internal project "3D Remote Sensing with a Multiple-Band Active and Passive System: Theoretical Basis", PE0601153N. We thank the captain and crew of the FV Laura of Kodiak, the pilot of the aircraft, and Tim Veenstra at Airborne Technologies Inc. (Wasilla, Alaska). NR 34 TC 3 Z9 3 U1 0 U2 13 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2584 EP 2593 DI 10.1016/j.rse.2010.05.023 PG 10 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000017 ER PT J AU Zhu, XL Chen, J Gao, F Chen, XH Masek, JG AF Zhu, Xiaolin Chen, Jin Gao, Feng Chen, Xuehong Masek, Jeffrey G. TI An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Data fusion; Multi-source satellite data; Reflectance; Landsat; MODIS; Time-series ID LANDSAT DATA; RESOLUTION DATA; IMAGE FUSION; TIME-SERIES AB Due to technical and budget limitations, remote sensing instruments trade spatial resolution and swath width. As a result not one sensor provides both high spatial resolution and high temporal resolution. However, the ability to monitor seasonal landscape changes at fine resolution is urgently needed for global change science. One approach is to "blend" the radiometry from daily, global data (e.g. MODIS, MERIS, SPOT-Vegetation) with data from high-resolution sensors with less frequent coverage (e.g. Landsat, CBERS, ResourceSat). Unfortunately, existing algorithms for blending multi-source data have some shortcomings, particularly in accurately predicting the surface reflectance of heterogeneous landscapes. This study has developed an enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) based on the existing STARFM algorithm, and has tested it with both simulated and actual satellite data. Results show that ESTARFM improves the accuracy of predicted fine-resolution reflectance, especially for heterogeneous landscapes, and preserves spatial details. Taking the NIR band as an example, for homogeneous regions the prediction of the ESTARFM is slightly better than the STARFM (average absolute difference [AAD] 0.0106 vs. 0.0129 reflectance units). But for a complex, heterogeneous landscape, the prediction accuracy of ESTARFM is improved even more compared with STARFM (AAD 0.0135 vs. 0.0194). This improved fusion algorithm will support new investigations into how global landscapes are changing across both seasonal and interannual timescales. (C) 2010 Elsevier Inc. All rights reserved. C1 [Zhu, Xiaolin; Chen, Jin; Chen, Xuehong] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. [Gao, Feng; Masek, Jeffrey G.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. RP Chen, J (reprint author), Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. EM chenjin@ires.cn RI Chen, Jin/A-6417-2011; li, dongsheng/B-2285-2012; Masek, Jeffrey/D-7673-2012; Chen, Xuehong/A-7768-2012; Zhu, Xiaolin/K-8175-2012; Chen, Jin/I-7666-2016; Chen, Lijun/Q-5012-2016; OI Chen, Jin/0000-0002-6497-4141; Zhu, Xiaolin/0000-0001-6967-786X; Chen, Xuehong/0000-0001-7223-8649 FU National Science and Technology Supporting Program [2006BAD10A06]; Ministry of Science and Technology; Ministry of Education, China; NASA FX This study was supported by the National Science and Technology Supporting Program (Grant No. 2006BAD10A06), Ministry of Science and Technology, and Program for New Century Excellent Talents in University, Ministry of Education, China, and the NASA Terrestrial Ecology Program. We thank the USGS EROS data center for providing free Landsat data and the LP-DAAC and MODIS science team for providing free MODIS products. NR 27 TC 163 Z9 195 U1 13 U2 104 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2610 EP 2623 DI 10.1016/j.rse.2010.05.032 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000019 ER PT J AU Wang, YJ Lyapustin, AI Privette, JL Cook, RB SanthanaVannan, SK Vermote, EF Schaaf, CL AF Wang, Yujie Lyapustin, Alexei I. Privette, Jeffrey L. Cook, Robert B. SanthanaVannan, Suresh K. Vermote, Eric F. Schaaf, Crystal L. TI Assessment of biases in MODIS surface reflectance due to Lambertian approximation SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Surface reflectance; Surface albedo; MODIS; Atmospheric correction; AERONET; Aeronet based surface reflectance validation network (ASRVN); Aerosol; Ross-thick-li-sparse BRDF model ID ALBEDO; LAND; BRDF; RADIOMETER; RETRIEVAL; PRODUCTS; AERONET; SPACE AB Using MODIS data and the AERONET-based Surface Reflectance Validation Network (ASRVN), this work studies errors of MODIS atmospheric correction caused by the Lambertian approximation. On one hand, this approximation greatly simplifies the radiative transfer model, reduces the size of the look-up tables, and makes operational algorithm faster. On the other hand, uncompensated atmospheric scattering caused by Lambertian model systematically biases the results. For example, for a typical bowl-shaped bidirectional reflectance distribution function (BRDF), the derived reflectance is underestimated at high solar or view zenith angles, where BRDF is high, and is overestimated at low zenith angles where BRDF is low. The magnitude of biases grows with the amount of scattering in the atmosphere, i.e., at shorter wavelengths and at higher aerosol concentration. The slope of regression of lambertian surface reflectance vs. ASRVN bidirectional reflectance factor (BRF) is about 0.85 in the red and 0.6 in the green bands. This error propagates into the MODIS BRDF/albedo algorithm, slightly reducing the magnitude of overall reflectance and anisotropy of BRDF. This results in a small negative bias of spectral surface albedo. An assessment for the GSFC (Greenbelt, USA) validation site shows the albedo reduction by 0.004 in the near infrared, 0.005 in the red, and 0.008 in the green MODIS bands. (C) 2010 Elsevier Inc. All rights reserved. C1 [Wang, Yujie] Univ Maryland, Goddard Earth Sci & Technol Ctr, Goddard Space Flight Ctr, NASA, Greenbelt, MD 20771 USA. [Wang, Yujie; Lyapustin, Alexei I.] Univ Maryland Baltimore Cty, GEST Ctr, Catonsville, MD 21228 USA. [Privette, Jeffrey L.] NOAA, Satellite & Informat Serv, NCDC, Asheville, NC 28801 USA. [Cook, Robert B.; SanthanaVannan, Suresh K.] Oak Ridge Natl Lab DAAC, Oak Ridge, TN 37830 USA. [Vermote, Eric F.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Schaaf, Crystal L.] Boston Univ, Dept Geog, Boston, MA 02215 USA. RP Wang, YJ (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, Goddard Space Flight Ctr, NASA, Code 614-4, Greenbelt, MD 20771 USA. EM yujie.wang@nasa.gov RI Privette, Jeffrey/G-7807-2011; Vermote, Eric/K-3733-2012; Lyapustin, Alexei/H-9924-2014; OI Privette, Jeffrey/0000-0001-8267-9894; Lyapustin, Alexei/0000-0003-1105-5739; Cook, Robert/0000-0001-7393-7302 FU NASA [NNX08AE94A] FX The research of A. Lyapustin and Y. Wang was funded by the NASA Terrestrial Ecology Program (Dr. Wickland). C. Schaaf was funded by the NASA grant NNX08AE94A. NR 31 TC 32 Z9 34 U1 2 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2791 EP 2801 DI 10.1016/j.rse.2010.06.013 PG 11 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000033 ER PT J AU Valek, P Brandt, PC Buzulukova, N Fok, MC Goldstein, J McComas, DJ Perez, JD Roelof, E Skoug, R AF Valek, P. Brandt, P. C. Buzulukova, N. Fok, M-C. Goldstein, J. McComas, D. J. Perez, J. D. Roelof, E. Skoug, R. TI Evolution of low-altitude and ring current ENA emissions from a moderate magnetospheric storm: Continuous and simultaneous TWINS observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ADVANCED COMPOSITION EXPLORER; CARBON FOILS; NEUTRAL ATOMS; IMAGE MISSION; IONS; SUBSTORM; TIME AB The moderate storm of 22 July 2009 is the largest measured during the extended solar minimum between December 2006 and March 2010. We present observations of this storm made by the two wide-angle imaging neutral-atom spectrometers (TWINS) mission. The TWINS mission measures energetic neutral atoms (ENAs) using sensors mounted on two separate spacecrafts. Because the two spacecrafts' orbital planes are significantly offset, the pair provides a nearly optimal combination of continuous magnetospheric observations from at least one of the TWINS platforms with several hours of simultaneous, dual-platform viewing over each orbit. The ENA imaging study presented in this paper is the first reported magnetospheric storm for which both continuous coverage and stereoscopic imaging were available. Two populations of ENAs are observed during this storm. The first are emissions from the ring current and come from a parent population of trapped ions in the inner magnetosphere. The second, low-altitude emissions (LAEs), are the result of precipitating ions which undergo multiple charge exchange and stripping collisions with the oxygen exosphere. The temporal evolution of this storm shows that the LAEs begin earlier and are the brightest emissions seen during the main phase, while later, during the recovery, the LAE is only as bright as the bulk ring current emissions. C1 [Valek, P.; Goldstein, J.; McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [Brandt, P. C.; Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Buzulukova, N.; Fok, M-C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Perez, J. D.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Skoug, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Valek, P.; Goldstein, J.; McComas, D. J.] Univ Texas San Antonio, Dept Phys, San Antonio, TX USA. RP Valek, P (reprint author), SW Res Inst, San Antonio, TX 78228 USA. RI Fok, Mei-Ching/D-1626-2012; Brandt, Pontus/N-1218-2016; OI Brandt, Pontus/0000-0002-4644-0306; Valek, Philip/0000-0002-2318-8750 FU TWINS mission; NASA Goddard Space Flight Center FX This work was supported by the TWINS mission, which is a part of NASA's Explorer program. For N. Buzulukova, this research was supported by an appointment at the NASA Goddard Space Flight Center, administered by CRESST/UMD through a contract with NASA. Real Time Dst and AE indices are from supplied by World Data Center for Geomagnetism, Kyoto. We thank the geomagnetic observatories (Kakioka [JMA], Honolulu and San Juan [USGS], Hermanus [RSA], Alibag [IIG]), NiCT, INTERMAGNET, and many others for their cooperation to make the real-time (quicklook) Dst index available. NR 39 TC 25 Z9 25 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 13 PY 2010 VL 115 AR A11209 DI 10.1029/2010JA015429 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 680II UT WOS:000284225200002 ER PT J AU Klemm, O Ziemba, LD Griffin, RJ Sive, BC Whitlow, S Carpenter, K Klemm, KI Talbot, R AF Klemm, Otto Ziemba, Luke D. Griffin, Robert J. Sive, Barkley C. Whitlow, Sallie Carpenter, Kevan Klemm, Kerstin I. Talbot, Robert TI A detailed aerosol particle plume analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SECONDARY ORGANIC AEROSOL; MASS-SPECTROMETER; SULFURIC-ACID; RURAL SITE; LONG-TERM; NUCLEATION; COASTAL; SIZE; PRECURSORS; EVENTS AB Aerosol particle dynamics were observed in the summertime marine boundary layer 10 km offshore of the northeast American coast. Particle dynamics were observed using a scanning mobility particle sizer for observation of the number-based size distribution, and a quadrupole aerosol mass spectrometer (Q-AMS) for quantification of the mass-based size distributions and bulk particle mass loadings of nonrefractory components. Analysis was supported by meteorological data, extensive trace gas data, and aerosol Berner impactor data. No new particle formation with clearly identifiable growth of ultrafine particles was identified. One event exhibited a clear banana-shaped evolution of the number-based size distribution. However, the conditions were nonstationary in various aspects. In some phases of the event, particle growth mechanisms could not be confirmed despite an increase of the geometric mean of the number-based size distribution. Air mass changes and dilution of boundary layer air are possible causes for the observed dynamics. The observation of particle number-based size distributions did not provide sufficient proof for the occurrence of a growth event. Continental organics were the predominant species driving particle dynamics. The contribution of industrial sulfate also was important. The mass size distributions of the Q-AMS and the impactor agreed reasonably well for the species analyzed. Overall, we conclude that a detailed analysis of aerosol plume dynamics and temporal evolution, including both meteorology and chemistry, reveals much more detail about the aerosol evolution that could be deduced from the number size distribution alone. C1 [Klemm, Otto] Univ Munster, Climatol Working Grp, D-48149 Munster, Germany. [Ziemba, Luke D.; Griffin, Robert J.; Sive, Barkley C.; Whitlow, Sallie; Carpenter, Kevan; Klemm, Kerstin I.; Talbot, Robert] Univ New Hampshire, Climate Change Res Ctr, Durham, NH 03824 USA. [Ziemba, Luke D.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Griffin, Robert J.] Rice Univ, Dept Civil & Environm Engn, Houston, TX USA. [Klemm, Kerstin I.] Univ Munster, Inst Planetol, D-48149 Munster, Germany. RP Klemm, O (reprint author), Univ Munster, Climatol Working Grp, Robert Koch Str 26, D-48149 Munster, Germany. EM otto.klemm@uni-muenster.de FU Office of Oceanic and Atmospheric Research of the National Oceanic and Atmospheric Administration (NOAA) [NA06OAR4600189]; National Science Foundation [ATM-0327643]; Heinrich Hertz Stiftung FX The Office of Oceanic and Atmospheric Research of the National Oceanic and Atmospheric Administration (NOAA) supported this research under AIRMAP grant NA06OAR4600189 to the University of New Hampshire. Free access to the NOAA Air Resources Laboratory Internet platform for sharing their HY-SPLIT-4 trajectory model is gratefully acknowledged. We thank P. A. Baron for providing freeware software for inlet loss calculations. R. G. acknowledges the support of the National Science Foundation through project ATM-0327643. O.K. thanks the Heinrich Hertz Stiftung for providing a research fellowship. The input of four anonymous reviewers of an earlier version of this manuscript helped to increase its quality, and their comments are greatly appreciated. NR 50 TC 0 Z9 0 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 12 PY 2010 VL 115 AR D21211 DI 10.1029/2010JD014153 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 680GM UT WOS:000284220400007 ER PT J AU Littenberg, TB Cornish, NJ AF Littenberg, Tyson B. Cornish, Neil J. TI Separating gravitational wave signals from instrument artifacts SO PHYSICAL REVIEW D LA English DT Article ID BLACK-HOLE BINARIES; LISA DATA AB Central to the gravitational wave detection problem is the challenge of separating features in the data produced by astrophysical sources from features produced by the detector. Matched filtering provides an optimal solution for Gaussian noise, but in practice, transient noise excursions or "glitches" complicate the analysis. Detector diagnostics and coincidence tests can be used to veto many glitches which may otherwise be misinterpreted as gravitational wave signals. The glitches that remain can lead to long tails in the matched filter search statistics and drive up the detection threshold. Here we describe a Bayesian approach that incorporates a more realistic model for the instrument noise allowing for fluctuating noise levels that vary independently across frequency bands, and deterministic glitch fitting using wavelets as glitch templates, the number of which is determined by a transdimensional Markov chain Monte Carlo algorithm. We demonstrate the method's effectiveness on simulated data containing low amplitude gravitational wave signals from inspiraling binary black-hole systems, and simulated nonstationary and non-Gaussian noise comprised of a Gaussian component with the standard LIGO/Virgo spectrum, and injected glitches of various amplitude, prevalence, and variety. Glitch fitting allows us to detect significantly weaker signals than standard techniques. C1 [Littenberg, Tyson B.] Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Littenberg, Tyson B.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Cornish, Neil J.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. RP Littenberg, TB (reprint author), Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. NR 54 TC 22 Z9 22 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 12 PY 2010 VL 82 IS 10 AR 103007 DI 10.1103/PhysRevD.82.103007 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 679EY UT WOS:000284145300002 ER PT J AU Palm, SP Strey, ST Spinhirne, J Markus, T AF Palm, Stephen P. Strey, Sara T. Spinhirne, James Markus, Thorsten TI Influence of Arctic sea ice extent on polar cloud fraction and vertical structure and implications for regional climate SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ATMOSPHERIC RESPONSE; RADIATION PROPERTIES; RECENT TRENDS; ANNUAL CYCLE; SURFACE; TEMPERATURE; ANOMALIES AB Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice-free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5%-7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice. C1 [Palm, Stephen P.] NASA, Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD 20771 USA. [Spinhirne, James] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA. [Strey, Sara T.] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61820 USA. RP Palm, SP (reprint author), NASA, Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD 20771 USA. RI Markus, Thorsten/D-5365-2012 NR 36 TC 38 Z9 38 U1 4 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 12 PY 2010 VL 115 AR D21209 DI 10.1029/2010JD013900 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 680GM UT WOS:000284220400003 ER PT J AU Rea, N Esposito, P Turolla, R Israel, GL Zane, S Stella, L Mereghetti, S Tiengo, A Gotz, D Gogus, E Kouveliotou, C AF Rea, N. Esposito, P. Turolla, R. Israel, G. L. Zane, S. Stella, L. Mereghetti, S. Tiengo, A. Goetz, D. Gogus, E. Kouveliotou, C. TI A Low-Magnetic-Field Soft Gamma Repeater SO SCIENCE LA English DT Article ID X-RAY PULSARS; NEUTRON-STARS; RADIATIVE MECHANISM; RADIO-EMISSION; VARIABILITY; KES-75; PERIOD AB Soft gamma repeaters (SGRs) and anomalous x-ray pulsars form a rapidly increasing group of x-ray sources exhibiting sporadic emission of short bursts. They are believed to be magnetars, that is, neutron stars powered by extreme magnetic fields, B similar to 10(14) to 10(15) gauss. We report on a soft gamma repeater with low magnetic field, SGR 0418+5729, recently detected after it emitted bursts similar to those of magnetars. X-ray observations show that its dipolar magnetic field cannot be greater than 7.5 x 10(12) gauss, well in the range of ordinary radio pulsars, implying that a high surface dipolar magnetic field is not necessarily required for magnetar-like activity. The magnetar population may thus include objects with a wider range of B-field strengths, ages, and evolutionary stages than observed so far. C1 [Rea, N.] Fac Ciencies, CSIC, Inst Estudis Espacias Catalunya, Inst Ciencies Espai, Bellaterra 08193, Barcelona, Spain. [Esposito, P.] Osserv Astron Capodimonte, Ist Nazl Astrofis INAF, I-09012 Capoterra, Italy. [Turolla, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Turolla, R.; Zane, S.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Israel, G. L.; Stella, L.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Mereghetti, S.; Tiengo, A.] Ist Astrofis Spaziale & Fis Cosm Milano, INAF, I-20133 Milan, Italy. [Goetz, D.] Univ Paris Diderot, Inst Rech Lois Fondament Univers, Serv Astrophys,CNRS,Direct Sci Matiere, Commissariat Energie Atom & Energies Alternat, F-91191 Gif Sur Yvette, France. [Gogus, E.] Sabanci Univ, TR-34956 Istanbul, Turkey. [Kouveliotou, C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Rea, N (reprint author), Fac Ciencies, CSIC, Inst Estudis Espacias Catalunya, Inst Ciencies Espai, Campus UAB,Torre C5 Parell,2A Planta, Bellaterra 08193, Barcelona, Spain. EM rea@ieec.uab.es RI Rea, Nanda/I-2853-2015; OI Rea, Nanda/0000-0003-2177-6388; Tiengo, Andrea/0000-0002-6038-1090; MEREGHETTI, SANDRO/0000-0003-3259-7801; Israel, GianLuca/0000-0001-5480-6438; Esposito, Paolo/0000-0003-4849-5092 FU Consejo Superior de Investigaciones Cientficas [AYA2009-07391, SGR2009-811]; Autonomous Region of Sardinia; Centre National d'Etudes Spatiales; INAF Agenzia Spaziale Italiana [AAE I/088/06/0] FX N.R. is supported by a Ramon y Cajal fellowship through Consejo Superior de Investigaciones Cientficas and by grants AYA2009-07391 and SGR2009-811. N.R. thanks D. F. Torres for useful discussions. P. E. acknowledges financial support from the Autonomous Region of Sardinia through a research grant under the program PO Sardegna FSE 2007-2013, L.R. 7/2007 "Promoting scientific research and innovation technology in Sardinia." D.G. acknowledges the Centre National d'Etudes Spatiales for financial support. The work of R.T., G.L.I., L.S., S.M., and A.T. is partially supported by INAF Agenzia Spaziale Italiana through grant AAE I/088/06/0. We are grateful to H. Tananbaum, N. Gehrels, and N. Schartel for granting us Chandra, Swift, and XMM-Newton time, respectively, for this research. NR 25 TC 167 Z9 168 U1 1 U2 10 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 12 PY 2010 VL 330 IS 6006 BP 944 EP 946 DI 10.1126/science.1196088 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 678XY UT WOS:000284118000036 PM 20947727 ER PT J AU Dunlop, JS Ade, PAR Bock, JJ Chapin, EL Cirasuolo, M Coppin, KEK Devlin, MJ Griffin, M Greve, TR Gundersen, JO Halpern, M Hargrave, PC Hughes, DH Ivison, RJ Klein, J Kovacs, A Marsden, G Mauskopf, P Netterfield, CB Olmi, L Pascale, E Patanchon, G Rex, M Scott, D Semisch, C Smail, I Targett, TA Thomas, N Truch, MDP Tucker, C Tucker, GS Viero, MP Walter, F Wardlow, JL Weiss, A Wiebe, DV AF Dunlop, J. S. Ade, P. A. R. Bock, J. J. Chapin, E. L. Cirasuolo, M. Coppin, K. E. K. Devlin, M. J. Griffin, M. Greve, T. R. Gundersen, J. O. Halpern, M. Hargrave, P. C. Hughes, D. H. Ivison, R. J. Klein, J. Kovacs, A. Marsden, G. Mauskopf, P. Netterfield, C. B. Olmi, L. Pascale, E. Patanchon, G. Rex, M. Scott, D. Semisch, C. Smail, I. Targett, T. A. Thomas, N. Truch, M. D. P. Tucker, C. Tucker, G. S. Viero, M. P. Walter, F. Wardlow, J. L. Weiss, A. Wiebe, D. V. TI The BLAST 250 mu m-selected galaxy population in GOODS-South SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: fundamental parameters; galaxies: photometry; galaxies: starburst; infrared: galaxies ID DEEP FIELD-SOUTH; APERTURE SUBMILLIMETER TELESCOPE; DEGREE EXTRAGALACTIC SURVEY; SPITZER-SPACE-TELESCOPE; PARKES SELECTED REGIONS; STAR-FORMING GALAXIES; S-SELECTED GALAXIES; NUMBER COUNTS; VLT/FORS2 SPECTROSCOPY; PHOTOMETRIC REDSHIFTS AB We identify and investigate the nature of the 20 brightest 250 mu m sources detected by the Balloon-borne Large Aperture Submillimetre Telescope (BLAST) within the central 150 arcmin(2) of the Great Observatories Origins Deep Survey (GOODS)-South field. Aided by the available deep VLA 1.4 GHz radio imaging, reaching S-1.4 similar or equal to 40 mu Jy (4 sigma), we have identified radio counterparts for 17/20 of the 250 mu m sources. The resulting enhanced positional accuracy of similar or equal to 1 arcsec has then allowed us to exploit the deep optical (Hubble Space Telescope), near-infrared (VLT) and mid-infrared (Spitzer) imaging of GOODS-South to establish secure galaxy counterparts for the 17 radio-identified sources, and plausible galaxy candidates for the three radio-unidentified sources. Confusion is a serious issue for this deep BLAST 250 mu m survey, due to the large size of the beam. Nevertheless, we argue that our chosen counterparts are significant, and often dominant contributors to the measured BLAST flux densities. For all of these 20 galaxies we have been able to determine spectroscopic (eight) or photometric (12) redshifts. The result is the first near-complete redshift distribution for a deep 250 mu m-selected galaxy sample. This reveals that 250 mu m surveys reaching detection limits of similar or equal to 40 mJy have a median redshift z similar or equal to 1, and contain not only low-redshift spirals/LIRGs, but also the extreme z similar or equal to 2 dust-enshrouded starburst galaxies previously discovered at sub-millimetre wavelengths. Inspection of the LABOCA 870 mu m imaging of GOODS-South yields detections of similar or equal to 1/3 of the proposed BLAST sources (all at z > 1.5), and reveals 250/870 mu m flux-density ratios consistent with a standard 40 K modified blackbody fit with a dust emissivity index beta = 1.5. Based on their Infrared Array Camera (IRAC) colours, we find that virtually all of the BLAST galaxy identifications appear better described as analogues of the M82 starburst galaxy, or Sc star-forming discs rather than highly obscured ULIRGs. This is perhaps as expected at low redshift, where the 250 mu m BLAST selection function is biased towards spectral energy distributions which peak longward of lambda(rest) = 100 mu m. However, it also appears largely true at z similar or equal to 2. C1 [Dunlop, J. S.; Cirasuolo, M.] Univ Edinburgh, Royal Observ, SUPA, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Dunlop, J. S.; Chapin, E. L.; Halpern, M.; Marsden, G.; Scott, D.; Targett, T. A.; Wiebe, D. V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Ade, P. A. R.; Griffin, M.; Hargrave, P. C.; Mauskopf, P.; Pascale, E.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, J. J.; Tucker, C.] Jet Prop Lab, Pasadena, CA 91109 USA. [Coppin, K. E. K.; Smail, I.; Wardlow, J. L.] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England. [Devlin, M. J.; Klein, J.; Rex, M.; Semisch, C.; Truch, M. D. P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Greve, T. R.; Walter, F.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Gundersen, J. O.] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Hughes, D. H.] INAOE, Mexico City, DF, Mexico. [Ivison, R. J.] Royal Observ, UK ATC, Edinburgh EH9 3HJ, Midlothian, Scotland. [Kovacs, A.; Weiss, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Netterfield, C. B.; Thomas, N.; Viero, M. P.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Olmi, L.] Univ Puerto Rico, Dept Phys, UPR Stn, San Juan, PR USA. [Olmi, L.] IRA INAF, I-50125 Florence, Italy. [Patanchon, G.] Lab APC, F-75205 Paris, France. [Tucker, G. S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Dunlop, JS (reprint author), Univ Edinburgh, Royal Observ, SUPA, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. EM jsd@roe.ac.uk RI Klein, Jeffrey/E-3295-2013; Smail, Ian/M-5161-2013; Wardlow, Julie/C-9903-2015; Kovacs, Attila/C-1171-2010; Ivison, R./G-4450-2011; OI Smail, Ian/0000-0003-3037-257X; Wardlow, Julie/0000-0003-2376-8971; Kovacs, Attila/0000-0001-8991-9088; Ivison, R./0000-0001-5118-1313; Olmi, Luca/0000-0002-1162-7947; Scott, Douglas/0000-0002-6878-9840 FU Royal Society; European Research Council; NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G, NAS 5-26555]; NSF Office of Polar Programs; Canadian Space Agency; Natural Sciences and Engineering Research Council (NSERC) of Canada; UK Science and Technology Facilities Council (STFC); STFC FX JSD acknowledges the support of the Royal Society through a Wolfson Research Merit Award, and the support of the European Research Council through the award of an Advanced Grant. We acknowledge the support of NASA through grant numbers NAG5-12785, NAG5-13301 and NNGO-6GI11G, the NSF Office of Polar Programs, the Canadian Space Agency, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the UK Science and Technology Facilities Council (STFC). This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. APEX is operated by the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory and the Onsala Space Observatory. This work is based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. MC acknowledges the award of a STFC Advanced Fellowship. IRS acknowledges support from STFC. JLW acknowledges the support of an STFC Studentship. NR 77 TC 21 Z9 21 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2010 VL 408 IS 4 BP 2022 EP 2050 DI 10.1111/j.1365-2966.2010.17278.x PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 674DA UT WOS:000283712700005 ER PT J AU Byckling, K Mukai, K Thorstensen, JR Osborne, JP AF Byckling, K. Mukai, K. Thorstensen, J. R. Osborne, J. P. TI Deriving an X-ray luminosity function of dwarf novae based on parallax measurements SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: distances; stars: dwarf novae; stars: luminosity function, mass function; novae, cataclysmic variables; X-rays: binaries; X-rays: stars ID CATACLYSMIC VARIABLE-STARS; GALACTIC RIDGE; SUZAKU OBSERVATIONS; HT CASSIOPEIAE; ORBITAL PERIOD; V893 SCORPII; SS CYGNI; EMISSION; POPULATION; QUIESCENCE AB We have derived an X-ray luminosity function using parallax-based distance measurements of a set of 12 dwarf novae, consisting of Suzaku, XMM-Newton and ASCA observations. The shape of the X-ray luminosity function obtained is the most accurate to date, and the luminosities of our sample are concentrated between similar to 10(30) and 10(31) erg s(-1), lower than previous measurements of X-ray luminosity functions of dwarf novae. Based on the integrated X-ray luminosity function, the sample becomes more incomplete below similar to 3 x 10(30) erg s(-1) than it is above this luminosity limit, and the sample is dominated by X-ray bright dwarf novae. The total integrated luminosity within a radius of 200 pc is 1.48 x 10(32) erg s(-1) over the luminosity range of 1 x 10(28) erg s(-1) and the maximum luminosity of the sample (1.50 x 10(32) erg s(-1)). The total absolute lower limit for the normalized luminosity per solar mass is 1.81 x 10(26) erg s(-1) M-circle dot(-1) which accounts for similar to 16 per cent of the total X-ray emissivity of cataclysmic variables as estimated by Sazonov et al. C1 [Byckling, K.; Osborne, J. P.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Mukai, K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Thorstensen, J. R.] Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA. RP Byckling, K (reprint author), Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. EM kjkb2@star.le.ac.uk RI XRAY, SUZAKU/A-1808-2009 FU STFC; ESA Member States; USA (NASA) FX This research has made use of data obtained from the Suzaku satellite, a collaborative mission between the space agencies of Japan (JAXA) and the USA (NASA). JPO acknowledges support from STFC. Part of this work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. We thank the reviewer M. Revnivtsev for his helpful comments on this paper. NR 59 TC 28 Z9 28 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2010 VL 408 IS 4 BP 2298 EP 2311 DI 10.1111/j.1365-2966.2010.17276.x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 674DA UT WOS:000283712700023 ER PT J AU Zeitlin, C Boynton, W Mitrofanov, I Hassler, D Atwell, W Cleghorn, TF Cucinotta, FA Dayeh, M Desai, M Guetersloh, SB Kozarev, K Lee, KT Pinsky, L Saganti, P Schwadron, NA Turner, R AF Zeitlin, C. Boynton, W. Mitrofanov, I. Hassler, D. Atwell, W. Cleghorn, T. F. Cucinotta, F. A. Dayeh, M. Desai, M. Guetersloh, S. B. Kozarev, K. Lee, K. T. Pinsky, L. Saganti, P. Schwadron, N. A. Turner, R. TI Mars Odyssey measurements of galactic cosmic rays and solar particles in Mars orbit, 2002-2008 SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID RADIATION ENVIRONMENT EXPERIMENT; SPECTRA; SPECTROMETER; MISSIONS; DEPOSITS; PROTON; IONS AB The instrument payload aboard the 2001 Mars Odyssey orbiter includes several instruments that are sensitive to energetic charged particles from the galactic cosmic rays (GCR) and solar particle events (SPE). The Martian Radiation Environment Experiment (MARIE) was a dedicated energetic charged particle spectrometer, but it ceased functioning during the large solar storm of October/November 2003. Data from two other Odyssey instruments are used here: the Gamma Ray Spectrometer and the scintillator component of the High Energy Neutron Detector. Though not primarily designed to measure energetic charged particles, both systems are sensitive to them, and several years of data are available from both. Using the MARIE data for calibration of the other systems, count rates can be normalized (with significant uncertainties) to absolute fluxes of both GCR and solar energetic particles (SEP). The data, which cover the time span from early 2002 through the end of 2007, clearly show the solar cycle-dependent modulation of the GCR starting in 2004. Many SPEs were recorded as well and are cataloged here. Threshold energies were relatively high, ranging from 16 MeV in the most sensitive channel to 42 MeV. These thresholds are not optimal for detailed studies of SEPs, but this is the range of interest for calculations of dose and dose equivalent, pertinent to human flight, and covering that range was the original motivation for MARIE. The data are available on request and are potentially of use for the Earth-Moon-Mars Radiation Environment Module collaboration and other heliospheric modeling projects. C1 [Zeitlin, C.; Hassler, D.] SW Res Inst, Boulder, CO USA. [Zeitlin, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Boynton, W.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Mitrofanov, I.] Space Res Inst, Moscow, Russia. [Atwell, W.] Boeing Co, Houston, TX USA. [Cleghorn, T. F.; Cucinotta, F. A.; Lee, K. T.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Dayeh, M.; Desai, M.] SW Res Inst, San Antonio, TX USA. [Guetersloh, S. B.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Kozarev, K.; Schwadron, N. A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Pinsky, L.] Univ Houston, Dept Phys, Houston, TX USA. [Saganti, P.] Prairie View A&M Univ, Dept Phys, Prairie View, TX USA. [Turner, R.] Analyt Serv Inc, Arlington, VA USA. RP Zeitlin, C (reprint author), SW Res Inst, Boulder, CO USA. FU NASA [NNH05AA471, NNX07AC12G] FX We express our profound thanks to the many people who supported this effort over many years, both on the individual instrument teams for MARIE, GRS, and HEND, and on the 2001 Mars Odyssey project. Odyssey has had a remarkably long and successful mission thanks in large part to the management team, which over the years has included Robert Gibbs, Robert Mase, Gaylon McSmith, Phillip Varghese, Steve Saunders, Jeffrey Plaut, and David Senske. And of course this work would not have been possible without the tireless efforts of the original MARIE Principal Investigator, the late Gautam Badhwar. He is greatly missed. This work was supported at LBNL by NASA grant NNH05AA471 and at Southwest Research Institute by NASA grant NNX07AC12G. NR 28 TC 6 Z9 6 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD NOV 11 PY 2010 VL 8 AR S00E06 DI 10.1029/2009SW000563 PG 26 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 680IY UT WOS:000284226800001 ER PT J AU Southworth, J Hinse, TC Dominik, M Glitrup, M Jorgensen, UG Liebig, C Mathiasen, M Anderson, DR Bozza, V Browne, P Burgdorf, M Novati, SC Dreizler, S Finet, F Harpsoe, K Hessman, F Hundertmark, M Maier, G Mancini, L Maxted, PFL Rahvar, S Ricci, D Scarpetta, G Skottfelt, J Snodgrass, C Surdej, J Zimmer, F AF Southworth, John Hinse, T. C. Dominik, M. Glitrup, M. Jorgensen, U. G. Liebig, C. Mathiasen, M. Anderson, D. R. Bozza, V. Browne, P. Burgdorf, M. Novati, S. Calchi Dreizler, S. Finet, F. Harpsoe, K. Hessman, F. Hundertmark, M. Maier, G. Mancini, L. Maxted, P. F. L. Rahvar, S. Ricci, D. Scarpetta, G. Skottfelt, J. Snodgrass, C. Surdej, J. Zimmer, F. TI PHYSICAL PROPERTIES OF THE 0.94 DAY PERIOD TRANSITING PLANETARY SYSTEM WASP-18 (vol 707, pg 167, 2009) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Southworth, John; Anderson, D. R.; Maxted, P. F. L.] Keele Univ, Astrophys Grp, Newcastle Under Lyme ST5 5BG, England. [Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Hinse, T. C.; Jorgensen, U. G.; Harpsoe, K.; Skottfelt, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Hinse, T. C.; Jorgensen, U. G.; Harpsoe, K.; Skottfelt, J.] Univ Copenhagen, Ctr Star & Planet Format, DK-2100 Copenhagen O, Denmark. [Dominik, M.; Mathiasen, M.; Browne, P.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Glitrup, M.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Liebig, C.; Zimmer, F.] Univ Heidelberg, Zentrum Astron, Astron Rechen Inst, D-69120 Heidelberg, Germany. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84081 Baronissi, Italy. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Inst Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Burgdorf, M.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Burgdorf, M.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Dreizler, S.; Hessman, F.; Hundertmark, M.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Finet, F.; Ricci, D.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Snodgrass, C.] European So Observ, Santiago 19, Chile. RP Southworth, J (reprint author), Keele Univ, Astrophys Grp, Newcastle Under Lyme ST5 5BG, England. RI Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008 OI Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725 NR 2 TC 1 Z9 1 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1829 EP 1829 DI 10.1088/0004-637X/723/2/1829 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700071 ER PT J AU Fukumura, K Kazanas, D Contopoulos, I Behar, E AF Fukumura, Keigo Kazanas, Demosthenes Contopoulos, Ioannis Behar, Ehud TI MODELING HIGH-VELOCITY QSO ABSORBERS WITH PHOTOIONIZED MAGNETOHYDRODYNAMIC DISK WINDS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; galaxies: active; methods: numerical; quasars: absorption lines; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; BROAD ABSORPTION-LINE; QUASI-STELLAR OBJECTS; X-RAY-SPECTRA; EMISSION-LINE; ACCRETION DISKS; APM 08279+5255; BLACK-HOLE; OUTFLOW; DRIVEN AB We extend our modeling of the ionization structure of magnetohydrodynamic (MHD) accretion-disk winds, previously applied to Seyfert galaxies, to a population of quasi-stellar objects (QSOs) of much lower X-ray-to-UV flux ratios, i.e., smaller alpha(ox) index, motivated by UV/X-ray ionized absorbers with extremely high outflow velocities in UV-luminous QSOs. We demonstrate that magnetically driven winds ionized by a spectrum with alpha(ox) similar or equal to -2 can produce the charge states responsible for C IV and Fe XXV/Fe XXVI absorption in wind regions with corresponding maximum velocities of nu(C IV) less than or similar to 0.1c and nu(Fe xxv) less than or similar to 0.6c (where c is the speed of light) and column densities N(H) similar to 10(23)-10(24) cm(-2), in general agreement with observations. In contrast to the conventional radiation-driven wind models, high-velocity flows are always present in our MHD-driven winds but manifest in the absorption spectra only for alpha(ox) less than or similar to -2, as larger alpha(ox) values ionize the wind completely out to radii too large to demonstrate the presence of these high velocities. We thus predict increasing velocities of these ionized absorbers with decreasing (steeper) aox, a quantity that emerges as the defining parameter in the kinematics of the active galactic nucleus UV/X-ray absorbers. C1 [Fukumura, Keigo] Univ Maryland Baltimore Cty UMBC CRESST, Baltimore, MD 21250 USA. [Fukumura, Keigo; Kazanas, Demosthenes] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Contopoulos, Ioannis] Acad Athens, Res Ctr Astron, Athens 11527, Greece. [Behar, Ehud] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. RP Fukumura, K (reprint author), Univ Maryland Baltimore Cty UMBC CRESST, Baltimore, MD 21250 USA. EM Keigo.Fukumura@nasa.gov NR 41 TC 15 Z9 15 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 10 PY 2010 VL 723 IS 2 BP L228 EP L232 DI 10.1088/2041-8205/723/2/L228 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678TX UT WOS:000284104900020 ER PT J AU Kokuyama, W Numata, K Camp, J AF Kokuyama, Wataru Numata, Kenji Camp, Jordan TI Simple iodine reference at 1064 nm for absolute laser frequency determination in space applications SO APPLIED OPTICS LA English DT Article ID INTERFEROMETRY AB Using an iodine cell with fixed gas pressure, we built a simple frequency reference at 1064 nm with 10 MHz absolute accuracy and used it to demonstrate deterministic phase locking between two single-frequency lasers. The reference was designed to be as simple as possible, and it does not use a cooler or frequency modulator. This system should be useful, especially for space interferometric missions such as the Laser Interferometer Space Antenna. (C) 2010 Optical Society of America C1 [Kokuyama, Wataru] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Numata, Kenji] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Numata, Kenji; Camp, Jordan] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kokuyama, W (reprint author), Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. EM kokuyama@granite.phys.s.u-tokyo.ac.jp NR 8 TC 4 Z9 4 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD NOV 10 PY 2010 VL 49 IS 32 BP 6264 EP 6267 DI 10.1364/AO.49.006264 PG 4 WC Optics SC Optics GA 678FC UT WOS:000284058400011 PM 21068857 ER PT J AU Meister, G McClain, CR AF Meister, Gerhard McClain, Charles R. TI Point-spread function of the ocean color bands of the Moderate Resolution Imaging Spectroradiometer on Aqua SO APPLIED OPTICS LA English DT Article ID MODIS; CALIBRATION; ALGORITHM; EOS-AM1; WATER AB The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua platform has nine spectral bands with center wavelengths from 412 to 870 nm that are used to produce the standard ocean color data products. Ocean scenes usually contain high contrast due to the presence of bright clouds over dark water. About half of the MODIS Aqua ocean pixels are flagged as spatial stray light contaminated. The MODIS has been characterized for stray light effects prelaunch. In this paper, we derive point-spread functions for the MODIS Aqua ocean bands based on prelaunch line-spread function measurements. The stray light contamination of ocean scenes is evaluated based on artificial test scenes and on-orbit data. (C) 2010 Optical Society of America C1 [Meister, Gerhard; McClain, Charles R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Meister, G (reprint author), NASA, Goddard Space Flight Ctr, Code 614-2, Greenbelt, MD 20771 USA. EM Gerhard.Meister@nasa.gov RI Meister, Gerhard/F-7159-2012 NR 26 TC 13 Z9 13 U1 0 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD NOV 10 PY 2010 VL 49 IS 32 BP 6276 EP 6285 DI 10.1364/AO.49.006276 PG 10 WC Optics SC Optics GA 678FC UT WOS:000284058400013 PM 21068859 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Atwood, WB Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Bhat, PN Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Charles, E Chekhtman, A Chen, AW Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Connaughton, V Conrad, J Costamante, L Dermer, CD de Angelis, A de Palma, F Digel, SW Dingus, BL Silva, EDE Drell, PS Dubois, R Favuzzi, C Fegan, SJ Finke, J Fortin, P Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Gilmore, RC Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Granot, J Greiner, J Grenier, IA Grove, JE Guiriec, S Gustafsson, M Hadasch, D Hayashida, M Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, RP Johnson, WN Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kocevski, D Kuss, M Lande, J Latronico, L Lee, SH Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, N McConville, W McEnery, JE McGlynn, S Mehault, J Meszaros, P Michelson, PF Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Primack, JR Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Reyes, LC Ripken, J Ritz, S Romani, RW Roth, M Sadrozinski, HFW Sanchez, D Sander, A Scargle, JD Schalk, TL Sgro, C Shaw, MS Siskind, EJ Smith, PD Spandre, G Spinelli, P Stecker, FW Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Wilson-Hodge, C Winer, BL Wood, KS Yamazaki, R Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, O. Charles, E. Chekhtman, A. Chen, A. W. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Connaughton, V. Conrad, J. Costamante, L. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Dingus, B. L. do Couto e Silva, E. Drell, P. S. Dubois, R. Favuzzi, C. Fegan, S. J. Finke, J. Fortin, P. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Gilmore, R. C. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Granot, J. Greiner, J. Grenier, I. A. Grove, J. E. Guiriec, S. Gustafsson, M. Hadasch, D. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kocevski, D. Kuss, M. Lande, J. Latronico, L. Lee, S-H Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, N. McConville, W. McEnery, J. E. McGlynn, S. Mehault, J. Meszaros, P. Michelson, P. F. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Primack, J. R. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reyes, L. C. Ripken, J. Ritz, S. Romani, R. W. Roth, M. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Scargle, J. D. Schalk, T. L. Sgro, C. Shaw, M. S. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stecker, F. W. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Wilson-Hodge, C. Winer, B. L. Wood, K. S. Yamazaki, R. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE CONSTRAINTS ON THE GAMMA-RAY OPACITY OF THE UNIVERSE SO ASTROPHYSICAL JOURNAL LA English DT Article DE diffuse radiation; dust, extinction; gamma rays: general ID EXTRAGALACTIC BACKGROUND LIGHT; INTERGALACTIC MAGNETIC-FIELDS; ALL-SKY SURVEY; TEV BLAZARS; DETECTED BLAZARS; LIKELIHOOD RATIO; SPACE-TELESCOPE; GALAXY COUNTS; GEV EMISSION; UPPER LIMITS AB The extragalactic background light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above similar to 10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and gamma-ray bursts (GRBs). The Large Area Telescope on board Fermi detects a sample of gamma-ray blazars with redshift up to z similar to 3, and GRBs with redshift up to z similar to 4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the universe at various energies and redshifts and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. can be ruled out with high confidence. C1 [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S-H; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S-H; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Finke, J.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.; Finke, J.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Atwood, W. B.; Gilmore, R. C.; Johnson, R. P.; Primack, J. R.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Gilmore, R. C.; Johnson, R. P.; Primack, J. R.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, Lab AIM, CEA,IRFU,CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Brandt, T. J.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.; Chen, A. W.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Gasparrini, D.; Giommi, P.] Sci Data Ctr, ASI, I-00044 Rome, Italy. [Celik, O.; Gehrels, N.; Hays, E.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Stecker, F. W.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, O.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, O.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, O.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; McGlynn, S.; Ripken, J.; Yang, Z.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Grp Coll Udine, Sez Trieste, I-33100 Udine, Italy. [Dingus, B. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Granot, J.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Greiner, J.; Orlando, E.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Lott, B.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Lott, B.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [McGlynn, S.; Ylinen, T.] AlbaNova, Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Meszaros, P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Okumura, A.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Yamazaki, R.] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2525258, Japan. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Bouvier, A (reprint author), Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. EM bouvier@stanford.edu; chen@iasf-milano.inaf.it; silvia.raino@ba.infn.it; md.razzaque.ctr.bg@nrl.navy.mil; anita.reimer@uibk.ac.at; lreyes@kicp.uchicago.edu RI Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Thompson, David/D-2939-2012; Stecker, Floyd/D-3169-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Hays, Elizabeth/D-3257-2012; Rando, Riccardo/M-7179-2013; OI Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Moretti, Elena/0000-0001-5477-9097; Berenji, Bijan/0000-0002-4551-772X; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Dingus, Brenda/0000-0001-8451-7450; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726 FU Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-0114422, NSF PHY-0551142]; Marie Curie IRG [248037] FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. The Fermi GBM collaboration acknowledges support for GBM development, operations and data analysis from NASA in the US and BMWi/DLR in Germany. L.R.C. acknowledges support by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142 and an endowment from the Kavli Foundation and its founder Fred Kavli. A. R. acknowledges support by Marie Curie IRG grant 248037 within the FP7 Program. Furthermore, helpful comments from the referee are acknowledged. NR 83 TC 76 Z9 77 U1 3 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1082 EP 1096 DI 10.1088/0004-637X/723/2/1082 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700011 ER PT J AU Airapetian, V Carpenter, KG Ofman, L AF Airapetian, V. Carpenter, K. G. Ofman, L. TI WINDS FROM LUMINOUS LATE-TYPE STARS. II. BROADBAND FREQUENCY DISTRIBUTION OF ALFVEN WAVES SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: atmospheres; stars: late-type; stars: magnetic field ID LOW-GRAVITY STARS; LATE-TYPE GIANTS; ALPHA-ORIONIS; K5 III; STELLAR ATMOSPHERES; GHRS OBSERVATIONS; COOL STARS; MASS-LOSS; ACCELERATION; TAURI AB We present the numerical simulations of winds from evolved giant stars using a fully nonlinear, time-dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully nonlinear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of the Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband nonlinear Alfven waves can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities, and the observed mass-loss rates. Comparison of the calculated mass-loss rates with the empirically determined mass-loss rate for a Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants. C1 [Airapetian, V.; Ofman, L.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Airapetian, V.; Carpenter, K. G.; Ofman, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Airapetian, V (reprint author), Catholic Univ Amer, Dept Phys, 620 Michigan Ave NE,200 Hannan Hall, Washington, DC 20064 USA. RI Carpenter, Kenneth/D-4740-2012 FU NASA [NNX10AK22G, NNX08AF85G, NNX10AC56G, NNX08AV88G] FX V.A. was supported by NASA grant NNX10AK22G. L.O. was supported by NASA grants NNX08AF85G, NNX10AC56G, and NNX08AV88G. NR 47 TC 16 Z9 16 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1210 EP 1218 DI 10.1088/0004-637X/723/2/1210 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700021 ER PT J AU Polko, P Meier, DL Markoff, S AF Polko, Peter Meier, David L. Markoff, Sera TI DETERMINING THE OPTIMAL LOCATIONS FOR SHOCK ACCELERATION IN MAGNETOHYDRODYNAMICAL JETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; ISM: jets and outflows; magnetohydrodynamics (MHD); methods: analytical ID INFRARED SYNCHROTRON EMISSION; RELATIVISTIC JETS; XTE J1118+480; BLACK-HOLES; RADIO; OUTFLOWS; 3C-273; MODEL; IR AB Observations of relativistic jets from black hole systems suggest that particle acceleration often occurs at fixed locations within the flow. These sites could be associated with critical points that allow the formation of standing shock regions, such as the magnetosonic modified fast point (MFP). Using the self-similar formulation of special relativistic magnetohydrodynamics by Vlahakis & Konigl, we derive a new class of flow solutions that are both relativistic and cross the MFP at a finite height. Our solutions span a range of Lorentz factors up to at least 10, appropriate for most jets in X-ray binaries and active galactic nuclei, and a range in injected particle internal energy. A broad range of solutions exists, which will allow the eventual matching of these scale-free models to physical boundary conditions in the analysis of observed sources. C1 [Polko, Peter; Markoff, Sera] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Meier, David L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Polko, P (reprint author), Univ Amsterdam, Astron Inst Anton Pannekoek, POB 94249, NL-1090 GE Amsterdam, Netherlands. EM P.Polko@uva.nl FU Netherlands Organization for Scientific Research (NWO); European Community [FP7/2007-2013, ITN 215212]; National Aeronautics and Space Administration FX P. P. and S. M. gratefully acknowledge support from a Netherlands Organization for Scientific Research (NWO) Vidi Fellowship. In addition, S. M. is grateful for support from the European Community's Seventh Framework Program (FP7/2007-2013) under grant agreement number ITN 215212 "Black Hole Universe." Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We thank the anonymous referee for helpful comments that improved this manuscript. NR 26 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1343 EP 1350 DI 10.1088/0004-637X/723/2/1343 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700033 ER PT J AU Crossfield, IJM Hansen, BMS Harrington, J Cho, JYK Deming, D Menou, K Seager, S AF Crossfield, Ian J. M. Hansen, Brad M. S. Harrington, Joseph Cho, James Y. -K. Deming, Drake Menou, Kristen Seager, Sara TI A NEW24 mu m PHASE CURVE FOR upsilon ANDROMEDAE b SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: planetary systems; planetary systems; planets and satellites: individual (upsilon And b); stars: individual (upsilon And b); techniques: photometric ID PLANET HD 209458B; EXTRASOLAR GIANT PLANETS; HOT JUPITERS; ATMOSPHERIC CIRCULATION; ABSOLUTE CALIBRATION; EMISSION-SPECTRUM; SPACE-TELESCOPE; NEARBY STARS; HOST STARS; COOL STARS AB We report the detection of 24 mu m variations from the planet-hosting upsilon Andromedae system consistent with the orbital periodicity of the system's innermost planet, upsilon And b. We find a peak-to-valley phase curve amplitude of 0.00130 times the mean system flux. Using a simple model with two hemispheres of constant surface brightness and assuming a planetary radius of 1.3 R-J give a planetary temperature contrast of greater than or similar to 900 K and an orbital inclination of greater than or similar to 28 degrees. We further report the largest phase offset yet observed for an extrasolar planet: the flux maximum occurs similar to 80 degrees before phase 0.5. Such a large phase offset is difficult to reconcile with most current atmospheric circulation models. We improve on earlier observations of this system in several important ways: (1) observations of a flux calibrator star demonstrate the MIPS detector is stable to 10(-4) on long timescales, (2) we note that the background light varies systematically due to spacecraft operations, precluding use of this background as a flux calibrator (stellar flux measured above the background is not similarly affected), and (3) we calibrate for flux variability correlated with motion of the star on the MIPS detector. A reanalysis of our earlier observations of this system is consistent with our new result. C1 [Crossfield, Ian J. M.; Hansen, Brad M. S.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Hansen, Brad M. S.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Harrington, Joseph] Univ Cent Florida, Dept Phys, Planetary Sci Grp, Orlando, FL 32816 USA. [Cho, James Y. -K.] Univ London, Sch Math Sci, London E1 4NS, England. [Deming, Drake] NASA, Planetary Syst Branch Code 693, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Menou, Kristen] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Seager, Sara] MIT, Dept Phys, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Crossfield, IJM (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM ianc@astro.ucla.edu; hansen@astro.ucla.edu; jh@physics.ucf.edu; J.Cho@qmul.ac.uk; Leo.D.Deming@nasa.gov; kristen@astro.columbia.edu; seager@mit.edu RI Harrington, Joseph/E-6250-2011 FU NASA through JPL/Caltech; NSF [PHY05-51164] FX We thank J. Colbert, C. Engelbracht, and G. Rieke for help in interpreting MIPS systematics, T. Loredo for helpful discussions of statistics, and our anonymous referee for a timely report. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. We received free software and services from SciPy, Matplotlib, and the Python Programming Language. This research made use of Tiny Tim/Spitzer, developed by John Krist for the Spitzer Science Center; the Center is managed by the California Institute of Technology under a contract with NASA. Part of this work was performed while in residence at the Kavli Institute for Theoretical Physics, funded by the NSF through grant number PHY05-51164. NR 59 TC 68 Z9 70 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1436 EP 1446 DI 10.1088/0004-637X/723/2/1436 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700039 ER PT J AU Menanteau, F Gonzalez, J Juin, JB Marriage, TA Reese, ED Acquaviva, V Aguirre, P Appel, JW Baker, AJ Barrientos, LF Battistelli, ES Bond, JR Das, S Deshpande, AJ Devlin, MJ Dicker, S Dunkley, J Dunner, R Essinger-Hileman, T Fowler, JW Hajian, A Halpern, M Hasselfield, M Hernandez-Monteagudo, C Hilton, M Hincks, AD Hlozek, R Huffenberger, KM Hughes, JP Infante, L Irwin, KD Klein, J Kosowsky, A Lin, YT Marsden, D Moodley, K Niemack, MD Nolta, MR Page, LA Parker, L Partridge, B Sehgal, N Sievers, J Spergel, DN Staggs, ST Swetz, D Switzer, E Thornton, R Trac, H Warne, R Wollack, E AF Menanteau, Felipe Gonzalez, Jorge Juin, Jean-Baptiste Marriage, Tobias A. Reese, Erik D. Acquaviva, Viviana Aguirre, Paula Appel, John William Baker, Andrew J. Felipe Barrientos, L. Battistelli, Elia S. Bond, J. Richard Das, Sudeep Deshpande, Amruta J. Devlin, Mark J. Dicker, Simon Dunkley, Joanna Duenner, Rolando Essinger-Hileman, Thomas Fowler, Joseph W. Hajian, Amir Halpern, Mark Hasselfield, Matthew Hernandez-Monteagudo, Carlos Hilton, Matt Hincks, Adam D. Hlozek, Renee Huffenberger, Kevin M. Hughes, John P. Infante, Leopoldo Irwin, Kent D. Klein, Jeff Kosowsky, Arthur Lin, Yen-Ting Marsden, Danica Moodley, Kavilan Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Parker, Lucas Partridge, Bruce Sehgal, Neelima Sievers, Jon Spergel, David N. Staggs, Suzanne T. Swetz, Daniel Switzer, Eric Thornton, Robert Trac, Hy Warne, Ryan Wollack, Ed TI THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES AND PURITY OF A GALAXY CLUSTER SAMPLE SELECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general; galaxies: distances and redshifts; large-scale structure of universe ID ALL-SKY SURVEY; XMM-NEWTON OBSERVATIONS; SOUTH-POLE TELESCOPE; X-RAY-PROPERTIES; LUMINOSITY FUNCTION; DARK ENERGY; 1E 0657-56; CATALOG; CHANDRA; EXTRACTION AB We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich effect (SZE) from 148 GHz maps over 455 deg(2) of sky made with the Atacama Cosmology Telescope (ACT). These maps, coupled with multi-band imaging on 4 m class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts, and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8.0 x 10(14) M-circle dot, with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1 x 10(15) M-circle dot and the redshift range is 0.167-1.066. Archival observations from Chandra, XMM-Newton, and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the universe. C1 [Menanteau, Felipe; Acquaviva, Viviana; Baker, Andrew J.; Deshpande, Amruta J.; Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Gonzalez, Jorge; Juin, Jean-Baptiste; Aguirre, Paula; Felipe Barrientos, L.; Duenner, Rolando; Infante, Leopoldo] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Marriage, Tobias A.; Acquaviva, Viviana; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Reese, Erik D.; Devlin, Mark J.; Dicker, Simon; Klein, Jeff; Marsden, Danica; Swetz, Daniel] Univ Penn, Philadelphia, PA 19104 USA. [Appel, John William; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hincks, Adam D.; Page, Lyman A.; Parker, Lucas; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Battistelli, Elia S.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Bond, J. Richard; Hajian, Amir; Nolta, Michael R.; Sievers, Jon] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Das, Sudeep] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Dunkley, Joanna; Hlozek, Renee] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Halpern, Mark; Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Hernandez-Monteagudo, Carlos] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hilton, Matt; Moodley, Kavilan; Warne, Ryan] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Sci, ZA-4041 Durban, South Africa. [Huffenberger, Kevin M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Irwin, Kent D.; Niemack, Michael D.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Lin, Yen-Ting] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Sehgal, Neelima] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Switzer, Eric] Lab Astrophys & Space Res, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Thornton, Robert] W Chester Univ, Dept Phys, W Chester, PA 19383 USA. [Trac, Hy] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Wollack, Ed] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Menanteau, F (reprint author), Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. RI Klein, Jeffrey/E-3295-2013; Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013; Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012; OI Sievers, Jonathan/0000-0001-6903-5074; Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Huffenberger, Kevin/0000-0001-7109-0099; Menanteau, Felipe/0000-0002-1372-2534 FU U.S. National Science Foundation [AST-0408698, PHY-0355328, AST-0707731, PIRE-0507768, OISE-0530095]; Princeton University; University of Pennsylvania; NASA/XMM [NNX08AX55G, NNX08AX72G]; Canada Foundation for Innovation under Compute Canada; Canada Foundation for Innovation under Government of Ontario; Canada Foundation for Innovation under University of Toronto; Centro de Astrofisica FONDAP [15010003]; Centro BASAL-CATA; FONDECYT [1085286] FX The observations on which this paper were based represent the marriage of two different communities (CMB and optical) in multiple countries working for a common goal. In particular, the optical observations were coordinated and led by Felipe Barrientos and Leopoldo Infante (Pontificia Universidad Catolica de Chile) and John P. Hughes and Felipe Menanteau (Rutgers University). This work was supported by the U.S. National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731 and PIRE-0507768 (award number OISE-0530095). The PIRE program made possible exchanges between Chile, South Africa, Spain, and the US that enabled this research program. Funding was also provided by Princeton University and the University of Pennsylvania. We also acknowledge support from NASA/XMM grants NNX08AX55G and NNX08AX72G to Rutgers University. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund Research Excellence; and the University of Toronto. This research is partially funded by "Centro de Astrofisica FONDAP" 15010003, Centro BASAL-CATA, and by FONDECYT under proyecto 1085286. The observers (F. M., J.P.H., J.G., L. I.) thank the La Silla, CTIO, and SOAR staff for their support during the runs. The SOAR Telescope is a joint project of Conselho Nacional de Pesquisas Cientificas e Tecnologicas CNPq-Brazil, The University of North Carolina at Chapel Hill, Michigan State University, and the National Optical Astronomy Observatory. NR 82 TC 63 Z9 63 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1523 EP 1541 DI 10.1088/0004-637X/723/2/1523 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700045 ER PT J AU Metcalfe, TS Monteiro, MJPFG Thompson, MJ Molenda-Zakowicz, J Appourchaux, T Chaplin, WJ Dogan, G Eggenberger, P Bedding, TR Bruntt, H Creevey, OL Quirion, PO Stello, D Bonanno, A Aguirre, VS Basu, S Esch, L Gai, N di Mauro, MP Kosovichev, AG Kitiashvili, IN Suarez, JC Moya, A Piau, L Garcia, RA Marques, JP Frasca, A Biazzo, K Sousa, SG Dreizler, S Bazot, M Karoff, C Frandsen, S Wilson, PA Brown, TM Christensen-Dalsgaard, J Gilliland, RL Kjeldsen, H Campante, TL Fletcher, ST Handberg, R Regulo, C Salabert, D Schou, J Verner, GA Ballot, J Broomhall, AM Elsworth, Y Hekker, S Huber, D Mathur, S New, R Roxburgh, IW Sato, KH White, TR Borucki, WJ Koch, DG Jenkins, JM AF Metcalfe, T. S. Monteiro, M. J. P. F. G. Thompson, M. J. Molenda-Zakowicz, J. Appourchaux, T. Chaplin, W. J. Dogan, G. Eggenberger, P. Bedding, T. R. Bruntt, H. Creevey, O. L. Quirion, P. -O. Stello, D. Bonanno, A. Aguirre, V. Silva Basu, S. Esch, L. Gai, N. di Mauro, M. P. Kosovichev, A. G. Kitiashvili, I. N. Suarez, J. C. Moya, A. Piau, L. Garcia, R. A. Marques, J. P. Frasca, A. Biazzo, K. Sousa, S. G. Dreizler, S. Bazot, M. Karoff, C. Frandsen, S. Wilson, P. A. Brown, T. M. Christensen-Dalsgaard, J. Gilliland, R. L. Kjeldsen, H. Campante, T. L. Fletcher, S. T. Handberg, R. Regulo, C. Salabert, D. Schou, J. Verner, G. A. Ballot, J. Broomhall, A. -M. Elsworth, Y. Hekker, S. Huber, D. Mathur, S. New, R. Roxburgh, I. W. Sato, K. H. White, T. R. Borucki, W. J. Koch, D. G. Jenkins, J. M. TI A PRECISE ASTEROSEISMIC AGE AND RADIUS FOR THE EVOLVED SUN-LIKE STAR KIC 11026764 SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: evolution; stars: individual (KIC 11026764); stars: interiors; stars: oscillations ID SOLAR-LIKE OSCILLATIONS; STELLAR EVOLUTION CODE; EQUATION-OF-STATE; HEAVY-ELEMENT DIFFUSION; ELODIE ECHELLE SPECTRA; PARAMETERS T-EFF; KEPLER MISSION; ETA-BOOTIS; SPECTROSCOPIC PARAMETERS; MERIDIONAL CIRCULATION AB The primary science goal of the Kepler Mission is to provide a census of exoplanets in the solar neighborhood, including the identification and characterization of habitable Earth-like planets. The asteroseismic capabilities of the mission are being used to determine precise radii and ages for the target stars from their solar-like oscillations. Chaplin et al. published observations of three bright G-type stars, which were monitored during the first 33.5 days of science operations. One of these stars, the subgiant KIC 11026764, exhibits a characteristic pattern of oscillation frequencies suggesting that it has evolved significantly. We have derived asteroseismic estimates of the properties of KIC 11026764 from Kepler photometry combined with ground-based spectroscopic data. We present the results of detailed modeling for this star, employing a variety of independent codes and analyses that attempt to match the asteroseismic and spectroscopic constraints simultaneously. We determine both the radius and the age of KIC 11026764 with a precision near 1%, and an accuracy near 2% for the radius and 15% for the age. Continued observations of this star promise to reveal additional oscillation frequencies that will further improve the determination of its fundamental properties. C1 [Metcalfe, T. S.; Thompson, M. J.; Mathur, S.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Monteiro, M. J. P. F. G.; Sousa, S. G.; Bazot, M.; Campante, T. L.] Univ Porto, Fac Ciencias, Ctr Astrofis & DFA, Oporto, Portugal. [Thompson, M. J.] Univ Sheffield, Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England. [Molenda-Zakowicz, J.] Univ Wroclaw, Astron Inst, PL-51622 Wroclaw, Poland. [Appourchaux, T.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Chaplin, W. J.; Karoff, C.; Broomhall, A. -M.; Elsworth, Y.; Hekker, S.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Dogan, G.; Frandsen, S.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Campante, T. L.; Handberg, R.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Eggenberger, P.] Univ Geneva, Observ Geneva, CH-1290 Sauverny, Switzerland. [Bedding, T. R.; Stello, D.; Huber, D.; White, T. R.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Bruntt, H.; Roxburgh, I. W.] Observ Paris, F-92190 Meudon, France. [Creevey, O. L.; Regulo, C.; Salabert, D.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Creevey, O. L.; Regulo, C.; Salabert, D.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Quirion, P. -O.] Canadian Space Agcy, St Hubert, PQ J3Y 8Y9, Canada. [Bonanno, A.; Frasca, A.] INAF Osservatorio Astrofis Catania, I-95123 Catania, Italy. [Aguirre, V. Silva] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Basu, S.; Esch, L.; Gai, N.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Gai, N.] Beijing Normal Univ, Beijing 100875, Peoples R China. [di Mauro, M. P.] Ist Astrofis Spaziale & Fis Cosm, INAF IASF Roma, I-00133 Rome, Italy. [Kosovichev, A. G.; Schou, J.] Stanford Univ, HEPL, Stanford, CA 94305 USA. [Kitiashvili, I. N.] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. [Suarez, J. C.] CSIC, Inst Astrofis Andalucia, Granada, Spain. [Moya, A.] CAB CSIC INTA, Lab Astrofis, Madrid 28691, Spain. [Piau, L.; Garcia, R. A.; Ballot, J.] Univ Paris 7 Diderot, IRFU SAp, Ctr Saclay, CEA DSM CNRS,Lab AIM, F-91191 Gif Sur Yvette, France. [Marques, J. P.] Univ Paris 07, Univ Paris 06, Observ Paris, CNRS UMR 8109,LESIA, F-92195 Meudon, France. [Biazzo, K.] Arcetri Astrophys Observ, I-50125 Florence, Italy. [Dreizler, S.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Wilson, P. A.] Nord Opt Telescope, E-38700 Santa Cruz De La Palma, Santa Cruz Ten, Spain. [Wilson, P. A.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Brown, T. M.] Las Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Fletcher, S. T.; New, R.] Sheffield Hallam Univ, Mat Engn Res Inst, Sheffield S1 1WB, S Yorkshire, England. [Verner, G. A.; Roxburgh, I. W.] Univ London, Astron Unit, London E1 4NS, England. [Ballot, J.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Jenkins, J. M.] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Metcalfe, TS (reprint author), Natl Ctr Atmospher Res, High Altitude Observ, Pob 3000, Boulder, CO 80307 USA. RI Ballot, Jerome/G-1019-2010; Sousa, Sergio/I-7466-2013; Monteiro, Mario J.P.F.G./B-4715-2008; Basu, Sarbani/B-8015-2014; Suarez, Juan Carlos/C-1015-2009; OI Bazot, Michael/0000-0003-0166-1540; Bonanno, Alfio/0000-0003-3175-9776; Frasca, Antonio/0000-0002-0474-0896; Bedding, Timothy/0000-0001-5943-1460; Sousa, Sergio/0000-0001-9047-2965; Monteiro, Mario J.P.F.G./0000-0003-0513-8116; Basu, Sarbani/0000-0002-6163-3472; Suarez, Juan Carlos/0000-0003-3649-8384; Biazzo, Katia/0000-0002-1892-2180; Metcalfe, Travis/0000-0003-4034-0416; Karoff, Christoffer/0000-0003-2009-7965; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776; Di Mauro, Maria Pia/0000-0001-7801-7484; Handberg, Rasmus/0000-0001-8725-4502 FU NASA's Science Mission Directorate; NASA [NNX09AE59G]; U.S. National Science Foundation; INSU/CNRS; Danish Natural Science Research Council; MNiSW [N203 014 31/2650]; FCT [TDC/CTE-AST/098754/2008]; FEDER, Portugal; Australian Research Council; UK Science and Facilities Technology Council; European Commission; FCT (Portugal) [SFRH/BPD/47611/2008, PTDC/CTE-AST/66181/2006] FX Funding for the Kepler Mission is provided by NASA's Science Mission Directorate. This work was supported in part by NASA grant NNX09AE59G. Computer time was provided by TeraGrid allocation TG-AST090107. The National Center for Atmospheric Research is sponsored by the U.S. National Science Foundation. Observations were made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. T. A. gratefully acknowledges support from the Programme National de Physique Stellaire of INSU/CNRS. G. D., P.-O.Q., C. K., J.C.-D., and H. K. are grateful for financial support from the Danish Natural Science Research Council. J.M.-.Z. acknowledges MNiSW grant N203 014 31/2650. M.J.P.F.G.M. acknowledges financial support from project TDC/CTE-AST/098754/2008 from FCT and FEDER, Portugal. T. R. B. and D. S. acknowledge financial support from the Australian Research Council. W.J.C., Y.E., A.-M. B., S. T. F., S. H., and R.N. acknowledge the support of the UK Science and Facilities Technology Council. O.L.C. and P.-O.Q. acknowledge support from HELAS, a major international collaboration funded by the European Commission's Sixth framework program. S. G. S. acknowledges support from the FCT (Portugal) through grants SFRH/BPD/47611/2008 and PTDC/CTE-AST/66181/2006. The authors wish to thank the Kepler Science Team and everyone who helped make the Kepler Mission possible. NR 110 TC 95 Z9 95 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1583 EP 1598 DI 10.1088/0004-637X/723/2/1583 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700050 ER PT J AU Huber, D Bedding, TR Stello, D Mosser, B Mathur, S Kallinger, T Hekker, S Elsworth, YP Buzasi, DL De Ridder, J Gilliland, RL Kjeldsen, H Chaplin, WJ Garcia, RA Hale, SJ Preston, HL White, TR Borucki, WJ Christensen-Dalsgaard, J Clarke, BD Jenkins, JM Koch, D AF Huber, D. Bedding, T. R. Stello, D. Mosser, B. Mathur, S. Kallinger, T. Hekker, S. Elsworth, Y. P. Buzasi, D. L. De Ridder, J. Gilliland, R. L. Kjeldsen, H. Chaplin, W. J. Garcia, R. A. Hale, S. J. Preston, H. L. White, T. R. Borucki, W. J. Christensen-Dalsgaard, J. Clarke, B. D. Jenkins, J. M. Koch, D. TI ASTEROSEISMOLOGY OF RED GIANTS FROM THE FIRST FOUR MONTHS OF KEPLER DATA: GLOBAL OSCILLATION PARAMETERS FOR 800 STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: late-type; stars: oscillations ID SOLAR-LIKE OSCILLATIONS; FREQUENCY-SEPARATION RATIOS; MAIN-SEQUENCE STARS; EPSILON-OPHIUCHI; ACOUSTIC-OSCILLATIONS; MULTISITE CAMPAIGN; K-GIANTS; COROT; PHOTOMETRY; ARCTURUS AB We have studied solar-like oscillations in similar to 800 red giant stars using Kepler long-cadence photometry. The sample includes stars ranging in evolution from the lower part of the red giant branch to the helium main sequence. We investigate the relation between the large frequency separation (Delta nu) and the frequency of maximum power (nu(max)) and show that it is different for red giants than for main-sequence stars, which is consistent with evolutionary models and scaling relations. The distributions of nu(max) and Delta nu are in qualitative agreement with a simple stellar population model of the Kepler field, including the first evidence for a secondary clump population characterized by M greater than or similar to 2M(circle dot) and nu(max) similar or equal to 40-110 mu Hz. We measured the small frequency separations delta nu(02) and delta nu(01) in over 400 stars and delta nu(03) in over 40. We present C-D diagrams for l = 1, 2, and 3 and show that the frequency separation ratios delta nu(02)/Delta nu and delta nu(01)/Delta nu have opposite trends as a function of Delta nu The data show a narrowing of the l = 1 ridge toward lower nu(max), in agreement with models predicting more efficient mode trapping in stars with higher luminosity. We investigate the offset is an element of in the asymptotic relation and find a clear correlation with.., demonstrating that it is related to fundamental stellar parameters. Finally, we present the first amplitude-nu(max) relation for Kepler red giants. We observe a lack of low-amplitude stars for nu(max) greater than or similar to 110 mu Hz and find that, for a given nu(max) between 40 and 110 mu Hz, stars with lower Delta nu (and consequently higher mass) tend to show lower amplitudes than stars with higher Delta nu. C1 [Huber, D.; Bedding, T. R.; Stello, D.; White, T. R.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Mosser, B.] Univ Denis, Univ Paris 06, CNRS, Observ Paris,LESIA, F-92195 Meudon, France. [Mathur, S.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Kallinger, T.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Kallinger, T.] Univ Vienna, Inst Astron IFA, A-1180 Vienna, Austria. [Hekker, S.; Elsworth, Y. P.; Chaplin, W. J.; Hale, S. J.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Buzasi, D. L.; Preston, H. L.] Eureka Sci, Oakland, CA 94602 USA. [De Ridder, J.] Katholieke Univ Leuven, Inst Sterrenkunde, Louvain, Belgium. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Kjeldsen, H.; Christensen-Dalsgaard, J.] Aarhus Univ, Dept Phys & Astron, Danish AsteroSeismol Ctr DASC, DK-8000 Aarhus C, Denmark. [Garcia, R. A.] Univ Paris 7 Diderot, CEA DSM CNRS, Lab AIM, IRFU SAp,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Preston, H. L.] Univ S Africa, Dept Math Sci, ZA-0001 Pretoria, South Africa. [Clarke, B. D.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Huber, D (reprint author), Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. EM dhuber@physics.usyd.edu.au RI Hale, Steven/E-3472-2015; OI Hale, Steven/0000-0002-6402-8382; Kallinger, Thomas/0000-0003-3627-2561; Bedding, Timothy/0000-0001-5943-1460; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776 FU NASA's Science Mission Directorate; Astronomical Society of Australia (ASA); Australian Research Council; U.S. National Science Foundation; UK Science and Technology Facilities Council FX The authors gratefully acknowledge the Kepler Science Team and all those who have contributed to the Kepler Mission for their tireless efforts which have made these results possible. We are also thankful to A. Miglio for his kind help with the stellar population synthesis and to our anonymous referee for his/her helpful comments. Funding for the Kepler Mission is provided by NASA's Science Mission Directorate. D.H. acknowledges support by the Astronomical Society of Australia (ASA). D.S. and T.R.B. acknowledge support by the Australian Research Council. The National Center for Atmospheric Research is a federally funded research and development center sponsored by the U.S. National Science Foundation. S.H., Y.P.E., and W.J.C. acknowledge support by the UK Science and Technology Facilities Council. NR 72 TC 107 Z9 107 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1607 EP 1617 DI 10.1088/0004-637X/723/2/1607 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700052 ER PT J AU Coe, D Benitez, N Broadhurst, T Moustakas, LA AF Coe, Dan Benitez, Narciso Broadhurst, Tom Moustakas, Leonidas A. TI A HIGH-RESOLUTION MASS MAP OF GALAXY CLUSTER SUBSTRUCTURE: LensPerfect ANALYSIS OF A1689 SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: clusters: general; galaxies: clusters: individual (A1689); gravitational lensing: strong; gravitational lensing: weak; methods: data analysis ID DARK-MATTER HALOS; STRONG-LENSING CLUSTERS; INTERACTION CROSS-SECTION; HIGH-DENSITY ENVIRONMENTS; DEEP ADVANCED CAMERA; GRAVITATIONAL LENSES; ABELL 1689; X-RAY; LAMBDA-CDM; COSMOLOGICAL CONSTRAINTS AB We present a strong lensing (SL) mass model of A1689 which resolves substructures an estimated 25 kpc across within the central similar to 400 kpc diameter. We achieve this resolution by perfectly reproducing the observed (strongly lensed) input positions of 168 multiple images of 55 knots residing within 135 images of 42 galaxies. Our model makes no assumptions about light tracing mass, yet we reproduce the brightest visible structures with some slight deviations. A1689 remains one of the strongest known lenses on the sky, with an Einstein radius of RE = 47.'' 0 +/- 1.'' 2 (143(-4)(+3) kpc) for a lensed source at z(s) = 2. We find that a single Navarro-Frenk-White (NFW) or Sersic profile yields a good fit simultaneously (with only slight tension) to both our SL mass model and published weak lensing (WL) measurements at larger radius (out to the virial radius). According to this NFW fit, A1689 has a mass of M-vir = 2.0(0.3)(+0.5) x 10(15) M(circle dot)h(70)(-1) (M-200 = 1.8(0.3)(+0.4) x 10(15) M-circle dot h(70)(-1)) within the virial radius r(vir) = 3.0 +/- 0.2 Mpch(70)(-1) (()r(200) = 2.4(-0.2+)(0.1) Mpch(70)(-1)), and a central concentration c(vir) = 11.5-(1.5)(1.4+) (c(200) = 9.2 +/- 1.2). Our SL model prefers slightly higher concentrations than previous SL models, bringing our SL + WL constraints in line with other recent derivations. Our results support those of previous studies which find A1689 has either an anomalously large concentration or significant extra mass along the line of sight (perhaps in part due to triaxiality). If clusters are generally found to have higher concentrations than realized in simulations, this could indicate that they formed earlier, perhaps as a result of early dark energy. C1 [Coe, Dan; Moustakas, Leonidas A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Benitez, Narciso] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Broadhurst, Tom] Univ Basque Country UPV EHU, Dept Theoret Phys, Leioa, Spain. [Broadhurst, Tom] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain. RP Coe, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 169-327, Pasadena, CA 91109 USA. EM coe@caltech.edu OI Moustakas, Leonidas/0000-0003-3030-2360; Benitez, Narciso/0000-0002-0403-7455 FU NASA FX We thank Marceau Limousin and Elinor Medezinski for sending us their weak lensing profiles and for useful conversations. We also thank Angelo Neto for useful conversations about the Millennium simulation and their study of halo profiles. We thank our referee for useful comments that helped us improve the manuscript. This work was carried out in part at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. L.A.M. acknowledges support from the NASA ATFP program. NR 159 TC 58 Z9 58 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1678 EP 1702 DI 10.1088/0004-637X/723/2/1678 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700057 ER PT J AU Debes, JH Jackson, B AF Debes, John H. Jackson, Brian TI TOO LITTLE, TOO LATE: HOW THE TIDAL EVOLUTION OF HOT JUPITERS AFFECTS TRANSIT SURVEYS OF CLUSTERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE globular clusters: individual (47 Tuc); methods: numerical; planetary systems ID EXTRASOLAR PLANETS; STELLAR CLUSTERS; GIANT PLANETS; SPIN-ORBIT; GLOBULAR-CLUSTERS; RETROGRADE ORBIT; 47 TUC; STARS; MASS; SYSTEMS AB The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense Hubble Space Telescope search for transits. We find that in older clusters, one expects to detect fewer transiting planets by a factor of 2 for surveys sensitive to Jupiter-like planets in orbits out to 0.5AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of the semimajor axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars. C1 [Debes, John H.; Jackson, Brian] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Debes, JH (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. FU NASA FX We thank Ron Gilliland, Steinn Sigurdsson, Rory Barnes, and the anonymous referee for helpful comments and suggestions on the manuscript. We also thank S. Gaudi for helpful suggestions on cluster surveys. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. This work made use of the Extrasolar Planets Encyclopedia at exoplanets.eu. NR 55 TC 8 Z9 8 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1703 EP 1710 DI 10.1088/0004-637X/723/2/1703 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700058 ER PT J AU Troja, E Rosswog, S Gehrels, N AF Troja, E. Rosswog, S. Gehrels, N. TI PRECURSORS OF SHORT GAMMA-RAY BURSTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; gamma-ray burst: individual (GRB090510); stars: neutron ID COALESCING NEUTRON-STARS; HIGH-RESOLUTION CALCULATIONS; FERMI OBSERVATIONS; EXTENDED EMISSION; PHYSICAL MODELS; MASSIVE STARS; GRB 090510; JETS; AFTERGLOW; MERGERS AB We carried out a systematic search of precursors on the sample of short gamma-ray bursts (GRBs) observed by Swift. We found that similar to 8%-10% of short GRBs display such early episodes of emission. One burst (GRB 090510) shows two precursor events, the former similar to 13 s and the latter similar to 0.5 s before the GRB. We did not find any substantial difference between the precursor and the main GRB emission, and between short GRBs with and without precursors. We discuss possible mechanisms to reproduce the observed precursor emission within the scenario of compact object mergers. The implications of our results on quantum gravity constraints are also discussed. C1 [Troja, E.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rosswog, S.] Jacobs Univ Bremen, Sch Sci & Engn, D-28759 Bremen, Germany. RP Troja, E (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Gehrels, Neil/D-2971-2012 FU NASA FX We thank G. Skinner and C. Markwardt for discussions and useful suggestions on the Swift/BAT data analysis. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 68 TC 48 Z9 48 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1711 EP 1717 DI 10.1088/0004-637X/723/2/1711 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700059 ER PT J AU High, FW Stalder, B Song, J Ade, PAR Aird, KA Allam, SS Armstrong, R Barkhouse, WA Benson, BA Bertin, E Bhattacharya, S Bleem, LE Brodwin, M Buckley-Geer, EJ Carlstrom, JE Challis, P Chang, CL Crawford, TM Crites, AT de Haan, T Desai, S Dobbs, MA Dudley, JP Foley, RJ George, EM Gladders, M Halverson, NW Hamuy, M Hansen, SM Holder, GP Holzapfel, WL Hrubes, JD Joy, M Keisler, R Lee, AT Leitch, EM Lin, H Lin, YT Loehr, A Lueker, M Marrone, D McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Morell, N Ngeow, CC Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruel, J Ruhl, JE Schaffer, KK Shaw, L Shirokoff, E Smith, RC Spieler, HG Staniszewski, Z Stark, AA Stubbs, CW Tucker, DL Vanderlinde, K Vieira, JD Williamson, R Wood-Vasey, WM Yang, Y Zahn, O Zenteno, A AF High, F. W. Stalder, B. Song, J. Ade, P. A. R. Aird, K. A. Allam, S. S. Armstrong, R. Barkhouse, W. A. Benson, B. A. Bertin, E. Bhattacharya, S. Bleem, L. E. Brodwin, M. Buckley-Geer, E. J. Carlstrom, J. E. Challis, P. Chang, C. L. Crawford, T. M. Crites, A. T. de Haan, T. Desai, S. Dobbs, M. A. Dudley, J. P. Foley, R. J. George, E. M. Gladders, M. Halverson, N. W. Hamuy, M. Hansen, S. M. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Joy, M. Keisler, R. Lee, A. T. Leitch, E. M. Lin, H. Lin, Y. -T. Loehr, A. Lueker, M. Marrone, D. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Morell, N. Ngeow, C. -C. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruel, J. Ruhl, J. E. Schaffer, K. K. Shaw, L. Shirokoff, E. Smith, R. C. Spieler, H. G. Staniszewski, Z. Stark, A. A. Stubbs, C. W. Tucker, D. L. Vanderlinde, K. Vieira, J. D. Williamson, R. Wood-Vasey, W. M. Yang, Y. Zahn, O. Zenteno, A. TI OPTICAL REDSHIFT AND RICHNESS ESTIMATES FOR GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: clusters: general ID SEQUENCE LUMINOSITY FUNCTION; COLOR-MAGNITUDE RELATION; RED-SEQUENCE; CONSTRAINTS; COSMOLOGY; CATALOG; VELOCITIES; EVOLUTION; STELLAR; MODELS AB We present redshifts and optical richness properties of 21 galaxy clusters uniformly selected by their Sunyaev-Zel'dovich (SZ) signature. These clusters, plus an additional, unconfirmed candidate, were detected in a 178 deg(2) area surveyed by the South Pole Telescope (SPT) in 2008. Using griz imaging from the Blanco Cosmology Survey and from pointed Magellan telescope observations, as well as spectroscopy using Magellan facilities, we confirm the existence of clustered red-sequence galaxies, report red-sequence photometric redshifts, present spectroscopic redshifts for a subsample, and derive R(200) radii and M(200) masses from optical richness. The clusters span redshifts from 0.15 to greater than 1, with a median redshift of 0.74; three clusters are estimated to be at z > 1. Redshifts inferred from mean red-sequence colors exhibit 2% rms scatter in sigma(z)/(1 + z) with respect to the spectroscopic subsample for z < 1. We show that the M(200) cluster masses derived from optical richness correlate with masses derived from SPT data and agree with previously derived scaling relations to within the uncertainties. Optical and infrared imaging is an efficient means of cluster identification and redshift estimation in large SZ surveys, and exploiting the same data for richness measurements, as we have done, will be useful for constraining cluster masses and radii for large samples in cosmological analysis. C1 [High, F. W.; Stalder, B.; Rest, A.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Song, J.; Ngeow, C. -C.; Yang, Y.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, Wales. [Aird, K. A.; Hrubes, J. D.; Marrone, D.] Univ Chicago, Chicago, IL 60637 USA. [Allam, S. S.; Buckley-Geer, E. J.; Lin, H.; Tucker, D. L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Armstrong, R.; Desai, S.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Barkhouse, W. A.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Benson, B. A.; George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Plagge, T.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M.; Keisler, R.; Leitch, E. M.; Marrone, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bertin, E.] Inst Astrophys Paris, F-75014 Paris, France. [Bhattacharya, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Brodwin, M.; Challis, P.; Foley, R. J.; Loehr, A.; Stark, A. A.; Stubbs, C. W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Hamuy, M.; Morell, N.] Univ Chile, Dept Astron, Santiago, Chile. [Hansen, S. M.] Univ Calif Santa Cruz, Univ Calif Observ, Santa Cruz, CA 95064 USA. [Hansen, S. M.] Univ Calif Santa Cruz, Dept Astron, Santa Cruz, CA 95064 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, VP62, Dept Space Sci, Huntsville, AL 35812 USA. [Lee, A. T.; Spieler, H. G.] Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Lin, Y. -T.] Univ Tokyo, Inst Phys & Math Univ, Kashiwa, Chiba 2778568, Japan. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.; Zenteno, A.] Excellence Cluster Univ, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Smith, R. C.] Cerro Tololo Interamer Observ, La Serena, Chile. [Wood-Vasey, W. M.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP High, FW (reprint author), Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA. EM high@physics.harvard.edu RI Stubbs, Christopher/C-2829-2012; Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; Hamuy, Mario/G-7541-2016; OI Stubbs, Christopher/0000-0003-0347-1724; Williamson, Ross/0000-0002-6945-2975; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Tucker, Douglas/0000-0001-7211-5729; Stark, Antony/0000-0002-2718-9996 FU National Aeronautics and Space Administration; National Science Foundation [AST-0506752, AST-0607485, ANT-0638937, ANT-0130612, MRI-0723073]; DOE [DE-FG02-08ER41569, DE-AC02-05CH11231]; NIST [70NANB8H8007]; Harvard University; Brinson Foundation; Clay fellowship FX This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication has made use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.; This work is supported by the NSF (AST-0506752, AST-0607485, AST-0506752, ANT-0638937, ANT-0130612, MRI-0723073), the DOE (DE-FG02-08ER41569 and DE-AC02-05CH11231), NIST (70NANB8H8007), and Harvard University. B.S. and A.L. gratefully acknowledge support by the Brinson Foundation. R.J.F. acknowledges the generous support of a Clay fellowship. NR 64 TC 48 Z9 48 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1736 EP 1747 DI 10.1088/0004-637X/723/2/1736 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700061 ER PT J AU Shaposhnikov, N Markwardt, C Swank, J Krimm, H AF Shaposhnikov, Nikolai Markwardt, Craig Swank, Jean Krimm, Hans TI DISCOVERY AND MONITORING OF A NEW BLACK HOLE CANDIDATE XTE J1752-223 WITH RXTE: RMS SPECTRUM EVOLUTION, BLACK HOLE MASS, AND THE SOURCE DISTANCE SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; stars: individual (XTE J1752-223) ID GRO J1655-40; 2005 OUTBURST; CYGNUS X-1; STATE; BINARIES; TRANSITIONS; ACCRETION; EJECTION; DISC; JET AB We report on the discovery and monitoring observations of a new galactic black hole (BH) candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on 2009 October 21 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/high-soft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass BH binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a blackbody spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (rms) variability in the RXTE/PCA energy band with the source spectral state and conclude that broadband variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition, and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hard-to-soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source of about 3.5 kpc. C1 [Shaposhnikov, Nikolai] Univ Maryland, CRESST, Dept Astron, College Pk, MD 20742 USA. [Shaposhnikov, Nikolai; Markwardt, Craig; Swank, Jean; Krimm, Hans] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Krimm, Hans] Univ Space Res Assoc, CRESST, Columbia, MD 21044 USA. RP Shaposhnikov, N (reprint author), Univ Maryland, CRESST, Dept Astron, College Pk, MD 20742 USA. EM nikolai.v.shaposhnikov@nasa.gov RI Swank, Jean/F-2693-2012 FU NASA [NNX09AF02G] FX We made use of the data provided through HEASARC and RXTE SOF. N.S. acknowledges the support of this work by NASA grant NNX09AF02G. NR 29 TC 25 Z9 25 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1817 EP 1824 DI 10.1088/0004-637X/723/2/1817 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700067 ER PT J AU Sabaka, TJ Rowlands, DD Luthcke, SB Boy, JP AF Sabaka, T. J. Rowlands, D. D. Luthcke, S. B. Boy, J-P. TI Improving global mass flux solutions from Gravity Recovery and Climate Experiment (GRACE) through forward modeling and continuous time correlation SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID INVERSE; SYSTEM; FIELD AB We describe Earth's mass flux from April 2003 through November 2008 by deriving a time series of mascons on a global 2 degrees x 2 degrees equal-area grid at 10 day intervals. We estimate the mass flux directly from K band range rate (KBRR) data provided by the Gravity Recovery and Climate Experiment (GRACE) mission. Using regularized least squares, we take into account the underlying process dynamics through continuous space and time-correlated constraints. In addition, we place the mascon approach in the context of other filtering techniques, showing its equivalence to anisotropic, nonsymmetric filtering, least squares collocation, and Kalman smoothing. We produce mascon time series from KBRR data that have and have not been corrected (forward modeled) for hydrological processes and find that the former produce superior results in oceanic areas by minimizing signal leakage from strong sources on land. By exploiting the structure of the spatiotemporal constraints, we are able to use a much more efficient (in storage and computation) inversion algorithm based upon the conjugate gradient method. This allows us to apply continuous rather than piecewise continuous time-correlated constraints, which we show via global maps and comparisons with ocean-bottom pressure gauges, to produce time series with reduced random variance and full systematic signal. Finally, we present a preferred global model, a hybrid whose oceanic portions are derived using forward modeling of hydrology but whose land portions are not, and thus represent a pure GRACE-derived signal. C1 [Sabaka, T. J.; Rowlands, D. D.; Luthcke, S. B.; Boy, J-P.] NASA, Planetary Geodynam Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Boy, J-P.] CNRS UdS, EOST IPGS, UMR 7516, Strasbourg, France. RP Sabaka, TJ (reprint author), NASA, Planetary Geodynam Lab, Goddard Space Flight Ctr, Code 698, Greenbelt, MD 20771 USA. EM Terence.J.Sabaka@nasa.gov RI Rowlands, David/D-2751-2012; Sabaka, Terence/D-5618-2012; Luthcke, Scott/D-6283-2012; Boy, Jean-Paul/E-6677-2017 OI Boy, Jean-Paul/0000-0003-0259-209X FU NASA through the GRACE Science team; Marie Curie International Outgoing Fellowship [PIOF-GA-2008-221753] FX Support for this work was provided by NASA through the GRACE Science team. We gratefully acknowledge the quality of GRACE Level 1B products produced by our colleagues at the Jet Propulsion Laboratory. We also thank the NCCS at GSFC for computational resources. Jean-Paul Boy is currently visiting NASA Goddard Space Flight Center, with a Marie Curie International Outgoing Fellowship (PIOF-GA-2008-221753). We would like to thank three anonymous reviewers and the Associate Editor for their useful insights and suggestions. NR 36 TC 23 Z9 23 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD NOV 10 PY 2010 VL 115 AR B11403 DI 10.1029/2010JB007533 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 680HO UT WOS:000284223200001 ER PT J AU Chevallier, F Ciais, P Conway, TJ Aalto, T Anderson, BE Bousquet, P Brunke, EG Ciattaglia, L Esaki, Y Frohlich, M Gomez, A Gomez-Pelaez, AJ Haszpra, L Krummel, PB Langenfelds, RL Leuenberger, M Machida, T Maignan, F Matsueda, H Morgui, JA Mukai, H Nakazawa, T Peylin, P Ramonet, M Rivier, L Sawa, Y Schmidt, M Steele, LP Vay, SA Vermeulen, AT Wofsy, S Worthy, D AF Chevallier, F. Ciais, P. Conway, T. J. Aalto, T. Anderson, B. E. Bousquet, P. Brunke, E. G. Ciattaglia, L. Esaki, Y. Froehlich, M. Gomez, A. Gomez-Pelaez, A. J. Haszpra, L. Krummel, P. B. Langenfelds, R. L. Leuenberger, M. Machida, T. Maignan, F. Matsueda, H. Morgui, J. A. Mukai, H. Nakazawa, T. Peylin, P. Ramonet, M. Rivier, L. Sawa, Y. Schmidt, M. Steele, L. P. Vay, S. A. Vermeulen, A. T. Wofsy, S. Worthy, D. TI CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TRANSPORT; MODEL; INVERSION; LAND AB This paper documents a global Bayesian variational inversion of CO2 surface fluxes during the period 1988-2008. Weekly fluxes are estimated on a 3.75 degrees x 2.5 degrees (longitude-latitude) grid throughout the 21 years. The assimilated observations include 128 station records from three large data sets of surface CO2 mixing ratio measurements. A Monte Carlo approach rigorously quantifies the theoretical uncertainty of the inverted fluxes at various space and time scales, which is particularly important for proper interpretation of the inverted fluxes. Fluxes are evaluated indirectly against two independent CO2 vertical profile data sets constructed from aircraft measurements in the boundary layer and in the free troposphere. The skill of the inversion is evaluated by the improvement brought over a simple benchmark flux estimation based on the observed atmospheric growth rate. Our error analysis indicates that the carbon budget from the inversion should be more accurate than the a priori carbon budget by 20% to 60% for terrestrial fluxes aggregated at the scale of subcontinental regions in the Northern Hemisphere and over a year, but the inversion cannot clearly distinguish between the regional carbon budgets within a continent. On the basis of the independent observations, the inversion is seen to improve the fluxes compared to the benchmark: the atmospheric simulation of CO2 with the Bayesian inversion method is better by about 1 ppm than the benchmark in the free troposphere, despite possible systematic transport errors. The inversion achieves this improvement by changing the regional fluxes over land at the seasonal and at the interannual time scales. C1 [Chevallier, F.; Ciais, P.; Bousquet, P.; Maignan, F.; Peylin, P.; Ramonet, M.; Rivier, L.; Schmidt, M.] CEA CNRS UVSQ, Lab Sci Climat & Environm, IPSL, F-91191 Gif Sur Yvette, France. [Conway, T. J.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Aalto, T.] Finnish Meteorol Inst, FI-00101 Helsinki, Finland. [Anderson, B. E.; Vay, S. A.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Brunke, E. G.] S African Weather Serv, ZA-7599 Stellenbosch, South Africa. [Ciattaglia, L.] ICES CNR IDAC, I-00133 Rome, Italy. [Esaki, Y.] Japan Meteorol Agcy, Chiyoda Ku, Tokyo 1008122, Japan. [Froehlich, M.] Umweltbundesamt GmbH, A-1090 Vienna, Austria. [Gomez, A.] Natl Inst Water & Atmospher Res, Wellington 6021, New Zealand. [Gomez-Pelaez, A. J.] Meteorol State Agcy Spain, E-38071 Santa Cruz De Tenerife, Spain. [Haszpra, L.] Hungarian Meteorol Serv, H-1675 Budapest, Hungary. [Krummel, P. B.; Langenfelds, R. L.; Steele, L. P.] CSIRO Marine & Atmospher Res, Ctr Australian Weather & Climate Res, Aspendale, Vic 3195, Australia. [Leuenberger, M.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Leuenberger, M.] Univ Bern, Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland. [Machida, T.; Mukai, H.] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Matsueda, H.; Sawa, Y.] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Morgui, J. A.] Lab Recerca Clima, E-08028 Barcelona, Spain. [Nakazawa, T.] Tohoku Univ, Sendai, Miyagi 9818555, Japan. [Vermeulen, A. T.] Energy Res Ctr Netherlands, NL-1755 ZG Petten, Netherlands. [Wofsy, S.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Worthy, D.] Environm Canada, Downsview, ON M3H 5T4, Canada. RP Chevallier, F (reprint author), CEA CNRS UVSQ, Lab Sci Climat & Environm, IPSL, Bat 701, F-91191 Gif Sur Yvette, France. EM frederic.chevallier@lsce.ipsl.fr RI Gomez-Pelaez, Angel/L-9268-2015; Vuichard, Nicolas/A-6629-2011; Steele, Paul/B-3185-2009; Chevallier, Frederic/E-9608-2016; Leuenberger, Markus/K-9655-2016; Langenfelds, Raymond/B-5381-2012; Krummel, Paul/A-4293-2013; Maignan, Fabienne/F-5419-2013; Aalto, Tuula/P-6183-2014; Vermeulen, Alex/A-2867-2015 OI Gomez-Pelaez, Angel/0000-0003-4881-2975; Steele, Paul/0000-0002-8234-3730; Chevallier, Frederic/0000-0002-4327-3813; Leuenberger, Markus/0000-0003-4299-6793; Krummel, Paul/0000-0002-4884-3678; Aalto, Tuula/0000-0002-3264-7947; Vermeulen, Alex/0000-0002-8158-8787 FU GENCI- (CCRT/CINES/IDRIS) [2009- t2009012201]; European Commission [212196, 218793] FX This work was performed using HPC resources from GENCI- (CCRT/CINES/IDRIS; grant 2009- t2009012201). It was cofunded by the European Commission under the EU Seventh Research Framework Programme (grant agreements 212196, COCOS, and 218793, MACC). The authors are very grateful to the many people involved in the surface and aircraft measurement and in the archiving of these data. All PIs have been contacted and were offered coauthorship. The authors also acknowledge the fruitful discussions with Peter Rayner and Fran ois-Marie Breon (LSCE) about many aspects related to this study and the constructive comments made by three anonymous reviewers. NR 35 TC 85 Z9 85 U1 3 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 9 PY 2010 VL 115 AR D21307 DI 10.1029/2010JD013887 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 680FZ UT WOS:000284219100003 ER PT J AU Li, LM Conrath, BJ Gierasch, PJ Achterberg, RK Nixon, CA Simon-Miller, AA Flasar, FM Banfield, D Baines, KH West, RA Ingersoll, AP Vasavada, AR Del Genio, AD Porco, CC Mamoutkine, AA Segura, ME Bjoraker, GL Orton, GS Fletcher, LN Irwin, PGJ Read, PL AF Li, Liming Conrath, Barney J. Gierasch, Peter J. Achterberg, Richard K. Nixon, Conor A. Simon-Miller, Amy A. Flasar, F. Michael Banfield, Don Baines, Kevin H. West, Robert A. Ingersoll, Andrew P. Vasavada, Ashwin R. Del Genio, Anthony D. Porco, Carolyn C. Mamoutkine, Andrei A. Segura, Marcia E. Bjoraker, Gordon L. Orton, Glenn S. Fletcher, Leigh N. Irwin, Patrick G. J. Read, Peter L. TI Saturn's emitted power SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID FAR-INFRARED SPECTROPHOTOMETRY; ATMOSPHERIC DYNAMICS; MOIST CONVECTION; MAJOR PLANETS; ZONAL FLOW; JUPITER; MODEL; TEMPERATURES; VOYAGER; RINGS AB Long-term (2004-2009) on-orbit observations by Cassini Composite Infrared Spectrometer are analyzed to precisely measure Saturn's emitted power and its meridional distribution. Our evaluations suggest that the average global emitted power is 4.952 +/- 0.035 W m(-2) during the period of 2004-2009. The corresponding effective temperature is 96.67 +/- 0.17 K. The emitted power is 16.6% higher in the Southern Hemisphere than in the Northern Hemisphere. From 2005 to 2009, the global mean emitted power and effective temperature decreased by similar to 2% and similar to 0.5%, respectively. Our study further reveals the interannual variability of emitted power and effective temperature between the epoch of Voyager (similar to 1 Saturn year ago) and the current epoch of Cassini, suggesting changes in the cloud opacity from year to year on Saturn. The seasonal and interannual variability of emitted power implies that the energy balance and internal heat are also varying. C1 [Li, Liming] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. [Achterberg, Richard K.; Nixon, Conor A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Baines, Kevin H.; West, Robert A.; Vasavada, Ashwin R.; Orton, Glenn S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Li, Liming; Conrath, Barney J.; Gierasch, Peter J.; Banfield, Don] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Simon-Miller, Amy A.; Flasar, F. Michael; Bjoraker, Gordon L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Del Genio, Anthony D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Fletcher, Leigh N.; Irwin, Patrick G. J.; Read, Peter L.] Univ Oxford, Oxford OX1 3PU, England. [Ingersoll, Andrew P.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Mamoutkine, Andrei A.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Porco, Carolyn C.] CICLOPS Space Sci Inst, Boulder, CO 80302 USA. [Segura, Marcia E.] QSS Grp Inc, Lanham, MD 20706 USA. RP Li, LM (reprint author), Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. EM lli7@mail.uh.edu RI Fletcher, Leigh/D-6093-2011; Nixon, Conor/A-8531-2009; Flasar, F Michael/C-8509-2012; Del Genio, Anthony/D-4663-2012; Bjoraker, Gordon/D-5032-2012; Simon, Amy/C-8020-2012 OI Fletcher, Leigh/0000-0001-5834-9588; Banfield, Don/0000-0003-2664-0164; Irwin, Patrick/0000-0002-6772-384X; Nixon, Conor/0000-0001-9540-9121; Del Genio, Anthony/0000-0001-7450-1359; Simon, Amy/0000-0003-4641-6186 FU NASA FX NASA Outer Planets Research Program funded this work. We acknowledge Santigo Perez-Hoyos for providing the data of solar flux at the top of Saturn's atmosphere. We are also grateful for valuable comments and suggestions on this work from two anonymous reviewers. NR 50 TC 19 Z9 19 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 9 PY 2010 VL 115 AR E11002 DI 10.1029/2010JE003631 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 680HF UT WOS:000284222300001 ER PT J AU Pechony, O Shindell, DT AF Pechony, O. Shindell, D. T. TI Driving forces of global wildfires over the past millennium and the forthcoming century SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE biomass burning; fire modeling; human-environment interactions; paleoclimate ID CLIMATE-CHANGE; FIRE REGIMES; FOREST-FIRES; GISS MODELE; SIMULATIONS; ECOSYSTEMS; MANAGEMENT; HISTORY; SYSTEM; BUDGET AB Recent bursts in the incidence of large wildfires worldwide have raised concerns about the influence climate change and humans might have on future fire activity. Comparatively little is known, however, about the relative importance of these factors in shaping global fire history. Here we use fire and climate modeling, combined with land cover and population estimates, to gain a better understanding of the forces driving global fire trends. Our model successfully reproduces global fire activity record over the last millennium and reveals distinct regimes in global fire behavior. We find that during the preindustrial period, the global fire regime was strongly driven by precipitation (rather than temperature), shifting to an anthropogenic-driven regime with the Industrial Revolution. Our future projections indicate an impending shift to a temperature-driven global fire regime in the 21st century, creating an unprecedentedly fire-prone environment. These results suggest a possibility that in the future climate will play a considerably stronger role in driving global fire trends, outweighing direct human influence on fire (both ignition and suppression), a reversal from the situation during the last two centuries. C1 [Pechony, O.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. Columbia Univ, New York, NY 10025 USA. RP Pechony, O (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM opechony@giss.nasa.gov RI Shindell, Drew/D-4636-2012 FU NASA FX We sincerely thank Dr. Jennifer Marlon (University of Oregon, Eugene, OR) for sharing with us the charcoal-based reconstruction data. We thank the satellite data teams that created global fire analyses enabling quantitative evaluation of global fire models, and NASA's Modeling and Analysis Program and Applied Sciences Program for supporting this work. NR 31 TC 180 Z9 187 U1 9 U2 92 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 9 PY 2010 VL 107 IS 45 BP 19167 EP 19170 DI 10.1073/pnas.1003669107 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 677MZ UT WOS:000283997800010 PM 20974914 ER PT J AU Li, KF Tian, BJ Waliser, DE Yung, YL AF Li, King-Fai Tian, Baijun Waliser, Duane E. Yung, Yuk L. TI Tropical mid-tropospheric CO2 variability driven by the Madden-Julian oscillation SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE convection; intraseasonal variability; remote sensing ID ATMOSPHERIC CO2; MJO; DIAGNOSTICS; CONVECTION; PACIFIC; CYCLE AB Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas in the present-day climate. Most of the community focuses on its long-term (decadal to centennial) behaviors that are relevant to climate change, but there are relatively few discussions of its higher-frequency forms of variability, and none regarding its subseasonal distribution. In this work, we report a large-scale intraseasonal variation in the Atmospheric Infrared Sounder CO2 data in the global tropical region associated with the Madden-Julian oscillation (MJO). The peak-to-peak amplitude of the composite MJO modulation is similar to 1 ppmv, with a standard error of the composite mean <0.1 ppmv. The correlation structure between CO2 and rainfall and vertical velocity indicate positive (negative) anomalies in CO2 arise due to upward (downward) large-scale vertical motions in the lower troposphere associated with the MJO. These findings can help elucidate how faster processes can organize, transport, and mix CO2 and provide a robustness test for coupled carbon-climate models. C1 [Li, King-Fai; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Tian, Baijun; Waliser, Duane E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Li, KF (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM kfl@gps.caltech.edu RI Tian, Baijun/A-1141-2007 OI Tian, Baijun/0000-0001-9369-2373 FU National Science Foundation (NSF) [ATM-0840787, ATM-0934303, ATM-0840755]; Jet Propulsion Laboratory [P765982]; National Aeronautics and Space Administration FX We thank Dr. Moustafa T. Chahine, Dr. Edward T. Olsen, and Mr. Luke Chen of the AIRS Science Team for providing information on the quality of AIRS data and comments on this work. We also thank Miss Le Kuai, Mr. Michael R. Line, Mr. Da Yang, Dr. Hartmut H. Aumann, Dr. David Crisp, Prof. Andrew P. Ingersoll, Prof. Xun Jiang, Dr. Brian H. Kahn, Dr. Susan S. Kulawik, Dr. Jack S. Margolis, Dr. Run-Lie Shia, Prof. Ka-Kit Tung, Dr. John R. Worden, and two anonymous reviewers for reviewing the manuscript and providing useful comments. This research was supported in part by National Science Foundation (NSF) Grant ATM-0840787 and Grant ATM-0934303 to the California Institute of Technology and NSF Grant ATM-0840755 to University of California, Los Angeles. Y.L.Y. was supported by Jet Propulsion Laboratory Grant P765982 to the California Institute of Technology. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. AIRS Level 3 daily CO2 products were obtained from AIRS Data Server (http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings/by-data-product/AIRX3C 2D). AIRS Level 3 daily H2O products were obtained from AIRS Data Server (http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings/by-data-product/airsL3 _STD_AIRS_AMSU.shtml). NCEP/NCAR reanalysis data used in this study were provided by the NOAA/Office of Oceanic and Atmospheric Research (OAR)/ESRL Physical Sciences Division (PSD) Data Server (http://www.esrl.noaa.gov/psd/data/reanalysis/). ERA-interim reanalysis data used in this study were obtained from the ECMWF Data Server (http://data.ecmwf.int/data/). The NOAA ESRL CO2 data from the Carbon Cycle Cooperative Global Air Sampling Network, 1968-2008, Version 2009-07-15, were obtained from the NOAA FTP server (ftp://ftp.cmdl.noaa.gov/ccg/co2/flask/event/). CONTRAIL data were obtained from the World Meteorological Organization World Data Centre for Greenhouse Gases (http://gaw.kishou.go.jp/cgi-bin/wdcgg/accessdata.cgi). RMM indices were obtained from http://www.cawcr.gov.au/bmrc/clfor/cfstaff/matw/maproom/RMM/. NR 28 TC 29 Z9 29 U1 0 U2 6 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 9 PY 2010 VL 107 IS 45 BP 19171 EP 19175 DI 10.1073/pnas.1008222107 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 677MZ UT WOS:000283997800011 PM 20978207 ER PT J AU Mlynczak, MG Hunt, LA Kozyra, JU Russell, JM AF Mlynczak, Martin G. Hunt, Linda A. Kozyra, Janet U. Russell, James M., III TI Short-term periodic features observed in the infrared cooling of the thermosphere and in solar and geomagnetic indexes from 2002 to 2009 SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE thermosphere; energy balance; solar-terrestrial coupling; infrared cooling ID SABER EXPERIMENT AB We report derivations of short-term periodic features observed in time series of the radiative cooling of the Earth's thermosphere. In particular, we diagnose observations of the infrared emission from nitric oxide (NO) at 5.3 mu m to reveal periodicities equal to the solar rotation period (27 days) and its next three harmonics. From 2002 to 2009 we observe 27 day, 13.5 day, 9 day and (occasionally) 6.75 day periods in the thermospheric NO cooling, the solar wind speed and the K-p geomagnetic index. Periodic features shorter than 27 days are absent in the time series of the 10.7 cm radio flux (F10.7) over this same time period. The periodic features in the NO cooling are found to occur throughout the depth of the thermosphere and are strongest at high latitudes. These results confirm the persistent coupling between the solar corona, the solar wind and the energy budget of the thermosphere. C1 [Mlynczak, Martin G.] NASA, Sci Directorate, Climate Sci Branch, Langley Res Ctr, Hampton, VA 23681 USA. [Hunt, Linda A.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Kozyra, Janet U.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Russell, James M., III] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. RP Mlynczak, MG (reprint author), NASA, Sci Directorate, Climate Sci Branch, Langley Res Ctr, Hampton, VA 23681 USA. EM m.g.mlynczak@nasa.gov RI Mlynczak, Martin/K-3396-2012 NR 12 TC 15 Z9 15 U1 0 U2 4 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 EI 1471-2946 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD NOV 8 PY 2010 VL 466 IS 2123 BP 3409 EP 3419 DI 10.1098/rspa.2010.0077 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 654BK UT WOS:000282142900016 ER PT J AU Yu, SS Pearson, JC Drouin, BJ Sung, K Pirali, O Vervloet, M Martin-Drumel, MA Endres, CP Shiraishi, T Kobayashi, K Matsushima, F AF Yu, Shanshan Pearson, John C. Drouin, Brian J. Sung, Keeyoon Pirali, Olivier Vervloet, Michel Martin-Drumel, Marie-Aline Endres, Christian P. Shiraishi, Tetsuro Kobayashi, Kaori Matsushima, Fusakazu TI Submillimeter-wave and far-infrared spectroscopy of high-J transitions of the ground and nu(2)=1 states of ammonia SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MICROWAVE 2-PHOTON SPECTROSCOPY; LASER HETERODYNE MEASUREMENTS; INVERSION-ROTATION SPECTRA; HYPERFINE-STRUCTURE; MU-M; STARK SPECTROSCOPY; ABSORPTION-SPECTRA; VIBRATIONAL SYSTEM; LINE PARAMETERS; SUB-DOPPLER AB Complete and reliable knowledge of the ammonia spectrum is needed to enable the analysis and interpretation of astrophysical and planetary observations. Ammonia has been observed in the interstellar medium up to J = 18 and more highly excited transitions are expected to appear in hot exoplanets and brown dwarfs. As a result, there is considerable interest in observing and assigning the high J (rovibrational) spectrum. In this work, numerous spectroscopic techniques were employed to study its high J transitions in the ground and nu(2) = 1 states. Measurements were carried out using a frequency multiplied submillimeter spectrometer at Jet Propulsion Laboratory (JPL), a tunable far-infrared spectrometer at University of Toyama, and a high-resolution Bruker IFS 125 Fourier transform spectrometer (FTS) at Synchrotron SOLEIL. Highly excited ammonia was created with a radiofrequency discharge and a dc discharge, which allowed assignments of transitions with J up to 35. One hundred and seventy seven ground state and nu(2) = 1 inversion transitions were observed with microwave accuracy in the 0.3-4.7 THz region. Of these, 125 were observed for the first time, including 26 Delta K = 3 transitions. Over 2000 far-infrared transitions were assigned to the ground state and nu(2) = 1 inversion bands as well as the nu(2) fundamental band. Of these, 1912 were assigned using the FTS data for the first time, including 222 Delta K = 3 transitions. The accuracy of these measurements has been estimated to be 0.0003-0.0006 cm(-1). A reduced root mean square error of 0.9 was obtained for a global fit of the ground and nu(2) = 1 states, which includes the lines assigned in this work and all previously available microwave, terahertz, far-infrared, and mid-infrared data. The new measurements and predictions reported here will support the analyses of astronomical observations by high-resolution spectroscopy telescopes such as Herschel, SOFIA, and ALMA. The comprehensive experimental rovibrational energy levels reported here will permit further refinement of the potential energy surface to improve ammonia ab initio calculations and facilitate assignment of new high-resolution spectra of hot ammonia. (C) 2010 American Institute of Physics. [doi:10.1063/1.3499911] C1 [Yu, Shanshan; Pearson, John C.; Drouin, Brian J.; Sung, Keeyoon] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Pirali, Olivier; Vervloet, Michel; Martin-Drumel, Marie-Aline] Orme Merisiers St Aubin, Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France. [Endres, Christian P.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Shiraishi, Tetsuro; Kobayashi, Kaori; Matsushima, Fusakazu] Toyama Univ, Dept Phys, Toyama 9308555, Japan. [Pirali, Olivier; Martin-Drumel, Marie-Aline] Univ Paris 11, CNRS, Inst Sci Mol Orsay, F-91405 Orsay, France. RP Yu, SS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM shanshan.yu@jpl.nasa.gov RI Yu, Shanshan/D-8733-2016; Sung, Keeyoon/I-6533-2015 FU National Aeronautics and Space Administration FX A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. S.Y. would like to thank Dr. H. Pickett and Dr. L. Brown for helpful suggestions and Dr. I. Kleiner for providing an electronic copy of the 2 nu2 and nu4 line list. O.P. is particularly grateful to D. Balcon for technical assistance and thanks the AILES beamline staff for helpful discussions. NR 66 TC 27 Z9 27 U1 0 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2010 VL 133 IS 17 AR 174317 DI 10.1063/1.3499911 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 676RV UT WOS:000283936200044 PM 21054042 ER PT J AU Ray, EA Moore, FL Rosenlof, KH Davis, SM Boenisch, H Morgenstern, O Smale, D Rozanov, E Hegglin, M Pitari, G Mancini, E Braesicke, P Butchart, N Hardiman, S Li, F Shibata, K Plummer, DA AF Ray, Eric A. Moore, Fred L. Rosenlof, Karen H. Davis, Sean M. Boenisch, Harald Morgenstern, Olaf Smale, Dan Rozanov, Eugene Hegglin, Michaela Pitari, Gianni Mancini, Eva Braesicke, Peter Butchart, Neal Hardiman, Steven Li, Feng Shibata, Kiyotaka Plummer, David A. TI Evidence for changes in stratospheric transport and mixing over the past three decades based on multiple data sets and tropical leaky pipe analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BREWER-DOBSON CIRCULATION; TOTAL OZONE; NORTHERN MIDLATITUDES; 2-DIMENSIONAL MODEL; PINATUBO AEROSOL; GREENHOUSE GASES; AIR; AGE; TEMPERATURE; REANALYSIS AB Variability in the strength of the stratospheric Lagrangian mean meridional or Brewer-Dobson circulation and horizontal mixing into the tropics over the past three decades are examined using observations of stratospheric mean age of air and ozone. We use a simple representation of the stratosphere, the tropical leaky pipe (TLP) model, guided by mean meridional circulation and horizontal mixing changes in several reanalyses data sets and chemistry climate model (CCM) simulations, to help elucidate reasons for the observed changes in stratospheric mean age and ozone. We find that the TLP model is able to accurately simulate multiyear variability in ozone following recent major volcanic eruptions and the early 2000s sea surface temperature changes, as well as the lasting impact on mean age of relatively short-term circulation perturbations. We also find that the best quantitative agreement with the observed mean age and ozone trends over the past three decades is found assuming a small strengthening of the mean circulation in the lower stratosphere, a moderate weakening of the mean circulation in the middle and upper stratosphere, and a moderate increase in the horizontal mixing into the tropics. The mean age trends are strongly sensitive to trends in the horizontal mixing into the tropics, and the uncertainty in the mixing trends causes uncertainty in the mean circulation trends. Comparisons of the mean circulation and mixing changes suggested by the measurements with those from a recent suite of CCM runs reveal significant differences that may have important implications on the accurate simulation of future stratospheric climate. C1 [Ray, Eric A.; Moore, Fred L.; Rosenlof, Karen H.; Davis, Sean M.] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA. [Boenisch, Harald] Goethe Univ Frankfurt, Inst Atmospher & Environm Sci, D-60438 Frankfurt, Germany. [Braesicke, Peter] Univ Cambridge, Natl Ctr Atmospher Sci Climate Chem, Ctr Atmospher Sci, Cambridge CB2 1EW, England. [Butchart, Neal; Hardiman, Steven] Hadley Ctr, Met Off, Exeter EX1 3PB, Devon, England. [Hegglin, Michaela] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Li, Feng] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Pitari, Gianni; Mancini, Eva] Univ Aquila, I-67100 Laquila, Italy. [Plummer, David A.] Environm Canada, Canadian Ctr Climate Modelling & Anal, Gatineau, PQ K1A OH3, Canada. [Rozanov, Eugene] World Radiat Ctr, Phys Meteorol Observ, CH-7260 Davos, Dorf, Switzerland. [Shibata, Kiyotaka] Meteorol Res Inst, Tsukuba, Ibaraki 5020052, Japan. [Morgenstern, Olaf; Smale, Dan] Natl Inst Water & Atmospher Res Ltd, Omakau, New Zealand. [Ray, Eric A.; Moore, Fred L.; Davis, Sean M.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Rozanov, Eugene] Swiss Fed Inst Technol, Zurich, Switzerland. RP Ray, EA (reprint author), NOAA, Div Chem Sci, Earth Syst Res Lab, 325 Broadway, Boulder, CO 80305 USA. EM eric.ray@noaa.gov RI Manager, CSD Publications/B-2789-2015; Rozanov, Eugene/A-9857-2012; Davis, Sean/C-9570-2011; Li, Feng/H-2241-2012; Ray, Eric/D-5941-2013; Rosenlof, Karen/B-5652-2008; Braesicke, Peter/D-8330-2016; Pitari, Giovanni/O-7458-2016; Hegglin, Michaela/D-7528-2017 OI Mancini, Eva/0000-0001-7071-0292; Morgenstern, Olaf/0000-0002-9967-9740; Rozanov, Eugene/0000-0003-0479-4488; Davis, Sean/0000-0001-9276-6158; Ray, Eric/0000-0001-8727-9849; Rosenlof, Karen/0000-0002-0903-8270; Braesicke, Peter/0000-0003-1423-0619; Pitari, Giovanni/0000-0001-7051-9578; Hegglin, Michaela/0000-0003-2820-9044 FU NOAA ACCP; National Science Foundation (NSF); DECC/Defra [GA01101] FX This work was supported by the NOAA ACCP program. We appreciate the public availability of the JRA-25 output (obtained from http://dss.ucar.edu/datasets/ds625.0/) and the NCEP/NCAR Reanalysis (obtained from the NOAA ESRL Physical Sciences Division, http://www.cdc.noaa.gov). The ERA-40 data for this study are from the Research Data Archive (RDA), which is maintained by the Computational and Information Systems Laboratory (CISL) at the National Center for Atmospheric Research (NCAR). NCAR is sponsored by the National Science Foundation (NSF). The original ERA-40 data are available from the RDA (http://dss.ucar.edu) in data set ds117.3. The contributions of Neal Butchart and Steven Hardiman were support by the Joint DECC and Defra Integrated Climate Programme, DECC/Defra (GA01101). We also thank Emily Shuckburgh for providing the code to calculate effective diffusivity. NR 64 TC 38 Z9 38 U1 1 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 6 PY 2010 VL 115 AR D21304 DI 10.1029/2010JD014206 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 676VD UT WOS:000283945900003 ER PT J AU Thompson, AM MacFarlane, AM Morris, GA Yorks, JE Miller, SK Taubman, BF Verver, G Vomel, H Avery, MA Hair, JW Diskin, GS Browell, EV Canossa, JV Kucsera, TL Klich, CA Hlavka, DL AF Thompson, Anne M. MacFarlane, Alaina M. Morris, Gary A. Yorks, John E. Miller, Sonya K. Taubman, Brett F. Verver, Ge Voemel, Holger Avery, Melody A. Hair, Johnathan W. Diskin, Glenn S. Browell, Edward V. Valverde Canossa, Jessica Kucsera, Tom L. Klich, Christopher A. Hlavka, Dennis L. TI Convective and wave signatures in ozone profiles over the equatorial Americas: Views from TC4 2007 and SHADOZ SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPOSPHERIC OZONE; TROPICAL ATLANTIC; SEASONAL EVOLUTION; INDUCED LAMINAE; WATER-VAPOR; PACIFIC; OZONESONDES; VARIABILITY; HEMISPHERE; CLIMATOLOGY AB During the TC4 (Tropical Composition, Clouds, and Climate Coupling) campaign in July-August 2007, daily ozonesondes were launched over coastal Las Tablas, Panama (7.8 degrees N, 80 degrees W) and several times per week at Alajuela, Costa Rica (10 degrees N, 84 degrees W). Wave activity, detected most prominently in 100-300 m thick ozone laminae in the tropical tropopause layer, occurred in 50% (Las Tablas) and 40% (Alajuela) of the soundings. These layers, associated with vertical displacements and classified as gravity waves (GW, possibly Kelvin waves) by laminar identification, occur with similar structure and frequency over the Paramaribo (5.8 degrees N, 55 degrees W) and San Cristobal (0.92 degrees S, 90 degrees W) Southern Hemisphere Additional Ozonesondes (SHADOZ) sites. GW-labeled laminae in individual soundings correspond to cloud outflow as indicated by DC-8 tracers and other aircraft data, confirming convective initiation of equatorial waves. Layers representing quasi-horizontal displacements, referred to as Rossby waves by the laminar technique, are robust features in soundings from 23 July to 5 August. The features associated with Rossby waves correspond to extratropical influence, possibly stratospheric, and sometimes to pollution transport. Comparison of Las Tablas and Alajuela ozone budgets with 1999-2007 Paramaribo and San Cristobal soundings shows that TC4 is typical of climatology for the equatorial Americas. Overall during TC4, convection and associated waves appear to dominate ozone transport in the tropical tropopause layer; intrusions from the extratropics occur throughout the free troposphere. C1 [Thompson, Anne M.; MacFarlane, Alaina M.; Yorks, John E.; Miller, Sonya K.; Klich, Christopher A.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Morris, Gary A.] Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA. [Taubman, Brett F.] Appalachian State Univ, Dept Chem, Boone, NC 28608 USA. [Verver, Ge] Royal Dutch Meteorol Inst, NL-3730 AE De Bilt, Netherlands. [Voemel, Holger] GRUAN Lead Ctr, Meteorol Observ Lindenberg Richard Assman, Deutsch Wetterdienst, D-15848 Lindenberg, Germany. [Yorks, John E.; Hlavka, Dennis L.] SSAI, Lanham, MD USA. [Avery, Melody A.; Hair, Johnathan W.; Diskin, Glenn S.; Browell, Edward V.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Yorks, John E.; Kucsera, Tom L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Valverde Canossa, Jessica] Univ Nacl, Lab Anal Ambiental, Escuela Ciencias Ambientales, Heredia, Costa Rica. [Kucsera, Tom L.] Univ Maryland, GEST, Baltimore, MD 21201 USA. RP Thompson, AM (reprint author), Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA. EM amt16@met.psu.edu RI Thompson, Anne /C-3649-2014 OI Thompson, Anne /0000-0002-7829-0920 FU NASA; Aura Validation; NOAA; SHADOZ at Costa Rica; San Cristobal; KNMI; Suriname Meteorological Department FX We are grateful to NASA's Upper Air Research Program and Aura Validation (M.J. Kurylo and K. W. Jucks) that sponsored the Las Tablas and Alajuela TC4 soundings and ground-based measurements at Las Tablas. These programs, with NOAA support, also sponsor SHADOZ at Costa Rica and San Cristobal. The Paramaribo station is sponsored by KNMI and the Suriname Meteorological Department. Additional analysis support came from NASA's Tropospheric Chemistry Program (J. H. Crawford and J. A. Al-Saadi). Las Tablas measurements with the NATIVE trailer were assisted by A. Pino and L. Jordan (University of Panama), A. M. Bryan and D. Lutz (Valparaiso Univ), and Z. Chen and J. L. Tharp (PSU). Costa Rican launches were made by UNA students K. Cerna, V. H. Beita, and D. Gonzalez. We thank Mission Scientists M. R. Schoeberl and P. A. Newman for flight notes and K. E. Pickering for discussing lightning data. We also thank EAB, BvdW, AOG (PSU) for analysis. NR 55 TC 15 Z9 15 U1 1 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 6 PY 2010 VL 115 AR D00J23 DI 10.1029/2009JD012909 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 676VD UT WOS:000283945900001 ER PT J AU Cermak, J Wild, M Knutti, R Mishchenko, MI Heidinger, AK AF Cermak, Jan Wild, Martin Knutti, Reto Mishchenko, Michael I. Heidinger, Andrew K. TI Consistency of global satellite-derived aerosol and cloud data sets with recent brightening observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID RETRIEVALS; RADIATION; TRENDS AB Solar radiation at the Earth surface has increased over land and ocean since about 1990 ('global brightening'). An analysis of various global (ocean only) aerosol and (global) cloud data sets from geostationary and polar orbiting satellites is performed to determine whether changes in these quantities have occurred in accordance with 'global brightening', and to analyse the global distribution of these changes. Change-point detection and trend analysis are employed in the analysis. In a period from the mid-1980s to the mid-2000s, aerosol optical depth is found to have started declining in the early 1990s, while cloud data sets do not agree on trends. Angstrom exponent data seem to suggest changes in pollution. Citation: Cermak, J., M. Wild, R. Knutti, M. I. Mishchenko, and A. K. Heidinger (2010), Consistency of global satellite-derived aerosol and cloud data sets with recent brightening observations, Geophys. Res. Lett., 37, L21704, doi: 10.1029/2010GL044632. C1 [Cermak, Jan; Wild, Martin; Knutti, Reto] ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland. [Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Heidinger, Andrew K.] NOAA, NESDIS Ctr Satellite Applicat & Res, Madison, WI 53706 USA. RP Cermak, J (reprint author), ETH, Inst Atmospher & Climate Sci, Univ Str 16, CH-8092 Zurich, Switzerland. EM jan.cermak@env.ethz.ch RI Wild, Martin/J-8977-2012; Knutti, Reto/B-8763-2008; Cermak, Jan/B-7844-2009; Heidinger, Andrew/F-5591-2010; Mishchenko, Michael/D-4426-2012 OI Knutti, Reto/0000-0001-8303-6700; Cermak, Jan/0000-0002-4240-595X; Heidinger, Andrew/0000-0001-7631-109X; NR 18 TC 31 Z9 31 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 5 PY 2010 VL 37 AR L21704 DI 10.1029/2010GL044632 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 676TT UT WOS:000283942200001 ER PT J AU Austin, J Struthers, H Scinocca, J Plummer, DA Akiyoshi, H Baumgaertner, AJG Bekki, S Bodeker, GE Braesicke, P Bruhl, C Butchart, N Chipperfield, MP Cugnet, D Dameris, M Dhomse, S Frith, S Garny, H Gettelman, A Hardiman, SC Jockel, P Kinnison, D Kubin, A Lamarque, JF Langematz, U Mancini, E Marchand, M Michou, M Morgenstern, O Nakamura, T Nielsen, JE Pitari, G Pyle, J Rozanov, E Shepherd, TG Shibata, K Smale, D Teyssedre, H Yamashita, Y AF Austin, John Struthers, H. Scinocca, J. Plummer, D. A. Akiyoshi, H. Baumgaertner, A. J. G. Bekki, S. Bodeker, G. E. Braesicke, P. Bruehl, C. Butchart, N. Chipperfield, M. P. Cugnet, D. Dameris, M. Dhomse, S. Frith, S. Garny, H. Gettelman, A. Hardiman, S. C. Joeckel, P. Kinnison, D. Kubin, A. Lamarque, J. F. Langematz, U. Mancini, E. Marchand, M. Michou, M. Morgenstern, O. Nakamura, T. Nielsen, J. E. Pitari, G. Pyle, J. Rozanov, E. Shepherd, T. G. Shibata, K. Smale, D. Teyssedre, H. Yamashita, Y. TI Chemistry-climate model simulations of spring Antarctic ozone SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MIDDLE ATMOSPHERE; STRATOSPHERIC CHEMISTRY; POLAR STRATOSPHERE; TECHNICAL NOTE; DEPLETION; TRANSPORT; TRENDS; IMPACT; SENSITIVITY; SURFACE AB Coupled chemistry-climate model simulations covering the recent past and continuing throughout the 21st century have been completed with a range of different models. Common forcings are used for the halogen amounts and greenhouse gas concentrations, as expected under the Montreal Protocol (with amendments) and Intergovernmental Panel on Climate Change A1b Scenario. The simulations of the Antarctic ozone hole are compared using commonly used diagnostics: the minimum ozone, the maximum area of ozone below 220 DU, and the ozone mass deficit below 220 DU. Despite the fact that the processes responsible for ozone depletion are reasonably well understood, a wide range of results is obtained. Comparisons with observations indicate that one of the reasons for the model underprediction in ozone hole area is the tendency for models to underpredict, by up to 35%, the area of low temperatures responsible for polar stratospheric cloud formation. Models also typically have species gradients that are too weak at the edge of the polar vortex, suggesting that there is too much mixing of air across the vortex edge. Other models show a high bias in total column ozone which restricts the size of the ozone hole (defined by a 220 DU threshold). The results of those models which agree best with observations are examined in more detail. For several models the ozone hole does not disappear this century but a small ozone hole of up to three million square kilometers continues to occur in most springs even after 2070. C1 [Austin, John] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. [Austin, John] Univ Corp Atmospher Res, Boulder, CO USA. [Struthers, H.] Univ Stockholm, Dept Appl Environm Sci, SE-10691 Stockholm, Sweden. [Scinocca, J.] Univ Victoria, CCCMA, Victoria, BC V8W 3V6, Canada. [Plummer, D. A.] Environm Canada, Sci & Technol Branch, Toronto, ON M3H 5T4, Canada. [Akiyoshi, H.; Nakamura, T.; Yamashita, Y.] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Baumgaertner, A. J. G.; Bruehl, C.; Joeckel, P.] Max Planck Inst Chem, D-55020 Mainz, Germany. [Bekki, S.; Cugnet, D.; Marchand, M.] INSU, CNRS, UPMC, LATMOS,IPSL,UVSQ, F-75231 Paris, France. [Bodeker, G. E.] Bodeker Sci, Alexandra, New Zealand. [Braesicke, P.; Pyle, J.] Univ Cambridge, Dept Chem, Ctr Atmospher Sci, NCAS Climate Chem, Cambridge CB2 1EW, England. [Butchart, N.; Hardiman, S. C.] Hadley Ctr, Met Off, Exeter EX1 3PB, Devon, England. [Chipperfield, M. P.; Dhomse, S.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Dameris, M.; Garny, H.] Inst Phys Atmosphare, Deutsch Zentrum Luft & Raumfahrt, D-82234 Wessling, Germany. [Frith, S.; Nielsen, J. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Frith, S.; Nielsen, J. E.] Sci Syst & Applicat Inc, Beltsville, MD USA. [Gettelman, A.; Kinnison, D.; Lamarque, J. F.] NCAR, Boulder, CO 80305 USA. [Kubin, A.; Langematz, U.] Freie Univ, Inst Meteorol, D-12165 Berlin, Germany. [Mancini, E.; Pitari, G.] Univ Aquila, Dipartimento Fis, I-67100 Laquila, Italy. [Michou, M.; Teyssedre, H.] Meteo France, CNRM, GAME, F-31057 Toulouse, France. [Morgenstern, O.; Smale, D.] Natl Inst Water & Atmospher Res, Lauder 9352, Omakau, New Zealand. [Rozanov, E.] World Radiat Ctr, Phys Meteorol Observ, CH-7260 Davos, Switzerland. [Rozanov, E.] ETH, Zurich, Switzerland. [Shepherd, T. G.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Shibata, K.] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. RP Austin, J (reprint author), NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. EM john.austin@noaa.gov RI Jockel, Patrick/C-3687-2009; Dhomse, Sandip/C-8198-2011; Rozanov, Eugene/A-9857-2012; Baumgaertner, Andreas/C-4830-2011; Chipperfield, Martyn/H-6359-2013; Lamarque, Jean-Francois/L-2313-2014; bekki, slimane/J-7221-2015; Nakamura, Tetsu/M-7914-2015; Braesicke, Peter/D-8330-2016; Pitari, Giovanni/O-7458-2016; OI Morgenstern, Olaf/0000-0002-9967-9740; Jockel, Patrick/0000-0002-8964-1394; Dhomse, Sandip/0000-0003-3854-5383; Rozanov, Eugene/0000-0003-0479-4488; Baumgaertner, Andreas/0000-0002-4740-0701; Chipperfield, Martyn/0000-0002-6803-4149; Lamarque, Jean-Francois/0000-0002-4225-5074; bekki, slimane/0000-0002-5538-0800; Nakamura, Tetsu/0000-0002-2056-7392; Braesicke, Peter/0000-0003-1423-0619; Pitari, Giovanni/0000-0001-7051-9578; Mancini, Eva/0000-0001-7071-0292 FU Ministry of the Environment of Japan [A-071]; CFCAS through the C-SPARC; New Zealand Foundation for Research, Science and Technology [C01X070]; NERC; DECC/Defra [GA01101]; European Commission FX CCSRNIES research was supported by the Global Environmental Research Fund of the Ministry of the Environment of Japan (A-071). The MRI and CCSRNIES simulations were completed with the supercomputer at the National Institute for Environmental Studies, Japan. CMAM simulations were supported by CFCAS through the C-SPARC project. The computer time for the EMAC-FUB simulation at ECMWF was provided by the German Weather Service. The Niwa-SOCOL and UMETRAC simulations were supported by the New Zealand Foundation for Research, Science and Technology under contract C01X070. The UMSLIMCAT work was supported by NERC. The contribution of the Met Office Hadley Centre was supported by the Joint DECC and Defra Integrated Climate Programme, DECC/Defra (GA01101). The scientific work of the European CCM groups was supported by the European Commission through the project SCOUT-O3 under the 6th Framework Programme. J.A.'s research was administered by the University Corporation for Atmospheric Research at the NOAA Geophysical Fluid Dynamics Laboratory. John Wilson and Rolando Garcia provided useful comments on the paper. We acknowledge the Chemistry-Climate Model Validation (CCMVal) Activity for WCRP's (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) project for organizing and coordinating the model data analysis activity and the British Atmospheric Data Center (BADC) for collecting and archiving the CCMVal model output. NR 55 TC 27 Z9 28 U1 0 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 5 PY 2010 VL 115 AR D00M11 DI 10.1029/2009JD013577 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 676VA UT WOS:000283945500005 ER PT J AU Veselovskii, I Dubovik, O Kolgotin, A Lapyonok, T Di Girolamo, P Summa, D Whiteman, DN Mishchenko, M Tanre, D AF Veselovskii, I. Dubovik, O. Kolgotin, A. Lapyonok, T. Di Girolamo, P. Summa, D. Whiteman, D. N. Mishchenko, M. Tanre, D. TI Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID AEROSOL OPTICAL-PROPERTIES; SPECTRAL-RESOLUTION LIDAR; SKY RADIANCE MEASUREMENTS; TO-BACKSCATTER RATIO; SAHARAN DUST; RAMAN LIDAR; LIGHT-SCATTERING; RADIATIVE PROPERTIES; SOUTHERN MOROCCO; RELATIVE-HUMIDITY AB Multiwavelength (MW) Raman lidars have demonstrated their potential to profile particle parameters; however, until now, the physical models used in retrieval algorithms for processing MW lidar data have been predominantly based on the Mie theory. This approach is applicable to the modeling of light scattering by spherically symmetric particles only and does not adequately reproduce the scattering by generally nonspherical desert dust particles. Here we present an algorithm based on a model of randomly oriented spheroids for the inversion of multiwavelength lidar data. The aerosols are modeled as a mixture of two aerosol components: one composed only of spherical and the second composed of nonspherical particles. The nonspherical component is an ensemble of randomly oriented spheroids with size-independent shape distribution. This approach has been integrated into an algorithm retrieving aerosol properties from the observations with a Raman lidar based on a tripled Nd:YAG laser. Such a lidar provides three backscattering coefficients, two extinction coefficients, and the particle depolarization ratio at a single or multiple wavelengths. Simulations were performed for a bimodal particle size distribution typical of desert dust particles. The uncertainty of the retrieved particle surface, volume concentration, and effective radius for 10% measurement errors is estimated to be below 30%. We show that if the effect of particle nonsphericity is not accounted for, the errors in the retrieved aerosol parameters increase notably. The algorithm was tested with experimental data from a Saharan dust outbreak episode, measured with the BASIL multiwavelength Raman lidar in August 2007. The vertical profiles of particle parameters as well as the particle size distributions at different heights were retrieved. It was shown that the algorithm developed provided substantially reasonable results consistent with the available independent information about the observed aerosol event. C1 [Veselovskii, I.; Kolgotin, A.] Phys Instrumentat Ctr, Troitsk 142190, Moscow Region, Russia. [Dubovik, O.; Lapyonok, T.; Tanre, D.] Univ Lille 1, CNRS, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France. [Di Girolamo, P.; Summa, D.] Univ Basilicata, DIFA, I-85100 Potenza, Italy. [Whiteman, D. N.] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Branch, Greenbelt, MD 20771 USA. [Mishchenko, M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Veselovskii, I (reprint author), Phys Instrumentat Ctr, Troitsk 142190, Moscow Region, Russia. EM igorv@pic.troitsk.ru; dubovik@loa.univ-lille1.fr; digirolamo@unibas.it; david.n.whiteman@nasa.gov RI Dubovik, Oleg/A-8235-2009; Mishchenko, Michael/D-4426-2012 OI Dubovik, Oleg/0000-0003-3482-6460; NR 65 TC 42 Z9 44 U1 0 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 5 PY 2010 VL 115 AR D21203 DI 10.1029/2010JD014139 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 676VA UT WOS:000283945500007 ER PT J AU Wang, X Horanyi, M Robertson, S AF Wang, X. Horanyi, M. Robertson, S. TI Investigation of dust transport on the lunar surface in a laboratory plasma with an electron beam SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article AB [1] There is much evidence indicating dust levitation and transport on or near the lunar surface. Dust mobilization is likely to be caused by electrostatic forces on charged lunar dust particles. We describe a series of experiments in which a small dust patch is placed on an electrically floating graphite surface in plasma. The effects of an electron beam on electric fields above/across the dust surface are studied for understanding the mechanism leading to dust transport. When the electron beam current is comparable to the Bohm ion current and the beam energy is sufficiently large, there is a large potential difference between the dust surface and the graphite surface, which creates a horizontal electric field that leads to dust mobilization. The vertical electric field in the sheath above the dust surface also increases at about an order of magnitude, significantly increasing the dust release rate. Differing secondary electron yields of the graphite surface and the dust patch play an important role in the enhancement of the electric fields. Imaging of JSC-Mars-1 dust placed on the graphite surface shows spreading of the dust and deposition on the top of an adjacent insulating block, indicating both horizontal and vertical dust transport. C1 [Wang, X.; Horanyi, M.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Horanyi, M.; Robertson, S.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Wang, X.; Horanyi, M.; Robertson, S.] NASA, Lunar Sci Inst, Colorado Ctr Lunar Dust & Atmospher Studies, Boulder, CO USA. RP Wang, X (reprint author), Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. EM xu.wang@colorado.edu OI Horanyi, Mihaly/0000-0002-5920-9226 FU NASA [NNX08AY77G]; NASA Lunar Science Institute's Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) FX This work was supported by NASA's LASER program (NNX08AY77G) and NASA Lunar Science Institute's Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS). NR 17 TC 17 Z9 18 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 5 PY 2010 VL 115 AR A11102 DI 10.1029/2010JA015465 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 676WV UT WOS:000283950300004 ER PT J AU Abadie, J Abbott, BP Abbott, R Abernathy, M Accadia, T Acernese, F Adams, C Adhikari, R Ajith, P Allen, B Allen, G Ceron, EA Amin, RS Anderson, SB Anderson, WG Antonucci, F Arain, MA Araya, M Aronsson, M Arun, KG Aso, Y Aston, S Astone, P Atkinson, DE Aufmuth, P Aulbert, C Babak, S Baker, P Ballardin, G Ballinger, T Ballmer, S Barker, D Barnum, S Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauchrowitz, J Bauer, TS Behnke, B Beker, MG Belletoile, A Benacquista, M Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bigotta, S Bilenko, IA Billingsley, G Birch, J Birindelli, S Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Boccara, C Bock, O Bodiya, TP Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Bose, S Bosi, L Bouhou, B Boyle, M Braccini, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Breyer, J Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Budzynski, R Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Burmeister, O Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cain, J Calloni, E Camp, JB Campagna, E Campsie, P Cannizzo, J Cannon, KC Canuel, B Cao, J Capano, C Carbognani, F Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chelkowski, S Chen, Y Chincarini, A Christensen, N Chua, SSY Chung, CTY Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TR Cornish, N Corsi, A Costa, CA Coulon, JP Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Das, K Dattilo, V Daudert, B Davier, M Davies, G Davis, A Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Degallaix, J del Prete, M Dergachev, V DeRosa, R DeSalvo, R Devanka, P Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Dorsher, S Douglas, ESD Drago, M Drever, RWP Driggers, JC Dueck, J Dumas, JC Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Ely, G Engel, R Etzel, T Evans, M Evans, T Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flanigan, M Flasch, K Foley, S Forrest, C Forsi, E Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fulda, P Fyffe, M Galimberti, M Gammaitoni, L Garofoli, JA Garufi, F Gemme, G Genin, E Gennai, A Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gill, C Goetz, E Goggin, LM Gonzalez, G Goler, S Gouaty, R Graef, C Granata, M Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Gustafson, EK Gustafson, R Hage, B Hall, P Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Hayau, JF Hayler, T Heefner, J Heitmann, H Hello, P Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Howell, E Hoyland, D Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Jaranowski, P Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khazanov, EA Kim, H King, PJ Kinzel, DL Kissel, JS Klimenko, S Kondrashov, V Kopparapu, R Koranda, S Kowalska, I Kozak, D Krause, T Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kullman, J Kumar, R Kwee, P Landry, M Lang, M Lantz, B Lastzka, N Lazzarini, A Leaci, P Leong, J Leonor, I Leroy, N Letendre, N Li, J Li, TGF Lin, H Lindquist, PE Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lu, P Luan, J Lubinski, M Lucianetti, A Luck, H Lundgren, A Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Majorana, E Mak, C Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIvor, G McKechan, DJA Meadors, G Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Menendez, DF Mercer, RA Merill, L Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mino, Y Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreau, J Moreno, G Morgado, N Morgia, A Mors, K Mosca, S Moscatelli, V Mossavi, K Mours, B MowLowry, C Mueller, G Mukherjee, S Mullavey, A Ller-Ebhardt, HM Munch, J Murray, PG Nash, T Nawrodt, R Nelson, J Neri, I Newton, G Nishida, E Nishizawa, A Nocera, F Nolting, D Ochsner, E O'Dell, J Ogin, GH Oldenburg, RG O'Reilly, B O'Shaughnessy, R Osthelder, C Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Pardi, S Pareja, M Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pathak, D Pedraza, M Pekowsky, L Penn, S Peralta, C Perreca, A Persichetti, G Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Postiglione, F Prato, M Predoi, V Price, LR Prijatelj, M Principe, M Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabeling, DS Radke, T Radkins, H Raffai, P Rakhmanov, M Rankins, B Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rover, C Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sakata, S Sakosky, M Salemi, F Sammut, L de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Santostasi, G Saraf, S Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shaddock, D Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Sintes, AM Skelton, G Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Speirits, FC Sperandio, L Stein, AJ Stein, LC Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Ring, A Titsler, C Tokmakov, KV Toncelli, A Tonelli, M Torre, O Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Trias, M Trummer, J Tseng, K Turner, L Ugolini, D Urbanek, K Vahlbruch, H Vaishnav, B Vajente, G Vallisneri, M van den Brand, JFJ Van Den Broeck, C van der Putten, S van der Sluys, MV van Veggel, AA Vass, S Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, A Vinet, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Wanner, A Ward, RL Was, M Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Wilkinson, C Willems, PA Williams, L Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yeaton-Massey, D Yoshida, S Yu, PP Yvert, M Zanolin, M Zhang, L Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adhikari, R. Ajith, P. Allen, B. Allen, G. Ceron, E. Amador Amin, R. S. Anderson, S. B. Anderson, W. G. Antonucci, F. Arain, M. A. Araya, M. Aronsson, M. Arun, K. G. Aso, Y. Aston, S. Astone, P. Atkinson, D. E. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballardin, G. Ballinger, T. Ballmer, S. Barker, D. Barnum, S. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauchrowitz, J. Bauer, Th. S. Behnke, B. Beker, M. G. Belletoile, A. Benacquista, M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bigotta, S. Bilenko, I. A. Billingsley, G. Birch, J. Birindelli, S. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Boccara, C. Bock, O. Bodiya, T. P. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Bose, S. Bosi, L. Bouhou, B. Boyle, M. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Breyer, J. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Budzynski, R. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Burmeister, O. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cain, J. Calloni, E. Camp, J. B. Campagna, E. Campsie, P. Cannizzo, J. Cannon, K. C. Canuel, B. Cao, J. Capano, C. Carbognani, F. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Costa, C. A. Coulon, J. -P. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Das, K. Dattilo, V. Daudert, B. Davier, M. Davies, G. Davis, A. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Degallaix, J. del Prete, M. Dergachev, V. DeRosa, R. DeSalvo, R. Devanka, P. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Dorsher, S. Douglas, E. S. D. Drago, M. Drever, R. W. P. Driggers, J. C. Dueck, J. Dumas, J. -C. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Ely, G. Engel, R. Etzel, T. Evans, M. Evans, T. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flanigan, M. Flasch, K. Foley, S. Forrest, C. Forsi, E. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Galimberti, M. Gammaitoni, L. Garofoli, J. A. Garufi, F. Gemme, G. Genin, E. Gennai, A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gill, C. Goetz, E. Goggin, L. M. Gonzalez, G. Goler, S. Gouaty, R. Graef, C. Granata, M. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Gustafson, E. K. Gustafson, R. Hage, B. Hall, P. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Hayau, J. -F. Hayler, T. Heefner, J. Heitmann, H. Hello, P. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Howell, E. Hoyland, D. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Jaranowski, P. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, H. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kondrashov, V. Kopparapu, R. Koranda, S. Kowalska, I. Kozak, D. Krause, T. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kullman, J. Kumar, R. Kwee, P. Landry, M. Lang, M. Lantz, B. Lastzka, N. Lazzarini, A. Leaci, P. Leong, J. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Lin, H. Lindquist, P. E. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lu, P. Luan, J. Lubinski, M. Lucianetti, A. Lueck, H. Lundgren, A. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Majorana, E. Mak, C. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIvor, G. McKechan, D. J. A. Meadors, G. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Mercer, R. A. Merill, L. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mino, Y. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreau, J. Moreno, G. Morgado, N. Morgia, A. Mors, K. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. MowLowry, C. Mueller, G. Mukherjee, S. Mullavey, A. Ller-Ebhardt, H. Mu Munch, J. Murray, P. G. Nash, T. Nawrodt, R. Nelson, J. Neri, I. Newton, G. Nishida, E. Nishizawa, A. Nocera, F. Nolting, D. Ochsner, E. O'Dell, J. Ogin, G. H. Oldenburg, R. G. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Pardi, S. Pareja, M. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pathak, D. Pedraza, M. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Persichetti, G. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Postiglione, F. Prato, M. Predoi, V. Price, L. R. Prijatelj, M. Principe, M. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabeling, D. S. Radke, T. Radkins, H. Raffai, P. Rakhmanov, M. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Roever, C. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sakata, S. Sakosky, M. Salemi, F. Sammut, L. de la Jordana, L. Sancho Sandberg, V. Sannibale, V. Santamaria, L. Santostasi, G. Saraf, S. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shaddock, D. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Sintes, A. M. Skelton, G. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Speirits, F. C. Sperandio, L. Stein, A. J. Stein, L. C. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Ring, A. Titsler, C. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torre, O. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Trummer, J. Tseng, K. Turner, L. Ugolini, D. Urbanek, K. Vahlbruch, H. Vaishnav, B. Vajente, G. Vallisneri, M. van den Brand, J. F. J. Van Den Broeck, C. van der Putten, S. van der Sluys, M. V. van Veggel, A. A. Vass, S. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. Vinet, J. -Y. Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Wanner, A. Ward, R. L. Was, M. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, L. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yeaton-Massey, D. Yoshida, S. Yu, P. P. Yvert, M. Zanolin, M. Zhang, L. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 SO PHYSICAL REVIEW D LA English DT Article ID CATALOG; FORMS AB We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory's S5 and Virgo's VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M(circle dot). No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8: 7 X 10(-3) yr(-1) L-10(-1), 2.2 X 10(-3) yr(-1) L-10(-1), and 4.4 X 10(-4) yr(-1) L-10(-1), respectively, where L-10 is 10(10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aronsson, M.; Aso, Y.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cepeda, C.; Chalermsongsak, T.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; DeSalvo, R.; Dueck, J.; Ehrens, P.; Engel, R.; Etzel, T.; Gustafson, E. K.; Hage, B.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Mak, C.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Minenkov, Y.; Mohapatra, S. R. P.; Nocera, F.; Osthelder, C.; Patel, P.; Pedraza, M.; Robertson, N. A.; Ryan, K.; Sannibale, V.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Singer, A.; Smith, M. R.; Stochino, A.; Taylor, R.; Tournefier, E.; Turner, L.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Papa, M. A.; Peralta, C.; Radke, T.; Robinson, E. L.; Sakata, S.; Santamaria, L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Dergachev, V.; Di Palma, I.; Dumas, J. -C.; Edgar, M.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Goler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kullman, J.; Lastzka, N.; Leaci, P.; Leong, J.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Messenger, C.; Mino, Y.; Mukherjee, S.; Munch, J.; Newton, G.; Pareja, M.; Pickenpack, M.; Pletsch, H. J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Rolland, L.; Rosinska, D.; Schilling, R.; Schnabel, R.; Schulz, B.; Steinlechner, S.; Taylor, J. R.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.] Univ Denis Diderot Paris 7, Observ Paris, CEA, CNRS,UMR7164,IN2P3,DSM,IRFU, Paris, France. [Chua, S. S. Y.; Inta, R.; McClelland, D. E.; Nash, T.; Neri, I.; Satterthwaite, M.; Scott, S. M.; Shaddock, D.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Boyle, M.; Chen, Y.; Luan, J.; Mohanty, S. D.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] Caltech CaRT, Pasadena, CA 91125 USA. [Clark, J.; Davies, G.; Devanka, P.; Fairhurst, S.; Hall, P.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Pathak, D.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Van Den Broeck, C.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Ballinger, T.; Christensen, N.; Ely, G.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Bartos, I.; Marka, S.; Marka, Z.; Matone, L.] Columbia Univ, New York, NY 10027 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; Marque, J.; Morgia, A.; O'Shaughnessy, R.; Paoletti, F.; Pasqualetti, A.; Rollins, J.; Sentenac, D.; Swinkels, B.] European Gravitat Observ, I-56021 Cascina, PI, Italy. [Davis, A.; Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Frei, Z.; Raffai, P.] Eotvos Lorand Univ, H-1053 Budapest, Hungary. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Cagnoli, G.; Campagna, E.; Cesarini, E.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Campagna, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Mittleman, R.; Mullavey, A.; Pardi, S.; Parisi, M.; Persichetti, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Mittleman, R.; Mullavey, A.; Pardi, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, I-80126 Naples, Italy. [Acernese, F.; Barone, F.] Univ Salerno, I-84084 Salerno, Italy. [Gammaitoni, L.; O'Dell, J.; Traylor, G.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [O'Dell, J.] Univ Perugia, I-06123 Perugia, Italy. [Bigotta, S.; Bitossi, M.; Bonelli, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Tonelli, M.; Torre, O.; Torres, C.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bigotta, S.; Bitossi, M.; Bonelli, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Tonelli, M.; Torre, O.; Torres, C.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Mantovani, M.] Univ Siena, I-53100 Siena, Italy. [Antonucci, F.; Astone, P.; Colla, A.; Colombini, M.; Corsi, A.; Frasca, S.; Majorana, E.; Ller-Ebhardt, H. Mu; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Antonucci, F.; Astone, P.; Colla, A.; Colombini, M.; Corsi, A.; Frasca, S.; Majorana, E.; Ller-Ebhardt, H. Mu; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Coccia, E.; D'Antonio, S.; DeRosa, R.; Emilio, M. Di Paolo; Fafone, V.; Mohan, M.; Mueller, G.; Pagliaroli, G.; Palladino, L.; Rocchi, A.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; D'Antonio, S.; DeRosa, R.; Emilio, M. Di Paolo; Fafone, V.; Mohan, M.; Mueller, G.; Pagliaroli, G.; Palladino, L.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma, I-00133 Rome, Italy. [DeRosa, R.; Emilio, M. Di Paolo] Univ Aquila, I-67100 Laquila, Italy. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Dhurandhar, S.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Arun, K. G.; Bizouard, M. A.; Boccara, C.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Loriette, V.; Maksimovic, I.; Mossavi, K.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, IN2P3, CNRS, F-91898 Orsay, France. [Arun, K. G.; Maksimovic, I.; Mossavi, K.] CNRS, ESPCI, F-75005 Paris, France. [Accadia, T.; Belletoile, A.; Buskulic, D.; Donovan, F.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Murray, P. G.; Travasso, F.; Tseng, K.; Verkindt, D.; Yvert, M.] Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Aufmuth, P.; Danzmann, K.; Hage, B.; Kwee, P.; Lueck, H.; Meier, T.; Titsler, C.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Atkinson, D. E.; Barker, D.; Barton, M. A.; Bland, B.; Cook, D.; Drago, M.; Flanigan, M.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moscatelli, V.; Mours, B.; Raab, F. J.; Radkins, H.; Reed, C. M.; Romano, J. D.; Romie, J. H.; Ruggi, P.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Adams, C.; Birch, J.; Bridges, D. O.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Holt, K.; Huynh-Dinh, T.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Mitra, S.; Overmier, H.; Riesen, R.; Roddy, S.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torrie, C. I.; Trias, M.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Corbitt, T. R.; Dooley, K. L.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Moreno, G.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A. J.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Mitselmakher, G.; MowLowry, C.; Pinard, L.; Sassolas, B.] CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Amin, R. S.; Caudill, S.; Costa, C. A.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Sakosky, M.; Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Khalili, F. Y.; Moraru, D.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Camp, J. B.; Cannizzo, J.; Stroeer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hayama, K.; Kawamura, S.; Oldenburg, R. G.; O'Reilly, B.; Romano, R.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; van der Putten, S.] NIKHEF, Natl Inst Subatom Phys, NL-1009 DB Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Farr, B. F.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Birindelli, S.; Bondu, F.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Hayau, J. -F.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Birindelli, S.; Bondu, F.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Hayau, J. -F.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Drever, R. W. P.; Prodi, G. A.; Re, V.; Vedovato, G.] Ist Nazl Fis Nucl, Grp Collegato Trento, Trento, Italy. [Prodi, G. A.; Re, V.] Univ Trent, I-38050 Trento, Italy. [Drever, R. W. P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Vedovato, G.] Univ Padua, I-35131 Padua, Italy. [Budzynski, R.; Bulik, T.; Jaranowski, P.; Kowalska, I.; Krolak, A.; Pietka, M.] IM PAN, PL-00956 Warsaw, Poland. [Budzynski, R.; Bulik, T.; Jaranowski, P.; Kowalska, I.; Krolak, A.; Pietka, M.] Warsaw Univ, PL-00681 Warsaw, Poland. [Bulik, T.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Krolak, A.] Bialystok Univ, PL-15424 Bialystok, Poland. [Kowalska, I.] CAMK PAN, PL-00716 Warsaw, Poland. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Greenhalgh, R. J. S.; Hayler, T.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Barnum, S.; Salemi, F.; Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Dorsher, S.; McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [Dorsher, S.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Allen, G.; Byer, R. L.; Clark, D.; DeBra, D.; Lantz, B.; Lu, P.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Brown, D. A.; Capano, C.; Garofoli, J. A.; Hirose, E.; Lundgren, A.; Pekowsky, L.; Saulson, P. R.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Bondarescu, R.; Finn, L. S.; Kopparapu, R.; Lang, M.; Menendez, D. F.; Owen, B. J.; Tokmakov, K. V.] Penn State Univ, University Pk, PA 16802 USA. [Chung, C. T. Y.; Melatos, A.; Rowan, S.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Cain, J.; Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Daw, E. J.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Frei, M.; Krause, T.; Matzner, R. A.; McIvor, G.] Univ Texas Austin, Austin, TX 78712 USA. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Dietz, A.; Grosso, R.; Li, J.; Mors, K.; Nelson, J.; Quetschke, V.; Rakhmanov, M.; Stone, R.; Vaishnav, B.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Ugolini, D.] Trinity Coll, San Antonio, TX 78212 USA. [Cao, J.] Tsinghua Univ, Beijing 100084, Peoples R China. [Husa, S.; Ruediger, A.; de la Jordana, L. Sancho; Sintes, A. M.; Trummer, J.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Hosken, D. J.; Nishida, E.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Freise, A.; Fulda, P.; Hallam, J. M.; Hoyland, D.; Lodhia, D.; Page, A.; Perreca, A.; Vecchio, A.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Arain, M. A.; Das, K.; Doomes, E. E.; Feldbaum, D.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Moreau, J.; Nawrodt, R.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Beveridge, N.; Campsie, P.; Chalkley, E.; Culter, R. M.; Cumming, A.; Cunningham, L.; Edwards, M.; Gill, C.; Grant, A.; Hammond, G.; Haughian, K.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Moe, B.; Nishizawa, A.; Nolting, D.; Ochsner, E.; Ogin, G. H.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Toncelli, A.; Tournefier, E.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Buonanno, A.; Kanner, J.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Hoak, D.; Mosca, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Goetz, E.; Gustafson, R.; Meadors, G.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Douglas, E. S. D.; Harms, J.; Kandhasamy, S.; Mandic, V.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Conte, R.; Pinto, I. M.; Postiglione, F.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, Milan, Italy. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Lockerbie, N. A.; Toncelli, A.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Coward, D.; Eberle, T.; Fan, Y.; Gras, S.; Howell, E.; Ju, L.; Merill, L.; Miao, H.; Miller, J.; Mitrofanov, V. P.; Susmithan, S.; Wen, L.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Belletoile, A.; Biswas, R.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Milano, L.; Morgado, N.; Papa, M. A.; Price, L. R.; Siemens, X.; Skelton, G.; Vaulin, R.; Wiseman, A. G.; Yu, P. P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Vicere, Andrea/J-1742-2012; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Parisi, Maria/D-2817-2013; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Vocca, Helios/F-1444-2010; Acernese, Fausto/E-4989-2010; Prato, Mirko/D-8531-2012; Hild, Stefan/A-3864-2010; prodi, giovanni/B-4398-2010; Santamaria, Lucia/A-7269-2012; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Hammond, Giles/B-7861-2009; Neri, Igor/F-1482-2010; McClelland, David/E-6765-2010; Strain, Kenneth/D-5236-2011; Gammaitoni, Luca/B-5375-2009; Raab, Frederick/E-2222-2011; Abernathy, Matthew/G-1113-2011; Marchesoni, Fabio/A-1920-2008; Kawabe, Keita/G-9840-2011; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Bigotta, Stefano/F-8652-2011; Freise, Andreas/F-8892-2011; Biswas, Rahul/H-7474-2016; Ward, Robert/I-8032-2014; Howell, Eric/H-5072-2014; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Graef, Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Shaddock, Daniel/A-7534-2011; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Gehring, Tobias/A-8596-2016; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Steinlechner, Sebastian/D-5781-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Khalili, Farit/D-8113-2012 OI Vicere, Andrea/0000-0003-0624-6231; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; Vocca, Helios/0000-0002-1200-3917; Acernese, Fausto/0000-0003-3103-3473; Prato, Mirko/0000-0002-2188-8059; prodi, giovanni/0000-0001-5256-915X; Punturo, Michele/0000-0001-8722-4485; Neri, Igor/0000-0002-9047-9822; McClelland, David/0000-0001-6210-5842; Strain, Kenneth/0000-0002-2066-5355; Gammaitoni, Luca/0000-0002-4972-7062; Marchesoni, Fabio/0000-0001-9240-6793; Lueck, Harald/0000-0001-9350-4846; Pathak, Devanka/0000-0002-1768-8353; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; calloni, enrico/0000-0003-4819-3297; Biswas, Rahul/0000-0002-0774-8906; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Husa, Sascha/0000-0002-0445-1971; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Nishizawa, Atsushi/0000-0003-3562-0990; Guidi, Gianluca/0000-0002-3061-9870; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Fairhurst, Stephen/0000-0001-8480-1961; Matichard, Fabrice/0000-0001-8982-8418; Sigg, Daniel/0000-0003-4606-6526; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Swinkels, Bas/0000-0002-3066-3601; Kanner, Jonah/0000-0001-8115-0577; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Douglas, Ewan/0000-0002-0813-4308; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Graef, Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Shaddock, Daniel/0000-0002-6885-3494; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Miao, Haixing/0000-0003-4101-9958; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; FU Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; The National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This document has been assigned LIGO Laboratory document number P0900305-v6. NR 32 TC 118 Z9 118 U1 3 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 5 PY 2010 VL 82 IS 10 AR 102001 DI 10.1103/PhysRevD.82.102001 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 675QH UT WOS:000283845000001 ER PT J AU Russell, MJ AF Russell, Michael John TI The Hazy Details of Early Earth's Atmosphere SO SCIENCE LA English DT Letter C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Russell, MJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mrussell@jpl.nasa.gov NR 9 TC 2 Z9 2 U1 1 U2 9 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 5 PY 2010 VL 330 IS 6005 BP 754 EP 754 DI 10.1126/science.330.6005.754-a PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 675SY UT WOS:000283855700012 PM 21051614 ER PT J AU Negrello, M Hopwood, R De Zotti, G Cooray, A Verma, A Bock, J Frayer, DT Gurwell, MA Omont, A Neri, R Dannerbauer, H Leeuw, LL Barton, E Cooke, J Kim, S da Cunha, E Rodighiero, G Cox, P Bonfield, DG Jarvis, MJ Serjeant, S Ivison, RJ Dye, S Aretxaga, I Hughes, DH Ibar, E Bertoldi, F Valtchanov, I Eales, S Dunne, L Driver, SP Auld, R Buttiglione, S Cava, A Grady, CA Clements, DL Dariush, A Fritz, J Hill, D Hornbeck, JB Kelvin, L Lagache, G Lopez-Caniego, M Gonzalez-Nuevo, J Maddox, S Pascale, E Pohlen, M Rigby, EE Robotham, A Simpson, C Smith, DJB Temi, P Thompson, MA Woodgate, BE York, DG Aguirre, JE Beelen, A Blain, A Baker, AJ Birkinshaw, M Blundell, R Bradford, CM Burgarella, D Danese, L Dunlop, JS Fleuren, S Glenn, J Harris, AI Kamenetzky, J Lupu, RE Maddalena, RJ Madore, BF Maloney, PR Matsuhara, H Michaowski, MJ Murphy, EJ Naylor, BJ Nguyen, H Popescu, C Rawlings, S Rigopoulou, D Scott, D Scott, KS Seibert, M Smail, I Tuffs, RJ Vieira, JD van der Werf, PP Zmuidzinas, J AF Negrello, Mattia Hopwood, R. De Zotti, G. Cooray, A. Verma, A. Bock, J. Frayer, D. T. Gurwell, M. A. Omont, A. Neri, R. Dannerbauer, H. Leeuw, L. L. Barton, E. Cooke, J. Kim, S. da Cunha, E. Rodighiero, G. Cox, P. Bonfield, D. G. Jarvis, M. J. Serjeant, S. Ivison, R. J. Dye, S. Aretxaga, I. Hughes, D. H. Ibar, E. Bertoldi, F. Valtchanov, I. Eales, S. Dunne, L. Driver, S. P. Auld, R. Buttiglione, S. Cava, A. Grady, C. A. Clements, D. L. Dariush, A. Fritz, J. Hill, D. Hornbeck, J. B. Kelvin, L. Lagache, G. Lopez-Caniego, M. Gonzalez-Nuevo, J. Maddox, S. Pascale, E. Pohlen, M. Rigby, E. E. Robotham, A. Simpson, C. Smith, D. J. B. Temi, P. Thompson, M. A. Woodgate, B. E. York, D. G. Aguirre, J. E. Beelen, A. Blain, A. Baker, A. J. Birkinshaw, M. Blundell, R. Bradford, C. M. Burgarella, D. Danese, L. Dunlop, J. S. Fleuren, S. Glenn, J. Harris, A. I. Kamenetzky, J. Lupu, R. E. Maddalena, R. J. Madore, B. F. Maloney, P. R. Matsuhara, H. Michaowski, M. J. Murphy, E. J. Naylor, B. J. Nguyen, H. Popescu, C. Rawlings, S. Rigopoulou, D. Scott, D. Scott, K. S. Seibert, M. Smail, I. Tuffs, R. J. Vieira, J. D. van der Werf, P. P. Zmuidzinas, J. TI The Detection of a Population of Submillimeter-Bright, Strongly Lensed Galaxies SO SCIENCE LA English DT Article ID EXTRAGALACTIC SOURCES; REDSHIFT DEADLOCK; STAR-FORMATION; PREDICTIONS; TELESCOPE; EMISSION; CATALOG; COUNTS; QUASAR; FIELD AB Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency. C1 [Negrello, Mattia; Hopwood, R.; Serjeant, S.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [De Zotti, G.; Buttiglione, S.] Osserv Astron Padova, Ist Nazl Astrofis, I-35122 Padua, Italy. [De Zotti, G.; Gonzalez-Nuevo, J.; Danese, L.] Scuola Int Super Studi Avanzati, I-34136 Trieste, Italy. [Cooray, A.; Barton, E.; Cooke, J.; Kim, S.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Verma, A.; Rawlings, S.; Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Bock, J.; Bradford, C. M.; Naylor, B. J.; Nguyen, H.; Zmuidzinas, J.] Jet Prop Lab, Pasadena, CA 91009 USA. [Bock, J.; Cooke, J.; Blain, A.; Bradford, C. M.; Vieira, J. D.; Zmuidzinas, J.] CALTECH, Pasadena, CA 91125 USA. [Frayer, D. T.; Maddalena, R. J.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Gurwell, M. A.; Blundell, R.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Omont, A.] Univ Paris 06, Inst Astrophys Paris, F-75014 Paris, France. [Omont, A.] CNRS, F-75014 Paris, France. [Neri, R.; Cox, P.] Inst Radio Astron Millimetr, F-38406 St Martin Dheres, France. [Dannerbauer, H.] Univ Paris Diderot, Lab Astrophys Instrumentat & Modelisat Paris Sard, Direct Sci Matiere,CEA,CNRS,Serv Astrophys, Inst Rech Lois Fondamentales Universe,CEA Saclay, F-91191 Gif Sur Yvette, France. [Leeuw, L. L.] Univ Johannesburg, Dept Phys, ZA-2006 Auckland Pk, South Africa. [Leeuw, L. L.] SETI Inst, Mountain View, CA 94043 USA. [da Cunha, E.] Univ Crete, Dept Phys, Iraklion 71003, Greece. [Rodighiero, G.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Bonfield, D. G.; Jarvis, M. J.; Thompson, M. A.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Ivison, R. J.; Ibar, E.; Dunlop, J. S.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.; Michaowski, M. J.; van der Werf, P. P.] Univ Edinburgh, Royal Observ, Inst Astron, Scottish Univ Phys Alliance, Edinburgh EH9 3HJ, Midlothian, Scotland. [Dye, S.; Eales, S.; Auld, R.; Dariush, A.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aretxaga, I.; Hughes, D. H.] Inst Nacl Astrofis Opt & Electr, Puebla 72000, Mexico. [Bertoldi, F.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Valtchanov, I.] European Space Agcy, European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Dunne, L.; Maddox, S.; Rigby, E. E.; Smith, D. J. B.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Driver, S. P.; Hill, D.; Kelvin, L.; Robotham, A.] Univ St Andrews, Sch Phys & Astron, Scottish Univ Phys Alliance, St Andrews KY16 9SS, Fife, Scotland. [Cava, A.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Cava, A.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Grady, C. A.] Eureka Sci, Oakland, CA 94602 USA. [Grady, C. A.; Woodgate, B. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Clements, D. L.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, Astrophys Grp, London SW7 2AZ, England. [Fritz, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Hornbeck, J. B.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Lagache, G.] Inst Astrophys Spatiale, F-91405 Orsay, France. [Lagache, G.; Beelen, A.] Univ Paris 11, F-91400 Orsay, France. [Lagache, G.; Beelen, A.] CNRS, UMR 8617, F-91400 Orsay, France. [Lopez-Caniego, M.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Simpson, C.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Temi, P.] NASA, Astrophys Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. [York, D. G.] Univ Chicago, Dept Astrophys, Chicago, IL 60637 USA. [York, D. G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Aguirre, J. E.; Lupu, R. E.; Scott, K. S.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Baker, A. J.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Birkinshaw, M.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Burgarella, D.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Burgarella, D.] Aix Marseille Univ, F-13388 Marseille, France. [Fleuren, S.] Univ London, Sch Math Sci, London E1 4NS, England. [Glenn, J.; Kamenetzky, J.; Maloney, P. R.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80303 USA. [Harris, A. I.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Madore, B. F.; Seibert, M.] Observ Camegie Inst, Pasadena, CA 91101 USA. [Matsuhara, H.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Murphy, E. J.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Popescu, C.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Scott, D.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Smail, I.] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England. [Tuffs, R. J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [van der Werf, P. P.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. RP Negrello, M (reprint author), Open Univ, Dept Phys & Astron, Walton Hall, Milton Keynes MK7 6AA, Bucks, England. EM m.negrello@open.ac.uk RI Woodgate, Bruce/D-2970-2012; Lopez-Caniego, Marcos/M-4695-2013; Smail, Ian/M-5161-2013; Robotham, Aaron/H-5733-2014; Lupu, Roxana/P-9060-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Driver, Simon/H-9115-2014; Ivison, R./G-4450-2011; Cava, Antonio/C-5274-2017; OI Lopez-Caniego, Marcos/0000-0003-1016-9283; Dye, Simon/0000-0002-1318-8343; Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296; da Cunha, Elisabete/0000-0001-9759-4797; Smail, Ian/0000-0003-3037-257X; Robotham, Aaron/0000-0003-0429-3579; Lupu, Roxana/0000-0003-3444-5908; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Driver, Simon/0000-0001-9491-7327; Ivison, R./0000-0001-5118-1313; Cava, Antonio/0000-0002-4821-1275; Maddox, Stephen/0000-0001-5549-195X; Scott, Douglas/0000-0002-6878-9840 FU NASA through a contract from JPL; Science and Technology Facilities Council [PP/D002400/1, ST/G002533/1, SF/F005288/1]; Agenzia Spaziale Italiana (ASI) [I/016/07/0 COFIS]; ASI/Istituto Nazionale di Astrofisica [I/072/09/0]; Consejo Nacional de Ciencia y Tecnolog a (CONACyT) [39953-F, 39548-F]; W.M. Keck Foundation; Smithsonian Institution; Academia Sinica; Institut National des Sciences de l'Univers (INSU)/CNRS (France); Max Planck Society (MPG) (Germany); Instituto Geogrifico Nacional (IGN) (Spain); NSF [AST-0807990, AST-0239270, AST-0503946, AST-0708653]; CSO NSF [AST-0838261]; NASA SARA [NAGS-11911, NAGS-12788]; Research Corporation Award [RI0928]; JPL; California Institute of Technology FX Herschel is an ESA space observatory with science instruments provided by European-led principal investigator consortia and with important participation from NASA. U. S. participants in H-ATLAS acknowledge support from NASA through a contract from JPL. This work was supported by the Science and Technology Facilities Council (grants PP/D002400/1 and ST/G002533/1) and studentship SF/F005288/1. We thank Agenzia Spaziale Italiana (ASI) for funding through contract No. I/016/07/0 COFIS and ASI/Istituto Nazionale di Astrofisica agreement I/072/09/0 for the Planck Low-Frequency Instrument (LFI) Activity of Phase E2. Research supported in part by Consejo Nacional de Ciencia y Tecnolog a (CONACyT) grants 39953-F and 39548-F. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. IRAM is supported by Institut National des Sciences de l'Univers (INSU)/CNRS (France), Max Planck Society (MPG) (Germany), and Instituto Geogrifico Nacional (IGN) (Spain). Z-spec was supported by NSF grant AST-0807990 to J. A. and by the CSO NSF Cooperative Agreement AST-0838261. Support was provided to J. K. by an NSF Graduate Research Fellowship. Z-spec was constructed under NASA SARA grants NAGS-11911 and NAGS-12788 and an NSF Career grant (AST-0239270) and a Research Corporation Award (RI0928) to J. G., in collaboration with JPL, California Institute of Technology, under a contract with NASA. Construction of and observations with the Zpectrometer have been supported by NSF grants AST-0503946 and AST-0708653. NRAO is a facility of the NSF operated under cooperative agreement by Associated Universities. The optical spectroscopic redshift of ID130 was derived from observations obtained with the Apache Point Observatory 3.5-m telescope, which is owned and operated by the Astrophysical Research Consortium. The optical spectroscopic redshifts of ID9 and ID11 were obtained with the William Herschel Telescope, which is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. For the use of Keck, SMA, and CSO, the authors wish to recognize and acknowledge the very important cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 49 TC 182 Z9 182 U1 3 U2 16 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 5 PY 2010 VL 330 IS 6005 BP 800 EP 804 DI 10.1126/science.1193420 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 675SY UT WOS:000283855700037 PM 21051633 ER PT J AU Austin, J Scinocca, J Plummer, D Oman, L Waugh, D Akiyoshi, H Bekki, S Braesicke, P Butchart, N Chipperfield, M Cugnet, D Dameris, M Dhomse, S Eyring, V Frith, S Garcia, RR Garny, H Gettelman, A Hardiman, SC Kinnison, D Lamarque, JF Mancini, E Marchand, M Michou, M Morgenstern, O Nakamura, T Pawson, S Pitari, G Pyle, J Rozanov, E Shepherd, TG Shibata, K Teyssedre, H Wilson, RJ Yamashita, Y AF Austin, John Scinocca, J. Plummer, D. Oman, L. Waugh, D. Akiyoshi, H. Bekki, S. Braesicke, P. Butchart, N. Chipperfield, M. Cugnet, D. Dameris, M. Dhomse, S. Eyring, V. Frith, S. Garcia, R. R. Garny, H. Gettelman, A. Hardiman, S. C. Kinnison, D. Lamarque, J. F. Mancini, E. Marchand, M. Michou, M. Morgenstern, O. Nakamura, T. Pawson, S. Pitari, G. Pyle, J. Rozanov, E. Shepherd, T. G. Shibata, K. Teyssedre, H. Wilson, R. J. Yamashita, Y. TI Decline and recovery of total column ozone using a multimodel time series analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CHEMISTRY-CLIMATE MODEL; QUASI-BIENNIAL OSCILLATION; STRATOSPHERIC OZONE; MIDDLE ATMOSPHERE; TECHNICAL NOTE; SIMULATION; TRANSPORT; TRENDS; CIRCULATION; SENSITIVITY AB [1] Simulations of 15 coupled chemistry climate models, for the period 1960-2100, are presented. The models include a detailed stratosphere, as well as including a realistic representation of the tropospheric climate. The simulations assume a consistent set of changing greenhouse gas concentrations, as well as temporally varying chlorofluorocarbon concentrations in accordance with observations for the past and expectations for the future. The ozone results are analyzed using a nonparametric additive statistical model. Comparisons are made with observations for the recent past, and the recovery of ozone, indicated by a return to 1960 and 1980 values, is investigated as a function of latitude. Although chlorine amounts are simulated to return to 1980 values by about 2050, with only weak latitudinal variations, column ozone amounts recover at different rates due to the influence of greenhouse gas changes. In the tropics, simulated peak ozone amounts occur by about 2050 and thereafter total ozone column declines. Consequently, simulated ozone does not recover to values which existed prior to the early 1980s. The results also show a distinct hemispheric asymmetry, with recovery to 1980 values in the Northern Hemisphere extratropics ahead of the chlorine return by about 20 years. In the Southern Hemisphere midlatitudes, ozone is simulated to return to 1980 levels only 10 years ahead of chlorine. In the Antarctic, annually averaged ozone recovers at about the same rate as chlorine in high latitudes and hence does not return to 1960s values until the last decade of the simulations. C1 [Austin, John; Wilson, R. J.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. [Akiyoshi, H.; Nakamura, T.; Yamashita, Y.] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Bekki, S.; Cugnet, D.; Marchand, M.] UPMC, CNRS, INSU, UVSQ,IPSL,LATMOS, F-75231 Paris, France. [Braesicke, P.; Pyle, J.] Univ Cambridge, Dept Chem, Ctr Atmospher Sci, NCAS Climate Chem, Cambridge CB2 1EW, England. [Butchart, N.; Hardiman, S. C.] Hadley Ctr, Met Off, Exeter EX1 3PB, Devon, England. [Chipperfield, M.; Dhomse, S.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Dameris, M.; Eyring, V.; Garny, H.] Inst Phys Atmosphare, Deutsch Zentrum Luft & Raumfahrt, D-82234 Wessling, Germany. [Frith, S.; Pawson, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Garcia, R. R.; Gettelman, A.; Kinnison, D.; Lamarque, J. F.] NCAR, Boulder, CO 80305 USA. [Mancini, E.; Pitari, G.] Univ Aquila, Dipartimento Fis, I-161700 Laquila, Italy. [Michou, M.; Teyssedre, H.] CNRM, GAME, F-31057 Toulouse, France. [Morgenstern, O.] Natl Inst Water & Atmospher Res, Omakau 9352, Lauder, New Zealand. [Oman, L.; Waugh, D.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Plummer, D.] Environm Canada, Sci & Technol Branch, Toronto, ON M3H 5T4, Canada. [Rozanov, E.] World Radiat Ctr, Phys Meteorol Observ, CH-7260 Davos, Switzerland. [Scinocca, J.] Univ Victoria, CCMA, Victoria, BC V8W 3V6, Canada. [Shepherd, T. G.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Shibata, K.] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Frith, S.] Sci Syst & Applicat Inc, Beltsville, MD USA. [Rozanov, E.] ETH, Zurich, Switzerland. RP Austin, J (reprint author), NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. EM john.austin@noaa.gov RI Dhomse, Sandip/C-8198-2011; Rozanov, Eugene/A-9857-2012; Oman, Luke/C-2778-2009; Chipperfield, Martyn/H-6359-2013; Lamarque, Jean-Francois/L-2313-2014; bekki, slimane/J-7221-2015; Nakamura, Tetsu/M-7914-2015; Braesicke, Peter/D-8330-2016; Pawson, Steven/I-1865-2014; Pitari, Giovanni/O-7458-2016; Eyring, Veronika/O-9999-2016; OI Dhomse, Sandip/0000-0003-3854-5383; Rozanov, Eugene/0000-0003-0479-4488; Oman, Luke/0000-0002-5487-2598; Chipperfield, Martyn/0000-0002-6803-4149; Lamarque, Jean-Francois/0000-0002-4225-5074; bekki, slimane/0000-0002-5538-0800; Nakamura, Tetsu/0000-0002-2056-7392; Braesicke, Peter/0000-0003-1423-0619; Pawson, Steven/0000-0003-0200-717X; Pitari, Giovanni/0000-0001-7051-9578; Eyring, Veronika/0000-0002-6887-4885; Mancini, Eva/0000-0001-7071-0292; Morgenstern, Olaf/0000-0002-9967-9740 FU Ministry of the Environment of Japan [A-071]; New Zealand Foundation for Research, Science and Technology [C01X070]; NERC; DECC/Defra [GA01101]; European Commission [SCOUT-O3] FX CCSRNIES research was supported by the Global Environmental Research Fund of the Ministry of the Environment of Japan (A-071). The MRI and CCSRNIES simulations were completed with the supercomputer at the National Institute for Environmental Studies, Japan. CMAM simulations were supported by CFCAS through the C-SPARC project. The Niwa-SOCOL and UMETRAC simulations were supported by the New Zealand Foundation for Research, Science and Technology under contract C01X070. The UMSLIMCAT work was supported by NERC. The contribution of the Met Office Hadley Centre was supported by the Joint DECC and Defra Integrated Climate Programme, DECC/Defra (GA01101). The scientific work of the European CCM groups was supported by the European Commission through the project SCOUT-O3 under the 6th Framework Programme. J.A.'s research was administered by the University Corporation for Atmospheric Research at the NOAA Geophysical Fluid Dynamics Laboratory. Larry Horowitz and Dan Schwarzkopf provided useful comments on the paper. We acknowledge the Chemistry-Climate Model Validation (CCMVal) Activity for WCRP's (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) project for organizing and coordinating the model data analysis activity, and the British Atmospheric Data Center (BADC) for collecting and archiving the CCMVal model output. NR 44 TC 41 Z9 41 U1 1 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 4 PY 2010 VL 115 AR D00M10 DI 10.1029/2010JD013857 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 676UT UT WOS:000283944800004 ER PT J AU Chen, SH Wang, SH Waylonis, M AF Chen, Shu-Hua Wang, Sheng-Hsiang Waylonis, Mark TI Modification of Saharan air layer and environmental shear over the eastern Atlantic Ocean by dust-radiation effects SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPICAL CYCLOGENESIS; NUMERICAL SIMULATIONS; OPTICAL-PROPERTIES; MINERAL DUST; AEROSOL; MODEL; INTENSITY; DISTURBANCES; VALIDATION; HURRICANES AB [1] This study investigates the influence of dust-radiation effects on the modification of the Saharan air layer (SAL) and environmental shear. A tracer model based on the Weather Research and Forecast model was developed to examine the influence using a dust outbreak event. Two numerical experiments were conducted with (ON) and without (OFF) the dust-radiation effects. Both simulations reasonably reproduced SAL's features. However, the 700 hPa maximum temperature within SAL was slightly underestimated and shifted northwestward from OFF. These were improved from ON, but the maximum temperature became slightly overestimated, which might be due to inaccurate optical properties. The dust-radiation interactions mainly warmed the dusty air between 750 and 550 hPa because dust shortwave absorption dominated dust longwave cooling. Another major warming area was found near the surface over the ocean due to longwave radiative heating by dust aloft. The modification of temperature resulted in an adjustment of the vertical wind shear. To the south of SAL, where easterly wave disturbances and tropical storms usually occur, the vertical zonal wind shear increased by about 1 similar to 2.5 m s(-1) km(-1) from 750 to 550 hPa, resulting in a maximum wind change of 3 similar to 5 m s(-1), a 30 similar to 40% increase, around the top of this layer. The enhancement of the vertical shear in this layer could potentially have an impact on TC genesis and development. The dust-radiation effects also modified the moisture and dust distribution, which can have a feedback (i.e., a secondary effect) on the heating profile and the vertical shear. C1 [Chen, Shu-Hua; Waylonis, Mark] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [Wang, Sheng-Hsiang] Natl Cent Univ, Dept Atmospher Sci, Chungli 32054, Taiwan. [Wang, Sheng-Hsiang] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chen, SH (reprint author), Univ Calif Davis, Dept Land Air & Water Resources, 1 Shields Ave, Davis, CA 95616 USA. EM shachen@ucdavis.edu RI Wang, Sheng-Hsiang/F-4532-2010 OI Wang, Sheng-Hsiang/0000-0001-9675-3135 FU Taiwan's National Science Council [NSC92-2111-M-008-018-AGC]; Taiwan EPA [EPA94-U1L1- 02-101]; NASA Radiation Science Program; NASA Hurricane Science Research Program [NNX09AC38G] FX The authors would like to acknowledge the WRF teams for their efforts on model development. We would also like to thank Scott Braun, Jiun-Dar Chern, Lorraine Remer, Richard Kleidman, and Mian Chin at NASA/GSFC, Ming-Da Chou at National Taiwan University, and Kuo-Nan Liou at University of California, Los Angeles, for their scientific discussions. Thanks are further extended to the editor Steven Ghan and three anonymous reviewers for their valuable scientific comments on the manuscript. The MODIS and AIRS data and images were requested from the MODIS-atmosphere web site from NASA/GSFC and the NASA Goddard Earth Sciences Data and Information Services Center. One of the coauthors, S.-H. Wang, acknowledges support from Taiwan's National Science Council (NSC92-2111-M-008-018-AGC), Taiwan EPA (EPA94-U1L1- 02-101), and the NASA Radiation Science Program (managed by Hal Maring). This work is primarily supported by the NASA Hurricane Science Research Program (grant NNX09AC38G) that is directed by Ramesh Kakar at NASA Headquarters. NR 56 TC 18 Z9 18 U1 4 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 4 PY 2010 VL 115 AR D21202 DI 10.1029/2010JD014158 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 676UT UT WOS:000283944800008 ER PT J AU Chappelow, JE Golombek, MP AF Chappelow, John E. Golombek, Matthew P. TI Event and conditions that produced the iron meteorite Block Island on Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID ATMOSPHERIC VARIATIONS; POROSITY; RECORD AB The Mars Exploration Rover Opportunity has discovered four large iron-nickel meteorites that range in size from 50 to 240 kg dispersed over 10 km of Meridiani Planum, Mars. Because these meteorites are covered with hollows that resemble regmaglypts, their surfaces record their ablation through the atmosphere, and they must have landed at speeds below hypervelocity (<2 km s(-1)) to survive. Slowing massive iron meteorites requires a minimum atmospheric density, which was quantified using a numerical model that integrates the equations of motion for incoming meteoroids through an atmosphere of a given surface density and scale height and records their outcomes as direct (generally hypervelocity impacts that form craters), longer over the horizon and fallback flight paths, and skip outs. The present atmosphere of Mars is sufficient to slow iron meteoroids as large as Block Island (the most massive meteorite) via drag and significant ablation on long flight paths, although for standard distributions of entering meteoroid masses, velocities, and entry angles, such events are rare (0.007% of incoming iron meteoroids). Such events require entry angles of 10 degrees-13 degrees, entry velocities of 6-18 km s(-1), and entry masses of 225-710 kg. The absence of large stony meteorites is probably at least partially because they are much weaker and thus broken up into smaller fragments on impact. Although differential drag deceleration on long flight paths could disperse fragments of an entering meteoroid by tens of kilometers, dynamic pressures are too low to break up an iron meteorite, leaving the possibility that they are paired an open question. C1 [Chappelow, John E.] SAGA Inc, Fairbanks, AK 99709 USA. [Golombek, Matthew P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Chappelow, JE (reprint author), SAGA Inc, Fairbanks, AK 99709 USA. EM john.chappelow@saga-inc.com FU National Aeronautics and Space Administration FX Research described in this paper was partially done by the MER project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We appreciate comments provided by the MER science team and an anonymous reviewer. NR 34 TC 6 Z9 6 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 4 PY 2010 VL 115 AR E00F07 DI 10.1029/2010JE003666 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676VU UT WOS:000283947600001 ER PT J AU Lee, J Feng, XH Faiia, A Posmentier, E Osterhuber, R Kirchner, J AF Lee, Jeonghoon Feng, Xiahong Faiia, Anthony Posmentier, Eric Osterhuber, Randall Kirchner, James TI Isotopic evolution of snowmelt: A new model incorporating mobile and immobile water SO WATER RESOURCES RESEARCH LA English DT Article ID ONE-DIMENSIONAL MODEL; GLACIER-RIVER WATER; SOLUTE TRANSPORT; SIERRA-NEVADA; SEASONAL SNOWPACK; MELTING SNOW; FRACTIONATION; HYDROGEN; FLOW; TRACERS AB Isotopic variations of snowmelt provide important information for understanding snowmelt processes and the timing and contribution of snowmelt to catchments in spring. We report a new model for simulating the isotopic evolution of snowmelt. The model includes a hydraulic exchange between mobile and immobile water, and an isotopic exchange between liquid water (mobile and immobile water) and ice within a snowpack. Since this model is based on the mobile-immobile water conceptualization, which is widely used for describing chemical tracer transport in snow, it allows simultaneous simulations of chemical as well as isotopic variations in snowpack discharge. We also report temporal variations of isotopic composition of a snowpack and snowmelt during artificial rain-on-snow experiments and diel snowmelt cycles observed in spring 2003 at the Central Sierra Snow Laboratory, California. These observations are used to test the newly developed model and to understand physical processes in a seasonal snowpack. Our model simulates the isotopic variations reasonably well, and suggests that exchanges of ice with both mobile and immobile water are important for determining the isotopic composition of the discharge. C1 [Lee, Jeonghoon; Feng, Xiahong; Faiia, Anthony; Posmentier, Eric] Dartmouth Coll, Dept Earth Sci, Hanover, NH 03755 USA. [Kirchner, James] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Osterhuber, Randall] Cent Sierra Snow Lab, Soda Springs, CA 95728 USA. [Kirchner, James] WSL, Swiss Fed Inst Forest Snow & Landscape Res, Birmensdorf, Switzerland. [Kirchner, James] Swiss Fed Inst Technol, Dept Environm Sci, Zurich, Switzerland. RP Lee, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 183-601, Pasadena, CA 91109 USA. EM jeonghoon.lee@jpl.nasa.gov RI Lee, Jeonghoon/E-8116-2010; Kirchner, James/B-6126-2009 OI Lee, Jeonghoon/0000-0002-1256-4431; Kirchner, James/0000-0001-6577-3619 FU National Science Foundation [EAR-9903281, EAR-0111403, EAR 0418809]; Dartmouth College FX This research was partially supported by the National Science Foundation (EAR-9903281, EAR-0111403, and EAR 0418809) and by Dartmouth College. NR 29 TC 10 Z9 10 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV 4 PY 2010 VL 46 AR W11512 DI 10.1029/2009WR008306 PG 12 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 676XJ UT WOS:000283951700001 ER PT J AU Kistler, LM Galvin, AB Popecki, MA Simunac, KDC Farrugia, C Moebius, E Lee, MA Blush, LM Bochsler, P Wurz, P Klecker, B Wimmer-Schweingruber, RF Opitz, A Sauvaud, JA Thompson, B Russell, CT AF Kistler, L. M. Galvin, A. B. Popecki, M. A. Simunac, K. D. C. Farrugia, C. Moebius, E. Lee, M. A. Blush, L. M. Bochsler, P. Wurz, P. Klecker, B. Wimmer-Schweingruber, R. F. Opitz, A. Sauvaud, J. -A. Thompson, B. Russell, C. T. TI Escape of O+ through the distant tail plasma sheet SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GEOTAIL OBSERVATIONS; IONS; MAGNETOTAIL; EVOLUTION AB In February 2007, the STEREO-B spacecraft encountered the magnetosheath, plasma sheet and plasma sheet boundary layer from about 200 R-E to 300 R-E downtail. This time period was during solar minimum, and there was no storm activity during this month. Using data from the PLASTIC instrument, we find that even during quiet times, O+ is a constant feature of the deep magnetotail, with an O+ density of about 15% of the O+ density in the near-earth plasma sheet for similar conditions. The tailward flux of the O+ is similar to the flux of O+ beams that have been observed in the lobe/mantle region of the deep tail. The total outflow rate of the O+ down the plasma sheet is 1.1 x 10(24) ions/s, which is 10% of the total outflow rate of 1 x 10(25) ions/s, and of the same order as the estimated loss from dayside transport. Citation: Kistler, L. M., et al. (2010), Escape of O+ through the distant tail plasma sheet, Geophys. Res. Lett., 37, L21101, doi:10.1029/2010GL045075. C1 [Kistler, L. M.; Galvin, A. B.; Popecki, M. A.; Simunac, K. D. C.; Farrugia, C.; Moebius, E.; Lee, M. A.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Blush, L. M.; Bochsler, P.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Klecker, B.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Wimmer-Schweingruber, R. F.] Univ Kiel, Inst Expt & Appl Phys, D-24098 Kiel, Germany. [Opitz, A.; Sauvaud, J. -A.] CESR, F-31028 Toulouse, France. [Thompson, B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. RP Kistler, LM (reprint author), Univ New Hampshire, Ctr Space Sci, Morse Hall, Durham, NH 03824 USA. EM lynn.kistler@unh.edu RI Thompson, Barbara/C-9429-2012; Russell, Christopher/E-7745-2012 OI Russell, Christopher/0000-0003-1639-8298 FU NASA [NAS5-00132] FX Work at UNH was supported by NASA under contract NAS5-00132. NR 15 TC 7 Z9 7 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 3 PY 2010 VL 37 AR L21101 DI 10.1029/2010GL045075 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 676TO UT WOS:000283941700012 ER PT J AU Salawitch, RJ Canty, T Kurosu, T Chance, K Liang, Q da Silva, A Pawson, S Nielsen, JE Rodriguez, JM Bhartia, PK Liu, X Huey, LG Liao, J Stickel, RE Tanner, DJ Dibb, JE Simpson, WR Donohoue, D Weinheimer, A Flocke, F Knapp, D Montzka, D Neuman, JA Nowak, JB Ryerson, TB Oltmans, S Blake, DR Atlas, EL Kinnison, DE Tilmes, S Pan, LL Hendrick, F Van Roozendael, M Kreher, K Johnston, PV Gao, RS Johnson, B Bui, TP Chen, G Pierce, RB Crawford, JH Jacob, DJ AF Salawitch, R. J. Canty, T. Kurosu, T. Chance, K. Liang, Q. da Silva, A. Pawson, S. Nielsen, J. E. Rodriguez, J. M. Bhartia, P. K. Liu, X. Huey, L. G. Liao, J. Stickel, R. E. Tanner, D. J. Dibb, J. E. Simpson, W. R. Donohoue, D. Weinheimer, A. Flocke, F. Knapp, D. Montzka, D. Neuman, J. A. Nowak, J. B. Ryerson, T. B. Oltmans, S. Blake, D. R. Atlas, E. L. Kinnison, D. E. Tilmes, S. Pan, L. L. Hendrick, F. Van Roozendael, M. Kreher, K. Johnston, P. V. Gao, R. S. Johnson, B. Bui, T. P. Chen, G. Pierce, R. B. Crawford, J. H. Jacob, D. J. TI A new interpretation of total column BrO during Arctic spring SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID LOWER STRATOSPHERE; BROMINE MONOXIDE; TROPOSPHERIC BRO; OZONE DEPLETION; POLAR SUNRISE; LAYER; GOME; CLIMATOLOGY; CHEMISTRY; CANADA AB Emission of bromine from sea-salt aerosol, frost flowers, ice leads, and snow results in the nearly complete removal of surface ozone during Arctic spring. Regions of enhanced total column BrO observed by satellites have traditionally been associated with these emissions. However, airborne measurements of BrO and O-3 within the convective boundary layer (CBL) during the ARCTAS and ARCPAC field campaigns at times bear little relation to enhanced column BrO. We show that the locations of numerous satellite BrO "hotspots" during Arctic spring are consistent with observations of total column ozone and tropopause height, suggesting a stratospheric origin to these regions of elevated BrO. Tropospheric enhancements of BrO large enough to affect the column abundance are also observed, with important contributions originating from above the CBL. Closure of the budget for total column BrO, albeit with significant uncertainty, is achieved by summing observed tropospheric partial columns with calculated stratospheric partial columns provided that natural, short-lived biogenic bromocarbons supply between 5 and 10 ppt of bromine to the Arctic lowermost stratosphere. Proper understanding of bromine and its effects on atmospheric composition requires accurate treatment of geographic variations in column BrO originating from both the stratosphere and troposphere. Citation: Salawitch, R. J., et al. (2010), A new interpretation of total column BrO during Arctic spring, Geophys. Res. Lett., 37, L21805, doi:10.1029/2010GL043798. C1 [Salawitch, R. J.; Canty, T.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Salawitch, R. J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Salawitch, R. J.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Kurosu, T.; Chance, K.; Liu, X.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Liang, Q.; Liu, X.] Univ Maryland Baltimore Cty, GEST, Greenbelt, MD 20771 USA. [da Silva, A.; Pawson, S.; Rodriguez, J. M.; Bhartia, P. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Nielsen, J. E.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Huey, L. G.; Liao, J.; Stickel, R. E.; Tanner, D. J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Dibb, J. E.] Univ New Hampshire, Complex Syst Res Ctr, Durham, NH 03824 USA. [Simpson, W. R.; Donohoue, D.] Univ Alaska Fairbanks, Dept Chem & Biochem, Fairbanks, AK 99775 USA. [Weinheimer, A.; Flocke, F.; Knapp, D.; Montzka, D.; Kinnison, D. E.; Tilmes, S.; Pan, L. L.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Neuman, J. A.; Nowak, J. B.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Neuman, J. A.; Nowak, J. B.; Ryerson, T. B.; Oltmans, S.; Gao, R. S.; Johnson, B.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Blake, D. R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Atlas, E. L.] Univ Miami, RSMAS, Miami, FL 33149 USA. [Hendrick, F.; Van Roozendael, M.] Belgian Inst Space Aeron, B-1180 Brussels, Belgium. [Kreher, K.; Johnston, P. V.] NIWA Lauder, Omakau, New Zealand. [Bui, T. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Chen, G.; Crawford, J. H.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Pierce, R. B.] NOAA, NESDIS, Madison, WI 53706 USA. [Jacob, D. J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Salawitch, RJ (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, 2403 Comp & Space Sci Bldg, College Pk, MD 20742 USA. EM rjs@atmos.umd.edu RI Liu, Xiong/P-7186-2014; Atlas, Elliot/J-8171-2015; Simpson, William/I-2859-2014; Bhartia, Pawan/A-4209-2016; Pawson, Steven/I-1865-2014; Manager, CSD Publications/B-2789-2015; Rodriguez, Jose/G-3751-2013; Liao, Jin/H-4865-2013; Gao, Ru-Shan/H-7455-2013; Ryerson, Tom/C-9611-2009; Crawford, James/L-6632-2013; Pan, Laura/A-9296-2008; Neuman, Andy/A-1393-2009; Nowak, John/B-1085-2008; Liang, Qing/B-1276-2011; Canty, Timothy/F-2631-2010; Salawitch, Ross/B-4605-2009; Pierce, Robert Bradley/F-5609-2010; da Silva, Arlindo/D-6301-2012 OI Liu, Xiong/0000-0003-2939-574X; Simpson, William/0000-0002-8596-7290; Bhartia, Pawan/0000-0001-8307-9137; Pawson, Steven/0000-0003-0200-717X; Chance, Kelly/0000-0002-7339-7577; Rodriguez, Jose/0000-0002-1902-4649; Crawford, James/0000-0002-6982-0934; Pan, Laura/0000-0001-7377-2114; Neuman, Andy/0000-0002-3986-1727; Nowak, John/0000-0002-5697-9807; Canty, Timothy/0000-0003-0618-056X; Salawitch, Ross/0000-0001-8597-5832; Pierce, Robert Bradley/0000-0002-2767-1643; da Silva, Arlindo/0000-0002-3381-4030 FU ARCTAS; ACMAP; Aura; MAP; National Aeronautics and Space Administration; ARCPAC National Oceanic and Atmospheric Administration; National Science Foundation; PRODEX; EC [FP6-2005-Global-4-036677, 226224-FP7-ENV-2008-1] FX Research of many of the investigators has been supported by the ARCTAS, ACMAP, Aura, MAP, and Tropospheric Chemistry programs of the National Aeronautics and Space Administration, the ARCPAC program of the National Oceanic and Atmospheric Administration, and the START08 program of the National Science Foundation. The ground-based BrO activities at the Belgian Institute for Space Aeronomy (BIRA-IASB) are funded by the PRODEX contract SECPEA and the EC projects GEOmon (FP6-2005-Global-4-036677) and SHIVA (226224-FP7-ENV-2008-1); BIRA-IASB thanks M. P. Chipperfield for providing SLIMCAT output used in the retrieval. We thank the pilots, flight crews, and OMI scientific leadership and data processing teams for their wonderful efforts. We appreciate the three extensive and careful reviews that led to a much improved manuscript. NR 29 TC 54 Z9 54 U1 4 U2 38 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 3 PY 2010 VL 37 AR L21805 DI 10.1029/2010GL043798 PG 9 WC Geosciences, Multidisciplinary SC Geology GA 676TO UT WOS:000283941700001 ER PT J AU Xu, JY Smith, AK Jiang, GY Gao, H Wei, YA Mlynczak, MG Russell, JM AF Xu, Jiyao Smith, A. K. Jiang, Guoying Gao, Hong Wei, Yuan Mlynczak, M. G. Russell, J. M., III TI Strong longitudinal variations in the OH nightglow SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID NONMIGRATING DIURNAL TIDES; LOW LATITUDES; AIRGLOW; WINDII; EMISSION; O(S-1); EQUATORIAL; UARS AB Airglow from the hydroxyl Meinel bands, originating from about 87 km, gives a signature of the atmosphere that can be observed remotely. Analysis of long term global observations of the 2.0 mu m OH Meinel brightness observed by the TIMED/SABER satellite instrument presents some striking patterns that appear in the Meinel airglow. The analysis shows that migrating and nonmigrating tides have large effects on the nighttime OH airglow emission in the upper mesosphere. The OH airglow emission rate is positively correlated with temperature below 94 km and negatively correlated above. Variations with longitudinal wavenumbers 1 and 4 are shown to result from the impacts of the stationary (D0), westward wavenumber 2 (DW2), and eastward wavenumber 3 (DE3) nonmigrating diurnal tides. Citation: Xu, J., A. K. Smith, G. Jiang, H. Gao, Y. Wei, M. G. Mlynczak, and J. M. Russell III (2010), Strong longitudinal variations in the OH nightglow, Geophys. Res. Lett., 37, L21801, doi:10.1029/2010GL043972. C1 [Xu, Jiyao; Jiang, Guoying; Gao, Hong; Wei, Yuan] Chinese Acad Sci, State Key Lab Space Weather, Ctr Space Sci & Appl Res, Beijing 100080, Peoples R China. [Mlynczak, M. G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Russell, J. M., III] Hampton Univ, Hampton, VA 23668 USA. [Smith, A. K.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. RP Xu, JY (reprint author), Chinese Acad Sci, State Key Lab Space Weather, Ctr Space Sci & Appl Res, Beijing 100080, Peoples R China. EM xujy@essar.ac.cn RI Mlynczak, Martin/K-3396-2012 FU National Science Foundation of China [40874080, 40890165, 40921063]; National Important Basic Research Project [2006CB806306]; Specialized Research Fund for State Key Laboratories; National Science Foundation FX This research was supported by the National Science Foundation of China (40874080, 40890165, 40921063) and the National Important Basic Research Project (2006CB806306). The project is also supported by the Specialized Research Fund for State Key Laboratories. The National Center for Atmospheric Research is sponsored by the National Science Foundation. NR 27 TC 24 Z9 26 U1 3 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 2 PY 2010 VL 37 AR L21801 DI 10.1029/2010GL043972 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 676TD UT WOS:000283940600001 ER PT J AU Huang, XL Loeb, NG Yang, WZ AF Huang, Xianglei Loeb, Norman G. Yang, Wenze TI Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: 2. Cloudy sky and band-by-band cloud radiative forcing over the tropical oceans SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ENERGY SYSTEM INSTRUMENT; ANGULAR-DISTRIBUTION MODELS; 1998 EL-NINO; STATISTICAL-ANALYSES; OBJECT DATA; PART II; CIRCULATION SYSTEMS; TERRA SATELLITE; VALIDATION; FEEDBACKS AB We first present an algorithm for deriving cloudy sky outgoing spectral flux through the entire longwave spectrum from the collocated Atmospheric Infrared Sounder (AIRS) and Cloud and the Earth's Radiant Energy System (CERES) measurements over the tropical oceans. The algorithm is similar to the one described in part 1 of this series of studies: spectral angular dependent models are developed to estimate the spectral flux of each AIRS channel, and then a multivariate linear prediction scheme is used to estimate spectral fluxes at frequencies not covered by the AIRS instrument. The entire algorithm is validated against synthetic spectra as well as the CERES outgoing longwave radiation (OLR) measurements. Mean difference between the OLR estimated in this way and the collocated CERES OLR is 2.15 W m(-2) with a standard deviation of 5.51 W m(-2). The algorithm behaves consistently well for different combinations of cloud fractions and cloud-surface temperature difference, indicating the robustness of the algorithm for various cloudy scenes. Then, using the Geophysical Fluid Dynamics Laboratory AM2 model as a case study, we illustrate the merit of band-by-band cloud radiative forcings (CRFs) derived from this algorithm in model evaluation. The AM2 tropical annual mean band-by-band CRFs generally agree with the observed counterparts, but some systematic biases in the window bands and over the marine-stratus regions can be clearly identified. An idealized model is used to interpret the results and to explain why the fractional contribution of each band to the broadband CRF is worthy for studying: it is sensitive to cloud height but largely insensitive to the cloud fraction. C1 [Huang, Xianglei] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Loeb, Norman G.] NASA Langley Res Ctr, Radiat & Climate Branch, Hampton, VA 23681 USA. [Yang, Wenze] CUNY Hunter Coll, New York, NY 10021 USA. RP Huang, XL (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, 2455 Hayward St, Ann Arbor, MI 48109 USA. EM xianglei@umich.edu RI Huang, Xianglei/G-6127-2011; Yang, Wenze/B-8356-2012 OI Huang, Xianglei/0000-0002-7129-614X; Yang, Wenze/0000-0001-8514-2742 FU NSF [NSF ATM 0755310]; NASA [NNX09AJ46G] FX We are greatly indebted to V. Ramaswamy and NOAA GFDL for the generosity of providing computing resources for the AM2 simulation and relevant data analysis. The AIRS data were obtained from NASA GSFC DAAC and the CERES data from NASA Langley DAAC. The ECMWF ERA-40 reanalysis data were obtained from http://data.ecmwf.int/data/d/era40_daily/. One of the authors, X. Huang, thanks L. Strow, G. Aumann, T. Pagano, B. Kahn, S. Souze-Machado, S.Y. Lee, and Z. Luo for valuable discussions and helps on understanding the AIRS data. We also thank two reviewers for their comments. This research is supported partly by NSF AGS CLD program under grant NSF ATM 0755310 and NASA MAP project under grant NNX09AJ46G awarded to the University of Michigan. NR 46 TC 12 Z9 12 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 2 PY 2010 VL 115 AR D21101 DI 10.1029/2010JD013932 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 676UQ UT WOS:000283944500003 ER PT J AU Corp, LA Middleton, EM Campbell, PE Huemmrich, KF Daughtry, CST Russ, A Cheng, YB AF Corp, Lawrence A. Middleton, Elizabeth M. Campbell, Petya E. Huemmrich, K. Fred Daughtry, Craig S. T. Russ, Andrew Cheng, Yen-Ben TI Spectral indices to monitor nitrogen-driven carbon uptake in field corn SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE remote sensing; vegetation; reflectance; carbon; nitrogen ID RED EDGE; CHLOROPHYLL CONCENTRATION; CANOPY REFLECTANCE; VEGETATION INDEXES; USE EFFICIENCY; MAPLE LEAVES; LEAF; RESPONSES AB Climate change is heavily impacted by changing vegetation cover and productivity with large scale monitoring of vegetation only possible with remote sensing techniques. The goal of this effort was to evaluate existing reflectance (R) spectroscopic methods for determining vegetation parameters related to photosynthetic function and carbon (C) dynamics in plants. Since nitrogen (N) is a key constituent of photosynthetic pigments and C fixing enzymes, biological C sequestration is regulated in part by N availability. Spectral R information was obtained from field corn grown at four N application rates of 0, 70, 140, 280 kg N/ha. A hierarchy of spectral observations were obtained: leaf and canopy with a spectral radiometer; aircraft with the AISA sensor; and satellite with EO-1 Hyperion. A number of spectral R indices were calculated from these hyperspectral observations and compared to geo-located biophysical measures of plant growth and physiological condition. Top performing indices included the R derivative index D(730)/D(705) and the normalized difference of R(750) vs. R(705) (ND(705)), both of which differentiated three of the four N fertilization rates at multiple observation levels and yielded high correlations with these carbon parameters: light use efficiency (LUE); C:N ratio; and crop grain yield. These results advocate the use of hyperspectral sensors for remotely monitoring carbon cycle dynamics in managed terrestrial ecosystems. C1 [Corp, Lawrence A.] Sigma Space Corp, Lanham, MD 20706 USA. [Middleton, Elizabeth M.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Campbell, Petya E.; Huemmrich, K. Fred] UMBC, Joint Ctr Earth Syst Technol, Baltimore, MD 21250 USA. [Daughtry, Craig S. T.; Russ, Andrew] ARS, Hydrol & Remote Sensing Lab, USDA, Beltsville, MD 20705 USA. [Cheng, Yen-Ben] Earth Resources Technol Inc, Annapolis Jct, MD 20701 USA. RP Corp, LA (reprint author), Sigma Space Corp, Lanham, MD 20706 USA. RI Cheng, Yen-Ben/G-1311-2012; Campbell, Petya/G-4931-2013; Campbell, Petya/L-7486-2013 OI Campbell, Petya/0000-0002-0505-4951; Campbell, Petya/0000-0002-0505-4951 NR 24 TC 4 Z9 4 U1 2 U2 17 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD NOV 1 PY 2010 VL 4 AR 043555 DI 10.1117/1.3518455 PG 10 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 704QC UT WOS:000286066500005 ER PT J AU Harms, F Wolf, J Raiche, G Jenniskens, P AF Harms, Franziska Wolf, Juergen Raiche, George Jenniskens, Peter TI Imaging and Slitless Spectroscopy of the Stardust Capsule Reentry Radiation SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AIAA 46th Aerospace Sciences Meeting and Exhibit CY JAN 07-10, 2008 CL Reno, NV SP Amer Inst Aeronaut & Astronaut AB Observations were made during the reentry of the Stardust sample return capsule on 15 January 2006 in order to calibrate the level of radiation from the capsule surface, from the bow shock, and from its wake. A sensitive cooled charge-coupled device camera was used, equipped with a grating to simultaneously record the first-order spectrum of the capsule and that of the background stars. The radiation of the capsule was dominated by the graybody radiation from the hot surface. This graybody radiation was calibrated against the known radiation of background stars. The purpose of this calibration was to provide a cross check for other instruments participating in the airborne Stardust Entry Observing Campaign. In addition, eight short-exposed images were obtained that show the development of billowing and the distortion induced by winds. C1 [Harms, Franziska] Kayser Threde GmbH, D-81379 Munich, Germany. [Wolf, Juergen] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Raiche, George] NASA, Ames Res Ctr, Thermophys Facil Branch, Moffett Field, CA 94035 USA. [Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. RP Harms, F (reprint author), Kayser Threde GmbH, Wolfratshauserstr 48, D-81379 Munich, Germany. NR 7 TC 1 Z9 1 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2010 VL 47 IS 6 BP 868 EP 872 DI 10.2514/1.38054 PG 5 WC Engineering, Aerospace SC Engineering GA 699KN UT WOS:000285662400002 ER PT J AU Lachaud, J Cozmuta, I Mansour, NN AF Lachaud, Jean Cozmuta, Ioana Mansour, Nagi N. TI Multiscale Approach to Ablation Modeling of Phenolic Impregnated Carbon Ablators SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID C/C COMPOSITE; DIFFUSION AB A multiscale approach is used to model and analyze the ablation of porous materials. Models are developed for the oxidation of a carbon preform and of the char layer of two phenolic impregnated carbon ablators with the same chemical composition but with different structures. Oxygen diffusion through the pores of the materials and in depth oxidation and mass loss are first modeled at the microscopic scale. The microscopic model is then averaged to yield a set of partial differential equations describing the macroscopic behavior of the material. Microscopic and macroscopic approaches are applied with progressive degrees of complexity to gain a comprehensive understanding of the ablation process. Porous medium ablation is found to occur in a zone of the char layer that we call the ablation zone. The thickness of the ablation zone is a decreasing function of the Thiele number. The studied materials are shown to display different ablation behaviors, a fact not captured by current models that are based on chemical composition only. Applied to Stardust's phenolic impregnated carbon ablator, the models explain and reproduce the unexpected drop in density measured in the char layer during Stardust postflight analyses [Stackpoole, M., Sepka, S., Cozmuta, I., and Kontinos, D., "Post-Flight Evaluation of Stardust Sample Return Capsule Forebody Heat-Shield Material," AIAA Paper 2008-1202, Jan. 2008]. C1 [Lachaud, Jean] NASA, Ames Res Ctr, Reacting Flow Environm Branch, NASA Postdoctoral Program, Moffett Field, CA 94035 USA. [Cozmuta, Ioana] NASA, Ames Res Ctr, ELORET Corp, Reacting Flow Environm Branch, Moffett Field, CA 94035 USA. [Mansour, Nagi N.] NASA, Ames Res Ctr, Space Technol Div, Moffett Field, CA 94035 USA. RP Lachaud, J (reprint author), NASA, Ames Res Ctr, Reacting Flow Environm Branch, NASA Postdoctoral Program, Mail Stop 230-3, Moffett Field, CA 94035 USA. OI Lachaud, Jean/0000-0001-7397-1025 FU NASA at the NASA Ames Research Center FX This research was partly supported by an appointment to the NASA Postdoctoral Program at the NASA Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. Support from NASA Aeronautics Research Mission Directorate, Fundamental Aeronautics Hypersonics Project is gratefully acknowledged. Fruitful discussions with Kerry Trumble and the comments of Dean Kontinos and John Lawson on the present manuscript are gratefully acknowledged. NR 27 TC 28 Z9 28 U1 3 U2 13 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2010 VL 47 IS 6 BP 910 EP 921 DI 10.2514/1.42681 PG 12 WC Engineering, Aerospace SC Engineering GA 699KN UT WOS:000285662400009 ER PT J AU Berry, S Daryabeigi, K Wurster, K Bittner, R AF Berry, Scott Daryabeigi, Kamran Wurster, Kathryn Bittner, Robert TI Boundary-Layer Transition on X-43A SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AIAA 38th Fluid Dynamics Conference CY JUN 23-26, 2008-3008 CL Seattle, WA SP AIAA ID VEHICLE; DESIGN AB The successful Mach 7 and 10 flights of the first fully integrated scramjet propulsion systems by the Hyper-X (X-43A) program have provided the means with which to verify the original design methodologies and assumptions. As part of Hyper-X's propulsion-airframe integration, the forebody was designed to include a spanwise array of vortex generators to promote boundary-layer transition ahead of the engine. Turbulence at the inlet is thought to provide the most reliable engine design and allows direct scaling of flight results to ground-based data. Preflight estimations of boundary-layer transition, for both Mach 7 and 10 flight conditions, suggested that forebody boundary-layer trips were required to ensure fully turbulent conditions upstream of the inlet. This paper presents the results of an analysis of the thermocouple measurements used to infer the dynamics of the transition process during the trajectories for both flights, on both the lower surface (to assess trip performance) and the upper surface (to assess natural transition). The approach used in the analysis of the thermocouple data is outlined, along with a discussion of the calculated local flow properties that correspond to the transition events as identified in the flight data. The present analysis has confirmed that the boundary-layer trips performed as expected for both flights, providing turbulent flow ahead of the inlet during critical portions of the trajectory, while the upper surface was laminar as predicted by the preflight analysis. C1 [Berry, Scott] NASA, Langley Res Ctr, Aerothermodynam Branch, Hampton, VA 23681 USA. [Daryabeigi, Kamran] NASA, Langley Res Ctr, Struct Mech & Concepts Branch, Hampton, VA 23681 USA. [Wurster, Kathryn] NASA, Langley Res Ctr, Vehicle Anal Branch, Hampton, VA 23681 USA. [Bittner, Robert] ATK Space Div, Hyperson Air Breathing Prop Branch, Hampton, VA 23681 USA. RP Berry, S (reprint author), NASA, Langley Res Ctr, Aerothermodynam Branch, M-S 408A, Hampton, VA 23681 USA. NR 34 TC 4 Z9 7 U1 3 U2 15 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2010 VL 47 IS 6 BP 922 EP 934 DI 10.2514/1.45889 PG 13 WC Engineering, Aerospace SC Engineering GA 699KN UT WOS:000285662400010 ER PT J AU Bakhtian, NM Aftosmis, MJ AF Bakhtian, Noel M. Aftosmis, Michael J. TI Parametric Study of Peripheral Nozzle Configurations for Supersonic Retropropulsion SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AIAA 2010 ASM Conference CY JAN 04-07, 2010 CL Orlando, FL ID FLOW; JET; REDUCTION; DESCENT; ENTRY; DRAG AB With sample-return and manned missions on the horizon for Mars exploration, the ability to decelerate high-mass systems to the planet's surface has become a research priority. This paper explores the use of supersonic retropropulsion, the application of jets facing into the freestream, as a means of achieving drag augmentation. Numerical studies of retropropulsion flows were conducted using a Cartesian Euler solver with adjoint-driven mesh refinement. After first validating this simulation tool with existing experimental data, a series of three broad parametric studies comprising 181 total runs was conducted using tri- and quad-nozzle capsule configurations. These studies chronicle the effects of nozzle location, orientation, and jet strength over Mach numbers from two to eight and angles of attack ranging from 5 to 10. Although many simulations in these studies actually produced negative drag augmentation, some simulations displayed local overpressures 60% higher than that possible behind a normal shock and produced drag augmentation on the order of 20%. Examination of these cases leads to the development of an aerodynamic model for significant drag augmentation in which the retrojets are viewed as oblique shock generators and flow approaching the capsule face is decelerated and compressed by multiple oblique shocks. By avoiding the massive stagnation pressure losses associated with the bow shock in typical entry systems, this approach achieves significant overpressure on the capsule face and strong drag amplification. With a fundamental physical mechanism for drag augmentation identified, follow-on studies are planned to exploit this feature and to understand its impact on potential entry trajectories and delivered mass limits for future Mars missions. C1 [Bakhtian, Noel M.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [Aftosmis, Michael J.] NASA, Ames Res Ctr, NASA Adv Supercomp Div, Moffett Field, CA 94035 USA. RP Bakhtian, NM (reprint author), Stanford Univ, Dept Aeronaut & Astronaut, Durand Bldg,496 Lomita Mall, Stanford, CA 94305 USA. NR 35 TC 6 Z9 7 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2010 VL 47 IS 6 BP 935 EP 950 DI 10.2514/1.48887 PG 16 WC Engineering, Aerospace SC Engineering GA 699KN UT WOS:000285662400011 ER PT J AU Adamo, DR Giorgini, JD Abell, PA Landis, RR AF Adamo, Daniel R. Giorgini, Jon D. Abell, Paul A. Landis, Rob R. TI Asteroid Destinations Accessible for Human Exploration: A Preliminary Survey in Mid-2009 SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article AB The flexible path is one of several space exploration strategy options developed by the Review of U.S. Human Space Flight Plans Committee in 2009. Among proposed flexible path destinations are near-Earth objects, those asteroids and comets having perihelions of less than 1.3 astronomical units and periods of less than 200 years. Heliocentric-orbit element criteria have been developed with the objective of rapidly identifying the near-Earth object subset potentially accessible for human exploration capabilities. When these criteria were applied to the Jet Propulsion Laboratory's small-body database in June 2009, the accessible subset was found to contain 36 near-Earth objects. Opportunities to visit these destinations have been obtained and assessed over the interval from 2020 through 2050. With the number of cataloged near-Earth objects expected to grow by more than an order of magnitude in the next 20 years, the number and frequency of human near-Earth object exploration opportunities will likewise increase. C1 [Giorgini, Jon D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Landis, Rob R.] NASA, Lyndon B Johnson Space Ctr, Intelligent Syst Div, Houston, TX 77058 USA. RP Adamo, DR (reprint author), 4203 Moonlight Shadow Court, Houston, TX 77059 USA. EM adamod@earthlink.net; jon.d.giorgini@nasa.gov; paul.a.abell@nasa.gov; rob.r.landis@nasa.gov NR 8 TC 9 Z9 9 U1 0 U2 1 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2010 VL 47 IS 6 BP 994 EP 1002 DI 10.2514/1.48681 PG 9 WC Engineering, Aerospace SC Engineering GA 699KN UT WOS:000285662400017 ER PT J AU Park, RS Bhaskaran, S Cheng, Y Johnson, AJ Lisano, ME Wolf, AA AF Park, Ryan S. Bhaskaran, Shyam Cheng, Yang Johnson, Andrew J. Lisano, Michael E. Wolf, Aron A. TI Trajectory Reconstruction of Sounding Rocket Using Inertial Measurement Unit and Landmark Data SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB This paper presents trajectory reconstruction of the ST-9 (space technology) sounding rocket experiment using the onboard inertial measurement unit data and descent imagery. The raw inertial measurement unit accelerometer measurements are first converted into inertial acceleration and then used in trajectory integration. The descent images are preprocessed using a map-matching algorithm and unique landmarks for each image are created. Using the converted inertial measurement unit data and descent images, the result from dead-reckoning and the kinematic-fix approaches are first compared with the global positioning system measurements. Then, both the inertial measurement unit data and landmarks are processed together using a batch least-squares filter and the position, velocity, stochastic acceleration, and camera orientation of each image are estimated. The reconstructed trajectory is compared with the global positioning system data and the corresponding formal uncertainties are presented. The result shows that inertial measurement unit data and descent images processed with a batch filter algorithm provide the trajectory accuracy required for pinpoint landing. C1 [Bhaskaran, Shyam] CALTECH, Jet Prop Lab, Outer Planet Nav Grp, Pasadena, CA 91109 USA. [Lisano, Michael E.] CALTECH, Jet Prop Lab, Orbiter Missions Syst Engn Grp, Pasadena, CA 91109 USA. [Wolf, Aron A.] CALTECH, Jet Prop Lab, EDL Aero Applicat Grp, Pasadena, CA 91109 USA. EM Ryan.S.Park@jpl.nasa.gov; Shyam.Bhaskaran@jpl.nasa.gov; Yang.Cheng@jpl.nasa.gov; Andrew.E.Johnson@jpl.nasa.gov; Michael.E.Lisano@jpl.nasa.gov; Aron.A.Wolf@jpl.nasa.gov NR 8 TC 2 Z9 3 U1 0 U2 5 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2010 VL 47 IS 6 BP 1003 EP 1009 DI 10.2514/1.46950 PG 7 WC Engineering, Aerospace SC Engineering GA 699KN UT WOS:000285662400018 ER PT J AU Wercinski, PF Jenniskens, P AF Wercinski, Paul F. Jenniskens, Peter TI Digital Still Snapshots of the Stardust Sample Return Capsule Entry SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article AB The 15 January 2006 reentry of the Stardust Sample Return capsule was photographed from 11.2-km altitude onboard NASA's DC-8 Airborne Laboratory in a series of brief 1/320 s exposures with a Nikon D70 digital still camera. The entry was detected from 09:57:13.5 to 09:57:53.5 UTC. Other instruments have demonstrated that most of the observed broadband flux is due to gray body radiation from the hot surface of the thermal protection system, except in the very beginning when strong emission lines of zinc from an ablating paint layer contributed significantly to the blue band. The measured flux in the green band was used to measure the surface-averaged temperature variation during flight, and the corresponding flux in the blue and red bands were used to verify the expected wavelength dependence of the gray body emission. C1 [Wercinski, Paul F.] NASA, Ames Res Ctr, Space Technol Div, Moffett Field, CA 94035 USA. [Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. RP Wercinski, PF (reprint author), NASA, Ames Res Ctr, Space Technol Div, Mail Stop 230-2, Moffett Field, CA 94035 USA. EM Paul.F.Wercinski@nasa.gov; Petrus.M.Jenniskens@nasa.gov FU NASA Wallops Flight Center; Orion Thermal Protection System Advanced Development Project; NASA Engineering and Safety Center FX We thank the ground-based observers that contributed to this article, in particular Bryan Murahashi of San Jose. NASA's DC-8 Airborne Laboratory was deployed by the University of North Dakota/National Suborbital Education and Research Center under contract with NASA Wallops Flight Center. This work was funded and managed by the Orion Thermal Protection System Advanced Development Project and the NASA Engineering and Safety Center. NR 7 TC 2 Z9 2 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2010 VL 47 IS 6 BP 889 EP 894 DI 10.2514/1.40248 PG 6 WC Engineering, Aerospace SC Engineering GA 699KN UT WOS:000285662400006 ER PT J AU Pancoast, A Sajina, A Lacy, M Noriega-Crespo, A Rho, J AF Pancoast, Anna Sajina, Anna Lacy, Mark Noriega-Crespo, Alberto Rho, Jeonghee TI STAR FORMATION AND DUST OBSCURATION IN THE TIDALLY DISTORTED GALAXY NGC 2442 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (NGC 2442); galaxies: star formation; galaxies: structure ID LUMINOUS INFRARED GALAXIES; FORMATION RATE INDICATORS; SPITZER-SPACE-TELESCOPE; SMALL-MAGELLANIC-CLOUD; NEARBY GALAXIES; SPIRAL GALAXIES; FORMATION RATES; STARBURST GALAXIES; FORMATION HISTORY; FORMING GALAXIES AB We present a detailed investigation of the morphological distribution and level of star formation and dust obscuration in the nearby tidally distorted galaxy NGC 2442. Spitzer images in the IR at 3.6, 4.5, 5.8, 8.0, and 24 mu m and GALEX images at 1500 angstrom and 2300 angstrom allow us to resolve the galaxy on scales between similar to 240 and 600 pc. We supplement these with archival data in the B, J, H, and K bands. We use the 8 mu m, 24 mu m, and FUV (1500 angstrom) emission to study the star formation rate (SFR). We find that, globally, these tracers of star formation give a range of results of similar to 6-11 M(circle dot) yr(-1), with the dust-corrected FUV giving the highest value of SFR. We can reconcile the UV- and IR-based estimates by adopting a steeper UV extinction curve that lies in between the starburst (Calzetti) and Small Magellanic Cloud extinction curves. However, the regions of the highest SFR intensity along the spiral arms are consistent with a starburst-like extinction. Overall, the level of star formation we find is higher than previously published for this galaxy, by about a factor of 2, which, contrary to previous conclusions, implies that the interaction that caused the distorted morphology of NGC 2442 likely also triggered increased levels of star formation activity. We also find marked asymmetry in that the north spiral arm has a noticeably higher SFR than the southern arm. The tip of the southern spiral arm shows a likely tidally distorted peculiar morphology. It is UV bright and shows unusual IRAC colors, consistent with other published tidal features IRAC data. Outside of the spiral arms, we discover what appears to be a superbubble, similar to 1.7 kpc across, which is seen most clearly in the IRAC images. Significant H alpha, UV, and IR emission in the area also suggest vigorous ongoing star formation. A known, recent supernova (SN 1999ga) is located at the edge of this superbubble. Although speculative at this stage, this area suggests a large star-forming region with a morphology shaped by generations of supernovae. Lastly, we discover an 8 mu m (polycyclic aromatic hydrocarbon) circumnuclear ring with an similar to 0.8 kpc radius. The H alpha emission is largely concentrated inside that ring and shows a vague spiral structure in the rest of the galaxy. The nuclear region shows the highest obscuration levels in the galaxy (A(1600) similar to 3-4) most likely due to the circumnuclear dust ring. C1 [Pancoast, Anna; Sajina, Anna] Haverford Coll, Haverford, PA 19041 USA. [Pancoast, Anna] UC Santa Barbara, Santa Barbara, CA 93106 USA. [Lacy, Mark] Natl Radio Astron Observ, N Amer ALMA Sci Ctr, Charlottesville, VA 22903 USA. [Noriega-Crespo, Alberto] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Rho, Jeonghee] NASA, Ames Res Ctr, SOFIA, Moffett Field, CA 94035 USA. RP Pancoast, A (reprint author), Haverford Coll, Haverford, PA 19041 USA. FU JPL/Caltech; National Aeronautics and Space Administration; National Science Foundation FX We are grateful to the anonymous referee for their careful reading of our manuscript and thoughtful suggestions that have significantly improved the content and clarity of this paper. We thank Beth Willman and Brian Siana for helpful discussions. Support for this work was provided by NASA through an award issued by JPL/Caltech. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This work uses observations made by Galaxy Evolution Explorer (GALEX), a NASA Small Explorer, launched in 2003 April and developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology. This work makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This work has also made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 64 TC 6 Z9 6 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 530 EP 543 DI 10.1088/0004-637X/723/1/530 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100045 ER PT J AU Carroll, PB Drouin, BJ Weaver, SLW AF Carroll, P. Brandon Drouin, Brian J. Weaver, Susanna L. Widicus TI THE SUBMILLIMETER SPECTRUM OF GLYCOLALDEHYDE SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: molecules; line: identification; methods: data analysis; methods: laboratory; molecular data; molecular processes; radio lines: ISM ID INTERSTELLAR GLYCOLALDEHYDE; MILLIMETER-WAVE; DIPOLE-MOMENT; SUGAR AB Glycolaldehyde (HOCH(2)CHO) is a sugar-related interstellar prebiotic molecule that has been detected in two star-forming regions, Sgr B2(N) and G31.41+0.31. Glycolaldehyde is suspected to form from photodissociation-driven ice chemistry, and therefore can be used to trace complex organic chemistry in interstellar environments. The relative abundance of glycolaldehyde to its structural isomers, methyl formate (HCOOCH(3)) and acetic acid (CH(3)COOH), can be used to constrain astrochemical models. Given its central role in the complex chemistry of the interstellar medium, glycolaldehyde has been suggested as a prime molecular target for upcoming high-frequency molecular line searches using new far-infrared observatories. In particular, glycolaldehyde is a target for the Herschel Space Observatory HEXOS Key Program, which is conducting spectral line surveys of the Sgr B2(N) and Orion KL star-forming regions across the entire HIFI band. Laboratory investigation of glycolaldehyde in the HIFI frequency range is required before its lines can be identified in these spectra. We have therefore acquired the laboratory spectrum of glycolaldehyde in selected frequency ranges across the submillimeter range. We present here the laboratory spectral analysis of the ground vibrational state of glycolaldehyde up to 1.2 THz. C1 [Carroll, P. Brandon; Weaver, Susanna L. Widicus] Emory Univ, Dept Chem, Atlanta, GA 30322 USA. [Drouin, Brian J.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Carroll, PB (reprint author), Emory Univ, Dept Chem, 1515 Pierce Dr, Atlanta, GA 30322 USA. EM pbcarro@emory.edu; brian.j.drouin@jpl.nasa.gov; susanna.widicus.weaver@emory.edu FU National Aeronautics and Space Administration; Emory University FX Portions of this paper present research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work was supported by SLWW's startup funds provided by Emory University. We are grateful to Geoffrey Blake for providing lodging for P.B.C. during his visit to Pasadena. We thank the JPL Microwave, Millimeter, and Submillimeter Spectroscopy Group, particularly Shanshan Yu, for their help during data collection. We also gratefully acknowledge the support and services rendered by the Emory and JPL staff. NR 11 TC 22 Z9 22 U1 1 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 845 EP 849 DI 10.1088/0004-637X/723/1/845 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100073 ER PT J AU Rivera-Ingraham, A Ade, PAR Bock, JJ Chapin, EL Devlin, MJ Dicker, SR Griffin, M Gundersen, JO Halpern, M Hargrave, PC Hughes, DH Klein, J Marsden, G Martin, PG Mauskopf, P Netterfield, CB Olmi, L Patanchon, G Rex, M Scott, D Semisch, C Truch, MDP Tucker, C Tucker, GS Viero, MP Wiebe, DV AF Rivera-Ingraham, Alana Ade, Peter A. R. Bock, James J. Chapin, Edward L. Devlin, Mark J. Dicker, Simon R. Griffin, Matthew Gundersen, Joshua O. Halpern, Mark Hargrave, Peter C. Hughes, David H. Klein, Jeff Marsden, Gaelen Martin, Peter G. Mauskopf, Philip Netterfield, Calvin B. Olmi, Luca Patanchon, Guillaume Rex, Marie Scott, Douglas Semisch, Christopher Truch, Matthew D. P. Tucker, Carole Tucker, Gregory S. Viero, Marco P. Wiebe, Donald V. TI THE BLAST VIEW OF THE STAR-FORMING REGION IN AQUILA (l=45 degrees, b=0 degrees) SO ASTROPHYSICAL JOURNAL LA English DT Article DE balloons; ISM: clouds; stars: formation; submillimeter: ISM ID H-II REGIONS; GALACTIC RING SURVEY; ULTRACOMPACT HII-REGIONS; APERTURE-SUBMILLIMETER-TELESCOPE; IRAS POINT SOURCES; PLANE SURVEY; MOLECULAR CLOUDS; VLA OBSERVATIONS; IONIZING STARS; MASER EMISSION AB We have carried out the first general submillimeter analysis of the field toward GRSMC 45.46+0.05, a massive star-forming region in Aquila. The deconvolved 6 deg(2) (3 degrees x 2 degrees) maps provided by BLAST in 2005 at 250, 350, and 500 mu m were used to perform a preliminary characterization of the clump population previously investigated in the infrared, radio, and molecular maps. Interferometric CORNISH data at 4.8 GHz have also been used to characterize the Ultracompact Hii regions (UCHiiRs) within the main clumps. By means of the BLAST maps, we have produced an initial census of the submillimeter structures that will be observed by Herschel, several of which are known Infrared Dark Clouds. Our spectral energy distributions of the main clumps in the field, located at similar to 7 kpc, reveal an active population with temperatures of T similar to 35-40 K and masses of similar to 10(3) M-circle dot for a dust emissivity index beta = 1.5. The clump evolutionary stages range from evolved sources, with extended Hii regions and prominent IR stellar population, to massive young stellar objects, prior to the formation of an UCHIIR. The CORNISH data have revealed the details of the stellar content and structure of the UCHIIRs. In most cases, the ionizing stars corresponding to the brightest radio detections are capable of accounting for the clump bolometric luminosity, in most cases powered by embedded OB stellar clusters. C1 [Rivera-Ingraham, Alana; Martin, Peter G.; Netterfield, Calvin B.; Viero, Marco P.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Tucker, Carole] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, James J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, James J.] CALTECH, Pasadena, CA 91125 USA. [Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Wiebe, Donald V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Rex, Marie; Semisch, Christopher; Truch, Matthew D. P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Gundersen, Joshua O.] Univ Miami, Dept Phys, Carol Gables, FL 33146 USA. [Hughes, David H.] INAOE, Puebla, Mexico. [Martin, Peter G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Netterfield, Calvin B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Olmi, Luca] Univ Puerto Rico, Dept Phys, San Juan, PR 00936 USA. [Olmi, Luca] Ist Radioastron, I-50125 Florence, Italy. [Patanchon, Guillaume] Lab APC, F-75205 Paris, France. [Tucker, Gregory S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Rivera-Ingraham, A (reprint author), Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. RI Klein, Jeffrey/E-3295-2013 FU NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G]; Canadian Space Agency (CSA); UK Particle Physics and Astronomy Research Council (PPARC); Canada Foundation for Innovation (CFI); Ontario Innovation Trust (OIT); Canada's Natural Sciences and Engineering Research Council (NSERC) FX The BLAST collaboration acknowledges the support of NASA through grants NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the UK Particle Physics and Astronomy Research Council (PPARC), the Canada Foundation for Innovation (CFI), the Ontario Innovation Trust (OIT), and Canada's Natural Sciences and Engineering Research Council (NSERC). We also thank the Columbia Scientific Balloon Facility (CSBF) staff for their outstanding work. We also thank the referee for very useful suggestions and improvements to our paper, and Mubdi Rahman for useful discussions. NR 74 TC 6 Z9 6 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 915 EP 934 DI 10.1088/0004-637X/723/1/915 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100077 ER PT J AU Bauer, JM Buratti, BJ Li, JY Mosher, JA Hicks, MD Schmidt, BE Goguen, JD AF Bauer, James M. Buratti, Bonnie J. Li, Jian-Yang Mosher, Joel A. Hicks, Michael D. Schmidt, Britney E. Goguen, Jay D. TI DIRECT DETECTION OF SEASONAL CHANGES ON TRITON WITH HUBBLE SPACE TELESCOPE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: individual (Triton); planets and satellites: surfaces ID SURFACE; PHOTOMETRY; VARIABILITY; ATMOSPHERE; SHAPE; IRAF AB Triton is one of the few bodies in the solar system with observed cryo-volcanic activity, in the form of plumes at its south pole, which suggests large-scale surface volatile transport over time. Triton's large variations in obliquity have motivated prior predictions of changing atmospheric column densities of several orders of magnitude, driven by seasonal evaporation of surface volatiles. Using the Hubble Space Telescope, we directly imaged Triton's surface and have detected large-scale differences in increased and decreased reflectance when compared with Voyager data at UV, visual, and methane-band wavelengths. Our surface map shows regions of increased brightness at near-equatorial latitudes and near the Neptune-facing side, and darkened regions near longitudes of +/- 180 degrees, indicating the presence of ongoing seasonal volatile transport. C1 [Bauer, James M.; Buratti, Bonnie J.; Mosher, Joel A.; Hicks, Michael D.; Goguen, Jay D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Li, Jian-Yang] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Schmidt, Britney E.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90064 USA. RP Bauer, JM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 183-401, Pasadena, CA 91109 USA. EM bauer@scn.jpl.nasa.gov; Bonnie.Buratti@jpl.nasa.gov; jyli@astro.umd.edu; jam@joelmosher.com; hicksm@scn.jpl.nasa.gov; britneys@ucla.edu; jdg@scn.jpl.nasa.gov OI Schmidt, Britney/0000-0001-7376-8510 FU NASA [NAS 5-26555]; Space Telescope Science Institute FX Funding for the analysis of the Voyager images was provided in part by the NASA Discovery Data Analysis Program. The research presented was partially based on observations made with the NASA/ESA Hubble Space Telescope, the analysis of which was funded through a grant from the Space Telescope Science Institute. STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. NR 24 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2010 VL 723 IS 1 BP L49 EP L52 DI 10.1088/2041-8205/723/1/L49 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LJ UT WOS:000284075200010 ER PT J AU Culverhouse, TL Bonamente, M Bulbul, E Carlstrom, JE Gralla, MB Greer, C Hasler, N Hawkins, D Hennessy, R Jetha, NN Joy, M Lamb, JW Leitch, EM Marrone, DP Miller, A Mroczkowski, T Muchovej, S Pryke, C Sharp, M Woody, D Andreon, S Maughan, B Stanford, SA AF Culverhouse, T. L. Bonamente, M. Bulbul, E. Carlstrom, J. E. Gralla, M. B. Greer, C. Hasler, N. Hawkins, D. Hennessy, R. Jetha, N. N. Joy, M. Lamb, J. W. Leitch, E. M. Marrone, D. P. Miller, A. Mroczkowski, T. Muchovej, S. Pryke, C. Sharp, M. Woody, D. Andreon, S. Maughan, B. Stanford, S. A. TI GALAXY CLUSTERS AT z >= 1: GAS CONSTRAINTS FROM THE SUNYAEV-ZEL'DOVICH ARRAY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general; galaxies: clusters: intracluster medium ID X-RAY MEASUREMENTS; HIGH-REDSHIFT; SCALING RELATIONS; HUBBLE CONSTANT; CHANDRA; TELESCOPE; COSMOLOGY; UNIVERSE AB We present gas constraints from Sunyaev-Zel'dovich (SZ) effect measurements in a sample of 11 X-ray and infrared (IR) selected galaxy clusters at z >= 1, using data from the Sunyaev-Zel'dovich Array (SZA). The cylindrically integrated Compton-y parameter, Y, is calculated by fitting the data to a two-parameter gas pressure profile. Where possible, we also determine the temperature of the hot intracluster plasma from Chandra and XMM-Newton data and constrain the gas mass within the same aperture (r(2500)) as Y. The SZ effect is detected in the clusters for which the X-ray data indicate gas masses above similar to 10(13) M(circle dot), including XMMU J2235-2557 at redshift z = 1.39, which to date is one of the most distant clusters detected using the SZ effect. None of the IR-selected targets are detected by the SZA measurements, indicating low gas masses for these objects. For these and the four other undetected clusters, we quote upper limits on Y and M(gas,SZ), with the latter derived from scaling relations calibrated with lower redshift clusters. We compare the constraints on Y and X-ray-derived gas mass M(gas,X-ray) to self-similar scaling relations between these observables determined from observations of lower redshift clusters, finding consistency given the measurement error. C1 [Culverhouse, T. L.; Carlstrom, J. E.; Gralla, M. B.; Greer, C.; Hennessy, R.; Leitch, E. M.; Marrone, D. P.; Pryke, C.; Sharp, M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Culverhouse, T. L.; Carlstrom, J. E.; Gralla, M. B.; Greer, C.; Hennessy, R.; Leitch, E. M.; Pryke, C.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Bonamente, M.; Bulbul, E.; Hasler, N.; Jetha, N. N.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Bonamente, M.; Jetha, N. N.; Joy, M.] NASA, Space Sci VP62, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Carlstrom, J. E.; Marrone, D. P.; Pryke, C.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carlstrom, J. E.; Sharp, M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Hawkins, D.; Lamb, J. W.; Muchovej, S.; Woody, D.] CALTECH, Owens Valley Radio Observ, Big Pine, CA 93513 USA. [Miller, A.; Mroczkowski, T.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Miller, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Mroczkowski, T.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Mroczkowski, T.; Muchovej, S.] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Andreon, S.] INAF Osservatorio Astron Brera, I-20121 Milan, Italy. [Maughan, B.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Stanford, S. A.] Univ Calif Davis, Davis, CA 95618 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. RP Culverhouse, TL (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. OI Andreon, Stefano/0000-0002-2041-8784 FU NSF [AST-0604982, AST-0838187, AST-0507545, AST-05-07161]; University of Chicago [PHY-0114422]; CARMA partner universities; NASA [HF-51259.01] FX The operation of the SZA is supported by the NSF through grant AST-0604982 and AST-0838187. Partial support is also provided from grant PHY-0114422 at the University of Chicago, and by the NSF grants AST-0507545 and AST-05-07161 to Columbia University. CARMA operations are supported by the NSF under a cooperative agreement, and by the CARMA partner universities. S.M. acknowledges support from an NSF Astronomy and Astrophysics Fellowship; C.G., S.M., and M.S. from NSF Graduate Research Fellowships; D.P.M. from NASA Hubble Fellowship grant HF-51259.01. NR 36 TC 15 Z9 15 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2010 VL 723 IS 1 BP L78 EP L83 DI 10.1088/2041-8205/723/1/L78 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LJ UT WOS:000284075200016 ER PT J AU Lee, JC Liou, MS AF Lee, Jang-Chang Liou, Meng-Sing TI Accurate calculation of the pressure and temperature of water, steam, and ice Formulation for CFD SO JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY LA English DT Article DE Gibbs free energy; Equation of state for steam; Water and ice; IAPWS ID EQUATION; STATE AB An accurate approach is proposed for calculating the thermodynamic properties of water in three states liquid, steam and ice, and the transitional states among them The formulation is expressed in terms of quantities that are naturally used in Computational Fluid Dynamics (CFD), namely the specific volume (v) and specific internal energy (u), through the use of Gibbs free energy The Gibbs free energy formula proposed by IAPWS, formulated as a function of pressure and temperature, is used as a basis in our calculations The Jacobian matrix resulting from the transformation between sets of variables (p,T) and (v,u) are derived for each phase, the Newton-Raphson method is used to iteratively solve the nonlinear equations Numerical calculations have been carried out for the entire phase diagram covering all three phases The numerical results are compared with the original data of IAPWS and the associated errors are analyzed It is confirmed that the pressure and temperature are accurately calculated, with largest relative error on the order of 10(-7) in the ice phase Hence, other thermodynamic properties are also obtained within the same level of accuracy The method proposed in this paper for calculating pressure and temperature, variables needed in CFD, is reliable and can be applied to the numerical simulation of multiphase flows, including phase changes C1 [Lee, Jang-Chang] Andong Natl Univ, Dept Mech Engn, Andong 760749, South Korea. [Liou, Meng-Sing] NASA Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA. RP Lee, JC (reprint author), Andong Natl Univ, Dept Mech Engn, Andong 760749, South Korea. FU Andong National University FX This work was supported by a grant from 2007 Research Fund of Andong National University NR 11 TC 0 Z9 0 U1 0 U2 5 PU KOREAN SOC MECHANICAL ENGINEERS PI SEOUL PA KSTC NEW BLD. 7TH FLOOR, 635-4 YEOKSAM-DONG KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 1738-494X J9 J MECH SCI TECHNOL JI J. Mech. Sci. Technol. PD NOV PY 2010 VL 24 IS 11 BP 2333 EP 2340 DI 10.1007/s12206-010-0906-2 PG 8 WC Engineering, Mechanical SC Engineering GA 677WG UT WOS:000284024100024 ER PT J AU Braakman, R Drouin, BJ Weaver, SLW Blake, GA AF Braakman, Rogier Drouin, Brian J. Weaver, Susanna L. Widicus Blake, Geoffrey A. TI Extended analysis of hydroxyacetone in the torsional ground state SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Rotational spectroscopy; Internal rotation; Torsion-rotational coupling ID METHYL FORMATE HCOOCH3; INTERSTELLAR GLYCOLALDEHYDE; SAGITTARIUS B2(N); MILLIMETER; MICROWAVE; 1,3-DIHYDROXYACETONE; SUBMILLIMETER; MOLECULES; ROTATION; SPECTRA AB The torsion-rotation spectrum of hydroxyacetone presents a highly challenging analysis problem in molecular physics Continuing analyses of this species are compelling due to a nascent interest from astronomers who believe hydroxyacetone may link a variety of organic chemical families observed in the interstellar medium (ISM) Recent work has demonstrated the difficulties in analysis of the millimeter spectrum and the modestly weaker spectrum in this region has not afforded an ISM detection We present an extension of the laboratory measurements and analysis up to the room temperature Boltzmann peak near 300 GHz thus providing sufficient coverage to examine the ISM for the strongest features expected in star-forming hot cores Even without subsequent detection searches for the stronger features will produce the lowest possible upper limits of this elusive species (C) 2010 Elsevier Inc All rights reserved C1 [Braakman, Rogier] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Drouin, Brian J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Weaver, Susanna L. Widicus] Emory Univ, Dept Chem, Atlanta, GA 30322 USA. [Blake, Geoffrey A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Braakman, R (reprint author), Santa Fe Inst, Hyde Pk Rd 1399, Santa Fe, NM 87501 USA. FU NASA [NAG5-13457]; National Aeronautics and Space Administration FX R B acknowledge J Hougen at NIST for useful discussions on internal axis system (IAM) methods The efforts of R B and G A B were funded in part by the NASA SARA program Grant NAG5-13457 Portions of this paper present research carried out at the Jet Propulsion Laboratory California Institute of Technology under contract with the National Aeronautics and Space Administration NR 28 TC 2 Z9 2 U1 1 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD NOV PY 2010 VL 264 IS 1 BP 43 EP 49 DI 10.1016/jjms.2010.09.003 PG 7 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 679SS UT WOS:000284181700006 ER PT J AU Beyersdorf, AJ Blake, DR Swanson, A Meinardi, S Rowland, FS Davis, D AF Beyersdorf, Andreas J. Blake, Donald R. Swanson, Aaron Meinardi, Simone Rowland, F. S. Davis, Douglas TI Abundances and variability of tropospheric volatile organic compounds at the South Pole and other Antarctic locations SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Antarctic troposphere; Airborne measurements; Alkyl nitrate production; Mount Erebus; VOC seasonal variability; ANTCI ID DURVILLE COASTAL ANTARCTICA; SALT SULFATE AEROSOLS; BOUNDARY-LAYER; NONMETHANE HYDROCARBONS; DIMETHYL SULFIDE; ISCAT 2000; ALKYL NITRATES; ATMOSPHERIC DIMETHYLSULFIDE; SEASONAL-VARIATIONS; PACIFIC-OCEAN AB Multiyear (2000-2006) seasonal measurements of carbon monoxide, hydrocarbons, halogenated species, dimethyl sulfide, carbonyl sulfide and C(1)-C(4) alkyl nitrates at the South Pole are presented for the first time. At the South Pole, short-lived species (such as the alkenes) typically were not observed above their limits of detection because of long transit times from source regions. Peak mixing ratios of the longer lived species with anthropogenic sources were measured in late winter (August and September) with decreasing mixing ratios throughout the spring. In comparison, compounds with a strong oceanic source, such as bromoform and methyl iodide, had peak mixing ratios earlier in the winter (June and July) because of decreased oceanic production during the winter months. Dimethyl sulfide (DMS), which is also oceanically emitted but has a short lifetime, was rarely measured above 5 pptv. This is in contrast to high DMS mixing ratios at coastal locations and shows the importance of photochemical removal during transport to the pole. Alkyl nitrate mixing ratios peaked during April and then decreased throughout the winter. The dominant source of the alkyl nitrates in the region is believed to be oceanic emissions rather than photochemical production due to low alkane levels. Sampling of other tropospheric environments via a Twin Otter aircraft included the west coast of the Ross Sea and large stretches of the Antarctic Plateau. In the coastal atmosphere, a vertical gradient was found with the highest mixing ratios of marine emitted compounds at low altitudes. Conversely, for anthropogenically produced species the highest mixing ratios were measured at the highest altitudes, suggesting long-range transport to the continent. Flights flown through the plume of Mount Erebus, an active volcano, revealed that both carbon monoxide and carbonyl sulfide are emitted with an OCS/CO molar ratio of 3.3 x 10(-3) consistent with direct observations by other investigators within the crater rim. Published by Elsevier Ltd. C1 [Beyersdorf, Andreas J.] NASA, Langley Res Ctr, Hampton, VA 23662 USA. [Blake, Donald R.; Meinardi, Simone; Rowland, F. S.] Univ Calif Irvine, Irvine, CA 92697 USA. [Swanson, Aaron] Northrop Grumman Aerosp Syst, Redondo Beach, CA 90278 USA. [Davis, Douglas] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Beyersdorf, AJ (reprint author), NASA, Langley Res Ctr, Mail Stop 483, Hampton, VA 23681 USA. EM andreas.j.beyersdorf@nasa.gov RI Beyersdorf, Andreas/N-1247-2013 FU NSF FX This research was supported by NSF. This work could not be performed without the help of the staff at the South Pole and McMurdo research stations with particular gratitude to Stephanie Koes and the South Pole winter-over staff. Assistance with the airborne sample collection was provided by the entire ANTCI science group but particularly by Saewung Kim, Ed Kosciuch, Lee Mauldin and Dave Tanner. At UC Irvine, the assistance of Barbara Chisholm, Gloria Liu and Brent Love is appreciated. We also thank William Neff at NOAA's Boulder lab for his helpful suggestions regarding transport processes in defining South Pole trace gas levels. NR 68 TC 7 Z9 7 U1 1 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2010 VL 44 IS 36 BP 4565 EP 4574 DI 10.1016/j.atmosenv.2010.08.025 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 672FO UT WOS:000283568600005 ER PT J AU Saha, S Bambha, NK Bhattacharyya, SS AF Saha, Sankalita Bambha, Neal K. Bhattacharyya, Shuvra S. TI Design and implementation of embedded computer vision systems based on particle filters SO COMPUTER VISION AND IMAGE UNDERSTANDING LA English DT Article DE Design space exploration; Particle filters; Reconfigurable platforms AB Particle filtering methods are gradually attaining significant importance in a variety of embedded computer vision applications. For example, in smart camera systems, object tracking is a very important application and particle filter based tracking algorithms have shown promising results with robust tracking performance. However, most particle filters involve vast amount of computational complexity, thereby intensifying the challenges faced in their real-time, embedded implementation. Many of these applications share common characteristics, and the same system design can be reused by identifying and varying key system parameters and varying them appropriately. In this paper, we present a System-on-Chip (SoC) architecture involving both hardware and software components for a class of particle filters. The framework uses parameterization to enable fast and efficient reuse of the architecture with minimal re-design effort for a wide range of particle filtering applications as well as implementation platforms. Using this framework, we explore different design options for implementing three different particle filtering applications on field-programmable gate arrays (FPGAs). The first two applications involve particle filters with one-dimensional state transition models, and are used to demonstrate the key features of the framework The main focus of this paper is on design methodology for hardware/software implementation of multi-dimensional particle filter application and we explore this in the third application which is a 3D facial pose tracking system for videos. In this multi-dimensional particle filtering application, we extend our proposed architecture with models for hardware/software co-design so that limited hardware resources can be utilized most effectively. Our experiments demonstrate that the framework is easy and intuitive to use, while providing for efficient design and implementation. We present different memory management schemes along with results on trade-offs between area (FPGA resource requirement) and execution speed. (c) 2010 Elsevier Inc. All rights reserved. C1 [Saha, Sankalita] NASA, Ames Res Ctr, Mission Crit Technol Inc, Moffett Field, CA 94035 USA. [Bambha, Neal K.] USA, Res Lab, Adelphi, MD 20783 USA. [Bhattacharyya, Shuvra S.] Univ Maryland, Inst Adv Comp Studies, Dept Elect & Comp Engn, College Pk, MD 20742 USA. RP Saha, S (reprint author), NASA, Ames Res Ctr, Mission Crit Technol Inc, Moffett Field, CA 94035 USA. EM sankalita.saha@nasa.gov; nbambha@arl.army.mil; ssb@umd.edu OI Bhattacharyya, Shuvra/0000-0001-7719-1106 NR 20 TC 7 Z9 7 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1077-3142 EI 1090-235X J9 COMPUT VIS IMAGE UND JI Comput. Vis. Image Underst. PD NOV PY 2010 VL 114 IS 11 BP 1203 EP 1214 DI 10.1016/j.cviu.2010.03.018 PG 12 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 675MN UT WOS:000283834900008 ER PT J AU Wincheski, B Yu, F Simpon, J Williams, P Rackow, K AF Wincheski, Buzz Yu, Feng Simpon, John Williams, Phillip Rackow, Kirk TI Development of SDT sensor based eddy current probe for detection of deep fatigue cracks in multi-layer structure SO NDT & E INTERNATIONAL LA English DT Article DE Eddy current; Spin-dependent tunneling sensor; Multi-layer; Crack AB The detection and characterization of deeply buried fatigue damage in thick, multi-layer airframe components pose significant technical challenges to the aviation safety community. Currently, no nondestructive evaluation technique is available to reliably detect such potential damage from the exterior of the airframe, which is highly desirable in light of inspection cost as well as avoidance of structure damage. Recent technological advances in high-sensitivity magnetic sensors, i e., spin-dependent tunneling (SDT) sensors, make it feasible to employ electromagnetic inspection techniques for deep fatigue crack inspection. In this work, we report on the development and fabrication of a low frequency eddy current probe based on a magnetically shielded SDT pickup sensor concentrically located in the interior of an induction drive coil to enable localized deep diffusion of the electromagnetic field Into the part under test. Simulation studies were conducted to demonstrate the deep penetration capability of this probe configuration and to understand inspection sensitivity based on magnetic field perturbation due to subsurface cracking Experimental results obtained using this SDT sensor on samples with Induced flaws demonstrate its potential for practical application. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Wincheski, Buzz; Williams, Phillip] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Yu, Feng] Cessna Aircraft Co, Wichita, KS USA. [Simpon, John] Lockheed Martin, Hampton, VA USA. [Rackow, Kirk] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Yu, F (reprint author), Cessna Aircraft Co, Wichita, KS USA. NR 14 TC 4 Z9 4 U1 2 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0963-8695 J9 NDT&E INT JI NDT E Int. PD NOV PY 2010 VL 43 IS 8 BP 718 EP 725 DI 10.1016/j.ndteint.2010.08.005 PG 8 WC Materials Science, Characterization & Testing SC Materials Science GA 673SY UT WOS:000283684500010 ER PT J AU Moore, CL AF Moore, Christopher L. TI Technology development for human exploration of Mars SO ACTA ASTRONAUTICA LA English DT Article; Proceedings Paper CT 60th International Astronautical Congress CY OCT 12-16, 2009 CL Daejeon, SOUTH KOREA DE Technology; Mars exploration AB Current plans call for the first human missions to Mars to be launched perhaps as early as 2035. The recently completed "Mars Design Reference Architecture 5.0" study defines a conceptual mission architecture and identifies enabling technologies. NASA is beginning long range development on key technologies needed for these missions because it will take many years for them to reach maturity. The ISS and the lunar outpost will be used as test beds for these technologies to reduce risk and prepare for human exploration of Mars. NASA's Exploration Technology Development Program is maturing technologies and demonstrating operational scenarios for lunar exploration that are extensible to future human missions to Mars. These include entry, descent, and landing systems for large payloads; fission surface power systems; liquid oxygen-liquid methane propulsion systems; cryogenic fluid management; closed-loop life support; small pressurized rovers for surface mobility; in-situ resource utilization; radiation shielding; and optical communications. Advanced technologies will enable more affordable and sustainable Mars exploration. (c) 2010 Elsevier Ltd. All rights reserved. C1 NASA, Washington, DC 20546 USA. RP Moore, CL (reprint author), NASA, Mail Suite 7V20, Washington, DC 20546 USA. EM christopher.moore@nasa.gov NR 14 TC 4 Z9 4 U1 2 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD NOV-DEC PY 2010 VL 67 IS 9-10 BP 1170 EP 1175 DI 10.1016/j.actaastro.2010.06.031 PG 6 WC Engineering, Aerospace SC Engineering GA 652FL UT WOS:000281987800019 ER PT J AU Fong, T Abercromby, A Bualat, MG Deans, MC Hodges, KV Hurtado, JM Landis, R Lee, P Schreckenghost, D AF Fong, Terrence Abercromby, Andrew Bualat, Maria G. Deans, Matthew C. Hodges, Kip V. Hurtado, Jose M., Jr. Landis, Rob Lee, Pascal Schreckenghost, Debra TI Assessment of robotic recon for human exploration of the Moon SO ACTA ASTRONAUTICA LA English DT Article; Proceedings Paper CT 60th International Astronautical Congress CY OCT 12-16, 2009 CL Daejeon, SOUTH KOREA DE Planetary rovers; Robotic exploration; Scouting AB Robotic reconnaissance ("recon") has the potential to significantly improve scientific and technical return from lunar surface exploration. In particular, robotic recon can be used to improve traverse planning, reduce operational risk, and increase crew productivity. To study how robotic recon can benefit human exploration, we recently conducted a field experiment at Black Point Lava Flow (BPLF), Arizona. In our experiment, a simulated ground control team at NASA Ames teleoperated a planetary rover to scout geology traverses at BPLF. The recon data were then used to plan revised traverses. Two-man crews subsequently performed both types of traverses using the NASA "Lunar Electric Rover" (LER) and simulated extra-vehicular activity (EVA) suits. This paper describes the design of our experiment, presents our results, and discusses directions for future research. Published by Elsevier Ltd. C1 [Fong, Terrence; Bualat, Maria G.; Deans, Matthew C.; Landis, Rob] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Abercromby, Andrew] Wyle Labs, Houston, TX USA. [Hodges, Kip V.] Arizona State Univ, Tempe, AZ USA. [Hurtado, Jose M., Jr.] Univ Texas El Paso, El Paso, TX 79968 USA. [Lee, Pascal] Mars Inst, Moffett Field, CA USA. [Schreckenghost, Debra] TRACLabs Inc, Houston, TX USA. RP Fong, T (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM terrence.fong@nasa.gov; andrew.f.abercromby@nasa.gov; maria.g.bualat@nasa.gov; matthew.c.deans@nasa.gov; kvhodges@asu.edu; jhurtado@utep.edu; rob.r.landis@nasa.gov; pascal.lee@marsinstitute.net; schreck@traclabs.com RI Hodges, Kip/A-7992-2009 OI Hodges, Kip/0000-0003-2805-8899 NR 11 TC 8 Z9 10 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD NOV-DEC PY 2010 VL 67 IS 9-10 BP 1176 EP 1188 DI 10.1016/j.actaastro.2010.06.029 PG 13 WC Engineering, Aerospace SC Engineering GA 652FL UT WOS:000281987800020 ER PT J AU El-Raheb, M AF El-Raheb, Michael TI Transient response of a square plate from an expanding footprint SO ACTA MECHANICA LA English DT Article ID THICK RECTANGULAR-PLATES; DIFFERENTIAL QUADRATURE METHOD; DISCRETE SINGULAR CONVOLUTION; 3-DIMENSIONAL VIBRATION ANALYSIS; SUPERPOSITION-GALERKIN METHOD; BOUNDARY-CONDITIONS; CONSTRAINTS AB The transient response of a free disk on crushable material striking a rigid surface was analyzed by El-Raheb (IJSS 45, 4289-4306, 2008). Unlike the free disk whose fundamental mode has a dish-like axisymmetric shape, the free square plate includes two additional modes at lower frequencies. Treated is the response of the square plate to a moving front either parallel to a diagonal or to an edge, simulating two limiting cases of oblique impact of the plate on crushable material. Emphasis is given to the difference between the two fronts and comparison to the case of the disk. C1 NASA Langley, Pasadena, CA 91107 USA. RP El-Raheb, M (reprint author), NASA Langley, 1000 Oakforest Lane, Pasadena, CA 91107 USA. EM mertrident@earthlink.net NR 26 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0001-5970 J9 ACTA MECH JI Acta Mech. PD NOV PY 2010 VL 214 IS 3-4 BP 375 EP 394 DI 10.1007/s00707-010-0297-6 PG 20 WC Mechanics SC Mechanics GA 666BR UT WOS:000283084200011 ER PT J AU Pulkkinen, A Kataoka, R Watari, S Ichiki, M AF Pulkkinen, A. Kataoka, R. Watari, S. Ichiki, M. TI Modeling geomagnetically induced currents in Hokkaido, Japan SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Space weather; Geomagnetically induced currents; Modeling; Subduction zone ID CONDUCTIVITY; SYSTEM; CRUST AB In this paper a model for computing geomagnetically induced currents (GIC) from local geomagnetic field observations carried out in Hokkaido, Japan is constructed. The model is composed of system parameters mapping the horizontal geoelectric field to GIC and of ID conductivity model. A rigorous model validation is used to show that the model reproduces the observed GIC with a very good accuracy. Statistical occurrence of GIC is computed using the constructed model and geomagnetic field recordings covering years 1986-2008. The modeled GIC is used to generate a list of 10 largest GIC events in Hokkaido, Japan. It is found that the 10 largest events between 1986 and 2008 were associated with various phases of coronal mass ejection driven major geomagnetic storms. It is also shown that although smaller GIC are fairly common, the largest possible GIC are likely limited to the amplitudes of the order of 10 A. The constructed ID ground conductivity model is interpreted in the context of the local geological setting and it is shown that the subduction zone dynamics likely play an important role in the observed GIC and geomagnetic field characteristics. Crustal conductor associated with the subduction zone is the cause for unusual direct relation between GIC and the local geomagnetic field rather than its time derivative and GIC. (c) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Pulkkinen, A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 20771 USA. [Kataoka, R.; Ichiki, M.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan. [Watari, S.] Natl Inst Informat & Commun Technol, Koganei, Tokyo 1848795, Japan. RP Pulkkinen, A (reprint author), Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 20771 USA. EM antti.a.pulkkinen@nasa.gov NR 18 TC 10 Z9 10 U1 3 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD NOV 1 PY 2010 VL 46 IS 9 BP 1087 EP 1093 DI 10.1016/j.asr.2010.05.024 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 662YV UT WOS:000282851100001 ER PT J AU Peeters, Z Vos, D ten Kate, IL Selch, F van Sluis, CA Sorokin, DY Muijzer, G Stan-Lotter, H van Loosdrecht, MCM Ehrenfreund, P AF Peeters, Z. Vos, D. ten Kate, I. L. Selch, F. van Sluis, C. A. Sorokin, D. Yu. Muijzer, G. Stan-Lotter, H. van Loosdrecht, M. C. M. Ehrenfreund, P. TI Survival and death of the haloarchaeon Natronorubrum strain HG-1 in a simulated martian environment SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Halophiles; Natronorubrum; Mars simulation; Mars soil analogue; Survival ID EARLY MARS; MICROBIAL SURVIVAL; MERIDIANI-PLANUM; FLUID INCLUSIONS; UV-IRRADIATION; LIFE; SALT; RADIATION; MICROORGANISMS; RELEVANCE AB Halophilic archaea are of interest to astrobiology due to their survival capabilities in desiccated and high salt environments. The detection of remnants of salty pools on Mars stimulated investigations into the response of haloarchaea to martian conditions. Natronorubrum sp. strain HG-1 is an extremely halophilic archaeon with unusual metabolic pathways, growing on acetate and stimulated by tetrathionate. We exposed Natronorubrum strain HG-1 to ultraviolet (UV) radiation, similar to levels currently prevalent on Mars. In addition, the effects of low temperature (4, -20, and -80 degrees C), desiccation, and exposure to a Mars soil analogue from the Atacama desert on the viability of Natronorubrum strain HG-1 cultures were investigated. The results show that Natronorubrum strain HG-1 cannot survive for more than several hours when exposed to UV radiation equivalent to that at the martian equator. Even when protected from UV radiation, viability is impaired by a combination of desiccation and low temperature. Desiccating Natronorubrum strain HG-1 cells when mixed with a Mars soil analogue impaired growth of the culture to below the detection limit. Overall, we conclude that Natronorubrum strain HG-1 cannot survive the environment currently present on Mars. Since other halophilic microorganisms were reported to survive simulated martian conditions, our results imply that survival capabilities are not necessarily shared between phylogenetically related species. (c) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Peeters, Z.; Vos, D.; van Sluis, C. A.; Ehrenfreund, P.] Leiden Univ, Leiden Inst Chem, Astrobiol Grp, NL-2333 CC Leiden, Netherlands. [ten Kate, I. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Selch, F.] Carnegie Mellon Univ, NASA, Ames Res Ctr, Mountain View, CA USA. [van Sluis, C. A.; Sorokin, D. Yu.; Muijzer, G.; van Loosdrecht, M. C. M.] Delft Univ Technol, Fac Sci Appl, Dept Biotechnol, NL-2628 BC Delft, Netherlands. [Stan-Lotter, H.] Salzburg Univ, Div Mol Biol, Dept Microbiol, A-5020 Salzburg, Austria. [Ehrenfreund, P.] George Washington Univ, Inst Space Policy, Washington, DC 20052 USA. RP Ehrenfreund, P (reprint author), Leiden Univ, Leiden Inst Chem, Astrobiol Grp, Einsteinweg 55, NL-2333 CC Leiden, Netherlands. EM p.ehrenfreund@chem.leidenuniv.nl RI van Loosdrecht, Mark/B-2738-2009 OI van Loosdrecht, Mark/0000-0003-0658-4775 FU ESA; NASA Astrobiology Institute; BioScience Initiative of Leiden University FX The authors would like to thank Danielle Wills and Euan Monaghan for their help with the experiments. ZP and PE were supported by ESA grant for Ground based facilities: "Simulations of organic compounds and microorganisms in martian regolith analogues: SocMar" and by the NASA Astrobiology Institute. ILtK was supported by the BioScience Initiative of Leiden University. This research was conducted in the framework of the Mars Express Recognized Cooperating Laboratory for geochemistry. NR 38 TC 6 Z9 6 U1 1 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD NOV 1 PY 2010 VL 46 IS 9 BP 1149 EP 1155 DI 10.1016/j.asr.2010.05.025 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 662YV UT WOS:000282851100007 ER PT J AU Masuoka, PM Klein, TA Kim, HC Claborn, DM Achee, N Andre, R Chamberlin, J Small, J Anyamba, A Lee, DK Yi, SH Sardelis, M Grieco, J AF Masuoka, Penny M. Klein, Terry A. Kim, Heung-Chul Claborn, David M. Achee, Nicole Andre, Richard Chamberlin, Judith Small, Jennifer Anyamba, Assaf Lee, Dong-Kyu Yi, Suk H. Sardelis, Michael Grieco, John TI MODELING CULEX TRITAENIORHYNCHUS MOSQUITOES TO PREDICT THE GEOGRAPHIC DISTRIBUTION OF JAPANESE ENCEPHALITIS IN THE REPUBLIC OF KOREA SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Meeting Abstract CT 59th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH) CY NOV 03-07, 2010 CL Atlanta, GA SP Amer Soc Trop Med & Hyg (ASTMH) C1 [Masuoka, Penny M.; Achee, Nicole; Andre, Richard; Chamberlin, Judith; Grieco, John] Uniformed Serv Univ Hlth Sci, Dept Prevent Med & Biometr, Bethesda, MD 20814 USA. [Klein, Terry A.; Kim, Heung-Chul; Yi, Suk H.] 65th Med Brigade US Army MEDDAC Korea, Seoul, South Korea. [Claborn, David M.] Missouri State Univ, Ctr Homeland Secur, Springfield, MO USA. [Small, Jennifer; Anyamba, Assaf] NASAs Goddard Space Flight Ctr, Hydrol & Biospher Sci Lab, Greenbelt, MD USA. [Lee, Dong-Kyu] Kosin Univ, Dept Hlth & Environm, Pusan, South Korea. [Sardelis, Michael] Natl Ctr Med Intelligence, Ft Detrick, MD USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD NOV PY 2010 VL 83 IS 5 SU S MA 607 BP 182 EP 182 PG 1 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 832QF UT WOS:000295819700608 ER PT J AU Soebiyanto, RP Kiang, RK AF Soebiyanto, Radina P. Kiang, Richard K. TI CLIMATE AS SEASONAL INFLUENZA PREDICTORS SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Meeting Abstract CT 59th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH) CY NOV 03-07, 2010 CL Atlanta, GA SP Amer Soc Trop Med & Hyg (ASTMH) C1 [Soebiyanto, Radina P.; Kiang, Richard K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD NOV PY 2010 VL 83 IS 5 SU S MA 1134 BP 338 EP 338 PG 1 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 832QF UT WOS:000295819701501 ER PT J AU Zhang, FF Xu, HF Konishi, H Roden, EE AF Zhang, Fangfu Xu, Huifang Konishi, Hiromi Roden, Eric E. TI A relationship between d(104) value and composition in the calcite-disordered dolomite solid-solution series SO AMERICAN MINERALOGIST LA English DT Article DE High-magnesian calcite; d(104); calcite; disordered dolomite; solid solution; Mg-Ca ordering in dolomite ID MAGNESIAN CALCITES; LATTICE CONSTANTS; PROTODOLOMITE; REFINEMENTS; CARBONATES; PHASE; WATER AB X-ray diffraction has been widely used in analyzing Ca-Mg carbonates. Compositions of biogenic and inorganic (Ca,Mg)CO3 crystals are often calculated by comparing their d(104) values with published empirical curves. However, previous studies suggested that these curves do not apply to very high-Mg calcite and disordered dolomite. Based on synthesized high-Mg calcite and disordered dolomite, a new empirical curve between values of magnesian calcite d(104) and MgCO3 content in the calcite-disordered dolomite solid-solution series is constructed. This new curve is consistent with the significant cell parameter changes accompanying the Mg-Ca cation disorder in dolomite, and it can help the characterization of the MgCO3 content of both natural and synthetic magnesian calcite and disordered dolomite, especially for the mineral mixtures that are not suitable for other analysis methods. C1 [Zhang, Fangfu; Xu, Huifang; Konishi, Hiromi; Roden, Eric E.] Univ Wisconsin, NASA Astrobiol Inst, Dept Geosci, Madison, WI 53706 USA. RP Zhang, FF (reprint author), Univ Wisconsin, NASA Astrobiol Inst, Dept Geosci, Madison, WI 53706 USA. EM hfxu@geology.wisc.edu RI Zhang, Fangfu/B-4295-2014 OI Zhang, Fangfu/0000-0001-7550-9483 FU NASA Astrobiology Institute [N07-5489]; NSF [EAR-0810150, EAR-095800]; U.S. Department of Energy [DE-SC0001929]; Department of Geoscience, University of Wisconsin-Madison; Geological Society of America; ExxonMobil FX We thank Abby Kavner and the other anonymous reviewer, and the associate editor, Darrell Henry, for their great comments and suggestions. We also want to thank John Fournelle for providing the dolomite standard and Nita Sahai for constructive discussions, This work is supported by NASA Astrobiology Institute (N07-5489), NSF (EAR-0810150, EAR-095800), and U.S. Department of Energy (DE-SC0001929). Zhang also thanks Department of Geoscience, University of Wisconsin-Madison and ExxonMobil for 2008 Summer Research Grant, and Geological Society of America for 2009 Graduate Research Grant. NR 28 TC 40 Z9 41 U1 3 U2 33 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD NOV-DEC PY 2010 VL 95 IS 11-12 BP 1650 EP 1656 DI 10.2138/am.2010.3414 PG 7 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 679XW UT WOS:000284195100007 ER PT J AU Bhartia, R Salas, EC Hug, WF Reid, RD Lane, AL Edwards, KJ Nealson, KH AF Bhartia, Rohit Salas, Everett C. Hug, William F. Reid, Ray D. Lane, Arthur L. Edwards, Katrina J. Nealson, Kenneth H. TI Label-Free Bacterial Imaging with Deep-UV-Laser-Induced Native Fluorescence SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SUBTILIS SPORE COAT; MICROBIAL LIFE; ENUMERATION; IDENTIFICATION; ENVIRONMENTS; SPECTROSCOPY; MICROSCOPY; SILICATES; BIOSPHERE; SEDIMENTS AB We introduce a near-real-time optical imaging method that works via the detection of the intrinsic fluorescence of life forms upon excitation by deep-UV (DUV) illumination. A DUV (< 250-nm) source enables the detection of microbes in their native state on natural materials, avoiding background autofluorescence and without the need for fluorescent dyes or tags. We demonstrate that DUV-laser-induced native fluorescence can detect bacteria on opaque surfaces at spatial scales ranging from tens of centimeters to micrometers and from communities to single cells. Given exposure times of 100 mu s and low excitation intensities, this technique enables rapid imaging of bacterial communities and cells without irreversible sample alteration or destruction. We also demonstrate the first noninvasive detection of bacteria on in situ-incubated environmental experimental samples from the deep ocean (Lo'ihi Seamount), showing the use of DUV native fluorescence for in situ detection in the deep biosphere and other nutrient-limited environments. C1 [Bhartia, Rohit; Lane, Arthur L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bhartia, Rohit; Edwards, Katrina J.; Nealson, Kenneth H.] Univ So Calif, Dept Earth Sci, Los Angeles, CA USA. [Salas, Everett C.] Rice Univ, Dept Earth Sci, Houston, TX USA. [Hug, William F.; Reid, Ray D.] Photon Syst Inc, Covina, CA USA. [Edwards, Katrina J.] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. RP Bhartia, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 183-301, Pasadena, CA 91109 USA. EM rbhartia@jpl.nasa.gov FU Air Force under an AFOSR MURI; Defense University; NASA; NASA Astrobiology Institute (NAI) FX This work was supported by the Air Force under an AFOSR MURI grant (to K.H.N.), a Defense University Research Industry Program (DURIP; USC/Photon Systems Inc.), NASA Planetary Protection Research, and the JPL Icy Worlds node of the NASA Astrobiology Institute (NAI). NR 34 TC 18 Z9 18 U1 2 U2 31 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV PY 2010 VL 76 IS 21 BP 7231 EP 7237 DI 10.1128/AEM.00943-10 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 670PM UT WOS:000283439800032 PM 20817797 ER PT J AU Rosario-Castro, BI Contes-de-Jesus, EJ Lebron-Colon, M Meador, MA Scibioh, MA Cabrera, CR AF Rosario-Castro, Belinda I. Contes-de-Jesus, Enid J. Lebron-Colon, Marisabel Meador, Michael A. Scibioh, M. Aulice Cabrera, Carlos R. TI Single-wall carbon nanotube chemical attachment at platinum electrodes SO APPLIED SURFACE SCIENCE LA English DT Article DE Single-wall carbon nanotubes; Self-assembled monolayers; Platinum electrodes; 4-Aminothiophenol; Transmission electron microscopy; Atomic force microscopy; Raman spectroscopy ID SELF-ASSEMBLED MONOLAYERS; ELECTROCHEMICAL CHARACTERIZATION; LOGIC-CIRCUITS; SURFACE; GOLD; FUNCTIONALIZATION; TRANSISTORS; HYDROGEN; STORAGE; RAMAN AB Self-assembled monolayer (SAM) techniques were used to adsorb 4-aminothiophenol (4-ATP) on platinum electrodes in order to obtain an amino-terminated SAM as the base for the chemical attachment of single-wall carbon nanotubes (SWCNTs). Aphysico-chemical, morphological and electrochemical characterizations of SWCNTs attached onto the modified Pt electrodes was done by using reflection-absorption infrared spectroscopy (RAIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and cyclic voltammetry (CV) techniques. The SWNTs/4-ATP/Pt surface had regions of small, medium, and large thickness of carbon nanotubes with heights of 100-200 nm, 700nm to 1.5 mu m, and 1.0-3.0 mu m, respectively. Cyclic voltammetries (CVs) in sulfuric acid demonstrated that attachment of SWNTs on 4-ATP/Pt is markedly stable, even after 30 potential cycles. CV in ruthenium hexamine was similar to bare Pt electrodes, suggesting that SWNTs assembly is similar to a closely packed microelectrode array. (C) 2010 Published by Elsevier B.V. C1 [Rosario-Castro, Belinda I.; Contes-de-Jesus, Enid J.; Scibioh, M. Aulice; Cabrera, Carlos R.] Univ Puerto Rico, Dept Chem, San Juan, PR 00931 USA. [Rosario-Castro, Belinda I.; Contes-de-Jesus, Enid J.; Scibioh, M. Aulice; Cabrera, Carlos R.] Univ Puerto Rico, Ctr Adv Nanoscale Mat, San Juan, PR 00931 USA. [Lebron-Colon, Marisabel; Meador, Michael A.] NASA, John H Glenn Res Ctr, Cleveland, OH 44135 USA. RP Cabrera, CR (reprint author), Univ Puerto Rico, Dept Chem, Rio Pledras Campus,POB 23346, San Juan, PR 00931 USA. EM carlos.cabrera2@uprrp.edu OI Cabrera, Carlos/0000-0002-3342-8666 FU NASA-URC [NCC3-1034, NNX08BA48A]; NASA [NGT3-52381] FX The authors acknowledge the assistance of members of the Materials Characterization Center and the NASA Center for Advanced Nanoscale Materials, both at the University of Puerto Rico, Rio Piedras Campus, for XPS and TEM characterization, respectively. We are grateful to Eunice Wong for her assistance with the TGA and Raman analysis at NASA Glenn Research Center. This project was partially funded by NASA-URC Grant Numbers NCC3-1034 and NNX08BA48A. B. I. R. C. would like to acknowledge the financial support from NASA Graduate Student Researcher Program (GSRP) fellowship (NGT3-52381). NR 38 TC 5 Z9 5 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD NOV 1 PY 2010 VL 257 IS 2 BP 340 EP 353 DI 10.1016/j.apsusc.2010.06.072 PG 14 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 648EW UT WOS:000281674200002 ER PT J AU Hoehler, TM Westall, F AF Hoehler, Tori M. Westall, Frances TI Mars Exploration Program Analysis Group Goal One: Determine If Life Ever Arose on Mars SO ASTROBIOLOGY LA English DT Article DE Mars; Life AB The Mars Exploration Program Analysis Group (MEPAG) maintains a standing document that articulates scientific community goals, objectives, and priorities for mission-enabled Mars science. Each of the goals articulated within the document is periodically revisited and updated. The astrobiology-related Goal One, "Determine if life ever arose on Mars," has recently undergone such revision. The finalized revision, which appears in the version of the MEPAG Goals Document posted on September 24, 2010, is presented here. C1 [Hoehler, Tori M.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Westall, Frances] CNRS, Ctr Biophys Mol, F-75700 Paris, France. RP Hoehler, TM (reprint author), NASA, Ames Res Ctr, Exobiol Branch, Mail Stop 239-4, Moffett Field, CA 94035 USA. EM tori.m.hoehler@nasa.gov NR 2 TC 8 Z9 8 U1 6 U2 24 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD NOV PY 2010 VL 10 IS 9 BP 859 EP 867 DI 10.1089/ast.2010.0527 PG 9 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 688GE UT WOS:000284837000001 PM 21118019 ER PT J AU Sugitani, K Lepot, K Nagaoka, T Mimura, K Van Kranendonk, M Oehler, DZ Walter, MR AF Sugitani, Kenichiro Lepot, Kevin Nagaoka, Tsutomu Mimura, Koichi Van Kranendonk, Martin Oehler, Dorothy Z. Walter, Malcolm R. TI Biogenicity of Morphologically Diverse Carbonaceous Microstructures from the ca. 3400Ma Strelley Pool Formation, in the Pilbara Craton, Western Australia SO ASTROBIOLOGY LA English DT Article DE Archean; Biogenicity; Microfossils; Pilbara ID BARBERTON MOUNTAIN LAND; SOUTH-AFRICA; FOSSIL BACTERIA; MICROBIAL MATS; 3.2 GA; ARCHEAN STROMATOLITES; GREENSTONE-BELT; NORTH-POLE; STRUCTURAL-CHARACTERIZATION; FILAMENTOUS MICROFOSSILS AB Morphologically diverse structures that may constitute organic microfossils are reported from three remote and widely separated localities assigned to the ca. 3400Ma Strelley Pool Formation in the Pilbara Craton, Western Australia. These localities include the Panorama, Warralong, and Goldsworthy greenstone belts. From the Panorama greenstone belt, large (>40 mu m) lenticular to spindle-like structures, spheroidal structures, and mat-forming thread-like structures are found. Similar assemblages of carbonaceous structures have been identified from the Warralong and Goldsworthy greenstone belts, though these assemblages lack the thread-like structures but contain film-like structures. All structures are syngenetic with their host sedimentary black chert, which is associated with stromatolites and evaporites. The host chert is considered to have been deposited in a shallow water environment. Rigorous assessment of biogenicity (considering composition, size range, abundance, taphonomic features, and spatial distributions) suggests that cluster-forming small (<15 mu m) spheroids, lenticular to spindle-like structures, and film-like structures with small spheroids are probable microfossils. Thread-like structures are more likely fossilized fibrils of biofilm, rather than microfossils. The biogenicity of solitary large (>15 mu m) spheroids and simple film-like structures is less certain. Although further investigations are required to confirm the biogenicity of carbonaceous structures from the Strelley Pool Formation, this study presents evidence for the existence of morphologically complex and large microfossils at 3400Ma in the Pilbara Craton, which can be correlated to the contemporaneous, possible microfossils reported from South Africa. Although there is still much to be learned, they should provide us with new insights into the early evolution of life and shallow water ecosystems. C1 [Sugitani, Kenichiro] Nagoya Univ, Grad Sch Environm Studies, Dept Environm Engn & Architecture, Nagoya, Aichi 4648601, Japan. [Lepot, Kevin] Univ Liege, Dept Geol, Liege, Belgium. [Nagaoka, Tsutomu] Nagoya Univ, Sch Informat & Sci, Nagoya, Aichi 4648601, Japan. [Mimura, Koichi] Nagoya Univ, Grad Sch Environm Studies, Dept Earth & Environm Sci, Nagoya, Aichi 4648601, Japan. [Van Kranendonk, Martin] Geol Survey Western Australia, Dept Mines & Petr, Perth, WA, Australia. [Van Kranendonk, Martin; Oehler, Dorothy Z.; Walter, Malcolm R.] Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW, Australia. [Oehler, Dorothy Z.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Sugitani, K (reprint author), Nagoya Univ, Grad Sch Environm Studies, Dept Environm Engn & Architecture, Nagoya, Aichi 4648601, Japan. EM sugi@info.human.nagoya-u.ac.jp RI Van Kranendonk, Martin/J-8755-2012; Lepot, Kevin/C-7072-2014 OI Lepot, Kevin/0000-0003-0556-0405 FU Japan Society for the Promotion of Science [19340150]; FNRS; FRFC [2.4.558.09]; Region Ile-de-France (IPG Paris) FX Financial support to K.S. from the Japan Society for the Promotion of Science (the Joint Research Program, Japan-Australia and a grant-in-aid, No. 19340150) and from the FNRS (Belgium National Funds for Research postdoctoral fellowship) to K.L. are gratefully acknowledged. Helpful comments and encouragement by Kath Grey and Emmanuelle Javaux are greatly appreciated. We also appreciate Arthur Hickman, who provided useful comments on the stratigraphic interpretations on the SPF. Maud Walsh and an anonymous referee are acknowledged for their constructive comments. We thank Sherry Cady for her editorial assistance. Raman analyses were funded by a FRFC No. 2.4.558.09 grant (E.J.) and Region Ile-de-France (IPG Paris). NR 75 TC 31 Z9 33 U1 2 U2 27 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD NOV PY 2010 VL 10 IS 9 BP 899 EP 920 DI 10.1089/ast.2010.0513 PG 22 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 688GE UT WOS:000284837000005 PM 21118023 ER PT J AU Connelley, MS Greene, TP AF Connelley, Michael S. Greene, Thomas P. TI A NEAR-INFRARED SPECTROSCOPIC SURVEY OF CLASS I PROTOSTARS SO ASTRONOMICAL JOURNAL LA English DT Article DE infrared: stars; stars: formation; stars: pre-main sequence; surveys; techniques: spectroscopic ID YOUNG STELLAR OBJECTS; T-TAURI STARS; HARO ENERGY-SOURCES; LOW-MASS STARS; HERBIG AE/BE STARS; SPACE-TELESCOPE; BROWN DWARFS; MU-M; EMBEDDED PROTOSTARS; EVOLUTIONARY MODELS AB We present the results of a near-IR spectroscopic survey of 110 Class I protostars observed from 0.80 mu m to 2.43 mu m at a spectroscopic resolution of R = 1200. This survey is unique in its selection of targets from the whole sky, its sample size, wavelength coverage, depth, and sample selection. We find that Class I objects exhibit a wide range of lines and the continuum spectroscopic features. Eighty-five percent of Class I protostars exhibit features indicative of mass accretion, and we found that the veiling excess, CO emission, and Br gamma emission are closely related. We modeled the spectra to estimate the veiling excess (r(k)) and extinction to each target. We also used near-IR colors and emission line ratios, when available, to also estimate extinction. In the course of this survey, we observed the spectra of 10 FU Orionis-like objects, including 2 new ones, as well as 3 Herbig Ae-type stars among our Class I young stellar objects. We used photospheric absorption lines, when available, to estimate the spectral type of each target. Although most targets are late-type stars, there are several A-and F-type stars in our sample. Notably, we found no A or F class stars in the Taurus-Auriga or Perseus star-forming regions. There are several cases where the observed CO and/or water absorption bands are deeper than expected from the photospheric spectral type. We find a correlation between the appearance of the reflection nebula, which traces the distribution of material on very large scales, and the near-IR spectrum, which probes smaller scales. All of the FU Orionis-like objects are associated with reflection nebulae. The spectra of the components of spatially resolved protostellar binaries tend to be very similar. In particular both components tend to have similar veiling and H(2) emission, inconsistent with random selection from the sample as a whole. There is a strong correlation between [Fe II] and H(2) emission, supporting previous results showing that H(2) emission in the spectra of young stars is usually shock excited by stellar winds. C1 [Connelley, Michael S.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Greene, Thomas P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Connelley, MS (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. FU NASA [811073.02.07.01.89]; National Science Foundation; National Aeronautics and Space Administration, Science Mission Directorate; [NNX08AE38A] FX We acknowledge support from NASA's Origins of Solar Systems program via WBS 811073.02.07.01.89. We are grateful for the professional assistance from Bill Golish, Dave Griep, Paul Sears, and Eric Volquardsen. We thank the referee and Bo Reipurth for their helpful and constructive comments. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and NASA's Astrophysics Data System. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of NASA's Astrophysics Data System. This research was supported by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by the Oak Ridge Associated Universities through a contract with NASA.; Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NNX08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. NR 77 TC 51 Z9 51 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD NOV PY 2010 VL 140 IS 5 BP 1214 EP 1240 DI 10.1088/0004-6256/140/5/1214 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665SI UT WOS:000283055400008 ER PT J AU Walker, LM Johnson, KE Gallagher, SC Hibbard, JE Hornschemeier, AE Tzanavaris, P Charlton, JC Jarrett, TH AF Walker, Lisa May Johnson, Kelsey E. Gallagher, Sarah C. Hibbard, John E. Hornschemeier, Ann E. Tzanavaris, Panayiotis Charlton, Jane C. Jarrett, Thomas H. TI MID-INFRARED EVIDENCE FOR ACCELERATED EVOLUTION IN COMPACT GROUP GALAXIES SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: evolution; galaxies: interactions; galaxies: statistics; infrared: galaxies ID STAR-FORMATION RATES; DIGITAL SKY SURVEY; NEARBY GALAXIES; SPITZER; REDSHIFT; SEQUENCE; POPULATION; MORPHOLOGY; SELECTION; EMISSION AB Compact galaxy groups are at the extremes of the group environment, with high number densities and low velocity dispersions that likely affect member galaxy evolution. To explore the impact of this environment in detail, we examine the distribution in the mid-infrared (MIR) 3.6-8.0 mu m color space of 42 galaxies from 12 Hickson compact groups (HCGs) in comparison with several control samples, including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are strongly bimodal, with statistically significant evidence for a gap in their distribution. In contrast, none of the other samples show such a marked gap, and only galaxies in the Coma infall region have a distribution that is statistically consistent with the HCGs in this parameter space. To further investigate the cause of the HCG gap, we compare the galaxy morphologies of the HCG and LVL+SINGS galaxies, and also probe the specific star formation rate (SSFR) of the HCG galaxies. While galaxy morphology in HCG galaxies is strongly linked to position with MIR color space, the more fundamental property appears to be the SSFR, or star formation rate normalized by stellar mass. We conclude that the unusual MIR color distribution of HCG galaxies is a direct product of their environment, which is most similar to that of the Coma infall region. In both cases, galaxy densities are high, but gas has not been fully processed or stripped. We speculate that the compact group environment fosters accelerated evolution of galaxies from star-forming and neutral gas-rich to quiescent and neutral gas-poor, leaving few members in the MIR gap at any time. C1 [Walker, Lisa May; Johnson, Kelsey E.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Gallagher, Sarah C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Hibbard, John E.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Hornschemeier, Ann E.; Tzanavaris, Panayiotis] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Charlton, Jane C.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Jarrett, Thomas H.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RP Walker, LM (reprint author), Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. FU NSF [0908984, 0548103]; David and Lucile Packard Foundation; National Science and Engineering Research Council of Canada; National Aeronautics and Space Administration FX J.C.C. thanks the NSF for funding under award 0908984. K.E.J. gratefully acknowledges support for this paper provided by NSF through CAREER award 0548103 and the David and Lucile Packard Foundation through a Packard Fellowship. S. C. G. thanks the National Science and Engineering Research Council of Canada for support. For helpful discussions on statistical tests, L. M. W. thanks statistics professor Tao Huang. We also thank the anonymous referee for their constructive comments. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 37 TC 28 Z9 28 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD NOV PY 2010 VL 140 IS 5 BP 1254 EP 1267 DI 10.1088/0004-6256/140/5/1254 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665SI UT WOS:000283055400010 ER PT J AU Meier, DS Turner, JL Beck, SC Gorjian, V Tsai, CW Van Dyk, SD AF Meier, David S. Turner, Jean L. Beck, Sara C. Gorjian, Varoujan Tsai, Chao-Wei Van Dyk, Schuyler D. TI FIRST VIEWS OF A NEARBY LIRG: STAR FORMATION AND MOLECULAR GAS IN IRAS 04296+2923 SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: individual (IRAS 04296+2923, 2MASX J04324860+2929578); galaxies: ISM; galaxies: starburst; radio continuum: galaxies ID ULTRALUMINOUS INFRARED GALAXIES; LUMINOUS GALAXIES; INTERSTELLAR-MEDIUM; EMBEDDED CLUSTERS; SPIRAL GALAXIES; MAPPING SURVEY; FORMATION LAW; IONIZED-GAS; EMISSION; STARBURSTS AB We present a first look at the local luminous infrared galaxy (LIRG) IRAS 04296+2923. This barred spiral galaxy, overlooked because of its location behind the Taurus molecular cloud, is among the half dozen closest (D = 29 Mpc) LIRGs. More IR-luminous than either M82 or the Antennae, it may be the best local example of a nuclear starburst caused by bar-mediated secular evolution. We present Palomar J and Pa beta images, Very Large Array continuum maps from lambda = 20-1.3 cm, a subarcsecond Keck Long Wavelength Spectrometer image at 11.7 mu m and Owens Valley Millimeter Array CO(1-0), (13)CO(1-0), and 2.7 mm continuum images. The J-band image reveals a symmetric barred spiral galaxy. Two bright, compact mid-infrared and radio sources in the nucleus mark a starburst that is energetically equivalent to similar to 10(5) O7 stars, separated by <= 50 pc. This is probably a pair of young super star clusters, with estimated stellar masses of similar to 10(7)M(circle dot) each. The nuclear starburst is forming stars at the rate of similar to 12 +/- 6M(circle dot)yr(-1), or about half of the total star formation rate for the galaxy of similar to 25 +/- 10M(circle dot)yr(-1). IRAS 04296+2923 is very bright in CO, and among the most gas-rich galaxies in the local universe. The (12)CO luminosity of the inner half kpc is equivalent to that of the entire Milky Way. While the most intense CO emission is extended over a 15 '' (2 kpc) diameter region, the nuclear starburst is confined to within 1 ''-2 '' (150-250 pc) of the dynamical center. Based on masses obtained with (13)CO, we find that the CO conversion factor in the nucleus is lower than the Galactic value, X(CO)(Gal) by a factor of three to four, typical of gas-rich spiral nuclei. The nuclear star formation efficiency (SFE) is (nuc)M(gas)/SFR(nuc) = 2.7 x 10(-8)yr(-1), corresponding to a gas consumption timescale, tau(nuc)(SF) similar to 4 x 10(7) yr. The SFE is 10 times lower in the disk, with tau(disk)(SF) similar to 3.3 x 10(8) yr. The low absolute SFE in the disk implies that the molecular gas is not completely consumed before it drifts into the nucleus, and is capable of fueling a sustained nuclear starburst. IRAS 04296+2923 appears to be beginning a 100 Myr period as an LIRG, during which it will turn much of its 6 x 10(9) M(circle dot) of molecular gas into a nuclear cluster of stars. C1 [Meier, David S.] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87801 USA. [Meier, David S.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Turner, Jean L.; Tsai, Chao-Wei] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Beck, Sara C.] Tel Aviv Univ, Dept Phys & Astron, IL-69978 Ramat Aviv, Israel. [Gorjian, Varoujan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Van Dyk, Schuyler D.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RP Meier, DS (reprint author), New Mexico Inst Min & Technol, Dept Phys, 801 Leroy Pl, Socorro, NM 87801 USA. EM dmeier@nmt.edu; turner@astro.ucla.edu; sara@wise.tau.ac.il; varoujan.gorjian@jpl.nasa.gov; cwtsai@astro.ucla.edu; vandyk@ipac.caltech.edu OI Van Dyk, Schuyler/0000-0001-9038-9950 FU National Radio Astronomy Observatory; National Science Foundation [AST-9981546]; National Aeronautics and Space Administration FX D. S. M. acknowledges support from the National Radio Astronomy Observatory which is operated by Associated Universities, Inc., under cooperative agreement with the National Science Foundation. The anonymous referee is thanked for a helpful report. The Owens Valley Millimeter Interferometer is operated by Caltech with support from the NSF under grant AST-9981546. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 66 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD NOV PY 2010 VL 140 IS 5 BP 1294 EP 1305 DI 10.1088/0004-6256/140/5/1294 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665SI UT WOS:000283055400013 ER PT J AU Hoard, DW Lu, TN Knigge, C Homer, L Szkody, P Still, M Long, KS Dhillon, VS Wachter, S AF Hoard, D. W. Lu, Ting-Ni Knigge, Christian Homer, Lee Szkody, Paula Still, M. Long, Knox S. Dhillon, V. S. Wachter, S. TI SIMULTANEOUS X-RAY AND ULTRAVIOLET OBSERVATIONS OF THE SW SEXTANTIS STAR DW URSAE MAJORIS SO ASTRONOMICAL JOURNAL LA English DT Article DE accretion, accretion disks; novae, cataclysmic variables; stars: individual (DW Ursae Majoris); X-rays: binaries; X-rays: stars ID XMM-NEWTON OBSERVATION; DWARF-NOVA OUTBURSTS; CATACLYSMIC VARIABLES; ACCRETION DISK; ORBITAL PERIOD; WHITE-DWARF; WX-ARIETIS; EX-HYDRAE; EMISSION; ECLIPSE AB We present the first pointed X-ray observation of DW Ursae Majoris, a novalike cataclysmic variable (CV) and one of the archetype members of the SW Sextantis class, obtained with the XMM-Newton satellite. These data provide the first detailed look at an SW Sex star in the X-ray regime (with previous X-ray knowledge of the SW Sex stars limited primarily to weak or non-detections in the ROSAT All Sky Survey). It is also one of only a few XMM-Newton observations (to date) of any high mass transfer rate novalike CV, and the only one in the evolutionarily important 3-4 hr orbital period range. The observed X-ray spectrum of DW UMa is very soft, with similar to 95% of the detected X-ray photons at energies <2 keV. The spectrum can be fit equally well by a one-component cooling flow model, with a temperature range of 0.2-3.5 keV, or a two-component, two-temperature thermal plasma model, containing hard (similar to 5-6 keV) and soft (similar to 0.8 keV) components. The X-ray light curve of DW UMa shows a likely partial eclipse, implying X-ray reprocessing in a vertically extended region, and an orbital modulation, implying a structural asymmetry in the X-ray reprocessing site (e.g., it cannot be a uniform corona). We also obtained a simultaneous near-ultraviolet light curve of DW UMa using the Optical Monitor on XMM-Newton. This light curve is similar in appearance to published optical-UV light curves of DW UMa and shows a prominent deep eclipse. Regardless of the exact nature of the X-ray reprocessing site in DW UMa, the lack of a prominent hard X-ray total eclipse and very low fraction of high energy X-rays point to the presence of an optically and geometrically thick accretion disk that obscures the boundary layer and modifies the X-ray spectrum emitted near the white dwarf. C1 [Hoard, D. W.; Wachter, S.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Hoard, D. W.] Eureka Sci Inc, Oakland, CA 94602 USA. [Lu, Ting-Ni] Natl Tsing Hua Univ, Inst Astron, Hsinchu 30013, Taiwan. [Knigge, Christian] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Homer, Lee; Szkody, Paula] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Still, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Long, Knox S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Dhillon, V. S.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. RP Hoard, DW (reprint author), CALTECH, Spitzer Sci Ctr, MS 220-6,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM hoard@ipac.caltech.edu FU XMM-Newton, a European Space Agency (ESA) [014297]; ESA Member States; United States of America ( through the National Aeronautics and Space Administration) FX This work was supported by an XMM-Newton Guest Observer grant for program 014297 and is based on observations obtained with XMM-Newton, a European Space Agency (ESA) science mission with instruments and contributions directly funded by ESA Member States and the United States of America (through the National Aeronautics and Space Administration). This work was performed, in part, at the Jet Propulsion Laboratory, California Institute of Technology. We utilized the SIMBAD database, operated at CDS, Strasbourg, France, and NASA's Astrophysics Data System. NR 65 TC 7 Z9 7 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD NOV PY 2010 VL 140 IS 5 BP 1313 EP 1320 DI 10.1088/0004-6256/140/5/1313 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665SI UT WOS:000283055400015 ER PT J AU Helton, LA Woodward, CE Walter, FM Vanlandingham, K Schwarz, GJ Evans, A Ness, JU Geballe, TR Gehrz, RD Greenhouse, M Krautter, J Liller, W Lynch, DK Rudy, RJ Shore, SN Starrfield, S Truran, J AF Helton, L. Andrew Woodward, Charles E. Walter, Frederick M. Vanlandingham, Karen Schwarz, Greg J. Evans, Aneurin Ness, Jan-Uwe Geballe, Thomas R. Gehrz, Robert D. Greenhouse, Matthew Krautter, Joachim Liller, William Lynch, David K. Rudy, Richard J. Shore, Steven N. Starrfield, Sumner Truran, Jim TI THE DUSTY NOVA V1065 CENTAURI (NOVA CEN 2007): A SPECTROSCOPIC ANALYSIS OF ABUNDANCES AND DUST PROPERTIES SO ASTRONOMICAL JOURNAL LA English DT Article DE circumstellar matter; novae, cataclysmic variables; stars: individual (V1065 Cen, Nova Cen 2007) ID CLASSICAL NOVAE; INFRARED-SPECTROSCOPY; TEMPORAL EVOLUTION; SPECTRAL EVOLUTION; WHITE-DWARFS; GAMMA-RATIO; V1974 CYGNI; EXTINCTION; EMISSION; LINES AB We examine the ejecta evolution of the classical nova V1065 Centauri, constructing a detailed picture of the system based on spectrophotometric observations obtained from 9 to approximately 900 days post-outburst with extensive coverage from optical to mid-infrared wavelengths. We estimate a reddening toward the system of E(B - V) = 0.5 +/- 0.1, based upon the B - V color and analysis of the Balmer decrement, and derive a distance estimate of 8.7(-2.1)(+2.8) - kpc. The optical spectral evolution is classified as P(fe)(o)N(ne)A(o) according to the CTIO Nova Classification system of Williams et al. Photoionization modeling yields absolute abundance values by number, relative to solar of He/H = 1.6 +/- 0.3, N/H = 144 +/- 34, O/H = 58 +/- 18, and Ne/H = 316 +/- 58 for the ejecta. We derive an ejected gas mass of M-g = (1.6 +/- 0.2) x 10(-4) M-circle dot. The infrared excess at late epochs in the evolution of the nova arises from dust condensed in the ejecta composed primarily of silicate grains. We estimate a total dust mass, M-d, of order (0.2-3.7) x 10 (7) M-circle dot, inferred from modeling the spectral energy distribution observed with the Spitzer IRS and Gemini-South GNIRS spectrometers. Based on the speed class, neon abundance, and the predominance of silicate dust, we classify V1065 Cen as an ONe-type classical nova. C1 [Helton, L. Andrew; Woodward, Charles E.; Gehrz, Robert D.] Univ Minnesota, Sch Phys & Astron, Dept Astron, Minneapolis, MN 55455 USA. [Walter, Frederick M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Vanlandingham, Karen] W Chester Univ, Dept Geol & Astron, W Chester, PA 19383 USA. [Schwarz, Greg J.] Amer Astron Soc, Washington, DC 20009 USA. [Evans, Aneurin] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Ness, Jan-Uwe] European Space Astron Ctr, XMM Newton Observ SOC, Madrid 28691, Spain. [Geballe, Thomas R.] Gemini Observ, Hilo, HI 96720 USA. [Greenhouse, Matthew] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krautter, Joachim] Heidelberg Univ, Landessternwarte Zentrum Astron, D-69117 Heidelberg, Germany. [Liller, William] Inst Nova Studies, Vina Del Mar, Chile. [Lynch, David K.; Rudy, Richard J.] Aerosp Corp, Los Angeles, CA 90009 USA. [Shore, Steven N.] Univ Pisa, Dipartimento Fis Enrico Fermi, I-56127 Pisa, Italy. [Shore, Steven N.] Ist Nazl Fis Nucl, Sez Pisa, Milan, Italy. [Starrfield, Sumner] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Truran, Jim] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Truran, Jim] Argonne Natl Lab, Argonne, IL 60439 USA. RP Helton, LA (reprint author), Univ Minnesota, Sch Phys & Astron, Dept Astron, 116 Church St SE, Minneapolis, MN 55455 USA. EM ahelton@astro.umn.edu FU NASA/JPL Spitzer [1289430, 1314757, 1267992, 1256406, 1215746]; Independent Research and Development program of the Aerospace Corporation; NSF [PHY 02-16783]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; UK STFC FX This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. This work is also based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacieon Productiva (Argentina). Stony Brook University's initial participation in the SMARTS consortium was made possible by generous contributions from the Dean of Arts and Sciences, the Provost, and the Vice President for Research of Stony Brook University. L. A. Helton, C. E. Woodward, and R. D. Gehrz were supported in part by NASA/JPL Spitzer grants 1289430, 1314757, 1267992, 1256406, and 1215746 to the University of Minnesota as well as various National Science Foundation grants. D. K. Lynch and R. J. Rudy received partial support from the Independent Research and Development program of the Aerospace Corporation. S. Starrfield acknowledges partial support from NSF and NASA grants to ASU. J. Truran acknowledges support at the Argonne National Laboratory by the US Department of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357, and by the NSF under grant PHY 02-16783 for the Frontier Center "Joint Institute for Nuclear Astrophysics." This work was also supported by the UK STFC, and various NASA Swift Grants to the investigators. We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. NR 73 TC 20 Z9 20 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2010 VL 140 IS 5 BP 1347 EP 1369 DI 10.1088/0004-6256/140/5/1347 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665SI UT WOS:000283055400019 ER PT J AU Cushing, MC Saumon, D Marley, MS AF Cushing, Michael C. Saumon, D. Marley, Mark S. TI SDSS J141624.08+134826.7: BLUE L DWARFS AND NON-EQUILIBRIUM CHEMISTRY SO ASTRONOMICAL JOURNAL LA English DT Article DE brown dwarfs; infrared: stars; stars: individual (SDSS J141624.08+134826.7); stars: low-mass; subdwarfs ID DIGITAL SKY SURVEY; INFRARED TELESCOPE FACILITY; SPECTRAL TYPE-L; T-DWARFS; BROWN DWARFS; DUST FORMATION; CHEMICAL-EQUILIBRIUM; ULTRACOOL DWARFS; CARBON-MONOXIDE; COOL NEIGHBORS AB We present an analysis of the recently discovered blue L dwarf SDSS J141624.08+134826.7. We extend the spectral coverage of its published spectrum to similar to 4 mu m by obtaining a low-resolution L-band spectrum with SpeX on the NASA IRTF. The spectrum exhibits a tentative weak CH(4) absorption feature at 3.3 mu m but is otherwise featureless. We derive the atmospheric parameters of SDSS J141624.08+134826.7 by comparing its 0.7-4.0 mu m spectrum to the atmospheric models of Marley and Saumon which include the effects of both condensate cloud formation and non-equilibrium chemistry due to vertical mixing and find the best-fitting model has T(eff) = 1700 K, log g = 5.5 (cm s(-2)), f(sed) = 4, and K(zz) = 10(4) cm(2) s(-1). The derived effective temperature is significantly cooler than previously estimated but we confirm the suggestion by Bowler et al. that the peculiar spectrum of SDSS J141624.08+134826.7 is primarily a result of thin condensate clouds. In addition, we find strong evidence of vertical mixing in the atmosphere of SDSS J141624.08+134826.7 based on the absence of the deep 3.3 mu m CH(4) absorption band predicted by models computed in chemical equilibrium. Finally, this result suggests that observations of blue L dwarfs are an appealing way to quantitatively estimate the vigor of mixing in the atmospheres of L dwarfs because of the dramatic impact such mixing has on the strength of the 3.3 mu m CH(4) band in the emergent spectra of L dwarfs with thin condensate clouds. C1 [Cushing, Michael C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Saumon, D.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. [Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Cushing, MC (reprint author), CALTECH, Jet Prop Lab, MS 264-723,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM michael.cushing@gmail.com; dsaumon@lanl.gov; Mark.S.Marley@NASA.gov OI Marley, Mark/0000-0002-5251-2943 FU National Aeronautics and Space Administration; National Science Foundation; Oak Ridge Associated Universities; NASA, Spitzer Science Center FX Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, and funded by the National Aeronautics and Space Administration and the National Science Foundation, the SIMBAD database, operated at CDS, Strasbourg, France, NASA's Astrophysics Data System Bibliographic Services, the M, L, and T dwarf compendium housed at DwarfArchives.org and maintained by Chris Gelino, Davy Kirkpatrick, and Adam Burgasser, and the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research was supported (in part) by an appointment to the NASA Postdoctoral Program at the JET Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. Support for the modeling work of D. S. was provided by NASA through the Spitzer Science Center. NR 52 TC 8 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD NOV PY 2010 VL 140 IS 5 BP 1428 EP 1432 DI 10.1088/0004-6256/140/5/1428 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665SI UT WOS:000283055400025 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, D Bloom, ED Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Dermer, CD de Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Favuzzi, C Fegan, SJ Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guiriec, S Hadasch, D Harding, AK Hayashida, M Hays, E Horan, D Hughes, RE Jean, P Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lovellette, MN Lubrano, P Makeev, A Martin, P Mazziotta, MN McEnery, JE Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Ripken, J Ritz, S Romani, RW Sadrozinski, HFW Sander, A Parkinson, PMS Scargle, JD Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Strong, AW Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Dermer, C. D. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Favuzzi, C. Fegan, S. J. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guiriec, S. Hadasch, D. Harding, A. K. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Jean, P. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Makeev, A. Martin, P. Mazziotta, M. N. McEnery, J. E. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Ritz, S. Romani, R. W. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Strong, A. W. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI Detection of the Small Magellanic Cloud in gamma-rays with Fermi/LAT SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE acceleration of particles; cosmic rays; Magellanic Clouds; gamma rays: general ID ENERGY COSMIC-RAYS; ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; ALL-SKY SURVEY; X-RAY; INFRARED-EMISSION; STAR-FORMATION; DRIVEN DYNAMO; SOURCE LIST; GALAXY AB Context. The flux of gamma rays with energies greater than 100 MeV is dominated by diffuse emission coming from cosmic-rays (CRs) illuminating the interstellar medium (ISM) of our Galaxy through the processes of Bremsstrahlung, pion production and decay, and inverse-Compton scattering. The study of this diffuse emission provides insight into the origin and transport of cosmic rays. Aims. We searched for gamma-ray emission from the Small Magellanic Cloud (SMC) in order to derive constraints on the cosmic-ray population and transport in an external system with properties different from the Milky Way. Methods. We analysed the first 17 months of continuous all-sky observations by the Large Area Telescope (LAT) of the Fermi mission to determine the spatial distribution, flux and spectrum of the gamma-ray emission from the SMC. We also used past radio synchrotron observations of the SMC to study the population of CR electrons specifically. Results. We obtained the first detection of the SMC in high-energy gamma rays, with an integrated >100 MeV flux of (3.7 +/- 0.7) x 10(-8) ph cm(-2) s(-1), with additional systematic uncertainty of <= 16%. The emission is steady and from an extended source similar to 3 degrees in size. It is not clearly correlated with the distribution of massive stars or neutral gas, nor with known pulsars or supernova remnants, but a certain correlation with supergiant shells is observed. Conclusions. The observed flux implies an upper limit on the average CR nuclei density in the SMC of similar to 15% of the value measured locally in the Milky Way. The population of high-energy pulsars of the SMC may account for a substantial fraction of the gamma-ray flux, which would make the inferred CR nuclei density even lower. The average density of CR electrons derived from radio synchrotron observations is consistent with the same reduction factor but the uncertainties are large. From our current knowledge of the SMC, such a low CR density does not seem to be due to a lower rate of CR injection and rather indicates a smaller CR confinement volume characteristic size. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, CNRS, Serv Astrophys,Lab AIM,CEA IRFU, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Jean, P.; Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brandt, T. J.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Celik, Oe.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Reposeur, T.; Smith, D. A.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gasparrini, D.] ASI, Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Giroletti, M.] INAF Inst Radioastron, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kerr, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Martin, P.; Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Scargle, J. D.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Royal Inst Technol KTH, Dept Phys, S-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, S-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. EM jean@cesr.fr; knodlseder@cesr.fr; martinp@mpe.mpg.de RI Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Giordano, Francesco/0000-0002-8651-2394; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726 NR 65 TC 40 Z9 40 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV-DEC PY 2010 VL 523 AR A46 DI 10.1051/0004-6361/201014855 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695BW UT WOS:000285346600050 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Cannon, A Caraveo, PA Casandjian, JM Cecchi, C Celik, O Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Dermer, CD de Angelis, A de Palma, F Digel, SW Silva, EDE Drell, PS Drlica-Wagner, A Dubois, R Favuzzi, C Fegan, SJ Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Guiriec, S Gustafsson, M Hadasch, D Harding, AK Hayashi, K Hayashida, M Hays, E Healey, SE Jean, P Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Kamae, T Katagiri, H Kataoka, J Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Martin, P Mazziotta, MN Mehault, J Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pepe, M Persic, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Ritz, S Romani, RW Sadrozinski, HFW Parkinson, PMS Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Strigari, L Strong, AW Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vianello, G Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Cannon, A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe. Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Dubois, R. Favuzzi, C. Fegan, S. J. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Guiriec, S. Gustafsson, M. Hadasch, D. Harding, A. K. Hayashi, K. Hayashida, M. Hays, E. Healey, S. E. Jean, P. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Kamae, T. Katagiri, H. Kataoka, J. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Martin, P. Mazziotta, M. N. Mehault, J. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pepe, M. Persic, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Ritz, S. Romani, R. W. Sadrozinski, H. F. -W. Parkinson, P. M. Saz Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Strigari, L. Strong, A. W. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vianello, G. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ziegler, M. TI Fermi Large Area Telescope observations of Local Group galaxies: detection of M31 and search for M33 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Local Group; cosmic rays; gamma rays: galaxies ID LARGE-MAGELLANIC-CLOUD; GAMMA-RAY EMISSION; STAR-FORMATION; NGC 253; NEUTRAL HYDROGEN; NEARBY GALAXIES; SPACE-TELESCOPE; ATOMIC GAS; STARBURST; DISTANCE AB Context. Cosmic rays (CRs) can be studied through the galaxy-wide gamma-ray emission that they generate when propagating in the interstellar medium. The comparison of the diffuse signals from different systems may inform us about the key parameters in CR acceleration and transport. Aims. We aim to determine and compare the properties of the cosmic-ray-induced gamma-ray emission of several Local Group galaxies. Methods. We use 2 years of nearly continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to search for gamma-ray emission from M31 and M33. We compare the results with those for the Large Magellanic Cloud, the Small Magellanic Cloud, the Milky Way, and the starburst galaxies M82 and NGC 253. Results. We detect a gamma-ray signal at 5 sigma significance in the energy range 200 MeV-20 GeV that is consistent with originating from M31. The integral photon flux above 100 MeV amounts to (9.1 +/- 1.9(stat) +/- 1.0(sys)) x 10(-9) ph cm(-2) s(-1). We find no evidence for emission from M33 and derive an upper limit on the photon flux > 100 MeV of 5.1 x 10(-9) ph cm(-2) s(-1) (2 sigma). Comparing these results to the properties of other Local Group galaxies, we find indications of a correlation between star formation rate and gamma-ray luminosity that also holds for the starburst galaxies. Conclusions. The gamma-ray luminosity of M31 is about half that of the Milky Way, which implies that the ratio between the average CR densities in M31 and the Milky Way amounts to xi = 0.35 +/- 0.25. The observed correlation between gamma-ray luminosity and star formation rate suggests that the flux of M33 is not far below the current upper limit from the LAT observations. C1 [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Abdo, A. A.] Natl Acad Sci, Natl Res Council, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Strigari, L.; Tanaka, T.; Thayer, J. B.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Strigari, L.; Tanaka, T.; Thayer, J. B.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Johnson, R. P.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, CNRS, CEA IRFU,Lab AIM,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Persic, M.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Jean, P.; Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brandt, T. J.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Cannon, A.; Celik, Oe.; Harding, A. K.; Hays, E.; Johnson, T. J.; Moiseev, A. A.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, A.] Univ Coll Dublin, Dublin 4, Ireland. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe.; Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Conrad, J.; Yang, Z.] Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Frailis, M.; Persic, M.] Osserv Astron Trieste, Ist Nazl Astrofis, I-34143 Trieste, Italy. [Fukazawa, Y.; Hayashi, K.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF, Ist Radioastron, I-40129 Bologna, Italy. [Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Smith, D. A.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Martin, P.; Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibaldo, L.] ICREA, Barcelona, Spain. [Tramacere, A.; Vianello, G.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. RP Abdo, AA (reprint author), USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. EM bechtol@stanford.edu; jean@cesr.fr; knodlseder@cesr.fr; martinp@mpe.mpg.de RI Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Thompson, David/D-2939-2012; Gargano, Fabio/O-8934-2015; Harding, Alice/D-3160-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Funk, Stefan/B-7629-2015 OI Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Thompson, David/0000-0001-5217-9135; Gargano, Fabio/0000-0002-5055-6395; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080 NR 47 TC 49 Z9 49 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV-DEC PY 2010 VL 523 AR L2 DI 10.1051/0004-6361/201015759 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695BW UT WOS:000285346600003 ER PT J AU da Cunha, E Charmandaris, V Diaz-Santos, T Armus, L Marshall, JA Elbaz, D AF da Cunha, E. Charmandaris, V. Diaz-Santos, T. Armus, L. Marshall, J. A. Elbaz, D. TI Exploring the physical properties of local star-forming ULIRGs from the ultraviolet to the infrared SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: evolution; galaxies: fundamental parameters; galaxies: starburst; galaxies: ISM ID ULTRALUMINOUS IRAS GALAXIES; SPECTRAL ENERGY-DISTRIBUTION; RESOLUTION CO OBSERVATIONS; OPTICAL SPECTROSCOPY; STARBURST GALAXIES; LUMINOSITY FUNCTION; FORMATION HISTORY; HIGH-REDSHIFT; SIMPLE-MODEL; SAMPLE AB We apply the da Cunha et al. (2008, MNRAS, 388, 1595) model of the spectral energy distribution (SEDs) of galaxies to a small pilot sample of purely star-forming ultra-luminous infrared galaxies (ULIRGs). We interpret the observed SEDs of 16 ULIRGs using this physically-motivated model that accounts for both the emission of stellar populations from the ultraviolet to the near-infrared and for the attenuation by dust in two components: an optically-thick starburst component and the diffuse ISM. The infrared emission is computed by assuming that all the energy absorbed by dust in these components is re-radiated at mid-and far-infrared wavelengths. This model allows us to derive statistically physical properties including star formation rates, stellar masses, the temperatures and masses of different dust components, and plausible star formation histories. We find that, although the ultraviolet-to-near-infrared emission represents only a small fraction of the total power radiated by ULIRGs, observations in this wavelength range are important for understanding the properties of the stellar populations and dust attenuation in the diffuse ISM of these galaxies. Furthermore, our analysis indicates that the use of mid-infrared spectroscopy from the infrared spectrograph on the Spitzer Space Telescope is crucial to obtain realistic estimates of the extinction to the central energy source, mainly via the depth of the 9.7-mu m silicate feature, and thus accurately constrain the total energy balance. Our findings are consistent with the notion that, in the local Universe, the physical properties of ULIRGs are fundamentally different from those of galaxies with lower infrared luminosities and that local ULIRGs are the result of merger-induced starbursts. While these are well-established ideas, we demonstrate the usefulness of our SED modelling in deriving relevant physical parameters that provide clues to the star formation mode of galaxies. C1 [da Cunha, E.; Charmandaris, V.; Diaz-Santos, T.] Univ Crete, Dept Phys, Iraklion 71003, Greece. [da Cunha, E.; Charmandaris, V.; Diaz-Santos, T.] Fdn Res & Technol Hellas, IESL, Iraklion 71110, Greece. [Charmandaris, V.] Observ Paris, F-75014 Paris, France. [Armus, L.; Marshall, J. A.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Marshall, J. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Elbaz, D.] Univ Paris Diderot, CEA Saclay, Lab AIM, CEA,DSM CNRS,IRFU,Serv Astrophys, F-91191 Gif Sur Yvette, France. RP da Cunha, E (reprint author), Univ Crete, Dept Phys, Iraklion 71003, Greece. EM dacunha@physics.uoc.gr RI Charmandaris, Vassilis/A-7196-2008; Diaz-Santos, Tanio/B-4875-2011; OI Charmandaris, Vassilis/0000-0002-2688-1956; da Cunha, Elisabete/0000-0001-9759-4797 FU EU [39965]; FP7-REGPOT [206469]; National Aeronautics and Space Administration FX We thank the anonymous referee for comments and suggestions that significantly helped improve this paper. E.d.C., V. C. and T. D. S. acknowledge partial support from the EU ToK grant 39965 and FP7-REGPOT 206469. We thank David Sanders and Vivian U for providing us the optical photometry for some of our galaxies. We are grateful to Bernhard Brandl and Emanuele Daddi for useful discussions, and to Brent Groves, Nick Kylafis, Vivienne Wild and Stephanie Juneau for comments on the manuscript. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 81 TC 35 Z9 35 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV-DEC PY 2010 VL 523 AR A78 DI 10.1051/0004-6361/201014498 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695BW UT WOS:000285346600081 ER PT J AU Hildebrandt, H Arnouts, S Capak, P Moustakas, LA Wolf, C Abdalla, FB Assef, RJ Banerji, M Benitez, N Brammer, GB Budavari, T Carliles, S Coe, D Dahlen, T Feldmann, R Gerdes, D Gillis, B Ilbert, O Kotulla, R Lahav, O Li, IH Miralles, JM Purger, N Schmidt, S Singal, J AF Hildebrandt, H. Arnouts, S. Capak, P. Moustakas, L. A. Wolf, C. Abdalla, F. B. Assef, R. J. Banerji, M. Benitez, N. Brammer, G. B. Budavari, T. Carliles, S. Coe, D. Dahlen, T. Feldmann, R. Gerdes, D. Gillis, B. Ilbert, O. Kotulla, R. Lahav, O. Li, I. H. Miralles, J. -M. Purger, N. Schmidt, S. Singal, J. TI PHAT: PHoto-z Accuracy Testing SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE techniques: photometric; galaxies: distances and redshifts; galaxies: photometry; cosmology: observations; methods: data analysis ID HUBBLE-DEEP-FIELD; DIGITAL SKY SURVEY; SPECTRAL ENERGY-DISTRIBUTIONS; ARTIFICIAL NEURAL-NETWORKS; STAR-FORMING GALAXIES; ESTIMATING PHOTOMETRIC REDSHIFTS; NEAR-INFRARED PHOTOMETRY; ACTIVE GALACTIC NUCLEI; LYMAN BREAK GALAXIES; GOODS-NORTH FIELD AB Context. Photometric redshifts (photo-z's) have become an essential tool in extragalactic astronomy. Many current and upcoming observing programmes require great accuracy of photo-z's to reach their scientific goals. Aims. Here we introduce PHAT, the PHoto-z Accuracy Testing programme, an international initiative to test and compare different methods of photo-z estimation. Methods. Two different test environments are set up, one (PHAT0) based on simulations to test the basic functionality of the different photo-z codes, and another one (PHAT1) based on data from the GOODS survey including 18-band photometry and similar to 2000 spectroscopic redshifts. Results. The accuracy of the different methods is expressed and ranked by the global photo-z bias, scatter, and outlier rates. While most methods agree very well on PHAT0 there are differences in the handling of the Lyman-alpha forest for higher redshifts. Furthermore, different methods produce photo-z scatters that can differ by up to a factor of two even in this idealised case. A larger spread in accuracy is found for PHAT1. Few methods benefit from the addition of mid-IR photometry. The accuracy of the other methods is unaffected or suffers when IRAC data are included. Remaining biases and systematic effects can be explained by shortcomings in the different template sets (especially in the mid-IR) and the use of priors on the one hand and an insufficient training set on the other hand. Some strategies to overcome these problems are identified by comparing the methods in detail. Scatters of 4-8% in Delta z/(1 + z) were obtained, consistent with other studies. However, somewhat larger outlier rates (> 7.5% with Delta z/(1 + z) > 0.15; > 4.5% after cleaning) are found for all codes that can only partly be explained by AGN or issues in the photometry or the spec-z catalogue. Some outliers were probably missed in comparisons of photo-z's to other, less complete spectroscopic surveys in the past. There is a general trend that empirical codes produce smaller biases than template-based codes. Conclusions. The systematic, quantitative comparison of different photo-z codes presented here is a snapshot of the current state-of-the-art of photo-z estimation and sets a standard for the assessment of photo-z accuracy in the future. The rather large outlier rates reported here for PHAT1 on real data should be investigated further since they are most probably also present (and possibly hidden) in many other studies. The test data sets are publicly available and can be used to compare new, upcoming methods to established ones and help in guiding future photo-z method development. C1 [Hildebrandt, H.] Leiden Univ, Leiden Observ, NL-2333 CA Leiden, Netherlands. [Arnouts, S.] Canada France Hawaii Telescope Corp, Kamuela, HI 96743 USA. [Capak, P.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Moustakas, L. A.; Coe, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wolf, C.] Univ Oxford, Dept Phys, DWB, Oxford OX1 3RH, England. [Abdalla, F. B.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Assef, R. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Banerji, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Benitez, N.] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Brammer, G. B.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Budavari, T.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Carliles, S.] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA. [Dahlen, T.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Feldmann, R.] ETH, Inst Astron, Dept Phys, CH-8093 Zurich, Switzerland. [Gerdes, D.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gillis, B.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Ilbert, O.] Univ Aix Marseille, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Kotulla, R.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Kotulla, R.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Li, I. H.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Miralles, J. -M.] Inst Estudis Andorrans, St Julia De Loria 600, Andorra. [Purger, N.] Eotvos Lorand Univ, Dept Phys Complex Syst, H-1518 Budapest, Hungary. [Schmidt, S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Singal, J.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. RP Hildebrandt, H (reprint author), Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. EM hendrik@strw.leidenuniv.nl RI Moustakas, Leonidas/F-3052-2014; OI Moustakas, Leonidas/0000-0003-3030-2360; Banerji, Manda/0000-0002-0639-5141; Abdalla, Filipe/0000-0003-2063-4345; Benitez, Narciso/0000-0002-0403-7455 FU European DUEL RTN [MRTN-CT-2006-036133]; NASA; STFC; NKTH:Polanyi; [KCKHA005] FX We would like to thank JPL/Caltech for hospitality and support during the 2008 PHAT workshop. We are grateful to the large number of colleagues who made PHAT a success through discussions, criticism, and encouragement. A special thanks goes to Mike Hudson who came up with the acronym "PHAT". HH would like to thank in particular Catherine Heymans, Konrad Kuijken, Ludovic van Waerbeke, and Peter Schneider for supporting the PHAT effort. HH was supported by the European DUEL RTN, project MRTN-CT-2006-036133. The work of LAM and DC was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.; LAM acknowledges support by the NASA ATFP program. CW was supported by an STFC Advanced Fellowship. NP acknowledges support from NKTH:Polanyi and KCKHA005 grants. NR 99 TC 81 Z9 81 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV-DEC PY 2010 VL 523 AR A31 DI 10.1051/0004-6361/201014885 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695BW UT WOS:000285346600035 ER PT J AU Thatte, A Deroo, P Swain, MR AF Thatte, A. Deroo, P. Swain, M. R. TI Selective principal component extraction and reconstruction: a novel method for ground based exoplanet spectroscopy SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE infrared: planetary systems; planets and satellites: atmospheres; techniques: spectroscopic; methods: data analysis; methods: numerical ID INFRARED-EMISSION-SPECTRUM; HD 189733B; DAYSIDE SPECTRUM; ATMOSPHERE; ABSORPTION; 209458B; METHANE; PLANET; WATER AB Context. Infrared spectroscopy of primary and secondary eclipse events probes the composition of exoplanet atmospheres and, using space telescopes, has detected H(2)O, CH(4) and CO(2) in three hot Jupiters. However, the available data from space telescopes has limited spectral resolution and does not cover the 2.4-5.2 mu m spectral region. While large ground based telescopes have the potential to obtain molecular-abundance-grade spectra for many exoplanets, realizing this potential requires retrieving the astrophysical signal in the presence of large Earth-atmospheric and instrument systematic errors. Aims. Here we report a wavelet-assisted, selective principal component extraction method for ground based retrieval of the dayside spectrum of HD189733b from data containing systematic errors. Methods. The method uses singular value decomposition and extracts those critical points of the Rayleigh quotient which correspond to the planet induced signal. The method does not require prior knowledge of the planet spectrum or the physical mechanisms causing systematic errors. Results. The spectrum obtained with our method is in excellent agreement with space based measurements made with HST and Spitzer and confirms the recent ground based measurements including the strong similar to 3.3 mu m emission. C1 [Thatte, A.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Deroo, P.; Swain, M. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Thatte, A (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, MRDC Bldg,Room 4111, Atlanta, GA 30332 USA. EM azamthatte@gatech.edu NR 15 TC 5 Z9 5 U1 1 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV-DEC PY 2010 VL 523 AR A35 DI 10.1051/0004-6361/201015148 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695BW UT WOS:000285346600039 ER PT J AU D'Avanzo, P Perri, M Fugazza, D Salvaterra, R Chincarini, G Margutti, R Wu, XF Thone, CC Fernandez-Soto, A Ukwatta, TN Burrows, DN Gehrels, N Meszaros, P Toma, K Zhang, B Covino, S Campana, S D'Elia, V Della Valle, M Piranomonte, S AF D'Avanzo, P. Perri, M. Fugazza, D. Salvaterra, R. Chincarini, G. Margutti, R. Wu, X. F. Thoene, C. C. Fernandez-Soto, A. Ukwatta, T. N. Burrows, D. N. Gehrels, N. Meszaros, P. Toma, K. Zhang, B. Covino, S. Campana, S. D'Elia, V. Della Valle, M. Piranomonte, S. TI The afterglow and host galaxy of GRB 090205: evidence of a Ly-alpha emitter at z=4.65 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma rays: general ID GAMMA-RAY BURSTS; LYMAN-BREAK GALAXIES; STAR-FORMATION; TELESCOPE OBSERVATIONS; STELLAR POPULATIONS; HIGH-REDSHIFT; 1ST SURVEY; SWIFT; ORIGIN; FLARES AB Context. Gamma-ray bursts (GRBs) have proven to be detectable to distances much larger than any other astrophysical object, providing the most effective way, complementing ordinary surveys of studying the high redshift universe. Aims. We present the results of an observational campaign devoted to the study of the high-z GRB 090205. Methods. We carried out optical/NIR spectroscopy and imaging of GRB 090205 with the ESO-VLT starting from hours after the event to several days later to detect the host galaxy. We compared the results obtained from our optical/NIR observations with the available Swift high-energy data of this burst. Results. Our observational campaign led to the detection of the optical afterglow and host galaxy of GRB 090205 and to the first measure of its redshift, z = 4.65. As in other high-z GRBs, GRB 090205 has a short duration in the rest frame with T(90,rf) = 1.6 s, which suggests that it might belong to the short GRB class. The X-ray afterglow of GRB 090205 has a complex and interesting behavior with a possible rebrightening at 500-1000 s from the trigger time and late flaring activity. Photometric observations of the GRB 090205 host galaxy imply that it is a starburst galaxy with a stellar population younger than similar to 150 Myr. Moreover, the metallicity of Z > 0.27 Z(circle dot) derived from the GRB afterglow spectrum is among the highest derived from GRB afterglow measurement at high-z, suggesting that the burst occurred in a rather enriched environment. Finally, a detailed analysis of the afterglow spectrum shows the existence of a line corresponding to Lyman-alpha emission at the redshift of the burst. GRB 090205 is thus hosted by a typical Lyman-alpha emitter (LAE) at z = 4.65. This makes the host galaxy of GRB 090205 the farthest GRB host galaxy, spectroscopically confirmed, detected to date. C1 [D'Avanzo, P.; Fugazza, D.; Chincarini, G.; Margutti, R.; Thoene, C. C.; Covino, S.; Campana, S.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. [Perri, M.; D'Elia, V.] ASI Sci Data Ctr, I-00044 Frascati, Italy. [Salvaterra, R.] Univ Insubria, Dipartimento Fis & Matemat, I-22100 Como, Italy. [Chincarini, G.; Margutti, R.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Wu, X. F.; Burrows, D. N.; Meszaros, P.; Toma, K.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Wu, X. F.; Meszaros, P.; Toma, K.] Penn State Univ, Ctr Particle Astrophys, University Pk, PA 16802 USA. [Wu, X. F.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Fernandez-Soto, A.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain. [Ukwatta, T. N.] George Washington Univ, Washington, DC 20052 USA. [Ukwatta, T. N.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Meszaros, P.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Zhang, B.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [D'Elia, V.; Piranomonte, S.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Della Valle, M.] INAF Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Della Valle, M.] Int Ctr Relativist Astrophys, I-65122 Pescara, Italy. RP D'Avanzo, P (reprint author), INAF Osservatorio Astron Brera, Via Bianchi 46, I-23807 Merate, Italy. EM paolo.davanzo@brera.inaf.it RI Gehrels, Neil/D-2971-2012; Wu, Xuefeng/G-5316-2015; Fernandez-Soto, Alberto/A-2443-2009; OI Wu, Xuefeng/0000-0002-6299-1263; Fernandez-Soto, Alberto/0000-0002-5732-3121; Campana, Sergio/0000-0001-6278-1576; D'Elia, Valerio/0000-0002-7320-5862; Della Valle, Massimo/0000-0003-3142-5020 FU ASI [SWIFT I/011/07/0] FX We thank the referee for his/her useful comments and suggestions. We acknowledge support by ASI grant SWIFT I/011/07/0. This research has made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASI Science Data Center (ASDC), Italy. We acknowledge the invaluable help from the ESO staff at Paranal in carrying out our target-of-opportunity observations. NR 51 TC 15 Z9 15 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2010 VL 522 AR A20 DI 10.1051/0004-6361/201014801 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HS UT WOS:000284153100026 ER PT J AU Grosso, N Hamaguchi, K Kastner, JH Richmond, MW Weintraub, DA AF Grosso, N. Hamaguchi, K. Kastner, J. H. Richmond, M. W. Weintraub, D. A. TI A few days before the end of the 2008 extreme outburst of EX Lupi: accretion shocks and a smothered stellar corona unveiled by XMM-Newton SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE X-rays: stars; stars: individual: EX Lup; stars: pre-main sequence; stars: coronae; stars: activity accretion; accretion disks ID T-TAURI-STARS; X-RAY-EMISSION; ILLUMINATING MCNEIL-NEBULA; ORION ULTRADEEP PROJECT; PHOTON IMAGING CAMERA; Z CANIS MAJORIS; YOUNG STAR; FU ORIONIS; CIRCUMSTELLAR DISKS; SPECTRAL-ANALYSIS AB Context. EX Lup is a pre-main sequence star that exhibits repetitive and irregular optical outbursts driven by an increase in the mass accretion rate in its circumstellar disk. In mid-January 2008, EX Lup, the prototype of the small class of eruptive variables called EXors, began an extreme outburst that lasted seven months. Aims. We attempt to characterize the X-ray and UV emission of EX Lup during this outburst. Methods. We observed EX Lup during about 21 h with XMM-Newton, simultaneously in X-rays and UV, on August 10-11, 2008 a few days before the end of its 2008 outburst -when the optical flux of EX Lup remained about 4 times above its pre-outburst level. Results. We detected EX Lup in X-rays with an observed flux in the 0.2-10 keV energy range of 5.4 x 10(-14) erg s(-1) cm(-2) during a low-level period. This observed flux increased by a factor of four during a flaring period that lasted about 2 h. The observed spectrum of the low-level period is dominated below similar to 1.5 keV by emission from a relatively cool plasma (similar to 4.7 MK) that is lightly absorbed (N-H similar or equal to 3.6 x 10(20) cm(-2)) and above similar to 1.5 keV by emission from a plasma that is similar to ten times hotter and affected by a photoelectric absorption that is 75 times larger. The intrinsic X-ray luminosity of the relatively cool plasma is similar to 4x 10(28) erg s(-1). The intrinsic X-ray luminosity of EX Lup, similar to 3.4 x 10(29) erg s(-1), is hence dominated by emission from the hot plasma. During the X-ray flare, the emission measure and the intrinsic X-ray luminosity of this absorbed plasma component is five times higher than during the low-level period. We detected UV variability on timescales ranging from less than one hour up to about four hours. We show from simulated light curves that the power spectral density of the UV light curve can be modeled with a red-noise spectrum with a power-law index of 1.39 +/- 0.06. None of the UV events observed on August 10-11, 2008 correlate unambiguously with simultaneous X-ray peaks. Conclusions. The soft X-ray spectral component is most likely associated with accretion shocks, as opposed to jet activity, given the absence of forbidden emission lines of low-excitation species (e. g., [OI]) in optical spectra of EX Lup obtained during outburst. The hard X-ray spectral component, meanwhile, is most likely associated with a smothered stellar corona. The UV emission is reminiscent of accretion events, such as those already observed with the Optical/UV Monitor from other accreting pre-main sequence stars, and is evidently dominated by emission from accretion hot spots. The large photoelectric absorption of the active stellar corona is most likely due to high-density gas above the corona in accretion funnel flows. C1 [Grosso, N.] Univ Strasbourg, CNRS, UMR 7550, Observ Astron Strasbourg, F-67000 Strasbourg, France. [Hamaguchi, K.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Hamaguchi, K.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Hamaguchi, K.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Kastner, J. H.] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA. [Richmond, M. W.] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Weintraub, D. A.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Grosso, N (reprint author), Univ Strasbourg, CNRS, UMR 7550, Observ Astron Strasbourg, 11 Rue Univ, F-67000 Strasbourg, France. EM nicolas.grosso@astro.unistra.fr FU ESA Member States; NASA [NNX09AC11G] FX We thanks the XMM-Newton Science Operations Centre for the prompt schedule of this observation. This research is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. J.K.'s research on X-rays from erupting YSOs is supported by NASA/GSFC XMM-Newton Guest Observer grant NNX09AC11G to RIT. NR 74 TC 15 Z9 15 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2010 VL 522 AR A56 DI 10.1051/0004-6361/200913850 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HS UT WOS:000284153100062 ER PT J AU Kallinger, T Mosser, B Hekker, S Huber, D Stello, D Mathur, S Basu, S Bedding, TR Chaplin, WJ De Ridder, J Elsworth, YP Frandsen, S Garcia, RA Gruberbauer, M Matthews, JM Borucki, WJ Bruntt, H Christensen-Dalsgaard, J Gilliland, RL Kjeldsen, H Koch, DG AF Kallinger, T. Mosser, B. Hekker, S. Huber, D. Stello, D. Mathur, S. Basu, S. Bedding, T. R. Chaplin, W. J. De Ridder, J. Elsworth, Y. P. Frandsen, S. Garcia, R. A. Gruberbauer, M. Matthews, J. M. Borucki, W. J. Bruntt, H. Christensen-Dalsgaard, J. Gilliland, R. L. Kjeldsen, H. Koch, D. G. TI Asteroseismology of red giants from the first four months of Kepler data: Fundamental stellar parameters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: late-type; stars: oscillations; stars: fundamental parameters ID SOLAR-LIKE OSCILLATIONS; EPSILON-OPHIUCHI; RADIUS DETERMINATION; K-GIANTS; P-MODES; STARS; PHOTOMETRY; COROT; CLUSTER; INCLINATION AB Context. Clear power excess in a frequency range typical for solar-type oscillations in red giants has been detected in more than 1000 stars, which have been observed during the first 138 days of the science operation of the NASA Kepler satellite. This sample includes stars in a wide mass and radius range with spectral types G and K, extending in luminosity from the bottom of the giant branch up to high-luminous red giants, including the red bump and clump. The high-precision asteroseismic observations with Kepler provide a perfect source for testing stellar structure and evolutionary models, as well as investigating the stellar population in our Galaxy. Aims. We aim to extract accurate seismic parameters from the Kepler time series and use them to infer asteroseismic fundamental parameters from scaling relations and a comparison with red-giant models. Methods. We fit a global model to the observed power density spectra, which allows us to accurately estimate the granulation background signal and the global oscillation parameters, such as the frequency of maximum oscillation power. We find regular patterns of radial and non-radial oscillation modes and use a new technique to automatically identify the mode degree and the characteristic frequency separations between consecutive modes of the same spherical degree. In most cases, we can also measure the small separation between l = 0, 1, and 2 modes. Subsequently, the seismic parameters are used to estimate stellar masses and radii and to place the stars in an H-R diagram by using an extensive grid of stellar models that covers a wide parameter range. Using Bayesian techniques throughout our entire analysis allows us to determine reliable uncertainties for all parameters. Results. We provide accurate seismic parameters and their uncertainties for a large sample of red giants and determine their asteroseismic fundamental parameters. We investigate the influence of the stars' metallicities on their positions in the H-R diagram. Finally, we study the red-giant populations in the red clump and bump and compare them to a synthetic population. We find a mass and metallicity gradient in the red clump and clear evidence of a secondary-clump population. C1 [Kallinger, T.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Kallinger, T.; Matthews, J. M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Mosser, B.] Univ Denis, Univ Paris 06, CNRS, LESIA,Observ Paris, F-92195 Meudon, France. [Hekker, S.; Chaplin, W. J.; Elsworth, Y. P.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Huber, D.; Stello, D.; Bedding, T. R.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Mathur, S.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Basu, S.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [De Ridder, J.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Frandsen, S.] Aarhus Univ, Dept Phys & Astron, DASC, DK-8000 Aarhus C, Denmark. [Garcia, R. A.] Univ Paris 07, Ctr Saclay, IRFU SAp, Lab AIM,CEA DSM CNRS, F-91191 Gif Sur Yvette, France. [Gruberbauer, M.] St Marys Univ, Dept Phys & Astron, Inst Computat Astrophys, Halifax, NS B3H 3C3, Canada. [Borucki, W. J.; Koch, D. G.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Kallinger, T (reprint author), Univ Vienna, Inst Astron, Turkenschanzstr 17, A-1180 Vienna, Austria. EM kallinger@phas.ubc.ca OI Kallinger, Thomas/0000-0003-3627-2561; Garcia, Rafael/0000-0002-8854-3776 FU NASA's Science Mission Directorate; Canadian Space Agency; Austrian Research Promotion Agency; Austrian Science Fund; UK Science and Technology Facilities Council; Astronomical Society of Australia; European Research Council [FP7/2007-2013, 227224]; Research Council of K.U. Leuven [GOA/2008/04]; US National Science Foundation; Australian Research Council FX Funding for the Kepler Mission is provided by NASA's Science Mission Directorate. T.K. is supported by the Canadian Space Agency, the Austrian Research Promotion Agency, and the Austrian Science Fund. S.H., Y.P.E. and W.J.C. acknowledge support by the UK Science and Technology Facilities Council. D.H. acknowledges support by the Astronomical Society of Australia. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 227224 (PROSPERITY), as well as from the Research Council of K.U. Leuven grant agreement GOA/2008/04. The National Center for Atmospheric Research is a federally funded research and development center sponsored by the US National Science Foundation. We acknowledge support from the Australian Research Council. The authors gratefully acknowledge the Kepler Science Team and all those who have contributed to making the Kepler Mission possible. NR 61 TC 96 Z9 96 U1 1 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2010 VL 522 AR A1 DI 10.1051/0004-6361/201015263 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HS UT WOS:000284153100007 ER PT J AU Keskitalo, R Ashdown, MAJ Cabella, P Kisner, T Poutanen, T Stompor, R Bartlett, JG Borrill, J Cantalupo, C de Gasperis, G de Rosa, A de Troia, G Eriksen, HK Finelli, F Gorski, KM Gruppuso, A Hivon, E Jaffe, A Keihanen, E Kurki-Suonio, H Lawrence, CR Natoli, P Paci, F Polenta, G Rocha, G AF Keskitalo, R. Ashdown, M. A. J. Cabella, P. Kisner, T. Poutanen, T. Stompor, R. Bartlett, J. G. Borrill, J. Cantalupo, C. de Gasperis, G. de Rosa, A. de Troia, G. Eriksen, H. K. Finelli, F. Gorski, K. M. Gruppuso, A. Hivon, E. Jaffe, A. Keihanen, E. Kurki-Suonio, H. Lawrence, C. R. Natoli, P. Paci, F. Polenta, G. Rocha, G. TI Residual noise covariance for Planck low-resolution data analysis SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; cosmology: observations; methods: data analysis; methods: numerical ID MICROWAVE BACKGROUND ANISOTROPY; PROBE WMAP OBSERVATIONS; MAP-MAKING ALGORITHM; 30 GHZ DATA; POWER SPECTRUM; RADIOMETER CHARACTERIZATION; POLARIZATION MAPS; DESTRIPING ERRORS; CMB EXPERIMENTS; SKY MAPS AB Aims. We develop and validate tools for estimating residual noise covariance in Planck frequency maps, we also quantify signal error effects and compare different techniques to produce low-resolution maps. Methods. We derived analytical estimates of covariance of the residual noise contained in low-resolution maps produced using a number of mapmaking approaches. We tested these analytical predictions using both Monte Carlo simulations and by applying them to angular power spectrum estimation. We used simulations to quantify the level of signal errors incurred in the different resolution downgrading schemes considered in this work. Results. We find excellent agreement between the optimal residual noise covariance matrices and Monte Carlo noise maps. For destriping mapmakers, the extent of agreement is dictated by the knee frequency of the correlated noise component and the chosen baseline offset length. Signal striping is shown to be insignificant when properly dealt with. In map resolution downgrading, we find that a carefully selected window function is required to reduce aliasing to the subpercent level at multipoles, l > 2N(side), where N(side) is the HEALPix resolution parameter. We show that, for a polarization measurement, reliable characterization of the residual noise is required to draw reliable constraints on large-scale anisotropy. Conclusions. Methods presented and tested in this paper allow for production of low-resolution maps with both controlled sky signal error level and a reliable estimate of covariance of the residual noise. We have also presented a method for smoothing the residual noise covariance matrices to describe the noise correlations in smoothed, bandwidth-limited maps. C1 [Keskitalo, R.; Poutanen, T.; Keihanen, E.; Kurki-Suonio, H.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Keskitalo, R.; Poutanen, T.; Kurki-Suonio, H.] Helsinki Inst Phys, Helsinki 00014, Finland. [Keskitalo, R.; Gorski, K. M.; Lawrence, C. R.; Rocha, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ashdown, M. A. J.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Ashdown, M. A. J.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Cabella, P.; Polenta, G.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Cabella, P.; de Gasperis, G.; de Troia, G.; Natoli, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Kisner, T.; Borrill, J.; Cantalupo, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, Kylmala 02540, Finland. [Stompor, R.; Bartlett, J. G.] Univ Paris Diderot, CNRS, UMR 7164, Lab Astroparticule & Cosmol APC, F-75205 Paris 13, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [de Rosa, A.; Finelli, F.; Gruppuso, A.] Bologna Ist Nazl Astrofis, Ist Astrofis Spaziale & Fis Cosm, INAF IASF Bologna, I-40129 Bologna, Italy. [Eriksen, H. K.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Eriksen, H. K.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. [Finelli, F.; Gruppuso, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Finelli, F.] Ist Nazl Astrofis, Osservatorio Astron Bologna, INAF OAB, I-40127 Bologna, Italy. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Hivon, E.] Inst Astrophys, F-75014 Paris, France. [Jaffe, A.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London SW7 2AZ, England. [Natoli, P.] Ist Nazl Fis Nucl, Sez Tor Vergata, I-00133 Rome, Italy. [Paci, F.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Polenta, G.] ESRIN, ASI Sci Data Ctr, I-00044 Frascati, Italy. [Rocha, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. RP Keskitalo, R (reprint author), Univ Helsinki, Dept Phys, POB 64, Helsinki 00014, Finland. EM reijo.t.keskitalo@jpl.nasa.gov RI de Gasperis, Giancarlo/C-8534-2012; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; OI de Gasperis, Giancarlo/0000-0003-2899-2171; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Finelli, Fabio/0000-0002-6694-3269; Polenta, Gianluca/0000-0003-4067-9196; Hivon, Eric/0000-0003-1880-2733 NR 45 TC 7 Z9 7 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2010 VL 522 AR A94 DI 10.1051/0004-6361/200912606 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HS UT WOS:000284153100100 ER PT J AU Lendl, M Afonso, C Koppenhoefer, J Nikolov, N Henning, T Swain, M Greiner, J AF Lendl, M. Afonso, C. Koppenhoefer, J. Nikolov, N. Henning, Th. Swain, M. Greiner, J. TI New parameters and transit timing studies for OGLE2-TR-L9 b SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE techniques: photometric; planetary systems; planets and satellites: individual: OGLE2-TR-L9 b ID EXTRASOLAR PLANET; LIGHT-CURVE; OGLE-TR-111B; ATMOSPHERE; PROJECT; STAR AB Context. Repeated observations of exoplanet transits allow us to refine the planetary parameters and probe them for any time dependent variations. In particular deviations of the period from a strictly linear ephemeris, transit timing variations ( TTVs), can indicate the presence of additional bodies in the planetary system. Aims. Our goal was to reexamine the largely unstudied OGLE2-TR-L9 system with high cadence, multi-color photometry in order to refine the planetary parameters and probe the system for TTVs. Methods. We observed five full transits of OGLE2-TR-L9 with the GROND instrument at the ESO/MPG 2.2 m telescope at La Silla Observatory. GROND is a multichannel imager that allowed us to gather simultaneous light curves in the g', r', i', and z' filters. Results. From our analysis we find that the semi-major axis and the inclination differ from the previously published values. With the newly observed transits, we were able to refine the ephemeris to 2 454 492.80008(+/- 0.00014) + 2.48553417(+/- 6.4 x 10(-7)) E. The newly derived parameters are a = 0.0418 +/- 0.0015 AU, r(p) = 1.67 +/- 0.05 R-j, and inc = 82.47 degrees +/- 0.12, differing significantly in a and inc from the previously published values. Within our data, we find indications for TTVs. C1 [Lendl, M.; Afonso, C.; Nikolov, N.; Henning, Th.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Koppenhoefer, J.] Univ Sternwarte Munchen, D-81679 Munich, Germany. [Lendl, M.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Swain, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lendl, M.] Univ Geneva, Observ Geneva, CH-1290 Versoix, Switzerland. [Koppenhoefer, J.; Greiner, J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. RP Lendl, M (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM Monika.Lendl@unige.ch FU Leibniz-Prize [HA 1850/28-1] FX Part of the funding for GROND (both hardware as well as personnel) was generously granted from the Leibniz-Prize to Prof. G. Hasinger (DFG grant HA 1850/28-1). NR 18 TC 3 Z9 3 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2010 VL 522 AR A29 DI 10.1051/0004-6361/201014940 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HS UT WOS:000284153100035 ER PT J AU Pandian, JD Momjian, E Xu, Y Menten, KM Goldsmith, PF AF Pandian, J. D. Momjian, E. Xu, Y. Menten, K. M. Goldsmith, P. F. TI Spectral energy distributions of 6.7 GHz methanol masers SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE masers; stars: formation; HII regions ID RADIO-CONTINUUM EMISSION; ULTRACOMPACT HII-REGIONS; YOUNG STELLAR OBJECTS; GALACTIC PLANE SURVEY; STAR-FORMING REGIONS; HIGH-MASS PROTOSTARS; H II REGIONS; VLBI OBSERVATIONS; HIGH-RESOLUTION; MU-M AB Context. The 6.7 GHz maser transition of methanol has been found exclusively towards massive star forming regions. A majority of the masers have been found to lack the presence of any associated radio continuum. This could be due to the maser emission originating prior to the formation of an HII region around the central star, or from the central object being too cool to produce a HII region. Aims. One way to distinguish between the two scenarios is to determine and model the spectral energy distributions (SEDs) of the masers. Methods. We observed a sample of 20 6.7 GHz methanol masers selected from the blind Arecibo survey, from centimeter to submillimeter wavelengths. We combined our observations with existing data from various Galactic plane surveys to determine SEDs from centimeter to near-infrared wavelengths. Results. We find that 70% of the masers do not have any associated radio continuum, with the rest of the sources being associated with hypercompact and ultracompact HII regions. Modeling the SEDs shows them to be consistent with rapidly accreting massive stars, with accretion rates well above 10(-3) M-circle dot yr(-1). The upper limits on the radio continuum are also consistent with any ionized region being confined close to the stellar surface. Conclusions. This confirms the paradigm of 6.7 GHz methanol masers being signposts of early phases of massive star formation, mostly prior to the formation of a hypercompact HII region. C1 [Pandian, J. D.] Univ Hawaii, Inst Astron, Honolulu, HI 96814 USA. [Pandian, J. D.; Menten, K. M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Momjian, E.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Xu, Y.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Goldsmith, P. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Pandian, JD (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96814 USA. EM jpandian@mpifr-bonn.mpg.de; emomjian@aoc.nrao.edu; xuye@pmo.ac.cn; kmenten@mpifr-bonn.mpg.de; Paul.F.Goldsmith@jpl.nasa.gov RI Goldsmith, Paul/H-3159-2016 FU National Aeronautics and Space Administration; National Science Foundation; Chinese NSF [NSF 10673024, NSF 10733030, NSF 10703010, NSF 10621303]; NBRPC [2007CB815403]; Jet Propulsion Laboratory, California Institute of Technology FX We thank R. Zylka for help in reducing the MAMBO data, and F. Schuller and A. Belloche for help in reducing the LABOCA data. We also thank S. Kurtz and J. Williams for insightful discussions. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. Y.X. was supported by the Chinese NSF through grants NSF 10673024, NSF 10733030, NSF 10703010 and NSF 10621303, and NBRPC (973 Program) under grant 2007CB815403. This work was supported in part by the Jet Propulsion Laboratory, California Institute of Technology. This research has made use of NASA's Astrophysics Data System. NR 47 TC 11 Z9 11 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2010 VL 522 AR A8 DI 10.1051/0004-6361/201014937 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HS UT WOS:000284153100014 ER PT J AU Pucella, G D'Ammando, F Romano, P Treves, A Pian, E Vercellone, S Vittorini, V Piano, G Impiombato, D Fugazza, D Verrecchia, F Krimm, HA Donnarumma, I Tavani, M Bulgarelli, A Chen, AW Giuliani, A Longo, F Pacciani, L Argan, A Barbiellini, G Boffelli, F Caraveo, P Cattaneo, PW Cocco, V Costa, E Del Monte, E De Paris, G Di Cocco, G Evangelista, Y Feroci, M Fiorini, M Froysland, T Fuschino, F Galli, M Gianotti, F Labanti, C Lapshov, I Lazzarotto, F Lipari, P Marisaldi, M Mereghetti, S Morelli, E Morselli, A Pellizzoni, A Perotti, F Picozza, P Pilia, M Prest, M Rapisarda, M Rappoldi, A Sabatini, S Soffitta, P Striani, E Trifoglio, M Trois, A Vallazza, E Zambra, A Zanello, D Perri, M Pittori, C Santolamazza, P Giommi, P Antonelli, LA Colafrancesco, S Salotti, L AF Pucella, G. D'Ammando, F. Romano, P. Treves, A. Pian, E. Vercellone, S. Vittorini, V. Piano, G. Impiombato, D. Fugazza, D. Verrecchia, F. Krimm, H. A. Donnarumma, I. Tavani, M. Bulgarelli, A. Chen, A. W. Giuliani, A. Longo, F. Pacciani, L. Argan, A. Barbiellini, G. Boffelli, F. Caraveo, P. Cattaneo, P. W. Cocco, V. Costa, E. Del Monte, E. De Paris, G. Di Cocco, G. Evangelista, Y. Feroci, M. Fiorini, M. Froysland, T. Fuschino, F. Galli, M. Gianotti, F. Labanti, C. Lapshov, I. Lazzarotto, F. Lipari, P. Marisaldi, M. Mereghetti, S. Morelli, E. Morselli, A. Pellizzoni, A. Perotti, F. Picozza, P. Pilia, M. Prest, M. Rapisarda, M. Rappoldi, A. Sabatini, S. Soffitta, P. Striani, E. Trifoglio, M. Trois, A. Vallazza, E. Zambra, A. Zanello, D. Perri, M. Pittori, C. Santolamazza, P. Giommi, P. Antonelli, L. A. Colafrancesco, S. Salotti, L. TI AGILE detection of intense gamma-ray activity from the blazar PKS 0537-441 in October 2008 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma rays: general; BL Lacertae objects: individual: PKS 0537-441; radiation mechanisms: non-thermal ID SILICON TRACKER; GALACTIC NUCLEI; REM TELESCOPE; SPACE MISSION; RADIO-SOURCES; SWIFT; ENERGY; PKS-0537-441; CONTINUUM; EMISSION AB Context. We report the detection by the AGILE satellite of intense gamma-ray activity from the source 1AGL J0538-4424, associated with the low-energy-peaked BL Lac PKS 0537-441, during a target of opportunity (ToO) observation performed on 2008 October 10-17, triggered by a Fermi-LAT alert, together with REM and Swift observations. Aims. The quasi-simultaneous near-infrared, optical, UV, X-ray, and gamma-ray coverage allowed us to investigate the behaviour of the source in different energy bands and study the spectral energy distribution and a theoretical model that can describe the gamma-ray state observed in mid-October. Methods. AGILE observed the source with its two co-aligned imagers: the Gamma-Ray Imaging Detector (GRID) and the hard X-ray imager (SuperAGILE), sensitive in the 30 MeV-30 GeV and 18-60 keV ranges, respectively. During the AGILE observation, the source was monitored simultaneously in the UV and X-ray bands by the Swift satellite through 6 ToO observations carried out between 2008 October 8 and 17. Moreover, the source was observed in the near-infrared and optical bands by the REM telescope on 2008 October 7, 8, and 9. Results. During 2008 October 10-17, AGILE-GRID detected gamma-ray emission from PKS 0537-441 at a significance level of 5.3-sigma with an average flux of (42 +/- 11) x 10(-8) photons cm(-2) s(-1) for energies higher than 100 MeV. A significant increase in the gamma-ray activity was detected between the first and the second halves of the observing period. REM and Swift/XRT detected the source in near-infrared/optical and X-rays during a relatively low and intermediate activity state, respectively, with no signs of evident variability in the different observations. However, Swift/UVOT detected an increase between the first and the second parts of the observing period, smaller than in the gamma-rays. Conclusions. The average gamma-ray flux of PKS 0537-441 detected by AGILE is close to the average flux observed for this source by the EGRET and Fermi-LAT instruments, with an increase of a factor 3 throughout the observation period up to a flux level slightly lower than the highest flux observed by Fermi-LAT during the first 11 months of operation. The spectral energy distribution of PKS 0537-441 in mid-October 2008 seems to require two synchrotron self-Compton components to be modelled, to account for both the near-infrared/optical bump and the X-ray data, together with the information on the gamma-ray flux level observed by AGILE. An alternative model based on the external Compton radiation, which requires an accretion disk with a relatively high luminosity, is also proposed. C1 [Pucella, G.; D'Ammando, F.; Vittorini, V.; Piano, G.; Donnarumma, I.; Tavani, M.; Pacciani, L.; Argan, A.; Cocco, V.; Costa, E.; Del Monte, E.; De Paris, G.; Evangelista, Y.; Feroci, M.; Lapshov, I.; Lazzarotto, F.; Sabatini, S.; Soffitta, P.; Trois, A.] INAF IASF Roma, I-00133 Rome, Italy. [D'Ammando, F.; Piano, G.; Tavani, M.; Froysland, T.; Picozza, P.; Striani, E.] Univ Roma Tor Vergata, Dip Fis, I-00133 Rome, Italy. [D'Ammando, F.; Romano, P.; Vercellone, S.] INAF IASF Palermo, I-90146 Palermo, Italy. [Treves, A.; Impiombato, D.; Pilia, M.; Vallazza, E.] Univ Insubria, Dip Fis, I-22100 Como, Italy. [Pian, E.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Pian, E.] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Impiombato, D.] Univ Perugia, Dip Fis, I-06126 Perugia, Italy. [Fugazza, D.] INAF Osservatorio Astronom Brera, I-23807 Merate, LC, Italy. [Verrecchia, F.; Perri, M.; Pittori, C.; Santolamazza, P.; Giommi, P.; Antonelli, L. A.] ASI ASDC, I-00044 Rome, Italy. [Krimm, H. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bulgarelli, A.; Di Cocco, G.; Fuschino, F.; Gianotti, F.; Labanti, C.; Marisaldi, M.; Morelli, E.; Trifoglio, M.] INAF IASF Bologna, I-40129 Bologna, Italy. [Chen, A. W.; Giuliani, A.; Caraveo, P.; Fiorini, M.; Mereghetti, S.; Perotti, F.; Zambra, A.] INAF IASF Milano, I-20133 Milan, Italy. [Longo, F.; Barbiellini, G.] INFN Trieste, I-34127 Trieste, Italy. [Longo, F.; Barbiellini, G.] Dip Fis, I-34127 Trieste, Italy. [Boffelli, F.; Cattaneo, P. W.; Rappoldi, A.] INFN Pavia, I-27100 Pavia, Italy. [Boffelli, F.; Prest, M.] Univ Pavia, Dip Fis Nucl & Teor, I-27100 Pavia, Italy. [Galli, M.] ENEA, I-40129 Bologna, Italy. [Lipari, P.; Zanello, D.] INFN Roma La Sapienza, I-00185 Rome, Italy. [Morselli, A.; Picozza, P.; Striani, E.] INFN Roma Tor Vergata, I-00133 Rome, Italy. [Pellizzoni, A.; Pilia, M.] INAF OA Cagliari, I-09012 Capoterra, Italy. [Rapisarda, M.] ENEA Frascati, I-00044 Rome, Italy. [Salotti, L.] ASI, I-00198 Rome, Italy. RP Pucella, G (reprint author), INAF IASF Roma, Via Fosso Cavaliere 100, I-00133 Rome, Italy. EM gianluca.pucella@iasf-roma.inaf.it RI Morselli, Aldo/G-6769-2011; Lazzarotto, Francesco/J-4670-2012; Trifoglio, Massimo/F-5302-2015; Pittori, Carlotta/C-7710-2016; OI galli, marcello/0000-0002-9135-3228; Morselli, Aldo/0000-0002-7704-9553; Trifoglio, Massimo/0000-0002-2505-3630; Pacciani, Luigi/0000-0001-6897-5996; Fiorini, Mauro/0000-0001-8297-1983; Pittori, Carlotta/0000-0001-6661-9779; Bulgarelli, Andrea/0000-0001-6347-0649; trois, alessio/0000-0002-3180-6002; Verrecchia, Francesco/0000-0003-3455-5082; Pellizzoni, Alberto Paolo/0000-0002-4590-0040; giommi, paolo/0000-0002-2265-5003; Labanti, Claudio/0000-0002-5086-3619; Feroci, Marco/0000-0002-7617-3421; Soffitta, Paolo/0000-0002-7781-4104; Picozza, Piergiorgio/0000-0002-7986-3321; Fuschino, Fabio/0000-0003-2139-3299; Caraveo, Patrizia/0000-0003-2478-8018; PREST, MICHELA/0000-0003-3161-4454; Gianotti, Fulvio/0000-0003-4666-119X; Lazzarotto, Francesco/0000-0003-4871-4072; Costa, Enrico/0000-0003-4925-8523; Donnarumma, Immacolata/0000-0002-4700-4549; Sabatini, Sabina/0000-0003-2076-5767 FU Italian Space Agency (ASI) [I/089/06/1, ASI-INAF I/088/06/0] FX We thank the referee, R. Hartman, for his very useful suggestions and comments. The AGILE Mission is funded by the Italian Space Agency (ASI) with scientific and programmatic participation by the Italian Institute of Astrophysics (INAF) and the Italian Institute of Nuclear Physics (INFN). We wish to express our gratitude to the Carlo Gavazzi Space, Thales Alenia Space, Telespazio and ASDC/Dataspazio Teams that implemented the necessary procedures to carry out the AGILE re-pointing. We thank the Swift Team for making these observations possible, particularly the duty scientists and science planners. We thank A. Beardmore for useful discussions. This investigation was carried out with partial support under ASI contract N. I/089/06/1. We acknowledge financial support by the Italian Space Agency through contract ASI-INAF I/088/06/0 for the Study of High-Energy Astrophysics. NR 44 TC 2 Z9 2 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2010 VL 522 AR A109 DI 10.1051/0004-6361/201014953 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HS UT WOS:000284153100115 ER PT J AU Sazhin, MV Vlasov, IY Sazhina, OS Turyshev, VG AF Sazhin, M. V. Vlasov, I. Yu Sazhina, O. S. Turyshev, V. G. TI RadioAstron: relativistic frequency change and time-scale shift SO ASTRONOMY REPORTS LA English DT Article ID CELESTIAL MECHANICS; REFERENCE SYSTEMS; MOTION; VICINITY; EARTH AB The plans to launch the RadioAstron space system in the near future and the realization the planned record resolution of 1 microarcsecond will require the precise determination of the satellite orbit. Suitable models for the satellite motion must be provided, including taking into account relativistic effects. We have obtained equations making it possible to construct time scales on board the satellite and at the observation point with accuracy up to 1 ps, as well as relativistic relations for measuring the distance to the satellite using one-way and two-way techniques and the Doppler effect, with a relative uncertainty of 10(-15), necessary for achieving the precision required for the RadioAstron mission. C1 [Sazhin, M. V.; Vlasov, I. Yu; Sazhina, O. S.; Turyshev, V. G.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow, Russia. [Turyshev, V. G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Sazhin, MV (reprint author), Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow, Russia. FU Russian Foundation for Basic Research [10-02-00961a]; Moscow State University; Russian Federation [MK-473.2010.2]; Ministry of Science and Education of the Russian Federation [02.740.11.5070] FX The authors thank Profs. V.E. Zharov and Yu.N. Ponomarev for numerous fruitful discussions of this work. This work was supported by the Russian Foundation for Basic Research (project 10-02-00961a), a Rector's Stipend of Moscow State University, a grant from the President of the Russian Federation for the State Support of Young Russian Candidates of Science (MK-473.2010.2), and the Ministry of Science and Education of the Russian Federation (grant 02.740.11.5070). NR 15 TC 4 Z9 4 U1 0 U2 1 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7729 J9 ASTRON REP+ JI Astron. Rep. PD NOV PY 2010 VL 54 IS 11 BP 959 EP 973 DI 10.1134/S1063772910110016 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679JG UT WOS:000284157100001 ER PT J AU Pietrobon, D Balbi, A Cabella, P Gorski, KM AF Pietrobon, Davide Balbi, Amedeo Cabella, Paolo Gorski, Krzysztof M. TI NeedATool: A NEEDLET ANALYSIS TOOL FOR COSMOLOGICAL DATA PROCESSING SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; methods: data analysis; methods: numerical; methods: statistical ID PRIMORDIAL NON-GAUSSIANITY; INFLATIONARY UNIVERSE; SPHERICAL WAVELETS; PARAMETER F(NL); MICROWAVE; WMAP; CONSTRAINTS; BISPECTRUM; CURVELETS; EXPANSION AB We introduce NeedATool (Needlet Analysis Tool), a software for data analysis based on needlets, a wavelet rendition which is powerful for the analysis of fields defined on a sphere. Needlets have been applied successfully to the treatment of astrophysical and cosmological observations, and in particular to the analysis of cosmic microwave background (CMB) data. Usually, such analyses are performed in real space as well as in its dual domain, the harmonic one. Both spaces have advantages and disadvantages: for example, in pixel space it is easier to deal with partial sky coverage and experimental noise; in the harmonic domain, beam treatment and comparison with theoretical predictions are more effective. During the last decade, however, wavelets have emerged as a useful tool for CMB data analysis, since they allow us to combine most of the advantages of the two spaces, one of the main reasons being their sharp localization. In this paper, we outline the analytical properties of needlets and discuss the main features of the numerical code, which should be a valuable addition to the CMB analyst's toolbox. C1 [Pietrobon, Davide; Gorski, Krzysztof M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Balbi, Amedeo; Cabella, Paolo] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Balbi, Amedeo] INFN Sez Roma Tor Vergata, I-00133 Rome, Italy. [Gorski, Krzysztof M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Pietrobon, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM davide.pietrobon@jpl.nasa.gov; amedeo.balbi@roma2.infn.it; paolo.cabella@roma2.infn.it; krzysztof.m.gorski@jpl.nasa.gov NR 66 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 1 EP 9 DI 10.1088/0004-637X/723/1/1 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100001 ER PT J AU Ryu, YH Han, C Hwang, KH Street, R Udalski, A Sumi, T Fukui, A Beaulieu, JP Gould, A Dominik, M Abe, F Bennett, DP Bond, IA Botzler, CS Furusawa, K Hayashi, F Hearnshaw, JB Hosaka, S Itow, Y Kamiya, K Kilmartin, PM Korpela, A Lin, W Ling, CH Makita, S Masuda, K Matsubara, Y Miyake, N Muraki, Y Nishimoto, K Ohnishi, K Perrott, YC Rattenbury, N Saito, T Skuljan, L Sullivan, DJ Suzuki, D Sweatman, WL Tristram, PJ Wada, K Yock, PCM Szymanski, MK Kubiak, M Pietrzynski, G Poleski, R Soszynski, I Szewczyk, O Wyrzykowski, L Ulaczyk, K Bos, M Christie, GW Depoy, DL Gal-Yam, A Gaudi, BS Kaspi, S Lee, CU Maoz, D McCormick, J Monard, B Moorhouse, D Pogge, RW Polishook, D Shvartzvald, Y Shporer, A Thornley, G Yee, JC Albrow, MD Batista, V Brillant, S Cassan, A Cole, A Corrales, E Coutures, C Dieters, S Fouque, P Greenhill, J Menzies, J Allan, A Bramich, DM Browne, P Horne, K Kains, N Snodgrass, C Steele, I Tsapras, Y Bozza, V Burgdorf, MJ Novati, SC Dreizler, S Finet, F Glitrup, M Grundahl, F Harpsoe, K Hessman, FV Hinse, TC Hundertmark, M Jorgensen, UG Liebig, C Maier, G Mancini, L Mathiasen, M Rahvar, S Ricci, D Scarpetta, G Skottfelt, J Surdej, J Southworth, J Wambsganss, J Zimmer, F AF Ryu, Y. -H. Han, C. Hwang, K. -H. Street, R. Udalski, A. Sumi, T. Fukui, A. Beaulieu, J. -P. Gould, A. Dominik, M. Abe, F. Bennett, D. P. Bond, I. A. Botzler, C. S. Furusawa, K. Hayashi, F. Hearnshaw, J. B. Hosaka, S. Itow, Y. Kamiya, K. Kilmartin, P. M. Korpela, A. Lin, W. Ling, C. H. Makita, S. Masuda, K. Matsubara, Y. Miyake, N. Muraki, Y. Nishimoto, K. Ohnishi, K. Perrott, Y. C. Rattenbury, N. Saito, To. Skuljan, L. Sullivan, D. J. Suzuki, D. Sweatman, W. L. Tristram, P. J. Wada, K. Yock, P. C. M. Szymanski, M. K. Kubiak, M. Pietrzynski, G. Poleski, R. Soszynski, I. Szewczyk, O. Wyrzykowski, L. Ulaczyk, K. Bos, M. Christie, G. W. Depoy, D. L. Gal-Yam, A. Gaudi, B. S. Kaspi, S. Lee, C. -U. Maoz, D. McCormick, J. Monard, B. Moorhouse, D. Pogge, R. W. Polishook, D. Shvartzvald, Y. Shporer, A. Thornley, G. Yee, J. C. Albrow, M. D. Batista, V. Brillant, S. Cassan, A. Cole, A. Corrales, E. Coutures, Ch. Dieters, S. Fouque, P. Greenhill, J. Menzies, J. Allan, A. Bramich, D. M. Browne, P. Horne, K. Kains, N. Snodgrass, C. Steele, I. Tsapras, Y. Bozza, V. Burgdorf, M. J. Novati, S. Calchi Dreizler, S. Finet, F. Glitrup, M. Grundahl, F. Harpsoe, K. Hessman, F. V. Hinse, T. C. Hundertmark, M. Jorgensen, U. G. Liebig, C. Maier, G. Mancini, L. Mathiasen, M. Rahvar, S. Ricci, D. Scarpetta, G. Skottfelt, J. Surdej, J. Southworth, J. Wambsganss, J. Zimmer, F. CA MOA Collaboration OGLE Collaboration FUN Collaboration PLANET Collaboration RoboNet Collaboration MiNDSTEp Collaboration TI OGLE-2009-BLG-092/MOA-2009-BLG-137: A DRAMATIC REPEATING EVENT WITH THE SECOND PERTURBATION PREDICTED BY REAL-TIME ANALYSIS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro ID MICROLENSING EVENTS; GRAVITATIONAL LENS; HIGH-MAGNIFICATION; MASS PLANET; SEARCH; STARS; PHOTOMETRY; ROTATION; SYSTEMS; COMMON AB We report the result of the analysis of a dramatic repeating gravitational microlensing event OGLE-2009-BLG-092/MOA-2009-BLG-137, for which the light curve is characterized by two distinct peaks with perturbations near both peaks. We find that the event is produced by the passage of the source trajectory over the central perturbation regions associated with the individual components of a wide-separation binary. The event is special in the sense that the second perturbation, occurring similar to 100 days after the first, was predicted by the real-time analysis conducted after the first peak, demonstrating that real-time modeling can be routinely done for binary and planetary events. With the data obtained from follow-up observations covering the second peak, we are able to uniquely determine the physical parameters of the lens system. We find that the event occurred on a bulge clump giant and it was produced by a binary lens composed of a K-and M-type main-sequence stars. The estimated masses of the binary components are M(1) = 0.69 +/- 0.11 M(circle dot) and M(2) = 0.36 +/- 0.06 M(circle dot), respectively, and they are separated in projection by r(perpendicular to) = 10.9 +/- 1.3 AU. The measured distance to the lens is D(L) = 5.6 +/- 0.7 kpc. We also detect the orbital motion of the lens system. C1 [Ryu, Y. -H.; Han, C.; Hwang, K. -H.] Chungbuk Natl Univ, Dept Phys, Inst Astrophys, Cheongju 371763, South Korea. [Street, R.; Tsapras, Y.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Poleski, R.; Soszynski, I.; Ulaczyk, K.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Sumi, T.; Fukui, A.; Abe, F.; Furusawa, K.; Hayashi, F.; Hosaka, S.; Itow, Y.; Kamiya, K.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Nishimoto, K.; Suzuki, D.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Beaulieu, J. -P.; Batista, V.; Cassan, A.; Corrales, E.; Coutures, Ch.; Dieters, S.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Gould, A.; Gaudi, B. S.; Pogge, R. W.; Yee, J. C.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Dominik, M.; Browne, P.; Horne, K.; Liebig, C.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Bennett, D. P.] Univ Notre Damey, Dept Phys, Notre Dame, IN 46556 USA. [Bond, I. A.; Lin, W.; Ling, C. H.; Skuljan, L.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, N Shore Mail Ctr, Auckland, New Zealand. [Botzler, C. S.; Perrott, Y. C.; Rattenbury, N.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland, New Zealand. [Hearnshaw, J. B.; Albrow, M. D.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Kilmartin, P. M.; Tristram, P. J.] Mt John Observ, Lake Tekapo 8770, New Zealand. [Korpela, A.; Sullivan, D. J.] Victoria Univ Wellington, Sch Chem & Phys Sci, Wellington, New Zealand. [Muraki, Y.; Wada, K.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To.] Tokyo Metropolitan Coll Ind Technol, Tokyo 1168523, Japan. [Pietrzynski, G.; Szewczyk, O.] Univ Concepcion, Dept Fis, Concepcion, Chile. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Bos, M.] Molehill Astron Observ, N Shore, New Zealand. [Christie, G. W.] Auckland Observ, Auckland, New Zealand. [Depoy, D. L.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Gal-Yam, A.; Tsapras, Y.] Univ London, Sch Math Sci, London E1 4NS, England. [Kaspi, S.; Maoz, D.; Polishook, D.; Shvartzvald, Y.; Shporer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lee, C. -U.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [McCormick, J.] Farm Cove Observ, Auckland, New Zealand. [Monard, B.] Bronberg Observ, Pretoria, South Africa. [Moorhouse, D.; Thornley, G.] Kumeu Observ, Kumeu, New Zealand. [Batista, V.] UPMC Univ Paris 06, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Brillant, S.; Snodgrass, C.] European So Observ, Santiago 19, Chile. [Cole, A.; Greenhill, J.] Univ Tasmania, Sch Math & Phys, Gpo Hobart, Tas 7001, Australia. [Dieters, S.; Fouque, P.] Univ Toulouse, CNRS, LATT, F-31400 Toulouse, France. [Menzies, J.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Allan, A.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Bramich, D. M.; Kains, N.] European So Observ, D-85748 Garching, Germany. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Steele, I.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84085 Fisciano, SA, Italy. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Ist Nazl Fis Nucl, Grp Collegato Salerno, Sezione Di Napoli, Italy. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] IIASS, I-84019 Vietri Sul Mare, SA, Italy. [Burgdorf, M. J.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Burgdorf, M. J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Dreizler, S.; Hessman, F. V.; Hundertmark, M.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Finet, F.; Ricci, D.; Surdej, J.] Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Glitrup, M.; Grundahl, F.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Harpsoe, K.; Hinse, T. C.; Jorgensen, U. G.; Mathiasen, M.; Skottfelt, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Hinse, T. C.; Wambsganss, J.; Zimmer, F.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Jorgensen, U. G.] Univ Copenhagen, Ctr Star & Planet Format, DK-1350 Copenhagen O, Denmark. [Liebig, C.; Maier, G.] Univ Heidelberg, Zentrum Astron, Astronom Rechen Inst, D-69120 Heidelberg, Germany. [Mancini, L.] Univ Sannio, Dipartimento Ingn, I-82100 Benevento, Italy. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Rahvar, S.] IPM Inst Studies Theoret Phys & Math, Sch Astron, Tehran, Iran. [Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. RP Han, C (reprint author), Chungbuk Natl Univ, Dept Phys, Inst Astrophys, Cheongju 371763, South Korea. RI Gaudi, Bernard/I-7732-2012; Greenhill, John/C-8367-2013; Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008; OI Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725; Cole, Andrew/0000-0003-0303-3855; Dominik, Martin/0000-0002-3202-0343; Ricci, Davide/0000-0002-9790-0552; Snodgrass, Colin/0000-0001-9328-2905 FU National Research Foundation of Korea [2009-0081561]; Korea Astronomy and Space Science Institute; NSF [AST-0757888]; NASA [NNG04GL51G]; Royal Society University; [JSPS20740104]; [JSPS19340058]; [JSPS20340052]; [JSPS18253002] FX We acknowledge the support of Creative Research Initiative Program (2009-0081561) of National Research Foundation of Korea (C.H.), Korea Astronomy and Space Science Institute (C.-U.L.), NSF AST-0757888 (A.G.), NASA NNG04GL51G (B.S.G., A.G., and R.W.P.), Royal Society University Research Fellow (M.D.), JSPS20740104 (T.S.), JSPS19340058 (Y.M.), and JSPS20340052 and JSPS18253002 (MOA). The MiND-STEp monitoring campaign is powered by ARTEMiS (Automated Terrestrial Exoplanet Microlensing Search; Dominik et al. 2008). Astronomical research at Armagh Observatory is funded by the Department of Culture, Arts and Leisure, Northern Ireland, UK (T.C.H.). NR 37 TC 11 Z9 11 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 81 EP 88 DI 10.1088/0004-637X/723/1/81 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100008 ER PT J AU Konstantopoulos, IS Gallagher, SC Fedotov, K Durrell, PR Heiderman, A Elmegreen, DM Charlton, JC Hibbard, JE Tzanavaris, P Chandar, R Johnson, KE Maybhate, A Zabludoff, AE Gronwall, C Szathmary, D Hornschemeier, AE English, J Whitmore, B de Oliveira, CM Mulchaey, JS AF Konstantopoulos, I. S. Gallagher, S. C. Fedotov, K. Durrell, P. R. Heiderman, A. Elmegreen, D. M. Charlton, J. C. Hibbard, J. E. Tzanavaris, P. Chandar, R. Johnson, K. E. Maybhate, A. Zabludoff, A. E. Gronwall, C. Szathmary, D. Hornschemeier, A. E. English, J. Whitmore, B. de Oliveira, C. Mendes Mulchaey, J. S. TI GALAXY EVOLUTION IN A COMPLEX ENVIRONMENT: A MULTI-WAVELENGTH STUDY OF HCG 7 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: groups: individual (HCG 7); galaxies: interactions; galaxies: star clusters: general; galaxies: star formation ID GLOBULAR-CLUSTER SYSTEMS; HUBBLE-SPACE-TELESCOPE; HICKSON COMPACT-GROUPS; YOUNG STAR-CLUSTERS; GEMINI SPECTROSCOPIC SURVEY; SPIRAL GALAXIES; FORMATION LAW; ELLIPTIC GALAXIES; ANTENNAE GALAXIES; NEARBY GALAXIES AB The environment where galaxies are found heavily influences their evolution. Close groupings, like the ones in the cores of galaxy clusters or compact groups, evolve in ways far more dramatic than their isolated counterparts. We have conducted a multi-wavelength study of Hickson Compact Group 7 (HCG 7), consisting of four giant galaxies: three spirals and one lenticular. We use Hubble Space Telescope (HST) imaging to identify and characterize the young and old star cluster populations. We find young massive clusters (YMCs) mostly in the three spirals, while the lenticular features a large, unimodal population of globular clusters (GCs) but no detectable clusters with ages less than a few Gyr. The spatial and approximate age distributions of the similar to 300 YMCs and similar to 150 GCs thus hint at a regular star formation history in the group over a Hubble time. While at first glance the HST data show the galaxies as undisturbed, our deep ground-based, wide-field imaging that extends the HST coverage reveals faint signatures of stellar material in the intragroup medium (IGM). We do not, however, detect the IGM in H I or Chandra X-ray observations, signatures that would be expected to arise from major mergers. Despite this fact, we find that the H I gas content of the individual galaxies and the group as a whole are a third of the expected abundance. The appearance of quiescence is challenged by spectroscopy that reveals an intense ionization continuum in one galaxy nucleus, and post-burst characteristics in another. Our spectroscopic survey of dwarf galaxy members yields a single dwarf elliptical galaxy in an apparent stellar tidal feature. Based on all this information, we suggest an evolutionary scenario for HCG 7, whereby the galaxies convert most of their available gas into stars without the influence of major mergers and ultimately result in a dry merger. As the conditions governing compact groups are reminiscent of galaxies at intermediate redshift, we propose that HCGs are appropriate for studying galaxy evolution at z similar to 1-2. C1 [Konstantopoulos, I. S.; Charlton, J. C.; Gronwall, C.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gallagher, S. C.; Fedotov, K.; Szathmary, D.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Durrell, P. R.] Youngstown State Univ, Dept Phys & Astron, Youngstown, OH 44555 USA. [Heiderman, A.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Elmegreen, D. M.] Vassar Coll, Dept Phys & Astron, Poughkeepsie, NY 12604 USA. [Hibbard, J. E.; Johnson, K. E.] Natl Radio Astron Observ, Charlottesville, VA USA. [Tzanavaris, P.; Hornschemeier, A. E.] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Tzanavaris, P.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Chandar, R.] Univ Toledo, Toledo, OH 43606 USA. [Johnson, K. E.] Univ Virginia, Charlottesville, VA USA. [Maybhate, A.; Whitmore, B.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Zabludoff, A. E.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [English, J.] Univ Manitoba, Winnipeg, MB, Canada. [de Oliveira, C. Mendes] Univ Sao Paulo, BR-05508900 Sao Paulo, Brazil. [Mulchaey, J. S.] Carnegie Observ, Pasadena, CA 91101 USA. RP Konstantopoulos, IS (reprint author), Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. EM iraklis@psu.edu RI Mendes de Oliveira, Claudia/F-2391-2012; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; OI Mendes de Oliveira, Claudia/0000-0002-7736-4297; Konstantopoulos, Iraklis/0000-0003-2177-0146 FU NASA [SAO SV4-74018]; Space Telescope Science Institute under NASA [NAS 5-26555]; National Science and Engineering Council of Canada; HST [HST-GO-10787.07-A]; National Science Foundation [0908984, 0548103]; David and Lucile Packard Foundation FX We thank the anonymous referee for the valuable and positive input, which led to an improved manuscript. I.S.K. thanks Amanda Kepley for help with the interpretation of the radio data. We also thank Rodrigo Carrasco for useful discussions regarding the use of the Hydra iraf package. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through grant number HST-GO-10787.15-A from the Space Telescope Science Institute which is operated by AURA, Inc., under NASA contract NAS 5-26555, and the National Science and Engineering Council of Canada (S.C.G. & K.F.). We acknowledge the financial support of NASA grant SAO SV4-74018 (PI: G. P. Garmire) which supports the Chandra ACIS team. P.R.D. acknowledges support from HST grant HST-GO-10787.07-A. Funding was provided by the National Science Foundation under award 0908984. K.E.J. gratefully acknowledges support for this work provided by NSF through CAREER award 0548103 and the David and Lucile Packard Foundation through a Packard Fellowship. NR 119 TC 22 Z9 22 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 197 EP 217 DI 10.1088/0004-637X/723/1/197 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100017 ER PT J AU Siana, B Teplitz, HI Ferguson, HC Brown, TM Giavalisco, M Dickinson, M Chary, RR de Mello, DF Conselice, CJ Bridge, CR Gardner, JP Colbert, JW Scarlata, C AF Siana, Brian Teplitz, Harry I. Ferguson, Henry C. Brown, Thomas M. Giavalisco, Mauro Dickinson, Mark Chary, Ranga-Ram de Mello, Duilia F. Conselice, Christopher J. Bridge, Carrie R. Gardner, Jonathan P. Colbert, James W. Scarlata, Claudia TI A DEEP HUBBLE SPACE TELESCOPE SEARCH FOR ESCAPING LYMAN CONTINUUM FLUX AT z similar to 1.3: EVIDENCE FOR AN EVOLVING IONIZING EMISSIVITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE intergalactic medium; galaxies: high-redshift; galaxies: starburst; ultraviolet: galaxies ID QUASAR LUMINOSITY FUNCTION; STAR-FORMING GALAXIES; STARBURST GALAXIES; FAR-ULTRAVIOLET; Z-SIMILAR-TO-6 QUASARS; BACKGROUND-RADIATION; FORMATION HISTORY; ALPHA FOREST; H-ALPHA; EVOLUTION AB We have obtained deep Hubble Space Telescope far-UV images of 15 starburst galaxies at z similar to 1.3 in the GOODS fields to search for escaping Lyman continuum (LyC) photons. These are the deepest far-UV images (m(AB) = 28.7, 3 sigma, 1" diameter) over this large an area (4.83 arcmin(2)) and provide some of the best escape fraction constraints for any galaxies at any redshift. We do not detect any individual galaxies, with 3s limits to the LyC (similar to 700 angstrom) flux 50-149 times fainter (in f(nu)) than the rest-frame UV (1500 angstrom) continuum fluxes. Correcting for the mean intergalactic medium (IGM) attenuation (factor similar to 2), as well as an intrinsic stellar Lyman break (factor similar to 3), these limits translate to relative escape fraction limits of f(esc,rel) < [0.03, 0.21]. The stacked limit is f(esc,rel)(3 sigma) < 0.02. We use a Monte Carlo simulation to properly account for the expected distribution of line-of-sight IGM opacities. When including constraints from previous surveys at z similar to 1.3 we find that, at the 95% confidence level, no more than 8% of star-forming galaxies at z similar to 1.3 can have relative escape fractions greater than 0.50. Alternatively, if the majority of galaxies have low, but non-zero, escaping LyC, the escape fraction cannot be more than 0.04. In light of some evidence for strong LyC emission from UV-faint regions of Lyman break galaxies (LBGs) at z similar to 3, we also stack sub-regions of our galaxies with different surface brightnesses and detect no significant LyC flux at the f(esc,rel) < 0.03 level. Both the stacked limits and the limits from the Monte Carlo simulation suggest that the average ionizing emissivity (relative to non-ionizing UV emissivity) at z similar to 1.3 is significantly lower than has been observed in LBGs at z similar to 3. If the ionizing emissivity of star-forming galaxies is in fact increasing with redshift, it would help to explain the high photoionization rates seen in the IGM at z > 4 and reionization of the IGM at z > 6. C1 [Siana, Brian; Teplitz, Harry I.; Chary, Ranga-Ram; Colbert, James W.; Scarlata, Claudia] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Ferguson, Henry C.; Brown, Thomas M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Giavalisco, Mauro] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Dickinson, Mark] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [de Mello, Duilia F.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Conselice, Christopher J.] Univ Nottingham, Nottingham NG7 2RD, England. [Gardner, Jonathan P.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Observat Cosmol Lab, Greenbelt, MD 20771 USA. RP Siana, B (reprint author), CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RI Conselice, Christopher/B-4348-2013; OI Brown, Thomas/0000-0002-1793-9968 FU NASA [NAS 5-26555] FX Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 10872. NR 61 TC 91 Z9 91 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 241 EP 250 DI 10.1088/0004-637X/723/1/241 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100020 ER PT J AU Landi, E Klimchuk, JA AF Landi, E. Klimchuk, J. A. TI ON THE ISOTHERMALITY OF SOLAR PLASMAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; stars: coronae; Sun: corona; Sun: UV radiation; Sun: X-rays, gamma rays; techniques: spectroscopic ID ACTIVE-REGION LOOPS; IMAGING SPECTROMETER OBSERVATIONS; EMISSION-LINES; ATOMIC DATABASE; CORONAL LOOPS; TEMPERATURE-MEASUREMENTS; THERMAL STRUCTURE; QUIET-SUN; TRACE; CHIANTI AB Recent measurements have shown that the quiet unstructured solar corona observed at the solar limb is close to isothermal, at a temperature that does not appear to change over wide areas or with time. Some individual active region loop structures have also been found to be nearly isothermal both along their axis and across their cross section. Even a complex active region observed at the solar limb has been found to be composed of three distinct isothermal plasmas. If confirmed, these results would pose formidable challenges to the current theoretical understanding of the thermal structure and heating of the solar corona. For example, no current theoretical model can explain the excess densities and lifetimes of many observed loops if the loops are in fact isothermal. All of these measurements are based on the so-called emission measure (EM) diagnostic technique that is applied to a set of optically thin lines under the assumption of isothermal plasma. It provides simultaneous measurement of both the temperature and EM. In this work, we develop a new method to quantify the uncertainties in the technique and to rigorously assess its ability to discriminate between isothermal and multithermal plasmas. We define a formal measure of the uncertainty in the EM diagnostic technique that can easily be applied to real data. We here apply it to synthetic data based on a variety of assumed plasma thermal distributions and develop a method to quantitatively assess the degree of multithermality of a plasma. C1 [Landi, E.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Landi, E.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Klimchuk, J. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Landi, E (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RI Landi, Enrico/H-4493-2011; Klimchuk, James/D-1041-2012 OI Klimchuk, James/0000-0003-2255-0305 FU NASA; ONR FX The work of E.L. is supported by several NASA grants. The work of J.A.K. was supported by the NASA Living With a Star Program and by ONR. The idea for this study was born at a meeting of the International Space Science Institute (ISSI) working group on The Role of Spectroscopic and Imaging Data in Understanding Coronal Heating led by Dr. Susanna Parenti. NR 28 TC 16 Z9 16 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 320 EP 328 DI 10.1088/0004-637X/723/1/320 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100026 ER PT J AU Katsuda, S Petre, R Mori, K Reynolds, SP Long, KS Winkler, PF Tsunemi, H AF Katsuda, Satoru Petre, Robert Mori, Koji Reynolds, Stephen P. Long, Knox S. Winkler, P. Frank Tsunemi, Hiroshi TI STEADY X-RAY SYNCHROTRON EMISSION IN THE NORTHEASTERN LIMB OF SN 1006 SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; ISM: individual objects (SN 1006); ISM: supernova remnants; shock waves; X-rays: ISM ID MAGNETIC-FIELD AMPLIFICATION; SUPERNOVA REMNANT SN-1006; SHOCK ACCELERATION; INTERSTELLAR-MEDIUM; HIGH-ENERGY; FILAMENTS; CHANDRA; SPECTROSCOPY; ABSORPTION; CASSIOPEIA AB We investigate time variations and detailed spatial structures of X-ray synchrotron emission in the northeastern limb of SN 1006, using two Chandra observations taken in 2000 and 2008. We extract spectra from a number of small (similar to 10 '') regions. After taking account of proper motion and isolating the synchrotron from the thermal emission, we study time variations in the synchrotron emission in the small regions. We find that there are no regions showing strong flux variations. Our analysis shows an apparent flux decline in the overall synchrotron flux of similar to 4% at high energies, but we suspect that this is mostly a calibration effect, and that flux is actually constant to similar to 1%. This is much less than the variation found in other remnants where it was used to infer magnetic-field strengths up to 1 mG. We attribute the lack of variability to the smoothness of the synchrotron morphology, in contrast to the small-scale knots found to be variable in other remnants. The smoothness is to be expected for a Type Ia remnant encountering uniform material. Finally, we find a spatial correlation between the flux and the cutoff frequency in synchrotron emission. The simplest interpretation is that the cutoff frequency depends on the magnetic-field strength. This would require that the maximum energy of accelerated electrons is not limited by synchrotron losses, but by some other effect. Alternatively, the rate of particle injection and acceleration may vary due to some effect not yet accounted for, such as a dependence on shock obliquity. C1 [Katsuda, Satoru; Petre, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mori, Koji] Miyazaki Univ, Fac Engn, Dept Appl Phys, Miyazaki 8892192, Japan. [Reynolds, Stephen P.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Long, Knox S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Winkler, P. Frank] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA. [Tsunemi, Hiroshi] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Osaka 5600043, Japan. RP Katsuda, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Satoru.Katsuda@nasa.gov; Robert.Petre-1@nasa.gov; mori@astro.miyazaki-u.ac.jp; reynolds@ncsu.edu; long@stsci.edu; winkler@middlebury.edu; tsunemi@ess.sci.osaka-u.ac.jp FU JSPS for Research Abroad; NASA [NNG06EO90A]; NSF [AST 0908566] FX We acknowledge helpful scientific discussions with Una Hwang. We are grateful to Paul Plucinsky and Alexey Vikhlinin for discussion of the Chandra ACIS calibration. S.K. is supported by a JSPS Research Fellowship for Research Abroad, and in part by the NASA grant under the contract NNG06EO90A. P.F.W. acknowledges the support of the NSF through grant AST 0908566. NR 37 TC 21 Z9 21 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 383 EP 392 DI 10.1088/0004-637X/723/1/383 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100031 ER PT J AU Millan-Gabet, R Monnier, JD Touhami, Y Gies, D Hesselbach, E Pedretti, E Thureau, N Zhao, M ten Brummelaar, T AF Millan-Gabet, R. Monnier, J. D. Touhami, Y. Gies, D. Hesselbach, E. Pedretti, E. Thureau, N. Zhao, M. ten Brummelaar, T. CA CHARA Grp TI SPECTRO-INTERFEROMETRY OF THE Be STAR delta Sco: NEAR-INFRARED CONTINUUM AND GAS EMISSION REGION SIZES IN 2007 SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: emission-line, Be; stars: individual (delta Sco); techniques: high angular resolution ID CIRCUMSTELLAR DISK; SCORPII; SURFACE; STELLAR; BINARY AB We present near-infrared H- and K-band spectro-interferometric observations of the gaseous disk around the primary Be star in the delta Sco binary system, obtained in 2007 (between periastron passages in 2000 and 2011). Observations using the CHARA/MIRC instrument at H band resolve an elongated disk with a Gaussian FWHM 1.18 x 0.91 mas. Using the Keck Interferometer (KI), the source of the K-band continuum emission is only marginally spatially resolved, and consequently we estimate a relatively uncertain K-band continuum disk FWHM of 0.7 +/- 0.3 mas. Line emission on the other hand, He I lambda 2.0583 mu m and Br gamma lambda 2.1657 mu m, is clearly detected, with similar to 10% lower visibilities than those of the continuum. When taking into account the continuum/line flux ratio this translates into much larger sizes for the line emission regions: 2.2 +/- 0.4 mas and 1.9 +/- 0.3 mas for He I and Br gamma, respectively. Our KI data also reveal a relatively flat spectral differential phase response, ruling out significant off-center emission. We expect that these new measurements will help constrain dynamical models being actively developed in order to explain the disk formation process in the delta Sco system and Be stars in general. C1 [Millan-Gabet, R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Monnier, J. D.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Touhami, Y.; Gies, D.; ten Brummelaar, T.; CHARA Grp] Georgia State Univ, Ctr High Angular Resolut Astron, Atlanta, GA 30302 USA. [Touhami, Y.; Gies, D.] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30302 USA. [Hesselbach, E.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Pedretti, E.; Thureau, N.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Zhao, M.] Jet Prop Lab, Pasadena, CA 91101 USA. RP Millan-Gabet, R (reprint author), CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. EM R.Millan-Gabet@caltech.edu FU National Aeronautics and Space Administration; W.M. Keck Foundation; National Science Foundation through NSF [AST-0307562, AST-0606958]; Georgia State University; NSF [AST-0352723, AST-0707927] FX The Keck Interferometer is funded by the National Aeronautics and Space Administration as part of its Navigator program. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. The CHARA Array is funded by the National Science Foundation through NSF grants AST-0307562 and AST-0606958 and by the Georgia State University. J.D.M. acknowledges support from NSF grants AST-0352723 and AST-0707927. NR 28 TC 11 Z9 11 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 544 EP 549 DI 10.1088/0004-637X/723/1/544 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100046 ER PT J AU Reames, DV Lal, N AF Reames, Donald V. Lal, Nand TI A MULTI-SPACECRAFT VIEW OF SOLAR-ENERGETIC-PARTICLE ONSETS IN THE 1977 NOVEMBER 22 EVENT SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; shock waves; Sun: coronal mass ejections (CMEs); Sun: particle emission; Sun: radio radiation ID CORONAL MASS EJECTIONS; KEV ELECTRONS; HIGH-ENERGIES; ACCELERATION; SHOCK; HELIOSPHERE; TOPOLOGY; FLARES; WIND; SUN AB We examine the onset timing of solar energetic particles in the large ground-level event (GLE) of 1977 November 22 as observed from six spacecraft at four distinct solar longitudes. In most cases, it was possible to use velocity dispersion of the energetic protons to fix the solar particle release (SPR) time and the path length traveled by the initial particle burst from each solar longitude. We find that the SPR times do depend upon solar longitude, being earliest for spacecraft that are magnetically well connected to the source region, and later for longitudes on the flanks of the outward-driven shock wave. The earliest SPR time occurs well after peak photon emission from the associated Ha flare. These observations are consistent with conclusions derived from single-longitude observations of different GLE events. They are consistent with shock acceleration over a broad spatial region with heights rising, and/or shock speeds falling, for longitudes on the flanks of the shock. C1 [Reames, Donald V.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [Lal, Nand] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Reames, DV (reprint author), Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. EM dvreames@umd.edu FU NASA [NNX08AQ02G] FX We thank Bryant Heikkila for his assistance in obtaining data from IMP and Voyager spacecraft. We thank Daniel Berdichevsky for a helpful discussion of Helios shock data and are especially grateful to Ed Cliver for helpful suggestions regarding the radio observations. We also thank Frank McDonald, Chee Ng, and Allan Tylka for helpful discussions and for their comments on this paper. This work was funded in part by NASA grant NNX08AQ02G. NR 29 TC 8 Z9 8 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 550 EP 554 DI 10.1088/0004-637X/723/1/550 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100047 ER PT J AU Balasubramaniam, KS Cliver, EW Pevtsov, A Temmer, M Henry, TW Hudson, HS Imada, S Ling, AG Moore, RL Muhr, N Neidig, DF Petrie, GJD Veronig, AM Vrsnak, B White, SM AF Balasubramaniam, K. S. Cliver, E. W. Pevtsov, A. Temmer, M. Henry, T. W. Hudson, H. S. Imada, S. Ling, A. G. Moore, R. L. Muhr, N. Neidig, D. F. Petrie, G. J. D. Veronig, A. M. Vrsnak, B. White, S. M. TI ON THE ORIGIN OF THE SOLAR MORETON WAVE OF 2006 DECEMBER 6 SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: coronal mass ejections (CMEs); Sun: flares ID CORONAL MASS EJECTION; WIND SPACECRAFT DATA; EXTREME-ULTRAVIOLET WAVE; ENERGETIC PROTON EVENTS; GOPALSWAMY,N. ET-AL; X-RAY OBSERVATIONS; LARGE-SCALE WAVES; II RADIO-BURSTS; EIT WAVES; INTERPLANETARY SHOCKS AB We analyzed ground- and space-based observations of the eruptive flare (3B/X6.5) and associated Moreton wave (similar to 850 km s(-1); similar to 270 degrees azimuthal span) of 2006 December 6 to determine the wave driver-either flare pressure pulse (blast) or coronal mass ejection (CME). Kinematic analysis favors a CME driver of the wave, despite key gaps in coronal data. The CME scenario has a less constrained/smoother velocity versus time profile than is the case for the flare hypothesis and requires an acceleration rate more in accord with observations. The CME picture is based, in part, on the assumption that a strong and impulsive magnetic field change observed by a GONG magnetograph during the rapid rise phase of the flare corresponds to the main acceleration phase of the CME. The Moreton wave evolution tracks the inferred eruption of an extended coronal arcade, overlying a region of weak magnetic field to the west of the principal flare in NOAA active region 10930. Observations of H alpha foot point brightenings, disturbance contours in off-band H alpha images, and He I 10830 angstrom flare ribbons trace the eruption from 18:42 to 18:44 UT as it progressed southwest along the arcade. Hinode EIS observations show strong blueshifts at foot points of this arcade during the post-eruption phase, indicating mass outflow. At 18:45 UT, the Moreton wave exhibited two separate arcs (one off each flank of the tip of the arcade) that merged and coalesced by 18:47 UT to form a single smooth wave front, having its maximum amplitude in the southwest direction. We suggest that the erupting arcade (i.e., CME) expanded laterally to drive a coronal shock responsible for the Moreton wave. We attribute a darkening in H alpha from a region underlying the arcade to absorption by faint unresolved post-eruption loops. C1 [Balasubramaniam, K. S.] USAF, Res Lab, Space Vehicles Directorate, Sunspot, NM 88349 USA. [Cliver, E. W.] USAF, Res Lab, Space Vehicles Directorate, Hanscom AFB, MA 01731 USA. [Pevtsov, A.; Henry, T. W.; Neidig, D. F.] Natl Solar Observ, Sunspot, NM 88349 USA. [Temmer, M.; Muhr, N.; Veronig, A. M.] Graz Univ, Inst Phys, IGAM Kanzelhohe Observ, A-8010 Graz, Austria. [Hudson, H. S.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Imada, S.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ling, A. G.] Atmospher Environm Res Inc, Lexington, MA 02421 USA. [Moore, R. L.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Petrie, G. J. D.] Natl Solar Observ, Tucson, AZ 85719 USA. [Vrsnak, B.] Univ Zagreb, Fac Geodesy, Hvar Observ, HR-10000 Zagreb, Croatia. [White, S. M.] USAF, Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA. RP Balasubramaniam, KS (reprint author), USAF, Res Lab, Space Vehicles Directorate, Sunspot, NM 88349 USA. RI Veronig, Astrid/B-8422-2009; OI Balasubramaniam, Krishnan/0000-0003-2221-0933; Temmer, Manuela/0000-0003-4867-7558 FU AFOSR [2301RDA1]; Austrian Academy of Sciences at the Institute of Physics, University of Graz [APART11262]; Austrian Science Fund (FWF) [P20867-N16]; AFRL [FA8718-05-C-0036]; European Community [FP7/2007-2013, 218816]; National Science Foundation FX K.S.B., E.W.C., A.P., T.W.H., H.S.H., R.L.M., and B.V. acknowledge support from AFOSR Task 2301RDA1. M.T. is a recipient of an APART-fellowship of the Austrian Academy of Sciences at the Institute of Physics, University of Graz (APART11262). N.M. and A.M.V. acknowledge the Austrian Science Fund (FWF): [P20867-N16]. A.G.L. acknowledges support from AFRL contract FA8718-05-C-0036. B.V. acknowledges funding from European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 218816. The National Solar Observatory (NSO) is operated by the Association of Universities for Research in Astronomy under cooperative agreement with the National Science Foundation. SOHO is a project of international cooperation between ESA and NASA. This work utilizes data obtained by the GONG program, managed by NSO. The data were acquired by instruments operated by Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofisica de Canarias, and Cerro Tololo Inter-American Observatory. This research has made use of NASA's Astrophysics Data System Bibliographic Services. We thank the SOHO, LASCO, and TRACE, and Waves teams for their open data policy. NR 135 TC 27 Z9 27 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 587 EP 601 DI 10.1088/0004-637X/723/1/587 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100051 ER PT J AU Bennett, CJ Jones, B Knox, E Perry, J Kim, YS Kaiser, RI AF Bennett, C. J. Jones, B. Knox, E. Perry, J. Kim, Y. S. Kaiser, R. I. TI MECHANISTICAL STUDIES ON THE FORMATION AND NATURE OF THE "XCN" (OCN-) SPECIES IN INTERSTELLAR ICES SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; comets: general; cosmic rays; infrared: ISM; ISM: molecules; methods: laboratory; molecular processes ID CHARGE-TRANSFER COMPLEXES; SOLAR-SYSTEM; EXTRATERRESTRIAL ICES; ISOTOPIC-SUBSTITUTION; MICRON ABSORPTION; CARBON-MONOXIDE; SOLID AMMONIA; BAND; ANALOGS; HYDROGEN AB We conducted laboratory experiments on the interaction of ionizing radiation in the form of energetic electrons with interstellar model ices to investigate the nature and possible routes to form the "XCN" species as observed at 4.62 mu m (2164 cm(-1)) in the interstellar medium. Our laboratory experiments provided compelling evidence that the isocyanide ion (OCN-) presents the carrier of the "XCN" feature in interstellar ices. Most importantly, the studies exposed-based on kinetic fits of the temporal profiles of important reactants, intermediates, and products-that two formation mechanisms can lead to the production of the isocyanide ion (OCN-) in low-temperature interstellar ices. In carbon monoxide-ammonia ices, unimolecular decomposition of ammonia leads to reactive NH2 and NH radical species, which in turn can react with neighboring carbon monoxide to form ultimately the isocyanide ion (OCN-); this process also involves a fast proton transfer to a base molecule in the surrounding ice. Second, cyanide ions (CN-)-formed via unimolecular decomposition of methylamine (CH3NH2) via a methanimine (CH2NH) intermediate-can react with suprathermal oxygen atoms forming the isocyanide ion (OCN-). We also discuss that the isocyanide ion (OCN-) can be used as a molecular tracer to determine, for instance, the development stage of young stellar objects and also the chemical history of ices processed by ionizing radiation. C1 [Bennett, C. J.; Jones, B.; Knox, E.; Perry, J.; Kim, Y. S.; Kaiser, R. I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. [Bennett, C. J.; Jones, B.; Kaiser, R. I.] Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA. RP Kaiser, RI (reprint author), Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. EM ralfk@hawaii.edu OI Bennett, Christopher/0000-0002-4181-6976 FU National Aeronautics and Space Administration (NASA Astrobiology Institute through the Office of Space Science) [NNA09DA77A] FX This material was based upon work supported by the National Aeronautics and Space Administration (NASA Astrobiology Institute under Cooperative Agreement No. NNA09DA77A issued through the Office of Space Science). NR 39 TC 11 Z9 11 U1 3 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 641 EP 648 DI 10.1088/0004-637X/723/1/641 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100056 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Chaty, S Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J Dermer, CD de Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Favuzzi, C Fegan, SJ Ferrara, EC Frailis, M Fukazawa, Y Fusco, P Gargano, F Gehrels, N Germani, S Giglietto, N Giordano, F Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hadasch, D Hanabata, Y Harding, AK Hayashida, M Hays, E Hill, AB Horan, D Hughes, RE Itoh, R Jackson, MS Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Livingstone, M Garde, ML Longo, F Loparco, F Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McEnery, JE Mehault, J Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Rodriguez, AY Romani, RW Roth, M Sadrozinski, HFW Sander, A Parkinson, PMS Scargle, JD Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Tibolla, O Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Vitale, V Waite, AP Wallace, E Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe Chaty, S. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Dermer, C. D. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Frailis, M. Fukazawa, Y. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Hill, A. B. Horan, D. Hughes, R. E. Itoh, R. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Livingstone, M. Garde, M. Llena Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McEnery, J. E. Mehault, J. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Rodriguez, A. Y. Romani, R. W. Roth, M. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wallace, E. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE OBSERVATION OF A GAMMA-RAY SOURCE AT THE POSITION OF ETA CARINAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; stars: individual (Eta Carinae); supergiants ID PROPORTIONAL COUNTER ARRAY; SOURCE LIST; EMISSION; CATALOG; PULSARS; CALIBRATION; BINARIES; SEARCHES; STARS; LAT AB The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope detected a gamma-ray source that is spatially consistent with the location of Eta Carinae. This source has been persistently bright since the beginning of the LAT survey observations (from 2008 August to 2009 July, the time interval considered here). The gamma-ray signal is detected significantly throughout the LAT energy band (i.e., up to similar to 100 GeV). The 0.1-100 GeV energy spectrum is well represented by a combination of a cutoff power-law model (<10 GeV) and a hard power-law component (>10 GeV). The total flux (>100 MeV) is 3.7(-0.1)(+0.3) x 10(-7) photons s(-1) cm(-2), with additional systematic uncertainties of 10%, and consistent with the average flux measured by AGILE. The light curve obtained by Fermi is consistent with steady emission. Our observations do not confirm the presence of a gamma-ray flare in 2008 October, as reported by Tavani et al., although we cannot exclude that a flare lasting only a few hours escaped detection by the Fermi LAT. We also do not find any evidence for gamma-ray variability that correlates with the large X-ray variability of Eta Carinae observed during 2008 December and 2009 January. We are thus not able to establish an unambiguous identification of the LAT source with Eta Carinae. C1 [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Chaty, S.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CNRS, CEA Saclay,CEA,IRFU,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brandt, T. J.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] NASA, CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Garde, M. Llena; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Garde, M. Llena; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Reposeur, T.; Smith, D. A.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, UMR 5797, IN2P3, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Hanabata, Y.; Itoh, R.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hill, A. B.] Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble LAOG, F-38041 Grenoble 09, France. [Jackson, M. S.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Livingstone, M.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. RP Abdo, AA (reprint author), Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. EM Jurgen.Knodlseder@cesr.fr; hirotaka@hep01.hepl.hiroshima-u.ac.jp RI Johnson, Neil/G-3309-2014; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012 OI Hill, Adam/0000-0003-3470-4834; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Chaty, Sylvain/0000-0002-5769-8601; Pesce-Rollins, Melissa/0000-0003-1790-8018; Berenji, Bijan/0000-0002-4551-772X; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; FU European Community [ERC-StG-200911]; International Doctorate on Astroparticle Physics (IDAPP) FX Funded by contract ERC-StG-200911 from the European Community.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program. NR 29 TC 27 Z9 27 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 649 EP 657 DI 10.1088/0004-637X/723/1/649 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100057 ER PT J AU Tripathi, D Mason, HE Klimchuk, JA AF Tripathi, Durgesh Mason, Helen E. Klimchuk, James A. TI EVIDENCE OF IMPULSIVE HEATING IN ACTIVE REGION CORE LOOPS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: atmosphere; Sun: corona; Sun: transition region; Sun: UV radiation ID EUV IMAGING SPECTROMETER; AN ATOMIC DATABASE; TRANSITION-REGION; EMISSION-LINES; CORONAL LOOPS; SOLAR CORONA; ULTRAVIOLET SPECTRUM; ELEMENTAL ABUNDANCES; HINODE EIS; QUIET-SUN AB Using a full spectral scan of an active region from the Extreme-Ultraviolet Imaging Spectrometer (EIS) we have obtained emission measure EM(T) distributions in two different moss regions within the same active region. We have compared these with theoretical transition region EMs derived for three limiting cases, namely, static equilibrium, strong condensation, and strong evaporation from Klimchuk et al. The EM distributions in both the moss regions are strikingly similar and show a monotonically increasing trend from log T [K] = 5.15-6.3. Using photospheric abundances, we obtain a consistent EM distribution for all ions. Comparing the observed and theoretical EM distributions, we find that the observed EM distribution is best explained by the strong condensation case (EM(con)), suggesting that a downward enthalpy flux plays an important and possibly dominant role in powering the transition region moss emission. The downflows could be due to unresolved coronal plasma that is cooling and draining after having been impulsively heated. This supports the idea that the hot loops (with temperatures of 3-5 MK) seen in the core of active regions are heated by nanoflares. C1 [Tripathi, Durgesh; Mason, Helen E.] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England. [Klimchuk, James A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Tripathi, D (reprint author), Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England. EM d.tripathi@damtp.cam.ac.uk RI Klimchuk, James/D-1041-2012; Tripathi, Durgesh/D-9390-2012 OI Klimchuk, James/0000-0003-2255-0305; Tripathi, Durgesh/0000-0003-1689-6254 FU STFC; NASA FX We thank an anonymous referee for carefully reading the manuscript and comments. D.T. and H.E.M. acknowledge support from STFC. The work of J.A.K was supported by the NASA Living With a Star Program. We acknowledge the loops workshops as an opportunity to stimulate discussions and collaborate on this project. We thank the CHIANTI consortium. We thank Dr Giulio Del Zanna for various discussions and Dr Peter Young for providing his fitting IDL routines in Solarsoft. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, and NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (UK), NASA, ESA, and NSC (Norway). NR 52 TC 25 Z9 25 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 713 EP 718 DI 10.1088/0004-637X/723/1/713 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100061 ER PT J AU Bowler, BP Liu, MC Dupuy, TJ Cushing, MC AF Bowler, Brendan P. Liu, Michael C. Dupuy, Trent J. Cushing, Michael C. TI NEAR-INFRARED SPECTROSCOPY OF THE EXTRASOLAR PLANET HR 8799 b SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; stars: individual (HR 8799); techniques: image processing ID INTEGRAL FIELD SPECTROGRAPH; DWARF MODEL ATMOSPHERES; FREQUENCY RATIO METHOD; GAMMA-DORADUS STARS; YOUNG SOLAR ANALOG; DUSTY DEBRIS DISKS; DIGITAL SKY SURVEY; T-DWARFS; GIANT PLANETS; BROWN DWARFS AB We present 2.12-2.23 mu m high contrast integral field spectroscopy of the extrasolar planet HR 8799 b. Our observations were obtained with OSIRIS on the Keck II telescope and sample the 2.2 mu m CH4 feature, which is useful for spectral classification and as a temperature diagnostic for ultracool objects. The spectrum of HR 8799 b is relatively featureless, with little or no methane absorption, and does not exhibit the strong CH4 seen in T dwarfs of similar absolute magnitudes. The spectrum is consistent with field objects from early-L to T4 (3 sigma confidence level), with a best-fitting type of T2. A similar analysis of the published 1-4 mu m photometry shows the infrared spectral energy distribution (SED) matches L5-L8 field dwarfs, especially the reddest known objects which are believed to be young and/or very dusty. Overall, we find that HR 8799 b has a spectral type consistent with L5-T2, although its SED is atypical compared to most field objects. We fit the 2.2 mu m spectrum and the infrared SED using the Hubeny & Burrows, Burrows et al., and Ames-Dusty model atmosphere grids, which incorporate non-equilibrium chemistry, non-solar metallicities, and clear and cloudy variants. No models agree with all of the data, but those with intermediate clouds produce significantly better fits. The largest discrepancy occurs in the J band, which is highly suppressed in HR 8799 b. Models with high eddy diffusion coefficients and high metallicities are somewhat preferred over those with equilibrium chemistry and solar metallicity. The best-fitting effective temperatures range from 1300 to 1700 K with radii between similar to 0.3 and 0.5 R-Jup. These values are inconsistent with evolutionary model-derived values of 800-900 K and 1.1-1.3 R-Jup based on the luminosity of HR 8799 b and the age of HR 8799, a discrepancy that probably results from imperfect atmospheric models or the limited range of physical parameters covered by the models. The low temperature inferred from evolutionary models indicates that HR 8799 b is similar to 400 K cooler than field L/T transition objects, providing further evidence that the L/T transition is gravity-dependent. With an unusually dusty photosphere, an exceptionally low luminosity for its spectral type, and hints of extreme secondary physical parameters, HR 8799 b appears to be unlike any class of field brown dwarf currently known. C1 [Bowler, Brendan P.; Liu, Michael C.; Dupuy, Trent J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Cushing, Michael C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bowler, BP (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM bpbowler@ifa.hawaii.edu FU NSF [AST-0507833, AST09-09222]; W. M. Keck Foundation FX The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.; We thank the referee for his thorough analysis and helpful comments, as well as Beth Biller, Adam Kraus, Didier Saumon, Mark Marley, and Adam Burgasser for helpful discussions and suggestions. We are grateful to Adam Burrows, Ivan Hubeny, and David Sudarsky for the distributing their atmospheric models to the public. Additionally, we thank James Larkin, Shelly Wright, and the OSIRIS team for creating and maintaining the OSIRIS data reduction pipeline. It is a pleasure to acknowledge Al Conrad, Jim Lyke, Jason McIlroy, and the Keck Observatory staff for assistance with our observations. Katelyn Allers, Jenny Patience, Mickael Bonnefoy, and David Lafreniere kindly provided us with their published spectra of young L-type objects. Our research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. B.P.B., M.C.L., and T.J.D. acknowledge support from NSF grants AST-0507833 and AST09-09222. This research has benefitted from the SpeX Prism Spectral Libraries, maintained by Adam Burgasser at http://www.browndwarfs.org/spexprism. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 135 TC 110 Z9 110 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 850 EP 868 DI 10.1088/0004-637X/723/1/850 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100074 ER PT J AU Vogt, SS Butler, RP Rivera, EJ Haghighipour, N Henry, GW Williamson, MH AF Vogt, Steven S. Butler, R. Paul Rivera, E. J. Haghighipour, N. Henry, Gregory W. Williamson, Michael H. TI THE LICK-CARNEGIE EXOPLANET SURVEY: A 3.1 M-circle plus PLANET IN THE HABITABLE ZONE OF THE NEARBY M3V STAR GLIESE 581 SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; planetary systems; stars: individual (GJ 581, HIP 74995) ID SHORT-PERIOD PLANETS; EXTRA-SOLAR PLANETS; LOW-MASS STARS; M DWARFS; HARPS SEARCH; SUPER-EARTHS; MODEL; METALLICITIES; VARIABILITY; SYSTEM AB We present 11 years of HIRES precision radial velocities (RVs) of the nearby M3V star Gliese 581, combining our data set of 122 precision RVs with an existing published 4.3-year set of 119 HARPS precision RVs. The velocity set now indicates six companions in Keplerian motion around this star. Differential photometry indicates a likely stellar rotation period of similar to 94 days and reveals no significant periodic variability at any of the Keplerian periods, supporting planetary orbital motion as the cause of all the RV variations. The combined data set strongly confirms the 5.37-day, 12.9-day, 3.15-day, and 67-day planets previously announced by Bonfils et al., Udry et al., and Mayor et al.. The observations also indicate a fifth planet in the system, GJ 581f, a minimum-mass 7.0M(circle plus) planet orbiting in a 0.758 AU orbit of period 433 days, and a sixth planet, GJ 581g, a minimum-mass 3.1M(circle plus) planet orbiting at 0.146 AU with a period of 36.6 days. The estimated equilibrium temperature of GJ 581g is 228 K, placing it squarely in the middle of the habitable zone of the star and offering a very compelling case for a potentially habitable planet around a very nearby star. That a system harboring a potentially habitable planet has been found this nearby, and this soon in the relatively early history of precision RV surveys, indicates that eta(circle plus), the fraction of stars with potentially habitable planets, is likely to be substantial. This detection, coupled with statistics of the incompleteness of present-day precision RV surveys for volume-limited samples of stars in the immediate solar neighborhood, suggests that.. could well be on the order of a few tens of percent. If the local stellar neighborhood is a representative sample of the galaxy as a whole, our Milky Way could be teeming with potentially habitable planets. C1 [Vogt, Steven S.; Rivera, E. J.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Butler, R. Paul] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Haghighipour, N.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Haghighipour, N.] Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA. [Henry, Gregory W.; Williamson, Michael H.] Tennessee State Univ, Ctr Excellence Informat Syst, Nashville, TN 37209 USA. RP Vogt, SS (reprint author), Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. RI Butler, Robert/B-1125-2009 FU NSF [AST-0307493]; NASA [NNX07AR40G, NNX09AN05G]; Carnegie Institution of Washington; NASA Astrobiology Institute at the Institute for Astronomy, University of Hawaii [NNA04CC08A]; Tennessee State University; State of Tennessee FX S.S.V. gratefully acknowledges support from NSF grant AST-0307493. R.P.B. gratefully acknowledges support from NASA OSS Grant NNX07AR40G, the NASA Keck PI program, and from the Carnegie Institution of Washington. N.H. acknowledges support from the NASA Astrobiology Institute under cooperative agreement NNA04CC08A at the Institute for Astronomy, University of Hawaii, and NASA EXOB grant NNX09AN05G. G.W.H. and M.H.W. acknowledge support by NASA, NSF, Tennessee State University, and the State of Tennessee through its Centers of Excellence program. The work herein is based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology, and we thank the UC-Keck and NASA-Keck Time Assignment Committees for their support. This research has made use of the Keck Observatory Archive, which is operated by the W. M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration. We also acknowledge the contributions of fellow members of our previous California-Carnegie Exoplanet team in helping to obtain some of the earlier RVs presented in this paper. We also wish to extend our special thanks to those of Hawaiian ancestry on whose sacred mountain of Mauna Kea we are privileged to be guests. Without their generous hospitality, the Keck observations presented herein would not have been possible. Finally, S.S.V. would like to extend a very special thanks to his wife Zarmina Dastagir for her patience, encouragement, and wise counsel. And even though, if confirmed, the habitable planet presented herein will officially be referred to by the name GJ 581g, it shall always be known to S.S.V. as "Zarmina's World." NR 42 TC 116 Z9 118 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 954 EP 965 DI 10.1088/0004-637X/723/1/954 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100079 ER PT J AU Kasliwal, MM Kulkarni, SR Gal-Yam, A Yaron, O Quimby, RM Ofek, EO Nugent, P Poznanski, D Jacobsen, J Sternberg, A Arcavi, I Howell, DA Sullivan, M Rich, DJ Burke, PF Brimacombe, J Milisavljevic, D Fesen, R Bildsten, L Shen, K Cenko, SB Bloom, JS Hsiao, E Law, NM Gehrels, N Immler, S Dekany, R Rahmer, G Hale, D Smith, R Zolkower, J Velur, V Walters, R Henning, J Bui, K McKenna, D AF Kasliwal, Mansi M. Kulkarni, S. R. Gal-Yam, Avishay Yaron, Ofer Quimby, Robert M. Ofek, Eran O. Nugent, Peter Poznanski, Dovi Jacobsen, Janet Sternberg, Assaf Arcavi, Iair Howell, D. Andrew Sullivan, Mark Rich, Douglas J. Burke, Paul F. Brimacombe, Joseph Milisavljevic, Dan Fesen, Robert Bildsten, Lars Shen, Ken Cenko, S. Bradley Bloom, Joshua S. Hsiao, Eric Law, Nicholas M. Gehrels, Neil Immler, Stefan Dekany, Richard Rahmer, Gustavo Hale, David Smith, Roger Zolkower, Jeff Velur, Viswa Walters, Richard Henning, John Bui, Kahnh McKenna, Dan TI RAPIDLY DECAYING SUPERNOVA 2010X: A CANDIDATE ".Ia" EXPLOSION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE supernovae: general; supernovae: individual (SN2010X, SN2002bj); surveys; white dwarfs ID LIGHT CURVES; FAINT TYPE; SN 2008HA; PHOTOMETRY; ORIGIN AB We present the discovery, photometric, and spectroscopic follow-up observations of SN 2010X ( PTF 10bhp). This supernova decays exponentially with tau(d) = 5 days and rivals the current recordholder in speed, SN 2002bj. SN 2010X peaks at M(r) = -17 mag and has mean velocities of 10,000 km s(-1). Our light curve modeling suggests a radioactivity-powered event and an ejecta mass of 0.16 M(circle dot). If powered by Nickel, we show that the Nickel mass must be very small (approximate to 0.02 M(circle dot)) and that the supernova quickly becomes optically thin to gamma-rays. Our spectral modeling suggests that SN 2010X and SN 2002bj have similar chemical compositions and that one of aluminum or helium is present. If aluminum is present, we speculate that this may be an accretion-induced collapse of an O-Ne-Mg white dwarf. If helium is present, all observables of SN 2010X are consistent with being a thermonuclear helium shell detonation on a white dwarf, a ".Ia" explosion. With the 1 day dynamic-cadence experiment on the Palomar Transient Factory, we expect to annually discover a few such events. C1 [Kasliwal, Mansi M.; Kulkarni, S. R.; Quimby, Robert M.; Ofek, Eran O.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Gal-Yam, Avishay; Yaron, Ofer; Sternberg, Assaf; Arcavi, Iair] Weizmann Inst Sci, Fac Phys, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Nugent, Peter; Poznanski, Dovi; Jacobsen, Janet] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Poznanski, Dovi; Shen, Ken; Cenko, S. Bradley; Bloom, Joshua S.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Howell, D. Andrew] Global Telescope Network Inc, Las Cumbres Observ, Santa Barbara, CA 93117 USA. [Howell, D. Andrew; Bildsten, Lars] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Sullivan, Mark] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Rich, Douglas J.] Rich Observ, Hampden, ME USA. [Burke, Paul F.] Burke Observ, Pittsfield, ME USA. [Brimacombe, Joseph] New Mexico Skies Observ, Mayhill, NM USA. [Brimacombe, Joseph] James Cook Univ, Cairns, Australia. [Milisavljevic, Dan; Fesen, Robert] Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA. [Bildsten, Lars] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Law, Nicholas M.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Gehrels, Neil; Immler, Stefan] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dekany, Richard; Rahmer, Gustavo; Hale, David; Smith, Roger; Zolkower, Jeff; Velur, Viswa; Walters, Richard; Henning, John; Bui, Kahnh; McKenna, Dan] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. RP Kasliwal, MM (reprint author), CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. RI Gehrels, Neil/D-2971-2012; OI Sullivan, Mark/0000-0001-9053-4820 FU Gordon and Betty Moore Foundation; Israel Science Foundation; US-Israel Binational Science Foundation; Einstein Fellowship; Gary and Cynthia Bengier Fund; Richard and Rhoda Goldman Fund; US DoE [DE-AC02-05CH11231, DE-FG02-06ER06-04] FX M.M.K. thanks the Gordon and Betty Moore Foundation for a Hale Fellowship in support of graduate study. M.M.K. thanks the Pumarth Headquarters in Indore, India for their warm hospitality while writing this manuscript.; The Weizmann Institute PTF participation is supported by grants to A.G.Y. from the Israel Science Foundation and the US-Israel Binational Science Foundation. E.O.O. and D.P. are supported by an Einstein Fellowship. S.B.C. is grateful for support from Gary and Cynthia Bengier and the Richard and Rhoda Goldman Fund. Computational resources and data storage were contributed by NERSC, supported by US DoE contract DE-AC02-05CH11231. P.E.N. acknowledges support from the US DoE contract DE-FG02-06ER06-04. NR 34 TC 57 Z9 57 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2010 VL 723 IS 1 BP L98 EP L102 DI 10.1088/2041-8205/723/1/L98 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LJ UT WOS:000284075200020 ER PT J AU Kauffmann, J Pillai, T AF Kauffmann, Jens Pillai, Thushara TI HOW MANY INFRARED DARK CLOUDS CAN FORM MASSIVE STARS AND CLUSTERS? SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE ISM: clouds; methods: data analysis; stars: formation ID GALACTIC DISTRIBUTION; MOLECULAR CLOUDS; DUST CONTINUUM; SIZE RELATION; COLD CORES; PERSEUS; DENSITY AB We present a new assessment of the ability of Infrared Dark Clouds (IRDCs) to form massive stars and clusters. This is done by comparison with an empirical mass-size threshold for massive star formation (MSF). We establish m(r) > 870M(circle dot) (r/pc)(1.33) as a novel approximate MSF limit, based on clouds with and without MSF. Many IRDCs, if not most, fall short of this threshold. Without significant evolution, such clouds are unlikely MSF candidates. This provides a first quantitative assessment of the small number of IRDCs evolving toward MSF. IRDCs below this limit might still form stars and clusters of up to intermediate mass, though (like, e.g., the Ophiuchus and Perseus Molecular Clouds). Nevertheless, a major fraction of the mass contained in IRDCs might reside in few 10(2) clouds sustaining MSF. C1 [Kauffmann, Jens] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Pillai, Thushara] Caltech Astron Dept, Pasadena, CA 91125 USA. RP Kauffmann, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jens.kauffmann@jpl.nasa.gov FU NASA at the Jet Propulsion Laboratory; NASA FX We are indebted to a careful referee, who helped to significantly improve the text. This research was supported by an appointment of J.K. to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. It was excuted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 32 TC 78 Z9 78 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2010 VL 723 IS 1 BP L7 EP L12 DI 10.1088/2041-8205/723/1/L7 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LJ UT WOS:000284075200002 ER PT J AU Liu, R Lee, J Wang, TJ Stenborg, G Liu, C Wang, HM AF Liu, Rui Lee, Jeongwoo Wang, Tongjiang Stenborg, Guillermo Liu, Chang Wang, Haimin TI A RECONNECTING CURRENT SHEET IMAGED IN A SOLAR FLARE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: corona; Sun: coronal mass ejections (CMEs); Sun: flares ID CORONAL MASS EJECTIONS; MAGNETIC RECONNECTION; PLASMA; THICKNESS; ERUPTIONS; RADIO; MODEL AB Magnetic reconnection changes the magnetic field topology and powers explosive events in astrophysical, space, and laboratory plasmas. For flares and coronal mass ejections (CMEs) in the solar atmosphere, the standard model predicts the presence of a reconnecting current sheet, which has been the subject of considerable theoretical and numerical modeling over the last 50 years, yet direct, unambiguous observational verification has been absent. In this Letter, we show a bright sheet structure of global length (>0.25 R(circle dot)) and macroscopic width ((5-10) x 10(3) km) distinctly above the cusp-shaped flaring loop, imaged during the flare rising phase in EUV. The sheet formed due to the stretch of a transequatorial loop system and was accompanied by various reconnection signatures. This unique event provides a comprehensive view of the reconnection geometry and dynamics in the solar corona. C1 [Liu, Rui; Liu, Chang; Wang, Haimin] New Jersey Inst Technol, Ctr Solar Terr Res, Space Weather Res Lab, Newark, NJ 07102 USA. [Lee, Jeongwoo] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Wang, Tongjiang] Catholic Univ Amer, Greenbelt, MD 20771 USA. [Wang, Tongjiang] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stenborg, Guillermo] Interferometrics Inc, Herndon, VA 20171 USA. RP Liu, R (reprint author), New Jersey Inst Technol, Ctr Solar Terr Res, Space Weather Res Lab, Newark, NJ 07102 USA. EM rui.liu@njit.edu RI Liu, Rui/B-4107-2012; OI Liu, Rui/0000-0003-4618-4979; Liu, Chang/0000-0002-6178-7471 FU NASA [NNX08-AJ23G, NNX08-AQ90G, NNX08AP88G, NNX09AG10G]; NSF [ATM-0849453, AST-0908344] FX SOHO is a project of international cooperation between ESA and NASA. R.L., C.L., and H.W. were supported by NASA grant NNX08-AJ23G and NNX08-AQ90G, and by NSF grant ATM-0849453. J.L. was supported by NSF grant AST-0908344. T.W. was supported by NASA grant NNX08AP88G and NNX09AG10G. NR 39 TC 47 Z9 48 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2010 VL 723 IS 1 BP L28 EP L33 DI 10.1088/2041-8205/723/1/L28 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LJ UT WOS:000284075200006 ER PT J AU Marley, MS Saumon, D Goldblatt, C AF Marley, Mark S. Saumon, Didier Goldblatt, Colin TI A PATCHY CLOUD MODEL FOR THE L TO T DWARF TRANSITION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE brown dwarfs; stars: atmospheres ID ULTRACOOL DWARFS; THERMAL STRUCTURE; SURFACE GRAVITY; VARIABILITY; POLARIZATION; TEMPERATURE; ATMOSPHERES; PARALLAXES; PHOTOMETRY; DISCOVERY AB One mechanism suggested for the L to T dwarf spectral type transition is the appearance of relatively cloud-free regions across the disk of brown dwarfs as they cool. The existence of partly cloudy regions has been supported by evidence for variability in dwarfs in the late L to early T spectral range, but no self-consistent atmosphere models of such partly cloudy objects have yet been constructed. Here, we present a new approach for consistently modeling partly cloudy brown dwarfs and giant planets. We find that even a small fraction of cloud holes dramatically alter the atmospheric thermal profile, spectra, and photometric colors of a given object. With decreasing cloudiness objects briskly become bluer in J - K and brighten in J band, as is observed at the L/T transition. Model spectra of partly cloudy objects are similar to our models with globally homogenous, but thinner, clouds. Hence, spectra alone may not be sufficient to distinguish partial cloudiness although variability and polarization measurements are potential observational signatures. Finally, we note that partial cloud cover may be an alternative explanation for the blue L dwarfs. C1 [Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Saumon, Didier] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Goldblatt, Colin] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Goldblatt, Colin] Univ Washington, NASA, Astrobiol Inst, Virtual Planetary Lab, Seattle, WA 98195 USA. RP Marley, MS (reprint author), NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 94035 USA. EM Mark.S.Marley@NASA.gov; dsaumon@lanl.gov; cgoldbla@uw.edu RI Marley, Mark/I-4704-2013; OI Marley, Mark/0000-0002-5251-2943 FU NASA; Spitzer Space Telescope Theoretical Research Program; Astrobiology Institute's Virtual Planetary Laboratory FX We thank M. C. Cushing for performing partly cloudy fits. NASA provided support for this work via the Planetary Atmospheres Program (M.S.M. and C.G.), the Spitzer Space Telescope Theoretical Research Program (D.S.), and Astrobiology Institute's Virtual Planetary Laboratory Lead Team (C.G.). NR 38 TC 73 Z9 73 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2010 VL 723 IS 1 BP L117 EP L121 DI 10.1088/2041-8205/723/1/L117 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LJ UT WOS:000284075200024 ER PT J AU Mewaldt, RA Davis, AJ Lave, KA Leske, RA Stone, EC Wiedenbeck, ME Binns, WR Christian, ER Cummings, AC de Nolfo, GA Israel, MH Labrador, AW von Rosenvinge, TT AF Mewaldt, R. A. Davis, A. J. Lave, K. A. Leske, R. A. Stone, E. C. Wiedenbeck, M. E. Binns, W. R. Christian, E. R. Cummings, A. C. de Nolfo, G. A. Israel, M. H. Labrador, A. W. von Rosenvinge, T. T. TI RECORD-SETTING COSMIC-RAY INTENSITIES IN 2009 AND 2010 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmic rays; solar wind; Sun: activity; Sun: heliosphere ID ADVANCED COMPOSITION EXPLORER; SOLAR-CYCLE 23; MAGNETIC-FIELD; MODULATION; HELIOSPHERE; MINIMUM; SPECTRA; HELIUM; SPECTROMETER; DEPENDENCE AB We report measurements of record-setting intensities of cosmic-ray nuclei from C to Fe, made with the Cosmic Ray Isotope Spectrometer carried on the Advanced Composition Explorer in orbit about the inner Sun-Earth Lagrangian point. In the energy interval from similar to 70 to similar to 450 MeV nucleon(-1), near the peak in the near-Earth cosmic-ray spectrum, the measured intensities of major species from C to Fe were each 20%-26% greater in late 2009 than in the 1997-1998 minimum and previous solar minima of the space age (1957-1997). The elevated intensities reported here and also at neutron monitor energies were undoubtedly due to several unusual aspects of the solar cycle 23/24 minimum, including record-low interplanetary magnetic field (IMF) intensities, an extended period of reduced IMF turbulence, reduced solar-wind dynamic pressure, and extremely low solar activity during an extended solar minimum. The estimated parallel diffusion coefficient for cosmic-ray transport based on measured solar-wind properties was 44% greater in 2009 than in the 1997-1998 solar-minimum period. In addition, the weaker IMF should result in higher cosmic-ray drift velocities. Cosmic-ray intensity variations at 1 AU are found to lag IMF variations by 2-3 solar rotations, indicating that significant solar modulation occurs inside similar to 20 AU, consistent with earlier galactic cosmic-ray radial-gradient measurements. In 2010, the intensities suddenly decreased to 1997 levels following increases in solar activity and in the inclination of the heliospheric current sheet. We describe the conditions that gave cosmic rays greater access to the inner solar system and discuss some of their implications. C1 [Mewaldt, R. A.; Davis, A. J.; Leske, R. A.; Stone, E. C.; Cummings, A. C.; Labrador, A. W.] CALTECH, Pasadena, CA 91125 USA. [Lave, K. A.; Binns, W. R.; Israel, M. H.] Washington Univ, St Louis, MO 63130 USA. [Wiedenbeck, M. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Christian, E. R.; de Nolfo, G. A.; von Rosenvinge, T. T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Mewaldt, RA (reprint author), CALTECH, Pasadena, CA 91125 USA. RI Christian, Eric/D-4974-2012; de Nolfo, Georgia/E-1500-2012 OI Christian, Eric/0000-0003-2134-3937; FU NASA at Caltech [NNX08AI11G, NNX10AE45G]; Jet Propulsion Laboratory; Goddard Space Flight Center; Washington University in St. Louis; University of New Hampshire (under NSF) [ATM-0339257] FX This work was supported by NASA at Caltech (under grants NNX08AI11G and NNX10AE45G), the Jet Propulsion Laboratory, the Goddard Space Flight Center, and Washington University in St. Louis. We thank Wilcox Solar Observatory for making HCS data available, Robert McGuire for providing IMP-8/GME data, and NASA's OmniWeb for providing solar wind data. We also appreciate the availability of neutron monitor data from the University of New Hampshire (under NSF grant ATM-0339257), sunspot data from the Royal Observatory of Belgium, and CME data from the SOHO/LASCO CME Catalog. Finally, we thank the MAG, SWEPAM, and SWICS teams for providing data through the ACE Science Center. NR 47 TC 87 Z9 87 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2010 VL 723 IS 1 BP L1 EP L6 DI 10.1088/2041-8205/723/1/L1 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LJ UT WOS:000284075200001 ER PT J AU Moore, MH Ferrante, RF Moore, WJ Hudson, R AF Moore, Marla H. Ferrante, Robert F. Moore, W. James Hudson, Reggie TI INFRARED SPECTRA AND OPTICAL CONSTANTS OF NITRILE ICES RELEVANT TO TITAN'S ATMOSPHERE SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; infrared: planetary systems; methods: laboratory; planets and satellites: individual (Titan); techniques: spectroscopic ID DIFFERENT TEMPERATURES; REFRACTIVE-INDEXES; CO2; STRATOSPHERE; INTENSITIES; HC3N; DENSITIES; REGION; C2N2; C4N2 AB Spectra and optical constants of nitrile ices known or suspected to be in Titan's atmosphere are presented from 2.0 to 333.3 mu m (similar to 5000-30 cm(-1)). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied are: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C2H5CN, propionitrile; and HC3N, cyanoacetylene. For each of these molecules, we also report new cryogenic measurements of the real refractive index, n, determined in both the amorphous and crystalline phases at 670 nm. These new values have been incorporated into our optical constant calculations. Spectra were measured and optical constants were calculated for each nitrile at a variety of temperatures, including, but not limited to, 20, 35, 50, 75, 95, and 110 K, in both the amorphous phase and the crystalline phase. This laboratory effort used a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference was used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, were determined using Kramers-Kronig analysis. Our calculation reproduces the complete spectrum, including all interference effects. C1 [Moore, Marla H.; Moore, W. James] NASA, USRA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ferrante, Robert F.] USN Acad, Dept Chem, Annapolis, MD 21402 USA. RP Moore, MH (reprint author), NASA, USRA, Goddard Space Flight Ctr, Code 691, Greenbelt, MD 20771 USA. EM Marla.h.moore@nasa.gov RI Hudson, Reggie/E-2335-2012 FU NASA; Goddard Center for Astrobiology FX The authors acknowledge support through NASA's Cassini Data Analysis and Planetary Atmospheres programs, and The Goddard Center for Astrobiology. We thank Mark Loeffler for measuring the index of refraction of nitrile ices at 670 nm. We acknowledge the initial driving force for new spectroscopy measurements by Raj Khanna (deceased), data sharing by Neil Dello Russo, and ongoing guidance for Titan relevance from Bob Samuelson and Carrie Anderson. We also thank an anonymous referee for helpful comments that led to the improvement of this manuscript. NR 40 TC 25 Z9 25 U1 2 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2010 VL 191 IS 1 BP 96 EP 112 DI 10.1088/0067-0049/191/1/96 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 688EU UT WOS:000284833400006 ER PT J AU Silverman, JD Mainieri, V Salvato, M Hasinger, G Bergeron, J Capak, P Szokoly, G Finoguenov, A Gilli, R Rosati, P Tozzi, P Vignali, C Alexander, DM Brandt, WN Lehmer, BD Luo, B Rafferty, D Xue, YQ Balestra, I Bauer, FE Brusa, M Comastri, A Kartaltepe, J Koekemoer, AM Miyaji, T Schneider, DP Treister, E Wisotski, L Schramm, M AF Silverman, J. D. Mainieri, V. Salvato, M. Hasinger, G. Bergeron, J. Capak, P. Szokoly, G. Finoguenov, A. Gilli, R. Rosati, P. Tozzi, P. Vignali, C. Alexander, D. M. Brandt, W. N. Lehmer, B. D. Luo, B. Rafferty, D. Xue, Y. Q. Balestra, I. Bauer, F. E. Brusa, M. Comastri, A. Kartaltepe, J. Koekemoer, A. M. Miyaji, T. Schneider, D. P. Treister, E. Wisotski, L. Schramm, M. TI THE EXTENDED CHANDRA DEEP FIELD-SOUTH SURVEY: OPTICAL SPECTROSCOPY OF FAINT X-RAY SOURCES WITH THE VLT AND KECK SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE galaxies: active; galaxies: Seyfert; quasars: general; surveys; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; SUPERMASSIVE BLACK-HOLES; XMM-NEWTON OBSERVATIONS; LARGE-SCALE STRUCTURES; STAR-FORMING GALAXIES; POINT-SOURCE CATALOGS; MS SOURCE CATALOGS; ESO IMAGING SURVEY; APPROXIMATE-TO 2; COSMOS FIELD AB We present the results of a program to acquire high-quality optical spectra of X-ray sources detected in the Extended-Chandra Deep Field-South (E-CDF-S) and its central 2 Ms area. New spectroscopic redshifts, up to z = 4, are measured for 283 counterparts to Chandra sources with deep exposures (t similar to 2-9 hr per pointing) using multi-slit facilities on both VLT (VIMOS) and Keck (DEIMOS), thus bringing the total number of spectroscopically identified X-ray sources to over 500 in this survey field. Since our new spectroscopic identifications are mainly associated with X-ray sources in the shallower 250 ks coverage, we provide a comprehensive catalog of X-ray sources detected in the E-CDF-S including the optical and near-infrared counterparts, determined by a likelihood routine, and redshifts (both spectroscopic and photometric), that incorporate published spectroscopic catalogs, thus resulting in a final sample with a high fraction (80%) of X-ray sources having secure identifications. We demonstrate the remarkable coverage of the luminosity-redshift plane now accessible from our data while emphasizing the detection of active galactic nuclei (AGNs) that contribute to the faint end of the luminosity function (L0.5-8 keV similar to 10(43)-10(44) erg s(-1)) at 1.5 less than or similar to z less than or similar to 3 including those with and without broad emission lines. Our redshift catalog includes 17 type-2 QSOs at 1 less than or similar to z less than or similar to 3.5 that significantly increases such samples (2x). Based on our deepest (9 hr) VLT/VIMOS observation, we identify "elusive" optically faint galaxies (R-mag similar to 25) at z similar to 2-3 based upon the detection of interstellar absorption lines (e. g., O II+Si IV, C II], C IV); we highlight one such case, an absorption-line galaxy at z = 3.208 having no obvious signs of an AGN in its optical spectrum. In addition, we determine accurate distances to eight galaxy groups with extended X-ray emission detected both by Chandra and XMM-Newton. Finally, we measure the physical extent of known large-scale structures (z similar to 0.7) evident in the CDF-S. While a thick sheet (a radial size of 67.7 Mpc) at z similar to 0.67 extends over the full field, the z similar to 0.73 structure is thin (18.8 Mpc) and filamentary as traced by both AGNs and galaxy groups. In the Appendix, we provide spectroscopic redshifts for 49 counterparts to fainter X-ray sources detected only in the 1 and 2 Ms catalogs, and 48 Very Large Array radio sources not detected in X-rays. C1 [Silverman, J. D.] Univ Tokyo, IPMU, Kashiwa, Chiba 2778568, Japan. [Silverman, J. D.; Finoguenov, A.; Balestra, I.; Brusa, M.] Max Planck Inst Extraterr Phys, D-84571 Garching, Germany. [Silverman, J. D.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Mainieri, V.; Rosati, P.] European So Observ, D-85748 Garching, Germany. [Salvato, M.; Hasinger, G.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Bergeron, J.] Inst Astrophys Paris, F-75014 Paris, France. [Capak, P.] CALTECH, Pasadena, CA 91125 USA. [Szokoly, G.] Eotvos Lorand Univ, Inst Phys, H-1117 Budapest, Hungary. [Gilli, R.; Comastri, A.] Osservatorio Astron Bologna, Inst Nazl Astrofis INAF, I-40127 Bologna, Italy. [Tozzi, P.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Vignali, C.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Alexander, D. M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Brandt, W. N.; Luo, B.; Rafferty, D.; Xue, Y. Q.; Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Lehmer, B. D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Lehmer, B. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA. [Bauer, F. E.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Kartaltepe, J.; Treister, E.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Koekemoer, A. M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Wisotski, L.] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Schramm, M.] Kyoto Univ, Dept Astron, Kyoto 6068502, Japan. RP Silverman, JD (reprint author), Univ Tokyo, IPMU, Kashiwanoha 5-1-5, Kashiwa, Chiba 2778568, Japan. RI Vignali, Cristian/J-4974-2012; Brandt, William/N-2844-2015; Comastri, Andrea/O-9543-2015; Gilli, Roberto/P-1110-2015; OI Koekemoer, Anton/0000-0002-6610-2048; Brusa, Marcella/0000-0002-5059-6848; Vignali, Cristian/0000-0002-8853-9611; Brandt, William/0000-0002-0167-2453; Comastri, Andrea/0000-0003-3451-9970; Gilli, Roberto/0000-0001-8121-6177; Balestra, Italo/0000-0001-9660-894X; Alexander, David/0000-0002-5896-6313 FU W.M. Keck Foundation; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; NSF [AST-0071048]; Chandra X-ray Center [SP8-9003A]; NASA ADP [NNX10AC99G]; NKTH; Royal Society; Leverhulme Trust; Deutsche Forschungsgemeinschaft, DFG [HA 1850/28-1]; ASI-INAF [I/023/05/00, I/088/06, I/088/06/0] FX "Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation."; J.D.S. is supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. The authors recognize support from Michael Cooper for the use of the DEEP2 pipeline that was developed at UC Berkeley with support from NSF grant AST-0071048. W.N.B., B. L., and Y.X. acknowledge support from the Chandra X-ray Center grant SP8-9003A and NASA ADP grant NNX10AC99G. G. S. acknowledges support of the Polanyi Fellowship of NKTH. D. A. is funded by the Royal Society and Leverhulme Trust. M. S. and G. H. acknowledge support by the Leibniz Prize of the Deutsche Forschungsgemeinschaft, DFG (HA 1850/28-1). A. C. is supported through ASI-INAF grants I/023/05/00 and I/088/06. P. T. acknowledges financial contribution from contract ASIINAF I/088/06/0. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 136 TC 82 Z9 82 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2010 VL 191 IS 1 BP 124 EP 142 DI 10.1088/0067-0049/191/1/124 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 688EU UT WOS:000284833400008 ER PT J AU Hammer, D Kleijn, GV Hoyos, C den Brok, M Balcells, M Ferguson, HC Goudfrooij, P Carter, D Guzman, R Peletier, RF Smith, RJ Graham, AW Trentham, N Peng, E Puzia, TH Lucey, JR Jogee, S Aguerri, AL Batcheldor, D Bridges, TJ Chiboucas, K Davies, JI del Burgo, C Erwin, P Hornschemeier, A Hudson, MJ Huxor, A Jenkins, L Karick, A Khosroshahi, H Kourkchi, E Komiyama, Y Lotz, J Marzke, RO Marinova, I Matkovic, A Merritt, D Miller, BW Miller, NA Mobasher, B Mouhcine, M Okamura, S Percival, S Phillipps, S Poggianti, BM Price, J Sharples, RM Tully, RB Valentijn, E AF Hammer, Derek Kleijn, Gijs Verdoes Hoyos, Carlos den Brok, Mark Balcells, Marc Ferguson, Henry C. Goudfrooij, Paul Carter, David Guzman, Rafael Peletier, Reynier F. Smith, Russell J. Graham, Alister W. Trentham, Neil Peng, Eric Puzia, Thomas H. Lucey, John R. Jogee, Shardha Aguerri, Alfonso L. Batcheldor, Dan Bridges, Terry J. Chiboucas, Kristin Davies, Jonathan I. del Burgo, Carlos Erwin, Peter Hornschemeier, Ann Hudson, Michael J. Huxor, Avon Jenkins, Leigh Karick, Arna Khosroshahi, Habib Kourkchi, Ehsan Komiyama, Yutaka Lotz, Jennifer Marzke, Ronald O. Marinova, Irina Matkovic, Ana Merritt, David Miller, Bryan W. Miller, Neal A. Mobasher, Bahram Mouhcine, Mustapha Okamura, Sadanori Percival, Sue Phillipps, Steven Poggianti, Bianca M. Price, James Sharples, Ray M. Tully, R. Brent Valentijn, Edwin TI THE HST/ACS COMA CLUSTER SURVEY. II. DATA DESCRIPTION AND SOURCE CATALOGS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; galaxies: clusters: individual (Coma); galaxies: dwarf; galaxies: elliptical and lenticular, cD; galaxies: photometry ID HUBBLE-SPACE-TELESCOPE; COLOR-MAGNITUDE RELATION; EARLY-TYPE GALAXIES; SURFACE BRIGHTNESS GALAXIES; DIGITAL SKY SURVEY; DWARF GALAXIES; ADVANCED CAMERA; VIRGO-CLUSTER; ELLIPTIC GALAXIES; FORNAX CLUSTER AB The Coma cluster, Abell 1656, was the target of an HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in early 2007, the partially completed survey still covers similar to 50% of the core high-density region in Coma. Observations were performed for 25 fields that extend over a wide range of cluster-centric radii (similar to 1.75 Mpc or 1 degrees) with a total coverage area of 274 arcmin(2). The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the southwest region of the cluster. In this paper, we present reprocessed images and SEXTRACTOR source catalogs for our survey fields, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SEXTRACTOR Kron magnitudes based only on the measured source flux and its half-light radius. We have performed photometry for similar to 73,000 unique objects; approximately one-half of our detections are brighter than the 10 sigma point-source detection limit at F814W = 25.8 mag (AB). The slight majority of objects (60%) are unresolved or only marginally resolved by ACS. We estimate that Coma members are 5%-10% of all source detections, which consist of a large population of unresolved compact sources (primarily globular clusters but also ultra-compact dwarf galaxies) and a wide variety of extended galaxies from a cD galaxy to dwarf low surface brightness galaxies. The red sequence of Coma member galaxies has a color-magnitude relation with a constant slope and dispersion over 9 mag (-21 < M-F814W < -13). The initial data release for the HST-ACS Coma Treasury program was made available to the public in 2008 August. The images and catalogs described in this study relate to our second data release. C1 [Hammer, Derek] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Hammer, Derek; Hornschemeier, Ann; Jenkins, Leigh] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Kleijn, Gijs Verdoes; den Brok, Mark; Peletier, Reynier F.; Valentijn, Edwin] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Hoyos, Carlos] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Balcells, Marc; Aguerri, Alfonso L.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Balcells, Marc] Isaac Newton Grp Telescopes, Santa Cruz De La Palma 38700, Spain. [Ferguson, Henry C.; Goudfrooij, Paul; Matkovic, Ana] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Carter, David; Karick, Arna; Mouhcine, Mustapha; Percival, Sue] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Guzman, Rafael] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Smith, Russell J.; Lucey, John R.; Sharples, Ray M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Graham, Alister W.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Trentham, Neil] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Peng, Eric] Peking Univ, Dept Astron, Beijing 100871, Peoples R China. [Peng, Eric] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. [Puzia, Thomas H.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Jogee, Shardha; Marinova, Irina] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Batcheldor, Dan; Merritt, David] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Bridges, Terry J.] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada. [Chiboucas, Kristin] Gemini Observ, Hilo, HI 96720 USA. [Davies, Jonathan I.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [del Burgo, Carlos] Univ Nova Lisboa, UNINOVA CA3, P-2825149 Monte De Caparica, Caparica, Portugal. [del Burgo, Carlos] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 2, Ireland. [Erwin, Peter] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Erwin, Peter] Univ Sternwarte, D-81679 Munich, Germany. [Hudson, Michael J.; Phillipps, Steven; Price, James] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Huxor, Avon] Univ Bristol, HH Wills Phys Lab, Astrophys Grp, Bristol BS8 1TL, Avon, England. [Khosroshahi, Habib; Kourkchi, Ehsan] Inst Res Fundamental Sci IPM, Sch Astron, Tehran, Iran. [Komiyama, Yutaka] Natl Astron Observ Japan, Hilo, HI 96720 USA. [Lotz, Jennifer] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Marzke, Ronald O.] San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA. [Miller, Bryan W.] Gemini Observ, La Serena, Chile. [Miller, Neal A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Mobasher, Bahram] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Okamura, Sadanori] Univ Tokyo, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Poggianti, Bianca M.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Tully, R. Brent] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Hammer, D (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. RI Peletier, Reynier/B-9633-2012; Hudson, Michael/H-3238-2012; Graham, Alister/G-1217-2013; Sharples, Ray/N-7309-2013; OI Erwin, Peter/0000-0003-4588-9555; Phillipps, Steven/0000-0001-5991-3486; Hudson, Michael/0000-0002-1437-3786; Graham, Alister/0000-0002-6496-9414; Sharples, Ray/0000-0003-3449-8583; del Burgo, Carlos/0000-0002-8949-5200; Jenkins, Leigh/0000-0001-9464-0719; Batcheldor, Daniel/0000-0002-8588-5682; De Hoyos Fernandez De Cordova, Carlos/0000-0003-3120-6856 FU NASA [NAS 5-26555, GO10861, NNX07AH15G]; STScI [HST-GO-10861, HST-E0-10861.35-A]; UK STFC [PP/E001149/1]; DFG [1177]; Science Ministry of Spain [AYA2006-12955, AYA2009-11137]; NSERC; Spanish MICINN [CSD2006-00070]; NSF [AST-0807910] FX Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO10861.; We thank the referee for their helpful comments, Panayiotis Tzanavaris for assistance with the Scamp software, Antara Basu-Zych for useful science discussion, Karen Levay for implementing the data release on MAST, and Zolt Levay for constructing the two-color images. This research and associated EPO program are supported by STScI through grants HST-GO-10861 and HST-E0-10861.35-A, respectively. Partial support is also provided for the following individuals: D. C. and A. K. are supported by UK STFC rolling grant PP/E001149/1; P. E. is supported by DFG Priority Programme 1177; M. B. is supported by the Science Ministry of Spain through grants AYA2006-12955 and AYA2009-11137; Hudson is supported by NSERC; R. G. is supported by Spanish MICINN under the Consolider-Ingenio 2010 Programme grant CSD2006-00070; D. M. is supported by grants AST-0807910 (NSF) and NNX07AH15G (NASA). NR 71 TC 24 Z9 24 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2010 VL 191 IS 1 BP 143 EP 159 DI 10.1088/0067-0049/191/1/143 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 688EU UT WOS:000284833400009 ER PT J AU Hurley, K Guidorzi, C Frontera, F Montanari, E Rossi, F Feroci, M Mazets, E Golenetskii, S Frederiks, DD Pal'shin, VD Aptekar, RL Cline, T Trombka, J McClanahan, T Starr, R Atteia, JL Barraud, C Pelangoen, A Boer, M Vanderspek, R Ricker, G Mitrofanov, IG Golovin, DV Kozyrev, AS Litvak, ML Sanin, AB Boynton, W Fellows, C Harshman, K Goldsten, J Gold, R Smith, DM Wigger, C Hajdas, W AF Hurley, K. Guidorzi, C. Frontera, F. Montanari, E. Rossi, F. Feroci, M. Mazets, E. Golenetskii, S. Frederiks, D. D. Pal'shin, V. D. Aptekar, R. L. Cline, T. Trombka, J. McClanahan, T. Starr, R. Atteia, J. -L. Barraud, C. Pelangoen, A. Boer, M. Vanderspek, R. Ricker, G. Mitrofanov, I. G. Golovin, D. V. Kozyrev, A. S. Litvak, M. L. Sanin, A. B. Boynton, W. Fellows, C. Harshman, K. Goldsten, J. Gold, R. Smith, D. M. Wigger, C. Hajdas, W. TI THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BeppoSAX GAMMA-RAY BURST CATALOGS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE astronomical databases: miscellaneous; catalogs; gamma-ray burst: general; techniques: miscellaneous ID ARRIVAL-TIME LOCALIZATIONS; PIONEER-VENUS-ORBITER; WIDE-FIELD CAMERAS; ULYSSES SUPPLEMENT; ASTRONOMY SATELLITE; BATSE; MONITOR; SPECTROMETER; EXPLORER; ONBOARD AB Between 1996 July and 2002 April, one or more spacecraft of the interplanetary network detected 786 cosmic gamma-ray bursts that were also detected by the Gamma-Ray Burst Monitor and/or Wide-Field X-Ray Camera experiments aboard the BeppoSAX spacecraft. During this period, the network consisted of up to six spacecraft, and using triangulation, the localizations of 475 bursts were obtained. We present the localization data for these events. C1 [Hurley, K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Guidorzi, C.; Frontera, F.; Montanari, E.; Rossi, F.] Univ Ferrara, Dept Phys, I-44100 Ferrara, Italy. [Frontera, F.] INAF Ist Astrofis Spaziale & Fis Cosm Bologna, I-40129 Bologna, Italy. [Feroci, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [Mazets, E.; Golenetskii, S.; Frederiks, D. D.; Pal'shin, V. D.; Aptekar, R. L.] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. [Cline, T.; Trombka, J.; McClanahan, T.; Starr, R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Atteia, J. -L.; Barraud, C.; Pelangoen, A.] Observ Midi Pyrenees, Astrophys Lab, F-31400 Toulouse, France. [Boer, M.] Observ Haute Provence, F-04870 St Michel lObservatoire, France. [Vanderspek, R.; Ricker, G.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B.] Space Res Inst, Moscow 117997, Russia. [Boynton, W.; Fellows, C.; Harshman, K.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Goldsten, J.; Gold, R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Smith, D. M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Smith, D. M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Wigger, C.; Hajdas, W.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Montanari, E.] Ist IS Calvi, Finale Emilia, MO, Italy. RP Hurley, K (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM khurley@ssl.berkeley.edu RI McClanahan, Timothy/C-8164-2012; Frederiks, Dmitry/C-7612-2014; Pal'shin, Valentin/F-3973-2014; Aptekar, Raphail/B-3456-2015; Golenetskii, Sergey/B-3818-2015; OI Frederiks, Dmitry/0000-0002-1153-6340; Feroci, Marco/0000-0002-7617-3421 FU JPL (Ulysses) [958056, 1268385]; MIT [SC-R-293291]; NASA (HETE) [NAG5-11451]; NASA (Konus) [NNX07AH52G]; NASA (RHESSI) [NAG5-13080]; NASA [NAG5-11451, NAG5-7766, NAG5-9126, NAG5-10710]; JPL (OdysseyU.S. SAX Guest Investigator program (BeppoSAX)) [1282043]; U.S. SAX Guest Investigator program (BeppoSAX); NASA (NEAR) [NAG5-9503]; ASI-INAF [I/088/06/0]; Federal Space Agency of Russia; RFBR [09-02-00166a] FX Support for the interplanetary network came from the following sources: JPL Contracts 958056 and 1268385 (Ulysses); MIT Contract SC-R-293291 and NASA NAG5-11451 (HETE); NASA NNX07AH52G (Konus); NASA NAG5-13080 (RHESSI); NASA NAG5-11451 and JPL Contract 1282043 (Odyssey); NASA NAG5-7766, NAG5-9126, NAG5-10710, and the U.S. SAX Guest Investigator program (BeppoSAX); and NASA NAG5-9503 (NEAR). C. G., F. F., and E. M. acknowledge financial support from the ASI-INAF contract I/088/06/0. In Russia, this work was supported by the Federal Space Agency of Russia and RFBR grant 09-02-00166a. NR 33 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2010 VL 191 IS 1 BP 179 EP 184 DI 10.1088/0067-0049/191/1/179 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 688EU UT WOS:000284833400011 ER PT J AU Dopita, MA Calzetti, D Apellaniz, JM Blair, WP Long, KS Mutchler, M Whitmore, BC Bond, HE MacKenty, J Balick, B Carollo, M Disney, M Frogel, JA O'Connell, R Hall, D Holtzman, JA Kimble, RA McCarthy, P Paresce, F Saha, A Walker, AR Silk, J Sirianni, M Trauger, J Windhorst, R Young, E AF Dopita, Michael A. Calzetti, Daniela Maiz Apellaniz, Jesus Blair, William P. Long, Knox S. Mutchler, Max Whitmore, Bradley C. Bond, Howard E. MacKenty, John Balick, Bruce Carollo, Marcella Disney, Michael Frogel, Jay A. O'Connell, Robert Hall, Donald Holtzman, Jon A. Kimble, Randy A. McCarthy, Patrick Paresce, Francesco Saha, Abhijit Walker, Alistair R. Silk, Joe Sirianni, Marco Trauger, John Windhorst, Rogier Young, Erick TI Supernova remnants, planetary nebulae and the distance to NGC 4214 SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE Supernovae: general; ISM: structure, supernova remnants; Stars: planetary nebulae; Galaxies: ISM, starburst, structure ID LARGE-MAGELLANIC-CLOUD; HUBBLE-SPACE-TELESCOPE; STANDARD CANDLES; NOVA REMNANTS; OPTICAL-EMISSION; SHOCK-WAVES; IONIZED-GAS; NGC-4214; M33; POPULATION AB We present narrow band, continuum subtracted H alpha, [S ii], H beta, [O iii] and [O ii] data taken with the Wide Field Camera 3 on the Hubble Space Telescope in the nearby dwarf starburst galaxy NGC 4214. From these images, we identify seventeen new planetary nebula candidates, and seven supernova remnant candidates. We use the observed emission line luminosity function of the planetary nebulae to establish a new velocity-independent distance to NGC 4214. We conclude that the PNLF technique gives a reddening independent distance to NGC 4214 of 3.19 +/- 0.36 Mpc, and that our current best-estimate of the distance to this galaxy ids 2.98 +/- 0.13 Mpc. C1 [Dopita, Michael A.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Calzetti, Daniela] Univ Massachusetts, Amherst, MA 01003 USA. [Maiz Apellaniz, Jesus] CSIC, Inst Astrofis Andalucia, Granada, Spain. [Blair, William P.] Johns Hopkins Univ, Baltimore, MD USA. [Long, Knox S.; Mutchler, Max; Whitmore, Bradley C.; Bond, Howard E.; MacKenty, John] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Balick, Bruce] Univ Washington, Seattle, WA 98195 USA. [Carollo, Marcella] ETH, Inst Astron, CH-8092 Zurich, Switzerland. [Disney, Michael] Cardiff Univ, Cardiff, S Glam, Wales. [Frogel, Jay A.] Assoc Univ Res Astron, Washington, DC USA. [O'Connell, Robert] Univ Virginia, Charlottesville, VA USA. [Hall, Donald] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Holtzman, Jon A.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Kimble, Randy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCarthy, Patrick] Carnegie Inst Washington, Pasadena, CA USA. [Paresce, Francesco] INAF, Inst Space Astrophys, Bologna, Italy. [Saha, Abhijit; Walker, Alistair R.] Natl Opt Astron Observ, Tucson, AZ USA. [Silk, Joe] Univ Oxford, Oxford, England. [Sirianni, Marco] European Space Agcy, Darmstadt, Germany. [Trauger, John] NASA JPL, Pasadena, CA USA. [Windhorst, Rogier] Arizona State Univ, Tempe, AZ USA. [Young, Erick] Univ Arizona, Tucson, AZ USA. RP Dopita, MA (reprint author), Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. EM michael.dopita@anu.edu.au RI Kimble, Randy/D-5317-2012; Dopita, Michael/P-5413-2014; Maiz Apellaniz, Jesus/C-2825-2017; OI Dopita, Michael/0000-0003-0922-4986; Maiz Apellaniz, Jesus/0000-0003-0825-3443; silk, joe/0000-0002-1566-8148 FU NASA [NAS5-26555]; Australian Research Council (ARC) [DP0984657, DP0664434] FX This paper is based on observations with the NASA & ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. It uses Early Release Science observations made by the WFC3 Scientific Oversight Committee. We are grateful to the Director of the Space Telescope Science Institute for awarding Director's Discretionary time for this program. Dopita acknowledges the support of the Australian Research Council (ARC) through Discovery projects DP0984657 and DP0664434. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has also made use of NASA's Astrophysics Data System, and of SAOImage DS9 (Joye and Mandel 2003), developed by the Smithsonian Astrophysical Observatory. NR 45 TC 9 Z9 9 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD NOV PY 2010 VL 330 IS 1 BP 123 EP 131 DI 10.1007/s10509-010-0376-0 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 662PI UT WOS:000282823400017 ER PT J AU Oltmans, SJ Lefohn, AS Harris, JM Tarasick, DW Thompson, AM Wernli, H Johnson, BJ Novelli, PC Montzka, SA Ray, JD Patrick, LC Sweeney, C Jefferson, A Dann, T Davies, J Shapiro, M Holben, BN AF Oltmans, S. J. Lefohn, A. S. Harris, J. M. Tarasick, D. W. Thompson, A. M. Wernli, H. Johnson, B. J. Novelli, P. C. Montzka, S. A. Ray, J. D. Patrick, L. C. Sweeney, C. Jefferson, A. Dann, T. Davies, J. Shapiro, M. Holben, B. N. TI Enhanced ozone over western North America from biomass burning in Eurasia during April 2008 as seen in surface and profile observations SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Ozone; Biomass burning; Pollution; Arctic; Transport; Trajectories ID BACKGROUND OZONE; VARIABILITY; MISSION; ARCTAS; TROPOSPHERE; TRANSPORT; POLLUTION; AIRCRAFT AB During April 2008, as part of the International Polar Year (IPY), a number of ground-based and aircraft campaigns were carried out in the North American Arctic region (e.g., ARCTAS, ARCPAC). The widespread presence during this period of biomass burning effluent, both gaseous and particulate, has been reported. Unusually high ozone readings for this time of year were recorded at surface ozone monitoring sites from northern Alaska to northern California. At Barrow, Alaska, the northernmost point in the United States, the highest April ozone readings recorded at the surface (hourly average values >55 ppbv) in 37 years of observation were measured on April 19, 2008. At Denali National Park in central Alaska, an hourly average of 79 ppbv was recorded during an 8-h period in which the average was over 75 ppbv, exceeding the ozone ambient air quality standard threshold value in the U.S. Elevated ozone (>60 ppbv) persisted almost continuously from April 19-23 at the monitoring site during this event. At a coastal site in northern California (Trinidad Head), hourly ozone readings were >50 ppbv almost continuously for a 35-h period from April 18-20. At several sites in northern California, located to the east of Trinidad Head, numerous occurrences of ozone readings exceeding 60 ppbv were recorded during April 2008. Ozone profiles from an extensive series of balloon soundings showed lower tropospheric features at similar to 1-6 km with enhanced ozone during the times of elevated ozone amounts at surface sites in western Canada and the U.S. Based on extensive trajectory calculations, biomass burning in regions of southern Russia was identified as the likely source of the observed ozone enhancements. Ancillary measurements of atmospheric constituents and optical properties (aerosol optical thickness) supported the presence of a burning plume at several locations. At two coastal sites (Trinidad Head and Vancouver Island), profiles of a large suite of gases were measured from airborne flask samples taken during probable encounters with burning plumes. These profiles aided in characterizing the vertical thickness of the plumes, as well as confirming that the plumes reaching the west coast of North America were associated with biomass burning events. Published by Elsevier Ltd. C1 [Oltmans, S. J.; Harris, J. M.; Johnson, B. J.; Novelli, P. C.; Montzka, S. A.; Patrick, L. C.; Sweeney, C.; Jefferson, A.] NOAA Earth Syst Res Lab, Global Monitoring Div, Boulder, CO 80305 USA. [Lefohn, A. S.] ASL & Associates, Helena, MT USA. [Tarasick, D. W.; Davies, J.] Environm Canada, Air Qual Res Div, Downsview, ON, Canada. [Thompson, A. M.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Wernli, H.] ETHZ, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Ray, J. D.] Natl Pk Serv, Air Resources Div, Denver, CO USA. [Patrick, L. C.; Sweeney, C.; Jefferson, A.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Dann, T.] Environm Canada, Anal & Air Qual Div, Ottawa, ON K1A 0H3, Canada. [Shapiro, M.] NCAR, Boulder, CO USA. [Holben, B. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Oltmans, SJ (reprint author), NOAA Earth Syst Res Lab, Global Monitoring Div, 325 Broadway, Boulder, CO 80305 USA. EM Samuel.J.Oltmans@noaa.gov RI Jefferson, Anne/K-4793-2012; Thompson, Anne /C-3649-2014; OI Thompson, Anne /0000-0002-7829-0920; Montzka, Stephen/0000-0002-9396-0400; Tarasick, David/0000-0001-9869-0692 FU NASA as part of ARCTAS; Environment Canada; NOAA/ESRL/GMD FX Debbie Miller, U.S. National Park Service, provided the IMPROVE aerosol data. Funding for the ozonesonde launches was provided by NASA as part of ARCTAS, Environment Canada, and NOAA/ESRL/GMD. NR 32 TC 31 Z9 32 U1 2 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2010 VL 44 IS 35 BP 4497 EP 4509 DI 10.1016/j.atmosenv.2010.07.004 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 672FL UT WOS:000283568300021 ER PT J AU Lewis, J De Young, R Ferrare, R Chu, DA AF Lewis, Jasper De Young, Russell Ferrare, Richard Chu, D. Allen TI Comparison of summer and winter California central valley aerosol distributions from lidar and MODIS measurements SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE MODIS; Aerosol; California; San Joaquin Valley; Lidar ID SPECTRAL-RESOLUTION LIDAR; AIRBORNE LIDAR; OPTICAL DEPTH; AIR-QUALITY; VALIDATION; SPACE; PM2.5; DELHI AB Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2007. While the ground PM(2.5) (particulate matter with diameter <= 2.5 mu m) concentration was highest in the winter, the aerosol optical depth (ADD) measured from the MODIS and lidar instruments was highest in the summer. A multiyear seasonal comparison shows that PM(2.5) in the winter can exceed summer PM(2.5) by 68%, while summer AOD from MODIS exceeds winter AOD by 29%. Warmer temperatures and wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not necessarily by surface particulate matter monitors. Temperature inversions, especially during the winter, contribute to higher PM(2.5) measurements at the surface. Measurements of the mixing layer height from lidar instruments provide valuable information needed to understand the correlation between satellite measurements of AOD and in situ measurements of PM(2.5). Lidar measurements also reflect the ammonium nitrate chemistry observed in the San Joaquin Valley, which may explain the discrepancy between the MODIS AOD and PM(2.5) measurements. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Lewis, Jasper] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. [De Young, Russell; Ferrare, Richard] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Chu, D. Allen] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Greenbelt, MD 20771 USA. RP Lewis, J (reprint author), Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. EM jasper.r.lewis@nasa.gov FU US EPA Advanced Monitoring Initiative; NASA FX The authors thank James J. Szykman, Jassim A. Al-Saadi, Chris A. Hostetler, Johnathan W. Hair, Anthony L Cook, and David B. Harper, for the planning, collection, and use of the 2007 San Joaquin Valley HSRL data. This research is supported by the US EPA Advanced Monitoring Initiative and NASA Applied Sciences Program. NR 38 TC 7 Z9 7 U1 3 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2010 VL 44 IS 35 BP 4510 EP 4520 DI 10.1016/j.atmosenv.2010.07.006 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 672FL UT WOS:000283568300022 ER PT J AU Singh, HB Anderson, BE Brune, WH Cai, C Cohen, RC Crawford, JH Cubison, MJ Czech, EP Emmons, L Fuelberg, HE Huey, G Jacob, DJ Jimenez, JL Kaduwela, A Kondo, Y Mao, J Olson, JR Sachse, GW Vay, SA Weinheimer, A Wennberg, PO Wisthaler, A AF Singh, H. B. Anderson, B. E. Brune, W. H. Cai, C. Cohen, R. C. Crawford, J. H. Cubison, M. J. Czech, E. P. Emmons, L. Fuelberg, H. E. Huey, G. Jacob, D. J. Jimenez, J. L. Kaduwela, A. Kondo, Y. Mao, J. Olson, J. R. Sachse, G. W. Vay, S. A. Weinheimer, A. Wennberg, P. O. Wisthaler, A. CA ARCTAS Sci Team TI Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Arctic pollution; Ozone; Aerosols; Greenhouse gases; Wild fires; Models ID ARCTIC AIR-POLLUTION; INTERANNUAL VARIABILITY; CURRENT KNOWLEDGE; ODD NITROGEN; TROPOSPHERE; TRANSPORT; SATELLITE; AIRCRAFT; OZONE; MODEL AB We analyze detailed atmospheric gas/aerosol composition data acquired during the 2008 NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) airborne campaign performed at high northern latitudes in spring (ARCTAS-A) and summer (ARCTAS-B) and in California in summer (ARCTAS-CARB). Biomass burning influences were widespread throughout the ARCTAS campaign. MODIS data from 2000 to 2009 indicated that 2008 had the second largest fire counts over Siberia and a more normal Canadian boreal forest fire season. Near surface arctic air in spring contained strong anthropogenic signatures indicated by high sulfate. In both spring and summer most of the pollution plumes transported to the Arctic region were from Europe and Asia and were present in the mid to upper troposphere and contained a mix of forest fire and urban influences. The gas/aerosol composition of the high latitude troposphere was strongly perturbed at all altitudes in both spring and summer. The reactive nitrogen budget was balanced with PAN as the dominant component. Mean ozone concentrations in the high latitude troposphere were only minimally perturbed (<5 ppb), although many individual pollution plumes sampled in the mid to upper troposphere, and mixed with urban influences, contained elevated ozone (Delta O-3/Delta CO = 0.11 +/- 0.09 v/v). Emission and optical characteristics of boreal and California wild fires were quantified and found to be broadly comparable. Greenhouse gas emission estimates derived from ARCTAS-CARB data for the South Coast Air Basin of California show good agreement with state inventories for CO2 and N2O but indicate substantially larger emissions of CH4. Simulations by multiple models of transport and chemistry were found to be broadly consistent with observations with a tendency towards under prediction at high latitudes. Published by Elsevier Ltd. C1 [Singh, H. B.; Czech, E. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Anderson, B. E.; Crawford, J. H.; Olson, J. R.; Sachse, G. W.; Vay, S. A.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Brune, W. H.] Penn State Univ, University Pk, PA 16802 USA. [Cai, C.; Kaduwela, A.] Calif Environm Protect Agcy, Sacramento, CA USA. [Cohen, R. C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Emmons, L.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Fuelberg, H. E.] Florida State Univ, Tallahassee, FL 32306 USA. [Jacob, D. J.; Mao, J.] Harvard Univ, Cambridge, MA 02138 USA. [Huey, G.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Cubison, M. J.; Jimenez, J. L.] Univ Colorado, Boulder, CO 80309 USA. [Kondo, Y.] Univ Tokyo, Tokyo, Japan. [Wennberg, P. O.] CALTECH, Pasadena, CA 91125 USA. [Wisthaler, A.] Univ Innsbruck, A-6020 Innsbruck, Austria. RP Singh, HB (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM hanwant.b.singh@nasa.gov RI Crawford, James/L-6632-2013; Emmons, Louisa/R-8922-2016; Jimenez, Jose/A-5294-2008; Mao, Jingqiu/F-2511-2010; Wennberg, Paul/A-5460-2012; Kondo, Yutaka/D-1459-2012; Cohen, Ronald/A-8842-2011 OI Crawford, James/0000-0002-6982-0934; Emmons, Louisa/0000-0003-2325-6212; Kaduwela, Ajith/0000-0002-7236-2698; Jimenez, Jose/0000-0001-6203-1847; Mao, Jingqiu/0000-0002-4774-9751; Cohen, Ronald/0000-0001-6617-7691 FU NASA; California Air Resources Board FX The ARCTAS campaign was funded by the NASA Tropospheric Chemistry Program, the NASA Radiation Sciences Program, and the California Air Resources Board. PTR-MS measurements were supported by the Austrian Research Promotion Agency (FFG), the Tiroler Zukunftstiftung, and the University of Innsbruck. We thank all ARCTAS participants for their contributions. NR 54 TC 64 Z9 64 U1 3 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2010 VL 44 IS 36 BP 4553 EP 4564 DI 10.1016/j.atmosenv.2010.08.026 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 672FO UT WOS:000283568600004 ER PT J AU Wilson, DI Piketh, SJ Smirnov, A Holben, BN Kuyper, B AF Wilson, D. I. Piketh, S. J. Smirnov, A. Holben, B. N. Kuyper, B. TI Aerosol optical properties over the South Atlantic and Southern Ocean during the 140th cruise of the M/V SA Agulhas SO ATMOSPHERIC RESEARCH LA English DT Article DE Aerosols; Angstrom exponent; AERONET; Antarctica; Aerosol optical properties; Climate; HYSPLIT; South Atlantic; Southern Ocean; MODIS ID ATMOSPHERIC AEROSOL; SUN PHOTOMETERS; SEA-SALT; THICKNESS; ANTARCTICA AB The research analysed the aerosol optical properties of the South Atlantic and Southern Ocean regions during the South African National Antarctic Expedition 2007/2008 (SANAE 47) take-over cruise on board the MN S.A. Agulhas Very low aerosol optical thickness values were obtained for the Antarctic Coastal region with a mean AOT 500 nm of 003 and a mean Angstrom exponent of 1 77 The South Atlantic region showed a mean AOT 500 nm of 006 and a mean Angstrom exponent of 0 69 AOT values for the South African coastal region were similar to those in the South Atlantic and had a mean AOT 500 nm of 007 and a mean Angstrom exponent of 076 A discrepancy exists between the MODIS TERRA and AQUA aerosol product and the acquired dataset using the Microtops II Sunphotometer (c) 2010 Elsevier BV All rights reserved C1 [Wilson, D. I.; Piketh, S. J.] Univ Witwatersrand, Climatol Res Grp, ZA-2050 Johannesburg, South Africa. [Smirnov, A.; Holben, B. N.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Kuyper, B.] Univ Cape Town, Dept Oceanog, ZA-7925 Cape Town, South Africa. RP Wilson, DI (reprint author), Univ Witwatersrand, Climatol Res Grp, Private Bag X3, ZA-2050 Johannesburg, South Africa. RI Smirnov, Alexander/C-2121-2009 OI Smirnov, Alexander/0000-0002-8208-1304 FU NASA FX The authors wish to thank operational and managerial support from the South African National Antarctic (SANAP), the Department of Environmental Affairs and Tourism (DEAT), Isabelle Ansorge (UCT Oceanography Department) and Roelof Burger (Climatology Research Group) This research was supported by NASA s Giovanni an online data visualization and analysis tool maintained by the Goddard Earth Sciences (GES) Data and Information Services Centre (DISC), a part of the NASA Earth-Sun System Division The authors would also like to acknowledge the constructive criticism of the anonymous reviewers during the publication review NR 32 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 J9 ATMOS RES JI Atmos. Res. PD NOV-DEC PY 2010 VL 98 IS 2-4 BP 285 EP 296 DI 10.1016/j.atmosres.2010.07.007 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 690DT UT WOS:000284983400011 ER PT J AU Wang, DH Li, XF Tao, WK AF Wang, Donghai Li, Xiaofan Tao, Wei-Kuo TI Cloud radiative effects on responses of rainfall to large-scale forcing during a landfall of severe tropical storm Bilis (2006) SO ATMOSPHERIC RESEARCH LA English DT Article DE Cloud-radiation interaction; Cloud radiative effects; Convective and stratiform rainfall; Cloud-resolving model simulation ID SOUTH CHINA SEA; MICROSCALE STRUCTURE; STRATIFORM REGIONS; FRONTAL RAINBANDS; RESOLVING MODEL; PHASE-III; SYSTEMS; WATER; PRECIPITATION; CONVECTION AB The cloud radiative effects on responses of rainfall to the large-scale forcing during a landfall of severe tropical storm Bilis (2006) are investigated by analyzing sensitivity experiments Imposed by large-scale forcing from NCEP/GDAS data in a two-dimensional cloud-resolving model The daily average analysis is conducted on 15 and 16 July 2009 respectively due to dominant stratiform and convective rainfall associated with different large-scale forcing When cloud radiative effects are excluded the increased mean rainfall is associated with the increased mean radiative cooling through the enhanced mean latent heat on 15 July The reduction in mean rain rate is related to the slowdown in the mean net condensation while the enhanced mean radiative cooling from the removal of cloud radiative effects is balanced by the suppressed heat divergence on 16 July The increased mean rainfall on 15 July and decreased mean rainfall on 16 July are mainly from raining stratiform regions The enhanced stratiform rainfall is associated with the weakened local atmospheric moistening and strengthened local hydrometeor loss on 15 July whereas the reduced stratiform rainfall is related to the weakened water vapor convergence on 16 July When cloud-radiation interaction is excluded the decreases in the mean ram rate are associated with the slowdown in the mean hydrometeor loss on 15 July and the suppression in the net condensation on 16 July The decreased mean rainfall is mainly from convective regions on 15 July and raining stratiform regions on 16 July The reduced convective rainfall is associated with strengthened transport of hydrometeor concentration from convective regions to raining stratiform regions on 15 July whereas the decreased stratiform rainfall is related to the weakened water vapor convergence on 16 July (C) 2010 Elsevier B V All rights reserved C1 [Wang, Donghai] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China. [Wang, Donghai] Sci Syst & Applicat Inc, Lanham, MD USA. [Li, Xiaofan] NOAA, NESDIS, Ctr Satellite Applicat & Res, Camp Springs, MD USA. [Tao, Wei-Kuo] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Wang, DH (reprint author), Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China. RI Li, Xiaofan/F-5605-2010; Li, Xiaofan/G-2094-2014 FU State Key Basic Research Development Program [2009CB421504]; National Natural Science Foundation of China [40633016, 40875022, 40830958] FX The authors thank two anonymous reviewers for their constructive comments This research was supported by the State Key Basic Research Development Program (2009CB421504), and the National Natural Science Foundation of China under grant No 40633016, 40875022 and 40830958 NR 33 TC 11 Z9 11 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 J9 ATMOS RES JI Atmos. Res. PD NOV-DEC PY 2010 VL 98 IS 2-4 BP 512 EP 525 DI 10.1016/j.atmosres.2010.08.020 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 690DT UT WOS:000284983400033 ER PT J AU Webb, JT Krock, LP Gernhardt, ML AF Webb, James T. Krock, Larry P. Gernhardt, Michael L. TI Oxygen Consumption at Altitude as a Risk Factor for Altitude Decompression Sickness SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE oxygen consumption; exercise; DCS ID EXERCISE; VALIDATION; AIRCRAFT; MODEL AB WEBB JT, KROCK LP, GERNHARDT ML. Oxygen consumption at altitude as a risk factor for altitude decompression sickness. Aviat Space Environ Med 2010; 81:987-92. Introduction: The existence of a general influence of exercise on the incidence of decompression sickness (DCS) has been known for more than a half-century. However, quantification of the effect has not been done for several reasons, including isolation of exercise as the only variable. The DCS database at Brooks City-Base, TX, contains detailed physiologic information on over 3000 altitude exposures. The purpose of this study was to measure (V) over dotO(2) during the activities performed during those exposures to retrospectively determine if (V) over dotO(2), a quantifiable index of exercise intensity, was related to the level of reported DCS. Methods: Ground-level activity was designed to duplicate the standardized activity during the altitude exposures. Breath-by-breath (V) over dotO(2), was determined for each activity using a COSMED (R) metabolic measurement system. Comparison of the (V) over dotO(2) during four levels of activity performed under otherwise comparable conditions allowed a determination of correlation between (V) over dotO(2) and DCS risk observed during the altitude exposures. Results and Discussion: Four previous altitude exposure profiles at 8992 m to 9144 m (29,500 to 30,000 ft; 231 to 226 mmHg) for 4 h following a 1-h prebreathe resulted in 38-86% DCS. This study provided the (V) over dotO(2) of activities during those studies. The correlation between DCS incidence and the highest 1-min (V) over dotO(2) of activity was 0.89. Conclusion: The highest 1-min (V) over dotO(2) showed a high correlation with level of DCS risk. Future exposures involving lower levels of activity could provide data that would allow improvement in modeling of DCS risk. C1 [Webb, James T.; Krock, Larry P.; Gernhardt, Michael L.] NASA Johnson Space Ctr, Houston, TX USA. RP Webb, JT (reprint author), 13818 Chittim Oak, San Antonio, TX 78232 USA. EM jtwebb@swbell.net FU NASA [9-02078] FX This research was sponsored by NASA Prime Contract 9-02078. We appreciate the efforts of the volunteer research subjects and medical monitors who made this collection of data and analyses possible. Jason Norcross and Lesley Lee of Wyle in Houston provided professional technical support, and Frances Laue of San Antonio edited for clarity, flow, spelling, etc. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by NASA or the United States Air Force. NR 26 TC 4 Z9 4 U1 0 U2 0 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD NOV PY 2010 VL 81 IS 11 BP 987 EP 992 DI 10.3357/ASEM.2787.2010 PG 6 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 670FB UT WOS:000283405500001 PM 21043293 ER PT J AU Coops, NC Hilker, T Hall, FG Nichol, CJ Drolet, GG AF Coops, Nicholas C. Hilker, Thomas Hall, Forrest G. Nichol, Caroline J. Drolet, Guillaume G. TI Estimation of Light-use Efficiency of Terrestrial Ecosystem from Space: A Status Report SO BIOSCIENCE LA English DT Article DE light-use efficiency; gross primary production; remote sensing; biochemical; satellite ID PHOTOCHEMICAL REFLECTANCE INDEX; RADIATION-USE EFFICIENCY; CHLOROPHYLL FLUORESCENCE; BOREAL FOREST; PHOTOSYNTHETIC EFFICIENCY; CARBON BALANCE; CO2 FLUX; CANOPY; MODEL; VEGETATION AB A critical variable in the estimation of gross primary production of terrestrial ecosystems is light-use efficiency (LUE), a value that represents the actual efficiency of a plant's use of absorbed radiation energy to produce biomass. Light-use efficiency is driven by the most limiting of a number of environmental stress factors that reduce plants' photosynthetic capacity; these include short-term stressors, such as photoinhibition, as well as longer-term stressors, such as soil water and temperature. Modeling LUE from remote sensing is governed largely by the biochemical composition of plant foliage, with the past decade seeing important theoretical and modeling advances for understanding the role of these stresses on LUE. In this article we provide a summary of the tower-, aircraft-, and satellite-based research undertaken to date, and discuss the broader scalability of these methods, concluding with recommendations for ongoing research possibilities. C1 [Coops, Nicholas C.; Hilker, Thomas] Univ British Columbia, Dept Forest Resource Management, Vancouver, BC V5Z 1M9, Canada. [Hall, Forrest G.] Univ Maryland, Goddard Space Flight Ctr, Joint Ctr Earth Syst Technol, Greenbelt, MD USA. [Nichol, Caroline J.; Drolet, Guillaume G.] Univ Edinburgh, Sch Geosci, Edinburgh EH8 9YL, Midlothian, Scotland. RP Coops, NC (reprint author), Univ British Columbia, Dept Forest Resource Management, Vancouver, BC V5Z 1M9, Canada. EM nicholas.coops@ubc.ca RI Coops, Nicholas/J-1543-2012 OI Coops, Nicholas/0000-0002-0151-9037 FU Natural Sciences and Engineering Research Council FX We are very grateful for many fruitful conversations, collaborations, and discussions with colleagues working in this research field. In particular we thank Elizabeth Middleton, Karl (Fred) Hummerich, and Alexei Lyapustin (NASA Goddard Space Flight Center); John Gamon (University of Alberta), leader of the SPECNET network (http://spectralnetwork.net); and Lee Vier ling (University of Idaho) and colleagues. We are grateful for the additional comments provided by three reviewers. This work was partly funded by a Natural Sciences and Engineering Research Council Accelerator grant to NCC. NR 62 TC 36 Z9 36 U1 4 U2 34 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0006-3568 EI 1525-3244 J9 BIOSCIENCE JI Bioscience PD NOV PY 2010 VL 60 IS 10 BP 788 EP 797 DI 10.1525/bio.2010.60.10.5 PG 10 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 675GC UT WOS:000283813700006 ER PT J AU DiRienzi, J Drachman, RJ AF DiRienzi, Joseph Drachman, Richard J. TI Resonances in the dipositronium system: Rydberg states SO CANADIAN JOURNAL OF PHYSICS LA English DT Article ID POSITRONIUM HYDRIDE; SCATTERING AB We were previously successful in representing series of Ps + H scattering resonances as mainly due to quasi-bound Rydberg states in either the closed e(+) + H- or Ps(-) + H+ system. An obvious extension would be to investigate the analogous Ps + Ps system, as either e(+) + Ps(-) or e(-) + Ps(+). Here we treat the system in four increasingly complete approximations: with and without including electron and positron symmetry and charge conjugation symmetry. A comparison is made with previous calculations, and in an Appendix the relationship between quasi-bound states and scattering resonances is clarified. C1 [Drachman, Richard J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [DiRienzi, Joseph] Coll Notre Dame Maryland, Baltimore, MD 21210 USA. RP Drachman, RJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Richard.j.drachman@nasa.gov NR 18 TC 3 Z9 3 U1 0 U2 1 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA SN 0008-4204 J9 CAN J PHYS JI Can. J. Phys. PD NOV PY 2010 VL 88 IS 11 BP 877 EP 883 DI 10.1139/P10-079 PG 7 WC Physics, Multidisciplinary SC Physics GA 681AG UT WOS:000284278000009 ER PT J AU Harstad, K Bellan, J AF Harstad, Kenneth Bellan, Josette TI A model of reduced oxidation kinetics using constituents and species: Iso-octane and its mixtures with n-pentane, iso-hexane and n-heptane SO COMBUSTION AND FLAME LA English DT Article DE Reduced oxidation kinetics for iso-octane; Iso-octane mixtures ID MECHANISMS; CHEMISTRY AB A previously described methodology for deriving a reduced kinetic mechanism for alkane oxidation and tested for n-heptane is here shown to be valid, in a slightly modified version, for iso-octane and its mixtures with n-pentane, iso-hexane and n-heptane. The model is still based on partitioning the species into lights, defined as those having a carbon number smaller than 3, and heavies, which are the complement in the species ensemble, and mathematically decomposing the heavy species into constituents which are radicals. For the same similarity variable found from examining the n-heptane LLNL mechanism in conjunction with CHEMKIN II, the appropriately scaled total constituent molar density still exhibits a self-similar behavior over a very wide range of equivalence ratios, initial pressures and initial temperatures in the cold ignition regime. When extended to larger initial temperatures than for cold ignition, the self-similar behavior becomes initial temperature dependent, which indicates that rather than using functional fits for the enthalpy generation due to the heavy species' oxidation, an ideal model based on tabular information extracted from the complete LLNL kinetics should be used instead. Similarly to n-heptane, the oxygen and water molar densities are shown to display a quasi-linear behavior with respect to the similarity variable, but here their slope variation is no longer fitted and instead, their rate equations are used with the ideal model to calculate them. As in the original model, the light species ensemble is partitioned into quasi-steady and unsteady species; the quasi-steady light species mole fractions are computed using the ideal model and the unsteady species are calculated as progress variables using rates extracted from the ideal model. Results are presented comparing the performance of the model with that of the LLNL mechanism using CHEMKIN II The model reproduces excellently the temperature and species evolution versus time or versus the similarity variable, with the exception of very rich mixtures, where the predictions are still very good but the multivalued aspect of these functions at the end of oxidation is not captured in the reduction. The ignition time is predicted within percentages of the LLNL values over a wide range of equivalence ratios, initial pressures and initial temperatures. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Harstad, Kenneth; Bellan, Josette] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bellan, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 125-109, Pasadena, CA 91109 USA. EM Josette.Bellan@jpl.nasa.gov FU Army Research Office FX This study was conducted at the California Institute of Technology, Jet Propulsion Laboratory (JPL), and was sponsored by the Army Research Office, with Dr. Ralph Anthenien as Program Manager. Computation with the full kinetic mechanisms were performed using the JPL Supercomputing facility. NR 15 TC 4 Z9 5 U1 1 U2 21 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD NOV PY 2010 VL 157 IS 11 BP 2184 EP 2197 DI 10.1016/j.combustflame.2010.06.010 PG 14 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 661HR UT WOS:000282717200017 ER PT J AU Liou, MS AF Liou, Meng-Sing TI The Evolution of AUSM Schemes SO DEFENCE SCIENCE JOURNAL LA English DT Article DE Computational fluid dynamics methods; hyperbolic systems; advection upstream splitting method; conservation laws; upwinding; CFD ID CONSERVATION-LAWS; DIFFERENCE-SCHEMES; REAL GASES; SEQUEL; FLOW; AUSM(+)-UP; EQUATIONS; DYNAMICS; SYSTEMS; ROBUST AB This paper focuses on the evolution of advection upstream splitting method(AUSM) schemes The main ingredients that have led to the development of modern computational fluid dynamics (CFD) methods have been reviewed, thus the ideas behind AUSM First and foremost is the concept of upwinding Second, the use of Riemann problem in constructing the numerical flux in the finite-volume setting Third, the necessity of including all physical processes, as characterised by the linear (convection) and nonlinear (acoustic) fields Fourth, the realisation of separating the flux into convection and pressure fluxes The rest of this review briefly outlines the technical evolution of AUSM and more details can be found in the cited references C1 NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Liou, MS (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. NR 41 TC 1 Z9 1 U1 0 U2 5 PU DEFENCE SCIENTIFIC INFORMATION DOCUMENTATION CENTRE PI DELHI PA METCALFE HOUSE, DELHI 110054, INDIA SN 0011-748X EI 0976-464X J9 DEFENCE SCI J JI Def. Sci. J. PD NOV PY 2010 VL 60 IS 6 SI SI BP 606 EP 613 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 690TY UT WOS:000285032400005 ER PT J AU Comarazamy, DE Gonzalez, JE Luvall, JC Rickman, DL Mulero, PJ AF Comarazamy, Daniel E. Gonzalez, Jorge E. Luvall, Jeffrey C. Rickman, Douglas L. Mulero, Pedro J. TI A Land-Atmospheric Interaction Study in the Coastal Tropical City of San Juan, Puerto Rico SO EARTH INTERACTIONS LA English DT Article DE Land/atmosphere interactions; Land-cover change; Regional climate modeling ID URBAN HEAT-ISLAND; MEXICO-CITY; PRECIPITATION; RAMS; THUNDERSTORMS; SIMULATION; CLIMATE; ATLANTA AB This paper focuses on the surface-atmospheric interaction in a tropical coastal city including the validation of an atmospheric modeling and an impact study of land-cover and land-use (LCLU) changes. The Regional Atmospheric Modeling System (RAMS), driven with regional reanalysis data for a 10-day simulation, is used to perform the study in the San Juan metropolitan area (SJMA), one of the largest urban conglomerations in the Caribbean, which is located in the island of Puerto Rico and taken as the test case. The model's surface characteristics were updated using airborne high-resolution remote sensing information to obtain a more accurate and detailed configuration of the SJMA. Surface and rawinsonde data from the San Juan Airborne Thermal and Land Applications Sensor (ATLAS) Mission are used to validate the modeling system, yielding satisfactory results in surface/canopy temperature, near-surface air temperatures, and vertical profiles. The impact analysis, performed with the updated SJMA configuration and a potential natural vegetation (PNV) scenario, showed that the simulation with specified urban LCLU indexes in the bottom boundary produced higher air temperatures over the area occupied by the city, with positive values of up to 2.5 degrees C. The same analysis showed changes in the surface radiative balance in the urban case attributed to modifications in the LCLU. This additional heat seems to motivate additional vertical convection that may be leading to possible urban-induced precipitation downwind of the SJMA. This was evident in a precipitation disturbance when the city is present (similar to 0.9 mm, 22.5% increase) captured by the model that was accompanied by increases in cloud formation and vertical motions mainly downwind of the city. C1 [Gonzalez, Jorge E.] CUNY City Coll, Dept Mech Engn, New York, NY 10031 USA. [Comarazamy, Daniel E.] Santa Clara Univ, Dept Mech Engn, Santa Clara, CA 95053 USA. [Luvall, Jeffrey C.; Rickman, Douglas L.] NASA Marshall Space Flight Ctr, Global Hydrol & Climate Ctr, Huntsville, AL USA. [Mulero, Pedro J.] Iberdrola Renewables, Portland, OR USA. RP Gonzalez, JE (reprint author), CUNY City Coll, Dept Mech Engn, Steinman Hall T-238, New York, NY 10031 USA. EM gonzalez@me.ccny.cuny.edu RI Comarazamy, Daniel/C-8246-2014; OI Rickman, Doug/0000-0003-3409-2882 FU NASA, University of Puerto Rico; NOAA/CREST [NA06OAR4810162] FX This research was partially funded by the NASA EPSCoR program of the University of Puerto Rico and by NOAA/CREST Grant NA06OAR4810162. The atmospheric model simulations were performed at the High Performance Computing Facilities in Rio Piedras. Thanks are due to Ana J. Picon and Pieter Van der Mier from UPR for their assistance and help in processing the airborne remote sensing data. NR 33 TC 15 Z9 15 U1 2 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1087-3562 J9 EARTH INTERACT JI Earth Interact. PD NOV PY 2010 VL 14 AR 16 DI 10.1175/2010EI309.1 PG 24 WC Geosciences, Multidisciplinary SC Geology GA 700ES UT WOS:000285720300001 ER PT J AU Timko, MT Yu, Z Onasch, TB Wong, HW Miake-Lye, RC Beyersdorf, AJ Anderson, BE Thornhill, KL Winstead, EL Corporan, E DeWitt, MJ Klingshirn, CD Wey, C Tacina, K Liscinsky, DS Howard, R Bhargava, A AF Timko, M. T. Yu, Z. Onasch, T. B. Wong, H-W Miake-Lye, R. C. Beyersdorf, A. J. Anderson, B. E. Thornhill, K. L. Winstead, E. L. Corporan, E. DeWitt, M. J. Klingshirn, C. D. Wey, C. Tacina, K. Liscinsky, D. S. Howard, R. Bhargava, A. TI Particulate Emissions of Gas Turbine Engine Combustion of a Fischer-Tropsch Synthetic Fuel SO ENERGY & FUELS LA English DT Article ID AERODYNAMIC DIAMETER MEASUREMENTS; POLYCYCLIC AROMATIC-HYDROCARBONS; COMMERCIAL AIRCRAFT ENGINE; GENERATING PARTICLE BEAMS; AEROSOL MASS-SPECTROMETER; DENSITY CHARACTERIZATION; CONTROLLED DIMENSIONS; NOZZLE EXPANSIONS; COMBINED MOBILITY; DIESEL-ENGINE AB We have performed a comprehensive test of the effects of alternative fuels on the trace gas, nonvolatile particulate material (PM), and volatile PM emissions performance of a PW308 aircraft engine The tests evaluated standard JP-8 Jet fuel, a 'zero sulfur and 'zero aromatic' synthetic fuel produced from a natural gas feedstock using the Fischer-Tropsch (FT) process, and a 50/50 blend of the FT fuel and JP-8 A Pratt & Whitney PW308 engine was operated under the same thrust and combustion conditions to ensure that the tests captured fuel differences, rather than engine operation differences Emissions of trace gases, soot particles, and nucleation/growth PM were directly impacted by the sulfur and aromatic content of the fuel FT fuel combustion greatly reduced SO(2) (> 90%), gaseous hydrocarbons (40%) and NO (6-11%) content compared to JP 8 combustion In general, combustion of the JP-8/FT fuel blend resulted in emissions intermediate to the FT and JP-8 values FT combustion dramatically reduces soot particle number, mass, and size relative to JP-8, but increases effective soot particle density In all cases, the drag behavior of the soot particles indicates deviations from spherical shape and effective soot particle densities are consistent with the soot particles being aggregates of primary spherules As expected, FT combustion plumes support negligible formation of nucleation/growth mode particles (the number of nucleation growth mode particles is <20% the number of soot particles compared to > 500% for sulfur containing JP-8) However, particle nucleation/growth for blended fuel combustion is enhanced relative to JP 8, despite the lower sulfur content of the FT/JP-8 fuel blend A computational model explains the unexpected particle formation result primarily as the effect of much lower soot emissions present in blended fuel combustion exhaust compared to JP-8 Fuel composition, specifically aromatic and sulfur content, affect all aspects of emissions performance and the effect of simultaneously reducing aromatic and sulfur content can lead to surprising behavior C1 [Bhargava, A.] Pratt & Whitney, E Hartford, CT 06108 USA. [Timko, M. T.; Yu, Z.; Onasch, T. B.; Wong, H-W; Miake-Lye, R. C.] Aerodyne Res Inc, Billerica, MA 01821 USA. [Beyersdorf, A. J.; Anderson, B. E.] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Thornhill, K. L.; Winstead, E. L.] Sci Syst & Applicat Inc, Hampton, VA 23681 USA. [Corporan, E.] USAF, Res Lab, Dayton, OH 45433 USA. [DeWitt, M. J.; Klingshirn, C. D.] Univ Dayton, Res Inst, Dayton, OH 45433 USA. [Wey, C.] ASRC Aerosp Corp, Cleveland, OH 44135 USA. [Tacina, K.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Liscinsky, D. S.] United Technol Res Ctr, E Hartford, CT 06108 USA. [Howard, R.] AEDC ATA, Arnold AFB, TN 37389 USA. RP Bhargava, A (reprint author), Pratt & Whitney, E Hartford, CT 06108 USA. RI Beyersdorf, Andreas/N-1247-2013 FU NASA [NNC07CB57C, NNC07CB58C]; U S Air Force [F33615 03 D-2354] FX The U S Air Force sponsored this measurement effort (F33615 03 D-2354) The entire measurement team thanks the Pratt & Whitney test stand crew for use of engine facilities and kind support during the emissions tests Aerodyne personnel thank NASA (NRA grants NNC07CB57C and #NNC07CB58C) for supporting their involvement in this measurement and analysis activity Scott Herndon and Ezra Wood (Aerodyne) offered helpful advice before and during the engine tests, during data analysis and throughout the manuscript preparation process Charlie Hudgins (NASA Langley Research Center), Dan Bulzan (NASA Glenn Research Center) John Jayne (Aerodyne) Joel Kimmel (Aerodyne) and Bill Brooks (Aerodyne) assisted during instrument preparation activities and provided logistical support during field measurement activities NR 70 TC 41 Z9 41 U1 3 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2010 VL 24 BP 5883 EP 5896 DI 10.1021/ef100727t PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 694AE UT WOS:000285265800009 ER PT J AU Otake, T Wesolowski, DJ Anovitz, LM Allard, LF Ohmoto, H AF Otake, Tsubasa Wesolowski, David J. Anovitz, Lawrence M. Allard, Lawrence F. Ohmoto, Hiroshi TI Mechanisms of iron oxide transformations in hydrothermal systems SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID MOLAL THERMODYNAMIC PROPERTIES; LEPIDOCROCITE GAMMA-FEOOH; GOETHITE ALPHA-FEOOH; NONREDOX TRANSFORMATIONS; MAGHEMITE GAMMA-FE2O3; FE OXIDES; MAGNETITE; GEOCHEMISTRY; HEMATITE; SEA AB Coexistence of magnetite and hematite in hydrothermal systems has often been used to constrain the redox potential of fluids, assuming that the redox equilibrium is attained among all minerals and aqueous species. However, as temperature decreases, disequilibrium mineral assemblages may occur due to the slow kinetics of reaction involving the minerals and fluids. In this study, we conducted a series of experiments in which hematite or magnetite was reacted with an acidic solution under H(2)-rich hydrothermal conditions (T = 100-250 degrees C, P(H2) = 0.05-5 MPa) to investigate the kinetics of redox and non-redox transformations between hematite and magnetite, and the mechanisms of iron oxide transformation under hydrothermal conditions. The formation of euhedral crystals of hematite in 150 and 200 degrees C experiments, in which magnetite was used as the starting material, indicates that non-redox transformation of magnetite to hematite occurred within 24 h. The chemical composition of the experimental solutions was controlled by the non-redox transformation between magnetite and hematite throughout the experiments. While solution compositions were controlled by the non-redox transformation in the first 3 days in a 250 degrees C experiment, reductive dissolution of magnetite became important after 5 days and affected the solution chemistry. At 100 degrees C, the presence of maghemite was indicated in the first 7 days. Based on these results, equilibrium constants of non-redox transformation between magnetite and hematite and those of non-redox transformation between magnetite and maghemite were calculated. Our results suggest that the redox transformation of hematite to magnetite occurs in the following steps: (1) reductive dissolution of hematite to Fe((aq))(2+) and (2) non-redox transformation of hematite and Fe((aq))(2+) to magnetite. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Otake, Tsubasa; Ohmoto, Hiroshi] Penn State Univ, NASA, Astrobiol Inst, University Pk, PA 16802 USA. [Otake, Tsubasa; Ohmoto, Hiroshi] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Wesolowski, David J.; Anovitz, Lawrence M.; Allard, Lawrence F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Anovitz, Lawrence M.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. RP Otake, T (reprint author), Tohoku Univ, Grad Sch Sci, Dept Earth & Planetary Mat Sci, Aoba Ku, Aoba 6-3, Sendai, Miyagi 9808578, Japan. EM totake@m.tohoku.ac.jp RI Otake, Tsubasa/D-6137-2012; Anovitz, Lawrence/P-3144-2016 OI Anovitz, Lawrence/0000-0002-2609-8750 FU NASA Astrobiology Institute [NCC2-1057, NNA04CC06A]; NSF [EAR-0229556]; U.S. Department of Energy, Office of Basic Energy at Oak Ridge National Laboratory [DE-AC05-00OR22725] FX The authors acknowledge H. Barnes, S. Brantley, P. Heaney, T. Lasaga, K. Osseo-Asare, I. Johnson, and D. Bevacqua for valuable comments on the early manuscript. The authors also acknowledge J. Rosenqvist, M. Angelone, and J. Cantolina for technical assistance. Comments by K.M. Rosso and two anonymous reviewers are greatly appreciated. This project was supported by grants from NASA Astrobiology Institute (NCC2-1057; NNA04CC06A) and NSF (EAR-0229556) to H.O. D.J.W.'s effort and a portion of the effort of T.O. were supported by the U.S. Department of Energy, Office of Basic Energy, Geoscience Research Program, at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy (DE-AC05-00OR22725). NR 52 TC 13 Z9 14 U1 3 U2 58 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 1 PY 2010 VL 74 IS 21 BP 6141 EP 6156 DI 10.1016/j.gca.2010.07.024 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 658OQ UT WOS:000282499700011 ER PT J AU Pizzarello, S Wang, Y Chaban, GM AF Pizzarello, Sandra Wang, Yi Chaban, Galina M. TI A comparative study of the hydroxy acids from the Murchison, GRA 95229 and LAP 02342 meteorites SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID REPORTED OPTICAL-ACTIVITY; INDIVIDUAL AMINO-ACIDS; ENANTIOMER ENRICHMENT; ISOTOPIC ANALYSES; PEPTIDES; ORIGIN; LIGHT AB The hydroxy acid suites extracted from the Murchison (MN), GRA 95229 (GRA) and LAP 02342 (LAP) meteorites have been investigated for their molecular, chiral and isotopic composition. Substantial amounts of the compounds have been detected in all three meteorites, with a total abundance that is lower than that of the amino acids in the same stones. Overall, their molecular distributions mirror closely that of the corresponding amino acids and most evidently so for the LAP meteorite. A surprising L-lactic acid enantiomeric excess was found present in all three stones, which cannot be easily accounted by terrestrial contamination; all other compounds of the three hydroxy acid suites were found racemic. The branched-chain five carbon and the diastereomer six-carbon hydroxy acids were also studied vis-a-vis the corresponding amino acids and calculated ab initio thermodynamic data, with the comparison allowing the suggestion that meteoritic hydroxyacid at these chain lengths formed under thermodynamic control and, possibly, at a later stage than the corresponding amino acids. (13)C and D isotopic enrichments were detected for many of the meteoritic hydroxy acids and found to vary between molecular species with trends that also appear to correlate to those of amino acids; the highest delta D value (+3450 parts per thousand) was displayed by GRA 2-OH-2-methylbutyric acid. The data suggest that, while the amino- and hydroxy acids likely relate to common presolar precursor, their final distribution in meteorites was determined to large extent by the overall composition of the environments that saw their formation, with ammonia being the determining factor in their final abundance ratios. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Pizzarello, Sandra] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Wang, Yi] ZymaX Forens, Escondido, CA 92029 USA. [Chaban, Galina M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Pizzarello, S (reprint author), Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. EM pizzar@asu.edu FU NASA FX The authors thank Cecilia Satterwhite, Kevin Righter, the Meteorite Working Group and the Center for Meteorite Studies at Arizona State University for providing the CR2 and Murchison stones used in this study. S.P. is grateful for the NASA funding provided by the Cosmochemistry, Origins of the Solar System and Exobiology Programs. The authors thank L. Remusat, two anonymous referees and Associate Editor A.N. Krot for their reviews and helpful comments. NR 41 TC 23 Z9 25 U1 2 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 1 PY 2010 VL 74 IS 21 BP 6206 EP 6217 DI 10.1016/j.gca.2010.08.013 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 658OQ UT WOS:000282499700015 ER PT J AU Masuoka, P Klein, TA Kim, HC Claborn, DM Achee, N Andre, R Chamberlin, J Small, J Anyamba, A Lee, DK Yi, SH Sardelis, M Ju, YR Grieco, J AF Masuoka, Penny Klein, Terry A. Kim, Heung-Chul Claborn, David M. Achee, Nicole Andre, Richard Chamberlin, Judith Small, Jennifer Anyamba, Assaf Lee, Dong-Kyu Yi, Suk H. Sardelis, Michael Ju, Young-Ran Grieco, John TI Modeling the distribution of Culex tritaeniorhynchus to predict Japanese encephalitis distribution in the Republic of Korea SO GEOSPATIAL HEALTH LA English DT Article DE Culex tritaeniorhynchus; geographical distribution; ecological niche modeling; Japanese encephalitis virus; Republic of Korea ID SPECIES DISTRIBUTIONS; ECOLOGY; VECTORS; AREAS AB Over 35,000 cases of Japanese encephalitis (JE) are reported worldwide each year. Culex tritaeniorhynchus is the primary vector of the JE virus, while wading birds are natural reservoirs and swine amplifying hosts. As part of a JE risk analysis, the ecological niche modeling programme, Maxent, was used to develop a predictive model for the distribution of Cx. tritaeniorhynchus in the Republic of Korea, using mosquito collection data, temperature, precipitation, elevation, land cover and the normalized difference vegetation index (NDVI). The resulting probability maps from the model were consistent with the known environmental limitations of the mosquito with low probabilities predicted for forest covered mountains. July minimum temperature and land cover were the most important variables in the model. Elevation, summer NDVI (July-September), precipitation in July, summer minimum temperature (May-August) and maximum temperature for fall and winter months also contributed to the model. Comparison of the Cx. tritaeniorhynchus model to the distribution of JE cases in the Republic of Korea from 2001 to 2009 showed that cases among a highly vaccinated Korean population were located in high-probability areas for Cx. tritaeniorhynchus. No recent JE cases were reported from the eastern coastline, where higher probabilities of mosquitoes were predicted, but where only small numbers of pigs are raised. The geographical distribution of reported JE cases corresponded closely with the predicted high-probability areas for Cx. tritaeniorhynchus, making the map a useful tool for health risk analysis that could be used for planning preventive public health measures. C1 [Masuoka, Penny; Achee, Nicole; Andre, Richard; Chamberlin, Judith; Grieco, John] Uniformed Serv Univ Hlth Sci, Dept Prevent Med & Biometr, Bethesda, MD 20814 USA. [Klein, Terry A.; Yi, Suk H.] USA, Med Brigade 65, MEDDAC Korea, APO, AP 96205 USA. [Claborn, David M.] Missouri State Univ, Ctr Homeland Secur, Springfield, MO 65897 USA. [Small, Jennifer; Anyamba, Assaf] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Lee, Dong-Kyu] Kosin Univ, Dept Hlth & Environm, Pusan 606701, South Korea. [Sardelis, Michael] Natl Ctr Med Intelligence, Ft Detrick, MD 21702 USA. [Kim, Heung-Chul] 65th Med Brigade, Med Detachment 5, Multifunct Med Battal 168, APO, AP 96205 USA. RP Masuoka, P (reprint author), Uniformed Serv Univ Hlth Sci, Dept Prevent Med & Biometr, 4301 Jones Bridge Rd, Bethesda, MD 20814 USA. EM pmasuoka@usuhs.mil RI Valle, Ruben/A-7512-2013 FU Armed Forces Health Surveillance Center, Division of GEIS Operations FX The vector surveillance and modeling was funded by the Armed Forces Health Surveillance Center, Division of GEIS Operations. NR 26 TC 17 Z9 21 U1 0 U2 8 PU UNIV NAPLES FEDERICO II PI NAPLES PA FAC VET MED, DEP PATHOLOGY & ANIMAL HEALTH, VET PARASITOLOGY, VIA DELLA VETERINARIA 1, NAPLES, 80137, ITALY SN 1827-1987 J9 GEOSPATIAL HEALTH JI Geospatial Health PD NOV PY 2010 VL 5 IS 1 BP 45 EP 57 PG 13 WC Health Care Sciences & Services; Public, Environmental & Occupational Health SC Health Care Sciences & Services; Public, Environmental & Occupational Health GA 678OS UT WOS:000284089600005 PM 21080320 ER PT J AU Kharuk, VI Ranson, KJ Im, ST Vdovin, AS AF Kharuk, Vyacheslav I. Ranson, Kenneth J. Im, Sergey T. Vdovin, Alexander S. TI Spatial distribution and temporal dynamics of high-elevation forest stands in southern Siberia SO GLOBAL ECOLOGY AND BIOGEOGRAPHY LA English DT Article DE Alpine ecotone; climate change; landscape ecology; mountain forests; Siberia; tree line; topographic analysis ID GLACIER-NATIONAL-PARK; CLIMATE-CHANGE; SWEDISH SCANDES; TUNDRA ECOTONE; ALPINE; MOUNTAINS; TREELINE; 20TH-CENTURY; PERSPECTIVE; ENVIRONMENT AB Aim To evaluate the hypothesis that topographic features of high-elevation mountain environments govern spatial distribution and climate-driven dynamics of the forest. Location Upper mountain forest stands (elevation range 1800-2600 m) in the mountains of southern Siberia. Methods Archive maps, satellite and on-ground data from1960 to 2002 were used. Data were normalized to avoid bias caused by uneven distribution of topographic features (elevation, azimuth and slope steepness) within the analysed area. Spatial distribution of forest stands was analysed with respect to topography based on a digital elevation model (DEM). Results Spatial patterns in mountain forests are anisotropic with respect to azimuth, slope steepness and elevation. At a given elevation, the majority of forests occupied slopes with greater than mean slope values. As the elevation increased, forests shifted to steeper slopes. The orientation of forest azimuth distribution changed clockwise with increase in elevation (the total shift was 120 degrees), indicating a combined effect of wind and water stress on the observed forest patterns. Warming caused changes in the forest distribution patterns during the last four decades. The area of closed forests increased 1.5 times, which was attributed to increased stand density and tree migration. The migration rate was 1.5 +/- 0.9 m year-1, causing a mean forest line shift of 63 +/- 37 m. Along with upward migration, downward tree migration onto hill slopes was observed. Changes in tree morphology were also noted as widespread transformation of the prostrate forms of Siberian pine and larch into erect forms. Main conclusions The spatial pattern of upper mountain forests as well as the response of forests to warming strongly depends on topographic relief features (elevation, azimuth and slope steepness). With elevation increase (and thus a harsher environment) forests shifted to steep wind-protected slopes. A considerable increase in the stand area and increased elevation of the upper forest line was observed coincident with the climate warming that was observed. Warming promotes migration of trees to areas that are less protected from winter desiccation and snow abrasion (i.e. areas with lower values of slope steepness). Climate-induced forest response has significantly modified the spatial patterns of high-elevation forests in southern Siberia during the last four decades, as well as tree morphology. C1 [Kharuk, Vyacheslav I.; Im, Sergey T.] Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia. [Ranson, Kenneth J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Vdovin, Alexander S.] Siberian Fed Univ, Krasnoyarsk 660041, Russia. RP Kharuk, VI (reprint author), Sukachev Inst Forest SB RAS, Academgorodok 50-28, Krasnoyarsk 660036, Russia. EM kharuk@ksc.krasn.ru RI Ranson, Kenneth/G-2446-2012; Im, Sergei/J-2736-2016 OI Ranson, Kenneth/0000-0003-3806-7270; Im, Sergei/0000-0002-5794-7938 FU NASA Science Mission Directorate; Siberian Branch Russian Academy of Science [23.3.33, MK-2497.2009.5] FX This research was supported by the NASA Science Mission Directorate, Terrestrial Ecology Program, the Siberian Branch Russian Academy of Science Program no. 23.3.33, and grant no. MK-2497.2009.5. Thanks to Joanne Howl for edits of the manuscript. NR 33 TC 25 Z9 27 U1 2 U2 27 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1466-822X J9 GLOBAL ECOL BIOGEOGR JI Glob. Ecol. Biogeogr. PD NOV PY 2010 VL 19 IS 6 BP 822 EP 830 DI 10.1111/j.1466-8238.2010.00555.x PG 9 WC Ecology; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA 664SH UT WOS:000282982300006 ER PT J AU Pankine, AA Tamppari, LK Smith, MD AF Pankine, Alexey A. Tamppari, Leslie K. Smith, Michael D. TI MGS TES observations of the water vapor above the seasonal and perennial ice caps during northern spring and summer SO ICARUS LA English DT Article DE Mars; Mars, Atmosphere; Mars, Climate; Mars, Polar caps ID THERMAL EMISSION SPECTROMETER; POLAR-CAP; INTERANNUAL VARIABILITY; OMEGA/MARS EXPRESS; MARS ATMOSPHERE; LIQUID WATER; DUST; CLOUDS; BEHAVIOR; SURFACE AB We report on new retrievals of water vapor column abundances from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data. The new retrievals are from the TES nadir data taken above the 'cold' surface areas in the North polar region (T(suff) < 220 K, including seasonal frost and permanent ice cap) during spring and summer seasons, where retrievals were not performed initially. Retrievals are possible (with some modifications to the original algorithm) over cold surfaces overlaid by sufficiently warm atmosphere. The retrieved water vapor column abundances are compared to the column abundances observed by other spacecrafts in the Northern polar region during spring and summer and good agreement is found. We detect an annulus of water vapor growing above the edge of the retreating seasonal cap during spring. The formation of the vapor annulus is consistent with the previously proposed mechanism for water cycling in the polar region, according to which vapor released by frost sublimation during spring re-condenses on the retreating seasonal CO(2) cap. The source of the vapor in the vapor annulus, according to this model, is the water frost on the surface of the CO(2) at the retreating edge of the cap and the frost on the ground that is exposed by the retreating cap. Small contribution from regolith sources is possible too, but cannot be quantified based on the TES vapor data alone. Water vapor annulus exhibits interannual variability, which we attribute to variations in the atmospheric temperature. We propose that during spring and summer the water ice sublimation is retarded by high relative humidity of the local atmosphere, and that higher atmospheric temperatures lead to higher vapor column abundances by increasing the water holding capacity of the atmosphere. Since the atmospheric temperatures are strongly influenced by the atmospheric dust content, local dust storms may be controlling the release of vapor into the polar atmosphere. Water vapor abundances above the residual polar cap also exhibit noticeable interannual variability. In some years abundances above the cap are lower than the abundances outside of the cap, consistent with previous observations, while in the other years the abundances above the cap are higher or similar to abundances outside of the cap. We speculate that the differences may be due to weaker off-cap transport in the latter case, keeping more vapor closer to the source at the surface of the residual cap. Despite the large observed variability in water vapor column abundances in the Northern polar region during spring and summer, the latitudinal distribution of the vapor mass in the atmosphere is very similar during the summer season. If the variability in vapor abundances is caused by the variability of vapor sources across the residual cap then this would mean that they annually contribute relatively little vapor mass to significantly affect the vapor mass budget. Alternatively this may suggest that the vapor variability is caused by the variability of the polar atmospheric circulation. The new water vapor retrievals should be useful in tuning the Global Circulation Models of the martian water cycle. (C) 2010 Elsevier Inc. All rights reserved. C1 [Pankine, Alexey A.; Tamppari, Leslie K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Pankine, AA (reprint author), CALTECH, Jet Prop Lab, MS 183-301, Pasadena, CA 91109 USA. EM alexey.a.pankine@jpl.nasa.gov RI Smith, Michael/C-8875-2012 FU National Aeronautics and Space Administration FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the Research and Technology Development Fund program. We would like to thank Dr. Riccardo Melchiorri and Dr. Martin Tschimmel for reviewing the manuscript and providing useful suggestions. NR 57 TC 12 Z9 12 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 58 EP 71 DI 10.1016/j.icarus.2010.06.043 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100006 ER PT J AU Chesley, SR Baer, J Monet, DG AF Chesley, Steven R. Baer, James Monet, David G. TI Treatment of star catalog biases in asteroid astrometric observations SO ICARUS LA English DT Article DE Asteroids; Comets ID PHOTOMETRIC DATA; 99942 APOPHIS; UCAC2; 2MASS; SHAPE AB In this paper, we discuss the detection of systematic biases in star positions of the USNO A1.0, A2.0, and B1.0 catalogs, as deduced from the residuals of numbered asteroid observations. We present a technique for the removal of these biases, and validate this technique by illustrating the resulting improvements in numbered asteroid residuals, and by establishing that debiased orbits predict omitted observations more accurately than do orbits derived from non-debiased observations. We also illustrate the benefits of debiasing to high-precision astrometric applications such as asteroid mass determination and collision analysis, including a refined prediction of the impact probability of 99942 Apophis. Specifically, we find the IP of Apophis to be lowered by nearly an order of magnitude to 4.5 x 10(-6) for the 2036 close approach. (C) 2010 Elsevier Inc. All rights reserved. C1 [Baer, James] James Cook Univ, Sch Engn & Phys Sci, Townsville, Qld 4811, Australia. [Chesley, Steven R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Monet, David G.] USN Observ, Flagstaff, AZ 86001 USA. RP Baer, J (reprint author), James Cook Univ, Sch Engn & Phys Sci, Townsville, Qld 4811, Australia. EM steve.chesley@jpl.nasa.gov; jimbaer1@earthlink.net FU National Aeronautics and Space Administration; National Science Foundation FX We are grateful to Tim Spahr and Gareth Williams of the Minor Planet Center at Harvard Univ., who provided the astrometric catalog information, which was vital for this effort to proceed. Numerous observers and observing programs provided valuable information beyond what is available from the MPC data files. In particular, we thank Bob McMillan (Spacewatch), Ed Beshore (Catalina Sky Survey), Scott Stuart (LINEAR), Bruce Koehn (LONEOS) and Ken Lawrence (NEAT) for their cooperation. Finally, we are sincerely grateful to Andrea Milani, for his expertise and help at each step of this effort. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. Some of the results in this paper have been derived using the HEALPix package (Gorski et al., 2005). This research was conducted in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 33 TC 47 Z9 47 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 158 EP 181 DI 10.1016/j.icarus.2010.06.003 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100014 ER PT J AU Sussman, MG Chanover, NJ Simon-Miller, AA Vasavada, AR Beebe, RF AF Sussman, Michael G. Chanover, Nancy J. Simon-Miller, Amy A. Vasavada, Ashwin R. Beebe, Reta F. TI Analysis of Jupiter's Oval BA: A streamlined approach SO ICARUS LA English DT Article DE Atmospheres, Dynamics; Jupiter, Atmosphere; Data reduction techniques ID GREAT RED SPOT; WHITE OVALS; ATMOSPHERE; TRACKING; VELOCITY; FLOW; BC AB We present a novel method of constructing streamlines to derive wind speeds within jovian vortices and demonstrate its application to Oval BA for 2001 pre-reddened Cassini flyby data, 2007 post-reddened New Horizons flyby data, and 1998 Galileo data of precursor Oval DE. Our method, while automated, attempts to combine the advantages of both automated and manual cloud tracking methods. The southern maximum wind speed of Oval BA does not show significant changes between these data sets to within our measurement uncertainty. The northern maximum does appear to have increased in strength during this time interval, which likely correlates with the oval's return to a symmetric shape. We demonstrate how the use of closed streamlines can provide measurements of vorticity averaged over the encircled area with no a priori assumptions concerning oval shape. We find increased averaged interior vorticity between pre- and post-reddened Oval BA, with the precursor Oval DE occupying a middle value of vorticity between these two. (C) 2010 Elsevier Inc. All rights reserved. C1 [Sussman, Michael G.; Chanover, Nancy J.; Beebe, Reta F.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Simon-Miller, Amy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Vasavada, Ashwin R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sussman, MG (reprint author), New Mexico State Univ, Dept Astron, POB 30001,MSC 4500, Las Cruces, NM 88003 USA. EM msussman@nmsu.edu RI Simon, Amy/C-8020-2012 OI Simon, Amy/0000-0003-4641-6186 NR 18 TC 3 Z9 3 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 202 EP 210 DI 10.1016/j.icarus.2010.06.044 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100016 ER PT J AU Simon-Miller, AA Gierasch, PJ AF Simon-Miller, Amy A. Gierasch, Peter J. TI On the long-term variability of Jupiter's winds and brightness as observed from Hubble SO ICARUS LA English DT Article DE Jupiter, Atmosphere; Atmospheres, Evolution; Atmospheres, Dynamics ID CLOUD STRUCTURE; GALILEO PROBE; SPATIAL-ORGANIZATION; VERTICAL STRUCTURE; TIME-DEPENDENCE; ZONAL WINDS; ATMOSPHERE; STRATOSPHERE; TEMPERATURES; IMAGES AB Hubble Space Telescope Wide Field Planetary Camera 2 imaging data of Jupiter were combined with wind profiles from Voyager and Cassini data to study long-term variability in Jupiter's winds and cloud brightness. Searches for evidence of wind velocity periodicity yielded a few latitudes with potential variability; the most significant periods were found nearly symmetrically about the equator at 0 degrees, 10-12 degrees N, and 14-18 degrees S planetographic latitude. The low to mid-latitude signals have components consistent with the measured stratospheric temperature Quasi-Quadrennial Oscillation (QQO) period of 4-5 years, while the equatorial signal is approximately seasonal and could be tied to mesoscale wave formation. Robustness tests indicate that a constant or continuously varying periodic signal near 4.5 years would appear with high significance in the data periodograms as long as uncertainties or noise in the data are not of greater magnitude. However, the lack of a consistent signal over many latitudes makes it difficult to interpret as a QQO-related change. In addition, further analyses of calibrated 410-nm and 953-nm brightness scans found few corresponding changes in troposphere haze and cloud structure on QQO timescales. However, stratospheric haze reflectance at 255-nm did appear to vary on seasonal timescales, though the data do not have enough temporal coverage or photometric accuracy to be conclusive. Sufficient temporal coverage and spacing, as well as data quality, are critical to this type of search. (C) 2010 Elsevier Inc. All rights reserved. C1 [Simon-Miller, Amy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gierasch, Peter J.] Cornell Univ, Space Sci Dept 318, Ithaca, NY 14853 USA. RP Simon-Miller, AA (reprint author), NASA, Goddard Space Flight Ctr, Code 693, Greenbelt, MD 20771 USA. EM Amy.Simon@nasa.gov RI Simon, Amy/C-8020-2012 OI Simon, Amy/0000-0003-4641-6186 FU NASA [NAS 5-26555] FX The authors thank Nicholas Stone, Brad Poston and Irene Tsavaris for wind measurements over the years. A.S.M also thanks Shireen Gonzaga, John Biretta and Erich Karkoschka for many helpful discussions about WFPC2 filter calibrations. This work was based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA Contract NAS 5-26555. These observations are associated with programs GO/DD 5313, 5642, 6009, 6452, 7616, 8148, 8405, 10782, 11096, 11102, 11310, and 11498. Funding for portions of this project was provided by a grant from the NASA Planetary Atmospheres program. NR 39 TC 10 Z9 10 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 258 EP 269 DI 10.1016/j.icarus.2010.06.020 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100019 ER PT J AU Morishima, R Spilker, L Salo, H Ohtsuki, K Altobelli, N Pilortz, S AF Morishima, Ryuji Spilker, Linda Salo, Heikki Ohtsuki, Keiji Altobelli, Nicolas Pilortz, Stuart TI A multilayer model for thermal infrared emission of Saturn's rings II: Albedo, spins, and vertical mixing of ring particles inferred from Cassini CIRS SO ICARUS LA English DT Article DE Collisional physics; Saturn, Rings; Infrared observations; Radiative transfer ID DENSE PLANETARY RINGS; SELF-GRAVITY WAKES; NUMERICAL SIMULATIONS; STELLAR OCCULTATION; VELOCITY DISPERSION; AZIMUTHAL ASYMMETRY; SIZE DISTRIBUTION; SOLAR ELEVATION; MAIN RINGS; B-RING AB Since the Saturn orbit insertion of the Cassini spacecraft in mid-2004, the Cassini composite infrared spectrometer (CIRS) measured temperatures of Saturn's main rings at various observational geometries. In the present study, we apply our new thermal model (Morishima, R., Salo, H., Ohtsuki, K. [2009]. Icarus 201, 634-654) for fitting to the early phase Cassini data (Spilker, L.J., and 11 colleagues [2006]. Planet. Space Sci. 54, 1167-1176). Our model is based on classical radiative transfer and takes into account the heat transport due to particle motion in the azimuthal and vertical directions. The model assumes a bimodal size distribution consisting of small fast rotators and large slow rotators. We estimated the bolometric Bond albedo, A(V), the fraction of fast rotators in cross section, f(fast). and the thermal inertia, Gamma, by the data fitting at every radius from the inner C ring to the outer A ring. The albedo A(V) is 0.1-0.4, 0.5-0.7, 0.4, 0.5 for the C ring, the B ring, the Cassini division, and the A ring, respectively. The fraction f(fast) depends on the ratio of scale height of fast rotators to that of slow rotators, h(r). When h(r) = 1, f(fast) is roughly half for the entire rings, except for the A ring, where f(fast) increases from 0.5 to 0.9 with increasing saturnocentric radius. When h(r) increases from 1 to 3, f(fast), decreases by 0.2-0.4 for the B and A rings while no change i f(fast) is seen for the optically thin C ring and Cassini division. The large f(fast), seen in the outer A ring probably indicates that a large number of small particles detach from large particles in high velocity collisions due to satellite perturbations or self-gravity wakes. The thermal inertia, Gamma, is constrained from the efficiency of the vertical heat transport due to particle motion between the lit and unlit faces, and is coupled with the type of vertical motion. We found that in most regions, except for the mid B ring, sinusoidal vertical motion without bouncing is more reasonable than cycloidal motion assuming bouncing at the midplane, because the latter motion gives too large Gamma as compared with previous estimations. For the mid B ring, where the optical depth is highest in Saturn's rings, cycloidal vertical motion is more reasonable than sinusoidal vertical motion which gives too small Gamma. (C) 2010 Elsevier Inc. All rights reserved. C1 [Morishima, Ryuji; Ohtsuki, Keiji] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Morishima, Ryuji; Spilker, Linda] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Salo, Heikki] Univ Oulu, Dept Phys Sci, Div Astron, Oulu 90014, Finland. [Ohtsuki, Keiji] Kobe Univ, Dept Earth & Planetary Sci, Kobe 6578501, Hyogo, Japan. [Ohtsuki, Keiji] Kobe Univ, Ctr Planetary Sci, Kobe 6578501, Hyogo, Japan. [Altobelli, Nicolas] European Space Agcy, European Space & Astron Ctr, Madrid 28692, Spain. [Pilortz, Stuart] SETI Inst, Mountain View, CA 94043 USA. RP Morishima, R (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. EM Ryuji.Morishima@lasp.colorado.edu FU NASA; Cassini project; Academy of Finlan FX We are deeply grateful to anonymous reviewers for their helpful comments, which greatly improved our manuscript. This research was partly carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Government sponsorship acknowledged. We are grateful for the support by the Cassini project and the NASA's OPR and PGG Programs. We thank Scott Edington and Shawn Brooks for designing the CIRS ring observations, E. Deau for useful discussion for albedo, and A. Flandes for continuous encouragement. We thank Josh Colwell and the Cassini UVIS ring team for providing the unpublished optical depth data. H.S. is grateful for the support by the Academy of Finland. Numerical simulations were carried out with the supercomputer, Nebula, at JPL. NR 58 TC 11 Z9 11 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 330 EP 345 DI 10.1016/j.icarus.2010.06.032 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100024 ER PT J AU Shirley, JH Dalton, JB Prockter, LM Kamp, LW AF Shirley, James H. Dalton, James B., III Prockter, Louise M. Kamp, Lucas W. TI Europa's ridged plains and smooth low albedo plains: Distinctive compositions and compositional gradients at the leading side-trailing side boundary SO ICARUS LA English DT Article DE Europa; Satellites, Composition; Spectroscopy; Jupiter, Satellites ID INFRARED MAPPING SPECTROMETER; ICY GALILEAN SATELLITES; HYDRATED SALT MINERALS; WATER-ICE; SUBSURFACE OCEAN; OPTICAL-CONSTANTS; SULFURIC-ACID; REFLECTANCE SPECTROSCOPY; CRYSTALLINE H2O-ICE; GEOLOGICAL HISTORY AB This investigation uses linear mixture modeling employing cryogenic laboratory reference spectra to estimate surface compositions and water ice grain sizes of Europa's ridged plains and smooth low albedo plains. Near-infrared spectra for 23 exposures of ridged plains materials are analyzed along with 11 spectra representing low albedo plains. Modeling indicates that these geologic units differ both in the relative abundance of non-ice hydrated species and in the abundance and grain sizes of water ice. The background ridged plains in our study area appear to consist predominantly of water ice (similar to 46%) with approximately equal amounts (on average) of hydrated sulfuric acid (similar to 27%) and hydrated salts (similar to 27%). The solutions for the smooth low albedo plains are dominated by hydrated salts (similar to 62%), with a relatively low mean abundance of water ice (similar to 10%), and an abundance of hydrated sulfuric acid similar to that found in ridged plains (similar to 27%). The model yields larger water ice grain sizes (100 mu m versus 50-75 mu m) in the ridged plains. The 1.5-mu m water ice absorption band minimum is found at shorter wavelengths in the low albedo plains deposits than in the ridged plains (1.498 +/- .003 mu m versus 1.504 +/- .001 mu m). The 2.0-mu m band minimum in the low albedo plains exhibits a somewhat larger blueshift (1.964 +/- .006 mu m versus 1.983 +/- .006 mu m for the ridged plains). The study area spans longitudes from 168 degrees to 185 degrees W, which includes Europa's leading side-trailing side boundary. A well-defined spatial gradient of sulfuric acid hydrate abundance is found for both geologic units, with concentrations increasing in the direction of the trailing side apex. We associate this distribution with the exogenic effects of magnetospheric charged particle bombardment and associated chemical processing of surface materials (the radiolytic sulfur cycle). However, one family of low albedo plains exposures exhibits sulfuric acid hydrate abundances up to 33% lower than found for adjacent exposures, suggesting that these materials have undergone less processing, thus implying that these deposits may have been emplaced more recently. Modeling identifies high abundances (to 30%) of magnesium sulfate brines in the low albedo plains exposures. Our investigation marks the first spectroscopic identification of MgSO4 brine on Europa. We also find significantly higher abundances of sodium-bearing species (bloedite and mirabilite) in the low albedo plains. The results illuminate the role of radiolytic processes in modifying the surface composition of Europa, and may provide new constraints for models of the composition of Europa's putative subsurface ocean. (C) 2010 Elsevier Inc. All rights reserved. C1 [Shirley, James H.; Dalton, James B., III; Kamp, Lucas W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Prockter, Louise M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Shirley, JH (reprint author), CALTECH, Jet Prop Lab, Ms 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM James.H.Shirley@jpl.nasa.gov NR 98 TC 26 Z9 26 U1 1 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 358 EP 384 DI 10.1016/j.icarus.2010.06.018 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100026 ER PT J AU Dobrovolskis, AR Alvarellos, JL Zahnle, KJ Lissauer, JJ AF Dobrovolskis, Anthony R. Alvarellos, Jose Luis Zahnle, Kevin J. Lissauer, Jack J. TI Exchange of ejecta between Telesto and Calypso: Tadpoles, horseshoes, and passing orbits SO ICARUS LA English DT Article DE Cratering; Satellites, Dynamics; Saturn, Satellites ID SMALL INNER SATELLITES; CRATERING RATES; SATURN SYSTEM; VOYAGER-2; BEHAVIOR; EUROPA; COMETS; BODIES; RING AB We have numerically integrated the orbits of ejecta from Telesto and Calypso, the two small Trojan companions of Saturn's major satellite Tethys. Ejecta were launched with speeds comparable to or exceeding their parent's escape velocity, consistent with impacts into regolith surfaces. We find that the fates of ejecta fall into several distinct categories, depending on both the speed and direction of launch. The slowest ejecta follow suborbital trajectories and re-impact their source moon in less than one day. Slightly faster debris barely escape their parent's Hill sphere and are confined to tadpole orbits, librating about Tethys' triangular Lagrange points L(4) (leading, near Telesto) or L(5) (trailing, near Calypso) with nearly the same orbital semi-major axis as Tethys, Telesto, and Calypso. These ejecta too eventually re-impact their source moon, but with a median lifetime of a few dozen years. Those which re-impact within the first 10 years or so have lifetimes near integer multiples of 348.6 days (half the tadpole period). Still faster debris with azimuthal velocity components greater than or similar to 10 m/s enter horseshoe orbits which enclose both L(4) and L(5) as well as L(3), but which avoid Tethys and its Hill sphere. These ejecta impact either Telesto or Calypso at comparable rates, with median lifetimes of several thousand years. However, they cannot reach Tethys itself; only the fastest ejecta, with azimuthal velocities greater than or similar to 40 m/s, achieve "passing orbits" which are able to encounter Tethys. Tethys accretes most of these ejecta within several years, but some 1% of them are scattered either inward to hit Enceladus or outward to strike Dione, over timescales on the order of a few hundred years. (C) 2010 Elsevier Inc. All rights reserved. C1 [Dobrovolskis, Anthony R.; Zahnle, Kevin J.; Lissauer, Jack J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Dobrovolskis, Anthony R.] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Santa Cruz, CA 95064 USA. [Alvarellos, Jose Luis] Space Syst Loral, Palo Alto, CA 94303 USA. RP Dobrovolskis, AR (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-3, Moffett Field, CA 94035 USA. EM anthony.r.dobrovolskis@nasa.gov FU NASA [WBS 811073.02.01.03.89] FX We would like to acknowledge Patrick Hamill for his contributions, and for previewing the manuscript, and to thank R.A. Jacobson for providing the initial conditions for the Saturn system. J.L.A. also would like to acknowledge the patience and encouragement of Alejandra, Joselito, Isabella and Danielito. This work has made use of NASA's Astrophysics Data System (ADS located at http://adswww.harvard.edu), and was supported by NASA's Planetary Geology & Geophysics Program through WBS 811073.02.01.03.89. NR 37 TC 2 Z9 2 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 436 EP 445 DI 10.1016/j.icarus.2010.06.023 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100031 ER PT J AU Helled, R Anderson, JD Schubert, G AF Helled, Ravit Anderson, John D. Schubert, Gerald TI Uranus and Neptune: Shape and rotation SO ICARUS LA English DT Article DE Uranus, Atmosphere; Uranus; Neptune; Neptune, Atmosphere; Atmospheres, Dynamics ID RADIO OCCULTATION MEASUREMENTS; 1982 STELLAR OCCULTATION; INTERIOR STRUCTURE; MAGNETIC-FIELDS; VOYAGER-2; ATMOSPHERE; PERIOD; SATURN; SYSTEM; WINDS AB Both Uranus and Neptune are thought to have strong zonal winds with velocities of several 100 m These wind velocities, however, assume solid-body rotation periods based on Voyager 2 measurements of periodic variations in the planets' radio signals and of fits to the planets' magnetic fields; 17.24 h and 16.11 h for Uranus and Neptune, respectively. The realization that the radio period of Saturn does not represent the planet's deep interior rotation and the complexity of the magnetic fields of Uranus and Neptune raise the possibility that the Voyager 2 radio and magnetic periods might not represent the deep interior rotation periods of the ice giants. Moreover, if there is deep differential rotation within Uranus and Neptune no single solid-body rotation period could characterize the bulk rotation of the planets. We use wind and shape data to investigate the rotation of Uranus and Neptune. The shapes (flattening) of the ice giants are not measured, but only inferred from atmospheric wind speeds and radio occultation measurements at a single latitude. The inferred oblateness values of Uranus and Neptune do not correspond to bodies rotating with the Voyager rotation periods. Minimization of wind velocities or dynamic heights of the 1 bar isosurfaces, constrained by the single occultation radii and gravitational coefficients of the planets, leads to solid-body rotation periods of similar to 16.58 h for Uranus and similar to 17.46 h for Neptune. Uranus might be rotating faster and Neptune slower than Voyager rotation speeds. We derive shapes for the planets based on these rotation rates. Wind velocities with respect to these rotation periods are essentially identical on Uranus and Neptune and wind speeds are slower than previously thought. Alternatively, if we interpret wind measurements in terms of differential rotation on cylinders there are essentially no residual atmospheric winds. (C) 2010 Elsevier Inc. All rights reserved. C1 [Helled, Ravit; Schubert, Gerald] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Helled, Ravit; Schubert, Gerald] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Anderson, John D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Helled, R (reprint author), Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. EM rhelled@ucla.edu; jdandy@earthlink.net; schubert@ucla.edu FU NASA through the Southwest Research Institute FX We thank F.M. Flasar and an anonymous referee for constructive comments. R.H. and J.D.A acknowledge support from NASA through the Southwest Research Institute. G.S. acknowledges support from the NASA PGG and PA programs. NR 30 TC 12 Z9 12 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 446 EP 454 DI 10.1016/j.icarus.2010.06.037 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100032 ER PT J AU Davidsson, BJR Gulkis, S Alexander, C von Allmen, P Kamp, L Lee, S Warell, J AF Davidsson, Bjorn J. R. Gulkis, Samuel Alexander, Claudia von Allmen, Paul Kamp, Lucas Lee, Seungwon Warell, Johan TI Gas kinetics and dust dynamics in low-density comet comae SO ICARUS LA English DT Article DE Comets, Coma; Comets, Dust; Spectroscopy ID MONTE-CARLO SIMULATIONS; OH LINE-SHAPES; NAVIER-STOKES; EXPANSION VELOCITY; CIRCUMNUCLEAR COMA; 67P/CHURYUMOV-GERASIMENKO; MODEL; NUCLEUS; MISSION; SURFACE AB Extensive regions of low-density cometary comae are characterized by important deviations from the Maxwell-Boltzmann velocity distribution, i.e. breakdown of thermodynamic equilibrium. The consequences of this on the shapes of emission and absorption lines, and for the acceleration of solid bodies due to gas drag, have rarely been investigated. These problems are studied here to aid in the development of future coma models, and in preparation for observations of Comet 67P/Churyumov-Gerasimenko from the ESA Rosetta spacecraft. Two topics in particular, related to Rosetta, are preparation for in situ observations of water, carbon monoxide, ammonia, and methanol emission lines by the mm/sub-mm spectrometer MIRO, as well as gas drag forces on dust grains and on the Rosetta spacecraft itself. Direct Simulation Monte Carlo (DSMC) modeling of H(2)O/CO mixtures in spherically symmetric geometries at various heliocentric distances are used to study the evolution of the (generally non-Maxwellian) velocity distribution function throughout the coma. Such distribution functions are then used to calculate Doppler broadening profiles and drag forces. It is found that deviation from thermodynamic equilibrium indeed is commonplace, and already at 2.5 AU from the Sun the entire comet coma displays manifestations of such breakdown, e.g., non-equal partitioning of energy between kinetic and rotational modes, causing substantial differences between translational and rotational temperatures. We exemplify how deviations from thermodynamic equilibrium affect the properties of Doppler broadened line profiles. Upper limits on the size of liftable dust grains as well as terminal grain velocities are presented. Furthermore, it is demonstrated that the drag-to-gravity force ratio is likely to decrease with decreasing cometocentric distance, which may be of relevance both for Rosetta and for the lander probe Philae. (C) 2010 Elsevier Inc. All rights reserved. C1 [Davidsson, Bjorn J. R.; Warell, Johan] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Gulkis, Samuel; Alexander, Claudia; von Allmen, Paul; Kamp, Lucas; Lee, Seungwon] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Davidsson, BJR (reprint author), Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden. EM bjorn.davidsson@fysast.uu.se; samuel.gulkis@jpl.nasa.gov; claudia.j.alexander@jpi.nasa.gov; paul.a.vonallmen@jpl.nasa.gov; lucas.kamp@jpl.nasa.gov; seungwon.lee@jpl.nasa.gov; johan.warell@fysast.uu.se FU NASA; National Aeronautics and Space Administration FX Davidsson most gratefully thanks the US Rosetta Project Manager Dr. Claudia Alexander and the Rosetta/MIRO Principal Investigator Dr. Samuel Gulkis for the invitation to work at the Jet Propulsion Laboratory in Pasadena (CA) for six months as a visiting scientist. A part of this research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work was funded by the NASA-Rosetta project. NR 38 TC 9 Z9 9 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 455 EP 471 DI 10.1016/j.icarus.2010.06.022 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100033 ER PT J AU Peetersa, Z Hudson, RL Moore, MH Lewis, A AF Peetersa, Z. Hudson, R. L. Moore, M. H. Lewis, Ariel TI The formation and stability of carbonic acid on outer Solar System bodies SO ICARUS LA English DT Article DE Ices, IR spectroscopy; Satellites, Surfaces; Cosmic rays ID PROTON IRRADIATED H2O+CO2; ICE MIXTURES; VAPOR-PRESSURE; CASSINI-VIMS; WATER-ICE; CO2 ICES; SATELLITES; ION; RELEVANT; DIOXIDE AB The radiation chemistry, thermal stability, and vapor pressure of solid-phase carbonic acid (H(2)CO(3)) have been studied with mid-infrared spectroscopy. A new procedure for measuring this molecule's radiation stability has been used to obtain intrinsic IR band strengths and half-lives for radiolytic destruction. We report, for the first time, measurements of carbonic acid's vapor pressure (0.290-2.33 x 10(-11) bar for 240-255 K) and its enthalpy of sublimation (71 +/- 9 kJ mol(-1)). We also report the first observation of a chemical reaction involving solid-phase carbonic acid. Possible applications of these findings are discussed, with an emphasis on the outer Solar System icy surfaces. Published by Elsevier Inc. C1 [Peetersa, Z.; Hudson, R. L.; Moore, M. H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Peetersa, Z.] Catholic Univ Amer, Dept Chem, Washington, DC 20064 USA. [Hudson, R. L.; Lewis, Ariel] Eckerd Coll, Dept Chem, St Petersburg, FL 33711 USA. RP Hudson, RL (reprint author), NASA, Goddard Space Flight Ctr, Code 691, Greenbelt, MD 20771 USA. EM Reggie.Hudson@NASA.gov RI Hudson, Reggie/E-2335-2012 FU NASA [NNG05GL46G]; Goddard Center for Astrobiology; Outer Planets; Planetary Geology and Geophysics FX The authors acknowledge support through the Goddard Center for Astrobiology, and NASA's Planetary Atmospheres, Outer Planets, and Planetary Geology and Geophysics programs. Zan Peeters also was supported through NASA Grant NNG05GL46G to Catholic University of America. Ariel Lewis worked as a summer researcher at the Goddard Center for Astrobiology. Steve Brown, Tom Ward, and Eugene Gerashchenko, members of the Radiation Laboratory at NASA Goddard, are thanked for operation of the Van de Graaff accelerator. Paul Cooper (George Mason University) is acknowledged for construction of equipment and preliminary vapor NR 36 TC 18 Z9 18 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 480 EP 487 DI 10.1016/j.icarus.2010.06.002 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100035 ER PT J AU Chattopadhyay, G Ward, JS Llombert, N Cooper, KB AF Chattopadhyay, Goutam Ward, John S. Llombert, Nuria Cooper, Ken B. TI Submillimeter-Wave 90 degrees Polarization Twists for Integrated Waveguide Circuits SO IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS LA English DT Article DE Polarization; submillimeter-wave waveguides; waveguide transitions; waveguide twists AB We present a novel full-waveguide-band 90 polarization twist implemented in full-height rectangular waveguide suitable for use in submillimeter-wave and terahertz-integrated waveguide circuits. Combined benefits of simplified fabrication, suitability for silicon micromachining, suitability for integration with other components into integrated waveguide circuits without interconnecting flanges, and alleviation of waveguide associated losses and mismatches, make this component well-suited for submillimeter-wave applications. A polarization twist fabricated for WR-3 waveguide with UG-387/UM flanges was tested to confirm insertion loss better than 0.5 dB and return loss better than 20 dB from 220 to 320 GHz. We also fabricated and tested a polarization twist scaled to the 500-700 GHz band. By using only a single constant-depth channel in addition to the E-plane and H-plane split waveguide channels, this component is well optimized for fabrication with silicon micromachining, making it scalable to at least 5 THz. C1 [Chattopadhyay, Goutam; Ward, John S.; Llombert, Nuria; Cooper, Ken B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Chattopadhyay, G (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM goutam@jpl.nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration FX Manuscript received March 01, 2010; revised July 09, 2010; accepted August 02, 2010. Date of publication September 20, 2010; date of current version November 05, 2010. This work was supported by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. NR 10 TC 3 Z9 3 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1531-1309 J9 IEEE MICROW WIREL CO JI IEEE Microw. Wirel. Compon. Lett. PD NOV PY 2010 VL 20 IS 11 BP 592 EP 594 DI 10.1109/LMWC.2010.2068541 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA 677IO UT WOS:000283983000002 ER PT J AU Thompson, DR Mandrake, L Gilmore, MS Castano, R AF Thompson, David R. Mandrake, Lukas Gilmore, Martha S. Castano, Rebecca TI Superpixel Endmember Detection SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Airborne Visible/Infrared Imaging Spectrometer (AVIRIS); Compact Reconnaissance Imaging Spectrometer (CRISM); endmember detection; hyperspectral images; planetary geology; segmentation; superpixels ID HYPERSPECTRAL DATA; EXTRACTION; MARS; SEGMENTATION; DIFFUSION; ALGORITHM; IMAGERY; ROCKS AB Superpixels are homogeneous image regions comprised of multiple contiguous pixels. Superpixel representations can reduce noise in hyperspectral images by exploiting the spatial contiguity of scene features. This paper combines superpixels with endmember extraction to produce concise mineralogical summaries that assist in browsing large image catalogs. First, a graph-based agglomerative algorithm oversegments the image. We then use segments' mean spectra as input to existing statistical endmember detection algorithms such as sequential maximum angle convex cone (SMACC) and N-FINDR. Experiments compare automatically detected endmembers to target minerals in an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene of Cuprite, Nevada. We also consider a planetary science data set from the Compact Reconnaissance Imaging Spectrometer (CRISM) instrument that benefits from spatial averaging due to higher noise. In both cases, superpixel representations significantly reduce the computational complexity of later processing while improving endmembers' match to the target spectra. C1 [Thompson, David R.; Mandrake, Lukas; Castano, Rebecca] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gilmore, Martha S.] Wesleyan Univ, Middletown, CT 06459 USA. RP Thompson, DR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM david.r.thompson@jpl.nasa.gov RI Gilmore, Martha/G-5856-2011 FU NASA AMMOS Multimission Ground Systems and Services office FX The authors would like to thank the CRISM team and Brown University for the use of the CRISM Analysis Tool (CAT) and their software contributions to the community. The work described in this paper was carried out at the Jet Propulsion Laboratory with support from the NASA AMMOS Multimission Ground Systems and Services office. NR 32 TC 38 Z9 39 U1 2 U2 20 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD NOV PY 2010 VL 48 IS 11 BP 4023 EP 4033 DI 10.1109/TGRS.2010.2070802 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 670SS UT WOS:000283448200015 ER PT J AU Tarabalka, Y Benediktsson, JA Chanussot, J Tilton, JC AF Tarabalka, Yuliya Benediktsson, Jon Atli Chanussot, Jocelyn Tilton, James C. TI Multiple Spectral-Spatial Classification Approach for Hyperspectral Data SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Classification; hyperspectral images; minimum spanning forest (MSF); multiple classifiers (MCs); segmentation ID IMAGE DATA; SEGMENTATION; CLASSIFIERS; EXTRACTION; ALGORITHM; NETWORKS AB A new multiple-classifier approach for spectralspatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region with a corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker-selection procedure, each of them combining the results of a pixelwise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification-driven marker and forms a region in the spectral-spatial classification map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies when compared with previously proposed classification techniques. C1 [Tarabalka, Yuliya; Benediktsson, Jon Atli] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland. [Tarabalka, Yuliya; Chanussot, Jocelyn] Grenoble Inst Technol INPG, Grenoble Images Speech Signals & Automat Lab GIPS, F-38402 St Martin Dheres, France. [Tilton, James C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Tarabalka, Y (reprint author), Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland. EM yuliya.tarabalka@hyperinet.eu; benedikt@hi.is; jocelyn.chanussot@gipsa-lab.grenoble-inp.fr; james.c.tilton@nasa.gov RI Benediktsson, Jon/F-2861-2010; anzhi, yue/A-8609-2012 OI Benediktsson, Jon/0000-0003-0621-9647; FU Marie Curie Research Training Network FX Manuscript received December 30, 2009; revised May 11, 2010. Date of publication September 13, 2010; date of current version October 27, 2010. This work was supported in part by the Marie Curie Research Training Network "HYPER-I-NET." NR 45 TC 119 Z9 124 U1 3 U2 22 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD NOV PY 2010 VL 48 IS 11 BP 4122 EP 4132 DI 10.1109/TGRS.2010.2062526 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 670SS UT WOS:000283448200023 ER PT J AU Barton, RJ Zheng, R AF Barton, Richard J. Zheng, Rong TI Order-Optimal Data Aggregation in Regular Wireless Sensor Networks SO IEEE TRANSACTIONS ON INFORMATION THEORY LA English DT Article DE Cooperative communication; data aggregation; sensor networks; time reversal ID TIME; DIVERSITY; CAPACITY AB The predominate traffic patterns in a wireless sensor network are many-to-one and one-to-many communication. Hence, the performance of wireless sensor networks is characterized by the rate at which data can be disseminated from or aggregated to a data sink. In this paper, the problem of data aggregation at a single sink is considered. It is shown that a data aggregation rate of Theta(log n/n) per node is optimal and that this rate can be achieved in regular wireless sensor networks using a generalization of cooperative beamforming called cooperative time-reversal communication. C1 [Barton, Richard J.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Zheng, Rong] Univ Houston, Dept Comp Sci, Houston, TX 77204 USA. RP Barton, RJ (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM richard.j.barton@nasa.gov; rzheng@cs.uh.edu FU University of Houston [I089367]; NSF [CNS-0546391] FX The work of R. J. Barton was supported in part by the University of Houston under GEAR Grant I089367. The work of R. Zheng was supported in part by the NSF under CAREER award CNS-0546391. The material in this paper was presented in part at the 40th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, March 2006 and the Information Theory and Applications Workshop, San Diego, CA, February 2006. NR 25 TC 1 Z9 1 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9448 J9 IEEE T INFORM THEORY JI IEEE Trans. Inf. Theory PD NOV PY 2010 VL 56 IS 11 BP 5811 EP 5821 DI 10.1109/TIT.2010.2070110 PG 11 WC Computer Science, Information Systems; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 670TA UT WOS:000283449000033 ER PT J AU Ehsan, N Vanhille, KJ Rondineau, S Popovic, Z AF Ehsan, Negar Vanhille, Kenneth J. Rondineau, Sebastien Popovic, Zoya TI Micro-Coaxial Impedance Transformers SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Coaxial components; coaxial transmission lines; impedance matching; transformers ID LINES; RESONATORS AB This paper demonstrates two broadband air-filled micro-coaxial 4: 1 (2-24 GHz) and 2.25: 1 (2-22 GHz) impedance transformers. The 4: 1 transformer converts 50 to 12.5 Omega and the 2.25: 1 device transforms 50 to 22.22 Omega. The circuits are fabricated on silicon with PolyStrata technology, and are implemented with 650 mu m x 400 mu m air-filled micro-coaxial lines. Back-to-back circuits and single structures with geometrical tapers are designed for systematic characterization. Simulation and measurement results are in excellent agreement. The return loss for both transformers is better than 15 dB over the design bandwidth. C1 [Ehsan, Negar; Popovic, Zoya] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA. [Vanhille, Kenneth J.] Nuvotronics LLC, Radford, VA 24141 USA. [Rondineau, Sebastien] Solentech, BR-90020080 Rio Grande Do Sul, Brazil. RP Ehsan, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM negar.ehsan@nasa.gov; kvanhille@nuvotronics.com; sebastien.rondineau@gmail.com; zoya@colorado.edu FU Defense Advanced Research Projects Agency (DARPA), U.S. Army [W15P7T-07-C-P437] FX This work is funded by the Defense Advanced Research Projects Agency (DARPA) DMT program, U.S. Army contract W15P7T-07-C-P437. NR 15 TC 9 Z9 9 U1 3 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD NOV PY 2010 VL 58 IS 11 BP 2908 EP 2914 DI 10.1109/TMTT.2010.2078410 PN 1 PG 7 WC Engineering, Electrical & Electronic SC Engineering GA 680FT UT WOS:000284218500020 ER PT J AU Gliese, U Colladay, K Hastings, AS Tulchinsky, DA Urick, VJ Williams, KJ AF Gliese, Ulrik Colladay, Kristina Hastings, Alexander S. Tulchinsky, David A. Urick, Vincent J. Williams, Keith J. TI RF Power Conversion Efficiency of Photodiodes Driven by Mach-Zehnder Modulators SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Analog photonics; microwave photonics; optoelectronics; photodiodes; power conversion efficiency (PCE) ID HIGH-CURRENT PHOTODETECTORS; SATURATION; PERFORMANCE; COMPRESSION; DESIGN; LINKS AB A comprehensive analysis supported by experimental results is provided for RF and microwave power conversion efficiency (PCE) of photodiodes driven by optical signals with either shaped or pure sinusoidal intensity-envelopes where the shaping is performed with a Mach-Zehnder modulator (MZM). It is shown that optical envelope-shaping provides a significantly improved maximum theoretical PCE of 67% as compared to 50% for sinusoidal intensity-envelopes. Practical PCEs of 40.5%-53.5% have been achieved as compared to previously published efficiencies in the 32%-41% range. The results demonstrate that high-current photodiodes can be used as efficient wideband high-power output stages in microwave photonic distribution systems leading to less complex and more efficient antenna array backplanes. C1 [Gliese, Ulrik; Colladay, Kristina] NRL, Global Strategies Grp, Crofton, MD 21114 USA. [Hastings, Alexander S.; Tulchinsky, David A.; Urick, Vincent J.; Williams, Keith J.] USN, Res Lab, Washington, DC 20375 USA. RP Gliese, U (reprint author), NASA, Goddard Space Flight Ctr, SGT, Greenbelt, MD 20771 USA. EM ulrik.gliese@nasa.gov; kristina.colladay@nrl.navy.mil; hastings@ccs.nrl.navy.mil; david.tulchinsky@nrl.navy.mil; vin-cent.urick@nrl.navy.mil; keith.williams@nrl.navy.mil FU Office of Naval Research FX This work was supported by the Office of Naval Research. NR 19 TC 5 Z9 5 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD NOV PY 2010 VL 58 IS 11 SI SI BP 3359 EP 3371 DI 10.1109/TMTT.2010.2075530 PN 2 PG 13 WC Engineering, Electrical & Electronic SC Engineering GA 680GE UT WOS:000284219600042 ER PT J AU Farhoomand, J Sisson, DL AF Farhoomand, Jam Sisson, David L. TI A 1k-pixel CTIA readout multiplexer for far-IR photodetector arrays SO INFRARED PHYSICS & TECHNOLOGY LA English DT Article DE ROIC; Readout; Cryo-CMOS; CTIA; Far infrared; Photoconductor ID DETECTORS; SIRTF AB SB349 is the first 32 x 32 CTIA readout multiplexer specifically designed for far-IR photodetectors and is operable at cryogenic temperatures at least as low as 1.7 K. Four of these readouts can be butted together to form a 64 x 64 mosaic array. The array is multiplexed into eight parallel outputs and features eight selectable gain settings to accommodate various background levels, auto-zero for better input uniformity, and sample-and-hold circuitry. A special, 2-micron cryo-CMOS process was adopted to prevent freeze out and ensure low noise and proper operation at deep cryogenic temperatures. The read noise of the bare device at 4.2 K and under nominal sampling conditions was measured to be about 250e(-) for the 106fF signal capacitor with the well capacity of 400ke(-). Hybridized to a typical germanium detector, the array should achieve NEP levels in the low 10(-18) W/root Hz. An overview of the design and the latest results of the test and characterization of this device are reported in this paper. (C) 2010 Elsevier B.V. All rights reserved. C1 [Farhoomand, Jam] TechnoScience Corp, Palo Alto, CA USA. NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Farhoomand, J (reprint author), TechnoScience Corp, Palo Alto, CA USA. EM jam.farhoomand@nasa.gov FU NASA-Ames Research Center; JPL FX The authors wish to thank Jeff Beeman (LBNL/TechnoScience) for his assistance in packaging the readouts, Alan Hoffman (Acumen Scientific) and Eric Beuville (Raytheon) for their assistance in optimizing the clocking parameters of the readout, and Mike Ressler (JPL) and Robert McMurray, Jr. (NASA-Ames Research Center) for sponsoring this research. This research was conducted by TechnoScience Corporation in part under a contract with NASA-Ames Research Center and in part under a NASA SBIR contract sponsored by JPL. NR 13 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1350-4495 J9 INFRARED PHYS TECHN JI Infrared Phys. Technol. PD NOV PY 2010 VL 53 IS 6 BP 450 EP 456 DI 10.1016/j.infrared.2010.09.005 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 692QE UT WOS:000285169400006 ER PT J AU Yang, P Feng, QA Hong, G Kattawar, GW Wiscombe, WJ Mishchenko, MI Dubovik, O Laszlo, I Sokolik, IN AF Yang, Ping Feng, Qian Hong, Gang Kattawar, George W. Wiscombe, Warren J. Mishchenko, Michael I. Dubovik, Oleg Laszlo, Istvan Sokolik, Irina N. TI Modeling of the scattering and radiative properties of nonspherical dust-like aerosols (vol 38, pg 995, 2007) SO JOURNAL OF AEROSOL SCIENCE LA English DT Correction C1 [Yang, Ping; Feng, Qian; Hong, Gang] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Kattawar, George W.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Wiscombe, Warren J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Dubovik, Oleg] Univ Lille 1, Opt Atmospher Lab, CNRS, F-59655 Villeneuve Daascq, France. [Laszlo, Istvan] NOAA, NESDIS, Off Res & Applicat, Camp Springs, MD 20746 USA. [Sokolik, Irina N.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP Yang, P (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. EM pyang@csrp.tamu.edu RI Yang, Ping/B-4590-2011; Hong, Gang/A-2323-2012; Wiscombe, Warren/D-4665-2012; Laszlo, Istvan/F-5603-2010; Dubovik, Oleg/A-8235-2009; Mishchenko, Michael/D-4426-2012 OI Wiscombe, Warren/0000-0001-6844-9849; Laszlo, Istvan/0000-0002-5747-9708; Dubovik, Oleg/0000-0003-3482-6460; NR 1 TC 0 Z9 0 U1 0 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD NOV PY 2010 VL 41 IS 11 BP 1052 EP 1053 DI 10.1016/j.jaerosci.2010.07.006 PG 2 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 676HO UT WOS:000283901800008 ER PT J AU Johnson, TH Parker, PA Landman, D AF Johnson, Thomas H. Parker, Peter A. Landman, Drew TI Calibration Modeling of Nonmonolithic Wind-Tunnel Force Balances SO JOURNAL OF AIRCRAFT LA English DT Article ID DESIGNS AB Experimental designs and regression models for calibrating nonmonolithic (multiple piece) internal wind-tunnel force balances were investigated through a case study that demonstrated fundamental deficiencies with a typical test schedule. It was found that the current calibration point selection method, which swept the design space two factors at a time, introduced a degree of correlation among model terms, depending on the model form. While using the statistical design of experiment performance metrics to analyze the deficiencies in the experimental design, it was also found that there were problems inherent to the model form itself that were independent of the design. An analysis of the calibration model, endorsed by the AIAA recommended practices document for nonmonolithic balances, lead to correlated response model terms due to overparameterization. Four new modeling strategies are proposed to overcome these challenges for nonmonolithic force balances. C1 [Johnson, Thomas H.; Landman, Drew] Old Dominion Univ, Dept Aerosp Engn, Norfolk, VA 23529 USA. [Parker, Peter A.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Johnson, TH (reprint author), Old Dominion Univ, Dept Aerosp Engn, Norfolk, VA 23529 USA. NR 8 TC 3 Z9 4 U1 0 U2 5 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD NOV-DEC PY 2010 VL 47 IS 6 BP 1860 EP 1866 DI 10.2514/1.46356 PG 7 WC Engineering, Aerospace SC Engineering GA 695WV UT WOS:000285404200004 ER PT J AU Jain, R Yeo, H Chopra, I AF Jain, Robit Yeo, Hyeonsoo Chopra, Inderjit TI Examination of Rotor Loads due to On-Blade Active Controls for Performance Enhancement SO JOURNAL OF AIRCRAFT LA English DT Article ID AIRLOADS; HELICOPTER AB On-blade active controls with trailing-edge deflection, leading-edge deflection, and active-twist are studied for improvements in rotor aerodynamic efficiency and their influence on structural loads. A full-scale UH-60A Blackhawk rotor at two key flight conditions (high-speed forward flight and high-thrust forward flight) is studied using coupled computational fluid dynamics and computational structural dynamics simulations. A simulation-based trade study is carried out comprising parametric variations of geometric sizing and deployment schedules of the blade morphing. The study shows that active controls improve rotor performance and reduce rotor loads at the same time with careful selection of deployment schedule and design. In high-speed forward flight, using trailing-edge deflection, an improvement of 7.3% in performance and a reduction in the hub vibratory loads of up to 54% is achieved, and using active-twist an improvement of 7.0% in performance and up to 22% reduction in hub vibratory loads is achieved. In high-thrust forward flight, a 15.0% improvement in performance and up to 40% reduction in hub vibratory loads is achieved using leading-edge deflection. C1 [Jain, Robit] HyPerComp Inc, Westlake Village, CA 91361 USA. [Yeo, Hyeonsoo] NASA, Ames Res Ctr, Aeroflightdynam Directorate, US Army Res Dev & Engn Command, Moffett Field, CA 94035 USA. [Chopra, Inderjit] Univ Maryland, Dept Aerosp Engn, College Pk, MD 20742 USA. RP Jain, R (reprint author), HyPerComp Inc, Westlake Village, CA 91361 USA. EM rkj@hypercomp.net FU U.S. Army Research, Development, and Engineering Command under SBIR [W911W6-08-C-0061] FX This work is sponsored by U.S. Army Research, Development, and Engineering Command under SBIR Contract No. W911W6-08-C-0061. Technical monitors were Hyeonsoo Yeo and Mark Fulton at the U.S. Army Aeroflightdynamics Directorate. NR 29 TC 7 Z9 8 U1 0 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD NOV-DEC PY 2010 VL 47 IS 6 BP 2049 EP 2066 DI 10.2514/1.C000306 PG 18 WC Engineering, Aerospace SC Engineering GA 695WV UT WOS:000285404200022 ER PT J AU Shi, JJ Tao, WK Matsui, T Cifelli, R Hou, A Lang, S Tokay, A Wang, NY Peters-Lidard, C Skofronick-Jackson, G Rutledge, S Petersen, W AF Shi, J. J. Tao, W. -K. Matsui, T. Cifelli, R. Hou, A. Lang, S. Tokay, A. Wang, N. -Y. Peters-Lidard, C. Skofronick-Jackson, G. Rutledge, S. Petersen, W. TI WRF Simulations of the 20-22 January 2007 Snow Events over Eastern Canada: Comparison with In Situ and Satellite Observations SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID LARGE-EDDY-SIMULATION; HORIZONTAL CONVECTIVE ROLLS; LAKE-EFFECT SNOWSTORM; BOUNDARY-LAYER; MESOSCALE MODEL; MICROPHYSICAL EVOLUTION; NUMERICAL-SIMULATION; MICROSCALE STRUCTURE; FRONTAL RAINBANDS; PRECIPITATION AB One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve cold-season precipitation measurements in mid-and high latitudes through the use of high-frequency passive microwave radiometry. For this purpose, the Weather Research and Forecasting model (WRF) with the Goddard microphysics scheme is coupled with a Satellite Data Simulation Unit (WRF-SDSU) to facilitate snowfall retrieval algorithms over land by providing a virtual cloud library and corresponding microwave brightness temperature measurements consistent with the GPM Microwave Imager (GMI). When this study was initiated, there were no prior published results using WRF at cloud-resolving resolution (1 km or finer) for high-latitude snow events. This study tested the Goddard cloud microphysics scheme in WRF for two different snowstorm events (a lake-effect event and a synoptic event between 20 and 22 January 2007) that took place over the Canadian CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Validation Project (C3VP) site in Ontario, Canada. The 24-h-accumulated snowfall predicted by WRF with the Goddard microphysics was comparable to that observed by the ground-based radar for both events. The model correctly predicted the onset and termination of both snow events at the Centre for Atmospheric Research Experiments site. The WRF simulations captured the basic cloud patterns as seen by the ground-based radar and satellite [i.e., CloudSat and Advanced Microwave Sounding Unit B (AMSU-B)] observations, including the snowband featured in the lake event. The results reveal that WRF was able to capture the cloud macrostructure reasonably well. Sensitivity tests utilizing both the "2ICE'' (ice and snow) and "3ICE" (ice, snow, and graupel) options in the Goddard microphysical scheme were also conducted. The domain-and time-averaged cloud species profiles from the WRF simulations with both microphysical options show identical results (due to weak vertical velocities and therefore the absence of large precipitating liquid or high-density ice particles like graupel). Both microphysics options produced an appreciable amount of liquid water, and the model cloud liquid water profiles compared well to the in situ C3VP aircraft measurements when only grid points in the vicinity of the flight paths were considered. However, statistical comparisons between observed and simulated radar echoes show that the model tended to have a high bias of several reflectivity decibels (dBZ), which shows that additional research is needed to improve the current cloud microphysics scheme for the extremely cold environment in high latitudes, despite the fact that the simulated ice/liquid water contents may have been reasonable for both events. Future aircraft observations are also needed to verify the existence of graupel in high-latitude continental snow events. C1 [Shi, J. J.; Matsui, T.] Univ Maryland Baltimore Cty, Dept Atmospher Sci, Baltimore, MD 21228 USA. [Cifelli, R.; Rutledge, S.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Hou, A.] NASA, Goddard Space Flight Ctr, Goddard Modeling Assimilat Off, Greenbelt, MD 20771 USA. [Hou, A.] Sci Syst & Applicat Inc, Greenbelt, MD USA. [Tokay, A.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Wang, N. -Y.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Peters-Lidard, C.] NASA, Goddard Space Flight Ctr, Lab Hydrospher Proc, Greenbelt, MD 20771 USA. [Petersen, W.] NASA, George C Marshall Space Flight Ctr, Earth Sci Off, Huntsville, AL 35812 USA. [Shi, J. J.; Tao, W. -K.; Matsui, T.; Lang, S.; Tokay, A.; Skofronick-Jackson, G.] NASA GSFC, Code 613 1, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Shi, JJ (reprint author), NASA GSFC, Code 613 1, Atmospheres Lab, Greenbelt, MD 20771 USA. EM jainn.j.shi@nasa.gov RI Skofronick-Jackson, Gail/D-5354-2012; Hou, Arthur/D-8578-2012; Peters-Lidard, Christa/E-1429-2012; Wang, Nai-Yu/E-5303-2016; Ferraro, Ralph/F-5587-2010; Measurement, Global/C-4698-2015 OI Peters-Lidard, Christa/0000-0003-1255-2876; Ferraro, Ralph/0000-0002-8393-7135; FU NASA; NASA Tropical Rainfall Measuring Mission (TRMM) FX The WRF-Goddard cloud microphysics coupling is supported by the NASA Headquarters Atmospheric Dynamics and Thermodynamics Program and the NASA Tropical Rainfall Measuring Mission (TRMM). The authors are grateful to Dr. R. Kakar at NASA Headquarters for his support of this research. The authors also appreciate their useful discussion with Dr. Andy Heymsfield of NCAR. NR 59 TC 41 Z9 43 U1 1 U2 21 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD NOV PY 2010 VL 49 IS 11 BP 2246 EP 2266 DI 10.1175/2010JAMC2282.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 675NT UT WOS:000283838100005 ER PT J AU Wind, G Platnick, S King, MD Hubanks, PA Pavolonis, MJ Heidinger, AK Yang, P Baum, BA AF Wind, Galina Platnick, Steven King, Michael D. Hubanks, Paul A. Pavolonis, Michael J. Heidinger, Andrew K. Yang, Ping Baum, Bryan A. TI Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID BULK SCATTERING PROPERTIES; MULTIPLE-SCATTERING; OPTICAL-PROPERTIES; LAND PRODUCTS; TOP PRESSURE; CIRRUS CLOUD; ICE CLOUDS; PART I; ALGORITHM; PHASE AB Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the NASA Earth Observing System (EOS) Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that present difficulties for retrieving cloud effective radius using single-layer plane-parallel cloud models. The algorithm uses the MODIS 0.94-mu m water vapor band along with CO(2) bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO(2) and the 0.94-mu m methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases. C1 [Wind, Galina] NASA, Goddard Space Flight Ctr, Code 613 2, Greenbelt, MD 20771 USA. [Wind, Galina] SSAI Inc, Lanham, MD USA. [King, Michael D.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Hubanks, Paul A.] Wyle Inc, Silver Spring, MD USA. [Hubanks, Paul A.] NOAA, NESDIS, Ctr Satellite Applicat & Res, Madison, WI USA. [Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX USA. [Baum, Bryan A.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. RP Wind, G (reprint author), NASA, Goddard Space Flight Ctr, Code 613 2, Greenbelt, MD 20771 USA. EM gala.wind@nasa.gov RI Yang, Ping/B-4590-2011; King, Michael/C-7153-2011; Pavolonis, Mike/F-5618-2010; Baum, Bryan/B-7670-2011; Platnick, Steven/J-9982-2014; Heidinger, Andrew/F-5591-2010 OI King, Michael/0000-0003-2645-7298; Pavolonis, Mike/0000-0001-5822-219X; Baum, Bryan/0000-0002-7193-2767; Platnick, Steven/0000-0003-3964-3567; Heidinger, Andrew/0000-0001-7631-109X FU MODIS Science Team; NASA FX The authors thank Brad Wind for developing the groundwork for simplifying the modifications to the operational MODIS code that made most of these studies possible. This work was funded by the MODIS Science Team and NASA's Radiation Sciences Program. NR 32 TC 27 Z9 27 U1 0 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD NOV PY 2010 VL 49 IS 11 BP 2315 EP 2333 DI 10.1175/2010JAMC2364.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 675NT UT WOS:000283838100009 ER PT J AU Tokay, A Bashor, PG AF Tokay, Ali Bashor, Paul G. TI An Experimental Study of Small-Scale Variability of Raindrop Size Distribution SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID DIFFERENT CLIMATIC REGIMES; RADAR-RAINFALL PRODUCTS; SPATIAL VARIABILITY; GROUND-VALIDATION; GAUGE MEASUREMENTS; FIELD CAMPAIGN; TRMM; DISDROMETER; REFLECTIVITY; SPECTRA AB An experimental study of small-scale variability of raindrop size distributions (DSDs) has been carried out at Wallops Island, Virginia. Three Joss-Waldvogel disdrometers were operated at a distance of 0.65, 1.05, and 1.70 km in a nearly straight line. The main purpose of the study was to examine the variability of DSDs and its integral parameters of liquid water content, rainfall, and reflectivity within a 2-km array: a typical size of Cartesian radar pixel. The composite DSD of rain events showed very good agreement among the disdrometers except where there were noticeable differences in midsize and large drops in a few events. For consideration of partial beam filling where the radar pixel was not completely covered by rain, a single disdrometer reported just over 10% more rainy minutes than the rainy minutes when all three disdrometers reported rainfall. Similarly two out of three disdrometers reported 5% more rainy minutes than when all three were reporting rainfall. These percentages were based on a 1-min average, and were less for longer averaging periods. Considering only the minutes when all three disdrometers were reporting rainfall, just over one quarter of the observations showed an increase in the difference in rainfall with distance. This finding was based on a 15-min average and was even less for shorter averaging periods. The probability and cumulative distributions of a gamma-fitted DSD and integral rain parameters between the three disdrometers had a very good agreement and no major variability. This was mainly due to the high percentage of light stratiform rain and to the number of storms that traveled along the track of the disdrometers. At a fixed time step, however, both DSDs and integral rain parameters showed substantial variability. The standard deviation (SD) of rain rate was near 3 mm h 21, while the SD of reflectivity exceeded 3 dBZ at the longest separation distance. These standard deviations were at 6-min average and were higher at shorter averaging periods. The correlations decreased with increasing separation distance. For rain rate, the correlations were higher than previous gauge-based studies. This was attributed to the differences in data processing and the difference in rainfall characteristics in different climate regions. It was also considered that the gauge sampling errors could be a factor. In this regard, gauge measurements were simulated employing existing disdrometer dataset. While a difference was noticed in cumulative distribution of rain occurrence between the simulated gauge and disdrometer observations, the correlations in simulated gauge measurements did not differ from the disdrometer measurements. C1 [Tokay, Ali] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tokay, Ali] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Bashor, Paul G.] Comp Sci Corp, Wallops Isl, VA USA. [Bashor, Paul G.] NASA, Wallops Flight Facil, Wallops Isl, VA USA. RP Tokay, A (reprint author), NASA, Goddard Space Flight Ctr, Code 613-1, Greenbelt, MD 20771 USA. EM tokay@radar.gsfc.nasa.gov FU NASA [NNX07AF45G] FX We thank Donat Hogl of Distromet, Ltd., and his colleagues for their continuous support in calibrating the Joss-Waldvogel disdrometers and providing excellent feedback. Thanks also are given to Richard Lawrence of NASA Goddard Space Flight Center and John Gerlach of NASA Wallops Flight Facility for their leadership in ground validation efforts of the TRMM program. We also acknowledge Rafael Rincon for providing his JW disdrometer that was used in this study. Many thanks are given to Jianxin (Jerry) Wang of Science Systems Application, Inc., for running a gauge interpolation algorithm with simulated gauge measurements. Discussions with Robert Meneghini of NASA Goddard Space Flight Center, Emad Habib of the University of Louisiana-Lafayette, Mirceu Grecu of the University of Maryland, Baltimore County, and David A. Marks of Science Systems and Application, Inc., were very helpful. This study was supported by NASA's TRMM program through NNX07AF45G under Ramesh Kakar, Program Scientist. NR 32 TC 26 Z9 28 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD NOV PY 2010 VL 49 IS 11 BP 2348 EP 2365 DI 10.1175/2010JAMC2269.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 675NT UT WOS:000283838100011 ER PT J AU Zhao, YG Cheng, QA Qian, ML Cantrell, JH AF Zhao, Yagun Cheng, Qian Qian, Menglu Cantrell, John H. TI Phase image contrast mechanism in intermittent contact atomic force microscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ENERGY-DISSIPATION AB A model is presented showing that phase variations in intermittent contact atomic force microscopy (IC-AFM) (tapping mode) result from variations in both conservative and dissipative forces. It is shown that when operating with constant cantilever oscillation amplitude, however, conservative forces drive the phase contrast. The equations of cantilever tip-sample surface contact are solved analytically for constant amplitude IC-AFM operation. Solutions are obtained for the tip-sample contact time, maximum sample indentation depth, and phase shift in the cantilever oscillations. The model equations are applied to the calculation of the phase contrast, defined as the difference in phase shift between two points in the image, for a diamond-graphite nanocomposite sample having a heterogeneous variation in graphite porosity ranging from approximately 30 vol % to roughly 60 vol %. The phase contrast predicted from the model equations, using only conservative forces in the model, is calculated to be approximately 69 degrees for 30 vol % porosity and roughly 79 degrees for 60% porosity. The model predictions are in very good agreement with the measured range of values from 69.4 degrees to 78.5 degrees obtained from a IC-AFM phase image of the sample. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3503478] C1 [Zhao, Yagun; Cheng, Qian; Qian, Menglu] Tongji Univ, Inst Acoust, Shanghai 200092, Peoples R China. [Cantrell, John H.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Zhao, YG (reprint author), Tongji Univ, Inst Acoust, Shanghai 200092, Peoples R China. EM mlqian@tongji.edu.cn; john.h.cantrell@nasa.gov RI Cheng, Qian/I-3864-2012 FU National Natural Science Foundation of China [10774113, 10834009] FX This work was supported by the Major Program of the National Natural Science Foundation of China (Grant Nos. 10774113 and 10834009). NR 18 TC 11 Z9 12 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2010 VL 108 IS 9 AR 094311 DI 10.1063/1.3503478 PG 7 WC Physics, Applied SC Physics GA 680XN UT WOS:000284270900126 ER PT J AU Whiteman, DN Rush, K Rabenhorst, S Welch, W Cadirola, M McIntire, G Russo, F Adam, M Venable, D Connell, R Veselovskii, I Forno, R Mielke, B Stein, B Leblanc, T McDermid, S Vomel, H AF Whiteman, David N. Rush, Kurt Rabenhorst, Scott Welch, Wayne Cadirola, Martin McIntire, Gerry Russo, Felicita Adam, Mariana Venable, Demetrius Connell, Rasheen Veselovskii, Igor Forno, Ricardo Mielke, Bernd Stein, Bernhard Leblanc, Thierry McDermid, Stuart Voemel, Holger TI Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID STRATOSPHERIC WATER-VAPOR; SPECTRAL-RESOLUTION LIDAR; CLOUD LIQUID WATER; CIRRUS CLOUDS; TEMPERATURE-MEASUREMENTS; AEROSOL EXTINCTION; IHOP-2002; CALIBRATION; VALIDATION; ATMOSPHERE AB A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire. for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system Was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July-August 20117 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescc pc, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment-Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for ground-based use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Prepulsion Laboratory's Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atntospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During the MOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE-II measurements, along with numerical simulation, were used to determine that the likely reason for the suboptimal airborne aerosol extinction performance during the WAVES_2007 campaign was a misaligned interference filter. With full laser power and a properly tuned inter ference filter. RASL is shown to be capable of measuring the main water vapor and aerosol parameters with temporal resolutions of between 2 and 45 s and spatial resolutions ranging from 30 to 330 m from a flight altitude of 8 km with precision of generally less than 10%, providing performance that is competitive with some airborne Differential Absorption Lidar (DIAL) water vapor and High Spectral Resolution Lidar (HSRL) aerosol instruments. The use of diode-pumped laser technology would improve the performance of an airborne Raman lidar and permit additional instrumentation to be carried on board a small research aircraft. The combined airborne and ground-bated measurements presented here demonstrate a level of versatility in Raman lidar that may be impossible to duplicate with any other single lidar technique. C1 [Whiteman, David N.; Rush, Kurt] NASA, GSFC, Greenbelt, MD 20771 USA. [Rabenhorst, Scott] Univ Maryland, College Pk, MD 20742 USA. [Welch, Wayne] Welch Mech Designs, Belcamp, MD USA. [Cadirola, Martin] Ecotronics LLC, Clarksburg, MD USA. [McIntire, Gerry] SGT, Lanham, MD USA. [Russo, Felicita] CNR, Potenza, Italy. [Adam, Mariana] European Commiss JRC, Ispra, Italy. [Venable, Demetrius; Connell, Rasheen] Howard Univ, Washington, DC 20059 USA. [Veselovskii, Igor] Univ Maryland, Baltimore, MD 21201 USA. [Forno, Ricardo] Univ Mayor San Andres, La Paz, Bolivia. [Mielke, Bernd; Stein, Bernhard] Licel, Berlin, Germany. [Leblanc, Thierry; McDermid, Stuart] CALTECH, Jet Prop Lab, Table Mt Facil, Table Mt, CA USA. [Voemel, Holger] Lindenberg Observ, Lindenberg, Germany. RP Whiteman, DN (reprint author), NASA, GSFC, Code 613-1,Bldg 33,Rm D404, Greenbelt, MD 20771 USA. EM david.n.whiteman@nasa.gov RI Adam, Mariana/C-5661-2013 FU NASA; Advanced Component Technology (ACT) program; Instrument Incubator Program (IIP); Upper Air Research Program (UARP); Maryland Department of the Environment FX The authors wish to acknowledge the support of the NASA Atmospheric Composition Program, the Advanced Component Technology (ACT) program, the Instrument Incubator Program (IIP), and the Upper Air Research Program (UARP) for support of these efforts. The radiosonde data were obtained from the Howard University Beltsville Research Campus under a program supported by the Maryland Department of the Environment. Several individuals have helped in the development of RASL over the years. We wish to thank Geary Schwemmer, Henry Plotkin, Luis Ramos-Izquierdo, Timothy Berkoff, Glenn Staley, and S. Harvey Melfi. We wish to thank Everette Joseph, Belay Demoz, and the entire Howard University Beltsville Campus staff for hosting the WAVES_2007 campaign. The contributions of T. Leblanc and S. McDermid were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The authors also wish to acknowledge the efforts of Tom McGee, Larry Twigg, and Grant Sumnick during the MOHAVE-II field campaign. The mention of a particular vendor does not constitute an endorsement by NASA. NR 52 TC 25 Z9 25 U1 3 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD NOV PY 2010 VL 27 IS 11 BP 1781 EP 1801 DI 10.1175/2010JTECHA1391.1 PG 21 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 680PX UT WOS:000284248000001 ER PT J AU Koshak, WJ AF Koshak, W. J. TI Optical Characteristics of OTD Flashes and the Implications for Flash-Type Discrimination SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID CONTINENTAL UNITED-STATES; FORTE PHOTODIODE DETECTOR; TRANSIENT DETECTOR; SATELLITE; EMISSIONS; CLOUDS; SPACE; THUNDERSTORMS; INTRACLOUD; MODEL AB Flashes detected by the Optical Transient Detector (OTD) that occur over the continental United States (CONUS) are intercompared with data from the National Lightning Detection Network (NLDN) in order to partition the OTD flashes into ground and cloud flashes. The entire 5-yr OTD dataset for CONUS is analyzed. The statistical distributions of a variety of optical characteristics are examined, including five flash-level attributes (radiance, area, duration, number of optical groups, and number of optical events), and two group-level attributes [the maximum number of events in a group (MNEG), and a closely related parameter, the maximum group area (MGA)]. On average, there were 5.6 optical groups per return stroke in a ground flash, which is in part due to the likelihood that OTD detects interstroke K changes. It was found that return strokes within ground flashes typically produce large optical groups: hence, the MNEG and MGA parameters serve as useful "return-stroke detectors." The results of this study provide insight on how to construct an algorithm for retrieving the fraction of ground flashes in a set of flashes observed from a satellite lightning imager. Specifically, even though it is shown that the statistical distributions of the optical characteristics for ground and cloud flashes overlap substantially, the mean values of these distributions differ. Hence, a retrieval method that is based on an analysis of the distribution of the means, and that employs the central limit theorem of statistics, is recommended. As the sample size used to compute the means is increased, the overlap in the distributions of the means for ground and cloud flashes is diminished, making ground flash fraction retrieval feasible. Of the seven optical characteristics examined here, the mean MNEG and mean MGA parameters are suggested as being the most useful for discriminating between ground and cloud flashes in the context of this "central limit theorem" approach. C1 NASA, Earth Sci Off, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. RP Koshak, WJ (reprint author), NASA, Earth Sci Off, George C Marshall Space Flight Ctr, VP61,320 Sparkman Dr,Robert Cramer Res Hall, Huntsville, AL 35805 USA. EM william.koshak@nasa.gov FU NOAA/NESDIS/STAR GOES-R [NA07AANEG0284]; LIS; NASA Earth Science Enterprise (ESE) FX This research has been supported by the NOAA/NESDIS/STAR GOES-R Risk Reduction Program under Memorandum of Agreement NA07AANEG0284 [Ms. Ingrid Guch, Chief, NOAA/NESDIS/STAR Cooperative Research Programs Division; Dr. Mark DeMaria Chief, NOAA/NESDIS Regional and Mesoscale Meteorology Branch; and Dr. Steven J. Goodman, Senior (Chief) Scientist, GOES-R System Program], and by the LIS project (Program Manager, Ramesh Kakar, NASA Headquarters) as part of the NASA Earth Science Enterprise (ESE) Earth Observing system (EOS) project. The author would also like to thank Dr. Richard Solakiewicz of Chicago State University for helping to identify a more conservative flash partitioning strategy than that employed in Koshak (2007), and for his comments on improving the final draft manuscript. Thanks are also given to Dr. Dennis Boccippio (NASA/MSFC) for providing a convenient form of the 5-yr OTD dataset. Finally, thanks are given to Mr. Dennis Buechler of the University of Alabama-Huntsville for his suggestions on how best to implement the spatial mask lightning filter. NR 33 TC 16 Z9 16 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD NOV PY 2010 VL 27 IS 11 BP 1822 EP 1838 DI 10.1175/2010JTECHA1405.1 PG 17 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 680PX UT WOS:000284248000003 ER PT J AU Rawlins, MA Steele, M Holland, MM Adam, JC Cherry, JE Francis, JA Groisman, PY Hinzman, LD Huntington, TG Kane, DL Kimball, JS Kwok, R Lammers, RB Lee, CM Lettenmaier, DP McDonald, KC Podest, E Pundsack, JW Rudels, B Serreze, MC Shiklomanov, A Skagseth, O Troy, TJ Vorosmarty, CJ Wensnahan, M Wood, EF Woodgate, R Yang, DQ Zhang, K Zhang, TJ AF Rawlins, Michael A. Steele, Michael Holland, Marika M. Adam, Jennifer C. Cherry, Jessica E. Francis, Jennifer A. Groisman, Pavel Ya. Hinzman, Larry D. Huntington, Thomas G. Kane, Douglas L. Kimball, John S. Kwok, Ron Lammers, Richard B. Lee, Craig M. Lettenmaier, Dennis P. McDonald, Kyle C. Podest, Erika Pundsack, Jonathan W. Rudels, Bert Serreze, Mark C. Shiklomanov, Alexander Skagseth, Oystein Troy, Tara J. Voeroesmarty, Charles J. Wensnahan, Mark Wood, Eric F. Woodgate, Rebecca Yang, Daqing Zhang, Ke Zhang, Tingjun TI Analysis of the Arctic System for Freshwater Cycle Intensification: Observations and Expectations SO JOURNAL OF CLIMATE LA English DT Article ID MACKENZIE RIVER-BASIN; MOORED CURRENT METERS; PAST 4 DECADES; NORTHERN-HEMISPHERE; HYDROLOGIC-CYCLE; CLIMATE-CHANGE; SEA-ICE; ATLANTIC INFLOW; BEAUFORT GYRE; HEAT FLUXES AB Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described. With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lower interannual variability relative to trend magnitude. Put another way, intrinsic variability in the observations tends to limit confidence in trend robustness. Ocean fluxes are less certain, primarily because of the lack of long-term observations. Where available, salinity and volume flux data suggest some decrease in saltwater inflow to the Barents Sea (i.e., a decrease in freshwater outflow) in recent decades. A decline in freshwater storage across the central Arctic Ocean and suggestions that large-scale circulation plays a dominant role in freshwater trends raise questions as to whether Arctic Ocean freshwater flows are intensifying. Although oceanic fluxes of freshwater are highly variable and consistent trends are difficult to verify, the other components of the Arctic FWC do show consistent positive trends over recent decades. The broad-scale increases provide evidence that the Arctic FWCis experiencing intensification. Efforts that aim to develop an adequate observation system are needed to reduce uncertainties and to detect and document ongoing changes in all system components for further evidence of Arctic FWC intensification. C1 [Rawlins, Michael A.] Dartmouth Coll, Dept Earth Sci, Hanover, NH 03755 USA. [Steele, Michael; Wensnahan, Mark; Woodgate, Rebecca] Univ Washington, Appl Phys Lab, Polar Sci Ctr, Seattle, WA 98105 USA. [Holland, Marika M.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Adam, Jennifer C.] Washington State Univ, Dept Civil & Environm Engn, Pullman, WA 99164 USA. [Cherry, Jessica E.; Hinzman, Larry D.] Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA. [Francis, Jennifer A.] Rutgers State Univ, Inst Marine & Coastal Sci, Highlands, NJ USA. [Groisman, Pavel Ya.] UCAR, Natl Climat Data Ctr, Asheville, NC USA. [Huntington, Thomas G.] US Geol Survey, Augusta, ME USA. [Kane, Douglas L.; Yang, Daqing] Univ Alaska Fairbanks, Inst No Engn, Water & Environm Res Ctr, Fairbanks, AK USA. [Kimball, John S.; Zhang, Ke] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA. [Kwok, Ron; McDonald, Kyle C.; Podest, Erika] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Lammers, Richard B.; Pundsack, Jonathan W.; Shiklomanov, Alexander] Univ New Hampshire, Inst Study Earth Oceans & Space, Water Syst Anal Grp, Durham, NH 03824 USA. [Lee, Craig M.] Univ Washington, Appl Phys Lab, Ocean Phys Dept, Seattle, WA 98105 USA. [Lettenmaier, Dennis P.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98105 USA. [Rudels, Bert] Univ Helsinki, Dept Phys Sci, Helsinki, Finland. [Rudels, Bert] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Serreze, Mark C.; Zhang, Tingjun] Univ Colorado, Cooperat Inst Res Environm Sci, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. [Skagseth, Oystein] Inst Marine Res, N-5024 Bergen, Norway. [Skagseth, Oystein] Bjerknes Ctr Climate Res, Bergen, Norway. [Troy, Tara J.; Wood, Eric F.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [Voeroesmarty, Charles J.] CUNY, Dept Civil Engn, New York, NY 10021 USA. RP Rawlins, MA (reprint author), Univ Massachusetts, Dept Geosci, Amherst, MA 01003 USA. EM rawlins@geo.umass.edu RI Kwok, Ron/A-9762-2008; Zhang, Ke/B-3227-2012; Hinzman, Larry/B-3309-2013; lettenmaier, dennis/F-8780-2011; Shiklomanov, Alexander/C-5521-2014; OI Huntington, Thomas/0000-0002-9427-3530; Kwok, Ron/0000-0003-4051-5896; Zhang, Ke/0000-0001-5288-9372; Hinzman, Larry/0000-0002-5878-6814; lettenmaier, dennis/0000-0003-3317-1327; Troy, Tara/0000-0001-5366-0633 FU National Science Foundation's Office of Polar Programs; NASA [NNG06GE43G, NNH04AA66I, NNH08AI57I, NNX08AN58G]; NSF [ARC-0531040, ARC-0531302, ARC-0612062, ARC-0629471, ARC-0632154, ARC-0632231, ARC-0633885, ARC-0652838, ARC-0805789, OPP-0229705, OPP-0230083, OPP-0230211, OPP-0230381, OPP-0328686, OPP-0335941, OPP-0352754]; New Hampshire Space Grant Consortium FX We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modeling (WGCM) for their roles in making available the WCRP CMIP3 multimodel dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. We gratefully acknowledge funding from the National Science Foundation's Office of Polar Programs through the Freshwater Integration Project and from NASA's Cryosphere Program. Funding was provided through NSF Grants ARC-0531040, ARC-0531302, ARC-0612062, ARC-0629471, ARC-0632154, ARC-0632231, ARC-0633885, ARC-0652838, ARC-0805789, OPP-0229705, OPP-0230083, OPP-0230211, OPP-0230381, OPP-0328686, OPP-0335941, and OPP-0352754 and NASA Grants NNG06GE43G, NNH04AA66I, NNH08AI57I, and NNX08AN58G. The lead author was supported by fellowships from the NASA Postdoctoral Program and the New Hampshire Space Grant Consortium. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 154 TC 99 Z9 99 U1 5 U2 50 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD NOV PY 2010 VL 23 IS 21 BP 5715 EP 5737 DI 10.1175/2010JCLI3421.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 683HG UT WOS:000284463700010 ER PT J AU Templeton, BA Cox, DE Kenny, SP Ahmadian, M Southward, SC AF Templeton, Brian A. Cox, David E. Kenny, Sean P. Ahmadian, Mehdi Southward, Steve C. TI On Controlling an Uncertain System With Polynomial Chaos and H-2 Control Design SO JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME LA English DT Article DE polynomial chaos; orthogonal polynomials; parametric uncertainty; optimal control; H-2 control; LQR ID STABILITY AB This paper applies the H-2 norm along time and parameter domains. The norm is related to the probabilistic H-2 problem. It is calculated using polynomial chaos to handle uncertainty in the plant model. The structure of expanded states resulting from Galerkin projections of a state space model with uncertain parameters is used to formulate cost functions in terms of mean performances of the states, as well as covariances. Also, bounds on the norm are described in terms of linear matrix inequalitys. The form of the gradient of the norm, which can be used in optimization, is given as a Lyapunov equation. Additionally, this approach can be used to solve the related probabilistic LQR problem. The legitimacy of the concept is demonstrated through two mechanical oscillator examples. These controllers could be easily implemented on physical systems without observing uncertain parameters. [DOI: 10.1115/1.4002474] C1 [Templeton, Brian A.; Ahmadian, Mehdi] Virginia Tech, Ctr Vehicle Syst & Safety, Blacksburg, VA 24061 USA. [Cox, David E.; Kenny, Sean P.] NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23681 USA. [Southward, Steve C.] Virginia Tech, Ctr Vehicle Syst & Safety, Danville, VA 24540 USA. RP Templeton, BA (reprint author), Virginia Tech, Ctr Vehicle Syst & Safety, Blacksburg, VA 24061 USA. EM batemple@vt.edu; david.e.cox@nasa.gov; sean.p.kenny@nasa.gov; ahmadian@vt.edu; scsouth@vt.edu RI Southward, Steve/F-2457-2014 FU NASA [NNL05AA18A] FX This research was partially supported through NASA Grant No. NNL05AA18A. NR 27 TC 2 Z9 2 U1 0 U2 5 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-0434 J9 J DYN SYST-T ASME JI J. Dyn. Syst. Meas. Control-Trans. ASME PD NOV PY 2010 VL 132 IS 6 AR 061304 DI 10.1115/1.4002474 PG 9 WC Automation & Control Systems; Instruments & Instrumentation SC Automation & Control Systems; Instruments & Instrumentation GA 681LV UT WOS:000284317800008 ER PT J AU Potter, SLP Holmqvist, F Platonov, PG Steding, K Arheden, H Pahlm, O Starc, V McKenna, WJ Schlegel, TT AF Potter, Samara L. Poplack Holmqvist, Fredrik Platonov, Pyotr G. Steding, Katarina Arheden, Hakan Pahlm, Olle Starc, Vito McKenna, William J. Schlegel, Todd T. TI Detection of hypertrophic cardiomyopathy is improved when using advanced rather than strictly conventional 12-lead electrocardiogram SO JOURNAL OF ELECTROCARDIOLOGY LA English DT Article DE QRS-T angle; QT variability; Sudden cardiac death; Athletes' heart; Screening ID QT-INTERVAL VARIABILITY; T-WAVE MORPHOLOGY; REPOLARIZATION LABILITY; MYOCARDIAL-ISCHEMIA; HEART-FAILURE; DISEASE; DEATH; VECTORCARDIOGRAM; COMMUNITIES; POPULATION AB Introduction: Twelve-lead electrocardiogram (ECG) is used to screen for hypertrophic cardiomyopathy (HCM), but up to 25% of HCM patients do not have distinctly abnormal ECGs, whereas up to 5% to 15% of healthy athletes do. We hypothesized that an approximately 5-minute resting advanced 12-lead ECG test ("A-ECG score") could detect HCM with greater sensitivity than pooled conventional ECG criteria and distinguish healthy athletes from HCM with greater specificity. Materials and methods: Five-minute 12-lead ECGs were obtained from 56 HCM patients, 56 age/sex-matched healthy controls, and 69 younger endurance-trained athletes. Electrocardiograms were analyzed using recently suggested pooled conventional ECG criteria and also A-ECG scoring techniques that considered results from multiple advanced and conventional ECG parameters. Results: Compared with pooled criteria from the strictly conventional ECG, an A-ECG logistic score incorporating results from just 3 advanced ECG parameters (spatial QRS-T angle, unexplained portion of QT variability, and T-wave principal component analysis ratio) increased the sensitivity of ECG for identifying HCM from 89% (78%-96%) to 98% (89%-100%; P = .025), while increasing specificity from 90% (83%-94%) to 95% (92%-99%; P = .020). Conclusions: Resting 12-lead A-ECG scores that are simultaneously more sensitive than pooled conventional ECG criteria for detecting HCM and more specific for distinguishing healthy athletes and other healthy controls from HCM can be constructed. Pending further prospective validation, such scores may lead to improved ECG-based screening for HCM. Published by Elsevier Inc. C1 [Schlegel, Todd T.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Potter, Samara L. Poplack] Natl Space Biomed Res Inst, Houston, TX USA. [Potter, Samara L. Poplack] Baylor Coll Med, Houston, TX 77030 USA. [Holmqvist, Fredrik; Platonov, Pyotr G.] Univ Lund Hosp, Dept Cardiol, S-22185 Lund, Sweden. [Steding, Katarina; Arheden, Hakan; Pahlm, Olle] Univ Lund Hosp, Dept Clin Physiol, S-22185 Lund, Sweden. [Starc, Vito] Univ Ljubljana, Inst Physiol, Ljubljana, Slovenia. [McKenna, William J.] UCL, Heart Hosp, London, England. RP Schlegel, TT (reprint author), NASA, Lyndon B Johnson Space Ctr, Mail Code SK3, Houston, TX 77058 USA. EM todd.t.schlegel@nasa.gov RI McKenna, William/C-3243-2008 OI McKenna, William/0000-0001-7994-2460 FU National Space Biomedical Research Institute, Houston, TX; Johnson Space Center Technology; Swedish National Health Service; Swedish Research Council; Swedish Heart Lung Foundation; Lund University FX The authors thank Drs Walter Kulecz, Jonas Carlson, E. Carl Greco, and Jude DePalma for programming assistance; Dr Alan Feiveson for statistical assistance; and Dr Elin Tragardh-Johansson, Linda Byrd, and Rori Yager for data collection assistance. This work was supported by the National Space Biomedical Research Institute, Houston, TX (Summer Student Internship Program); Johnson Space Center Technology Investment funds; the Swedish National Health Service; the Swedish Research Council; the Swedish Heart Lung Foundation; and the Lund University Medical Faculty. NR 41 TC 16 Z9 16 U1 0 U2 2 PU CHURCHILL LIVINGSTONE INC MEDICAL PUBLISHERS PI PHILADELPHIA PA CURTIS CENTER, INDEPENDENCE SQUARE WEST, PHILADELPHIA, PA 19106-3399 USA SN 0022-0736 J9 J ELECTROCARDIOL JI J. Electrocardiol. PD NOV-DEC PY 2010 VL 43 IS 6 BP 713 EP 718 DI 10.1016/j.jelectrocard.2010.08.010 PG 6 WC Cardiac & Cardiovascular Systems SC Cardiovascular System & Cardiology GA 683YR UT WOS:000284514700042 PM 21040828 ER PT J AU Wolf, MT Assad, C Kuwata, Y Howard, A Aghazarian, H Zhu, D Lu, T Trebi-Ollennu, A Huntsberger, T AF Wolf, Michael T. Assad, Christopher Kuwata, Yoshiaki Howard, Andrew Aghazarian, Hrand Zhu, David Lu, Thomas Trebi-Ollennu, Ashitey Huntsberger, Terry TI 360-Degree Visual Detection and Target Tracking on an Autonomous Surface Vehicle SO JOURNAL OF FIELD ROBOTICS LA English DT Article ID MULTIROBOT SYSTEMS AB This paper describes perception and planning systems of an autonomous sea surface vehicle (ASV) whose goal is to detect and track other vessels at medium to long ranges and execute responses to determine whether the vessel is adversarial. The jet Propulsion Laboratory (JPL) has developed a tightly integrated system called CARACaS (Control Architecture for Robotic Agent Command and Sensing) that blends the sensing, planning, and behavior autonomy necessary for such missions. Two patrol scenarios are addressed here: one in which the ASV patrols a large harbor region and checks for vessels near a fixed asset on each pass and one in which the ASV circles a fixed asset and intercepts approaching vessels. This paper focuses on the ASV's central perception and situation awareness system, dubbed Surface Autonomous Visual Analysis and Tracking (SAVAnT), which receives images from an omnidirectional camera head, identifies objects of interest in these images, and probabilistically tracks the objects' presence over time, even as they may exist outside of the vehicle's sensor range. The integrated CARACaS/SAVAnT system has been implemented on U.S. Navy experimental ASVs and tested in on-water field demonstrations. (c) 2010 Wiley Periodicals, Inc. C1 [Wolf, Michael T.; Assad, Christopher; Kuwata, Yoshiaki; Howard, Andrew; Aghazarian, Hrand; Zhu, David; Lu, Thomas; Trebi-Ollennu, Ashitey; Huntsberger, Terry] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Wolf, MT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM wolf@jpl.nasa.gov FU Office of Naval Research [33, N00014-09-IP-2-0008]; Spatial Integrated Systems, Inc. (NASA) [NMO716027] FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Funding for this work was provided by the Office of Naval Research, Code 33 (Contract #N00014-09-IP-2-0008), and Spatial Integrated Systems, Inc. (NASA Space Act Agreement Contract #NMO716027). Finally, we wish to thank David Trotz, Robert Steele, Harry Balian, Lucas Scharenbroich, Mike Garrett, Lee Magnone, Tien-Hsin Chao, the NAVSEA boat drivers, SIS, and Seaward Systems for their valuable contributions to this project. NR 19 TC 13 Z9 13 U1 0 U2 9 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1556-4959 J9 J FIELD ROBOT JI J. Field Robot. PD NOV-DEC PY 2010 VL 27 IS 6 SI SI BP 819 EP 833 DI 10.1002/rob.20371 PG 15 WC Robotics SC Robotics GA 670BJ UT WOS:000283394900008 ER PT J AU Chen, NY Sridhar, B AF Chen, Neil Y. Sridhar, Banavar TI Management-Action-Embedded Sector-Demand Prediction Models SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article; Proceedings Paper CT AIAA Guidance, Navigation and Control Conference CY AUG 10-13, 2009 CL Chicago, IL SP Amer Inst Aeronaut & Astronaut AB This paper describes a class of traffic flow management action embedded sector demand prediction models The models consist of the open loop prediction, which is the prediction without management action, and the management action model The use of periodic autoregressive modeling approach enables the model to capture both the midterm (30 min to 2 h) trend based on the historical data and the short term (less than 30 min) transient response based on recent observations For severe weather days, both storm precipitation and echo tops were used to form a weather Index to approximate the management actions due to reduced capacity In addition to traditional trajectory based sector demand prediction methods, which predict only the open loop behavior of the National Airspace System adequately for short durations of up to 20 min and are vulnerable to uncertainties, this class of models provides a reliable short to midterm (both open and closed loop) sector demand prediction that accounts for various traffic flow management actions A combination of closed loop and open loop models provide decision makers the full range of traffic behavior C1 [Chen, Neil Y.] NASA, Ames Res Ctr, Syst Modeling & Optimizat Branch, Moffett Field, CA 94035 USA. [Sridhar, Banavar] NASA, Ames Res Ctr, Aviat Syst Div, Moffett Field, CA 94035 USA. RP Chen, NY (reprint author), NASA, Ames Res Ctr, Syst Modeling & Optimizat Branch, Mail Stop 210 10, Moffett Field, CA 94035 USA. NR 0 TC 3 Z9 3 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD NOV-DEC PY 2010 VL 33 IS 6 BP 1892 EP 1898 DI 10.2514/1.46903 PG 7 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 684QE UT WOS:000284563600019 ER PT J AU Anderson, RL Lo, MW AF Anderson, Rodney L. Lo, Martin W. TI Dynamical Systems Analysis of Planetary Flybys and Approach: Planar Europa Orbiter SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article; Proceedings Paper CT AIAA/AAS Astrodynamics Specialist Conference CY AUG 15-29, 2004 CL Providence, RI SP Amer Inst Aeronaut & Astronaut, AAS AB In this analysis, the relationship between a planar Europa Orbiter trajectory and the invariant manifolds of resonant periodic orbits is studied An Understanding of this trajectory with its large impulsive maneuvers should provide basic tools that can be extended to cases that approximate low thrust with many small maneuvers This study therefore represents a step in understanding low thrust trajectories Unstable resonant orbits are computed along with their invariant manifolds in order to examine the resonance transitions that the planar Europa Orbiter trajectory travels through The stable manifold of a Lyapunov orbit at the L(2) libration point is used to show why a 5 6 resonance is necessary at this energy for capture around Europa C1 [Anderson, Rodney L.] Univ Colorado, Colorado Ctr Astrodynam Res Aerosp Engn Sci, Boulder, CO 80309 USA. [Lo, Martin W.] CALTECH, Jet Prop Lab, High Capabil Comp & Modeling Grp, Pasadena, CA 91109 USA. RP Anderson, RL (reprint author), Univ Colorado, Colorado Ctr Astrodynam Res Aerosp Engn Sci, Campus Box 431 UCB, Boulder, CO 80309 USA. OI Anderson, Rodney/0000-0001-5336-2775 NR 0 TC 13 Z9 13 U1 1 U2 4 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD NOV-DEC PY 2010 VL 33 IS 6 BP 1899 EP 1912 DI 10.2514/1.45060 PG 14 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 684QE UT WOS:000284563600020 ER PT J AU Pan, FF Peters-Lidard, CD King, AW AF Pan, Feifei Peters-Lidard, Christa D. King, Anthony W. TI Inverse Method for Estimating the Spatial Variability of Soil Particle Size Distribution from Observed Soil Moisture SO JOURNAL OF HYDROLOGIC ENGINEERING LA English DT Article DE Soil particle size distribution (PSD); Soil moisture; Inverse method ID MAP UNITS; HETEROGENEOUS SOILS; WATER-BALANCE; VARIANCE; INFILTRATION; OPTIMIZATION; PARAMETERS; TEXTURE AB Soil particle size distribution (PSD) (i.e., clay, silt, sand, and rock contents) information is one of critical factors for understanding water cycle since it affects almost all of water cycle processes, e. g., drainage, runoff, soil moisture, evaporation, and evapotranspiration. With information about soil PSD, we can estimate almost all soil hydraulic properties (e.g., saturated soil moisture, field capacity, wilting point, residual soil moisture, saturated hydraulic conductivity, pore-size distribution index, and bubbling capillary pressure) based on published empirical relationships. Therefore, a regional or global soil PSD database is essential for studying water cycle regionally or globally. At the present stage, three soil geographic databases are commonly used, i.e., the Soil Survey Geographic database, the State Soil Geographic database, and the National Soil Geographic database. Those soil data are map unit based and associated with great uncertainty. Ground soil surveys are a way to reduce this uncertainty. However, ground surveys are time consuming and labor intensive. In this study, an inverse method for estimating mean and standard deviation of soil PSD from observed soil moisture is proposed and applied to Throughfall Displacement Experiment sites in Walker Branch Watershed in eastern Tennessee. This method is based on the relationship between spatial mean and standard deviation of soil moisture. The results indicate that the suggested method is feasible and has potential for retrieving soil PSD information globally from remotely sensed soil moisture data. C1 [Pan, Feifei] Univ N Texas, Dept Geog, Denton, TX 76203 USA. [Peters-Lidard, Christa D.] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [King, Anthony W.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Pan, FF (reprint author), Univ N Texas, Dept Geog, Denton, TX 76203 USA. EM feifei.pan@unt.edu RI Pan, Feifei/D-3370-2015; Peters-Lidard, Christa/E-1429-2012 OI Pan, Feifei/0000-0003-4373-7566; Peters-Lidard, Christa/0000-0003-1255-2876 FU Oak Ridge Associated Universities (ORAU) FX The writers would like to thank P. J. Hanson for providing soil moisture and soil texture data used in this study, and four anonymous referees for their useful comments and suggestions. This research was partially supported by the Oak Ridge Associated Universities (ORAU) Ralph E. Powe Junior Faculty Enhancement Award (Pan). NR 35 TC 1 Z9 1 U1 3 U2 15 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 1084-0699 J9 J HYDROL ENG JI J. Hydrol. Eng. PD NOV PY 2010 VL 15 IS 11 BP 931 EP 938 DI 10.1061/(ASCE)HE.1943-5584.0000274 PG 8 WC Engineering, Civil; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA 667ND UT WOS:000283199300010 ER PT J AU Devi, VM Benner, DC Miller, CE Predoi-Cross, A AF Devi, V. Malathy Benner, D. Chris Miller, C. E. Predoi-Cross, A. TI Lorentz half-width, pressure-induced shift and speed-dependent coefficients in oxygen-broadened CO2 bands at 6227 and 6348 cm(-1) using a constrained multispectrum analysis SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE CO2; O-2 broadening; Fourier transform infrared (FTIR); spectroscopy; Spectral lineshapes; Pressure-induced shifts; Speed dependence; Near infrared ID MOLECULAR SPECTROSCOPIC DATABASE; LASER SPECTROSCOPY; LINE PARAMETERS; MU-M; INTENSITIES; TRANSITIONS; REGION; AIR; AR AB The McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory (NSO) on Kitt Peak, Arizona, was used to record infrared high resolution absorption spectra of CO2 spectra broadened by O-2. These spectra were analyzed to measure O-2-broadened half-width coefficients, O-2-induced pressure-shift coefficients and speed dependent parameters for transitions in the 30013 <- 00001 and 30012 <- 00001 bands of (OCO)-O-16-C-12-O-6 located near 6227 and 6348 cm(-1), respectively. All spectra were obtained at room temperature using the long path, 6 m base path White cell available at NSO. A multispectrum nonlinear least-squares fitting algorithm employing Voigt line shapes modified to include line mixing and speed dependence was used to fit simultaneously a total of 19 spectra in the 6120-6280 cm(-1) (30013 <- 00001) and 6280-6395 cm(-1) (30012 <- 00001) spectral regions. 16 of the 19 spectra analyzed in this work were self broadened and three spectra were lean mixtures of CO2 in O-2. The volume mixing ratios of CO2 in the three spectra varied between 0.06 and 0.1. Lorentz half-width and pressure-induced shift coefficients were measured for all transitions in the P(50)-R(50) range in both vibrational bands. The results obtained from present analysis have been compared with measurements available in the literature for self-, air-, oxygen- and argon-broadening. No significant differences were observed between the broadening and shift coefficients of the two bands. The N-2-broadened half-width and pressure-shift coefficients were computed from measured air- and O-2-broadened width and shift coefficients. (C) 2010 Published by Elsevier Ltd. C1 [Devi, V. Malathy; Benner, D. Chris] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Miller, C. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Predoi-Cross, A.] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada. RP Devi, VM (reprint author), Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA. EM m.d.venkataraman@larc.nasa.gov FU National Science Foundation [ATM-0338475]; National Aeronautics and Space Administration; Natural Sciences and Engineering Research Council of Canada FX The material presented in this investigation is based upon work supported by the National Science Foundation under Grant no. ATM-0338475 to the College of William and Mary. The research at the Jet Propulsion Laboratory (JPL), California Institute of Technology, was performed under contract with National Aeronautics and Space Administration. The authors express sincere appreciation to M. Dulick of the National Optical Astronomy Observatory for assistance in obtaining the data. We thank NASA's Upper Atmosphere Research Program for support of the McMath-Pierce laboratory facility. CEM thanks NASA's Tropospheric Chemistry and Atmospheric Composition programs for support. A. Predoi-Cross is grateful for the support for this project provided by the Natural Sciences and Engineering Research Council of Canada. NR 23 TC 13 Z9 12 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD NOV PY 2010 VL 111 IS 16 BP 2355 EP 2369 DI 10.1016/j.jqsrt.2010.06.003 PG 15 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 655LW UT WOS:000282252500001 ER PT J AU Devi, VM Benner, DC Rinsland, CP Smith, MAH Sams, RL Blake, TA Flaud, JM Sung, K Brown, LR Mantz, AW AF Devi, V. Malathy Benner, D. Chris Rinsland, C. P. Smith, M. A. H. Sams, R. L. Blake, T. A. Flaud, Jean-Marie Sung, Keeyoon Brown, L. R. Mantz, A. W. TI Multispectrum measurements of spectral line parameters including temperature dependences of N-2- and self-broadened half-width coefficients in the region of the v(9) band of (C2H6)-C-12 SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Ethane; Positions; Intensities; Line shapes; Fourier transform spectra; Pressure-broadened widths; Self broadening; Nitrogen broadening; Temperature dependence ID MOLECULAR SPECTROSCOPIC DATABASE; INTERNAL-ROTATION; ETHANE; ATMOSPHERE; SPLITTINGS; GAS AB Ethane is a prominent contributor to the spectrum of Titan, particularly in the V-9 region centered near 822 cm(-1) To improve the spectroscopic line parameters at 12 mu m, 41 high-resolution (0 0016-0 005 cm(-1)) absorption spectra of C2H6 were obtained at sample temperatures between 211 and 298 K with the Bruker IFS 120HR at the Pacific Northwest National Laboratory (PNNL) in Richland. Washington Two additional spectra were later recorded at similar to 150 K using a new temperature-stabilized cryogenic cell designed for the sample compartment of the Brukei IFS 125HR at the Jet Propulsion Laboratory (JPL) in Pasadena, California A multispectrum nonlinear least-squares fitting program was applied simultaneously to all 43 spectra to measure the line positions, intensities. N-2- and self-broadened half-width coefficients and their temperature dependences. Reliable pressure-induced shift coefficients could not be obtained, however, because of the high congestion of spectral lines (due to torsional-split components. hot-band transitions as well as blends). Existing theoretical modeling of this very complicated v(9) region permitted effective control of the multispectrum fitting technique. some constraints were applied using predicted intensity ratios, doublet separations, half-width coefficients and their temperature dependence exponents in order to determine reliable parameters for each of the two torsional-split components For (C2H6)-C-12, the resulting retrievals included 17 (P)Q and (r)Q sub-bands of v9 (as well as some P-p, R-r sub-bands). Positions and intensities were measured for 3771 transitions, and a puzzling difference between previously measured v9 intensities was clarified. In addition, line positions and intensities were obtained for two (C2H6)-C-12 hot bands (v(9) + v(4) - v(4,) v(9) + 2v(4)-2v(4)) and the v(9) band of (CCH6)-C-13-C-12, as well as several hundred presently unidentified transitions N2- and self-broadened half-width coefficients were determined for over 1700 transitions, along with 1350 corresponding temperature dependence exponents Similar to N2- and self-broadened half-width coefficients, their temperature dependence exponents were also found to follow distinctively different patterns However, while the self- and N-2-broaded widths differed by 40%. the temperature dependence exponents of the two broadening gases were similar The variations of the observed half-width coefficients and their temperature dependences with respect to J, K quantum numbers were modeled with a set of linear equations for each K. The present broadening coefficients compared well with some of the prior measurements. (C) 2010 Elsevier Ltd All rights reserved C1 [Devi, V. Malathy; Benner, D. Chris] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Rinsland, C. P.; Smith, M. A. H.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Sams, R. L.; Blake, T. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Flaud, Jean-Marie] Univ Paris Est, CNRS, UMR 7583, Lab Interuniv Syst Atmospher, F-94010 Creteil, France. [Flaud, Jean-Marie] Univ Paris 07, CNRS, UMR 7583, Lab Interuniv Syst Atmospher, F-94010 Creteil, France. [Sung, Keeyoon; Brown, L. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mantz, A. W.] Connecticut Coll, Dept Phys Astron & Geophys, New London, CT 06320 USA. RP Devi, VM (reprint author), Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA. RI Sung, Keeyoon/I-6533-2015 FU Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory (PNNL); Department of Energy [DE-AC05-76RL01830]; Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration; NASA Langley Research Center; College of William and Mary; NASA FX Most of the experimental spectra for the present study were recorded at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the United States Department of Energy by the Battelle Memorial Institute under Contract DE-AC05-76RL01830. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NASA's Planetary Atmospheres program supported the work performed at NASA Langley Research Center and the College of William and Mary. The research at the Connecticut College was performed under contracts and grants with NASA NR 25 TC 14 Z9 14 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD NOV PY 2010 VL 111 IS 17-18 BP 2481 EP 2504 DI 10.1016/j.jqsrt.2010.07.010 PG 24 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 670FA UT WOS:000283405400001 ER PT J AU Baum, BA Yang, P Hu, YX Feng, QA AF Baum, Bryan A. Yang, Ping Hu, Yong-Xiang Feng, Qian TI The impact of ice particle roughness on the scattering phase matrix SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Ice crystals; Polarized reflectance; Scattering; Radiative transfer; Clouds ID CIRRUS CLOUDS; OPTICAL-PROPERTIES; SURFACE-ROUGHNESS; LIGHT-SCATTERING; POLARIZED-LIGHT; MUELLER MATRIX; CRYSTALS; RETRIEVAL; PRODUCTS; MODELS AB The goal of this study is to explore the influence of ice particle habit (or shape) and surface roughness on the scattering phase matrix As an example, reported here are the results for two wavelengths: 067 and 1.61 mu m For this effort, a database of single-scattering properties has been computed for a set of habits including hexagonal plates, hollow and solid columns, hollow and solid 3D bullet rosettes, droxtals, aggregates of solid columns, and aggregates of plates. The database provides properties for each of the habits at 101 wavelengths between 045 and 224 pm for smooth, moderately roughened, and severely roughened particles. At each wavelength, the scattering properties are provided at 233 discrete particle diameters ranging from 2 to 10,000 pm. A single particle size distribution from a very cold ice cloud sampled during the CRYSTAL-FACE field campaign (T-ctd=-76 degrees C) is used to illustrate the influence of habit and roughness on the phase matrix In all, four different habit mixtures are evaluated The nonzero elements of the phase matrix are shown to be quite sensitive to the assumed habit, particularly in the case of -P-12/P-11 that is associated with the degree of linear polarization of scattered radiation Surface roughness is shown to smooth out maxima in the scattering phase function and in the other elements of the, phase matrix, consistent with other studies. To compare with the theoretical simulations of the phase matrix for smooth and roughened particles, a full year of cloud-aerosol lidar with orthogonal polarization (CALIOP) data from 2008 is analyzed to provide global statistics on the values of P-11 and P-22/P-11 in the backscattering direction In a comparison of two of the habit mixtures (one used for MODIS Collection 5 and another that incorporates new habits including hollow bullet rosettes and aggregates of plates) with the CALIOP data, the values for P-11 are higher regardless of the degree of particle surface roughness, and the values for P-22/P-11 are lower than those for CALIOP. Further investigation is warranted to better understand this discrepancy. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Baum, Bryan A.] Univ Wisconsin Madison, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Yang, Ping; Feng, Qian] Texas A&M Univ, College Stn, TX USA. [Hu, Yong-Xiang] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Baum, BA (reprint author), Univ Wisconsin Madison, Ctr Space Sci & Engn, 1225 W Dayton St, Madison, WI 53706 USA. RI Yang, Ping/B-4590-2011; Hu, Yongxiang/K-4426-2012; Baum, Bryan/B-7670-2011 OI Baum, Bryan/0000-0002-7193-2767 FU NASA [NNX08A181G, NNX08AI94G] FX Drs Baum and Yang gratefully acknowledge the funding of this work through a NASA grant (NNX08A181G), and note the support and encouragement of Dr. Hal Maring at NASA headquarters Dr. Yang's research is also partly supported by another NASA grant (NNX08AI94G) supervised by Dr. Charles Trepte as the technical officer NR 35 TC 31 Z9 31 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD NOV PY 2010 VL 111 IS 17-18 BP 2534 EP 2549 DI 10.1016/j.jqsrt.2010.07.008 PG 16 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 670FA UT WOS:000283405400006 ER PT J AU Neuman, M Tissot, B Vanblaricom, G AF Neuman, Melissa Tissot, Brian Vanblaricom, Glenn TI OVERALL STATUS AND THREATS ASSESSMENT OF BLACK ABALONE (HALIOTIS CRACHERODII LEACH, 1814) POPULATIONS IN CALIFORNIA SO JOURNAL OF SHELLFISH RESEARCH LA English DT Article; Proceedings Paper CT 7th International Symposium on Abalone Biology, Fisheries and Culture CY JUL 19-24, 2009 CL Pattaya, THAILAND SP Int Abalone Soc, Marine Sci Assoc Thailand, Aquat Resources Res Inst, Fac Sci Chulalongkorn Univ DE Allee effect; black abalone; depensation; Haliotis cracherodii; endangered species; long-term trends in abundance; threats assessment; withering syndrome ID WITHERING SYNDROME; GENETIC-STRUCTURE; MASS MORTALITY; COAST; RECRUITMENT; DECLINES; RECOVERY; ISLANDS; CO2 AB The black abalone (Haliolitis cracherodii Leach, 1814) is a relatively large prosobranch gastropod mollusc ranging from approximately Point Arena in northern California to Bahia Tortugas and Isla Guadalupe, Mexico. In the United States, populations of black abalone on offshore islands, especially those of southern California, were particularly large prior to the mid 1980s. Analysis of long-term fishery-dependent and -independent data revealed that fishing pressure in combination with a lethal disease, withering syndrome, has resulted in mass mortalities of 95% or greater in black abalone populations south of Monterey County, CA. Reduction in local densities below the threshold necessary for successful fertilization (0.34/m(2)) has been a widespread and pervasive consequence of population reductions by withering syndrome and other factors. The most significant current and future threat that the black abalone faces is that imposed by the spread of withering syndrome, known to be enhanced by periods of ocean warming. Other factors, such as illegal take, ocean pollution, and natural predation, also pose risks to remaining populations and those that may be restored via active management in the future. Without identification, development, and implementation of effective measures to counter the population-level effects of withering syndrome, remaining black abalone populations may experience further declines. C1 [Neuman, Melissa] NOAA, Natl Marine Fisheries Serv, Long Beach, CA 90802 USA. [Tissot, Brian] Washington State Univ, Sch Earth & Environm Sci, Vancouver, WA 98686 USA. [Vanblaricom, Glenn] Univ Washington, Sch Aquat & Fishery Sci, Washington Cooperat Fish & Wildlife Res Unit, Seattle, WA 98195 USA. RP Neuman, M (reprint author), NOAA, Natl Marine Fisheries Serv, 501 W Ocean Blvd,Suite 4200, Long Beach, CA 90802 USA. EM Melissa.Neuman@noaa.gov NR 48 TC 15 Z9 15 U1 2 U2 37 PU NATL SHELLFISHERIES ASSOC PI GROTON PA C/O DR. SANDRA E. SHUMWAY, UNIV CONNECTICUT, 1080 SHENNECOSSETT RD, GROTON, CT 06340 USA SN 0730-8000 J9 J SHELLFISH RES JI J. Shellfish Res. PD NOV PY 2010 VL 29 IS 3 BP 577 EP 586 DI 10.2983/035.029.0305 PG 10 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 679BU UT WOS:000284135200004 ER PT J AU Zhang, CD Ling, JA Hagos, S Tao, WK Lang, S Takayabu, YN Shige, S Katsumata, M Olson, WS L'Ecuyer, T AF Zhang, Chidong Ling, Jian Hagos, Samson Tao, Wei-Kuo Lang, Steve Takayabu, Yukari N. Shige, Shoichi Katsumata, Masaki Olson, William S. L'Ecuyer, Tristan TI MJO Signals in Latent Heating: Results from TRMM Retrievals SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID MADDEN-JULIAN OSCILLATION; CLOUD-RESOLVING MODEL; STATIC ENERGY BUDGET; SPECTRAL RETRIEVAL; PART I; TROPICAL CONVECTION; TOGA COARE; PR DATA; INTRASEASONAL OSCILLATION; STRATIFORM PRECIPITATION AB Four Tropical Rainfall Measuring Mission (TRMM) datasets of latent heating were diagnosed for signals in the Madden-Julian oscillation (MJO) In all four datasets vertical structures of latent heating are dominated by two components one deep with its peak above the melting level and one shallow with its peak below Profiles of the two components are nearly ubiquitous in longitude allowing a separation of the vertical and zonal/temporal variations when the latitudinal dependence is not considered All four datasets exhibit robust MJO spectral signals in the deep component as eastward propagating spectral peaks centered at a period of 50 days and zonal wavenumber 1 well distinguished from lower and higher frequency power and much stronger than the corresponding westward power The shallow component shows similar but slightly less robust MJO spectral peaks MJO signals were further extracted front a combination of bandpass (30-90 day) filtered deep and shallow components Largest amplitudes of both deep and shallow components of the MJO are confined to the Indian and western Pacific Oceans There is a local minimum in the deep components over the Maritime Continent The shallow components of the MJO differ substantially) among the four TRMM datasets in their detailed zonal distributions in the Eastern Hemisphere In composites of the heating evolution through the life cycle of the MJO the shallow components lead the deep ones in some datasets and at certain longitudes In many respects the four TRMM datasets agree well in their deep components but not in their shallow components and in the phase relations between the deep and shallow components These results indicate that caution must be exercised in applications of these latent heating data C1 [Zhang, Chidong] Univ Miami, RSMAS, MPO, Miami, FL 33149 USA. [Tao, Wei-Kuo; Lang, Steve] NASA, GSFC, Greenbelt, MD USA. [Takayabu, Yukari N.] Univ Tokyo, Ctr Climate Syst Res, Tokyo, Japan. [Shige, Shoichi] Kyoto Univ, Grad Sch Sci, Kyoto, Japan. [Katsumata, Masaki] Japan Agcy Marine Earth Sci & Technol, RIGC, Yokosuka, Kanagawa 2370061, Japan. [Olson, William S.] Univ Maryland Baltimore Cty, JCET, Baltimore, MD 21228 USA. [L'Ecuyer, Tristan] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Zhang, CD (reprint author), Univ Miami, RSMAS, MPO, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. RI Ling, Jian/I-3781-2012; hagos, samson /K-5556-2012; L'Ecuyer, Tristan/C-7040-2013; L'Ecuyer, Tristan/E-5607-2012; PMM, JAXA/K-8537-2016 OI L'Ecuyer, Tristan/0000-0002-7584-4836; FU NASA [NNX07AD41G] FX The authors thank David Raymond and two anonymous reviewers for their constructive comments, which helped improve the presentation of this study This study was supported by NASA Grant NNX07AD41G NR 70 TC 25 Z9 25 U1 0 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD NOV PY 2010 VL 67 IS 11 BP 3488 EP 3508 DI 10.1175/2010JAS3398.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 686ZI UT WOS:000284740600004 ER PT J AU Varnai, T AF Varnai, Tamas TI Multiyear Statistics of 2D Shortwave Radiative Effects at Three ARM Sites SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID CLOUDS; MODEL; ATMOSPHERE; SCATTERING; FLUXES; IMPACT AB This study examines the importance of horizontal photon transport effects which are not considered in the 1D calculations of solar radiative heating used by most atmospheric dynamical model In pal ocular the paper analyzes the difference between 2D and 1D radiative calculations for 2D vertical cross sections of clouds that were observed at three sites over 2-3 yr periods The results show that 2D effects increase multi year 24 h average total solar absorption by about 4 1 1 2 and 0 3 W m(-2) at tropical midlatitude and arctic sites, respectively However 2D effects are often much larger than these average values especially for high sun and for convective clouds The results also reveal a somewhat unexpected behavior namely that horizontal photon transport often enhances solar heating even for oblique sun These findings underscore the need for fast radiation calculation methods that can allow atmospheric dynamical simulations to consider the inherently) multidimensional nature of shortwave radiative processes C1 [Varnai, Tamas] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. RP Varnai, T (reprint author), NASA, GSFC, Code 613 2, Greenbelt, MD 20771 USA. FU U S Department of Energy FX Financial support from the U S Department of Energy Atmospheric Radiation Measurement program is gratefully acknowledged Thank you to M Dunn for providing large sets of Microbase data, and to R F Cahalan, K F Evans, J Y Harrington, and A Marshak for encouragement and fruitful discussions NR 20 TC 1 Z9 1 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD NOV PY 2010 VL 67 IS 11 BP 3757 EP 3762 DI 10.1175/2010JAS3506.1 PG 6 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 686ZI UT WOS:000284740600019 ER PT J AU Wingard, D AF Wingard, Doug TI Use of DSC and DMA to study crystallization as a possible cause for a glove tear SO JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY LA English DT Article; Proceedings Paper CT 37th Annual Conference of the North-American-Thermal-Analysis-Society CY SEP 20-23, 2009 CL Lubbock, TX SP N Amer Thermal Anal Soc DE Pinky/ring finger crotch; Strain-induced crystallization; Freezer conditioning AB The Advanced Crew Escape Suit (ACES) is a pressurized suit worn by astronauts during launch and landing phases of Space Shuttle operations. In 2008, a large tear (12.7-25.4 mm long, between the pinky and ring finger) in the ACES left-hand glove made of neoprene latex rubber was found during training for Shuttle flight STS-124. An investigation to help determine the cause(s) of the glove tear was headed by the NASA Johnson Space Center (JSC) in Houston, Texas. Efforts at JSC to reproduce the actual glove tear pattern by cutting/tearing or rupturing were unsuccessful. Chemical and material property data from JSC such as GC-MS, FTIR, DSC, and TGA mostly showed little differences between samples from the torn and control gloves. One possible cause for the glove tear could be a wedding ring/band worn by an astronaut. Even with a smooth edge, such a ring could scratch the material and initiate the tear observed in the left-hand glove. A decision was later made by JSC to not allow the wearing of such a ring during training or actual flight. Another possible cause for the ACES glove tear is crystallinity induced by strain in the neoprene rubber over a long period of time and use. Neoprene is one among several elastomers known to be susceptible to crystallization, and such a process is accelerated with exposure of the material to cold temperatures plus strain. When the temperature is lowered below room temperature, researchers have shown that neoprene crystallization may be maintained at temperatures as high as 7.2-10 A degrees C, with a maximum crystallization rate near -6.7 to -3.9 A degrees C (Kell et al. J Appl Polym Sci 2(4):8-13, 1959 [1]). A convenient conditioning temperature for inducing neoprene crystallization is a typical freezer that is held near -17.8 A degrees C. For work at the NASA Marshall Space Flight Center (MSFC), samples were cut from several areas/locations (pinky/ring finger crotch, index finger and palm) on each of two pairs of unstrained ACES gloves for DSC and DMA thermal analysis testing. The samples were conditioned in a freezer for various times up to about 14 days. Some rectangular conditioned samples were unstrained, while most were subjected to strains up to 250% with the aid of two slotted aluminum blocks and two aluminum clamps per sample. Trends were observed to correlate DSC data (heat of fusion) and DMA data (linear CTE and stress for iso-strain testing) with (a) sample location on each glove; and (b) percent strain during conditioning. Control samples cut "as is" from each glove location were also tested by DSC and DMA. C1 NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Wingard, D (reprint author), NASA, George C Marshall Space Flight Ctr, NASA MSFC Mail Code EM10, Huntsville, AL 35812 USA. EM doug.wingard@nasa.gov NR 9 TC 2 Z9 2 U1 2 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-6150 J9 J THERM ANAL CALORIM JI J. Therm. Anal. Calorim. PD NOV PY 2010 VL 102 IS 2 BP 469 EP 476 DI 10.1007/s10973-010-0991-6 PG 8 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA 666DB UT WOS:000283090400009 ER PT J AU Salinas, K Hemmer, MJ Serrano, J Higgins, L Anderson, LB Benninghoff, AD Williams, DE Walker, C AF Salinas, K. Hemmer, M. J. Serrano, J. Higgins, L. Anderson, L. B. Benninghoff, A. D. Williams, D. E. Walker, C. TI Identification of Estrogen-Responsive Vitelline Envelope Protein Fragments From Rainbow Trout (Oncorhynchus mykiss) Plasma Using Mass Spectrometry SO MOLECULAR REPRODUCTION AND DEVELOPMENT LA English DT Article ID MOLECULAR-CLONING; GENE-EXPRESSION; MESSENGER-RNA; EGG; FISH; LIVER; 17-BETA-ESTRADIOL; BIOMARKERS; PROTEOMICS; ORGANISMS AB Plasma peptides previously associated with exposure of juvenile male rainbow trout (Oncorhynchus rnykiss) to the hormone 17 beta-estradiol (E2) were identified using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Specifically, plasma peptides of interest were fractionated and subsequently identified via spectra obtained by MALDI QqTOF MS/MS and LC-MALDI TOFTOF MS/MS analysis, de novo sequencing and database matching. The two peptide masses were identified as significant matches for fragments of the C-terminal propeptides from rainbow trout vitelline envelope protein (VEP)alpha and VEP gamma isoforms. Our findings document the presence of the C-terminal propeptides from rainbow trout VEP alpha and VEP gamma proteins in the bloodstream of juvenile male rainbow trout exposed to E2 via MALDI-TOF-MS detection. We provide three possible explanations for the presence of C-terminal propeptides in the bloodstream, as well as compare previously obtained hepatic transcriptomic results with the plasma proteomic results obtained in the present study. C1 [Salinas, K.; Hemmer, M. J.] US EPA, Natl Hlth & Environm Effects Res Lab, Gulf Ecol Div, Gulf Breeze, FL USA. [Serrano, J.] US EPA, Natl Hlth & Environm Effects Res Lab, Midcontinent Ecol Div, Duluth, MN USA. [Higgins, L.; Anderson, L. B.] Univ Minnesota, Dept Biochem Mol Biol & Biophys, Minneapolis, MN USA. [Benninghoff, A. D.] Utah State Univ, Grad Program Toxicol, Logan, UT 84322 USA. [Williams, D. E.] Oregon State Univ, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA. [Williams, D. E.] Oregon State Univ, Linus Pauling Inst, Corvallis, OR 97331 USA. [Walker, C.] Natl Marine Fisheries Serv, NOAA, Natl Seafood Inspect Lab, Pascagoula, MS USA. RP Salinas, K (reprint author), 1 Sabine Isl Dr, Gulf Breeze, FL 32514 USA. EM salinas.kimberly@epa.gov FU Marine and Freshwater Biomedical Sciences Center at Oregon State University; Environmental Health Sciences Center at Oregon State University; U. S. Environmental Protection Agency; NIH [ES013534, ES00210, ES003850]; Gulf Ecology Division Marine and Freshwater Biomedical Sciences Center at Oregon State University FX The information in this document has been subjected to review by the U. S. Environmental Protection Agency National Health and Environmental Effects Research Laboratory and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. This is contribution number 1360 from the Gulf Ecology Division. Dr. Benninghoff and Dr. Williams wish to acknowledge support of the Marine and Freshwater Biomedical Sciences Center and the Environmental Health Sciences Center at Oregon State University. The information in this document has been funded wholly (or in part) by the U. S. Environmental Protection Agency. Dr. Benninghoff and Dr. Williams wish to acknowledge financial support from NIH grants ES013534, ES00210, and ES003850.; Supported by the Gulf Ecology Division Marine and Freshwater Biomedical Sciences Center, the Environmental Health Sciences Center at Oregon State University and the NIH (grants ES013534, ES00210, ES003850). NR 38 TC 0 Z9 0 U1 1 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1040-452X J9 MOL REPROD DEV JI Mol. Reprod. Dev. PD NOV PY 2010 VL 77 IS 11 BP 963 EP 970 DI 10.1002/mrd.21244 PG 8 WC Biochemistry & Molecular Biology; Cell Biology; Developmental Biology; Reproductive Biology SC Biochemistry & Molecular Biology; Cell Biology; Developmental Biology; Reproductive Biology GA 692PQ UT WOS:000285165400005 PM 20939045 ER PT J AU Rowan-Robinson, M Roseboom, IG Vaccari, M Amblard, A Arumugam, V Auld, R Aussel, H Babbedge, T Blain, A Bock, J Boselli, A Brisbin, D Buat, V Burgarella, D Castro-Rodriguez, N Cava, A Chanial, P Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Dwek, E Dye, S Eales, S Elbaz, D Farrah, D Fox, M Franceschini, A Gear, W Glenn, J Solares, EAG Griffin, M Halpern, M Hatziminaoglou, E Huang, J Ibar, E Isaak, K Ivison, RJ Lagache, G Levenson, L Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Mortier, AMJ Nguyen, HT O'Halloran, B Oliver, SJ Omont, A Page, MJ Panuzzo, P Papageorgiou, A Patel, H Pearson, CP Fournon, IP Pohlen, M Rawlings, JI Raymond, G Rigopoulou, D Rizzo, D Schulz, B Scott, D Seymour, N Shupe, DL Smith, AJ Stevens, JA Symeonidis, M Trichas, M Tugwell, KE Valtchanov, I Vigroux, L Wang, L Ward, R Wright, G Xu, CK Zemcov, M AF Rowan-Robinson, M. Roseboom, I. G. Vaccari, M. Amblard, A. Arumugam, V. Auld, R. Aussel, H. Babbedge, T. Blain, A. Bock, J. Boselli, A. Brisbin, D. Buat, V. Burgarella, D. Castro-Rodriguez, N. Cava, A. Chanial, P. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Dwek, E. Dye, S. Eales, S. Elbaz, D. Farrah, D. Fox, M. Franceschini, A. Gear, W. Glenn, J. Solares, E. A. Gonzalez Griffin, M. Halpern, M. Hatziminaoglou, E. Huang, J. Ibar, E. Isaak, K. Ivison, R. J. Lagache, G. Levenson, L. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Mortier, A. M. J. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Omont, A. Page, M. J. Panuzzo, P. Papageorgiou, A. Patel, H. Pearson, C. P. Perez Fournon, I. Pohlen, M. Rawlings, J. I. Raymond, G. Rigopoulou, D. Rizzo, D. Schulz, B. Scott, Douglas Seymour, N. Shupe, D. L. Smith, A. J. Stevens, J. A. Symeonidis, M. Trichas, M. Tugwell, K. E. Valtchanov, I. Vigroux, L. Wang, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI Cold dust and young starbursts: spectral energy distributions of Herschel SPIRE sources from the HerMES survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: starburst; galaxies: star formation; cosmology: observations; infrared: galaxies ID ACTIVE GALACTIC NUCLEI; RADIATIVE-TRANSFER MODELS; INFRARED-EMISSION; INTERSTELLAR DUST; STAR-FORMATION; SUBMILLIMETER GALAXIES; SEYFERT-GALAXIES; CIRRUS MODELS; CLUMPY TORI; SWIRE AB We present spectral energy distributions (SEDs) for 68 Herschel sources detected at 5 sigma at 250, 350 and 500 mu m in the HerMES SWIRE-Lockman field. We explore whether existing models for starbursts, quiescent star-forming galaxies and active galactic nucleus dust tori are able to model the full range of SEDs measured with Herschel. We find that while many galaxies (similar to 56 per cent) are well fitted with the templates used to fit IRAS, Infrared Space Observatory (ISO) and Spitzer sources, for about half the galaxies two new templates are required: quiescent ('cirrus') models with colder (10-20 K) dust and a young starburst model with higher optical depth than Arp 220. Predictions of submillimetre fluxes based on model fits to 4.5-24 mu m data agree rather poorly with the observed fluxes, but the agreement is better for fits to 4.5-70 mu m data. Herschel galaxies detected at 500 mu m tend to be those with the highest dust masses. C1 [Rowan-Robinson, M.; Babbedge, T.; Chanial, P.; Clements, D. L.; Fox, M.; Mortier, A. M. J.; O'Halloran, B.; Patel, H.; Rizzo, D.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Roseboom, I. G.; Farrah, D.; Oliver, S. J.; Smith, A. J.; Wang, L.; Ward, R.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Vaccari, M.; Franceschini, A.; Mainetti, G.; Marchetti, L.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Arumugam, V.; Ivison, R. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Auld, R.; Dye, S.; Eales, S.; Gear, W.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.; Raymond, G.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aussel, H.; Elbaz, D.; Madden, S.; Panuzzo, P.] Univ Paris Diderot, CNRS, CEA DSM Irfu, Lab AIM Paris Saclay,CE Saclay, F-91191 Gif Sur Yvette, France. [Blain, A.; Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Lu, N.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.; Burgarella, D.] Univ Aix Marseille, CNRS, OAMP, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Brisbin, D.] Cornell Univ, Ithaca, NY 14853 USA. [Castro-Rodriguez, N.; Cava, A.; Perez Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Castro-Rodriguez, N.; Cava, A.; Perez Fournon, I.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Conley, A.; Glenn, J.] Univ Colorado, CASA UCB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Conversi, L.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Solares, E. A. Gonzalez] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Halpern, M.; Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Huang, J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lagache, G.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Ctr Infrared Proc & Anal, JPL, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Page, M. J.; Seymour, N.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Rowan-Robinson, M (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. EM m.rrobinson@imperial.ac.uk RI Dwek, Eli/C-3995-2012; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI amblard, alexandre/0000-0002-2212-5395; Dye, Simon/0000-0002-1318-8343; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536 FU CSA (Canada); NAOC (China); CEA (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA); CNES (France); CNRS (France) FX SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including University of Lethbridge (Canada); NAOC (China); CEA, LAM(France); IFSI, University of Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, University of Sussex (UK); Caltech, JPL, NHSC, University of Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK) and NASA (USA). NR 43 TC 37 Z9 37 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 2 EP 11 DI 10.1111/j.1365-2966.2010.17041.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500001 ER PT J AU Magdis, GE Elbaz, D Hwang, HS Amblard, A Arumugam, V Aussel, H Blain, A Bock, J Boselli, A Buat, V Castro-Rodriguez, N Cava, A Chanial, P Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Dwek, E Eales, S Farrah, D Franceschini, A Glenn, J Griffin, M Halpern, M Hatziminaoglou, E Huang, J Ibar, E Isaak, K Le Floc'h, E Lagache, G Levenson, L Lonsdale, CJ Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Morrison, GE Nguyen, HT O'Halloran, B Oliver, SJ Omont, A Owen, FN Page, MJ Pannella, M Panuzzo, P Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rigopoulou, D Rizzo, D Roseboom, IG Rowan-Robinson, M Schulz, B Scott, D Seymour, N Shupe, DL Smith, AJ Stevens, JA Strazzullo, V Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vigroux, L Wang, L Wright, G Xu, CK Zemcov, M AF Magdis, G. E. Elbaz, D. Hwang, H. S. Amblard, A. Arumugam, V. Aussel, H. Blain, A. Bock, J. Boselli, A. Buat, V. Castro-Rodriguez, N. Cava, A. Chanial, P. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Dwek, E. Eales, S. Farrah, D. Franceschini, A. Glenn, J. Griffin, M. Halpern, M. Hatziminaoglou, E. Huang, J. Ibar, E. Isaak, K. Le Floc'h, E. Lagache, G. Levenson, L. Lonsdale, C. J. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Morrison, G. E. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Omont, A. Owen, F. N. Page, M. J. Pannella, M. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rigopoulou, D. Rizzo, D. Roseboom, I. G. Rowan-Robinson, M. Schulz, B. Scott, Douglas Seymour, N. Shupe, D. L. Smith, A. J. Stevens, J. A. Strazzullo, V. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vigroux, L. Wang, L. Wright, G. Xu, C. K. Zemcov, M. TI Herschel reveals a T-dust-unbiased selection of z similar to 2 ultraluminous infrared galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: high-redshift; galaxies: starburst; cosmology: observations; infrared: galaxies; submillimetre: galaxies ID STAR-FORMING GALAXIES; SPECTRAL ENERGY-DISTRIBUTION; SUBMILLIMETER GALAXIES; HIGH-REDSHIFT; LUMINOUS STARBURSTS; DISTANT GALAXIES; AGN ACTIVITY; POPULATION; COUNTS; CONSTRAINTS AB Using Herschel Photodetector Array Camera (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) observations of Lockman Hole-North and Great Observatories Origins Deep Survey-North (GOODS-N) as part of the Herschel Multi-tiered Extragalactic Survey (HerMES) project, we explore the far-infrared (IR) properties of a sample of mid-IR-selected starburst-dominated ultraluminous infrared galaxies (ULIRGs) at z similar to 2. The selection of the sample is based on the detection of the stellar bump that appears in the spectral energy distribution of star-forming galaxies at 1.6 mu m. We derive robust estimates of infrared luminosities (L-IR) and dust temperatures (T-d) of the population and find that while the luminosities in our sample span less than an order of magnitude (12.24 <= log(L-IR/L-circle dot) <= 12.94), they cover a wide range of dust temperatures (25 <= T-d <= 62 K). Galaxies in our sample range from those that are as cold as high-z submillimetre galaxies (SMGs) to those that are as warm as optically faint radio galaxies (OFRGs) and local ULIRGs. Nevertheless, our sample has median T-d = 42.3 K, filling the gap between SMGs and OFRGs, bridging the two populations. We demonstrate that a significant fraction of our sample would be missed from ground-based (sub) mm surveys (850-1200 mu m), showing that the latter introduce a bias towards the detection of colder sources. We conclude that Herschel observations confirm the existence of high-z ULIRGs warmer than SMGs, show that the mid-IR selection of high-z ULIRGs is not T-d dependent, reveal a large dispersion in T-d of high-z ULIRGs and provide the means to characterize the bulk of the ULIRG population, free from selection biases introduced by ground-based (sub) mm surveys. C1 [Magdis, G. E.; Elbaz, D.; Hwang, H. S.; Aussel, H.; Le Floc'h, E.; Madden, S.; Panuzzo, P.] Univ Paris Diderot, CNRS, CEA DSM Irfu, Lab AIM Paris Saclay,CE Saclay, F-91191 Gif Sur Yvette, France. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Arumugam, V.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Blain, A.; Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Lu, N.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.] Univ Aix Marseille, OAMP, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Chanial, P.; Clements, D. L.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Conley, A.; Glenn, J.] Univ Colorado, CASA UCB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Conversi, L.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Eales, S.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Wang, L.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Halpern, M.; Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Huang, J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ibar, E.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lagache, G.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Lonsdale, C. J.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Ctr Infrared Proc & Anal, JPL, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Morrison, G. E.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Morrison, G. E.] Canada France Hawaii Telescope Corp, Kamuela, HI 96743 USA. [Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMr 7095, Inst Astrophys Paris, F-75014 Paris, France. [Owen, F. N.; Pannella, M.; Strazzullo, V.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Page, M. J.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Magdis, GE (reprint author), Univ Paris Diderot, CNRS, CEA DSM Irfu, Lab AIM Paris Saclay,CE Saclay, Pt Courrier 131, F-91191 Gif Sur Yvette, France. EM georgios.magdis@cea.fr RI Dwek, Eli/C-3995-2012; Magdis, Georgios/C-7295-2014; amblard, alexandre/L-7694-2014; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Magdis, Georgios/0000-0002-4872-2294; amblard, alexandre/0000-0002-2212-5395; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536 FU CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA) FX SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK) and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK) and NASA (USA). HIPE is a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center and the HIFI, PACS and SPIRE consortia. The data presented in this paper will be released through the Herschel Data base in Marseille, HeDaM (hedam.oamp.fr/HerMES). NR 44 TC 48 Z9 48 U1 1 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 22 EP 28 DI 10.1111/j.1365-2966.2010.17551.x PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500003 ER PT J AU Ibar, E Ivison, RJ Cava, A Rodighiero, G Buttiglione, S Temi, P Frayer, D Fritz, J Leeuw, L Baes, M Rigby, E Verma, A Serjeant, S Muller, T Auld, R Dariush, A Dunne, L Eales, S Maddox, S Panuzzo, P Pascale, E Pohlen, M Smith, D de Zotti, G Vaccari, M Hopwood, R Cooray, A Burgarella, D Jarvis, M AF Ibar, Edo Ivison, R. J. Cava, A. Rodighiero, G. Buttiglione, S. Temi, P. Frayer, D. Fritz, J. Leeuw, L. Baes, M. Rigby, E. Verma, A. Serjeant, S. Mueller, T. Auld, R. Dariush, A. Dunne, L. Eales, S. Maddox, S. Panuzzo, P. Pascale, E. Pohlen, M. Smith, D. de Zotti, G. Vaccari, M. Hopwood, R. Cooray, A. Burgarella, D. Jarvis, M. TI H-ATLAS: PACS imaging for the Science Demonstration Phase SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; techniques: image processing; surveys ID HERSCHEL-ATLAS; SPIRE; ARRAYS; IMAGES; FIELD AB We describe the reduction of data taken with the PACS instrument on board the Herschel Space Observatory in the Science Demonstration Phase of the Herschel-ATLAS (H-ATLAS) survey, specifically data obtained for a 4 x 4 deg(2) region using Herschel's fast-scan (60 arcsec s(-1)) parallel mode. We describe in detail a pipeline for data reduction using customized procedures within HIPE from data retrieval to the production of science-quality images. We found that the standard procedure for removing cosmic ray glitches also removed parts of bright sources and so implemented an effective two-stage process to minimize these problems. The pronounced 1/f noise is removed from the timelines using 3.4- and 2.5-arcmin boxcar high-pass filters at 100 and 160 mu m. Empirical measurements of the point spread function (PSF) are used to determine the encircled energy fraction as a function of aperture size. For the 100- and 160-mu m bands, the effective PSFs are similar to 9 and similar to 13 arcsec (FWHM), and the 90-per cent encircled energy radii are 13 and 18 arcsec. Astrometric accuracy is good to less than or similar to 2 arcsec. The noise in the final maps is correlated between neighbouring pixels and rather higher than advertised prior to launch. For a pair of cross-scans, the 5 sigma point-source sensitivities are 125-165 mJy for 9-13 arcsec radius apertures at 100 mu m and 150-240 mJy for 13-18 arcsec radius apertures at 160 mu m. C1 [Ibar, Edo; Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Cava, A.] Univ La Laguna, Inst Astrofis Canarias, Tenerife, Spain. [Cava, A.] Univ La Laguna, Dept Astrofis, Tenerife, Spain. [Rodighiero, G.; Vaccari, M.] Univ Padua, I-35122 Padua, Italy. [Buttiglione, S.; de Zotti, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Temi, P.; Leeuw, L.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Frayer, D.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Fritz, J.; Baes, M.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Rigby, E.; Dunne, L.; Maddox, S.; Smith, D.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Verma, A.] Univ Oxford, Oxford OX1 3RH, England. [Serjeant, S.; Hopwood, R.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Mueller, T.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Auld, R.; Dariush, A.; Eales, S.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Panuzzo, P.] CEA, Lab AIM, Irfu SAp, F-91191 Gif Sur Yvette, France. [de Zotti, G.] SISSA, I-34136 Trieste, Italy. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Burgarella, D.] Aix Marseille Univ, CNRS, Observ Astron Marseille Provence, Lab Astrophys Marseille, Marseille, France. [Jarvis, M.] Univ Hertfordshire, STRI, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Ibar, E (reprint author), Royal Observ, UK Astron Technol Ctr, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. EM ibar@roe.ac.uk RI Baes, Maarten/I-6985-2013; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Baes, Maarten/0000-0002-3930-2757; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Maddox, Stephen/0000-0001-5549-195X; Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296 FU BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain) FX PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAFIFSI/OAA/OAP/OAT, LENS, SISSA (Italy) and IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy) and CICYT/MCYT (Spain). We would like to thank the PACS-ICC team for providing excellent support to the H-ATLAS project and for the various HIPE developments that comprise the current pipeline. Finally, we thank the referee for comments that significantly improved this paper. NR 21 TC 76 Z9 76 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 38 EP 47 DI 10.1111/j.1365-2966.2010.17620.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500005 ER PT J AU Roseboom, IG Oliver, SJ Kunz, M Altieri, B Amblard, A Arumugam, V Auld, R Aussel, H Babbedge, T Bethermin, M Blain, A Bock, J Boselli, A Brisbin, D Buat, V Burgarella, D Castro-Rodriguez, N Cava, A Chanial, P Chapin, E Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Dwek, E Dye, S Eales, S Elbaz, D Farrah, D Fox, M Franceschini, A Gear, W Glenn, J Solares, EAG Griffin, M Halpern, M Harwit, M Hatziminaoglou, E Huang, J Ibar, E Isaak, K Ivison, RJ Lagache, G Levenson, L Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Marsden, G Mortier, AMJ Nguyen, HT O'Halloran, B Omont, A Page, MJ Panuzzo, P Papageorgiou, A Patel, H Pearson, CP Perez-Fournon, I Pohlen, M Rawlings, JI Raymond, G Rigopoulou, D Rizzo, D Rowan-Robinson, M Portal, MS Schulz, B Scott, D Seymour, N Shupe, DL Smith, AJ Stevens, JA Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vieira, JD Vigroux, L Wang, L Ward, R Wright, G Xu, CK Zemcov, M AF Roseboom, I. G. Oliver, S. J. Kunz, M. Altieri, B. Amblard, A. Arumugam, V. Auld, R. Aussel, H. Babbedge, T. Bethermin, M. Blain, A. Bock, J. Boselli, A. Brisbin, D. Buat, V. Burgarella, D. Castro-Rodriguez, N. Cava, A. Chanial, P. Chapin, E. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Dwek, E. Dye, S. Eales, S. Elbaz, D. Farrah, D. Fox, M. Franceschini, A. Gear, W. Glenn, J. Solares, E. A. Gonzalez Griffin, M. Halpern, M. Harwit, M. Hatziminaoglou, E. Huang, J. Ibar, E. Isaak, K. Ivison, R. J. Lagache, G. Levenson, L. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Marsden, G. Mortier, A. M. J. Nguyen, H. T. O'Halloran, B. Omont, A. Page, M. J. Panuzzo, P. Papageorgiou, A. Patel, H. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rawlings, J. I. Raymond, G. Rigopoulou, D. Rizzo, D. Rowan-Robinson, M. Sanchez Portal, M. Schulz, B. Scott, Douglas Seymour, N. Shupe, D. L. Smith, A. J. Stevens, J. A. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vieira, J. D. Vigroux, L. Wang, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI The Herschel Multi-Tiered Extragalactic Survey: source extraction and cross-identifications in confusion-dominated SPIRE images SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: statistical; galaxies: statistics; infrared: galaxies ID STAR-FORMATION HISTORY; SCUBA SUPER-MAP; SUBMILLIMETER GALAXIES; NUMBER COUNTS; SPITZER; BLAST; HALF; 1ST; REDSHIFTS; RADIO AB We present the cross-identification and source photometry techniques used to process Herschel SPIRE imaging taken as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES). Cross-identifications are performed in map-space so as to minimize source-blending effects. We make use of a combination of linear inversion and model selection techniques to produce reliable cross-identification catalogues based on Spitzer MIPS 24-mu m source positions. Testing on simulations and real Herschel observations shows that this approach gives robust results for even the faintest sources (S-250 similar to 10 mJy). We apply our new technique to HerMES SPIRE observations taken as part of the science demonstration phase of Herschel. For our real SPIRE observations, we show that, for bright unconfused sources, our flux density estimates are in good agreement with those produced via more traditional point source detection methods (SUSSEXtractor) by Smith et al. When compared to the measured number density of sources in the SPIRE bands, we show that our method allows the recovery of a larger fraction of faint sources than these traditional methods. However, this completeness is heavily dependent on the relative depth of the existing 24-mu m catalogues and SPIRE imaging. Using our deepest multiwavelength data set in the GOODS-N, we estimate that the use of shallow 24-mu m catalogues in our other fields introduces an incompleteness at faint levels of between 20-40 per cent at 250 mu m. C1 [Roseboom, I. G.; Oliver, S. J.; Farrah, D.; Smith, A. J.; Wang, L.; Ward, R.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Altieri, B.; Conversi, L.; Sanchez Portal, M.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Arumugam, V.; Ivison, R. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Auld, R.; Dye, S.; Eales, S.; Gear, W.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.; Raymond, G.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aussel, H.; Elbaz, D.; Madden, S.; Panuzzo, P.] Univ Paris Diderot, CNRS, CEA DSM Irfu, Lab AIM Paris Saclay,CE Saclay, F-91191 Gif Sur Yvette, France. [Babbedge, T.; Chanial, P.; Clements, D. L.; Fox, M.; Mortier, A. M. J.; O'Halloran, B.; Patel, H.; Rizzo, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Bethermin, M.; Lagache, G.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Bethermin, M.; Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Blain, A.; Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Lu, N.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Vieira, J. D.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.; Burgarella, D.] Univ Aix Marseille, CNRS, OAMP, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Brisbin, D.] Cornell Univ, Ithaca, NY 14853 USA. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Chapin, E.; Halpern, M.; Marsden, G.; Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Conley, A.; Glenn, J.] Univ Colorado, CASA UCB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Solares, E. A. Gonzalez] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Huang, J.; Trichas, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Ctr Infrared Proc & Anal, JPL, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Page, M. J.; Rawlings, J. I.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Roseboom, IG (reprint author), Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. EM i.g.roseboom@sussex.ac.uk RI Dwek, Eli/C-3995-2012; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Altieri, Bruno/0000-0003-3936-0284; Dye, Simon/0000-0002-1318-8343; Bethermin, Matthieu/0000-0002-3915-2015; amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536 FU Science and Technology Facilities Council [ST/F002858/1]; Canadian Space Agency (CSA); NAOC in China; Centre National d'tudes Spatiales (CNES); Centre National de la Recherche Scientifique (CNRS); CEA in France; Agenzia Spaziale Italiana (ASI) in Italy; Ministerio de Educacin y Ciencia (MEC) in Spain; Stockholm Observatory in Sweden; Science and Technology Facilities Council (STFC) in the UK; NASA in the USA; ESA FX We thank the anonymous referee for many suggestions, which greatly enhanced the clarity of this paper. IGR and LW were supported by the Science and Technology Facilities Council (grant number ST/F002858/1).; The SPIRE Consortium includes participants from eight countries (Canada, China, France, Italy, Spain, Sweden, UK, USA). The following institutes have provided hardware and software elements to the instrument programme: Cardiff University, UK; Commissariat l'nergie Atomique (CEA), Saclay, France; CEA, Grenoble, France; Imperial College, London, UK; Instituto de Astrofisica de Canarias (IAC), Tenerife, Spain; Infrared Processing and Analysis Centre (IPAC), Pasadena, USA; Istituto di Fisica dello Spazio Interplanetario (IFSI), Rome, Italy; University College London's Mullard Space Science Laboratory (MSSL), Surrey, UK; NASA Goddard Space Flight Centre (GSFC), Maryland, USA; NASA Jet Propulsion Laboratory (JPL) and Caltech, Pasadena, USA; National Astronomical Observatories, Chinese Academy of Sciences (NAOC), Beijing, China; Observatoire Astronomique de Marseille Provence (OAMP), France; Rutherford Appleton Laboratory (RAL), Oxfordshire, UK; Stockholm Observatory, Sweden; UK Astronomy Technology Centre (UK ATC) Edinburgh; University of Colorado, USA; University of Lethbridge, Canada; University of Padua, Italy; and the University of Sussex, UK. Funding for SPIRE has been provided by the national agencies of the participating countries and by internal institute funding: the Canadian Space Agency (CSA); NAOC in China; Centre National d'tudes Spatiales (CNES), Centre National de la Recherche Scientifique (CNRS), and CEA in France; Agenzia Spaziale Italiana (ASI) in Italy; Ministerio de Educacin y Ciencia (MEC) in Spain, Stockholm Observatory in Sweden; the Science and Technology Facilities Council (STFC) in the UK; and NASA in the USA. Additional funding support for some instrument activities has been provided by ESA. NR 40 TC 94 Z9 94 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 48 EP 65 DI 10.1111/j.1365-2966.2010.17634.x PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500006 ER PT J AU Brisbin, D Harwit, M Altieri, B Amblard, A Arumugam, V Aussel, H Babbedge, T Blain, A Bock, J Boselli, A Buat, V Castro-Rodriguez, N Cava, A Chanial, P Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Dwek, E Eales, S Elbaz, D Fox, M Franceschini, A Gear, W Glenn, J Griffin, M Halpern, M Hatziminaoglou, E Ibar, E Isaak, K Ivison, RJ Lagache, G Levenson, L Lonsdale, CJ Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Morrison, GE Nguyen, HT O'Halloran, B Oliver, SJ Omont, A Owen, FN Pannella, M Panuzzo, P Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rizzo, D Roseboom, IG Rowan-Robinson, M Portal, MS Schulz, B Seymour, N Shupe, DL Smith, AJ Stevens, JA Strazzullo, V Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vigroux, L Wang, L Ward, R Wright, G Xu, CK Zemcov, M AF Brisbin, D. Harwit, M. Altieri, B. Amblard, A. Arumugam, V. Aussel, H. Babbedge, T. Blain, A. Bock, J. Boselli, A. Buat, V. Castro-Rodriguez, N. Cava, A. Chanial, P. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Dwek, E. Eales, S. Elbaz, D. Fox, M. Franceschini, A. Gear, W. Glenn, J. Griffin, M. Halpern, M. Hatziminaoglou, E. Ibar, E. Isaak, K. Ivison, R. J. Lagache, G. Levenson, L. Lonsdale, Carol J. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Morrison, G. E. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Omont, A. Owen, F. N. Pannella, M. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rizzo, D. Roseboom, I. G. Rowan-Robinson, M. Sanchez Portal, M. Schulz, B. Seymour, N. Shupe, D. L. Smith, A. J. Stevens, J. A. Strazzullo, V. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vigroux, L. Wang, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI The Deep SPIRE HerMES Survey: spectral energy distributions and their astrophysical indications at high redshift SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: high-redshift; galaxies: starburst; galaxies: star formation; infrared: galaxies ID STAR-FORMATION; GALAXIES; FIELD; AGN; I. AB The Spectral and Photometric Imaging Receiver on-board Herschel has been carrying out deep extragalactic surveys, one of the aims of which is to establish spectral energy distributions of individual galaxies spanning the infrared/submillimetre (IR/SMM) wavelength region. We report observations of the IR/SMM emission from the Lockman North field and Great Observatories Origins Deep Survey Field-North. Because galaxy images in the wavelength range covered by Herschel generally represent a blend with contributions from neighbouring galaxies, we present sets of galaxies in each field, especially free of blending at 250, 350 and 500 mu m. We identify the cumulative emission of these galaxies and the fraction of the FIR cosmic background radiation they contribute. Our surveys reveal a number of highly luminous galaxies at redshift z less than or similar to 3 and a novel relationship between IR and visible emission that shows a dependence on luminosity and redshift. C1 [Brisbin, D.] Cornell Univ, Ithaca, NY 14853 USA. [Harwit, M.] Cornell Univ, Washington, DC 20024 USA. [Altieri, B.; Conversi, L.; Sanchez Portal, M.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Arumugam, V.; Ivison, R. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Aussel, H.; Chanial, P.; Elbaz, D.; Madden, S.; Panuzzo, P.] Univ Paris Diderot, CNRS, CEA DSM Irfu, Lab AIM Paris Saclay,CE Saclay, F-91191 Gif Sur Yvette, France. [Babbedge, T.; Clements, D. L.; Fox, M.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Blain, A.; Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Lu, N.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.] Univ Aix Marseille, OAMP, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Conley, A.; Glenn, J.] Univ Colorado, CASA UCB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Eales, S.; Gear, W.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Halpern, M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lagache, G.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Lonsdale, Carol J.; Owen, F. N.; Pannella, M.; Strazzullo, V.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Ctr Infrared Proc & Anal, JPL, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Morrison, G. E.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Morrison, G. E.] Canada France Hawaii Telescope Corp, Kamuela, HI 96743 USA. [Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.; Ward, R.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMR 7095, Lab Astrophys Paris, F-75014 Paris, France. [Pearson, C. P.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Trichas, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Brisbin, D (reprint author), Cornell Univ, Space Sci Bldg, Ithaca, NY 14853 USA. EM brisbind@astro.cornell.edu RI amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; Dwek, Eli/C-3995-2012 OI amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536; Altieri, Bruno/0000-0003-3936-0284; FU NASA; CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA) FX This work is based in part on observations made with Herschel, a European Space Agency Cornerstone Mission with significant participation by the NASA. Support for this work was provided by the NASA through an award issued by JPL/Caltech.; The SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC(China); CEA, OAMP(France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech/JPL, IPAC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). NR 22 TC 8 Z9 8 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 66 EP 74 DI 10.1111/j.1365-2966.2010.17643.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500007 ER PT J AU Hwang, HS Elbaz, D Magdis, G Daddi, E Symeonidis, M Altieri, B Amblard, A Andreani, P Arumugam, V Auld, R Aussel, H Babbedge, T Berta, S Blain, A Bock, J Bongiovanni, A Boselli, A Buat, V Burgarella, D Castro-Rodriguez, N Cava, A Cepa, J Chanial, P Chapin, E Chary, RR Cimatti, A Clements, DL Conley, A Conversi, L Cooray, A Dannerbauer, H Dickinson, M Dominguez, H Dowell, CD Dunlop, JS Dwek, E Eales, S Farrah, D Schreiber, NF Fox, M Franceschini, A Gear, W Genzel, R Glenn, J Griffin, M Gruppioni, C Halpern, M Hatziminaoglou, E Ibar, E Isaak, K Ivison, RJ Jeong, WS Lagache, G Le Borgne, D Le Floc'h, E Lee, HM Lee, JC Lee, MG Levenson, L Lu, N Lutz, D Madden, S Maffei, B Magnelli, B Mainetti, G Maiolino, R Marchetti, L Mortier, AMJ Nguyen, HT Nordon, R O'Halloran, B Okumura, K Oliver, SJ Omont, A Page, MJ Panuzzo, P Papageorgiou, A Pearson, CP Perez-Fournon, I Garcia, AMP Poglitsch, A Pohlen, M Popesso, P Pozzi, F Rawlings, JI Rigopoulou, D Riguccini, L Rizzo, D Rodighiero, G Roseboom, IG Rowan-Robinson, M Saintonge, A Portal, MS Santini, P Sauvage, M Schulz, B Scott, D Seymour, N Shao, L Shupe, DL Smith, AJ Stevens, JA Sturm, E Tacconi, L Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vieira, JD Vigroux, L Wang, L Ward, R Wright, G Xu, CK Zemcov, M AF Hwang, H. S. Elbaz, D. Magdis, G. Daddi, E. Symeonidis, M. Altieri, B. Amblard, A. Andreani, P. Arumugam, V. Auld, R. Aussel, H. Babbedge, T. Berta, S. Blain, A. Bock, J. Bongiovanni, A. Boselli, A. Buat, V. Burgarella, D. Castro-Rodriguez, N. Cava, A. Cepa, J. Chanial, P. Chapin, E. Chary, R. -R. Cimatti, A. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dannerbauer, H. Dickinson, M. Dominguez, H. Dowell, C. D. Dunlop, J. S. Dwek, E. Eales, S. Farrah, D. Schreiber, N. Foerster Fox, M. Franceschini, A. Gear, W. Genzel, R. Glenn, J. Griffin, M. Gruppioni, C. Halpern, M. Hatziminaoglou, E. Ibar, E. Isaak, K. Ivison, R. J. Jeong, W. -S. Lagache, G. Le Borgne, D. Le Floc'h, E. Lee, H. M. Lee, J. C. Lee, M. G. Levenson, L. Lu, N. Lutz, D. Madden, S. Maffei, B. Magnelli, B. Mainetti, G. Maiolino, R. Marchetti, L. Mortier, A. M. J. Nguyen, H. T. Nordon, R. O'Halloran, B. Okumura, K. Oliver, S. J. Omont, A. Page, M. J. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Perez Garcia, A. M. Poglitsch, A. Pohlen, M. Popesso, P. Pozzi, F. Rawlings, J. I. Rigopoulou, D. Riguccini, L. Rizzo, D. Rodighiero, G. Roseboom, I. G. Rowan-Robinson, M. Saintonge, A. Sanchez Portal, M. Santini, P. Sauvage, M. Schulz, B. Scott, D. Seymour, N. Shao, L. Shupe, D. L. Smith, A. J. Stevens, J. A. Sturm, E. Tacconi, L. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vieira, J. D. Vigroux, L. Wang, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI Evolution of dust temperature of galaxies through cosmic time as seen by Herschel SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: formation; galaxies: general; galaxies: high-redshift; galaxies: starburst; infrared: galaxies ID ACTIVE GALACTIC NUCLEI; STAR-FORMING GALAXIES; ULTRALUMINOUS INFRARED GALAXIES; SPECTRAL ENERGY-DISTRIBUTIONS; DEGREE EXTRAGALACTIC SURVEY; SUBMILLIMETER GALAXIES; GAS FRACTIONS; COLD GALAXIES; SCUBA; LUMINOSITY AB We study the dust properties of galaxies in the redshift range 0.1 less than or similar to z less than or similar to 2.8 observed by the Herschel Space Observatory in the field of the Great Observatories Origins Deep Survey-North as part of the PACS Extragalactic Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) key programmes. Infrared (IR) luminosity (L-IR) and dust temperature (T-dust) of galaxies are derived from the spectral energy distribution fit of the far-IR (FIR) flux densities obtained with the PACS and SPIRE instruments onboard Herschel. As a reference sample, we also obtain IR luminosities and dust temperatures of local galaxies at z < 0.1 using AKARI and IRAS data in the field of the Sloan Digital Sky Survey. We compare the L-IR-T-dust relation between the two samples and find that the median T-dust of Herschel-selected galaxies at z greater than or similar to 0.5 with L-IR greater than or similar to 5 x 10(10) L-circle dot appears to be 2-5 K colder than that of AKARI-selected local galaxies with similar luminosities, and the dispersion in T-dust for high-z galaxies increases with L-IR due to the existence of cold galaxies that are not seen among local galaxies. We show that this large dispersion of the L-IR-T-dust relation can bridge the gap between local star-forming galaxies and high-z submillimetre galaxies (SMGs). We also find that three SMGs with very low T-dust (less than or similar to 20 K) covered in this study have close neighbouring sources with similar 24-mu m brightness, which could lead to an overestimation of FIR/(sub) millimetre fluxes of the SMGs. C1 [Hwang, H. S.; Elbaz, D.; Magdis, G.; Daddi, E.; Aussel, H.; Dannerbauer, H.; Le Floc'h, E.; Madden, S.; Okumura, K.; Panuzzo, P.; Riguccini, L.; Sauvage, M.] Univ Paris Diderot, CNRS, CEA DSM Irfu, Lab AIM Paris Saclay,CE Saclay, F-91191 Gif Sur Yvette, France. [Symeonidis, M.; Page, M. J.; Rawlings, J. I.; Seymour, N.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Altieri, B.; Conversi, L.; Sanchez Portal, M.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Andreani, P.; Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Andreani, P.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Arumugam, V.; Dunlop, J. S.; Ivison, R. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Auld, R.; Eales, S.; Gear, W.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Babbedge, T.; Chanial, P.; Clements, D. L.; Fox, M.; Mortier, A. M. J.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Berta, S.; Schreiber, N. Foerster; Genzel, R.; Lutz, D.; Magnelli, B.; Nordon, R.; Poglitsch, A.; Popesso, P.; Saintonge, A.; Shao, L.; Sturm, E.; Tacconi, L.] Max Planck Inst Extraterr Phys MPE, D-85741 Garching, Germany. [Blain, A.; Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Lu, N.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Vieira, J. D.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bongiovanni, A.; Castro-Rodriguez, N.; Cava, A.; Cepa, J.; Perez-Fournon, I.; Perez Garcia, A. M.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Bongiovanni, A.; Castro-Rodriguez, N.; Cava, A.; Cepa, J.; Perez-Fournon, I.; Perez Garcia, A. M.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Boselli, A.; Buat, V.; Burgarella, D.] Univ Aix Marseille, CNRS, OAMP, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Chapin, E.; Halpern, M.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Chary, R. -R.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Cimatti, A.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Conley, A.; Glenn, J.] Univ Colorado, CASA UCB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Dickinson, M.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Dominguez, H.; Maiolino, R.; Santini, P.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.; Ward, R.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Rodighiero, G.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Gruppioni, C.; Pozzi, F.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Jeong, W. -S.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Lagache, G.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Le Borgne, D.; Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Lee, H. M.; Lee, J. C.; Lee, M. G.] Seoul Natl Univ, Dept Phys & Astron, Astron Program, Seoul 151742, South Korea. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Ctr Infrared Proc & Anal, JPL, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Hwang, HS (reprint author), Univ Paris Diderot, CNRS, CEA DSM Irfu, Lab AIM Paris Saclay,CE Saclay, Pt Courrier 131, F-91191 Gif Sur Yvette, France. EM hoseong.hwang@cea.fr RI Dwek, Eli/C-3995-2012; Daddi, Emanuele/D-1649-2012; Magdis, Georgios/C-7295-2014; Bongiovanni, Angel/J-6176-2012; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Daddi, Emanuele/0000-0002-3331-9590; Magdis, Georgios/0000-0002-4872-2294; amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Gruppioni, Carlotta/0000-0002-5836-4056; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536; Santini, Paola/0000-0002-9334-8705; Rodighiero, Giulia/0000-0002-9415-2296; Altieri, Bruno/0000-0003-3936-0284 FU BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain); CSA (Canada); NAOC (China); CEA; CNES; CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA); Korea Government (MEST) [R01-2007-000-20336-0] FX PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAFIFSI/OAA/OAP/OAT, LENS, SISSA (Italy) and IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy) and CICYT/MCYT (Spain). SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including University of Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, University of Padua (Italy); IAC (Spain); SNSB (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK) and Caltech, JPL, NHSC, University of Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK) and NASA (USA). The HerMES data were accessed through the HeDaM data base (http://hedam.oamp.fr) operated by CeSAM and hosted by the Laboratoire d'Astrophysique de Marseille. This research is based on observations with AKARI, a JAXA project with the participation of ESA. MGL was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea Government (MEST) (grant no. R01-2007-000-20336-0). NR 57 TC 102 Z9 102 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 75 EP 82 DI 10.1111/j.1365-2966.2010.17645.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500008 ER PT J AU Levenson, L Marsden, G Zemcov, M Amblard, A Blain, A Bock, J Chapin, E Conley, A Cooray, A Dowell, CD Ellsworth-Bowers, TP Franceschini, A Glenn, J Griffin, M Halpern, M Nguyen, HT Oliver, SJ Page, MJ Papageorgiou, A Perez-Fournon, I Pohlen, M Rangwala, N Rowan-Robinson, M Schulz, B Scott, D Serra, P Shupe, DL Valiante, E Vieira, JD Vigroux, L Wiebe, D Wright, G Xu, CK AF Levenson, L. Marsden, G. Zemcov, M. Amblard, A. Blain, A. Bock, J. Chapin, E. Conley, A. Cooray, A. Dowell, C. D. Ellsworth-Bowers, T. P. Franceschini, A. Glenn, J. Griffin, M. Halpern, M. Nguyen, H. T. Oliver, S. J. Page, M. J. Papageorgiou, A. Perez-Fournon, I. Pohlen, M. Rangwala, N. Rowan-Robinson, M. Schulz, B. Scott, Douglas Serra, P. Shupe, D. L. Valiante, E. Vieira, J. D. Vigroux, L. Wiebe, D. Wright, G. Xu, C. K. TI HerMES: SPIRE Science Demonstration Phase maps SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmology: observations; diffuse radiation; infrared: general; submillimetre: general ID NUMBER COUNTS; MU-M; HERSCHEL; INSTRUMENT AB We describe the production and verification of sky maps of the five Spectral and Photometric Imaging Receiver (SPIRE) fields observed as part of the Herschel Multi-tiered Extragalactic Survey (HerMES) during the Science Demonstration Phase (SDP) of the Herschel mission. We have implemented an iterative map-making algorithm [The SPIRE-HerMES Iterative Mapper (SHIM)] to produce high fidelity maps that preserve extended diffuse emission on the sky while exploiting the repeated observations of the same region of the sky with many detectors in multiple scan directions to minimize residual instrument noise. We specify here the SHIM algorithm and outline the various tests that were performed to determine and characterize the quality of the maps and verify that the astrometry, point source flux and power on all relevant angular scales meet the needs of the HerMES science goals. These include multiple jackknife tests, determination of the map transfer function and detailed examination of the power spectra of both sky and jackknife maps. The map transfer function is approximately unity on scales from 1 arcmin to 1 degrees. Final maps (v1.0), including multiple jackknives, as well as the SHIM pipeline, have been used by the HerMES team for the production of SDP papers. C1 [Levenson, L.; Zemcov, M.; Blain, A.; Bock, J.; Cooray, A.; Dowell, C. D.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Vieira, J. D.; Xu, C. K.] CALTECH, Pasadena, CA 91125 USA. [Levenson, L.; Zemcov, M.; Bock, J.; Dowell, C. D.; Nguyen, H. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Marsden, G.; Chapin, E.; Halpern, M.; Scott, Douglas; Valiante, E.; Wiebe, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Amblard, A.; Cooray, A.; Serra, P.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Conley, A.; Ellsworth-Bowers, T. P.; Glenn, J.; Rangwala, N.] Univ Colorado, CASA UCB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Franceschini, A.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Griffin, M.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Oliver, S. J.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Page, M. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Ctr Infrared Proc & Anal, JPL, Pasadena, CA 91125 USA. [Vigroux, L.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. RP Levenson, L (reprint author), CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM levenson@caltech.edu RI Serra, Paolo/G-9678-2014; amblard, alexandre/L-7694-2014; OI Serra, Paolo/0000-0002-7609-3931; amblard, alexandre/0000-0002-2212-5395; Scott, Douglas/0000-0002-6878-9840 FU CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA) FX SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK) and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK) and NASA (USA). The authors thank Dave Clements and Mattia Vaccari for useful comments. NR 18 TC 38 Z9 38 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 83 EP 91 DI 10.1111/j.1365-2966.2010.17771.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500009 ER PT J AU Jarvis, MJ Smith, DJB Bonfield, DG Hardcastle, MJ Falder, JT Stevens, JA Ivison, RJ Auld, R Baes, M Baldry, IK Bamford, SP Bourne, N Buttiglione, S Cava, A Cooray, A Dariush, A de Zotti, G Dunlop, JS Dunne, L Dye, S Eales, S Fritz, J Hill, DT Hopwood, R Hughes, DH Ibar, E Jones, DH Kelvin, L Lawrence, A Leeuw, L Loveday, J Maddox, SJ Michalowski, MJ Negrello, M Norberg, P Pohlen, M Prescott, M Rigby, EE Robotham, A Rodighiero, G Scott, D Sharp, R Temi, P Thompson, MA van der Werf, P van Kampen, E Vlahakis, C White, G AF Jarvis, Matt J. Smith, D. J. B. Bonfield, D. G. Hardcastle, M. J. Falder, J. T. Stevens, J. A. Ivison, R. J. Auld, R. Baes, M. Baldry, I. K. Bamford, S. P. Bourne, N. Buttiglione, S. Cava, A. Cooray, A. Dariush, A. de Zotti, G. Dunlop, J. S. Dunne, L. Dye, S. Eales, S. Fritz, J. Hill, D. T. Hopwood, R. Hughes, D. H. Ibar, E. Jones, D. H. Kelvin, L. Lawrence, A. Leeuw, L. Loveday, J. Maddox, S. J. Michalowski, M. J. Negrello, M. Norberg, P. Pohlen, M. Prescott, M. Rigby, E. E. Robotham, A. Rodighiero, G. Scott, D. Sharp, R. Temi, P. Thompson, M. A. van der Werf, P. van Kampen, E. Vlahakis, C. White, G. TI Herschel-ATLAS: the far-infrared-radio correlation at z < 0.5 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; infrared: galaxies; radio continuum: galaxies ID HIGH-REDSHIFT GALAXIES; ACTIVE GALACTIC NUCLEI; STAR-FORMING GALAXIES; MASS ASSEMBLY GAMA; LUMINOUS GALAXIES; SPIRAL GALAXIES; LOCAL UNIVERSE; COSMOS FIELD; SKY SURVEY; 1ST SURVEY AB We use data from the Herschel-ATLAS to investigate the evolution of the far-infrared-radio correlation over the redshift range 0 < z < 0.5. Using the total far-infrared luminosity of all > 5 sigma sources in the Herschel-ATLAS Science Demonstration Field and cross-matching these data with radio data from the Faint Images of the Radio Sky at Twenty-Centimetres (FIRST) survey and the NRAO Very Large Array (VLA) Northern Sky Survey (NVSS), we obtain 104 radio counterparts to the Herschel sources. With these data we find no evidence for evolution in the far-infrared-radio correlation over the redshift range 0 < z < 0.5, where the median value for the ratio between far-infrared and radio luminosity, q(IR), over this range is q(IR) = 2.40 +/- 0.12 (and a mean of q(IR) = 2.52 +/- 0.03 accounting for the lower limits), consistent with both the local value determined from IRAS and values derived from surveys targeting the high-redshift C1 [Jarvis, Matt J.; Bonfield, D. G.; Hardcastle, M. J.; Falder, J. T.; Stevens, J. A.; Thompson, M. A.] Univ Hertfordshire, Ctr Astrophys, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. [Smith, D. J. B.; Bamford, S. P.; Bourne, N.; Dunne, L.; Maddox, S. J.; Rigby, E. E.] Univ Nottingham, Sch Phys & Astron, Ctr Astron & Particle Theory, Nottingham NG7 1HR, England. [Ivison, R. J.; Ibar, E.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Auld, R.; Dariush, A.; Dye, S.; Eales, S.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Baes, M.; Fritz, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Baldry, I. K.; Prescott, M.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Buttiglione, S.; de Zotti, G.; Rodighiero, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Cava, A.] Inst Astrofis Canarias, Tenerife, Spain. [Cava, A.] Dept Astrofis La Laguna ULL, Tenerife, Spain. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Dunlop, J. S.; Lawrence, A.; Michalowski, M. J.; Norberg, P.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Hill, D. T.; Kelvin, L.; Robotham, A.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Hopwood, R.; Negrello, M.; White, G.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Hughes, D. H.] INAOE, Puebla, Mexico. [Jones, D. H.; Sharp, R.] Anglo Australian Observ, Epping, NSW 1710, Australia. [Leeuw, L.; Temi, P.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Loveday, J.] Univ Sussex, Sch Math & Phys Sci, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [van der Werf, P.; Vlahakis, C.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Kampen, E.] European So Observ, D-85748 Garching, Germany. [White, G.] STFC Rutherford Appleton Lab, Didcot OX11 0NL, Oxon, England. RP Jarvis, MJ (reprint author), Univ Hertfordshire, Ctr Astrophys, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. EM m.j.jarvis@herts.ac.uk RI Hardcastle, Martin/E-2264-2012; Baes, Maarten/I-6985-2013; Robotham, Aaron/H-5733-2014; Ivison, R./G-4450-2011; Bamford, Steven/E-8702-2010; Cava, Antonio/C-5274-2017; OI Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296; Hardcastle, Martin/0000-0003-4223-1117; Baes, Maarten/0000-0002-3930-2757; Robotham, Aaron/0000-0003-0429-3579; Ivison, R./0000-0001-5118-1313; Bamford, Steven/0000-0001-7821-7195; Cava, Antonio/0000-0002-4821-1275; Maddox, Stephen/0000-0001-5549-195X FU RCUK fellowship; Royal Society; European Research Council; NASA; Alfred P. Sloan Foundation; The National Science Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; STFC (UK); ARC (Australia); AAO FX MJJ acknowledges support from an RCUK fellowship and MJH thanks the Royal Society for support. JSD acknowledges the support of the Royal Society via a Wolfson Research Merit award, and also the support of the European Research Council via the award of an Advanced Grant. The Herschel-ATLAS is a project with Herschel, which is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. The H-ATLAS web site is http://www.h-atlas.org/. US participants in Herschel-ATLAS acknowledge support provided by NASA through a contract issued from JPL.; This work used data from the UKIDSS DR5 and the SDSS DR7. The UKIDSS project is defined in Lawrence et al. (2007) and uses the UKIRT Wide Field Camera (WFCAM; Casali et al. 2007). Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, The National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England.; GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalogue is based on data taken from the Sloan Digital Sky Survey and the UKIRT Infrared Deep Sky Survey. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programmes including GALEX MIS, VST KIDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO and the Participating Institutions. The GAMA web site is http://www.gama-survey.org/. NR 69 TC 36 Z9 36 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 92 EP 101 DI 10.1111/j.1365-2966.2010.17772.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500010 ER PT J AU Davies, JI Wilson, CD Auld, R Baes, M Barlow, MJ Bendo, GJ Bock, JJ Boselli, A Bradford, M Buat, V Castro-Rodriguez, N Chanial, P Charlot, S Ciesla, L Clements, DL Cooray, A Cormier, D Cortese, L Dwek, E Eales, SA Elbaz, D Galametz, M Galliano, F Gear, WK Glenn, J Gomez, HL Griffin, M Hony, S Isaak, KG Levenson, LR Lu, N Madden, S O'Halloran, B Okumura, K Oliver, S Page, MJ Panuzzo, P Papageorgiou, A Parkin, TJ Perez-Fournon, I Pohlen, M Rangwala, N Rigby, EE Roussel, H Rykala, A Sacchi, N Sauvage, M Schulz, B Schirm, MRP Smith, MWL Spinoglio, L Stevens, JA Srinivasan, S Symeonidis, M Trichas, M Vaccari, M Vigroux, L Wozniak, H Wright, GS Zeilinger, WW AF Davies, J. I. Wilson, C. D. Auld, R. Baes, M. Barlow, M. J. Bendo, G. J. Bock, J. J. Boselli, A. Bradford, M. Buat, V. Castro-Rodriguez, N. Chanial, P. Charlot, S. Ciesla, L. Clements, D. L. Cooray, A. Cormier, D. Cortese, L. Dwek, E. Eales, S. A. Elbaz, D. Galametz, M. Galliano, F. Gear, W. K. Glenn, J. Gomez, H. L. Griffin, M. Hony, S. Isaak, K. G. Levenson, L. R. Lu, N. Madden, S. O'Halloran, B. Okumura, K. Oliver, S. Page, M. J. Panuzzo, P. Papageorgiou, A. Parkin, T. J. Perez-Fournon, I. Pohlen, M. Rangwala, N. Rigby, E. E. Roussel, H. Rykala, A. Sacchi, N. Sauvage, M. Schulz, B. Schirm, M. R. P. Smith, M. W. L. Spinoglio, L. Stevens, J. A. Srinivasan, S. Symeonidis, M. Trichas, M. Vaccari, M. Vigroux, L. Wozniak, H. Wright, G. S. Zeilinger, W. W. TI On the origin of M81 group extended dust emission SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE dust, extinction; galaxies: evolution; galaxies: individual: M81 ID NEARBY GALAXY SURVEY; INFRARED-EMISSION; STAR-FORMATION; LATITUDE; HYDROGEN; CIRRUS AB Galactic cirrus emission at far-infrared wavelengths affects many extragalactic observations. Separating this emission from that associated with extragalactic objects is both important and difficult. In this paper we discuss a particular case, the M81 group, and the identification of diffuse structures prominent in the infrared, but also detected at optical wavelengths. The origin of these structures has previously been controversial, ranging from them being the result of a past interaction between M81 and M82 or due to more local Galactic emission. We show that over an order of a few arcmin scales, the far-infrared (Herschel 250 mu m) emission correlates spatially very well with a particular narrow-velocity (2-3 km s(-1)) component of the Galactic HI. We find no evidence that any of the far-infrared emission associated with these features actually originates in the M81 group. Thus we infer that the associated diffuse optical emission must be due to galactic light-back scattered off dust in our galaxy. Ultraviolet observations pick out young stellar associations around M81, but no detectable far-infrared emission. We consider in detail one of the Galactic cirrus features, finding that the far-infrared HI relation breaks down below arcmin scales and that at smaller scales there can be quite large dust-temperature variations. C1 [Davies, J. I.; Auld, R.; Cortese, L.; Eales, S. A.; Gear, W. K.; Gomez, H. L.; Griffin, M.; Isaak, K. G.; Pohlen, M.; Rykala, A.; Smith, M. W. L.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Wilson, C. D.; Parkin, T. J.; Schirm, M. R. P.; Trichas, M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Baes, M.; Papageorgiou, A.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Barlow, M. J.; Boselli, A.; Buat, V.; Ciesla, L.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Bendo, G. J.; Bradford, M.; Clements, D. L.; O'Halloran, B.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Bock, J. J.; Levenson, L. R.; Lu, N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, J. J.; Levenson, L. R.; Lu, N.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Castro-Rodriguez, N.; Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Chanial, P.; Cormier, D.; Elbaz, D.; Galametz, M.; Galliano, F.; Hony, S.; Madden, S.; Okumura, K.; Panuzzo, P.; Sauvage, M.] CEA, Lab AIM, Irfu SAp, F-91191 Gif Sur Yvette, France. [Charlot, S.; Roussel, H.; Srinivasan, S.; Vigroux, L.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Glenn, J.; Rangwala, N.] Univ Colorado, CASA CB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Isaak, K. G.] Estec, ESA Astrophys Missions Div, NL-2200 AG Noordwijk, Netherlands. [Oliver, S.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Page, M. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Rigby, E. E.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Sacchi, N.; Spinoglio, L.] INAF, Ist Fis Spazio Interplanetario, I-00133 Rome, Italy. [Schulz, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Stevens, J. A.] Univ Hertfordshire, Sci & Technol Res Ctr, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Vaccari, M.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Wozniak, H.] Univ Strasbourg, CNRS, UMR 7550, Observ Astron Strasbourg, F-67000 Strasbourg, France. [Wright, G. S.] Royal Observ, Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Zeilinger, W. W.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. RP Davies, JI (reprint author), Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. EM jid@astro.cf.ac.uk RI Barlow, Michael/A-5638-2009; Dwek, Eli/C-3995-2012; Gomez, Haley/C-2800-2009; Baes, Maarten/I-6985-2013; Ciesla, Laure/C-5535-2014; Wozniak, Herve/O-4704-2015; Vaccari, Mattia/R-3431-2016; OI Barlow, Michael/0000-0002-3875-1171; Baes, Maarten/0000-0002-3930-2757; Wozniak, Herve/0000-0001-5691-247X; Vaccari, Mattia/0000-0002-6748-0577; Zeilinger, Werner/0000-0001-8507-1403; Spinoglio, Luigi/0000-0001-8840-1551; Cortese, Luca/0000-0002-7422-9823 FU BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain); CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA) FX PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAFIFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy) and CICYT/MCYT (Spain). SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including University of Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univeristy of Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, University of Sussex (UK) and Caltech, JPL, NHSC, University of Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK) and NASA (USA). NR 32 TC 16 Z9 16 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 102 EP 108 DI 10.1111/j.1365-2966.2010.17774.x PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500011 ER PT J AU Glenn, J Conley, A Bethermin, M Altieri, B Amblard, A Arumugam, V Aussel, H Babbedge, T Blain, A Bock, J Boselli, A Buat, V Castro-Rodriguez, N Cava, A Chanial, P Clements, DL Conversi, L Cooray, A Dowell, CD Dwek, E Eales, S Elbaz, D Ellsworth-Bowers, TP Fox, M Franceschini, A Gear, W Griffin, M Halpern, M Hatziminaoglou, E Ibar, E Isaak, K Ivison, RJ Lagache, G Laurent, G Levenson, L Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Marsden, G Nguyen, HT O'Halloran, B Oliver, SJ Omont, A Page, MJ Panuzzo, P Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rigopoulou, D Rizzo, D Roseboom, IG Rowan-Robinson, M Portal, MS Schulz, B Scott, D Seymour, N Shupe, DL Smith, AJ Stevens, JA Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vieira, JD Vigroux, L Wang, L Ward, R Wright, G Xu, CK Zemcov, M AF Glenn, J. Conley, A. Bethermin, M. Altieri, B. Amblard, A. Arumugam, V. Aussel, H. Babbedge, T. Blain, A. Bock, J. Boselli, A. Buat, V. Castro-Rodriguez, N. Cava, A. Chanial, P. Clements, D. L. Conversi, L. Cooray, A. Dowell, C. D. Dwek, E. Eales, S. Elbaz, D. Ellsworth-Bowers, T. P. Fox, M. Franceschini, A. Gear, W. Griffin, M. Halpern, M. Hatziminaoglou, E. Ibar, E. Isaak, K. Ivison, R. J. Lagache, G. Laurent, G. Levenson, L. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Marsden, G. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Omont, A. Page, M. J. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rigopoulou, D. Rizzo, D. Roseboom, I. G. Rowan-Robinson, M. Sanchez Portal, M. Schulz, B. Scott, Douglas Seymour, N. Shupe, D. L. Smith, A. J. Stevens, J. A. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vieira, J. D. Vigroux, L. Wang, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI HerMES: deep galaxy number counts from a P(D) fluctuation analysis of SPIRE Science Demonstration Phase observations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmology: observations; submillimetre: diffuse background; submillimetre: galaxies ID SUBMILLIMETER-SELECTED GALAXIES; FIELD; EVOLUTION AB Dusty, star-forming galaxies contribute to a bright, currently unresolved cosmic far-infrared background. Deep Herschel-Spectral and Photometric Imaging Receiver (SPIRE) images designed to detect and characterize the galaxies that comprise this background are highly confused, such that the bulk lies below the classical confusion limit. We analyse three fields from the Herschel Multi-tiered Extragalactic Survey (HerMES) programme in all three SPIRE bands (250, 350 and 500 mu m); parametrized galaxy number count models are derived to a depth of similar to 2 mJy beam(-1), approximately four times the depth of previous analyses at these wavelengths, using a probability of deflection [P(D)] approach for comparison to theoretical number count models. Our fits account for 64, 60 and 43 per cent of the far-infrared background in the three bands. The number counts are consistent with those based on individually detected SPIRE sources, but generally inconsistent with most galaxy number count models, which generically overpredict the number of bright galaxies and are not as steep as the P(D)-derived number counts. Clear evidence is found for a break in the slope of the differential number counts at low flux densities. Systematic effects in the P(D) analysis are explored. We find that the effects of clustering have a small impact on the data, and the largest identified systematic error arises from uncertainties in the SPIRE beam. C1 [Glenn, J.; Conley, A.; Ellsworth-Bowers, T. P.] Univ Colorado, CASA UCB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Bethermin, M.; Lagache, G.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Bethermin, M.; Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Altieri, B.; Conversi, L.; Sanchez Portal, M.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Arumugam, V.; Ivison, R. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Aussel, H.; Elbaz, D.; Madden, S.; Panuzzo, P.] Univ Paris Diderot, CNRS, CEA DSM Irfu, Lab AIM Paris Saclay,CE Saclay, F-91191 Gif Sur Yvette, France. [Babbedge, T.; Chanial, P.; Clements, D. L.; Fox, M.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Blain, A.; Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Lu, N.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Vieira, J. D.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.] Univ Aix Marseille, CNRS, OAMP, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Eales, S.; Gear, W.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Halpern, M.; Marsden, G.; Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Laurent, G.] SW Res Inst, Boulder, CO 80302 USA. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Ctr Infrared Proc & Anal, JPL, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.; Ward, R.] Univ Sussex, Ctr Astron, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Page, M. J.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Glenn, J (reprint author), Univ Colorado, CASA UCB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. EM jason.glenn@colorado.edu RI Dwek, Eli/C-3995-2012; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536; Bethermin, Matthieu/0000-0002-3915-2015; Altieri, Bruno/0000-0003-3936-0284 FU Jet Propulsion Laboratory [1394366]; CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA) FX The authors would like to thank Guillaume Patanchon and Phil Maloney for many useful discussions. JG and AC acknowledge support from NASA Herschel GTO grant 1394366, sponsored by the Jet Propulsion Laboratory. SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including University of Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, University of Padua (italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, University of Sussex (UK); Caltech, JPL, NHSC, University of Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK) and NASA (USA). The data presented in this paper will be released through the Herschel Database in Marseille, HeDaM (http://hedam.oamp.fr/HerMES). NR 45 TC 70 Z9 70 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 109 EP 121 DI 10.1111/j.1365-2966.2010.17781.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500012 ER PT J AU Hardcastle, MJ Virdee, JS Jarvis, MJ Bonfield, DG Dunne, L Rawlings, S Stevens, JA Christopher, NM Heywood, I Mauch, T Rigopoulou, D Verma, A Baldry, IK Bamford, SP Buttiglione, S Cava, A Clements, DL Cooray, A Croom, SM Dariush, A De Zotti, G Eales, S Fritz, J Hill, DT Hughes, D Hopwood, R Ibar, E Ivison, RJ Jones, DH Loveday, J Maddox, SJ Michalowski, MJ Negrello, M Norberg, P Pohlen, M Prescott, M Rigby, EE Robotham, ASG Rodighiero, G Scott, D Sharp, R Smith, DJB Temi, P van Kampen, E AF Hardcastle, M. J. Virdee, J. S. Jarvis, M. J. Bonfield, D. G. Dunne, L. Rawlings, S. Stevens, J. A. Christopher, N. M. Heywood, I. Mauch, T. Rigopoulou, D. Verma, A. Baldry, I. K. Bamford, S. P. Buttiglione, S. Cava, A. Clements, D. L. Cooray, A. Croom, S. M. Dariush, A. De Zotti, G. Eales, S. Fritz, J. Hill, D. T. Hughes, D. Hopwood, R. Ibar, E. Ivison, R. J. Jones, D. H. Loveday, J. Maddox, S. J. Michalowski, M. J. Negrello, M. Norberg, P. Pohlen, M. Prescott, M. Rigby, E. E. Robotham, A. S. G. Rodighiero, G. Scott, D. Sharp, R. Smith, D. J. B. Temi, P. van Kampen, E. TI Herschel-ATLAS: far-infrared properties of radio-selected galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; infrared: galaxies; radio continuum: galaxies ID STAR-FORMATION HISTORY; MASS ASSEMBLY GAMA; DIGITAL SKY SURVEY; 7TH DATA RELEASE; K-Z RELATION; HOST GALAXIES; FORMING GALAXIES; UNIFIED MODELS; LOW-LUMINOSITY; BLACK-HOLES AB We use the Herschel-Astrophysical Terahertz Large Area Survey (ATLAS) science demonstration data to investigate the star formation properties of radio-selected galaxies in the GAMA-9h field as a function of radio luminosity and redshift. Radio selection at the lowest radio luminosities, as expected, selects mostly starburst galaxies. At higher radio luminosities, where the population is dominated by active galactic nuclei (AGN), we find that some individual objects are associated with high far-infrared luminosities. However, the far-infrared properties of the radio-loud population are statistically indistinguishable from those of a comparison population of radio-quiet galaxies matched in redshift and K-band absolute magnitude. There is thus no evidence that the host galaxies of these largely low-luminosity (Fanaroff-Riley class I), and presumably low-excitation, AGN, as a population, have particularly unusual star formation histories. Models in which the AGN activity in higher luminosity, high-excitation radio galaxies is triggered by major mergers would predict a luminosity-dependent effect that is not seen in our data (which only span a limited range in radio luminosity) but which may well be detectable with the full Herschel-ATLAS data set. C1 [Hardcastle, M. J.; Jarvis, M. J.; Bonfield, D. G.; Stevens, J. A.] Univ Hertfordshire, Sch Phys Astron & Math, Hatfield AL10 9AB, Herts, England. [Virdee, J. S.; Rawlings, S.; Christopher, N. M.; Heywood, I.; Mauch, T.; Rigopoulou, D.; Verma, A.] Univ Oxford, Oxford OX1 3RH, England. [Dunne, L.; Bamford, S. P.; Maddox, S. J.; Rigby, E. E.; Smith, D. J. B.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Baldry, I. K.; Prescott, M.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Buttiglione, S.; De Zotti, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Cava, A.] Inst Astrofis Canarias, Tenerife 38205, Spain. [Cava, A.] Dept Astrofis La Laguna ULL, Tenerife 38205, Spain. [Clements, D. L.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Croom, S. M.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Dariush, A.; Eales, S.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [De Zotti, G.] SISSA, I-34136 Trieste, Italy. [Fritz, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Hill, D. T.; Robotham, A. S. G.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Hughes, D.] Inst Nacl Astrofis Opt & Electr, Puebla 72000, Mexico. [Hopwood, R.; Negrello, M.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Ibar, E.; Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Michalowski, M. J.; Norberg, P.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Jones, D. H.; Sharp, R.] Anglo Australian Observ, Epping, NSW 1710, Australia. [Loveday, J.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Rodighiero, G.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Temi, P.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [van Kampen, E.] European So Observ, D-85748 Garching, Germany. RP Hardcastle, MJ (reprint author), Univ Hertfordshire, Sch Phys Astron & Math, Coll Lane, Hatfield AL10 9AB, Herts, England. EM m.j.hardcastle@herts.ac.uk RI Hardcastle, Martin/E-2264-2012; Robotham, Aaron/H-5733-2014; Ivison, R./G-4450-2011; Bamford, Steven/E-8702-2010; Cava, Antonio/C-5274-2017; OI Hardcastle, Martin/0000-0003-4223-1117; Robotham, Aaron/0000-0003-0429-3579; Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296; Ivison, R./0000-0001-5118-1313; Bamford, Steven/0000-0001-7821-7195; Cava, Antonio/0000-0002-4821-1275; Maddox, Stephen/0000-0001-5549-195X; Scott, Douglas/0000-0002-6878-9840; Baldry, Ivan/0000-0003-0719-9385 FU JPL; STFC; ARC; AAO; Royal Society; RAL; RCUK fellowship FX US participants in Herschel-ATLAS acknowledge support provided by NASA through a contract issued from JPL. GAMA is a joint European-Australian project, based around a spectroscopic campaign using the AAOmega instrument, and is funded by the STFC, the ARC and the AAO. MJH thanks the Royal Society for generous financial support through the University Research Fellowships scheme. JSV thanks the STFC and RAL for a studentship. MJJ acknowledges support from an RCUK fellowship. We thank an anonymous referee for comments that have allowed us to improve the presentation of the paper. NR 64 TC 16 Z9 16 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 122 EP 131 DI 10.1111/j.1365-2966.2010.17791.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500013 ER PT J AU Cameron, E Carollo, CM Oesch, P Aller, MC Bschorr, T Cerulo, P Aussel, H Capak, P Le Floc'h, E Ilbert, O Kneib, JP Koekemoer, A Leauthaud, A Lilly, SJ Massey, R McCracken, HJ Rhodes, J Salvato, M Sanders, DB Scoville, N Sheth, K Taniguchi, Y Thompson, D AF Cameron, E. Carollo, C. M. Oesch, P. Aller, M. C. Bschorr, T. Cerulo, P. Aussel, H. Capak, P. Le Floc'h, E. Ilbert, O. Kneib, J. -P. Koekemoer, A. Leauthaud, A. Lilly, S. J. Massey, R. McCracken, H. J. Rhodes, J. Salvato, M. Sanders, D. B. Scoville, N. Sheth, K. Taniguchi, Y. Thompson, D. TI Bars in early- and late-type discs in COSMOS SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: formation; galaxies: structure ID BARRED SPIRAL GALAXIES; ULTRA-DEEP-FIELD; STAR-FORMING GALAXIES; DIGITAL SKY SURVEY; HUBBLE SEQUENCE; LUMINOSITY FUNCTION; SECULAR EVOLUTION; HIGH-REDSHIFT; STELLAR MASS; STRUCTURAL PARAMETERS AB We investigate the (large-scale) bar fraction in a mass-complete sample of M > 10(10.5) M-circle dot disc galaxies at 0.2 < z < 0.6 in the Cosmological Evolution Survey (COSMOS) field. The fraction of barred discs strongly depends on mass, disc morphology and specific star formation rate (SSFR). At intermediate stellar mass (10(10.5) < M < 10(11) M-circle dot) the bar fraction in early-type discs is much higher, at all redshifts, by a factor of similar to 2, than that in late-type discs. This trend is reversed at higher stellar mass (M > 10(11) M-circle dot), where the fraction of bars in early-type discs becomes significantly lower, at all redshifts, than that in late-type discs. The bar fractions for galaxies with low and high SSFRs closely follow those of the morphologically selected early-and late-type populations, respectively. This indicates a close correspondence between morphology and SSFR in disc galaxies at these earlier epochs. Interestingly, the total bar fraction in 10(10.5) < M < 10(11) M-circle dot discs is built up by a factor of similar to 2 over the redshift interval explored, while for M > 10(11) M-circle dot discs it remains roughly constant. This indicates that, already by z similar to 0.6, spectral and morphological transformations in the most massive disc galaxies have largely converged to the familiar Hubble sequence that we observe in the local Universe, while for intermediate-mass discs this convergence is ongoing until at least z similar to 0.2. Moreover, these results highlight the importance of employing mass-limited samples for quantifying the evolution of barred galaxies. Finally, the evolution of the barred galaxy populations investigated does not depend on the large-scale environmental density (at least, on the scales which can be probed with the available photometric redshifts). C1 [Cameron, E.; Carollo, C. M.; Oesch, P.; Aller, M. C.; Bschorr, T.; Cerulo, P.; Lilly, S. J.] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland. [Aussel, H.; Le Floc'h, E.] Univ Paris Diderot, CEA Saclay, CNRS, AIM, F-91191 Gif Sur Yvette, France. [Capak, P.; Sheth, K.] CALTECH, Spitzer Space Ctr, Pasadena, CA 91125 USA. [Ilbert, O.; Kneib, J. -P.] Univ Aix Marseille 1, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Koekemoer, A.] STScI, Baltimore, MD 21218 USA. [Leauthaud, A.] Univ Calif Berkeley, LBNL, Berkeley, CA 94720 USA. [Leauthaud, A.] Univ Calif Berkeley, BCCP, Berkeley, CA 94720 USA. [Massey, R.] Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [McCracken, H. J.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Rhodes, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sanders, D. B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Taniguchi, Y.] Ehime Univ, Res Ctr Space & Cosm Evolut, Matsuyama, Ehime 7908577, Japan. [Thompson, D.] Univ Arizona, LBT Observ, Tucson, AZ 85721 USA. RP Cameron, E (reprint author), Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland. EM cameron@phys.ethz.ch RI Kneib, Jean-Paul/A-7919-2015; OI Kneib, Jean-Paul/0000-0002-4616-4989; Oesch, Pascal/0000-0001-5851-6649; Koekemoer, Anton/0000-0002-6610-2048 NR 77 TC 43 Z9 43 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 346 EP 354 DI 10.1111/j.1365-2966.2010.17314.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500030 ER PT J AU Buat, V Giovannoli, E Burgarella, D Altieri, B Amblard, A Arumugam, V Aussel, H Babbedge, T Blain, A Bock, J Boselli, A Castro-Rodriguez, N Cava, A Chanial, P Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Dwek, E Eales, S Elbaz, D Fox, M Franceschini, A Gear, W Glenn, J Griffin, M Halpern, M Hatziminaoglou, E Heinis, S Ibar, E Isaak, K Ivison, RJ Lagache, G Levenson, L Lonsdale, CJ Lu, N Madden, S Maffei, B Magdis, G Mainetti, G Marchetti, L Morrison, GE Nguyen, HT O'Halloran, B Oliver, SJ Omont, A Owen, FN Page, MJ Pannella, M Panuzzo, P Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rigopoulou, D Rizzo, D Roseboom, IG Rowan-Robinson, M Portal, MS Schulz, B Seymour, N Shupe, DL Smith, AJ Stevens, JA Strazzullo, V Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valiante, E Valtchanov, I Vigroux, L Wang, L Ward, R Wright, G Xu, CK Zemcov, M AF Buat, V. Giovannoli, E. Burgarella, D. Altieri, B. Amblard, A. Arumugam, V. Aussel, H. Babbedge, T. Blain, A. Bock, J. Boselli, A. Castro-Rodriguez, N. Cava, A. Chanial, P. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Dwek, E. Eales, S. Elbaz, D. Fox, M. Franceschini, A. Gear, W. Glenn, J. Griffin, M. Halpern, M. Hatziminaoglou, E. Heinis, S. Ibar, E. Isaak, K. Ivison, R. J. Lagache, G. Levenson, L. Lonsdale, C. J. Lu, N. Madden, S. Maffei, B. Magdis, G. Mainetti, G. Marchetti, L. Morrison, G. E. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Omont, A. Owen, F. N. Page, M. J. Pannella, M. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rigopoulou, D. Rizzo, D. Roseboom, I. G. Rowan-Robinson, M. Sanchez Portal, M. Schulz, B. Seymour, N. Shupe, D. L. Smith, A. J. Stevens, J. A. Strazzullo, V. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valiante, E. Valtchanov, I. Vigroux, L. Wang, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI Measures of star formation rates from infrared (Herschel) and UV (GALEX) emissions of galaxies in the HerMES fields SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: stellar content; infrared: galaxies; ultraviolet: galaxies ID DUST ATTENUATION; FORMING GALAXIES; FORMATION HISTORY; STARBURST GALAXIES; NEARBY UNIVERSE; FAR-ULTRAVIOLET; LOCAL UNIVERSE; STELLAR MASS; H-ALPHA; OF-VIEW AB The reliability of infrared (IR) and ultraviolet (UV) emissions to measure star formation rates (SFRs) in galaxies is investigated for a large sample of galaxies observed with the Spectral and Photometric Imaging Receiver (SPIRE) and the Photodetector ArrayCamera and Spectrometer (PACS) instruments on Herschel as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES) project. We build flux-limited 250-mu m samples of sources at redshift z < 1, cross-matched with the Spitzer/MIPS and GALEX catalogues. About 60 per cent of the Herschel sources are detected in UV. The total IR luminosities, L-IR, of the sources are estimated using a spectral energy distribution (SED) fitting code that fits to fluxes between 24 and 500 mu m. Dust attenuation is discussed on the basis of commonly used diagnostics: the L-IR/L-UV ratio and the slope, beta, of the UV continuum. A mean dust attenuation A(UV) of similar or equal to 3 mag is measured in the samples. L-IR/L-UV is found to correlate with L-IR. Galaxies with L-IR > 10(11) L-circle dot and 0.5 < z < 1 exhibit a mean dust attenuation A(UV) of about 0.7 mag lower than that found for their local counterparts, although with a large dispersion. Our galaxy samples span a large range of beta and L-IR/L-UV values which, for the most part, are distributed between the ranges defined by the relations found locally for starburst and normal star-forming galaxies. As a consequence the recipe commonly applied to local starbursts is found to overestimate the dust attenuation correction in our galaxy sample by a factor of similar to 2-3. The SFRs deduced from L-IR are found to account for about 90 per cent of the total SFR; this percentage drops to 71 per cent for galaxies with SFR < 1M(circle dot) yr(-1) (or L-IR < 10(10) L-circle dot). For these faint objects, one needs to combine UV and IR emissions to obtain an accurate measure of the SFR. C1 [Buat, V.; Giovannoli, E.; Burgarella, D.; Boselli, A.; Heinis, S.] Univ Aix Marseille, CNRS, OAMP, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Altieri, B.; Conversi, L.; Sanchez Portal, M.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Arumugam, V.; Ivison, R. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Aussel, H.; Elbaz, D.; Madden, S.; Magdis, G.; Panuzzo, P.] Univ Paris Diderot, Lab AIM Paris Saclay, CEA DSM Irfu, CE Saclay,CNRS, F-91191 Gif Sur Yvette, France. [Babbedge, T.; Chanial, P.; Clements, D. L.; Fox, M.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Blain, A.; Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Lu, N.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Conley, A.; Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Eales, S.; Gear, W.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Vaccari, M.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Halpern, M.; Valiante, E.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lagache, G.] Univ Paris 11, IAS, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Lonsdale, C. J.; Owen, F. N.; Pannella, M.; Strazzullo, V.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, JPL, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Morrison, G. E.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Morrison, G. E.] Canada France Hawaii Telescope Corp, Kamuela, HI 96743 USA. [Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.; Ward, R.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Omont, A.; Vigroux, L.] Univ Paris 06, UPMC, CNRS, Inst Astrophys Paris,UMR 7095, F-75014 Paris, France. [Page, M. J.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Buat, V (reprint author), Univ Aix Marseille, CNRS, OAMP, Lab Astrophys Marseille, 38 Rue Freric Joliot Curie, F-13388 Marseille 13, France. EM veronique.buat@oamp.fr RI Dwek, Eli/C-3995-2012; Magdis, Georgios/C-7295-2014; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Altieri, Bruno/0000-0003-3936-0284; Magdis, Georgios/0000-0002-4872-2294; amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536 FU CSA (Canada); NAOC (China); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA); CEA (France); CNES (France); CNRS (France) FX SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including University of Lethbridge (Canada); NAOC (China); CEA, OAMP (France); IFSI, University of Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, University of Sussex (UK) and Caltech/JPL, IPAC, University of Colorado (USA). This development has been supported by national funding agencies CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK) and NASA (USA). The data presented in this Letter will be released through the Herschel Database in Marseille HeDaM (http://hedam.oamp.fr/HerMES). This Letter makes use of TOPCAT, http://www.star.bristol.ac.uk/mbt/topcat/. NR 35 TC 39 Z9 39 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP L1 EP L6 DI 10.1111/j.1745-3933.2010.00916.x PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 754DC UT WOS:000289831700001 ER PT J AU Cava, A Rodighiero, G Perez-Fournon, I Buitrago, F Trujillo, I Altieri, B Amblard, A Auld, R Bock, J Brisbin, D Burgarella, D Castro-Rodriguez, N Chanial, P Cirasuolo, M Clements, DL Conselice, CJ Cooray, A Eales, S Elbaz, D Ferrero, P Franceschini, A Glenn, J Solares, EAG Griffin, M Ibar, E Ivison, RJ Marchetti, L Morrison, GE Mortier, AMJ Oliver, SJ Page, MJ Papageorgiou, A Pearson, CP Pohlen, M Rawlings, JI Raymond, G Rigopoulou, D Roseboom, IG Rowan-Robinson, M Scott, D Seymour, N Smith, AJ Symeonidis, M Tugwell, KE Vaccari, M Valtchanov, I Vieira, JD Vigroux, L Wang, L Wright, G AF Cava, A. Rodighiero, G. Perez-Fournon, I. Buitrago, F. Trujillo, I. Altieri, B. Amblard, A. Auld, R. Bock, J. Brisbin, D. Burgarella, D. Castro-Rodriguez, N. Chanial, P. Cirasuolo, M. Clements, D. L. Conselice, C. J. Cooray, A. Eales, S. Elbaz, D. Ferrero, P. Franceschini, A. Glenn, J. Gonzalez Solares, E. A. Griffin, M. Ibar, E. Ivison, R. J. Marchetti, L. Morrison, G. E. Mortier, A. M. J. Oliver, S. J. Page, M. J. Papageorgiou, A. Pearson, C. P. Pohlen, M. Rawlings, J. I. Raymond, G. Rigopoulou, D. Roseboom, I. G. Rowan-Robinson, M. Scott, D. Seymour, N. Smith, A. J. Symeonidis, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vieira, J. D. Vigroux, L. Wang, L. Wright, G. TI HerMES: SPIRE detection of high-redshift massive compact galaxies in GOODS-N field SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: high-redshift; galaxies: star formation; infrared: galaxies ID ACTIVE GALACTIC NUCLEI; HUBBLE-SPACE-TELESCOPE; SIZE EVOLUTION; SUBMILLIMETER GALAXIES; ELLIPTIC GALAXIES; STAR-FORMATION; DEEP-FIELD; MU-M; Z-SIMILAR-TO-2 AB We have analysed the rest-frame far-infrared properties of a sample of massive (M-* > 10(11) M-circle dot) galaxies at 2 less than or similar to z less than or similar to 3 in the Great Observatories Origins Deep Survey-North (GOODS-N) field using the Spectral and Photometric Imaging Receiver (SPIRE) instrument aboard the Herschel Space Observatory. To conduct this analysis we take advantage of the data from the Herschel Multi-tiered Extragalactic Survey (HerMES) key programme. The sample comprises 45 massive galaxies with structural parameters characterized with HST NICMOS-3. We study detections at submm Herschel bands, together with Spitzer 24-mu m data, as a function of the morphological type, mass and size. We find that 26/45 sources are detected at MIPS 24 mu m and 15/45 (all MIPS 24-mu m detections) are detected at SPIRE 250 mu m, with disc-like galaxies more easily detected. We derive star formation rates (SFRs) and specific star formation rates (sSFRs) by fitting the spectral energy distribution of our sources, taking into account non-detections for SPIRE and systematic effects for MIPS derived quantities. We find that the mean SFR for the spheroidal galaxies (similar to 50-100 M-circle dot yr(-1)) is substantially (a factor similar to 3) lower than the mean value presented by disc-like galaxies (similar to 250-300 M-circle dot yr(-1)). C1 [Cava, A.; Perez-Fournon, I.; Trujillo, I.; Castro-Rodriguez, N.; Ferrero, P.] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Cava, A.; Perez-Fournon, I.; Trujillo, I.; Castro-Rodriguez, N.; Ferrero, P.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Rodighiero, G.; Franceschini, A.; Marchetti, L.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Buitrago, F.; Conselice, C. J.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Altieri, B.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Auld, R.; Eales, S.; Griffin, M.; Papageorgiou, A.; Pohlen, M.; Raymond, G.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, J.; Cooray, A.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Brisbin, D.] Cornell Univ, Ithaca, NY 14853 USA. [Burgarella, D.] Univ Aix Marseille, OAMP, Lab Astrophys Marseille, CNRS, F-13388 Marseille 13, France. [Chanial, P.; Clements, D. L.; Mortier, A. M. J.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Cirasuolo, M.; Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Elbaz, D.] Univ Paris Diderot, CE Saclay, CNRS, Lab AIM Paris Saclay,CEA DSM Irfu, F-91191 Gif Sur Yvette, France. [Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Gonzalez Solares, E. A.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Ivison, R. J.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Morrison, G. E.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Morrison, G. E.] Canada France Hawaii Telescope Corp, Kamuela, HI 96743 USA. [Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Page, M. J.; Rawlings, J. I.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Vigroux, L.] Univ Paris 06, UPMC, CNRS, Inst Astrophys Paris,UMR 7095, F-75014 Paris, France. RP Cava, A (reprint author), Inst Astrofis Canarias, E-38200 Tenerife, Spain. EM acava@iac.es RI Conselice, Christopher/B-4348-2013; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Altieri, Bruno/0000-0003-3936-0284; amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Buitrago, Fernando/0000-0002-2861-9812; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536; Conselice, Christopher/0000-0003-1949-7638; Rodighiero, Giulia/0000-0002-9415-2296 FU CSA (Canada); NAOC (China); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA); Spanish MCINN [ESP2007-65812-C02-02]; CEA (France); CNES (France); CNRS (France) FX Special thanks to E. Ricciardelli, J. Fritz and J. M. Varela-Lopez for useful discussions and technical support. The data presented in this Letter will be released through the Herschel data base in Marseille HeDaM (hedam.oamp.fr/herMES). SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including University of Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, University of Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, University of Sussex (UK); Caltech, JPL, NHSC, University Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK) and NASA (USA). AC acknowledges a grant from the Spanish MCINN: ESP2007-65812-C02-02. NR 38 TC 14 Z9 14 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP L19 EP L24 DI 10.1111/j.1745-3933.2010.00964.x PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 754DC UT WOS:000289831700004 ER PT J AU Chapman, SC Ivison, RJ Roseboom, IG Auld, R Bock, J Brisbin, D Burgarella, D Chanial, P Clements, DL Cooray, A Eales, S Franceschini, A Giovannoli, E Glenn, J Griffin, M Mortier, AMJ Oliver, SJ Omont, A Page, MJ Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rawlings, JI Raymond, G Rodighiero, G Rowan-Robinson, M Scott, D Seymour, N Smith, AJ Symeonidis, M Tugwell, KE Vaccari, M Vieira, JD Vigroux, L Wang, L Wright, G AF Chapman, S. C. Ivison, R. J. Roseboom, I. G. Auld, R. Bock, J. Brisbin, D. Burgarella, D. Chanial, P. Clements, D. L. Cooray, A. Eales, S. Franceschini, A. Giovannoli, E. Glenn, J. Griffin, M. Mortier, A. M. J. Oliver, S. J. Omont, A. Page, M. J. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rawlings, J. I. Raymond, G. Rodighiero, G. Rowan-Robinson, M. Scott, Douglas Seymour, N. Smith, A. J. Symeonidis, M. Tugwell, K. E. Vaccari, M. Vieira, J. D. Vigroux, L. Wang, L. Wright, G. TI Herschel-SPIRE, far-infrared properties of millimetre-bright and -faint radio galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: high-redshift; galaxies: starburst ID DEEP SUBMILLIMETER SURVEY; DUST-OBSCURED GALAXIES; SIMILAR-TO 2; HIGH-REDSHIFT; ULTRALUMINOUS GALAXIES; NUMBER COUNTS; POPULATION; STARBURSTS; HOT; Z-SIMILAR-TO-2 AB We present the first study of the far-infrared (FIR) properties of high-redshift, radio-selected ultraluminous infrared galaxies (ULIRGs) using deep observations obtained with the Spectral and Photometric Imaging Receiver (SPIRE) from the Herschel Multi-tiered Extragalactic Survey (HerMES). These galaxies span a large range of 850-mu m fluxes from submillimetre-luminous similar to 10 mJy sources (SCUBA galaxies) to similar to 1.5 mJy from stacked SCUBA non-detections, thus likely representing a complete distribution of ULIRG spectral energy distributions (SEDs). From Keck spectroscopic surveys in the Lockman-North field we identified a sample of 31 submillimetre galaxies (SMGs) and 37 submillimetre-faint, optically faint radio galaxies (OFRGs), all with radio-inferred IR luminosities > 10(12) L-circle dot. These galaxies were cross-identified with SPIRE 250-, 350- and 500-mu m catalogues based on fluxes extracted at 24-mu m positions in the SWIRE survey, yielding a sample of more than half of the galaxies well detected in at least two of the SPIRE bandpasses. By fitting greybody dust models to the SPIRE photometry together with SCUBA 850-mu m measurements (for OFRGs, only 850-mu m upper limits), we infer dust temperatures and FIR luminosities. The OFRGs detected by SPIRE have median < T-d > = 41 +/- 5K and the SMGs have < T-d > = 34 +/- 5 K, both in reasonable agreement with previous (pre-Herschel) estimates, reaffirming that the local FIR/radio correlation holds (at least for this subset of high-z ULIRGs) at high redshift (we measure < q(IR)> = 2.43 +/- 0.21 using S-IR derived from greybody fit coupled with a power-law extrapolation to the 24 mu m). Our observations first confirm that a substantial fraction of OFRGs exhibits large infrared luminosities corresponding to SFRs of similar to 400 M-circle dot yr(-1). The SPIRE observations secondly confirm the higher dust temperatures for these OFRGs than similarly selected SMGs, consistent with early predictions of the submillimetre-faint radio populations. Our observations also clearly confirm the large infrared luminosities of most SMGs selected with S-850 (mu m) > 5 mJy and radio and strong 24-mu m detections, corresponding to SFRs of similar to 700M(circle dot) yr(-1). C1 [Chapman, S. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Roseboom, I. G.; Oliver, S. J.; Smith, A. J.; Wang, L.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Auld, R.; Eales, S.; Griffin, M.; Papageorgiou, A.; Pohlen, M.; Raymond, G.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, J.; Cooray, A.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Brisbin, D.] Cornell Univ, Ithaca, NY 14853 USA. [Burgarella, D.; Giovannoli, E.] Univ Aix Marseille, OAMP, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Chanial, P.] Univ Paris Diderot, CE Saclay, CNRS, Lab AIM Paris Saclay,CEA DSM Irfu, F-91191 Gif Sur Yvette, France. [Clements, D. L.; Mortier, A. M. J.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Franceschini, A.; Rodighiero, G.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Omont, A.; Vigroux, L.] Univ Paris 06, UPMC, CNRS, Inst Astrophys Paris,UMR 7095, F-75014 Paris, France. [Page, M. J.; Rawlings, J. I.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Perez-Fournon, I.] IAC, E-38200 Tenerife, Spain. [Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. RP Chapman, SC (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. EM schapman@ast.cam.ac.uk RI Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; OI Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Scott, Douglas/0000-0002-6878-9840; Seymour, Nicholas/0000-0003-3506-5536; Rodighiero, Giulia/0000-0002-9415-2296 FU CSA (Canada); NAOC (China); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA); W. M. Keck Foundation; CEA (France); CNES (France); CNRS (France) FX The data presented in this Letter will be released through the Herschel data base in Marseille HeDaM (hedam.oamp.fr/HerMES). SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including University of Lethbridge (Canada), NAOC (China), CEA, LAM(France), IFSI, University of Padua (Italy), IAC (Spain), Stockholm Observatory (Sweden), Imperial College London, RAL, UCL-MSSL, UKATC, University of Sussex (UK), Caltech, JPL, NHSC, University of Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK) and NASA (USA). Data presented herein were obtained using the W. M. Keck Observatory, which is operated as a scientific partnership among Caltech, the University of California and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. NR 57 TC 42 Z9 42 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP L13 EP L18 DI 10.1111/j.1745-3933.2010.00956.x PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 754DC UT WOS:000289831700003 ER PT J AU Rigopoulou, D Magdis, G Ivison, RJ Amblard, A Arumugam, V Aussel, H Blain, A Bock, J Boselli, A Buat, V Burgarella, D Castro-Rodriguez, N Cava, A Chanial, P Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Dwek, E Eales, S Elbaz, D Farrah, D Franceschini, A Glenn, J Griffin, M Halpern, M Hatziminaoglou, E Huang, JS Ibar, E Isaak, K Lagache, G Levenson, L Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Nguyen, HT O'Halloran, B Oliver, SJ Omont, A Page, MJ Panuzzo, P Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rizzo, D Roseboom, IG Rowan-Robinson, M Schulz, B Scott, D Seymour, N Shupe, DL Smith, AJ Stevens, JA Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vigroux, L Wang, L Wright, G Xu, CK Zemcov, M AF Rigopoulou, D. Magdis, G. Ivison, R. J. Amblard, A. Arumugam, V. Aussel, H. Blain, A. Bock, J. Boselli, A. Buat, V. Burgarella, D. Castro-Rodriguez, N. Cava, A. Chanial, P. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Dwek, E. Eales, S. Elbaz, D. Farrah, D. Franceschini, A. Glenn, J. Griffin, M. Halpern, M. Hatziminaoglou, E. Huang, J. -S. Ibar, E. Isaak, K. Lagache, G. Levenson, L. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Omont, A. Page, M. J. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rizzo, D. Roseboom, I. G. Rowan-Robinson, M. Schulz, B. Scott, Douglas Seymour, N. Shupe, D. L. Smith, A. J. Stevens, J. A. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vigroux, L. Wang, L. Wright, G. Xu, C. K. Zemcov, M. TI HerMES: Herschel-SPIRE observations of Lyman break galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: high-redshift; galaxies: starburst; submillimetre: galaxies ID NEAR-INFRARED PROPERTIES; HUBBLE-DEEP-FIELD; STAR-FORMATION; HIGH-REDSHIFT; DUST; LUMINOSITY; UV; DISTRIBUTIONS; ULTRAVIOLET; POPULATION AB We present first results of a study of the submillimetre (submm) (rest-frame far-infrared) properties of z similar to 3 Lyman break galaxies (LBGs) and their lower redshift counterparts BX/BM galaxies, based on Herschel-SPIRE observations of the Northern field of the Great Observatories Origins Deep Survey (GOODS-N). We use stacking analysis to determine the properties of LBGs well below the current limit of the survey. Although LBGs are not detected individually, stacking the infrared luminous LBGs (those detected with Spitzer at 24 mu m) yields a statistically significant submm detection with mean flux < S-250 > = 5.9 +/- 1.4 mJy confirming the power of SPIRE in detecting UV-selected high-redshift galaxies at submm wavelengths. In comparison, the Spitzer 24 mu m detected BX/BM galaxies appear fainter with a stacked value of < S-250 > = 2.7 +/- 0.8 mJy. By fitting the spectral energy distributions (SEDs) we derive median infrared luminosities, L-IR, of 2.8 x 10(12) L-circle dot and 1.5 x 10(11) L-circle dot for z similar to 3 LBGs and BX/BMs, respectively. We find that L-IR estimates derived from present measurements are in good agreement with those based on UV data for z similar to 2 BX/BM galaxies, unlike the case for z similar to 3 infrared luminous LBGs where the UV underestimates the true L-IR. Although sample selection effects may influence this result we suggest that differences in physical properties (such as morphologies, dust distribution and extent of star-forming regions) between z similar to 3 LBGs and z similar to 2 BX/BMs may also play a significant role. C1 [Rigopoulou, D.; Pearson, C. P.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Magdis, G.; Aussel, H.; Elbaz, D.; Madden, S.; Panuzzo, P.] Univ Paris Diderot, CE Saclay, CNRS, CEA DSM Irfu,Lab AIM Paris Saclay, F-91191 Gif Sur Yvette, France. [Ivison, R. J.; Ibar, E.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.; Arumugam, V.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Blain, A.; Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Lu, N.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.; Burgarella, D.] Univ Aix Marseille, CNRS, OAMP, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Chanial, P.; Clements, D. L.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Conley, A.; Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Conversi, L.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Eales, S.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Halpern, M.; Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Huang, J. -S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Lagache, G.] Univ Paris 11, IAS, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, JPL, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Omont, A.; Vigroux, L.] Univ Paris 06, UPMC, CNRS, Inst Astrophys Paris,UMR 7095, F-75014 Paris, France. [Page, M. J.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Rigopoulou, D (reprint author), Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. EM d.rigopoulou1@physics.ox.ac.uk RI Dwek, Eli/C-3995-2012; Magdis, Georgios/C-7295-2014; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Magdis, Georgios/0000-0002-4872-2294; amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536 FU CSA (Canada); NAOC (China); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA); CEA (France); CNES (France); CNRS (France) FX SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including University of Lethbridge (Canada); NAOC (China); CEA, LAM(France); IFSI, University of Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, University of Sussex (UK); Caltech, JPL, NHSC, University of Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK) and NASA (USA). The data presented in this Letter will be released through the Herschel data base in Marseille HeDaM (hedam.oamp.fr/HerMES). NR 42 TC 18 Z9 18 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP L7 EP L12 DI 10.1111/j.1745-3933.2010.00950.x PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 754DC UT WOS:000289831700002 ER PT J AU Israel, GL Esposito, P Rea, N Dall'Osso, S Senziani, F Romano, P Mangano, V Gotz, D Zane, S Tiengo, A Palmer, DM Krimm, H Gehrels, N Mereghetti, S Stella, L Turolla, R Campana, S Perna, R Angelini, L De Luca, A AF Israel, G. L. Esposito, P. Rea, N. Dall'Osso, S. Senziani, F. Romano, P. Mangano, V. Goetz, D. Zane, S. Tiengo, A. Palmer, D. M. Krimm, H. Gehrels, N. Mereghetti, S. Stella, L. Turolla, R. Campana, S. Perna, R. Angelini, L. De Luca, A. TI The 2008 October Swift detection of X-ray bursts/outburst from the transient SGR-like AXP 1E 1547.0-5408 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: neutron; X-rays: bursts; X-rays: individual: 1E 1547; 0-5408 ID MAGNETAR XTE J1810-197; PULSAR XTE-J1810-197; NEUTRON-STARS; INFRARED OBSERVATIONS; INTERNAL TEMPERATURE; SPECTRAL EVOLUTION; TORQUE VARIATIONS; VORTEX CREEP; EMISSION; TELESCOPE AB We report on the detailed study of the 2008 October outburst from the anomalous X-ray pulsar 1E 1547.0-5408 discovered through the Swift/Burst Alert Telescope (BAT) detection of soft gamma-ray repeater like short X-ray bursts on 2008 October 3. The Swift/X-ray Telescope (XRT) started observing the source after less than 100 s since the BAT trigger, when the flux (similar to 6 x 10-11 erg cm-2 s-1 in the 2-10 keV range) was > 50 times higher than its quiescent level. Swift monitored the outbursting activity of 1E 1547.0-5408 on a daily basis for approximately three weeks. This strategy allowed us to find a phase-coherent solution for the source pulsations after the burst, which, besides P and , requires a positive term (spin-down increase). The time evolution of the pulse shape is complex and variable, with the pulsed fraction increasing from 20 to 50 per cent within the Swift observational window. The XRT spectra can be fitted well by means of a single component, either a power law (PL) or a blackbody. During the very initial phases of the outburst the spectrum is hard, with a PL photon index Gamma similar to 2 (or kT similar to 1.4 keV), which steepens to Gamma similar to 4 (or kT similar to 0.8 keV) within one day from the BAT trigger, though the two components are likely present simultaneously during the first-day spectra. An INTEGRAL observation carried out five days after the trigger provided an upper limit of similar to 2 x 10-11 erg cm-2 s-1 to the emission of 1E 1547.0-5408 in the 18-60 keV band. C1 [Israel, G. L.; Dall'Osso, S.; Stella, L.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Esposito, P.; Senziani, F.; Tiengo, A.; Mereghetti, S.; De Luca, A.] Ist Astrofis Spaziale & Fis Cosm Milano, INAF, I-20133 Milan, Italy. [Esposito, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Rea, N.] CSIC, ICE, IEEC, Barcelona 08193, Spain. [Rea, N.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Senziani, F.; De Luca, A.] IUSS, I-27100 Pavia, Italy. [Romano, P.; Mangano, V.] Ist Astrofis Spaziale & Fis Cosm Palermo, INAF, I-90146 Palermo, Italy. [Goetz, D.] CEA Saclay, DSM, Irfu, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Zane, S.; Turolla, R.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Krimm, H.; Gehrels, N.; Angelini, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, H.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Turolla, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Campana, S.] Osserv Astron Brera, INAF, I-23807 Merate, Lc, Italy. [Perna, R.] Univ Colorado, JILA, Boulder, CO 80309 USA. RP Israel, GL (reprint author), Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. EM gianluca@mporzio.astro.it RI Gehrels, Neil/D-2971-2012; Rea, Nanda/I-2853-2015; OI Rea, Nanda/0000-0003-2177-6388; Campana, Sergio/0000-0001-6278-1576; Tiengo, Andrea/0000-0002-6038-1090; MEREGHETTI, SANDRO/0000-0003-3259-7801; Israel, GianLuca/0000-0001-5480-6438; De Luca, Andrea/0000-0001-6739-687X; Esposito, Paolo/0000-0003-4849-5092 FU ASI (ASI/INAF) [I/088/06/0, I/011/07/0, AAE TH-058, AAE DA-044, AAE DA-006]; Osio Sotto city council; STFC; Ramon y Cajal fellowship; CNES FX This research is based on observations with the NASA/UK/ASI Swift mission. We thank the Swift duty scientists and science planners for making these observations possible. The Italian authors acknowledge the partial support from ASI (ASI/INAF contracts I/088/06/0, I/011/07/0, AAE TH-058, AAE DA-044 and AAE DA-006). PE thanks the Osio Sotto city council for support with a G. Petrocchi fellowship. SZ acknowledges support from STFC. NR is supported by a Ramon y Cajal fellowship. DG acknowledges the CNES for financial support. NR 57 TC 31 Z9 31 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2010 VL 408 IS 3 BP 1387 EP 1395 DI 10.1111/j.1365-2966.2010.17001.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 667AS UT WOS:000283165600004 ER PT J AU Smith, RJ Lucey, JR Hammer, D Hornschemeier, AE Carter, D Hudson, MJ Marzke, RO Mouhcine, M Eftekharzadeh, S James, P Khosroshahi, H Kourkchi, E Karick, A AF Smith, Russell J. Lucey, John R. Hammer, Derek Hornschemeier, Ann E. Carter, David Hudson, Michael J. Marzke, Ronald O. Mouhcine, Mustapha Eftekharzadeh, Sareh James, Phil Khosroshahi, Habib Kourkchi, Ehsan Karick, Arna TI Ultraviolet tails and trails in cluster galaxies: a sample of candidate gaseous stripping events in Coma SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: clusters: individual: Coma; galaxies: evolution ID BRIGHTEST SPIRAL GALAXIES; STAR-FORMATION; VIRGO-CLUSTER; H-ALPHA; INTERACTING GALAXIES; LUMINOSITY FUNCTION; INTRACLUSTER MEDIUM; NEUTRAL HYDROGEN; NEARBY CLUSTERS; DISK GALAXIES AB We have used new deep observations of the Coma cluster from Galaxy Evolution Explorer to visually identify 13 star-forming galaxies with asymmetric morphologies in the ultraviolet (UV). Aided by wide-field optical broad-band and H alpha imaging, we interpret the asymmetric features as being due to star formation within gas stripped from the galaxies by interaction with the cluster environment. The selected objects display a range of structures from broad fan-shaped systems of filaments and knots ('jellyfish') to narrower and smoother tails extending up to 100 kpc in length. Some of the features have been discussed previously in the literature, while others are newly identified here. We assess the ensemble properties of the sample. The candidate stripping events are located closer to the cluster centre than other star-forming galaxies; their radial distribution is more similar to that of all cluster members, dominated by passive galaxies. The fraction of blue galaxies which are undergoing stripping falls from 40 per cent in the central 500 kpc to less than 5 per cent beyond 1 Mpc. We find that tails pointing away from (i.e. galaxies moving towards) the cluster centre are strongly favoured (11/13 cases). From the small number of 'outgoing' galaxies with stripping signatures, we conclude that the stripping events occur primarily on first passage towards the cluster centre, and are short-lived compared to the cluster crossing time. Using galaxy infall trajectories extracted from a cosmological simulation, we find that the observed fraction of blue galaxies undergoing stripping can be reproduced if the events are triggered at a threshold radius of similar to 1 Mpc and detectable for similar to 500 Myr. Hubble Space Telescope images are available for two galaxies from our sample and reveal compact blue knots coincident with UV and H alpha emission, apparently forming stars within the stripped material. Our results confirm that stripping of gas from infalling galaxies, and associated star formation in the stripped material, is a widespread phenomenon in rich clusters. Deep UV imaging of additional clusters is a promising route to constructing a statistically powerful sample of stripping events and constraining models for the truncation of star formation in clusters. C1 [Smith, Russell J.; Lucey, John R.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Hammer, Derek; Hornschemeier, Ann E.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Hammer, Derek; Hornschemeier, Ann E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Carter, David; Mouhcine, Mustapha; James, Phil; Karick, Arna] Liverpool John Moores Univ, Astron Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Hudson, Michael J.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Hudson, Michael J.] Univ Paris 06, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Hudson, Michael J.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Marzke, Ronald O.] San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA. [Eftekharzadeh, Sareh; Khosroshahi, Habib; Kourkchi, Ehsan] Sch Astron, Inst Res Fundamental Sci, Tehran, Iran. RP Smith, RJ (reprint author), Univ Durham, Dept Phys, Durham DH1 3LE, England. EM russell.smith@durham.ac.uk RI Hudson, Michael/H-3238-2012; OI Hudson, Michael/0000-0002-1437-3786; James, Philip/0000-0003-4131-5183 FU STFC [PPC5015681]; National Aeronautics and Space Administration FX We are grateful to Stephen Gwyn for generating a custom stack of the Adami deep u-band data for our use, to Masafumi Yagi for communicating the Subaru H alpha results in advance of submission and to Neal Miller for helpful comments on this paper. RJS was supported for this work by STFC Rolling Grant PPC5015681 'Extragalactic Astronomy and Cosmology at Durham 2008-2013'. This work is based on observations made with the NASA Galaxy Evolution Explorer (GALEX). GALEX is a NASA Small Explorer, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology. This work is based on observations obtained with MegaPrimeMegaCam, a joint project of CFHT and CEADAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France and the University of Hawaii. The work has made use of data products produced at the TERAPIX data center located at the Institut d'Astrophysique de Paris. The Isaac Newton Telescope is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This work has made use of the NASAIPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The Millennium Simulation data bases used in this paper and the web application providing online access to them were constructed as part of the activities of the German Astrophysical Virtual Observatory. NR 67 TC 49 Z9 49 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2010 VL 408 IS 3 BP 1417 EP 1432 DI 10.1111/j.1365-2966.2010.17253.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 667AS UT WOS:000283165600007 ER PT J AU Natoli, P De Troia, G Hikage, C Komatsu, E Migliaccio, M Ade, PAR Bock, JJ Bond, JR Borrill, J Boscaleri, A Contaldi, CR Crill, BP de Bernardis, P de Gasperis, G de Oliveira-Costa, A Di Stefano, G Hivon, E Kisner, TS Jones, WC Lange, AE Masi, S Mauskopf, PD MacTavish, CJ Melchiorri, A Montroy, TE Netterfield, CB Pascale, E Piacentini, F Polenta, G Ricciardi, S Romeo, G Ruhl, JE Tegmark, M Veneziani, M Vittorio, N AF Natoli, P. De Troia, G. Hikage, C. Komatsu, E. Migliaccio, M. Ade, P. A. R. Bock, J. J. Bond, J. R. Borrill, J. Boscaleri, A. Contaldi, C. R. Crill, B. P. de Bernardis, P. de Gasperis, G. de Oliveira-Costa, A. Di Stefano, G. Hivon, E. Kisner, T. S. Jones, W. C. Lange, A. E. Masi, S. Mauskopf, P. D. MacTavish, C. J. Melchiorri, A. Montroy, T. E. Netterfield, C. B. Pascale, E. Piacentini, F. Polenta, G. Ricciardi, S. Romeo, G. Ruhl, J. E. Tegmark, M. Veneziani, M. Vittorio, N. TI BOOMERanG constraints on primordial non-Gaussianity from analytical Minkowski functionals SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: analytical; methods: statistical; early Universe; cosmic background radiation; cosmology: observations ID PROBE WMAP OBSERVATIONS; ANGULAR POWER SPECTRUM; LARGE-SCALE STRUCTURE; MAP-MAKING ALGORITHM; 2003 FLIGHT; COSMOLOGICAL PARAMETERS; TEMPERATURE ANISOTROPY; INFLATIONARY MODELS; MICROWAVE; BISPECTRUM AB We use Minkowski functionals (MFs) to constrain a primordial non-Gaussian contribution to the cosmic microwave background intensity field as observed in the 150- and 145-GHz BOOMERanG maps from the 1998 and 2003 flights, respectively, performing for the first time a joint analysis of the two data sets. A perturbative expansion of the MF formulae in the limit of a weakly non-Gaussian field yields analytical formulae, derived by Hikage et al., which can be used to constrain the coupling parameter f(NL) without the need for non-Gaussian simulations. We find -770 < f(NL) < 500 at 95 per cent CL, significantly improving the previous constraints by De Troia et al. on the BOOMERanG 2003 data set. These are the best f(NL) limits to date for suborbital probes. C1 [Natoli, P.; De Troia, G.; Migliaccio, M.; de Gasperis, G.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Natoli, P.] INFN, Sez Tor Vergata, I-00133 Rome, Italy. [Hikage, C.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hikage, C.; Ade, P. A. R.; Mauskopf, P. D.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Komatsu, E.] Univ Texas Austin, Texas Cosmol Ctr, Austin, TX 78712 USA. [Bock, J. J.; Crill, B. P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bond, J. R.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Borrill, J.; Kisner, T. S.; Ricciardi, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. [Borrill, J.; Kisner, T. S.; Ricciardi, S.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Boscaleri, A.] IFAC CNR, I-50127 Florence, Italy. [Contaldi, C. R.] Univ London Imperial Coll Sci Technol & Med, Theoret Phys Grp, London SW7 2BZ, England. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.; Polenta, G.; Veneziani, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [de Oliveira-Costa, A.; Tegmark, M.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Di Stefano, G.; Romeo, G.] Ist Nazl Geofis & Vulcanol, I-00143 Rome, Italy. [Hivon, E.] Inst Astrophys, F-75014 Paris, France. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [MacTavish, C. J.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, London SW7 2BZ, England. [Melchiorri, A.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Montroy, T. E.; Ruhl, J. E.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Netterfield, C. B.; Pascale, E.] Univ Toronto, Dept Phys, Toronto, ON M5S 3H8, Canada. [Polenta, G.] ASI Sci Data Ctr, ESRIN, I-00044 Frascati, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. RP Natoli, P (reprint author), Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy. EM paolo.natoli@gmail.com RI de Gasperis, Giancarlo/C-8534-2012; Komatsu, Eiichiro/A-4361-2011; Piacentini, Francesco/E-7234-2010; OI Hivon, Eric/0000-0003-1880-2733; de Gasperis, Giancarlo/0000-0003-2899-2171; Piacentini, Francesco/0000-0002-5444-9327; Melchiorri, Alessandro/0000-0001-5326-6003; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; ROMEO, Giovanni/0000-0002-5535-7803; Polenta, Gianluca/0000-0003-4067-9196; Ricciardi, Sara/0000-0002-3807-4043 FU CIAR; CSA; NSERC in Canada; Agenzia Spaziale Italiana; University La Sapienza; Programma Nazionale Ricerche in Antartide in Italy; PPARC; Leverhulme Trust in the UK; NASA [NAG5-9251, NAG5-12723]; NSF in the USA [OPP-9980654, OPP-0407592]; DOE [DE-AC03-76SF00098]; CASPUR (Rome, Italy); ASI [I/016/07/0]; Particle Physics and Astronomy Research Council [PP/C501692/1]; SPS (Japan Society for the Promotion of Science) FX The BOOMERanG team gratefully acknowledges support from the CIAR, CSA and NSERC in Canada; Agenzia Spaziale Italiana, University La Sapienza and Programma Nazionale Ricerche in Antartide in Italy; PPARC and the Leverhulme Trust in the UK and NASA (awards NAG5-9251 and NAG5-12723) and NSF (awards OPP-9980654 and OPP-0407592) in the USA. Additional support for detector development was provided by CIT and JPL. Field, logistical and flight support were supplied by USAP and NSBF. This research used resources at NERSC, supported by the DOE under Contract No. DE-AC03-76SF00098, and CASPUR (Rome, Italy; special thanks are due to M. Botti and F. Massaioli). We also acknowledge partial support from ASI Contract I/016/07/0 'COFIS' and ASI Contract Planck LFI activity of Phase E2. Some of the results in this paper have been derived using the HEALPIX package (Gorski et al. 2005). CH acknowledges support from the Particle Physics and Astronomy Research Council grant number PP/C501692/1 and a JSPS (Japan Society for the Promotion of Science) fellowship. We thank an anonymous referee for useful suggestions. NR 44 TC 14 Z9 14 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2010 VL 408 IS 3 BP 1658 EP 1665 DI 10.1111/j.1365-2966.2010.17228.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 667AS UT WOS:000283165600026 ER PT J AU Southworth, J Mancini, L Novati, SC Dominik, M Glitrup, M Hinse, TC Jorgensen, UG Mathiasen, M Ricci, D Maier, G Zimmer, F Bozza, V Browne, P Bruni, I Burgdorf, M Dall'Ora, M Finet, F Harpsoe, K Hundertmark, M Liebig, C Rahvar, S Scarpetta, G Skottfelt, J Smalley, B Snodgrass, C Surdej, J AF Southworth, John Mancini, L. Novati, S. Calchi Dominik, M. Glitrup, M. Hinse, T. C. Jorgensen, U. G. Mathiasen, M. Ricci, D. Maier, G. Zimmer, F. Bozza, V. Browne, P. Bruni, I. Burgdorf, M. Dall'Ora, M. Finet, F. Harpsoe, K. Hundertmark, M. Liebig, C. Rahvar, S. Scarpetta, G. Skottfelt, J. Smalley, B. Snodgrass, C. Surdej, J. TI High-precision photometry by telescope defocusing - III. The transiting planetary system WASP-2 star SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries: eclipsing; stars: individual: WASP-2; planetary systems ID TIDAL-EVOLUTION CONSTANTS; M-CIRCLE-DOT; DETACHED ECLIPSING BINARIES; STELLAR ATMOSPHERE MODELS; LIMB-DARKENING LAW; EXTRASOLAR PLANETS; SURFACE GRAVITIES; OPEN CLUSTERS; LIGHT CURVES; PHYSICAL-PROPERTIES AB We present high-precision photometry of three transits of the extrasolar planetary system WASP-2, obtained by defocusing the telescopes, and achieving scatters of between 0.42 and 0.73 mmag versus the best-fitting model. These data are modelled using the jktebop code, and taking into account the light from the recently discovered faint star close to the system. The physical properties of the WASP-2 system are derived using tabulated predictions from five different sets of stellar evolutionary models, allowing both statistical and systematic error bars to be specified. We find the mass and radius of the planet to be M(b) = 0.846 +/- 0.055 +/- 0.023 M(Jup) and R(b) = 1.043 +/- 0.029 +/- 0.015R(Jup). It has a low equilibrium temperature of 1281 +/- 21 K, in agreement with a recent finding that it does not have an atmospheric temperature inversion. The first of our transit data sets has a scatter of only 0.42 mmag with respect to the best-fitting light-curve model, which to our knowledge is a record for ground-based observations of a transiting extrasolar planetary system. C1 [Southworth, John; Smalley, B.] Univ Keele, Astrophys Grp, Newcastle Upon Tyne ST5 5BG, Staffs, England. [Mancini, L.] Univ Sannio, Dipartimento Ingn, I-82100 Benevento, Italy. [Mancini, L.; Novati, S. Calchi; Bozza, V.; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Fisciano, SA, Italy. [Mancini, L.; Novati, S. Calchi; Bozza, V.; Scarpetta, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Mancini, L.; Novati, S. Calchi; Bozza, V.; Scarpetta, G.] IIASS, I-84019 Vietri Sul Mare, SA, Italy. [Dominik, M.; Browne, P.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Glitrup, M.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Hinse, T. C.; Jorgensen, U. G.; Mathiasen, M.; Harpsoe, K.; Skottfelt, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Hinse, T. C.; Jorgensen, U. G.; Mathiasen, M.; Harpsoe, K.; Skottfelt, J.] Univ Copenhagen, Ctr Star & Planet Format, DK-2100 Copenhagen O, Denmark. [Jorgensen, U. G.] Geol Museum, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Ricci, D.; Finet, F.; Surdej, J.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Maier, G.; Zimmer, F.; Liebig, C.] Univ Heidelberg, Astron Rechen Inst, Zentrum Astron, D-69120 Heidelberg, Germany. [Bruni, I.] Osservatorio Astron Bologna, INAF, I-40127 Bologna, Italy. [Burgdorf, M.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Burgdorf, M.] NASA, Ames Res Ctr, Deutsch SOFIA Inst, Moffett Field, CA 94035 USA. [Dall'Ora, M.] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Hundertmark, M.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Snodgrass, C.] European So Observ, Santiago 19, Chile. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. RP Southworth, J (reprint author), Univ Keele, Astrophys Grp, Newcastle Upon Tyne ST5 5BG, Staffs, England. EM jkt@astro.keele.ac.uk RI Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008; OI Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725; Bruni, Ivan/0000-0002-1560-4590; Dominik, Martin/0000-0002-3202-0343; Ricci, Davide/0000-0002-9790-0552; Snodgrass, Colin/0000-0001-9328-2905 FU STFC [ST/F002599/1]; Northern Ireland Department of Culture, Arts and Leisure (DCAL); Communaute francaise de Belgique - Actions de recherche concertees - Academie Wallonie-Europe FX The reduced light curves presented in this paper will be made available at the CDS (http://cdsweb.u-strasbg.fr/) and at http://www.astro.keele.ac.uk/similar to jkt/. JS acknowledges financial support from STFC in the form of a post-doctoral research position under the grant number ST/F002599/1. Astronomical research at the Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL). DR (boursier FRIA) and JS acknowledge support from the Communaute francaise de Belgique - Actions de recherche concertees - Academie Wallonie-Europe. The following internet-based resources were used in research for this paper: the ESO Digitized Sky Survey; the NASA Astrophysics Data System; the SIMBAD data base operated at CDS, Strasbourg, France and the arXiv scientific paper preprint service operated by Cornell University. NR 49 TC 29 Z9 29 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2010 VL 408 IS 3 BP 1680 EP 1688 DI 10.1111/j.1365-2966.2010.17238.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 667AS UT WOS:000283165600028 ER PT J AU Miller, L Turner, TJ Reeves, JN Braito, V AF Miller, L. Turner, T. J. Reeves, J. N. Braito, V. TI X-ray reverberation in 1H 0707-495 revisited SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion; accretion discs; galaxies: active; galaxies: individual: 1H 0707-495; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; LINE SEYFERT-1 GALAXY-1H-0707-495; ACCRETION DISC OUTFLOWS; XMM-NEWTON; SPECTRAL VARIABILITY; TIMING PROPERTIES; LONG; REFLECTION; EMISSION; RXTE AB The narrow-line Seyfert 1 galaxy 1H 0707-495 has previously been identified as showing time lags between flux variations in the soft-energy (0.3-1 keV) and medium-energy (1-4 keV) X-ray bands that oscillate between positive and negative values as a function of the frequency of the mode of variation. Here we measure and analyse the lags also between a harder X-ray band (4-7.5 keV) and the soft and medium bands, using existing XMM-Newton data, and demonstrate that the entire spectrum of lags, considering both the full energy range, 0.3-7.5 keV, and the full frequency range, 10-5 less than or similar to nu less than or similar to 10-2 Hz, are inconsistent with previous claims of arising as reverberation associated with the inner accretion disc. Instead we demonstrate that a simple reverberation model, in which scattering or reflection is present in all X-ray bands, explains the full set of lags without requiring any ad hoc explanation for the time lag sign changes. The range of time delays required to explain the observed lags extends up to about 1800 s in the hard band. The results are consistent with reverberation caused by scattering of X-rays passing through an absorbing medium whose opacity decreases with increasing energy and that partially covers the source. A high covering factor of absorbing and scattering circumnuclear material is inferred. C1 [Miller, L.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Turner, T. J.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Turner, T. J.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Reeves, J. N.] Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Keele ST5 8EH, Staffs, England. [Braito, V.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. RP Miller, L (reprint author), Univ Oxford, Dept Phys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. EM l.miller@physics.ox.ac.uk OI Braito, Valentina/0000-0002-2629-4989 FU NASA [NNX08AJ41G]; ESA Member States FX TJT acknowledges NASA grant NNX08AJ41G. Observations were obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center. NR 27 TC 52 Z9 52 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2010 VL 408 IS 3 BP 1928 EP 1935 DI 10.1111/j.1365-2966.2010.17261.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 667AS UT WOS:000283165600050 ER PT J AU Gelaro, R Langland, RH Pellerin, S Todling, R AF Gelaro, Ronald Langland, Rolf H. Pellerin, Simon Todling, Ricardo TI The THORPEX Observation Impact Intercomparison Experiment SO MONTHLY WEATHER REVIEW LA English DT Article ID VARIATIONAL DATA ASSIMILATION; OBSERVING SYSTEM EXPERIMENTS; ADJOINT; SENSITIVITY; FORECAST; ATLANTIC AB An experiment is being conducted to directly compare the impact of all assimilated observations on short-range forecast errors in different forecast systems using an adjoint-based technique The technique allows detailed comparison of observation impacts in terms of data type, location, satellite sounding channel, or other relevant attributes This paper describes results for a "baseline" set of observations assimilated by three forecast systems for the month of January 2007 Despite differences in the assimilation algorithms and forecast models, the impacts of the major observation types are similar in each forecast system in a global sense However, regional details and other aspects of the results can differ substantially Large forecast error reductions are provided by satellite radiances geostationary satellite winds, radiosondes, and commercial aircraft Other observation types provide smaller impacts individually, but their combined impact is significant Only a small majority of the total number of observations assimilated actually improves the forecast, and most of the improvement comes from a large number of observations that have relatively small individual Impacts Accounting for this behavior may be especially important when considering strategies for deploying adaptive (or "targeted") components of the observing system C1 [Gelaro, Ronald; Todling, Ricardo] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Langland, Rolf H.] USN, Res Lab, Monterey, CA USA. [Pellerin, Simon] Environm Canada, Dorval, PQ, Canada. RP Gelaro, R (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. FU NASA [MAP/04-0000-0080]; Naval Research Laboratory and the Office of Naval Research [BE-43 5-037] FX The design of the baseline experiment benefitted from discussions with Pierre Gauthier of Universite du Quebec, Montreal, Carla Cardinali of ECMWF, Stephane Laroche of Environment Canada, and Florence Rabier of Meteo-France The authors thank Yannick Tremolet of ECMWF for his work in developing the adjoint of the GSI analysis scheme used in GEOS-5, and Judy St-James and Monique Tanguay of Environment Canada for their help in developing the GDPS and conducting experiments We thank Ron Errico of GMAO for many hours of insightful discussions about the work We thank Carla Cardinali and two anonymous reviewers for their comments and suggestions that improved the paper significantly This work was supported by the NASA Modeling, Analysis and Prediction program (MAP/04-0000-0080) and by the Naval Research Laboratory and the Office of Naval Research, under Program Element 0602435N, Project Number BE-43 5-037 NR 24 TC 39 Z9 40 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD NOV PY 2010 VL 138 IS 11 BP 4009 EP 4025 DI 10.1175/2010MWR3393.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 690WG UT WOS:000285039700001 ER PT J AU Molthan, AL Petersen, WA Nesbitt, SW Hudak, D AF Molthan, Andrew L. Petersen, Walter A. Nesbitt, Stephen W. Hudak, David TI Evaluating the Snow Crystal Size Distribution and Density Assumptions within a Single-Moment Microphysics Scheme SO MONTHLY WEATHER REVIEW LA English DT Article ID ICE CLOUDS; BULK PARAMETERIZATION; PART I; PRECIPITATION PARTICLES; SCATTERING PROPERTIES; MICROSCALE STRUCTURE; FRONTAL RAINBANDS; WATER-CONTENT; MODEL; MESOSCALE AB The Canadian CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Validation Project (C3VP) was a field campaign designed to obtain aircraft, surface. and radar observations of clouds and precipitation in support of improving the simulation of snowfall and cold season precipitation their microphysical processes represented within forecast models and radiative properties relevant to remotely sensed retrievals During the campaign, a midlatitude cyclone tracked along the U S -Canadian border on 22 January 2007, producing an extensive area of snowfall Observations of ice crystals from this event are used to evaluate the assumptions and physical relationships for the snow category within the Goddard six class. single-moment microphysics scheme, as implemented within the Weather Research and Forecasting (WRF) model The WRF model forecast generally reproduced the precipitation and cloud structures sampled by radars and aircraft. permitting a comparison between C3VP observations and model snowfall characteristics Key snowfall assumptions in the Goddard scheme are an exponential size distribution with fixed intercept and effective bulk density, and the relationship between crystal diameter and terminal velocity Fixed values for the size distribution intercept and density did not represent the vertical variability of naturally occurring populations of aggregates. and the current diameter and fall speed relationship underestimated terminal velocities for all sizes of crystals C1 [Molthan, Andrew L.; Petersen, Walter A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Nesbitt, Stephen W.] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. [Hudak, David] Environm Canada, King City, ON, Canada. RP Molthan, AL (reprint author), NASA, George C Marshall Space Flight Ctr, 320 Sparkman Dr, Huntsville, AL 35805 USA. RI Nesbitt, Stephen/I-3965-2013 OI Nesbitt, Stephen/0000-0003-0348-0452 FU NASA Precipitation Measurement Mission; Global Precipitation Measurement project; NASA Marshall Space Flight Center FX The authors thank Wei-Kuo Tao and Roger Shi of NASA Goddard Space Flight Center for assistance with the Goddard microphysics scheme in the WRF modeling framework, and three anonymous reviewers for helping to improve the clarity of figures and analysis Model simulations were performed on the NASA Discover Cluster Data from the HVSD instrument were provided by GyuWon Lee of McGill University Petersen acknowledges support from the NASA Precipitation Measurement Mission (via Dr R Kakar) and the Global Precipitation Measurement project (via Dr M Schwaller) Nesbitt acknowledges support from the Global Precipitation Measurement Project (via Dr M Schwaller) Prime funding for aircraft studies during the Canadian CloudSat/CALIPSO Validation Project was provided by the Canadian Space Agency The lead author was supported in part by the Cooperative Education Program at NASA Marshall Space Flight Center NR 46 TC 12 Z9 13 U1 3 U2 18 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD NOV PY 2010 VL 138 IS 11 BP 4254 EP 4267 DI 10.1175/2010MWR3485.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 690WG UT WOS:000285039700016 ER PT J AU Brown, ME Ouyang, H Habib, S Shrestha, B Shrestha, M Panday, P Tzortziou, M Policelli, F Artan, G Giriraj, A Bajracharya, SR Racoviteanu, A AF Brown, Molly Elizabeth Ouyang, Hua Habib, Shahid Shrestha, Basanta Shrestha, Mandira Panday, Prajjwal Tzortziou, Maria Policelli, Frederick Artan, Guleid Giriraj, Amarnath Bajracharya, Sagar R. Racoviteanu, Adina TI HIMALA: Climate Impacts on Glaciers, Snow, and Hydrology in the Himalayan Region SO MOUNTAIN RESEARCH AND DEVELOPMENT LA English DT Editorial Material C1 [Brown, Molly Elizabeth; Habib, Shahid; Tzortziou, Maria; Policelli, Frederick] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ouyang, Hua; Shrestha, Basanta; Shrestha, Mandira; Giriraj, Amarnath; Bajracharya, Sagar R.] Int Ctr Integrated Mt Dev, Kathmandu, Nepal. [Panday, Prajjwal] Clark Univ, Worcester, MA 01610 USA. [Artan, Guleid] US Geol Survey, ASRC Management Serv, EROS Ctr, Sioux Falls, SD 57198 USA. [Racoviteanu, Adina] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Racoviteanu, Adina] Univ Colorado, Dept Geog, Boulder, CO 80309 USA. RP Brown, ME (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM molly.brown@nasa.gov RI Brown, Molly/M-5146-2013; Brown, Molly/E-2724-2010; OI Brown, Molly/0000-0001-7384-3314; Brown, Molly/0000-0001-7384-3314; Racoviteanu, Adina/0000-0003-4954-1871; Panday, Prajjwal/0000-0002-1287-2004 NR 9 TC 1 Z9 1 U1 0 U2 9 PU MOUNTAIN RESEARCH & DEVELOPMENT PI LAWRENCE PA BUSINESS OFFICE, 810 E 10TH ST, PO BOX 1897, LAWRENCE, KANSAS 66044-8897 USA SN 0276-4741 J9 MT RES DEV JI Mt. Res. Dev. PD NOV PY 2010 VL 30 IS 4 BP 401 EP 404 DI 10.1659/MRD-JOURNAL-D-10-00071.1 PG 4 WC Environmental Sciences; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA 685DJ UT WOS:000284607100011 ER PT J AU Adhikari, P Hong, Y Douglas, KR Kirschbaum, DB Gourley, J Adler, R Brakenridge, GR AF Adhikari, Pradeep Hong, Yang Douglas, Kimberly R. Kirschbaum, Dalia Bach Gourley, Jonathan Adler, Robert Brakenridge, G. Robert TI A digitized global flood inventory (1998-2008): compilation and preliminary results SO NATURAL HAZARDS LA English DT Article DE Flood database; Global hazard assessment; Spatiotemporal analysis; Fatality, impact assessment; Hydrological modeling AB Floods have profound impacts on populations worldwide in terms of both loss of life and property. A global inventory of floods is an important tool for quantifying the spatial and temporal distribution of floods and for evaluating global flood prediction models. Several global hazard inventories currently exist; however, their utility for spatiotemporal analysis of global floods is limited. The existing flood catalogs either fail to record the geospatial area over which the flood impacted or restrict the types of flood events included in the database according to a set of criteria, limiting the scope of the inventory. To improve upon existing databases, and make it more comprehensive, we have compiled a digitized Global Flood Inventory (GFI) for the period 1998-2008 which also geo-references each flood event by latitude and longitude. This technical report presents the methodology used to compile the GFI and preliminary findings on the spatial and temporal distributions of the flooding events that are contained in the inventory. C1 [Adhikari, Pradeep; Hong, Yang; Douglas, Kimberly R.] Univ Oklahoma, Sch Civil Engn & Environm Sci, Ctr Nat Hazard & Disaster Res, Norman, OK 73019 USA. [Kirschbaum, Dalia Bach; Adler, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gourley, Jonathan] NOAA, Natl Severe Storm Lab, Norman, OK 73072 USA. [Brakenridge, G. Robert] Dartmouth Coll, Dept Geog, Dartmouth Flood Observ, Hanover, NH 03755 USA. RP Hong, Y (reprint author), Univ Oklahoma, Sch Civil Engn & Environm Sci, Ctr Nat Hazard & Disaster Res, Natl Weather Ctr Suite 3630, Norman, OK 73019 USA. EM yanghong@ou.edu RI Hong, Yang/D-5132-2009; Kirschbaum, Dalia/F-9596-2012; Gourley, Jonathan/C-7929-2016; OI Hong, Yang/0000-0001-8720-242X; Gourley, Jonathan/0000-0001-7363-3755; Adhikari, Pradeep/0000-0003-2218-4376 FU NASA; National Science Foundation FX This study is supported by NASA Applied Science Global Flood and Landslide Project, NASA SERVIR-Africa Project, and National Science Foundation's REU award to School of Civil Engineering and Environmental Sciences at the University of Oklahoma. The authors would like to extend their appreciation to many institutions, particularly the EM-DAT and DFO for sharing the flood hazard data for the current study. Similarly, the authors would like to thank two anonymous reviewers for thoughtful comments and suggestion which helped to improve the earlier manuscript. NR 13 TC 37 Z9 37 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0921-030X J9 NAT HAZARDS JI Nat. Hazards PD NOV PY 2010 VL 55 IS 2 BP 405 EP 422 DI 10.1007/s11069-010-9537-2 PG 18 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Water Resources SC Geology; Meteorology & Atmospheric Sciences; Water Resources GA 671MJ UT WOS:000283509900017 ER PT J AU Michalski, JR Niles, PB AF Michalski, Joseph R Niles, Paul B TI Deep crustal carbonate rocks exposed by meteor impact on Mars SO NATURE GEOSCIENCE LA English DT Article ID PHYLLOSILICATES; IDENTIFICATION; MINERALS; OUTCROPS; CRATERS; METHANE; SYSTEMS; CLIMATE; RECORD AB The surfaceof Mars is cold,dry, oxidizing, acidic and inhopitable to life. Similar conditions may have persisted for billions of years, suggesting that the best place to search for habitable environments is the subsurface(1). One hint of habituable conditions at depth is the presence of atmospheric methane, which may have formed through hydrothermal processes in the crust(2,3) in the presence of CO2. The observation of hydrated minerals excavated by some impact craters suggests that ancient hydrothermal systems may have existed in the subsurface(4-9), but until now, none of those deposits has been linked to carbonate minerals and CO2-rich environments. Previous detections of carbonate minerals(10) that could be linked to an ancient CO2-rich surface environment(11) have been sparse. Here we show spectral evidence for carbonate- and phyllosilicate-bearing, layered and foliated bedrock exhumed from deep (about 6 km) within the martian crust by a meteor impact. The mineral assemblage, textural properties and geologic context of the deposits indicate that these rocks are probably ancient sediments that were metamorphosed during burial by younger volcanic materials from the nearby Syrtis Major volcano. We suggest that these buried layered carbonates might be only a small part of a much more extensive ancient carbonate sedimentary record that has been buried by volcanic resurfacing and impact ejecta. Our discovery may help explain the origin of other carbonates on Mars and indicates a high-priority site for future exobiological exploration. C1 [Michalski, Joseph R] Planetary Sci Inst, Tucson, AZ 85719 USA. [Niles, Paul B] NASA Johnson Space Ctr, Astromat Res & Explorat Sci, Houston, TX 77058 USA. RP Michalski, JR (reprint author), Planetary Sci Inst, 1700 E Ft Lowell,Suite 106, Tucson, AZ 85719 USA. EM michalski@psi.edu FU Mars Data Analysis Program; [NNX09AN16G] FX Financial support for this work was provided by the Mars Data Analysis Program, grant #NNX09AN16G. NR 30 TC 85 Z9 87 U1 0 U2 23 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD NOV PY 2010 VL 3 IS 11 BP 751 EP 755 DI 10.1038/NGEO971 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 673GZ UT WOS:000283648800016 ER PT J AU Hayes, GP Briggs, RW Sladen, A Fielding, EJ Prentice, C Hudnut, K Mann, P Taylor, FW Crone, AJ Gold, R Ito, T Simons, M AF Hayes, G. P. Briggs, R. W. Sladen, A. Fielding, E. J. Prentice, C. Hudnut, K. Mann, P. Taylor, F. W. Crone, A. J. Gold, R. Ito, T. Simons, M. TI Complex rupture during the 12 January 2010 Haiti earthquake SO NATURE GEOSCIENCE LA English DT Article ID 2002 DENALI FAULT; MOTION; SLIP; DEFORMATION; ALASKA; ZONE AB Initially, the devastating M-w 7.0, 12 January 2010 Haiti earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillo-Plantain Garden fault zone. Here, we combine seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process involved slip on multiple faults. Primary surface deformation was driven by rupture on blind thrust faults with only minor, deep, lateral slip along or near the main Enriquillo-Plantain Garden fault zone; thus the event only partially relieved centuries of accumulated left-lateral strain on a small part of the plate-boundary system. Together with the predominance of shallow off-fault thrusting, the lack of surface deformation implies that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the Enriquillo-Plantain Garden fault zone, as occurred in inferred Holocene and probable historic events. We suggest that the geological signature of this earthquake-broad warping and coastal deformation rather than surface rupture along the main fault zone-will not be easily recognized by standard palaeoseismic studies. We conclude that similarly complex earthquakes in tectonic environments that accommodate both translation and convergence-such as the San Andreas fault through the Transverse Ranges of California-may be missing from the prehistoric earthquake record. C1 [Hayes, G. P.; Briggs, R. W.; Crone, A. J.; Gold, R.] US Geol Survey, Golden, CO 80401 USA. [Hayes, G. P.] Synergetics Inc, Ft Collins, CO 80524 USA. [Sladen, A.; Ito, T.; Simons, M.] CALTECH, Pasadena, CA 91125 USA. [Fielding, E. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Prentice, C.] US Geol Survey, Menlo Pk, CA 94025 USA. [Hudnut, K.] US Geol Survey, Pasadena, CA 91106 USA. [Mann, P.; Taylor, F. W.] Univ Texas Austin, Univ Texas Inst Geophys, Jackson Sch Geosci, Austin, TX 78758 USA. [Ito, T.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. RP Hayes, GP (reprint author), US Geol Survey, Golden, CO 80401 USA. EM ghayes@usgs.gov RI Taylor, Frederick/A-2195-2009; Gold, Ryan/I-3287-2012; Briggs, Richard/A-1348-2013; Hudnut, Kenneth/B-1945-2009; Hudnut, Kenneth/G-5713-2010; Fielding, Eric/A-1288-2007; Sladen, Anthony/A-2532-2017; OI Gold, Ryan/0000-0002-4464-6394; Briggs, Richard/0000-0001-8108-0046; Hudnut, Kenneth/0000-0002-3168-4797; Fielding, Eric/0000-0002-6648-8067; Sladen, Anthony/0000-0003-4126-0020; Simons, Mark/0000-0003-1412-6395 FU Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration; NSF [1024990]; UTIG [2285] FX We thank V. Tsai, H. Benz, J. McCarthy, R. Bilham and three anonymous reviewers for their comments in improving this manuscript. The study benefited greatly from the assistance of P. Jean of Le Bureau des Mines et de l'Energie d'Haiti, and from the logistical aid of R. Boyer. We thank K. Ludwig and J. Kindinger of USGS and the captain and crew of the RV Endeavor for use and transport of the rigid-hulled inflatable boat. We thank G. Choy for the first-motion focal mechanism. We thank R. Bilham and R. Koehler for early field observations of coastal deformation. Fieldwork studies were sponsored by the US Agency for International Development, USGS and the National Science Foundation. PALSAR level 1.0 data are shared among PIXEL (PALSAR Interferometry Consortium to Study our Evolving Land Surface), and provided from the Japanese Aerospace Exploration Agency under a cooperative research contract with the Earthquake Research Institute, University of Tokyo. Early PALSAR data were provided under the Group on Earth Observation Geohazards Supersite programme and other scenes through the Alaska Satellite Facility. The ownership of PALSAR data belongs to METI (Ministry of Economy, Trade and Industry) and the Japanese Aerospace Exploration Agency. G.P.H. is contracted to work for the USGS by Synergetics Inc., Fort Collins, Colorado. A.S. and M.S. are partially supported under funds provided by the Gordon and Betty Moore Foundation through the Tectonics Observatory. This paper is Caltech Tectonic Observatory contribution 138. Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Figures have been made using the Generic Mapping Tools of Wessel and Smith23. Fieldwork partially supported by NSF EAR RAPID grant 1024990. UTIG contribution no. 2285. NR 23 TC 70 Z9 74 U1 3 U2 28 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD NOV PY 2010 VL 3 IS 11 BP 800 EP 805 DI 10.1038/NGEO977 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 673GZ UT WOS:000283648800011 ER PT J AU Barrila, J Radtke, AL Crabbe, A Sarker, SF Herbst-Kralovetz, MM Ott, CM Nickerson, CA AF Barrila, Jennifer Radtke, Andrea L. Crabbe, Aurelie Sarker, Shameema F. Herbst-Kralovetz, Melissa M. Ott, C. Mark Nickerson, Cheryl A. TI Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions SO NATURE REVIEWS MICROBIOLOGY LA English DT Review ID ENTERICA SEROVAR TYPHIMURIUM; EPITHELIAL-CELLS; SIMULATED MICROGRAVITY; INNATE IMMUNITY; IN-VITRO; INTESTINAL EPITHELIUM; 3-DIMENSIONAL CULTURE; EXTRACELLULAR-MATRIX; SALMONELLA-TYPHIMURIUM; TISSUE ARCHITECTURE AB Appropriately simulating the three-dimensional (3D) environment in which tissues normally develop and function is crucial for engineering in vitro models that can be used for the meaningful dissection of host-pathogen interactions. This Review highlights how the rotating wall vessel bioreactor has been used to establish 3D hierarchical models that range in complexity from a single cell type to multicellular co-culture models that recapitulate the 3D architecture of tissues observed in vivo. The application of these models to the study of infectious diseases is discussed. C1 [Barrila, Jennifer; Radtke, Andrea L.; Crabbe, Aurelie; Sarker, Shameema F.; Herbst-Kralovetz, Melissa M.; Nickerson, Cheryl A.] Arizona State Univ, Sch Life Sci, Biodesign Inst, Ctr Infect Dis & Vaccinol, Tempe, AZ 85287 USA. [Herbst-Kralovetz, Melissa M.] Univ Arizona, Coll Med Phoenix, Dept Basic Med Sci, Phoenix, AZ 85004 USA. [Ott, C. Mark] NASA, Habitabil & Environm Factors Div, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Nickerson, CA (reprint author), Arizona State Univ, Sch Life Sci, Biodesign Inst, Ctr Infect Dis & Vaccinol, 1001 S McAllister Ave, Tempe, AZ 85287 USA. EM cheryl.nickerson@asu.edu FU US National Aeronautics and Space Administration (NASA) [NCC2-1362, NAG2-1378, NAG 9-1350, NNJ06HE92G, NNX09AH40G]; US National Institutes of Health [R21MH080702, U19 AI062150-01]; US Department of Agriculture [2008-35201-04684]; Science Foundation Arizona [SBC0309-08]; Belgian American Educational Foundation; King Baudouin Foundation; European Space Agency; Belgian Science Policy FX We apologize to all those whose papers could not be cited owing to space limitations. We thank D. Burke for helpful discussions. This work was supported by: the US National Aeronautics and Space Administration (NASA) grants NCC2-1362, NAG2-1378, NAG 9-1350, NNJ06HE92G and NNX09AH40G (to C.A.N.); the US National Institutes of Health grants R21MH080702 (to C.A.N.) and U19 AI062150-01 (to M. M. H. K.); the US Department of Agriculture grant 2008-35201-04684 (to C.A.N. and M.M.H.K.); the Science Foundation Arizona grant SBC0309-08 (to C.A.N.); a Henri Benedictus Fellowship of the Belgian American Educational Foundation and the King Baudouin Foundation (to A. C.); and a research grant from the European Space Agency and the Belgian Science Policy (to A.C.). NR 115 TC 93 Z9 96 U1 8 U2 50 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1740-1526 J9 NAT REV MICROBIOL JI Nat. Rev. Microbiol. PD NOV PY 2010 VL 8 IS 11 BP 791 EP 801 DI 10.1038/nrmicro2423 PG 11 WC Microbiology SC Microbiology GA 665RY UT WOS:000283054400016 PM 20948552 ER PT J AU Sun, GS Tou, JC Liittschwager, K Herrera, AM Hill, EL Girten, B Reiss-Bubenheim, D Vasques, M AF Sun, Gwo-Shing Tou, Janet C. Liittschwager, Kurt Herrera, Anna M. Hill, Esther L. Girten, Beverly Reiss-Bubenheim, Debra Vasques, Marilyn TI Evaluation of the nutrient-upgraded rodent food bar for rodent spaceflight experiments SO NUTRITION LA English DT Article DE Spaceflight; Rodent food bar; Nutrient upgraded; Growth; Maintenance ID AIN-93 PURIFIED DIETS; SPACE-FLIGHT; FEMALE RATS; AIN-76A AB Objective: Selection of an appropriate diet for rodent spaceflight experiments is critical and may have significant effects on mission results. The National Aeronautics and Space Administration (NASA) rodent food bar (RFB) was reformulated and designated as the nutrient-upgraded RFB (NuRFB). The objectives of this study were to determine whether the NuRFB nutrient formulation meets the 1995 National Research Council (NRC) nutrient recommendations and whether the NuRFB can be used for short-term (45-d) and long-term (90-d) spaceflight experiments. Methods: Nutrient and moisture analyses of the NuRFB were performed. Young (age 13-14 wk) male Sprague-Dawley rats (n = 16/group) were individually caged and fed a diet treatment consisting of 1) NuRFB, 2) RFB, or 3) modified AIN-93 G containing 4% instead of the 7% fat for 45- or 90-d. At the end of the study, organs were weighted, and serum clinical chemistry indicators of organ function and hematologic measurements were determined. Results: Chemical analysis of the diet ingredients showed that the NuRFB met the 1995 NRC nutrient recommendations for rats. Subsequent animal feeding studies showed that NuRFB was comparable to RFB and modified AIN-93 G for supporting rat growth and body weight maintenance. In addition, the safety of the NuRFB for use as a spaceflight diet was indicated by the absence of changes in organ weight or function. Conclusion: Based on the study results, the NuRFB performed similarly to the RFB and met the criteria necessary for short-term and long-term rodent spaceflight experiments. Published by Elsevier Inc. C1 [Sun, Gwo-Shing; Liittschwager, Kurt; Hill, Esther L.] Lockheed Martin Space & Sci Solut, Moffett Field, CA USA. [Tou, Janet C.] W Virginia Univ, Div Anim & Nutr Sci, Morgantown, WV 26506 USA. [Herrera, Anna M.] San Jose State Univ, San Jose, CA 95192 USA. [Girten, Beverly; Reiss-Bubenheim, Debra; Vasques, Marilyn] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Sun, GS (reprint author), Lockheed Martin Space & Sci Solut, Moffett Field, CA USA. EM gwo-shing.sun-1@nasa.gov FU NASA FX The authors thank the staff of the Animal Care Facility at NASA Ames Research Center for supporting animal welfare during the study. They thank the staff of the American Institute of Baking and the staff of the Kansas State University Extrusion Center for fabrication of the RFB and NuRFB. They appreciated Dr. Ron Ross and Dr. Barbara Michelson for suggestions for the NuRFB formulation, Dr. Sajid Alavi for technical support, and Dr. Richard Grindeland for useful discussions in the preparation of this manuscript. NR 20 TC 11 Z9 11 U1 0 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0899-9007 J9 NUTRITION JI Nutrition PD NOV-DEC PY 2010 VL 26 IS 11-12 BP 1163 EP 1169 DI 10.1016/j.nut.2009.09.018 PG 7 WC Nutrition & Dietetics SC Nutrition & Dietetics GA 672FU UT WOS:000283569200024 PM 20116210 ER PT J AU Christensen, LE Mansour, K Yang, RQ AF Christensen, Lance E. Mansour, Kamjou Yang, Rui Q. TI Thermoelectrically cooled interband cascade laser for field measurements SO OPTICAL ENGINEERING LA English DT Article DE semiconductor lasers; distributed feedback; laser applications; optical instrument ID CONTINUOUS-WAVE OPERATION; II QUANTUM-WELLS; MU-M; ROOM-TEMPERATURE; SPECTROSCOPY; AIRCRAFT; METHANE; SENSOR AB The development of interband cascade lasers from concept to packaged devices is briefly reviewed. The application of a single-mode, mid-IR (3.27-mu m) interband cascade laser packaged with a thermoelectric cooler for field measurements of methane and water is described. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3498767] C1 [Christensen, Lance E.; Mansour, Kamjou] CALTECH, Jet Prop Lab, Quantum Sci & Technol Grp, Pasadena, CA 91109 USA. [Yang, Rui Q.] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA. RP Christensen, LE (reprint author), CALTECH, Jet Prop Lab, Quantum Sci & Technol Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Lance.Christensen@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA); JPL FX We thank Dr. Amy Townsend-Small for GC-FID methane measurements and Dr. Stanley P. Sander for use of the CLARS facility. We also thank C. J. Hill, Y. Qiu, A. Soibel, R. E. Muller, P. M. Echternach, S. A. Keo, S. Forouhar, S. D. Gunapala, D. L. Jan, C. F. Ruoff, and C. R. Webster for their contributions and support to the development of interband cascade lasers at JPL. This research was carried out by the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA) with support from JPL's Research and Technology Development Program. NR 45 TC 6 Z9 7 U1 2 U2 8 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD NOV PY 2010 VL 49 IS 11 AR 111119 DI 10.1117/1.3498767 PG 6 WC Optics SC Optics GA 690IJ UT WOS:000284996200022 ER PT J AU Allen, MA Neilan, BA Burns, BP Jahnke, LL Summons, RE AF Allen, Michelle A. Neilan, Brett A. Burns, Brendan P. Jahnke, Linda L. Summons, Roger E. TI Lipid biomarkers in Hamelin Pool microbial mats and stromatolites SO ORGANIC GEOCHEMISTRY LA English DT Article ID FATTY-ACID COMPOSITION; BLUE-GREEN-ALGAE; SULFATE-REDUCING BACTERIA; HOT-SPRING ENVIRONMENTS; CARBON-ISOTOPE ANALYSES; SHARK BAY; WESTERN-AUSTRALIA; EXTRACTABLE LIPIDS; WAX ESTERS; SP-NOV. AB Comprehensive lipid biomarker profiles were determined for extant intertidal columnar stromatolites and non-lithified smooth and pustular microbial mats from Hamelin Pool, Shark Bay, Western Australia. Hydrocarbons, alkyl (wax) esters, sterols, fatty acids, triterpenoids and ether-linked hydrocarbons were analysed using gas chromatography-mass spectrometry (GC-MS) and triterpenoids were analysed using high temperature GC-MS. Cyanobacterial markers were abundant in each sample and lipids diagnostic of heterotrophic bacteria, sulfate-reducing bacteria, anoxygenic phototropic bacteria and archaea were also detected. Limited input from higher plants and diatoms was observed. For the first time, 2-methylhopanoids were detected in Hamelin Pool microbial communities. The overall lipid profiles of the three sediment types were similar, suggesting that extant non-lithified microbial mats and stromatolites can comprise similar microbial communities. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Allen, Michelle A.; Neilan, Brett A.; Burns, Brendan P.] Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia. [Allen, Michelle A.; Neilan, Brett A.; Burns, Brendan P.] Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. [Jahnke, Linda L.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Jahnke, Linda L.; Summons, Roger E.] NASA, Astrobiol Inst, Moffett Field, CA 94035 USA. [Summons, Roger E.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Neilan, BA (reprint author), Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia. EM b.neilan@unsw.edu.au RI BURNS, BRENDAN/B-5093-2009; OI BURNS, BRENDAN/0000-0002-2962-2597 FU Australian Research Council; American Chemical Society; NSF; NASA FX M.A.A. was the recipient of a NASA Planetary Biology Internship in the laboratory of R.E.S., which facilitated this project. B.P.B. and B.A.N. are supported by the Australian Research Council. R.E.S. is supported by the American Chemical Society and the NSF Geobiology-Low Temperature Geochemistry and Chemical Oceanography Programs (ETBC). L.L.J. is supported by the NASA Exobiology Program. NR 137 TC 20 Z9 20 U1 0 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0146-6380 J9 ORG GEOCHEM JI Org. Geochem. PD NOV PY 2010 VL 41 IS 11 BP 1207 EP 1218 DI 10.1016/j.orggeochem.2010.07.007 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 687AY UT WOS:000284747300004 ER PT J AU Klimas, A Hesse, M Zenitani, S Kuznetsova, M AF Klimas, Alex Hesse, Michael Zenitani, Seiji Kuznetsova, Maria TI Particle-in-cell simulation of collisionless driven reconnection with open boundaries SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIC RECONNECTION; PLASMA SHEET; MAGNETOTAIL; ACCELERATION; DISSIPATION; REGION; FLOWS AB First results are discussed from an ongoing study of driven collisionless reconnection using a 21/2-dimensional electromagnetic particle-in-cell simulation model with open inflow and outflow boundaries An extended electron diffusion region (EEDR) is defined as that region surrounding a reconnecting neutral line in which the out-of-plane nonideal electric field is positive It is shown that the boundaries of this region in the directions of the outflow jets are at the positions where the electrons make the transition from unfrozen meandering motion in the current sheet to outward drifting with the magnetic field in the outflow jets, a turning length scale is defined to mark these positions The initial width of the EEDR in the inflow directions is comparable to the electron bounce width Later as shoulders develop to form a two-scale structure, the EEDR width expands to the ion bounce width scale The inner portion of the EEDR or the electron diffusion region proper remains at the electron bounce width Two methods are introduced for predicting the reconnection electric field using the dimensions of the EEDR These results are interpreted as further evidence that the EEDR is the region that is relevant to understanding the electron role in the neutral line vicinity (C) 2010 American Institute of Physics [doi:10.1063/1.3510480] C1 [Klimas, Alex; Zenitani, Seiji] NASA, GEST, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Klimas, A (reprint author), NASA, GEST, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Hesse, Michael/D-2031-2012; Kuznetsova, Maria/F-6840-2012; Zenitani, Seiji/D-7988-2013; NASA MMS, Science Team/J-5393-2013 OI Zenitani, Seiji/0000-0002-0945-1815; NASA MMS, Science Team/0000-0002-9504-5214 FU NASA FX This research was supported by NASA's MMS mission One of us (S Z) gratefully acknowledges support from NASA's postdoctoral program NR 43 TC 11 Z9 11 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2010 VL 17 IS 11 AR 112904 DI 10.1063/1.3510480 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 697BB UT WOS:000285486500074 ER PT J AU Coustenis, A Atreya, S Castillo, J Coll, P AF Coustenis, Athena Atreya, Sushil Castillo, Julie Coll, Patrice TI Surfaces and atmospheres of the outer planets, their satellites and ring systems Part VI Preface SO PLANETARY AND SPACE SCIENCE LA English DT Editorial Material C1 [Coustenis, Athena] LESIA Paris Meudon Observ, F-92195 Meudon, France. [Atreya, Sushil] Univ Michigan, Ann Arbor, MI 48109 USA. [Castillo, Julie] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Coll, Patrice] Univ Paris 07, LISA, Creteil, France. RP Coustenis, A (reprint author), LESIA Paris Meudon Observ, F-92195 Meudon, France. NR 0 TC 1 Z9 1 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD NOV PY 2010 VL 58 IS 13 SI SI BP 1665 EP 1666 DI 10.1016/j.pss.010.09.001 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 682HX UT WOS:000284393100001 ER PT J AU Nixon, CA Achterberg, RK Romani, PN Allen, M Zhang, X Teanby, NA Irwin, PGJ Flasar, FM AF Nixon, C. A. Achterberg, R. K. Romani, P. N. Allen, M. Zhang, X. Teanby, N. A. Irwin, P. G. J. Flasar, F. M. TI Abundances of Jupiter's trace hydrocarbons from Voyager and Cassini SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Jupiter atmospher; Atmospheric abundances; Outer planets; Infrared spectroscopy; Abundance retrieval ID COMPOSITE INFRARED SPECTROMETER; SPECTROSCOPIC DATABASE; MERIDIONAL VARIATIONS; PLANETARY ATMOSPHERE; JOVIAN STRATOSPHERE; ETHANE; PROBE; ULTRAVIOLET; ACETYLENE; SATURN AB The flybys of Jupiter by the Voyager spacecraft in 1979 and over two decades later by Cassini in 2000 have provided us with unique datasets from two different epochs allowing the investigation of seasonal change in the atmosphere In this paper we model zonal averages of thermal infrared spectra from the two instruments Voyager 1 IRIS and Cassini CIRS to retrieve the vertical and meridional profiles of temperature and the abundances of the two minor hydrocarbons acetylene (C(2)H(2)) and ethane (C(2)H(6)) The spatial variation of these gases is controlled by both chemistry and dynamics and therefore their observed distribution gives us an insight into both processes We find that the two gases paint quite different pictures of seasonal change Whilst the 2-D cross-section of C2H6 abundance is slightly increased and more symmetric in 2000 (northern summer solstice) compared to 1979 (northern fall equinox) the major trend of equator to pole increase remains For C(2)H(2) on the other hand the Voyager epoch exhibits almost no latitudinal variation whilst the Cassini era shows a marked decrease polewards in both hemispheres At the present time these experimental findings are in advance of interpretation as there are no published models of 2-D Jovian seasonal chemical variation available for comparison (C) 2010 Elsevier Ltd All rights reserved C1 [Nixon, C. A.] NASA, Solar Syst Explorat Div, Planetary Syst Lab Code 693, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Achterberg, R. K.] Univ Maryland, College Pk, MD 20742 USA. [Allen, M.; Zhang, X.] CALTECH, Pasadena, CA 91125 USA. [Allen, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Teanby, N. A.; Irwin, P. G. J.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. RP Nixon, CA (reprint author), NASA, Solar Syst Explorat Div, Planetary Syst Lab Code 693, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Nixon, Conor/A-8531-2009; Flasar, F Michael/C-8509-2012; Romani, Paul/D-2729-2012; OI Nixon, Conor/0000-0001-9540-9121; Teanby, Nicholas/0000-0003-3108-5775; Irwin, Patrick/0000-0002-6772-384X FU NASA FX The acquisition of CIRS data is the result of the collective efforts of a large number of people including the following who worked on various aspects of CIRS science planning instrument commanding uplink calibration and databasing S B Calculi R C Carlson M H Elliott E Guandique M Kaelberer V G Kunde E Lellouch A Mamoutkine P J Schmder M E Segura J S Tingley and also many engineers and science planners at the Jet Propulsion Laboratory We would like to thank R.A West A J Friedson and Y L Yung for helpful discussions during the preparation of this manuscript During the research for and writing of this report R K A and F M F were funded by the NASA Cassini Project and CA N and M A were supported by the NASA Outer Planets Research Program Portions of this work were carried out by the Jet Propulsion Laboratory under contract with the National Aeronautics and Space Administration NR 41 TC 12 Z9 12 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD NOV PY 2010 VL 58 IS 13 SI SI BP 1667 EP 1680 DI 10.1016/j.pss.010.05.008 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 682HX UT WOS:000284393100002 ER PT J AU Lipatov, AS Cooper, JF Paterson, WR Sittler, EC Hartle, RE Simpson, DG AF Lipatov, A. S. Cooper, J. F. Paterson, W. R. Sittler, E. C. Hartle, R. E. Simpson, D. G. TI Jovian plasma torus interaction with Europa 3D hybrid kinetic simulation First results SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Europa; Jovian magnetosphere; Plasma; Magnetic fields; Ion composition ID IOS INTERACTION; MAGNETOSPHERIC INTERACTION; PERPENDICULAR SHOCKS; MHD SIMULATION; CURRENT SYSTEM; ATMOSPHERE; PICKUP; ENVIRONMENT; CALLISTO; MODEL AB The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect to variable upstream magnetic field and flux or density distributions of plasma and energetic ions electrons and neutral atoms This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo orbiter mission and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions The simulations are based on recent models of the atmosphere of Europa (Cassidy et al 2007 Shematovich et at 2005) In contrast to previous approaches with MHD simulations the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions) Non-thermal distributions of upstream plasma will be addressed in future work Photoionization electron-impact ionization charge exchange and collisions between the ions and neutrals are also included in our model We consider two models for background plasma (a) with O(++) ions (b) with O(++) and S(++) ions The majority of O(2) atmosphere is thermal with an extended cold population (Cassidy et at 2007) A few first simulations already include an induced magnetic dipole however several important effects of induced magnetic fields arising from oceanic shell conductivity will be addressed in later work (C) 2010 Elsevier Ltd All rights reserved C1 [Lipatov, A. S.] NASA, Goddard Earth Sci & Technol Ctr, GSFC, Greenbelt, MD 20771 USA. [Paterson, W. R.] Hampton Univ, Hampton, VA 23668 USA. [Lipatov, A. S.] Moscow Inst Phys & Technol, Dept Problems Phys & Energet, Moscow, Russia. [Lipatov, A. S.] Russian Acad Sci, Dialogue Sci AA Dorodnitsyn Comp Ctr, Moscow 119991, Russia. RP Lipatov, AS (reprint author), NASA, Goddard Earth Sci & Technol Ctr, GSFC, Code 673,Bld 21,Rm 025,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RI Cooper, John/D-4709-2012; Paterson, William/F-5684-2012 FU GEST Center UMBC [00004129, 00004549]; NASA GSFC [00004129, 00004549]; NASA FX A S L was supported in part by the Projects/Grants 00004129 and 00004549 between the GEST Center UMBC and NASA GSFC J F C was supported as Principal Investigator by the NASA Outer Planets Research Program Computational resources were provided by the NASA Ames Advanced Supercomputing Division (SGI-Columbia) The authors thank J Castillo A Coustenis and referee for their helpful comments NR 45 TC 7 Z9 7 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD NOV PY 2010 VL 58 IS 13 SI SI BP 1681 EP 1691 DI 10.1016/j.pss.2010.06.015 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 682HX UT WOS:000284393100003 ER PT J AU Delory, GT Laver, C de Pater, I Pitman, J Duncan, A AF Delory, Gregory T. Laver, Conor de Pater, Imke Pitman, Joe Duncan, Alan TI High resolution remote sensing observations for missions to the Jovian system lo as a case study SO PLANETARY AND SPACE SCIENCE LA English DT Article DE lo; Remote sensing; Instruments ID APERTURE SENSOR MIDAS; SILICATE VOLCANISM; SO2 ATMOSPHERE; IO; GALILEO; ECLIPSE; TELESCOPE; SATELLITE; ERUPTION; IMAGES AB We present modeled images of lo at a variety of distances from the surface as a function of imager aperture size and wavelength We consider the science objectives that could be achieved from missions engaged in long range remote-sensing of lo during the approach to the Jovian system and subsequently from orbit around Europa or Ganymede in both the visible and near Infrared wavelength ranges We find that basic global mapping objectives in the visible can be met with a traditional 0 5 m telescope design A more ambitious 1 5 m telescope could accomplish much more detailed objectives such as topographical measurements and determination of flow patterns and thermal sources for individual active regions on lo (C) 2010 Elsevier Ltd All rights reserved C1 [Delory, Gregory T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Delory, Gregory T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Laver, Conor; de Pater, Imke] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Pitman, Joe] Explorat Sci, Pine, CO 80470 USA. [Duncan, Alan] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. RP Delory, GT (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. FU National Science Foundation Science and Technology Center for Adaptive Optics [AST 98-76783]; National Science Foundation [AST 0406275]; National Aeronautics and Space Administration (NASA) [NNG05GA25G] FX This work was supported in part by the National Science Foundation Science and Technology Center for Adaptive Optics managed by the University Of California at Santa Cruz under cooperative agreement AST 98-76783 the National Science Foundation (grant AST 0406275) and the National Aeronautics and Space Administration HCICT Program (NASA Grant No NNG05GA25G) NR 40 TC 2 Z9 2 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD NOV PY 2010 VL 58 IS 13 SI SI BP 1699 EP 1707 DI 10.1016/j.pss.2010.08.007 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 682HX UT WOS:000284393100005 ER PT J AU Kostiuk, T Hewagama, T Fast, KE Livengood, TA Armen, J Buhl, D Sonnabend, G Schmulling, F Delgado, JD Achterberg, R AF Kostiuk, Theodor Hewagama, Tilak Fast, Kelly E. Livengood, Timothy A. Armen, John Buhl, David Sonnabend, Guido Schmulling, Frank Delgado, Juan D. Achterberg, Richard TI High spectral resolution infrared studies of Titan Winds, temperature, and composition SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Titan; Wind; Composition; Stratosphere; Infrared; Temperature ID ATMOSPHERIC TEMPERATURES; LATITUDINAL VARIATIONS; ZONAL WINDS; STRATOSPHERE; ETHANE; CASSINI/CIRS; OCCULTATION; ABUNDANCE; DYNAMICS; DATABASE AB The Cassini Huygens mission provides a unique opportunity to combine ground-based and spacecraft investigations to increase our understanding of chemical and dynamical processes in Titan s atmosphere Spectroscopic measurements from both vantage points enable retrieving global wind structure temperature structure and atmospheric composition An updated analysis of Titan data obtained with the NASA Goddard Space Flight Center s Infrared Heterodyne Spectrometer (IRHS) and Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) prior to and during the Cassini Huygens mission is compared to retrievals from measurements with the Cassini Composite Infrared Spectrometer (CIRS) IRHS/HIPWAC results include the first direct stratospheric wind measurements on Titan constraints on stratospheric temperature and the study of atmospheric molecular composition These results are compared to CIRS retrievals of wind and temperature profile from thermal mapping data and ethane abundance at 10-15 degrees South latitude near the equatorial region IRHS/HIPWAC wind results are combined with other direct techniques stellar occultation measurements and CIRS results to explore seasonal variability over nearly one Titan year and to provide an empirical altitude profile of stratospheric winds varying from similar to 50 to 210 m/s prograde The advantage of fully resolved line spectra in species abundance measurements is illustrated by comparing the possible effect on retrieved ethane abundance by blended spectral features of other molecular constituents e g acetylene (C2H2) ethylene (C2H4) allene (C3H4) and propane (C3H8) which overlap the nu(9) band of ethane and are not resolved at lower spectral resolution IR heterodyne spectral resolution can discriminate weak spectral features that overlap the nu(9) band of ethane enabling ethane lines alone to be used to retrieve abundance Titan s stratospheric mean ethane mole fraction (8 6+/-3 ppmv) retrieved from IRHS/HIPWAC emission line profiles (resolving power lambda/Delta lambda similar to 10(6)) is compared to past values obtained from lower resolution spectra and from CIRS measurements (resolving power lambda/Delta lambda similar to 2 x 10(3)) and more compatible recent analysis Results illustrate how high spectral resolution ground-based studies complement the spectral and spatial coverage and resolution of moderate spectral resolution space-borne spectrometers Published by Elsevier Ltd C1 [Kostiuk, Theodor; Hewagama, Tilak; Fast, Kelly E.; Livengood, Timothy A.; Armen, John; Buhl, David; Delgado, Juan D.; Achterberg, Richard] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Livengood, Timothy A.] Natl Ctr Earth & Space Sci Educ, Capital Hts, MD USA. [Hewagama, Tilak; Delgado, Juan D.; Achterberg, Richard] Univ Maryland, College Pk, MD 20742 USA. [Sonnabend, Guido; Schmulling, Frank] Univ Cologne, Inst Phys 1, D-5000 Cologne, Germany. RP Kostiuk, T (reprint author), NASA, Goddard Space Flight Ctr, Code 693, Greenbelt, MD 20771 USA. RI Hewagama, T/C-8488-2012; Livengood, Timothy/C-8512-2012; Kostiuk, Theodor/A-3077-2014 FU NASA [NCC 5-538] FX The authors thank the directors and staff of the NAOJ Subaru Telescope and the NASA IRTF for their technical and programmatic support of infrared heterodyne spectroscopy measurements of Titan This research was supported by the NASA Planetary Astronomy Program and is based on data collected at the Subaru Telescope which is operated by the National Astronomical Observatory of Japan and at the Infrared Telescope Facility (IRTF) operated by the University of Hawaii under Cooperative Agreement no NCC 5-538 with the National Aeronautics and Space Administration Science Mission Directorate Planetary Astronomy Program NR 37 TC 11 Z9 11 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD NOV PY 2010 VL 58 IS 13 SI SI BP 1715 EP 1723 DI 10.1016/j.pss.2010.08.004 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 682HX UT WOS:000284393100007 ER PT J AU Lellouch, E Vinatier, S Moreno, R Allen, M Gulkis, S Hartogh, P Krieg, JM Maestrini, A Mehdi, I Coustenis, A AF Lellouch, E. Vinatier, S. Moreno, R. Allen, M. Gulkis, S. Hartogh, P. Krieg, J-M Maestrini, A. Mehdi, I. Coustenis, A. TI Sounding of Titan's atmosphere at submillimeter wavelengths from an orbiting spacecraft SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Titan; Atmosphere; Submillimeter ID NEUTRAL MASS-SPECTROMETER; CASSINI CIRS; ISOTOPIC-RATIOS; WATER-VAPOR; CARBON-MONOXIDE; SATURNS RINGS; COUPLING PHOTOCHEMISTRY; HETERODYNE OBSERVATIONS; INFRARED-SPECTRA; HAZE FORMATION AB An investigation of the capabilities and science goals of a submillimeter-wave heterodyne sounder onboard a Titan orbiter is presented Based on a model of Titan s submillimeter spectrum and including realistic instrumental performances we show that passive limb observations of Titan s submillimeter radiation would bring novel and unique information on the dynamical and chemical state of Titan s atmosphere particularly in the so far poorly probed 500-900 km region The 300-360 540-660 and 1080-1280 GHz spectral ranges appear especially promising and could be explored with an instrument equipped with a tunable local oscillator system Vertical temperature profiles can be determined up to 1200 km using rotational lines of CH4 CO and HCN Winds can be measured over the 200-1200 km altitude range with an accuracy of 3-5 m/s from Doppler shift measurements of any strong optically thin line Numerous molecular species are accessible including H2O NH3 CH3C2H CH2NH and several nitriles (HC3N HC5N CH3CN and C2H3CN) Many of them are expected to be detectable in a large fraction of the atmosphere and in some cases at all levels providing an observational link between stratospheric and thermospheric chemistry Isotopic variants of some of these species can also be measured providing new measurements of H C N and O isotopic ratios Mapping of the thermal wind and composition fields best achieved from a polar orbit and with an articulated antenna would provide a new view of the couplings between chemistry and dynamics over an extended altitude range of Titan s atmosphere Additional science goals at Saturn and Enceladus are briefly discussed (C) 2010 Elsevier Ltd All rights reserved C1 [Lellouch, E.; Vinatier, S.; Moreno, R.; Coustenis, A.] Observ Paris, LESIA, F-92195 Meudon, France. [Allen, M.; Gulkis, S.; Mehdi, I.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hartogh, P.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Krieg, J-M; Maestrini, A.] Observ Paris, LERMA, F-75014 Paris, France. RP Lellouch, E (reprint author), Observ Paris, LESIA, F-92195 Meudon, France. NR 94 TC 11 Z9 11 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD NOV PY 2010 VL 58 IS 13 SI SI BP 1724 EP 1739 DI 10.1016/j.pss.2010.05.007 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 682HX UT WOS:000284393100008 ER PT J AU Flandes, A Spilker, L Morishima, R Pilorz, S Leyrat, C Altobelli, N Brooks, S Edgington, SG AF Flandes, Alberto Spilker, Linda Morishima, Ryuji Pilorz, Stuart Leyrat, Cedric Altobelli, Nicolas Brooks, Shawn Edgington, Scott G. TI Brightness of Saturn's rings with decreasing solar elevation SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Planetary rings; Rings of Saturn; Thermal studies; Saturn ID SELF-GRAVITY WAKES; THERMAL OBSERVATIONS; CASSINI CIRS; MAIN RINGS; B-RING; PHOTOMETRY; OCCULTATION; PARTICLES; EMISSION; PHASE AB Early ground-based and spacecraft observations suggested that the temperature of Saturn s main rings (A B and C) varied with the solar elevation angle B' Data from the composite infrared spectrometer (CIRS) on board Cassini which has been in orbit around Saturn for more than five years confirm this variation and have been used to derive the temperature of the main rings from a wide variety of geometries while B varied from near 24 to 0 (Saturn s equinox) Still an unresolved Issue in fully explaining this variation relates to how the ring particles are organized and whether even a simple mono-layer or multi-layer approximation describes this best We present a set of temperature data of the main rings of Saturn that cover the similar to 23 -range of B' angles obtained with CIRS at low (alpha similar to 30) and high (alpha >= 120) phase angles We focus on particular regions of each ring with a radial extent <= 5000 km on their lit and unlit sides In this broad range of B the data show that the A B and C rings temperatures vary as much as 29-38 22-34 and 18-23 K respectively Interestingly the unlit sides of the rings show important temperature variations with the decrease of B' as well We introduce a simple analytical model based on the well known Froidevaux monolayer approximation and use the ring particles albedo as the only free parameter in order to fit and analyze this data and estimate the ring particle s albedo The model considers that every particle of the ring behaves as a black body and warms up due to the direct energy coming from the Sun as well as the solar energy reflected from the atmosphere of Saturn and on its neighboring particles Two types of shadowing functions are used One analytical that is used in the latter model in the case of the three rings and another numerical that is applied in the case of the C ring alone The model lit side albedo values at low phase are 0 59 0 50 and 0 35-0 38 for the A B and C rings respectively Published by Elsevier Ltd C1 [Flandes, Alberto; Spilker, Linda; Morishima, Ryuji; Brooks, Shawn; Edgington, Scott G.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Pilorz, Stuart] SETI Inst, Mountain View, CA USA. [Leyrat, Cedric] Observ Paris LESIA, Paris, France. [Altobelli, Nicolas] European Space Agcy, European Space & Astron Ctr, Madrid, Spain. RP Flandes, A (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. FU NASA FX This research was carried out at the Jet Propulsion Laboratory California Institute of Technology under Contract with NASA NR 31 TC 13 Z9 13 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD NOV PY 2010 VL 58 IS 13 SI SI BP 1758 EP 1765 DI 10.1016/j.pss.2010.04.002 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 682HX UT WOS:000284393100011 ER PT J AU Pidgeon, RT Nemchin, AA Meyer, C AF Pidgeon, R. T. Nemchin, A. A. Meyer, C. TI The contribution of the sensitive high-resolution ion microprobe (SHRIMP) to lunar geochronology SO PRECAMBRIAN RESEARCH LA English DT Article DE SHRIMP; Ion microprobes; Lunar geochronology; Zircon geochronology ID URANIUM-LEAD SYSTEMATICS; U-PB; WESTERN-AUSTRALIA; DETRITAL ZIRCONS; JACK HILLS; METEORITE; EVOLUTION; MINERALS; MOON; DIFFERENTIATION AB The sensitive high-resolution ion microprobe (SHRIMP) developed at the Australian National University (ANU) was the first of the high-resolution ion microprobes The impact of this instrument on geochronological research over the last twenty years has been immense This is particularly so for lunar geochronology where it has opened up avenues of research that were not possible using conventional TIMS techniques The great advantage of SHRIMP is that it provides a means for determining precise U-Pb isotopic ratios on selected micron-size areas on polished grains of zircon and other U-bearing minerals One of the first projects undertaken on the newly invented SHRIMP! was an investigation of U-Pb ages of lunar zircon Using SHRIMP multiple analyses could be made on areas of individual zircons to test the stability of U-Pb systems in shocked grains Also by analysing grains in situ textural relationships between the analysed zircon and the components of the sample breccia could be used in the interpretation of the SHRIMP data As a result of this research it was realised that most lunar zircons have ages up to 500 Ma older than the Imbrium and Serenitatis impacts at ca 3 9 Ga demonstrating that the zircons have not been affected by the these impact events although heating and shock effects have profoundly disturbed other dating systems This has opened the way for research into the early lunar magmatic and bombardment record For example recent SHRIMP results have revealed profound differences in the ages of zircons from breccias from the Apollo 14 and Apollo 17 sample sites raising new questions about the evolution of lunar magmatism Also multiple SHRIMP analyses on complex lunar zircons have shown that these grains can record U-Pb disturbance by later impact events SHRIMP U-Pb age determinations on phosphates in lunar meteorites has identified lunar events not recognised in samples from the Apollo program SHRIMP-based research on lunar materials is ongoing and in combination with other chemical and structural evidence continues to stimulate new Ideas on the early evolution of the Moon (C) 2010 Elsevier B V All rights reserved C1 [Pidgeon, R. T.; Nemchin, A. A.] Curtin Univ Technol, Dept Appl Geol, Perth, WA 6845, Australia. [Meyer, C.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Pidgeon, R. T.; Nemchin, A. A.; Meyer, C.] NASA, Lunar Sci Inst, Houston, TX 77058 USA. RP Pidgeon, RT (reprint author), Curtin Univ Technol, Dept Appl Geol, GPO Box 1987, Perth, WA 6845, Australia. FU NSF [8413633] FX We thank Kentaro Terada and Dr Joe Hiess for their constructive reviews We also thank Dr Michael Wingate for very helpful comments on the manuscript Chuck Meyer will be forever grateful to the ANU for their hospitality during three visits in the 1980s Some of this work was supported by the NSF-international visiting scholar program - grant #8413633 RTP would like to acknowledge a career long friendship and collaboration with Bill since being his first PhD student at the ANU NR 52 TC 7 Z9 8 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-9268 J9 PRECAMBRIAN RES JI Precambrian Res. PD NOV 1 PY 2010 VL 183 IS 1 SI SI BP 44 EP 49 DI 10.1016/j.precamres.2010.06.010 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 686UY UT WOS:000284723000005 ER PT J AU Ballard, S Charbonneau, D Deming, D Knutson, HA Christiansen, JL Holman, MJ Fabrycky, D Seager, S A'Hearn, MF AF Ballard, Sarah Charbonneau, David Deming, Drake Knutson, Heather A. Christiansen, Jessie L. Holman, Matthew J. Fabrycky, Daniel Seager, Sara A'Hearn, Michael F. TI A Search for a Sub-Earth-Sized Companion to GJ 436 and a Novel Method to Calibrate Warm Spitzer IRAC Observations SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID INFRARED-EMISSION SPECTRUM; DEEP IMPACT MISSION; NEPTUNE-MASS PLANET; M-DWARF GJ-436; SPACE-TELESCOPE; HOT NEPTUNE; TEMPERATURE INVERSION; ORBITING GJ-436; ARRAY CAMERA; TRANSITS AB We discovered evidence for a possible additional 0: 75 R(circle plus) transiting planet in the NASA EPOXI observations of the known M dwarf exoplanetary system GJ 436. Based on an ephemeris determined from the EPOXI data, we predicted a transit event in an extant Spitzer Space Telescope 8 mu m data set of this star. Our subsequent analysis of those Spitzer data confirmed the signal of the predicted depth and at the predicted time, but we found that the transit depth was dependent on the aperture used to perform the photometry. Based on these suggestive findings, we gathered new warm Spitzer observations of GJ 436 at 4.5 mu m spanning a time of transit predicted from the EPOXI and Spitzer 8 mu m candidate events. The 4.5 mu m data permit us to rule out a transit at high confidence, and we conclude that the earlier candidate transit signals resulted from correlated noise in the EPOXI and Spitzer 8 mu m observations. In the course of this investigation, we developed a novel method for correcting the intrapixel sensitivity variations of the 3.6 and 4.5 mu m channels of the Infrared Array Camera (IRAC) instrument. We demonstrate the sensitivity of warm Spitzer observations of M dwarfs to confirm sub-Earth-sized planets. Our analysis will inform similar work that will be undertaken to use warm Spitzer observations to confirm rocky planets discovered by the Kepler mission. C1 [Ballard, Sarah; Charbonneau, David; Holman, Matthew J.; Fabrycky, Daniel] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Deming, Drake] NASA, Goddard Space Flight Ctr, Planetary Syst Branch, Greenbelt, MD 20771 USA. [Knutson, Heather A.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Christiansen, Jessie L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Seager, Sara] MIT, Dept Earth Atmospher & Planetary Sci, Newton, MA 02159 USA. [A'Hearn, Michael F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Ballard, S (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM sballard@cfa.harvard.edu OI Charbonneau, David/0000-0002-9003-484X; Fabrycky, Daniel/0000-0003-3750-0183 NR 32 TC 55 Z9 55 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD NOV PY 2010 VL 122 IS 897 BP 1341 EP 1352 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 675BY UT WOS:000283801100008 ER PT J AU Liu, CH Kawata, T Shigematsu, N Cucinotta, F George, K Saito, M Uno, T Isobe, K Ito, H AF Liu, Cuihua Kawata, Tetsuya Shigematsu, Naoyuki Cucinotta, Francis George, Kerry Saito, Masayoshi Uno, Takashi Isobe, Kouichi Ito, Hisao TI A Comparison of Chromosome Repair Kinetics in G(0) and G(1) Reveals that Enhanced Repair Fidelity under Noncycling Conditions Accounts for Increased Potentially Lethal Damage Repair SO RADIATION RESEARCH LA English DT Article ID IN-SITU HYBRIDIZATION; DOUBLE-STRAND BREAKS; ATAXIA-TELANGIECTASIA CELLS; INDUCED CHROMATIN BREAKS; NORMAL HUMAN-FIBROBLASTS; HYPERTONIC TREATMENT; CYCLE PROGRESSION; HUMAN-LYMPHOCYTES; HIGH-FREQUENCY; CHO-CELLS AB Potentially lethal damage (PLD) and its repair were studied in confluent human fibroblasts by analyzing the kinetics of chromosome break rejoining and misrejoining in irradiated cells that were either held in noncycling G(0) phase or allowed to enter G(1) phase of the cell cycle immediately after 6 Gy irradiation. Virally mediated premature chromosome condensation (PCC) methods were combined with fluorescence in situ hybridization (FISH) to study chromosomal aberrations in interphase. Flow cytometry revealed that the vast majority of cells had not yet entered S phase 15 h after release from G(0). By this time some 95% of initially produced prematurely condensed chromosome breaks had rejoined, indicating that most repair processes occurred during G(1). The rejoining kinetics of prematurely condensed chromosome breaks was similar for each culture condition. However, under noncycling conditions misrepair peaked at 0.55 exchanges per cell, while under cycling conditions (G(1)) it peaked at 1.1 exchanges per cell. At 12 h postirradiation, complex-type exchanges were sevenfold more abundant for cycling cells (G(1)) than for noncycling cells (G(0)). Since most repair in G(0)/G(1) occurs via the non-homologous end-joining (NHEJ) process, increased PLD repair may result from improved cell cycle-specific rejoining fidelity of the NHEJ pathway. (C) 2010 by Radiation Research Society C1 [Kawata, Tetsuya] Keio Univ, Sch Med, Dept Radiol, Shinjuku Ku, Tokyo 1608582, Japan. [Liu, Cuihua; Saito, Masayoshi; Uno, Takashi; Isobe, Kouichi; Ito, Hisao] Chiba Univ, Grad Sch Med, Dept Radiol, Chiba, Japan. [Cucinotta, Francis; George, Kerry] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Liu, CH (reprint author), Keio Univ, Sch Med, Dept Radiol, Shinjuku Ku, 35 Shinanomachi, Tokyo 1608582, Japan. EM tkawata@sc.itc.keio.ac.jp RI Shigematsu, Naoyuki/B-9374-2014 FU Ministry of Education, Science, Sports, Culture and Technology of Japan [18591378] FX This work was partly supported by Grants-in-Aid from the Ministry of Education, Science, Sports, Culture and Technology of Japan (grant no. 18591378). We acknowledge Dr. R. Okayasu for his invaluable help in the preparation of this paper. NR 37 TC 7 Z9 8 U1 0 U2 3 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD NOV PY 2010 VL 174 IS 5 BP 566 EP 573 DI 10.1667/RR2159.1 PG 8 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 675KO UT WOS:000283829800004 PM 20954858 ER PT J AU Xiong, XZ Barnet, C Maddy, E Wei, J Liu, XP Pagano, TS AF Xiong, Xiaozhen Barnet, Chris Maddy, Eric Wei, Jennifer Liu, Xingpin Pagano, Thomas S. TI Seven Years' Observation of Mid-Upper Tropospheric Methane from Atmospheric Infrared Sounder SO REMOTE SENSING LA English DT Article DE methane; mid-upper troposphere; satellite; AIRS; trend; seasonal cycle ID GROWTH-RATE; RETRIEVALS; TRANSPORT; PLUME; MODEL AB The Atmospheric Infrared Sounder (AIRS) on EOS/Aqua platform provides a measurement of global methane (CH4) in the mid-upper troposphere since September, 2002. As a thermal infrared sounder, the most sensitivity of AIRS to atmospheric CH4 is in the mid-upper troposphere with the degree of freedom of similar to 1.0. Validation of AIRS CH4 product versus thousands of aircraft profiles (convolved using the AIRS averaging kernels) demonstrates that its RMS error (RMSE) is mostly less than 1.5%, and its quality is pretty stable from 2003 to 2009. For scientific analysis of the spatial and temporal variation of mid-upper tropospheric CH4 (MUT-CH4) in the High Northern Hemisphere (HNH), it is more valuable to use the AIRS retrieved CH4 in a layer of about 100 hPa below tropopause ("Representative Layer") than in a fixed pressure layer. Further analysis of deseasonalized time-series of AIRS CH4 in both a fixed pressure layer and the "Representative Layer" of AIRS (only for the HNH) from 2003 to 2009 indicates that, similar to the CH4 in the marine boundary layer (MBL) that was found to increase in 2007-2008, MUT-CH4 was also observed to have a recent increase but the most significant increase occurred in 2008. MUT-CH4 continued to increase in 2009, especially in the HNH. Moreover, the trend of MUT-CH4 from 2006 to 2008 is lower than the trend of CH4 in the MBL by 30-40% in both the southern hemisphere and HNH. This delay for the MUT-CH4 increase of about one year than CH4 in the MBL as well as the smaller increase trend for MUT-CH4 suggest that surface emission is likely a major driver for the recent CH4 increase. It is also found that the seasonal cycle of MUT-CH4 is different from CH4 in the MBL due to the impact of transport, in addition to the surface emission and the photochemical loss. C1 [Xiong, Xiaozhen; Maddy, Eric; Wei, Jennifer; Liu, Xingpin] Dell Perot Syst Govt Serv, Fairfax, VA 22031 USA. [Xiong, Xiaozhen; Barnet, Chris; Maddy, Eric; Wei, Jennifer; Liu, Xingpin] NOAA, Ctr Satellite Applicat & Res STAR, Natl Environm Satellite Data & Informat Serv NESD, Camp Springs, MD 20746 USA. [Pagano, Thomas S.] NASA, Jet Prop Lab, Pasadena, CA USA. RP Xiong, XZ (reprint author), Dell Perot Syst Govt Serv, Fairfax, VA 22031 USA. EM Xiaozhen.xiong@noaa.gov; Chris.barnet@noaa.gov; Eric.maddy@noaa.gov; Jennifer.wei@noaa.gov; Xingpin.liu@noaa.gov; Thomas.s.pagano@jpl.nasa.gov RI Maddy, Eric/G-3683-2010; Xiong, Xiaozhen/F-6591-2010 OI Maddy, Eric/0000-0003-1151-339X; FU NOAA Office of Application Research FX This research was supported by funding from NOAA Office of Application & Research. The views, opinions, and findings contained in this paper are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration or U.S. Government position, policy, or decision. The data of INTEX-A and B used in this publication was obtained from Aura Validation Data Center (AVDC) (http://avdc.gsfc.nasa.gov/index.php) and the aircraft measurements of INTEX-NA were carried out by Donald R. Blake of Department of Chemistry, University of California, Irvine; and airborne CH4 data from INTEX-B and ARCTAS were provided by Glen Sachse and Glenn Diskin of NASA Langley. ARCTAS data were downloaded from (ftp://ftp-air.larc.nasa.gov/pub/ARCTAS/). The CH4 data of START08 aircraft measurements were carried out by Dale Hurst and Jim Elkins of NOAA/ESRL/GMD. We appreciate Colm Sweeney at NOAA/ESRL/GMD for providing the aircraft measurements data. NR 32 TC 19 Z9 23 U1 0 U2 12 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD NOV PY 2010 VL 2 IS 11 BP 2509 EP 2530 DI 10.3390/rs2112509 PG 22 WC Remote Sensing SC Remote Sensing GA V24HS UT WOS:000208402100003 ER PT J AU Moeller, T Polzin, KA AF Moeller, Trevor Polzin, Kurt A. TI Thrust stand for vertically oriented electric propulsion performance evaluation SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DEVICES AB A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A noncontact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy-current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN level thrusts, while those tests conducted on a 200 lbm thruster yielded a resolution of roughly 2.5 mN at thrust levels of 0.5 N and greater. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3502463] C1 [Moeller, Trevor] Univ Tennessee, Inst Space, Tullahoma, TN 37388 USA. [Polzin, Kurt A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Moeller, T (reprint author), Univ Tennessee, Inst Space, Tullahoma, TN 37388 USA. EM tmoeller@utsi.edu FU Arnold Engineering and Development Center [F40 600-DO-D-0001/0024, FA 9109-06-D-0001/0001] FX The authors wish to thank Keith Walker and Joel Davenport of the University of Tennessee Space Institute Propulsion Laboratory for their contributions to this effort. This work was funded by the Arnold Engineering and Development Center Task Order 03-01 under Contract No. F40 600-DO-D-0001/0024 and Task Order 06-03 under Contract No. FA 9109-06-D-0001/0001. NR 24 TC 6 Z9 6 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2010 VL 81 IS 11 AR 115108 DI 10.1063/1.3502463 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 690LO UT WOS:000285006500049 PM 21133502 ER PT J AU Cullings, K Hanely, J AF Cullings, Ken Hanely, Julia TI Dwarf mistletoe effects on soil basidiomycete community structure, soil fungal functional diversity, and soil enzyme function: Implications for climate change SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Dwarf mistletoe; Ectomycorrhizae; Soil Fungi; Soil enzymes; PCR; DNA sequencing; Climate change ID YELLOWSTONE-NATIONAL-PARK; ECTOMYCORRHIZAL COMMUNITY; PINUS-CONTORTA; CARBON-DIOXIDE; VERTICAL-DISTRIBUTION; MIXED FOREST; DOUGLAS-FIR; CO2 EFFLUX; STAND; RESPIRATION AB We used a combination of molecular, culture and biochemical methods to test the hypothesis that severe infection of pine by dwarf mistletoe (genus Arceuthobium) has significant effects on structure and function of soil fungal communities, and on carbon cycling in soils. PLR and DNA sequencing of the basidiomycete communities in paired blocks of uninfected and infected trees revealed: (1) that the top, organic soil layer in this system is inhabited almost exclusively by ectomycorrhizal fungi; (2) no difference in species richness (6 species core(-1) in both) or Shannon-Wiener evenness (0.740 and 0.747 in uninfected and infected blocks respectively), however Shannon-Wiener diversity was significantly greater in infected blocks (1.19 vs 1.94 in uninfected and infected blocks respectively, P < 0.05); (3) significant differences in basidiomycete species composition, with nearly complete absence of two system co-dominant Russula species in infected blocks, and replacement of one co-dominant Piloderma species with another in infected plots, indicating physiological variability within the genus. Soil fungal physiological diversity measured using the Fungilog system was significantly greater in terms of both number of carbon substrates used by culturable soil fungi (both ascomycetes and basidiomycetes) in infected blocks, and the rate at which these substrates were used. Soil enzyme assays revealed greater laccase, peroxidase, and cellulase activities in soils associated with infected trees. Thus, event cascades associated with severe dwarf mistletoe infection not only significantly affected soil fungal species composition and increased species diversity, but also impacted on carbon-related function and functional diversity. Given the geographic range of this pathogen, and forecasts that epidemics of this disease will increase in range in severity with global climate change, these effects have the potential to significantly impact local and global carbon budgets. Published by Elsevier Ltd. C1 [Cullings, Ken; Hanely, Julia] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Hanely, J (reprint author), NASA, Ames Res Ctr, MS 239-11, Moffett Field, CA 94035 USA. EM cullings1@earthlink.net FU NSF [0211848]; USDA [2001-35107-11010] FX This work was funded by NSF Community Ecology award number 0211848 and USDA Soils and Soil Biology Award # 2001-35107-11010. Thanks to the YellowstoneCenter for Resources for logistical and permit support, and to Dr. Tod Ramsfeld for review of early drafts. We thank Qubit Systems for the loan of the CO2 efflux meter. NR 42 TC 9 Z9 9 U1 1 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD NOV PY 2010 VL 42 IS 11 BP 1976 EP 1981 DI 10.1016/j.soilbio.2010.07.018 PG 6 WC Soil Science SC Agriculture GA 671AT UT WOS:000283472600009 ER PT J AU Moradi, H Baldner, C Birch, AC Braun, DC Cameron, RH Duvall, TL Gizon, L Haber, D Hanasoge, SM Hindman, BW Jackiewicz, J Khomenko, E Komm, R Rajaguru, P Rempel, M Roth, M Schlichenmaier, R Schunker, H Spruit, HC Strassmeier, KG Thompson, MJ Zharkov, S AF Moradi, H. Baldner, C. Birch, A. C. Braun, D. C. Cameron, R. H. Duvall, T. L., Jr. Gizon, L. Haber, D. Hanasoge, S. M. Hindman, B. W. Jackiewicz, J. Khomenko, E. Komm, R. Rajaguru, P. Rempel, M. Roth, M. Schlichenmaier, R. Schunker, H. Spruit, H. C. Strassmeier, K. G. Thompson, M. J. Zharkov, S. TI Modeling the Subsurface Structure of Sunspots SO SOLAR PHYSICS LA English DT Article ID MAGNETIC-FLUX TUBES; TIME-DISTANCE HELIOSEISMOLOGY; HIGH-SPATIAL-RESOLUTION; SOLAR CONVECTION ZONE; RING-DIAGRAM ANALYSIS; FOCUSED SEISMIC HOLOGRAPHY; SOUND-SPEED PERTURBATIONS; PENUMBRAL FINE-STRUCTURE; EMERGING ACTIVE-REGION; NUMERICAL SIMULATIONS AB While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this article, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out a helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by Gizon et al. (2009a, 2009b). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat. C1 [Moradi, H.; Cameron, R. H.; Gizon, L.; Hanasoge, S. M.; Schunker, H.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Baldner, C.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Birch, A. C.; Braun, D. C.] Colorado Res Associates, Boulder, CO 80301 USA. [Duvall, T. L., Jr.] NASA, Goddard Space Flight Ctr, Lab Solar Phys, Greenbelt, MD 20771 USA. [Haber, D.; Hindman, B. W.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Jackiewicz, J.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Khomenko, E.] Inst Astrofis Canarias, Tenerife 38205, Spain. [Komm, R.] Natl Solar Observ, Tucson, AZ 85719 USA. [Rajaguru, P.] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Rempel, M.; Thompson, M. J.] HAO NCAR, Boulder, CO 80307 USA. [Roth, M.; Schlichenmaier, R.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Spruit, H. C.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Strassmeier, K. G.] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Thompson, M. J.; Zharkov, S.] Univ Sheffield, Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England. RP Gizon, L (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. EM gizon@mps.mpg.de RI Duvall, Thomas/C-9998-2012; Gizon, Laurent/B-9457-2008; OI HINDMAN, BRADLEY/0000-0001-7612-6628 FU European Research Council under European Community [210949]; European Commission under European Union; NASA SDO Science Center [NNH09CE41C, NNG07EI51C] FX This parametric study of sunspot models is supported by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement #210949, "Seismic Imaging of the Solar Interior", to PI L. Gizon (Milestone #3). The follow-up analysis of AR 9787 was carried out at the Third HELAS Local Helioseismology Workshop, which was held in Berlin on 12 - 15 May 2009 and supported by the European Commission under the Sixth Framework Program of the European Union. Portions of this work were also supported by the NASA SDO Science Center and Heliophysics Guest Investigator programs through contracts NNH09CE41C and NNG07EI51C to NWRA under PI D. C. Braun. The authors would also like to acknowledge Kaori Nagashima and Takashi Sekii for providing the Hinode observation used in Figure 1, and the anonymous referee for useful comments that helped improve the paper. NR 314 TC 56 Z9 56 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD NOV PY 2010 VL 267 IS 1 BP 1 EP 62 DI 10.1007/s11207-010-9630-4 PG 62 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 682VG UT WOS:000284430500001 ER PT J AU Viall, NM Spence, HE Vourlidas, A Howard, R AF Viall, Nicholeen M. Spence, Harlan E. Vourlidas, Angelos Howard, Russell TI Examining Periodic Solar-Wind Density Structures Observed in the SECCHI Heliospheric Imagers SO SOLAR PHYSICS LA English DT Article ID SUN; EJECTION; DRIVEN; CORONA AB We present an analysis of small-scale, periodic, solar-wind density enhancements (length scales as small as approximate to 1000 Mm) observed in images from the Heliospheric Imager (HI) aboard STEREO-A. We discuss their possible relationship to periodic fluctuations of the proton density that have been identified at 1 AU using in-situ plasma measurements. Specifically, Viall, Kepko, and Spence (J. Geophys. Res. 113, A07101, 2008) examined 11 years of in-situ solar-wind density measurements at 1 AU and demonstrated that not only turbulent structures, but also nonturbulent, periodic density structures exist in the solar wind with scale sizes of hundreds to one thousand Mm. In a subsequent paper, Viall, Spence, and Kasper (Geophys. Res. Lett. 36, L23102, 2009) analyzed the alpha-to-proton solar-wind abundance ratio measured during one such event of periodic density structures, demonstrating that the plasma behavior was highly suggestive that either temporally or spatially varying coronal source plasma created those density structures. Large periodic density structures observed at 1 AU, which were generated in the corona, can be observable in coronal and heliospheric white-light images if they possess sufficiently high density contrast. Indeed, we identify such periodic density structures as they enter the HI field of view and follow them as they advect with the solar wind through the images. The smaller, periodic density structures that we identify in the images are comparable in size to the larger structures analyzed in-situ at 1 AU, yielding further evidence that periodic density enhancements are a consequence of coronal activity as the solar wind is formed. C1 [Viall, Nicholeen M.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. [Spence, Harlan E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Vourlidas, Angelos; Howard, Russell] USN, Res Lab, Solar Phys Branch, Washington, DC 20375 USA. RP Viall, NM (reprint author), NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. EM Nicholeen.M.Viall@nasa.gov RI Viall, Nicholeen/D-1687-2012; Spence, Harlan/A-1942-2011; Vourlidas, Angelos/C-8231-2009; OI Vourlidas, Angelos/0000-0002-8164-5948; Spence, Harlan/0000-0002-2526-2205 FU NASA [NNG05GK65G] FX We thank the STEREO/SECCHI team for the use of these excellent data. The STEREO/SECCHI data used here are produced by an international consortium of the Naval Research Laboratory (USA), Lockheed Martin Solar and Astrophysics Lab (USA), NASA Goddard Space Flight Center (USA), Rutherford Appleton Laboratory (UK), University of Birmingham (UK), Max-Planck-Institut for Sonnensystemforschung (Germany), Centre Spatiale de Liege (Belgium), Institut d'Optique Theorique et Appliquee (France), and Institut d'Astrophysique Spatiale (France). This research was supported by NASA Grant No. NNG05GK65G and an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 21 TC 5 Z9 5 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD NOV PY 2010 VL 267 IS 1 BP 175 EP 202 DI 10.1007/s11207-010-9633-1 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 682VG UT WOS:000284430500008 ER PT J AU Butler, MP Davis, KJ Denning, AS Kawa, SR AF Butler, M. P. Davis, K. J. Denning, A. S. Kawa, S. R. TI Using continental observations in global atmospheric inversions of CO2: North American carbon sources and sinks SO TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY LA English DT Article ID GREENHOUSE GASES; BOREAL FOREST; DIOXIDE; TRANSPORT; EUROPE; EXCHANGE; CLIMATE; TRENDS; FLUX; AIR AB We evaluate North American carbon fluxes using a monthly global Bayesian synthesis inversion that includes well-calibrated carbon dioxide concentrations measured at continental flux towers. We employ the NASA Parametrized Chemistry Tracer Model (PCTM) for atmospheric transport and a TransCom-style inversion with subcontinental resolution. We subsample carbon dioxide time series at four North American flux tower sites for mid-day hours to ensure sampling of a deep, well-mixed atmospheric boundary layer. The addition of these flux tower sites to a global network reduces North America mean annual flux uncertainty for 2001-2003 by 20% to 0.4 Pg C yr-1 compared to a network without the tower sites. North American flux is estimated to be a net sink of 1.2 +/- 0.4 Pg C yr-1 which is within the uncertainty bounds of the result without the towers. Uncertainty reduction is found to be local to the regions within North America where the flux towers are located, and including the towers reduces covariances between regions within North America. Mid-day carbon dioxide observations from flux towers provide a viable means of increasing continental observation density and reducing the uncertainty of regional carbon flux estimates in atmospheric inversions. C1 [Butler, M. P.; Davis, K. J.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Denning, A. S.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Kawa, S. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Butler, MP (reprint author), Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. EM mpbutler@meteo.psu.edu RI Kawa, Stephan/E-9040-2012; Denning, Scott/F-4974-2011 OI Denning, Scott/0000-0003-3032-7875 FU Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA), Office of Global Programs [NA040AR4310124]; Office of Science (BER) U.S. Department of Energy; NASA FX We thank three anonymous reviewers for their recommendations for improvements to the manuscript. This work would not be possible without the efforts of those responsible for the precise measurement and calibration of carbon dioxide measurements world-wide; we acknowledge the continued leadership of NOAA ESRL in measurement and calibration. We thank the following for the carbon dioxide time series from the flux towers: D. Hollinger for Howland Forest; J.W. Munger and S. Wofsy for Harvard Forest, Tapajos and Northern Old Black Spruce; M. Fischer and M. Torn for Southern Great Plains. Data collection at the Southern Great Plains site was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy under contract DE-AC02-05CH11231 as part of the Atmospheric Radiation Measurement Program. The Carbon-Tracker team at NOAA ESRL makes their methods and results available (http://carbontracker.noaa.gov); we thank them, especially Andy Jacobson, for advice and encouragement. We thank the TransCom modeling community for making the inversion method available (http://www.purdue.edu/transcom/) and Kevin Gurney for providing results from the TransCom IAV network sensitivity study. Our research was funded in part by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA), Office of Global Programs, Global Carbon Cycle program, grant number NA040AR4310124 and by the Office of Science (BER) U.S. Department of Energy. M.P.B. greatly appreciates the technical support and funding provided by a NASA GSFC Graduate Student Research Program fellowship. NR 92 TC 20 Z9 20 U1 0 U2 15 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0280-6509 J9 TELLUS B JI Tellus Ser. B-Chem. Phys. Meteorol. PD NOV PY 2010 VL 62 IS 5 SI SI BP 550 EP 572 DI 10.1111/j.1600-0889.2010.00501.x PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 667BJ UT WOS:000283167300019 ER PT J AU Kawa, SR Mao, J Abshire, JB Collatz, GJ Sun, X Weaver, CJ AF Kawa, S. R. Mao, J. Abshire, J. B. Collatz, G. J. Sun, X. Weaver, C. J. TI Simulation studies for a space-based CO2 lidar mission SO TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY LA English DT Article ID DIFFERENTIAL ABSORPTION LIDAR; ATMOSPHERIC CO2; CARBON-DIOXIDE; COOLING RATES; SENSITIVITY; FLUXES; COLUMN; CYCLE; TRANSPORT; FEEDBACK AB We report results of initial space mission simulation studies for a laser-based, atmospheric CO2 sounder, which are based on real-time carbon cycle process modelling and data analysis. The mission concept corresponds to the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) recommended by the US National Academy of Sciences' Decadal Survey. As a pre-requisite for meaningful quantitative evaluation, we employ a CO2 model that has representative spatial and temporal gradients across a wide range of scales. In addition, a relatively complete description of the atmospheric and surface state is obtained from meteorological data assimilation and satellite measurements. We use radiative transfer calculations, an instrument model with representative errors and a simple retrieval approach to quantify errors in 'measured' CO2 distributions, which are a function of mission and instrument design specifications along with the atmospheric/surface state. Uncertainty estimates based on the current instrument design point indicate that a CO2 laser sounder can provide data consistent with ASCENDS requirements and will significantly enhance our ability to address carbon cycle science questions. Test of a dawn/dusk orbit deployment, however, shows that diurnal differences in CO2 column abundance, indicative of plant photosynthesis and respiration fluxes, will be difficult to detect. C1 [Kawa, S. R.; Abshire, J. B.; Collatz, G. J.; Sun, X.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Mao, J.; Weaver, C. J.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP Kawa, SR (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM stephan.r.kawa@nasa.gov RI collatz, george/D-5381-2012; Kawa, Stephan/E-9040-2012; Sun, Xiaoli/B-5120-2013; Abshire, James/I-2800-2013 FU NASA Earth Science Technology Office; NASA; Goddard Internal Research and Development FX We acknowledge the support of the NASA Earth Science Technology Office's Advanced Instrument Technology and Instrument Incubator Programs, the NASA Carbon Cycle Science Program and Goddard Internal Research and Development. CALIPSO data were obtained from the NASA Langley Research Center Atmospheric Science Data Center and MODIS data were obtained from the Land Processes Distributed Active Archive Center (LP DAAC). NR 48 TC 33 Z9 34 U1 2 U2 18 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0280-6509 J9 TELLUS B JI Tellus Ser. B-Chem. Phys. Meteorol. PD NOV PY 2010 VL 62 IS 5 SI SI BP 759 EP 769 DI 10.1111/j.1600-0889.2010.00486.x PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 667BJ UT WOS:000283167300035 ER PT J AU Abshire, JB Riris, H Allan, GR Weaver, CJ Mao, JP Sun, XL Hasselbrack, WE Kawa, SR Biraud, S AF Abshire, James B. Riris, Haris Allan, Graham R. Weaver, Clark J. Mao, Jianping Sun, Xiaoli Hasselbrack, William E. Kawa, S. Randoph Biraud, Sebastien TI Pulsed airborne lidar measurements of atmospheric CO2 column absorption SO TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY LA English DT Article ID DIFFERENTIAL ABSORPTION; REFLECTED SUNLIGHT; CARBON-DIOXIDE; MIXING-RATIO; SPACE; SPECTROSCOPY; TRANSMITTER; SENSITIVITY; SYSTEM; BUDGET AB We report initial measurements of atmospheric CO2 column density using a pulsed airborne lidar operating at 1572 nm. It uses a lidar measurement technique being developed at NASA Goddard Space Flight Center as a candidate for the CO2 measurement in the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. The pulsed multiple-wavelength lidar approach offers several new capabilities with respect to passive spectrometer and other lidar techniques for high-precision CO2 column density measurements. We developed an airborne lidar using a fibre laser transmitter and photon counting detector, and conducted initial measurements of the CO2 column absorption during flights over Oklahoma in December 2008. The results show clear CO2 line shape and absorption signals. These follow the expected changes with aircraft altitude from 1.5 to 7.1 km, and are in good agreement with column number density estimates calculated from nearly coincident airborne in-situ measurements. C1 [Abshire, James B.; Riris, Haris; Sun, Xiaoli; Kawa, S. Randoph] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Allan, Graham R.; Hasselbrack, William E.] Sigma Space Inc, Lanham, MD 20706 USA. [Weaver, Clark J.; Mao, Jianping] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Biraud, Sebastien] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Abshire, JB (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM James.B.Abshire@nasa.gov RI Kawa, Stephan/E-9040-2012; Sun, Xiaoli/B-5120-2013; Riris, Haris/D-1004-2013; Abshire, James/I-2800-2013; Biraud, Sebastien/M-5267-2013; Allan, Graham/D-3905-2013 OI Biraud, Sebastien/0000-0001-7697-933X; FU NASA Earth Science Technology Office; NASA; Goddard IRAD program FX We acknowledge the support of the NASA Earth Science Technology Office's Advanced Instrument Technology and Instrument Incubator Programs, the NASA Carbon Cycle Science Program, and the Goddard IRAD program. We appreciate the collaboration with the NASA Glenn Aircraft Operation office, and with Marc Fischer of Lawrence Berkeley Laboratory on the airborne in situ CO2 measurements. We also appreciate the valuable work of other members of the Goddard CO2 Sounder team, and the many suggestions from the reviewers. NR 43 TC 71 Z9 71 U1 4 U2 23 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0280-6509 J9 TELLUS B JI Tellus Ser. B-Chem. Phys. Meteorol. PD NOV PY 2010 VL 62 IS 5 SI SI BP 770 EP 783 DI 10.1111/j.1600-0889.2010.00502.x PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 667BJ UT WOS:000283167300036 ER PT J AU Warren, MA Gregory, RS Laurel, BJ Snelgrove, PVR AF Warren, M. A. Gregory, R. S. Laurel, B. J. Snelgrove, P. V. R. TI Increasing density of juvenile Atlantic (Gadus morhua) and Greenland cod (G. ogac) in association with spatial expansion and recovery of eelgrass (Zostera marina) in a coastal nursery habitat SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY LA English DT Article DE Cod; Disturbance; Recruitment; Seagrass; Vegetation ID SUBMERGED AQUATIC VEGETATION; WASTING DISEASE; NEWFOUNDLAND; SEAGRASS; SETTLEMENT; PREDATION; WATERS; EUTROPHICATION; RECRUITMENT; SELECTION AB Global declines of eelgrass (Zostera marina) have major ramifications for the juvenile fishes for which this plant can provide nursery habitat. However, it is less clear how rapidly fishes can recover when habitat loss is reversed, either through natural growth or through habitat enhancement efforts. We investigated the consequences of natural expansion and recovery of eelgrass following disturbance, on the densities of juveniles of two cod species - Atlantic (Gadus morhua) and Greenland (Gadus ogac) cod - in a coastal nursery area in Newfoundland, Canada. Eelgrass has been expanding at this location, likely as a result of reduced disturbance from winter pack-ice in the past decade. We conducted bi-weekly sampling of juvenile fish densities at 12 sites from July to November annually, 1995-2006, by seine netting. Each site was designated as either 'natural', 'expansion', 'removal-recovery' or 'unvegetated' dependent on their recent eelgrass coverage and involvement in a manipulation study (1999-2000; Laurel et al. 2003b). We measured eelgrass percentage cover at each site by analysis of aerial photographs. Eelgrass cover had noticeably increased in the 1999-2000 'removal-recovery' sites and at the 'expansion' sites following 2000. Using randomized intervention analysis (RIA) we detected positive relationships between eelgrass cover and relative fish density during 2001-2006. These results suggested a significant and rapid increase in age-0 cod density associated with eelgrass habitat expansion. We suggest that juvenile cod density responds to annual expansion and contraction of eelgrass cover, illustrating the potential cascading effects of eelgrass loss associated with climate change, human disturbance, and disease and the potential benefits of eelgrass conservation and enhancement. (C) 2010 Elsevier B.V. All rights reserved. C1 [Warren, M. A.] Mem Univ Newfoundland, Dept Biol, St John, NF A1C 5S7, Canada. [Gregory, R. S.] Fisheries & Oceans Canada, Div Environm Sci, St John, NF A1C 5X1, Canada. [Laurel, B. J.] Natl Marine Fisheries Serv, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, NOAA,Hatfield Marine Sci Ctr, Newport, OR 97365 USA. [Snelgrove, P. V. R.] Mem Univ Newfoundland, Ctr Ocean Sci, Canada Res Chair Boreal & Cold Ocean Syst, St John, NF A1C 5S7, Canada. [Snelgrove, P. V. R.] Mem Univ Newfoundland, Dept Biol, St John, NF A1C 5S7, Canada. RP Warren, MA (reprint author), Univ Western Ontario, Dept Biol, 1151 Richmond St, London, ON N6A 5B7, Canada. EM mwarren4@uwo.ca FU Fisheries and Oceans Canada (DFO); National Sciences and Engineering Research Council; Parks Canada (Terra Nova National Park - TNNP); Environment Canada FX Our research was funded in various years by Fisheries and Oceans Canada (DFO) programs led by RSG, two NSERC Strategic Grants from the National Sciences and Engineering Research Council led by David C. Schneider and PVRS, respectively, Parks Canada (Terra Nova National Park - TNNP) led by RSG, and an Environment Canada grant led by John T. Anderson. Accommodations, boats, vehicles, were variously provided through the period by DFO, TNNP, and Memorial University of Newfoundland (MUN). We appreciate the dozens of MUN, DFO, and TNNP students, technicians, and volunteers who assisted us with field sampling throughout our study. Drs. Steven Carr and Evan Edinger also made helpful suggestions on earlier versions of the manuscript. This paper formed part of the BSc Honours Thesis research of the senior author, MAW. [SS] NR 48 TC 11 Z9 12 U1 1 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0981 J9 J EXP MAR BIOL ECOL JI J. Exp. Mar. Biol. Ecol. PD OCT 30 PY 2010 VL 394 IS 1-2 BP 154 EP 160 DI 10.1016/j.jembe.2010.08.011 PG 7 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 665IB UT WOS:000283027500014 ER PT J AU Hong, G Yang, P Heidinger, AK Pavolonis, MJ Baum, BA Platnick, SE AF Hong, Gang Yang, Ping Heidinger, Andrew K. Pavolonis, Michael J. Baum, Bryan A. Platnick, Steven E. TI Detecting opaque and nonopaque tropical upper tropospheric ice clouds: A trispectral technique based on the MODIS 8-12 mu m window bands SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ATMOSPHERE RADIATIVE FLUXES; ISCCP DATA SETS; CIRRUS CLOUDS; SPLIT-WINDOW; ALGORITHM DESCRIPTION; TOP; TROPOPAUSE; SURFACE; CLASSIFICATION; SENSITIVITY AB A trispectral technique is developed for detecting tropical upper tropospheric opaque (tau > 6) and nonopaque (tau < 6) ice clouds over ocean based on the brightness temperature differences between the MODIS 8.5 and 11 mu m bands and between the 11 and 12 mu m bands together with the MODIS detected cloud thermodynamic phase. The brightness temperature differences provide robust information for classifying ice clouds, as illustrated by the observations made by a lidar, a radar, and the MODIS Airborne Simulator over tropical ice anvil systems during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment. The trispectral technique for detecting tropical upper tropospheric opaque and nonopaque ice clouds is developed based on the analysis of 1 year of data, including MODIS infrared brightness temperatures at 8.5, 11, and 12 mm bands, MODIS-derived ice cloud optical thicknesses, and cloud top heights from CALIPSO and CloudSat over a region (140 degrees E-180 degrees E, 0 degrees N-20 degrees N) in the Western Pacific Warm Pool. The accuracy of the present trispectral technique is above 80%. A 27 July 2007 MODIS granule over the chosen region is used to verify the trispectral technique. It is found that the classification from the trispectral technique is consistent with a classification based directly on the MODIS ice cloud optical thicknesses. The effects of the variations in the MODIS viewing zenith angle on the detection are found to be negligible. The CALIPSO and CloudSat observations used to develop the classification are more sensitive than MODIS to the height and presence of optically thin cirrus. These differences in cloud heights were found to have a negligible impact on the final detection results. C1 [Hong, Gang; Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Heidinger, Andrew K.; Pavolonis, Michael J.] NOAA NESDIS Ctr Satellite Applicat & Res, Madison, WI USA. [Baum, Bryan A.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Platnick, Steven E.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Hong, G (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. EM hong@ariel.met.tamu.edu RI Yang, Ping/B-4590-2011; Pavolonis, Mike/F-5618-2010; Hong, Gang/A-2323-2012; Baum, Bryan/B-7670-2011; Platnick, Steven/J-9982-2014; Heidinger, Andrew/F-5591-2010 OI Pavolonis, Mike/0000-0001-5822-219X; Baum, Bryan/0000-0002-7193-2767; Platnick, Steven/0000-0003-3964-3567; Heidinger, Andrew/0000-0001-7631-109X FU NASA [NNX08AP57G, NN08AF68G, NNX08AF78A] FX We thank the NASA CloudSat project for providing the 2B-GEOPROF-LIDAR and ECMWF-AUX data used in this study, which are taken from the CloudSat Data Processing Center at Colorado State University. The MODIS data are archived at NASA's Goddard Earth Sciences Data and Information Services Center (GES-DISC). We gratefully thank Drs. Lihua Li and Lin Tian for providing the CRS data used in this study. We would also like to acknowledge Dr. Zhibo Zhang for useful comments and suggestions. We acknowledge the three anonymous reviewers for their constructive comments and suggestions. This study is supported by NASA grants NNX08AP57G and NN08AF68G. Support for Bryan Baum is provided through NASA grant NNX08AF78A. NR 62 TC 7 Z9 7 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 30 PY 2010 VL 115 AR D20214 DI 10.1029/2010JD014004 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 674MT UT WOS:000283751000004 ER PT J AU Gray, LJ Beer, J Geller, M Haigh, JD Lockwood, M Matthes, K Cubasch, U Fleitmann, D Harrison, G Hood, L Luterbacher, J Meehl, GA Shindell, D van Geel, B White, W AF Gray, L. J. Beer, J. Geller, M. Haigh, J. D. Lockwood, M. Matthes, K. Cubasch, U. Fleitmann, D. Harrison, G. Hood, L. Luterbacher, J. Meehl, G. A. Shindell, D. van Geel, B. White, W. TI SOLAR INFLUENCES ON CLIMATE SO REVIEWS OF GEOPHYSICS LA English DT Review ID GENERAL-CIRCULATION MODEL; QUASI-BIENNIAL OSCILLATION; NORTH-ATLANTIC OSCILLATION; STRATOSPHERIC SUDDEN WARMINGS; NINO-SOUTHERN-OSCILLATION; GALACTIC COSMIC-RAYS; LATE MAUNDER MINIMUM; INTERTROPICAL CONVERGENCE ZONE; EQUATORIAL UPPER-STRATOSPHERE; OPPOSITELY DIRECTED TRENDS AB Understanding the influence of solar variability on the Earth's climate requires knowledge of solar variability, solar-terrestrial interactions, and the mechanisms determining the response of the Earth's climate system. We provide a summary of our current understanding in each of these three areas. Observations and mechanisms for the Sun's variability are described, including solar irradiance variations on both decadal and centennial time scales and their relation to galactic cosmic rays. Corresponding observations of variations of the Earth's climate on associated time scales are described, including variations in ozone, temperatures, winds, clouds, precipitation, and regional modes of variability such as the monsoons and the North Atlantic Oscillation. A discussion of the available solar and climate proxies is provided. Mechanisms proposed to explain these climate observations are described, including the effects of variations in solar irradiance and of charged particles. Finally, the contributions of solar variations to recent observations of global climate change are discussed. C1 [Gray, L. J.] Univ Reading, Dept Meteorol, Natl Ctr Atmospher Sci, Reading, Berks, England. [Beer, J.] Swiss Fed Inst Environm Sci & Technol, CH-8600 Dubendorf, Switzerland. [Cubasch, U.] Free Univ Berlin, Inst Meteorol, D-14195 Berlin, Germany. [Geller, M.] SUNY Stony Brook, Inst Terr & Planetary Atmosphere, Stony Brook, NY 11794 USA. [Haigh, J. D.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Harrison, G.] Univ Reading, Dept Meteorol, Reading RG6 6BB, Berks, England. [Hood, L.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Luterbacher, J.] Univ Giessen, Dept Geog, D-35390 Giessen, Germany. [Meehl, G. A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Shindell, D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [van Geel, B.] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Res Grp Paleoecol & Landscape Ecol, Fac Sci, NL-1098 SM Amsterdam, Netherlands. [White, W.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Lockwood, M.] Rutherford Appleton Lab, Dept Space Sci, Didcot OX11 0QX, Oxon, England. [Fleitmann, D.] Univ Massachusetts, Dept Geosci, Amherst, MA 01003 USA. [Lockwood, M.] Univ Reading, Dept Meteorol, Reading RG6 6AH, Berks, England. RP Gray, LJ (reprint author), Univ Oxford, Natl Ctr Atmospher Sci, Dept Atmospher Ocean & Planetary Phys, Parks Rd, Oxford OX1 3PU, England. EM gray@atm.ox.ac.uk RI Lockwood, Mike/G-1030-2011; Shindell, Drew/D-4636-2012; Matthes, Katja/F-7361-2014; Haigh, Joanna/F-6847-2014 OI Lockwood, Mike/0000-0002-7397-2172; Matthes, Katja/0000-0003-1801-3072; Haigh, Joanna/0000-0001-5504-4754 FU Scientific Committee on Solar Terrestrial Physics (SCOSTEP) Climate and Weather of the Sun-Earth System (CAWSES-1); SCOSTEP; UK Natural Environment Research Council (NERC); European Community; EU [212250]; DFG; U.S. NASA; Office of Science (BER), U. S. Department of Energy, Cooperative Agreement [DE-FC02-97ER62402]; National Science Foundation; GFG; NCCR Climate-Swiss Climate Research FX The development of this review article has evolved from work carried out by an international team of the International Space Science Institute (ISSI), Bern, Switzerland, and from work carried out under the auspices of Scientific Committee on Solar Terrestrial Physics (SCOSTEP) Climate and Weather of the Sun-Earth System (CAWSES-1). The support of ISSI in providing workshop and meeting facilities is acknowledged, especially support from Y. Calisesi and V. Manno. SCOSTEP is acknowledged for kindly providing financial assistance to allow the paper to be published under an open access policy. L.J.G. was supported by the UK Natural Environment Research Council (NERC) through their National Centre for Atmospheric Research (NCAS) Climate program. K. M. was supported by a Marie Curie International Outgoing Fellowship within the 6th European Community Framework Programme. J.L. acknowledges support by the EU/FP7 program Assessing Climate Impacts on the Quantity and Quality of Water (ACQWA, 212250) and from the DFG Project Precipitation in the Past Millennium in Europe PRIME) within the Priority Program INTERDYNAMIK. L. H. acknowledges support from the U.S. NASA Living With a Star program. G. M. acknowledges support from the Office of Science (BER), U. S. Department of Energy, Cooperative Agreement DE-FC02-97ER62402, and the National Science Foundation. We also wish to thank Karin Labitzke and Markus Kunze for supplying an updated Figure 13, Andrew Heaps for technical support, and Paul Dickinson for editorial support. Part of the research was carried out under the SPP CAWSES funded by GFG. J.B. was financially supported by NCCR Climate-Swiss Climate Research. NR 397 TC 409 Z9 424 U1 13 U2 193 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 8755-1209 EI 1944-9208 J9 REV GEOPHYS JI Rev. Geophys. PD OCT 30 PY 2010 VL 48 AR RG4001 DI 10.1029/2009RG000282 PG 53 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 674TZ UT WOS:000283774200001 ER PT J AU Seo, KW Ryu, D Kim, BM Waliser, DE Tian, BJ Eom, J AF Seo, Ki-Weon Ryu, Dongryeol Kim, Baek-Min Waliser, Duane E. Tian, Baijun Eom, Jooyoung TI GRACE and AMSR-E-based estimates of winter season solid precipitation accumulation in the Arctic drainage region SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID FRESH-WATER; GLOBAL PRECIPITATION; MODEL; REANALYSIS; DISCHARGE; PROJECT; SYSTEM; ICE AB Solid precipitation plays a major role in controlling the winter hydrological cycle and spring discharge in the Arctic region. However, it has not been well documented due to sharply decreasing numbers of precipitation gauges, gauge measurement biases, as well as limitations of conventional satellite methods in high latitudes. In this study, we document the winter season solid precipitation accumulation in the Arctic region using the latest new satellite measurements from the Gravity Recovery and Climate Experiment (GRACE) and the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E). GRACE measures the winter total water (mainly from snow water equivalent (SWE)) storage change through gravity changes while AMSR-E measures the winter SWE through passive microwave measurements. The GRACE and AMSR-E measurements are combined with in situ and numerical model estimates of discharge and evapotranspiration to estimate the winter season solid precipitation accumulation in the Arctic region using the water budget equation. These two satellite-based estimates are then compared to the conventional estimates from two global precipitation products, such as the Global Precipitation Climatology Project (GPCP) and Climate Prediction Center's Merged Analysis of Precipitation (CMAP), and three reanalyses, the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, the European Centre for Medium-Range Weather Forecasts' ERA-Interim, and the Japan Meteorological Agency's Climate Data Assimilation System (JCDAS) reanalysis. The GRACE-based estimate is very close to the GPCP and ERA-Interim estimates. The AMSR-E-based estimate is the most different from the other estimates. This GRACE-based measurement of winter season solid precipitation accumulation can provide a new valuable benchmark to understand the hydrological cycle, to validate and evaluate the model simulation, and to improve data assimilation in the Arctic region. C1 [Seo, Ki-Weon; Kim, Baek-Min] Korea Polar Res Inst, Inchon 406840, South Korea. [Ryu, Dongryeol] Univ Melbourne, Dept Civil & Environm Engn, Parkville, Vic 3010, Australia. [Waliser, Duane E.; Tian, Baijun] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Eom, Jooyoung] Seoul Natl Univ, Dept Earth Sci & Educ, Seoul 151742, South Korea. RP Seo, KW (reprint author), Korea Polar Res Inst, Songdo Techno Pk,7-50 Songdo Dong, Inchon 406840, South Korea. EM seo.kiweon@kopri.re.kr RI Tian, Baijun/A-1141-2007; Kim, Baek-Min/A-4634-2015; Ryu, Dongryeol/C-5903-2008 OI Tian, Baijun/0000-0001-9369-2373; Ryu, Dongryeol/0000-0002-5335-6209 FU Korea Polar Research Institute (KOPRI) [PE10020, PG09010, PP10120]; NASA FX This work is supported by Korea Polar Research Institute (KOPRI) projects (PE10020, PG09010, and PP10120). Part of this research was carried out at the Jet Propulsion Laboratory, Pasadena California, under a contract with NASA. NR 40 TC 5 Z9 5 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 29 PY 2010 VL 115 AR D20117 DI 10.1029/2009JD013504 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 674MP UT WOS:000283750600002 ER PT J AU Arumugam, PU Yu, E Riviere, R Meyyappan, M AF Arumugam, Prabhu U. Yu, Edmond Riviere, Roger Meyyappan, M. TI Vertically aligned carbon nanofiber electrode arrays for nucleic acid detection SO CHEMICAL PHYSICS LETTERS LA English DT Article ID NANOTUBE NANOELECTRODE ARRAYS; DNA; FABRICATION AB We present electrochemical detection of DNA targets that corresponds to Escherichia coli O157:H7 16S rRNA gene using a nanoelectrode array consisting of vertically aligned carbon nanofiber (VACNF) electrodes. Parylene C is used as gap filling 'matrix' material to avoid high temperature processing in electrode construction. This easy to deposit film of several micron heights provides a conformal coating between the high aspect ratio VACNFs with negligible pin-holes. The low background currents show the potential of this approach for ultra-sensitive detection. Consistent and reproducible electrochemical-signals are achieved using a simple electrode preparation. This simple, reliable and low-cost approach is a forward step in developing practical sensors for applications like pathogen detection, early cancer diagnosis and environmental monitoring. (C) 2010 Elsevier B.V. All rights reserved. C1 [Arumugam, Prabhu U.; Yu, Edmond; Riviere, Roger; Meyyappan, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Arumugam, PU (reprint author), Adv Diamond Technol Inc, 429 B Weber Rd,286, Romeoville, IL 60564 USA. EM prabhu@thindiamond.com FU NASA FX We thank Dr. Hua Chen for biofunctionalization of electrodes, C.Tai research group at CalTech for parylene-C deposition, Dr. Shabnam Siddiqui for help with the experiments and Dr. Alan Cassell for technical discussions. PUA was employed by Eloret Corporation. EY and RR were interns from UCLA and San Jose State University respectively and supported by NASA Undergraduate Student Research Program. NR 19 TC 14 Z9 14 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD OCT 29 PY 2010 VL 499 IS 4-6 BP 241 EP 246 DI 10.1016/j.cplett.2010.09.048 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 668BX UT WOS:000283244700011 ER PT J AU Miller, KJ Hermes, D Honey, CJ Sharma, M Rao, RPN den Nijs, M Fetz, EE Sejnowski, TJ Hebb, AO Ojemann, JG Makeig, S Leuthardt, EC AF Miller, Kai J. Hermes, Dora Honey, Christopher J. Sharma, Mohit Rao, Rajesh P. N. den Nijs, Marcel Fetz, Eberhard E. Sejnowski, Terrence J. Hebb, Adam O. Ojemann, Jeffrey G. Makeig, Scott Leuthardt, Eric C. TI Dynamic modulation of local population activity by rhythm phase in human occipital cortex during a visual search task SO FRONTIERS IN HUMAN NEUROSCIENCE LA English DT Article DE electrocorticography; occipital cortex; vision; broadband; rhythm; phase-amplitude coupling; nested oscillation; beta ID NEURONAL SYNCHRONIZATION; SPATIAL ATTENTION; OSCILLATIONS; BRAIN; POWER; RESPONSES; SYNAPSES; REFLECTS; SPIKING AB Brain rhythms are more than just passive phenomena in visual cortex. For the first time, we show that the physiology underlying brain rhythms actively suppresses and releases cortical areas on a second-to-second basis during visual processing. Furthermore, their influence is specific at the scale of individual gyri. We quantified the interaction between broadband spectral change and brain rhythms on a second-to-second basis in electrocorticographic (ECoG) measurement of brain surface potentials in five human subjects during a visual search task. Comparison of visual search epochs with a blank screen baseline revealed changes in the raw potential, the amplitude of rhythmic activity, and in the decoupled broadband spectral amplitude. We present new methods to characterize the intensity and preferred phase of coupling between broadband power and band-limited rhythms, and to estimate the magnitude of rhythm-to-broadband modulation on a trial-by-trial basis. These tools revealed numerous coupling motifs between the phase of low-frequency (delta, theta, alpha, beta, and gamma band) rhythms and the amplitude of broadband spectral change. In the theta and beta ranges, the coupling of phase to broadband change is dynamic during visual processing, decreasing in some occipital areas and increasing in others, in a gyrally specific pattern. Finally, we demonstrate that the rhythms interact with one another across frequency ranges, and across cortical sites. C1 [Miller, Kai J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Miller, Kai J.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Hermes, Dora] Univ Med Ctr Utrecht, Rudolf Magnus Inst Neurosci, Utrecht, Netherlands. [Honey, Christopher J.] Princeton Univ, Dept Psychol, Princeton, NJ 08544 USA. [Honey, Christopher J.] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA. [Sharma, Mohit; Leuthardt, Eric C.] Washington Univ, St Louis, MO USA. [Sejnowski, Terrence J.] Salk Inst, Howard Hughes Med Inst, San Diego, CA 92186 USA. [Makeig, Scott] Univ Calif San Diego, Div Biol Sci, San Diego, CA 92103 USA. RP Miller, KJ (reprint author), Univ Washington, Dept Phys, Box 351560, Seattle, WA 98195 USA. EM kjmiller@u.washington.edu RI Honey, Christopher/C-3105-2015; OI Honey, Christopher/0000-0002-0745-5089; Ojemann, Jeffrey/0000-0001-7580-8934 FU National Aeronautics and Space Administration; National Institute of General Medical Sciences; National Science Foundation [0622252, 0642848]; National Institute of Health [R21-DA024423, RO1-NS12542, R01-NS065186]; James S. McDonnell fund [22 3921 26239B] FX We appreciate the time and dedication of the patients and staff at Harborview Hospital in Seattle, WA. We thank Jaan Aru and Lise Johnson for helpful discussion. This research was supported by generous the contribution of National Aeronautics and Space Administration Graduate Student Research Program (KJM); National Institute of General Medical Sciences Medical Scientist Training Program (KJM); National Science Foundation 0622252 and 0642848 (KJM, RPNR, JGO); National Institute of Health R21-DA024423 (CJH), RO1-NS12542 (EEF), R01-NS065186 (KJM, JGO); James S. McDonnell fund - 22 3921 26239B (ECL). NR 45 TC 39 Z9 39 U1 0 U2 11 PU FRONTIERS RES FOUND PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1662-5161 J9 FRONT HUM NEUROSCI JI Front. Hum. Neurosci. PD OCT 29 PY 2010 VL 4 AR 197 DI 10.3389/fnhum.2010.00197 PG 16 WC Neurosciences; Psychology SC Neurosciences & Neurology; Psychology GA 747HP UT WOS:000289311200001 PM 21119778 ER PT J AU Mollner, AK Valluvadasan, S Feng, L Sprague, MK Okumura, M Milligan, DB Bloss, WJ Sander, SP Martien, PT Harley, RA McCoy, AB Carter, WPL AF Mollner, Andrew K. Valluvadasan, Sivakumaran Feng, Lin Sprague, Matthew K. Okumura, Mitchio Milligan, Daniel B. Bloss, William J. Sander, Stanley P. Martien, Philip T. Harley, Robert A. McCoy, Anne B. Carter, William P. L. TI Rate of Gas Phase Association of Hydroxyl Radical and Nitrogen Dioxide SO SCIENCE LA English DT Article ID PRESSURE-DEPENDENCE; MASTER EQUATION; CIS-CIS; TEMPERATURE; KINETICS; NO2; OH; HOONO; SPECTROSCOPY; UNCERTAINTY AB The reaction of OH and NO2 to form gaseous nitric acid (HONO2) is among the most influential in atmospheric chemistry. Despite its importance, the rate coefficient remains poorly determined under tropospheric conditions because of difficulties in making laboratory rate measurements in air at 760 torr and uncertainties about a secondary channel producing peroxynitrous acid (HOONO). We combined two sensitive laser spectroscopy techniques to measure the overall rate of both channels and the partitioning between them at 25 degrees C and 760 torr. The result is a significantly more precise value of the rate constant for the HONO2 formation channel, 9.2 (+/- 0.4) x 10(-12) cm(3) molecule(-1) s(-1) (1 SD) at 760 torr of air, which lies toward the lower end of the previously established range. We demonstrate the impact of the revised value on photochemical model predictions of ozone concentrations in the Los Angeles airshed. C1 [Mollner, Andrew K.; Feng, Lin; Sprague, Matthew K.; Okumura, Mitchio] CALTECH, Div Chem & Chem Engn, Arthur Amos Noyes Lab Chem Phys, Pasadena, CA 91125 USA. [Valluvadasan, Sivakumaran; Milligan, Daniel B.; Bloss, William J.; Sander, Stanley P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Martien, Philip T.; Harley, Robert A.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [McCoy, Anne B.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Carter, William P. L.] Univ Calif Riverside, Ctr Environm Res & Technol, Coll Engn, Riverside, CA 92521 USA. RP Okumura, M (reprint author), CALTECH, Div Chem & Chem Engn, Arthur Amos Noyes Lab Chem Phys, Pasadena, CA 91125 USA. EM mo@caltech.edu; stanley.p.sander@jpl.nasa.gov; harley@ce.berkeley.edu; mccoy@chemistry.ohio-state.edu; wpcarter@ucr.edu RI Bloss, William/N-1305-2014; Okumura, Mitchio/I-3326-2013; Harley, Robert/C-9177-2016; OI Bloss, William/0000-0002-3017-4461; Okumura, Mitchio/0000-0001-6874-1137; Harley, Robert/0000-0002-0559-1917; Sprague, Matthew/0000-0002-3526-7077 FU National Aeronautics and Space Administration (NASA) [NAG5-11657, NNG06GD88G, NNX09AE21G]; California Air Resources Board [03-333, 07-730]; National Science Foundation [CHE-0515627/0848242]; Department of Defense FX This work was supported by National Aeronautics and Space Administration (NASA) grants NAG5-11657, NNG06GD88G, and NNX09AE21G; California Air Resources Board contracts 03-333 and 07-730; National Science Foundation grant CHE-0515627/0848242 (A. B. M.); a NASA Earth Systems Science Fellowship (A. K. M.); and a Department of Defense National Defense Science and Engineering Graduate Fellowship (M. K. S.). Research at JPL was supported by the NASA Upper Atmosphere Research and Tropospheric Chemistry Programs. This work was carried out in part at JPL, California Institute of Technology, under contract with NASA. NR 29 TC 65 Z9 67 U1 5 U2 85 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 29 PY 2010 VL 330 IS 6004 BP 646 EP 649 DI 10.1126/science.1193030 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 672KB UT WOS:000283580600040 PM 21030650 ER PT J AU Cooper, PD Moore, MH Hudson, RL AF Cooper, Paul D. Moore, Marla H. Hudson, Reggie L. TI O atom production in water ice: Implications for O-2 formation on icy satellites SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID GANYMEDE; OXIDANTS; MATRICES; SPECTRA; SURFACE; EUROPA; HO3 AB We have found that O atoms are a primary product in the irradiation of water-ice with 0.8 MeV protons. This observation has implications in understanding the chemical reactions that occur to produce molecular oxygen (O-2) in such laboratory ices, as well as ices found on the surfaces of Ganymede and Europa, and the ice particles present in Saturn's rings. We estimate that in irradiated water-ice, O-2 can be formed at a lower limit of 0.07% by number relative to water and is in agreement with observations of the icy Jovian satellites. C1 [Cooper, Paul D.] George Mason Univ, Dept Chem & Biochem, Fairfax, VA 22030 USA. [Moore, Marla H.; Hudson, Reggie L.] NASA, Goddard Space Flight Ctr, Astrochem Branch, Greenbelt, MD 20771 USA. RP Cooper, PD (reprint author), George Mason Univ, Dept Chem & Biochem, MS 3E2,4400 Univ Dr, Fairfax, VA 22030 USA. EM pcooper6@gmu.edu RI Hudson, Reggie/E-2335-2012 FU NASA FX This work was supported by NASA through the Planetary Atmospheres and Planetary Geology and Geophysics programs. The NASA Goddard Radiation Facility is thanked for assistance with the proton irradiations. P. D. Cooper held a NASA postdoctoral fellowship. NR 26 TC 4 Z9 4 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT 28 PY 2010 VL 115 AR E10013 DI 10.1029/2009JE003563 PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 674SG UT WOS:000283769500001 ER PT J AU Fleischer, I Agresti, DG Klingelhofer, G Morris, RV AF Fleischer, I. Agresti, D. G. Klingelhoefer, G. Morris, R. V. TI Distinct hematite populations from simultaneous fitting of Mossbauer spectra from Meridiani Planum, Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MORIN TRANSITION; SUBSTITUTED HEMATITE; MAGNETIC-PROPERTIES; IRON-OXIDES; MAUNA-KEA; SPECTROMETER; MINERALOGY; SPECTROSCOPY; TEMPERATURE; ALPHA-FE2O3 AB At Meridiani Planum, Mars, hematite occurs as a lag of similar to 5 mm diameter spherules and their fragments and within the matrix of the sulfate-rich outcrop as < 30 mm particles. Well crystalline and chemically pure bulk hematite undergoes a magnetic transition at similar to 264 K (Morin transition) that can be detected by Mossbauer spectroscopy and is within the Martian diurnal temperature range. We analyzed outcrop and lag hematite Mossbauer spectra obtained by the Mars Exploration Rover (MER) Opportunity as a function of temperature using a simultaneous fitting procedure to determine the Morin temperature and the temperature interval over which it occurs. Mossbauer spectra for terrestrial hematite-bearing samples were acquired for comparison at Martian temperatures using a MER-like spectrometer. Both outcrop and spherule hematites are characterized by two populations of hematite whose Mossbauer sextets have different Morin transition behavior. Compared to pure bulk hematite, the Morin temperature for Martian hematite is lower or not present within the temperature measurement range (190-290 K) and occurs over a wider temperature interval, consistent with reduced crystallinity, reduced particle or crystallite size, and/or chemical impurities (e. g., Al3+, Ti4+, H2O, and OH-). If the Morin transition behavior for outcrop hematite results solely from particle size effects and the nonjarosite ferric doublet is interpreted as superparamagnetic hematite as a working hypothesis, outcrop hematite is characterized by a size distribution of hematite particles ranging from superparamagnetic to possibly similar to 30 mu m. C1 [Fleischer, I.; Klingelhoefer, G.] Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55128 Mainz, Germany. [Agresti, D. G.] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA. [Morris, R. V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Fleischer, I (reprint author), Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, Staudinger Weg 9, D-55128 Mainz, Germany. EM fleischi@uni-mainz.de FU NASA [NNX06AD93G]; German Space Agency (DLR) [50 QM 9902, 50 QM 0005]; University of Mainz FX MERFit development was supported by NASA grant NNX06AD93G to D.G.A., who has benefited from discussions on hematite with R. Vandenberghe. I.F. and G.K. acknowledge support from the German Space Agency (DLR; contracts 50 QM 9902 (Mossbauer MIMOS II) and 50 QM 0005 (APXS)) and the University of Mainz. R.V.M. acknowledges support from the NASA Mars Exploration Program. NR 59 TC 7 Z9 7 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT 28 PY 2010 VL 115 AR E00F06 DI 10.1029/2010JE003622 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 674SG UT WOS:000283769500002 ER PT J AU Castillo-Rogez, JC Lunine, JI AF Castillo-Rogez, Julie C. Lunine, Jonathan I. TI Evolution of Titan's rocky core constrained by Cassini observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID AMMONIUM-SULFATE; SOLAR-SYSTEM; SERPENTINIZATION; KINETICS; ORIGIN; DEHYDRATION; ABUNDANCES; SATELLITES; METHANE AB We model the thermal evolution of Titan's core and search for solutions that are consistent with the mean moment of inertia yielded by the Cassini-Huygens Mission. Like previous studies we assume that Titan's core is enriched in hydrated silicates. However, our modeling accounts for the possible dehydration of these minerals. The resulting models are consistent with Titan's moment of inertia if the inner dry silicate core remains smaller than similar to 1300 km in radius. This constraint is met if at least 30% of potassium was leached from the silicate during the hydration event, i.e., the core is depleted in one of its major heat source. In this scenario, the core is currently undergoing dehydration. Citation: Castillo-Rogez, J. C., and J. I. Lunine (2010), Evolution of Titan's rocky core constrained by Cassini observations, Geophys. Res. Lett., 37, L20205, doi:10.1029/2010GL044398. C1 [Castillo-Rogez, Julie C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lunine, Jonathan I.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. RP Castillo-Rogez, JC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM julie.c.castillo@jpl.nasa.gov; jlunine@roma2.infn.it FU Program Incentivazione alla mobilita' di studiosi straineri e italiani residenti all'estero; NASA FX The authors are very thankful to Giuseppe Mitri and an anonymous reviewer for their valuable comments that significantly improved this manuscript. JIL's work was financed within the scope of the program Incentivazione alla mobilita' di studiosi straineri e italiani residenti all'estero. JCC's work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Government sponsorship acknowledged. NR 33 TC 38 Z9 38 U1 3 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 28 PY 2010 VL 37 AR L20205 DI 10.1029/2010GL044398 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 674LV UT WOS:000283747000001 ER PT J AU Howell, SEL Tivy, A Agnew, T Markus, T Derksen, C AF Howell, Stephen E. L. Tivy, Adrienne Agnew, Tom Markus, Thorsten Derksen, Chris TI Extreme low sea ice years in the Canadian Arctic Archipelago: 1998 versus 2007 SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID PROJECT; COVER AB Extreme sea ice minima were observed within the Canadian Arctic Archipelago (CAA) during 1998 and 2007. The September average sea ice area was 2.90 and 2.65 standardized anomalies below the historical 1968-1996 climatology for 1998 and 2007, respectively. October sea ice area for 1998 was a staggering 4.45 standardized anomalies below the historical 1968-1996 climatology and 2007 was lower by 3.36 standardized anomalies. We examine the role of thermodynamic and dynamic forcing on CAA sea ice that was responsible for its extreme loss in 1998 and 2007. Thermodynamic forcing on the sea ice was concentrated over 1 month in 2007 facilitating rapid melt, contrasted against a long melt season in 1998. This variation was attributed to anomalously warm air temperatures in June, September, and October for 1998 compared to anomalously warm temperatures in July for 2007. Sea ice dynamics contributed to the 1998 minimum by inhibiting replenishment from the Arctic Ocean but actually facilitated replenishment in 2007 thereby preventing record low conditions. Replenishment was driven by dissimilarities in sea level pressure patterns over the CAA during these extreme years. Evidence for preconditioned thinning was apparent leading up to 2007 but not strongly apparent for 1998. Remarkably, at the onset of 1998 melt season, multi-year ice area within the CAA was 11% more than the historical climatology and 48% more than at the start of the 2007 melt season yet an extreme minima was still reached. C1 [Howell, Stephen E. L.; Agnew, Tom; Derksen, Chris] Environm Canada, Atmospher Sci & Technol Directorate, Div Climate Res, Climate Proc Sect, Toronto, ON M3H 5T4, Canada. [Markus, Thorsten] NASA, Cryospher Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Tivy, Adrienne] Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99709 USA. RP Howell, SEL (reprint author), Environm Canada, Atmospher Sci & Technol Directorate, Div Climate Res, Climate Proc Sect, Toronto, ON M3H 5T4, Canada. EM stephen.howell@ec.gc.ca RI Markus, Thorsten/D-5365-2012 FU Visiting Fellowship FX This research was supported by a Visiting Fellowship to S. Howell. We would like to thank J. Stroeve and the three anonymous reviewers who improved this manuscript. NR 40 TC 9 Z9 9 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD OCT 27 PY 2010 VL 115 AR C10053 DI 10.1029/2010JC006155 PG 16 WC Oceanography SC Oceanography GA 674NO UT WOS:000283753800001 ER PT J AU Silvestro, S Fenton, LK Vaz, DA Bridges, NT Ori, GG AF Silvestro, S. Fenton, L. K. Vaz, D. A. Bridges, N. T. Ori, G. G. TI Ripple migration and dune activity on Mars: Evidence for dynamic wind processes SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EOLIAN DUNES; SIMULATIONS AB In this report we show evidence of widespread ripple migration over the stoss side of dark barchan dunes in Nili Patera on Mars. The measured average migration of similar to 1.7 meters in less than 4 terrestrial months clearly indicates that active sand saltation is occurring in the study area. In addition, we document widespread changes in the dune base-ground surface contact and in the slip face structures, showing that not only the ripples, but the whole dunes are actually migrating in the present-day atmospheric setting. These results provide unequivocal evidence of recent aeolian activity and suggest that other dunes and ripples on Mars may also be active. Citation: Silvestro, S., L. K. Fenton, D. A. Vaz, N. T. Bridges, and G. G. Ori (2010), Ripple migration and dune activity on Mars: Evidence for dynamic wind processes, Geophys. Res. Lett., 37, L20203, doi:10.1029/2010GL044743. C1 [Silvestro, S.; Ori, G. G.] Univ G DAnnunzio, Int Res Sch Planetary Sci, I-65127 Pescara, Italy. [Fenton, L. K.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Vaz, D. A.] Univ Coimbra, Ctr Geophys, P-3000134 Coimbra, Portugal. [Bridges, N. T.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20776 USA. [Ori, G. G.] Univ Cadi Ayyad, Ibn Battuta Ctr, Marrakech, Morocco. RP Silvestro, S (reprint author), Univ G DAnnunzio, Int Res Sch Planetary Sci, Viale Pindaro 42, I-65127 Pescara, Italy. EM simone@irsps.unich.it RI Vaz, David/M-4702-2013; Bridges, Nathan/D-6341-2016; OI Vaz, David/0000-0002-3583-2267; ORI, Gian Gabriele/0000-0002-6460-1476 FU Agenzia Spaziale Italiana FX The author would like to thank Gaetano Di Achille and Randy Kirk for useful advices and comments. This research has been supported by the Agenzia Spaziale Italiana. NR 29 TC 61 Z9 61 U1 1 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 27 PY 2010 VL 37 AR L20203 DI 10.1029/2010GL044743 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 674LT UT WOS:000283746700005 ER PT J AU Farrell, WM Kurth, WS Tokar, RL Wahlund, JE Gurnett, DA Wang, Z MacDowall, RJ Morooka, MW Johnson, RE Waite, JH AF Farrell, W. M. Kurth, W. S. Tokar, R. L. Wahlund, J. -E. Gurnett, D. A. Wang, Z. MacDowall, R. J. Morooka, M. W. Johnson, R. E. Waite, J. H., Jr. TI Modification of the plasma in the near-vicinity of Enceladus by the enveloping dust SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID NEUTRAL MASS-SPECTROMETER; WAVE INSTRUMENT; CASSINI RADIO; E-RING; PARTICLES; PLUME; ATMOSPHERE; WATER; ION AB The plasma near Saturn's equator is quasi-corotating, but those fluid elements entering the near-vicinity of the moon Enceladus become uniquely modified. Besides the solid body, the Moon has a surrounding dust envelop that we show herein to be detected similar to 20 Enceladus radii (1 R(E) = 252 km) both north and south of the body. Previous reports indicate that corotating plasma slows down substantially in the near-vicinity of Enceladus. We show herein that the commencement of this plasma slow down matches closely with Cassini's entry into the dense portions of the enveloping dust in the northern hemisphere above the Moon. We also examine in detail the source of the dust about 400 km above the south polar fissures. We find that a large positive potential must exist between the south pole of the moon and the spacecraft to account for ions streaming away from the pole on connecting magnetic field lines. Citation: Farrell, W. M., W. S. Kurth, R. L. Tokar, J.-E. Wahlund, D. A. Gurnett, Z. Wang, R. J. MacDowall, M. W. Morooka, R. E. Johnson, and J. H. Waite Jr. (2010), Modification of the plasma in the near-vicinity of Enceladus by the enveloping dust, Geophys. Res. Lett., 37, L20202, doi:10.1029/2010GL044768. C1 [Farrell, W. M.; MacDowall, R. J.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Kurth, W. S.; Gurnett, D. A.; Wang, Z.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Johnson, R. E.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22903 USA. [Wahlund, J. -E.; Morooka, M. W.] Swedish Inst Space Phys, SE-75121 Uppsala, Sweden. [Tokar, R. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Waite, J. H., Jr.] SW Res Inst, San Antonio, TX 78228 USA. RP Farrell, WM (reprint author), NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Mail Code 695, Greenbelt, MD 20771 USA. EM william.farrell@gsfc.nasa.gov RI MacDowall, Robert/D-2773-2012; Farrell, William/I-4865-2013; OI Kurth, William/0000-0002-5471-6202 NR 22 TC 22 Z9 22 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 26 PY 2010 VL 37 AR L20202 DI 10.1029/2010GL044768 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 674LS UT WOS:000283746600006 ER PT J AU Denton, RE Sonnerup, BUO Birn, J Teh, WL Drake, JF Swisdak, M Hesse, M Baumjohann, W AF Denton, R. E. Sonnerup, B. U. Oe. Birn, J. Teh, W. -L. Drake, J. F. Swisdak, M. Hesse, M. Baumjohann, W. TI Test of methods to infer the magnetic reconnection geometry from spacecraft data SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article AB When analyzing data from a cluster of spacecraft (such as Cluster or MMS) crossing a site of magnetic reconnection, it is desirable to be able to determine the orientation of the reconnection site. If the reconnection is quasi-two dimensional, there are three key directions, the direction of inhomogeneity (direction across the reconnection site), the direction of the reconnecting component of the magnetic field, and the direction of rough invariance (the "out of plane" direction). Using simulated spacecraft observations of an MHD simulation of magnetic reconnection in the geomagnetic tail, we test a direction-finding method based on the gradient of the vector magnetic field and find that the directions can be well determined. The results from this method, however, can be in error if there are systematic calibration errors in the magnetic field measurements. We show that the effect of these errors can be eliminated if an average gradient is subtracted from a time series of gradient values before they are used for the analysis. We also test a method to determine the velocity of the reconnecting structure relative to the spacecraft using the time derivative and gradient of the magnetic field and show that this velocity can be well determined. Calibration errors can be eliminated in this case also if an average time derivative and gradient are subtracted from the time series of values before they are used for the analysis. C1 [Denton, R. E.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Sonnerup, B. U. Oe.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Birn, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Teh, W. -L.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Drake, J. F.; Swisdak, M.] Univ Maryland, Inst Res & Elect & Appl Phys, College Pk, MD 20742 USA. [Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Denton, RE (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. EM richard.e.denton@dartmouth.edu; bengt.u.o.sonnerup@dartmouth.edu; jbirn@lanl.gov; teh@lasp.Colorado.Edu; drake@umd.edu; swisdak@umd.edu; michael.hesse@nasa.gov; baumjohann@oeaw.ac.at RI Hesse, Michael/D-2031-2012; Baumjohann, Wolfgang/A-1012-2010; NASA MMS, Science Team/J-5393-2013 OI Baumjohann, Wolfgang/0000-0001-6271-0110; NASA MMS, Science Team/0000-0002-9504-5214 FU NASA [NNX08AV81G]; NSF [ATM-0120950] FX R.E.D. was supported primarily by NASA grant NNX08AV81G (MMS Theory Program) and to a lesser extent by NSF grant ATM-0120950 (Center for Integrated Space Weather Modeling (CISM), funded by the NSF Science and Technology Centers Programs). J.B. acknowledges NASA support through the MMS and Solar-Heliophysics Theory programs. NR 9 TC 7 Z9 7 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 26 PY 2010 VL 115 AR A10242 DI 10.1029/2010JA015420 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 674SY UT WOS:000283771300003 ER PT J AU Tyssoy, HN Stadsnes, J Sorbo, M Mertens, CJ Evans, DS AF Tyssoy, H. Nesse Stadsnes, J. Sorbo, M. Mertens, C. J. Evans, D. S. TI Changes in upper mesospheric and lower thermospheric temperatures caused by energetic particle precipitation SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SOLAR PROTON EVENTS; ATMOSPHERE; JOULE; BUDGET; OZONE AB A statistical evaluation on the upper mesospheric and lower thermospheric temperature effects caused by energetic particle precipitation is performed on the basis of data from the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) and NOAA 15, 16, and 17 satellites. By combining particle measurement from the medium energy proton and electron detectors (MEPED) on board the NOAA satellites, maps of the global particle precipitation can be obtained close in time to the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) temperature retrieval. Using large data sets, sorted by season, local time, and geomagnetic latitude, we investigated whether there are significant temperature effects in the upper mesosphere and lower thermosphere associated with the energetic particle precipitation. During both May/June and October/November 2003, we found a temperature increase related to particle precipitation at all heights above 100 km. In general, we did not find a consistent immediate temperature modification below 100 km associated with increased particle flux. Considering the temperatures retrieved during the extraordinary large geomagnetic storms in late October 2003, we found a cooling effect associated with energetic particle precipitation. C1 [Tyssoy, H. Nesse] Royal Norwegian Naval Acad, N-5886 Bergen, Norway. [Stadsnes, J.; Sorbo, M.] Univ Bergen, Dept Phys & Technol, N-5007 Bergen, Norway. [Mertens, C. J.] NASA, Langley Res Ctr, Sci Directorate Chem & Dynam Branch, Hampton, VA 23681 USA. [Evans, D. S.] NOAA, Space Environm Lab, Boulder, CO 80305 USA. RP Tyssoy, HN (reprint author), Royal Norwegian Naval Acad, Pb 83 Haakonsvern, N-5886 Bergen, Norway. EM hilde.nesse@ift.uib.no FU Research Council of Norway [184701] FX This research was supported by the Research Council of Norway project 184701. NR 20 TC 2 Z9 2 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 26 PY 2010 VL 115 AR A10323 DI 10.1029/2010JA015427 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 674SY UT WOS:000283771300004 ER PT J AU Numata, K Camp, J Krainak, MA Stolpner, L AF Numata, Kenji Camp, Jordan Krainak, Michael A. Stolpner, Lew TI Performance of planar-waveguide external cavity laser for precision measurements SO OPTICS EXPRESS LA English DT Article ID NOISE CHARACTERISTICS; INTENSITY NOISE; FIBER LASERS; DIODE-LASER; FREQUENCY; STABILIZATION; LISA AB A 1542-nm planar-waveguide external cavity laser (PW-ECL) is shown to have a sufficiently low level of noise to be suitable for precision measurement applications. Its frequency noise and intensity noise was comparable or better than the non-planar ring oscillator (NPRO) and fiber laser between 0.1 mHz to 100 kHz. Controllability of the PW-ECL was demonstrated by stabilizing its frequency to acetylene ((C2H2)-C-13) at 10(-13) level of Allan deviation. The PW-ECL also has the advantage of the compactness of a standard butterfly package, low cost, and a simple design consisting of a semiconductor gain media coupled to a planar-waveguide Bragg reflector. (C) 2010 Optical Society of America C1 [Numata, Kenji] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Numata, Kenji; Camp, Jordan; Krainak, Michael A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stolpner, Lew] Redfern Integrated Opt Inc, Santa Clara, CA 95054 USA. RP Numata, K (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM kenji.numata@nasa.gov NR 21 TC 32 Z9 32 U1 1 U2 13 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 25 PY 2010 VL 18 IS 22 BP 22781 EP 22788 DI 10.1364/OE.18.022781 PG 8 WC Optics SC Optics GA 672CK UT WOS:000283560400016 PM 21164616 ER PT J AU Guan, B Molotch, NP Waliser, DE Fetzer, EJ Neiman, PJ AF Guan, Bin Molotch, Noah P. Waliser, Duane E. Fetzer, Eric J. Neiman, Paul J. TI Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID DISTRIBUTED SNOWMELT MODEL; RIO-GRANDE HEADWATERS; WATER EQUIVALENT; NORTH-AMERICA; SIERRA-NEVADA; COVER DATA; PRECIPITATION; CALIFORNIA; MOUNTAINS AB Narrow bands of strong atmospheric water vapor transport, referred to as "atmospheric rivers" (ARs), are responsible for the majority of wintertime extreme precipitation events with important contributions to the seasonal water balance. We investigate relationships between snow water equivalent (SWE), precipitation, and surface air temperature (SAT) across the Sierra Nevada for 45 wintertime AR events. Analysis of assimilated and in situ data for water years 2004-2010 indicates that ARs on average generate similar to 4 times daily SWE accumulation of non-AR storms. In addition, AR events contributed similar to 30-40% of total seasonal SWE accumulation in most years, with the contribution dominated by just 1-2 extreme events in some cases. In situ and remotely sensed observations show that SWE changes associated with ARs are closely related to SAT. These results reveal the previously unexplored significance of ARs with regard to the snowpack and associated sensitivities of AR precipitation to SAT. Citation: Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman (2010), Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements, Geophys. Res. Lett., 37, L20401, doi:10.1029/2010GL044696. C1 [Guan, Bin; Molotch, Noah P.; Waliser, Duane E.; Fetzer, Eric J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Molotch, Noah P.] Univ Colorado, Dept Geog, Boulder, CO 80309 USA. [Molotch, Noah P.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Neiman, Paul J.] NOAA, Earth Syst Res Lab, Div Phys Sci, Boulder, CO 80305 USA. RP Guan, B (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM bin.guan@jpl.nasa.gov RI Guan, Bin/F-6735-2010; Molotch, Noah/C-8576-2009 FU NSF [EAR071160]; NASA [NNX08AH18G]; National Aeronautics and Space Administration FX This research was supported by NSF EAR071160 and by NASA grant NNX08AH18G. B. Tian, M. Ralph, G. Wick, M. Dettinger, K. Weickmann and J. Kim are acknowledged for useful discussions and technical support. Data used in this study have been obtained online from NSIDC, CA DWR, NASA and ECMWF. DEW's and BG's contribution, and part of NPM's contribution, to this study was carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 28 TC 63 Z9 63 U1 2 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 23 PY 2010 VL 37 AR L20401 DI 10.1029/2010GL044696 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 704YK UT WOS:000286091800001 ER PT J AU Chatterjee, A Michalak, AM Kahn, RA Paradise, SR Braverman, AJ Miller, CE AF Chatterjee, Abhishek Michalak, Anna M. Kahn, Ralph A. Paradise, Susan R. Braverman, Amy J. Miller, Charles E. TI A geostatistical data fusion technique for merging remote sensing and ground-based observations of aerosol optical thickness SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RESOLUTION IMAGING SPECTRORADIOMETER; UNIFIED SATELLITE CLIMATOLOGY; MODIS; MISR; DEPTH; RETRIEVALS; AERONET; OCEAN; PRODUCTS; LAND AB The Multiangle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the NASA Earth Observation System's Terra satellite have been measuring aerosol optical thickness (AOT) since early 2000. These remote-sensing platforms complement the ground-based Aerosol Robotic Network (AERONET) in better understanding the role of aerosols in climate and atmospheric chemistry. To date, however, there have been only limited attempts to exploit the complementary multiangle (MISR) and multispectral (MODIS) capabilities of these sensors along with the ground-based observations in an integrated analysis. This paper describes a geostatistical data fusion technique that can take advantage of the spatial autocorrelation of the AOT distribution, while making optimal use of all available data sets. Using Level 2.0 AERONET, MISR, and MODIS AOT data for the contiguous United States, we demonstrate that this approach can successfully incorporate information from multiple sensors and provide accurate estimates of AOT with rigorous uncertainty bounds. Cross-validation results show that the resulting AOT product is closer to the ground-based AOT observations than either of the individual satellite measurements. C1 [Chatterjee, Abhishek; Michalak, Anna M.] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. [Paradise, Susan R.; Braverman, Amy J.; Miller, Charles E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kahn, Ralph A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Michalak, Anna M.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Chatterjee, A (reprint author), Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. EM amichala@umich.edu RI Kahn, Ralph/D-5371-2012; Chatterjee, Abhishek/E-6296-2017 OI Kahn, Ralph/0000-0002-5234-6359; Chatterjee, Abhishek/0000-0002-3680-0160 FU National Aeronautics and the Space Administration [NNX08AJ92G]; EOS FX We thank our colleagues on the Jet Propulsion Laboratory's AMAPS system team for providing us with the MISR and MODIS data sets as well as Charles Antonelli for making the codes publicly available. We also specially thank three anonymous reviewers and Angela Benedetti for providing us with excellent suggestions and feed-back. The authors would also like to thank the AERONET principal investigators for collecting the aerosol data over the United States. The University of Michigan component of this research was funded through the Jet Propulsion Laboratory's Director's Research and Development Fund under a contract with the National Aeronautics and the Space Administration. Additional support was provided through NASA grant NNX08AJ92G. The work of Ralph Kahn was supported in part by NASA's Climate and Radiation Research and Analysis Program, under H. Maring, NASA's Atmospheric Composition Program, and the EOS-MISR project. NR 46 TC 10 Z9 12 U1 1 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 23 PY 2010 VL 115 AR D20207 DI 10.1029/2009JD013765 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 671XH UT WOS:000283546600004 ER PT J AU Gettelman, A Hegglin, MI Son, SW Kim, J Fujiwara, M Birner, T Kremser, S Rex, M Anel, JA Akiyoshi, H Austin, J Bekki, S Braesike, P Bruhl, C Butchart, N Chipperfield, M Dameris, M Dhomse, S Garny, H Hardiman, SC Jockel, P Kinnison, DE Lamarque, JF Mancini, E Marchand, M Michou, M Morgenstern, O Pawson, S Pitari, G Plummer, D Pyle, JA Rozanov, E Scinocca, J Shepherd, TG Shibata, K Smale, D Teyssedre, H Tian, W AF Gettelman, A. Hegglin, M. I. Son, S. -W. Kim, J. Fujiwara, M. Birner, T. Kremser, S. Rex, M. Anel, J. A. Akiyoshi, H. Austin, J. Bekki, S. Braesike, P. Bruehl, C. Butchart, N. Chipperfield, M. Dameris, M. Dhomse, S. Garny, H. Hardiman, S. C. Joeckel, P. Kinnison, D. E. Lamarque, J. F. Mancini, E. Marchand, M. Michou, M. Morgenstern, O. Pawson, S. Pitari, G. Plummer, D. Pyle, J. A. Rozanov, E. Scinocca, J. Shepherd, T. G. Shibata, K. Smale, D. Teyssedre, H. Tian, W. TI Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CHEMISTRY-CLIMATE MODEL; GENERAL-CIRCULATION MODEL; MIDDLE ATMOSPHERE; TROPOPAUSE LAYER; TECHNICAL NOTE; ERA-40 REANALYSIS; ANNUAL CYCLE; WATER-VAPOR; OZONE; TRANSPORT AB The performance of 18 coupled Chemistry Climate Models (CCMs) in the Tropical Tropopause Layer (TTL) is evaluated using qualitative and quantitative diagnostics. Trends in tropopause quantities in the tropics and the extratropical Upper Troposphere and Lower Stratosphere (UTLS) are analyzed. A quantitative grading methodology for evaluating CCMs is extended to include variability and used to develop four different grades for tropical tropopause temperature and pressure, water vapor and ozone. Four of the 18 models and the multi-model mean meet quantitative and qualitative standards for reproducing key processes in the TTL. Several diagnostics are performed on a subset of the models analyzing the Tropopause Inversion Layer (TIL), Lagrangian cold point and TTL transit time. Historical decreases in tropical tropopause pressure and decreases in water vapor are simulated, lending confidence to future projections. The models simulate continued decreases in tropopause pressure in the 21st century, along with similar to 1K increases per century in cold point tropopause temperature and 0.5-1 ppmv per century increases in water vapor above the tropical tropopause. TTL water vapor increases below the cold point. In two models, these trends are associated with 35% increases in TTL cloud fraction. These changes indicate significant perturbations to TTL processes, specifically to deep convective heating and humidity transport. Ozone in the extratropical lowermost stratosphere has significant and hemispheric asymmetric trends. O-3 is projected to increase by nearly 30% due to ozone recovery in the Southern Hemisphere (SH) and due to enhancements in the stratospheric circulation. These UTLS ozone trends may have significant effects in the TTL and the troposphere. C1 [Gettelman, A.; Kinnison, D. E.; Lamarque, J. F.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80305 USA. [Hegglin, M. I.; Shepherd, T. G.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Son, S. -W.; Kim, J.] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ H3A 2T5, Canada. [Fujiwara, M.] Hokkaido Univ, Fac Environm Earth Sci, Sapporo, Hokkaido 0600809, Japan. [Birner, T.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Kremser, S.] Free Univ Berlin, Inst Meteorol, D-14195 Berlin, Germany. [Rex, M.] Alfred Wegener Inst Polar & Marine Res, D-14473 Potsdam, Germany. [Anel, J. A.] Univ Vigo, Environm Phys Lab, E-32004 Orense, Spain. [Akiyoshi, H.] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Austin, J.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. [Bekki, S.; Marchand, M.] CNRS INSU, UMPC, UVSQ, Inst Pierre Simone Laplace,LATMOS, F-75252 Paris, France. [Braesike, P.; Pyle, J. A.] Univ Cambridge, Dept Chem, Cambridge CB2 1TN, England. [Bruehl, C.; Joeckel, P.] Max Planck Inst Chem, D-55020 Mainz, Germany. [Butchart, N.; Hardiman, S. C.] Met Off, Exeter EX1 3PB, Devon, England. [Chipperfield, M.; Dhomse, S.; Tian, W.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Dameris, M.; Garny, H.] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, D-82234 Oberpfaffenhofen, Wessling, Germany. [Mancini, E.; Pitari, G.] Univ Aquila, Dipartimento Fis, I-67100 Laquila, Italy. [Michou, M.; Teyssedre, H.] Meteo France, CNRS, GAME CNRM, F-31400 Toulouse, France. [Morgenstern, O.; Smale, D.] Natl Inst Water & Atmosphere, Lauder, New Zealand. [Pawson, S.] NASA, Goddard Space Flight Ctr, Global Modelling & Assimilat Off, Greenbelt, MD 20771 USA. [Plummer, D.] Environm Canada, Toronto, ON M3H 5T4, Canada. [Rozanov, E.] Phys Meteorol Observ Davos, CH-7620 Davos, Switzerland. [Scinocca, J.] Canadian Ctr Climate Modeling & Anal, Victoria, BC V8P 5C2, Canada. [Shibata, K.] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. RP Gettelman, A (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, 1850 Table Mesa Dr, Boulder, CO 80305 USA. EM andrew@ucar.edu RI Hegglin, Michaela/D-7528-2017; Nakamura, Tetsu/M-7914-2015; Pawson, Steven/I-1865-2014; Pitari, Giovanni/O-7458-2016; Birner, Thomas/A-2108-2008; Rex, Markus/A-6054-2009; Jockel, Patrick/C-3687-2009; Dhomse, Sandip/C-8198-2011; Rozanov, Eugene/A-9857-2012; Fujiwara, Masatomo/F-7852-2012; Chipperfield, Martyn/H-6359-2013; Son, Seok-Woo /A-8797-2013; Lamarque, Jean-Francois/L-2313-2014; bekki, slimane/J-7221-2015 OI Hegglin, Michaela/0000-0003-2820-9044; Mancini, Eva/0000-0001-7071-0292; Morgenstern, Olaf/0000-0002-9967-9740; /0000-0002-3573-7083; Nakamura, Tetsu/0000-0002-2056-7392; Pawson, Steven/0000-0003-0200-717X; Pitari, Giovanni/0000-0001-7051-9578; Birner, Thomas/0000-0002-2966-3428; Rex, Markus/0000-0001-7847-8221; Jockel, Patrick/0000-0002-8964-1394; Dhomse, Sandip/0000-0003-3854-5383; Rozanov, Eugene/0000-0003-0479-4488; Chipperfield, Martyn/0000-0002-6803-4149; Lamarque, Jean-Francois/0000-0002-4225-5074; bekki, slimane/0000-0002-5538-0800 FU United States National Science Foundation; DECC/Defra [GA01101]; Ministry of the Environment of Japan [A-071]; European Union [SCOUT-O3] FX The National Center for Atmospheric Research is sponsored by the United States National Science Foundation. The work of N. Butchart and S. Hardiman was supported by the Joint DECC and Defra Integrated Climate Programme - DECC/Defra (GA01101). We acknowledge the modeling groups for making their simulations available for this analysis, the Chemistry-Climate Model Validation (CCMVal) Activity for WCRP's (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) project for organizing and coordinating the model data analysis activity, and the British Atmospheric Data Center (BADC) for collecting and archiving the CCMVal model output. CCSRNIES research was supported by the Global Environmental Research Fund of the Ministry of the Environment of Japan (A-071). CCSRNIES and MRI simulations were made with the supercomputer at the National Institute for Environmental Studies, Japan. European contributions were supported by the European Union Integrated Project SCOUT-O3. WACCM-hires simulations were performed at the Centro de Supercomputacion de Galicia. Thanks go to Darryn Waugh for the use of code for producing tables. NR 76 TC 88 Z9 88 U1 3 U2 48 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 23 PY 2010 VL 115 AR D00M08 DI 10.1029/2009JD013638 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 671XH UT WOS:000283546600002 ER PT J AU Hegglin, MI Gettelman, A Hoor, P Krichevsky, R Manney, GL Pan, LL Son, SW Stiller, G Tilmes, S Walker, KA Eyring, V Shepherd, TG Waugh, D Akiyoshi, H Anel, JA Austin, J Baumgaertner, A Bekki, S Braesicke, P Bruhl, C Butchart, N Chipperfield, M Dameris, M Dhomse, S Frith, S Garny, H Hardiman, SC Jockel, P Kinnison, DE Lamarque, JF Mancini, E Michou, M Morgenstern, O Nakamura, T Olivie, D Pawson, S Pitari, G Plummer, DA Pyle, JA Rozanov, E Scinocca, JF Shibata, K Smale, D Teyssedre, H Tian, W Yamashita, Y AF Hegglin, M. I. Gettelman, A. Hoor, P. Krichevsky, R. Manney, G. L. Pan, L. L. Son, S. -W. Stiller, G. Tilmes, S. Walker, K. A. Eyring, V. Shepherd, T. G. Waugh, D. Akiyoshi, H. Anel, J. A. Austin, J. Baumgaertner, A. Bekki, S. Braesicke, P. Bruehl, C. Butchart, N. Chipperfield, M. Dameris, M. Dhomse, S. Frith, S. Garny, H. Hardiman, S. C. Joeckel, P. Kinnison, D. E. Lamarque, J. F. Mancini, E. Michou, M. Morgenstern, O. Nakamura, T. Olivie, D. Pawson, S. Pitari, G. Plummer, D. A. Pyle, J. A. Rozanov, E. Scinocca, J. F. Shibata, K. Smale, D. Teyssedre, H. Tian, W. Yamashita, Y. TI Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CHEMISTRY-CLIMATE MODEL; QUANTITATIVE PERFORMANCE METRICS; IN-SITU MEASUREMENTS; IMK-IAA PROCESSOR; MIDDLE ATMOSPHERE; WATER-VAPOR; VERTICAL-RESOLUTION; GENERAL-CIRCULATION; TROPOPAUSE REGION; TRANSPORT MODELS AB A multimodel assessment of the performance of chemistry-climate models (CCMs) in the extratropical upper troposphere/lower stratosphere (UTLS) is conducted for the first time. Process-oriented diagnostics are used to validate dynamical and transport characteristics of 18 CCMs using meteorological analyses and aircraft and satellite observations. The main dynamical and chemical climatological characteristics of the extratropical UTLS are generally well represented by the models, despite the limited horizontal and vertical resolution. The seasonal cycle of lowermost stratospheric mass is realistic, however with a wide spread in its mean value. A tropopause inversion layer is present in most models, although the maximum in static stability is located too high above the tropopause and is somewhat too weak, as expected from limited model resolution. Similar comments apply to the extratropical tropopause transition layer. The seasonality in lower stratospheric chemical tracers is consistent with the seasonality in the Brewer-Dobson circulation. Both vertical and meridional tracer gradients are of similar strength to those found in observations. Models that perform less well tend to use a semi-Lagrangian transport scheme and/or have a very low resolution. Two models, and the multimodel mean, score consistently well on all diagnostics, while seven other models score well on all diagnostics except the seasonal cycle of water vapor. Only four of the models are consistently below average. The lack of tropospheric chemistry in most models limits their evaluation in the upper troposphere. Finally, the UTLS is relatively sparsely sampled by observations, limiting our ability to quantitatively evaluate many aspects of model performance. C1 [Hegglin, M. I.; Krichevsky, R.; Walker, K. A.; Shepherd, T. G.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Akiyoshi, H.; Nakamura, T.; Yamashita, Y.] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Anel, J. A.] Univ Vigo, Environm Phys Lab, E-32004 Orense, Spain. [Austin, J.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. [Hoor, P.; Baumgaertner, A.; Bruehl, C.; Joeckel, P.] Max Planck Inst Chem, D-55020 Mainz, Germany. [Bekki, S.] CNRS INSU, UMPC, UVSQ, Inst Pierre Simone Laplace,LATMOS, F-75252 Paris, France. [Braesicke, P.; Morgenstern, O.; Pyle, J. A.] Univ Cambridge, Dept Chem, Cambridge CB2 1TN, England. [Butchart, N.; Hardiman, S. C.] Met Off, Exeter EX1 3PB, Devon, England. [Chipperfield, M.; Dhomse, S.; Tian, W.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Eyring, V.; Dameris, M.; Garny, H.; Joeckel, P.] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, D-82234 Oberpfaffenhofen, Wessling, Germany. [Frith, S.; Pawson, S.] NASA, Goddard Space Flight Ctr, Global Modelling & Assimilat Off, Greenbelt, MD 20771 USA. [Gettelman, A.; Pan, L. L.; Tilmes, S.; Kinnison, D. E.; Lamarque, J. F.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80305 USA. [Mancini, E.; Pitari, G.] Univ Aquila, Dipartimento Fis, I-67100 Laquila, Italy. [Manney, G. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Michou, M.; Olivie, D.; Teyssedre, H.] Meteo France, CNRS, GAME CNRM, F-31400 Toulouse, France. [Morgenstern, O.; Smale, D.] Natl Inst Water & Atmospher Res, Lauder, New Zealand. [Plummer, D. A.] Environm Canada, Toronto, ON M3H 5T4, Canada. [Rozanov, E.] Phys Meteorol Observ Davos, CH-7260 Davos, Switzerland. [Scinocca, J. F.] Canadian Ctr Climate Modelling & Anal, Victoria, BC V8P 5C2, Canada. [Shibata, K.] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Son, S. -W.] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ H3A 2T5, Canada. [Stiller, G.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, D-76021 Karlsruhe, Germany. [Waugh, D.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Manney, G. L.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. [Walker, K. A.] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Rozanov, E.] ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland. RP Hegglin, MI (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM michaela@atmosp.physics.utoronto.ca RI Pawson, Steven/I-1865-2014; Pitari, Giovanni/O-7458-2016; Eyring, Veronika/O-9999-2016; Hegglin, Michaela/D-7528-2017; Braesicke, Peter/D-8330-2016; hoor, peter/G-5421-2010; Jockel, Patrick/C-3687-2009; Dhomse, Sandip/C-8198-2011; Rozanov, Eugene/A-9857-2012; Stiller, Gabriele/A-7340-2013; Baumgaertner, Andreas/C-4830-2011; Chipperfield, Martyn/H-6359-2013; Son, Seok-Woo /A-8797-2013; Lamarque, Jean-Francois/L-2313-2014; Pan, Laura/A-9296-2008; bekki, slimane/J-7221-2015; Nakamura, Tetsu/M-7914-2015 OI Pawson, Steven/0000-0003-0200-717X; Pitari, Giovanni/0000-0001-7051-9578; Eyring, Veronika/0000-0002-6887-4885; Hegglin, Michaela/0000-0003-2820-9044; Mancini, Eva/0000-0001-7071-0292; Morgenstern, Olaf/0000-0002-9967-9740; Braesicke, Peter/0000-0003-1423-0619; hoor, peter/0000-0001-6582-6864; Jockel, Patrick/0000-0002-8964-1394; Dhomse, Sandip/0000-0003-3854-5383; Rozanov, Eugene/0000-0003-0479-4488; Stiller, Gabriele/0000-0003-2883-6873; Baumgaertner, Andreas/0000-0002-4740-0701; Chipperfield, Martyn/0000-0002-6803-4149; Lamarque, Jean-Francois/0000-0002-4225-5074; Pan, Laura/0000-0001-7377-2114; bekki, slimane/0000-0002-5538-0800; Nakamura, Tetsu/0000-0002-2056-7392 FU Canadian Foundation for Climate and Atmospheric Sciences (CFCAS); Canadian Space Agency (CSA) through the C-SPARC network; National Aeronautics and Space Administration; Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan [19340138]; Ministry of the Environment of Japan [A-071, A-0903]; DECC/Defra [GA01101]; European Commission [SCOUT-O3] FX Thanks go to Diane Pendlebury and Mike Neish (University of Toronto) for technical assistance with figures and the CCMVal-2 data. M. I. Hegglin has been supported by the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS) and the Canadian Space Agency (CSA) through the C-SPARC network, which supports CMAM. Research at the Jet Propulsion Laboratory, California Institute of Technology was done under contract with the National Aeronautics and Space Administration. CCSRNIES research was supported by a grant-in-aid for scientific research from Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan (19340138) and the Global Environmental Research Fund of the Ministry of the Environment of Japan (A-071 and A-0903). Both CCSRNIES and MRI simulations were completed with the supercomputer at the National Institute for Environmental Studies (NIES), Japan. The contribution of the Met Office Hadley Centre was supported by the Joint DECC and Defra Integrated Climate Programme, DECC/Defra (GA01101). European contributions were supported by the European Commission through the SCOUT-O3 project under the 6th Framework Programme. WACCM-hires simulations were performed at the Centro de Supercomputacion de Galicia. We acknowledge the Chemistry-Climate Model Validation (CCMVal) Activity of WCRP's (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) project for organizing and coordinating the model data analysis activity, and the British Atmospheric Data Centre (BADC) for collecting and archiving the CCMVal model output. NR 100 TC 38 Z9 38 U1 0 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 23 PY 2010 VL 115 AR D00M09 DI 10.1029/2010JD013884 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 671XH UT WOS:000283546600006 ER PT J AU Schmidt, KS Pilewskie, P Mayer, B Wendisch, M Kindel, B Platnick, S King, MD Wind, G Arnold, GT Tian, L Heymsfield, G Kalesse, H AF Schmidt, K. Sebastian Pilewskie, Peter Mayer, Bernhard Wendisch, Manfred Kindel, Bruce Platnick, Steven King, Michael D. Wind, Gala Arnold, G. Tom Tian, Lin Heymsfield, Gerald Kalesse, Heike TI Apparent absorption of solar spectral irradiance in heterogeneous ice clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SHORTWAVE EXPERIMENT ARESE; RADIATIVE HORIZONTAL TRANSPORT; REMOTE-SENSING PROBLEMS; AIRCRAFT MEASUREMENTS; STRATOCUMULUS CLOUDS; OPTICAL-THICKNESS; PHOTON TRANSPORT; FRACTAL CLOUDS; WATER-VAPOR; ATMOSPHERE AB Coordinated flight legs of two aircraft above and below extended ice clouds played an important role in the Tropical Composition, Cloud and Climate Coupling Experiment (Costa Rica, 2007). The Solar Spectral Flux Radiometer measured up- and downward irradiance on the high-altitude (ER-2) and the low-altitude (DC-8) aircraft, which allowed deriving apparent absorption on a point-by-point basis along the flight track. Apparent absorption is the vertical divergence of irradiance, calculated from the difference of net flux at the top and bottom of a cloud. While this is the only practical method of deriving absorption from aircraft radiation measurements, it differs from true absorption when horizontal flux divergence is nonzero. Differences between true and apparent absorption are inevitable in any inhomogeneous atmosphere, especially clouds. We show, for the first time, the spectral shape of measured apparent absorption and compare with results from a three-dimensional radiative transfer model. The model cloud field is created from optical thickness and effective radius retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator and from reflectivity profiles from the Cloud Radar System, both on board the ER-2. Although the spectral shape is reproduced by the model calculations, the measured apparent absorption in the visible spectral range is higher than the model results along extended parts of the flight leg. This is possibly due to a net loss of photons into neighboring cirrus-free areas that are not contained within the model domain. C1 [Schmidt, K. Sebastian; Pilewskie, Peter; Kindel, Bruce; King, Michael D.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Mayer, Bernhard] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, D-82234 Oberpfaffenhofen, Wessling, Germany. [Mayer, Bernhard] Univ Munich, Inst Meteorol, D-8000 Munich, Germany. [Wendisch, Manfred] Univ Leipzig, Inst Meteorol, D-04103 Leipzig, Germany. [Platnick, Steven; Wind, Gala; Arnold, G. Tom; Tian, Lin; Heymsfield, Gerald] NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA. [Kalesse, Heike] Johannes Gutenberg Univ Mainz, Inst Phys Atmosphare, D-55099 Mainz, Germany. [Wind, Gala; Arnold, G. Tom] Sci Syst & Applicat Inc, Lanham, MD USA. RP Schmidt, KS (reprint author), Univ Colorado, Atmospher & Space Phys Lab, 392 Campus Box, Boulder, CO 80309 USA. EM sebastian.schmidt@lasp.colorado.edu RI King, Michael/C-7153-2011; Mayer, Bernhard/B-3397-2011; SCHMIDT, KONRAD SEBASTIAN/C-1258-2013; Wendisch, Manfred/E-4175-2013; Platnick, Steven/J-9982-2014 OI King, Michael/0000-0003-2645-7298; Mayer, Bernhard/0000-0002-3358-0190; SCHMIDT, KONRAD SEBASTIAN/0000-0003-3899-228X; Wendisch, Manfred/0000-0002-4652-5561; Platnick, Steven/0000-0003-3964-3567 FU NASA [NNX07AL12G, NNX08AR39G] FX The first author was funded under the NASA TC4 project (NNX07AL12G), as were the deployment of MAS (NNX08AR39G) and CRS on board the NASA ER-2 aircraft. Warren Gore and Antonio Trias (NASA Ames Research Center) integrated and calibrated the SSFR on board the NASA ER-2 and DC-8, and we thank them for their support during the experiment. The DC-8 dropsondes were launched by Mike Kurylo and Hal Maring (NASA headquarters). The GOES image was provided by courtesy of NASA Langley Research Center. The NASA Earth Science Project Office team managed project logistics in Costa Rica and elsewhere. This paper was partly written while the first author worked as a guest scientist at the Meteorological Institute of the University for Natural Resources and Applied Life Sciences in Vienna. Thanks to colleagues in Austria for their hospitality and discussions. NR 65 TC 7 Z9 7 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 23 PY 2010 VL 115 AR D00J22 DI 10.1029/2009JD013124 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 671XH UT WOS:000283546600001 ER PT J AU Tobiska, WK Crowley, G Oh, SJ Guhathakurta, M AF Tobiska, W. Kent Crowley, Geoff Oh, Seung Jun Guhathakurta, Madhulika TI Space Weather Gets Real-on Smartphones SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article C1 [Tobiska, W. Kent] Utah State Univ, Space Weather Ctr, Logan, UT 84322 USA. [Crowley, Geoff] ASTRA, Boulder, CO USA. [Oh, Seung Jun] Space Environm Lab, Seoul, South Korea. [Guhathakurta, Madhulika] NASA, Sci Miss Directorate, Heliophys Div, Washington, DC 20546 USA. RP Tobiska, WK (reprint author), Utah State Univ, Space Weather Ctr, Logan, UT 84322 USA. EM ktobiska@spacenvironment.net NR 4 TC 4 Z9 4 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD OCT 23 PY 2010 VL 8 AR S10006 DI 10.1029/2010SW000619 PG 5 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 671YU UT WOS:000283551000001 ER PT J AU Takashima, H Eguchi, N Read, W AF Takashima, Hisahiro Eguchi, Nawo Read, William TI A short-duration cooling event around the tropical tropopause and its effect on water vapor SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID RADIO OCCULTATION DATA; TEMPERATURES; LAYER AB For the 2008/2009 winter, extremely low temperatures near the tropical tropopause (similar to 83 hPa) were observed at the beginning of February 2009 by COSMIC over the western Pacific and over eastern Pacific-South America in association with a wave response to the tropical heat source. At the same time, the water vapor field at 83 hPa detected from Aura MLS recorded a minimum, with a higher frequency of cirrus cloud observed by CALIOP. Although the temperature minima rapidly disappeared after the event, one possible interpretation is that the low water-vapor concentration remained at this level and spread gradually over the entire tropics, finally impacting on the cold phase of the atmospheric tape recorder. However, further study is required to establish a link between the large-scale reduction in water vapor and the dehydration that occurred during the cold event in early February. Citation: Takashima, H., N. Eguchi, and W. Read (2010), A short-duration cooling event around the tropical tropopause and its effect on water vapor, Geophys. Res. Lett., 37, L20804, doi:10.1029/2010GL044505. C1 [Takashima, Hisahiro] Japan Agcy Marine Earth Sci & Technol, Kanazawa Ku, Kanagawa 2360001, Japan. [Eguchi, Nawo] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Read, William] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Takashima, H (reprint author), Japan Agcy Marine Earth Sci & Technol, Kanazawa Ku, 3173-25 Showa Machi, Kanagawa 2360001, Japan. EM hisahiro@jamstec.go.jp NR 22 TC 4 Z9 4 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 22 PY 2010 VL 37 AR L20804 DI 10.1029/2010GL044505 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 671WY UT WOS:000283545600003 ER PT J AU Hudson, SR Warren, SG Kato, S AF Hudson, Stephen R. Warren, Stephen G. Kato, Seiji TI A comparison of shortwave reflectance over the East Antarctic Plateau observed by CERES to that estimated from surface reflectance observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID IMAGING SPECTRORADIOMETER MISR; BIDIRECTIONAL REFLECTANCE; SOLAR-RADIATION; SNOW SURFACE; ULTRAVIOLET; INSTRUMENT; GREENLAND; MISSION; ICE AB Spectral albedo and bidirectional reflectance of snow were measured at Dome C on the East Antarctic Plateau for wavelengths of 350-2400 nm and solar zenith angles of 52 degrees-87 degrees. A parameterization of bidirectional reflectance, based on those measurements, is used as the lower boundary condition in the atmospheric radiation model SBDART to calculate radiance and flux at the top of the atmosphere (TOA). The model's atmospheric profile is based on radiosoundings at Dome C and ozonesoundings at the South Pole. Computed TOA radiances are integrated over wavelength for comparison with the Clouds and the Earth's Radiant Energy System (CERES) shortwave channel. CERES radiance observations and flux estimates from four clear days in January 2004 and January 2005 from within 200 km of Dome C are compared with the TOA radiances and fluxes computed for the same solar zenith angle and viewing geometry, providing 11,000 comparisons. The measured radiance and flux are lower than the computed values. The median difference is about 7% for CERES on Terra, and 9% on Aqua. Sources of uncertainty in the model and observations are examined in detail and suggest that the measured values should be less than the computed values, but only by 1.7% +/- 4%. The source of the discrepancy of about 6% cannot be identified here; however, the modeled values do agree with observations from another satellite instrument (Multiangle Imaging Spectroradiometer), suggesting that the CERES calibration must be considered a possible source of the discrepancy. C1 [Hudson, Stephen R.] Polar Environm Ctr, Norwegian Polar Inst, N-9296 Tromso, Norway. [Warren, Stephen G.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Kato, Seiji] NASA Langley Res Ctr, Climate Sci Branch, Hampton, VA 23681 USA. RP Hudson, SR (reprint author), Polar Environm Ctr, Norwegian Polar Inst, N-9296 Tromso, Norway. EM hudson@npolar.no; sgw@atmos.washington.edu; seiji.kato@nasa.gov FU National Science Foundation [OPP-00-03826, ANT-06-36993]; Norwegian Research Council [176096/S30] FX We thank Richard Brandt, Bruce Wielicki, Norman Loeb, Tom Charlock, and Zhonghai Jin for useful discussions, and two anonymous reviewers who provided comments that improved the paper. David Longenecker provided the NOAA ESRL radiation data from the South Pole that were used in section 4.1.3. CERES and MISR data were obtained from the Atmospheric Science Data Center at the NASA Langley Research Center. This research was supported by National Science Foundation grants OPP-00-03826 and ANT-06-36993. Hudson also received funding from the Norwegian Research Council through its IPY programme and the project iAOOS Norway (grant 176096/S30). NR 27 TC 4 Z9 4 U1 2 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 22 PY 2010 VL 115 AR D20110 DI 10.1029/2010JD013912 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 671XG UT WOS:000283546500004 ER PT J AU Jackman, CM Arridge, CS Slavin, JA Milan, SE Lamy, L Dougherty, MK Coates, AJ AF Jackman, C. M. Arridge, C. S. Slavin, J. A. Milan, S. E. Lamy, L. Dougherty, M. K. Coates, A. J. TI In situ observations of the effect of a solar wind compression on Saturn's magnetotail SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID KILOMETRIC RADIATION; SUDDEN IMPULSES; MAGNETIC-FIELD; GROWTH PHASE; PRESSURE; EARTH; RADIO; MAGNETOSPHERE; SUBSTORMS; AURORAE AB In this paper we explore the dynamic response of Saturn's magnetotail to an episode of solar wind compression that took place while Cassini was sampling Saturn's nightside equatorial magnetosphere in 2006. Following an initial increase in solar wind dynamic pressure the magnetosphere was compressed, but over several subsequent days the flaring of the tail increased as open flux built up in the tail lobes. Several days later the current sheet was displaced southward from its previously hinged position, and magnetic signatures consistent with the passage of a plasmoid were observed. Concurrently, Saturn's kilometric radio emissions were enhanced and the spectrum displayed a continuous extension to lower frequency, corresponding to radio sources detected at higher altitudes. We suggest that all of the above features are a common consequence of the impact of a solar wind compression on Saturn's magnetosphere. C1 [Jackman, C. M.; Lamy, L.; Dougherty, M. K.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. [Arridge, C. S.; Coates, A. J.] Univ Coll London, Dept Space & Climate Phys, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Arridge, C. S.; Coates, A. J.] UCL Birkbeck, Ctr Planetary Sci, London, England. [Milan, S. E.] Univ Leicester, Radio & Space Plasma Phys Grp, Leicester LE1 7RH, Leics, England. [Slavin, J. A.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. RP Jackman, CM (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Prince Consort Rd, London SW7 2BW, England. EM c.jackman@imperial.ac.uk RI Arridge, Christopher/A-2894-2009; Coates, Andrew/C-2396-2008; Slavin, James/H-3170-2012; OI Arridge, Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125; Slavin, James/0000-0002-9206-724X; Jackman, Caitriona/0000-0003-0635-7361 FU Science and Technology Facilities Council; STFC [ST/G007462/1]; CNES agency FX Cassini data activities at Imperial College and Mullard Space Science Laboratory were funded by Science and Technology Facilities Council. C.M.J. would like to thank Neal Powell at Imperial for artwork. C. S. A. was funded by an STFC Postdoctoral fellowship under grant ST/G007462/1. C. S. A. would like to thank G.-R. Fouad for useful discussions. We thank K. C. Hansen and B. Zieger for providing solar wind propagations from their Michigan Solar Wind Model. We acknowledge P. Zarka and B. Cecconi for development of RPWS data processing and the support of the CNES agency. NR 51 TC 17 Z9 17 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 22 PY 2010 VL 115 AR A10240 DI 10.1029/2010JA015312 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 671YJ UT WOS:000283549900003 ER PT J AU Colaprete, A Schultz, P Heldmann, J Wooden, D Shirley, M Ennico, K Hermalyn, B Marshall, W Ricco, A Elphic, RC Goldstein, D Summy, D Bart, GD Asphaug, E Korycansky, D Landis, D Sollitt, L AF Colaprete, Anthony Schultz, Peter Heldmann, Jennifer Wooden, Diane Shirley, Mark Ennico, Kimberly Hermalyn, Brendan Marshall, William Ricco, Antonio Elphic, Richard C. Goldstein, David Summy, Dustin Bart, Gwendolyn D. Asphaug, Erik Korycansky, Don Landis, David Sollitt, Luke TI Detection of Water in the LCROSS Ejecta Plume SO SCIENCE LA English DT Article ID LUNAR; SURFACE; MOON; ICE AB Several remote observations have indicated that water ice may be presented in permanently shadowed craters of the Moon. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was designed to provide direct evidence (1). On 9 October 2009, a spent Centaur rocket struck the persistently shadowed region within the lunar south pole crater Cabeus, ejecting debris, dust, and vapor. This material was observed by a second "shepherding" spacecraft, which carried nine instruments, including cameras, spectrometers, and a radiometer. Near-infrared absorbance attributed to water vapor and ice and ultraviolet emissions attributable to hydroxyl radicals support the presence of water in the debris. The maximum total water vapor and water ice within the instrument field of view was 155 +/- 12 kilograms. Given the estimated total excavated mass of regolith that reached sunlight, and hence was observable, the concentration of water ice in the regolith at the LCROSS impact site is estimated to be 5.6 +/- 2.9% by mass. In addition to water, spectral bands of a number of other volatile compounds were observed, including light hydrocarbons, sulfur-bearing species, and carbon dioxide. C1 [Colaprete, Anthony; Heldmann, Jennifer; Wooden, Diane; Shirley, Mark; Ennico, Kimberly; Marshall, William; Ricco, Antonio; Elphic, Richard C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Schultz, Peter; Hermalyn, Brendan] Brown Univ, Providence, RI 02912 USA. [Goldstein, David; Summy, Dustin] Univ Texas Austin, Austin, TX 78712 USA. [Bart, Gwendolyn D.] Univ Idaho, Moscow, ID 83844 USA. [Asphaug, Erik; Korycansky, Don] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Landis, David] Aurora Design & Technol, Palm Harbor, FL 34685 USA. [Sollitt, Luke] The Citadel, Charleston, SC 29409 USA. [Marshall, William] Univ Space Res Assoc, Mountain View, CA 94043 USA. RP Colaprete, A (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Anthony.Colaprete-1@nasa.gov RI Bart, Gwendolyn/B-1365-2009; Ricco, Antonio/A-5273-2010; Ennico, Kimberly/L-9606-2014; OI Bart, Gwendolyn/0000-0002-4768-2972; Ricco, Antonio/0000-0002-2355-4984 FU LCROSS Project; NASA's Exploration Systems Mission Directorate (ESMD); NASA Science Mission Directorate (SMD); LRO FX We thank the LCROSS Project and NASA's Exploration Systems Mission Directorate (ESMD) and NASA Science Mission Directorate (SMD) for support, and are very grateful to the LRO project and the LRO instrument leads for supporting the LCROSS targeting and impact observations, and for the three referees who provided reviews that greatly improved this paper. R.C.E. was supported by an LRO Participating Scientist grant. NR 28 TC 216 Z9 220 U1 6 U2 39 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 22 PY 2010 VL 330 IS 6003 BP 463 EP 468 DI 10.1126/science.1186986 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 669EL UT WOS:000283329100028 PM 20966242 ER PT J AU Schultz, PH Hermalyn, B Colaprete, A Ennico, K Shirley, M Marshall, WS AF Schultz, Peter H. Hermalyn, Brendan Colaprete, Anthony Ennico, Kimberly Shirley, Mark Marshall, William S. TI The LCROSS Cratering Experiment SO SCIENCE LA English DT Article ID MOON; ATMOSPHERE; IMPACTS; SURFACE; WATER AB As its detached upper-stage launch vehicle collided with the surface, instruments on the trailing Lunar Crater Observation and Sensing Satellite (LCROSS) Shepherding Spacecraft monitored the impact and ejecta. The faint impact flash in visible wavelengths and thermal signature imaged in the mid-infrared together indicate a low-density surface layer. The evolving spectra reveal not only OH within sunlit ejecta but also other volatile species. As the Shepherding Spacecraft approached the surface, it imaged a 25- to-30-meter-diameter crater and evidence of a high-angle ballistic ejecta plume still in the process of returning to the surface-an evolution attributed to the nature of the impactor. C1 [Schultz, Peter H.; Hermalyn, Brendan] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Colaprete, Anthony; Ennico, Kimberly; Shirley, Mark; Marshall, William S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Marshall, William S.] Univ Space Res Assoc, Mountain View, CA 94043 USA. RP Schultz, PH (reprint author), Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. EM peter_schultz@brown.edu RI Ennico, Kimberly/L-9606-2014 FU LCROSS Project; NASA's Exploration Systems Mission Directorate (ESMD); NASA Science Mission Directorate (SMD); NASA FX We thank the LCROSS Project and NASA's Exploration Systems Mission Directorate (ESMD) and NASA Science Mission Directorate (SMD; Planetary Geology and Geophysics) for support. We are also very grateful to the NASA Ames Vertical Gun Range technical team and the Thermophysics Facilities Branch at NASA Ames for their continued support in experiments. B. H. was supported through a NASA Rhode Island Space Grant fellowship for part of this study. NR 22 TC 56 Z9 57 U1 2 U2 18 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 22 PY 2010 VL 330 IS 6003 BP 468 EP 472 DI 10.1126/science.1187454 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 669EL UT WOS:000283329100029 PM 20966243 ER PT J AU Gladstone, GR Hurley, DM Retherford, KD Feldman, PD Pryor, WR Chaufray, JY Versteeg, M Greathouse, TK Steffl, AJ Throop, H Parker, JW Kaufmann, DE Egan, AF Davis, MW Slater, DC Mukherjee, J Miles, PF Hendrix, AR Colaprete, A Stern, SA AF Gladstone, G. Randall Hurley, Dana M. Retherford, Kurt D. Feldman, Paul D. Pryor, Wayne R. Chaufray, Jean-Yves Versteeg, Maarten Greathouse, Thomas K. Steffl, Andrew J. Throop, Henry Parker, Joel Wm. Kaufmann, David E. Egan, Anthony F. Davis, Michael W. Slater, David C. Mukherjee, Joey Miles, Paul F. Hendrix, Amanda R. Colaprete, Anthony Stern, S. Alan TI LRO-LAMP Observations of the LCROSS Impact Plume SO SCIENCE LA English DT Article ID MOLECULAR-HYDROGEN; BAND SYSTEM; LUNAR; MISSION; TABLE AB On 9 October 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) sent a kinetic impactor to strike Cabeus crater, on a mission to search for water ice and other volatiles expected to be trapped in lunar polar soils. The Lyman Alpha Mapping Project (LAMP) ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO) observed the plume generated by the LCROSS impact as far-ultraviolet emissions from the fluorescence of sunlight by molecular hydrogen and carbon monoxide, plus resonantly scattered sunlight from atomic mercury, with contributions from calcium and magnesium. The observed light curve is well simulated by the expansion of a vapor cloud at a temperature of similar to 1000 kelvin, containing similar to 570 kilograms (kg) of carbon monoxide, similar to 140 kg of molecular hydrogen, similar to 160 kg of calcium, similar to 120 kg of mercury, and similar to 40 kg of magnesium. C1 [Gladstone, G. Randall; Retherford, Kurt D.; Chaufray, Jean-Yves; Versteeg, Maarten; Greathouse, Thomas K.; Davis, Michael W.; Slater, David C.; Mukherjee, Joey; Miles, Paul F.] SW Res Inst, San Antonio, TX 78238 USA. [Hurley, Dana M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Feldman, Paul D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Pryor, Wayne R.] Cent Arizona Coll, Coolidge, AZ 85228 USA. [Steffl, Andrew J.; Throop, Henry; Parker, Joel Wm.; Kaufmann, David E.; Egan, Anthony F.; Stern, S. Alan] SW Res Inst, Boulder, CO 80302 USA. [Hendrix, Amanda R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Colaprete, Anthony] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Gladstone, GR (reprint author), SW Res Inst, San Antonio, TX 78238 USA. EM rgladstone@swri.edu RI Hurley, Dana/F-4488-2015 OI Hurley, Dana/0000-0003-1052-1494 FU NASA; NASA Lunar Science Institute [NNA09DB31A] FX We thank the LRO project and other LRO instrument leads for supporting the LCROSS support observations. In particular we thank C. Tooley, D. Everett, M. Houghton, A. Bartels, R. Saylor, R. Vondrak, G. Chin, J. Keller, T. Johnson, and C. Baker for making it happen. We also thank D. Goldstein and D. Summy for useful simulations and predictions, R. Killen and D. Boice for helpful discussions, and the referees for excellent comments. The LAMP is funded by NASA, whose financial support we gratefully acknowledge. One of us (D.M.H.) also acknowledges support from NASA Lunar Science Institute grant NNA09DB31A. NR 22 TC 57 Z9 58 U1 1 U2 14 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 22 PY 2010 VL 330 IS 6003 BP 472 EP 476 DI 10.1126/science.1186474 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 669EL UT WOS:000283329100030 PM 20966244 ER PT J AU Hayne, PO Greenhagen, BT Foote, MC Siegler, MA Vasavada, AR Paige, DA AF Hayne, Paul O. Greenhagen, Benjamin T. Foote, Marc C. Siegler, Matthew A. Vasavada, Ashwin R. Paige, David A. TI Diviner Lunar Radiometer Observations of the LCROSS Impact SO SCIENCE LA English DT Article ID SURFACE AB The Lunar Reconnaissance Orbiter (LRO) Diviner instrument detected a thermal emission signature 90 seconds after the Lunar Crater Observation and Sensing Satellite (LCROSS) Centaur impact and on two subsequent orbits. The impact heated a region of 30 to 200 square meters to at least 950 kelvin, providing a sustained heat source for the sublimation of up to similar to 300 kilograms of water ice during the 4 minutes of LCROSS post-impact observations. Diviner visible observations constrain the mass of the sunlit ejecta column to be similar to 10(-6) to 10(-5) kilograms per square meter, which is consistent with LCROSS estimates used to derive the relative abundance of the ice within the regolith. C1 [Hayne, Paul O.; Siegler, Matthew A.; Paige, David A.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Greenhagen, Benjamin T.; Foote, Marc C.; Vasavada, Ashwin R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hayne, PO (reprint author), Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. EM phayne@ucla.edu RI Greenhagen, Benjamin/C-3760-2016 NR 14 TC 24 Z9 25 U1 1 U2 7 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 22 PY 2010 VL 330 IS 6003 BP 477 EP 479 DI 10.1126/science.1197135 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 669EL UT WOS:000283329100031 PM 20966245 ER PT J AU Paige, DA Siegler, MA Zhang, JA Hayne, PO Foote, EJ Bennett, KA Vasavada, AR Greenhagen, BT Schofield, JT McCleese, DJ Foote, MC DeJong, E Bills, BG Hartford, W Murray, BC Allen, CC Snook, K Soderblom, LA Calcutt, S Taylor, FW Bowles, NE Bandfield, JL Elphic, R Ghent, R Glotch, TD Wyatt, MB Lucey, PG AF Paige, David A. Siegler, Matthew A. Zhang, Jo Ann Hayne, Paul O. Foote, Emily J. Bennett, Kristen A. Vasavada, Ashwin R. Greenhagen, Benjamin T. Schofield, John T. McCleese, Daniel J. Foote, Marc C. DeJong, Eric Bills, Bruce G. Hartford, Wayne Murray, Bruce C. Allen, Carlton C. Snook, Kelly Soderblom, Laurence A. Calcutt, Simon Taylor, Fredric W. Bowles, Neil E. Bandfield, Joshua L. Elphic, Richard Ghent, Rebecca Glotch, Timothy D. Wyatt, Michael B. Lucey, Paul G. TI Diviner Lunar Radiometer Observations of Cold Traps in the Moon's South Polar Region SO SCIENCE LA English DT Article ID WATER ICE; MERCURY; STABILITY; SURFACE; POLES AB Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies. C1 [Paige, David A.; Siegler, Matthew A.; Zhang, Jo Ann; Hayne, Paul O.; Foote, Emily J.; Bennett, Kristen A.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Vasavada, Ashwin R.; Greenhagen, Benjamin T.; Schofield, John T.; McCleese, Daniel J.; Foote, Marc C.; DeJong, Eric; Bills, Bruce G.; Hartford, Wayne] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Murray, Bruce C.] CALTECH, Pasadena, CA 90025 USA. [Allen, Carlton C.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Snook, Kelly] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Soderblom, Laurence A.] US Geol Survey, Flagstaff, AZ 86001 USA. [Calcutt, Simon; Taylor, Fredric W.; Bowles, Neil E.] Univ Oxford, Oxford OX1 3PU, England. [Bandfield, Joshua L.] Univ Washington, Seattle, WA 98195 USA. [Elphic, Richard] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ghent, Rebecca] Univ Toronto, Toronto, ON M5S 3B1, Canada. [Glotch, Timothy D.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Wyatt, Michael B.] Brown Univ, Providence, RI 02912 USA. [Lucey, Paul G.] Univ Hawaii, Honolulu, HI 96822 USA. RP Paige, DA (reprint author), Univ Calif Los Angeles, Dept Earth & Space Sci, 595 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM dap@moon.ucla.edu RI Greenhagen, Benjamin/C-3760-2016; OI Calcutt, Simon/0000-0002-0102-3170 FU National Aeronautics and Space Administration FX We thank the many people at the Jet Propulsion Laboratory and the Goddard Space Flight Center who contributed to the success of the Diviner instrument and the LRO project. We also thank the National Aeronautics and Space Administration for funding this investigation. NR 27 TC 131 Z9 133 U1 2 U2 26 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 22 PY 2010 VL 330 IS 6003 BP 479 EP 482 DI 10.1126/science.1187726 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 669EL UT WOS:000283329100032 PM 20966246 ER PT J AU Mitrofanov, IG Sanin, AB Boynton, WV Chin, G Garvin, JB Golovin, D Evans, LG Harshman, K Kozyrev, AS Litvak, ML Malakhov, A Mazarico, E McClanahan, T Milikh, G Mokrousov, M Nandikotkur, G Neumann, GA Nuzhdin, I Sagdeev, R Shevchenko, V Shvetsov, V Smith, DE Starr, R Tretyakov, VI Trombka, J Usikov, D Varenikov, A Vostrukhin, A Zuber, MT AF Mitrofanov, I. G. Sanin, A. B. Boynton, W. V. Chin, G. Garvin, J. B. Golovin, D. Evans, L. G. Harshman, K. Kozyrev, A. S. Litvak, M. L. Malakhov, A. Mazarico, E. McClanahan, T. Milikh, G. Mokrousov, M. Nandikotkur, G. Neumann, G. A. Nuzhdin, I. Sagdeev, R. Shevchenko, V. Shvetsov, V. Smith, D. E. Starr, R. Tretyakov, V. I. Trombka, J. Usikov, D. Varenikov, A. Vostrukhin, A. Zuber, M. T. TI Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND SO SCIENCE LA English DT Article ID NEAR-SURFACE; ICE DEPOSITS; PROSPECTOR; MERCURY; MOON; MARS AB Hydrogen has been inferred to occur in enhanced concentrations within permanently shadowed regions and, hence, the coldest areas of the lunar poles. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was designed to detect hydrogen-bearing volatiles directly. Neutron flux measurements of the Moon's south polar region from the Lunar Exploration Neutron Detector (LEND) on the Lunar Reconnaissance Orbiter (LRO) spacecraft were used to select the optimal impact site for LCROSS. LEND data show several regions where the epithermal neutron flux from the surface is suppressed, which is indicative of enhanced hydrogen content. These regions are not spatially coincident with permanently shadowed regions of the Moon. The LCROSS impact site inside the Cabeus crater demonstrates the highest hydrogen concentration in the lunar south polar region, corresponding to an estimated content of 0.5 to 4.0% water ice by weight, depending on the thickness of any overlying dry regolith layer. The distribution of hydrogen across the region is consistent with buried water ice from cometary impacts, hydrogen implantation from the solar wind, and/or other as yet unknown sources. C1 [Mitrofanov, I. G.; Sanin, A. B.; Golovin, D.; Kozyrev, A. S.; Litvak, M. L.; Malakhov, A.; Mokrousov, M.; Nuzhdin, I.; Tretyakov, V. I.; Varenikov, A.; Vostrukhin, A.] Russian Acad Sci, Inst Space Res, Moscow 117997, Russia. [Boynton, W. V.; Harshman, K.] Univ Arizona, Tucson, AZ USA. [Chin, G.; Garvin, J. B.; Mazarico, E.; McClanahan, T.; Neumann, G. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Evans, L. G.] Comp Sci Corp, Greenbelt, MD USA. [Milikh, G.; Nandikotkur, G.; Sagdeev, R.; Usikov, D.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Starr, R.] Catholic Univ, Washington, DC USA. [Shevchenko, V.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow, Russia. [Shvetsov, V.] Joint Inst Nucl Res, Dubna, Russia. [Smith, D. E.; Zuber, M. T.] MIT, Cambridge, MA 02139 USA. [Trombka, J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Mitrofanov, IG (reprint author), Russian Acad Sci, Inst Space Res, Moscow 117997, Russia. EM imitrofa@space.ru RI McClanahan, Timothy/C-8164-2012; Chin, Gordon/E-1520-2012; Evans, Larry/F-7462-2012; Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014 OI Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X FU NASA Exploration System Mission Directorate; Russian Federal Space Agency FX The LRO Mission is supported by the NASA Exploration System Mission Directorate, and the LEND investigation is supported by the Russian Federal Space Agency. We acknowledge the LRO Project team at NASA's Goddard Space Flight Center for their outstanding support of the LEND investigation. NR 20 TC 104 Z9 106 U1 1 U2 19 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 22 PY 2010 VL 330 IS 6003 BP 483 EP 486 DI 10.1126/science.1185696 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 669EL UT WOS:000283329100033 PM 20966247 ER PT J AU Mezic, I Loire, S Fonoberov, VA Hogan, P AF Mezic, Igor Loire, S. Fonoberov, Vladimir A. Hogan, P. TI A New Mixing Diagnostic and Gulf Oil Spill Movement SO SCIENCE LA English DT Article ID LAGRANGIAN COHERENT STRUCTURES; APERIODIC FLOWS; FLUID-FLOWS; 2-DIMENSIONAL TURBULENCE AB Chaotic advection has served as the paradigm for mixing in fluid flows with simple time dependence. Its skeletal structure is based on analysis of invariant attracting and repelling manifolds in fluid flows. Here we develop a finite-time theory for two-dimensional incompressible fluid flows with arbitrary time dependence and introduce a new mixing diagnostic based on it. Besides stretching events around attracting and repelling manifolds, this allows us to detect hyperbolic mixing zones. We used the new diagnostic to forecast the spatial location and timing of oil washing ashore in Plaquemines Parish and Grand Isle, Louisiana, and Pensacola, Florida, in May 2010 and the flow of oil toward Panama City Beach, Florida, in June 2010. C1 [Mezic, Igor; Loire, S.] Univ Calif Santa Barbara, Ctr Control Dynam Syst & Computat, Santa Barbara, CA 93106 USA. [Mezic, Igor; Loire, S.] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. [Fonoberov, Vladimir A.] Aimdyn, Santa Barbara, CA 93101 USA. [Hogan, P.] USN, Res Lab, Stennis Space Ctr, Stennis Space Ctr, MS 39529 USA. RP Mezic, I (reprint author), Univ Calif Santa Barbara, Ctr Control Dynam Syst & Computat, Santa Barbara, CA 93106 USA. EM mezic@engineering.ucsb.edu FU Aimdyn; Naval Research Laboratory in Stennis, MS FX We thank B. Lipphardt of the University of Delaware, whose initial calculations showed the potential of the concepts described here in the context of the Gulf oil spill; and G. Haller for useful comments. The work of I.M., S.L., and V.A.F. was supported by Aimdyn. I.M. and S.L. were consultants for Aimdyn. P.H.'s work was supported by the Naval Research Laboratory in Stennis, MS. We are thankful to the leadership of the U.S. Coast Guard at the Cocodrie, Louisiana, site for their interest in this work. NR 24 TC 86 Z9 88 U1 1 U2 31 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 22 PY 2010 VL 330 IS 6003 BP 486 EP 489 DI 10.1126/science.1194607 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 669EL UT WOS:000283329100034 PM 20813922 ER PT J AU Fleischer, I Bruckner, J Schroder, C Farrand, W Treguier, E Morris, RV Klingelhofer, G Herkenhoff, K Mittlefehldt, D Ashley, J Golombek, M Johnson, JR Jolliff, B Squyres, SW Weitz, C Gellert, R de Souza, PA Cohen, BA AF Fleischer, I. Brueckner, J. Schroeder, C. Farrand, W. Treguier, E. Morris, R. V. Klingelhoefer, G. Herkenhoff, K. Mittlefehldt, D. Ashley, J. Golombek, M. Johnson, J. R. Jolliff, B. Squyres, S. W. Weitz, C. Gellert, R. de Souza, P. A. Cohen, B. A. TI Mineralogy and chemistry of cobbles at Meridiani Planum, Mars, investigated by the Mars Exploration Rover Opportunity SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article AB Numerous loose rocks with dimensions of a few centimeters to tens of centimeters and with no obvious physical relationship to outcrop rocks have been observed along the traverse of the Mars Exploration Rover Opportunity. To date, about a dozen of these rocks have been analyzed with Opportunity's contact instruments, providing information about elemental chemistry (Alpha Particle X-ray Spectrometer), iron mineralogy and oxidation states (Mossbauer Spectrometer) and texture (Microscopic Imager). These "cobbles" appear to be impact related, and three distinct groups can be identified on the basis of chemistry and mineralogy. The first group comprises bright fragments of the sulfate-rich bedrock that are compositionally and texturally indistinguishable from outcrop rocks. All other cobbles are dark and are divided into two groups, referred to as the "Barberton group" and the "Arkansas group," after the first specimen of each that was encountered by Opportunity. Barberton group cobbles are interpreted as meteorites with an overall chemistry and mineralogy consistent with a mesosiderite silicate clast composition. Arkansas group cobbles appear to be related to Meridiani outcrop and contain an additional basaltic component. They have brecciated textures, pointing to an impact-related origin during which local bedrock and basaltic material were mixed. C1 [Fleischer, I.; Klingelhoefer, G.] Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55128 Mainz, Germany. [Ashley, J.] Arizona State Univ, Mars Space Flight Facil, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Brueckner, J.] Max Planck Inst Chem, D-55020 Mainz, Germany. [Farrand, W.] Space Sci Inst, Boulder, CO 80301 USA. [Treguier, E.] European Space Astron Ctr, Villanueva De La Canada, Spain. [Cohen, B. A.] NASA, George C Marshall Space Flight Ctr, Lunar Quest Program, Huntsville, AL 35812 USA. [Morris, R. V.; Mittlefehldt, D.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Herkenhoff, K.; Johnson, J. R.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Golombek, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jolliff, B.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Squyres, S. W.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Weitz, C.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Gellert, R.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [de Souza, P. A.] CSIRO, Tasmanian ICT Ctr, Hobart, Tas 7001, Australia. [Schroeder, C.] Univ Tubingen, Ctr Appl Geosci, D-72076 Tubingen, Germany. [Schroeder, C.] Univ Bayreuth, Dept Hydrol, Bayreuth, Germany. RP Fleischer, I (reprint author), Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, Staudinger Weg 9, D-55128 Mainz, Germany. EM fleischi@uni-mainz.de RI Schroder, Christian/B-3870-2009; de Souza, Paulo/B-8961-2008; Centre, TasICT/D-1212-2011; Johnson, Jeffrey/F-3972-2015; OI Schroder, Christian/0000-0002-7935-6039; de Souza, Paulo/0000-0002-0091-8925; Treguier, Erwan/0000-0002-7347-2805 FU German Space Agency (DLR) [50 QM 9902, 50 QM 0005]; University of Mainz FX I.F. and G. K. acknowledge support from the German Space Agency (DLR; contracts 50 QM 9902 (Mossbauer MIMOS II) and 50 QM 0005 (APXS)) and the University of Mainz. We acknowledge the unwavering support of JPL engineering and MER operations staff and the MER Athena Science Team. D. G. Agresti is acknowledged for providing the MERFit program. We thank two external referees for thoughtful reviews of the manuscript. NR 42 TC 9 Z9 9 U1 2 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT 21 PY 2010 VL 115 AR E00F05 DI 10.1029/2010JE003621 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 671XU UT WOS:000283548400002 ER PT J AU Yue, C Zong, QG Zhang, H Wang, YF Yuan, CJ Pu, ZY Fu, SY Lui, ATY Yang, B Wang, CR AF Yue, C. Zong, Q. G. Zhang, H. Wang, Y. F. Yuan, C. J. Pu, Z. Y. Fu, S. Y. Lui, A. T. Y. Yang, B. Wang, C. R. TI Geomagnetic activity triggered by interplanetary shocks SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SUBSTORM EXPANSION ONSETS; MAGNETIC-FIELD; MAGNETOSPHERIC SUBSTORMS; NORTHWARD TURNINGS; BALLOONING INSTABILITY; GEOSYNCHRONOUS ORBIT; EARTHS MAGNETOTAIL; CURRENT DISRUPTION; SPACE WEATHER; PLASMA SHEET AB Interplanetary (IP) shocks can greatly disturb the Earth's magnetosphere, causing the global dynamic changes in the electromagnetic fields and the plasma. In order to investigate this, we have systematically analyzed 106 IP shock events based on OMNI data, GOES, and Los Alamos National Laboratory satellite observations during 1997 -2007. It is revealed that the median value of IMF B(z) keeps negative/positive prior to shock arrival and becomes more negative/positive following the shock arrival. The statistical analysis shows that IP shocks with southward interplanetary magnetic field (IMF) (46%) are likely to increase AE (AL, AU) and PC indices significantly. The amplitude of AE index increases from 200 to 600 nT, AU from 100 to 200 nT, AL from 50 to 400 nT, and PC from 1.5 to 3 approximately in 10 min, which could be a signature of geomagnetic activity/substorms onset (or substorm further intensification). Meanwhile, there is a strong injection of energetic electrons in the dawn region following the shock arrival and a strong depletion in the dusk region 30 min later, showing a clear dawn-dusk asymmetry. On the other hand, there is only the typical shock compression effect for IP shocks with northward IMF (54%). The median value of AE index increased from 80 to 150 nT, AU from 50 to 90 nT, AL index decreased from -30 to -40 nT, and PC index increased from 0.6 to 1.2 in similar to 10 min following the shock arrival. Both individual cases and statistical studies indicate that the magnetosphere-ionosphere system must be preconditioned for a substorm-like geomagnetic activity to be triggered by an IP shock with southward IMF impact, whereas IP shock with northward IMF precondition shows only compression effect. C1 [Yue, C.; Zong, Q. G.; Wang, Y. F.; Yuan, C. J.; Pu, Z. Y.; Fu, S. Y.; Yang, B.; Wang, C. R.] Peking Univ, Inst Space Phys & Appl Technol, Beijing 100871, Peoples R China. [Lui, A. T. Y.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Zhang, H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20769 USA. [Zong, Q. G.] Univ Massachusetts, Ctr Atmospher Res, Lowell, MA USA. RP Yue, C (reprint author), Peking Univ, Inst Space Phys & Appl Technol, Beijing 100871, Peoples R China. EM yuechao@pku.edu.cn; quigang_zong@uml.edu; zypu@pku.edu; Tony.Lui@jhuapl.edu RI Fu, Suiyan/E-9178-2013; Yue, Chao/C-2535-2015 OI Yue, Chao/0000-0001-9720-5210 FU National Natural Science Foundation of China [40831061] FX This work is partly supported by the National Natural Science Foundation of China grants 40831061. We also acknowledge Mr. X. N. Chu for the discussion. NR 67 TC 19 Z9 20 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 21 PY 2010 VL 115 AR A00I05 DI 10.1029/2010JA015356 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 671YI UT WOS:000283549800003 ER PT J AU Lin, Y Williams, TV Cao, W Elsayed-Ali, HE Connell, JW AF Lin, Yi Williams, Tiffany V. Cao, Wei Elsayed-Ali, Hani E. Connell, John W. TI Defect Functionalization of Hexagonal Boron Nitride Nanosheets SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID STONE-WALES DEFECTS; NANOTUBES; SOLUBILIZATION; TEMPERATURES; REACTIVITY; GRAPHENE AB A pristine hexagonal boron nitride (h-BN) powder sample with layered crystalline shectlike particles of similar to 1-10 pm in lateral sizes and a few hundred nanometers in thicknesses was mechanically treated using a ball-mill to intentionally introduce defect sites. h-BN was ball-milled for various tunes and subsequently was functionalized with a long alkyl chain amine via Lewis acid-base interactions between the amino groups and the boron atoms of h-BN to obtain soluble amine-attached nanosheet samples as the products. The functionalized h-ON nanosheet samples were characterized via various microscopic and spectroscopic techniques. The results strongly support a direct correlation between increasing defect site concentrations of the h-ON nanosheet samples and improved reaction efficiency with the amine. This suggests the enhanced reactivity of defect boron atoms in comparison to conjugated ones arm an unperturbed h-ON plane. NMR investigations provided the strongest evidence supporting the hypothesis that the amino groups reacted with the h-ON at specific defect sites induced by ball-milling. The mechanistic implications are discussed. C1 [Lin, Yi] Natl Inst Aerosp, Hampton, VA 23666 USA. [Williams, Tiffany V.; Connell, John W.] NASA Langey Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23681 USA. [Cao, Wei; Elsayed-Ali, Hani E.] Old Dominion Univ, Appl Res Ctr, Newport News, VA 23606 USA. RP Lin, Y (reprint author), Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA. EM yi.lin-1@nasa.gov RI Cao, Wei/E-8950-2011; OI Williams, Tiffany/0000-0003-3463-9200 FU NASA at the Langley Research Center [NNH06CC03B]; Langley Aerospace Research Summer Scholars (LARSS) Program FX We thank David Hartman for XRD measurements. Financial support from the NASA Postdoctoral Program at the Langley Research Center (administered by ORAC through NASA contract NNH06CC03B) and the Langley Aerospace Research Summer Scholars (LARSS) Program (T. V. W) are gratefully acknowledged. NR 36 TC 71 Z9 71 U1 19 U2 147 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 21 PY 2010 VL 114 IS 41 BP 17434 EP 17439 DI 10.1021/jp105454w PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 663AM UT WOS:000282855400026 ER PT J AU Schiminovich, D Catinella, B Kauffmann, G Fabello, S Wang, J Hummels, C Lemonias, J Moran, SM Wu, RN Giovanelli, R Haynes, MP Heckman, TM Basu-Zych, AR Blanton, MR Brinchmann, J Budavari, T Goncalves, T Johnson, BD Kennicutt, RC Madore, BF Martin, CD Rich, MR Tacconi, LJ Thilker, DA Wild, V Wyder, TK AF Schiminovich, David Catinella, Barbara Kauffmann, Guinevere Fabello, Silvia Wang, Jing Hummels, Cameron Lemonias, Jenna Moran, Sean M. Wu, Ronin Giovanelli, Riccardo Haynes, Martha P. Heckman, Timothy M. Basu-Zych, Antara R. Blanton, Michael R. Brinchmann, Jarle Budavari, Tamas Goncalves, Thiago Johnson, Benjamin D. Kennicutt, Robert C. Madore, Barry F. Martin, Christopher D. Rich, Michael R. Tacconi, Linda J. Thilker, David A. Wild, Vivienne Wyder, Ted K. TI The GALEX Arecibo SDSS Survey - II. The star formation efficiency of massive galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: fundamental parameters; radio lines: galaxies; ultraviolet: galaxies ID SURFACE BRIGHTNESS GALAXIES; COLOR-MAGNITUDE DIAGRAM; NEUTRAL GAS GALAXIES; ANTI-VIRGO REGION; FAST ALPHA SURVEY; FORMING GALAXIES; FORMATION RATES; LOCAL UNIVERSE; DISK GALAXIES; SPIRAL GALAXIES AB We use measurements of the HI content, stellar mass and star formation rates (SFRs) in similar to 190 massive galaxies with M(star) > 10(10) M(circle dot) , obtained from the GALEX (Galaxy Evolution Explorer) Arecibo SDSS (Sloan Digital Sky Survey) survey described in Paper I to explore the global scaling relations associated with the bin-averaged ratio of the SFR over the HI mass (i.e. Sigma SFR/Sigma M(HI)), which we call the HI-based star formation efficiency (SFE). Unlike the mean specific star formation rate (sSFR), which decreases with stellar mass and stellar mass surface density, the SFE remains relatively constant across the sample with a value close to SFE = 10(-9.5) yr(-1) (or an equivalent gas consumption time-scale of similar to 3 x 10(9) yr). Specifically, we find little variation in SFE with stellar mass, stellar mass surface density, NUV - r colour and concentration (R(90)/R(50)). We interpret these results as an indication that external processes or feedback mechanisms that control the gas supply are important for regulating star formation in massive galaxies. An investigation into the detailed distribution of SFEs reveals that approximately 5 per cent of the sample shows high efficiencies with SFE > 10(-9) yr(-1), and we suggest that this is very likely due to a deficiency of cold gas rather than an excess SFR. Conversely, we also find a similar fraction of galaxies that appear to be gas-rich for their given sSFR, although these galaxies show both a higher than average gas fraction and lower than average sSFR. Both of these populations are plausible candidates for 'transition' galaxies, showing potential for a change (either decrease or increase) in their sSFR in the near future. We also find that 36 +/- 5 per cent of the total HI mass density and 47 +/- 5 per cent of the total SFR density are found in galaxies with M(star) > 10(10) M(circle dot). C1 [Schiminovich, David; Hummels, Cameron; Lemonias, Jenna] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Catinella, Barbara; Kauffmann, Guinevere; Fabello, Silvia; Wang, Jing] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Wang, Jing] Univ Sci & Technol China, Ctr Astrophys, Hefei 230026, Peoples R China. [Moran, Sean M.; Heckman, Timothy M.; Budavari, Tamas; Thilker, David A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Wu, Ronin; Blanton, Michael R.] New York Univ, Dept Phys, New York, NY 10003 USA. [Giovanelli, Riccardo; Haynes, Martha P.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Basu-Zych, Antara R.] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Brinchmann, Jarle] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Brinchmann, Jarle] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Goncalves, Thiago; Martin, Christopher D.; Wyder, Ted K.] CALTECH, Pasadena, CA 91125 USA. [Johnson, Benjamin D.; Kennicutt, Robert C.] Inst Astron, Cambridge CB3 0HA, England. [Kennicutt, Robert C.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Madore, Barry F.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Rich, Michael R.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Tacconi, Linda J.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Wild, Vivienne] Inst Astrophys Paris, F-75014 Paris, France. RP Schiminovich, D (reprint author), Columbia Univ, Dept Astron, New York, NY 10027 USA. EM ds@astro.columbia.edu RI Brinchmann, Jarle/M-2616-2015; OI Brinchmann, Jarle/0000-0003-4359-8797; Catinella, Barbara/0000-0002-7625-562X FU NSF [AST-0607007]; Brinson Foundation FX We thank the Arecibo staff, in particular Phil Perillat, Ganesan Rajagopalan and the telescope operators for their assistance, and Hector Hernandez for scheduling the observations. RG and MPH acknowledge support from NSF grant AST-0607007 and from the Brinson Foundation. NR 59 TC 62 Z9 63 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 21 PY 2010 VL 408 IS 2 BP 919 EP 934 DI 10.1111/j.1365-2966.2010.17210.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 660KA UT WOS:000282639100018 ER PT J AU Tassis, K Christie, DA Urban, A Pineda, JL Mouschovias, TC Yorke, HW Martel, H AF Tassis, K. Christie, D. A. Urban, A. Pineda, J. L. Mouschovias, T. Ch. Yorke, H. W. Martel, H. TI Do lognormal column-density distributions in molecular clouds imply supersonic turbulence? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE turbulence; methods: numerical; methods: statistical; stars: formation; ISM: clouds; ISM: structure ID PIPE NEBULA; FIELD; FRAGMENTATION; EVOLUTION; FLOWS; DUST AB Recent observations of column densities in molecular clouds find lognormal distributions with power-law high-density tails. These results are often interpreted as indications that supersonic turbulence dominates the dynamics of the observed clouds. We calculate and present the column-density distributions of three clouds, modelled with very different techniques, none of which is dominated by supersonic turbulence. The first star-forming cloud is simulated using smoothed particle hydrodynamics; in this case gravity, opposed only by thermal-pressure forces, drives the evolution. The second cloud is magnetically subcritical with subsonic turbulence, simulated using non-ideal magnetohydrodynamics; in this case the evolution is due to gravitationally-driven ambipolar diffusion. The third cloud is isothermal, self-gravitating and has a smooth density distribution analytically approximated with a uniform inner region and an r(-2) profile at larger radii. We show that in all three cases the column-density distributions are lognormal. Power-law tails develop only at late times (or, in the case of the smooth analytic profile, for strongly centrally concentrated configurations), when gravity dominates all opposing forces. It therefore follows that lognormal column-density distributions are generic features of diverse model clouds, and should not be interpreted as being a consequence of supersonic turbulence. C1 [Tassis, K.; Urban, A.; Pineda, J. L.; Yorke, H. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Christie, D. A.; Mouschovias, T. Ch.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Christie, D. A.; Mouschovias, T. Ch.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Martel, H.] Univ Laval, Dept Phys Genie Phys & Opt, Quebec City, PQ G1K 7P4, Canada. RP Tassis, K (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM tchm@astro.uiuc.edu RI Tassis, Konstantinos/C-3155-2011; OI Tassis, Konstantinos/0000-0002-8831-2038 FU National Science Foundation [NSF AST-07-09206]; Canada Research Chair; NSERC; NASA FX We are grateful to Neal Evans for enlightening discussions. TChM's work is partially supported by the National Science Foundation under grant NSF AST-07-09206 to the University of Illinois. HM is supported by the Canada Research Chair programme and NSERC. This work made extensive use of the NASA Astrophysics Data System and arXiv.org preprint server. AU's research was partially supported by an appointment to the NASA Postdoctoral Programme at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 17 TC 22 Z9 22 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 21 PY 2010 VL 408 IS 2 BP 1089 EP 1094 DI 10.1111/j.1365-2966.2010.17181.x PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 660KA UT WOS:000282639100034 ER PT J AU Landt, H Cheung, CC Healey, SE AF Landt, Hermine Cheung, Chi C. Healey, Stephen E. TI The optical spectra of X-shaped radio galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: nuclei ID ACTIVE GALACTIC NUCLEI; BL LACERTAE OBJECTS; BLACK-HOLE SYSTEM; COMPLETE SAMPLE; SUPERMASSIVE BINARY; SOURCE CANDIDATES; H-BETA; EMISSION; CHANDRA; SPECTROPHOTOMETRY AB X-shaped radio galaxies are defined by their peculiar large-scale radio morphology. In addition to the classical double-lobed structure they have a pair of low-luminosity wings that straddles the nucleus at almost right angles to the active lobes, thus giving the impression of an 'X'. In this paper we study for the first time the optical spectral properties of this object class using a large sample (similar to 50 sources). We find that the X-shaped radio population is composed roughly equally of sources with weak and strong emission-line spectra, which makes them, in combination with the well-known fact that they preferentially have radio powers intermediate between those of Fanaroff-Riley type I (FR I) and type II (FR II) radio galaxies, the archetypal transition population. We do not find evidence in support of the proposition that the X shape is the result of a recent merger: X-shaped radio sources do not have unusually broad emission lines, their nuclear environments are in general not dusty and their host galaxies do not show signs of enhanced star formation. Instead, we observe that the nuclear regions of X-shaped radio sources have relatively high temperatures. This finding favours models which propose that the X shape is the result of an overpressured environment. C1 [Landt, Hermine] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Cheung, Chi C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cheung, Chi C.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Healey, Stephen E.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Landt, H (reprint author), Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. EM hlandt@unimelb.edu.au NR 54 TC 13 Z9 13 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 21 PY 2010 VL 408 IS 2 BP 1103 EP 1112 DI 10.1111/j.1365-2966.2010.17183.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 660KA UT WOS:000282639100036 ER PT J AU Rosenzweig, C Solecki, W Hammer, SA Mehrotra, S AF Rosenzweig, Cynthia Solecki, William Hammer, Stephen A. Mehrotra, Shagun TI Cities lead the way in climate-change action SO NATURE LA English DT Editorial Material C1 [Rosenzweig, Cynthia] Goddard Inst Space Studies, Climate Impacts Grp, New York, NY 10025 USA. [Solecki, William] CUNY, Inst Sustainable Cities, New York, NY 10065 USA. [Hammer, Stephen A.] Joint US China Collaborat Clean Energy, Energy Smart Cities Initiat, Shanghai 200041, Peoples R China. [Mehrotra, Shagun] Columbia Univ, Earth Inst, Climate & Cities Facil, New York, NY 10027 USA. RP Rosenzweig, C (reprint author), Goddard Inst Space Studies, Climate Impacts Grp, New York, NY 10025 USA. EM crosenzweig@giss.nasa.gov NR 6 TC 112 Z9 113 U1 8 U2 40 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 21 PY 2010 VL 467 IS 7318 BP 909 EP 911 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 668FT UT WOS:000283254700014 PM 20962822 ER PT J AU Culverhouse, T Ade, P Bock, J Bowden, M Brown, ML Cahill, G Castro, PG Church, SE Friedman, R Ganga, K Gear, WK Gupta, S Hinderks, JR Kovac, J Lange, AE Leitch, E Melhuish, SJ Memari, Y Murphy, JA Orlando, A Schwarz, R O'Sullivan, C Piccirillo, L Pryke, C Rajguru, N Rusholme, B Taylor, AN Thompson, KL Turner, AH Wu, EYS Zemcov, M AF Culverhouse, T. Ade, P. Bock, J. Bowden, M. Brown, M. L. Cahill, G. Castro, P. G. Church, S. E. Friedman, R. Ganga, K. Gear, W. K. Gupta, S. Hinderks, J. R. Kovac, J. Lange, A. E. Leitch, E. Melhuish, S. J. Memari, Y. Murphy, J. A. Orlando, A. Schwarz, R. O'Sullivan, C. Piccirillo, L. Pryke, C. Rajguru, N. Rusholme, B. Taylor, A. N. Thompson, K. L. Turner, A. H. Wu, E. Y. S. Zemcov, M. CA QUaD Collaboration TI THE QUaD GALACTIC PLANE SURVEY. I. MAPS AND ANALYSIS OF DIFFUSE EMISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; diffuse radiation; Galaxy: structure; polarization; submillimeter: diffuse background; surveys ID POLARIZATION POWER SPECTRA; CMB POLARIZATION; MAGNETIC-FIELDS; DUST EMISSION; LINE SURVEY; MICROWAVE; TEMPERATURE; POLARIMETRY; COBE; RADIATION AB We present a survey of similar to 800 deg(2) of the galactic plane observed with the QUaD telescope. The primary products of the survey are maps of Stokes I, Q, and U parameters at 100 and 150 GHz, with spatial resolution of 5' and 3'.5, respectively. Two regions are covered, spanning approximately 245 degrees-295 degrees and 315 degrees-5 degrees in the galactic longitude l and -4 degrees < b < +4 degrees in the galactic latitude b.At 0 degrees.02 square pixel size, the median sensitivity is 74 and 107 kJy sr(-1) at 100 GHz and 150 GHz respectively in I, and 98 and 120 kJy sr-1 for Q and U. In total intensity, we find an average spectral index of alpha = 2.35 +/- 0.01 (stat) +/- 0.02 (sys) for vertical bar b vertical bar <= 1 degrees, indicative of emission components other than thermal dust. A comparison to published dust, synchrotron, and free-free models implies an excess of emission in the 100 GHz QUaD band, while better agreement is found at 150 GHz. A smaller excess is observed when comparing QUaD 100 GHz data to the WMAP five-year W band; in this case, the excess is likely due to the wider bandwidth of QUaD. Combining the QUaD and WMAP data, a two-component spectral fit to the inner galactic plane (vertical bar b vertical bar <= 1 degrees) yields mean spectral indices of alpha(s) = -0.32 +/- 0.03 and alpha(d) = 2.84 +/- 0.03; the former is interpreted as a combination of the spectral indices of synchrotron, free-free, and dust, while the second is largely attributed to the thermal dust continuum. In the same galactic latitude range, the polarization data show a high degree of alignment perpendicular to the expected galactic magnetic field direction, and exhibit mean polarization fraction 1.38 +/- 0.08 (stat) +/- 0.1 (sys)% at 100 GHz and 1.70 +/- 0.06 (stat) +/- 0.1 ( sys)% at 150 GHz. We find agreement in polarization fraction between QUaD 100 GHz and the WMAP W band, the latter giving 1.1% +/- 0.4%. C1 [Culverhouse, T.; Friedman, R.; Schwarz, R.; Pryke, C.] Univ Chicago, Kavli Inst Cosmol Phys, Dept Astron & Astrophys, Enrico Fermi Inst, Chicago, IL 60637 USA. [Ade, P.; Bowden, M.; Gear, W. K.; Gupta, S.; Melhuish, S. J.; Orlando, A.; Piccirillo, L.; Rajguru, N.; Turner, A. H.; Zemcov, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, J.; Leitch, E.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, J.; Lange, A. E.; Leitch, E.; Orlando, A.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bowden, M.; Church, S. E.; Hinderks, J. R.; Rusholme, B.; Thompson, K. L.; Wu, E. Y. S.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Bowden, M.; Church, S. E.; Hinderks, J. R.; Rusholme, B.; Thompson, K. L.; Wu, E. Y. S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Brown, M. L.] Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England. [Cahill, G.; Murphy, J. A.; O'Sullivan, C.] Natl Univ Ireland Maynooth, Dept Expt Phys, Maynooth, Kildare, Ireland. [Castro, P. G.; Memari, Y.; Taylor, A. N.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ganga, K.] Univ Paris 07, CNRS, APC, F-75205 Paris 13, France. [Kovac, J.] Harvard Univ, Dept Astron, Cambridge, MA 02138 USA. RP Culverhouse, T (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Dept Astron & Astrophys, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. RI Melhuish, Simon/B-1299-2016; OI Melhuish, Simon/0000-0001-8725-4991; Orlando, Angiola/0000-0001-8004-5054 FU National Science Foundation in the USA [ANT-0338138, ANT-0338335, ANT-0338238]; Science and Technology Facilities Council (STFC) in the UK; Science Foundation Ireland; NASA; Portuguese FCT; Stanford Terman Fellowship; NSF; Stanford Graduate Fellowship; SUPA; Kavli Institute for Cosmological Physics through the NSF [PHY-0114422]; NDSEG; NASA Office of Space Science FX This paper is dedicated to the memory of Andrew Lange, who gave wisdom and guidance to so many members of the astrophysics and cosmology community. His presence is sorely missed. We thank our colleagues on the BICEP experiment and Dan Marrone for useful discussions. QUaD is funded by the National Science Foundation in the USA, through grants ANT-0338138, ANT-0338335, and ANT-0338238, by the Science and Technology Facilities Council (STFC) in the UK and by the Science Foundation Ireland. The BOOMERanG collaboration kindly allowed the use of their CMB maps for our calibration purposes. M.Z. acknowledges support from a NASA Postdoctoral Fellowship. P. G. C. acknowledges funding from the Portuguese FCT. S. E. C. acknowledges support from a Stanford Terman Fellowship. J.R.H. acknowledges the support of an NSF Graduate Research Fellowship, a Stanford Graduate Fellowship, and a NASA Postdoctoral Fellowship. Y.M. acknowledges support from a SUPA Prize studentship. C. P. acknowledges partial support from the Kavli Institute for Cosmological Physics through the grant NSF PHY-0114422. E.Y.W. acknowledges receipt of an NDSEG fellowship. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. NR 41 TC 8 Z9 8 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1057 EP 1077 DI 10.1088/0004-637X/722/2/1057 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400008 ER PT J AU Fowler, JW Acquaviva, V Ade, PAR Aguirre, P Amiri, M Appel, JW Barrientos, LF Battistelli, ES Bond, JR Brown, B Burger, B Chervenak, J Das, S Devlin, MJ Dicker, SR Doriese, WB Dunkley, J Dunner, R Essinger-Hileman, T Fisher, RP Hajian, A Halpern, M Hasselfield, M Hernandez-Monteagudo, C Hilton, GC Hilton, M Hincks, AD Hlozek, R Huffenberger, KM Hughes, DH Hughes, JP Infante, L Irwin, KD Jimenez, R Juin, JB Kaul, M Klein, J Kosowsky, A Lau, JM Limon, M Lin, YT Lupton, RH Marriage, TA Marsden, D Martocci, K Mauskopf, P Menanteau, F Moodley, K Moseley, H Netterfield, CB Niemack, MD Nolta, MR Page, LA Parker, L Partridge, B Quintana, H Reid, B Sehgal, N Sievers, J Spergel, DN Staggs, ST Swetz, DS Switzer, ER Thornton, R Trac, H Tucker, C Verde, L Warne, R Wilson, G Wollack, E Zhao, Y AF Fowler, J. W. Acquaviva, V. Ade, P. A. R. Aguirre, P. Amiri, M. Appel, J. W. Barrientos, L. F. Battistelli, E. S. Bond, J. R. Brown, B. Burger, B. Chervenak, J. Das, S. Devlin, M. J. Dicker, S. R. Doriese, W. B. Dunkley, J. Duenner, R. Essinger-Hileman, T. Fisher, R. P. Hajian, A. Halpern, M. Hasselfield, M. Hernandez-Monteagudo, C. Hilton, G. C. Hilton, M. Hincks, A. D. Hlozek, R. Huffenberger, K. M. Hughes, D. H. Hughes, J. P. Infante, L. Irwin, K. D. Jimenez, R. Juin, J. B. Kaul, M. Klein, J. Kosowsky, A. Lau, J. M. Limon, M. Lin, Y. -T. Lupton, R. H. Marriage, T. A. Marsden, D. Martocci, K. Mauskopf, P. Menanteau, F. Moodley, K. Moseley, H. Netterfield, C. B. Niemack, M. D. Nolta, M. R. Page, L. A. Parker, L. Partridge, B. Quintana, H. Reid, B. Sehgal, N. Sievers, J. Spergel, D. N. Staggs, S. T. Swetz, D. S. Switzer, E. R. Thornton, R. Trac, H. Tucker, C. Verde, L. Warne, R. Wilson, G. Wollack, E. Zhao, Y. TI THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE 600 < l < 8000 COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 GHz SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations ID 1200-MU-M MAMBO SURVEY; STAR-FORMING GALAXIES; SOUTH-POLE TELESCOPE; GOODS-N FIELD; SOURCE CATALOG; EXTRAGALACTIC SOURCES; ANISOTROPY POWER; PLANCK SURVEYOR; DUST EMISSION; PROBE AB We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1'.4 angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 deg(2) of the southern sky, in a 4 degrees.2 wide strip centered on declination 53 degrees south. The CMB at arcminute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 < l < 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power spectrum from 250 < l < 1150. The power beyond the Silk damping tail of the CMB (l similar to 5000) is consistent with models of the emission from point sources. We quantify the contribution of SZ clusters to the power spectrum by fitting to a model normalized to sigma(8) = 0.8. We constrain the model's amplitude A(SZ) < 1.63 (95% CL). If interpreted as a measurement of sigma(8), this implies sigma(SZ)(8) < 0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly to a six-parameter Lambda CDM model plus point sources and the SZ effect is consistent with these results. C1 [Fowler, J. W.; Appel, J. W.; Das, S.; Dunkley, J.; Essinger-Hileman, T.; Fisher, R. P.; Hajian, A.; Hincks, A. D.; Lau, J. M.; Limon, M.; Martocci, K.; Niemack, M. D.; Page, L. A.; Parker, L.; Reid, B.; Staggs, S. T.; Switzer, E. R.; Zhao, Y.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Acquaviva, V.; Das, S.; Dunkley, J.; Hajian, A.; Lin, Y. -T.; Lupton, R. H.; Marriage, T. A.; Spergel, D. N.; Trac, H.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Acquaviva, V.; Hughes, J. P.; Menanteau, F.; Sehgal, N.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Ade, P. A. R.; Mauskopf, P.; Tucker, C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aguirre, P.; Barrientos, L. F.; Duenner, R.; Infante, L.; Juin, J. B.; Lin, Y. -T.; Quintana, H.] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Amiri, M.; Battistelli, E. S.; Burger, B.; Halpern, M.; Hasselfield, M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Battistelli, E. S.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Bond, J. R.; Nolta, M. R.; Sievers, J.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Brown, B.; Kosowsky, A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Chervenak, J.; Moseley, H.; Wollack, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Das, S.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBL, Berkeley, CA 94720 USA. [Das, S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Devlin, M. J.; Dicker, S. R.; Kaul, M.; Klein, J.; Limon, M.; Marsden, D.; Swetz, D. S.; Thornton, R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Doriese, W. B.; Hilton, G. C.; Irwin, K. D.; Niemack, M. D.; Swetz, D. S.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Dunkley, J.; Hlozek, R.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Hernandez-Monteagudo, C.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hilton, M.; Moodley, K.; Warne, R.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Sci, ZA-4041 Durban, South Africa. [Hilton, M.; Moodley, K.] CSIR Campus, Ctr High Performance Comp, Cape Town, South Africa. [Huffenberger, K. M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Hughes, D. H.] INAOE, Puebla, Mexico. [Jimenez, R.; Reid, B.; Verde, L.] Univ Barcelona, ICREA, E-08028 Barcelona, Spain. [Jimenez, R.; Reid, B.; Verde, L.] Univ Barcelona, ICC, E-08028 Barcelona, Spain. [Lau, J. M.; Sehgal, N.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Lau, J. M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Limon, M.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Lin, Y. -T.] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Martocci, K.; Switzer, E. R.] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Partridge, B.] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Thornton, R.] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Trac, H.] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Wilson, G.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. RP Fowler, JW (reprint author), Princeton Univ, Joseph Henry Labs Phys, Jadwin Hall, Princeton, NJ 08544 USA. RI Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012; Moseley, Harvey/D-5069-2012; Klein, Jeffrey/E-3295-2013; Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013 OI Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Sievers, Jonathan/0000-0001-6903-5074; Verde, Licia/0000-0003-2601-8770; FU ACT; NASA [NNX08AH30G]; Natural Science and Engineering Research Council of Canada (NSERC); NSF [AST-0546035, AST-0606975]; FONDAP Centro de Astrofisica; CONICYT; MECESUP; Fundacion Andes; NSF Physics Frontier Center [PHY-0114422]; South African National Research Foundation (NRF); Meraka Institute via funding for the South African Centre for High Performance Computing (CHPC); South African Square Kilometer Array (SKA) Project; RCUK; Rhodes Trust; Berkeley Center for Cosmological Physics; World Premier International Research Center Initiative, MEXT, Japan FX The ACT project was proposed in 2000 and funded on 2004 January 1. Many have contributed to the project since its inception. We especially thank Asad Aboobaker, Christine Allen, Dominic Benford, Paul Bode, Kristen Burgess, Angelica de Oliveira-Costa, Peter Hargrave, Norm Jarosik, Amber Miller, Carl Reintsema, Felipe Rojas, Uros Seljak, Martin Spergel, Johannes Staghun, Carl Stahle, Max Tegmark, Masao Uehara, Katerina Visnjic, and Ed Wishnow. It is a pleasure to acknowledge Bob Margolis, ACT's project manager. Reed Plimpton and David Jacobson worked at the telescope during the 2008 season. ACT is on the Chajnantor Science preserve, which was made possible by the Chilean Comision Nacional de Investigacion Cientifica y Tecnologica. We are grateful for the assistance we received at various times from the ALMA, APEX, ASTE, CBI/QUIET, and NANTEN2 groups. The ATCA team kindly provided the positions of their 20 GHz sources prior to publication. The PWV data come from the public APEX weather Web site. Field operations were based at the Don Esteban facility run by Astro-Norte. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank the members of our external advisory board-Tom Herbig (chair), Charles Alcock, Walter Gear, Cliff Jackson, Amy Newbury, and Paul Steinhardt-who helped guide the project to fruition.; This work was supported by the U.S. National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731, and PIRE-0507768. Funding was also provided by Princeton University and the University of Pennsylvania. The PIRE program made possible exchanges between Chile, South Africa, Spain, and the US that enabled this research program. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research Fund-Research Excellence, and the University of Toronto.; V. A., S. D., A. H., and T. M. were supported through NASA grant NNX08AH30G. A. D. H. received additional support from a Natural Science and Engineering Research Council of Canada (NSERC) PGS-D scholarship. A. K. and B. P. were partially supported through NSF AST-0546035 and AST-0606975, respectively, for work on ACT. H. Q. and L. I. acknowledge partial support from FONDAP Centro de Astrofisica. R. D. was supported by CONICYT, MECESUP, and Fundacion Andes. E. S. acknowledges support by NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics. K. M., M. H., and R. W. received financial support from the South African National Research Foundation (NRF), the Meraka Institute via funding for the South African Centre for High Performance Computing (CHPC), and the South African Square Kilometer Array (SKA) Project. J.D. received support from an RCUK Fellowship. R. H. received funding from the Rhodes Trust. S. D. acknowledges support from the Berkeley Center for Cosmological Physics. Y.T.L. acknowledges support from the World Premier International Research Center Initiative, MEXT, Japan. The data will be made public through LAMBDA (http://lambda.gsfc.nasa.gov/) and the ACTWeb site (http://www.physics.princeton.edu/act/). NR 72 TC 86 Z9 86 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1148 EP 1161 DI 10.1088/0004-637X/722/2/1148 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400014 ER PT J AU Vanderlinde, K Crawford, TM de Haan, T Dudley, JP Shaw, L Ade, PAR Aird, KA Benson, BA Bleem, LE Brodwin, M Carlstrom, JE Chang, CL Crites, AT Desai, S Dobbs, MA Foley, RJ George, EM Gladders, MD Hall, NR Halverson, NW High, FW Holder, GP Holzapfel, WL Hrubes, JD Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Loehr, A Lueker, M Marrone, DP McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Ngeow, CC Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruel, J Ruhl, JE Schaffer, KK Shirokoff, E Song, J Spieler, HG Stalder, B Staniszewski, Z Stark, AA Stubbs, CW van Engelen, A Vieira, JD Williamson, R Yang, Y Zahn, O Zenteno, A AF Vanderlinde, K. Crawford, T. M. de Haan, T. Dudley, J. P. Shaw, L. Ade, P. A. R. Aird, K. A. Benson, B. A. Bleem, L. E. Brodwin, M. Carlstrom, J. E. Chang, C. L. Crites, A. T. Desai, S. Dobbs, M. A. Foley, R. J. George, E. M. Gladders, M. D. Hall, N. R. Halverson, N. W. High, F. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Loehr, A. Lueker, M. Marrone, D. P. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Ngeow, C. -C. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruel, J. Ruhl, J. E. Schaffer, K. K. Shirokoff, E. Song, J. Spieler, H. G. Stalder, B. Staniszewski, Z. Stark, A. A. Stubbs, C. W. van Engelen, A. Vieira, J. D. Williamson, R. Yang, Y. Zahn, O. Zenteno, A. TI GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: clusters: general ID DIGITAL SKY SURVEY; MICROWAVE BACKGROUND ANISOTROPIES; STAR-FORMATION; DARK ENERGY; EXTRAGALACTIC SOURCES; INTRACLUSTER MEDIUM; SCALING RELATIONS; POWER SPECTRUM; SOURCE CATALOG; RADIO-SOURCES AB We present a detection-significance-limited catalog of 21 Sunyaev-Zel'dovich-selected galaxy clusters. These clusters, along with one unconfirmed candidate, were identified in 178 deg(2) of sky surveyed in 2008 by the South Pole Telescope (SPT) to a depth of 18 mu K arcmin at 150 GHz. Optical imaging from the Blanco Cosmology Survey (BCS) and Magellan telescopes provided photometric (and in some cases spectroscopic) redshift estimates, with catalog redshifts ranging from z = 0.15 to z > 1, with a median z = 0.74. Of the 21 confirmed galaxy clusters, 3 were previously identified as Abell clusters, 3 were presented as SPT discoveries in Staniszewski et al., and 3 were first identified in a recent analysis of BCS data by Menanteau et al.; the remaining 12 clusters are presented for the first time in this work. Simulated observations of the SPT fields predict the sample to be nearly 100% complete above a mass threshold of M-200 approximate to 5 x 10(14) M-circle dot h(-1) at z = 0.6. This completeness threshold pushes to lower mass with increasing redshift, dropping to similar to 4 x 10(14) M-circle dot h(-1) at z = 1. The size and redshift distribution of this catalog are in good agreement with expectations based on our current understanding of galaxy clusters and cosmology. In combination with other cosmological probes, we use this cluster catalog to improve estimates of cosmological parameters. Assuming a standard spatially flat wCDM cosmological model, the addition of our catalog to the WMAP seven-year results yields sigma(8) = 0.81 +/- 0.09 and w = -1.07 +/- 0.29, a similar to 50% improvement in precision on both parameters over WMAP7 alone. C1 [Vanderlinde, K.; de Haan, T.; Dudley, J. P.; Shaw, L.; Dobbs, M. A.; Holder, G. P.; van Engelen, A.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Crawford, T. M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crites, A. T.; Gladders, M. D.; Keisler, R.; Leitch, E. M.; Marrone, D. P.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Crawford, T. M.; Carlstrom, J. E.; Crites, A. T.; Gladders, M. D.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Benson, B. A.; George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Plagge, T.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Brodwin, M.; Foley, R. J.; Loehr, A.; Stalder, B.; Stark, A. A.; Stubbs, C. W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Desai, S.; Ngeow, C. -C.; Song, J.; Yang, Y.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Hall, N. R.; Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [High, F. W.; Rest, A.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.; Zenteno, A.] Excellence Cluster Universe, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, CERCA, Cleveland, OH 44106 USA. [Ngeow, C. -C.] Natl Cent Univ, Grad Inst Astron, Jhongli 32001, Taiwan. RP Vanderlinde, K (reprint author), McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. EM keith.vanderlinde@mail.mcgill.ca RI Stubbs, Christopher/C-2829-2012; Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996; Stubbs, Christopher/0000-0003-0347-1724; Williamson, Ross/0000-0002-6945-2975; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518 FU National Science Foundation (NSF) Office of Polar Programs; United States Antarctic Program; Raytheon Polar Services Company; NASA Office of Space Science; National Science Foundation (NSF) [ANT-0638937, ANT-0130612, MRI-0723073]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Sciences and Engineering Research Council of Canada; Quebec Fonds de recherche sur la nature et les technologies; Canadian Institute for Advanced Research; KICP; Fermi Fellowship; Clay Fellowship; Hubble Fellowship [HF-51259.01-A]; Keck Foundation; GAAN Fellowship; Miller Institute FX The SPT team gratefully acknowledges the contributions to the design and construction of the telescope by S. Busetti, E. Chauvin, T. Hughes, P. Huntley, and E. Nichols and his team of iron workers. We also thank the National Science Foundation (NSF) Office of Polar Programs, the United States Antarctic Program and the Raytheon Polar Services Company for their support of the project. We are grateful for professional support from the staff of the South Pole station. We thank H.-M. Cho, T. Lanting, J. Leong, W. Lu, M. Runyan, D. Schwan, M. Sharp, and C. Greer for their early contributions to the SPT project and J. Joseph and C. Vu for their contributions to the electronics. We acknowledge S. Alam, W. Barkhouse, S. Bhattacharya, L. Buckley-Greer, S. Hansen, H. Lin, Y-T Lin, C. Smith, and D. Tucker for their contribution to BCS data acquisition, and we acknowledge the DESDM team, which has developed the tools we used to process and calibrate the BCS data; We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. This research was facilitated in part by allocations of time on the COSMOS supercomputer at DAMTP in Cambridge, a UK-CCC facility supported by HEFCE and PPARC. This work is based in part on observations obtained at the Cerro Tololo Inter-American Observatory, and the Las Campanas Observatory. CTIO is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation (NSF).; The South Pole Telescope is supported by the National Science Foundation through grants ANT-0638937 and ANT-0130612. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work is supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, the Quebec Fonds de recherche sur la nature et les technologies, and the Canadian Institute for Advanced Research. Partial support was provided by NSF grant MRI-0723073. The following individuals acknowledge additional support: A. L. and B. S. from the Brinson Foundation, B. A. B. and K. K. S. from KICP Fellowships, J.J.M. from a Fermi Fellowship, R.J.F. from a Clay Fellowship, D. P. M. from Hubble Fellowship grant HF-51259.01-A, M. B. from the Keck Foundation, Z.S. from a GAAN Fellowship, and A. T. L. from the Miller Institute NR 85 TC 214 Z9 215 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1180 EP 1196 DI 10.1088/0004-637X/722/2/1180 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400017 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Celik, O Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Dermer, CD de Palma, F Digel, SW Silva, EDE Drell, PS Dumora, D Favuzzi, C Funk, S Fusco, P Gargano, F Gehrels, N Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hadasch, D Hanabata, Y Harding, AK Hayashida, M Hays, E Horan, D Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Katsuta, J Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Longo, F Loparco, F Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Ripken, J Roth, M Sadrozinski, HF Sander, A Parkinson, PMS Sgro, C Siskind, EJ Smith, DA Smith, PD Spinelli, P Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Tibaldo, L Tibolla, O Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Dermer, C. D. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dumora, D. Favuzzi, C. Funk, S. Fusco, P. Gargano, F. Gehrels, N. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M-H. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Katsuta, J. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S-H. Lemoine-Goumard, M. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Roth, M. Sadrozinski, H. FW. Sander, A. Parkinson, P. M. Saz Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spinelli, P. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI FERMI-LAT STUDY OF GAMMA-RAY EMISSION IN THE DIRECTION OF SUPERNOVA REMNANT W49B SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; ISM: individual objects (W49B); radiation mechanisms: non-thermal ID LARGE-AREA TELESCOPE; X-RAY; PARTICLE-ACCELERATION; RX J1713.7-3946; COSMIC-RAYS; CATALOG; RADIO; DISCOVERY; PULSARS; ORIGIN AB We present an analysis of the gamma-ray data obtained with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope in the direction of SNR W49B (G43.3-0.2). A bright unresolved gamma-ray source detected at a significance of 38 sigma is found to coincide with SNR W49B. The energy spectrum in the 0.2-200 GeV range gradually steepens toward high energies. The luminosity is estimated to be 1.5 x 10(36) (D/8 kpc)(2) erg s(-1) in this energy range. There is no indication that the gamma-ray emission comes from a pulsar. Assuming that the supernova remnant (SNR) shell is the site of gamma-ray production, the observed spectrum can be explained either by the decay of neutral pi mesons produced through the proton-proton collisions or by electron bremsstrahlung. The calculated energy density of relativistic particles responsible for the LAT flux is estimated to be remarkably large, U-e,U-p > 10(4) eV cm(-3), for either gamma-ray production mechanism. C1 [Abdo, A. A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S-H.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Reimer, A.; Reimer, O.; Tajima, H.; Tanaka, T.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S-H.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Reimer, A.; Reimer, O.; Tajima, H.; Tanaka, T.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Horan, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Caliandro, G. A.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Gehrels, N.; Harding, A. K.; Hays, E.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Cohen-Tanugi, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Conrad, J.; Ripken, J.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Ripken, J.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Dumora, D.; Grondin, M-H.; Guillemot, L.; Lemoine-Goumard, M.; Reposeur, T.; Smith, D. A.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M-H.; Guillemot, L.; Lemoine-Goumard, M.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, UMR 5797, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hanabata, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Jackson, M. S.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Katsuta, J.; Okumura, A.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Kanagawa 2298510, Japan. [Katsuta, J.] Univ Tokyo, Dept Phys, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Knoedlseder, J.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Sadrozinski, H. FW.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Sadrozinski, H. FW.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM katsuta@astro.isas.jaxa.jp; htajima@slac.stanford.edu; Taka.Tanaka@stanford.edu; uchiyama@slac.stanford.edu RI Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726 FU K. A. Wallenberg Foundation; International Doctorate on Astroparticle Physics (IDAPP) program; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 29 TC 68 Z9 68 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1303 EP 1311 DI 10.1088/0004-637X/722/2/1303 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400026 ER PT J AU Abadie, J Abbott, BP Abbott, R Abernathy, M Adams, C Adhikari, R Ajith, P Allen, B Allen, G Ceron, EA Amin, RS Anderson, SB Anderson, WG Arain, MA Araya, M Aronsson, M Aso, Y Aston, S Atkinson, DE Aufmuth, P Aulbert, C Babak, S Baker, P Ballmer, S Barker, D Barnum, S Barr, B Barriga, P Barsotti, L Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauchrowitz, J Behnke, B Benacquista, M Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bilenko, IA Billingsley, G Birch, J Biswas, R Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Bock, O Bodiya, TP Bondarescu, R Bork, R Born, M Bose, S Boyle, M Brady, PR Braginsky, VB Brau, JE Breyer, J Bridges, DO Brinkmann, M Britzger, M Brooks, AF Brown, DA Buonanno, A Burguet-Castell, J Burmeister, O Byer, RL Cadonati, L Camp, JB Campsie, P Cannizzo, J Cannon, KC Cao, J Capano, C Caride, S Caudill, S Cavaglia, M Cepeda, C Chalermsongsak, T Chalkley, E Charlton, P Chelkowski, S Chen, Y Christensen, N Chua, SSY Chung, CTY Clark, D Clark, J Clayton, JH Conte, R Cook, D Corbitt, TR Cornish, N Costa, CA Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Dahl, K Danilishin, SL Dannenberg, R Danzmann, K Das, K Daudert, B Davies, G Davis, A Daw, EJ Dayanga, T DeBra, D Degallaix, J Dergachev, V DeRosa, R DeSalvo, R Devanka, P Dhurandhar, S Di Palma, I Diaz, M Donovan, F Dooley, KL Doomes, EE Dorsher, S Douglas, ESD Drever, RWP Driggers, JC Dueck, J Dumas, JC Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Engel, R Etzel, T Evans, M Evans, T Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Finn, LS Flanigan, M Flasch, K Foley, S Forrest, C Forsi, E Fotopoulos, N Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fulda, P Fyffe, M Garofoli, JA Gholami, I Ghosh, S Giaime, JA Giampanis, S Giardina, KD Gill, C Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Goler, S Graef, C Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Grosso, R Grote, H Grunewald, S Gustafson, EK Gustafson, R Hage, B Hall, P Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Heefner, J Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Howell, E Hoyland, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khazanov, EA Kim, H King, PJ Kinzel, DL Kissel, JS Klimenko, S Kondrashov, V Kopparapu, R Koranda, S Kozak, D Krause, T Kringel, V Krishnamurthy, S Krishnan, B Kuehn, G Kullman, J Kumar, R Kwee, P Landry, M Lang, M Lantz, B Lastzka, N Lazzarini, A Leaci, P Leong, J Leonor, I Li, J Lin, H Lindquist, PE Lockerbie, NA Lodhia, D Lormand, M Lu, P Luan, J Lubinski, M Lucianetti, A Luck, H Lundgren, A Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Mak, C Mandel, I Mandic, V Marka, S Marka, Z Maros, E Martin, IW Martin, RM Marx, JN Mason, K Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIvor, G McKechan, DJA Meadors, G Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Menendez, DF Mercer, RA Merill, L Meshkov, S Messenger, C Meyer, MS Miao, H Miller, J Mino, Y Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Mohanty, SD Mohapatra, SRP Moraru, D Moreno, G Morioka, T Mors, K Mossavi, K MowLowry, C Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murray, PG Nash, T Nawrodt, R Nelson, J Newton, G Nishizawa, A Nolting, D Ochsner, E O'Dell, J Ogin, GH Oldenburg, RG O'Reilly, B O'Shaughnessy, R Osthelder, C Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pan, Y Pankow, C Papa, MA Pareja, M Patel, P Pedraza, M Pekowsky, L Penn, S Peralta, C Perreca, A Pickenpack, M Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Postiglione, F Predoi, V Price, LR Prijatelj, M Principe, M Prix, R Prokhorov, L Puncken, O Quetschke, V Raab, FJ Radke, T Radkins, H Raffai, P Rakhmanov, M Rankins, B Raymond, V Reed, CM Reid, TRS Reitze, DH Riesen, R Riles, K Roberts, P Robertson, NA Robinson, C Robinson, EL Roddy, S Rover, C Rollins, J Romano, JD Romie, JH Rowan, S Rudiger, A Ryan, K Sakata, S Sakosky, M Salemi, F Sammut, L de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Santostasi, G Saraf, S Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sergeev, A Shaddock, D Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Sintes, AM Skelton, G Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Speirits, FC Stein, AJ Stein, LC Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuring, A Titsler, C Tokmakov, KV Torres, C Torrie, CI Traylor, G Trias, M Tseng, K Ugolini, D Urbanek, K Vahlbruch, H Vaishnav, B Vallisneri, M Van Den Broeck, C van der Sluys, MV van Veggel, AA Vass, S Vaulin, R Vecchio, A Veitch, J Veitch, PJ Veltkamp, C Villar, A Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Wanner, A Ward, RL Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Wilkinson, C Willems, PA Williams, L Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yeaton-Massey, D Yoshida, S Yu, PP Zanolin, M Zhang, L Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Abernathy, M. Adams, C. Adhikari, R. Ajith, P. Allen, B. Allen, G. Ceron, E. Amador Amin, R. S. Anderson, S. B. Anderson, W. G. Arain, M. A. Araya, M. Aronsson, M. Aso, Y. Aston, S. Atkinson, D. E. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballmer, S. Barker, D. Barnum, S. Barr, B. Barriga, P. Barsotti, L. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauchrowitz, J. Behnke, B. Benacquista, M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Birch, J. Biswas, R. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Bock, O. Bodiya, T. P. Bondarescu, R. Bork, R. Born, M. Bose, S. Boyle, M. Brady, P. R. Braginsky, V. B. Brau, J. E. Breyer, J. Bridges, D. O. Brinkmann, M. Britzger, M. Brooks, A. F. Brown, D. A. Buonanno, A. Burguet-Castell, J. Burmeister, O. Byer, R. L. Cadonati, L. Camp, J. B. Campsie, P. Cannizzo, J. Cannon, K. C. Cao, J. Capano, C. Caride, S. Caudill, S. Cavaglia, M. Cepeda, C. Chalermsongsak, T. Chalkley, E. Charlton, P. Chelkowski, S. Chen, Y. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Conte, R. Cook, D. Corbitt, T. R. Cornish, N. Costa, C. A. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Dahl, K. Danilishin, S. L. Dannenberg, R. Danzmann, K. Das, K. Daudert, B. Davies, G. Davis, A. Daw, E. J. Dayanga, T. DeBra, D. Degallaix, J. Dergachev, V. DeRosa, R. DeSalvo, R. Devanka, P. Dhurandhar, S. Di Palma, I. Diaz, M. Donovan, F. Dooley, K. L. Doomes, E. E. Dorsher, S. Douglas, E. S. D. Drever, R. W. P. Driggers, J. C. Dueck, J. Dumas, J-C. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Engel, R. Etzel, T. Evans, M. Evans, T. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Finn, L. S. Flanigan, M. Flasch, K. Foley, S. Forrest, C. Forsi, E. Fotopoulos, N. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. T. Fricke, T. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Garofoli, J. A. Gholami, I. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Gill, C. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Goler, S. Graef, C. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Grosso, R. Grote, H. Grunewald, S. Gustafson, E. K. Gustafson, R. Hage, B. Hall, P. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Heefner, J. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Howell, E. Hoyland, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, H. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kondrashov, V. Kopparapu, R. Koranda, S. Kozak, D. Krause, T. Kringel, V. Krishnamurthy, S. Krishnan, B. Kuehn, G. Kullman, J. Kumar, R. Kwee, P. Landry, M. Lang, M. Lantz, B. Lastzka, N. Lazzarini, A. Leaci, P. Leong, J. Leonor, I. Li, J. Lin, H. Lindquist, P. E. Lockerbie, N. A. Lodhia, D. Lormand, M. Lu, P. Luan, J. Lubinski, M. Lucianetti, A. Lueck, H. Lundgren, A. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Mak, C. Mandel, I. Mandic, V. Marka, S. Marka, Z. Maros, E. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIvor, G. McKechan, D. J. A. Meadors, G. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Mercer, R. A. Merill, L. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Miller, J. Mino, Y. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreno, G. Morioka, T. Mors, K. Mossavi, K. MowLowry, C. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murray, P. G. Nash, T. Nawrodt, R. Nelson, J. Newton, G. Nishizawa, A. Nolting, D. Ochsner, E. O'Dell, J. Ogin, G. H. Oldenburg, R. G. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pan, Y. Pankow, C. Papa, M. A. Pareja, M. Patel, P. Pedraza, M. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Pickenpack, M. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Postiglione, F. Predoi, V. Price, L. R. Prijatelj, M. Principe, M. Prix, R. Prokhorov, L. Puncken, O. Quetschke, V. Raab, F. J. Radke, T. Radkins, H. Raffai, P. Rakhmanov, M. Rankins, B. Raymond, V. Reed, C. M. Reid, T. Reed S. Reitze, D. H. Riesen, R. Riles, K. Roberts, P. Robertson, N. A. Robinson, C. Robinson, E. L. Roddy, S. Roever, C. Rollins, J. Romano, J. D. Romie, J. H. Rowan, S. Ruediger, A. Ryan, K. Sakata, S. Sakosky, M. Salemi, F. Sammut, L. de la Jordana, L. Sancho Sandberg, V. Sannibale, V. Santamaria, L. Santostasi, G. Saraf, S. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sergeev, A. Shaddock, D. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Sintes, A. M. Skelton, G. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Speirits, F. C. Stein, A. J. Stein, L. C. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Titsler, C. Tokmakov, K. V. Torres, C. Torrie, C. I. Traylor, G. Trias, M. Tseng, K. Ugolini, D. Urbanek, K. Vahlbruch, H. Vaishnav, B. Vallisneri, M. Van Den Broeck, C. van der Sluys, M. V. van Veggel, A. A. Vass, S. Vaulin, R. Vecchio, A. Veitch, J. Veitch, P. J. Veltkamp, C. Villar, A. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Wanner, A. Ward, R. L. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, L. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yeaton-Massey, D. Yoshida, S. Yu, P. P. Zanolin, M. Zhang, L. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration TI FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational waves; stars: neutron; supernovae: individual (Cassiopeia A) ID CASSIOPEIA-A SUPERNOVA; RAY POINT-SOURCE; COMPACT CENTRAL OBJECT; SPIN-DOWN; INFRARED ECHOES; BRAKING INDEX; CAS-A; REMNANT; PULSAR; CONSTRAINTS AB We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search frequencies, we set 95% confidence upper limits of (0.7-1.2) x 10(-24) on the intrinsic gravitational-wave strain, (0.4-4) x 10(-4) on the equatorial ellipticity of the neutron star, and 0.005-0.14 on the amplitude of r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes. This paper is also the first gravitational-wave search to present upper limits on the r-mode amplitude. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aronsson, M.; Aso, Y.; Ballmer, S.; Bertolini, A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bland, B.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cepeda, C.; Chalermsongsak, T.; Coyne, D. C.; Cumming, A.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Gray, C.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Mak, C.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Mitra, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Patel, P.; Pedraza, M.; Robertson, N. A.; Sannibale, V.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Singer, A.; Smith, M. R.; Stochino, A.; Taylor, R.; Thuering, A.; Torrie, C. I.; Vass, S.; Villar, A.; Vorvick, C.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bertolini, A.; Beveridge, N.; Campsie, P.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Gill, C.; Grant, A.; Hammond, G.; Haughian, K.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nawrodt, R.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Prix, R.; Reitze, D. H.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Tokmakov, K. V.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Adams, C.; Birch, J.; Bridges, D. O.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Holt, K.; Huynh-Dinh, T.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Allen, B.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Di Palma, I.; Dueck, J.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Goler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kullman, J.; Lastzka, N.; Leong, J.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Messenger, C.; Mors, K.; Mossavi, K.; Mueller-Ebhardt, H.; Pareja, M.; Pickenpack, M.; Pletsch, H. J.; Prijatelj, M.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Steinlechner, S.; Taylor, J. R.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Biswas, R.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Oldenburg, R. G.; Papa, M. A.; Price, L. R.; Siemens, X.; Skelton, G.; Vaulin, R.; Wiseman, A. G.; Yu, P. P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G.; Byer, R. L.; Clark, D.; DeBra, D.; Lantz, B.; Lu, P.; Tseng, K.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Amin, R. S.; Bertolini, A.; Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; T. Fricke, T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Arain, M. A.; Das, K.; Dooley, K. L.; Feldbaum, D.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Riesen, R.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Fulda, P.; Hallam, J. M.; Hoyland, D.; Lodhia, D.; Page, A.; Perreca, A.; Vecchio, A.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Atkinson, D. E.; Barker, D.; Barton, M. A.; Bland, B.; Cook, D.; Douglas, E. S. D.; Flanigan, M.; Gray, C.; Hanks, J.; Hayama, K.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sakosky, M.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Aufmuth, P.; Hage, B.; Kwee, P.; Meier, T.; Thuering, A.; Vahlbruch, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Babak, S.; Behnke, B.; Danzmann, K.; Gholami, I.; Grunewald, S.; Krishnan, B.; Leaci, P.; Lueck, H.; Peralta, C.; Radke, T.; Robinson, E. L.; Santamaria, L.; Willke, B.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.; Papa, M. A.; Schutz, B. F.] Montana State Univ, Bozeman, MT 59717 USA. [Barnum, S.; Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J-C.; Fan, Y.; Gras, S.; Howell, E.; Ju, L.; Merill, L.; Miao, H.; Susmithan, S.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A. J.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wen, L.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Bartos, I.; Marka, S.; Marka, Z.; Matone, L.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Li, J.; Mohanty, S. D.; Mukherjee, S.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Vaishnav, B.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Bondarescu, R.; Finn, L. S.; Kopparapu, R.; Lang, M.; Menendez, D. F.; O'Shaughnessy, R.; Owen, B. J.; Titsler, C.] Penn State Univ, University Pk, PA 16802 USA. [Boyle, M.; Chen, Y.; Luan, J.; Mino, Y.; Somiya, K.; Thorne, K. S.; Vallisneri, M.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Brown, D. A.; Capano, C.; Garofoli, J. A.; Hirose, E.; Lundgren, A.; Pekowsky, L.; Saulson, P. R.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Buonanno, A.; Kanner, J.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Camp, J. B.; Cannizzo, J.; Stroeer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cao, J.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Goetz, E.; Gustafson, R.; Meadors, G.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chua, S. S. Y.; Inta, R.; McClelland, D. E.; MowLowry, C.; Mullavey, A.; Satterthwaite, M.; Scott, S. M.; Shaddock, D.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Davies, G.; Devanka, P.; Edwards, M.; Fairhurst, S.; Hall, P.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Sutton, P. J.; Van Den Broeck, C.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Conte, R.; Postiglione, F.; Schutz, B. F.] Univ Salerno, I-84084 Salerno, Italy. [Davis, A.; Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Daw, E. J.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Dhurandhar, S.; Hayama, K.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Doomes, E. E.; McGuire, S. C.] So Univ, Baton Rouge, LA 70813 USA. [Doomes, E. E.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Dorsher, S.; Harms, J.; Kandhasamy, S.; Mandic, V.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Farr, B. F.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Frei, M.; Krause, T.; Matzner, R. A.; McIvor, G.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, Z.; Raffai, P.] Eotvos Lorand Univ, Budapest, Hungary. [Greenhalgh, R. J. S.; O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Husa, S.; de la Jordana, L. Sancho; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kawamura, S.; Morioka, T.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Lockerbie, N. A.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Penn, S.; Tokmakov, K. V.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Reid, T. Reed S.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Wen, L.; Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Ward, Robert/I-8032-2014; Ottaway, David/J-5908-2015; Shaddock, Daniel/A-7534-2011; Postiglione, Fabio/O-4744-2015; Gehring, Tobias/A-8596-2016; Howell, Eric/H-5072-2014; Biswas, Rahul/H-7474-2016; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Bartos, Imre/A-2592-2017; Frey, Raymond/E-2830-2016; Sergeev, Alexander/F-3027-2017; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Nawrodt, Ronny/J-5155-2014; Danilishin, Stefan/K-7262-2012; Khalili, Farit/D-8113-2012; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Graef, Christian/J-3167-2015; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Steinlechner, Sebastian/D-5781-2013; Kawabe, Keita/G-9840-2011; Hammond, Giles/A-8168-2012; Hild, Stefan/A-3864-2010; Santamaria, Lucia/A-7269-2012; Hammond, Giles/B-7861-2009; McClelland, David/E-6765-2010; Strain, Kenneth/D-5236-2011; Raab, Frederick/E-2222-2011; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Freise, Andreas/F-8892-2011; Abernathy, Matthew/G-1113-2011 OI Kanner, Jonah/0000-0001-8115-0577; Pathak, Devanka/0000-0002-1768-8353; Wette, Karl/0000-0002-4394-7179; Aulbert, Carsten/0000-0002-1481-8319; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Douglas, Ewan/0000-0002-0813-4308; Santamaria, Lucia/0000-0002-5986-0449; Hallam, Jonathan Mark/0000-0002-7087-0461; Nishizawa, Atsushi/0000-0003-3562-0990; Sorazu, Borja/0000-0002-6178-3198; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Prix, Reinhard/0000-0002-3789-6424; Ward, Robert/0000-0001-5503-5241; Whelan, John/0000-0001-5710-6576; Fairhurst, Stephen/0000-0001-8480-1961; Matichard, Fabrice/0000-0001-8982-8418; Husa, Sascha/0000-0002-0445-1971; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Shaddock, Daniel/0000-0002-6885-3494; Postiglione, Fabio/0000-0003-0628-3796; Gehring, Tobias/0000-0002-4311-2593; Howell, Eric/0000-0001-7891-2817; Biswas, Rahul/0000-0002-0774-8906; Sigg, Daniel/0000-0003-4606-6526; Frey, Raymond/0000-0003-0341-2636; Stein, Leo/0000-0001-7559-9597; Pitkin, Matthew/0000-0003-4548-526X; Miao, Haixing/0000-0003-4101-9958; Danilishin, Stefan/0000-0001-7758-7493; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Graef, Christian/0000-0002-4535-2603; Gorodetsky, Michael/0000-0002-5159-2742; Puppo, Paola/0000-0003-4677-5015; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Steinlechner, Sebastian/0000-0003-4710-8548; McClelland, David/0000-0001-6210-5842; Strain, Kenneth/0000-0002-2066-5355; Lueck, Harald/0000-0001-9350-4846; FU United States National Science Foundation; Max-Planck-Society; State of Niedersachsen/Germany; Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia; Hisenda i Innovacio of the Govern de les Illes Balears; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory and the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia, Hisenda i Innovacio of the Govern de les Illes Balears, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This paper has been designated LIGO Document No. LIGO-P1000028-v7. NR 72 TC 63 Z9 64 U1 3 U2 28 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1504 EP 1513 DI 10.1088/0004-637X/722/2/1504 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400040 ER PT J AU Kozlowski, S Kochanek, CS Stern, D Prieto, JL Stanek, KZ Thompson, TA Assef, RJ Drake, AJ Szczygiel, DM Wozniak, PR Nugent, P Ashby, MLN Beshore, E Brown, MJI Dey, A Griffith, R Harrison, F Jannuzi, BT Larson, S Madsen, K Pilecki, B Pojmanski, G Skowron, J Vestrand, WT Wren, JA AF Kozlowski, Szymon Kochanek, C. S. Stern, D. Prieto, J. L. Stanek, K. Z. Thompson, T. A. Assef, R. J. Drake, A. J. Szczygiel, D. M. Wozniak, P. R. Nugent, P. Ashby, M. L. N. Beshore, E. Brown, M. J. I. Dey, Arjun Griffith, R. Harrison, F. Jannuzi, B. T. Larson, S. Madsen, K. Pilecki, B. Pojmanski, G. Skowron, J. Vestrand, W. T. Wren, J. A. TI SDWFS-MT-1: A SELF-OBSCURED LUMINOUS SUPERNOVA AT z similar or equal to 0.2 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: irregular; infrared: galaxies; supernovae: general; supernovae: individual (SDWFS-MT-1, SN 2007va) ID DIGITAL SKY SURVEY; MASS-METALLICITY RELATION; WIDE-FIELD SURVEY; SPITZER-SPACE-TELESCOPE; STAR-FORMING GALAXIES; ARRAY CAMERA IRAC; GAMMA-RAY BURSTS; H-II REGIONS; INFRARED-EMISSION; ETA-CARINAE AB We report the discovery of a 6 month long mid-infrared transient, SDWFS-MT-1 (aka SN 2007va), in the Spitzer Deep, Wide-Field Survey of the NOAO Deep Wide-Field Survey Bootes field. The transient, located in a z = 0.19 low-luminosity (M([4.5]) similar or equal to -18.6 mag, L/ L(star) similar or equal to 0.01) metal-poor (12 + log(O/H) similar or equal to 7.8) irregular galaxy, peaked at a mid-infrared absolute magnitude of M([4.5]) similar or equal to -24.2 in the 4.5 mu m Spitzer/IRAC band and emitted a total energy of at least 10(51) erg. The optical emission was likely fainter than the mid-infrared, although our constraints on the optical emission are poor because the transient peaked when the source was "behind" the Sun. The Spitzer data are consistent with emission by a modified blackbody with a temperature of similar to 1350 K. We rule out a number of scenarios for the origin of the transient such as a Galactic star, active galactic nucleus activity, gamma-ray burst, tidal disruption of a star by a black hole, and gravitational lensing. The most plausible scenario is a supernova (SN) exploding inside a massive, optically thick circumstellar medium, composed of multiple shells of previously ejected material. If the proposed scenario is correct, then a significant fraction (similar to 10%) of the most luminous SN may be self-enshrouded by dust not only before but also after the SN occurs. The spectral energy distribution of the progenitor of such an SN would be a slightly cooler version of eta Carinae peaking at 20-30 mu m. C1 [Kozlowski, Szymon; Kochanek, C. S.; Stanek, K. Z.; Thompson, T. A.; Assef, R. J.; Szczygiel, D. M.; Skowron, J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Kochanek, C. S.; Stanek, K. Z.; Thompson, T. A.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Stern, D.; Griffith, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Prieto, J. L.] Carnegie Observ, Pasadena, CA 91101 USA. [Drake, A. J.; Harrison, F.; Madsen, K.] CALTECH, Pasadena, CA 91125 USA. [Szczygiel, D. M.; Pilecki, B.; Pojmanski, G.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Wozniak, P. R.; Vestrand, W. T.; Wren, J. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Nugent, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ashby, M. L. N.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Beshore, E.; Larson, S.] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Brown, M. J. I.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Dey, Arjun; Jannuzi, B. T.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Pilecki, B.] Univ Concepcion, Dept Fis, Concepcion, Chile. RP Kozlowski, S (reprint author), Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. EM simkoz@astronomy.ohio-state.edu RI Kozlowski, Szymon/G-4799-2013; Skowron, Jan/M-5186-2014; Brown, Michael/B-1181-2015 OI Kozlowski, Szymon/0000-0003-4084-880X; Skowron, Jan/0000-0002-2335-1730; Brown, Michael/0000-0002-1207-9137 FU National Aeronautics and Space Administration (NASA); NASA [1310744, HF-51261.01-A, NAS 5-2655, NNG05GF22G]; JPL/Caltech [1314516]; National Science Foundation (NSF) [AST-0908816, AST-0407448, AST-0909182]; National Optical Astronomy Observatory (NOAO) FX We thank the anonymous referee, whose comments helped us to improve the manuscript. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech) under contract with the National Aeronautics and Space Administration (NASA). Support for this work was provided by NASA through award numbers 1310744 (C.S.K. and S.K.), 1314516 (M.L.N.A.) issued by JPL/Caltech. C.S.K., K.Z.S., T.A.T., and S.K. are also supported by National Science Foundation (NSF) grant AST-0908816. J.L.P. acknowledges support from NASA through Hubble Fellowship grant HF-51261.01-A awarded by STScI, which is operated by AURA, Inc., for NASA, under contract NAS 5-2655. This work made use of images and/or data products provided by NDWFS (Jannuzi & Dey 1999). The NDWFS and the research of A.D and B.T.J. are supported by the National Optical Astronomy Observatory (NOAO). NOAO is operated by AURA, Inc., under a cooperative agreement with NSF. The CRTS survey is supported by NSF under grants AST-0407448 and AST-0909182. The CSS survey is funded by NASA under grant no. NNG05GF22G issued through the Science Mission Directorate Near-Earth Objects Observations Program. NR 85 TC 19 Z9 19 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1624 EP 1632 DI 10.1088/0004-637X/722/2/1624 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400050 ER PT J AU Sterling, AC Harra, LK Moore, RL AF Sterling, Alphonse C. Harra, Louise K. Moore, Ronald L. TI FIBRILLAR CHROMOSPHERIC SPICULE-LIKE COUNTERPARTS TO AN EXTREME-ULTRAVIOLET AND SOFT X-RAY BLOWOUT CORONAL JET SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: atmosphere; Sun: chromosphere; Sun: photosphere; Sun: UV radiation; Sun: X-rays, gamma rays ID HORIZONTAL MAGNETIC-FIELDS; SOLAR OPTICAL TELESCOPE; QUIET-SUN INTERNETWORK; TRANSITION REGION; H-ALPHA; II SPICULES; NUMERICAL HYDRODYNAMICS; HINODE MISSION; ACTIVE-REGION; MACROSPICULES AB We observe an erupting jet feature in a solar polar coronal hole, using data from Hinode/Solar Optical Telescope (SOT), Extreme Ultraviolet Imaging Spectrometer (EIS), and X-Ray Telescope (XRT), with supplemental data from STEREO/EUVI. From extreme-ultraviolet (EUV) and soft X-ray (SXR) images we identify the erupting feature as a blowout coronal jet: in SXRs it is a jet with a bright base, and in EUV it appears as an eruption of relatively cool (similar to 50,000 K) material of horizontal size scale similar to 30 '' originating from the base of the SXR jet. In SOT Ca II H images, the most pronounced analog is a pair of thin (similar to 1 '') ejections at the locations of either of the two legs of the erupting EUV jet. These Ca II features eventually rise beyond 45 '', leaving the SOT field of view, and have an appearance similar to standard spicules except that they are much taller. They have velocities similar to that of "type II" spicules, similar to 100 km s(-1), and they appear to have spicule-like substructures splitting off from them with horizontal velocity similar to 50 km s(-1), similar to the velocities of splitting spicules measured by Sterling et al. Motions of splitting features and of other substructures suggest that the macroscopic EUV jet is spinning or unwinding as it is ejected. This and earlier work suggest that a subpopulation of Ca II type II spicules are the Ca II manifestation of portions of larger scale erupting magnetic jets. A different subpopulation of type II spicules could be blowout jets occurring on a much smaller horizontal size scale than the event we observe here. C1 [Sterling, Alphonse C.; Moore, Ronald L.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, VP62, Huntsville, AL 35812 USA. [Harra, Louise K.] Univ Coll London, Mullard Space Sci Lab, Surrey, England. RP Sterling, AC (reprint author), JAXA Inst Space & Astronaut Sci Hinode Grp, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. EM alphonse.sterling@nasa.gov; ron.moore@nasa.gov OI Harra, Louise/0000-0001-9457-6200 FU NASA's Office of Space Science FX A.C.S. and R. L. M. were supported by funding from NASA's Office of Space Science through the Solar Physics Supporting Research and Technology Program and the Sun-Earth Connection Guest Investigator Program. We thank D. H. Brooks for discussions about the EIS data sets. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (UK), NASA, ESA, and NSC (Norway). NR 74 TC 37 Z9 37 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1644 EP 1653 DI 10.1088/0004-637X/722/2/1644 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400052 ER PT J AU Omukai, K Hosokawa, T Yoshida, N AF Omukai, Kazuyuki Hosokawa, Takashi Yoshida, Naoki TI LOW-METALLICITY STAR FORMATION: PRESTELLAR COLLAPSE AND PROTOSTELLAR ACCRETION IN THE SPHERICAL SYMMETRY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: formation; stars: formation; stars: Population II ID INITIAL MASS FUNCTION; 1ST STARS; EARLY UNIVERSE; MOLECULAR CLOUDS; FORMING CLOUDS; GRAVITATIONAL COLLAPSE; RADIATION FEEDBACK; PRIMORDIAL STARS; STELLAR COLLAPSE; GAS CLOUDS AB The collapse of dense cores with metallicities 0-1 Z(circle dot) is studied by hydrodynamical calculations coupled with detailed chemical and radiative processes. For this purpose, we construct a simple chemical network with non-equilibrium reactions among 15 chemical species, H(+), e, H, H(2), D(+), D, HD, C(+), C, CO, CO(2), O, OH, H(2)O, and O(2), which reproduces the abundance of important molecular coolants given by a more detailed network very well. Starting from the initial density of 10(4) cm(-3), the evolution is followed until the formation of a hydrostatic protostar at the center similar to 10(21) cm(-3). In a lower-metallicity gas cloud, the temperature during the collapse remains high owing to less efficient cooling. After the cloud core becomes optically thick to the thermal emission by dust, temperature evolution at the center converges to a single trajectory, except for cases with metallicity <= 10(-6) Z(circle dot), where the temperature remains slightly higher than in higher-metallicity cases even after becoming optically thick to thermal radiation by the H(2) collision-induced emission. The protostellar masses at their formation are a few 10(-3) M(circle dot), being slightly higher for cases with <= 10(-6) Z(circle dot). Using the temperature evolution at the center as a function the density, we discuss the possibility of fragmentation during the dust-cooling phase. The critical metallicity for the fragmentation is 10(-5) Z(circle dot) assuming moderate elongation of the cloud cores at the onset of this phase. From the density and velocity distributions at the time of protostar formation, we evaluate the mass accretion rate in the subsequent accretion phase. The accretion rate is larger than the Shu accretion rate for the inside-out collapse from an initially static cloud similar or equal to c(s)(3)/G, where c(s) is the sound speed in the prestellar gas, by about a factor of 10 owing to more dynamical nature of the collapse. Using these accretion rates, we also calculate the evolution of the protostars under the assumption of stationary accretion flow. For >= 10(-4) Z(circle dot), we succeed in following their evolution well after the arrival to the main-sequence phase. For lower-metallicity cases, however, owing to too high accretion rates greater than or similar to a few 10(-3) M(circle dot) yr(-1), the total luminosity, which consists of contribution from accretion and internal luminosity, reaches the Eddington limit, thereby rendering the stationary accretion impossible for greater than or similar to 100 M(circle dot). Finally, we discuss the possible suppression of fragmentation by heating of the ambient gas by protostellar radiation, which is considered important in the contemporary star formation. We argue that it is negligible for <10(-2) Z(circle dot). C1 [Omukai, Kazuyuki; Hosokawa, Takashi] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Omukai, Kazuyuki; Hosokawa, Takashi] Natl Astron Observ, Div Theoret Astron, Mitaka, Tokyo 1818588, Japan. [Hosokawa, Takashi] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Yoshida, Naoki] Univ Tokyo, IPMU, Chiba 2778583, Japan. RP Omukai, K (reprint author), Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. EM omukai@tap.scphys.kyoto-u.ac.jp RI Yoshida, Naoki/A-4305-2011 FU Ministry of Education, Science and Culture of Japan [19047004, 2168407, 21244021, 20674003] FX The present work is supported in part by the Grants-in-Aid by the Ministry of Education, Science and Culture of Japan (19047004, 2168407, 21244021: KO, 20674003: NY). NR 73 TC 48 Z9 48 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1793 EP 1815 DI 10.1088/0004-637X/722/2/1793 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400065 ER PT J AU Roser, JE Allamandola, LJ AF Roser, J. E. Allamandola, L. J. TI INFRARED SPECTROSCOPY OF NAPHTHALENE AGGREGATION AND CLUSTER FORMATION IN ARGON MATRICES SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; infrared: ISM; ISM: lines and bands; ISM: molecules; molecular data ID POLYCYCLIC AROMATIC-HYDROCARBONS; EMISSION BANDS; INTERSTELLAR-MEDIUM; RAMAN-SPECTROSCOPY; HAZE FORMATION; SPECTRA; PAHS; MOLECULES; CATIONS; TRIMER AB Fourier-transform, mid-infrared absorption spectra of mixed argon/naphthalene matrices at 5 K are shown with ratios of argon-to-naphthalene that vary from 1000 to 0. These spectra show the changes as naphthalene clustering and aggregation occurs, with moderate spectral shifts affecting the C-H vibrational modes and relatively small or no shifts to the C-C and C-C-C vibrational modes. The possible contribution of homogeneous naphthalene clusters to the interstellar unidentified infrared bands is discussed. The contribution of polycyclic aromatic hydrocarbon (PAH) clusters to the 7.7 mu m emission plateau and the blue shading of the 12.7 mu m emission band are identified as promising candidates for future research. In addition, since PAH clusters are model components of Jupiter and Titan's atmospheres, the information presented here may also be applicable to the spectroscopy of these objects. C1 [Roser, J. E.; Allamandola, L. J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Roser, J. E.] SETI Inst, Mountain View, CA 94043 USA. RP Roser, JE (reprint author), NASA, Ames Res Ctr, Mail Stop 245-6,Bldg N245,Room 148,POB 1, Moffett Field, CA 94035 USA. EM Joseph.E.Roser@nasa.gov FU NASA FX The authors gratefully acknowledge sustained support from NASA's Laboratory Astrophysics and Astrobiology Programs. The authors thank Christiaan Boersma for helpful discussions about the computer simulations described here. NR 51 TC 10 Z9 10 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1932 EP 1938 DI 10.1088/0004-637X/722/2/1932 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400075 ER PT J AU Sengupta, S Marley, MS AF Sengupta, Sujan Marley, Mark S. TI OBSERVED POLARIZATION OF BROWN DWARFS SUGGESTS LOW SURFACE GRAVITY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE brown dwarfs; polarization; scattering; stars: atmospheres; stars: low-mass ID EXTRASOLAR GIANT PLANETS; DUST CLOUD FORMATION; LOW-MASS STARS; T-DWARFS; ULTRACOOL DWARFS; SUBSTELLAR ATMOSPHERES; LINEAR POLARIMETRY; MODEL ATMOSPHERES; ROTATION; FIELD AB Light scattering by atmospheric dust particles is responsible for the polarization observed in some L dwarfs. Whether this polarization arises from an inhomogeneous distribution of dust across the disk or an oblate shape induced by rotation remains unclear. Here, we argue that the latter case is plausible and, for many L dwarfs, the more likely one. Furthermore, evolutionary models of mature field L dwarfs predict surface gravities ranging from about 200 to 2500 m s(-2) (corresponding to masses of similar to 15-70 M(Jupiter)). Yet comparison of observed spectra to available synthetic spectra often does not permit more precise determination of the surface gravity of individual field L dwarfs, leading to important uncertainties in their properties. Since rotationally induced non-sphericity, which gives rise to non-zero disk-integrated polarization, is more pronounced at lower gravities, polarization is a promising low gravity indicator. Here, we combine a rigorous multiple scattering analysis with a self-consistent cloudy atmospheric model and observationally inferred rotational velocities and find that the observed optical polarization can be explained if the surface gravity of the polarized objects is about 300 m s(-2) or less, potentially providing a new method for constraining L dwarf masses. C1 [Sengupta, Sujan] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Sengupta, S (reprint author), Indian Inst Astrophys, Koramangala 2nd Block, Bangalore 560034, Karnataka, India. EM sujan@iiap.res.in; Mark.S.Marley@NASA.gov RI Marley, Mark/I-4704-2013; OI Marley, Mark/0000-0002-5251-2943 NR 35 TC 16 Z9 16 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 20 PY 2010 VL 722 IS 2 BP L142 EP L146 DI 10.1088/2041-8205/722/2/L142 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SI UT WOS:000282909200004 ER PT J AU Lee, S Kahn, BH Teixeira, J AF Lee, Seungwon Kahn, Brian H. Teixeira, Joao TI Characterization of cloud liquid water content distributions from CloudSat SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BOUNDARY-LAYER CLOUDS; SUBGRID-SCALE VARIABILITY; PDF-BASED MODEL; TOGA-COARE; RESOLVING MODEL; CLIMATE MODELS; GCSS MODEL; PART I; PARAMETERIZATION; COVER AB The development of realistic cloud parameterizations requires accurate characterizations of subgrid distributions of thermodynamic variables. To this end, cloud liquid water content (CLWC) distributions are characterized with respect to cloud phase, cloud type, precipitation occurrence, and geolocation using CloudSat radar measurements. The probability density function (PDF) of CLWC is estimated using maximum likelihood estimation. The best-estimated PDF of CLWC is found to follow either a gamma or a lognormal distribution depending on temperature (cloud phase), cloud type, the occurrence of precipitation, and geolocation. The data sampling with respect to cloud phase and precipitation significantly affects the distributional characteristics of CLWC in some regions. In the lower to midtroposphere (altitudes of 1-6 km) in the tropics and subtropics, where nonprecipitating and pure liquid phase clouds are dominant, the PDFs of CLWC are best described by lognormal distributions. In contrast, at altitudes above 6 km and in regions poleward of the midlatitudes, the CLWC more closely resembles a gamma distribution that coincides with a high frequency of occurrence of supercooled liquid clouds containing low CLWC values. When the contributions of supercooled water and precipitation are removed, the CLWC PDFs transition from gamma to lognormal distributions in two areas: (1) the high altitude and middle-to-polar latitude regions where the contribution of supercooled cloud is significant and (2) in the lower troposphere where precipitation is frequently detected. Although the CloudSat radar does not sample all cloud hydrometeors, coherent regional and cloud type dependence of CLWC distributional characteristics are observed that may provide useful constraints for cloud parameterizations in climate models. C1 [Lee, Seungwon; Kahn, Brian H.; Teixeira, Joao] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lee, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM seungwon.lee@jpl.nasa.gov FU Office of Naval Research [N0001408IP20064]; NASA; JPL FX The authors would like to thank Tristan L'Ecuyer, Graeme Stephens, and the CloudSat team for helpful discussions about CloudSat data and three anonymous reviewers for constructive comments. CloudSat data were obtained through the CloudSat Data Processing Center (http://www.cloudsat.cira.colostate.edu/). J.T. acknowledges the support provided by the Office of Naval Research, Marine Meteorology Program under award N0001408IP20064 and the NASA MAP Program. This research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work was funded by the JPL Internal Research and Technology Development Program. NR 39 TC 9 Z9 11 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 20 PY 2010 VL 115 AR D20203 DI 10.1029/2009JD013272 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 671XC UT WOS:000283546100002 ER PT J AU Kwok, R Cunningham, GF AF Kwok, R. Cunningham, G. F. TI Contribution of melt in the Beaufort Sea to the decline in Arctic multiyear sea ice coverage: 1993-2009 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article AB For the summers of 1993 through 2009, we estimate the loss of multiyear sea ice (MYI) area in the Beaufort Sea due to melt. Parcels of MYI in April are traced into the Beaufort Sea where they melt as the ice edge retreats. Net loss of area (with fractional MYI coverage > 50%) over the 17-year period is similar to 900 x 10(3) km(2). Three-quarters of that area, similar to 10% of the area of the Arctic Ocean, was lost after 2000. There is a clear positive trend in the record, with a distinct peak of 213 x 10(3) km(2) in 2008; this is twice the summer outflow at the Fram Strait that year. The net melt area of 490 x 10(3) km(2) between 2005 and 2008 accounts for nearly 32% of the net loss of 1.54 x 10(6) km(2) of Arctic Ocean MYI coverage over the same period. Volume loss, for the years with ICESat thickness (2004-2009), is highest at 473 km(3) in 2008 followed by 320 km(3) in 2007. Net loss in MYI volume for the six summers is similar to 1400 km(3). This is similar to 20% of the loss in MYI volume of 6300 km(3) during 2004-2008. This adds to the freshwater content of the Arctic Ocean and locally to the freshening of the Beaufort Gyre. Citation: Kwok, R., and G. F. Cunningham (2010), Contribution of melt in the Beaufort Sea to the decline in Arctic multiyear sea ice coverage: 1993-2009, Geophys. Res. Lett., 37, L20501, doi:10.1029/2010GL044678. C1 [Kwok, R.; Cunningham, G. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kwok, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM ron.kwok@jpl.nasa.gov RI Kwok, Ron/A-9762-2008 OI Kwok, Ron/0000-0003-4051-5896 FU National Aeronautics and Space Administration FX The SMMR and SSM/I brightness temperature and ice concentration fields are provided by World Data Center A for Glaciology/National Snow and Ice Data Center, University of Colorado, Boulder, CO. The QuikSCAT data are provided by the Physical Oceanography Distributed Active Archive Center (PO. DAAC) at the NASA Jet Propulsion Laboratory, Pasadena, CA. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 10 TC 52 Z9 52 U1 2 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 19 PY 2010 VL 37 AR L20501 DI 10.1029/2010GL044678 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 671WU UT WOS:000283545100001 ER PT J AU Seifert, P Ansmann, A Mattis, I Wandinger, U Tesche, M Engelmann, R Muller, D Perez, C Haustein, K AF Seifert, P. Ansmann, A. Mattis, I. Wandinger, U. Tesche, M. Engelmann, R. Mueller, D. Perez, C. Haustein, K. TI Saharan dust and heterogeneous ice formation: Eleven years of cloud observations at a central European EARLINET site SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MIXED-PHASE CLOUDS; MINERAL DUST; DESERT DUST; BIOLOGICAL PARTICLES; LIDAR OBSERVATIONS; BACKSCATTER; EXTINCTION; NUCLEATION; ATMOSPHERE; CLIMATE AB More than 2300 observed cloud layers were analyzed to investigate the impact of aged Saharan dust on heterogeneous ice formation. The observations were performed with a polarization/Raman lidar at the European Aerosol Research Lidar Network site of Leipzig, Germany (51.3 degrees N, 12.4 degrees E) from February 1997 to June 2008. The statistical analysis is based on lidar-derived information on cloud phase (liquid water, mixed phase, ice cloud) and cloud top height, cloud top temperature, and vertical profiles of dust mass concentration calculated with the Dust Regional Atmospheric Modeling system. Compared to dust-free air masses, a significantly higher amount of ice-containing clouds (25%-30% more) was observed for cloud top temperatures from -10 degrees C to -20 degrees C in air masses that contained mineral dust. The midlatitude lidar study is compared with our SAMUM lidar study of tropical stratiform clouds at Cape Verde in the winter of 2008. The comparison reveals that heterogeneous ice formation is much stronger over central Europe and starts at higher temperatures than over the tropical station. Possible reasons for the large difference are discussed. C1 [Seifert, P.; Ansmann, A.; Mattis, I.; Wandinger, U.; Tesche, M.; Engelmann, R.; Mueller, D.] Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany. [Mueller, D.] Gwangju Inst Sci & Technol, Atmospher Remote Sensing Lab, Kwangju, South Korea. [Perez, C.] Columbia Univ, Earth Inst, Int Res Inst Climate & Soc, Palisades, NY USA. [Perez, C.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Haustein, K.] Barcelona Supercomp Ctr, Div Earth Sci, E-08034 Barcelona, Spain. RP Seifert, P (reprint author), Leibniz Inst Tropospher Res, Permoserstr 15, D-04318 Leipzig, Germany. EM seifert@tropos.de; albert@tropos.de; ina@tropos.de; ulla@tropos.de; tesche@tropos.de; ronny@tropos.de; detlef@tropos.de; cperez@giss.nasa.gov; karsten.haustein@bsc.es RI Wandinger, Ulla/E-3348-2014; Seifert, Patric/D-2448-2014; MUELLER, DETLEF/F-1010-2015 OI Tesche, Matthias/0000-0003-0096-4785; Perez Garcia-Pando, Carlos/0000-0002-4456-0697; Seifert, Patric/0000-0002-5626-3761; MUELLER, DETLEF/0000-0002-0203-7654 FU Deutsche Forschungsgemeinschaft (DFG) [AN 258/10] FX The DRIFT study was funded by the Deutsche Forschungsgemeinschaft (DFG) under grant AN 258/10. We thank the reviewers for their fruitful suggestions. NR 64 TC 45 Z9 47 U1 0 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 19 PY 2010 VL 115 AR D20201 DI 10.1029/2009JD013222 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 671XA UT WOS:000283545900003 ER PT J AU Tarasick, DW Jin, JJ Fioletov, VE Liu, G Thompson, AM Oltmans, SJ Liu, J Sioris, CE Liu, X Cooper, OR Dann, T Thouret, V AF Tarasick, D. W. Jin, J. J. Fioletov, V. E. Liu, G. Thompson, A. M. Oltmans, S. J. Liu, J. Sioris, C. E. Liu, X. Cooper, O. R. Dann, T. Thouret, V. TI High-resolution tropospheric ozone fields for INTEX and ARCTAS from IONS ozonesondes SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID WATER-VAPOR; TRAJECTORIES; TRANSPORT; MODEL; CLIMATOLOGY; VALIDATION; ACCURACY; TRENDS; CANADA AB The IONS-04, IONS-06, and ARC-IONS ozone sounding campaigns over North America in 2004, 2006, and 2008 obtained approximately 1400 profiles, in five series of coordinated and closely spaced (typically daily) launches. Although this coverage is unprecedented, it is still somewhat sparse in its geographical spacing. Here we use forward and back trajectory calculations for each sounding to map ozone measurements to a number of other locations and so to fill in the spatial domain. This is possible because the lifetime of ozone in the troposphere is of the order of weeks. The trajectory-mapped ozone values show reasonable agreement, where they overlap, to the actual soundings, and the patterns produced separately by forward and backward trajectory calculations are similar. Comparisons with MOZAIC profiles and surface station data show generally good agreement. A variable-length smoothing algorithm is used to fill data gaps: for each point on the map, the smoothing radius is such that a minimum of 10 data points are included in the average. The total tropospheric ozone column maps calculated by integrating the smoothed fields agree well with similar maps derived from TOMS and OMI/MLS measurements. The resulting three-dimensional picture of the tropospheric ozone field for the INTEX and ARCTAS periods facilitates visualization and comparison of different years and seasons and will be useful to other researchers. C1 [Tarasick, D. W.; Fioletov, V. E.; Liu, G.; Liu, J.; Sioris, C. E.] Environm Canada, Air Qual Res Div, Downsview, ON M3H 5T4, Canada. [Jin, J. J.] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON M3J 2R7, Canada. [Thompson, A. M.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Oltmans, S. J.] NOAA, Climate Monitoring & Diagnost Lab, Boulder, CO 80305 USA. [Liu, X.] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Liu, X.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Cooper, O. R.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Cooper, O. R.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Dann, T.] Environm Canada, Air Qual Res Div, Ottawa, ON K1V 1C7, Canada. [Thouret, V.] Observ Midi Pyrenees, CNRS, Lab Aerol, F-31400 Toulouse, France. RP Tarasick, DW (reprint author), Environm Canada, Air Qual Res Div, Downsview, ON M3H 5T4, Canada. EM david.tarasick@ec.gc.ca RI Jin, Jianjun/G-8357-2012; Cooper, Owen/H-4875-2013; Liu, Xiong/P-7186-2014; Thompson, Anne /C-3649-2014; Manager, CSD Publications/B-2789-2015; OI Tarasick, David/0000-0001-9869-0692; Liu, Xiong/0000-0003-2939-574X; Thompson, Anne /0000-0002-7829-0920; Fioletov, Vitali/0000-0002-2731-5956; Sioris, Christopher/0000-0003-1168-8755 FU Environment Canada; NOAA; NASA; U.S. EPA; Max Plank Institute for Chemistry, Mainz; Los Alamos National Laboratory; Valparaiso University; University of Rhode Island; California Department of Energy; California Air Resources Board; ExxonMobil Canada; European Commission; INSU-CNRS (France); Meteo-France; Forschungszentrum Julich (Germany); ETHER (CNES and INSU-CNRS); Airbus; Lufthansa airlines; Austrian airlines; Air France airlines FX We thank the many observers who obtained the measurements at the sites used in this study. Their careful work is gratefully acknowledged. We thank J. Witte, who archived all of the IONS data in near-real time. We also thank J. Davies, R. Mittermeier, and T. Mathews for assistance with data processing. Data were obtained from the World Ozone and Ultraviolet Radiation Data Center (WOUDC) operated by Environment Canada, Toronto, Ontario, Canada, under the auspices of the World Meteorological Organization. Funding of the IONS ozonesondes was provided by Environment Canada; NOAA; NASA; U.S. EPA; Max Plank Institute for Chemistry, Mainz; Los Alamos National Laboratory; Valparaiso University; the University of Rhode Island; the California Department of Energy; the California Air Resources Board; and the Friends of the Green Horse Society via a grant from ExxonMobil Canada. The authors also acknowledge the strong support of the European Commission, Airbus, and the airlines (Lufthansa, Austrian, Air France) who carry and maintain the MOZAIC equipment free of charge since 1994. MOZAIC is presently funded by INSU-CNRS (France), Meteo-France, and Forschungszentrum Julich (Germany). The MOZAIC data base is supported by ETHER (CNES and INSU-CNRS). NR 56 TC 17 Z9 17 U1 3 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 19 PY 2010 VL 115 AR D20301 DI 10.1029/2009JD012918 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 671XA UT WOS:000283545900001 ER PT J AU Syed, TH Famiglietti, JS Chambers, DP Willis, JK Hilburn, K AF Syed, Tajdarul H. Famiglietti, James S. Chambers, Don P. Willis, Josh K. Hilburn, Kyle TI Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE climate; global water cycle; hydrology; remote sensing; observations ID SEA-LEVEL; RUNOFF; CLIMATE; CYCLE; PRECIPITATION; 21ST-CENTURY; TEMPERATURE; GRACE AB Freshwater discharge from the continents is a key component of Earth's water cycle that sustains human life and ecosystem health. Surprisingly, owing to a number of socioeconomic and political obstacles, a comprehensive global river discharge observing system does not yet exist. Here we use 13 years (1994-2006) of satellite precipitation, evaporation, and sea level data in an ocean mass balance to estimate freshwater discharge into the global ocean. Results indicate that global freshwater discharge averaged 36,055 km(3)/y for the study period while exhibiting significant interannual variability driven primarily by El Nino Southern Oscillation cycles. The method described here can ultimately be used to estimate long-term global discharge trends as the records of sea level rise and ocean temperature lengthen. For the relatively short 13-year period studied here, global discharge increased by 540 km(3)/y(2), which was largely attributed to an increase of global-ocean evaporation (768 km(3)/y(2)). Sustained growth of these flux rates into long-term trends would provide evidence for increasing intensity of the hydrologic cycle. C1 [Syed, Tajdarul H.; Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Syed, Tajdarul H.] Indian Sch Mines, Dept Appl Geol, Dhanbad 826004, Bihar, India. [Famiglietti, James S.] Univ Calif Irvine, UC Ctr Hydrol Modeling, Irvine, CA 92697 USA. [Chambers, Don P.] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA. [Willis, Josh K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hilburn, Kyle] Remote Sensing Syst, Santa Rosa, CA 95401 USA. RP Famiglietti, JS (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM jfamigli@uci.edu RI Syed, Tajdarul/G-6731-2014; OI Chambers, Don/0000-0002-5439-0257 FU National Aeronautics and Space Administration FX This work was supported by research grants from the National Aeronautics and Space Administration Interdisciplinary Sciences, NEWS, and Earth System Science Fellowship programs. NR 42 TC 55 Z9 56 U1 3 U2 34 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 19 PY 2010 VL 107 IS 42 BP 17916 EP 17921 DI 10.1073/pnas.1003292107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 667HV UT WOS:000283184800016 PM 20921364 ER PT J AU Schmidt, GA Ruedy, RA Miller, RL Lacis, AA AF Schmidt, Gavin A. Ruedy, Reto A. Miller, Ron L. Lacis, Andy A. TI Attribution of the present-day total greenhouse effect SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID THERMAL EQUILIBRIUM; CLIMATE SENSITIVITY; ATMOSPHERE; MODELS; BUDGET AB The relative contributions of atmospheric long-wave absorbers to the present-day global greenhouse effect are among the most misquoted statistics in public discussions of climate change. Much of the interest in these values is however due to an implicit assumption that these contributions are directly relevant for the question of climate sensitivity. Motivated by the need for a clear reference for this issue, we review the existing literature and use the Goddard Institute for Space Studies ModelE radiation module to provide an overview of the role of each absorber at the present-day and under doubled CO2. With a straightforward scheme for allocating overlaps, we find that water vapor is the dominant contributor (similar to 50% of the effect), followed by clouds (similar to 25%) and then CO2 with similar to 20%. All other absorbers play only minor roles. In a doubled CO2 scenario, this allocation is essentially unchanged, even though the magnitude of the total greenhouse effect is significantly larger than the initial radiative forcing, underscoring the importance of feedbacks from water vapor and clouds to climate sensitivity. C1 [Schmidt, Gavin A.; Ruedy, Reto A.; Miller, Ron L.; Lacis, Andy A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Schmidt, GA (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM gschmidt@giss.nasa.gov RI Lacis, Andrew/D-4658-2012; Schmidt, Gavin/D-4427-2012; Miller, Ron/E-1902-2012 OI Schmidt, Gavin/0000-0002-2258-0486; NR 28 TC 48 Z9 51 U1 6 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 16 PY 2010 VL 115 AR D20106 DI 10.1029/2010JD014287 PG 6 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 666BV UT WOS:000283085100001 ER PT J AU Nimmo, F Bills, BG Thomas, PC Asmar, SW AF Nimmo, F. Bills, B. G. Thomas, P. C. Asmar, S. W. TI Geophysical implications of the long-wavelength topography of Rhea SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID ORBITER LASER ALTIMETER; INTERNAL STRUCTURE; SHELL THICKNESS; MARS TOPOGRAPHY; STEREO IMAGES; GLOBAL SHAPE; SATELLITES; GANYMEDE; VENUS; MOON AB We use limb profiles to investigate the long-wavelength topography and topographic variance spectrum of Rhea. One-dimensional variance spectra show a break in slope at a wavelength of approximate to 300 km; a similar effect is seen on the Moon and may be a signature of an elastic lithosphere having a thickness T(e) approximate to 10 km. The implied heat flux is similar to 15 mW m(-2), much higher than can be explained by radiogenic heating. We use the 1-D spectral behavior to constrain our solution for the long-wavelength global topography of Rhea. The degree 3 topography is large enough, if uncompensated, to contaminate estimates of the degree 2 gravity using existing flyby data. Current models of Rhea internal structures which rely on these degree 2 estimates may thus be inaccurate, illustrating the need to acquire further Rhea gravity data. C1 [Nimmo, F.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Bills, B. G.; Asmar, S. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Thomas, P. C.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Nimmo, F (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. EM fnimmo@es.ucsc.edu FU NASA-OPR; NASA-PGG FX The authors are grateful for the comments of two anonymous reviewers. This work supported by NASA-OPR and NASA-PGG. NR 40 TC 8 Z9 8 U1 2 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT 16 PY 2010 VL 115 AR E10008 DI 10.1029/2010JE003604 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 666EB UT WOS:000283093900002 ER PT J AU Bilitza, D Reinisch, B AF Bilitza, Dieter Reinisch, Bodo TI International reference ionosphere - progress in ionospheric modelling Preface SO ADVANCES IN SPACE RESEARCH LA English DT Editorial Material C1 [Bilitza, Dieter] NASA, Goddard Space Flight Ctr, SPDF, Greenbelt, MD 20771 USA. [Bilitza, Dieter] George Mason Univ, COS CDS, Fairfax, VA 22020 USA. [Reinisch, Bodo] Univ Massachusetts, Ctr Atmospher Res, Lowell, MA 01854 USA. RP Bilitza, D (reprint author), NASA, Goddard Space Flight Ctr, SPDF, Code 672, Greenbelt, MD 20771 USA. EM dieter.bilitza-1@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD OCT 15 PY 2010 VL 46 IS 8 BP 973 EP 973 DI 10.1016/j.asr.2010.07.015 PG 1 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 660VU UT WOS:000282675400001 ER PT J AU Fernandez, JR Mertens, CJ Bilitza, D Xu, X Russell, JM Mlynczak, MG AF Fernandez, J. R. Mertens, C. J. Bilitza, D. Xu, X. Russell, J. M., III Mlynczak, M. G. TI Feasibility of developing an ionospheric E-region electron density storm model using TIMED/SABER measurements SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Infrared remote sensing; Ionosphere; E-region; Magnetic storm; SABER AB We present a new technique for improving ionospheric models of nighttime E-region electron densities under geomagnetic storm conditions using TIMED/SABER measurements of broadband 4.3 mu m limb radiance. The response of E-region electron densities to geomagnetic activity is characterized by SABER-derived NO(+)(v) 4.3 mu m Volume Emission Rates (VER). A storm-time E-region electron density correction factor is defined as the ratio of storm-enhanced NO(+)(v) VER to a quiet-time climatological average NO(+)(v) VER, which will be fit to a geomagnetic activity index in a future work. The purpose of this paper is to demonstrate the feasibility of our technique in two ways. One, we compare storm-to-quiet ratios of SABER-derived NO(+)(v) VER with storm-to-quiet ratios of electron densities measured by Incoherent Scatter Radar. Two, we demonstrate that NO(+)(v) VER can be parameterized by widely available geomagnetic activity indices. The storm-time correction derived from NO(+)(v) VER is applicable at high-latitudes. Published by Elsevier Ltd. on behalf of COSPAR. C1 [Fernandez, J. R.; Mertens, C. J.; Mlynczak, M. G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Bilitza, D.] George Mason Univ, Fairfax, VA 22030 USA. [Xu, X.] SSAI Inc, Hampton, VA USA. [Russell, J. M., III] Hampton Univ, Hampton, VA 23668 USA. RP Mertens, CJ (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM c.j.mertens@larc.nasa.gov RI Mlynczak, Martin/K-3396-2012 NR 16 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD OCT 15 PY 2010 VL 46 IS 8 BP 1070 EP 1077 DI 10.1016/j.asr.2010.06.008 PG 8 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 660VU UT WOS:000282675400013 ER PT J AU Papineau, D De Gregorio, BT Cody, GD Fries, MD Mojzsis, SJ Steele, A Stroud, RM Fogel, ML AF Papineau, Dominic De Gregorio, Bradley T. Cody, George D. Fries, Marc D. Mojzsis, Stephen J. Steele, Andrew Stroud, Rhonda M. Fogel, Marilyn L. TI Ancient graphite in the Eoarchean quartz-pyroxene rocks from Akilia in southern West Greenland I: Petrographic and spectroscopic characterization SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID ISUA SUPRACRUSTAL BELT; GRANULITE-FACIES METAMORPHISM; RAMAN MICROPROBE SPECTROSCOPY; OLDEST PUTATIVE MICROFOSSILS; ARCHEAN CHEMICAL SEDIMENTS; ITSAQ GNEISS COMPLEX; EARTHS EARLIEST LIFE; CARBONACEOUS MATERIAL; SOUTHWEST GREENLAND; IRON-FORMATION AB Because all known Eoarchean (>3.65 Ga) volcano-sedimentary terranes are locked in granitoid gneiss complexes that have experienced high degrees of metamorphism and deformation, the origin and mode of preservation of carbonaceous material in the oldest metasedimentary rocks remain a subject of vigorous debate. To determine the biogenicity of carbon in graphite in such rocks, carbonaceous material must be demonstrably indigenous and its composition should be consistent with thermally altered biogenic carbon as well as inconsistent with abiogenic carbon. Here we report the petrological and spectroscopic characteristics of carbonaceous material, typically associated with individual apatite grains, but also with various other minerals including calcite, in a >3.83 Ga granulite-facies ferruginous quartz-pyroxene unit (Qp rock) from the island of Akilia in southern West Greenland. In thin sections of the fine-grained parts of Akilia Qp rock sample G91-26, mapped apatites were found to be associated with graphite in about 20% of the occurrences. Raman spectra of this carbonaceous material had strong G-band and small D-band absorptions indicative of crystalline graphite. Three apatite-associated graphites were found to contain curled graphite structures, identified by an anomalously intense second-order D-band (or 2D-band) Raman mode. These structures are similar to graphite whiskers or cones documented to form at high temperatures. Raman spectra of apatite-associated graphite were consistent with formation at temperatures calculated to be between 635 and 830 degrees C, which are consistent with granulite-facies metamorphic conditions. Three graphite targets extracted by focused ion beam (FIB) methods contained thin graphite coatings on apatite grains rather than inclusions sensu stricto as inferred from transmitted light microscopy and Raman spectroscopy. TEM analyses of graphite in these FIB sections showed a (0 0 0 2) interplanar spacing between 3.41 and 3.64 angstrom for apatite-associated graphite, which is larger than the spacing of pure graphite (3.35 angstrom) and may be caused by the presence of non-carbon heteroatoms in inter-layer sites. Samples analyzed by synchrotron-based scanning transmission X-ray microscopy (STXM) also confirmed the presence of crystalline graphite, but abundances of N and O heteroatoms were below detection limit for this method. Graphite in the Akilia Qp rock was also found to occur in complex polyphase mineral assemblages of hornblende +/- calcite +/- sulfides +/- magnetite that point to high-temperature precipitation from carbon-bearing fluids. These complex mineral assemblages may represent another generation of graphitization that could have occurred during the amphibolite-facies metamorphic event at 2.7 Ga. Several observations point to graphitization from high-temperature fluid-deposition for some of the Akilia graphite and our results do not exclude a biogenic source of carbon in graphite associated with apatite, but ambiguities remain for the origin of this carbon. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Papineau, Dominic; Cody, George D.; Fries, Marc D.; Steele, Andrew; Fogel, Marilyn L.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [De Gregorio, Bradley T.; Stroud, Rhonda M.] USN, Div Mat Sci & Technol, Res Lab, Washington, DC 20375 USA. [Fries, Marc D.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Mojzsis, Stephen J.] Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA. RP Papineau, D (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM dpapineau@ciw.edu RI De Gregorio, Bradley/B-8465-2008; Fogel, Marilyn/M-2395-2015; Stroud, Rhonda/C-5503-2008 OI De Gregorio, Bradley/0000-0001-9096-3545; Fogel, Marilyn/0000-0002-1176-3818; Stroud, Rhonda/0000-0001-5242-8015 FU NASA [NNX08AO16G, NAG5-13497]; NASA Astrobiology Institute; Geophysical Laboratory of the Carnegie Institution of Washington; Fond quebecois de la recherche sur la nature et les technologies; NSF [EAR0228999]; NSERC; NRC; CIHR; University of Saskatchewan; Director of the Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the US-DOE FX We would like to thank M. Obst and D. Kilcoyne for help and advice on STXM analyses. Discussions with D. Rumble, R. Hazen, T. McCollom, and F. McCubbin, as well as reviews from two anonymous reviewers and T. Chacko helped to improve the manuscript. This work was supported by the NASA Exobiology and Evolutionary Biology Program (Grant # NNX08AO16G), the NASA Astrobiology Institute, and the Geophysical Laboratory of the Carnegie Institution of Washington. DP also acknowledges the Fond quebecois de la recherche sur la nature et les technologies for support. SJM acknowledges grants from the NASA exobiology (#NAG5-13497) and the NSF LExEn (EAR0228999) programs. The synchrotron-based STXM work described in this paper was partly performed at the Canadian Light Source, which is supported by NSERC, NRC, CIHR, and the University of Saskatchewan, and at the Advanced Light Source, which is supported by the Director of the Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the US-DOE. NR 94 TC 21 Z9 21 U1 2 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD OCT 15 PY 2010 VL 74 IS 20 BP 5862 EP 5883 DI 10.1016/j.gca.2010.05.025 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 653ZX UT WOS:000282139000011 ER PT J AU Li, C Wen, TX Li, ZQ Dickerson, RR Yang, YJ Zhao, YA Wang, YS Tsay, SC AF Li, Can Wen, Tianxue Li, Zhanqing Dickerson, Russell R. Yang, Yongjie Zhao, Yanan Wang, Yuesi Tsay, Si-Chee TI Concentrations and origins of atmospheric lead and other trace species at a rural site in northern China SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID AIR-BORNE PARTICULATE; SOURCE APPORTIONMENT; CHEMICAL-COMPOSITION; PM2.5 AEROSOL; FINE AEROSOL; HEAVY-METALS; DUST AEROSOL; SOUTH CHINA; HONG-KONG; ELEMENTS AB In this study we analyze the ambient levels of lead and other trace species in the bulk aerosol samples from a rural site similar to 70 km ESE of Beijing in spring 2005. Lead (0.28 +/- 0.24 mu g/m(3), average +/- standard deviation), along with several pollution-related trace elements, was enriched by over 100 fold relative to the Earth's crust. The ambient lead levels showing large synoptic variations were well-correlated with other anthropogenic pollutants (e. g., CO and SO2). The Unmix receptor model resolved four factors in the aerosol composition data: a biomass burning source, an industrial and coal combustion source, a secondary aerosol source, and a dust source. The first three sources were strongest in weak southerly winds ahead of cold fronts, while the dust source peaked in strong northerly winds behind cold fronts. The second source, primarily representing emissions from industrial processes and relatively small-scale coal burning such as in home and institutional heating, was identified as the main source of ambient lead in this study. Mobile sources might also contribute to this factor, but there was no distinct evidence of emissions due to combustion of leaded gasoline, despite a correlation between lead and CO. Potential source contribution function, calculated from backward trajectories and aerosol composition, further reveals that lead observed in this study was predominantly from the populated and industrialized areas to the south and SW of Xianghe, rather than Beijing to the west. Our results and several recent studies show that the lead levels in suburban areas near big cities in China, although generally lower than those in industrial districts and urban areas, are substantial (near or above 0.15 mu g/m(3)). More extensive studies on airborne lead and its emission sources in China are called for. C1 [Li, Can; Li, Zhanqing] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Li, Zhanqing; Dickerson, Russell R.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Li, Can; Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wen, Tianxue; Li, Zhanqing; Zhao, Yanan; Wang, Yuesi] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China. [Yang, Yongjie] Natl Res Ctr Environm Anal & Measurement, Beijing 100029, Peoples R China. RP Li, C (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. EM can.li@nasa.gov RI Li, Can/F-6867-2011; Wang, ZF/D-7202-2012; Tsay, Si-Chee/J-1147-2014; Dickerson, Russell/F-2857-2010; Li, Zhanqing/F-4424-2010 OI Wang, ZF/0000-0002-7062-6012; Dickerson, Russell/0000-0003-0206-3083; Li, Zhanqing/0000-0001-6737-382X FU MOST [2006CB403706]; NASA [NNG04GE79G]; DOE [DEFG0208ER64571]; NSF [ATM0412040] FX We thank Dennis Savoie and Joseph Prospero of the University of Miami for helping design the aerosol sampler. This study was supported by MOST (2006CB403706), NASA (NNG04GE79G), DOE (DEFG0208ER64571), and NSF (ATM0412040). NR 72 TC 12 Z9 12 U1 0 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 15 PY 2010 VL 115 AR D00K23 DI 10.1029/2009JD013639 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 666BU UT WOS:000283084800002 ER PT J AU Wang, SH Lin, NH OuYang, CF Wang, JL Campbell, JR Peng, CM Lee, CT Sheu, GR Tsay, SC AF Wang, Sheng-Hsiang Lin, Neng-Huei OuYang, Chang-Feng Wang, Jia-Lin Campbell, James R. Peng, Chi-Ming Lee, Chung-Te Sheu, Guey-Rong Tsay, Si-Chee TI Impact of Asian dust and continental pollutants on cloud chemistry observed in northern Taiwan during the experimental period of ABC/EAREX 2005 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID PACIFIC-OCEAN; CHEMICAL CHARACTERISTICS; AIRBORNE MEASUREMENTS; TROPOSPHERIC AEROSOL; MEASUREMENT PROGRAM; LIDAR MEASUREMENTS; SUN PHOTOMETER; BOUNDARY-LAYER; GOCART MODEL; AIR-QUALITY AB Observations of particulate matter (PM), vertical cloud and aerosol structure and cloud water chemistry in northern Taiwan were conducted during the ABC/EAREX 2005 period. Five Asian continental outflow regimes reaching Taiwan were identified. One was coupled with a dust storm observed not only at Gosan, Korea, but also over Taiwan, suggesting the scope of its regional impact. The arrival of the dust event was determined by lidar, cloud water, and surface PM measurements. When continental outflow events correspond to the presence of significant dust concentrations, air quality can be drastically worsened due to high levels of PM. PM10 (PM with aerodynamic diameters < 10 mu m), pH, conductivity, and ion concentrations of cloud water increased drastically near the dissipating stage of the frontal passage/cloud event for the dust case. Cloud water may have become acidified by pollution from industrial and urban regions along the coast of eastern China. Nevertheless, abundant Ca2+ contributed to the neutralization of acidic cloud water during the dust stage. The much higher aerosol and chemical loading injected into these clouds caused an enrichment effect in the cloud water, which can double the cloud loading of total ions, when Ca2+ increases by approximately 7 times. C1 [Wang, Sheng-Hsiang; Lin, Neng-Huei; Peng, Chi-Ming; Sheu, Guey-Rong] Natl Cent Univ, Dept Atmospher Sci, Chungli 32054, Taiwan. [Campbell, James R.] USN, Res Lab, Monterey, CA 93943 USA. [Lee, Chung-Te] Natl Cent Univ, Grad Inst Environm Engn, Chungli 32054, Taiwan. [Lin, Neng-Huei; OuYang, Chang-Feng; Wang, Jia-Lin] Natl Cent Univ, Dept Chem, Chungli 32054, Taiwan. [Wang, Sheng-Hsiang; Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wang, Sheng-Hsiang] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Wang, SH (reprint author), Natl Cent Univ, Dept Atmospher Sci, Chungli 32054, Taiwan. EM nhlin@cc.ncu.edu.tw RI Campbell, James/C-4884-2012; Tsay, Si-Chee/J-1147-2014; Wang, Sheng-Hsiang/F-4532-2010; Ou-Yang, Chang-Feng/R-2271-2016 OI Campbell, James/0000-0003-0251-4550; Wang, Sheng-Hsiang/0000-0001-9675-3135; Ou-Yang, Chang-Feng/0000-0002-8477-3013 FU National Science Council of Taiwan [NSC92-2111-M-008-018-AGC, NSC93-2111-M-008-016-AGC, NSC94-2111-M-008-018-AGC, NSC94-2752-M-008-006-PAE]; Taiwan Environmental Protection Administration [EPA93-U1L1-02-101, EPA94-U1L1-02-101]; NASA; Naval Research Laboratory, Monterey, California FX This work was supported by the National Science Council of Taiwan under grants NSC92-2111-M-008-018-AGC, NSC93-2111-M-008-016-AGC, NSC94-2111-M-008-018-AGC, and NSC94-2752-M-008-006-PAE and by the Taiwan Environmental Protection Administration under contracts EPA93-U1L1-02-101 and EPA94-U1L1-02-101, and also by Hal Maring, NASA Radiation Science Program. We thank Chi-Wen Liou and Wei-Jing Jian for their help on data processing. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.arl.noaa.gov/ready.html) used in this publication. Author J.C. acknowledges the support of J.S. Reid at Naval Research Laboratory, Monterey, California. The NASA Micro-Pulse Lidar Network is funded by the NASA Earth Observing System and Radiation Sciences Program. NR 66 TC 7 Z9 7 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 15 PY 2010 VL 115 AR D00K24 DI 10.1029/2009JD013692 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 666BU UT WOS:000283084800004 ER PT J AU Ji, EY Moon, YJ Kim, KH Lee, DH AF Ji, Eun-Young Moon, Y. -J. Kim, K. -H. Lee, D. -H. TI Statistical comparison of interplanetary conditions causing intense geomagnetic storms (Dst <=-100 nT) SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MAGNETIC STORMS; PARAMETERS AB It is well known that intense southward magnetic field and convection electric field (V x B) in the interplanetary medium are key parameters that control the magnitude of geomagnetic storms. By investigating the interplanetary conditions of 82 intense geomagnetic storms from 1998 to 2006, we have compared many different criteria of interplanetary conditions for the occurrence of the intense geomagnetic storms (Dst <= -100 nT). In order to examine if the magnetosphere always favors such interplanetary conditions for the occurrence of large geomagnetic storms, we applied these conditions to all the interplanetary data during the same period. For this study, we consider three types of interplanetary conditions as follows: B-z conditions, E-y conditions, and their combination. As a result, we present contingency tables between the number of events satisfying the condition and the number of observed geomagnetic storms. Then we obtain their statistical parameters for evaluation such as probability of detection yes, false alarm ratio, bias, and critical success index. From a comparison of these statistical parameters, we suggest that three conditions are promising candidates to trigger an intense storm: B-z <= -10 nT for > 3 h, E-y = 5 mV/m for > 2 h, and B-z = -15 nT or E-y >= 5 mV/m for > 2 h. Also, we found that more than half of the "miss" events, when an intense storm occurs that was not expected, are associated with sheath field structures or corotating interacting regions. Our conditions can be used for not only the real-time forecast of geomagnetic storms but also the survey of interplanetary data to identify candidate events for producing intense geomagnetic storms. C1 [Ji, Eun-Young] Kyung Hee Univ, Dept Astron & Space Sci, Yongin 446701, South Korea. [Moon, Y. -J.; Kim, K. -H.; Lee, D. -H.] Kyung Hee Univ, Sch Space Res, Yongin 446701, South Korea. [Moon, Y. -J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ji, EY (reprint author), Kyung Hee Univ, Dept Astron & Space Sci, Yongin 446701, South Korea. EM eyji@khu.ac.kr; moonyj@khu.ac.kr; khan@khu.ac.kr; dhlee@khu.ac.kr RI Moon, Yong-Jae/E-1711-2013; Kim , Khan-Hyuk/E-2361-2013 FU Kyung Hee University [KHU-20101183]; Ministry of Education, Science and Technology [R31-10016]; Korean Government (MOEHRD) [KRF-2008-313-C00375, KRF-2008-314-C00158, 20090071744, 2010-0014501] FX This research was supported by the Kyung Hee University Research Fund (KHU-20101183) in 2010. This work has also been supported by the WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-10016) and by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2008-313-C00375, KRF-2008-314-C00158, 20090071744, and 2010-0014501). We would like to thank the WDC-Kyoto for the Dst index and the ACE team for the solar wind data. NR 18 TC 8 Z9 8 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 15 PY 2010 VL 115 AR A10232 DI 10.1029/2009JA015112 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 666EW UT WOS:000283097100002 ER PT J AU Chung, A Deen, J Lee, JS Meyyappan, M AF Chung, Andy Deen, Jamal Lee, Jeong-Soo Meyyappan, M. TI Nanoscale memory devices SO NANOTECHNOLOGY LA English DT Review ID RANDOM-ACCESS MEMORY; PHASE-CHANGE MEMORY; FIELD-EFFECT TRANSISTORS; NAND FLASH MEMORY; MOLECULAR ELECTRONICS; NONVOLATILE MEMORY; ELECTRICAL-PROPERTIES; SWITCHING PHENOMENA; CHANGE NANOWIRES; THIN-FILM AB This article reviews the current status and future prospects for the use of nanomaterials and devices in memory technology. First, the status and continuing scaling trends of the flash memory are discussed. Then, a detailed discussion on technologies trying to replace flash in the near-term is provided. This includes phase change random access memory, Fe random access memory and magnetic random access memory. The long-term nanotechnology prospects for memory devices include carbon-nanotube-based memory, molecular electronics and memristors based on resistive materials such as TiO2. C1 [Chung, Andy] Inha Univ, Dept Informat & Commun Engn, Inchon 402751, South Korea. [Deen, Jamal] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON L8S 4K1, Canada. [Lee, Jeong-Soo] POSTECH, Dept Elect Engn, Pohang 790784, South Korea. [Meyyappan, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Chung, Andy; Deen, Jamal; Lee, Jeong-Soo; Meyyappan, M.] POSTECH, WCU Div IT Convergence Engn, Pohang 790784, South Korea. RP Meyyappan, M (reprint author), POSTECH, WCU Div IT Convergence Engn, Pohang 790784, South Korea. EM jamal@mcmaster.ca; m.meyyappan@nasa.gov FU Ministry of Education, Science and Technology [R31-2008-000-10100-0] FX This research was supported by the WCU (World Class University) program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (R31-2008-000-10100-0). NR 128 TC 48 Z9 48 U1 8 U2 124 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 15 PY 2010 VL 21 IS 41 AR 412001 DI 10.1088/0957-4484/21/41/412001 PG 22 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 651WR UT WOS:000281958600002 PM 20852352 ER PT J AU Werdell, PJ Franz, BA Bailey, SW AF Werdell, P. Jeremy Franz, Bryan A. Bailey, Sean W. TI Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Ocean color; Atmospheric correction; MODIS; Chesapeake Bay ID SEAWIFS IMAGERY; ATLANTIC BIGHT; TURBID COASTAL; CHLOROPHYLL-A; MODIS; WATERS; CALIBRATION; VALIDATION; ALGORITHMS; RETRIEVAL AB The NASA Moderate Resolution Imaging Spectroradiometer onboard the Aqua platform (MODIS-Aqua) provides a viable data stream for operational water quality monitoring of Chesapeake Bay. Marine geophysical products from MODIS-Aqua depend on the efficacy of the atmospheric correction process, which can be problematic in coastal environments. The operational atmospheric correction algorithm for MODIS-Aqua requires an assumption of negligible near-infrared water-leaving radiance, nL(w)(NIR). This assumption progressively degrades with increasing turbidity and, as such, methods exist to account for non-negligible nL(w)(NIR) within the atmospheric correction process or to use alternate radiometric bands where the assumption is satisfied, such as those positioned within shortwave infrared (SWIR) region of the spectrum. We evaluated a decade-long time-series of nL(w)(lambda) from MODIS-Aqua in Chesapeake Bay derived using NIR and SWIR bands for atmospheric correction. Low signal-to-noise ratios (SNR) for the SWIR bands of MODIS-Aqua added noise errors to the derived radiances, which produced broad, flat frequency distributions of nL(w)(lambda) relative to those produced using the NIR bands. The SWIR approach produced an increased number of negative nL(w)(lambda) and decreased sample size relative to the NIR approach. Revised vicarious calibration and regional tuning of the scheme to switch between the NIR and SWIR approaches may improve retrievals in Chesapeake Bay, however, poor SNR values for the MODIS-Aqua SWIR bands remain the primary deficiency of the SWIR-based atmospheric correction approach. (C) 2010 Elsevier Inc. All rights reserved. C1 [Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Werdell, P. Jeremy] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Bailey, Sean W.] Futuretech Corp, Greenbelt, MD 20770 USA. RP Werdell, PJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM jeremy.werdell@nasa.gov RI Franz, Bryan/D-6284-2012; Werdell, Jeremy/D-8265-2012; Bailey, Sean/D-3077-2017 OI Franz, Bryan/0000-0003-0293-2082; Bailey, Sean/0000-0001-8339-9763 FU NASA MODIS Science Team FX We thank Richard Stumpf, Charles McClain, Gene Feldman, and Gerhard Meister for their valuable comments and advice. We also thank Chuanmin Hu and an anonymous reviewer for their useful and constructive comments. Support for this work was provided through the NASA MODIS Science Team. NR 32 TC 37 Z9 38 U1 1 U2 16 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD OCT 15 PY 2010 VL 114 IS 10 BP 2238 EP 2247 DI 10.1016/j.rse.2010.04.027 PG 10 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 642EU UT WOS:000281187400011 ER PT J AU Brown, ME de Beurs, K Vrieling, A AF Brown, Molly E. de Beurs, Kirsten Vrieling, Anton TI The response of African land surface phenology to large scale climate oscillations SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE AVHRR NDVI; ENSO; NAO; PDO; Start of season; Agriculture ID NORTH-ATLANTIC OSCILLATION; NINO SOUTHERN OSCILLATION; GROWING-SEASON; ANNULAR MODE; AVHRR DATA; NDVI; PACIFIC; PRECIPITATION; PRODUCTIVITY; TEMPERATURES AB Variations in agricultural production due to rainfall and temperature fluctuations are a primary cause of food insecurity on the African continent. Analysis of changes in phenology can provide quantitative information on the effect of climate variability on growing seasons in agricultural regions. Using a robust statistical methodology, we describe the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO), and the Multivariate ENSO Index (MEI). We map the most significant positive and negative correlation for the four climate indices in Eastern, Western and Southern Africa between two phenological metrics and the climate indices. Our objective is to provide evidence of whether climate variability captured in the four indices has had a significant impact on the vegetative productivity of Africa during the past quarter century. We found that the start of season and cumulative NDVI were significantly affected by large scale variations in climate. The particular climate index and the timing showing highest correlation depended heavily on the region examined. In Western Africa the cumulative NDVI correlates with PDO in September-November. In Eastern Africa the start of the June-October season strongly correlates with PDO in March-May, while the PDO in December-February correlates with the start of the February-June season. The cumulative NDVI over this last season relates to the MEI of March-May. For Southern Africa, high correlations exist between SOS and NAO of September-November, and cumulative NDVI and MEI of March-May. The research shows that climate indices can be used to anticipate late start and variable vigor in the growing season of sensitive agricultural regions in Africa. Published by Elsevier Inc. C1 [Brown, Molly E.] NASA, Biospher Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [de Beurs, Kirsten] Virginia Polytech Inst & State Univ, Dept Geog, Blacksburg, VA 24061 USA. [Vrieling, Anton] Univ Twente, Fac Geoinformat Sci & Earth Observat, NL-7500 AA Enschede, Netherlands. RP Brown, ME (reprint author), NASA, Biospher Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM molly.brown@nasa.gov RI Vrieling, Anton/B-2639-2012; Faculty of ITC, Dep Nat. Resources/C-4295-2014; Brown, Molly/M-5146-2013; Brown, Molly/E-2724-2010 OI Vrieling, Anton/0000-0002-7979-1540; Brown, Molly/0000-0001-7384-3314; Brown, Molly/0000-0001-7384-3314 NR 63 TC 52 Z9 53 U1 2 U2 27 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD OCT 15 PY 2010 VL 114 IS 10 BP 2286 EP 2296 DI 10.1016/j.rse.2010.05.005 PG 11 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 642EU UT WOS:000281187400015 ER PT J AU Lacis, AA Schmidt, GA Rind, D Ruedy, RA AF Lacis, Andrew A. Schmidt, Gavin A. Rind, David Ruedy, Reto A. TI Atmospheric CO2: Principal Control Knob Governing Earth's Temperature SO SCIENCE LA English DT Article ID SUN AB Ample physical evidence shows that carbon dioxide (CO2) is the single most important climate-relevant greenhouse gas in Earth's atmosphere. This is because CO2, like ozone, N2O, CH4, and chlorofluorocarbons, does not condense and precipitate from the atmosphere at current climate temperatures, whereas water vapor can and does. Noncondensing greenhouse gases, which account for 25% of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75% of the greenhouse effect. Without the radiative forcing supplied by CO2 and the other noncondensing greenhouse gases, the terrestrial greenhouse would collapse, plunging the global climate into an icebound Earth state. C1 [Lacis, Andrew A.; Schmidt, Gavin A.; Rind, David; Ruedy, Reto A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Lacis, AA (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM andrew.a.lacis@nasa.gov RI Lacis, Andrew/D-4658-2012; Schmidt, Gavin/D-4427-2012 OI Schmidt, Gavin/0000-0002-2258-0486 FU NASA Earth Science Research Division FX We thank B. Carlson, A. Del Genio, J. Hansen, G. Russell, R. Stothers, and L. Travis for comments and the NASA Earth Science Research Division managed by J. Kaye and D. Considine for support. NR 23 TC 81 Z9 87 U1 10 U2 76 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD OCT 15 PY 2010 VL 330 IS 6002 BP 356 EP 359 DI 10.1126/science.1190653 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 664TY UT WOS:000282986700037 PM 20947761 ER PT J AU Ramasamy, S Tewari, SN Lee, KN Bhatt, RT Fox, DS AF Ramasamy, Sivakumar Tewari, Surendra N. Lee, Kang N. Bhatt, Ramakrishna T. Fox, Dennis S. TI Slurry based multilayer environmental barrier coatings for silicon carbide and silicon nitride ceramics - I. Processing SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Mullite; Gadolinium silicate; Environmental barrier coating (EBC); Silicon carbide; Silicon nitride; Dip coating; Mechanical alloying ID SI-BASED CERAMICS; PARALINEAR OXIDATION; SI3N4 CERAMICS; MULLITE; DURABILITY AB Multilayer mullite/gadolinium silicate (Gd(2)SiO(5)) environmental barrier coatings (EBCs) were deposited on alpha-SiC (Hexaloy) and Si(3)N(4) (SN282) substrates through cost-effective slurry based dip-coat processing. Coatings applied by two approaches, alcohol and sol-based slurries, were examined and optimized in terms of their recipes and air sintering temperatures A significant increase in densification rates was found for the sol-based EBCs applied on both SiC and SN282 substrates due to the fine mullite particles formed during reaction sintering of well-mixed silica and alumina sols Mechanical alloying of the starting powder mixtures instead of their simple rotary-blending was found to be beneficial in terms of enhanced coat sintering kinetics Dense thick coatings that were well-bonded to the substrate were obtained. (C) 2010 Elsevier B.V. All rights reserved C1 [Ramasamy, Sivakumar; Tewari, Surendra N.] Cleveland State Univ, Cleveland, OH 44115 USA. [Lee, Kang N.] Rolls Royce Corp, Indianapolis, IN USA. [Bhatt, Ramakrishna T.; Fox, Dennis S.] NASA, Glenn Res Ctr, Cleveland, OH USA. RP Ramasamy, S (reprint author), Cleveland State Univ, 2121 Euclid Ave, Cleveland, OH 44115 USA. RI Ramasamy, Sivakumar/B-7514-2012 NR 15 TC 5 Z9 7 U1 2 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD OCT 15 PY 2010 VL 205 IS 2 BP 258 EP 265 DI 10.1016/j.surfcoat.2010.06.029 PG 8 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 659BP UT WOS:000282542300003 ER PT J AU Ramasamy, S Tewari, SN Lee, KN Bhatt, RT Fox, DS AF Ramasamy, Sivakumar Tewari, Surendra N. Lee, Kang N. Bhatt, Ramakrishna T. Fox, Dennis S. TI Slurry based multilayer environmental barrier coatings for silicon carbide and silicon nitride ceramics - II. Oxidation resistance SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Mullite; Gadolinium silicate; Environmental barrier coating (EBC); Silicon carbide; Silicon nitride; Dip coating; Oxidation resistance; Thermal cycling ID SIC/SIC COMPOSITES; WATER-VAPOR; TEMPERATURE; KINETICS; MULLITE; SI3N4 AB In part I of this study, the dip-coat processing of mullite/gadolinium silicate (Gd(2)SiO(5)) environmental barrier coatings (EBCs) applied on alpha-SiC and SN282 (TM) Si(3)N(4) through alcohol based and sol based slurries was presented Here, the performance of selected EBCs by evaluating their oxidation resistances during thermal cycling in simulated combustion (90% H(2)O-balance O(2)) environment between 1350 degrees C and RT for up to 400 cycles is being reported Oxidation of un-coated alpha-SiC was severe, leading to aligned and layered porous silica scale formation (similar to 17 mu m thick) on its surface with frequent scale spallation when exposed to 100 cycles. Mullite/Gd(2)SiO(5)/B(2)O(3) (83.5/11.5/5 wt.%) EBCs remained adherent to alpha-SiC substrate with an underlying porous silica layer formed at substrate/coating Interface, which was similar to 12 mu m after 100 cycles, similar to 16 mu m after 200 cycles, and similar to 25 mu m after 400 cycles. In contrast, alpha-SiC substrate coated with mullite/Gd(2)SiO(5) (88/12 wt.%) EBC had only limited oxidation of similar to 10 mu m even after 1350 degrees C/400 cycles. The sol based mullite/Gd(2)SiO(5) (88/12 wt%) EBC on alpha-SiC substrate after 400 cycles was adherent, but showed more interfacial damages (similar to 20 mu m after 400 cycles) though it had increased coating density. However, the mullite/Gd(2)SiO(5) (88/12 wt.%) EBC (alcohol based) delaminated from the SN282 (TM) Si(3)N(4) substrate after 1350 degrees C/100 cycles, because of the formation of interconnected interfacial voids and hairline cracks. Parabolic growth kinetics for the underlying silica was observed for both the alcohol and sol based coated samples. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ramasamy, Sivakumar; Tewari, Surendra N.] Cleveland State Univ, Cleveland, OH 44115 USA. [Lee, Kang N.] Rolls Royce Corp, Indianapolis, IN USA. [Bhatt, Ramakrishna T.; Fox, Dennis S.] NASA, Glenn Res Ctr, Cleveland, OH USA. RP Ramasamy, S (reprint author), Cleveland State Univ, 2121 Euclid Ave, Cleveland, OH 44115 USA. RI Ramasamy, Sivakumar/B-7514-2012 NR 16 TC 10 Z9 10 U1 6 U2 27 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD OCT 15 PY 2010 VL 205 IS 2 BP 266 EP 270 DI 10.1016/j.surfcoat.2010.07.048 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 659BP UT WOS:000282542300004 ER PT J AU Lee, T Hobbs, WR Willis, JK Halkides, D Fukumori, I Armstrong, EM Hayashi, AK Liu, WT Patzert, W Wang, O AF Lee, Tong Hobbs, William R. Willis, Joshua K. Halkides, Daria Fukumori, Ichiro Armstrong, Edward M. Hayashi, Akiko K. Liu, W. Timothy Patzert, William Wang, Ou TI Record warming in the South Pacific and western Antarctica associated with the strong central-Pacific El Nino in 2009-10 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SEA-SURFACE TEMPERATURE; ANNULAR MODE; VARIABILITY; ENSO; HEMISPHERE; ANOMALIES; ICE AB Satellite data for the past three decades reveal a record-high sea surface temperature (SST) anomaly within a large mid-latitude region of the south-central Pacific (SCP) during the mature phase of the 2009-10 El Nino, with a peak magnitude that is 5 times the standard deviation of local SST anomaly and is warmer than the concurrent tropical-Pacific SST anomaly. The SCP oceanic warming was confined to the upper 50 meters and is associated with an extreme and persistent anticyclone. Wind changes associated with the anticyclone caused the oceanic warming with surface heat flux and ocean processes playing equally important roles. The anticyclone diverted circumpolar westerlies and warm air towards Antarctica. Austral-summer SST in the Bellingshausen Sea also reached a three-decade high. The extreme atmospheric and oceanic anomalies in the South Pacific may have been fueled by the 2009-10 El Nino because of its record-high SST anomaly in the central-equatorial Pacific. Citation: Lee, T., W. R. Hobbs, J. K. Willis, D. Halkides, I. Fukumori, E. M. Armstrong, A. K. Hayashi, W. T. Liu, W. Patzert, and O. Wang (2010), Record warming in the South Pacific and western Antarctica associated with the strong central-Pacific El Nino in 2009-10, Geophys. Res. Lett., 37, L19704, doi: 10.1029/2010GL044865. C1 [Lee, Tong; Hobbs, William R.; Willis, Joshua K.; Halkides, Daria; Fukumori, Ichiro; Armstrong, Edward M.; Hayashi, Akiko K.; Liu, W. Timothy; Patzert, William; Wang, Ou] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lee, T (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Tong.Lee@jpl.nasa.gov RI Hobbs, Will/G-5116-2014 OI Hobbs, Will/0000-0002-2061-0899 FU NASA Physical Oceanography; EOSDIS FX The research described in this paper was in part carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, with supports from NASA Physical Oceanography and EOSDIS programs. Government sponsorship acknowledged. This research was motivated by PO.DAAC's El Nino animation and an initial discussion of the SCP SST with Bob Leben of the University of Colorado. NR 20 TC 28 Z9 31 U1 0 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 14 PY 2010 VL 37 AR L19704 DI 10.1029/2010GL044865 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 666AE UT WOS:000283078600004 ER PT J AU Choukroun, M Grasset, O AF Choukroun, Mathieu Grasset, Olivier TI Thermodynamic data and modeling of the water and ammonia-water phase diagrams up to 2.2 GPa for planetary geophysics SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID OUTER SOLAR-SYSTEM; EQUATION-OF-STATE; HIGH-PRESSURE ICE; INTERNAL STRUCTURE; HEAT-CAPACITY; INTERIOR STRUCTURE; SUPERCOOLED WATER; CRYSTALLINE WATER; GIANT PLANETS; TEMPERATURE AB We present new experimental data on the liquidus of ice polymorphs in the H(2)O-NH(3) system under pressure, and use all available data to develop a new thermodynamic model predicting the phase behavior in this system in the ranges (0-2.2 GPa; 175-360 K; 0-33 wt % NH(3)). Liquidus data have been obtained with a cryogenic optical sapphire-anvil cell coupled to a Raman spectrometer. We improve upon pre-existing thermodynamic formulations for the specific volumes and heat capacities of the solid and liquid phase in the pure H(2)O phase diagram to ensure applicability of the model in the low-temperature metastable domain down to 175 K. We compute the phase equilibria in the pure H(2)O system with this new model. Then we develop a pressure-temperature dependent activity model to describe the effect of ammonia on phase transitions. We show that aqueous ammonia solutions behave as regular solutions at low pressures, and as close-to-ideal solutions at pressure above 600 MPa. The computation of phase equilibria in the H(2)O-NH(3) system shows that ice III cannot exist at concentrations above 5-10 wt % NH(3) (depending on pressure), and ice V is not expected to form above 25%-27% NH(3). We eventually address the applications of this new model for thermal and evolution models of icy satellites. (C) 2010 American Institute of Physics. [doi:10.1063/1.3487520] C1 [Choukroun, Mathieu] CALTECH, Jet Prop Lab, Pasadena, CA 91103 USA. [Grasset, Olivier] Univ Nantes, CNRS, UMR Planetol & Geodynam 6112, F-44322 Nantes 3, France. RP Choukroun, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 79-24, Pasadena, CA 91103 USA. EM mathieu.choukroun@jpl.nasa.gov RI Choukroun, Mathieu/F-3146-2017 OI Choukroun, Mathieu/0000-0001-7447-9139 FU NASA; CNRS-INSU FX We are very grateful to A. D. Fortes and an anonymous reviewer for their reviews, which helped greatly improve this manuscript. M. C. is supported by a fellowship from the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities. Part of this work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Government sponsorship acknowledged. This work has been supported by the French Programme National de Planetologie, CNRS-INSU. NR 90 TC 19 Z9 19 U1 2 U2 33 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2010 VL 133 IS 14 AR 144502 DI 10.1063/1.3487520 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 667NN UT WOS:000283200400035 PM 20950012 ER PT J AU Snodgrass, C Tubiana, C Vincent, JB Sierks, H Hviid, S Moissl, R Boehnhardt, H Barbieri, C Koschny, D Lamy, P Rickman, H Rodrigo, R Carry, B Lowry, SC Laird, RJM Weissman, PR Fitzsimmons, A Marchi, S AF Snodgrass, Colin Tubiana, Cecilia Vincent, Jean-Baptiste Sierks, Holger Hviid, Stubbe Moissl, Richard Boehnhardt, Hermann Barbieri, Cesare Koschny, Detlef Lamy, Philippe Rickman, Hans Rodrigo, Rafael Carry, Benoit Lowry, Stephen C. Laird, Ryan J. M. Weissman, Paul R. Fitzsimmons, Alan Marchi, Simone CA OSIRIS Team TI A collision in 2009 as the origin of the debris trail of asteroid P/2010 A2 SO NATURE LA English DT Article ID BELT; HISTORY; COMETS; EJECTA; SYSTEM; IMPACT; MODEL AB The peculiar object P/2010 A2 was discovered(1) in January 2010 and given a cometary designation because of the presence of a trail of material, although there was no central condensation or coma. The appearance of this object, in an asteroidal orbit (small eccentricity and inclination) in the inner main asteroid belt attracted attention as a potential new member of the recently recognized(2) class of main-belt comets. If confirmed, this new object would expand the range in heliocentric distance over which main-belt comets are found. Here we report observations of P/2010 A2 by the Rosetta spacecraft. We conclude that the trail arose from a single event, rather than a period of cometary activity, in agreement with independent results(3). The trail is made up of relatively large particles of millimetre to centimetre size that remain close to the parent asteroid. The shape of the trail can be explained by an initial impact ejecting large clumps of debris that disintegrated and dispersed almost immediately. We determine that this was an asteroid collision that occurred around 10 February 2009. C1 [Snodgrass, Colin; Tubiana, Cecilia; Vincent, Jean-Baptiste; Sierks, Holger; Hviid, Stubbe; Moissl, Richard; Boehnhardt, Hermann] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Snodgrass, Colin] European So Observ, Santiago 19, Chile. [Barbieri, Cesare; Marchi, Simone] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Koschny, Detlef] European Space Agcy, Res & Sci Support Dept, NL-2201 AZ Noordwijk, Netherlands. [Lamy, Philippe] Univ Aix Marseille, CNRS, Lab Astrophys Marseille, UMR6110, F-13388 Marseille 13, France. [Rickman, Hans] Uppsala Univ, Dept Astron & Space Sci, S-75120 Uppsala, Sweden. [Rickman, Hans] PAS Space Res Ctr, PL-00716 Warsaw, Poland. [Rodrigo, Rafael] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Carry, Benoit] Observ Paris, LESIA, F-92195 Meudon, France. [Lowry, Stephen C.; Laird, Ryan J. M.] Univ Kent, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. [Weissman, Paul R.] Jet Prop Lab, Pasadena, CA 91101 USA. [Fitzsimmons, Alan] Queens Univ Belfast, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. RP Snodgrass, C (reprint author), Max Planck Inst Sonnensyst Forsch, Max Planck Str 2, D-37191 Katlenburg Lindau, Germany. EM snodgrass@mps.mpg.de RI Da Deppo, Vania/D-2897-2012; Gutierrez, Pedro/K-9637-2014; OI Da Deppo, Vania/0000-0001-6273-8738; Gutierrez, Pedro/0000-0002-7332-6269; Cremonese, Gabriele/0000-0001-9021-1140; Lopez-Moreno, Jose Juan/0000-0002-7946-2624; Snodgrass, Colin/0000-0001-9328-2905 FU ASI; CNES; DLR; Ministerio de Educacion y Ciencia; SNSB; ESA FX We thank R. Schulz and the Rosetta operations team for enabling these 'target of opportunity' observations to be performed. OSIRIS is funded by the national space agencies ASI, CNES, DLR, the Spanish Space Program (Ministerio de Educacion y Ciencia), SNSB and the ESA. The ground-based observations were collected (in part) at the European Southern Observatory, Chile, under programmes 084.C-0594(A) and 185.C-1033(A). NR 23 TC 54 Z9 54 U1 0 U2 11 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 14 PY 2010 VL 467 IS 7317 BP 814 EP 816 DI 10.1038/nature09453 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 663PB UT WOS:000282898700060 PM 20944742 ER PT J AU Mather, JC AF Mather, John C. TI Politics and prophecy SO NATURE LA English DT Editorial Material C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Mather, JC (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 14 PY 2010 VL 467 IS 7317 BP S9 EP S9 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 663PB UT WOS:000282898700008 PM 20944624 ER PT J AU Avery, M Twohy, C McCabe, D Joiner, J Severance, K Atlas, E Blake, D Bui, TP Crounse, J Dibb, J Diskin, G Lawson, P McGill, M Rogers, D Sachse, G Scheuer, E Thompson, AM Trepte, C Wennberg, P Ziemke, J AF Avery, Melody Twohy, Cynthia McCabe, David Joiner, Joanna Severance, Kurt Atlas, Eliot Blake, Donald Bui, T. P. Crounse, John Dibb, Jack Diskin, Glenn Lawson, Paul McGill, Matthew Rogers, David Sachse, Glen Scheuer, Eric Thompson, Anne M. Trepte, Charles Wennberg, Paul Ziemke, Jerald TI Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: Evidence from observations during TC4 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SATELLITE MEASUREMENTS; TRANSPORT; AIRBORNE; CLOUDS; INSTRUMENT AB During the Tropical Composition, Clouds and Climate Coupling (TC4) experiment that occurred in July and August of 2007, extensive sampling of active convection in the ITCZ region near Central America was performed from multiple aircraft and satellite sensors. As part of a sampling strategy designed to study cloud processes, the NASA ER-2, WB-57 and DC-8 flew in stacked "racetrack patterns" in convective cells. On July 24, 2007, the ER-2 and DC-8 probed an actively developing storm and the DC-8 was hit by lightning. Case studies of this flight, and of convective outflow on August 5, 2007 reveal a significant anti-correlation between ozone and condensed cloud water content. With little variability in the boundary layer and a vertical gradient, low ozone in the upper troposphere indicates convective transport. Because of the large spatial and temporal variability in surface CO and other pollutants in this region, low ozone is a better convective indicator. Lower tropospheric tracers methyl hydrogen peroxide, total organic bromine and calcium substantiate the ozone results. OMI measurements of mean upper tropospheric ozone near convection show lower ozone in convective outflow. A mass balance estimation of the amount of convective turnover below the tropical tropopause transition layer (TTL) is 50%, with an altitude of maximum convective outflow located between 10 and 11 km, 4 km below the cirrus anvil tops. It appears that convective lofting in this region of the ITCZ is either a two-stage or a rapid mixing process, because undiluted boundary layer air is never sampled in the convective outflow. C1 [Avery, Melody; Trepte, Charles] NASA, Atmospher Composit Branch, Sci Directorate, Langley Res Ctr, Hampton, VA 23681 USA. [Atlas, Eliot] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Div Marine & Atmospher Chem, Miami, FL 33149 USA. [Blake, Donald] Univ Calif Irvine, Sch Phys Sci, Irvine, CA 92697 USA. [Bui, T. P.] NASA, Ames Res Ctr, Atmospher Sci Branch, Div Earth Sci, Moffett Field, CA 94035 USA. [McCabe, David; Crounse, John; Wennberg, Paul] CALTECH, Dept Chem, Pasadena, CA 91125 USA. [Dibb, Jack; Scheuer, Eric] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Diskin, Glenn] NASA, Chem & Dynam Branch, Langley Res Ctr, Hampton, VA 23681 USA. [Joiner, Joanna] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Branch, Greenbelt, MD 20771 USA. [Lawson, Paul] SPEC Inc, Boulder, CO 80301 USA. [McGill, Matthew] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Branch, Greenbelt, MD 20771 USA. [Twohy, Cynthia; Rogers, David] Oregon State Univ, Dept Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Sachse, Glen] Natl Inst Aerosp, Hampton, VA 23666 USA. [Severance, Kurt] NASA, Langley Res Ctr, Syst Engn Directorate, Hampton, VA 23681 USA. [Thompson, Anne M.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Ziemke, Jerald] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP Avery, M (reprint author), NASA, Atmospher Composit Branch, Sci Directorate, Langley Res Ctr, MS 475, Hampton, VA 23681 USA. EM melody.a.avery@nasa.gov RI Crounse, John/E-4622-2011; Joiner, Joanna/D-6264-2012; McGill, Matthew/D-8176-2012; Crounse, John/C-3700-2014; Atlas, Elliot/J-8171-2015; Thompson, Anne /C-3649-2014 OI Crounse, John/0000-0001-5443-729X; Thompson, Anne /0000-0002-7829-0920 FU NASA FX The authors thank the NASA Middle Atmosphere and Tropospheric Chemistry Programs for funding, and Program Managers Michael Kurylo and Hal Maring for launching sondes from the DC-8. We thank Lenny Pfister for all sorts of meteorological information and consultation. We thank Gary Morris for providing the Las Tablas sonde data, and we thank Alex Bryan and David Lutz for launching all of these Panama sondes. Holger Voemel provided the Alajuela ozonesonde data, and Ru-shan Gao provided ozone measurements from the WB-57. Ross Salawitch and Tim Canty provided the plot of total organic bromine, and we are grateful for many helpful discussions. We also thank Mario Rana for DC-8 fast-response tracer lag correlations and Ali Aknan for "Chemical Digital Atlas" plots and calculations of statistical vertical tracer distributions during various tropospheric aircraft field missions (http://www-air.larc.nasa.gov/cgi-bin/datlas). We are grateful to K. A. Masserie and E. Dlugokencky at NOAA CMDL for the Barbados and Bahia methane measurements, and to Pat Minnis and his group for the GOES satellite images and loops. NR 39 TC 18 Z9 20 U1 0 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 13 PY 2010 VL 115 AR D00J21 DI 10.1029/2009JD013450 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 666BS UT WOS:000283084500005 ER PT J AU Li, C Tsay, SC Fu, JS Dickerson, RR Ji, QA Bell, SW Gao, Y Zhang, W Huang, JP Li, ZQ Chen, HB AF Li, Can Tsay, Si-Chee Fu, Joshua S. Dickerson, Russell R. Ji, Qiang Bell, Shaun W. Gao, Yang Zhang, Wu Huang, Jianping Li, Zhanqing Chen, Hongbin TI Anthropogenic air pollution observed near dust source regions in northwestern China during springtime 2008 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID AEROSOL OPTICAL-PROPERTIES; ASIAN DUST; ACE-ASIA; NORTHERN CHINA; MINERAL DUST; TROPOSPHERIC CHEMISTRY; RADIATIVE PROPERTIES; SOIL DUST; INTEX-B; LIGHT-ABSORPTION AB Trace gases and aerosols were measured in Zhangye (39.082 degrees N, 100.276 degrees E, 1460 m a. s. 1.), a rural site near the Gobi deserts in northwestern China during spring 2008. Primary trace gases (CO: 265 ppb; SO2: 3.4 ppb; NOy*: 4.2 ppb; hereafter results given as means of hourly data) in the area were lower than in eastern China, but still indicative of marked anthropogenic emissions. Sizable aerosol mass concentration (153 mu g/m(3)) and light scattering (159 Mm(-1) at 500 nm) were largely attributable to dust emissions, and aerosol light absorption (10.3 Mm(-1) at 500 nm) was dominated by anthropogenic pollution. Distinct diurnal variations in meteorology and pollution were induced by the local valley terrain. Strong daytime northwest valley wind cleaned out pollution and was replaced by southeast mountain wind that allowed pollutants to build up overnight. In the afternoon, aerosols had single scattering albedo (SSA, 500 nm) of 0.95 and were mainly of supermicron particles, presumably dust, while at night smaller particles and SSA of 0.89-0.91 were related to pollution. The diverse local emission sources were characterized: the CO/SO2, CO/NOy, NOy/SO2 (by moles), and BC/CO (by mass) ratios for small point sources such as factories were 24.6-54.2, 25.8-35.9, 0.79-1.31, and 4.1-6.1 x 10(-3), respectively, compared to the corresponding inventory ratios of 43.7-71.9, 23.7-25.7, 1.84-2.79, and 3.4-4.0 x 10(-3) for the industrial sector in the area. The mixing between dust and pollution can be ubiquitous in this region. During a dust storm shown as an example, pollutants were observed to mix with dust, causing discernible changes in both SSA and aerosol size distribution. Further interaction between dust and pollutants during transport may modify the properties of dust particles that are critical for their large-scale impact on radiation, clouds, and global biogeochemical cycles. C1 [Li, Can; Dickerson, Russell R.; Ji, Qiang; Li, Zhanqing] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Bell, Shaun W.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Chen, Hongbin] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China. [Fu, Joshua S.; Gao, Yang] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Zhang, Wu; Huang, Jianping] Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China. [Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Li, Zhanqing] Nanjing Univ Informat Sci & Technol, Coll Atmospher Phys, Nanjing, Peoples R China. RP Li, C (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. EM can.li@nasa.gov RI Li, Can/F-6867-2011; Tsay, Si-Chee/J-1147-2014; Dickerson, Russell/F-2857-2010; Li, Zhanqing/F-4424-2010 OI Dickerson, Russell/0000-0003-0206-3083; Li, Zhanqing/0000-0001-6737-382X FU MOST [2006CB403706]; DOE [DEFG0208ER64571]; NASA [NNG04GE79G, NNX08AH71G] FX We thank Jianrong Bi, Xianjie Cao, Jinsen Shi, Songtao Song, and Jiliang Xu of Lanzhou University for their help during the field experiment. We also thank two anonymous reviewers for their insightful comments that helped improve the original manuscript. This research was partially supported by MOST (2006CB403706), DOE (DEFG0208ER64571), and NASA (NNG04GE79G, NNX08AH71G). NR 114 TC 21 Z9 22 U1 1 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 13 PY 2010 VL 115 AR D00K22 DI 10.1029/2009JD013659 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 666BS UT WOS:000283084500006 ER PT J AU Son, SW Gerber, EP Perlwitz, J Polvani, LM Gillett, NP Seo, KH Eyring, V Shepherd, TG Waugh, D Akiyoshi, H Austin, J Baumgaertner, A Bekki, S Braesicke, P Bruhl, C Butchart, N Chipperfield, MP Cugnet, D Dameris, M Dhomse, S Frith, S Garny, H Garcia, R Hardiman, SC Jockel, P Lamarque, JF Mancini, E Marchand, M Michou, M Nakamura, T Morgenstern, O Pitari, G Plummer, DA Pyle, J Rozanov, E Scinocca, JF Shibata, K Smale, D Teyssedre, H Tian, W Yamashita, Y AF Son, S. -W. Gerber, E. P. Perlwitz, J. Polvani, L. M. Gillett, N. P. Seo, K. -H. Eyring, V. Shepherd, T. G. Waugh, D. Akiyoshi, H. Austin, J. Baumgaertner, A. Bekki, S. Braesicke, P. Bruehl, C. Butchart, N. Chipperfield, M. P. Cugnet, D. Dameris, M. Dhomse, S. Frith, S. Garny, H. Garcia, R. Hardiman, S. C. Joeckel, P. Lamarque, J. F. Mancini, E. Marchand, M. Michou, M. Nakamura, T. Morgenstern, O. Pitari, G. Plummer, D. A. Pyle, J. Rozanov, E. Scinocca, J. F. Shibata, K. Smale, D. Teyssedre, H. Tian, W. Yamashita, Y. TI Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CHEMISTRY-CLIMATE MODEL; PRIMITIVE EQUATION MODEL; RELATIVELY SIMPLE AGCM; IPCC AR4 MODELS; TROPOPAUSE HEIGHT; MIDDLE ATMOSPHERE; ANNULAR MODE; PART II; FLUCTUATION-DISSIPATION; TROPOSPHERIC RESPONSE AB The impact of stratospheric ozone on the tropospheric general circulation of the Southern Hemisphere (SH) is examined with a set of chemistry-climate models participating in the Stratospheric Processes and their Role in Climate (SPARC)/Chemistry-Climate Model Validation project phase 2 (CCMVal-2). Model integrations of both the past and future climates reveal the crucial role of stratospheric ozone in driving SH circulation change: stronger ozone depletion in late spring generally leads to greater poleward displacement and intensification of the tropospheric midlatitude jet, and greater expansion of the SH Hadley cell in the summer. These circulation changes are systematic as poleward displacement of the jet is typically accompanied by intensification of the jet and expansion of the Hadley cell. Overall results are compared with coupled models participating in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), and possible mechanisms are discussed. While the tropospheric circulation response appears quasi-linearly related to stratospheric ozone changes, the quantitative response to a given forcing varies considerably from one model to another. This scatter partly results from differences in model climatology. It is shown that poleward intensification of the westerly jet is generally stronger in models whose climatological jet is biased toward lower latitudes. This result is discussed in the context of quasi-geostrophic zonal mean dynamics. C1 [Son, S. -W.] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ H3A 2K6, Canada. [Akiyoshi, H.; Nakamura, T.; Yamashita, Y.] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Austin, J.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. [Baumgaertner, A.; Bruehl, C.] Max Planck Inst Chem, D-55020 Mainz, Germany. [Bekki, S.; Cugnet, D.; Marchand, M.] CNRS INSU, UPMC, UVSQ, Inst Pierre Simone Laplace,LATMOS, F-75252 Paris, France. [Braesicke, P.; Morgenstern, O.; Pyle, J.] Univ Cambridge, Dept Chem, NCAS Climate Chem, Cambridge CB2 1EW, England. [Butchart, N.; Hardiman, S. C.] Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England. [Chipperfield, M. P.; Dhomse, S.; Tian, W.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Eyring, V.; Dameris, M.; Garny, H.; Joeckel, P.] Inst Phys Atmosphare, Deutsch Zentrum Luft & Raumfahrt, D-82234 Oberpfaffenhofen, Germany. [Frith, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Garcia, R.; Lamarque, J. F.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Gerber, E. P.] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10012 USA. [Gillett, N. P.; Scinocca, J. F.] Univ Victoria, Canadian Ctr Climate Modelling & Anal, Environm Canada, Victoria, BC V8W 2Y2, Canada. [Mancini, E.; Pitari, G.] Univ Aquila, Dipartimento Fis, I-67010 Coppito, Laquila, Italy. [Michou, M.; Teyssedre, H.] Ctr Natl Rech Meteorol, GAME, CNRM, Meteo France, F-31057 Toulouse, France. [Perlwitz, J.] NOAA, Earth Syst Res Lab, Div Phys Sci, Boulder, CO 80305 USA. [Plummer, D. A.] Environm Canada, Canadian Ctr Climate Modelling & Anal, Toronto, ON V8W 3V6, Canada. [Polvani, L. M.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Rozanov, E.] Phys Meteorol Observatorium Davos World Radiat Ct, CH-7260 Davos, Switzerland. [Seo, K. -H.] Pusan Natl Univ, Dept Atmospher Sci, Pusan 609735, South Korea. [Shepherd, T. G.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Shibata, K.] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Smale, D.] Natl Inst Water & Atmospher Res, Lauder 9320, Central Otago, New Zealand. [Waugh, D.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Perlwitz, J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO USA. [Polvani, L. M.] Columbia Univ, Dept Earth & Environm Sci, New York, NY USA. [Rozanov, E.] ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland. RP Son, SW (reprint author), McGill Univ, Dept Atmospher & Ocean Sci, 805 Sherbrooke St W, Montreal, PQ H3A 2K6, Canada. EM seok-woo.son@mcgill.ca RI Lamarque, Jean-Francois/L-2313-2014; Jockel, Patrick/C-3687-2009; Perlwitz, Judith/B-7201-2008; Dhomse, Sandip/C-8198-2011; Rozanov, Eugene/A-9857-2012; Baumgaertner, Andreas/C-4830-2011; Chipperfield, Martyn/H-6359-2013; Son, Seok-Woo /A-8797-2013; bekki, slimane/J-7221-2015; Nakamura, Tetsu/M-7914-2015; Braesicke, Peter/D-8330-2016; Pitari, Giovanni/O-7458-2016; Eyring, Veronika/O-9999-2016 OI Mancini, Eva/0000-0001-7071-0292; Morgenstern, Olaf/0000-0002-9967-9740; Lamarque, Jean-Francois/0000-0002-4225-5074; Jockel, Patrick/0000-0002-8964-1394; Perlwitz, Judith/0000-0003-4061-2442; Dhomse, Sandip/0000-0003-3854-5383; Rozanov, Eugene/0000-0003-0479-4488; Baumgaertner, Andreas/0000-0002-4740-0701; Chipperfield, Martyn/0000-0002-6803-4149; bekki, slimane/0000-0002-5538-0800; Nakamura, Tetsu/0000-0002-2056-7392; Braesicke, Peter/0000-0003-1423-0619; Pitari, Giovanni/0000-0001-7051-9578; Eyring, Veronika/0000-0002-6887-4885 FU Office of Sciences, U.S. Department of Energy; NSERC; US NSF; KMA RD program [RACS 2010-2017]; Joint DECC and Defra Integrated Climate Programme, DECC/Defra [GA01101]; Ministry of the Environment of Japan [A-071]; European Commission [SCOUT-O3] FX Helpful comments by Petra Huck and three anonymous reviewers are gratefully appreciated. The authors thank the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the CMIP3 model data, the JSC/CLIVAR Working Groups on Coupled Modeling (WGCM) and their Coupled Model Intercomparison Project (CMIP) and Climate Simulation Panel for organizing the model data analysis activity, and the IPCC WG1 TSU for technical support. The IPCC Data Archive at Lawrence Livermore National Laboratory is supported by the Office of Sciences, U.S. Department of Energy. We also thank all of the modeling groups for making their simulations available for this analysis, the second round of the Chemistry-Climate Model Validation (CCMVal-2) Activity for WCRP (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) project for organizing and coordinating the model data analysis activity, and the British Atmospheric Data Center (BADC) for collecting and archiving the CCMVal-2 model output. The work of S. W. S. is supported by NSERC discovery grant. E. P. G. and L. M. P. are supported by grants from the US NSF to New York University and Columbia University, respectively. K. H. S. and S. W. S. were funded by the KMA R&D program under grant RACS 2010-2017. D. W. is partly supported by U.S. NSF. N.B. and S. H. are supported by the Joint DECC and Defra Integrated Climate Programme, DECC/Defra (GA01101). The CCSRNIES research was supported by the Global Environmental Research Found of the Ministry of the Environment of Japan (A-071), and the simulations were completed with the supercomputer at CGER, NIES, Japan. The MRI simulation was made with the supercomputer at the NIES, Japan. The scientific work of the European CCM groups was supported by the European Commission through the project SCOUT-O3 under the 6th Framework Programme. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. Any opinions, findings, and conclusions or recommendations expressed in the publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. NR 97 TC 132 Z9 134 U1 2 U2 46 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 13 PY 2010 VL 115 AR D00M07 DI 10.1029/2010JD014271 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 666BS UT WOS:000283084500009 ER PT J AU Clark, RN Curchin, JM Barnes, JW Jaumann, R Soderblom, L Cruikshank, DP Brown, RH Rodriguez, S Lunine, J Stephan, K Hoefen, TM Le Mouelic, S Sotin, C Baines, KH Buratti, BJ Nicholson, PD AF Clark, Roger N. Curchin, John M. Barnes, Jason W. Jaumann, Ralf Soderblom, Larry Cruikshank, Dale P. Brown, Robert H. Rodriguez, Sebastien Lunine, Jonathan Stephan, Katrin Hoefen, Todd M. Le Mouelic, Stephane Sotin, Christophe Baines, Kevin H. Buratti, Bonnie J. Nicholson, Philip D. TI Detection and mapping of hydrocarbon deposits on Titan SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID DESCENT IMAGER/SPECTRAL RADIOMETER; HUYGENS LANDING SITE; CASSINI-VIMS; IMAGING SPECTROSCOPY; INFRARED-SPECTRA; D/H RATIO; SURFACE; ATMOSPHERE; STRATOSPHERE; METHANE AB We report the identification of compounds on Titan's surface by spatially resolved imaging spectroscopy methods through Titan's atmosphere, and set upper limits to other organic compounds. We present evidence for surface deposits of solid benzene (C6H6), solid and/or liquid ethane (C2H6), or methane (CH4), and clouds of hydrogen cyanide (HCN) aerosols using diagnostic spectral features in data from the Cassini Visual and Infrared Mapping Spectrometer (VIMS). Cyanoacetylene (2-propynenitrile, IUPAC nomenclature, HC3N) is indicated in spectra of some bright regions, but the spectral resolution of VIMS is insufficient to make a unique identification although it is a closer match to the feature previously attributed to CO2. We identify benzene, an aromatic hydrocarbon, in larger abundances than expected by some models. Acetylene (C2H2), expected to be more abundant on Titan according to some models than benzene, is not detected. Solid acetonitrile (CH3CN) or other nitriles might be candidates for matching other spectral features in some Titan spectra. An as yet unidentified absorption at 5.01-mm indicates that yet another compound exists on Titan's surface. We place upper limits for liquid methane and ethane in some locations on Titan and find local areas consistent with millimeter path lengths. Except for potential lakes in the southern and northern polar regions, most of Titan appears "dry." Finally, we find there is little evidence for exposed water ice on the surface. Water ice, if present, must be covered with organic compounds to the depth probed by 1-5-mm photons: a few millimeters to centimeters. C1 [Clark, Roger N.; Curchin, John M.; Hoefen, Todd M.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Barnes, Jason W.] Univ Idaho, Dept Phys, Moscow, ID 83843 USA. [Jaumann, Ralf; Stephan, Katrin] German Aerosp Ctr, Inst Space Sensor Technol & Planetary Explorat, D-12489 Berlin, Germany. [Cruikshank, Dale P.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Brown, Robert H.] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Rodriguez, Sebastien] Univ Paris 07, CNRS UMR 7158, CEA Saclay DSM IRFU SAp, Lab AIM, F-91191 Gif Sur Yvette, France. [Lunine, Jonathan] Univ Roma Tor Vergata, Dept Phys, I-00133 Rome, Italy. [Le Mouelic, Stephane] Univ Nantes, UMR 6112, Lab Planetol & Geodynam, F-44000 Nantes, France. [Sotin, Christophe; Baines, Kevin H.; Buratti, Bonnie J.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Nicholson, Philip D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Soderblom, Larry] US Geol Survey, Flagstaff, AZ 86001 USA. RP Clark, RN (reprint author), US Geol Survey, Denver Fed Ctr, Mail Stop 964,Box 25046, Denver, CO 80225 USA. EM rclark@usgs.gov RI Barnes, Jason/B-1284-2009; Rodriguez, Sebastien/H-5902-2016 OI Barnes, Jason/0000-0002-7755-3530; Rodriguez, Sebastien/0000-0003-1219-0641 FU NASA; VIMS team; Cassini Data Analysis program; Incentivazione alla mobilita' di studiosi straineri e italiani residenti all'estero FX This study was funded by the NASA Cassini project, VIMS team, and Cassini Data Analysis program (R. Clark, PI). This work was financed within the scope of the program "Incentivazione alla mobilita' di studiosi straineri e italiani residenti all'estero." NR 79 TC 83 Z9 85 U1 1 U2 37 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT 13 PY 2010 VL 115 AR E10005 DI 10.1029/2009JE003369 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 666DZ UT WOS:000283093600001 ER PT J AU Turner, R Hesse, M AF Turner, Ronald Hesse, Michael TI Research to Operations/Operations to Research Input Solicited for the Heliophysics Decadal Survey SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Editorial Material C1 [Turner, Ronald] Analyt Serv Inc, Arlington, VA USA. [Hesse, Michael] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. RP Turner, R (reprint author), Analyt Serv Inc, Arlington, VA USA. EM ron.turner@anser.org RI Hesse, Michael/D-2031-2012 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD OCT 13 PY 2010 VL 8 AR S10001 DI 10.1029/2010SW000630 PG 1 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 666FL UT WOS:000283099300002 ER PT J AU Mitri, G Bland, MT Showman, AP Radebaugh, J Stiles, B Lopes, RMC Lunine, JI Pappalardo, RT AF Mitri, Giuseppe Bland, Michael T. Showman, Adam P. Radebaugh, Jani Stiles, Bryan Lopes, Rosaly M. C. Lunine, Jonathan I. Pappalardo, Robert T. TI Mountains on Titan: Modeling and observations SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID STAGNANT LID CONVECTION; ICE-I SHELLS; INTERNAL STRUCTURE; CASSINI RADAR; THERMAL EVOLUTION; HIGH-PRESSURE; ORIGIN; WATER; TEMPERATURE; AMMONIA AB We have developed a thermal model of Titan's interior to study changes in volume during partial freezing or melting of a subsurface ocean due to heat flux variations from the interior. We find that the long-term cooling of Titan can cause global volume contraction Delta V/V similar to 0.01. We then simulate two-dimensional contractional deformation of Titan's icy lithosphere, finding that contractional deformation can produce tectonic activity and fold formation. Folds could potentially achieve a topographic height of several kilometers for high local strain (similar to 0.16), and for high temperature gradients in the ice I shell (order of 10 K km(-1)), corresponding to an ancient high heat flux from the interior (order of 0.02-0.06 W m(-2)). Examination of Synthetic Aperture Radar (SAR) imagery obtained by Cassini Radar shows possible evidence of contractional tectonism in the equatorial regions of Titan, although the moderate resolution of the Cassini SAR imagery does not permit an unambiguous geological interpretation. C1 [Mitri, Giuseppe] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Bland, Michael T.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Showman, Adam P.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Showman, Adam P.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Radebaugh, Jani] Brigham Young Univ, Dept Geol Sci, Provo, UT 84602 USA. [Stiles, Bryan; Lopes, Rosaly M. C.; Pappalardo, Robert T.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Lunine, Jonathan I.] Univ Roma Tor Vergata, Dept Phys, I-00173 Rome, Italy. [Lunine, Jonathan I.] INAF, Inst Phys Interplanetary Space, Rome, Italy. RP Mitri, G (reprint author), CALTECH, Div Geol & Planetary Sci, MC 150-21,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM mitri@gps.caltech.edu RI Lopes, Rosaly/D-1608-2016 OI Lopes, Rosaly/0000-0002-7928-3167 FU NASA; NASA PGG [NNX07AR27G] FX Much of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract from NASA. We thank the Cassini Radar team. G. M. is grateful to Alex Hayes. J.I.L. and G. M. thank Angioletta Coradini for her hospitality at the Institute for the Physics of Interplanetary Space in Roma (Italy), where some of the research was conducted. A. P. S. was supported by NASA PG&G grant NNX07AR27G. NR 55 TC 25 Z9 25 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT 12 PY 2010 VL 115 AR E10002 DI 10.1029/2010JE003592 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 666DU UT WOS:000283092900003 ER PT J AU Nunes, DC Smrekar, SE Safaeinili, A Holt, J Phillips, RJ Seu, R Campbell, B AF Nunes, Daniel Cahn Smrekar, Suzanne E. Safaeinili, Ali Holt, John Phillips, Roger J. Seu, Roberto Campbell, Bruce TI Examination of gully sites on Mars with the shallow radar SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID POTENTIAL FORMATION MECHANISMS; MARTIAN GULLIES; NEAR-SURFACE; WATER; ICE; DEPOSITS; AGE; STRATIGRAPHY; CONSTRAINTS; SUBSURFACE AB Martian gullies, found on steep slopes along broad mid-latitudinal bands, have morphologies resembling those of water-carved gullies on Earth and have been dated to <10 Ma. As such, one of the leading hypotheses, though not unique, is that martian gullies formed by the flow of liquid water in the very recent geologic past. Since the permittivity of liquid water is about one order of magnitude higher than that of most silicates, it is plausible that subsurface geologic interfaces involving liquid water may be detected via ground penetrating radar. We have surveyed a substantive portion of the martian gully population with data from the Shallow Radar (SHARAD) instrument, on board the Mars Reconnaissance Orbiter (MRO), in search of strong subsurface radar reflections indicative of the presence of liquid water reservoirs, which would serve as sources to the flows occurring within gullies. No such reflections are found at most of the locations surveyed, suggesting that either liquid water is not likely present in detectable amounts or that the shallow martian subsurface is unusually electrically conductive (i.e., lossy) at all of the locations examined. Strong subsurface reflections occur in the vicinity of gullies at two locations in the northern lowlands: Arcadia and southeastern Utopia Planitiae. In both cases, the reflectors occur at a range in depth of 45 to 90 m, considering a range in permittivity of 3 to 10, and -20 to -30 dB weaker than the surface reflection. In the case or Arcadia, the reflector corresponds to the eastern edge of Plaut et al.'s (2009) extensive radar subsurface unit; in both Arcadia and Utopia we interpret the reflectors as ground ice. Though our results offer a general assessment of the gully population, SHARAD is continuing its survey of gully rich locations. C1 [Nunes, Daniel Cahn; Smrekar, Suzanne E.; Safaeinili, Ali] CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA. [Holt, John] Univ Texas Austin, Dept Geol Sci, Austin, TX 78712 USA. [Phillips, Roger J.] SW Res Inst, Boulder, CO 80302 USA. [Seu, Roberto] Univ Roma La Sapienza, Dipartimento INFOCOM, I-00184 Rome, Italy. [Campbell, Bruce] Smithsonian Inst, Ctr Earth & Planetary Studies, Washington, DC 20013 USA. RP Nunes, DC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 183-301, Pasadena, CA 91101 USA. EM Daniel.Nunes@jpl.nasa.gov RI Holt, John/C-4896-2009 FU Mars Reconnaissance Orbiter project; National Aeronautics and Space Administration FX This work is dedicated to the memory of our colleague and friend Ali Safaeinili, who was a superb radar scientist and a true gentleman. The authors would like to recognize the efforts of the entire SHARAD team in operating the instruments and in various scientific discussions. DCN would like to thank the support from the Mars Reconnaissance Orbiter project, Jennifer Heldmann and Nathan Bridges for sharing their gully databases, and Jeff Plaut for his comments. The manuscript benefited from the constructive input from two anonymous reviewers. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 50 TC 12 Z9 12 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT 12 PY 2010 VL 115 AR E10004 DI 10.1029/2009JE003509 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 666DU UT WOS:000283092900001 ER PT J AU Lindblom, L Baker, JG Owen, BJ AF Lindblom, Lee Baker, John G. Owen, Benjamin J. TI Improved time-domain accuracy standards for model gravitational waveforms SO PHYSICAL REVIEW D LA English DT Article AB Model gravitational waveforms must be accurate enough to be useful for detection of signals and measurement of their parameters, so appropriate accuracy standards are needed. Yet these standards should not be unnecessarily restrictive, making them impractical for the numerical and analytical modelers to meet. The work of Lindblom, Owen, and Brown [Phys. Rev. D 78, 124020 (2008)] is extended by deriving new waveform accuracy standards which are significantly less restrictive while still ensuring the quality needed for gravitational-wave data analysis. These new standards are formulated as bounds on certain norms of the time-domain waveform errors, which makes it possible to enforce them in situations where frequency-domain errors may be difficult or impossible to estimate reliably. These standards are less restrictive by about a factor of 20 than the previously published time-domain standards for detection, and up to a factor of 60 for measurement. These new standards should therefore be much easier to use effectively. C1 [Lindblom, Lee] CALTECH, Pasadena, CA 91125 USA. [Baker, John G.] NASA, GSFC, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Owen, Benjamin J.] Penn State Univ, Inst Gravitat & Cosmos, Ctr Gravitat Wave Phys, Dept Phys, University Pk, PA 16802 USA. RP Lindblom, L (reprint author), CALTECH, Theoretical Astrophysics 350-17, Pasadena, CA 91125 USA. FU Sherman Fairchild Foundation; NSF [DMS-0553302, PHY-0601459, PHY-0652995, PHY-0855589]; NASA [NNX09AF97G, 08-ATFP08-0126, 09-ATP09-0136]; LIGO Visitors Program FX We thank Michael Holst for valuable discussions about rigorous mathematical error bounds, Sean McWilliams for other useful discussions, and Duncan Brown for helpful comments on an earlier draft of this paper. This research was supported in part by grants to Caltech from the Sherman Fairchild Foundation, NSF Grants No. DMS-0553302, No. PHY-0601459, and No. PHY-0652995, and NASA Grant No. NNX09AF97G; by NASA Grants No. 08-ATFP08-0126 and No. 09-ATP09-0136 to Goddard Space Flight Center; by NSF Grant No. PHY-0855589 to Penn State; and by the LIGO Visitors Program. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation and operates under cooperative agreement PHY-0757058. This paper has LIGO Document No. LIGO-P1000078. NR 25 TC 19 Z9 19 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 12 PY 2010 VL 82 IS 8 AR 084020 DI 10.1103/PhysRevD.82.084020 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 662ND UT WOS:000282813100008 ER PT J AU Rowlinson, A Wiersema, K Levan, AJ Tanvir, NR O'Brien, PT Rol, E Hjorth, J Thone, CC Postigo, AD Fynbo, JPU Jakobsson, P Pagani, C Stamatikos, M AF Rowlinson, A. Wiersema, K. Levan, A. J. Tanvir, N. R. O'Brien, P. T. Rol, E. Hjorth, J. Thoene, C. C. Postigo, A. de Ugarte Fynbo, J. P. U. Jakobsson, P. Pagani, C. Stamatikos, M. TI Discovery of the afterglow and host galaxy of the low-redshift short GRB 080905A SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gamma-ray burst: individual: GRB 080905A ID GAMMA-RAY BURSTS; CORE-COLLAPSE SUPERNOVAE; 28 FEBRUARY 1997; STAR-FORMATION; EXTENDED EMISSION; 980425/SN 1998BW; ANGSTROM BREAK; SPECTRAL LAGS; NEUTRON STARS; ENVIRONMENTS AB We present the discovery of short GRB 080905A, its optical afterglow and host galaxy. Initially discovered by Swift, our deep optical observations enabled the identification of a faint optical afterglow, and subsequently a face-on spiral host galaxy underlying the GRB position, with a chance alignment probability of <1 per cent. There is no supernova component present in the afterglow to deep limits. Spectroscopy of the galaxy provides a redshift of z = 0.1218, the lowest redshift yet observed for a short GRB. The GRB lies offset from the host galaxy centre by similar to 18.5 kpc, in the northern spiral arm which exhibits an older stellar population than the southern arm. No emission lines are visible directly under the burst position, implying little ongoing star formation at the burst location. These properties would naturally be explained were the progenitor of GRB 080905A a compact binary merger. C1 [Rowlinson, A.; Wiersema, K.; Tanvir, N. R.; O'Brien, P. T.; Pagani, C.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Levan, A. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Rol, E.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Hjorth, J.; Fynbo, J. P. U.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Thoene, C. C.; Postigo, A. de Ugarte] Osserv Astron Brera, Ist Nazl Astrofis, I-23807 Merate, Italy. [Jakobsson, P.] Univ Iceland, Inst Sci, Ctr Astrophys & Cosmol, IS-107 Reykjavik, Iceland. [Pagani, C.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stamatikos, M.] Ohio State Univ, Dept Phys, CCAPP, Columbus, OH 43210 USA. RP Rowlinson, A (reprint author), Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. EM bar7@star.le.ac.uk RI Fynbo, Johan/L-8496-2014; Hjorth, Jens/M-5787-2014; OI Fynbo, Johan/0000-0002-8149-8298; Hjorth, Jens/0000-0002-4571-2306; Thone, Christina/0000-0002-7978-7648; de Ugarte Postigo, Antonio/0000-0001-7717-5085 FU Science and Technology Funding Council; European Community [PERG03-GA-2008-226653]; Icelandic Research Fund; DNRF; British Council and Platform Beta Techniek through the Partnership Programme in Science [PPS WS 005] FX AR, KW, AJL and NRT would like to acknowledge funding from the Science and Technology Funding Council. PJ acknowledges support by a Marie Curie European Re-integration Grant within the 7th European Community Framework Programme under contract number PERG03-GA-2008-226653, and a Grant of Excellence from the Icelandic Research Fund. The Dark Cosmology Centre is funded by the DNRF. The financial support of the British Council and Platform Beta Techniek through the Partnership Programme in Science (PPS WS 005) is gratefully acknowledged. We thank A. Van Der Horst, B. Paciesas and T. Sakamoto for their help. NR 82 TC 42 Z9 43 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2010 VL 408 IS 1 BP 383 EP 391 DI 10.1111/j.1365-2966.2010.17115.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 666MA UT WOS:000283118100027 ER PT J AU Beauge, C Leiva, AM Haghighipour, N Otto, JC AF Beauge, C. Leiva, A. M. Haghighipour, N. Otto, J. Correa TI Dynamics of planetesimals due to gas drag from an eccentric precessing disc SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE planets and satellites: formation; stars: individual: gamma-Cephei ID BINARY STAR SYSTEMS; HABITABLE PLANET FORMATION; SOLAR NEBULA; GAMMA-CEPHEI; ACCRETION; MIGRATION; COMPANION; RESONANCES; EVOLUTION; SOLIDS AB We analyse the dynamics of individual kilometre-size planetesimals in circumstellar orbits of a tight binary system. We include both the gravitational perturbations of the secondary star and a non-linear gas drag stemming from an eccentric gas disc with a finite precession rate. We consider several precession rates and eccentricities for the gas, and compare the results with a static disc in circular orbit. The disc precession introduces three main differences with respect to the classical static case. (i) The equilibrium secular solutions generated by the gas drag are no longer fixed points in the averaged system but limit cycles with frequency equal to the precession rate of the gas. The amplitude of the cycle is inversely dependent on the body size, reaching negligible values for similar to 50-km-size planetesimals. (ii) The maximum final eccentricity attainable by small bodies is restricted to the interval between the gas eccentricity and the forced eccentricity, and apsidal alignment is no longer guaranteed for planetesimals strongly coupled with the gas. (iii) The characteristic time-scales of orbital decay and secular evolution decrease significantly with increasing precession rates, with values up to two orders of magnitude smaller than for static discs. Finally, we apply this analysis to the gamma-Cephei system and estimate impact velocities for different-size bodies and values of the gas eccentricity. For high disc eccentricities, we find that the disc precession decreases the velocity dispersion between different-size planetesimals, thus contributing to accretional collisions in the outer parts of the disc. The opposite occurs for almost circular gas discs, where precession generates an increase in the relative velocities. C1 [Beauge, C.; Leiva, A. M.; Otto, J. Correa] Univ Nacl Cordoba, Observ Astron, RA-5000 Cordoba, Argentina. [Haghighipour, N.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Haghighipour, N.] Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA. RP Beauge, C (reprint author), Univ Nacl Cordoba, Observ Astron, Laprida 854,X5000BGR, RA-5000 Cordoba, Argentina. EM beauge@oac.uncor.edu RI Correa-Otto, jorge Alfredo/F-6143-2012 FU Argentinian Research Council - CONICET; Cordoba National University; NASA Astrobiology Institute at the Institute for Astronomy, University of Hawaii [NNA04CC08A]; NASA EXOB [NNX09AN05G] FX This work has been supported by the Argentinian Research Council - CONICET - and by the Cordoba National University. AML is a post-doctoral fellow of SECYT/UNC. NH acknowledges support from the NASA Astrobiology Institute under Cooperative Agreement NNA04CC08A at the Institute for Astronomy, University of Hawaii and NASA EXOB grant NNX09AN05G. This project was initiated during the programme 'Dynamics of discs and Planets' that was held from 2009 August 15 to December 12 at the Newton's Institute of Mathematical Science at the University of Cambridge (UK). CB and NH would like to thank the organizers of the programme and acknowledge the warm hospitality of the Newton's Institute. Finally, we are grateful to F. Marzari for his helpful review of this paper. NR 38 TC 15 Z9 15 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2010 VL 408 IS 1 BP 503 EP 513 DI 10.1111/j.1365-2966.2010.17132.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 666MA UT WOS:000283118100039 ER PT J AU Lobban, AP Reeves, JN Porquet, D Braito, V Markowitz, A Miller, L Turner, TJ AF Lobban, A. P. Reeves, J. N. Porquet, D. Braito, V. Markowitz, A. Miller, L. Turner, T. J. TI Evidence for a truncated accretion disc in the low-luminosity Seyfert galaxy, NGC 7213? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion; accretion discs; atomic processes; galaxies: active; galaxies: Seyfert; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; X-RAY-SPECTRA; HELIUM-LIKE IONS; K-ALPHA EMISSION; BLACK-HOLES; COMPTON REFLECTION; CROSS-SECTIONS; COLD MATTER; LINE; NGC-7213 AB We present the broad-band 0.6-150 keV Suzaku and Swift BAT spectra of the low-luminosity Seyfert galaxy, NGC 7213. The time-averaged continuum emission is well fitted by a single power law of photon index Gamma = 1.75, and from consideration of the Fermi flux limit we constrain the high-energy cut-off to be 350 keV < E-cut < 25 MeV. Line emission from both near-neutral iron K alpha at 6.39 keV and highly ionized iron, from Fe XXV and Fe XXVI, is strongly detected in the Suzaku spectrum, further confirming the results of previous observations with Chandra and XMM-Newton. We find the centroid energies for the emission from Fe XXV and Fe XXVI to be 6.60 and 6.95 keV respectively, with the latter appearing to be resolved in the Suzaku spectrum. From modelling, we show that the Fe XXV and Fe XXVI emission can result from a highly photoionized plasma, with a column density of N-H similar to 3 x 10(23) cm(-2). A Compton reflection component, e. g. originating from an optically thick accretion disc or a Compton-thick torus, appears either very weak or absent in this active galactic nucleus (AGN), subtending < 1 sr to the X-ray source, consistent with previous findings. Indeed, the absence of Compton reflection from either neutral or ionized material coupled with the lack of any relativistic Fe K signatures in the spectrum suggests that an inner, optically thick accretion disc is absent in this source. Instead, the accretion disc could be truncated with the inner regions perhaps replaced by a Compton-thin radiatively inefficient accretion flow (RIAF). Thus, the Fe XXV and Fe XXVI emission could both originate in ionized material perhaps at the transition region between the hot, inner flow and the cold, truncated accretion disc on the order of 10(3)-10(4) gravitational radii from the black hole. The origin for the unresolved neutral Fe K alpha emission is then likely to be further out, perhaps originating in the optical broad-line region or a Compton-thin pc-scale torus. C1 [Lobban, A. P.; Reeves, J. N.] Keele Univ, Astrophys Grp, Sch Phys & Geog Sci, Keele ST5 8EH, Staffs, England. [Porquet, D.] Univ Strasbourg, Observ Astron Strasbourg, CNRS, UMR 7550, F-67000 Strasbourg, France. [Braito, V.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Markowitz, A.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Miller, L.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Turner, T. J.] Univ Maryland Baltimore Cty, Dept Phys, Greenbelt, MD 20771 USA. [Turner, T. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lobban, AP (reprint author), Keele Univ, Astrophys Grp, Sch Phys & Geog Sci, Keele ST5 8EH, Staffs, England. EM apl@astro.keele.ac.uk RI XRAY, SUZAKU/A-1808-2009; OI Porquet, Delphine/0000-0001-9731-0352; Braito, Valentina/0000-0002-2629-4989 FU UK STFC research council FX This research has made use of the NASA Astronomical Data System (ADS), the NASA Extragalactic Database (NED) and data obtained from the Suzaku satellite, a collaborative mission between the space agencies of Japan (JAXA) and the USA (NASA). We wish to thank our anonymous referee for their useful comments and thorough review of the draft. Valentina Braito would also like to acknowledge support from the UK STFC research council. NR 77 TC 17 Z9 17 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2010 VL 408 IS 1 BP 551 EP 564 DI 10.1111/j.1365-2966.2010.17143.x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 666MA UT WOS:000283118100044 ER PT J AU Ostensen, RH Green, EM Bloemen, S Marsh, TR Laird, JB Morris, M Moriyama, E Oreiro, R Reed, MD Kawaler, SD Aerts, C Vuckovic, M Degroote, P Telting, JH Kjeldsen, H Gilliland, RL Christensen-Dalsgaard, J Borucki, WJ Koch, D AF Ostensen, R. H. Green, E. M. Bloemen, S. Marsh, T. R. Laird, J. B. Morris, M. Moriyama, E. Oreiro, R. Reed, M. D. Kawaler, S. D. Aerts, C. Vuckovic, M. Degroote, P. Telting, J. H. Kjeldsen, H. Gilliland, R. L. Christensen-Dalsgaard, J. Borucki, W. J. Koch, D. TI 2M1938+4603: a rich, multimode pulsating sdB star with an eclipsing dM companion observed with Kepler SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries: close; binaries: eclipsing; stars: individual: 2M1938+4603; subdwarfs; stars: variables: general ID SUBDWARF B-STARS; G-MODE OSCILLATIONS; DRIVING MECHANISM; HW VIR; BINARY; ASTEROSEISMOLOGY; PARAMETERS AB 2M1938+4603 (KIC 9472174) displays a spectacular light curve dominated by a strong reflection effect and rather shallow, grazing eclipses. The orbital period is 0.126 d, the second longest period yet found for an eclipsing sdB+dM, but still close to the minimum 0.1-d period among such systems. The phase-folded Kepler light curve was used to detrend the orbital effects from the data set. The amplitude spectrum of the residual light curve reveals a rich collection of pulsation peaks spanning frequencies from similar to 50 to 4500 mu Hz. The presence of a complex pulsation spectrum in both the p- and g-mode regions has never before been reported in a compact pulsator. Eclipsing sdB+dM stars are very rare, with only seven systems known and only one with a pulsating primary. Pulsating stars in eclipsing binaries are especially important since they permit masses derived from seismological model fits to be cross-checked with orbital mass constraints. We present a first analysis of this star based on the Kepler 9.7-d commissioning light curve and extensive ground-based photometry and spectroscopy that allow us to set useful bounds on the system parameters. We derive a radial-velocity amplitude K-1 = 65.7 +/- 0.6 km s(-1), inclination angle i = 69 degrees.45 +/- 0 degrees.20, and find that the masses of the components are M-1 = 0.48 +/- 0.03 M-circle dot and M-2 = 0.12 +/- 0.01 M-circle dot C1 [Ostensen, R. H.; Bloemen, S.; Aerts, C.; Degroote, P.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Green, E. M.; Laird, J. B.; Morris, M.; Moriyama, E.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Marsh, T. R.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Oreiro, R.] Inst Astrofis Andalucia, Granada 18008, Spain. [Reed, M. D.] Missouri State Univ, Dept Phys Astron & Mat Sci, Springfield, MO 65897 USA. [Kawaler, S. D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Aerts, C.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Vuckovic, M.] European So Observ, Santiago 19001, Chile. [Telting, J. H.] Nord Opt Telescope, Santa Cruz De La Palma 38700, Spain. [Kjeldsen, H.; Christensen-Dalsgaard, J.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Borucki, W. J.; Koch, D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Ostensen, RH (reprint author), Katholieke Univ Leuven, Inst Sterrenkunde, Celestijnenlaan 200D, B-3001 Louvain, Belgium. EM roy@ster.kuleuven.be OI Oreiro Rey, Raquel/0000-0002-4899-6199; Kawaler, Steven/0000-0002-6536-6367 FU NASA's Science Mission Directorate; European Research Council [227224]; Research Council of K. U. Leuven [GOA/2008/04] FX The authors gratefully thank the Kepler team and all who contributed to making the mission possible. The Kepler Mission is funded by NASA's Science Mission Directorate.; We acknowledge funding from the European Research Council under the Seventh Framework Programme (ERC/FP7 No. 227224, PROSPERITY), as well as from the Research Council of K. U. Leuven (GOA/2008/04). NR 24 TC 46 Z9 46 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2010 VL 408 IS 1 BP L51 EP L55 DI 10.1111/j.1745-3933.2010.00926.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 666MA UT WOS:000283118100063 ER PT J AU Sheehan, CKW Greaves, JS Bryden, G Rieke, GH Su, KYL Wyatt, MC Beichman, CA AF Sheehan, C. K. W. Greaves, J. S. Bryden, G. Rieke, G. H. Su, K. Y. L. Wyatt, M. C. Beichman, C. A. TI Forming the first planetary systems: debris around Galactic thick disc stars SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE planets and satellites: formation; circumstellar matter; infrared: stars ID MULTIBAND IMAGING PHOTOMETER; SOLAR-TYPE STARS; SUN-LIKE STARS; ABSOLUTE CALIBRATION; SPITZER MIPS; KUIPER-BELT; COOL STARS; METALLICITY; EVOLUTION; SEARCH AB The thick disc contains stars formed within the first Gyr of Galactic history, and little is known about their planetary systems. The Spitzer MIPS instrument was used to search 11 of the closest of these old low-metal stars for circumstellar debris, as a signpost that bodies at least as large as planetesimals were formed. A total of 22 thick disc stars has now been observed, after including archival data, but dust is not found in any of the systems. The data rule out a high incidence of debris among star systems from early in the Galaxy's formation. However, some stars of this very old population do host giant planets, at possibly more than the general incidence among low-metal Sun-like stars. As the Solar system contains gas giants but little cometary dust, the thick disc could host analogue systems that formed many Gyr before the Sun. C1 [Sheehan, C. K. W.; Greaves, J. S.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Bryden, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rieke, G. H.; Su, K. Y. L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Wyatt, M. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Beichman, C. A.] CALTECH, Michelson Sci Ctr, Pasadena, CA 91125 USA. RP Sheehan, CKW (reprint author), Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. EM jsg5@st-andrews.ac.uk OI Su, Kate/0000-0002-3532-5580 FU STFC FX CKWS thanks STFC for a studentship, and JSG thanks STFC for a fellowship, in support of this work. NR 34 TC 2 Z9 2 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2010 VL 408 IS 1 BP L90 EP L94 DI 10.1111/j.1745-3933.2010.00936.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 666MA UT WOS:000283118100071 ER PT J AU Ahmad, Z Franz, BA McClain, CR Kwiatkowska, EJ Werdell, J Shettle, EP Holben, BN AF Ahmad, Ziauddin Franz, Bryan A. McClain, Charles R. Kwiatkowska, Ewa J. Werdell, Jeremy Shettle, Eric P. Holben, Brent N. TI New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans SO APPLIED OPTICS LA English DT Article ID ATMOSPHERIC CORRECTION; SATELLITE DATA; AERONET; SCATTERING; ALGORITHM; INSTRUMENT; NETWORK; SUN AB We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFS and MODIS sensors, including aerosol optical thickness (tau), angstrom coefficient (alpha), and water-leaving radiance (L-omega). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity. These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity. From these findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%, and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all, 80 distributions (8Rh x 10 fine-mode fractions) were created to process the satellite data. We also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of the fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data. The reprocessing of the SeaWiFS data show that, over deep ocean, the average tau(865) values retrieved from the new aerosol models was 0.100 +/- 0.004, which was closer to the average AERONET value of 0.086 +/- 0.066 for tau(870) for the eight open-ocean sites used in this study. The average tau(865) value from the old models was 0.131 +/- 0.005. The comparison of monthly mean aerosol optical thickness retrieved from the SeaWiFS sensor with AERONET data over Bermuda and Wallops Island show very good agreement with one another. In fact, 81% of the data points over Bermuda and 78% of the data points over Wallops Island fall within an uncertainty of +/- 0.02 in optical thickness. As a part of the reprocessing effort of the SeaWiFS data, we also revised the vicarious calibration gain factors, which resulted in significant improvement in angstrom coefficient (alpha) retrievals. The average value of alpha from the new models over Bermuda is 0.841 +/- 0.171, which is in good agreement with the AERONET value of 0.891 +/- 0.211. The average value of alpha retrieved using old models is 0.394 + 0.087, which is significantly lower than the AERONET value. (C) 2010 Optical Society of America C1 [Ahmad, Ziauddin; Franz, Bryan A.; McClain, Charles R.; Kwiatkowska, Ewa J.; Werdell, Jeremy; Holben, Brent N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ahmad, Ziauddin] Sci & Data Syst Inc, Silver Spring, MD 20906 USA. [Kwiatkowska, Ewa J.] Sci Applicat Int Corp, San Diego, CA 92121 USA. [Werdell, Jeremy] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Shettle, Eric P.] USN, Res Lab, Washington, DC 20375 USA. RP Ahmad, Z (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt Rd, Greenbelt, MD 20771 USA. EM Ziauddin.Ahmad@nasa.gov RI Franz, Bryan/D-6284-2012 OI Franz, Bryan/0000-0003-0293-2082 FU NASA's Office of Earth Science; Office of Naval Research (ONR) FX We would like to thank Bo-Cai Gao of the Naval Research Laboratory (NRL) and Suraiya P. Ahmad of INNOVIM for many useful discussions and suggestions, and the members of OBPG, in particular, W. D. Robinson, for providing meteorological data for the analysis of AERONET observations. Also, we thank AERONET staff for maintaining and providing the sunphotometer data used in this study. In addition, we would like to thank two anonymous reviewers for their helpful comments. Eric P. Shettle's work was supported by a grant from NASA's Office of Earth Science and by NRL internal funding [from the Office of Naval Research (ONR)]. NR 34 TC 88 Z9 89 U1 1 U2 18 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD OCT 10 PY 2010 VL 49 IS 29 BP 5545 EP 5560 DI 10.1364/AO.49.005545 PG 16 WC Optics SC Optics GA 660YK UT WOS:000282685300005 PM 20935700 ER PT J AU Nixon, CA Teanby, NA Calcutt, SB Aslam, S Jennings, DE Kunde, VG Flasar, FM Irwin, PGJ Taylor, FW Glenar, DA Smith, MD AF Nixon, Conor A. Teanby, Nicholas A. Calcutt, Simon B. Aslam, Shahid Jennings, Donald E. Kunde, Virgil G. Flasar, F. Michael Irwin, Patrick G. J. Taylor, Fredric W. Glenar, David A. Smith, Michael D. TI Infrared limb sounding of Titan with the Cassini Composite InfraRed Spectrometer: effects of the mid-IR detector spatial responses (vol 48, pg 1912, 2009) SO APPLIED OPTICS LA English DT Correction AB We provide a revised Table 5 for the paper by Nixon et al. [Appl. Opt. 48, 1912 (2009)], in which the abundances of (CO2)-C-13 and (CO)-O-18 were incorrect. (C) 2010 Optical Society of America C1 [Nixon, Conor A.; Kunde, Virgil G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Nixon, Conor A.; Aslam, Shahid; Jennings, Donald E.; Kunde, Virgil G.; Flasar, F. Michael; Glenar, David A.; Smith, Michael D.] NASA, Goddard Space Flight Ctr, Planetary Syst Branch, Greenbelt, MD 20771 USA. [Teanby, Nicholas A.] Univ Bristol, Dept Earth Sci, Bristol BS8 1RJ, Avon, England. [Calcutt, Simon B.; Irwin, Patrick G. J.; Taylor, Fredric W.] Univ Oxford, Clarendon Lab, Subdept Atmospher Ocean & Planetary Phys, Oxford OX1 3PU, England. RP Nixon, CA (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM conor.a.nixon@nasa.gov RI Nixon, Conor/A-8531-2009; Flasar, F Michael/C-8509-2012; Smith, Michael/C-8875-2012; Aslam, Shahid/D-1099-2012; Jennings, Donald/D-7978-2012 OI Nixon, Conor/0000-0001-9540-9121; NR 1 TC 0 Z9 0 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD OCT 10 PY 2010 VL 49 IS 29 BP 5575 EP 5576 DI 10.1364/AO.49.005575 PG 2 WC Optics SC Optics GA 660YK UT WOS:000282685300008 ER PT J AU Rappazzo, AF Velli, M Einaudi, G AF Rappazzo, A. F. Velli, M. Einaudi, G. TI SHEAR PHOTOSPHERIC FORCING AND THE ORIGIN OF TURBULENCE IN CORONAL LOOPS SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetohydrodynamics (MHD); Sun: corona; Sun: magnetic topology; turbulence ID MAGNETOHYDRODYNAMIC TURBULENCE; MAGNETIC-FIELDS; CURRENT SHEETS; SOLAR CORONA; MHD-TURBULENCE; REDUCED MAGNETOHYDRODYNAMICS; TOPOLOGICAL CHANGES; ENERGY-RELEASE; NANOFLARES; DYNAMO AB We present a series of numerical simulations aimed at understanding the nature and origin of turbulence in coronal loops in the framework of the Parker model for coronal heating. A coronal loop is studied via reduced magnetohydrodynamic (MHD) simulations in Cartesian geometry. A uniform and strong magnetic field threads the volume between the two photospheric planes, where a velocity field in the form of a one-dimensional shear flow pattern is present. Initially, the magnetic field that develops in the coronal loop is a simple map of the photospheric velocity field. This initial configuration is unstable to a multiple tearing instability that develops islands with X and O points in the plane orthogonal to the axial field. Once the nonlinear stage sets in the system evolution is characterized by a regime of MHD turbulence dominated by magnetic energy. A well-developed power law in energy spectra is observed and the magnetic field never returns to the simple initial state mapping the photospheric flow. The formation of X and O points in the planes orthogonal to the axial field allows the continued and repeated formation and dissipation of small-scale current sheets where the plasma is heated. We conclude that the observed turbulent dynamics are not induced by the complexity of the pattern that the magnetic field-line footpoints follow but they rather stem from the inherent nonlinear nature of the system. C1 [Rappazzo, A. F.] Inst Astrofis Canarias, Tenerife 38205, Spain. [Rappazzo, A. F.; Velli, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Velli, M.] Univ Florence, Dipartimento Fis & Astron, I-50125 Florence, Italy. [Einaudi, G.] Univ Pisa, Dipartimento Fis E Fermi, I-56127 Pisa, Italy. RP Rappazzo, AF (reprint author), Inst Astrofis Canarias, Tenerife 38205, Spain. EM rappazzo@iac.es FU NASA [09-1112]; Jet Propulsion Laboratory, California Institute of Technology; ASI [I/015/07/0]; European Commission through the SOLAIRE Network [MRTN-CT-2006-035484]; Spanish Ministry of Research and Innovation [AYA2007-66502, CSD2007-00050]; CINECA (Italy) FX We thank Russ Dahlburg (NRL) for useful discussions. A.F.R. was supported by the NASA Postdoctoral Program. This research was supported in part by the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA, and in part by ASI contract n. I/015/07/0 Exploration of the Solar System. Financial support by the European Commission through the SOLAIRE Network (MRTN-CT-2006-035484) and by the Spanish Ministry of Research and Innovation through projects AYA2007-66502 and CSD2007-00050 is gratefully acknowledged. Simulations have been performed through the NASA Advanced Supercomputing SMD award 09-1112 and at CINECA (Italy). A.F.R. thanks the Leverhulme Trust International Network for Magnetized Plasma Turbulence for travel support. NR 63 TC 25 Z9 25 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 65 EP 78 DI 10.1088/0004-637X/722/1/65 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900005 ER PT J AU Hamidouche, M AF Hamidouche, M. TI APERTURE SYNTHESIS IMAGING OF V892 Tau AND PV Cep: DISK EVOLUTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; stars: formation; stars: pre-main sequence; stars: variables: T Tauri, Herbig Ae/Be; techniques: interferometric ID HERBIG-AE/BE STARS; INTERMEDIATE-MASS STARS; CIRCUMSTELLAR DISKS; PROTOPLANETARY DISKS; RADIO-CONTINUUM; GRAIN-GROWTH; DUST; MILLIMETER; SYSTEMS; CLOUD AB I present a study of two Herbig Ae stars that are in completely different evolutionary stages: V892 Tau and PV Cep. Using sub-arcsecond interferometric observations obtained with the Combined Array for Research in Millimeter-wave Astronomy at lambda = 1.3 and 2.7 mm, I have for the first time resolved their disks. I deduce that the 5 Myr old V892 Tau has a low dust opacity index beta = 1.1 and a disk mass of similar to 0.03 M(circle dot). These values correspond to the growth of its dust into large, up to centimeters size, structures. In contrast, the very young (a few x 10(5) yr) PV Cep has a quite high opacity index beta = 1.75 and a more massive disk 0.8 M(circle dot). PV Cep has the youngest resolved disk around any Herbig Ae star. Unlike the youngest T Tauri and Class 0 stars, which contain large and processed grains, the young Herbig Ae star, PV Cep, disk contains interstellar-medium-like unprocessed dust. This suggests that PV Cep's dust evolution is slower than T Tauri stars'. I also present high spatial resolution interferometric observations of the PV Cep outflow. The outflow inclination is consistent with the orientation of the known Herbig-Haro flow in that region, HH315. C1 NASA, Ames Res Ctr, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. RP Hamidouche, M (reprint author), NASA, Ames Res Ctr, Stratospher Observ Infrared Astron, MS N211-3, Moffett Field, CA 94035 USA. EM mhamidouche@sofia.usra.edu FU States of California, Illinois; Maryland; Gordon and Betty Moore Foundation; Eileen and Kenneth Norris Foundation; Caltech Associates; National Science Foundation; CARMA partner universities FX I thank Dana Backman for his critical reading of the paper. I thank Goran Sandell for useful comments and for discussions on Herbig stars. I thank Leslie Looney and Pamela Marcum for valuable discussions. Support for CARMA construction was derived from the states of California, Illinois, and Maryland, the Gordon and Betty Moore Foundation, the Eileen and Kenneth Norris Foundation, the Caltech Associates, and the National Science Foundation. Ongoing CARMA development and operations are supported by the National Science Foundation under a cooperative agreement, and by the CARMA partner universities. NR 56 TC 10 Z9 10 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 204 EP 211 DI 10.1088/0004-637X/722/1/204 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900018 ER PT J AU Liu, HB Ho, PTP Zhang, QZ Keto, E Wu, JW Li, HB AF Liu, Hauyu Baobab Ho, Paul T. P. Zhang, Qizhou Keto, Eric Wu, Jingwen Li, Huabai TI THE DECREASE OF SPECIFIC ANGULAR MOMENTUM AND THE HOT TOROID FORMATION: THE MASSIVE CLUMP G10.6-0.4 SO ASTROPHYSICAL JOURNAL LA English DT Article DE evolution; H II regions; ISM: individual objects (G10.6-0.4); ISM: kinematics and dynamics; stars: formation; stars: massive ID ULTRACOMPACT HII-REGIONS; PROTOSTELLAR CANDIDATES; ROTATING TOROIDS; MOLECULAR CLOUD; ACCRETION FLOW; CO OUTFLOWS; OB-CLUSTERS; STARS; OH; TEMPERATURE AB This is the first paper of our series of high-resolution (1 '') studies of the massive star-forming region G10.6-0.4. We present the emission line observations of the hot core type tracers (O(13)CS, OCS, SO(2)) with similar to 0 ''.5 resolution. By comparing the results to the high-resolution NH(3) absorption line observation, we confirm for the first time the rotationally flattened hot toroid in the central <0.1 pc region, which has a rotational axis perpendicular to its geometrical major axis. In addition, we present the observations of NH(3), (13)CS, and CH(3)CN with similar to 1 '' resolution, and follow the dynamics of the molecular accretion flow from the 0.3 pc radius to the inner 0.03 pc radius. With reference to the rotational axis of the hot toroid, we measure the rotational velocity from the molecular emission in the region. The results are consistent with an envelope with a rapid decrease of the specific angular momentum from the outer to the inner region. These new results improve the current understanding of the molecular accretion flow in an ultracompact H II region created by the embedded O-type cluster. C1 [Liu, Hauyu Baobab; Ho, Paul T. P.; Zhang, Qizhou; Keto, Eric] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Liu, Hauyu Baobab] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Liu, Hauyu Baobab; Ho, Paul T. P.] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Wu, Jingwen] Jet Prop Lab, Pasadena, CA 91101 USA. [Li, Huabai] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Liu, HB (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM hlu@cfa.havard.edu; pho@asiaa.sinica.edu.tw; qzhang@cfa.harvard.edu; keto@cfa.harvard.edu; Jingwen.Wu@jpl.nasa.gov; li@mpia.de OI Zhang, Qizhou/0000-0003-2384-6589 NR 36 TC 18 Z9 18 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 262 EP 272 DI 10.1088/0004-637X/722/1/262 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900023 ER PT J AU Dwek, E Arendt, RG Bouchet, P Burrows, DN Challis, P Danziger, IJ De Buizer, JM Gehrz, RD Park, S Polomski, EF Slavin, JD Woodward, CE AF Dwek, Eli Arendt, Richard G. Bouchet, Patrice Burrows, David N. Challis, Peter Danziger, I. John De Buizer, James M. Gehrz, Robert D. Park, Sangwook Polomski, Elisha F. Slavin, Jonathan D. Woodward, Charles E. TI FIVE YEARS OF MID-INFRARED EVOLUTION OF THE REMNANT OF SN 1987A: THE ENCOUNTER BETWEEN THE BLAST WAVE AND THE DUSTY EQUATORIAL RING SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: general; ISM: individual objects (SN 1987A); ISM: supernova remnants; X-rays: general ID SUPERNOVA 1987A; SPECTROSCOPY; EMISSION; SN-1987A; DESTRUCTION AB We have used the Spitzer satellite to monitor the mid- IR evolution of SN 1987A over a five year period spanning the epochs between days similar to 6000 and 8000 since the explosion. The supernova (SN) has evolved into a supernova remnant and its radiative output is dominated by the interaction of the SN blast wave with the pre-existing equatorial ring (ER). The mid-IR spectrum is dominated by emission from similar to 180 K silicate dust, collisionally heated by the hot X-ray emitting gas with a temperature and density of similar to 5 x 10(6) K and similar to 3 x 10(4) cm(-3), respectively. The mass of the radiating dust is similar to 1.2 x 10(-6) M(circle dot) on day 7554 and scales linearly with IR flux. Comparison of the IR data with the soft X-ray flux derived from Chandra observations shows that the IR-to-X-ray flux ratio, IRX, is roughly constant with a value of 2.5. Gas-grain collisions therefore dominate the cooling of the shocked gas. The constancy of IRX is most consistent with the scenario that very little grain processing or gas cooling has occurred throughout this epoch. The shape of the dust spectrum remained unchanged during the observations while the total flux increased by a factor of similar to 5 with a time dependence of t'0.87 +/- 0.20, t' being the time since the first encounter between the blast wave and the ER. These observations are consistent with the transitioning of the blast wave from free expansion to a Sedov phase as it propagates into the main body of the ER, as also suggested by X-ray observations. The constant spectral shape of the IR emission provides strong constraints on the density and temperature of the shocked gas in which the interaction takes place. Silicate grains, with radii of similar to 0.2 mu m and temperature of T similar to 180 K, best fit the spectral and temporal evolution of the similar to 8-30 mu m data. The IR spectra also show the presence of a secondary population of very small, hot (T >= 350 K), featureless dust. If these grains spatially coexist with the silicates, then they must have shorter lifetimes. The data show slightly different rates of increase of their respective fluxes, lending some support to this hypothesis. However, the origin of this emission component and the exact nature of its relation to the silicate emission is still a major unsolved puzzle. C1 [Dwek, Eli] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Arendt, Richard G.] NASA, CRESST, UMBC, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bouchet, Patrice] CEA Saclay, DSM, DAPNIA, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Burrows, David N.; Park, Sangwook] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Challis, Peter; Slavin, Jonathan D.] Harvard Smithsonian, CfA, Cambridge, MA 02138 USA. [Danziger, I. John] Osserv Astron Trieste, I-34131 Trieste, Italy. [De Buizer, James M.] So Operat Ctr, Gemini Observ, La Serena, Chile. [Gehrz, Robert D.; Woodward, Charles E.] Univ Minnesota, Dept Astron, Minneapolis, MN 55455 USA. [Polomski, Elisha F.] Univ Wisconsin, Eau Claire, WI 54702 USA. RP Dwek, E (reprint author), NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. EM eli.dwek@nasa.gov; Patrice.Bouchet@cea.fr RI Dwek, Eli/C-3995-2012; OI Slavin, Jonathan/0000-0002-7597-6935; Arendt, Richard/0000-0001-8403-8548 FU NASA FX We benefited from useful comments by Dick McCray and Svetozar Zhekov. We also thank the referee Diane Wooden for her careful reading of the manuscript and many constructive suggestions. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA. NR 24 TC 24 Z9 24 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 425 EP 434 DI 10.1088/0004-637X/722/1/425 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900037 ER PT J AU Simcic, J Schultz, DR Mawhorter, RJ Greenwood, JB Winstead, C McKoy, BV Smith, SJ Chutjian, A AF Simcic, J. Schultz, D. R. Mawhorter, R. J. Greenwood, J. B. Winstead, C. McKoy, B. V. Smith, S. J. Chutjian, A. TI MEASUREMENT AND CALCULATION OF ABSOLUTE SINGLE AND MULTIPLE CHARGE EXCHANGE CROSS SECTIONS FOR Feq+ IONS IMPACTING H2O SO ASTROPHYSICAL JOURNAL LA English DT Article DE comets: general; molecular processes; plasmas; solar wind ID X-RAY-EMISSION; SOLAR-WIND; COLLISION; ATOMS; IONIZATION; HYDROGEN; CHANDRA; SYSTEM; COMETS; VENUS AB Charge exchange (CE) plays a fundamental role in the collisions of solar- and stellar-wind ions with lunar and planetary exospheres, comets, and circumstellar clouds. Reported herein are absolute cross sections for single, double, triple, and quadruple CE of Feq+ (q = 5-13) ions with H2O at a collision energy of 7q keV. One measured value of the pentuple CE is also given for Fe9+ ions. An electron cyclotron resonance ion source is used to provide currents of the highly charged Fe ions. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental cross sections are compared with new results of the n-electron classical trajectory Monte Carlo approximation. The radiative and non-radiative cascades following electron transfers are approximated using scaled hydrogenic transition probabilities and scaled Auger rates. Also given are estimates of cross sections for single capture, and multiple capture followed by autoionization, as derived from the extended overbarrier model. These estimates are based on new theoretical calculations of the vertical ionization potentials of H2O up to H2O10+. C1 [Simcic, J.; Chutjian, A.] CALTECH, Jet Prop Lab, Atom & Mol Phys Grp, Pasadena, CA 91109 USA. [Schultz, D. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Mawhorter, R. J.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA. [Greenwood, J. B.] Queens Univ Belfast, Dept Phys, Belfast BT7 1NN, Antrim, North Ireland. [Winstead, C.; McKoy, B. V.] CALTECH, Dept Chem, Pasadena, CA 91125 USA. [Smith, S. J.] Indiana Wesleyan Univ, Dept Phys, Marion, IN 46953 USA. RP Simcic, J (reprint author), CALTECH, Jet Prop Lab, Atom & Mol Phys Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Greenwood, Jason/L-4799-2014 FU National Aeronautics and Space Administration with California Institute of Technology; US Department of Energy [DE-AC05-OR22464] FX The experimental work was carried out at JPL/Caltech, and was supported by the National Aeronautics and Space Administration through agreement with the California Institute of Technology. D.R.S. gratefully acknowledges support from the US Department of Energy under Contract No. DE-AC05-OR22464. Copyright 2010 California Institute of Technology. NR 36 TC 9 Z9 9 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 435 EP 439 DI 10.1088/0004-637X/722/1/435 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900038 ER PT J AU Abdo, AA Ackermann, M Ajello, M Antolini, E Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J Costamante, L Cutini, S Dermer, CD de Angelis, A de Palma, F Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giebels, B Giglietto, N Giommi, P Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guiriec, S Hadasch, D Hayashida, M Hays, E Healey, SE Horan, D Hughes, RE Itoh, R Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Knodlseder, J Kuss, M Lande, J Larsson, S Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Massaro, E Mazziotta, MN McEnery, JE Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Mueller, M Murgia, S Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Ritz, S Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sander, A Scargle, JD Sgro, C Shaw, MS Smith, PD Spandre, G Spinelli, P Starck, JL Strickman, MS Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wallace, E Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Antolini, E. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Costamante, L. Cutini, S. Dermer, C. D. de Angelis, A. de Palma, F. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M.-H. Grove, J. E. Guiriec, S. Hadasch, D. Hayashida, M. Hays, E. Healey, S. E. Horan, D. Hughes, R. E. Itoh, R. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Knoedlseder, J. Kuss, M. Lande, J. Larsson, S. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Massaro, E. Mazziotta, M. N. McEnery, J. E. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Mueller, M. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Ritz, S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F.-W. Sander, A. Scargle, J. D. Sgro, C. Shaw, M. S. Smith, P. D. Spandre, G. Spinelli, P. Starck, J.-L. Strickman, M. S. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wallace, E. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI GAMMA-RAY LIGHT CURVES AND VARIABILITY OF BRIGHT FERMI-DETECTED BLAZARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: general; gamma rays: galaxies; gamma rays: general; methods: data analysis; methods: statistical; quasars: general ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; BL-LACERTAE OBJECTS; EXTRAGALACTIC RADIO-SOURCES; RAPID OPTICAL VARIABILITY; LONG-TERM VARIABILITY; SELF-COMPTON MODEL; SPACE-TELESCOPE; SOURCE LIST; EGRET DATA AB This paper presents light curves as well as the first systematic characterization of variability of the 106 objects in the high-confidence Fermi Large Area Telescope Bright AGN Sample (LBAS). Weekly light curves of this sample, obtained during the first 11 months of the Fermi survey (2008 August 4-2009 July 4), are tested for variability and their properties are quantified through autocorrelation function and structure function analysis. For the brightest sources, 3 or 4 day binned light curves are extracted in order to determine power density spectra (PDSs) and to fit the temporal structure of major flares. More than 50% of the sources are found to be variable with high significance, where high states do not exceed 1/4 of the total observation range. Variation amplitudes are larger for flat spectrum radio quasars and low/intermediate synchrotron frequency peaked BL Lac objects. Autocorrelation timescales derived from weekly light curves vary from four to a dozen of weeks. Variable sources of the sample have weekly and 3-4 day bin light curves that can be described by 1/f(alpha) PDS, and show two kinds of gamma-ray variability: (1) rather constant baseline with sporadic flaring activity characterized by flatter PDS slopes resembling flickering and red noise with occasional intermittence and (2)-measured for a few blazars showing strong activity-complex and structured temporal profiles characterized by long-term memory and steeper PDS slopes, reflecting a random walk underlying mechanism. The average slope of the PDS of the brightest 22 FSRQs and of the 6 brightest BL Lacs is 1.5 and 1.7, respectively. The study of temporal profiles of well-resolved flares observed in the 10 brightest LBAS sources shows that they generally have symmetric profiles and that their total duration vary between 10 and 100 days. Results presented here can assist in source class recognition for unidentified sources and can serve as reference for more detailed analysis of the brightest gamma-ray blazars. C1 [Antolini, E.; Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Caraveo, P. A.; Chiang, J.; Claus, R.; Costamante, L.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Mueller, M.; Murgia, S.; Nolan, P. L.; Omodei, N.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Caraveo, P. A.; Chiang, J.; Claus, R.; Costamante, L.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Mueller, M.; Murgia, S.; Nolan, P. L.; Omodei, N.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Antolini, E.; Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Starck, J.-L.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA, IRFU,CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Caliandro, G. A.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Buson, S.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Cameron, R. A.; Rodriguez, A. Y.; Torres, D. F.] IEEC CSIC, Inst Ciencies Espai, Barcelona 08193, Spain. INAF, Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.; Gasparrini, D.; Giommi, P.] Sci Data Ctr, Agenzia Spaziale Italiana ASI, I-00044 Frascati, Italy. [Celik, Oe.; Gehrels, N.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Larsson, S.; Yang, Z.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.; Larsson, S.; Ryde, F.; Yang, Z.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dumora, D.; Grondin, M.-H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M.-H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Osserv Astron Trieste, Ist Nazl Astrofis, I-34143 Trieste, Italy. [Fukazawa, Y.; Itoh, R.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Massaro, E.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys & Inst Theoret Phys, A-6020 Innsbruck, Austria. [Ritz, S.; Sadrozinski, H. F.-W.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Ritz, S.; Sadrozinski, H. F.-W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Ryde, F.; Ylinen, T.] AlbaNova, Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Scargle, J. D.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Ciprini, S (reprint author), Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. EM stefano.ciprini@pg.infn.it; sarac@slac.stanford.edu; Gino.Tosti@pg.infn.it RI Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012 OI Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Cutini, Sara/0000-0002-1271-2924; Funk, Stefan/0000-0002-2012-0080; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; FU K.A. Wallenberg Foundation; International Doctorate on Astroparticle Physics (IDAPP); ASI-INAF [I/047/8/0] FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K.A. Wallenberg Foundation.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; S.C. acknowledges funding by grant ASI-INAF n.I/047/8/0 related to Fermi on orbit activities. NR 69 TC 133 Z9 133 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 520 EP 542 DI 10.1088/0004-637X/722/1/520 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900043 ER PT J AU Leake, JE Linton, MG Antiochos, SK AF Leake, James E. Linton, Mark G. Antiochos, Spiro K. TI TESTS OF DYNAMICAL FLUX EMERGENCE AS A MECHANISM FOR CORONAL MASS EJECTION INITIATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetohydrodynamics (MHD); Sun: coronal mass ejections (CMEs) ID IONIZED SOLAR ATMOSPHERE; EMERGING MAGNETIC-FLUX; NUMERICAL SIMULATIONS; BREAKOUT MODEL; ACTIVE REGIONS; ROPE MODEL; INSTABILITY; TUBES; PLASMA; EVOLUTION AB Current coronal mass ejection (CME) models set their lower boundary to be in the lower corona. They do not calculate accurately the transfer of free magnetic energy from the convection zone to the magnetically dominated corona because they model the effects of flux emergence using kinematic boundary conditions or simply assume the appearance of flux at these heights. We test the importance of including dynamical flux emergence in CME modeling by simulating, in 2.5D, the emergence of sub-surface flux tubes into different coronal magnetic field configurations. We investigate how much free magnetic energy, in the form of shear magnetic field, is transported from the convection zone to the corona, and whether dynamical flux emergence can drive CMEs. We find that multiple coronal flux ropes can be formed during flux emergence, and although they carry some shear field into the corona, the majority of shear field is confined to the lower atmosphere. Less than 10% of the magnetic energy in the corona is in the shear field, and this, combined with the fact that the coronal flux ropes bring up significant dense material, means that they do not erupt. Our results have significant implications for all CME models which rely on the transfer of free magnetic energy from the lower atmosphere into the corona but which do not explicitly model this transfer. Such studies of flux emergence and CMEs are timely, as we have new capabilities to observe this with Hinode and the Solar Dynamics Observatory, and therefore to test the models against observations. C1 [Leake, James E.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Linton, Mark G.] USN, Res Lab, SW Washington, Washington, DC 20375 USA. [Antiochos, Spiro K.] NASA GSFC, Goddard Space Flight Ctr, Heliophys Div, Greenbelt, MD 20771 USA. RP Leake, JE (reprint author), George Mason Univ, Coll Sci, 4400 Univ Dr, Fairfax, VA 22030 USA. EM james.leake.ctr.uk@nrl.navy.mil; mark.linton@nrl.navy.mil; spiro.antiochos@nasa.gov RI Antiochos, Spiro/D-4668-2012 OI Antiochos, Spiro/0000-0003-0176-4312 FU NASA [NNH06AD58I, ONR/NRL 6.1]; JAXA; NAOJ; STFC; NASA; ESA (European Space Agency); NSC (Norway); NASA HTP FX J.E. Leake and M.G. Linton acknowledge support from NASA SR&T grant number NNH06AD58I, from ONR/NRL 6.1 basic research funds, and from the NRL-Hinode analysis program. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as domestic partner, and NASA (USA) and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ, STFC, NASA, ESA (European Space Agency), and NSC (Norway). We are grateful to the Hinode team for all their efforts in the design, build, and operation of the mission. The work by S.K. Antiochos was supported by the NASA HTP, TR&T, and SR&T Programs. The authors thank C. R. DeVore for enlightening discussion concerning the magnetic breakout model for CME initiation and the numerical modeling of CMEs. NR 63 TC 9 Z9 9 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 550 EP 565 DI 10.1088/0004-637X/722/1/550 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900045 ER PT J AU Seifina, E Titarchuk, L AF Seifina, Elena Titarchuk, Lev TI ON THE NATURE OF THE COMPACT OBJECT IN SS 433: OBSERVATIONAL EVIDENCE OF X-RAY PHOTON INDEX SATURATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; stars: individual (SS 433) ID MONTE-CARLO SIMULATIONS; BLACK-HOLE BINARIES; INTEGRAL OBSERVATIONS; CHANDRA HETGS; IRON-LINE; SS-433; SS433; ACCRETION; SPECTRUM; VARIABILITY AB We present an analysis of the X-ray spectral properties observed from the black hole candidate (BHC) binary SS 433. We have analyzed Rossi X-ray Timing Explorer data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 undergoes an X-ray spectral transition from the low hard state to the intermediate state (IS). We show that the X-ray broadband energy spectra during all spectral states are well fitted by a sum of the so-called bulk motion Comptonization (BMC) component and by two (broad and narrow) Gaussians for the continuum and line emissions, respectively. In addition to these spectral model components, we also find a strong feature that we identify as a "blackbody-like (BB)" component in which the color temperature is in the range of 4-5 keV in 24 IS spectra during the radio outburst decay in SS 433. Our observational results on the "high-temperature BB" bump lead us to suggest the presence of gravitationally redshifted annihilation line emission in this source. In fact, this spectral feature has been recently reproduced in Monte Carlo simulations by Laurent & Titarchuk. We have also established the photon index saturation at about 2.3 in index versus mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of the black hole (BH) mass of the compact object in SS 433, M(bh) greater than or similar to 2 solar masses, using the scaling method using BHC GX 339-4 as a reference source. Our estimate of the BH mass in SS 433 is consistent with the recent BH mass measurement using the radial velocity measurements of the binary system by Hillwig & Gies, who find that M(x) = (4.3 +/- 0.8) solar masses. This is the smallest BH mass found up to now among all BH sources. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, as in a number of other BH candidates, is strong observational evidence for the presence of a BH in SS 433. C1 [Seifina, Elena] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992, Russia. [Titarchuk, Lev] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Titarchuk, Lev] George Mason Univ, Fairfax, VA 22030 USA. [Titarchuk, Lev] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Seifina, E (reprint author), Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Univ Sky Prospect 13, Moscow 119992, Russia. EM seif@sai.msu.ru; titarchuk@fe.infn.it NR 52 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 586 EP 604 DI 10.1088/0004-637X/722/1/586 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900048 ER PT J AU Naylor, BJ Bradford, CM Aguirre, JE Bock, JJ Earle, L Glenn, J Inami, H Kamenetzky, J Maloney, PR Matsuhara, H Nguyen, HT Zmuidzinas, J AF Naylor, B. J. Bradford, C. M. Aguirre, J. E. Bock, J. J. Earle, L. Glenn, J. Inami, H. Kamenetzky, J. Maloney, P. R. Matsuhara, H. Nguyen, H. T. Zmuidzinas, J. TI A CENSUS OF THE HIGH-DENSITY MOLECULAR GAS IN M82 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: abundances; galaxies: individual (M82); galaxies: ISM; galaxies: starburst; instrumentation: spectrographs; techniques: spectroscopic ID INITIAL MASS FUNCTION; CLUMPY PHOTODISSOCIATION REGIONS; MILLIMETER-WAVE SPECTROMETER; STARBURST GALAXY M82; STAR-FORMATION RATE; LINE EMISSION; INTERSTELLAR CLOUDS; NEARBY GALAXIES; Z-SPEC; CIRCUMNUCLEAR DISK AB We present a three-pointing study of the molecular gas in the starburst nucleus of M82 based on 190-307 GHz spectra obtained with Z-Spec at the Caltech Submillimeter Observatory. We present intensity measurements, detections, and upper limits, for 20 transitions, including several new detections of CS, HNC, C(2)H, H(2)CO, and CH(3)CCH lines. We combine our measurements with previously published measurements at other frequencies for HCN, HNC, CS, C(34)S, and HCO(+) in a multi-species likelihood analysis constraining gas mass, density and temperature, and the species' relative abundances. We find some (1.7-2.7) x 10(8) M(circle dot) of gas with n(H2) between (1-6) x 10(4) cm(-3) and T > 50 K. While the mass and temperature are comparable to values inferred from mid-J CO transitions, the thermal pressure is a factor of 10-20 greater. The molecular interstellar medium is largely fragmented and is subject to ultraviolet irradiation from the star clusters. It is also likely subject to cosmic rays and mechanical energy input from the supernovae, and is warmer on average than the molecular gas in the massive star formation (SF) regions in the Milky Way. The typical conditions in the dense gas in M82's central kiloparsec appear unfavorable for further SF; if any appreciable stellar populations are currently forming, they are likely biased against low-mass stars, producing a top-heavy initial mass function. C1 [Naylor, B. J.; Bradford, C. M.; Bock, J. J.; Nguyen, H. T.; Zmuidzinas, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Aguirre, J. E.] Univ Penn, Philadelphia, PA 19104 USA. [Earle, L.; Glenn, J.; Kamenetzky, J.; Maloney, P. R.] Univ Colorado, Dept Astrophys Planetary & Sci, Boulder, CO 80309 USA. [Inami, H.; Matsuhara, H.] ISAS JAXA, Sagamihara, Kanagawa, Japan. RP Naylor, BJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU NSF [AST-0838261, AST-023927, AST-08079900]; NASA [NAGS-11911, NAGS-12788]; Research Corporation Award [RI0928]; Caltech Millikan; NRAO FX We are deeply grateful to the staff of the Caltech Submillimeter Observatory for their help in Z-Spec's commissioning and observing. We acknowledge Peter Ade and his group for some of our filters and Lionel Duband for the 3He/4He refrigerator in Z-Spec and are thankful for their help in the early integration of the instrument. We also appreciate the comments and careful reading of an anonymous referee. Finally, we acknowledge the following grants and fellowships: NSF CSO grant (AST-0838261) for B.J.N., NASA SARA grants NAGS-11911 and NAGS-12788, an NSF Career grant (AST-0239270) and a Research Corporation Award (RI0928) to J.G., a Caltech Millikan and JPL Director's fellowships to C. M. B., an NSF grant (AST-0807990) and an NRAO Jansky fellowship to J.E.A., and NASA GSRP fellowships to L.E. and J.K. NR 96 TC 20 Z9 21 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 668 EP 681 DI 10.1088/0004-637X/722/1/668 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900054 ER PT J AU Gogus, E Woods, PM Kouveliotou, C Kaneko, Y Gaensler, BM Chatterjee, S AF Gogus, Ersin Woods, Peter M. Kouveliotou, Chryssa Kaneko, Yuki Gaensler, Bryan M. Chatterjee, Shami TI SPATIAL, TEMPORAL, AND SPECTRAL PROPERTIES OF X-RAY EMISSION FROM THE MAGNETAR SGR 0501+4516 SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (SGR 0501+4516); X-rays: bursts ID SOFT GAMMA-REPEATERS; LARGE TORQUE VARIATIONS; NEUTRON-STARS; STATISTICAL PROPERTIES; RADIATIVE MECHANISM; PULSAR; DISCOVERY; OUTBURST; MOTIONS; BURSTS AB SGR 0501+4516 was discovered with the Swift satellite on 2008 August 22 after it emitted a series of very energetic bursts. Since then, the source was extensively monitored with Swift and the Rossi X-ray Timing Explorer (RXTE) and observed with Chandra and XMM-Newton, providing a wealth of information about its outburst behavior and burst-induced changes of its persistent X-ray emission. Here, we report the most accurate location of SGR 0501+4516 (with an accuracy of 0.'' 11) derived with Chandra. Using the combined RXTE, Swift/X-ray Telescope, Chandra, and XMM-Newton observations, we construct a phase-connected timing solution with the longest time baseline (similar to 240 days) to date for the source. We find that the pulse profile of the source is energy dependent and exhibits remarkable variations associated with the SGR 0501+4516 bursting activity. We also find significant spectral evolution (hardening) of the source persistent emission associated with bursts. Finally, we discuss the consequences of the SGR 0501+4516 proximity to the supernova remnant, SNR G160.9+2.6 (HB9). C1 [Gogus, Ersin; Kaneko, Yuki] Sabanci Univ, TR-34956 Istanbul, Turkey. [Woods, Peter M.] Corvid Technol, Huntsville, AL 35806 USA. [Kouveliotou, Chryssa] NASA, George C Marshall Space Flight Ctr, Space Sci Off, VP 62, Huntsville, AL 35812 USA. [Gaensler, Bryan M.] Univ Sydney, Sch Phys A29, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Chatterjee, Shami] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Gogus, E (reprint author), Sabanci Univ, TR-34956 Istanbul, Turkey. EM ersing@sabanciuniv.edu RI Gaensler, Bryan/F-8655-2010; OI Gaensler, Bryan/0000-0002-3382-9558 FU Scientific and Technological Research Council of Turkey (TUBITAK) [105T443]; EU [MTKD-CT-2006-042722]; Australian Research Council [FF0561298]; NASA [GO9-0065Z] FX E.G. acknowledges the support from the Scientific and Technological Research Council of Turkey (TUBITAK) through grant 105T443. E. G. and Y.K. acknowledge EU FP6 Transfer of Knowledge Project Astrophysics of Neutron Stars (MTKD-CT-2006-042722). B. M. G. acknowledges the support of a Federation Fellowship from the Australian Research Council through grant FF0561298. Chandra observations were carried out under Observation IDs 10164 and 9131, part of the proposal ToO Observations of SGRs (NASA grant GO9-0065Z; PI: C. Kouveliotou). NR 48 TC 23 Z9 23 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 899 EP 908 DI 10.1088/0004-637X/722/1/899 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900076 ER PT J AU Zenitani, S Hesse, M Klimas, A AF Zenitani, Seiji Hesse, Michael Klimas, Alex TI TWO-FLUID MAGNETOHYDRODYNAMIC SIMULATIONS OF RELATIVISTIC MAGNETIC RECONNECTION (vol 696, pg 1385, 2009) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Zenitani, Seiji; Hesse, Michael; Klimas, Alex] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Zenitani, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Seiji.Zenitani-1@nasa.gov RI Hesse, Michael/D-2031-2012; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 NR 2 TC 0 Z9 0 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 968 EP 969 DI 10.1088/0004-637X/722/1/968 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900081 ER PT J AU Rauch, BF Link, JT Lodders, K Israel, MH Barbier, LM Binns, WR Christian, ER Cummings, JR de Nolfo, GA Geier, S Mewaldt, RA Mitchell, JW Schindler, SM Scott, LM Stone, EC Streitmatter, RE Waddington, CJ Wiedenbeck, ME AF Rauch, B. F. Link, J. T. Lodders, K. Israel, M. H. Barbier, L. M. Binns, W. R. Christian, E. R. Cummings, J. R. de Nolfo, G. A. Geier, S. Mewaldt, R. A. Mitchell, J. W. Schindler, S. M. Scott, L. M. Stone, E. C. Streitmatter, R. E. Waddington, C. J. Wiedenbeck, M. E. TI COSMIC RAY ORIGIN IN OB ASSOCIATIONS AND PREFERENTIAL ACCELERATION OF REFRACTORY ELEMENTS: EVIDENCE FROM ABUNDANCES OF ELEMENTS Fe-26 THROUGH Se-34 (vol 696, pg 2083, 2009) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Rauch, B. F.; Link, J. T.; Lodders, K.; Israel, M. H.; Binns, W. R.; Cummings, J. R.; Scott, L. M.] Washington Univ, St Louis, MO 63130 USA. [Link, J. T.; de Nolfo, G. A.] GSFC CRESST, Greenbelt, MD 20771 USA. [Barbier, L. M.; Christian, E. R.; Cummings, J. R.; Mitchell, J. W.; Streitmatter, R. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Geier, S.; Mewaldt, R. A.; Schindler, S. M.; Stone, E. C.] CALTECH, Pasadena, CA 91125 USA. [Waddington, C. J.] Univ Minnesota, Minneapolis, MN 55455 USA. [Wiedenbeck, M. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Rauch, BF (reprint author), Washington Univ, St Louis, MO 63130 USA. RI Christian, Eric/D-4974-2012; de Nolfo, Georgia/E-1500-2012 OI Christian, Eric/0000-0003-2134-3937; NR 1 TC 2 Z9 2 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 970 EP 970 DI 10.1088/0004-637X/722/1/970 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900082 ER PT J AU Sellgren, K Werner, MW Ingalls, JG Smith, JDT Carleton, TM Joblin, C AF Sellgren, Kris Werner, Michael W. Ingalls, James G. Smith, J. D. T. Carleton, T. M. Joblin, Christine TI C-60 IN REFLECTION NEBULAE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE ISM: individual objects (NGC 7023, NGC 2023); ISM: lines and bands; ISM: molecules; line: identification ID POLYCYCLIC AROMATIC-HYDROCARBON; CORONAE-BOREALIS STARS; DIFFUSE INTERSTELLAR-MEDIUM; SPITZER-SPACE-TELESCOPE; INFRARED-EMISSION; CARBON CLUSTERS; DUST FORMATION; MU-M; FEATURES; SPECTRUM AB The fullerene C-60 has four infrared-active vibrational transitions at 7.0, 8.5, 17.4, and 18.9 mu m. We have previously observed emission features at 17.4 and 18.9 mu m in the reflection nebula NGC 7023 and demonstrated spatial correlations suggestive of a common origin. We now confirm our earlier identification of these features with C-60 by detecting a third emission feature at 7.04 +/- 0.05 mu m in NGC 7023. We also report the detection of these three C-60 features in the reflection nebula NGC 2023. Our spectroscopic mapping of NGC 7023 shows that the 18.9 mu m C-60 feature peaks on the central star and that the 16.4 mu m emission feature due to polycyclic aromatic hydrocarbons peaks between the star and a nearby photodissociation front. The observed features in NGC 7023 are consistent with emission from UV-excited gas-phase C-60. We find that 0.1%-0.6% of interstellar carbon is in C-60; this abundance is consistent with those from previous upper limits and possible fullerene detections in the interstellar medium (ISM). This is the first firm detection of neutral C-60 in the ISM. C1 [Sellgren, Kris] Ohio State Univ, Dept Astron, Columbus, OH 43235 USA. [Werner, Michael W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ingalls, James G.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Smith, J. D. T.] Univ Toledo, Ritter Astrophys Res Ctr, Toledo, OH 43603 USA. [Carleton, T. M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Joblin, Christine] Univ Toulouse, UPS, CESR, F-31028 Toulouse 4, France. [Joblin, Christine] CNRS, UMR 5187, F-31028 Toulouse, France. RP Sellgren, K (reprint author), Ohio State Univ, Dept Astron, Columbus, OH 43235 USA. EM sellgren@astronomy.ohio-state.edu FU NASA FX We thank Nick Abel, Lou Allamandola, Bruce Draine, Alain Leger, and Farid Salama for useful conversations, Dominique Toublanc for support with the Monte Carlo code, and Mike Jura for suggesting the C60 identification. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 42 TC 111 Z9 111 U1 2 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 10 PY 2010 VL 722 IS 1 BP L54 EP L57 DI 10.1088/2041-8205/722/1/L54 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TC UT WOS:000282192300011 ER PT J AU Ji, QA Tsay, SC AF Ji, Qiang Tsay, Si-Chee TI A novel nonintrusive method to resolve the thermal dome effect of pyranometers: Instrumentation and observational basis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID COSINE RESPONSE; IRRADIANCE; RADIATION; SURFACE; OFFSET AB A new method for improving the ground-based pyranometer measurements of solar irradiance has been employed during the East Asian Study of Tropospheric Aerosols and Impact on Regional Climate field experiment, Asian Monsoon Year in China in 2008. Depending on the temperature difference between its detector and domes, a pyranometer's thermal dome effect (TDE) can vary from a few W m(-2) at night to over tens of W m(-2) during daytime. Yet in traditional calibration procedures only a single calibration constant is determined, and consequently TDE is misrepresented. None of the methods that have been documented in the literature can capture TDE nonintrusively using the same instrument. For example, although adding a temperature sensor to the detector assembly is straightforward, attaching any sensor on a dome is intrusive and will affect its overall optical and physical properties. Furthermore, in response to the solar elevation and atmospheric variables, the dome temperature distribution is both dynamic and uneven, which makes it exceedingly difficult for locating a representative point on the dome for measuring TDE. However, the effective-dome-temperature is proportional to the pressure of the air trapped between the outer and the inner domes; therefore with a minor modification to a pyranometer, we can utilize the ideal gas law to gauge TDE without affecting the domes. Pyranometers can become climate-quality instruments once their TDE are nonintrusively determined. C1 [Ji, Qiang] Univ Maryland, ESSIC, College Pk, MD 20742 USA. [Ji, Qiang; Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Atmospheres Lab, ESSIC, Greenbelt, MD 20771 USA. RP Ji, QA (reprint author), Univ Maryland, ESSIC, College Pk, MD 20742 USA. EM qiang.ji-1@nasa.gov RI Tsay, Si-Chee/J-1147-2014 FU NASA FX This research is supported by NASA's Radiation Science Program, managed by Hal B. Maring. We sincerely thank Warren J. Wiscombe for his in-depth comments and suggestions. We are also grateful to Thomas Stoffel and his team at NREL for calibration of our radiometers, Hongbin Chen and his team at IAP for help during the deployment at Xianghe observatory, and Richard A. Hansell for comments and suggestions. NR 17 TC 13 Z9 13 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 9 PY 2010 VL 115 AR D00K21 DI 10.1029/2009JD013483 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 690MT UT WOS:000285009600004 ER PT J AU Suvorova, AV Shue, JH Dmitriev, AV Sibeck, DG McFadden, JP Hasegawa, H Ackerson, K Jelinek, K Safrankova, J Nemecek, Z AF Suvorova, A. V. Shue, J. -H. Dmitriev, A. V. Sibeck, D. G. McFadden, J. P. Hasegawa, H. Ackerson, K. Jelinek, K. Safrankova, J. Nemecek, Z. TI Magnetopause expansions for quasi-radial interplanetary magnetic field: THEMIS and Geotail observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID UPSTREAM PRESSURE VARIATIONS; SOLAR-WIND CONDITIONS; BOW SHOCK; MAGNETOSHEATH; PLASMA; MAGNETOSPHERE; PARALLEL; FORESHOCK; MOTION; FLOW AB We report Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Geotail observations of prolonged magnetopause (MP) expansions during long-lasting intervals of quasi-radial interplanetary magnetic field (IMF) and nearly constant solar wind dynamic pressure. The expansions were global: The magnetopause was located more than 3 R-E and similar to 7 R-E outside its nominal dayside and magnetotail locations, respectively. The expanded states persisted several hours, just as long as the quasi-radial IMF conditions, indicating steady state situations. For an observed solar wind pressure of similar to 1.1-1.3 nPa, the new equilibrium subsolar MP position lay at similar to 14.5 R-E, far beyond its expected location. The equilibrium position was affected by geomagnetic activity. The magnetopause expansions result from significant decreases in the total pressure of the high-beta magnetosheath, which we term the low-pressure magnetosheath (LPM) mode. A prominent LPM mode was observed for upstream conditions characterized by IMF cone angles less than 20 degrees-25 degrees, high Mach numbers and proton plasma beta <= 1.3. The minimum value for the total pressure observed by THEMIS in the magnetosheath adjacent to the magnetopause was 0.16 nPa and the fraction of the solar wind pressure applied to the magnetopause was therefore 0.2, extremely small. The equilibrium location of the magnetopause was modulated by a nearly continuous wavy motion over a wide range of time and space scales. C1 [Suvorova, A. V.; Shue, J. -H.; Dmitriev, A. V.] Natl Cent Univ, Inst Space Sci, Jhongli 32001, Taiwan. [Ackerson, K.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Hasegawa, H.] ISAS JAXA, Kanagawa 2298510, Japan. [Jelinek, K.; Safrankova, J.; Nemecek, Z.] Charles Univ Prague, Fac Math & Phys, CR-18000 Prague 8, Czech Republic. [McFadden, J. P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Suvorova, A. V.; Dmitriev, A. V.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. RP Suvorova, AV (reprint author), Natl Cent Univ, Inst Space Sci, Jhongli 32001, Taiwan. EM suvorova_alla@yahoo.com RI Hasegawa, Hiroshi/A-1192-2007; Sibeck, David/D-4424-2012; Suvorova, Alla/J-4174-2012; Dmitriev, Alexei/J-6161-2012 OI Hasegawa, Hiroshi/0000-0002-1172-021X; Suvorova, Alla/0000-0002-5146-0846; Dmitriev, Alexei/0000-0001-8038-251X FU NASA [NAS5-02099]; NSC [98-2811-M-008-043, NSC-98-2111-M-008-019, 98-2111-M-008-004]; Czech Grant Agency [205/09/0112]; MSM [0021620860] FX We acknowledge NASA contract NAS5-02099 and V. Angelopoulos for use of data from the THEMIS mission. We thank K. H. Glassmeier and U. Auster for the use of FGM data provided under contract 50 OC 0302. We thank N. Ness and D.J. McComas for the use of ACE solar wind data made available via the CDAWeb. The Geotail magnetic field and plasma data were provided by T. Nagai and Y. Saito, respectively. This work was supported by grants NSC 98-2811-M-008-043, NSC-98-2111-M-008-019, and NSC 98-2111-M-008-004. The work at Charles University was supported by the Czech Grant Agency under contract 205/09/0112 and by the Research Plan MSM 0021620860. NR 44 TC 29 Z9 29 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 9 PY 2010 VL 115 AR A10216 DI 10.1029/2010JA015404 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 690NK UT WOS:000285011300008 ER PT J AU Thomsen, MF Reisenfeld, DB Delapp, DM Tokar, RL Young, DT Crary, FJ Sittler, EC McGraw, MA Williams, JD AF Thomsen, M. F. Reisenfeld, D. B. Delapp, D. M. Tokar, R. L. Young, D. T. Crary, F. J. Sittler, E. C. McGraw, M. A. Williams, J. D. TI Survey of ion plasma parameters in Saturn's magnetosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INNER MAGNETOSPHERE; NITROGEN AB A survey of the bulk plasma ion properties observed by the Cassini Plasma Spectrometer instrument over roughly the first 4.5 years of its mission in orbit around Saturn is presented. The moments (density, temperature, and flow velocity) of the plasma distributions below 50 keV have been computed by numerical integration of the observed counts in the "Singles" (non-mass-resolved) data, partitioned into species on the basis of concurrent determinations of the composition from the time-of-flight data. Moments are presented for three main species: H+, W+ (water group ions), and ions with m/q = 2, which are presumed to be H-2(+). While the survey extends to radial distances of 30 R-S and thus includes some solar wind or magnetosheath values, our principal interest is the large-scale spatial variation of the magnetospheric plasma properties, so we focus attention on radial distances inside of 17 R-S. Principal findings include the following: (1) the densities of all three components are highly variable but are generally well organized by dipole L and magnetic latitude; (2) the density of ions with m/q = 2 varies from a few percentage of the H+ density in the inner magnetosphere to a maximum of several tens of percentage near the orbit of Titan, suggesting that Titan is an important source for H-2(+) in the outer magnetosphere; (3) water group ions are the dominant population in the inner magnetosphere, but only within similar to 3 R-S of the equatorial plane because of their strong centrifugal confinement; (4) derived latitudinal scale heights are largest for the light ions and generally increase with radial distance; (5) the L dependence of the calculated temperatures is not consistent with adiabatic transport but is in fair agreement with the expectations for plasma originating from ion pickup; (6) in agreement with the findings of Sergis et al. (2010), inside of L similar to 11, the particle pressure is dominated by ions with energies below a few keV; (7) the derived flow velocities reveal the global circulation pattern of relatively dense populations in the magnetosphere, with no evidence for return circulation from the nightside to the dayside beyond similar to 20 R-S; and (8) the azimuthal flow speeds are typically less than full corotation over the entire L range examined, varying from similar to 50% to 70% of full corotation. C1 [Thomsen, M. F.; Delapp, D. M.; Tokar, R. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Reisenfeld, D. B.; McGraw, M. A.; Williams, J. D.] Univ Montana, Missoula, MT 59812 USA. [Young, D. T.; Crary, F. J.] SW Res Inst, San Antonio, TX 78228 USA. [Sittler, E. C.] Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Thomsen, MF (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mthomsen@lanl.gov RI Reisenfeld, Daniel/F-7614-2015; OI Williams, John/0000-0001-5773-5364 FU U.S. Department of Energy, NASA; JPL [1243218]; Southwest Research Institute FX The authors thank Tom Hill for encouragement and very helpful discussions. We also thank both referees for careful and insightful reviews. Work at Los Alamos was conducted under the auspices of the U.S. Department of Energy, with support from the NASA Cassini program. The Cassini Plasma Spectrometer was supported by JPL contract 1243218 with Southwest Research Institute. The Cassini project is managed by the Jet Propulsion Laboratory for NASA. NR 33 TC 131 Z9 131 U1 2 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 9 PY 2010 VL 115 AR A10220 DI 10.1029/2010JA015267 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 690NK UT WOS:000285011300006 ER PT J AU Zhang, XY Zong, QG Wang, YF Zhang, H Xie, L Fu, SY Yuan, CJ Yue, C Yang, B Pu, ZY AF Zhang, X. Y. Zong, Q. -G. Wang, Y. F. Zhang, H. Xie, L. Fu, S. Y. Yuan, C. J. Yue, C. Yang, B. Pu, Z. Y. TI ULF waves excited by negative/positive solar wind dynamic pressure impulses at geosynchronous orbit SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID FREQUENCY GEOMAGNETIC-PULSATIONS; KELVIN-HELMHOLTZ INSTABILITY; CHARGED-PARTICLE BEHAVIOR; FIELD-LINE RESONANCES; DIPOLE MODEL; MAGNETOSPHERE; OSCILLATIONS; EXCITATION; PROPAGATION; SIGNATURES AB When a solar wind dynamic pressure impulse impinges on the magnetophere, ultra-low-frequency (ULF) waves can be excited in the magnetosphere and the solar wind energy can be transported from interplanetary space into the inner magnetosphere. In this paper, we have systematically studied ULF waves excited at geosynchronous orbit by both positive and negative solar wind dynamic pressure pulses. We have identified 270 ULF events excited by positive solar wind dynamic pressure pulses and 254 ULF events excited by negative pulses from 1 January 2001 to 31 March 2009. We have found that the poloidal and toroidal waves excited by positive and negative pressure pulses oscillate in a similar manner of phase near 06:00 local time (LT) and 18:00 LT, but in antiphase near 12:00 LT and 0:00 LT. Furthermore, it is shown that excited ULF oscillations are in general stronger around local noon than those in the dawn and dusk flanks. It is demonstrated that disturbances induced by negative impulses are weaker than those by positive ones, and the poloidal wave amplitudes are stronger than the toroidal wave amplitudes both in positive and negative events. The potential impact of these excited waves on energetic electrons at geosynchronous orbit has also been discussed. C1 [Zhang, X. Y.; Zong, Q. -G.; Wang, Y. F.; Xie, L.; Fu, S. Y.; Yuan, C. J.; Yue, C.; Yang, B.; Pu, Z. Y.] Peking Univ, Inst Space Phys & Appl Technol, Beijing 100871, Peoples R China. [Zhang, H.] Univ Alaska, Inst Geophys, Fairbanks, AK 99775 USA. [Zhang, H.] Univ Alaska, Dept Phys, Fairbanks, AK 99775 USA. [Zhang, X. Y.; Zong, Q. -G.; Wang, Y. F.; Xie, L.; Fu, S. Y.; Yuan, C. J.; Yue, C.; Yang, B.; Pu, Z. Y.] Peking Univ, Inst Space Phys & Appl Technol, Beijing 100871, Peoples R China. [Zhang, X. Y.] Chinese Acad Sci, State Key Lab Space Weather, Beijing, Peoples R China. [Zong, Q. -G.] Univ Massachusetts, Ctr Atmospher Res, Lowell, MA USA. [Zhang, H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Zhang, XY (reprint author), Peking Univ, Inst Space Phys & Appl Technol, 5 Yiheyuan Rd, Beijing 100871, Peoples R China. EM xiangyunzhang@pku.edu.cn RI Fu, Suiyan/E-9178-2013; Yue, Chao/C-2535-2015 OI Yue, Chao/0000-0001-9720-5210 FU National Natural Science Foundation of China [40831061]; Specialized Research Fund for State Key Laboratories FX This work is partly supported by the National Natural Science Foundation of China grants 40831061 and by the Specialized Research Fund for State Key Laboratories. NR 54 TC 35 Z9 39 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 9 PY 2010 VL 115 AR A10221 DI 10.1029/2009JA015016 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 690NK UT WOS:000285011300003 ER PT J AU Moran, MS Hamerlynck, EP Scott, RL Stone, JJ Collins, CDH Keefer, TO Bryant, R DeYoung, L Nearing, GS Sugg, Z Hymer, DC AF Moran, M. S. Hamerlynck, E. P. Scott, R. L. Stone, J. J. Collins, C. D. Holifield Keefer, T. O. Bryant, R. DeYoung, L. Nearing, G. S. Sugg, Z. Hymer, D. C. TI Hydrologic response to precipitation pulses under and between shrubs in the Chihuahuan Desert, Arizona SO WATER RESOURCES RESEARCH LA English DT Article ID SOIL-MOISTURE SENSORS; WATER-UPTAKE; NEW-MEXICO; TEMPORAL DYNAMICS; SPATIAL-PATTERNS; MOJAVE DESERT; WOODY-PLANTS; VEGETATION; TEMPERATURE; GRASSLAND AB Observations of the temporal and spatial distribution of poststorm soil moisture in open shrublands and savannas are limited, yet they are critical to understanding the interaction and feedback between moisture distribution and canopies. The objective of this analysis was to study the hydrologic impacts of precipitation pulses on the upper layer of soils under and between shrubs. The study was based on measurements of precipitation, runoff, and under-and between-shrub soil moisture over a period of 20 years (1990-2009) at a shrub-dominated site in the Walnut Gulch Experimental Watershed (WGEW) near Tombstone, Arizona. Within much of the root zone (to 30 cm depth), infiltration was not significantly different under versus between shrubs, and the under: between infiltration ratio was not related to pulse size or intensity. However, root-zone soil moisture was significantly higher between shrubs than under shrubs. The soil moisture measured at the surface (at 5 cm depth) was not consistently different under and between shrubs, but the soil moisture measured at depths of 15 and 30 cm were both significantly higher between shrubs than under shrubs. Considering mechanisms that explain the interaction between plants and soil moisture, we found no differences in infiltration, evaporative losses, and surface soil moisture in locations under and between shrubs. This led to the conclusion that lower root-zone soil moisture under shrubs was due largely to greater root density under shrubs than between shrubs. This study adds to the understanding of the impact of precipitation patterns on infiltration and soil moisture in shrub-dominated sites and the potential for vegetation change in arid and semiarid lands. C1 [Moran, M. S.; Hamerlynck, E. P.; Scott, R. L.; Stone, J. J.; Collins, C. D. Holifield; Keefer, T. O.; Bryant, R.] ARS, USDA, SW Watershed Res Ctr, Tucson, AZ 85719 USA. [DeYoung, L.] Univ Arizona, Sch Nat Resources, Tucson, AZ 85721 USA. [Hymer, D. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Nearing, G. S.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85719 USA. [Sugg, Z.] Univ Arizona, Dept Geog & Dev, Tucson, AZ 85721 USA. RP Moran, MS (reprint author), ARS, USDA, SW Watershed Res Ctr, 2000 E Allen Rd, Tucson, AZ 85719 USA. EM susan.moran@ars.usda.gov RI Nearing, Grey/K-4510-2012 FU NASA Soil Moisture Active Passive (SMAP) Science Definition Team (SDT) [08-SMAPSDT08-0042] FX This work was partially funded by the NASA Soil Moisture Active Passive (SMAP) Science Definition Team (SDT) agreement 08-SMAPSDT08-0042. NR 53 TC 4 Z9 5 U1 2 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 8 PY 2010 VL 46 AR W10509 DI 10.1029/2009WR008842 PG 12 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 690NT UT WOS:000285012200004 ER PT J AU Hurwitz, MM Newman, PA AF Hurwitz, M. M. Newman, P. A. TI 21st century trends in Antarctic temperature and polar stratospheric cloud (PSC) area in the GEOS chemistry-climate model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OZONE; SIMULATIONS AB This study examines trends in Antarctic temperature and A(PSC), a temperature proxy for the area of polar stratospheric clouds, in an ensemble of Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. A selection of greenhouse gas, ozone-depleting substance, and sea surface temperature scenarios is used to test the trend sensitivity to these parameters. One scenario is used to compare temperature trends in two versions of the GEOS CCM. An extended austral winter season is examined in detail. In May, June, and July, the expected future increase in CO2-related radiative cooling drives temperature trends in the Antarctic lower stratosphere. At 50 hPa, a 1-3 K cooling is expected between 2000 and 2100. Ozone levels increase, despite this robust cooling signal and the consequent increase in A(PSC), suggesting the enhancement of stratospheric transport in future. In the lower stratosphere, the choice of climate change scenarios does not affect the magnitude of the early winter cooling. Midwinter temperature trends are generally small. In October, A(PSC) trends have the same sign as the prescribed halogen trends. That is, there are negative A(PSC) trends in "realistic future" simulations, where halogen loading decreases in accordance with the Montreal Protocol and CO2 continues to increase. In these simulations, the speed of ozone recovery is not influenced by either the choice of sea surface temperature and greenhouse gas scenarios or by the model version. C1 [Hurwitz, M. M.] NASA, Goddard Space Flight Ctr, NASA Postdoctoral Program, Greenbelt, MD 20771 USA. RP Hurwitz, MM (reprint author), NASA, Goddard Space Flight Ctr, NASA Postdoctoral Program, Greenbelt, MD 20771 USA. EM margaret.m.hurwitz@nasa.gov RI Newman, Paul/D-6208-2012 OI Newman, Paul/0000-0003-1139-2508 FU NASA FX The authors thank J. E. Nielsen and L. D. Oman for running the GEOS CCM simulations, S. M. Frith for data processing, P. Hitchcock for providing CMAM output, E. R. Nash and E. Fleming for their assistance with the radiative flux calculations, R. S. Stolarski for assistance with the multiple linear regressions, M. A. Olsen for editing the manuscript, and NASA's MAP program for funding. M. M. Hurwitz was supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 32 TC 3 Z9 3 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 7 PY 2010 VL 115 AR D19109 DI 10.1029/2009JD013397 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 716RG UT WOS:000286990600007 ER PT J AU Anton, M Koukouli, ME Kroon, M McPeters, RD Labow, GJ Balis, D Serrano, A AF Anton, M. Koukouli, M. E. Kroon, M. McPeters, R. D. Labow, G. J. Balis, D. Serrano, A. TI Global validation of empirically corrected EP-Total Ozone Mapping Spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID NIMBUS 7; IRRADIANCE MEASUREMENTS; TRENDS; SPECTROPHOTOMETERS; NETWORK; GOME; PERFORMANCE; RETRIEVALS; HEMISPHERE; ACCURACY AB This article focuses on the global-scale validation of the empirically corrected Version 8 total ozone column data set acquired by the NASA Total Ozone Mapping Spectrometer (TOMS) during the period 1996-2004 when this instrument was flying aboard the Earth Probe (EP) satellite platform. This analysis is based on the use of spatially co-located, ground-based measurements from Dobson and Brewer spectrophotometers. The original EP-TOMS V8 total ozone column data set was also validated with these ground-based measurements to quantify the improvements made by the empirical correction that was necessary as a result of instrumental degradation issues occurring from the year 2000 onward that were uncorrectable by normal calibration techniques. EP-TOMS V8-corrected total ozone data present a remarkable improvement concerning the significant negative bias of around similar to 3% detected in the original EP-TOMS V8 observations after the year 2000. Neither the original nor the corrected EP-TOMS satellite total ozone data sets show a significant dependence on latitude. In addition, both EP-TOMS satellite data sets overestimate the Brewer measurements for small solar zenith angles (SZA) and underestimate for large SZA, explaining a significant seasonality (similar to 1.5%) for cloud-free and cloudy conditions. Conversely, relative differences between EP-TOMS and Dobson present almost no dependence on SZA for cloud-free conditions and a strong dependence for cloudy conditions (from +2% for small SZA to -1% for high SZA). The dependence of the satellite ground-based relative differences on total ozone shows good agreement for column values above 250 Dobson units. Our main conclusion is that the upgrade to TOMS V8-corrected total ozone data presents a remarkable improvement. Nevertheless, despite its quality, the EP-TOMS data for the period 2000-2004 should not be used as a source for trend analysis since EP-TOMS ozone trends are empirically corrected using NOAA-16 and NOAA-17 solar backscatter ultraviolet/2 data as external references, and therefore, they are no longer considered as independent observations. C1 [Anton, M.] Univ Granada, Dept Fis Aplicada, Granada, Spain. [Anton, M.; Serrano, A.] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain. [Koukouli, M. E.; Balis, D.] Aristotle Univ Thessaloniki, Dept Phys, Lab Atmospher Phys, GR-54006 Thessaloniki, Greece. [Anton, M.; Serrano, A.] Univ Evora, Geophys Ctr Evora, Evora, Portugal. [Kroon, M.] Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, Netherlands. [McPeters, R. D.; Labow, G. J.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Labow, G. J.] SSAI, Lanham Md, MD USA. RP Anton, M (reprint author), Univ Granada, Dept Fis Aplicada, Granada, Spain. EM mananton@unex.es RI Anton, Manuel/A-8477-2010; McPeters, Richard/G-4955-2013; Koukouli, MariLiza/A-2249-2015; OI McPeters, Richard/0000-0002-8926-8462; Koukouli, MariLiza/0000-0002-7509-4027; Anton, Manuel/0000-0002-0816-3758; Balis, Dimitris/0000-0003-1161-7746 FU Ministerio de Ciencia e Innovacion [CGL2008-05939-C03-02/CLI]; Fondo Social Europeo FX The authors thank the NASA TOMS Science Team for the satellite data used in this paper. This work has been partially supported by Ministerio de Ciencia e Innovacion under project CGL2008-05939-C03-02/CLI. Manuel Anton thanks Ministerio de Ciencia e Innovacion and Fondo Social Europeo for the award of a postdoctoral grant (Juan de la Cierva). NR 56 TC 21 Z9 21 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 7 PY 2010 VL 115 AR D19305 DI 10.1029/2010JD014178 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 716RG UT WOS:000286990600016 ER PT J AU Hu, YX Rodier, S Xu, KM Sun, WB Huang, JP Lin, B Zhai, PW Josset, D AF Hu, Yongxiang Rodier, Sharon Xu, Kuan-man Sun, Wenbo Huang, Jianping Lin, Bing Zhai, Pengwang Josset, Damien TI Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CALIPSO LIDAR MEASUREMENTS; GENERAL-CIRCULATION MODEL; MULTIPLE-SCATTERING; CLIMATE MODELS; ARCTIC CLOUD; PHASE; PARAMETERIZATION; DEPOLARIZATION; OCEANS; SIMULATIONS AB The CALIOP depolarization measurements, combined with backscatter intensity measurements, are effective in discriminating between water clouds and ice clouds. The same depolarization measurements can also be used for estimating liquid water content information. Using cloud temperature information from the collocated infrared imaging radiometer measurements and cloud water paths from collocated MODIS measurements, this study compiles global statistics of the occurrence frequency, liquid water content, liquid water path, and their temperature dependence. For clouds with temperatures between -40 degrees C and 0 degrees C, the liquid phase fractions and liquid water paths are significantly higher than the ones from previous studies using passive remote sensing measurements. At midlatitudes, the occurrence of liquid phase clouds at temperatures between -40 degrees C and 0 degrees C depends jointly on both cloud height and cloud temperature. At high latitudes, more than 95% of low-level clouds with temperatures between -40 degrees C and 0 degrees C are water clouds. Supercooled water clouds are mostly observed over ocean near the storm-track regions and high-latitude regions. Supercooled water clouds over land are observed in the Northern Hemisphere over Europe, East Asia, and North America, and these are the supercooled water clouds with highest liquid water contents. The liquid water content of all supercooled water clouds is characterized by a Gamma (G) distribution. The mode values of liquid water content are around 0.06 g/m(3) and are independent of cloud temperature. For temperatures warmer than -15 degrees C, mean value of the liquid water content is around 0.14 g/m(3). As the temperature decreases, the mean cloud liquid water content also decreases. These results will benefit cloud models and cloud parameterizations used in climate models in improving their ice-phase microphysics parameterizations and the aviation hazard forecast. C1 [Hu, Yongxiang; Rodier, Sharon; Xu, Kuan-man; Sun, Wenbo; Huang, Jianping; Lin, Bing; Zhai, Pengwang; Josset, Damien] NASA Langley Res Ctr, Climate Sci Branch, Hampton, VA 23681 USA. RP Hu, YX (reprint author), NASA Langley Res Ctr, Climate Sci Branch, Hampton, VA 23681 USA. EM yongxiang.hu-1@nasa.gov RI Hu, Yongxiang/K-4426-2012; Xu, Kuan-Man/B-7557-2013 OI Xu, Kuan-Man/0000-0001-7851-2629 FU NASA; CALIPSO project FX This work is supported by the NASA radiation science program and CALIPSO project. The manuscript benefited from Mark Vaughan's editorial support. The authors want to also thank Dr. Hal Maring of NASA Headquarters for the discussions and support. NR 31 TC 61 Z9 61 U1 2 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 7 PY 2010 VL 115 AR D00H34 DI 10.1029/2009JD012384 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 716RG UT WOS:000286990600001 ER PT J AU Roberts, JB Clayson, CA Robertson, FR Jackson, DL AF Roberts, J. Brent Clayson, Carol Anne Robertson, Franklin R. Jackson, Darren L. TI Predicting near-surface atmospheric variables from Special Sensor Microwave/Imager using neural networks with a first-guess approach SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LATENT-HEAT FLUX; AIR-SEA FLUXES; WATER-VAPOR; OCEAN ALGORITHM; HIGH-RESOLUTION; GLOBAL OCEANS; WIND-SPEED; TEMPERATURE; SSM/I; RETRIEVALS AB The turbulent heat fluxes play a pivotal role in the exchange of energy between the atmosphere and ocean. The calculation of these fluxes over the global oceans requires the use of bulk aerodynamic or flux-gradient methods that rely on estimates of the sea surface temperature (SST), near-surface wind speed, air temperature, and specific humidity. Errors in current methodologies of satellite retrievals of near-surface properties have been shown to be the main sources of error for calculation of the fluxes. A new neural network technique is presented here that significantly improves the error characteristics of the air temperature and specific humidity compared to previous methods. Improvements in predicting near-surface wind speed and SST are also seen. Additional improvements are also made by accounting for the effects of high cloud liquid water contents, the effects of which can be mitigated through the use of regime-specific linear and nonlinear retrieval methods. The use of a first-guess SST is shown to result in significant improvement in retrieval accuracy. C1 [Roberts, J. Brent; Clayson, Carol Anne] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. [Roberts, J. Brent; Robertson, Franklin R.] NASA Marshall Space Flight Ctr, Earth Sci Off, Huntsville, AL 35805 USA. [Jackson, Darren L.] Cooperat Inst Res Environm Sci, Boulder, CO 80305 USA. RP Roberts, JB (reprint author), Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. EM jason.b.roberts@nasa.gov RI Jackson, Darren/D-5506-2015 OI Jackson, Darren/0000-0001-5211-7866 FU NASA FX We acknowledge the use of the NETLAB software written by Ian T. Nabney and the use of the COARE v3.0 algorithm. We also thank and acknowledge the use of intercalibrated SSM/I data obtained from Wes Berg and Chris Kummerow of Colorado State University. The NASA Graduate Student Research Program has supported this work. NR 38 TC 24 Z9 24 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 7 PY 2010 VL 115 AR D19113 DI 10.1029/2009JD013099 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 716RG UT WOS:000286990600004 ER PT J AU Shindell, D Schulz, M Ming, Y Takemura, T Faluvegi, G Ramaswamy, V AF Shindell, Drew Schulz, Michael Ming, Yi Takemura, Toshihiko Faluvegi, Greg Ramaswamy, V. TI Spatial scales of climate response to inhomogeneous radiative forcing SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GENERAL-CIRCULATION MODEL; SURFACE-TEMPERATURE; GREENHOUSE GASES; SENSITIVITY; AEROSOLS; SYSTEM AB The distances over which localized radiative forcing influences surface temperature have not been well characterized. We present a general methodology to analyze the spatial scales of the forcing/response relationship and apply it to simulations of historical aerosol forcing and response in four climate models. We find that the surface temperature response is not strongly sensitive to the longitude of forcing but is fairly sensitive to latitude. Surface temperature responses in the Arctic and the Southern Hemisphere extratropics, where forcing was small, show little relationship to local forcing. Restricting the analysis to 30 degrees S-60 degrees N, where nearly all the forcing was applied, shows that forcing strongly influences response out to similar to 4500 km away examining all directions. The meridional length of influence is somewhat shorter (similar to 3500 km or 30 degrees), while it extends out to at least 12,000 km in the zonal direction. Substantial divergences between the models are seen over the oceans, whose physical representations differ greatly among the models. Length scales are quite consistent over 30 degrees S-60 degrees N land areas, however, despite differences in both the forcing applied and the physics of the models themselves. The results suggest that better understanding of regionally inhomogeneous radiative forcing would lead to improved projections of regional climate change over land areas. They also provide quantitative estimates of the spatial extent of the climate impacts of pollutants, which can extend thousands of kilometers beyond polluted areas, especially in the zonal direction. C1 [Shindell, Drew; Faluvegi, Greg] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Ming, Yi; Ramaswamy, V.] NOAA Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. [Schulz, Michael] CEA CNRS IPSL, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France. [Takemura, Toshihiko] Kyushu Univ, Appl Mech Res Inst, Fukuoka 8168580, Japan. RP Shindell, D (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM drew.t.shindell@nasa.gov RI Shindell, Drew/D-4636-2012; Takemura, Toshihiko/C-2822-2009; Ming, Yi/F-3023-2012; Kyushu, RIAM/F-4018-2015; Schulz, Michael/A-6930-2011; U-ID, Kyushu/C-5291-2016 OI Takemura, Toshihiko/0000-0002-2859-6067; Schulz, Michael/0000-0003-4493-4158; FU NASA; EU-EUCAARI [036833-2] FX We thank NASA's Modeling and Analysis Program for support and Gavin Schmidt for helpful discussion. IPSL model simulations could be accessed thanks to the IPSL infrastructure Pole de modelisation, led by Jean-Louis Dufresne and Pascale Braconnot. Analysis was also supported by the (EU-EUCAARI) project (contract 036833-2). NR 25 TC 44 Z9 46 U1 1 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 7 PY 2010 VL 115 AR D19110 DI 10.1029/2010JD014108 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 716RG UT WOS:000286990600015 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Boersma, DJ Bohm, C Boser, S Botner, O Bradley, L Braun, J Buitink, S Carson, M Chirkin, D Christy, B Clem, J Clevermann, F Cohen, S Colnard, C Cowen, DF D'Agostino, MV Danninger, M Davis, JC De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Duvoort, MR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Ganugapati, R Geisler, M Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Grant, D Griesel, T Gross, A Grullon, S Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Homeier, A Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Imlay, RL Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kemming, N Kenny, P Kiryluk, J Kislat, F Klein, SR Knops, S Kohne, JH Kohnen, G Kolanoski, H Kopke, L Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Krings, T Kroll, G Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Lauer, R Lehmann, R Lennarz, D Lunemann, J Madsen, J Majumdar, P Maruyama, R Mase, K Matis, HS Matusik, M Meagher, K Merck, M Meszaros, P Meures, T Middell, E Milke, N Miller, J Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Naumann, U Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M Ono, M Panknin, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Porrata, R Posselt, J Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Roucelle, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Sarkar, S Schatto, K Schlenstedt, S Schmidt, T Schneider, D Schukraft, A Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoyanov, S Strahler, EA Straszheim, T Sullivan, GW Swillens, Q Taboada, I Tamburro, A Tarasova, O Tepe, A Ter-Antonyan, S Tilav, S Toale, PA Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A Voigt, B Walck, C Waldenmaier, T Wallraff, M Walter, M Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Wikstrom, G Williams, DR Wischnewski, R Wissing, H Woschnagg, K Xu, C Xu, XW Yodh, G Yoshida, S Zarzhitsky, P AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K.-H. Benabderrahmane, M. L. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Boersma, D. J. Bohm, C. Boeser, S. Botner, O. Bradley, L. Braun, J. Buitink, S. Carson, M. Chirkin, D. Christy, B. Clem, J. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. D'Agostino, M. V. Danninger, M. Davis, J. C. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Duvoort, M. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Ganugapati, R. Geisler, M. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Grant, D. Griesel, T. Gross, A. Grullon, S. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Homeier, A. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J.-P. Hulth, P. O. Hultqvist, K. Hussain, S. Imlay, R. L. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K.-H. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kemming, N. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Knops, S. Koehne, J.-H. Kohnen, G. Kolanoski, H. Koepke, L. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Krings, T. Kroll, G. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Lauer, R. Lehmann, R. Lennarz, D. Luenemann, J. Madsen, J. Majumdar, P. Maruyama, R. Mase, K. Matis, H. S. Matusik, M. Meagher, K. Merck, M. Meszaros, P. Meures, T. Middell, E. Milke, N. Miller, J. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Naumann, U. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. Ono, M. Panknin, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Porrata, R. Posselt, J. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H.-G. Sarkar, S. Schatto, K. Schlenstedt, S. Schmidt, T. Schneider, D. Schukraft, A. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoyanov, S. Strahler, E. A. Straszheim, T. Sullivan, G. W. Swillens, Q. Taboada, I. Tamburro, A. Tarasova, O. Tepe, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. Voigt, B. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Wikstroem, G. Williams, D. R. Wischnewski, R. Wissing, H. Woschnagg, K. Xu, C. Xu, X. W. Yodh, G. Yoshida, S. Zarzhitsky, P. CA IceCube Collaboration TI First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory SO PHYSICAL REVIEW D LA English DT Article ID COSMIC-RAYS; SPECTRUM AB We report on the results of the search for extremely-high energy neutrinos with energies above 10(7) GeV obtained with the partially (similar to 30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective live time, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at E-2 phi(ve+v mu+v tau) similar or equal to 1.4 x 10(-6) GeV cm(-2) sec(-1) sr(-1) for neutrinos in the energy range from 3 x 10(7) to 3 x 10(9) GeV. C1 [Ishihara, A.; Mase, K.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Bissok, M.; Boersma, D. J.; Euler, S.; Geisler, M.; Gluesenkamp, T.; Huelss, J.-P.; Knops, S.; Krings, T.; Laihem, K.; Lennarz, D.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Williams, D. R.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Fadiran, O.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Imlay, R. L.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Buitink, S.; Goldschmidt, A.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kemming, N.; Kolanoski, H.; Lehmann, R.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Becker, J. K.; Dreyer, J.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Seunarine, S.] Univ W Indies, Dept Phys, Bridgetown BB11000, Barbados. [Bechet, S.; Bertrand, D.; Labare, M.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Adams, J.; Gross, A.; Han, K.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Clevermann, F.; Koehne, J.-H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subat & Radiat Phys, B-9000 Ghent, Belgium. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Ganugapati, R.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; Rodrigues, J. P.; Schneider, D.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H.-G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DC 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DC 19716 USA. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstroem, G.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstroem, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Engdegard, O.; Hallgren, A.; Miller, J.; Olivo, M.; de los Heros, C. Perez] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Duvoort, M. R.] Utrecht Univ SRON, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands. [Auffenberg, J.; Becker, K.-H.; Gurtner, M.; Helbing, K.; Kampert, K.-H.; Karg, T.; Matusik, M.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schlenstedt, S.; Spiering, C.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Kappes, A.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Montaruli, T.] Univ Bari, I-70126 Bari, Italy. [Montaruli, T.] Sezione Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hoshina, K (reprint author), Chiba Univ, Dept Phys, Chiba 2638522, Japan. EM mase@hepburn.s.chiba-u.ac.jp; syoshida@hepburn.s.chiba-u.ac.jp RI Sarkar, Subir/G-5978-2011; Wiebusch, Christopher/G-6490-2012; Beatty, James/D-9310-2011; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; OI Buitink, Stijn/0000-0002-6177-497X; Carson, Michael/0000-0003-0400-7819; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Sarkar, Subir/0000-0002-3542-858X; Wiebusch, Christopher/0000-0002-6418-3008; Beatty, James/0000-0003-0481-4952; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Perez de los Heros, Carlos/0000-0002-2084-5866 FU U.S. National Science Foundation - Office of Polar; U.S. National Science Foundation - Physics Division; University of Wisconsin Alumni Research Foundation; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI); Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; EU; Capes Foundation; Ministry of Education of Brazil; Japan-US Bilateral Joint Projects in the Japan Society for the Promotion of Science FX We acknowledge the support from the following agencies: U.S. National Science Foundation - Office of Polar Programs, U.S. National Science Foundation - Physics Division, University of Wisconsin Alumni Research Foundation, U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland. A. Kappes and A. Gross acknowledge support by the EU Marie Curie OIF Program. J. P. Rodrigues acknowledges support by the Capes Foundation, Ministry of Education of Brazil. This analysis work has been particularly supported by the Japan-US Bilateral Joint Projects in the Japan Society for the Promotion of Science. NR 39 TC 27 Z9 27 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD OCT 7 PY 2010 VL 82 IS 7 AR 072003 DI 10.1103/PhysRevD.82.072003 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 660JR UT WOS:000282637900001 ER PT J AU Niu, F Li, ZQ Li, C Lee, KH Wang, MY AF Niu, Feng Li, Zhanqing Li, Can Lee, Kwon-Ho Wang, Minyan TI Increase of wintertime fog in China: Potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID REGIONAL CLIMATE; SUMMER MONSOON; INTERANNUAL VARIABILITY; ARCTIC OSCILLATION; HYDROLOGICAL CYCLE; RADIATION FOG; SIMULATIONS; REANALYSIS; SATELLITE; TRANSPORT AB Fog is a severe weather hazard that greatly influences traffic and daily life with potentially heavy economic loss. An increasing number of traffic accidents caused by fog have been reported in China in recent years. In this study, we show that the frequencies of fog events in wintertime over eastern-central China have doubled over the past three decades. For the same period, surface wind speeds have dropped from 3.7 m/s to about 3 m/s and the mean number of cold air outbreaks has decreased from 7 to around 5 times per winter; relative humidity and the frequency of light wind events have also increased significantly. Weakening of the East Asian winter monsoon system appears to be responsible for these changes. The weakened East Asian winter monsoon circulation brings less cold and dry air to the region, reduces wind speed, and favors the formation of fog. The regional increase in atmospheric aerosol loading may also change the regional circulation pattern, creating favorable conditions for fog. This hypothesis is tested using the National Centers for Environmental Prediction (NCEP) reanalysis data and model simulations with the National Center for Atmospheric Research Community Climate Model (NCAR/CCM3). The analyses show that the 500hPa trough in East Asia has shallowed over the past three decades. Meanwhile, the surface Siberian high has weakened which is likely the cause for the diminishment in speed of the prevailing northwesterly winds and the reduction in intrusions of dry and cold air from the northwest. The increase in atmospheric aerosols was shown to heat the atmosphere and generates a cyclonic circulation anomaly over eastern-central China. This circulation anomaly also leads to a reduction in the influx of dry and cold air over eastern-central China. These effects are responsible for the increased convergence of water vapor therein. All these changes favor the formation and maintenance of fog over this region. C1 [Niu, Feng; Li, Zhanqing; Li, Can; Lee, Kwon-Ho; Wang, Minyan] Univ Maryland, ESSIC, College Pk, MD 20742 USA. [Niu, Feng; Li, Zhanqing; Li, Can; Lee, Kwon-Ho; Wang, Minyan] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Li, Zhanqing] Nanjing Univ Informat Sci & Technol, Jiangsu, Peoples R China. [Li, Zhanqing] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China. [Li, Can] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Niu, F (reprint author), Univ Maryland, ESSIC, College Pk, MD 20742 USA. EM zli@atmos.umd.edu RI Li, Can/F-6867-2011; Li, Zhanqing/F-4424-2010; OI Li, Zhanqing/0000-0001-6737-382X; Lee, Kwon-Ho/0000-0002-0844-5245 FU MOST [2006CB403706]; NASA [NNX08AH71G]; DOE/ARM [DEFG0208ER64571-S01] FX This study was supported by MOST (2006CB403706), NASA (NNX08AH71G), and DOE/ARM (DEFG0208ER64571-S01). The authors are grateful to Maureen Cribb for the editorial work. The authors also acknowledge NCAR Computer and Information Systems Laboratory for computer time used in this research. NR 61 TC 33 Z9 38 U1 2 U2 33 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 6 PY 2010 VL 115 AR D00K20 DI 10.1029/2009JD013484 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 716RE UT WOS:000286990400001 ER PT J AU Hoover, S Nam, J Gorham, PW Grashorn, E Allison, P Barwick, SW Beatty, JJ Belov, K Besson, DZ Binns, WR Chen, C Chen, P Clem, JM Connolly, A Dowkontt, PF DuVernois, MA Field, RC Goldstein, D Vieregg, AG Hast, C Israel, MH Javaid, A Kowalski, J Learned, JG Liewer, KM Link, JT Lusczek, E Matsuno, S Mercurio, BC Miki, C Miocinovic, P Naudet, CJ Ng, J Nichol, RJ Palladino, K Reil, K Romero-Wolf, A Rosen, M Ruckman, L Saltzberg, D Seckel, D Varner, GS Walz, D Wu, F AF Hoover, S. Nam, J. Gorham, P. W. Grashorn, E. Allison, P. Barwick, S. W. Beatty, J. J. Belov, K. Besson, D. Z. Binns, W. R. Chen, C. Chen, P. Clem, J. M. Connolly, A. Dowkontt, P. F. DuVernois, M. A. Field, R. C. Goldstein, D. Vieregg, A. G. Hast, C. Israel, M. H. Javaid, A. Kowalski, J. Learned, J. G. Liewer, K. M. Link, J. T. Lusczek, E. Matsuno, S. Mercurio, B. C. Miki, C. Miocinovic, P. Naudet, C. J. Ng, J. Nichol, R. J. Palladino, K. Reil, K. Romero-Wolf, A. Rosen, M. Ruckman, L. Saltzberg, D. Seckel, D. Varner, G. S. Walz, D. Wu, F. TI Observation of Ultrahigh-Energy Cosmic Rays with the ANITA Balloon-Borne Radio Interferometer SO PHYSICAL REVIEW LETTERS LA English DT Article ID EXTENSIVE AIR SHOWERS; PULSES; EMISSION; SPECTRUM AB We report the observation of 16 cosmic ray events with a mean energy of 1: 5 x 10(19) eV via radio pulses originating from the interaction of the cosmic ray air shower with the Antarctic geomagnetic field, a process known as geosynchrotron emission. We present measurements in the 300-900 MHz range, which are the first self-triggered, first ultrawide band, first far-field, and the highest energy sample of cosmic ray events collected with the radio technique. Their properties are inconsistent with current ground-based geosynchrotron models. The emission is 100% polarized in the plane perpendicular to the projected geomagnetic field. Fourteen events are seen to have a phase inversion due to reflection of the radio beam off the ice surface, and two additional events are seen directly from above the horizon. Based on a likelihood analysis, we estimate angular pointing precision of order 2 degrees for the event arrival directions. C1 [Hoover, S.; Belov, K.; Vieregg, A. G.; Saltzberg, D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Nam, J.] Ewha Womans Univ, Dept Phys, Seoul, South Korea. [Gorham, P. W.; Allison, P.; DuVernois, M. A.; Kowalski, J.; Learned, J. G.; Link, J. T.; Matsuno, S.; Miki, C.; Miocinovic, P.; Romero-Wolf, A.; Rosen, M.; Ruckman, L.; Varner, G. S.] Univ Hawaii, Dept Phys & Astron, Manoa, HI 96822 USA. [Grashorn, E.; Beatty, J. J.; Mercurio, B. C.; Palladino, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Barwick, S. W.; Goldstein, D.; Wu, F.] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Binns, W. R.; Israel, M. H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Chen, C.; Chen, P.] Natl Taiwan Univ, Dept Phys, Grad Inst Astrophys, Taipei 10764, Taiwan. [Chen, C.; Chen, P.] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 10764, Taiwan. [Chen, P.; Field, R. C.; Hast, C.; Ng, J.; Reil, K.; Walz, D.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Clem, J. M.; Javaid, A.; Seckel, D.] Univ Delaware, Dept Phys, Newark, DE 19716 USA. [Connolly, A.; Nichol, R. J.] UCL, Dept Phys & Astron, London, England. [DuVernois, M. A.; Lusczek, E.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Liewer, K. M.; Naudet, C. J.] Jet Prop Lab, Pasadena, CA 91109 USA. RP Hoover, S (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RI Nichol, Ryan/C-1645-2008; Vieregg, Abigail/D-2287-2012; Belov, Konstantin/D-2520-2013; Connolly, Amy/J-3958-2013; Beatty, James/D-9310-2011; OI Beatty, James/0000-0003-0481-4952; Lusczek, Elizabeth/0000-0003-4680-965X NR 29 TC 48 Z9 48 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 5 PY 2010 VL 105 IS 15 AR 151101 DI 10.1103/PhysRevLett.105.151101 PG 5 WC Physics, Multidisciplinary SC Physics GA 658TH UT WOS:000282511800001 PM 21230887 ER PT J AU Painter, TH Deems, JS Belnap, J Hamlet, AF Landry, CC Udall, B AF Painter, Thomas H. Deems, Jeffrey S. Belnap, Jayne Hamlet, Alan F. Landry, Christopher C. Udall, Bradley TI Response of Colorado River runoff to dust radiative forcing in snow SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE aerosols; land use change; reflectivity; snow melt ID WESTERN UNITED-STATES; BIOLOGICAL SOIL CRUSTS; WATER AVAILABILITY; CARBON-DIOXIDE; CLIMATE-CHANGE; CO2; IMPACTS; TRENDS; MODEL; DEPOSITION AB The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river's historical mean. Climate models project runoff losses of 7-20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river's runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Here we use the Variable Infiltration Capacity model with postdisturbance and pre-disturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916-2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or similar to 5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change. C1 [Painter, Thomas H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Painter, Thomas H.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Deems, Jeffrey S.] Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. [Deems, Jeffrey S.; Udall, Bradley] Natl Ocean & Atmospher Adm Western Water Assessme, Boulder, CO 80309 USA. [Belnap, Jayne] US Geol Survey, SW Biol Ctr, Moab, UT 84532 USA. [Hamlet, Alan F.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [Landry, Christopher C.] Ctr Snow & Avalanche Studies, Silverton, CO 81433 USA. RP Painter, TH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Thomas.Painter@jpl.nasa.gov RI Painter, Thomas/B-7806-2016; Deems, Jeffrey/E-6484-2016 OI Deems, Jeffrey/0000-0002-3265-8670 FU National Science Foundation [ATM0432327]; NASA [NNG04GC52A] FX We thank J. Sparks, T. Belote, S. Munson, and D. S. Schimel for comments on the manuscript. We express special thanks to Jeff Dozier for a tough, thorough, and constructive exchange on the full range of the paper. T. H. P. was funded by National Science Foundation Grant ATM0432327 and NASA Cooperative Agreement NNG04GC52A. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 55 TC 112 Z9 113 U1 3 U2 58 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 5 PY 2010 VL 107 IS 40 BP 17125 EP 17130 DI 10.1073/pnas.0913139107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 658TJ UT WOS:000282512000016 PM 20855581 ER PT J AU Richards, PG Bilitza, D Voglozin, D AF Richards, P. G. Bilitza, D. Voglozin, D. TI Ion density calculator (IDC): A new efficient model of ionospheric ion densities SO RADIO SCIENCE LA English DT Article ID ATMOSPHERE EXPLORER-C; MASS SPECTROMETER; EMPIRICAL-MODEL; MIDLATITUDES; TEMPERATURE; AIRGLOW; STORMS; FLUX AB We present a new computationally efficient and accurate model of ion concentrations in the bottomside ionosphere based on the photochemistry. There has long been a need for efficient and accurate specification of ionospheric molecular ion concentrations. Incoherent scatter radars need to specify the relative ion concentrations in order to accurately determine plasma temperatures. Full physical ionospheric models are available but too costly and cumbersome for many applications. The international reference ionosphere (IRI) model is an efficient empirical model that accurately specifies the electron density but the molecular ion concentrations are based on limited data sets. Our new ion density calculator (IDC) model uses chemical equilibrium to determine all ion concentrations except the O+ density, which cannot be derived from chemical equilibrium above similar to 180 km due to the increasing importance of diffusion. The IDC model overcomes this problem by using an iterative technique to solve for the O+ density given the electron density that is provided by the radar or the IRI model and the fact that the total ion concentration must sum to the electron density. This quasi-chemical model produces very good agreement with satellite measured ion densities and significantly improves electron and ion temperatures from incoherent scatter radars. It also produces good agreement with the Field Line Interhemispheric Plasma (FLIP) physical ionosphere model, which solves the continuity, momentum, and thermal equations. Comparisons with the IRI model point out the shortcomings of the most recent version, IRI-2007 in representing molecular ion densities. C1 [Richards, P. G.; Voglozin, D.] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Bilitza, D.] George Mason Univ, Dept Computat & Data Sci, Fairfax, VA 22030 USA. [Bilitza, D.] NASA, Goddard Space Flight Ctr, Heliospher Phys Lab, Greenbelt, MD 20771 USA. RP Richards, PG (reprint author), George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. EM prichar1@gmu.edu FU NASA [NNX07AN03G, NNX08AF43G] FX This research was supported by NASA grants NNX07AN03G and NNX08AF43G to George Mason University. NR 25 TC 20 Z9 21 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 EI 1944-799X J9 RADIO SCI JI Radio Sci. PD OCT 5 PY 2010 VL 45 AR RS5007 DI 10.1029/2009RS004332 PG 11 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA 716RP UT WOS:000286991500002 ER PT J AU Loeffler, MJ Hudson, RL AF Loeffler, Mark J. Hudson, Reggie L. TI Thermally-induced chemistry and the Jovian icy satellites: A laboratory study of the formation of sulfur oxyanions SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID INFRARED MAPPING SPECTROMETER; WATER-ICE; GALILEAN SATELLITES; HYDROGEN-PEROXIDE; EQUILIBRIUM-CONSTANT; EUROPA; ION; GANYMEDE; DIOXIDE; SURFACE AB Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Here we present new results on thermally-induced reactions at 50-100 K in solid H(2)O-SO(2) mixtures, reactions that take place without the need for a high-radiation environment. We find that H(2)O and SO(2) react to produce sulfur oxyanions, such as bisulfite, that as much as 30% of the SO(2) can be consumed through this reaction, and that the products remain in the ice when the temperature is lowered, indicating that these reactions are irreversible. Our results suggest that thermally-induced reactions can alter the chemistry at temperatures relevant to the icy satellites in the Jovian system. Citation: Loeffler, M. J., and R. L. Hudson (2010), Thermally-induced chemistry and the Jovian icy satellites: A laboratory study of the formation of sulfur oxyanions, Geophys. Res. Lett., 37, L19201, doi: 10.1029/2010GL044553. C1 [Loeffler, Mark J.; Hudson, Reggie L.] NASA, Astrochem Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hudson, Reggie L.] Eckerd Coll, Dept Chem, St Petersburg, FL 33733 USA. RP Loeffler, MJ (reprint author), NASA, Astrochem Branch, Goddard Space Flight Ctr, Code 691, Greenbelt, MD 20771 USA. EM mark.loeffler@nasa.gov RI Loeffler, Mark/C-9477-2012; Hudson, Reggie/E-2335-2012 FU NASA; NASA Astrobiology Institute through the Goddard Center for Astrobiology FX The support of NASA's Planetary Geology and Geophysics program is gratefully acknowledged. RLH also acknowledges support from the NASA Astrobiology Institute through the Goddard Center for Astrobiology. Marla Moore of NASA is thanked for her assistance, particularly with the early part of this work. NR 37 TC 8 Z9 8 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 2 PY 2010 VL 37 AR L19201 DI 10.1029/2010GL044553 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 657SQ UT WOS:000282433000007 ER PT J AU Jelinek, K Nemecek, Z Safrankova, J Shue, JH Suvorova, AV Sibeck, DG AF Jelinek, K. Nemecek, Z. Safrankova, J. Shue, J. -H. Suvorova, A. V. Sibeck, D. G. TI Thin magnetosheath as a consequence of the magnetopause deformation: THEMIS observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EARTHS BOW SHOCK; SOLAR-WIND CONDITIONS; MAGNETIC-FIELD; STANDOFF DISTANCE; SPACECRAFT OBSERVATIONS; PROPAGATION DELAY; MOTION; SHAPE; DEPENDENCE; MODEL AB This paper presents a simultaneous observation of the bow shock and magnetopause by THEMIS probes that allows determination of the actual magnetosheath thickness at the subsolar point. Moreover, Geotail located at the dusk dayside magnetosheath registered a brief excursion to the magnetosphere in this time. The spacecraft configuration reveals a significant deformation of the magnetopause surface that locally decreases its curvature radius. The highly curved magnetopause results in the decrease of the magnetosheath thickness to about half of its standard value in a particular observation point. The observed phenomenon is attributed to a rotation of the interplanetary magnetic field (IMF). Although it is generally expected that the bow shock and magnetopause move in accord, being driven mainly by the solar wind dynamic pressure, we suggest that the local and transient thinning of the magnetosheath can result from different responses of its boundaries to a sudden change of the pressure and/or IMF orientation. C1 [Jelinek, K.; Nemecek, Z.; Safrankova, J.] Charles Univ Prague, Fac Math & Phys, CR-18000 Prague 8, Czech Republic. [Shue, J. -H.; Suvorova, A. V.] Natl Cent Univ, Inst Space Sci, Jhongli, Taiwan. [Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Jelinek, K (reprint author), Charles Univ Prague, Fac Math & Phys, V Holesovickach 2, CR-18000 Prague 8, Czech Republic. RI Sibeck, David/D-4424-2012; Suvorova, Alla/J-4174-2012 OI Suvorova, Alla/0000-0002-5146-0846 FU NASA [NAS5-02099]; German Ministry for Economy and Technology; German Center for Aviation and Space (DLR) [50 OC 0302]; Czech Grant Agency [205/09/0170, 205/09/0112]; Ministry of Education of the Czech Republic [MSM 0021620860]; NCU [NSC 98-2811M-008-043]; Charles University Grant Agency [GAUK 102508] FX We acknowledge the Geotail team for the magnetic field and plasma data and NASA contract NAS5-02099 and V. Angelopoulos for use of data from the THEMIS mission. Specifically, C. W. Carlson and J. P. McFadden for use of ESA data and K. H. Glassmeier, U. Auster and W. Baumjohann for the use of FGM data provided under the lead of the Technical University of Braunschweig and with financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302. The present work was partly supported by the Czech Grant Agency under Contracts 205/09/0170 and 205/09/0112, and partly by the Research Plan MSM 0021620860 that is financed by the Ministry of Education of the Czech Republic. The work at NCU was supported by the grant NSC 98-2811M- 008-043. K. Jel nek thanks the Charles University Grant Agency (GAUK 102508) for support. NR 43 TC 14 Z9 14 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 2 PY 2010 VL 115 AR A10203 DI 10.1029/2010JA015345 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 658TX UT WOS:000282513400007 ER PT J AU Qian, LY Solomon, SC Mlynczak, MG AF Qian, Liying Solomon, Stanley C. Mlynczak, Martin G. TI Model simulation of thermospheric response to recurrent geomagnetic forcing SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID GENERAL-CIRCULATION MODEL; LATENT-HEAT RELEASE; SABER EXPERIMENT; AURORAL MODEL; SPACED DATA; TIDES AB We assess model capability in simulating thermospheric response to recurrent geomagnetic forcing driven by modulations in the solar wind speed and the interplanetary magnetic field. Neutral density and nitric oxide (NO) cooling rates are simulated for the declining phase of solar cycle 23. The simulated results are compared to neutral density derived from satellite drag and to NO cooling measured by the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) sounding of the atmosphere using broadband emission radiometry (SABER) instrument. Model-data comparisons show good agreement between the model and the measurements for multiday oscillations, as well as good agreement for longer-term variations. The simulations demonstrate that the multiday oscillation of density is globally distributed in the upper thermosphere but restricted to high latitudes in the lower thermosphere. The density variation in the upper thermosphere exhibits less latitude dependence than the temperature variation because of the effects of composition changes. Model simulations also show that NO density and temperature play primary roles in the multiday oscillation of NO cooling rates. C1 [Qian, Liying; Solomon, Stanley C.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80301 USA. [Mlynczak, Martin G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Qian, LY (reprint author), Natl Ctr Atmospher Res, High Altitude Observ, Ctr Green Campus,3080 Ctr Green Dr, Boulder, CO 80301 USA. EM lqian@ucar.edu RI Solomon, Stanley/J-4847-2012; Mlynczak, Martin/K-3396-2012; Qian, Liying/D-9236-2013 OI Solomon, Stanley/0000-0002-5291-3034; Qian, Liying/0000-0003-2430-1388 FU NASA [NNH05AB55I, NNX07AC55G, NNX07AC61G]; AFOSR [FA9550-08-C-0046]; National Science Foundation FX The authors thank Bruce R. Bowman (AFSPC) for providing satellite drag data, and Thomas N. Woods and the SEE team for providing SEE data. This research was supported by NASA grants NNH05AB55I, NNX07AC55G, NNX07AC61G, and AFOSR grant FA9550-08-C-0046 to the National Center for Atmospheric Research (NCAR). NCAR is supported by the National Science Foundation. NR 31 TC 24 Z9 24 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 2 PY 2010 VL 115 AR A10301 DI 10.1029/2010JA015309 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 658TX UT WOS:000282513400006 ER PT J AU Ham, YG Kang, IS AF Ham, Yoo-Geun Kang, In-Sik TI Growing-error correction of ensemble Kalman filter using empirical singular vectors SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE Ensemble Kalman Filter; Empirical Singular Vector; unstable modes ID SEA-SURFACE TEMPERATURE; DATA ASSIMILATION; MODEL; 4D-VAR; SYSTEM; PREDICTABILITY; SIMULATIONS; ATMOSPHERE; ANOMALIES; SMOOTHER AB In this study, a new Ensemble Kalman Filter (EnKF) algorithm called EnKF with growing-error correction (EnKF-GEC) is developed for minimizing the growing component of the forecast error; for this purpose, prospective observations are assimilated using empirical singular vectors (ESVs). Unlike the Ensemble Kalman Smoother (EnKS) or four-dimensional EnKF (4DEnKF), the EnKF-GEC is designed to reduce the analysis error at the last analysis time (errors of initial condition for prediction). By performing assimilation experiments using the CZ-SPEEDY coupled model within a perfect model framework, it is shown that the analysis errors obtained using the EnKF-GEC are significantly reduced as compared to those obtained using the conventional EnKF until the last analysis time as well as during the middle of analysis time. This indicates that the new algorithm is beneficial for prediction. Seasonal prediction results show that the prediction skill when initial conditions are generated by the EnKF-GEC is superior to when initial conditions are generated by the conventional EnKF or EnKS, particularly during the early forecast lead month. For example, correlation skill improvement with 16 ensemble members is about 0.1 for a 3-month lead forecast. In addition, it is shown that the new EnKF algorithm is more effective for unpredictable regions, where the value of the unstable singular vector is robust. Copyright (C) 2010 Royal Meteorological Society C1 [Kang, In-Sik] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea. [Ham, Yoo-Geun] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Ham, Yoo-Geun] GSFC Global Modeling & Assimilat Off, Greenbelt, MD USA. RP Kang, IS (reprint author), Seoul Natl Univ, Sch Earth & Environm Sci, 501-420 SNU Sillim Dong, Seoul 151742, South Korea. EM kang@climate.snu.ac.kr RI 안, 민섭/D-9972-2015 FU Korea Meteorological Administration Research and Development Program [CATER_2006-4206]; Brain Korea 21 FX I.-S. Kang was supported by the Korea Meteorological Administration Research and Development Program under Grant CATER_2006-4206 and the second stage of the Brain Korea 21. NR 32 TC 4 Z9 4 U1 0 U2 0 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0035-9009 J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD OCT PY 2010 VL 136 IS 653 BP 2051 EP 2060 DI 10.1002/qj.711 PN B PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 694QO UT WOS:000285312900010 ER PT J AU Kellas, S Jackson, KE AF Kellas, Sotiris Jackson, Karen E. TI Deployable System for Crash-Load Attenuation SO JOURNAL OF THE AMERICAN HELICOPTER SOCIETY LA English DT Article; Proceedings Paper CT 63rd Annual Forum on American-Helicopter-Society CY MAY 01-04, 2007 CL Virginia Beach, VA SP Amer Helicopter Soc ID ABSORBING FUSELAGE SECTION; SIMULATION AB An externally deployable honeycomb structure is investigated with respect to crash energy management for light aircraft and rotorcraft applications. The new concept utilizes an expandable honeycomb-like structure to absorb impact energy by crushing. Distinguished by flexible hinges between cell-wall junctions that enable effortless deployment, the new energy absorber offers most of the desirable features of an external airbag system without the limitations of geometric shape, poor shear stability, system complexity, and timing sensitivity. Like conventional honeycomb, once expanded, the energy absorber is transformed into a crush efficient and stable cellular structure. Other advantages afforded by the flexible hinge feature include a variety of deployment options such as linear, radial, and/or a hybrid approach. Radial deployment is utilized when omnidirectional cushioning is required. Linear deployment offers better efficiency, which is preferred when the impact orientation is known in advance. Several energy absorbers utilizing different deployment modes could also be combined to optimize overall performance and/or improve system reliability as outlined in the paper. Results from a series of component and full-scale demonstration tests are presented as well as typical deployment techniques and mechanisms. LS-DYNA analytical simulations of selected tests are also presented. C1 [Kellas, Sotiris; Jackson, Karen E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Kellas, S (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM sotiris.kellas@nasa.gov NR 32 TC 5 Z9 5 U1 0 U2 5 PU AMER HELICOPTER SOC INC PI ALEXANDRIA PA 217 N WASHINGTON ST, ALEXANDRIA, VA 22314 USA SN 0002-8711 J9 J AM HELICOPTER SOC JI J. Am. Helicopter Soc. PD OCT PY 2010 VL 55 IS 4 AR 042001 DI 10.4050/JAHS.55.042001 PG 14 WC Engineering, Aerospace SC Engineering GA 745TJ UT WOS:000289189100001 ER PT J AU Kellas, S Jackson, KE AF Kellas, Sotiris Jackson, Karen E. TI Multiterrain Vertical Drop Tests of a Composite Fuselage Section SO JOURNAL OF THE AMERICAN HELICOPTER SOCIETY LA English DT Article; Proceedings Paper CT 64th Annual forum on American-Helicopter-Society CY APR 29-MAY 01, 2008 CL Montreal, CANADA SP Amer Helicopter Soc AB A 5-ft-diameter composite fuselage section was retrofitted with four identical blocks of deployable honeycomb energy absorber and crash tested on two different surfaces: soft soil and water. Water drop tests were performed into a 15-ft-diameter pool of water that was approximately 42 inches deep. For the soft soil impact, a 15-ft square container filled with fine-sifted, unpacked sand was located beneath the drop tower. Both drop tests were vertical with a nominally Hat attitude with respect to the impact surface. The measured impact velocities were 37.4 and 24.7 ft/s fir soft soil and water, respectively. A fuselage section without energy absorbers was also drop tested onto water to provide a datum for comparison with the test, which included energy absorbers. Results showed that the deployable honeycomb concept is an effective dynamic load attenuator for both types of impact surfaces. While tests were limited to vertical impact velocities, the implications and design challenges of utilizing external energy absorbers during combined forward and vertical impact velocities are discussed. C1 [Kellas, Sotiris; Jackson, Karen E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Kellas, S (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM sotiris.kellas@nasa.gov NR 12 TC 0 Z9 0 U1 1 U2 1 PU AMER HELICOPTER SOC INC PI ALEXANDRIA PA 217 N WASHINGTON ST, ALEXANDRIA, VA 22314 USA SN 0002-8711 J9 J AM HELICOPTER SOC JI J. Am. Helicopter Soc. PD OCT PY 2010 VL 55 IS 4 AR 042002 DI 10.4050/JAHS.55.042002 PG 7 WC Engineering, Aerospace SC Engineering GA 745TJ UT WOS:000289189100002 ER PT J AU Shen, JW Chopra, I Johnson, W AF Shen, Jinwei Chopra, Inderjit Johnson, Wayne TI Performance of Swashplateless Helicopter Rotor with Trailing-Edge Flaps for Primary Flight Control SO JOURNAL OF THE AMERICAN HELICOPTER SOCIETY LA English DT Article ID DESIGN AB A comprehensive analysis is developed to evaluate the rotor performance of plain trailing-edge flaps (TEF) as rotor primary control system. A parametric study is conducted to investigate the effects of various rotor and TEF design variables on rotor performance. The rotor studied is a two-bladed teetering rotor of an ultralight helicopter. The analytical model includes a teetering rotor formulation and a coupled trim procedure for determining TEF inputs. Computational fluid dynamics generated airfoil tables are used to obtain the TEF aerodynamic loads. A correlation study for the basic conventional rotor with primary pitch feather controls was performed using calculations from another comprehensive analysis. The results show good agreement for blade natural frequencies, rotor collective and cyclic pitch controls, and shaft tilt angles. Calculations of required TEF deflections and rotor power are carried out at different advance ratios for the swashplateless configuration. The results show the swashplateless configuration achieves better performance than the conventional rotor in forward flight, because of the reduction of parasite drag resulting from the elimination of the swashplate mechanical system. The optimal selection of blade pitch index angle, flap location, length, and chord ratio is aimed at reducing TEF deflections and rotor power. C1 [Shen, Jinwei] Natl Inst Aerosp, Hampton, VA USA. [Chopra, Inderjit] Univ Maryland, College Pk, MD 20742 USA. [Johnson, Wayne] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Shen, JW (reprint author), Natl Inst Aerosp, Hampton, VA USA. EM shenjw@nianet.org FU NASA/Ames [NGT252273] FX This work was supported by the NASA/Ames under grant NGT252273 with Dr. Chee Tung as technical monitor. We also appreciate useful additional comments from Dr. Matt Floros (ARL/VTD) and the assistance from Mr. Arun Jose (University of Maryland) on using 2D OVERTURNS. NR 21 TC 3 Z9 4 U1 0 U2 4 PU AMER HELICOPTER SOC INC PI ALEXANDRIA PA 217 N WASHINGTON ST, ALEXANDRIA, VA 22314 USA SN 0002-8711 J9 J AM HELICOPTER SOC JI J. Am. Helicopter Soc. PD OCT PY 2010 VL 55 IS 4 AR 042005 DI 10.4050/JAHS.55.042005 PG 9 WC Engineering, Aerospace SC Engineering GA 745TJ UT WOS:000289189100005 ER PT J AU Buccello-Stout, RR Cromwell, RL Bloomberg, J Weaver, GD AF Buccello-Stout, R. R. Cromwell, R. L. Bloomberg, J. Weaver, G. D. TI FUNCTIONAL MOBILITY PERFORMANCE AND BALANCE CONFIDENCE IN OLDER ADULTS AFTER SENSORIMOTOR ADAPTATION TRAINING SO GERONTOLOGIST LA English DT Meeting Abstract C1 [Buccello-Stout, R. R.; Cromwell, R. L.] Univ Space Res Assoc, Houston, TX USA. [Bloomberg, J.] NASA, Houston, TX USA. [Weaver, G. D.] Univ Texas Med Branch, Galveston, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0016-9013 J9 GERONTOLOGIST JI Gerontologist PD OCT PY 2010 VL 50 SU 1 BP 336 EP 337 PG 2 WC Gerontology SC Geriatrics & Gerontology GA 703UL UT WOS:000286006702728 ER PT J AU Llombart, N Dengler, RJ Cooper, KB AF Llombart, Nuria Dengler, Robert J. Cooper, Ken B. TI Terahertz Antenna System for a Near-Video-Rate Radar Imager SO IEEE ANTENNAS AND PROPAGATION MAGAZINE LA English DT Article DE Submillimeter wave antennas; multireflector antennas; scanning antennas; submillimeter wave imaging; radar imaging ID MILLIMETER-WAVE; GHZ AB In this contribution, we present simulations and measurements of a reflector system that can rapidly scan a terahertz beam for a high-resolution standoff-imaging application, without compromising the beam quality. The antenna system utilizes a Gregorian confocal-reflector geometry, with a small mechanical rotating mirror. The system has been successfully fabricated and tested, with THz imagery of targets at a 25 m standoff range being obtained In five seconds, for the current configuration. We also describe how frame rates exceeding 2 Hz can be achieved using a heterodyne array of just a few elements, with or without a multiplexing technique. C1 [Llombart, Nuria] Univ Complutense Madrid, Dept Opt, E-28040 Madrid, Spain. [Dengler, Robert J.; Cooper, Ken B.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Llombart, N (reprint author), Univ Complutense Madrid, Dept Opt, E-28040 Madrid, Spain. EM nuria.llombart@opt.ucm.es; no6b@no6b.jpl.nasa.gov; ken.b.cooper@jpl.nasa.gov FU National Aeronautics and Space Administration; Department of Defense (DoD); Universidad Complutense de Madrid under Spanish Ministry of Science and Innovation FX Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We gratefully acknowledge the support of the Naval Explosive Ordnance Disposal Technology Division with funding provided by the Department of Defense (DoD) Physical Security Equipment Action Group (PSEAG). N. Llombart is currently contracted by the Universidad Complutense de Madrid under the "Ramon y Cajal" research program of the Spanish Ministry of Science and Innovation. NR 18 TC 12 Z9 12 U1 3 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1045-9243 J9 IEEE ANTENN PROPAG M JI IEEE Antennas Propag. Mag. PD OCT PY 2010 VL 52 IS 5 BP 251 EP 259 DI 10.1109/MAP.2010.5687510 PG 9 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 708VL UT WOS:000286392300015 ER PT J AU Ramesham, R AF Ramesham, Rajeshuni TI Reliability, Packaging, Testing, and Characterization of MEMS and MOEMS II SO JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS LA English DT Editorial Material C1 CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91125 USA. RP Ramesham, R (reprint author), CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91125 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1932-5150 J9 J MICRO-NANOLITH MEM JI J. Micro-Nanolithogr. MEMS MOEMS PD OCT-DEC PY 2010 VL 9 IS 4 AR 041101 DI 10.1117/1.3533418 PG 1 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics SC Engineering; Science & Technology - Other Topics; Materials Science; Optics GA 711OR UT WOS:000286601800002 ER PT J AU Sandford, SA Milam, SN Nuevo, M Jenniskens, P Shaddad, MH AF Sandford, Scott A. Milam, Stefanie N. Nuevo, Michel Jenniskens, Peter Shaddad, Muawia H. TI The mid-infrared transmission spectra of multiple stones from the Almahata Sitta meteorite SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID ANTARCTIC UREILITES; MU-M; ORIGIN; MINERALOGY; IMPACT AB On October 7, 2008, the asteroid 2008 TC(3) entered Earth's atmosphere, exploded at 37 km altitude, and created a strewn field of stones, the Almahata Sitta meteorite, in Sudan. A preliminary analysis of one of these stones (#7) showed it to be a unique polymict ureilite (Jenniskens et al. 2009). Here we report 39 mid-infrared (mid-IR) (4000-450 cm-1; 2.5-22.2 mu m) transmission spectra taken from 26 different stones collected from the strewn field. The ureilite spectra show a number of absorption bands including a complex feature centered near 1000 cm-1 (10 mu m) due to Si-O stretching vibrations. The profiles of the silicate features fall along a mixing line with endmembers represented by Mg-rich olivines and pyroxenes, and no evidence is seen for the presence of phyllosilicates. The relative abundances of olivine and pyroxene show substantial variation from sample to sample and sometimes differ between multiple samples taken from the same stone. Analysis of a mass normalized coaddition of all our ureilite spectra yields an olivine-to-pyroxene ratio of 74:26, a value that falls in the middle of the range inferred from the infrared spectra of other ureilites. Both the predominance of olivine and the variable olivine-to-pyroxene ratio are consistent with the known composition and heterogeneity of other ureilites. Variations in the colors of the samples and the intensities of the silicate feature relative to the mass of the samples indicate a significant contribution from additional materials having no strong absorption bands, most likely graphitized carbon, diamonds, and/or metals. C1 [Sandford, Scott A.; Milam, Stefanie N.; Nuevo, Michel] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Milam, Stefanie N.; Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan. RP Sandford, SA (reprint author), NASA, Ames Res Ctr, MS 245-6, Moffett Field, CA 94035 USA. EM Scott.A.Sandford@nasa.gov RI Milam, Stefanie/D-1092-2012 OI Milam, Stefanie/0000-0001-7694-4129 FU NASA [811073.02.07.02.54] FX We thank the many students and staff of the University of Khartoum for their support in helping recover the meteorites. We also thank Dr. Michael Zolensky for providing the images of Almahata Sitta #7. The authors are grateful for helpful comments from H. Downes, M. Gaffey, and an anonymous reviewer that resulted in improvements to this manuscript. The authors are also grateful for support from the NASA Origins of Solar Systems Program (grant 811073.02.07.02.54) and the NASA Planetary Astronomy Program. The pigeonite standards used in this paper were kindly provided by the American Museum of Natural History, Smithsonian Institution, Department of Mineral Sciences. NR 33 TC 5 Z9 5 U1 1 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1821 EP 1835 DI 10.1111/j.1945-5100.2010.001096.x PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700020 ER PT J AU Prezeau, G Reinecke, M AF Prezeau, G. Reinecke, M. TI ALGORITHM FOR THE EVALUATION OF REDUCED WIGNER MATRICES SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmic background radiation; cosmology: observations; instrumentation: adaptive optics; methods: data analysis; techniques: image processing AB Algorithms for the fast and exact computation of Wigner matrices are described and their application to a fast and massively parallel 4 pi convolution code between a beam and a sky is also presented. C1 [Prezeau, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Prezeau, G.] CALTECH, Pasadena, CA 91125 USA. [Reinecke, M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. RP Prezeau, G (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU NASA Science Mission Directorate; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; German Aeronautics Center and Space Agency [50-OP-0901]; Federal Ministry of Economics and Technology FX G.P. thanks Maura Sandri for the GRASP 8 beams used in these simulations and Charles Lawrence for useful comments on this manuscript. We gratefully acknowledge support by the NASA Science Mission Directorate via the US Planck Project. The research described in this paper was partially carried out at the Jet propulsion Laboratory, California Institute of Technology, under a contract with NASA. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231. M. R. is supported by the German Aeronautics Center and Space Agency (DLR), under program 50-OP-0901, funded by the Federal Ministry of Economics and Technology. NR 7 TC 12 Z9 12 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD OCT PY 2010 VL 190 IS 2 BP 267 EP 274 DI 10.1088/0067-0049/190/2/267 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 675QM UT WOS:000283845500004 ER PT J AU Gokcen, T Chen, YK Skokova, KA Milos, FS AF Goekcen, Tahir Chen, Yih-Kanq Skokova, Kristina A. Milos, Frank S. TI Computational Analysis of Arc-Jet Stagnation Tests Including Ablation and Shape Change SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT AIAA 41st Thermophysics Conference CY JUN 22-25, 2009 CL San Antonio, TX ID THERMAL RESPONSE; PROGRAM AB Coupled fluid-material response analyses of arc-jet stagnation tests conducted in a NASA Ames Research Center arc-jet facility are considered. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles including shape change, the material response and fluid analyses are coupled to take into account changes in surface heat flux and pressure distributions with shape. The ablating material used in these arc-jet tests was a phenolic impregnated carbon ablator. Computational predictions of surface recession, shape change, and material response are compared with the experimental measurements. C1 [Chen, Yih-Kanq; Milos, Frank S.] NASA, Ames Res Ctr, Thermal Protect Mat & Syst Branch, Moffett Field, CA 94035 USA. NR 21 TC 9 Z9 9 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD OCT-DEC PY 2010 VL 24 IS 4 BP 694 EP 707 DI 10.2514/1.46199 PG 14 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 673XE UT WOS:000283696700003 ER PT J AU Titov, EV Levin, DA Picetti, DJ Anderson, BP AF Titov, E. V. Levin, D. A. Picetti, Donald J. Anderson, Brian P. TI Thermal Protection System Crack Growth Simulation Using Advanced Grid Morphing Techniques SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT AIAA 41st Thermophysics Conference CY JUN 22-25, 2009 CL San Antonio, TX SP AIAA ID REINFORCED CARBON-CARBON; OXIDATION; GENERATION; GRAPHITE AB An extension of previous [Titov, E., Zhong, J., Levin, D., and Picetti, D., "Simulation of RCC Crack Growth Due to Carbon Oxidation in High-Temperature Gas Environments," Journal of Thermophysics and Heat Transfer, Vol. 23, No. 3, July-Sept. 2009, pp. 489-501.] modeling of crack damage growth in reinforced carbon carbon specimens is presented in this work. The specimens were studied in an arcjet and represented a portion of,the space shuttle wing [Lewis, R., "Quick Look Report," Atmospheric Reentry Materials and Structures, 2004.] and a high-velocity meteoroid impact [Curry, D. M., Pham, V. T., Norman, I., and Chao, D. C., "Oxidation of Reinforced Carbon-Carbon Subjected to Hypervelocity Impact," NASA TP 2000-209760, March 2000.]. The test geometry and flow conditions rendered the flow regime as transitional to continuum; therefore, a Navier-Stokes-based gas-dynamic approach with the temperature jump and velocity slip correction to the boundary conditions was used. The modeled mechanism for wall material loss was atomic oxygen reaction with the bare, exposed carbon surface. The purpose of this work is to improve the predictive modeling of crack growth damage assessment by developing procedures that use coupled, advanced topology-based surface and grid-meshing tools. A recessing three-dimensional surface morphing procedure was developed and tested by comparison with arcjet experimental results. A multiblock structured adaptive meshing was used to model the computational domain changes due to the wall recession. This approach made it possible to model full three-dimensional crack growth scenarios as well as to include the presence of realistic reinforced carbon carbon material features such as delamination, both of which affect damage growth because they enable higher atomic oxygen penetration. Comparison with the arcjet data show that the inclusion of these two factors further improves the comparison between modeling and data. The predicted channel growth and shape change were found to agree with arcjet observations, and local gas flowfield results were found to affect the oxidation rate in a manner that cannot be predicted by previous mass loss correlations. The method holds promise for future modeling of materials gas-dynamic interactions for hypersonic flight. C1 [Titov, E. V.; Levin, D. A.] Penn State Univ, Dept Aerosp Engn, University Pk, PA 16802 USA. [Picetti, Donald J.] Boeing Co, Huntington Beach, CA 92647 USA. [Anderson, Brian P.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Titov, EV (reprint author), Penn State Univ, Dept Aerosp Engn, University Pk, PA 16802 USA. NR 33 TC 1 Z9 1 U1 1 U2 6 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD OCT-DEC PY 2010 VL 24 IS 4 BP 708 EP 720 DI 10.2514/1.48046 PG 13 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 673XE UT WOS:000283696700004 ER PT J AU Bragg-Sitton, SM Godfroy, TJ Webster, K AF Bragg-Sitton, Shannon M. Godfroy, Thomas J. Webster, Kenny TI Improving the fidelity of electrically heated nuclear systems testing using simulated neutronic feedback SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC ID GAS-COOLED REACTOR; DEVELOPMENT PROGRESS; TEST FACILITIES; PROPULSION; DESIGN; SUPPORT; MODEL; ORNL AB Nonnuclear test platforms and methodologies can be employed to reduce the overall cost, risk and complexity of testing nuclear systems while allowing one to evaluate the operation of an integrated nuclear system within a reasonable timeframe, providing valuable input to the overall system design. In a nonnuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard electric test techniques allow one to fully assess thermal, heat transfer, and stress related attributes of a given system, but these approaches fail to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and testing with nuclear fuel elements installed. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. This paper summarizes the results of initial system dynamic response testing for two electrically heated reactor concepts: a heat pipe-cooled reactor simulator with integrated heat exchanger and a gas-cooled reactor simulator with integrated Brayton power conversion system. Initial applications apply a simplified reactor kinetics model with either a single or an averaged measured state point. Preliminary results demonstrate the applicability of the dynamic test methodology to any reactor type, elucidating the variation in system response characteristics in different reactor concepts. These results suggest a need to further enhance the dynamic test approach by incorporating a more accurate model of the reactor dynamics and improved hardware instrumentation for better state estimation in application of the simulated response control loop. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bragg-Sitton, Shannon M.] Texas A&M Univ, Dept Nucl Engn, Zachry Engn Ctr 129, College Stn, TX 77843 USA. [Godfroy, Thomas J.; Webster, Kenny] NASA, George C Marshall Space Flight Ctr, Technol Branch, ER24, Huntsville, AL 35812 USA. RP Bragg-Sitton, SM (reprint author), Texas A&M Univ, Dept Nucl Engn, Zachry Engn Ctr 129, College Stn, TX 77843 USA. EM sitton@tamu.edu NR 34 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT PY 2010 VL 240 IS 10 BP 2745 EP 2754 DI 10.1016/j.nucengdes.2010.04.036 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 678MD UT WOS:000284079000044 ER PT J AU Lee, BY Kim, T Kim, YY AF Lee, Bang Yeon Kim, Taemin Kim, Yun Yong TI Fluorescence Characteristic Analysis for Discriminating Fibers in Cementitious Composites SO JOURNAL OF ADVANCED CONCRETE TECHNOLOGY LA English DT Article ID IMAGE-ANALYSIS; REINFORCED THERMOPLASTICS; MULTIPLE CRACKING; PERFORMANCE; ORIENTATION; DISPERSION; BEHAVIOR; DESIGN AB This paper investigated the fluorescence properties of Polyvinyl Alcohol (PVA) fibers, Polyethylene Terephthalate (PET) fibers, Polyethylene (PE) fibers, and a cement-based matrix by using a spectrofluorometer. Optimal excitation and emission filters were also proposed to discriminate each synthetic fiber in the hybrid Engineered Cementitious Composite (ECC) by a multispectral fluorescence-imaging model and a Linear Discriminant Analysis (LDA). The experimental test results showed that the PVA fiber, PET fiber, and PE fiber used in the hybrid ECC had a unique fluorescence characteristic with a peak. On the other hand, the cement-based matrix showed a little fluorescence intensity. The optimal excitation and emission filters of a multispectral imaging system for detecting fibers in the hybrid ECC are presented here as continuous forms. The selective optimum excitation and emission wavelengths that showed maximum relative transmission are 360-389 nm, 400-445 nm, 360-390 nm, and 360-389 nm for the PVA-PET, PVA-PE, PET-PE, and PVA-PET-PE fiber reinforced cementitious composites, respectively. C1 [Lee, Bang Yeon] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. [Kim, Yun Yong] Chungnam Natl Univ, Dept Civil Engn, Taejon, South Korea. [Kim, Taemin] NASA, Ames Res Ctr, Intelligent Robot Grp, Washington, DC USA. [Kim, Taemin] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea. RP Lee, BY (reprint author), Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. EM yunkim@cnu.ac.kr OI Lee, Bang Yeon/0000-0002-7823-8663 FU Korean Government(MOEHRD) [KRF-2008-314-D00421] FX This work was supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD) (KRF-2008-314-D00421). Part of this work was done while Taemin Kim was at Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea. NR 24 TC 2 Z9 2 U1 0 U2 4 PU JAPAN CONCRETE INST PI CHIYODA-KU PA SOGO HANZOMON BLDG 12F, NO 7, KOJIMACHI 1-CHOME, CHIYODA-KU, TOKYO 102-0083, JAPAN SN 1346-8014 EI 1347-3913 J9 J ADV CONCR TECHNOL JI J. Adv. Concr. Technol. PD OCT PY 2010 VL 8 IS 3 BP 337 EP 344 PG 8 WC Construction & Building Technology; Engineering, Civil; Materials Science, Multidisciplinary SC Construction & Building Technology; Engineering; Materials Science GA 672UP UT WOS:000283612700008 ER PT J AU Doarn, CR Nicogossian, AE Grigoriev, AI Tverskaya, G Orlov, OI Ilyin, EA Souza, KA AF Doarn, Charles R. Nicogossian, Arnauld E. Grigoriev, Anatoly I. Tverskaya, Galina Orlov, Oleg I. Ilyin, Eugene A. Souza, Kenneth A. TI A summary of activities of the US/Soviet-Russian joint working group on space biology and medicine SO ACTA ASTRONAUTICA LA English DT Review DE Space life sciences; Internation collaboration; Joint working group; Biosatellite; Spaceflight ID TELEMEDICINE; PROGRAM AB The very foundation of cooperation between the United States (US) and Russia (former Soviet Union) in space exploration is a direct result of the mutual desire for scientific understanding and the creation of a collaborative mechanism the Joint Working Group (JWG) on Space Biology and Medicine. From the dawn of the space age, it has been the quest of humankind to understand its place in the universe. While nations can and do solve problems independently, it takes nations, working together, to accomplish great things. The formation of the JWG provided an opportunity for the opening of a series of productive relationships between the superpowers, the US and the Union of Soviet Socialist Republics (USSR); and served as a justification for continued relationship for medical assistance in spaceflight, and to showcase Earth benefits from space medicine research. This relationship has been played out on an international scale with the construction and operation of the International Space Station. The fundamental reason for this successful endeavor is a direct result of the spirit and perseverance of the men and women who have worked diligently side-by-side to promote science and move our understanding of space forward. This manuscript provides a historical perspective of the JWG; how it came about; its evolution; what it accomplished; and what impact it has had and continues to have in the 21st century with regard to human spaceflight and space life sciences research. It captures the spirit of this group, which has been in continuous existence for over 40 years, and provides a never before reported summary of its activities. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Doarn, Charles R.] Univ Cincinnati, Dept Publ Hlth Sci, Cincinnati, OH 45267 USA. [Nicogossian, Arnauld E.] George Mason Univ, Fairfax, VA 22030 USA. [Doarn, Charles R.; Nicogossian, Arnauld E.] NASA Headquarters, Off Chief Hlth & Med Officer, Washington, DC USA. [Grigoriev, Anatoly I.; Orlov, Oleg I.; Ilyin, Eugene A.] Minist Publ Hlth Russia, Inst Biomed Problems, Moscow, Russia. [Tverskaya, Galina] Lockheed Martin Corp, NASA Ames Res Ctr, Moffett Field, CA USA. [Souza, Kenneth A.] Logyx LLC, NASA Ames Res Ctr, Moffett Field, CA USA. RP Doarn, CR (reprint author), Univ Cincinnati, Dept Publ Hlth Sci, 260 Stetson,Suite 4200,POB 670840,ML 0840, Cincinnati, OH 45267 USA. EM charles.doarn@uc.edu NR 13 TC 5 Z9 5 U1 2 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD OCT-NOV PY 2010 VL 67 IS 7-8 BP 649 EP 658 DI 10.1016/j.actaastro.2010.05.011 PG 10 WC Engineering, Aerospace SC Engineering GA 651JI UT WOS:000281923600001 ER PT J AU Ryan, S Hedman, T Christiansen, EL AF Ryan, S. Hedman, T. Christiansen, E. L. TI Honeycomb vs. foam: Evaluating potential upgrades to ISS module shielding SO ACTA ASTRONAUTICA LA English DT Article DE Orbital debris; Micrometeoroids; International Space Station; Hypervelocity impact; Spacecraft environmental effects ID SPACE DEBRIS SHIELDS; HYPERVELOCITY IMPACT; MANNED SPACECRAFT AB A series of 19 hypervelocity impact tests have been performed on ISS-representative structure walls to evaluate the effect on micrometeoroid and orbital debris (MMOD) protective capability caused by replacing honeycomb sandwich panel cores with metallic open-cell foam. In the experiments, secondary impacts on individual foam ligaments were found to raise the thermal state of projectile and bumper fragments, inducing break-up and melt at lower impact velocities than the baseline honeycomb configuration. A ballistic limit equation is derived for the foam-modified configuration, and in comparison with the honeycomb baseline a performance increase of 3-15% at normal incidence was predicted. With increasing impact obliquity, the enhancement in protective capability provided by modification is predicted to further increase. Reduction in penetration and failure risk posed by MMOD impacts is achieved by the foam-modified configuration without a significant decrease in mechanical or thermal performance, and with no additional weight. As such, it is considered a promising upgrade to MMOD shielding on ISS modules, which incorporate honeycomb sandwich panels and are yet to fly. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Ryan, S.] USRA Lunar & Planetary Inst LPI, Houston, TX 77058 USA. [Hedman, T.] GeoControl Syst, Houston, TX USA. [Christiansen, E. L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Ryan, S (reprint author), USRA Lunar & Planetary Inst LPI, 3600 Bay Area Blvd, Houston, TX 77058 USA. EM shannon.j.ryan@nasa.gov; troy.hedman-1@nasa.gov; eric.l.christiansen@nasa.gov NR 14 TC 10 Z9 10 U1 2 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD OCT-NOV PY 2010 VL 67 IS 7-8 BP 818 EP 825 DI 10.1016/j.actaastro.2010.05.021 PG 8 WC Engineering, Aerospace SC Engineering GA 651JI UT WOS:000281923600017 ER PT J AU Freund, F AF Freund, Friedemann TI Toward a unified solid state theory for pre-earthquake signals SO ACTA GEOPHYSICA LA English DT Article; Proceedings Paper CT 1st Symposium of the International Geo-Hazards-Research-Society CY MAR 09-SEP 29, 2009 CL Istanbul, TURKEY SP Int Geo-Hazards Res Soc DE pre-earthquake signals; peroxy; positive holes; EM emissions; earthquake lights; thermal infrared anomalies; radon emanation ID ELECTRICAL-CONDUCTIVITY; IGNEOUS ROCKS; MICROSEISMIC VARIATIONS; IONOSPHERIC ANOMALIES; CHARGE-DISTRIBUTION; CONTINENTAL-CRUST; MAGNESIUM-OXIDE; LIGHTS; FIELD; PRECURSORS AB Many different non-seismic pre-earthquake signals have been reported but there is great uncertainty about their origin, their correlation to each other and to the impending seismic event. The discovery of stress-activated electric currents in rocks provides a possible explanation. Stresses activate electronic charge carriers, namely defect electrons in the oxygen anion sublattice, equivalent to O- in a matrix of O2-, also known as positive holes. These charge carriers pre-exist in unstressed rocks in a dormant, electrically inactive state as peroxy links, O3Si-OO-SiO3, where two O- are tightly bound together. Under stress dislocations sweep through the mineral grains causing the peroxy links to break. Positive holes, thus generated, flow down stress gradients, constituting an electric current with attendant magnetic field variations and EM emissions. The positive holes accumulate at the surface, creating electric fields, strong enough to field-ionize air molecules. They also recombine leading to a spectroscopically distinct IR emission seen in laboratory experiments and night-time infrared satellite images. In addition positive holes interact with radon in the soil, affecting the radon emanation. C1 [Freund, Friedemann] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Freund, Friedemann] San Jose State Univ, Dept Phys, San Jose, CA 95192 USA. [Freund, Friedemann] SETI Inst, Carl Sagan Ctr, Mountain View, CA USA. RP Freund, F (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM friedemann.t.freund@nasa.gov NR 129 TC 31 Z9 34 U1 0 U2 10 PU VERSITA PI WARSAW PA SOLIPSKA 14A-1, 02-482 WARSAW, POLAND SN 1895-6572 EI 1895-7455 J9 ACTA GEOPHYS JI Acta Geophys. PD OCT PY 2010 VL 58 IS 5 BP 719 EP 766 DI 10.2478/s11600-009-0066-x PG 48 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 617RS UT WOS:000279299400002 ER PT J AU Pines, V Zlatkowski, M Chait, A AF Pines, Vladimir Zlatkowski, Marianna Chait, Arnon TI Kinetic theory of sheath formation in solar wind plasma SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Moon environment; Solar wind plasma; Dusty plasma ID DUST; SPACE AB We present a general self-consistent kinetic theory for plasma sheath formation in solar wind plasma. The theory could be applied to anisotropic, as well as to isotropic collisionless plasma without resorting to any simplifications, limitations, or assumptions, such as the necessary existence of a 'pre-sheath' region of ions acceleration to ensure the Bohm criterion. The kinetic framework is first applied to sheath formation around an arbitrary oriented planar absorbing surface, charged by solar wind anisotropic plasma, under the condition of negligible photoelectric effect. We then make use of our kinetic approach for the plane geometry in isotropic collisionless plasma, as a particular case of a planar electrode orientation parallel to plasma streaming velocity, also analyzing the sheath structure around spherical and cylindrical absorbing electrodes submerged in isotropic collisionless plasma. Obtained results demonstrate principal differences in spatial charge distributions in sheath regions between spherical or cylindrical electrodes of large size and an unbound planar surface submerged in isotropic plasma. In the case of a planar electrode, we directly compare results obtained in our kinetic and hydrodynamic theories and conventional hydrodynamic theory of plasma sheath formation. The outcome from the present study have direct implications to the analysis of plasma sheath structure and associated distribution in space of charged dust grains, which is relevant to the moon exploration near the optical terminator region or in shadowed craters in the moon. (c) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Pines, Vladimir; Zlatkowski, Marianna; Chait, Arnon] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Pines, V (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM vpines@oh.rr.com NR 10 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD OCT 1 PY 2010 VL 46 IS 7 BP 942 EP 959 DI 10.1016/j.asr.2010.06.002 PG 18 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 651IV UT WOS:000281922300011 ER PT J AU Brown, II Bryant, DA Casamatta, D Thomas-Keprta, KL Sarkisova, SA Shen, GZ Graham, JE Boyd, ES Peters, JW Garrison, DH McKay, DS AF Brown, Igor I. Bryant, Donald A. Casamatta, Dale Thomas-Keprta, Kathie L. Sarkisova, Svetlana A. Shen, Gaozhong Graham, Joel E. Boyd, Eric S. Peters, John W. Garrison, Daniel H. McKay, David S. TI Polyphasic Characterization of a Thermotolerant Siderophilic Filamentous Cyanobacterium That Produces Intracellular Iron Deposits SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID RNA SEQUENCE-ANALYSIS; SP STRAIN PCC-7002; MICROBIAL MATS; HOT-SPRINGS; DIVERSITY; OSCILLATORIALES; PHOTOSYNTHESIS; PHOTOSYSTEM; PHOTOTROPHS; HOMEOSTASIS AB Despite the high potential for oxidative stress stimulated by reduced iron, contemporary iron-depositing hot springs with circum-neutral pH are intensively populated with cyanobacteria. Therefore, studies of the physiology, diversity, and phylogeny of cyanobacteria inhabiting iron-depositing hot springs may provide insights into the contribution of cyanobacteria to iron redox cycling in these environments and new mechanisms of oxidative stress mitigation. In this study the morphology, ultrastructure, physiology, and phylogeny of a novel cyanobacterial taxon, JSC-1, isolated from an iron-depositing hot spring, were determined. The JSC-1 strain has been deposited in ATCC under the name Marsacia ferruginose, accession number BAA-2121. Strain JSC-1 represents a new operational taxonomical unit (OTU) within Leptolyngbya sensu lato. Strain JSC-1 exhibited an unusually high ratio between photosystem (PS) I and PS II, was capable of complementary chromatic adaptation, and is apparently capable of nitrogen fixation. Furthermore, it synthesized a unique set of carotenoids, but only chlorophyll a. Strain JSC-1 not only required high levels of Fe for growth (>= 40 mu M), but it also accumulated large amounts of extracellular iron in the form of ferrihydrite and intracellular iron in the form of ferric phosphates. Collectively, these observations provide insights into the physiological strategies that might have allowed cyanobacteria to develop and proliferate in Fe-rich, circum-neutral environments. C1 [Brown, Igor I.; Thomas-Keprta, Kathie L.; Sarkisova, Svetlana A.; Garrison, Daniel H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77258 USA. [Bryant, Donald A.; Shen, Gaozhong; Graham, Joel E.] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. [Casamatta, Dale] Univ N Florida, Dept Biol, Jacksonville, FL 32224 USA. [Boyd, Eric S.; Peters, John W.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Boyd, Eric S.; Peters, John W.] Montana State Univ, Astrobiol Biogeocatalysis Res Ctr, Bozeman, MT 59717 USA. [McKay, David S.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Brown, II (reprint author), NASA, Lyndon B Johnson Space Ctr, JE 23,POB 58447, Houston, TX 77258 USA. EM igor_brown@hotmail.com RI Casamatta, Dale/O-4295-2014; OI Casamatta, Dale/0000-0003-0246-7555; Peters, John/0000-0001-9117-9568 FU Astromaterials Research and Exploration Science Directorate; JSC colleagues; National Science Foundation [MCB-0519743]; NASA [NNX09AM87G]; NASA Astrobiology Institute (NAI) [NNA08C-N85A]; NAI FX We gratefully acknowledge support from the Astromaterials Research and Exploration Science Directorate and JSC colleagues: T. See, R. Christiansen, C. Galindo, Jr., G. A. Robinson, and M. Nelman. D. A. B. gratefully acknowledges support from National Science Foundation grant MCB-0519743 and NASA Astrobiology grant NNX09AM87G. The Astrobiology Biogeocatalysis Research Center at Montana State University is supported by NASA Astrobiology Institute (NAI) grant NNA08C-N85A to J.W.P. E. S. B. was supported by an NAI postdoctoral fellowship. NR 53 TC 16 Z9 17 U1 0 U2 10 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD OCT PY 2010 VL 76 IS 19 BP 6664 EP 6672 DI 10.1128/AEM.00662-10 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 653ZA UT WOS:000282136700038 PM 20709851 ER PT J AU Frost, SA Balas, MJ AF Frost, S. A. Balas, M. J. TI Evolving systems: Adaptive key component control and inheritance of passivity and dissipativity SO APPLIED MATHEMATICS AND COMPUTATION LA English DT Article DE Evolving systems; Stability; Adaptive control; Dissipativity; Passivity AB We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. Autonomous assembly of large, complex flexible structures in space is a target application for Evolving Systems. A critical requirement for autonomous assembling structures is that they remain stable during and after assembly. The fundamental topic of inheritance of stability, dissipativity, and passivity in Evolving Systems is the primary focus of this research. In this paper, we develop an adaptive key component controller to restore stability in Nonlinear Evolving Systems that would otherwise fail to inherit the stability traits of their components. We provide sufficient conditions for the use of this novel control method and demonstrate its use on an illustrative example. Published by Elsevier Inc. C1 [Frost, S. A.] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. [Balas, M. J.] Univ Wyoming, Dept Elect & Comp Engn, Laramie, WY 82071 USA. RP Frost, SA (reprint author), NASA, Ames Res Ctr, Intelligent Syst Div, M-S 269-3, Moffett Field, CA 94035 USA. EM susan.a.frost@nasa.gov; mbalas@uwyo.edu NR 17 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0096-3003 EI 1873-5649 J9 APPL MATH COMPUT JI Appl. Math. Comput. PD OCT 1 PY 2010 VL 217 IS 3 SI SI BP 1034 EP 1044 DI 10.1016/j.amc.2010.04.033 PG 11 WC Mathematics, Applied SC Mathematics GA 655UW UT WOS:000282278900011 ER PT J AU DeWitt, HL Hasenkopf, CA Trainer, MG Farmer, DK Jimenez, JL McKay, CP Toon, OB Tolbert, MA AF DeWitt, H. Langley Hasenkopf, Christa A. Trainer, Melissa G. Farmer, Delphine K. Jimenez, Jose L. McKay, Christopher P. Toon, Owen B. Tolbert, Margaret A. TI The Formation of Sulfate and Elemental Sulfur Aerosols under Varying Laboratory Conditions: Implications for Early Earth SO ASTROBIOLOGY LA English DT Article DE S-MIF; Archean atmosphere; Early Earth; Sulfur aerosols ID MASS-SPECTROMETER; ARCHEAN ATMOSPHERE; SO2 PHOTOLYSIS; ORGANIC HAZE; ISOTOPES; OXYGEN; GREENHOUSE; CYCLE; RISE AB The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 x 10(9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO(2)) by UV light with lambda < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S(8)) and sulfuric acid (H(2)SO(4)) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO(2) either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H(2)) or methane (CH(4)), increased the formation of S(8). With UV photolysis, formation of S(8) aerosols is highly dependent on the initial SO(2) pressure; and S(8) is only formed at a 2% SO(2) mixing ratio and greater in the absence of a reductant, and at a 0.2% SO(2) mixing ratio and greater in the presence of 1000 ppmv CH(4). We also found that organosulfur compounds are formed from the photolysis of CH(4) and moderate amounts of SO(2). The implications for sulfur aerosols on early Earth are discussed. C1 [DeWitt, H. Langley] Univ Colorado, UCB 216, CIRES, Dept Chem & Biochem, Boulder, CO 80309 USA. [DeWitt, H. Langley; Hasenkopf, Christa A.; Farmer, Delphine K.; Jimenez, Jose L.; Tolbert, Margaret A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Hasenkopf, Christa A.; Toon, Owen B.] Univ Colorado, Atmospher & Space Phys Lab, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Trainer, Melissa G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McKay, Christopher P.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA USA. RP DeWitt, HL (reprint author), Univ Colorado, UCB 216, CIRES, Dept Chem & Biochem, Boulder, CO 80309 USA. EM dewitt@colorado.edu RI Jimenez, Jose/A-5294-2008; Trainer, Melissa/E-1477-2012 OI Jimenez, Jose/0000-0001-6203-1847; FU NASA [NNX07AV55G]; National Science Foundation FX H. Langley DeWitt was partially supported by a NASA GSRP fellowship. Christa A. Hasenkopf was supported with a National Science Foundation Graduate Research Fellowship. We gratefully acknowledge NASA Grant NNX07AV55G for funding. We thank Donna Sueper (CU-Boulder) for the data analysis software for the high-resolution AMS. NR 26 TC 14 Z9 14 U1 1 U2 24 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD OCT PY 2010 VL 10 IS 8 BP 773 EP 781 DI 10.1089/ast.2009.9455 PG 9 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 682JL UT WOS:000284397800001 PM 21087157 ER PT J AU Mielke, RE Russell, MJ Wilson, PR McGlynn, SE Coleman, M Kidd, R Kanik, I AF Mielke, Randall E. Russell, Michael J. Wilson, Philip R. McGlynn, Shawn E. Coleman, Max Kidd, Richard Kanik, Isik TI Design, Fabrication, and Test of a Hydrothermal Reactor for Origin-of-Life Experiments SO ASTROBIOLOGY LA English DT Article DE Hydrothermal reactor; Hydrothermal mound; Hydrothermal chimneys; Geodes; Transition-metal sulfides; Hadean Ocean ID MID-ATLANTIC RIDGE; LOST-CITY; STABLE-ISOTOPE; SEA-FLOOR; ULTRAMAFIC ROCKS; SERPENTINIZATION; SYSTEMS; FIELD; VENT; GEOCHEMISTRY AB We describe a continuous high-pressure flow reactor designed to simulate the unforced convective interaction of hydrothermal solutions and ocean waters with submarine crust on early Earth-conditions appropriate to those that may have led to the onset of life. The experimental operating conditions are appropriate for investigating kinetic hydrothermal processes in the early history of any sizable wet, rocky planet. Beyond the description of the fabrication, we report an initial experiment that tested the design and investigated the feasibility of sulfide and silica dissolution in alkaline solution from iron sulfide and basaltic rock, and their possible subsequent transport as HS(-) and H(2)SiO(4)(2-) in hot alkaline solutions. Delivery of hydrogen sulfide and dihydrogen silicate ions would have led to the precipitation of ferrous hydroxide, hydroxysilicates, and iron sulfides as integral mineral components of an off-ridge compartmentalized hydrothermal mound in the Hadean. Such a mound could, we contend, have acted as a natural chemical and electrochemical reactor and, ultimately, as the source of all biochemistry on our planet. In the event, we show that an average of similar to 1 mM/kg of both sulfide and silica were released throughout, though over 10 mM/kg of HS(-) was recorded for similar to 100 minutes in the early stages of the experiment. This alkaline effluent from the reactor was injected into a reservoir of a simulacrum of ferrous iron-bearing "Hadean Ocean" water in an experiment that demonstrated the capacity of such fluids to generate hydrothermal chimneys and a variety of contiguous inorganic microgeode precipitates bearing disseminations of discrete metal sulfides. Comparable natural composite structures may have acted as hatcheries for emergent life in the Hadean. C1 [Russell, Michael J.] CALTECH, Jet Prop Lab, Sect 3220, Pasadena, CA 91109 USA. [Russell, Michael J.; McGlynn, Shawn E.; Coleman, Max; Kanik, Isik] NASA, Astrobiol Inst, Washington, DC USA. RP Russell, MJ (reprint author), CALTECH, Jet Prop Lab, Sect 3220, MS 183-301,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mrussell@jpl.nasa.gov; isik.kanik@jpl.nasa.gov RI Coleman, Max/A-1303-2007 OI Coleman, Max/0000-0002-5514-1826 FU Marine Biological Laboratories NASA; NSF [DGE 0654336]; National Aeronautics and Space Administration [R.06.021.071, NNH06ZDA001N]; NASA Astrobiology Institute (Icy Worlds) FX We thank Lawrence Wade for help with fabrication; Grazyna Orzechowska for support; and Bill Martin, Steven Vance, and Hreioar por Valtysson for discussions. Anonymous referees gave helpful critiques. S. E. M was supported by the Marine Biological Laboratories NASA Planetary Biology Internship Program and acknowledges support by a NSF IGERT Fellowship by the MSU Program in Geobiological Systems (DGE 0654336). The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration: with initial support by JPL grant (R.06.021.071) and subsequently by NASA Exobiology and Evolutionary Biology award (NNH06ZDA001N) and supported by the NASA Astrobiology Institute (Icy Worlds). NR 57 TC 28 Z9 29 U1 1 U2 51 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD OCT PY 2010 VL 10 IS 8 BP 799 EP 810 DI 10.1089/ast.2009.0456 PG 12 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 682JL UT WOS:000284397800004 PM 21087160 ER PT J AU Fairen, AG Davila, AF Lim, D Bramall, N Bonaccorsi, R Zavaleta, J Uceda, ER Stoker, C Wierzchos, J Dohm, JM Amils, R Andersen, D McKay, CP AF Fairen, Alberto G. Davila, Alfonso F. Lim, Darlene Bramall, Nathan Bonaccorsi, Rosalba Zavaleta, Jhony Uceda, Esther R. Stoker, Carol Wierzchos, Jacek Dohm, James M. Amils, Ricardo Andersen, Dale McKay, Christopher P. TI Astrobiology through the Ages of Mars: The Study of Terrestrial Analogues to Understand the Habitability of Mars SO ASTROBIOLOGY LA English DT Article DE Mars; Astrobiology; Mars analogues; Climatic evolution of Mars ID BACTERIUM DEINOCOCCUS RADIODURANS; MCMURDO DRY VALLEYS; GLACIER ICE CORE; ATACAMA DESERT; WESTERN-AUSTRALIA; IONIZING-RADIATION; MERIDIANI-PLANUM; NORTHERN PLAINS; PILBARA CRATON; RIO-TINTO AB Mars has undergone three main climatic stages throughout its geological history, beginning with a water-rich epoch, followed by a cold and semi-arid era, and transitioning into present-day arid and very cold desert conditions. These global climatic eras also represent three different stages of planetary habitability: an early, potentially habitable stage when the basic requisites for life as we know it were present (liquid water and energy); an intermediate extreme stage, when liquid solutions became scarce or very challenging for life; and the most recent stage during which conditions on the surface have been largely uninhabitable, except perhaps in some isolated niches. Our understanding of the evolution of Mars is now sufficient to assign specific terrestrial environments to each of these periods. Through the study of Mars terrestrial analogues, we have assessed and constrained the habitability conditions for each of these stages, the geochemistry of the surface, and the likelihood for the preservation of organic and inorganic biosignatures. The study of these analog environments provides important information to better understand past and current mission results as well as to support the design and selection of instruments and the planning for future exploratory missions to Mars. C1 [Fairen, Alberto G.; Davila, Alfonso F.; Lim, Darlene; Bramall, Nathan; Bonaccorsi, Rosalba; Andersen, Dale] SETI Inst, Mountain View, CA USA. [Fairen, Alberto G.; Lim, Darlene; Bonaccorsi, Rosalba; Zavaleta, Jhony; Uceda, Esther R.; Stoker, Carol; McKay, Christopher P.] NASA, Space Sci & Astrobiol Div, Ames Res Ctr, Moffett Field, CA 94035 USA. [Wierzchos, Jacek] CSIC, Inst Recursos Nat, Madrid, Spain. [Dohm, James M.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Amils, Ricardo] Ctr Astrobiol INTA CSIC, Madrid, Spain. RP Fairen, AG (reprint author), SETI Inst, Moffett Field, CA 94035 USA. EM alberto.g.fairen@nasa.gov RI Wierzchos, Jacek/F-7036-2011; Davila, Alfonso/A-2198-2013; Dohm, James/A-3831-2014 OI Wierzchos, Jacek/0000-0003-3084-3837; Davila, Alfonso/0000-0002-0977-9909; NR 163 TC 29 Z9 30 U1 3 U2 39 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD OCT PY 2010 VL 10 IS 8 BP 821 EP 843 DI 10.1089/ast.2009.0440 PG 23 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 682JL UT WOS:000284397800006 PM 21087162 ER PT J AU Morris, HC Monaco, LA Steele, A Wainwright, N AF Morris, Heather C. Monaco, Lisa A. Steele, Andrew Wainwright, Norm TI Setting a Standard: The Limulus Amebocyte Lysate Assay and the Assessment of Microbial Contamination on Spacecraft Surfaces SO ASTROBIOLOGY LA English DT Article DE Astrobiology; Planetary protection; Microbiology; Biosensor ID CLOTTING ENZYME; ENDOTOXIN; STATION; MICROORGANISMS; COAGULATION; COAGULOGEN; BACTERIA; FACILITY; QUALITY AB Historically, colony-forming units as determined by plate cultures have been the standard unit for microbiological analysis of environmental samples, medical diagnostics, and products for human use. However, the time and materials required make plate cultures expensive and potentially hazardous in the closed environments of future NASA missions aboard the International Space Station and missions to other Solar System targets. The Limulus Amebocyte Lysate (LAL) assay is an established method for ensuring the sterility and cleanliness of samples in the meat-packing and pharmaceutical industries. Each of these industries has verified numerical requirements for the correct interpretation of results from this assay. The LAL assay is a rapid, point-of-use, verified assay that has already been approved by NASA Planetary Protection as an alternate, molecular method for the examination of outbound spacecraft. We hypothesize that standards for molecular techniques, similar to those used by the pharmaceutical and meat-packing industries, need to be set by space agencies to ensure accurate data interpretation and subsequent decision making. In support of this idea, we present research that has been conducted to relate the LAL assay to plate cultures, and we recommend values obtained from these investigations that could assist in interpretation and analysis of data obtained from the LAL assay. C1 [Morris, Heather C.; Monaco, Lisa A.] Jacobs Technol Inc, ESTS Grp, Huntsville, AL USA. [Steele, Andrew] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Wainwright, Norm] Charles River Labs, Charleston, SC USA. RP Morris, HC (reprint author), NASA, George C Marshall Space Flight Ctr, Bldg 4201,Room 443, Huntsville, AL 35812 USA. EM heather.c.morris@nasa.gov NR 36 TC 8 Z9 8 U1 1 U2 14 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD OCT PY 2010 VL 10 IS 8 BP 845 EP 852 DI 10.1089/ast.2009.0446 PG 8 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 682JL UT WOS:000284397800007 PM 21087163 ER PT J AU Hargreaves, RJ Hinkle, KH Bauschlicher, CW Wende, S Seifahrt, A Bernath, PF AF Hargreaves, Robert J. Hinkle, Kenneth H. Bauschlicher, Charles W., Jr. Wende, Sebastian Seifahrt, Andreas Bernath, Peter F. TI HIGH-RESOLUTION 1.6 mu m SPECTRA OF FeH IN M AND L DWARFS SO ASTRONOMICAL JOURNAL LA English DT Article DE brown dwarfs; infrared: stars; stars: individual (DENIS 1048-39, GJ 191, GJ 406, GJ 644C, LHS; 292, LHS 2065, LHS 3003, LP 944-20, 2MASS J1507-16); stars: low-mass ID BASIS-SETS; INFRARED SPECTRUM; SKY SURVEY; TRANSITION; STARS; ATOMS; SUNSPOT AB Near-infrared bands due to the iron monohydride (FeH) molecule are a characteristic feature of late-M and -L dwarfs. We have created a line list at 2200 K for the FeH E(4)Pi-A(4). electronic transition near 1.58 mu m (6300 cm(-1)) based on laboratory spectra and an ab initio calculation of the band strength. A variety of M and L dwarfs were observed near 1.6 mu m with high spectral resolution (R similar to 70,000) using the Phoenix spectrograph on the 8.1 m Gemini South telescope. The FeH E-A transition made a surprisingly strong contribution to the observed spectral energy distributions and needs to be included in modeling of late-M and L dwarfs. C1 [Hargreaves, Robert J.; Bernath, Peter F.] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England. [Hinkle, Kenneth H.] Assoc Univ Res Astron Inc, Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Bauschlicher, Charles W., Jr.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Wende, Sebastian] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Seifahrt, Andreas] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Hargreaves, RJ (reprint author), Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England. EM rjh135@york.ac.uk; hinkle@noao.edu; Charles.W.Bauschlicher@nasa.gov; sewende@astro.physik.uni-goettingen.de; seifahrt@physics.ucdavis.edu; pfb500@york.ac.uk RI Bernath, Peter/B-6567-2012 OI Bernath, Peter/0000-0002-1255-396X FU National Science Foundation (USA) [AST07-08074]; Science and Technology Facilities Council (UK); National Research Council (Canada); CONICYT (Chile); Australian Research Council (Australia); Ministerio da Ciencia e Tecnologia (Brazil); Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina); NASA; Department of Chemistry (University of York); DFG [RE 1664/4-1, GrK-1351] FX Based on observations (GS-2007A-C-2) obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina).; We thank the Gemini South Observatory staff for their technical support during observations. Support for this work was provided by the NASA laboratory astrophysics program and a Department of Chemistry (University of York) studentship. R.J. Hargreaves thanks the Institute of Physics (IOP) and the Department of Physics (University of York) for travel support. A. Seifahrt acknowledges financial support from DFG under grant RE 1664/4-1 and from NSF under grant AST07-08074. S. Wende acknowledges financial support from the DFG Research Training Group GrK-1351 "Extrasolar Planets and Their Host Stars." NR 38 TC 15 Z9 15 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD OCT PY 2010 VL 140 IS 4 BP 919 EP 924 DI 10.1088/0004-6256/140/4/919 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 648VM UT WOS:000281722500002 ER PT J AU Kuchner, MJ Stark, CC AF Kuchner, Marc J. Stark, Christopher C. TI COLLISIONAL GROOMING MODELS OF THE KUIPER BELT DUST CLOUD SO ASTRONOMICAL JOURNAL LA English DT Article DE celestial mechanics; circumstellar matter; infrared: stars; interplanetary medium; Kuiper Belt: general; planetary systems; stars: imaging ID SPITZER-SPACE-TELESCOPE; SOLAR-TYPE STARS; DEBRIS DISKS; RESONANT SIGNATURES; COMET 81P/WILD-2; EPSILON-ERIDANI; HOT DUST; SYSTEM; EVOLUTION; MIGRATION AB We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of similar to 10(-4) primarily show an azimuthally symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10(-6) and 10(-7)), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ("transport dominated") to being dominated by the birth ring ("collision dominated") when the optical depth reaches a critical value of tau similar to v/c, where v is the local Keplerian speed. C1 [Kuchner, Marc J.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 21230 USA. [Stark, Christopher C.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Kuchner, MJ (reprint author), NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 21230 USA. EM Marc.Kuchner@nasa.gov; starkc@umd.edu RI Kuchner, Marc/E-2288-2012 FU NASA, Goddard Space Flight Center FX We thank J.J. Kavelaars and Mike Brown for helpful discussions about the KBO orbital distribution and Alexander Krivov for encouragement. We thank the NASA High-end Computing Program for granting us time on the Discover cluster. C. Stark was supported in part by the NASA GSRP Program at Goddard Space Flight Center. NR 52 TC 39 Z9 39 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD OCT PY 2010 VL 140 IS 4 BP 1007 EP 1019 DI 10.1088/0004-6256/140/4/1007 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 648VM UT WOS:000281722500011 ER PT J AU Krist, JE Stapelfeldt, KR Bryden, G Rieke, GH Su, KYL Chen, CC Beichman, CA Hines, DC Rebull, LM Tanner, A Trilling, DE Clampin, M Gaspar, A AF Krist, John E. Stapelfeldt, Karl R. Bryden, Geoffrey Rieke, George H. Su, K. Y. L. Chen, Christine C. Beichman, Charles A. Hines, Dean C. Rebull, Luisa M. Tanner, Angelle Trilling, David E. Clampin, Mark Gaspar, Andras TI HST AND SPITZER OBSERVATIONS OF THE HD 207129 DEBRIS RING SO ASTRONOMICAL JOURNAL LA English DT Article DE circumstellar matter; stars: individual (HD 207129, HD 10472, HD 21997, HD 38206, HD 82943, HD 113556, HD 138965, HD 211415) ID MULTIBAND IMAGING PHOTOMETER; HUBBLE-SPACE-TELESCOPE; SOLAR-TYPE STARS; PICTORIS MOVING GROUP; MAIN-SEQUENCE STARS; BETA-PICTORIS; ABSOLUTE CALIBRATION; HIPPARCOS CATALOG; MIPS SURVEY; MASS STARS AB A debris ring around the star HD 207129 (G0V; d = 16.0 pc) has been imaged in scattered visible light with the ACS coronagraph on the Hubble Space Telescope (HST) and in thermal emission using MIPS on the Spitzer Space Telescope at lambda = 70 mu m(resolved) and 160 mu m(unresolved). Spitzer IRS (lambda= 7-35 mu m) and MIPS (lambda= 55-90 mu m) spectrographs measured disk emission at lambda > 28 mu m. In the HST image the disk appears as a similar to 30 AU wide ring with a mean radius of similar to 163 AU and is inclined by 60 degrees from pole-on. At 70 mu m, it appears partially resolved and is elongated in the same direction and with nearly the same size as seen with HST in scattered light. At 0.6 mu m, the ring shows no significant brightness asymmetry, implying little or no forward scattering by its constituent dust. With a mean surface brightness of V = 23.7 mag arcsec(-2), it is the faintest disk imaged to date in scattered light. We model the ring's infrared spectral energy distribution (SED) using a dust population fixed at the location where HST detects the scattered light. The observed SED is well fit by this model, with no requirement for additional unseen debris zones. The firm constraint on the dust radial distance breaks the usual grain size-distance degeneracy that exists in modeling of spatially unresolved disks, and allows us to infer a minimum grain size of similar to 2.8 mu m and a dust size distribution power-law spectral index of -3.9. An albedo of similar to 5% is inferred from the integrated brightness of the ring in scattered light. The low-albedo and isotropic scattering properties are inconsistent with Mie theory for astronomical silicates with the inferred grain size and show the need for further modeling using more complex grain shapes or compositions. Brightness limits are also presented for six other main-sequence stars with strong Spitzer excess around which HST detects no circumstellar nebulosity (HD 10472, HD 21997, HD 38206, HD 82943, HD 113556, and HD 138965). C1 [Krist, John E.; Stapelfeldt, Karl R.; Bryden, Geoffrey] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bryden, Geoffrey; Beichman, Charles A.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Rieke, George H.; Su, K. Y. L.; Gaspar, Andras] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Chen, Christine C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Hines, Dean C.] Space Sci Inst, Boulder, CO 80301 USA. [Rebull, Luisa M.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Tanner, Angelle] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30316 USA. [Trilling, David E.] No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ 86011 USA. [Clampin, Mark] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Krist, JE (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Clampin, mark/D-2738-2012; Stapelfeldt, Karl/D-2721-2012; OI Rebull, Luisa/0000-0001-6381-515X; Gaspar, Andras/0000-0001-8612-3236 FU Hubble Space Telescope General Observer [10539]; Spitzer Project Science Office at JPL; National Aeronautics and Space Administration; NASA [1407] FX We thank Paul Smith (University of Arizona) for his assistance with the MIPS SED data, and Karl Misselt and Viktor Zubko for calculating optical properties of grains at large size parameters. This work was supported by Hubble Space Telescope General Observer Grant 10539 to the Jet Propulsion Laboratory, California Institute of Technology and by the Spitzer Project Science Office at JPL. Funding from both was provided by the National Aeronautics and Space Administration. The Spitzer Space Telescope is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. NR 51 TC 46 Z9 46 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD OCT PY 2010 VL 140 IS 4 BP 1051 EP 1061 DI 10.1088/0004-6256/140/4/1051 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 648VM UT WOS:000281722500015 ER PT J AU Bacmann, A Caux, E Hily-Blant, P Parise, B Pagani, L Bottinelli, S Maret, S Vastel, C Ceccarelli, C Cernicharo, J Henning, T Castets, A Coutens, A Bergin, EA Blake, GA Crimier, N Demyk, K Dominik, C Gerin, M Hennebelle, P Kahane, C Klotz, A Melnick, G Schilke, P Wakelam, V Walters, A Baudry, A Bell, T Benedettini, M Boogert, A Cabrit, S Caselli, P Codella, C Comito, C Encrenaz, P Falgarone, E Fuente, A Goldsmith, PF Helmich, F Herbst, E Jacq, T Kama, M Langer, W Lefloch, B Lis, D Lord, S Lorenzani, A Neufeld, D Nisini, B Pacheco, S Pearson, J Phillips, T Salez, M Saraceno, P Schuster, K Tielens, X van der Tak, FFS van der Wiel, MHD Viti, S Wyrowski, F Yorke, H Faure, A Benz, A Coeur-Joly, O Cros, A Gusten, R Ravera, L AF Bacmann, A. Caux, E. Hily-Blant, P. Parise, B. Pagani, L. Bottinelli, S. Maret, S. Vastel, C. Ceccarelli, C. Cernicharo, J. Henning, T. Castets, A. Coutens, A. Bergin, E. A. Blake, G. A. Crimier, N. Demyk, K. Dominik, C. Gerin, M. Hennebelle, P. Kahane, C. Klotz, A. Melnick, G. Schilke, P. Wakelam, V. Walters, A. Baudry, A. Bell, T. Benedettini, M. Boogert, A. Cabrit, S. Caselli, P. Codella, C. Comito, C. Encrenaz, P. Falgarone, E. Fuente, A. Goldsmith, P. F. Helmich, F. Herbst, E. Jacq, T. Kama, M. Langer, W. Lefloch, B. Lis, D. Lord, S. Lorenzani, A. Neufeld, D. Nisini, B. Pacheco, S. Pearson, J. Phillips, T. Salez, M. Saraceno, P. Schuster, K. Tielens, X. van der Tak, F. F. S. van der Wiel, M. H. D. Viti, S. Wyrowski, F. Yorke, H. Faure, A. Benz, A. Coeur-Joly, O. Cros, A. Guesten, R. Ravera, L. TI First detection of ND in the solar-mass protostar IRAS16293-2422 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: molecules; stars: formation ID DOUBLY DEUTERATED FORMALDEHYDE; STAR-FORMING REGIONS; DEUTERIUM FRACTIONATION; MOLECULAR-SPECTROSCOPY; COLOGNE DATABASE; CORES; TRANSITION; METHANOL; AMMONIA; CDMS AB Context. In the past decade, much progress has been made in characterising the processes leading to the enhanced deuterium fractionation observed in the ISM and in particular in the cold, dense parts of star forming regions such as protostellar envelopes. Very high molecular D/H ratios have been found for saturated molecules and ions. However, little is known about the deuterium fractionation in radicals, even though simple radicals often represent an intermediate stage in the formation of more complex, saturated molecules. The imidogen radical NH is such an intermediate species for the ammonia synthesis in the gas phase. Many of these light molecules however have their fundamental transitions in the submillimetre domain and their detection is hampered by the opacity of the atmosphere at these wavelengths. Herschel/HIFI represents a unique opportunity to study the deuteration and formation mechanisms of species not observable from the ground. Aims. We searched here for the deuterated radical ND in order to determine the deuterium fractionation of imidogen and constrain the deuteration mechanism of this species. Methods. We observed the solar-mass Class 0 protostar IRAS16293-2422 with the heterodyne instrument HIFI in Bands 1a (480-560 GHz), 3b (858-961 GHz), and 4a (949-1061 GHz) as part of the Herschel key programme CHESS (Chemical HErschel Survey of Star forming regions). Results. The deuterated form of the imidogen radical ND was detected and securely identified with 2 hyperfine component groups of its fundamental transition (N = 0-1) at 522.1 and 546.2 GHz, in absorption against the continuum background emitted from the nascent protostar. The 3 groups of hyperfine components of its hydrogenated counterpart NH were also detected in absorption. The absorption arises from the cold envelope, where many deuterated species have been shown to be abundant. The estimated column densities are similar to 2 x 10(14) cm(-2) for NH and similar to 1.3 x 10(14) cm(-2) for ND. We derive a very high deuterium fractionation with an [ND]/[NH] ratio of between 30 and 100%. Conclusions. The deuterium fractionation of imidogen is of the same order of magnitude as that in other molecules, which suggests that an efficient deuterium fractionation mechanism is at play. We discuss two possible formation pathways for ND, by means of either the reaction of N+ with HD, or deuteron/proton exchange with NH. C1 [Bacmann, A.; Hily-Blant, P.; Maret, S.; Ceccarelli, C.; Castets, A.; Crimier, N.; Kahane, C.; Lefloch, B.; Pacheco, S.; Faure, A.] Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. [Bacmann, A.; Ceccarelli, C.; Wakelam, V.; Baudry, A.] Univ Bordeaux, Lab Astrophys Bordeaux, Floirac, France. [Boogert, A.; Lord, S.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91109 USA. [Benedettini, M.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Rome, Italy. [Caux, E.; Bottinelli, S.; Vastel, C.; Coutens, A.; Demyk, K.; Klotz, A.; Walters, A.; Coeur-Joly, O.; Cros, A.; Ravera, L.] Univ Toulouse 3, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse, France. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Pagani, L.; Cabrit, S.; Encrenaz, P.; Salez, M.] Observ Paris, LERMA, F-75014 Paris, France. [Pagani, L.; Cabrit, S.; Encrenaz, P.; Salez, M.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [Cernicharo, J.; Crimier, N.] CSIC INTA, Ctr Astrobiol, Madrid, Spain. [Parise, B.; Schilke, P.; Comito, C.; Wyrowski, F.; Guesten, R.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Codella, C.; Lorenzani, A.] INAF Osservatorio Astrofis Arcetri, Florence, Italy. [Dominik, C.; Kama, M.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6525 ED Nijmegen, Netherlands. [Fuente, A.] IGN Observ Astron Nacl, Alcala De Henares, Spain. [Goldsmith, P. F.; Langer, W.; Pearson, J.; Yorke, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Helmich, F.; van der Tak, F. F. S.; van der Wiel, M. H. D.] SRON Netherlands Inst Space Res, Groningen, Netherlands. [Herbst, E.] Ohio State Univ, Columbus, OH 43210 USA. [Melnick, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Neufeld, D.] Johns Hopkins Univ, Baltimore, MD USA. [Schilke, P.] Univ Cologne, Inst Phys, Cologne, Germany. [Schuster, K.] Inst Radio Astron Millimetr, Grenoble, France. [Tielens, X.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Viti, S.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Nisini, B.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Bergin, E. A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Henning, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [van der Tak, F. F. S.; van der Wiel, M. H. D.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AB Groningen, Netherlands. [Gerin, M.; Hennebelle, P.; Falgarone, E.; Salez, M.] UCP, UPMC, ENS,UMR CNRS INSU 8112, OP,Lab Etud Rayonnement & Matiere Astrophys, Paris, France. [Caux, E.; Bottinelli, S.; Vastel, C.; Coutens, A.; Demyk, K.; Klotz, A.; Walters, A.; Coeur-Joly, O.; Cros, A.; Ravera, L.] CNRS INSU, UMR 5187, Toulouse, France. [Bacmann, A.; Ceccarelli, C.; Wakelam, V.; Baudry, A.; Jacq, T.] CNRS INSU, UMR 5804, Floirac, France. [Benz, A.] ETH, Inst Astron, CH-8092 Zurich, Switzerland. RP Bacmann, A (reprint author), Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. EM aurore.bacmann@obs.ujf-grenoble.fr RI van der Wiel, Matthijs/M-4531-2014; Coutens, Audrey/M-4533-2014; Fuente, Asuncion/G-1468-2016; Goldsmith, Paul/H-3159-2016; OI van der Wiel, Matthijs/0000-0002-4325-3011; Coutens, Audrey/0000-0003-1805-3920; Fuente, Asuncion/0000-0001-6317-6343; Lorenzani, Andrea/0000-0002-4685-3434; Wakelam, Valentine/0000-0001-9676-2605; Kama, Mihkel/0000-0003-0065-7267; Codella, Claudio/0000-0003-1514-3074; , Brunella Nisini/0000-0002-9190-0113; Maret, Sebastien/0000-0003-1104-4554 NR 32 TC 26 Z9 26 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L42 DI 10.1051/0004-6361/201015102 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900042 ER PT J AU Benz, AO Bruderer, S van Dishoeck, EF Stauber, P Wampfler, SF Melchior, M Dedes, C Wyrowski, F Doty, SD van der Tak, F Bachtold, W Csillaghy, A Megej, A Monstein, C Soldati, M Bachiller, R Baudry, A Benedettini, M Bergin, E Bjerkeli, P Blake, GA Bontemps, S Braine, J Caselli, P Cernicharo, J Codella, C Daniel, F di Giorgio, AM Dieleman, P Dominik, C Encrenaz, P Fich, M Fuente, A Giannini, T Goicoechea, JR de Graauw, T Helmich, F Herczeg, GJ Herpin, F Hogerheijde, MR Jacq, T Jellema, W Johnstone, D Jorgensen, JK Kristensen, LE Larsson, B Lis, D Liseau, R Marseille, M McCoey, C Melnick, G Neufeld, D Nisini, B Olberg, M Ossenkopf, V Parise, B Pearson, JC Plume, R Risacher, C Santiago-Garcia, J Saraceno, P Schieder, R Shipman, R Stutzki, J Tafalla, M Tielens, AGGM van Kempen, TA Visser, R Yildiz, UA AF Benz, A. O. Bruderer, S. van Dishoeck, E. F. Staeuber, P. Wampfler, S. F. Melchior, M. Dedes, C. Wyrowski, F. Doty, S. D. van der Tak, F. Baechtold, W. Csillaghy, A. Megej, A. Monstein, C. Soldati, M. Bachiller, R. Baudry, A. Benedettini, M. Bergin, E. Bjerkeli, P. Blake, G. A. Bontemps, S. Braine, J. Caselli, P. Cernicharo, J. Codella, C. Daniel, F. di Giorgio, A. M. Dieleman, P. Dominik, C. Encrenaz, P. Fich, M. Fuente, A. Giannini, T. Goicoechea, J. R. de Graauw, Th. Helmich, F. Herczeg, G. J. Herpin, F. Hogerheijde, M. R. Jacq, T. Jellema, W. Johnstone, D. Jorgensen, J. K. Kristensen, L. E. Larsson, B. Lis, D. Liseau, R. Marseille, M. McCoey, C. Melnick, G. Neufeld, D. Nisini, B. Olberg, M. Ossenkopf, V. Parise, B. Pearson, J. C. Plume, R. Risacher, C. Santiago-Garcia, J. Saraceno, P. Schieder, R. Shipman, R. Stutzki, J. Tafalla, M. Tielens, A. G. G. M. van Kempen, T. A. Visser, R. Yildiz, U. A. TI Hydrides in young stellar objects: Radiation tracers in a protostar-disk-outflow system SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; line: identification; stars: formation; stars: massive; photon-dominated region; submillimeter: ISM ID H2O+; SPECTROSCOPY; CHEMISTRY; REGIONS; W3IRS5; DR21; H3O+ AB Context. Hydrides of the most abundant heavier elements are fundamental molecules in cosmic chemistry. Some of them trace gas irradiated by UV or X-rays. Aims. We explore the abundances of major hydrides in W3 IRS5, a prototypical region of high-mass star formation. Methods. W3 IRS5 was observed by HIFI on the Herschel Space Observatory with deep integration (similar or equal to 2500 s) in 8 spectral regions. Results. The target lines including CH, NH, H3O+, and the new molecules SH+, H2O+, and OH+ are detected. The H2O+ and OH+ J = 1-0 lines are found mostly in absorption, but also appear to exhibit weak emission (P-Cyg-like). Emission requires high density, thus originates most likely near the protostar. This is corroborated by the absence of line shifts relative to the young stellar object (YSO). In addition, H2O+ and OH+ also contain strong absorption components at a velocity shifted relative to W3 IRS5, which are attributed to foreground clouds. Conclusions. The molecular column densities derived from observations correlate well with the predictions of a model that assumes the main emission region is in outflow walls, heated and irradiated by protostellar UV radiation. C1 [Benz, A. O.; Bruderer, S.; Staeuber, P.; Wampfler, S. F.; Melchior, M.; Dedes, C.; Monstein, C.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [van Dishoeck, E. F.; Hogerheijde, M. R.; Kristensen, L. E.; Tielens, A. G. G. M.; Visser, R.; Yildiz, U. A.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Dishoeck, E. F.; Herczeg, G. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Caselli, P.; Codella, C.; Jacq, T.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Baudry, A.; Bontemps, S.; Braine, J.; Herpin, F.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Baudry, A.; Bontemps, S.; Braine, J.; Herpin, F.] CNRS INSU, UMR 5804, Floirac, France. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Johnstone, D.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Bjerkeli, P.; Liseau, R.; Olberg, M.] Chalmers, Onsala Space Observ, Dept Radio & Space Sci, S-43992 Onsala, Sweden. [van der Tak, F.; Dieleman, P.; de Graauw, Th.; Helmich, F.; Jellema, W.; Marseille, M.; Risacher, C.; Shipman, R.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [van der Tak, F.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Bachiller, R.; Tafalla, M.] Observ Astron Nacl IGN, Madrid 28014, Spain. [Benedettini, M.; di Giorgio, A. M.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Area Ric Tor Vergata, I-00133 Rome, Italy. [Bergin, E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Doty, S. D.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Encrenaz, P.] Observ Paris, LERMA, F-75014 Paris, France. [Encrenaz, P.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [Fich, M.; McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Fuente, A.] Observ Astron Nacl, Alcala De Henares 28803, Spain. [Giannini, T.; Nisini, B.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Jorgensen, J. K.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Larsson, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Lis, D.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [McCoey, C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Melnick, G.; van Kempen, T. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Neufeld, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Wyrowski, F.; Parise, B.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Pearson, J. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Santiago-Garcia, J.] Inst Radio Astron Millimetr, Granada 18012, Spain. [Ossenkopf, V.; Schieder, R.; Stutzki, J.] Univ Cologne, Inst Phys 1, KOSMA, D-50937 Cologne, Germany. [Melchior, M.; Csillaghy, A.; Soldati, M.] Univ Appl Sci NW, Inst Technol 4D, CH-5210 Windisch, Switzerland. [Baechtold, W.; Megej, A.] ETH, Lab Electromagnet Fields & Microwave Elect, CH-8092 Zurich, Switzerland. RP Benz, AO (reprint author), ETH, Inst Astron, CH-8093 Zurich, Switzerland. EM benz@astro.phys.ethz.ch RI Yildiz, Umut/C-5257-2011; Kristensen, Lars/F-4774-2011; Visser, Ruud/J-8574-2012; Jorgensen, Jes Kristian/L-7936-2014; Wampfler, Susanne/D-2270-2015; Fuente, Asuncion/G-1468-2016; OI Giannini, Teresa/0000-0002-0224-096X; Yildiz, Umut/0000-0001-6197-2864; Kristensen, Lars/0000-0003-1159-3721; Jorgensen, Jes Kristian/0000-0001-9133-8047; Wampfler, Susanne/0000-0002-3151-7657; Fuente, Asuncion/0000-0001-6317-6343; Bjerkeli, Per/0000-0002-7993-4118; Codella, Claudio/0000-0003-1514-3074; , Brunella Nisini/0000-0002-9190-0113 FU Swiss National Science Foundation [200020-113556] FX We thank Michael Kaufman and Serena Viti for helpful comments on an early draft. This program is made possible thanks to the Swiss Herschel guaranteed time program. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research Groningen, The Netherlands and with major contributions from Germany, France, and the US. Consortium members are: Canada:CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland: NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INT); Sweden: Chalmers University of Technology, Onsala Space Observatory, Swedish National Space Board, Stockholm University; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. The work on star formation at ETH Zurich is partially funded by the Swiss National Science Foundation (grant no. 200020-113556). NR 27 TC 44 Z9 44 U1 1 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L35 DI 10.1051/0004-6361/201015111 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900035 ER PT J AU Bergin, EA Phillips, TG Comito, C Crockett, NR Lis, DC Schilke, P Wang, S Bell, TA Blake, GA Bumble, B Caux, E Cabrit, S Ceccarelli, C Cernicharo, J Daniel, F de Graauw, T Dubernet, ML Emprechtinger, M Encrenaz, P Falgarone, E Gerin, M Giesen, TF Goicoechea, JR Goldsmith, PF Gupta, H Hartogh, P Helmich, FP Herbst, E Joblin, C Johnstone, D Kawamura, JH Langer, WD Latter, WB Lord, SD Maret, S Martin, PG Melnick, GJ Menten, KM Morris, P Muller, HSP Murphy, JA Neufeld, DA Ossenkopf, V Pagani, L Pearson, JC Perault, M Plume, R Roelfsema, P Qin, SL Salez, M Schlemmer, S Stutzki, J Tielens, AGGM Trappe, N van der Tak, FFS Vastel, C Yorke, HW Yu, S Zmuidzinas, J AF Bergin, E. A. Phillips, T. G. Comito, C. Crockett, N. R. Lis, D. C. Schilke, P. Wang, S. Bell, T. A. Blake, G. A. Bumble, B. Caux, E. Cabrit, S. Ceccarelli, C. Cernicharo, J. Daniel, F. de Graauw, Th. Dubernet, M. -L. Emprechtinger, M. Encrenaz, P. Falgarone, E. Gerin, M. Giesen, T. F. Goicoechea, J. R. Goldsmith, P. F. Gupta, H. Hartogh, P. Helmich, F. P. Herbst, E. Joblin, C. Johnstone, D. Kawamura, J. H. Langer, W. D. Latter, W. B. Lord, S. D. Maret, S. Martin, P. G. Melnick, G. J. Menten, K. M. Morris, P. Mueller, H. S. P. Murphy, J. A. Neufeld, D. A. Ossenkopf, V. Pagani, L. Pearson, J. C. Perault, M. Plume, R. Roelfsema, P. Qin, S. -L. Salez, M. Schlemmer, S. Stutzki, J. Tielens, A. G. G. M. Trappe, N. van der Tak, F. F. S. Vastel, C. Yorke, H. W. Yu, S. Zmuidzinas, J. TI Herschel observations of EXtra-Ordinary Sources (HEXOS): The present and future of spectral surveys with Herschel/ HIFI SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: abundances; ISM: molecules; submillimeter: ISM ID LINE SURVEY; ORION KL; MOLECULAR-SPECTROSCOPY; COLOGNE DATABASE; HOT CORES; WATER; SUBMILLIMETER; GHZ; CLOUDS; BAND AB We present initial results from the Herschel GT key program: Herschel observations of EXtra-Ordinary Sources (HEXOS) and outline the promise and potential of spectral surveys with Herschel/HIFI. The HIFI instrument offers unprecedented sensitivity, as well as continuous spectral coverage across the gaps imposed by the atmosphere, opening up a largely unexplored wavelength regime to high-resolution spectroscopy. We show the spectrum of Orion KL between 480 and 560 GHz and from 1.06 to 1.115 THz. From these data, we confirm that HIFI separately measures the dust continuum and spectrally resolves emission lines in Orion KL. Based on this capability we demonstrate that the line contribution to the broad-band continuum in this molecule-rich source is similar to 20-40% below 1 THz and declines to a few percent at higher frequencies. We also tentatively identify multiple transitions of (HDO)-O-18 in the spectra. The first detection of this rare isotopologue in the interstellar medium suggests that HDO emission is optically thick in the Orion hot core with HDO/H2O similar to 0.02. We discuss the implications of this detection for the water D/H ratio in hot cores. C1 [Bergin, E. A.; Crockett, N. R.; Wang, S.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Phillips, T. G.; Lis, D. C.; Bell, T. A.; Emprechtinger, M.; Zmuidzinas, J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Comito, C.; Schilke, P.; Menten, K. M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Schilke, P.; Giesen, T. F.; Mueller, H. S. P.; Ossenkopf, V.; Qin, S. -L.; Schlemmer, S.; Stutzki, J.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Blake, G. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Bumble, B.; Goldsmith, P. F.; Gupta, H.; Kawamura, J. H.; Langer, W. D.; Pearson, J. C.; Yorke, H. W.; Yu, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Caux, E.; Joblin, C.; Vastel, C.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [Caux, E.; Joblin, C.; Vastel, C.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Cabrit, S.; Pagani, L.; Salez, M.] LERMA, F-75014 Paris, France. [Ceccarelli, C.; Maret, S.] Lab Astrophys Observ Grenoble, F-38041 Grenoble 9, France. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.] Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid 28850, Spain. [Cabrit, S.; Pagani, L.; Salez, M.] Observ Paris, CNRS, UMR8112, F-75014 Paris, France. [Daniel, F.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Perault, M.] Observ Paris, UMR8112, CNRS, LERMA, F-75231 Paris 05, France. [Daniel, F.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Perault, M.] Ecole Normale Super, F-75231 Paris 05, France. [de Graauw, Th.; Helmich, F. P.; Ossenkopf, V.; Roelfsema, P.; van der Tak, F. F. S.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Dubernet, M. -L.] Univ Paris 06, LPMAA, UMR7092, Paris, France. [Dubernet, M. -L.] Observ Paris, LUTH, UMR8102, Meudon, France. [Hartogh, P.] MPI Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Herbst, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Latter, W. B.; Lord, S. D.; Morris, P.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Martin, P. G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Melnick, G. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Murphy, J. A.; Trappe, N.] Natl Univ Ireland Maynooth, Maynooth, Kildare, Ireland. [Neufeld, D. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Tielens, A. G. G. M.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. RP Bergin, EA (reprint author), Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA. EM ebergin@umich.edu RI Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Trappe, Neil/C-9014-2016; Yu, Shanshan/D-8733-2016; Goldsmith, Paul/H-3159-2016; OI Maret, Sebastien/0000-0003-1104-4554; Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281; Trappe, Neil/0000-0003-2527-9821; Mueller, Holger/0000-0002-0183-8927 FU NASA FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands, and with major contributions from Germany, France, and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri -INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio AstronU mico Nacional (IGN), Centro de AstrobiologSa (CSIC-INTA). Sweden: Chalmers University of Technology -MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University -Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. The HEXOS team also is grateful to the HIFI instrument team for building a fantastic instrument. Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 29 TC 73 Z9 73 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L20 DI 10.1051/0004-6361/201015071 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900020 ER PT J AU Bergin, EA Hogerheijde, MR Brinch, C Fogel, J Yildiz, UA Kristensen, LE van Dishoeck, EF Bell, TA Blake, GA Cernicharo, J Dominik, C Lis, D Melnick, G Neufeld, D Panic, O Pearson, JC Bachiller, R Baudry, A Benedettini, M Benz, AO Bjerkeli, P Bontemps, S Braine, J Bruderer, S Caselli, P Codella, C Daniel, F di Giorgio, AM Doty, SD Encrenaz, P Fich, M Fuente, A Giannini, T Goicoechea, JR de Graauw, T Helmich, F Herczeg, GJ Herpin, F Jacq, T Johnstone, D Jorgensen, JK Larsson, B Liseau, R Marseille, M Mc Coey, C Nisini, B Olberg, M Parise, B Plume, R Risacher, C Santiago-Garcia, J Saraceno, P Shipman, R Tafalla, M van Kempen, TA Visser, R Wampfler, SF Wyrowski, F van der Tak, F Jellema, W Tielens, AGGM Hartogh, P Stutzki, J Szczerba, R AF Bergin, E. A. Hogerheijde, M. R. Brinch, C. Fogel, J. Yildiz, U. A. Kristensen, L. E. van Dishoeck, E. F. Bell, T. A. Blake, G. A. Cernicharo, J. Dominik, C. Lis, D. Melnick, G. Neufeld, D. Panic, O. Pearson, J. C. Bachiller, R. Baudry, A. Benedettini, M. Benz, A. O. Bjerkeli, P. Bontemps, S. Braine, J. Bruderer, S. Caselli, P. Codella, C. Daniel, F. di Giorgio, A. M. Doty, S. D. Encrenaz, P. Fich, M. Fuente, A. Giannini, T. Goicoechea, J. R. de Graauw, Th Helmich, F. Herczeg, G. J. Herpin, F. Jacq, T. Johnstone, D. Jorgensen, J. K. Larsson, B. Liseau, R. Marseille, M. Mc Coey, C. Nisini, B. Olberg, M. Parise, B. Plume, R. Risacher, C. Santiago-Garcia, J. Saraceno, P. Shipman, R. Tafalla, M. van Kempen, T. A. Visser, R. Wampfler, S. F. Wyrowski, F. van der Tak, F. Jellema, W. Tielens, A. G. G. M. Hartogh, P. Stuetzki, J. Szczerba, R. TI Sensitive limits on the abundance of cold water vapor in the DM Tauri protoplanetary disk SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: abundances; ISM: molecules; protoplanetary disks ID PLANET-FORMING REGION; CIRCUMSTELLAR DISKS; H2O; STARS; DUST; MOLECULES; SPECTRA; GAS; DESORPTION; EVOLUTION AB We performed a sensitive search for the ground-state emission lines of ortho-and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI instrument. No strong lines are detected down to 3 sigma levels in 0.5 km s(-1) channels of 4.2 mK for the 1(10)-1(01) line and 12.6 mK for the 1(11)-0(00) line. We report a very tentative detection, however, of the 1(10)-1(01) line in the wide band spectrometer, with a strength of T-mb = 2.7 mK, a width of 5.6 km s(-1) and an integrated intensity of 16.0 mK km s(-1). The latter constitutes a 6 sigma detection. Regardless of the reality of this tentative detection, model calculations indicate that our sensitive limits on the line strengths preclude efficient desorption of water in the UV illuminated regions of the disk. We hypothesize that more than 95-99% of the water ice is locked up in coagulated grains that have settled to the midplane. C1 [Bergin, E. A.; Fogel, J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Hogerheijde, M. R.; Brinch, C.; Yildiz, U. A.; Kristensen, L. E.; van Dishoeck, E. F.; Visser, R.; Tielens, A. G. G. M.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Dishoeck, E. F.; Herczeg, G. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Blake, G. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.] CSIC INTA, Ctr Astrobiol, Dept Astrofis, Madrid 28850, Spain. [Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Bell, T. A.; Lis, D.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Melnick, G.; van Kempen, T. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Neufeld, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Panic, O.] European So Observ, D-85748 Garching, Germany. [Pearson, J. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bachiller, R.; Tafalla, M.] Observ Astron Nacl IGN, Madrid 28014, Spain. [Baudry, A.; di Giorgio, A. M.; Herpin, F.; Nisini, B.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Area Ric Tor Vergata, I-00133 Rome, Italy. [Benedettini, M.; Caselli, P.; Codella, C.; Jacq, T.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Benz, A. O.; Bruderer, S.; Wampfler, S. F.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Bjerkeli, P.; Liseau, R.; Olberg, M.] Chalmers, Onsala Space Observ, Dept Radio & Space Sci, S-43992 Onsala, Sweden. [Bontemps, S.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Bontemps, S.] CNRS INSU, UMR 5804, Floirac, France. [Braine, J.; Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Doty, S. D.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Encrenaz, P.] Observ Paris, LERMA, F-75014 Paris, France. [Fich, M.; Mc Coey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Fuente, A.] Observ Astron Nacl, Alcala De Henares 28803, Spain. [Giannini, T.] INAF Osservatorio Astronom Roma, I-00040 Monte Porzio Catone, Italy. [de Graauw, Th; Helmich, F.; Marseille, M.; Risacher, C.; Shipman, R.; van der Tak, F.; Jellema, W.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Johnstone, D.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Jorgensen, J. K.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen K, Denmark. [Larsson, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Mc Coey, C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Parise, B.; Wyrowski, F.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Santiago-Garcia, J.] Inst Radio Astron Millimetr, Granada 18012, Spain. [van der Tak, F.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Hartogh, P.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Stuetzki, J.] Univ Cologne, Inst Phys 1, KOSMA, D-50937 Cologne, Germany. [Szczerba, R.] Nicholas Copernicus Astron Ctr, PL-87100 Torun, Poland. RP Bergin, EA (reprint author), Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA. EM ebergin@umich.edu RI Yildiz, Umut/C-5257-2011; Kristensen, Lars/F-4774-2011; Visser, Ruud/J-8574-2012; Wampfler, Susanne/D-2270-2015; Brinch, Christian/G-5157-2015; Fuente, Asuncion/G-1468-2016; OI Yildiz, Umut/0000-0001-6197-2864; Kristensen, Lars/0000-0003-1159-3721; Wampfler, Susanne/0000-0002-3151-7657; Brinch, Christian/0000-0002-5074-7183; Fuente, Asuncion/0000-0001-6317-6343; Bjerkeli, Per/0000-0002-7993-4118; Codella, Claudio/0000-0003-1514-3074; Giannini, Teresa/0000-0002-0224-096X; , Brunella Nisini/0000-0002-9190-0113 FU NASA through JPL/Caltech; NSF [0707777]; NWO [639.042.404] FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. Support for this work was provided by NASA through an award issued by JPL/Caltech. E.A.B. acknowledges support by NSF Grant 0707777, M.R.H. by NWO grant 639.042.404. NR 37 TC 42 Z9 42 U1 1 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L33 DI 10.1051/0004-6361/201015104 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900033 ER PT J AU Bruderer, S Benz, AO van Dishoeck, EF Melchior, M Doty, SD van der Tak, F Stauber, P Wampfler, SF Dedes, C Yildiz, UA Pagani, L Giannini, T de Graauw, T Whyborn, N Teyssier, D Jellema, W Shipman, R Schieder, R Honingh, N Caux, E Bachtold, W Csillaghy, A Monstein, C Bachiller, R Baudry, A Benedettini, M Bergin, E Bjerkeli, P Blake, GA Bontemps, S Braine, J Caselli, P Cernicharo, J Codella, C Daniel, F di Giorgio, AM Dominik, C Encrenaz, P Fich, M Fuente, A Goicoechea, JR Helmich, F Herczeg, GJ Herpin, F Hogerheijde, MR Jacq, T Johnstone, D Jorgensen, JK Kristensen, LE Larsson, B Lis, D Liseau, R Marseille, M McCoey, C Melnick, G Neufeld, D Nisini, B Olberg, M Parise, B Pearson, JC Plume, R Risacher, C Santiago-Garcia, J Saraceno, P Shipman, R Tafalla, M van Kempen, TA Visser, R Wyrowski, F AF Bruderer, S. Benz, A. O. van Dishoeck, E. F. Melchior, M. Doty, S. D. van der Tak, F. Staeuber, P. Wampfler, S. F. Dedes, C. Yildiz, U. A. Pagani, L. Giannini, T. de Graauw, Th. Whyborn, N. Teyssier, D. Jellema, W. Shipman, R. Schieder, R. Honingh, N. Caux, E. Baechtold, W. Csillaghy, A. Monstein, C. Bachiller, R. Baudry, A. Benedettini, M. Bergin, E. Bjerkeli, P. Blake, G. A. Bontemps, S. Braine, J. Caselli, P. Cernicharo, J. Codella, C. Daniel, F. di Giorgio, A. M. Dominik, C. Encrenaz, P. Fich, M. Fuente, A. Goicoechea, J. R. Helmich, F. Herczeg, G. J. Herpin, F. Hogerheijde, M. R. Jacq, T. Johnstone, D. Jorgensen, J. K. Kristensen, L. E. Larsson, B. Lis, D. Liseau, R. Marseille, M. McCoey, C. Melnick, G. Neufeld, D. Nisini, B. Olberg, M. Parise, B. Pearson, J. C. Plume, R. Risacher, C. Santiago-Garcia, J. Saraceno, P. Shipman, R. Tafalla, M. van Kempen, T. A. Visser, R. Wyrowski, F. TI Herschel/HIFI detections of hydrides towards AFGL 2591 Envelope emission versus tenuous cloud absorption SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: molecules; stars: formation; astrochemistry; ISM: individual objects: AFGL 2591 ID STAR-FORMING REGIONS; INTERSTELLAR-MEDIUM; OUTFLOW; CHEMISTRY; SPECTROSCOPY; GL-2591; H2O+; EXCITATION; ABUNDANCE AB The Heterodyne Instrument for the Far Infrared (HIFI) onboard the Herschel Space Observatory allows the first observations of light diatomic molecules at high spectral resolution and in multiple transitions. Here, we report deep integrations using HIFI in different lines of hydrides towards the high-mass star forming region AFGL 2591. Detected are CH, CH+, NH, OH+, H2O+, while NH+ and SH+ have not been detected. All molecules except for CH and CH+ are seen in absorption with low excitation temperatures and at velocities different from the systemic velocity of the protostellar envelope. Surprisingly, the CH(J(F,P) = 3/2(2),(-) - 1/2(1,+)) and CH+(J = 1-0, J = 2-1) lines are detected in emission at the systemic velocity. We can assign the absorption features to a foreground cloud and an outflow lobe, while the CH and CH+ emission stems from the envelope. The observed abundance and excitation of CH and CH+ can be explained in the scenario of FUV irradiated outflow walls, where a cavity etched out by the outflow allows protostellar FUV photons to irradiate and heat the envelope at larger distances driving the chemical reactions that produce these molecules. C1 [Bruderer, S.; Benz, A. O.; Staeuber, P.; Wampfler, S. F.; Dedes, C.; Monstein, C.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [van Dishoeck, E. F.; Yildiz, U. A.; Hogerheijde, M. R.; Kristensen, L. E.; Visser, R.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Dishoeck, E. F.; Herczeg, G. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Melchior, M.; Csillaghy, A.] FHNW, Inst Technol 4D, CH-5210 Windisch, Switzerland. [Doty, S. D.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [van der Tak, F.; Jellema, W.; Shipman, R.; Helmich, F.; Marseille, M.; Risacher, C.; Shipman, R.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [van der Tak, F.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Pagani, L.] Observ Paris, LERMA, F-75014 Paris, France. [Giannini, T.; Nisini, B.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Pagani, L.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [de Graauw, Th.; Whyborn, N.] Joint ALMA Off, Santiago, Chile. [Teyssier, D.] ESA, European Space Astron Ctr, Madrid 28691, Spain. [Schieder, R.; Honingh, N.] Univ Cologne, Inst Phys 1, KOSMA, D-50937 Cologne, Germany. [Caux, E.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [Caux, E.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Baechtold, W.] ETH, Lab Electromagnet Fields Ad Microwave Elect, CH-8092 Zurich, Switzerland. [Bachiller, R.; Tafalla, M.] Observ Astron Nacl IGN, Madrid 28014, Spain. [Baudry, A.; Bontemps, S.; Braine, J.; Herpin, F.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Baudry, A.; Bontemps, S.; Braine, J.; Herpin, F.] CNRS INSU, UMR 5804, Floirac, France. [Benedettini, M.; di Giorgio, A. M.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Area Ric Tor Vergata, I-00133 Rome, Italy. [Bergin, E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Bjerkeli, P.; Liseau, R.; Olberg, M.] Chalmers, Onsala Space Observ, Dept Radio & Space Sci, S-43992 Onsala, Sweden. [Blake, G. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Caselli, P.; Codella, C.; Jacq, T.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.] CSIC INTA, Ctr Astrobiol, Dept Astrofis, Madrid 28850, Spain. [Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Fich, M.; McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Fuente, A.] Observ Astron Nacl, Alcala De Henares 28803, Spain. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Johnstone, D.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Jorgensen, J. K.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen K, Denmark. [Larsson, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Lis, D.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [McCoey, C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Melnick, G.; van Kempen, T. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Neufeld, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Parise, B.; Wyrowski, F.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Pearson, J. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Santiago-Garcia, J.] IRAM, E-18012 Granada, Spain. RP Bruderer, S (reprint author), ETH, Inst Astron, CH-8093 Zurich, Switzerland. EM simonbr@astro.phys.ethz.ch RI Yildiz, Umut/C-5257-2011; Kristensen, Lars/F-4774-2011; Visser, Ruud/J-8574-2012; Jorgensen, Jes Kristian/L-7936-2014; Wampfler, Susanne/D-2270-2015; Fuente, Asuncion/G-1468-2016; OI Yildiz, Umut/0000-0001-6197-2864; Kristensen, Lars/0000-0003-1159-3721; Jorgensen, Jes Kristian/0000-0001-9133-8047; Wampfler, Susanne/0000-0002-3151-7657; Fuente, Asuncion/0000-0001-6317-6343; Bjerkeli, Per/0000-0002-7993-4118; Codella, Claudio/0000-0003-1514-3074; Giannini, Teresa/0000-0002-0224-096X; , Brunella Nisini/0000-0002-9190-0113 FU Swiss National Science Foundation [200020-113556] FX We thank the anonymous referee for useful comments. The work on star formation at ETH Zurich is partially funded by the Swiss National Science Foundation grant 200020-113556. This program is made possible thanks to the Swiss HIFI guaranteed time program. HIFI has been designed and built by a consortium of institutes and university departments from acrossEurope, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologa (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. HIPE is a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortia. NR 27 TC 31 Z9 31 U1 1 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L44 DI 10.1051/0004-6361/201015098 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900044 ER PT J AU Caselli, P Keto, E Pagani, L Aikawa, Y Yildiz, UA van der Tak, FFS Tafalla, M Bergin, EA Nisini, B Codella, C van Dishoeck, EF Bachiller, R Baudry, A Benedettini, M Benz, AO Bjerkeli, P Blake, GA Bontemps, S Braine, J Bruderer, S Cernicharo, J Daniel, F di Giorgio, AM Dominik, C Doty, SD Encrenaz, P Fich, M Fuente, A Gaier, T Giannini, T Goicoechea, JR de Graauw, T Helmich, F Herczeg, GJ Herpin, F Hogerheijde, MR Jackson, B Jacq, T Javadi, H Johnstone, D Jorgensen, JK Kester, D Kristensen, LE Laauwen, W Larsson, B Lis, D Liseau, R Luinge, W Marseille, M McCoey, C Megej, A Melnick, G Neufeld, D Olberg, M Parise, B Pearson, JC Plume, R Risacher, C Santiago-Garcia, J Saraceno, P Shipman, R Siegel, P van Kempen, TA Visser, R Wampfler, SF Wyrowski, F AF Caselli, P. Keto, E. Pagani, L. Aikawa, Y. Yildiz, U. A. van der Tak, F. F. S. Tafalla, M. Bergin, E. A. Nisini, B. Codella, C. van Dishoeck, E. F. Bachiller, R. Baudry, A. Benedettini, M. Benz, A. O. Bjerkeli, P. Blake, G. A. Bontemps, S. Braine, J. Bruderer, S. Cernicharo, J. Daniel, F. di Giorgio, A. M. Dominik, C. Doty, S. D. Encrenaz, P. Fich, M. Fuente, A. Gaier, T. Giannini, T. Goicoechea, J. R. de Graauw, Th. Helmich, F. Herczeg, G. J. Herpin, F. Hogerheijde, M. R. Jackson, B. Jacq, T. Javadi, H. Johnstone, D. Jorgensen, J. K. Kester, D. Kristensen, L. E. Laauwen, W. Larsson, B. Lis, D. Liseau, R. Luinge, W. Marseille, M. McCoey, C. Megej, A. Melnick, G. Neufeld, D. Olberg, M. Parise, B. Pearson, J. C. Plume, R. Risacher, C. Santiago-Garcia, J. Saraceno, P. Shipman, R. Siegel, P. van Kempen, T. A. Visser, R. Wampfler, S. F. Wyrowski, F. TI Water vapor toward starless cores: The Herschel view SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; line: formation; molecular processes; radiative transfer; stars: formation; ISM: clouds ID DENSE INTERSTELLAR CLOUDS; PRE-STELLAR CORES; MOLECULAR-IONS; INITIAL CONDITIONS; PRESTELLAR CORES; ABUNDANCE; L1544; TEMPERATURE; DEPLETION; OXYGEN AB Aims. Previous studies by the satellites SWAS and Odin provided stringent upper limits on the gas phase water abundance of dark clouds (x(H2O) < 7 x 10(-9)). We investigate the chemistry of water vapor in starless cores beyond the previous upper limits using the highly improved angular resolution and sensitivity of Herschel and measure the abundance of water vapor during evolutionary stages just preceding star formation. Methods. High spectral resolution observations of the fundamental ortho water (o-H2O) transition (557 GHz) were carried out with the Heterodyne Instrument for the Far Infrared onboard Herschel toward two starless cores: Barnard 68 (hereafter B68), a Bok globule, and LDN 1544 (L1544), a prestellar core embedded in the Taurus molecular cloud complex. Detailed radiative transfer and chemical codes were used to analyze the data. Results. The RMS in the brightness temperature measured for the B68 and L1544 spectra is 2.0 and 2.2 mK, respectively, in a velocity bin of 0.59 km s(-1). The continuum level is 3.5 +/- 0.2 mK in B68 and 11.4 +/- 0.4 mK in L1544. No significant feature is detected in B68 and the 3 sigma upper limit is consistent with a column density of o-H2O N(o-H2O) < 2.5 x 10(13) cm(-2), or a fractional abundance x(o-H2O) < 1.3 x 10(-9), more than an order of magnitude lower than the SWAS upper limit on this source. The L1544 spectrum shows an absorption feature at a 5 sigma level from which we obtain the first value of the o-H2O column density ever measured in dark clouds: N(o-H2O) = (8 +/- 4) x 10(12) cm(-2). The corresponding fractional abundance is x(o-H2O) similar or equal to 5 x 10(-9) at radii > 7000 AU and similar or equal to 2 x 10(-10) toward the center. The radiative transfer analysis shows that this is consistent with a x(o-H2O) profile peaking at similar or equal to 10(-8), 0.1 pc away from the core center, where both freeze-out and photodissociation are negligible. Conclusions. Herschel has provided the first measurement of water vapor in dark regions. Column densities of o-H2O are low, but prestellar cores such as L1544 (with their high central densities, strong continuum, and large envelopes) appear to be very promising tools to finally shed light on the solid/vapor balance of water in molecular clouds and oxygen chemistry in the earliest stages of star formation. C1 [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Caselli, P.; Codella, C.; Jacq, T.] Ist Nazl Fis Nucl, Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Keto, E.; Melnick, G.; van Kempen, T. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Pagani, L.; Encrenaz, P.] Observ Paris, LERMA, F-75014 Paris, France. [Pagani, L.; Encrenaz, P.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [Aikawa, Y.] Kobe Univ, Dept Earth & Planetary Sci, Nada Ku, Kobe, Hyogo 6578501, Japan. [Yildiz, U. A.; van Dishoeck, E. F.; Hogerheijde, M. R.; Kristensen, L. E.; Visser, R.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [van der Tak, F. F. S.; de Graauw, Th.; Helmich, F.; Jackson, B.; Kester, D.; Laauwen, W.; Luinge, W.; Marseille, M.; Risacher, C.; Shipman, R.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [van der Tak, F. F. S.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Tafalla, M.; Bachiller, R.] Observ Astron Nacl IGN, Madrid 28014, Spain. [Bergin, E. A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Nisini, B.; Giannini, T.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [van Dishoeck, E. F.; Herczeg, G. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Benz, A. O.; Bruderer, S.; Wampfler, S. F.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Baudry, A.; Bontemps, S.; Braine, J.; Herpin, F.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Baudry, A.; Bontemps, S.; Braine, J.; Herpin, F.] CNRS INSU, UMR 5804, F-33271 Floirac, France. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Johnstone, D.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Bjerkeli, P.; Liseau, R.; Olberg, M.] Chalmers, Dept Radio & Space Sci, Onsala Space Observ, S-43992 Onsala, Sweden. [Benedettini, M.; di Giorgio, A. M.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Area Ric Tor Vergata, I-00133 Rome, Italy. [Blake, G. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.] CSIC INTA, Ctr Astrobiol, Dept Astrofis, Madrid 28850, Spain. [Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Doty, S. D.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Fich, M.; McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Fuente, A.] Observ Astron Nacl, Alcala De Henares 28803, Spain. [Gaier, T.; Javadi, H.; Pearson, J. C.; Siegel, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jorgensen, J. K.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen K, Denmark. [Larsson, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Lis, D.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [McCoey, C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Neufeld, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Parise, B.; Wyrowski, F.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Santiago-Garcia, J.] Inst Radioastron Milimetr IRAM, Granada 18012, Spain. [Megej, A.] ETH, Microwave Lab, CH-8092 Zurich, Switzerland. RP Caselli, P (reprint author), Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. EM p.caselli@leeds.ac.uk RI Yildiz, Umut/C-5257-2011; Kristensen, Lars/F-4774-2011; Visser, Ruud/J-8574-2012; Jorgensen, Jes Kristian/L-7936-2014; Wampfler, Susanne/D-2270-2015; Fuente, Asuncion/G-1468-2016; OI Giannini, Teresa/0000-0002-0224-096X; Yildiz, Umut/0000-0001-6197-2864; Kristensen, Lars/0000-0003-1159-3721; Jorgensen, Jes Kristian/0000-0001-9133-8047; Wampfler, Susanne/0000-0002-3151-7657; Fuente, Asuncion/0000-0001-6317-6343; Bjerkeli, Per/0000-0002-7993-4118; Codella, Claudio/0000-0003-1514-3074; , Brunella Nisini/0000-0002-9190-0113 NR 39 TC 28 Z9 28 U1 1 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L29 DI 10.1051/0004-6361/201015097 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900029 ER PT J AU Ceccarelli, C Bacmann, A Boogert, A Caux, E Dominik, C Lefloch, B Lis, D Schilke, P van der Tak, F Caselli, P Cernicharo, J Codella, C Comito, C Fuente, A Baudry, A Bell, T Benedettini, M Bergin, EA Blake, GA Bottinelli, S Cabrit, S Castets, A Coutens, A Crimier, N Demyk, K Encrenaz, P Falgarone, E Gerin, M Goldsmith, PF Helmich, F Hennebelle, P Henning, T Herbst, E Hily-Blant, P Jacq, T Kahane, C Kama, M Klotz, A Langer, W Lord, S Lorenzani, A Maret, S Melnick, G Neufeld, D Nisini, B Pacheco, S Pagani, L Parise, B Pearson, J Phillips, T Salez, M Saraceno, P Schuster, K Tielens, X van der Wiel, MHD Vastel, C Viti, S Wakelam, V Walters, A Wyrowski, F Yorke, H Liseau, R Olberg, M Szczerba, R Benz, AO Melchior, M AF Ceccarelli, C. Bacmann, A. Boogert, A. Caux, E. Dominik, C. Lefloch, B. Lis, D. Schilke, P. van der Tak, F. Caselli, P. Cernicharo, J. Codella, C. Comito, C. Fuente, A. Baudry, A. Bell, T. Benedettini, M. Bergin, E. A. Blake, G. A. Bottinelli, S. Cabrit, S. Castets, A. Coutens, A. Crimier, N. Demyk, K. Encrenaz, P. Falgarone, E. Gerin, M. Goldsmith, P. F. Helmich, F. Hennebelle, P. Henning, T. Herbst, E. Hily-Blant, P. Jacq, T. Kahane, C. Kama, M. Klotz, A. Langer, W. Lord, S. Lorenzani, A. Maret, S. Melnick, G. Neufeld, D. Nisini, B. Pacheco, S. Pagani, L. Parise, B. Pearson, J. Phillips, T. Salez, M. Saraceno, P. Schuster, K. Tielens, X. van der Wiel, M. H. D. Vastel, C. Viti, S. Wakelam, V. Walters, A. Wyrowski, F. Yorke, H. Liseau, R. Olberg, M. Szczerba, R. Benz, A. O. Melchior, M. TI Herschel spectral surveys of star- forming regions Overview of the 555-636 GHz range SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; stars: formation ID NGC 6334 I; PROTOSTELLAR SHOCK L1157-B1; MASSIVE YOUNG STARS; DEUTERATED FORMALDEHYDE; HOT CORE; SUBMILLIMETER; MILLIMETER; PROTOSTARS; WATER; I(N) AB High resolution line spectra of star-forming regions are mines of information: they provide unique clues to reconstruct the chemical, dynamical, and physical structure of the observed source. We present the first results from the Herschel key project " Chemical HErschel Surveys of Star forming regions", CHESS. We report and discuss observations towards five CHESS targets, one outflow shock spot and four protostars with luminosities bewteen 20 and 2 x 105 L similar to : L1157-B1, IRAS 16293-2422, OMC2-FIR4, AFGL 2591, and NGC 6334I. The observations were obtained with the heterodyne spectrometer HIFI on board Herschel, with a spectral resolution of 1 MHz. They cover the frequency range 555-636 GHz, a range largely unexplored before the launch of the Herschel satellite. A comparison of the five spectra highlights spectacular differences in the five sources, for example in the density of methanol lines, or the presence./absence of lines from S-bearing molecules or deuterated species. We discuss how these differences can be attributed to the different star-forming mass or evolutionary status. C1 [Ceccarelli, C.; Bacmann, A.; Lefloch, B.; Castets, A.; Crimier, N.; Hily-Blant, P.; Kahane, C.; Maret, S.; Pacheco, S.] Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. [Ceccarelli, C.; Bacmann, A.; Baudry, A.; Castets, A.; Jacq, T.; Wakelam, V.] Univ Bordeaux, Lab Astrophys Bordeaux, Floirac, France. [Ceccarelli, C.; Bacmann, A.; Baudry, A.; Castets, A.; Jacq, T.; Wakelam, V.] CNRS INSU, UMR 5804, Floirac, France. [Boogert, A.; Lord, S.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Caux, E.; Bottinelli, S.; Coutens, A.; Demyk, K.; Klotz, A.; Vastel, C.; Walters, A.] Univ Toulouse 3, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse, France. [Caux, E.; Bottinelli, S.; Coutens, A.; Demyk, K.; Klotz, A.; Vastel, C.; Walters, A.] CNRS INSU, UMR 5187, Toulouse, France. [Dominik, C.; Kama, M.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6525 ED Nijmegen, Netherlands. [Schilke, P.; Comito, C.; Parise, B.; Wyrowski, F.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Schilke, P.] Univ Cologne, Inst Phys 1, D-5000 Cologne, Germany. [van der Tak, F.; Helmich, F.; van der Wiel, M. H. D.; Olberg, M.] SRON Netherlands Inst Space Res, Groningen, Netherlands. [van der Tak, F.; van der Wiel, M. H. D.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AB Groningen, Netherlands. [Caselli, P.; Benedettini, M.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Rome, Italy. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Cernicharo, J.; Crimier, N.] CSIC INTA, Ctr Astrobiol, Madrid, Spain. [Codella, C.; Lorenzani, A.] INAF Osservatorio Astrofis Arcetri, Florence, Italy. [Fuente, A.] IGN Observ Astron Nacl, Alcala De Henares, Spain. [Bergin, E. A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Cabrit, S.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Hennebelle, P.; Pagani, L.; Salez, M.] UCP, UPMC, Lab Etud Rayonnement & Mat Astrophys, UMR 8112,CNRS INSU,OP,ENS, Paris, France. [Goldsmith, P. F.; Langer, W.; Pearson, J.; Yorke, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Henning, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Herbst, E.] Ohio State Univ, Columbus, OH 43210 USA. [Melnick, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Neufeld, D.] Johns Hopkins Univ, Baltimore, MD USA. [Nisini, B.] INAF Osservatorio Astronom Roma, Monte Porzio Catone, Italy. [Schuster, K.] Inst RadioAstron Millimetr, Grenoble, France. [Tielens, X.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Viti, S.] UCL, Dept Phys & Astron, London, England. [Liseau, R.; Olberg, M.] Stockholm Univ, Dept Astron, Chalmers Univ Technol, S-10691 Stockholm, Sweden. [Szczerba, R.] Nicholas Copernicus Astron Ctr, Torun, Poland. [Benz, A. O.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. RP Ceccarelli, C (reprint author), Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. EM cecilia.ceccarelli@obs.ujf-grenoble.fr RI van der Wiel, Matthijs/M-4531-2014; Coutens, Audrey/M-4533-2014; Fuente, Asuncion/G-1468-2016; Goldsmith, Paul/H-3159-2016; OI Maret, Sebastien/0000-0003-1104-4554; van der Wiel, Matthijs/0000-0002-4325-3011; Coutens, Audrey/0000-0003-1805-3920; Fuente, Asuncion/0000-0001-6317-6343; Lorenzani, Andrea/0000-0002-4685-3434; Wakelam, Valentine/0000-0001-9676-2605; Kama, Mihkel/0000-0003-0065-7267; Codella, Claudio/0000-0003-1514-3074; , Brunella Nisini/0000-0002-9190-0113 FU Swedish National Space Board, Stockholm University -Stockholm Observatory FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France abd the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiolog a (CSIC-INTA). Sweden: Chalmers University of Technology -MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University -Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. We thank many funding agencies for financial NR 34 TC 63 Z9 63 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L22 DI 10.1051/0004-6361/201015081 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900022 ER PT J AU Cernicharo, J Waters, LBFM Decin, L Encrenaz, P Tielens, AGGM Agundez, M De Beck, E Muller, HSP Goicoechea, JR Barlow, MJ Benz, A Crimier, N Daniel, F Di Giorgio, AM Fich, M Gaier, T Garcia-Lario, P de Koter, A Khouri, T Liseau, R Lombaert, R Erickson, N Pardo, JR Pearson, JC Shipman, R Contreras, CS Teyssier, D AF Cernicharo, J. Waters, L. B. F. M. Decin, L. Encrenaz, P. Tielens, A. G. G. M. Agundez, M. De Beck, E. Mueller, H. S. P. Goicoechea, J. R. Barlow, M. J. Benz, A. Crimier, N. Daniel, F. Di Giorgio, A. M. Fich, M. Gaier, T. Garcia-Lario, P. de Koter, A. Khouri, T. Liseau, R. Lombaert, R. Erickson, N. Pardo, J. R. Pearson, J. C. Shipman, R. Sanchez Contreras, C. Teyssier, D. TI A high-resolution line survey of IRC+10216 with Herschel/HIFI First results: Detection of warm silicon dicarbide (SiC2) SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: individual: IRC+10216; stars: carbon; stars: AGB and post-AGB; line: identification; astrochemistry ID SUBMILLIMETER HCN LASER; DUST FORMATION ZONE; MOLECULAR-SPECTROSCOPY; LABORATORY MEASUREMENT; BURE OBSERVATIONS; COLOGNE DATABASE; ENVELOPE; CHEMISTRY; EMISSION; CO AB We present the first results of a high-spectral-resolution survey of the carbon-rich evolved star IRC+10216 that was carried out with the HIFI spectrometer onboard Herschel. This survey covers all HIFI bands, with a spectral range from 488 to 1901 GHz. In this letter we focus on the band-1b spectrum, in a spectral range 554.5-636.5 GHz, where we identified 130 spectral features with intensities above 0.03 K and a signal-to-noise ratio >5. Detected lines arise from HCN, SiO, SiS, CS, CO, metal-bearing species and, surprisingly, silicon dicarbide (SiC2). We identified 55 SiC2 transitions involving energy levels between 300 and 900 K. By analysing these rotational lines, we conclude that SiC2 is produced in the inner dust formation zone, with an abundance of similar to 2 x 10(-7) relative to molecular hydrogen. These SiC2 lines have been observed for the first time in space and have been used to derive an SiC2 rotational temperature of similar to 204 K and a source-averaged column density of similar to 6.4 x 10(15) cm(-2). Furthermore, the high quality of the HIFI data set was used to improve the spectroscopic rotational constants of SiC2. C1 [Cernicharo, J.; Goicoechea, J. R.; Crimier, N.; Daniel, F.; Pardo, J. R.; Sanchez Contreras, C.] CSIC INTA, Ctr Astrobiol, Dept Astrofis, Madrid 28850, Spain. [Waters, L. B. F. M.; Decin, L.; de Koter, A.; Khouri, T.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Waters, L. B. F. M.; Decin, L.; De Beck, E.; Lombaert, R.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Encrenaz, P.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [Tielens, A. G. G. M.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Agundez, M.] Observ Paris, LUTH, F-92190 Meudon, France. [Mueller, H. S. P.] Univ Cologne, Inst Phys 1, D-5000 Cologne 41, Germany. [Barlow, M. J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Benz, A.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Di Giorgio, A. M.] INAF Ist Fis Spazio Interplanetario, Area Ric Tor Vergata, I-00133 Rome, Italy. [Fich, M.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Gaier, T.; Pearson, J. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Garcia-Lario, P.; Teyssier, D.] ESA, European Space Astron Ctr, Madrid 28691, Spain. [de Koter, A.] Univ Utrecht, Astron Inst, NL-3584 CC Utrecht, Netherlands. [Liseau, R.] Chalmers, Onsala Space Observ, Dept Radio & Space Sci, S-43992 Onsala, Sweden. [Erickson, N.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Shipman, R.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. [Encrenaz, P.] LERMA, F-75014 Paris, France. RP Cernicharo, J (reprint author), CSIC INTA, Ctr Astrobiol, Dept Astrofis, Ctra de Torrejon a Ajalvir Km 4, Madrid 28850, Spain. EM jcernicharo@cab.inta-csic.es RI Barlow, Michael/A-5638-2009; Sanchez-Contreras, Carmen/N-3718-2015; Agundez, Marcelino/I-5369-2012; OI Barlow, Michael/0000-0002-3875-1171; Sanchez-Contreras, Carmen/0000-0002-6341-592X; Agundez, Marcelino/0000-0003-3248-3564; Mueller, Holger/0000-0002-0183-8927 FU Centre National de Recherche Spatiale (CNES); Spanish MICINN [AYA2006-14876, AYA2009-07304, CSD2009-00038]; Flanders (FWO); Bundesministerium fur Bildung und Forschung (BMBF) FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States (NASA) under the leadership of SRON, Netherlands Institute for Space Research, Groningen, The Netherlands, and with major contributions from Germany, France and the US. Consortium members are Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland: NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (INTA-CSIC); Sweden: Chalmers University of Technology - MC2, RSS & GARD, Onsala Space Observatory, Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: CalTech, JPL, NHSC. MG and EF acknowledge the support from the Centre National de Recherche Spatiale (CNES). J.C., M.A., J.R.G., J.R.P., C.S.C., and FD thank the Spanish MICINN for funding support under grants AYA2006-14876, AYA2009-07304, and CSD2009-00038. LD and EDB acknowledge financial support from the Fund for Scientific Research - Flanders (FWO). H.S.P.M. is grateful for support by the Bundesministerium fur Bildung und Forschung (BMBF) administered through the Deutsches Zentrum fur Luft- und Raumfahrt (DLR), whose support was aimed in particular at maintaining the CDMS. NR 49 TC 38 Z9 38 U1 0 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L8 DI 10.1051/0004-6361/201015150 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900008 ER PT J AU Chavarria, L Herpin, F Jacq, T Braine, J Bontemps, S Baudry, A Marseille, M van der Tak, F Pietropaoli, B Wyrowski, F Shipman, R Frieswijk, W van Dishoeck, EF Cernicharo, J Bachiller, R Benedettini, M Benz, AO Bergin, E Bjerkeli, P Blake, GA Bruderer, S Caselli, P Codella, C Daniel, F di Giorgio, AM Dominik, C Doty, SD Encrenaz, P Fich, M Fuente, A Giannini, T Goicoechea, JR de Graauw, T Hartogh, P Helmich, F Herczeg, GJ Hogerheijde, MR Johnstone, D Jorgensen, JK Kristensen, LE Larsson, B Lis, D Liseau, R McCoey, C Melnick, G Nisini, B Olberg, M Parise, B Pearson, JC Plume, R Risacher, C Santiago-Garcia, J Saraceno, P Stutzki, J Szczerba, R Tafalla, M Tielens, A van Kempen, TA Visser, R Wampfler, SF Willem, J Yildiz, UA AF Chavarria, L. Herpin, F. Jacq, T. Braine, J. Bontemps, S. Baudry, A. Marseille, M. van der Tak, F. Pietropaoli, B. Wyrowski, F. Shipman, R. Frieswijk, W. van Dishoeck, E. F. Cernicharo, J. Bachiller, R. Benedettini, M. Benz, A. O. Bergin, E. Bjerkeli, P. Blake, G. A. Bruderer, S. Caselli, P. Codella, C. Daniel, F. di Giorgio, A. M. Dominik, C. Doty, S. D. Encrenaz, P. Fich, M. Fuente, A. Giannini, T. Goicoechea, J. R. de Graauw, Th. Hartogh, P. Helmich, F. Herczeg, G. J. Hogerheijde, M. R. Johnstone, D. Jorgensen, J. K. Kristensen, L. E. Larsson, B. Lis, D. Liseau, R. McCoey, C. Melnick, G. Nisini, B. Olberg, M. Parise, B. Pearson, J. C. Plume, R. Risacher, C. Santiago-Garcia, J. Saraceno, P. Stutzki, J. Szczerba, R. Tafalla, M. Tielens, A. van Kempen, T. A. Visser, R. Wampfler, S. F. Willem, J. Yildiz, U. A. TI Water in massive star-forming regions: HIFI observations of W3 IRS5 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; stars: massive; ISM: molecules; ISM: abundances; dust, extinction; radio lines: ISM ID RADIATIVE-TRANSFER; ABUNDANCES; ENVELOPES; RATIOS; SPECTROSCOPY; PROTOSTARS; TRAPEZIUM; CONTINUUM; TRACERS; MODELS AB We present Herschel observations of the water molecule in the massive star-forming region W3 IRS5. The o-(H2O)-O-17 1(10)-1(01), p-(H2O)-O-18 1(11)-0(00), p-H2O 2(02)-1(11), p-H2O 1(11)-0(00), o-H2O 2(21)-2(12), and o-H2O 2(12)-1(01) lines, covering a frequency range from 552 up to 1669 GHz, have been detected at high spectral resolution with HIFI. The water lines in W3 IRS5 show well-defined high-velocity wings that indicate a clear contribution by outflows. Moreover, the systematically blue-shifted absorption in the H2O lines suggests expansion, presumably driven by the outflow. No infall signatures are detected. The p-H2O 1(11)-0(00) and o-H2O 2(12)-1(01) lines show absorption from the cold material (T similar to 10 K) in which the high-mass protostellar envelope is embedded. One-dimensional radiative transfer models are used to estimate water abundances and to further study the kinematics of the region. We show that the emission in the rare isotopologues comes directly from the inner parts of the envelope (T greater than or similar to 100 K) where water ices in the dust mantles evaporate and the gas-phase abundance increases. The resulting jump in the water abundance (with a constant inner abundance of 10(-4)) is needed to reproduce the o-(H2O)-O-17 1(10)-1(01) and p-(H2O)-O-18 1(11)-0(00) spectra in our models. We estimate water abundances of 10(-8) to 10(-9) in the outer parts of the envelope (T less than or similar to 100 K). The possibility of two protostellar objects contributing to the emission is discussed. C1 [Chavarria, L.; Herpin, F.; Jacq, T.; Braine, J.; Bontemps, S.; Baudry, A.; Pietropaoli, B.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Chavarria, L.; Herpin, F.; Jacq, T.; Braine, J.; Bontemps, S.; Baudry, A.; Pietropaoli, B.] CNRS INSU, UMR 5804, Floirac, France. [Marseille, M.; van der Tak, F.; Shipman, R.; Frieswijk, W.; de Graauw, Th.; Helmich, F.; Willem, J.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [van der Tak, F.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Pietropaoli, B.] Ecole Mines, F-44300 Nantes, France. [Wyrowski, F.; Parise, B.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [van Dishoeck, E. F.; Hogerheijde, M. R.; Kristensen, L. E.; Tielens, A.; Visser, R.; Yildiz, U. A.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Dishoeck, E. F.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.] CSIC INTA, Dept Astrofis, Ctr Astrobiol, Madrid 28850, Spain. [Bachiller, R.; Tafalla, M.] Observ Astron Nacl IGN, Madrid 28014, Spain. [Benedettini, M.; di Giorgio, A. M.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Area Ric Tor Vergata, I-00133 Rome, Italy. [Benz, A. O.; Bruderer, S.; Wampfler, S. F.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Bergin, E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Bjerkeli, P.; Liseau, R.; Olberg, M.] Chalmers, Onsala Space Observ, Dept Radio & Space Sci, S-43992 Onsala, Sweden. [Blake, G. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Caselli, P.; Codella, C.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Doty, S. D.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Encrenaz, P.] Observ Paris, LERMA, F-75014 Paris, France. [Encrenaz, P.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [Fich, M.; McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Fuente, A.] Observ Astron Nacl, Alcala De Henares 28803, Spain. [Giannini, T.; Nisini, B.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Hartogh, P.] MPI Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Johnstone, D.] Univ Victoria, Dept Phys & Astron, Victoria, BC V9E 2E7, Canada. [Jorgensen, J. K.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen K, Denmark. [Larsson, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Lis, D.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [McCoey, C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Melnick, G.; van Kempen, T. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Pearson, J. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Santiago-Garcia, J.] IRAM, E-18012 Granada, Spain. [Stutzki, J.] Univ Cologne, Inst Phys 1, KOSMA, D-50937 Cologne, Germany. [Szczerba, R.] Nicholas Copernicus Astron Ctr, PL-87100 Torun, Poland. RP Chavarria, L (reprint author), Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. EM luisagustinchavarria@gmail.com RI Yildiz, Umut/C-5257-2011; Kristensen, Lars/F-4774-2011; Visser, Ruud/J-8574-2012; Wampfler, Susanne/D-2270-2015; Fuente, Asuncion/G-1468-2016; OI Yildiz, Umut/0000-0001-6197-2864; Kristensen, Lars/0000-0003-1159-3721; Wampfler, Susanne/0000-0002-3151-7657; Fuente, Asuncion/0000-0001-6317-6343; Bjerkeli, Per/0000-0002-7993-4118; Codella, Claudio/0000-0003-1514-3074; Giannini, Teresa/0000-0002-0224-096X; , Brunella Nisini/0000-0002-9190-0113 FU French Space Agency CNES FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands, and with major contributions from Germany, France, and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. HIPE is a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortia. We also thank the French Space Agency CNES for financial support. NR 31 TC 36 Z9 36 U1 1 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L37 DI 10.1051/0004-6361/201015113 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900037 ER PT J AU Comito, C Schilke, P Rolffs, R Lis, DC Belloche, A Bergin, EA Phillips, TG Bell, TA Crockett, NR Wang, S Blake, GA Caux, E Ceccarelli, C Cernicharo, J Daniel, F Dubernet, ML Emprechtinger, M Encrenaz, P Gerin, M Giesen, TF Goicoechea, JR Goldsmith, PF Gupta, H Herbst, E Joblin, C Johnstone, D Langer, WD Latter, WD Lord, SD Maret, S Martin, PG Melnick, GJ Menten, KM Morris, P Muller, HSP Murphy, JA Neufeld, DA Ossenkopf, V Pearson, JC Perault, M Plume, R Qin, SL Schlemmer, S Stutzki, J Trappe, N van der Tak, FFS Vastel, C Yorke, HW Yu, S Olberg, M Szczerba, R Larsson, B Liseau, R Lin, RH Samoska, LA Schlecht, E AF Comito, C. Schilke, P. Rolffs, R. Lis, D. C. Belloche, A. Bergin, E. A. Phillips, T. G. Bell, T. A. Crockett, N. R. Wang, S. Blake, G. A. Caux, E. Ceccarelli, C. Cernicharo, J. Daniel, F. Dubernet, M. -L. Emprechtinger, M. Encrenaz, P. Gerin, M. Giesen, T. F. Goicoechea, J. R. Goldsmith, P. F. Gupta, H. Herbst, E. Joblin, C. Johnstone, D. Langer, W. D. Latter, W. D. Lord, S. D. Maret, S. Martin, P. G. Melnick, G. J. Menten, K. M. Morris, P. Mueller, H. S. P. Murphy, J. A. Neufeld, D. A. Ossenkopf, V. Pearson, J. C. Perault, M. Plume, R. Qin, S. -L. Schlemmer, S. Stutzki, J. Trappe, N. van der Tak, F. F. S. Vastel, C. Yorke, H. W. Yu, S. Olberg, M. Szczerba, R. Larsson, B. Liseau, R. Lin, R. H. Samoska, L. A. Schlecht, E. TI Herschel observations of deuterated water towards Sgr B2(M) SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: molecules; molecular processes; line: formation ID LINE OBSERVATIONS; HOT CORES; SAGITTARIUS-B2; SUBMILLIMETER; EXCITATION; ASTRONOMY; VAPOR; BAND AB Observations of HDO are an important complement for studies of water, because they give strong constraints on the formation processes - grain surfaces versus energetic process in the gas phase, e. g. in shocks. The HIFI observations of multiple transitions of HDO in Sgr B2(M) presented here allow the determination of the HDO abundance throughout the envelope, which has not been possible before with ground-based observations only. The abundance structure has been modeled with the spherical Monte Carlo radiative transfer code RATRAN, which also takes radiative pumping by continuum emission from dust into account. The modeling reveals that the abundance of HDO rises steeply with temperature from a low abundance (2.5 x 10(-11)) in the outer envelope at temperatures below 100 K through a medium abundance (1.5 x 10(-9)) in the inner envelope/outer core at temperatures between 100 and 200 K, and finally a high abundance (3.5 x 10(-9)) at temperatures above 200 K in the hot core. C1 [Comito, C.; Schilke, P.; Rolffs, R.; Belloche, A.; Menten, K. M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Schilke, P.; Rolffs, R.; Giesen, T. F.; Mueller, H. S. P.; Ossenkopf, V.; Qin, S. -L.; Schlemmer, S.; Stutzki, J.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Lis, D. C.; Phillips, T. G.; Bell, T. A.; Blake, G. A.; Emprechtinger, M.] CALTECH, Cahill Ctr Astron & Astrophys 301 17, Pasadena, CA 91125 USA. [Bergin, E. A.; Crockett, N. R.; Wang, S.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Caux, E.; Joblin, C.; Vastel, C.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [Caux, E.; Joblin, C.; Vastel, C.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Ceccarelli, C.; Maret, S.] Observ Grenoble, Astrophys Lab, F-38041 Grenoble 9, France. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.] Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid, Spain. [Daniel, F.; Encrenaz, P.; Gerin, M.; Perault, M.] Observ Paris, LERMA, CNRS UMR8112, F-75231 Paris 05, France. [Daniel, F.; Encrenaz, P.; Gerin, M.; Perault, M.] Ecole Normale Super, F-75231 Paris 05, France. [Dubernet, M. -L.] Univ Paris 06, LPMAA, UMR7092, Paris, France. [Dubernet, M. -L.] Observ Paris, LUTH, UMR8102, Meudon, France. [Goldsmith, P. F.; Gupta, H.; Langer, W. D.; Pearson, J. C.; Yorke, H. W.; Yu, S.; Lin, R. H.; Samoska, L. A.; Schlecht, E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Herbst, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Latter, W. D.; Lord, S. D.; Morris, P.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Martin, P. G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Melnick, G. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Murphy, J. A.; Trappe, N.] Natl Univ Ireland Maynooth, Maynooth, Kildare, Ireland. [Neufeld, D. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Ossenkopf, V.; van der Tak, F. F. S.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Olberg, M.; Liseau, R.] Chalmers, S-41296 Gothenburg, Sweden. [Szczerba, R.] Nicholas Copernicus Astron Ctr, PL-87100 Torun, Poland. [Larsson, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. RP Comito, C (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. EM ccomito@mpifr.de RI Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Trappe, Neil/C-9014-2016; Yu, Shanshan/D-8733-2016; Goldsmith, Paul/H-3159-2016 OI Mueller, Holger/0000-0002-0183-8927; Maret, Sebastien/0000-0003-1104-4554; Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281; Trappe, Neil/0000-0003-2527-9821; FU NASA through JPL/Caltech; NSF [AST-0540882] FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronifimico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. Support for this work was provided by NASA through an award issued by JPL/Caltech. CSO is supported by the NSF, award AST-0540882. NR 24 TC 7 Z9 7 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L38 DI 10.1051/0004-6361/201015121 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900038 ER PT J AU Crockett, NR Bergin, EA Wang, S Lis, DC Bell, TA Blake, GA Boogert, A Bumble, B Cabrit, S Caux, E Ceccarelli, C Cernicharo, J Daniel, F Daniel, F Dubernet, ML Emprechtinger, M Encrenaz, P Falgarone, E Gerin, M Giesen, TF Goicoechea, JR Goldsmith, PF Gupta, H Gusten, R Hartogh, P Helmich, F Herbst, E Honingh, N Joblin, C Johnstone, D Karpov, A Kawamura, JH Kooi, J Krieg, JM Langer, WD Latter, WD Lord, SD Maret, S Martin, PG Melnick, GJ Menten, KM Morris, P Muller, HSP Murphy, JA Neufeld, DA Ossenkopf, V Pearson, JC Perault, M Phillips, TG Plume, R Qin, SL Roelfsema, P Schieder, R Schilke, P Schlemmer, S Stutzki, J van der Tak, FFS Tielens, A Trappe, N Vastel, C Yorke, HW Yu, S Zmuidzinas, J AF Crockett, N. R. Bergin, E. A. Wang, S. Lis, D. C. Bell, T. A. Blake, G. A. Boogert, A. Bumble, B. Cabrit, S. Caux, E. Ceccarelli, C. Cernicharo, J. Daniel, F. Daniel, F. Dubernet, M. -L. Emprechtinger, M. Encrenaz, P. Falgarone, E. Gerin, M. Giesen, T. F. Goicoechea, J. R. Goldsmith, P. F. Gupta, H. Guesten, R. Hartogh, P. Helmich, F. Herbst, E. Honingh, N. Joblin, C. Johnstone, D. Karpov, A. Kawamura, J. H. Kooi, J. Krieg, J. -M. Langer, W. D. Latter, W. D. Lord, S. D. Maret, S. Martin, P. G. Melnick, G. J. Menten, K. M. Morris, P. Mueller, H. S. P. Murphy, J. A. Neufeld, D. A. Ossenkopf, V. Pearson, J. C. Perault, M. Phillips, T. G. Plume, R. Qin, S. -L. Roelfsema, P. Schieder, R. Schilke, P. Schlemmer, S. Stutzki, J. van der Tak, F. F. S. Tielens, A. Trappe, N. Vastel, C. Yorke, H. W. Yu, S. Zmuidzinas, J. TI Herschel observations of EXtra-Ordinary Sources (HEXOS): The Terahertz spectrum of Orion KL seen at high spectral resolution SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; ISM: general; ISM: clouds; ISM: molecules; submillimeter: ISM ID MOLECULAR LINE SURVEY; APERTURE SYNTHESIS; COLOGNE DATABASE; SUBMILLIMETER; SPECTROSCOPY; MILLIMETER; NEBULA; CLOUDS; CDMS; HIFI AB We present the first high spectral resolution observations of Orion KL in the frequency ranges 1573.4-1702.8 GHz (band 6b) and 1788.4-1906.8 GHz (band 7b) obtained using the HIFI instrument on board the Herschel Space Observatory. We characterize the main emission lines found in the spectrum, which primarily arise from a range of components associated with Orion KL including the hot core, but also see widespread emission from components associated with molecular outflows traced by H2O, SO2, and OH. We find that the density of observed emission lines is significantly diminished in these bands compared to lower frequency Herschel/HIFI bands. C1 [Crockett, N. R.; Bergin, E. A.; Wang, S.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Lis, D. C.; Bell, T. A.; Blake, G. A.; Emprechtinger, M.; Karpov, A.; Kooi, J.; Phillips, T. G.; Zmuidzinas, J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Neufeld, D. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Caux, E.; Joblin, C.; Vastel, C.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [Caux, E.; Joblin, C.; Vastel, C.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Ceccarelli, C.; Maret, S.] Lab Astrophys Observ Grenoble, F-38041 Grenoble 9, France. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.] Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid 28850, Spain. [Daniel, F.; Guesten, R.; Menten, K. M.; Schilke, P.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Daniel, F.; Encrenaz, P.; Gerin, M.; Krieg, J. -M.; Perault, M.] Observ Paris, UMR8112, CNRS, LERMA, F-75231 Paris 05, France. [Daniel, F.; Encrenaz, P.; Gerin, M.; Krieg, J. -M.; Perault, M.] Ecole Normale Super, F-75231 Paris 05, France. [Dubernet, M. -L.] Univ Paris 06, LPMAA, UMR7092, Paris, France. [Dubernet, M. -L.] Observ Paris, UMR8102, LUTH, Meudon, France. [Giesen, T. F.; Honingh, N.; Mueller, H. S. P.; Ossenkopf, V.; Qin, S. -L.; Schieder, R.; Schilke, P.; Schlemmer, S.; Stutzki, J.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Bumble, B.; Goldsmith, P. F.; Gupta, H.; Kawamura, J. H.; Langer, W. D.; Pearson, J. C.; Yorke, H. W.; Yu, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Herbst, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Boogert, A.; Latter, W. D.; Lord, S. D.; Morris, P.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Martin, P. G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Melnick, G. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Murphy, J. A.; Trappe, N.] Natl Univ Ireland Maynooth, Maynooth, Kildare, Ireland. [Helmich, F.; Ossenkopf, V.; Roelfsema, P.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Plume, R.; van der Tak, F. F. S.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Hartogh, P.] MPI Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Tielens, A.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Cabrit, S.] Observ Paris, CNRS, UMR8112, F-75014 Paris, France. [Cabrit, S.] LERMA, F-75014 Paris, France. [Falgarone, E.] Observ Paris, UMR8112, CNRS, LERMA, F-75231 Paris 05, France. [Falgarone, E.] Ecole Normale Super, F-75231 Paris 05, France. RP Crockett, NR (reprint author), Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA. EM ncrocket@umich.edu RI Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Trappe, Neil/C-9014-2016; Yu, Shanshan/D-8733-2016; Goldsmith, Paul/H-3159-2016 OI Mueller, Holger/0000-0002-0183-8927; Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281; Maret, Sebastien/0000-0003-1104-4554; Trappe, Neil/0000-0003-2527-9821; FU NASA; NSF [AST0540882] FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astron mico Nacional (IGN), Centro de Astrobiolog a (CSIC-INTA). Sweden: Chalmers University of Technology -MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University -Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. Support for this work was provided by NASA through an award issued by JPL/Caltech. CSO is supported by the NSF, award AST0540882. NR 20 TC 17 Z9 17 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L21 DI 10.1051/0004-6361/201015116 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900021 ER PT J AU Dedes, C Rollig, M Mookerjea, B Okada, Y Ossenkopf, V Bruderer, S Benz, AO Melchior, M Kramer, C Gerin, M Gusten, R Akyilmaz, M Berne, O Boulanger, F De Lange, G Dubbeldam, L France, K Fuente, A Goicoechea, JR Harris, A Huisman, R Jellema, W Joblin, C Klein, T Le Petit, F Lord, S Martin, P Martin-Pintado, J Neufeld, DA Philipp, S Phillips, T Pilleri, P Rizzo, JR Salez, M Schieder, R Simon, R Siebertz, O Stutzki, J van der Tak, F Teyssier, D Yorke, H AF Dedes, C. Roellig, M. Mookerjea, B. Okada, Y. Ossenkopf, V. Bruderer, S. Benz, A. O. Melchior, M. Kramer, C. Gerin, M. Guesten, R. Akyilmaz, M. Berne, O. Boulanger, F. De lange, G. Dubbeldam, L. France, K. Fuente, A. Goicoechea, J. R. Harris, A. Huisman, R. Jellema, W. Joblin, C. Klein, T. Le Petit, F. Lord, S. Martin, P. Martin-Pintado, J. Neufeld, D. A. Philipp, S. Phillips, T. Pilleri, P. Rizzo, J. R. Salez, M. Schieder, R. Simon, R. Siebertz, O. Stutzki, J. van der Tak, F. Teyssier, D. Yorke, H. TI The origin of the [CII] emission in the S140 photon-dominated regions. New insights from HFI SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: structure; ISM: kinematics and dynamics; ISM: molecules; photon; dominated region (PDR); submillimeter: general ID STAR-FORMING REGIONS; MOLECULAR CLOUDS; MASS-SPECTRA; S 140; OUTFLOW; CARBON; S-140/L-1204; S140-IRS-1; CONTINUUM; FIELDS AB Using Herschel's HIFI instrument, we observe [Cii] along a cut through S140, as well as high-J transitions of CO and HCO+ at two positions on the cut, corresponding to the externally irradiated ionization front and the embedded massive star-forming core IRS1. The HIFI data were combined with available ground-based observations and modeled using the KOSMA-t model for photon-dominated regions ( PDRs). We derive the physical conditions in S140 and in particular the origin of [C ii] emission around IRS1. We identify three distinct regions of [Cii] emission from the cut, one close to the embedded source IRS1, one associated with the ionization front, and one further into the cloud. The line emission can be understood in terms of a clumpy model of PDRs. At the position of IRS1, we identify at least two distinct components contributing to the [C ii] emission, one of them a small, hot component, which can possibly be identified with the irradiated outflow walls. This is consistent with the [C ii] peak at IRS1 coinciding with shocked H2 emission at the edges of the outflow cavity. We note that previously available observations of IRS1 can be reproduced well by a single-component KOSMA-t model. Thus, it is HIFI's unprecedented spatial and spectral resolution, as well as its sensitivity that has allowed us to uncover an additional hot gas component in the S140 region. C1 [Dedes, C.; Bruderer, S.; Benz, A. O.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Roellig, M.; Okada, Y.; Ossenkopf, V.; Akyilmaz, M.; Schieder, R.; Simon, R.; Siebertz, O.; Stutzki, J.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Mookerjea, B.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Ossenkopf, V.; De lange, G.; Dubbeldam, L.; Huisman, R.; Jellema, W.; van der Tak, F.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Melchior, M.] FHNW, Inst 4D Technol, CH-5210 Windisch, Switzerland. [Kramer, C.] IRAM, Granada 18012, Spain. [Gerin, M.; Salez, M.] Observ Paris, LERMA, F-75014 Paris, France. [Guesten, R.; Klein, T.; Philipp, S.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Berne, O.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Boulanger, F.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [France, K.; Martin, P.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Fuente, A.] OAN, Alcala De Henares 28803, Madrid, Spain. [Goicoechea, J. R.; Martin-Pintado, J.; Rizzo, J. R.] Ctr Astrobiol INTA CSIC, Madrid, Spain. [Harris, A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Joblin, C.; Pilleri, P.] Univ Toulouse, UPS, CESR, F-31062 Toulouse 4, France. [Joblin, C.; Pilleri, P.] CNRS, UMR 5187, F-31028 Toulouse, France. [Le Petit, F.] Observ Paris, LUTH, F-92190 Meudon, France. [Le Petit, F.] Univ Paris 07, F-92190 Meudon, France. [Lord, S.] IPAC Caltech, Pasadena, CA 91125 USA. [Neufeld, D. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Phillips, T.] CALTECH, Pasadena, CA 91125 USA. [Salez, M.] UCP, UPMC, Lab Etud Rayonnement & Mat Astrophys, UMR 8112,CNRS INSU,OP,ENS, Paris, France. [van der Tak, F.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AB Groningen, Netherlands. [Teyssier, D.] European Space Astron Ctr, Madrid 28080, Spain. [Yorke, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Dedes, C (reprint author), ETH, Inst Astron, CH-8093 Zurich, Switzerland. EM carolin.dedes@astro.phys.ethz.ch RI Pilleri, Paolo/F-4754-2012; Rizzo, J. Ricardo/N-5879-2014; Fuente, Asuncion/G-1468-2016; Martin-Pintado, Jesus/H-6107-2015 OI Pilleri, Paolo/0000-0001-8670-8381; Rizzo, J. Ricardo/0000-0002-8443-6631; Fuente, Asuncion/0000-0001-6317-6343; Martin-Pintado, Jesus/0000-0003-4561-3508 FU DFG [Os 177/ 1-1] FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology -MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University -Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. The work on star formation at ETH Zurich is partially funded by the Swiss National Science Foundation (grant nr. 200020-113556). This program is made possible thanks to the Swiss HIFI guaranteed time program. This work was supported by the German Deutsche Forschungsgemeinschaft, DFG project number Os 177/ 1-1. We thank the members of the Herschel key project " Galactic Cold Cores: A Herschel survey of the source populations revealed by Planck" lead by M. Juvela (KPOT_ mjuvela_ 1) for providing us with the results of the SPIRE 250 mu m mapping and fruitful discussions. We would also like to acknowledge the use of the JCMT CO(3-2) archival data (PI M. Thompson, M08BU15). A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space administration. We would like to thank an anonymous referee for constructive comments. NR 35 TC 12 Z9 12 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L24 DI 10.1051/0004-6361/201015099 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900024 ER PT J AU Emprechtinger, M Lis, DC Bell, T Phillips, TG Schilke, P Comito, C Rolffs, R van der Tak, F Ceccarelli, C Aarts, H Bacmann, A Baudry, A Benedettini, M Bergin, EA Blake, G Boogert, A Bottinelli, S Cabrit, S Caselli, P Castets, A Caux, E Cernicharo, J Codella, C Coutens, A Crimier, N Demyk, K Dominik, C Encrenaz, P Falgarone, E Fuente, A Gerin, M Goldsmith, P Helmich, F Hennebelle, P Henning, T Herbst, E Hily-Blant, P Jacq, T Kahane, C Kama, M Klotz, A Kooi, J Langer, W Lefloch, B Loose, A Lord, S Lorenzani, A Maret, S Melnick, G Neufeld, D Nisini, B Ossenkopf, V Pacheco, S Pagani, L Parise, B Pearson, J Risacher, C Salez, M Saraceno, P Schuster, K Stutzki, J Tielens, X van der Wiel, M Vastel, C Viti, S Wakelam, V Walters, A Wyrowski, F Yorke, H AF Emprechtinger, M. Lis, D. C. Bell, T. Phillips, T. G. Schilke, P. Comito, C. Rolffs, R. van der Tak, F. Ceccarelli, C. Aarts, H. Bacmann, A. Baudry, A. Benedettini, M. Bergin, E. A. Blake, G. Boogert, A. Bottinelli, S. Cabrit, S. Caselli, P. Castets, A. Caux, E. Cernicharo, J. Codella, C. Coutens, A. Crimier, N. Demyk, K. Dominik, C. Encrenaz, P. Falgarone, E. Fuente, A. Gerin, M. Goldsmith, P. Helmich, F. Hennebelle, P. Henning, T. Herbst, E. Hily-Blant, P. Jacq, T. Kahane, C. Kama, M. Klotz, A. Kooi, J. Langer, W. Lefloch, B. Loose, A. Lord, S. Lorenzani, A. Maret, S. Melnick, G. Neufeld, D. Nisini, B. Ossenkopf, V. Pacheco, S. Pagani, L. Parise, B. Pearson, J. Risacher, C. Salez, M. Saraceno, P. Schuster, K. Stutzki, J. Tielens, X. van der Wiel, M. Vastel, C. Viti, S. Wakelam, V. Walters, A. Wyrowski, F. Yorke, H. TI The distribution of water in the high-mass star-forming region NGC 6334 I SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; ISM: molecules ID INTERSTELLAR-MEDIUM; NGC-6334; MASERS; I(N); PROTOSTARS; HIFI; ABUNDANCES; MILLIMETER; OUTFLOW; AMMONIA AB Aims. We present observations of twelve rotational transitions of (H2O)-O-16, (H2O)-O-18, and (H2O)-O-17 toward the massive star-forming region NGC 6334 I, carried out with Herschel/HIFI as part of the guaranteed time key program Chemical HErschel Surveys of Star forming regions (CHESS). We analyze these observations to obtain insights into physical processes in this region. Methods. We identify three main gas components (hot core, cold foreground, and outflow) in NGC 6334 I and derive the physical conditions in these components. Results. The hot core, identified by the emission in highly excited lines, shows a high excitation temperature of similar to 200 K, whereas water in the foreground component is predominantly in the ortho-and para-ground states. The abundance of water varies between 4 x 10(-5) (outflow) and 10(-8) (cold foreground gas). This variation is most likely due to the freeze-out of water molecules onto dust grains. The (H2O)-O-18/(H2O)-O-17 abundance ratio is 3.2, which is consistent with the O-18/O-17 ratio determined from CO isotopologues. The ortho/para ratio in water appears to be relatively low (1.6 +/- 1) in the cold, quiescent gas, but close to the equilibrium value of three in the warmer outflow material (2.5 +/- 0.8). C1 [Emprechtinger, M.; Goldsmith, P.; Langer, W.; Pearson, J.; Yorke, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bacmann, A.; Baudry, A.; Jacq, T.; Wakelam, V.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Bacmann, A.; Baudry, A.; Jacq, T.; Wakelam, V.] CNRS INSU, UMR 5804, Floirac, France. [Ceccarelli, C.; Bacmann, A.; Castets, A.; Crimier, N.; Hily-Blant, P.; Kahane, C.; Lefloch, B.; Maret, S.; Pacheco, S.] Univ Grenoble 1, UMR CNRS 5571, Lab Astrophys Grenoble, Grenoble, France. [Benedettini, M.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Rome, Italy. [Bottinelli, S.; Caux, E.; Demyk, K.; Klotz, A.; Vastel, C.; Walters, A.] Univ Toulouse 3, CESR, F-31062 Toulouse, France. [Bottinelli, S.; Caux, E.; Demyk, K.; Klotz, A.; Vastel, C.; Walters, A.] CNRS, Toulouse, France. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Cabrit, S.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Hennebelle, P.; Pagani, L.] Observ Paris, LERMA UMR CNRS 8112, Meudon, France. [Cernicharo, J.; Crimier, N.] CSIC INTA, Ctr Astrobiol, Madrid, Spain. [Schilke, P.; Comito, C.; Rolffs, R.; Parise, B.; Wyrowski, F.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Codella, C.; Lorenzani, A.] INAF Osservatorio Astrofis Arcetri, Florence, Italy. [Dominik, C.; Kama, M.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6525 ED Nijmegen, Netherlands. [Fuente, A.] IGN Observ Astron Nacl, Alcala De Henares, Spain. [van der Tak, F.; Aarts, H.; Helmich, F.; Risacher, C.; van der Wiel, M.] Univ Groningen, SRON, Groningen, Netherlands. [Herbst, E.] Ohio State Univ, Columbus, OH 43210 USA. [Melnick, G.] Ctr Astrophys, Cambridge, MA 02138 USA. [Neufeld, D.] Johns Hopkins Univ, Baltimore, MD USA. [Emprechtinger, M.; Schilke, P.; Ossenkopf, V.; Stutzki, J.] Univ Cologne, Inst Phys, Cologne, Germany. [Schuster, K.] Inst Radio Astron Millimetr, Grenoble, France. [Tielens, X.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Viti, S.] UCL, Dept Phys & Astron, London, England. [Nisini, B.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Bergin, E. A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Henning, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Loose, A.] Max Planck Inst Sonnenphys Forsch, Lindau, Germany. RP Emprechtinger, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM emprecht@caltech.edu RI Coutens, Audrey/M-4533-2014; van der Wiel, Matthijs/M-4531-2014; Fuente, Asuncion/G-1468-2016; OI Coutens, Audrey/0000-0003-1805-3920; van der Wiel, Matthijs/0000-0002-4325-3011; Fuente, Asuncion/0000-0001-6317-6343; Lorenzani, Andrea/0000-0002-4685-3434; Wakelam, Valentine/0000-0001-9676-2605; Kama, Mihkel/0000-0003-0065-7267; Codella, Claudio/0000-0003-1514-3074; , Brunella Nisini/0000-0002-9190-0113; Maret, Sebastien/0000-0003-1104-4554 NR 28 TC 27 Z9 27 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L28 DI 10.1051/0004-6361/201015086 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900028 ER PT J AU Falgarone, E Godard, B Cernicharo, J De Luca, M Gerin, M Phillips, TG Black, JH Lis, DC Bell, TA Boulanger, F Coutens, A Dartois, E Encrenaz, P Giesen, T Goicoechea, JR Goldsmith, PF Gupta, H Gry, C Hennebelle, P Herbst, E Hily-Blant, P Joblin, C Kazmierczak, M Kolos, R Krelowski, J Martin-Pintado, J Monje, R Mookerjea, B Neufeld, DA Perault, M Pearson, JC Persson, C Plume, R Salez, M Schmidt, M Sonnentrucker, P Stutzki, J Teyssier, D Vastel, C Yu, S Menten, K Geballe, TR Schlemmer, S Shipman, R Tielens, AGGM Philipp, S Cros, A Zmuidzinas, J Samoska, LA Klein, K Lorenzani, A Szczerba, R Peron, I Cais, P Gaufre, P Cros, A Ravera, L Morris, P Lord, S Planesas, P AF Falgarone, E. Godard, B. Cernicharo, J. De Luca, M. Gerin, M. Phillips, T. G. Black, J. H. Lis, D. C. Bell, T. A. Boulanger, F. Coutens, A. Dartois, E. Encrenaz, P. Giesen, T. Goicoechea, J. R. Goldsmith, P. F. Gupta, H. Gry, C. Hennebelle, P. Herbst, E. Hily-Blant, P. Joblin, C. Kazmierczak, M. Kolos, R. Krelowski, J. Martin-Pintado, J. Monje, R. Mookerjea, B. Neufeld, D. A. Perault, M. Pearson, J. C. Persson, C. Plume, R. Salez, M. Schmidt, M. Sonnentrucker, P. Stutzki, J. Teyssier, D. Vastel, C. Yu, S. Menten, K. Geballe, T. R. Schlemmer, S. Shipman, R. Tielens, A. G. G. M. Philipp, S. Cros, A. Zmuidzinas, J. Samoska, L. A. Klein, K. Lorenzani, A. Szczerba, R. Peron, I. Cais, P. Gaufre, P. Cros, A. Ravera, L. Morris, P. Lord, S. Planesas, P. TI CH+(1-0) and (CH+)-C-13(1-0) absorption lines in the direction of massive star-forming regions SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; ISM: molecules; ISM: kinematics and dynamics; turbulence ID DIFFUSE INTERSTELLAR-MEDIUM; G10.6-0.4 W31C; CH ABSORPTION; J=1-0; HERSCHEL/HIFI; CHEMISTRY; HYDROGEN; CLOUDS; TRANSITIONS; INSTRUMENT AB We report the detection of the ground-state rotational transition of the methylidyne cation CH+ and its isotopologue (CH+)-C-13 toward the remote massive star-forming regions W33A, W49N, and W51 with the HIFI instrument onboard the Herschel satellite. Both lines are seen only in absorption against the dust continuum emission of the star-forming regions. The CH+ absorption is saturated over almost the entire velocity ranges sampled by the lines-of-sight that include gas associated with the star-forming regions (SFR) and Galactic foreground material. The CH+ column densities are inferred from the optically thin components. A lower limit of the isotopic ratio [(CH+)-C-12]/[(CH+)-C-13]> 35.5 is derived from the absorptions of foreground material toward W49N. The column density ratio, N(CH+)/N(HCO+), is found to vary by at least a factor 10, between 4 and > 40, in the Galactic foreground material. Line-of-sight 12CH+ average abundances relative to total hydrogen are estimated. Their average value, N(CH+)/NH > 2.6 x 10(-8), is higher than that observed in the solar neighborhood and confirms the high abundances of CH+ in the Galactic interstellar medium. We compare this result to the predictions of turbulent dissipation regions (TDR) models and find that these high abundances can be reproduced for the inner Galaxy conditions. It is remarkable that the range of predicted N(CH+)/ N(HCO+) ratios, from 1 to similar to 50, is comparable to that observed. C1 [Falgarone, E.; Godard, B.; De Luca, M.; Gerin, M.; Encrenaz, P.; Hennebelle, P.; Perault, M.; Salez, M.] Observ Paris, CNRS, LERMA, Paris, France. [Black, J. H.; Persson, C.] Chalmers, S-41296 Gothenburg, Sweden. [Cernicharo, J.; Goicoechea, J. R.; Martin-Pintado, J.] CSIC INTA, Ctr Astrobiol, Madrid, Spain. [Herbst, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Neufeld, D. A.; Sonnentrucker, P.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Goldsmith, P. F.; Gupta, H.; Pearson, J. C.; Yu, S.; Samoska, L. A.] CALTECH, JPL, Pasadena, CA 91125 USA. [Herbst, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Godard, B.; Boulanger, F.; Dartois, E.] IAS, Orsay, France. [Giesen, T.; Stutzki, J.; Schlemmer, S.] Univ Cologne, Inst Phys 1, D-5000 Cologne 41, Germany. [Hily-Blant, P.] Lab Astrophys Grenoble, Grenoble, France. [Coutens, A.; Joblin, C.; Vastel, C.; Cros, A.; Cros, A.; Ravera, L.] Univ Toulouse 3, CESR, F-31062 Toulouse, France. [Coutens, A.; Joblin, C.; Vastel, C.; Cros, A.; Cros, A.; Ravera, L.] CNRS, UMR5187, F-31028 Toulouse, France. [Kolos, R.] Polish Acad Sci, Inst Phys Chem, Warsaw, Poland. [Kazmierczak, M.; Krelowski, J.; Schmidt, M.] Nicholas Copernicus Univ, Torun, Poland. [Mookerjea, B.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Teyssier, D.; Szczerba, R.] ESA, European Space Astron Ctr, Madrid, Spain. [Menten, K.] MPI Radioastron, Bonn, Germany. [Geballe, T. R.] Gemini Telescope, Hilo, HI USA. [Tielens, A. G. G. M.] Sterrewacht Leiden, Leiden, Netherlands. [Philipp, S.] Deutsch Zentrum Luft & Raumfahrt eV, Bonn, Germany. [Klein, K.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Lorenzani, A.] INAF, Osservatorio Astrofis Arcetri, Florence, Italy. [Peron, I.] IRAM, St Martin Dheres, France. [Morris, P.; Lord, S.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Planesas, P.] Joint ALMA Off, Santiago, Chile. RP Falgarone, E (reprint author), Observ Paris, CNRS, LERMA, Paris, France. EM edith.falgarone@ens.fr RI Yu, Shanshan/D-8733-2016; Goldsmith, Paul/H-3159-2016; Martin-Pintado, Jesus/H-6107-2015; Coutens, Audrey/M-4533-2014; Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Planesas, Pere/G-7950-2015 OI Martin-Pintado, Jesus/0000-0003-4561-3508; Lorenzani, Andrea/0000-0002-4685-3434; Coutens, Audrey/0000-0003-1805-3920; Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281; Planesas, Pere/0000-0002-7808-3040 FU Centre National de Recherche Spatiale (CNES); NSF [AST-0540882]; Polish MNiSW [N20339334] FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States (NASA) under the leadership of SRON, Netherlands Institute for Space Research, Groningen, The Netherlands, and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland: NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astron mico Nacional (IGN), Centro de Astrobiologia; Sweden: Chalmers University of Technology -MC2, RSS & GARD, Onsala Space Observatory, Swedish National Space Board, Stockholm University -Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: CalTech, JPL, NHSC. MG and EF acknowledge the support from the Centre National de Recherche Spatiale (CNES). DCL is supported by the NSF, award AST-0540882 to the CSO. M. S. is supported from grant N20339334 from Polish MNiSW. NR 28 TC 33 Z9 33 U1 0 U2 9 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L15 DI 10.1051/0004-6361/201015109 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900015 ER PT J AU Fuente, A Berne, O Cernicharo, J Rizzo, JR Gonzalez-Garcia, M Goicoechea, JR Pilleri, P Ossenkopf, V Gerin, M Gusten, R Akyilmaz, M Benz, AO Boulanger, F Bruderer, S Dedes, C France, K Garcia-Burillo, S Harris, A Joblin, C Klein, T Kramer, C Le Petit, F Lord, SD Martin, PG Martin-Pintado, J Mookerjea, B Neufeld, DA Okada, Y Pety, J Phillips, TG Rollig, M Simon, R Stutzki, J van der Tak, F Teyssier, D Usero, A Yorke, H Schuster, K Melchior, M Lorenzani, A Szczerba, R Fich, M McCoey, C Pearson, J Dieleman, P AF Fuente, A. Berne, O. Cernicharo, J. Rizzo, J. R. Gonzalez-Garcia, M. Goicoechea, J. R. Pilleri, P. Ossenkopf, V. Gerin, M. Guesten, R. Akyilmaz, M. Benz, A. O. Boulanger, F. Bruderer, S. Dedes, C. France, K. Garcia-Burillo, S. Harris, A. Joblin, C. Klein, T. Kramer, C. Le Petit, F. Lord, S. D. Martin, P. G. Martin-Pintado, J. Mookerjea, B. Neufeld, D. A. Okada, Y. Pety, J. Phillips, T. G. Roellig, M. Simon, R. Stutzki, J. van der Tak, F. Teyssier, D. Usero, A. Yorke, H. Schuster, K. Melchior, M. Lorenzani, A. Szczerba, R. Fich, M. McCoey, C. Pearson, J. Dieleman, P. TI Herschel observations in the ultracompact HII region Mon R2 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: structure; ISM: kinematics and dynamics; ISM: molecules; HII regions; submillimeter: ISM ID MONOCEROS R2; CLOUD CORE; PHOTODISSOCIATION; SAGITTARIUS-B2; KINEMATICS; OUTFLOW AB Context. Monoceros R2, at a distance of 830 pc, is the only ultracompact Hii region (UC Hii) where the photon-dominated region (PDR) between the ionized gas and the molecular cloud can be resolved with Herschel. Therefore, it is an excellent laboratory to study the chemistry in extreme PDRs (G0 > 105 in units of Habing field, n > 106 cm-3). Aims. Our ultimate goal is to probe the physical and chemical conditions in the PDR around the UC Hii Mon R2. Methods. HIFI observations of the abundant compounds 13CO, C18O, o-H2 18O, HCO+, CS, CH, and NH have been used to derive the physical and chemical conditions in the PDR, in particular the water abundance. The modeling of the lines has been done with the Meudon PDR code and the non-local radiative transfer model described by Cernicharo et al. Results. The 13CO, C18O, o-H18 2 O, HCO+ and CS observations are well described assuming that the emission is coming from a dense (n = 5 x 106 cm-3, N(H2) > 1022 cm-2) layer of molecular gas around the Hii region. Based on our o-H18 2 O observations, we estimate an o-H2O abundance of similar to 2 x 10-8. This is the average ortho-water abundance in the PDR. Additional H18 2 O and/ or water lines are required to derive the water abundance profile. A lower density envelope (n similar to 105 cm-3, N(H2) = 2-5 x 1022 cm-2) is responsible for the absorption in the NH 11. 02 line. The emission of the CH ground state triplet is coming from both regions with a complex and self-absorbed profile in the main component. The radiative transfer modeling shows that the 13CO and HCO+ line profiles are consistent with an expansion of the molecular gas with a velocity law, ve = 0.5 x (r/ Rout)-1 km s-1, although the expansion velocity is poorly constrained by the observations presented here. Conclusions. We determine an ortho-water abundance of similar to 2 x 10-8 in Mon R2. Because shocks are unimportant in this region and our estimate is based on H18 2 O observations that avoids opacity problems, this is probably the most accurate estimate of the water abundance in PDRs thus far. C1 [Fuente, A.] OAN, Alcala De Henares 28803, Madrid, Spain. [Berne, O.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Cernicharo, J.; Rizzo, J. R.; Goicoechea, J. R.; Martin-Pintado, J.] CSIC INTA, Ctr Astrobiol, Madrid 28850, Spain. [Gonzalez-Garcia, M.; Kramer, C.] IRAM, E-18012 Granada, Spain. [Pilleri, P.; Joblin, C.] Univ Toulouse, UPS, CESR, F-31062 Toulouse 4, France. [Pilleri, P.; Joblin, C.] CNRS, UMR 5187, F-31028 Toulouse, France. [Ossenkopf, V.; Akyilmaz, M.; Okada, Y.; Roellig, M.; Simon, R.; Stutzki, J.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Ossenkopf, V.; van der Tak, F.] SRON Netherlands Inst Space Res, NL-9700 AB Groningen, Netherlands. [Gerin, M.] Observ Paris, LERMA, F-75014 Paris, France. [Guesten, R.; Klein, T.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Benz, A. O.; Bruderer, S.; Dedes, C.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Boulanger, F.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [France, K.; Martin, P. G.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Garcia-Burillo, S.; Usero, A.] OAN, Madrid 28014, Spain. [Harris, A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Le Petit, F.] Observ Paris, LUTH, F-92190 Meudon, France. [Lord, S. D.] IPAC Caltech, Pasadena, CA 91125 USA. [Mookerjea, B.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Neufeld, D. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Pety, J.; Schuster, K.] Inst RadioAstron Millimetr, F-38406 St Martin Dheres, France. [Phillips, T. G.] CALTECH, Pasadena, CA 91125 USA. [van der Tak, F.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AB Groningen, Netherlands. [Teyssier, D.] European Space Astron Ctr, Madrid 28080, Spain. [Yorke, H.; Pearson, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Melchior, M.] FHNW, Inst 4D Technol, CH-5210 Windisch, Switzerland. [Lorenzani, A.] Osservatorio Astrofis Arcetri INAF, I-50100 Florence, Italy. [Szczerba, R.] Nicholas Copernicus Astron Ctr, PL-87100 Torun, Poland. [Fich, M.; McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [McCoey, C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Dieleman, P.] SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. [Le Petit, F.] Univ Paris 07, F-92190 Meudon, France. RP Fuente, A (reprint author), OAN, Apdo 112, Alcala De Henares 28803, Madrid, Spain. EM a.fuente@oan.es RI Martin-Pintado, Jesus/H-6107-2015; Pilleri, Paolo/F-4754-2012; Rizzo, J. Ricardo/N-5879-2014; Fuente, Asuncion/G-1468-2016 OI Martin-Pintado, Jesus/0000-0003-4561-3508; PETY, Jerome/0000-0003-3061-6546; Garcia-Burillo, Santiago/0000-0003-0444-6897; Pilleri, Paolo/0000-0001-8670-8381; Rizzo, J. Ricardo/0000-0002-8443-6631; Fuente, Asuncion/0000-0001-6317-6343 FU MICINN [AYA2009-07304] FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri -INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiolog a (CSIC-INTA). Sweden: Chalmers University of Technology -MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University -Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, J. P. L., NHSC. This paper was partially supported by Spanish MICINN under project AYA2009-07304 and within the program CONSOLIDER INGENIO 2010, under grant " Molecular Astrophysics: The Herschel and ALMA Era ASTROMOL" (ref.: CSD2009-00038). NR 23 TC 10 Z9 10 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L23 DI 10.1051/0004-6361/201015093 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900023 ER PT J AU Gerin, M De Luca, M Goicoechea, JR Herbst, E Falgarone, E Godard, B Bell, TA Coutens, A Kazmierczak, M Sonnentrucker, P Black, JH Neufeld, DA Phillips, TG Pearson, J Rimmer, PB Hassel, G Lis, DC Vastel, C Boulanger, F Cernicharo, J Dartois, E Encrenaz, P Giesen, T Goldsmith, PF Gupta, H Gry, C Hennebelle, P Hily-Blant, P Joblin, C Kolos, R Krelowski, J Martin-Pintado, J Monje, R Mookerjea, B Perault, M Persson, C Plume, R Salez, M Schmidt, M Stutzki, J Teyssier, D Yu, S Contursi, A Menten, K Geballe, TR Schlemmer, S Morris, P Hatch, WA Imram, M Ward, JS Caux, E Gusten, R Klein, T Roelfsema, P Dieleman, P Schieder, R Honingh, N Zmuidzinas, J AF Gerin, M. De Luca, M. Goicoechea, J. R. Herbst, E. Falgarone, E. Godard, B. Bell, T. A. Coutens, A. Kazmierczak, M. Sonnentrucker, P. Black, J. H. Neufeld, D. A. Phillips, T. G. Pearson, J. Rimmer, P. B. Hassel, G. Lis, D. C. Vastel, C. Boulanger, F. Cernicharo, J. Dartois, E. Encrenaz, P. Giesen, T. Goldsmith, P. F. Gupta, H. Gry, C. Hennebelle, P. Hily-Blant, P. Joblin, C. Kolos, R. Krelowski, J. Martin-Pintado, J. Monje, R. Mookerjea, B. Perault, M. Persson, C. Plume, R. Salez, M. Schmidt, M. Stutzki, J. Teyssier, D. Yu, S. Contursi, A. Menten, K. Geballe, T. R. Schlemmer, S. Morris, P. Hatch, W. A. Imram, M. Ward, J. S. Caux, E. Guesten, R. Klein, T. Roelfsema, P. Dieleman, P. Schieder, R. Honingh, N. Zmuidzinas, J. TI Interstellar CH absorption in the diffuse interstellar medium along the sight-lines to G10.6-0.4 (W31C), W49N, and W51 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: clouds; ISM: molecules; submillimeter: ISM; ISM: individual objects: G10.6-0.4; ISM: individual objects: W49N; ISM: individual objects: W51 ID STAR-FORMING REGIONS; MOLECULAR CLOUDS; HERSCHEL/HIFI OBSERVATIONS; COMPARATIVE CHEMISTRY; CN; H2O+; GAS; OH+; H-2 AB We report the detection of the ground state N, J = 1, 3/2 -> 1, 1/2 doublet of the methylidyne radical CH at similar to 532 GHz and similar to 536 GHz with the Herschel/ HIFI instrument along the sight-line to the massive star-forming regions G10.6-0.4 (W31C), W49N, and W51. While the molecular cores associated with these massive star-forming regions show emission lines, clouds in the diffuse interstellar medium are detected in absorption against the strong submillimeter background. The combination of hyperfine structure with emission and absorption results in complex profiles, with overlap of the different hyperfine components. The opacities of most of the CH absorption features are linearly correlated with those of CCH, CN, and HCO+ in the same velocity intervals. In specific narrow velocity intervals, the opacities of CN and HCO+ deviate from the mean trends, giving rise to more opaque absorption features. We propose that CCH can be used as another tracer of the molecular gas in the absence of better tracers, with [CCH]/[H-2] similar to 3.2 +/- 1.1 x 10(-8). The observed [CN]/[CH], [CCH]/[CH] abundance ratios suggest that the bulk of the diffuse matter along the lines of sight has gas densities nH = n(H) + 2n(H-2) ranging between 100 and 1000 cm(-3). C1 [Gerin, M.; De Luca, M.; Falgarone, E.; Godard, B.; Encrenaz, P.; Hennebelle, P.; Perault, M.; Salez, M.] Observ Paris, CNRS, LERMA, Paris, France. [Goicoechea, J. R.; Cernicharo, J.; Martin-Pintado, J.] CSIC INTA, Ctr Astrobiol, Madrid, Spain. [Herbst, E.; Rimmer, P. B.; Hassel, G.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.; Rimmer, P. B.; Hassel, G.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.; Rimmer, P. B.; Hassel, G.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Godard, B.; Boulanger, F.; Dartois, E.] IAS, Orsay, France. [Pearson, J.; Goldsmith, P. F.; Gupta, H.; Yu, S.; Hatch, W. A.; Imram, M.; Ward, J. S.] CALTECH, JPL, Pasadena, CA 91125 USA. [Coutens, A.; Vastel, C.; Joblin, C.; Caux, E.] Univ Toulouse, UPS, CESR, F-31028 Toulouse 4, France. [Coutens, A.; Vastel, C.; Joblin, C.; Caux, E.] CNRS, UMR5187, F-31028 Toulouse, France. [Kazmierczak, M.; Krelowski, J.] Nicholas Copernicus Univ, Torun, Poland. [Sonnentrucker, P.; Neufeld, D. A.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Black, J. H.; Persson, C.] Chalmers, Onsala Space Observ, S-43992 Onsala, Sweden. [Giesen, T.; Stutzki, J.; Schlemmer, S.; Schieder, R.; Honingh, N.] Univ Cologne, Inst Phys 1, D-5000 Cologne 41, Germany. [Hily-Blant, P.] Lab Astrophys Grenoble, Grenoble, France. [Kolos, R.] Polish Acad Sci, Inst Phys Chem, Warsaw, Poland. [Mookerjea, B.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Teyssier, D.] ESA, European Space Astron Ctr, Madrid, Spain. [Contursi, A.] MPI Extraterr Physik, Garching, Germany. [Menten, K.; Guesten, R.; Klein, T.] MPI Radioastron, Bonn, Germany. [Geballe, T. R.] Gemini Telescope, Hilo, HI USA. [Morris, P.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. RP Gerin, M (reprint author), Observ Paris, CNRS, LERMA, Paris, France. EM maryvonne.gerin@ens.fr RI Coutens, Audrey/M-4533-2014; Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Yu, Shanshan/D-8733-2016; Goldsmith, Paul/H-3159-2016; Martin-Pintado, Jesus/H-6107-2015 OI Rimmer, Paul/0000-0002-7180-081X; Coutens, Audrey/0000-0003-1805-3920; Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281; Martin-Pintado, Jesus/0000-0003-4561-3508 FU Centre National de Recherche Spatiale (CNES); ANR [ANR-09-BLAN-231]; Ramon y Cajal; [MICINN/AYA2009-07304]; [CSD2009-00038] FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States under the leadership of SRON, the Netherlands Institute for Space Research, Groningen, The Netherlands, and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland: NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain Observatorio Astron mico Nacional (IGN), Centro de Astrobiologia; Sweden: Chalmers University of Technology - MC2, RSS & GARD, Onsala Space Observatory, Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: CalTech, JPL, NHSC. M. G., E. F., M. D. L. acknowledge the support from the Centre National de Recherche Spatiale (CNES), and from ANR through the SCHISM project (ANR-09-BLAN-231). JRG was supported by a Ramon y Cajal contract and by the MICINN/AYA2009-07304 and and CSD2009-00038 grants. NR 37 TC 50 Z9 50 U1 0 U2 9 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L16 DI 10.1051/0004-6361/201015115 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900016 ER PT J AU Gupta, H Rimmer, P Pearson, JC Yu, S Herbst, E Harada, N Bergin, EA Neufeld, DA Melnick, GJ Bachiller, R Baechtold, W Bell, TA Blake, GA Caux, E Ceccarelli, C Cernicharo, J Chattopadhyay, G Comito, C Cabrit, S Crockett, NR Daniel, F Falgarone, E Diez-Gonzalez, MC Dubernet, ML Erickson, N Emprechtinger, M Encrenaz, P Gerin, M Gill, JJ Giesen, TF Goicoechea, JR Goldsmith, PF Joblin, C Johnstone, D Langer, WD Larsson, B Latter, WB Lin, RH Lis, DC Liseau, R Lord, SD Maiwald, FW Maret, S Martin, PG Martin-Pintado, J Menten, KM Morris, P Muller, HSP Murphy, JA Nordh, LH Olberg, M Ossenkopf, V Pagani, L Perault, M Phillips, TG Plume, R Qin, SL Salez, M Samoska, LA Schilke, P Schlecht, E Schlemmer, S Szczerba, R Stutzki, J Trappe, N van der Tak, FFS Vastel, C Wang, S Yorke, HW Zmuidzinas, J Boogert, A Gusten, R Hartogh, P Honingh, N Karpov, A Kooi, J Krieg, JM Schieder, R Zaal, P AF Gupta, H. Rimmer, P. Pearson, J. C. Yu, S. Herbst, E. Harada, N. Bergin, E. A. Neufeld, D. A. Melnick, G. J. Bachiller, R. Baechtold, W. Bell, T. A. Blake, G. A. Caux, E. Ceccarelli, C. Cernicharo, J. Chattopadhyay, G. Comito, C. Cabrit, S. Crockett, N. R. Daniel, F. Falgarone, E. Diez-Gonzalez, M. C. Dubernet, M. -L. Erickson, N. Emprechtinger, M. Encrenaz, P. Gerin, M. Gill, J. J. Giesen, T. F. Goicoechea, J. R. Goldsmith, P. F. Joblin, C. Johnstone, D. Langer, W. D. Larsson, B. Latter, W. B. Lin, R. H. Lis, D. C. Liseau, R. Lord, S. D. Maiwald, F. W. Maret, S. Martin, P. G. Martin-Pintado, J. Menten, K. M. Morris, P. Mueller, H. S. P. Murphy, J. A. Nordh, L. H. Olberg, M. Ossenkopf, V. Pagani, L. Perault, M. Phillips, T. G. Plume, R. Qin, S. -L. Salez, M. Samoska, L. A. Schilke, P. Schlecht, E. Schlemmer, S. Szczerba, R. Stutzki, J. Trappe, N. van der Tak, F. F. S. Vastel, C. Wang, S. Yorke, H. W. Zmuidzinas, J. Boogert, A. Guesten, R. Hartogh, P. Honingh, N. Karpov, A. Kooi, J. Krieg, J. -M. Schieder, R. Zaal, P. TI Detection of OH+ and H2O+ towards Orion KL SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; molecular processes; line: identification; ISM: abundances; submillimeter: ISM; stars: winds; outflows ID LASER MAGNETIC-RESONANCE; HERSCHEL OBSERVATIONS; INTERSTELLAR H3O+; STAR-FORMATION; DIFFUSE CLOUDS; COMET-KOHOUTEK; NEBULA; LINE; REGION; SPECTROSCOPY AB We report observations of the reactive molecular ions OH+, H2O+, and H3O+ towards Orion KL with Herschel/HIFI. All three N = 1-0 fine-structure transitions of OH+ at 909, 971, and 1033 GHz and both fine-structure components of the doublet ortho-H2O+ 1(11)-0(00) transition at 1115 and 1139 GHz were detected; an upper limit was obtained for H3O+, OH+ and H2O+ are observed purely in absorption, showing a narrow component at the source velocity of 9 km s(-1), and a broad blueshifted absorption similar to that reported recently for HF and para-(H2O)-O-18, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH+ and H2O+ for the 9 km s(-1) component of 9 +/- 3x10(12) cm(-2) and 7 +/- 2x10(12) cm(-2), and those in the outflow of 1.9 +/- 0.7x10(13) cm(-2) and 1.0 +/- 0.3x10(13) cm(-2). Upper limits of 2.4x10(12) cm(-2) and 8.7x10(12) cm(-2) were derived for the column densities of ortho and para-H3O+ from transitions near 985 and 1657 GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. The comparatively low column densities may be explained by a higher gas density despite the assumption of a very high ionization rate. C1 [Gupta, H.; Pearson, J. C.; Yu, S.; Chattopadhyay, G.; Gill, J. J.; Goldsmith, P. F.; Langer, W. D.; Lin, R. H.; Samoska, L. A.; Schlecht, E.; Yorke, H. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rimmer, P.; Herbst, E.; Harada, N.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Rimmer, P.; Herbst, E.; Harada, N.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Rimmer, P.; Herbst, E.; Harada, N.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Bergin, E. A.; Crockett, N. R.; Wang, S.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Neufeld, D. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Melnick, G. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bachiller, R.; Diez-Gonzalez, M. C.] Observ Astron Nacl IGN, Ctr Astron Yebes, Guadalajara 19080, Spain. [Baechtold, W.] ETH, Microwave Lab, CH-8092 Zurich, Switzerland. [Bell, T. A.; Blake, G. A.; Emprechtinger, M.; Lis, D. C.; Zmuidzinas, J.; Boogert, A.; Kooi, J.] CALTECH, Cahill Ctr Astron & Astrophys 301 17, Pasadena, CA 91125 USA. [Caux, E.; Joblin, C.; Vastel, C.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [Caux, E.; Joblin, C.; Vastel, C.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Ceccarelli, C.; Maret, S.] Observ Grenoble, Astrophys Lab, F-38041 Grenoble 9, France. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.; Martin-Pintado, J.; Krieg, J. -M.] Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid 28850, Spain. [Comito, C.; Goicoechea, J. R.; Menten, K. M.; Schilke, P.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Cabrit, S.; Pagani, L.; Salez, M.] Observ Paris, LERMA, F-75014 Paris, France. [Cabrit, S.; Pagani, L.; Salez, M.] Observ Paris, CNRS, UMR8112, F-75014 Paris, France. [Daniel, F.; Falgarone, E.; Encrenaz, P.; Gerin, M.; Perault, M.] Observ Paris, CNRS UMR8112, LERMA, F-75231 Paris 05, France. [Dubernet, M. -L.] Univ Paris 06, UMR7092, LPMAA, Paris, France. [Dubernet, M. -L.] Observ Paris, UMR8102, LUTH, Meudon, France. [Erickson, N.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Giesen, T. F.; Mueller, H. S. P.; Ossenkopf, V.; Qin, S. -L.; Schilke, P.; Schlemmer, S.; Stutzki, J.; Schieder, R.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Larsson, B.; Liseau, R.; Nordh, L. H.; Olberg, M.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Johnstone, D.; Honingh, N.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Latter, W. B.; Lord, S. D.; Morris, P.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Liseau, R.; Olberg, M.] Chalmers, S-41296 Gothenburg, Sweden. [Martin, P. G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Murphy, J. A.; Trappe, N.] Natl Univ Ireland, Maynooth, Kildare, Ireland. [Ossenkopf, V.; van der Tak, F. F. S.; Zaal, P.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Szczerba, R.] Nicholas Copernicus Astron Ctr, PL-87100 Torun, Poland. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Hartogh, P.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. RP Gupta, H (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM hgupta@jpl.nasa.gov RI Goldsmith, Paul/H-3159-2016; Martin-Pintado, Jesus/H-6107-2015; Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Trappe, Neil/C-9014-2016; Yu, Shanshan/D-8733-2016 OI Martin-Pintado, Jesus/0000-0003-4561-3508; Mueller, Holger/0000-0002-0183-8927; Rimmer, Paul/0000-0002-7180-081X; Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281; Trappe, Neil/0000-0003-2527-9821; FU JPL/Caltech FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. Support for this work was provided by NASA through an award issued by JPL/Caltech. A part of the work described in this paper was done at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Copyright 2010(C) California Institute of Technology. All rights reserved. NR 38 TC 33 Z9 33 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L47 DI 10.1051/0004-6361/201015117 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900047 ER PT J AU Hartogh, P Jarchow, C Lellouch, E de Val-Borro, M Rengel, M Moreno, R Medvedev, AS Sagawa, H Swinyard, BM Cavalie, T Lis, DC Blecka, MI Banaszkiewicz, M Bockelee-Morvan, D Crovisier, J Encrenaz, T Kuppers, M Lara, LM Szutowicz, S Vandenbussche, B Bensch, F Bergin, EA Billebaud, F Biver, N Blake, GA Blommaert, JADL Cernicharo, J Decin, L Encrenaz, P Feuchtgruber, H Fulton, T de Graauw, T Jehin, E Kidger, M Lorente, R Naylor, DA Portyankina, G Sanchez-Portal, M Schieder, R Sidher, S Thomas, N Verdugo, E Waelkens, C Whyborn, N Teyssier, D Helmich, F Roelfsema, P Stutzki, J LeDuc, HG Stern, JA AF Hartogh, P. Jarchow, C. Lellouch, E. de Val-Borro, M. Rengel, M. Moreno, R. Medvedev, A. S. Sagawa, H. Swinyard, B. M. Cavalie, T. Lis, D. C. Blecka, M. I. Banaszkiewicz, M. Bockelee-Morvan, D. Crovisier, J. Encrenaz, T. Kueppers, M. Lara, L. -M. Szutowicz, S. Vandenbussche, B. Bensch, F. Bergin, E. A. Billebaud, F. Biver, N. Blake, G. A. Blommaert, J. A. D. L. Cernicharo, J. Decin, L. Encrenaz, P. Feuchtgruber, H. Fulton, T. de Graauw, T. Jehin, E. Kidger, M. Lorente, R. Naylor, D. A. Portyankina, G. Sanchez-Portal, M. Schieder, R. Sidher, S. Thomas, N. Verdugo, E. Waelkens, C. Whyborn, N. Teyssier, D. Helmich, F. Roelfsema, P. Stutzki, J. LeDuc, H. G. Stern, J. A. TI Herschel/HIFI observations of Mars: First detection of O-2 at submillimetre wavelengths and upper limits on HCl and H2O2 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planets and satellites: atmospheres; radiative transfer; submillimeter: general; molecular processes ID GENERAL-CIRCULATION MODEL; MARTIAN ATMOSPHERE; CARBON-MONOXIDE; SEASONAL-VARIATIONS; MOLECULAR-OXYGEN; MU-M; VENUS; WATER; PHOTOCHEMISTRY; SPECTROSCOPY AB We report on an initial analysis of Herschel/HIFI observations of hydrogen chloride (HCl), hydrogen peroxide (H2O2), and molecular oxygen (O-2) in the Martian atmosphere performed on 13 and 16 April 2010 (L-s similar to 77 degrees). We derived a constant volume mixing ratio of 1400 +/- 120 ppm for O-2 and determined upper limits of 200 ppt for HCl and 2 ppb for H2O2. Radiative transfer model calculations indicate that the vertical profile of O-2 may not be constant. Photochemical models determine the lowest values of H2O2 to be around L-s similar to 75 degrees but overestimate the volume mixing ratio compared to our measurements. C1 [Hartogh, P.; Jarchow, C.; de Val-Borro, M.; Medvedev, A. S.; Sagawa, H.; Cavalie, T.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Lellouch, E.; Moreno, R.; Bockelee-Morvan, D.; Crovisier, J.; Encrenaz, T.; Biver, N.] Observ Paris, LESIA, F-92195 Meudon, France. [Sagawa, H.] NICT, Environm Sensing & Network Grp, Koganei, Tokyo 1848795, Japan. [Swinyard, B. M.; Sidher, S.] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [LeDuc, H. G.; Stern, J. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lis, D. C.; Blake, G. A.] CALTECH, Pasadena, CA 91125 USA. [Blecka, M. I.; Banaszkiewicz, M.; Szutowicz, S.] Polish Acad Sci, Space Res Ctr, PL-01237 Warsaw, Poland. [Lara, L. -M.] Inst Astrofis Andalucia CSIC, Madrid, Spain. [Vandenbussche, B.; Waelkens, C.] Katholieke Univ Leuven, Inst Sterrenkunde, Louvain, Belgium. [Bensch, F.] German Aerosp Ctr, DLR, Bonn, Germany. [Bergin, E. A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Billebaud, F.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Cernicharo, J.] INTA, CAB CSIC, Lab Mol Astrophys, Madrid, Spain. [Decin, L.] Univ Amsterdam, Sterrenkundig Inst Anton Pannekoek, NL-1098 Amsterdam, Netherlands. [Encrenaz, P.] Observ Paris, LERMA, Paris, France. [Feuchtgruber, H.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Fulton, T.] Bluesky Spect, Lethbridge, AB, Canada. [de Graauw, T.; Helmich, F.; Roelfsema, P.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. [de Graauw, T.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [de Graauw, T.; Whyborn, N.] Joint ALMA Off, Santiago, Chile. [Jehin, E.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Kidger, M.; Lorente, R.; Sanchez-Portal, M.; Verdugo, E.; Teyssier, D.] ESA, European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Naylor, D. A.] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada. [Schieder, R.; Stutzki, J.] Univ Cologne, Inst Phys 1, KOSMA, D-50937 Cologne, Germany. RP Hartogh, P (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. RI de Val-Borro, Miguel/H-1319-2013; OI de Val-Borro, Miguel/0000-0002-0455-9384; Medvedev, Alexander/0000-0003-2713-8977 FU CEA; CNES; CNRS (France); ASI (Italy); DLR (Germany); ESA FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio AstronA, smico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. HIPE is a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortia. This development has been supported by national funding agencies: CEA, CNES, CNRS (France); ASI (Italy); DLR (Germany). Additional funding support for some instrument activities has been provided by ESA. NR 44 TC 21 Z9 21 U1 1 U2 12 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L49 DI 10.1051/0004-6361/201015160 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900049 ER PT J AU Hartogh, P Blecka, MI Jarchow, C Sagawa, H Lellouch, E de Val-Borro, M Rengel, M Medvedev, AS Swinyard, BM Moreno, R Cavalie, T Lis, DC Banaszkiewicz, M Bockelee-Morvan, D Crovisier, J Encrenaz, T Kuppers, M Lara, LM Szutowicz, S Vandenbussche, B Bensch, F Bergin, EA Billebaud, F Biver, N Blake, GA Blommaert, JADL Cernicharo, J Decin, L Encrenaz, P Feuchtgruber, H Fulton, T de Graauw, T Jehin, E Kidger, M Lorente, R Naylor, DA Portyankina, G Sanchez-Portal, M Schieder, R Sidher, S Thomas, N Verdugo, E Waelkens, C Lorenzani, A Tofani, G Natale, E Pearson, J Klein, T Leinz, C Gusten, R Kramer, C AF Hartogh, P. Blecka, M. I. Jarchow, C. Sagawa, H. Lellouch, E. de Val-Borro, M. Rengel, M. Medvedev, A. S. Swinyard, B. M. Moreno, R. Cavalie, T. Lis, D. C. Banaszkiewicz, M. Bockelee-Morvan, D. Crovisier, J. Encrenaz, T. Kueppers, M. Lara, L. -M. Szutowicz, S. Vandenbussche, B. Bensch, F. Bergin, E. A. Billebaud, F. Biver, N. Blake, G. A. Blommaert, J. A. D. L. Cernicharo, J. Decin, L. Encrenaz, P. Feuchtgruber, H. Fulton, T. de Graauw, T. Jehin, E. Kidger, M. Lorente, R. Naylor, D. A. Portyankina, G. Sanchez-Portal, M. Schieder, R. Sidher, S. Thomas, N. Verdugo, E. Waelkens, C. Lorenzani, A. Tofani, G. Natale, E. Pearson, J. Klein, T. Leinz, C. Guesten, R. Kramer, C. TI First results on Martian carbon monoxide from Herschel/HIFI observations SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planets and satellites: atmospheres; molecular processes; radiative transfer; submillimeter: general ID GENERAL-CIRCULATION MODEL; THERMAL STRUCTURE; MARS ATMOSPHERE; CO; TEMPERATURE; RETRIEVAL; EXPRESS; DAYGLOW; VENUS; WINDS AB We report on the initial analysis of Herschel/HIFI carbon monoxide (CO) observations of the Martian atmosphere performed between 11 and 16 April 2010. We selected the (7-6) rotational transitions of the isotopes (CO)-C-13 at 771 GHz and (CO)-O-18 and 768 GHz in order to retrieve the mean vertical profile of temperature and the mean volume mixing ratio of carbon monoxide. The derived temperature profile agrees within less than 5 K with general circulation model (GCM) predictions up to an altitude of 45 km, however, show about 12-15 K lower values at 60 km. The CO mixing ratio was determined as 980 +/- 150 ppm, in agreement with the 900 ppm derived from Herschel/SPIRE observations in November 2009. C1 [Hartogh, P.; Jarchow, C.; Sagawa, H.; de Val-Borro, M.; Rengel, M.; Medvedev, A. S.; Cavalie, T.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Blecka, M. I.; Banaszkiewicz, M.; Szutowicz, S.] Polish Acad Sci, Space Res Ctr, PL-01237 Warsaw, Poland. [Sagawa, H.] NICT, Environm Sensing & Network Grp, Koganei, Tokyo 1848795, Japan. [Lellouch, E.; Moreno, R.; Bockelee-Morvan, D.; Crovisier, J.; Encrenaz, T.; Biver, N.] Observ Paris, LESIA, F-92195 Meudon, France. [Swinyard, B. M.; Sidher, S.] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Lis, D. C.; Blake, G. A.] CALTECH, Pasadena, CA 91125 USA. [Lara, L. -M.] Inst Astrofis Andalucia CSIC, Madrid, Spain. [Vandenbussche, B.; Decin, L.; Waelkens, C.] Katholieke Univ Leuven, Inst Sterrenkunde, Louvain, Belgium. [Bensch, F.] German Aerosp Ctr, DLR, Bonn, Germany. [Bergin, E. A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Billebaud, F.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Cernicharo, J.] INTA, CAB CSIC, Lab Mol Astrophys, Madrid, Spain. [Decin, L.] Univ Amsterdam, Sterrenkundig Inst Anton Pannekoek, NL-1098 Amsterdam, Netherlands. [Encrenaz, P.] Observ Paris, LERMA, Paris, France. [Feuchtgruber, H.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Fulton, T.] Bluesky Spect, Lethbridge, AB, Canada. [de Graauw, T.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. [de Graauw, T.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Jehin, E.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Naylor, D. A.] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada. [Portyankina, G.; Thomas, N.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Schieder, R.; Kramer, C.] Univ Cologne, Inst Phys 1, KOSMA, D-50937 Cologne, Germany. [Lorenzani, A.; Tofani, G.; Natale, E.] Osservatorio Astrofis Arcetri INAF, I-50100 Florence, Italy. [Pearson, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Klein, T.; Leinz, C.; Guesten, R.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. RP Hartogh, P (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. RI de Val-Borro, Miguel/H-1319-2013; OI de Val-Borro, Miguel/0000-0002-0455-9384; Lorenzani, Andrea/0000-0002-4685-3434; Medvedev, Alexander/0000-0003-2713-8977 FU CEA; CNES; CNRS (France); ASI (Italy); DLR (Germany); ESA; NASA through JPL/Caltech; Polish Ministry of Education and Science (MNiSW); NSF [AST-0540882] FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands, and with major contributions from Germany, France, and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. HIPE is a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortia. This development has been supported by national funding agencies: CEA, CNES, CNRS (France); ASI (Italy); DLR (Germany). Additional funding support for some instrument activities has been provided by ESA. Support for this work was provided by NASA through an award issued by JPL/Caltech. MIB, MB, and SS are supported by the Polish Ministry of Education and Science (MNiSW). DCL is supported by the NSF, award AST-0540882 to the Caltech Submillimeter Observatory. NR 31 TC 9 Z9 9 U1 0 U2 10 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L48 DI 10.1051/0004-6361/201015159 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900048 ER PT J AU Harwit, M Houde, M Sonnentrucker, P Boogert, ACA Cernicharo, J de Beck, E Decin, L Henkel, C Higgins, RD Jellema, W Kraus, A McCoey, C Melnick, GJ Menten, KM Risacher, C Teyssier, D Vaillancourt, JE Alcolea, J Bujarrabal, V Dominik, C Justtanont, K de Koter, A Marston, AP Olofsson, H Planesas, P Schmidt, M Schoier, FL Szczerba, R Waters, LBFM AF Harwit, M. Houde, M. Sonnentrucker, P. Boogert, A. C. A. Cernicharo, J. de Beck, E. Decin, L. Henkel, C. Higgins, R. D. Jellema, W. Kraus, A. McCoey, C. Melnick, G. J. Menten, K. M. Risacher, C. Teyssier, D. Vaillancourt, J. E. Alcolea, J. Bujarrabal, V. Dominik, C. Justtanont, K. de Koter, A. Marston, A. P. Olofsson, H. Planesas, P. Schmidt, M. Schoier, F. L. Szczerba, R. Waters, L. B. F. M. TI Polarisation observations of VY Canis Majoris H2O 5(32)-4(41) 620.701 GHz maser emission with HIFI SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: AGB and post-AGB; stars: winds, outflows; supergiants; circumstellar matter; masers; reference systems ID LATE-TYPE STARS; EVOLVED STARS; WATER MASERS; LINE; POLARIMETER; MILLIMETER; SHARP AB Context. Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. Aims. We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho H2O. Methods. In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Far Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km s(-1), which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut fur Radioastronomie 100-m telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. Results. We report the first astronomical detection to date of H2O maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings. C1 [Harwit, M.] Cornell Univ, Ctr Radiophys & Space Res, Washington, DC 20024 USA. [Houde, M.; McCoey, C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Sonnentrucker, P.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Boogert, A. C. A.] CALTECH, IPAC, Pasadena, CA 91925 USA. [Cernicharo, J.] CSIC, Madrid 28006, Spain. [de Beck, E.; Decin, L.; Waters, L. B. F. M.] Katholieke Univ Leuven, Inst Sterrenkundeii, B-3001 Heverlee, Belgium. [Henkel, C.; Kraus, A.; Menten, K. M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Higgins, R. D.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Jellema, W.; Risacher, C.] Univ Groningen, SRON, NL-9700 AV Groningen, Netherlands. [McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Melnick, G. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Teyssier, D.; Marston, A. P.] European Space Astron Ctr, Madrid 28080, Spain. [Vaillancourt, J. E.] NASA, SOFIA Sci Ctr, Univ Space Res Assoc, Ames Res Ctr, Moffett Field, CA 94035 USA. [Alcolea, J.] Observ Astron Nacl IGN, Madrid 28014, Spain. [Bujarrabal, V.; Planesas, P.] Observ Astron Nacl IGN, Alcala De Henares 28803, Spain. [Decin, L.; Dominik, C.; de Koter, A.; Waters, L. B. F. M.] Univ Amsterdam, Sterrenkundig Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6525 ED Nijmegen, Netherlands. [Justtanont, K.; Olofsson, H.; Schoier, F. L.] Chalmers, Dept Radio & Space Sci, Onsala Space Observ, S-43992 Onsala, Sweden. [de Koter, A.] Univ Utrecht, Netherlands & Astron Inst, NL-3584 CC Utrecht, Netherlands. [Olofsson, H.] Stockholm Univ, AlbaNova Univ Ctr, Dept Astron, S-10691 Stockholm, Sweden. [Planesas, P.] Joint ALMA Observ, Santiago, Chile. [Schmidt, M.; Szczerba, R.] Nicholas Copernicus Astron Ctr, PL-87100 Torun, Poland. RP Harwit, M (reprint author), Cornell Univ, Ctr Radiophys & Space Res, 511 H St SW, Washington, DC 20024 USA. EM harwit@verizon.net; houde@astro.uwo.ca RI Planesas, Pere/G-7950-2015; OI Planesas, Pere/0000-0002-7808-3040; De Beck, Elvire/0000-0002-7441-7189 FU NASA FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronmico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. Support for this work was provided by NASA through an award issued by JPL/Caltech. We thank the HIFISTARS consortium for permission to use their VY CMa 556.9 GHz data for calibration purposes. We would like to acknowledge that Tom Phillips first pointed out to us that HIFI might yield useful polarisation observations. And, finally, we extend thanks to the anonymous referee for perceptive insights and suggestions that greatly improved this paper. NR 21 TC 11 Z9 11 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L51 DI 10.1051/0004-6361/201015042 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900051 ER PT J AU Hily-Blant, P Maret, S Bacmann, A Bottinelli, S Parise, B Caux, E Faure, A Bergin, EA Blake, GA Castets, A Ceccarelli, C Cernicharo, J Coutens, A Crimier, N Demyk, K Dominik, C Gerin, M Hennebelle, P Henning, T Kahane, C Klotz, A Melnick, G Pagani, L Schilke, P Vastel, C Wakelam, V Walters, A Baudry, A Bell, T Benedettini, M Boogert, A Cabrit, S Caselli, P Codella, C Comito, C Encrenaz, P Falgarone, E Fuente, A Goldsmith, PF Helmich, F Herbst, E Jacq, T Kama, M Langer, W Lefloch, B Lis, D Lord, S Lorenzani, A Neufeld, D Nisini, B Pacheco, S Phillips, T Salez, M Saraceno, P Schuster, K Tielens, X van der Tak, F van der Wiel, MHD Viti, S Wyrowski, F Yorke, H AF Hily-Blant, P. Maret, S. Bacmann, A. Bottinelli, S. Parise, B. Caux, E. Faure, A. Bergin, E. A. Blake, G. A. Castets, A. Ceccarelli, C. Cernicharo, J. Coutens, A. Crimier, N. Demyk, K. Dominik, C. Gerin, M. Hennebelle, P. Henning, T. Kahane, C. Klotz, A. Melnick, G. Pagani, L. Schilke, P. Vastel, C. Wakelam, V. Walters, A. Baudry, A. Bell, T. Benedettini, M. Boogert, A. Cabrit, S. Caselli, P. Codella, C. Comito, C. Encrenaz, P. Falgarone, E. Fuente, A. Goldsmith, P. F. Helmich, F. Herbst, E. Jacq, T. Kama, M. Langer, W. Lefloch, B. Lis, D. Lord, S. Lorenzani, A. Neufeld, D. Nisini, B. Pacheco, S. Phillips, T. Salez, M. Saraceno, P. Schuster, K. Tielens, X. van der Tak, F. van der Wiel, M. H. D. Viti, S. Wyrowski, F. Yorke, H. TI Nitrogen hydrides in the cold envelope of IRAS 16293-2422 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: abundances; ISM: general; astrochemistry ID DISSOCIATIVE RECOMBINATION; PROTOSTAR IRAS16293-2422; INTERSTELLAR CLOUDS; DARK CLOUDS; CHEMISTRY; NH; MOLECULES; N2H+; SPECTROSCOPY; REGIONS AB Nitrogen is the fifth most abundant element in the Universe, yet the gas-phase chemistry of N-bearing species remains poorly understood. Nitrogen hydrides are key molecules of nitrogen chemistry. Their abundance ratios place strong constraints on the production pathways and reaction rates of nitrogen-bearing molecules. We observed the class 0 protostar IRAS 16293-2422 with the heterodyne instrument HIFI, covering most of the frequency range from 0.48 to 1.78 THz at high spectral resolution. The hyperfine structure of the amidogen radical o-NH2 is resolved and seen in absorption against the continuum of the protostar. Several transitions of ammonia from 1.2 to 1.8 THz are also seen in absorption. These lines trace the low-density envelope of the protostar. Column densities and abundances are estimated for each hydride. We find that NH:NH2:NH3 approximate to 5:1:300. Dark clouds chemical models predict steady-state abundances of NH2 and NH3 in reasonable agreement with the present observations, whilst that of NH is underpredicted by more than one order of magnitude, even using updated kinetic rates. Additional modelling of the nitrogen gas-phase chemistry in dark-cloud conditions is necessary before having recourse to heterogen processes. C1 [Hily-Blant, P.; Maret, S.; Bacmann, A.; Faure, A.; Castets, A.; Ceccarelli, C.; Crimier, N.; Kahane, C.; Lefloch, B.; Pacheco, S.] Univ Grenoble 1, CNRS, Lab Astrophys Grenoble, UMR 5571, Grenoble, France. [Bacmann, A.; Wakelam, V.; Baudry, A.; Jacq, T.] Univ Bordeaux, Lab Astrophys Bordeaux, CNRS, INSU,UMR 5804, Floirac, France. [Boogert, A.; Lord, S.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91109 USA. [Benedettini, M.; Saraceno, P.] Ist Fis Spazio Interplanetario, INAF, Rome, Italy. [Bottinelli, S.; Caux, E.; Coutens, A.; Demyk, K.; Vastel, C.; Walters, A.] Univ Toulouse 3, CNRS, Ctr Etud Spatiale Rayonnements, UMR 5187, F-31062 Toulouse, France. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Pagani, L.; Cabrit, S.; Encrenaz, P.; Salez, M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Pagani, L.; Cabrit, S.; Encrenaz, P.; Salez, M.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [Cernicharo, J.; Crimier, N.] CSIC, INTA, Ctr Astrobiol, Madrid, Spain. [Parise, B.; Schilke, P.; Comito, C.; Wyrowski, F.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Codella, C.; Lorenzani, A.] INAF Osservatorio Astrofis Arcetri, Florence, Italy. [Dominik, C.; Kama, M.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6525 ED Nijmegen, Netherlands. [Fuente, A.] IGN Observ Astron Nacl, Alcala De Henares, Spain. [Goldsmith, P. F.; Langer, W.; Yorke, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Helmich, F.; van der Tak, F.; van der Wiel, M. H. D.] SRON Netherlands Inst Space Res, Groningen, Netherlands. [Herbst, E.] Ohio State Univ, Columbus, OH 43210 USA. [Melnick, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Neufeld, D.] Johns Hopkins Univ, Baltimore, MD USA. [Schilke, P.] Univ Cologne, Inst Phys, Cologne, Germany. [Schuster, K.] Inst Radio Astron Millimetr, Grenoble, France. [Tielens, X.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Viti, S.] UCL, Dept Phys & Astron, London, England. [Nisini, B.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Bergin, E. A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Henning, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [van der Tak, F.; van der Wiel, M. H. D.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AB Groningen, Netherlands. [Gerin, M.; Hennebelle, P.; Falgarone, E.] Ecole Normale Super, CNRS, LERMA, UMR 8112, Paris, France. RP Hily-Blant, P (reprint author), Univ Grenoble 1, CNRS, Lab Astrophys Grenoble, UMR 5571, Grenoble, France. RI van der Wiel, Matthijs/M-4531-2014; Coutens, Audrey/M-4533-2014; Fuente, Asuncion/G-1468-2016; Goldsmith, Paul/H-3159-2016; OI van der Wiel, Matthijs/0000-0002-4325-3011; Coutens, Audrey/0000-0003-1805-3920; Fuente, Asuncion/0000-0001-6317-6343; Lorenzani, Andrea/0000-0002-4685-3434; Wakelam, Valentine/0000-0001-9676-2605; Kama, Mihkel/0000-0003-0065-7267; Codella, Claudio/0000-0003-1514-3074; , Brunella Nisini/0000-0002-9190-0113; Maret, Sebastien/0000-0003-1104-4554 NR 38 TC 33 Z9 33 U1 0 U2 9 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L52 DI 10.1051/0004-6361/201015253 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900052 ER PT J AU Joblin, C Pilleri, P Montillaud, J Fuente, A Gerin, M Berne, O Ossenkopf, V Le Bourlot, J Teyssier, D Goicoechea, JR Le Petit, F Rollig, M Akyilmaz, M Benz, AO Boulanger, F Bruderer, S Dedes, C France, K Gusten, R Harris, A Klein, T Kramer, C Lord, SD Martin, PG Martin-Pintado, J Mookerjea, B Okada, Y Phillips, TG Rizzo, JR Simon, R Stutzki, J van der Tak, F Yorke, HW Steinmetz, E Jarchow, C Hartogh, P Honingh, CE Siebertz, O Caux, E Colin, B AF Joblin, C. Pilleri, P. Montillaud, J. Fuente, A. Gerin, M. Berne, O. Ossenkopf, V. Le Bourlot, J. Teyssier, D. Goicoechea, J. R. Le Petit, F. Roellig, M. Akyilmaz, M. Benz, A. O. Boulanger, F. Bruderer, S. Dedes, C. France, K. Guesten, R. Harris, A. Klein, T. Kramer, C. Lord, S. D. Martin, P. G. Martin-Pintado, J. Mookerjea, B. Okada, Y. Phillips, T. G. Rizzo, J. R. Simon, R. Stutzki, J. van der Tak, F. Yorke, H. W. Steinmetz, E. Jarchow, C. Hartogh, P. Honingh, C. E. Siebertz, O. Caux, E. Colin, B. TI Gas morphology and energetics at the surface of PDRs: New insights with Herschel observations of NGC 7023 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: structure; ISM: kinematics and dynamics; ISM: molecules; submillimeter: ISM ID POLYCYCLIC AROMATIC-HYDROCARBONS; PHOTODISSOCIATION REGIONS; INTERSTELLAR-MEDIUM; DUST; GRAINS; SPECTROSCOPY; EMISSION; NGC-7023; CLOUD AB Context. We investigate the physics and chemistry of the gas and dust in dense photon-dominated regions (PDRs), along with their dependence on the illuminating UV field. Aims. Using Herschel/ HIFI observations, we study the gas energetics in NGC 7023 in relation to the morphology of this nebula. NGC 7023 is the prototype of a PDR illuminated by a B2V star and is one of the key targets of Herschel. Methods. Our approach consists in determining the energetics of the region by combining the information carried by the mid-IR spectrum (extinction by classical grains, emission from very small dust particles) with that of the main gas coolant lines. In this letter, we discuss more specifically the intensity and line profile of the 158 mu m (1901 GHz) [ Cii] line measured by HIFI and provide information on the emitting gas. Results. We show that both the [ Cii] emission and the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) arise from the regions located in the transition zone between atomic and molecular gas. Using the Meudon PDR code and a simple transfer model, we find good agreement between the calculated and observed [ Cii] intensities. Conclusions. HIFI observations of NGC 7023 provide the opportunity to constrain the energetics at the surface of PDRs. Future work will include analysis of the main coolant line [ Oi] and use of a new PDR model that includes PAH-related species. C1 [Joblin, C.; Pilleri, P.; Montillaud, J.; Caux, E.] Univ Toulouse, UPS, CESR, F-31028 Toulouse 4, France. [Joblin, C.; Pilleri, P.; Montillaud, J.; Caux, E.] CNRS, UMR 5187, F-31028 Toulouse, France. [Fuente, A.] OAN, Alcala De Henares, Madrid, Spain. [Gerin, M.] Observ Paris, LERMA, F-75014 Paris, France. [Berne, O.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Ossenkopf, V.; Roellig, M.; Akyilmaz, M.; Okada, Y.; Simon, R.; Stutzki, J.; Honingh, C. E.; Siebertz, O.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Ossenkopf, V.; van der Tak, F.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Le Bourlot, J.; Le Petit, F.] Observ Paris, LUTH, F-92190 Meudon, France. [Le Bourlot, J.; Le Petit, F.] Univ Paris 07, F-92190 Meudon, France. [Teyssier, D.] European Space Astron Ctr, Madrid 28080, Spain. [Goicoechea, J. R.; Martin-Pintado, J.; Rizzo, J. R.] CSIC INTA, Ctr Astrobiol, Madrid 28850, Spain. [Benz, A. O.; Bruderer, S.; Dedes, C.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Boulanger, F.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [France, K.; Martin, P. G.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Guesten, R.; Klein, T.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Harris, A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kramer, C.] IRAM, Granada 18012, Spain. [Lord, S. D.; Colin, B.] IPAC Caltech, Pasadena, CA 91125 USA. [Mookerjea, B.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Phillips, T. G.] CALTECH, Pasadena, CA 91125 USA. [van der Tak, F.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AB Groningen, Netherlands. [Yorke, H. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Steinmetz, E.; Jarchow, C.; Hartogh, P.] MPI Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. RP Joblin, C (reprint author), Univ Toulouse, UPS, CESR, 9 Ave Colonel Roche, F-31028 Toulouse 4, France. EM christine.joblin@cesr.fr RI Pilleri, Paolo/F-4754-2012; Rizzo, J. Ricardo/N-5879-2014; Fuente, Asuncion/G-1468-2016; Martin-Pintado, Jesus/H-6107-2015 OI Pilleri, Paolo/0000-0001-8670-8381; Rizzo, J. Ricardo/0000-0002-8443-6631; Fuente, Asuncion/0000-0001-6317-6343; Martin-Pintado, Jesus/0000-0003-4561-3508 FU National Aeronautics and Space administration FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands, and with major contributions from Germany, France, and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astron mico Nacional (IGN), Centro de Astrobiolog a (CSIC-INTA). Sweden: Chalmers University of Technology -MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University -Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. This work was supported by the German Deutsche Forschungsgemeinschaft, DFG project number Os 177/1-1. A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space administration. NR 25 TC 19 Z9 19 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L25 DI 10.1051/0004-6361/201015129 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900025 ER PT J AU Johnstone, D Fich, M McCoey, C van Kempen, TA Fuente, A Kristensen, LE Cernicharo, J Caselli, P Visser, R Plume, R Herczeg, GJ van Dishoeck, EF Wampfler, S Bachiller, R Baudry, A Benedettini, M Bergin, E Benz, AO Bjerkeli, P Blake, G Bontemps, S Braine, J Bruderer, S Codella, C Daniel, F di Giorgio, AM Dominik, C Doty, SD Encrenaz, P Giannini, T Goicoechea, JR de Graauw, T Helmich, F Herpin, F Hogerheijde, MR Jacq, T Jorgensen, JK Larsson, B Lis, D Liseau, R Marseille, M Melnick, G Neufeld, D Nisini, B Olberg, M Parise, B Pearson, J Risacher, C Santiago-Garcia, J Saraceno, P Shipman, R Tafalla, M van der Tak, F Wyrowski, F Yildiz, UA Caux, E Honingh, N Jellema, W Schieder, R Teyssier, D Whyborn, N AF Johnstone, D. Fich, M. McCoey, C. van Kempen, T. A. Fuente, A. Kristensen, L. E. Cernicharo, J. Caselli, P. Visser, R. Plume, R. Herczeg, G. J. van Dishoeck, E. F. Wampfler, S. Bachiller, R. Baudry, A. Benedettini, M. Bergin, E. Benz, A. O. Bjerkeli, P. Blake, G. Bontemps, S. Braine, J. Bruderer, S. Codella, C. Daniel, F. di Giorgio, A. M. Dominik, C. Doty, S. D. Encrenaz, P. Giannini, T. Goicoechea, J. R. de Graauw, Th. Helmich, F. Herpin, F. Hogerheijde, M. R. Jacq, T. Jorgensen, J. K. Larsson, B. Lis, D. Liseau, R. Marseille, M. Melnick, G. Neufeld, D. Nisini, B. Olberg, M. Parise, B. Pearson, J. Risacher, C. Santiago-Garcia, J. Saraceno, P. Shipman, R. Tafalla, M. van der Tak, F. Wyrowski, F. Yildiz, U. A. Caux, E. Honingh, N. Jellema, W. Schieder, R. Teyssier, D. Whyborn, N. TI Herschel/HIFI spectroscopy of the intermediate mass protostar NGC7129 FIRS 2 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; stars: formation ID STAR-FORMING REGIONS; YOUNG STELLAR OBJECTS; PACS SPECTROSCOPY; HH 46; WATER; HIFI; EXCITATION; EVOLUTION AB Herschel/HIFI observations of water from the intermediate mass protostar NGC 7129 FIRS 2 provide a powerful diagnostic of the physical conditions in this star formation environment. Six spectral settings, covering four (H2O)-O-16 and two (H2O)-O-18 lines, were observed and all but one (H2O)-O-18 line were detected. The four (H2O)-O-16 lines discussed here share a similar morphology: a narrower, approximate to 6kms(-1), component centered slightly redward of the systemic velocity of NGC7129 FIRS 2 and a much broader, approximate to 25 km s(-1) component centered blueward and likely associated with powerful outflows. The narrower components are consistent with emission from water arising in the envelope around the intermediate mass protostar, and the abundance of H2O is constrained to approximate to 10(-7) for the outer envelope. Additionally, the presence of a narrow self-absorption component for the lowest energy lines is likely due to self-absorption from colder water in the outer envelope. The broader component, where the H2O/CO relative abundance is found to be approximate to 0.2, appears to be tracing the same energetic region that produces strong CO emission at high J. C1 [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Johnstone, D.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Fich, M.; McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G, Canada. [McCoey, C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [van Kempen, T. A.; Kristensen, L. E.; Visser, R.; van Dishoeck, E. F.; Hogerheijde, M. R.; Yildiz, U. A.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Kempen, T. A.; Melnick, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Fuente, A.; Bachiller, R.; Santiago-Garcia, J.; Tafalla, M.] Observ Astron Nacl IGN, Alcala De Henares 28800, Spain. [Cernicharo, J.] INTA CSIC, CAB, Dept Astrophys, Torrejon De Ardoz 28850, Spain. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Caselli, P.; Goicoechea, J. R.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Herczeg, G. J.; van Dishoeck, E. F.] Max Planck Inst Extraterr Phys, D-37075 Garching, Germany. [Wampfler, S.; Baudry, A.; Benz, A. O.; Bruderer, S.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Benedettini, M.; Codella, C.; di Giorgio, A. M.; Giannini, T.; Nisini, B.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Area Ric Tor Vergata, I-00133 Rome, Italy. [Benedettini, M.; Bergin, E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Bjerkeli, P.; Liseau, R.; Olberg, M.] Chalmers, Onsala Space Observ, Dept Radio & Space Sci, S-43992 Onsala, Sweden. [Blake, G.; Lis, D.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Bontemps, S.; Braine, J.; Herpin, F.; Jacq, T.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Bontemps, S.; Braine, J.; Herpin, F.; Jacq, T.] CNRS INSU, UMR 5804, Floirac, France. [Daniel, F.] Observ Paris, LERMA UMR CNRS 8112, F-92195 Meudon, France. [Daniel, F.] CSIC, Dept Mol & Infrared Astrophys, E-28006 Madrid, Spain. [Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Doty, S. D.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Encrenaz, P.] Observ Paris, LERMA, F-75014 Paris, France. [Encrenaz, P.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [de Graauw, Th.; Whyborn, N.] Joint ALMA Off, Santiago, Chile. [Helmich, F.; Marseille, M.; Risacher, C.; Shipman, R.; van der Tak, F.; Jellema, W.] SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. [Jorgensen, J. K.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Larsson, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Parise, B.; Wyrowski, F.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Parise, B.; Honingh, N.; Schieder, R.] Univ Cologne, Inst Phys, KOSMA, D-50937 Cologne, Germany. [Neufeld, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Pearson, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [van der Tak, F.; Caux, E.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Teyssier, D.] ESA, European Space Astron Ctr, Madrid 28691, Spain. RP Johnstone, D (reprint author), Natl Res Council Canada, Herzberg Inst Astrophys, 5071 W Saanich Rd, Victoria, BC V9E 2E7, Canada. EM doug.johnstone@nrc-cnrc.gc.ca RI Yildiz, Umut/C-5257-2011; Kristensen, Lars/F-4774-2011; Visser, Ruud/J-8574-2012; Jorgensen, Jes Kristian/L-7936-2014; Wampfler, Susanne/D-2270-2015; Fuente, Asuncion/G-1468-2016; OI , Brunella Nisini/0000-0002-9190-0113; Codella, Claudio/0000-0003-1514-3074; Giannini, Teresa/0000-0002-0224-096X; Yildiz, Umut/0000-0001-6197-2864; Kristensen, Lars/0000-0003-1159-3721; Jorgensen, Jes Kristian/0000-0001-9133-8047; Wampfler, Susanne/0000-0002-3151-7657; Fuente, Asuncion/0000-0001-6317-6343; Bjerkeli, Per/0000-0002-7993-4118 FU Spanish MCINN [CSD2009-00038, AYA2006-14786, AYA2009-07304]; National Aeronautics and Space Administration FX We thank the HIFI ICC for all of their help with the data reduction, and both the referee and journal editor for critical comments and speed of response. J.C. and A.F. give thanks to Spanish MCINN for funding support under program CONSOLIDER INGENIO 2010 ref: CSD2009-00038, and J. C., under programs AYA2006-14786 and AYA2009-07304. A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This program is made possible thanks to the HIFI guaranteed time program. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research Groningen, The Netherlands and with major contributions from Germany, France, and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland: NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INT); Sweden: Chalmers University of Technology - MC2, RSS & GARD, Onsala Space Observatory, Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. NR 18 TC 14 Z9 14 U1 1 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L41 DI 10.1051/0004-6361/201015122 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900041 ER PT J AU Kama, M Dominik, C Maret, S van der Tak, F Caux, E Ceccarelli, C Fuente, A Crimier, N Lord, S Bacmann, A Baudry, A Bell, T Benedettini, M Bergin, EA Blake, GA Boogert, A Bottinelli, S Cabrit, S Caselli, P Castets, A Cernicharo, J Codella, C Comito, C Coutens, A Demyk, K Encrenaz, P Falgarone, E Gerin, M Goldsmith, PF Helmich, F Hennebelle, P Henning, T Herbst, E Hily-Blant, P Jacq, T Kahane, C Klotz, A Langer, W Lefloch, B Lis, D Lorenzani, A Melnick, G Nisini, B Pacheco, S Pagani, L Parise, B Pearson, J Phillips, T Salez, M Saraceno, P Schilke, P Schuster, K Tielens, X van der Wiel, MHD Vastel, C Viti, S Wakelam, V Walters, A Wyrowski, F Yorke, H Cais, P Gusten, R Philipp, S Klein, T Helmich, F AF Kama, M. Dominik, C. Maret, S. van der Tak, F. Caux, E. Ceccarelli, C. Fuente, A. Crimier, N. Lord, S. Bacmann, A. Baudry, A. Bell, T. Benedettini, M. Bergin, E. A. Blake, G. A. Boogert, A. Bottinelli, S. Cabrit, S. Caselli, P. Castets, A. Cernicharo, J. Codella, C. Comito, C. Coutens, A. Demyk, K. Encrenaz, P. Falgarone, E. Gerin, M. Goldsmith, P. F. Helmich, F. Hennebelle, P. Henning, T. Herbst, E. Hily-Blant, P. Jacq, T. Kahane, C. Klotz, A. Langer, W. Lefloch, B. Lis, D. Lorenzani, A. Melnick, G. Nisini, B. Pacheco, S. Pagani, L. Parise, B. Pearson, J. Phillips, T. Salez, M. Saraceno, P. Schilke, P. Schuster, K. Tielens, X. van der Wiel, M. H. D. Vastel, C. Viti, S. Wakelam, V. Walters, A. Wyrowski, F. Yorke, H. Cais, P. Guesten, R. Philipp, S. Klein, T. Helmich, F. TI The methanol lines and hot core of OMC2-FIR4, an intermediate-mass protostar, with Herschel/HIFI SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; ISM: abundances; ISM: kinematics and dynamics; ISM: molecules ID STAR-FORMING REGIONS; INTERSTELLAR CLOUDS; PACS SPECTROSCOPY; DIAGNOSTIC-TOOL; GAS; EXPLANATION; ENVELOPES; MOLECULES; ABUNDANCE; EMISSION AB In contrast with numerous studies on the physical and chemical structure of low-and high-mass protostars, much less is known about their intermediate-mass counterparts, a class of objects that could help to elucidate the mechanisms of star formation on both ends of the mass range. We present the first results from a rich HIFI spectral dataset on an intermediate-mass protostar, OMC2-FIR4, obtained in the CHESS (Chemical HErschel Survey of Star forming regions) key programme. The more than 100 methanol lines detected between 554 and 961 GHz cover a range in upper level energy of 40 to 540 K. Our physical interpretation focusses on the hot core, but likely the cold envelope and shocked regions also play a role in reality, because an analysis of the line profiles suggests the presence of multiple emission components. An upper limit of 10 (6) is placed on the methanol abundance in the hot core, using a population diagram, large-scale source model and other considerations. This value is consistent with abundances previously seen in low-mass hot cores. Furthermore, the highest energy lines at the highest frequencies display asymmetric profiles, which may arise from infall around the hot core. C1 [Kama, M.; Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6525 ED Nijmegen, Netherlands. [Maret, S.; Ceccarelli, C.; Crimier, N.; Bacmann, A.; Castets, A.; Hily-Blant, P.; Kahane, C.; Lefloch, B.; Pacheco, S.] Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. [van der Tak, F.; Helmich, F.; van der Wiel, M. H. D.; Helmich, F.] SRON Netherlands Inst Space Res, Groningen, Netherlands. [van der Tak, F.; van der Wiel, M. H. D.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AB Groningen, Netherlands. [Caux, E.; Bottinelli, S.; Coutens, A.; Demyk, K.; Klotz, A.; Vastel, C.; Walters, A.] Univ Toulouse 3, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse, France. [Caux, E.; Bottinelli, S.; Coutens, A.; Demyk, K.; Klotz, A.; Vastel, C.; Walters, A.] CNRS INSU, UMR 5187, Toulouse, France. [Ceccarelli, C.; Bacmann, A.; Baudry, A.; Castets, A.; Jacq, T.; Wakelam, V.; Cais, P.] Univ Bordeaux, Lab Astrophys Bordeaux, Floirac, France. [Ceccarelli, C.; Bacmann, A.; Baudry, A.; Castets, A.; Jacq, T.; Wakelam, V.] CNRS INSU, UMR 5804, Floirac, France. [Fuente, A.] IGN Observ Astron Nacl, Alcala De Henares, Spain. [Crimier, N.; Cernicharo, J.] CSIC INTA, Ctr Astrobiol, Madrid, Spain. [Lord, S.; Boogert, A.] CALTECH, Infared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benedettini, M.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Rome, Italy. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Cabrit, S.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Hennebelle, P.; Pagani, L.; Salez, M.] UCP, UPMC, ENS,UMR CNRS INSU 8112, OP,Lab Etud Rayonnement & Matiere Astrophys, Paris, France. [Comito, C.; Parise, B.; Schilke, P.; Wyrowski, F.; Guesten, R.; Philipp, S.; Klein, T.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Codella, C.; Lorenzani, A.] INAF Osservatorio Astrofis Arcetri, Florence, Italy. [Goldsmith, P. F.; Langer, W.; Pearson, J.; Yorke, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Herbst, E.] Ohio State Univ, Columbus, OH 43210 USA. [Melnick, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Schilke, P.; Viti, S.] Univ Cologne, Inst Phys, Cologne, Germany. [Schuster, K.] Inst Radio Astron Millimetr, Grenoble, France. [Tielens, X.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Nisini, B.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Bergin, E. A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Henning, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Kama, M (reprint author), Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. RI van der Wiel, Matthijs/M-4531-2014; Coutens, Audrey/M-4533-2014; Fuente, Asuncion/G-1468-2016; Goldsmith, Paul/H-3159-2016; OI van der Wiel, Matthijs/0000-0002-4325-3011; Coutens, Audrey/0000-0003-1805-3920; Fuente, Asuncion/0000-0001-6317-6343; Lorenzani, Andrea/0000-0002-4685-3434; Wakelam, Valentine/0000-0001-9676-2605; Kama, Mihkel/0000-0003-0065-7267; Codella, Claudio/0000-0003-1514-3074; , Brunella Nisini/0000-0002-9190-0113; Maret, Sebastien/0000-0003-1104-4554 FU Netherlands Organisation for Scientific Research (NWO) [021.002.081]; Leids Kerkhoven-Bosscha Fonds FX The authors are grateful to the referee, Dr. Tim van Kempen, for constructive comments leading to a significant improvement of the paper, and to Rens Waters for helpful discussions. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astron (U) over circle mico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC, and we are deeply grateful to everyone involved in the designing, building, and exploitation of this fantastic instrument. HCSS, HSpot, and HIPE are joint developments by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS, and SPIRE consortia. M. Kama gratefully acknowledges support from the Netherlands Organisation for Scientific Research (NWO) grant number 021.002.081 and the Leids Kerkhoven-Bosscha Fonds, and thanks SRON Groningen for hosting the HIFI ICC volunteers. NR 29 TC 11 Z9 11 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L39 DI 10.1051/0004-6361/201015118 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900039 ER PT J AU Kristensen, LE Visser, R van Dishoeck, EF Yildiz, UA Doty, SD Herczeg, GJ Liu, FC Parise, B Jorgensen, JK van Kempen, TA Brinch, C Wampfler, SF Bruderer, S Benz, AO Hogerheijde, MR Deul, E Bachiller, R Baudry, A Benedettini, M Bergin, EA Bjerkeli, P Blake, GA Bontemps, S Braine, J Caselli, P Cernicharo, J Codella, C Daniel, F de Graauw, T di Giorgio, AM Dominik, C Encrenaz, P Fich, M Fuente, A Giannini, T Goicoechea, JR Helmich, F Herpin, F Jacq, T Johnstone, D Kaufman, MJ Larsson, B Lis, D Liseau, R Marseille, M McCoey, C Melnick, G Neufeld, D Nisini, B Olberg, M Pearson, JC Plume, R Risacher, C Santiago-Garcia, J Saraceno, P Shipman, R Tafalla, M Tielens, AGGM van der Tak, F Wyrowski, F Beintema, D de Jonge, A Dieleman, P Ossenkopf, V Roelfsema, P Stutzki, J Whyborn, N AF Kristensen, L. E. Visser, R. van Dishoeck, E. F. Yildiz, U. A. Doty, S. D. Herczeg, G. J. Liu, F. -C. Parise, B. Jorgensen, J. K. van Kempen, T. A. Brinch, C. Wampfler, S. F. Bruderer, S. Benz, A. O. Hogerheijde, M. R. Deul, E. Bachiller, R. Baudry, A. Benedettini, M. Bergin, E. A. Bjerkeli, P. Blake, G. A. Bontemps, S. Braine, J. Caselli, P. Cernicharo, J. Codella, C. Daniel, F. de Graauw, Th. di Giorgio, A. M. Dominik, C. Encrenaz, P. Fich, M. Fuente, A. Giannini, T. Goicoechea, J. R. Helmich, F. Herpin, F. Jacq, T. Johnstone, D. Kaufman, M. J. Larsson, B. Lis, D. Liseau, R. Marseille, M. McCoey, C. Melnick, G. Neufeld, D. Nisini, B. Olberg, M. Pearson, J. C. Plume, R. Risacher, C. Santiago-Garcia, J. Saraceno, P. Shipman, R. Tafalla, M. Tielens, A. G. G. M. van der Tak, F. Wyrowski, F. Beintema, D. de Jonge, A. Dieleman, P. Ossenkopf, V. Roelfsema, P. Stutzki, J. Whyborn, N. TI Water in low-mass star-forming regions with Herschel HIFI spectroscopy of NGC 1333 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; stars: formation; ISM: molecules; ISM: jets and outflows; ISM: individual objects: NGC 1333 ID PROTOSTELLAR ENVELOPES; PHYSICAL STRUCTURE; NGC-1333 IRAS-4; SUBMILLIMETER; PROTOSTARS; EMISSION; OUTFLOW; ABUNDANCE; VAPOR; DISK AB "Water In Star-forming regions with Herschel" (WISH) is a key programme dedicated to studying the role of water and related species during the star-formation process and constraining the physical and chemical properties of young stellar objects. The Heterodyne Instrument for the Far-Infrared (HIFI) on the Herschel Space Observatory observed three deeply embedded protostars in the low-mass star-forming region NGC 1333 in several (H2O)-O-16, (H2O)-O-18, and CO transitions. Line profiles are resolved for five (H2O)-O-16 transitions in each source, revealing them to be surprisingly complex. The line profiles are decomposed into broad (>20 km s(-1)), medium-broad (similar to 5-10 km s(-1)), and narrow (<5 kms(-1)) components. The (H2O)-O-18 emission is only detected in broad 1(10)-1(01) lines (>20 km s(-1)), indicating that its physical origin is the same as for the broad (H2O)-O-16 component. In one of the sources, IRAS4A, an inverse P Cygni profile is observed, a clear sign of infall in the envelope. From the line profiles alone, it is clear that the bulk of emission arises from shocks, both on small (less than or similar to 1000 AU) and large scales along the outflow cavity walls (similar to 10 000 AU). The H2O line profiles are compared to CO line profiles to constrain the H2O abundance as a function of velocity within these shocked regions. The H2O/CO abundance ratios are measured to be in the range of similar to 0.1-1, corresponding to H2O abundances of similar to 10(-5)-10(-4) with respect to H-2. Approximately 5-10% of the gas is hot enough for all oxygen to be driven into water in warm post-shock gas, mostly at high velocities. C1 [Kristensen, L. E.; Visser, R.; van Dishoeck, E. F.; Yildiz, U. A.; Brinch, C.; Hogerheijde, M. R.; Deul, E.; Tielens, A. G. G. M.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Dishoeck, E. F.; Herczeg, G. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Doty, S. D.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Liu, F. -C.; Parise, B.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Jorgensen, J. K.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen K, Denmark. [van Kempen, T. A.; Melnick, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Wampfler, S. F.; Bruderer, S.; Benz, A. O.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Bachiller, R.] Observ Astron Nacl IGN, Madrid 28014, Spain. [Baudry, A.; Bontemps, S.; Braine, J.; Herpin, F.; Jacq, T.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Baudry, A.; Bontemps, S.; Braine, J.; Herpin, F.; Jacq, T.] CNRS INSU, UMR 5804, Floirac, France. [Benedettini, M.; di Giorgio, A. M.; Saraceno, P.] INAF Inst Fis Spazio Interplanetario, Area Ric Tor Vergata, I-00133 Rome, Italy. [Bergin, E. A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Bjerkeli, P.; Liseau, R.; Olberg, M.] Chalmers, Onsala Space Observ, Dept Radio & Space Sci, S-43992 Onsala, Sweden. [Blake, G. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Caselli, P.; Codella, C.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.] CSIC INTA, Dept Astrofis, Ctr Astrobiol, Madrid 28850, Spain. [de Graauw, Th.; Helmich, F.; Marseille, M.; Risacher, C.; Shipman, R.; van der Tak, F.; Beintema, D.; de Jonge, A.; Dieleman, P.; Roelfsema, P.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Encrenaz, P.] Observ Paris, LERMA, F-75014 Paris, France. [Encrenaz, P.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [Fich, M.; McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Fuente, A.] Observ Astron Nacl, Alcala De Henares 28803, Spain. [Giannini, T.; Nisini, B.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Johnstone, D.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Kaufman, M. J.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Larsson, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Lis, D.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [McCoey, C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Neufeld, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Pearson, J. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Santiago-Garcia, J.] Inst Radio Astron Millimetr, E-18012 Granada, Spain. [van der Tak, F.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Ossenkopf, V.; Stutzki, J.] Univ Cologne, Inst Phys 1, KOSMA, D-50937 Cologne, Germany. [Whyborn, N.] Joint ALMA Off, Santiago, Chile. RP Kristensen, LE (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. RI Yildiz, Umut/C-5257-2011; Kristensen, Lars/F-4774-2011; Visser, Ruud/J-8574-2012; Jorgensen, Jes Kristian/L-7936-2014; Wampfler, Susanne/D-2270-2015; Brinch, Christian/G-5157-2015; Fuente, Asuncion/G-1468-2016; OI Codella, Claudio/0000-0003-1514-3074; Yildiz, Umut/0000-0001-6197-2864; Kristensen, Lars/0000-0003-1159-3721; Jorgensen, Jes Kristian/0000-0001-9133-8047; Wampfler, Susanne/0000-0002-3151-7657; Brinch, Christian/0000-0002-5074-7183; Fuente, Asuncion/0000-0001-6317-6343; Bjerkeli, Per/0000-0002-7993-4118; Giannini, Teresa/0000-0002-0224-096X; , Brunella Nisini/0000-0002-9190-0113 NR 22 TC 62 Z9 62 U1 1 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L30 DI 10.1051/0004-6361/201015100 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900030 ER PT J AU Langer, WD Velusamy, T Pineda, JL Goldsmith, PF Li, D Yorke, HW AF Langer, W. D. Velusamy, T. Pineda, J. L. Goldsmith, P. F. Li, D. Yorke, H. W. TI C+ detection of warm dark gas in diffuse clouds SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: atoms; ISM: molecules; ISM: structure ID GALACTIC PLANE SURVEY; GAMMA-RAY EMISSION; INTERSTELLAR CLOUDS; MOLECULAR GAS; CO; PHOTODISSOCIATION; HERSCHEL; LINE; H-2; CHEMISTRY AB We present the first results of the Herschel open time key program, Galactic Observations of Terahertz C+ (GOT C+) survey of the [CII] P-2(3/2)-P-2(1/2) fine-structure line at 1.9 THz (158 mu m) using the HIFI instrument on Herschel. We detected 146 interstellar clouds along sixteen lines-of-sight towards the inner Galaxy. We also acquired HI and CO isotopologue data along each line-of-sight for analysis of the physical conditions in these clouds. Here we analyze 29 diffuse clouds (AV < 1.3 mag) in this sample characterized by having [CII] and HI emission, but no detectable CO. We find that [CII] emission is generally stronger than expected for diffuse atomic clouds, and in a number of sources is much stronger than anticipated based on their HI column density. We show that excess [CII] emission in these clouds is best explained by the presence of a significant diffuse warm H-2, dark gas, component. This first [CII] 158 mu m detection of warm dark gas demonstrates the value of this tracer for mapping this gas throughout the Milky Way and in galaxies. C1 [Langer, W. D.; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Langer, WD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM William.Langer@jpl.nasa.gov RI Goldsmith, Paul/H-3159-2016 FU Commonwealth of Australia FX This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank the staffs of the ESA and NASA Herschel Science Centers for their help. The Mopra Telescope is managed by the Australia Telescope, and funded by the Commonwealth of Australia for operation as a National Facility by the CSIRO. We thank the referee and editor for comments. NR 27 TC 54 Z9 54 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L17 DI 10.1051/0004-6361/201015088 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900017 ER PT J AU Lis, DC Phillips, TG Goldsmith, PF Neufeld, DA Herbst, E Comito, C Schilke, P Muller, HSP Bergin, EA Gerin, M Bell, TA Emprechtinger, M Black, JH Blake, GA Boulanger, F Caux, E Ceccarelli, C Cernicharo, J Coutens, A Crockett, NR Daniel, F Dartois, E De Luca, M Dubernet, ML Encrenaz, P Falgarone, E Geballe, TR Godard, B Giesen, TF Goicoechea, JR Gry, C Gupta, H Hennebelle, P Hily-Blant, P Kolos, R Krelowski, J Joblin, C Johnstone, D Kazmierczak, M Lord, SD Maret, S Martin, PG Martin-Pintado, J Melnick, GJ Menten, KM Monje, R Mookerjea, B Morris, P Murphy, JA Ossenkopf, V Pearson, JC Perault, M Persson, C Plume, R Qin, SL Salez, M Schlemmer, S Schmidt, M Sonnentrucker, P Stutzki, J Teyssier, D Trappe, N van der Tak, FFS Vastel, C Wang, S Yorke, HW Yu, S Zmuidzinas, J Boogert, A Erickson, N Karpov, A Kooi, J Maiwald, FW Schieder, R Zaal, P AF Lis, D. C. Phillips, T. G. Goldsmith, P. F. Neufeld, D. A. Herbst, E. Comito, C. Schilke, P. Mueller, H. S. P. Bergin, E. A. Gerin, M. Bell, T. A. Emprechtinger, M. Black, J. H. Blake, G. A. Boulanger, F. Caux, E. Ceccarelli, C. Cernicharo, J. Coutens, A. Crockett, N. R. Daniel, F. Dartois, E. De Luca, M. Dubernet, M. -L. Encrenaz, P. Falgarone, E. Geballe, T. R. Godard, B. Giesen, T. F. Goicoechea, J. R. Gry, C. Gupta, H. Hennebelle, P. Hily-Blant, P. Kolos, R. Krelowski, J. Joblin, C. Johnstone, D. Kazmierczak, M. Lord, S. D. Maret, S. Martin, P. G. Martin-Pintado, J. Melnick, G. J. Menten, K. M. Monje, R. Mookerjea, B. Morris, P. Murphy, J. A. Ossenkopf, V. Pearson, J. C. Perault, M. Persson, C. Plume, R. Qin, S. -L. Salez, M. Schlemmer, S. Schmidt, M. Sonnentrucker, P. Stutzki, J. Teyssier, D. Trappe, N. van der Tak, F. F. S. Vastel, C. Wang, S. Yorke, H. W. Yu, S. Zmuidzinas, J. Boogert, A. Erickson, N. Karpov, A. Kooi, J. Maiwald, F. W. Schieder, R. Zaal, P. TI Herschel/HIFI measurements of the ortho/para ratio in water towards Sagittarius B2(M) and W31C SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; ISM: abundances; ISM: molecules; molecular processes; submillimeter: ISM ID MOLECULAR CLOUDS; COLOGNE DATABASE; SUBMILLIMETER; SPECTROSCOPY; ABSORPTION; ASTRONOMY; AMMONIA; OXYGEN; VAPOR; CDMS AB We present Herschel/HIFI observations of the fundamental rotational transitions of ortho- and para-(H2O)-O-16 and (H2O)-O-18 in absorption towards Sagittarius B2(M) and W31C. The ortho/para ratio in water in the foreground clouds on the line of sight towards these bright continuum sources is generally consistent with the statistical high-temperature ratio of 3, within the observational uncertainties. However, somewhat unexpectedly, we derive a low ortho/para ratio of 2.35 +/- 0.35, corresponding to a spin temperature of similar to 27 K, towards Sagittarius B2(M) at velocities of the expanding molecular ring. Water molecules in this region appear to have formed with, or relaxed to, an ortho/para ratio close to the value corresponding to the local temperature of the gas and dust. C1 [Lis, D. C.; Phillips, T. G.; Bell, T. A.; Emprechtinger, M.; Blake, G. A.; Monje, R.; Zmuidzinas, J.; Karpov, A.; Kooi, J.] CALTECH, Cahill Ctr Astron & Astrophys 301 17, Pasadena, CA 91125 USA. [Bergin, E. A.; Crockett, N. R.; Wang, S.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Neufeld, D. A.; Sonnentrucker, P.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Caux, E.; Coutens, A.; Joblin, C.; Vastel, C.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [Caux, E.; Coutens, A.; Joblin, C.; Vastel, C.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Ceccarelli, C.] Observ Grenoble, Astrophys Lab, F-38041 Grenoble 9, France. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.; Martin-Pintado, J.] Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid, Spain. [Comito, C.; Schilke, P.; Menten, K. M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Gerin, M.; Daniel, F.; De Luca, M.; Encrenaz, P.; Falgarone, E.; Godard, B.; Hennebelle, P.; Perault, M.; Salez, M.] Observ Paris, CNRS UMR8112, LERMA, F-75231 Paris 05, France. [Gerin, M.; Daniel, F.; De Luca, M.; Encrenaz, P.; Falgarone, E.; Godard, B.; Hennebelle, P.; Perault, M.; Salez, M.] Ecole Normale Super, F-75231 Paris 05, France. [Dubernet, M. -L.] Univ Paris 06, UMR7092, LPMAA, Paris, France. [Dubernet, M. -L.] Observ Paris, UMR8102, LUTH, Meudon, France. [Schilke, P.; Mueller, H. S. P.; Giesen, T. F.; Ossenkopf, V.; Qin, S. -L.; Schlemmer, S.; Stutzki, J.; Schieder, R.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Goldsmith, P. F.; Gry, C.; Gupta, H.; Pearson, J. C.; Yorke, H. W.; Yu, S.; Maiwald, F. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Herbst, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Lord, S. D.; Morris, P.; Boogert, A.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Martin, P. G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Melnick, G. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Murphy, J. A.; Trappe, N.] Natl Univ Ireland Maynooth, Maynooth, Kildare, Ireland. [Ossenkopf, V.; van der Tak, F. F. S.; Zaal, P.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Erickson, N.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Black, J. H.; Persson, C.] Chalmers, S-41296 Gothenburg, Sweden. [Boulanger, F.; Dartois, E.] IAS, Orsay, France. [Krelowski, J.; Kazmierczak, M.] Nicholas Copernicus Univ, Torun, Poland. [Geballe, T. R.] Gemini Telescope, Hilo, HI USA. [Kolos, R.] Polish Acad Sci, Inst Phys Chem, Warsaw, Poland. [Mookerjea, B.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Teyssier, D.] ESA, European Space Astron Ctr, Madrid, Spain. RP Lis, DC (reprint author), CALTECH, Cahill Ctr Astron & Astrophys 301 17, Pasadena, CA 91125 USA. EM dcl@caltech.edu RI Goldsmith, Paul/H-3159-2016; Martin-Pintado, Jesus/H-6107-2015; Coutens, Audrey/M-4533-2014; Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Trappe, Neil/C-9014-2016; Yu, Shanshan/D-8733-2016 OI Martin-Pintado, Jesus/0000-0003-4561-3508; Coutens, Audrey/0000-0003-1805-3920; Giesen, Thomas /0000-0002-2401-0049; Mueller, Holger/0000-0002-0183-8927; Maret, Sebastien/0000-0003-1104-4554; Schlemmer, Stephan/0000-0002-1421-7281; Trappe, Neil/0000-0003-2527-9821; FU NASA through JPL/Caltech; NSF [AST-0540882]; National Aeronautics and Space Administration FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology-MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. Support for this work was provided by NASA through an award issued by JPL/Caltech. D. C. L. is supported by the NSF, award AST-0540882 to the CSO. A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 22 TC 40 Z9 40 U1 0 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L26 DI 10.1051/0004-6361/201015072 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900026 ER PT J AU Lis, DC Pearson, JC Neufeld, DA Schilke, P Muller, HSP Gupta, H Bell, TA Comito, C Phillips, TG Bergin, EA Ceccarelli, C Goldsmith, PF Blake, GA Bacmann, A Baudry, A Benedettini, M Benz, A Black, J Boogert, A Bottinelli, S Cabrit, S Caselli, P Castets, A Caux, E Cernicharo, J Codella, C Coutens, A Crimier, N Crockett, NR Daniel, F Demyk, K Dominic, C Dubernet, ML Emprechtinger, M Encrenaz, P Falgarone, E Fuente, A Gerin, M Giesen, TF Goicoechea, JR Helmich, F Hennebelle, P Henning, T Herbst, E Hily-Blant, P Hjalmarson, A Hollenbach, D Jack, T Joblin, C Johnstone, D Kahane, C Kama, M Kaufman, M Klotz, A Langer, WD Larsson, B Le Bourlot, J Lefloch, B Le Petit, F Li, D Liseau, R Lord, SD Lorenzani, A Maret, S Martin, PG Melnick, GJ Menten, KM Morris, P Murphy, JA Nagy, Z Nisini, B Ossenkopf, V Pacheco, S Pagani, L Parise, B Perault, M Plume, R Qin, SL Roueff, E Salez, M Sandqvist, A Saraceno, P Schlemmer, S Schuster, K Snell, R Stutzki, J Tielens, A Trappe, N van der Tak, FFS van der Wiel, MHD van Dishoeck, E Vastel, C Viti, S Wakelam, V Walters, A Wang, S Wyrowski, F Yorke, HW Yu, S Zmuidzinas, J Delorme, Y Desbat, JP Gusten, R Krieg, JM Delforge, B AF Lis, D. C. Pearson, J. C. Neufeld, D. A. Schilke, P. Mueller, H. S. P. Gupta, H. Bell, T. A. Comito, C. Phillips, T. G. Bergin, E. A. Ceccarelli, C. Goldsmith, P. F. Blake, G. A. Bacmann, A. Baudry, A. Benedettini, M. Benz, A. Black, J. Boogert, A. Bottinelli, S. Cabrit, S. Caselli, P. Castets, A. Caux, E. Cernicharo, J. Codella, C. Coutens, A. Crimier, N. Crockett, N. R. Daniel, F. Demyk, K. Dominic, C. Dubernet, M. -L. Emprechtinger, M. Encrenaz, P. Falgarone, E. Fuente, A. Gerin, M. Giesen, T. F. Goicoechea, J. R. Helmich, F. Hennebelle, P. Henning, Th. Herbst, E. Hily-Blant, P. Hjalmarson, A. Hollenbach, D. Jack, T. Joblin, C. Johnstone, D. Kahane, C. Kama, M. Kaufman, M. Klotz, A. Langer, W. D. Larsson, B. Le Bourlot, J. Lefloch, B. Le Petit, F. Li, D. Liseau, R. Lord, S. D. Lorenzani, A. Maret, S. Martin, P. G. Melnick, G. J. Menten, K. M. Morris, P. Murphy, J. A. Nagy, Z. Nisini, B. Ossenkopf, V. Pacheco, S. Pagani, L. Parise, B. Perault, M. Plume, R. Qin, S. -L. Roueff, E. Salez, M. Sandqvist, A. Saraceno, P. Schlemmer, S. Schuster, K. Snell, R. Stutzki, J. Tielens, A. Trappe, N. van der Tak, F. F. S. van der Wiel, M. H. D. van Dishoeck, E. Vastel, C. Viti, S. Wakelam, V. Walters, A. Wang, S. Wyrowski, F. Yorke, H. W. Yu, S. Zmuidzinas, J. Delorme, Y. Desbat, J. -P. Guesten, R. Krieg, J. -M. Delforge, B. TI Herschel/HIFI discovery of interstellar chloronium (H2Cl+) SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; line: identification; ISM: abundances; ISM: molecules; molecular processes; submillimetre: ISM ID CHLORINE-BEARING MOLECULES; STAR-FORMING REGION; SPIRAL ARM CLOUDS; NGC 6334 I; HYDROGEN-CHLORIDE; COLOGNE DATABASE; ISOTOPIC RATIO; GROUND-STATE; SUBMILLIMETER; SPECTROSCOPY AB We report the first detection of chloronium, H2Cl+, in the interstellar medium, using the HIFI instrument aboard the Herschel Space Observatory. The 2(12)-1(01) lines of ortho-(H2Cl+)-Cl-35 and ortho-(H2Cl+)-Cl-37 are detected in absorption towards NGC 6334I, and the 1(11)-0(00) transition of para-(H2Cl+)-Cl-35 is detected in absorption towards NGC 6334I and Sgr B2(S). The H2Cl+ column densities are compared to those of the chemically-related species HCl. The derived HCl/H2Cl+ column density ratios, similar to 1-10, are within the range predicted by models of diffuse and dense photon dominated regions (PDRs). However, the observed H2Cl+ column densities, in excess of 10(13) cm(-2), are significantly higher than the model predictions. Our observations demonstrate the outstanding spectroscopic capabilities of HIFI for detecting new interstellar molecules and providing key constraints for astrochemical models. C1 [Lis, D. C.; Bell, T. A.; Phillips, T. G.; Blake, G. A.; Emprechtinger, M.; Zmuidzinas, J.] CALTECH, Cahill Ctr Astron & Astrophys 301 17, Pasadena, CA 91125 USA. [Bergin, E. A.; Crockett, N. R.; Wang, S.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Neufeld, D. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Bottinelli, S.; Caux, E.; Coutens, A.; Demyk, K.; Joblin, C.; Klotz, A.; Vastel, C.; Walters, A.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [Bottinelli, S.; Caux, E.; Coutens, A.; Demyk, K.; Joblin, C.; Klotz, A.; Vastel, C.; Walters, A.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Ceccarelli, C.; Bacmann, A.; Castets, A.; Crimier, N.; Hily-Blant, P.; Kahane, C.; Lefloch, B.; Maret, S.; Pacheco, S.] Observ Grenoble, Astrophys Lab, F-38041 Grenoble 9, France. [Cernicharo, J.; Crimier, N.; Daniel, F.; Goicoechea, J. R.] Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid 28850, Spain. [Schilke, P.; Comito, C.; Menten, K. M.; Parise, B.; Wyrowski, F.; Guesten, R.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Daniel, F.; Falgarone, E.; Gerin, M.; Hennebelle, P.; Perault, M.] Observ Paris, UMR8112, CNRS, LERMA, F-75231 Paris 05, France. [Dubernet, M. -L.] Univ Paris 06, UMR7092, LPMAA, Paris, France. [Dubernet, M. -L.] Observ Paris, UMR8102, LUTH, Meudon, France. [Schilke, P.; Mueller, H. S. P.; Giesen, T. F.; Ossenkopf, V.; Qin, S. -L.; Schlemmer, S.; Stutzki, J.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Pearson, J. C.; Gupta, H.; Goldsmith, P. F.; Langer, W. D.; Li, D.; Morris, P.; Yorke, H. W.; Yu, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Herbst, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Daniel, F.; Falgarone, E.; Gerin, M.; Hennebelle, P.; Perault, M.] Ecole Normale Super, F-75231 Paris 05, France. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Boogert, A.; Lord, S. D.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Martin, P. G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Melnick, G. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Murphy, J. A.; Trappe, N.] Natl Univ Ireland, Maynooth, Kildare, Ireland. [Helmich, F.; Ossenkopf, V.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Nagy, Z.; Plume, R.; van der Tak, F. F. S.; van der Wiel, M. H. D.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Snell, R.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Bacmann, A.; Baudry, A.; Jack, T.; Wakelam, V.; Desbat, J. -P.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Bacmann, A.; Baudry, A.; Jack, T.; Wakelam, V.; Desbat, J. -P.] CNRS INSU, UMR 5804, Floirac, France. [Benedettini, M.; Lorenzani, A.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Rome, Italy. [Cabrit, S.; Encrenaz, P.; Pagani, L.; Salez, M.] Observ Paris, LERMA, UMR 8112, CNRS, Paris, France. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Codella, C.] INAF Osservatorio Astrofis Arcetri, Florence, Italy. [Dominic, C.; Kama, M.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Dominic, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6525 ED Nijmegen, Netherlands. [Fuente, A.] IGN Observ Astron Nacl, Alcala De Henares, Spain. [Nisini, B.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Schuster, K.] Inst RadioAstron Millimetr, Grenoble, France. [Tielens, A.; van Dishoeck, E.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Viti, S.] UCL, Dept Phys & Astron, London, England. [Black, J.; Liseau, R.] Chalmers, Dept Radio & Space Sci, Onsala, Sweden. [Benz, A.] ETH, Inst Astron, CH-8092 Zurich, Switzerland. [Hjalmarson, A.] Chalmers, Onsala Space Observ, Onsala, Sweden. [Hollenbach, D.] SETI Inst, Mountain View, CA USA. [Kaufman, M.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Larsson, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Le Bourlot, J.; Le Petit, F.; Roueff, E.] Observ Paris, LUTH, Meudon, France. [Le Bourlot, J.; Le Petit, F.; Roueff, E.] Univ Paris 07, Meudon, France. [Salez, M.; Delorme, Y.; Krieg, J. -M.; Delforge, B.] UCP, UPMC, Inst Lab Etud Rayonnement & Mat Astrophys, UMR 8112,CNRS INSU,OP,ENS, Paris, France. [Henning, Th.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [van der Tak, F. F. S.; van der Wiel, M. H. D.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AB Groningen, Netherlands. RP Lis, DC (reprint author), CALTECH, Cahill Ctr Astron & Astrophys 301 17, Pasadena, CA 91125 USA. EM dcl@caltech.edu RI Schlemmer, Stephan/E-2903-2015; Trappe, Neil/C-9014-2016; Yu, Shanshan/D-8733-2016; Fuente, Asuncion/G-1468-2016; Goldsmith, Paul/H-3159-2016; van der Wiel, Matthijs/M-4531-2014; Coutens, Audrey/M-4533-2014; Giesen, Thomas /B-9476-2015 OI , Brunella Nisini/0000-0002-9190-0113; Schlemmer, Stephan/0000-0002-1421-7281; Trappe, Neil/0000-0003-2527-9821; Fuente, Asuncion/0000-0001-6317-6343; Lorenzani, Andrea/0000-0002-4685-3434; Mueller, Holger/0000-0002-0183-8927; Codella, Claudio/0000-0003-1514-3074; van der Wiel, Matthijs/0000-0002-4325-3011; Coutens, Audrey/0000-0003-1805-3920; Giesen, Thomas /0000-0002-2401-0049 FU NASA; NSF [AST-0540882] FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. Support for this work was provided by NASA through an award issued by JPL/Caltech. D. C. L. is supported by the NSF, award AST-0540882 to the CSO. A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 37 TC 48 Z9 48 U1 1 U2 9 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L9 DI 10.1051/0004-6361/201014959 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900009 ER PT J AU Loenen, AF van der Werf, PP Gusten, R Meijerink, R Israel, FP Requena-Torres, MA Garcia-Burillo, S Harris, AI Klein, T Kramer, C Lord, S Martin-Pintado, J Rollig, M Stutzki, J Szczerba, R Weiss, A Philipp-May, S Yorke, H Caux, E Delforge, B Helmich, F Lorenzani, A Morris, P Philips, TG Risacher, C Tielens, AGGM AF Loenen, A. F. van der Werf, P. P. Guesten, R. Meijerink, R. Israel, F. P. Requena-Torres, M. A. Garcia-Burillo, S. Harris, A. I. Klein, T. Kramer, C. Lord, S. Martin-Pintado, J. Roellig, M. Stutzki, J. Szczerba, R. Weiss, A. Philipp-May, S. Yorke, H. Caux, E. Delforge, B. Helmich, F. Lorenzani, A. Morris, P. Philips, T. G. Risacher, C. Tielens, A. G. G. M. TI Excitation of the molecular gas in the nuclear region of M 82 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: individual: M 82; submillimeter: ISM; ISM: molecules; galaxies: ISM; galaxies: starburst ID INTERSTELLAR-MEDIUM; GALAXY NUCLEI; DENSE GAS; M82; M-82; CO; SPECTROSCOPY; DIAGNOSTICS AB We present high-resolution HIFI spectroscopy of the nucleus of the archetypical starburst galaxy M 82. Six (CO)-C-12 lines, 2 (CO)-C-13 lines and 4 fine-structure lines have been detected. Besides showing the effects of the overall velocity structure of the nuclear region, the line profiles also indicate the presence of multiple components with different optical depths, temperatures, and densities in the observing beam. The data have been interpreted using a grid of PDR models. It is found that the majority of the molecular gas is in low density (n = 10(3.5) cm(-3)) clouds, with column densities of N-H = 10(21.5) cm(-2) and a relatively low UV radiation field (G(0) = 10(2)). The remaining gas is predominantly found in clouds with higher densities (n = 10(5) cm(-3)) and radiation fields (G(0) = 10(2.75)), but somewhat lower column densities (N-H = 10(21.2) cm(-2)). The highest J CO lines are dominated by a small (1% relative surface filling) component, with an even higher density (n = 10(6) cm(-3)) and UV field (G(0) = 10(3.25)). These results show the strength of multi-component modelling for interpretating the integrated properties of galaxies. C1 [Loenen, A. F.; van der Werf, P. P.; Meijerink, R.; Israel, F. P.; Tielens, A. G. G. M.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Garcia-Burillo, S.] Observ Astron Nacl, Alcala De Henares 28800, Madrid, Spain. [Harris, A. I.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kramer, C.] IRAM, Granada 18012, Spain. [Lord, S.] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA. [Martin-Pintado, J.] CAB CSIC INTA, LAM, Madrid 28850, Spain. [Roellig, M.; Stutzki, J.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Szczerba, R.] NCAC, PL-87100 Torun, Poland. [Yorke, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Caux, E.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [Caux, E.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Delforge, B.] Observ Paris, LERMA, F-75014 Paris, France. [Delforge, B.] UCP, UPMC, Lab Etud Rayonnement & Mat Astrophys, UMR 8112,CNRS,INSU,OP,ENS, Paris, France. [Requena-Torres, M. A.; Klein, T.; Weiss, A.; Philipp-May, S.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Helmich, F.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. [Lorenzani, A.] Osservatorio Astrofis Arcetri INAF, I-50100 Florence, Italy. [Morris, P.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Philips, T. G.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. RP Loenen, AF (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. EM loenen@strw.leidenuniv.nl RI Martin-Pintado, Jesus/H-6107-2015; OI Martin-Pintado, Jesus/0000-0003-4561-3508; Meijerink, Rowin/0000-0001-7584-9293; Lorenzani, Andrea/0000-0002-4685-3434; Garcia-Burillo, Santiago/0000-0003-0444-6897 FU Polish MNiSW [N 203 393334]; NASA, JPL/Caltech FX R. Sz acknowledges support from grant N 203 393334 from Polish MNiSW. Support for this work was provided by NASA through an award issued by JPL/Caltech. Data presented in this paper were analysed using "HIPE", a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS, and SPIRE consortia (See http://herschel.esac.esa.int/DpHipeContributors.shtml). HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands, and with major contributions from Germany, France, and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. NR 18 TC 14 Z9 14 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L2 DI 10.1051/0004-6361/201015114 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900002 ER PT J AU Marseille, MG van der Tak, FFS Herpin, F Wyrowski, F Chavarria, L Pietropaoli, B Baudry, A Bontemps, S Cernicharo, J Jacq, T Frieswijk, W Shipman, R van Dishoeck, EF Bachiller, R Benedettini, M Benz, AO Bergin, E Bjerkeli, P Blake, GA Braine, J Bruderer, S Caselli, P Caux, E Codella, C Daniel, F Dieleman, P di Giorgio, AM Dominik, C Doty, SD Encrenaz, P Fich, M Fuente, A Gaier, T Giannini, T Goicoechea, JR de Graauw, T Helmich, F Herczeg, GJ Hogerheijde, MR Jackson, B Javadi, H Jellema, W Johnstone, D Jorgensen, JK Kester, D Kristensen, LE Larsson, B Laauwen, W Lis, D Liseau, R Luinge, W McCoey, C Megej, A Melnick, G Neufeld, D Nisini, B Olberg, M Parise, B Pearson, JC Plume, R Risacher, C Roelfsema, P Santiago-Garcia, J Saraceno, P Siegel, P Stutzki, J Tafalla, M van Kempen, TA Visser, R Wampfler, SF Yildiz, UA AF Marseille, M. G. van der Tak, F. F. S. Herpin, F. Wyrowski, F. Chavarria, L. Pietropaoli, B. Baudry, A. Bontemps, S. Cernicharo, J. Jacq, T. Frieswijk, W. Shipman, R. van Dishoeck, E. F. Bachiller, R. Benedettini, M. Benz, A. O. Bergin, E. Bjerkeli, P. Blake, G. A. Braine, J. Bruderer, S. Caselli, P. Caux, E. Codella, C. Daniel, F. Dieleman, P. di Giorgio, A. M. Dominik, C. Doty, S. D. Encrenaz, P. Fich, M. Fuente, A. Gaier, T. Giannini, T. Goicoechea, J. R. de Graauw, Th. Helmich, F. Herczeg, G. J. Hogerheijde, M. R. Jackson, B. Javadi, H. Jellema, W. Johnstone, D. Jorgensen, J. K. Kester, D. Kristensen, L. E. Larsson, B. Laauwen, W. Lis, D. Liseau, R. Luinge, W. McCoey, C. Megej, A. Melnick, G. Neufeld, D. Nisini, B. Olberg, M. Parise, B. Pearson, J. C. Plume, R. Risacher, C. Roelfsema, P. Santiago-Garcia, J. Saraceno, P. Siegel, P. Stutzki, J. Tafalla, M. van Kempen, T. A. Visser, R. Wampfler, S. F. Yildiz, U. A. TI Water abundances in high-mass protostellar envelopes: Herschel observations with HIFI SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE dust, extinction; ISM: molecules; ISM: abundances ID MONTE-CARLO METHOD; RADIATIVE-TRANSFER; STAR-FORMATION; PROTOSTARS; REGION; EXCITATION; EVOLUTION; EMISSION; CORES; H2O AB Aims. We derive the dense core structure and the water abundance in four massive star-forming regions in the hope of understanding the earliest stages of massive star formation. Methods. We present Herschel/HIFI observations of the para-H2O 1(11)-0(00) and 2(02)-1(11) and the para-(H2O)-O-18 1(11)-0(00) transitions. The envelope contribution to the line profiles is separated from contributions by outflows and foreground clouds. The envelope contribution is modeled with Monte-Carlo radiative transfer codes for dust and molecular lines (MC3D and RATRAN), and the water abundance and the turbulent velocity width as free parameters. Results. While the outflows are mostly seen in emission in high-J lines, envelopes are seen in absorption in ground-state lines, which are almost saturated. The derived water abundances range from 5 x 10(-10) to 4 x 10(-8) in the outer envelopes. We detect cold clouds surrounding the protostar envelope, thanks to the very high quality of the Herschel/HIFI data and the unique ability of water to probe them. Several foreground clouds are also detected along the line of sight. Conclusions. The low H2O abundances in massive dense cores are in accordance with the expectation that high densities and low temperatures lead to freeze-out of water on dust grains. The spread in abundance values is not clearly linked to physical properties of the sources. C1 [Marseille, M. G.; van der Tak, F. F. S.; Frieswijk, W.; Shipman, R.; Dieleman, P.; de Graauw, Th.; Helmich, F.; Jackson, B.; Jellema, W.; Kester, D.; Laauwen, W.; Luinge, W.; Risacher, C.; Roelfsema, P.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [van Dishoeck, E. F.; Hogerheijde, M. R.; Kristensen, L. E.; Visser, R.; Yildiz, U. A.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Dishoeck, E. F.; Herczeg, G. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Benz, A. O.; Bruderer, S.; Wampfler, S. F.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Jacq, T.; Caselli, P.; Codella, C.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Herpin, F.; Chavarria, L.; Pietropaoli, B.; Baudry, A.; Bontemps, S.; Braine, J.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Herpin, F.; Chavarria, L.; Pietropaoli, B.; Baudry, A.; Bontemps, S.; Braine, J.] CNRS INSU, UMR 5804, Floirac, France. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Johnstone, D.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Bjerkeli, P.; Liseau, R.; Olberg, M.] Chalmers, Onsala Space Observ, Dept Radio & Space Sci, S-43992 Onsala, Sweden. [van der Tak, F. F. S.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Bachiller, R.; Tafalla, M.] Observ Astron Nacl IGN, Madrid 28014, Spain. [Benedettini, M.; di Giorgio, A. M.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Area Ric Tor Vergata, I-00133 Rome, Italy. [Bergin, E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Blake, G. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.] CSIC INTA, Dept Astrofis, Ctr Astrobiol, Madrid 28850, Spain. [Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Doty, S. D.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Encrenaz, P.] Observ Paris, LERMA, F-75014 Paris, France. [Encrenaz, P.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [Fich, M.; McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Fuente, A.] Observ Astron Nacl, Alcala De Henares 28803, Spain. [Giannini, T.; Nisini, B.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Jorgensen, J. K.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen K, Denmark. [Larsson, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Lis, D.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [McCoey, C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Melnick, G.; van Kempen, T. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Neufeld, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Wyrowski, F.; Parise, B.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Gaier, T.; Javadi, H.; Pearson, J. C.; Siegel, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Santiago-Garcia, J.] Inst Radio Astron Millimetr, Granada 18012, Spain. [Stutzki, J.] Univ Cologne, Inst Phys 1, KOSMA, D-50937 Cologne, Germany. [Megej, A.] ETH, Microwave Lab, CH-8092 Zurich, Switzerland. [Caux, E.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [Caux, E.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. RP Marseille, MG (reprint author), SRON Netherlands Inst Space Res, POB 800, NL-9700 AV Groningen, Netherlands. EM M.Marseille@sron.nl RI Yildiz, Umut/C-5257-2011; Kristensen, Lars/F-4774-2011; Visser, Ruud/J-8574-2012; Wampfler, Susanne/D-2270-2015; Fuente, Asuncion/G-1468-2016; OI Yildiz, Umut/0000-0001-6197-2864; Kristensen, Lars/0000-0003-1159-3721; Wampfler, Susanne/0000-0002-3151-7657; Fuente, Asuncion/0000-0001-6317-6343; Bjerkeli, Per/0000-0002-7993-4118; Codella, Claudio/0000-0003-1514-3074; Giannini, Teresa/0000-0002-0224-096X; , Brunella Nisini/0000-0002-9190-0113 NR 20 TC 17 Z9 17 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L32 DI 10.1051/0004-6361/201015103 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900032 ER PT J AU Melnick, GJ Tolls, V Neufeld, DA Bergin, EA Phillips, TG Wang, S Crockett, NR Bell, TA Blake, GA Cabrit, S Caux, E Ceccarelli, C Cernicharo, J Comito, C Daniel, F Dubernet, ML Emprechtinger, M Encrenaz, P Falgarone, E Gerin, M Giesen, TF Goicoechea, JR Goldsmith, PF Herbst, E Joblin, C Johnstone, D Langer, WD Latter, WD Lis, DC Lord, SD Maret, S Martin, PG Menten, KM Morris, P Muller, HSP Murphy, JA Ossenkopf, V Pagani, L Pearson, JC Perault, M Plume, R Qin, SL Salez, M Schilke, P Schlemmer, S Stutzki, J Trappe, N van der Tak, FFS Vastel, C Yorke, HW Yu, S Zmuidzinas, J AF Melnick, G. J. Tolls, V. Neufeld, D. A. Bergin, E. A. Phillips, T. G. Wang, S. Crockett, N. R. Bell, T. A. Blake, G. A. Cabrit, S. Caux, E. Ceccarelli, C. Cernicharo, J. Comito, C. Daniel, F. Dubernet, M. -L. Emprechtinger, M. Encrenaz, P. Falgarone, E. Gerin, M. Giesen, T. F. Goicoechea, J. R. Goldsmith, P. F. Herbst, E. Joblin, C. Johnstone, D. Langer, W. D. Latter, W. D. Lis, D. C. Lord, S. D. Maret, S. Martin, P. G. Menten, K. M. Morris, P. Mueller, H. S. P. Murphy, J. A. Ossenkopf, V. Pagani, L. Pearson, J. C. Perault, M. Plume, R. Qin, S. -L. Salez, M. Schilke, P. Schlemmer, S. Stutzki, J. Trappe, N. van der Tak, F. F. S. Vastel, C. Yorke, H. W. Yu, S. Zmuidzinas, J. TI Herschel observations of EXtra-Ordinary Sources (HEXOS): Observations of H2O and its isotopologues towards Orion KL SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: abundances; ISM: molecules ID WAVE-ASTRONOMY-SATELLITE; WATER-VAPOR; SUBMILLIMETER; INSTRUMENT; ABSORPTION; EMISSION; OUTFLOWS; REGION; OMC-1; SWAS AB We report the detection of more than 48 velocity-resolved ground rotational state transitions of (H2O)-O-16, (H2O)-O-18, and (H2O)-O-17 - most for the first time - in both emission and absorption toward Orion KL using Herschel/HIFI. We show that a simple fit, constrained to match the known emission and absorption components along the line of sight, is in excellent agreement with the spectral profiles of all the water lines. Using the measured (H2O)-O-18 line fluxes, which are less affected by line opacity than their (H2O)-O-16 counterparts, and an escape probability method, the column densities of (H2O)-O-18 associated with each emission component are derived. We infer total water abundances of 7.4 x 10(-5), 1.0 x 10(-5), and 1.6 x 10(-5) for the plateau, hot core, and extended warm gas, respectively. In the case of the plateau, this value is consistent with previous measures of the Orion-KL water abundance as well as those of other molecular outflows. In the case of the hot core and extended warm gas, these values are somewhat higher than water abundances derived for other quiescent clouds, suggesting that these regions are likely experiencing enhanced water-ice sublimation from (and reduced freeze-out onto) grain surfaces due to the warmer dust in these sources. C1 [Melnick, G. J.; Tolls, V.] Harvard Smithsonian Ctr Astrophys CfA, Cambridge, MA 02138 USA. [Neufeld, D. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Bergin, E. A.; Wang, S.; Crockett, N. R.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Phillips, T. G.; Bell, T. A.; Emprechtinger, M.; Joblin, C.; Lis, D. C.; Zmuidzinas, J.] CALTECH, Cahill Ctr Astron & Astrophys 301 17, Pasadena, CA 91125 USA. [Blake, G. A.; Joblin, C.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Caux, E.; Vastel, C.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [Caux, E.; Vastel, C.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Ceccarelli, C.; Maret, S.] Observ Grenoble, Astrophys Lab, F-38041 Grenoble 9, France. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.] Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid, Spain. [Comito, C.; Menten, K. M.; Schilke, P.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Daniel, F.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Perault, M.] Observ Paris, CNRS UMR8112, LERMA, F-75231 Paris 05, France. [Daniel, F.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Perault, M.] Ecole Normale Super, F-75231 Paris 05, France. [Dubernet, M. -L.] Univ Paris 06, UMR7092, LPMAA, Paris, France. [Dubernet, M. -L.] Observ Paris, UMR8102, LUTH, Meudon, France. [Giesen, T. F.; Mueller, H. S. P.; Ossenkopf, V.; Qin, S. -L.; Schilke, P.; Schlemmer, S.; Stutzki, J.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Goldsmith, P. F.; Langer, W. D.; Pearson, J. C.; Yorke, H. W.; Yu, S.] Jet Prop Lab, CALTECH, Pasadena, CA 91109 USA. [Herbst, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Latter, W. D.; Lord, S. D.; Morris, P.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Martin, P. G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Murphy, J. A.; Trappe, N.] Natl Univ Ireland Maynooth, Maynooth, Kildare, Ireland. [Ossenkopf, V.; van der Tak, F. F. S.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Cabrit, S.; Pagani, L.; Salez, M.] Observ Paris, LERMA, F-75014 Paris, France. [Cabrit, S.; Pagani, L.; Salez, M.] Observ Paris, CNRS, UMR8112, F-75014 Paris, France. RP Melnick, GJ (reprint author), Harvard Smithsonian Ctr Astrophys CfA, 60 Garden St,Mail Stop 66, Cambridge, MA 02138 USA. EM gmelnick@cfa.harvard.edu RI Goldsmith, Paul/H-3159-2016; Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Trappe, Neil/C-9014-2016; Yu, Shanshan/D-8733-2016 OI Mueller, Holger/0000-0002-0183-8927; Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281; Trappe, Neil/0000-0003-2527-9821; FU NASA through JPL/Caltech; NSF [AST-0540882] FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. Support for this work was provided by NASA through an award issued by JPL/Caltech. CSO is supported by the NSF, award AST-0540882. NR 20 TC 23 Z9 23 U1 1 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L27 DI 10.1051/0004-6361/201015085 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900027 ER PT J AU Mookerjea, B Giesen, T Stutzki, J Cernicharo, J Goicoechea, JR De Luca, M Bell, TA Gupta, H Gerin, M Persson, CM Sonnentrucker, P Makai, Z Black, J Boulanger, F Coutens, A Dartois, E Encrenaz, P Falgarone, E Geballe, T Godard, B Goldsmith, PF Gry, C Hennebelle, P Herbst, E Hily-Blant, P Joblin, C Kazmierczak, M Kolos, R Krelowski, J Lis, DC Martin-Pintado, J Menten, KM Monje, R Pearson, JC Perault, M Phillips, TG Plume, R Salez, M Schlemmer, S Schmidt, M Teyssier, D Vastel, C Yu, S Dieleman, P Gusten, R Honingh, CE Morris, P Roelfsema, P Schieder, R Tielens, AGGM Zmuidzinas, J AF Mookerjea, B. Giesen, T. Stutzki, J. Cernicharo, J. Goicoechea, J. R. De Luca, M. Bell, T. A. Gupta, H. Gerin, M. Persson, C. M. Sonnentrucker, P. Makai, Z. Black, J. Boulanger, F. Coutens, A. Dartois, E. Encrenaz, P. Falgarone, E. Geballe, T. Godard, B. Goldsmith, P. F. Gry, C. Hennebelle, P. Herbst, E. Hily-Blant, P. Joblin, C. Kazmierczak, M. Kolos, R. Krelowski, J. Lis, D. C. Martin-Pintado, J. Menten, K. M. Monje, R. Pearson, J. C. Perault, M. Phillips, T. G. Plume, R. Salez, M. Schlemmer, S. Schmidt, M. Teyssier, D. Vastel, C. Yu, S. Dieleman, P. Guesten, R. Honingh, C. E. Morris, P. Roelfsema, P. Schieder, R. Tielens, A. G. G. M. Zmuidzinas, J. TI Excitation and abundance of C-3 in star forming cores Herschel/HIFI observations of the sight-lines to W31C and W49N SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: lines and bands; ISM: molecules; radiative transfer; ISM: individual objects: W49N; ISM: individual objects: W31C ID H-II-REGIONS; SPIRAL-ARM CLOUDS; INTERSTELLAR C-3; HII-REGIONS; ABSORPTION; DUST; SPECTROSCOPY; TRANSLUCENT; G10.6-0.4; IRC+10216 AB We present spectrally resolved observations of triatomic carbon (C-3) in several ro-vibrational transitions between the vibrational ground state and the low-energy nu(2) bending mode at frequencies between 1654-1897 GHz along the sight-lines to the submillimeter continuum sources W31C and W49N, using Herschel's HIFI instrument. We detect C-3 in absorption arising from the warm envelope surrounding the hot core, as indicated by the velocity peak position and shape of the line profile. The sensitivity does not allow to detect C-3 absorption due to diffuse foreground clouds. From the column densities of the rotational levels in the vibrational ground state probed by the absorption we derive a rotation temperature (T-rot) of similar to 50-70 K, which is a good measure of the kinetic temperature of the absorbing gas, as radiative transitions within the vibrational ground state are forbidden. It is also in good agreement with the dust temperatures for W31C and W49N. Applying the partition function correction based on the derived T-rot, we get column densities N(C-3) similar to 7-9 x 10(14) cm(-2) and abundance x(C-3) similar to 10(-8) with respect to H-2. For W31C, using a radiative transfer model including far-infrared pumping by the dust continuum and a temperature gradient within the source along the line of sight we find that a model with x(C-3) = 10(-8), T-kin = 30-50 K, N(C-3) = 1.5 x 10(15) cm(-2) fits the observations reasonably well and provides parameters in very good agreement with the simple excitation analysis. C1 [Mookerjea, B.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Giesen, T.; Stutzki, J.; Makai, Z.; Schlemmer, S.; Honingh, C. E.; Schieder, R.] Univ Cologne, Inst Phys 1, D-5000 Cologne 41, Germany. [Cernicharo, J.; Goicoechea, J. R.; Martin-Pintado, J.] CSIC INTA, Ctr Astrobiol, Madrid 28850, Spain. [De Luca, M.; Gerin, M.; Encrenaz, P.; Falgarone, E.; Godard, B.; Hennebelle, P.; Perault, M.; Salez, M.; Yu, S.] Observ Paris, CNRS, LERMA, Paris, France. [Gupta, H.; Goldsmith, P. F.; Pearson, J. C.] CALTECH, JPL, Pasadena, CA 91125 USA. [Persson, C. M.; Black, J.] Chalmers, Onsala Space Observ, S-43992 Onsala, Sweden. [Herbst, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Sonnentrucker, P.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Boulanger, F.; Dartois, E.] IAS, Orsay, France. [Hily-Blant, P.] Lab Astrophys Grenoble, Grenoble, France. [Coutens, A.; Joblin, C.; Vastel, C.] Univ Toulouse, UPS, CESR, F-31028 Toulouse 4, France. [Coutens, A.; Joblin, C.; Vastel, C.] CNRS, UMR5187, F-31028 Toulouse 4, France. [Geballe, T.] Gemini Telescope, Hilo, HI USA. [Menten, K. M.; Guesten, R.] MPI Radioastron, Bonn, Germany. [Kolos, R.] PAS, Inst Phys Chem, Warsaw, Poland. [Kazmierczak, M.; Krelowski, J.] Nicholas Copernicus Univ, Torun, Poland. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Schmidt, M.] Nicolaus Copernicus Astron Ctr CMAK, Torun, Poland. [Teyssier, D.] ESA, European Space Astron Ctr, Madrid, Spain. [Morris, P.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Tielens, A. G. G. M.] Leiden Univ, Sterrewacht Leiden, Leiden, Netherlands. [Dieleman, P.; Roelfsema, P.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. RP Mookerjea, B (reprint author), Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. EM bhaswati@tifr.res.in RI Coutens, Audrey/M-4533-2014; Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Yu, Shanshan/D-8733-2016; Goldsmith, Paul/H-3159-2016; Martin-Pintado, Jesus/H-6107-2015 OI Coutens, Audrey/0000-0003-1805-3920; Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281; Martin-Pintado, Jesus/0000-0003-4561-3508 FU spanish MICINN [AYA2009-07304, CSD2009-00038]; Polish MNiSW [N 203 393334] FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologa (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. J.C. and J.R.G. thanks spanish MICINN for funding support under projects AYA2009-07304 and CSD2009-00038. M.S. acknowledge support from grant N 203 393334 from Polish MNiSW. NR 38 TC 18 Z9 18 U1 0 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L13 DI 10.1051/0004-6361/201015095 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900013 ER PT J AU Neufeld, DA Goicoechea, JR Sonnentrucker, P Black, JH Pearson, J Yu, S Phillips, TG Lis, DC De Luca, M Herbst, E Rimmer, P Gerin, M Bell, TA Boulanger, F Cernicharo, J Coutens, A Dartois, E Kazmierczak, M Encrenaz, P Falgarone, E Geballe, TR Giesen, T Godard, B Goldsmith, PF Gry, C Gupta, H Hennebelle, P Hily-Blant, P Joblin, C Kolos, R Krclowski, J Martin-Pintado, J Menten, KM Monje, R Mookerjea, B Perault, M Persson, C Plume, R Salez, M Schlemmer, S Schmidt, M Stutzki, J Teyssier, D Vastel, C Cros, A Klein, K Lorenzani, A Philipp, S Samoska, A Shipman, R Tielens, AGGM Szczerba, R Zmuidzinas, J AF Neufeld, D. A. Goicoechea, J. R. Sonnentrucker, P. Black, J. H. Pearson, J. Yu, S. Phillips, T. G. Lis, D. C. De Luca, M. Herbst, E. Rimmer, P. Gerin, M. Bell, T. A. Boulanger, F. Cernicharo, J. Coutens, A. Dartois, E. Kazmierczak, M. Encrenaz, P. Falgarone, E. Geballe, T. R. Giesen, T. Godard, B. Goldsmith, P. F. Gry, C. Gupta, H. Hennebelle, P. Hily-Blant, P. Joblin, C. Kolos, R. Krclowski, J. Martin-Pintado, J. Menten, K. M. Monje, R. Mookerjea, B. Perault, M. Persson, C. Plume, R. Salez, M. Schlemmer, S. Schmidt, M. Stutzki, J. Teyssier, D. Vastel, C. Cros, A. Klein, K. Lorenzani, A. Philipp, S. Samoska, A. Shipman, R. Tielens, A. G. G. M. Szczerba, R. Zmuidzinas, J. TI Herschel/HIFI observations of interstellar OH+ and H2O+ towards W49N: a probe of diffuse clouds with a small molecular fraction SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: molecules; submillimeter: ISM; astrochemistry; molecular processes ID LASER MAGNETIC-RESONANCE; STAR-FORMING REGIONS; ABSORPTION; GAS; TRACER; H-3(+); CATION; MODEL; LINE AB We report the detection of absorption by interstellar hydroxyl cations and water cations, along the sight-line to the bright continuum source W49N. We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 972 GHz N = 1-0 transition of OH+ and the 1115 GHz 1(11)-0(00) transition of ortho-H2O+. The resultant spectra show absorption by ortho-H2O+, and strong absorption by OH+, in foreground material at velocities in the range 0 to 70 km s(-1) with respect to the local standard of rest. The inferred OH+/H2O+ abundance ratio ranges from similar to 3 to similar to 15, implying that the observed OH+ arises in clouds of small molecular fraction, in the 2-8% range. This conclusion is confirmed by the distribution of OH+ and H2O+ in Doppler velocity space, which is similar to that of atomic hydrogen, as observed by means of 21 cm absorption measurements, and dissimilar from that typical of other molecular tracers. The observed OH+/H abundance ratio of a few x10(-8) suggests a cosmic ray ionization rate for atomic hydrogen of 0.6-2.4 x 10(-16) s(-1), in good agreement with estimates inferred previously for diffuse clouds in the Galactic disk from observations of interstellar H-3(+) and other species. C1 [Neufeld, D. A.; Sonnentrucker, P.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Goicoechea, J. R.; Cernicharo, J.; Martin-Pintado, J.] CSIC INTA, Ctr Astrobiol, Madrid 28850, Spain. [Black, J. H.; Persson, C.] Chalmers, S-41296 Gothenburg, Sweden. [Pearson, J.; Yu, S.; Goldsmith, P. F.; Gupta, H.; Samoska, A.] CALTECH, JPL, Pasadena, CA 91125 USA. [De Luca, M.; Gerin, M.; Encrenaz, P.; Falgarone, E.; Godard, B.; Hennebelle, P.; Perault, M.; Salez, M.] Observ Paris, CNRS, LERMA, Paris, France. [Herbst, E.; Rimmer, P.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.; Rimmer, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.; Rimmer, P.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Boulanger, F.; Dartois, E.] IAS, Orsay, France. [Coutens, A.; Joblin, C.; Vastel, C.; Cros, A.] Univ Toulouse, UPS, CESR, F-31028 Toulouse 4, France. [Coutens, A.; Joblin, C.; Vastel, C.; Cros, A.] CNRS, UMR5187, F-31028 Toulouse 4, France. [Kazmierczak, M.; Krclowski, J.] Nicholas Copernicus Univ, Torun, Poland. [Geballe, T. R.] Gemini Telescope, Hilo, HI USA. [Giesen, T.; Schlemmer, S.; Stutzki, J.] Univ Cologne, Inst Phys 1, D-5000 Cologne 41, Germany. [Gry, C.] Univ Aix Marseille, OAMP, LAM, Marseille, France. [Gry, C.] CNRS, Marseille, France. [Hily-Blant, P.] Lab Astrophys Grenoble, Grenoble, France. [Kolos, R.] PAS, Inst Phys Chem, Warsaw, Poland. [Menten, K. M.] MPI Radioastron, Bonn, Germany. [Mookerjea, B.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Teyssier, D.] ESA, European Space Astron Ctr, Madrid, Spain. [Klein, K.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Lorenzani, A.] Osservatorio Astrofis Arcetri INAF, Florence, Italy. [Philipp, S.] Deutsch Zentrum Luft & Raumfahrt eV, Bonn, Germany. [Tielens, A. G. G. M.] Sterrewacht Leiden, Leiden, Netherlands. RP Neufeld, DA (reprint author), Johns Hopkins Univ, Baltimore, MD 21218 USA. EM neufeld@pha.jhu.edu RI Martin-Pintado, Jesus/H-6107-2015; Coutens, Audrey/M-4533-2014; Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Yu, Shanshan/D-8733-2016; Goldsmith, Paul/H-3159-2016; OI Martin-Pintado, Jesus/0000-0003-4561-3508; Lorenzani, Andrea/0000-0002-4685-3434; Coutens, Audrey/0000-0003-1805-3920; Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281; Rimmer, Paul/0000-0002-7180-081X FU National Aeronautics and Space Administration; Ramon y Cajal; Polish MNiSW [203 393334]; [MICINN/AYA2009-07304] FX This research was performed, in part, through a JPL contract funded by the National Aeronautics and Space Administration. J.R.G. was supported by a Ramon y Cajal contract and by the MICINN/AYA2009-07304 grant. R.Sz. and M.Sch. acknowledge support from grant No. 203 393334 from Polish MNiSW. NR 24 TC 91 Z9 91 U1 0 U2 12 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L10 DI 10.1051/0004-6361/201015077 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900010 ER PT J AU Persson, CM Black, JH Cernicharo, J Goicoechea, JR Hassel, GE Herbst, E Gerin, M De Luca, M Bell, TA Coutens, A Falgarone, E Goldsmith, PF Gupta, H Kazmierczak, M Lis, DC Mookerjea, B Neufeld, DA Pearson, J Phillips, TG Sonnentrucker, P Stutzki, J Vastel, C Yu, S Boulanger, F Dartois, E Encrenaz, P Geballe, TR Giesen, T Godard, B Gry, C Hennebelle, P Hily-Blant, P Joblin, C Kolos, R Krelowski, J Martin-Pintado, J Menten, K Monje, R Perault, M Plume, R Salez, M Schlemmer, S Schmidt, M Teyssier, D Peron, I Cais, P Gaufre, P Cros, A Ravera, L Morris, P Lord, S Planesas, P AF Persson, C. M. Black, J. H. Cernicharo, J. Goicoechea, J. R. Hassel, G. E. Herbst, E. Gerin, M. De Luca, M. Bell, T. A. Coutens, A. Falgarone, E. Goldsmith, P. F. Gupta, H. Kazmierczak, M. Lis, D. C. Mookerjea, B. Neufeld, D. A. Pearson, J. Phillips, T. G. Sonnentrucker, P. Stutzki, J. Vastel, C. Yu, S. Boulanger, F. Dartois, E. Encrenaz, P. Geballe, T. R. Giesen, T. Godard, B. Gry, C. Hennebelle, P. Hily-Blant, P. Joblin, C. Kolos, R. Krelowski, J. Martin-Pintado, J. Menten, K. Monje, R. Perault, M. Plume, R. Salez, M. Schlemmer, S. Schmidt, M. Teyssier, D. Peron, I. Cais, P. Gaufre, P. Cros, A. Ravera, L. Morris, P. Lord, S. Planesas, P. TI Nitrogen hydrides in interstellar gas Herschel/HIFI observations towards G10.6-0.4 (W31C) SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; ISM: abundances; ISM: molecules; molecular processes; submillimetre: ISM; line: formation ID MOLECULAR ABSORPTION; DIFFUSE CLOUDS; SIGHT-LINE; NH; CHEMISTRY; REGIONS; AMMONIA; SAGITTARIUS-B2; SUBMILLIMETER; SPECTROSCOPY AB The HIFI instrument on board the Herschel Space Observatory has been used to observe interstellar nitrogen hydrides along the sight-line towards G10.6-0.4 in order to improve our understanding of the interstellar chemistry of nitrogen. We report observations of absorption in NH N = 1 <- 0, J = 2 <- 1 and ortho-NH2 1(1,1) <- 0(0,0). We also observed ortho-NH3 1(0) <- 0(0) and 2(0) <- 1(0), para-NH3 2(1) <- 1(1), and searched unsuccessfully for NH+. All detections show emission and absorption associated directly with the hot-core source itself as well as absorption by foreground material over a wide range of velocities. All spectra show similar, non-saturated, absorption features, which we attribute to diffuse molecular gas. Total column densities over the velocity range 11-54 km s(-1) are estimated. The similar profiles suggest fairly uniform abundances relative to hydrogen, approximately 6 x 10(-9), 3 x 10(-9), and 3 x 10(-9) for NH, NH2, and NH3, respectively. These abundances are discussed with reference to models of gas-phase and surface chemistry. C1 [Persson, C. M.; Black, J. H.] Chalmers, Onsala Space Observ, S-43992 Onsala, Sweden. [Cernicharo, J.; Goicoechea, J. R.; Martin-Pintado, J.] CSIC INTA, Ctr Astrobiol, Madrid 28850, Spain. [Hassel, G. E.; Herbst, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Gerin, M.; De Luca, M.; Falgarone, E.; Encrenaz, P.; Godard, B.; Hennebelle, P.; Perault, M.; Salez, M.; Peron, I.] Observ Paris, CNRS, LERMA, Paris, France. [Bell, T. A.; Lis, D. C.; Phillips, T. G.; Monje, R.] CALTECH, Cahill Ctr Astron & Astrophys 301 17, Pasadena, CA 91125 USA. [Coutens, A.; Vastel, C.; Joblin, C.; Cros, A.; Ravera, L.] Univ Toulouse UPS, CESR, F-31062 Toulouse 9, France. [Coutens, A.; Vastel, C.; Cros, A.; Ravera, L.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Goldsmith, P. F.; Gupta, H.; Pearson, J.; Yu, S.] CALTECH, JPL, Pasadena, CA 91125 USA. [Kazmierczak, M.; Krelowski, J.] Nicholas Copernicus Univ, Torun, Poland. [Mookerjea, B.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Neufeld, D. A.; Sonnentrucker, P.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Stutzki, J.; Giesen, T.; Schlemmer, S.] Univ Cologne, Inst Phys 1, D-5000 Cologne 41, Germany. [Boulanger, F.; Dartois, E.] IAS, Orsay, France. [Geballe, T. R.] Gemini Telescope, Hilo, HI USA. [Gry, C.] Univ Aix Marseille, OAMP, LAM, Marseille, France. [Gry, C.] CNRS, Marseille, France. [Hily-Blant, P.] Lab Astrophys Grenoble, Grenoble, France. [Kolos, R.] Polish Acad Sci, Inst Phys Chem, Warsaw, Poland. [Schmidt, M.] Nicolaus Copernicus Astron Ctr, Torun, Poland. [Menten, K.] MPI Radioastron, Bonn, Germany. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Teyssier, D.] ESA, European Space Astron Ctr, Madrid, Spain. [Peron, I.] IRAM, Inst Radio Astron Millimetr, St Martin Dheres 38406, France. [Cais, P.; Gaufre, P.] Inst Univ Bordeaux, Lab Astrophys Bordeaux, F-33000 Bordeaux, France. [Cais, P.; Gaufre, P.] CNRS INSU, UMR 5804, F-33271 Floirac, France. [Morris, P.; Lord, S.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Planesas, P.] Joint ALMA Off, Observ Astrona IGN & Atacama Large Millimeter Sub, Santiago, Chile. RP Persson, CM (reprint author), Chalmers, Onsala Space Observ, S-43992 Onsala, Sweden. EM carina.persson@chalmers.se RI Coutens, Audrey/M-4533-2014; Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Planesas, Pere/G-7950-2015; Yu, Shanshan/D-8733-2016; Goldsmith, Paul/H-3159-2016; Martin-Pintado, Jesus/H-6107-2015 OI Coutens, Audrey/0000-0003-1805-3920; Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281; Planesas, Pere/0000-0002-7808-3040; Martin-Pintado, Jesus/0000-0003-4561-3508 FU spanish MICINN [AYA2009-07304, CSD2009-00038]; Polish MNiSW [N 203 393334] FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronmico Nacional (IGN), Centro de Astrobiologa (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. C. P. and J.H.B. acknowledge generous support from the Swedish National Space Board. J.C. and J.R.G. thanks spanish MICINN for funding support under projects AYA2009-07304 and CSD2009-00038 M.S. acknowledges support from grant N 203 393334 from Polish MNiSW. NR 39 TC 36 Z9 36 U1 0 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L45 DI 10.1051/0004-6361/201015105 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900045 ER PT J AU Pineda, JL Velusamy, T Langer, WD Goldsmith, PF Li, D Yorke, HW AF Pineda, J. L. Velusamy, T. Langer, W. D. Goldsmith, P. F. Li, D. Yorke, H. W. TI A sample of [CII] clouds tracing dense clouds in weak FUV fields observed by Herschel SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: structure; photon-dominated region; ISM: supernova remnants; evolution ID PHOTON-DOMINATED REGIONS; C II LINE; 158 MICRON; MILKY-WAY; PHOTODISSOCIATION REGIONS; MOLECULAR CLOUDS; DARK CLOUD; EMISSION; CARBON; SPECTROSCOPY AB The [Cii] fine-structure line at 158 mu m is an excellent tracer of the warm diffuse gas in the ISM and the interfaces between molecular clouds and their surrounding atomic and ionized envelopes. Here we present the initial results from Galactic observations of terahertz C+ (GOTC+), a Herschel key project devoted to studying the [Cii] emission in the Galactic plane using the HIFI instrument. We used the [C ii] emission, together with observations of CO, as a probe to understand the effects of newly formed stars on their interstellar environment and characterize the physical and chemical state of the star-forming gas. We collected data along 16 lines-ofsight passing near star-forming regions in the inner Galaxy near longitudes 330. and 20.. We identified fifty-eight [C ii] components that are associated with high-column density molecular clouds as traced by (CO)-C-13 emission. We combined [C ii], (CO)-C-12, and O-13C observations to derive the physical conditions of the [Cii]-emitting regions in our sample of high-column density clouds based on comparing results from a grid of photon dominated region (PDR) models. From this unbiased sample, our results suggest that most of the [Cii] emission originates in clouds with H-2 volume densities between 103.5 and 105.5 cm-3 and weak FUV strength (.0 = 1-10). We find two regions where our analysis suggest high densities > 105 cm(-3) and strong FUV fields (.0 = 104 -106), likely associated with massive star formation. We suggest that [Cii] emission in conjunction with CO isotopes is a good tool for differentiating regions of massive star formation (high densities/strong FUV fields) and regions that are distant from massive stars (lower densities/weaker FUV fields) along the line-of-sight. C1 [Pineda, J. L.; Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Li, D.; Yorke, H. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Pineda, JL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Jorge.Pineda@jpl.nasa.gov RI Goldsmith, Paul/H-3159-2016 FU Commonwealth of Australia FX We would like to thank the referee David Hollenbach for his comments and suggestions that significantly improved this letter. This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank the staffs of the ESA and NASA Herschel Science Centers for their help. The Mopra Telescope is managed by the Australia Telescope, which is funded by the Commonwealth of Australia for operation as a National Facility by the CSIRO. NR 26 TC 18 Z9 18 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L19 DI 10.1051/0004-6361/201015089 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900019 ER PT J AU Qin, SL Schilke, P Comito, C Moller, T Rolffs, R Muller, HSP Belloche, A Menten, KM Lis, DC Phillips, TG Bergin, EA Bell, TA Crockett, NR Blake, GA Cabrit, S Caux, E Ceccarelli, C Cernicharo, J Daniel, F Dubernet, ML Emprechtinger, M Encrenaz, P Falgarone, E Gerin, M Giesen, TF Goicoechea, JR Goldsmith, PF Gupta, H Herbst, E Joblin, C Johnstone, D Langer, WD Lord, SD Maret, S Martin, PG Melnick, GJ Morris, P Murphy, JA Neufeld, DA Ossenkopf, V Pagani, L Pearson, JC Perault, M Plume, R Salez, M Schlemmer, S Stutzki, J Trappe, N van der Tak, FFS Vastel, C Wang, S Yorke, HW Yu, S Zmuidzinas, J Boogert, A Gusten, R Hartogh, P Honingh, N Karpov, A Kooi, J Krieg, JM Schieder, R Diez-Gonzalez, MC Bachiller, R Martin-Pintado, J Baechtold, W Olberg, M Nordh, LH Gill, JL Chattopadhyay, G AF Qin, S. -L. Schilke, P. Comito, C. Moeller, T. Rolffs, R. Mueller, H. S. P. Belloche, A. Menten, K. M. Lis, D. C. Phillips, T. G. Bergin, E. A. Bell, T. A. Crockett, N. R. Blake, G. A. Cabrit, S. Caux, E. Ceccarelli, C. Cernicharo, J. Daniel, F. Dubernet, M. -L. Emprechtinger, M. Encrenaz, P. Falgarone, E. Gerin, M. Giesen, T. F. Goicoechea, J. R. Goldsmith, P. F. Gupta, H. Herbst, E. Joblin, C. Johnstone, D. Langer, W. D. Lord, S. D. Maret, S. Martin, P. G. Melnick, G. J. Morris, P. Murphy, J. A. Neufeld, D. A. Ossenkopf, V. Pagani, L. Pearson, J. C. Perault, M. Plume, R. Salez, M. Schlemmer, S. Stutzki, J. Trappe, N. van der Tak, F. F. S. Vastel, C. Wang, S. Yorke, H. W. Yu, S. Zmuidzinas, J. Boogert, A. Guesten, R. Hartogh, P. Honingh, N. Karpov, A. Kooi, J. Krieg, J. -M. Schieder, R. Diez-Gonzalez, M. C. Bachiller, R. Martin-Pintado, J. Baechtold, W. Olberg, M. Nordh, L. H. Gill, J. L. Chattopadhyay, G. TI Herschel observations of EXtra-Ordinary Sources (HEXOS): detecting spiral arm clouds by CH absorption lines SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: abundances; ISM: molecules ID MOLECULAR CLOUDS; SAGITTARIUS B2; COLOGNE DATABASE; SIGHT-LINE; SUBMILLIMETER; SPECTROSCOPY; G10.6-0.4; CHEMISTRY; MICROWAVE; HYDROGEN AB We have observed CH absorption lines (J = 3/2, N = 1 <- J = 1/2, N = 1) against the continuum source Sgr B2(M) using the Herschel/HIFI instrument. With the high spectral resolution and wide velocity coverage provided by HIFI, 31 CH absorption features with different radial velocities and line widths are detected and identified. The narrower line width and lower column density clouds show "spiral arm" cloud characteristics, while the absorption component with the broadest line width and highest column density corresponds to the gas from the Sgr B2 envelope. The observations show that each "spiral arm" harbors multiple velocity components, indicating that the clouds are not uniform and that they have internal structure. This line-of-sight through almost the entire Galaxy offers unique possibilities to study the basic chemistry of simple molecules in diffuse clouds, as a variety of different cloud classes are sampled simultaneously. We find that the linear relationship between CH and H-2 column densities found at lower AV by UV observations does not continue into the range of higher visual extinction. There, the curve flattens, which probably means that CH is depleted in the denser cores of these clouds. C1 [Qin, S. -L.; Schilke, P.; Moeller, T.; Mueller, H. S. P.; Giesen, T. F.; Ossenkopf, V.; Schlemmer, S.; Stutzki, J.; Honingh, N.; Schieder, R.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Schilke, P.; Comito, C.; Rolffs, R.; Belloche, A.; Menten, K. M.; Guesten, R.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Lis, D. C.; Phillips, T. G.; Bell, T. A.; Blake, G. A.; Emprechtinger, M.; Zmuidzinas, J.; Karpov, A.; Kooi, J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Bergin, E. A.; Crockett, N. R.; Wang, S.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Cabrit, S.; Pagani, L.; Salez, M.] LERMA, F-75014 Paris, France. [Cabrit, S.; Pagani, L.; Salez, M.] Observ Paris, CNRS, UMR8112, F-75014 Paris, France. [Caux, E.; Joblin, C.; Vastel, C.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [Caux, E.; Joblin, C.; Vastel, C.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Ceccarelli, C.; Maret, S.] Lab Astrophys Observ Grenoble, F-38041 Grenoble 9, France. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.; Martin-Pintado, J.] Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid 28850, Spain. [Daniel, F.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Perault, M.; Krieg, J. -M.] Observ Paris, UMR8112, CNRS, LERMA, F-75231 Paris 05, France. [Daniel, F.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Perault, M.; Krieg, J. -M.] Ecole Normale Super, F-75231 Paris 05, France. [Dubernet, M. -L.] Univ Paris 06, LPMAA, UMR7092, Paris, France. [Dubernet, M. -L.] Observ Paris, LUTH, UMR8102, Meudon, France. [Goldsmith, P. F.; Gupta, H.; Langer, W. D.; Morris, P.; Pearson, J. C.; Yorke, H. W.; Yu, S.; Gill, J. L.; Chattopadhyay, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Herbst, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Lord, S. D.; Boogert, A.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Martin, P. G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Melnick, G. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Murphy, J. A.; Trappe, N.] Natl Univ Ireland Maynooth, Maynooth, Kildare, Ireland. [Neufeld, D. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Ossenkopf, V.; van der Tak, F. F. S.] Univ Groningen, SRON Netherlands Inst Space Res, Groningen, Netherlands. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Hartogh, P.] MPI Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Diez-Gonzalez, M. C.; Bachiller, R.] Ctr Astron Yebes, Observ Astron Nacl IGN, E-19080 Guadalajara, Spain. [Baechtold, W.] ETH, Microwave Lab, CH-8092 Zurich, Switzerland. [Olberg, M.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. [Olberg, M.] Chalmers, S-41296 Gteborg, Sweden. [Nordh, L. H.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. RP Qin, SL (reprint author), Univ Cologne, Inst Phys 1, Zulpicher Str 77, D-50937 Cologne, Germany. EM qin@ph1.uni-koeln.de RI Trappe, Neil/C-9014-2016; Yu, Shanshan/D-8733-2016; Goldsmith, Paul/H-3159-2016; Martin-Pintado, Jesus/H-6107-2015; Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015 OI Trappe, Neil/0000-0003-2527-9821; Martin-Pintado, Jesus/0000-0003-4561-3508; Mueller, Holger/0000-0002-0183-8927; Maret, Sebastien/0000-0003-1104-4554; Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281 NR 41 TC 14 Z9 14 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L14 DI 10.1051/0004-6361/201015107 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900014 ER PT J AU Rolffs, R Schilke, P Comito, C Bergin, EA van der Tak, FFS Lis, DC Qin, SL Menten, KM Gusten, R Bell, TA Blake, GA Caux, E Ceccarelli, C Cernicharo, J Crockett, NR Daniel, F Dubernet, ML Emprechtinger, M Encrenaz, P Gerin, M Giesen, TF Goicoechea, JR Goldsmith, PF Gupta, H Herbst, E Joblin, C Johnstone, D Langer, WD Latter, WD Lord, SD Maret, S Martin, PG Melnick, GJ Morris, P Muller, HSP Murphy, JA Ossenkopf, V Pearson, JC Perault, M Phillips, TG Plume, R Schlemmer, S Stutzki, J Trappe, N Vastel, C Wang, S Yorke, HW Yu, S Zmuidzinas, J Diez-Gonzalez, MC Bachiller, R Martin-Pintado, J Baechtold, W Olberg, M Nordh, LH Gill, JJ Chattopadhyay, G AF Rolffs, R. Schilke, P. Comito, C. Bergin, E. A. van der Tak, F. F. S. Lis, D. C. Qin, S. -L. Menten, K. M. Guesten, R. Bell, T. A. Blake, G. A. Caux, E. Ceccarelli, C. Cernicharo, J. Crockett, N. R. Daniel, F. Dubernet, M. -L. Emprechtinger, M. Encrenaz, P. Gerin, M. Giesen, T. F. Goicoechea, J. R. Goldsmith, P. F. Gupta, H. Herbst, E. Joblin, C. Johnstone, D. Langer, W. D. Latter, W. D. Lord, S. D. Maret, S. Martin, P. G. Melnick, G. J. Morris, P. Mueller, H. S. P. Murphy, J. A. Ossenkopf, V. Pearson, J. C. Perault, M. Phillips, T. G. Plume, R. Schlemmer, S. Stutzki, J. Trappe, N. Vastel, C. Wang, S. Yorke, H. W. Yu, S. Zmuidzinas, J. Diez-Gonzalez, M. C. Bachiller, R. Martin-Pintado, J. Baechtold, W. Olberg, M. Nordh, L. H. Gill, J. J. Chattopadhyay, G. TI Reversal of infall in SgrB2(M) revealed by Herschel/HIFI observations of HCN lines at THz frequencies SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; ISM: kinematics and dynamics; ISM: structure; ISM: molecules; ISM: individual objects: SgrB2(M); submillimeter: ISM ID MOLECULAR-SPECTROSCOPY; COLOGNE DATABASE; STAR-FORMATION; FACILITY; OUTFLOW; CDMS; HIFI; B2 AB Aims. To investigate the accretion and feedback processes in massive star formation, we analyze the shapes of emission lines from hot molecular cores, whose asymmetries trace infall and expansion motions. Methods. The high-mass star forming region SgrB2(M) was observed with Herschel/HIFI (HEXOS key project) in various lines of HCN and its isotopologues, complemented by APEX data. The observations are compared to spherically symmetric, centrally heated models with density power-law gradient and different velocity fields (infall or infall+expansion), using the radiative transfer code RATRAN. Results. The HCN line profiles are asymmetric, with the emission peak shifting from blue to red with increasing J and decreasing line opacity (HCN to (HCN)-C-13). This is most evident in the HCN 12-11 line at 1062 GHz. These line shapes are reproduced by a model whose velocity field changes from infall in the outer part to expansion in the inner part. Conclusions. The qualitative reproduction of the HCN lines suggests that infall dominates in the colder, outer regions, but expansion dominates in the warmer, inner regions. We are thus witnessing the onset of feedback in massive star formation, starting to reverse the infall and finally disrupting the whole molecular cloud. To obtain our result, the THz lines uniquely covered by HIFI were critically important. C1 [Rolffs, R.; Schilke, P.; Comito, C.; Menten, K. M.; Guesten, R.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Rolffs, R.; Schilke, P.; Qin, S. -L.; Giesen, T. F.; Mueller, H. S. P.; Ossenkopf, V.; Schlemmer, S.; Stutzki, J.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Bergin, E. A.; Crockett, N. R.; Wang, S.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [van der Tak, F. F. S.; Ossenkopf, V.; Olberg, M.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Lis, D. C.; Bell, T. A.; Emprechtinger, M.; Phillips, T. G.; Zmuidzinas, J.] CALTECH, Cahill Ctr Astron & Astrophys 301 17, Pasadena, CA 91125 USA. [Ceccarelli, C.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Caux, E.; Joblin, C.; Vastel, C.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [Caux, E.; Joblin, C.; Vastel, C.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Ceccarelli, C.; Maret, S.] Observ Grenoble, Astrophys Lab, F-38041 Grenoble 9, France. [Daniel, F.; Goicoechea, J. R.] Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid 28850, Spain. [Daniel, F.; Encrenaz, P.; Gerin, M.; Perault, M.] Observ Paris, CNRS UMR8112, LERMA, F-75231 Paris 05, France. [Daniel, F.; Encrenaz, P.; Gerin, M.; Perault, M.] Ecole Normale Super, F-75231 Paris 05, France. [Dubernet, M. -L.] Univ Paris 06, UMR7092, LPMAA, Paris, France. [Dubernet, M. -L.] Observ Paris, UMR8102, LUTH, Meudon, France. [Goldsmith, P. F.; Gupta, H.; Langer, W. D.; Pearson, J. C.; Yorke, H. W.; Yu, S.; Gill, J. J.; Chattopadhyay, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Herbst, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Latter, W. D.; Lord, S. D.; Morris, P.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Martin, P. G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Melnick, G. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Murphy, J. A.; Trappe, N.] Natl Univ Ireland Maynooth, Maynooth, Kildare, Ireland. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Diez-Gonzalez, M. C.; Bachiller, R.] Observ Astron Nacl IGN, Ctr Astron Yebes, Guadalajara 19080, Spain. [Martin-Pintado, J.] CSIC, Inst Estruct Mat, Dept Astrofis Mol & Infrarroja, E-28006 Madrid, Spain. [Baechtold, W.] ETH, Microwave Lab, CH-8092 Zurich, Switzerland. [Olberg, M.] Chalmers, S-41296 Gothenburg, Sweden. [Nordh, L. H.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. RP Rolffs, R (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. EM rrolffs@mpifr.de RI Goldsmith, Paul/H-3159-2016; Martin-Pintado, Jesus/H-6107-2015; Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Trappe, Neil/C-9014-2016; Yu, Shanshan/D-8733-2016 OI Martin-Pintado, Jesus/0000-0003-4561-3508; Mueller, Holger/0000-0002-0183-8927; Maret, Sebastien/0000-0003-1104-4554; Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281; Trappe, Neil/0000-0003-2527-9821; FU NASA through JPL/Caltech; NSF [AST-0540882] FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. Support for this work was provided by NASA through an award issued by JPL/Caltech. CSO is supported by the NSF, award AST-0540882. NR 20 TC 16 Z9 16 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L46 DI 10.1051/0004-6361/201015106 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900046 ER PT J AU Schilke, P Comito, C Muller, HSP Bergin, EA Herbst, E Lis, DC Neufeld, DA Phillips, TG Bell, TA Blake, GA Cabrit, S Caux, E Ceccarelli, C Cernicharo, J Crockett, NR Daniel, F Dubernet, ML Emprechtinger, M Encrenaz, P Falgarone, E Gerin, M Giesen, TF Goicoechea, JR Goldsmith, PF Gupta, H Joblin, C Johnstone, D Langer, WD Latter, WB Lord, SD Maret, S Martin, PG Melnick, GJ Menten, KM Morris, P Murphy, JA Ossenkopf, V Pagani, L Pearson, JC Perault, M Plume, R Qin, SL Salez, M Schlemmer, S Stutzki, J Trappe, N van der Tak, FFS Vastel, C Wang, S Yorke, HW Yu, S Erickson, N Maiwald, FW Kooi, J Karpov, A Zmuidzinas, J Boogert, A Schieder, R Zaal, P AF Schilke, P. Comito, C. Mueller, H. S. P. Bergin, E. A. Herbst, E. Lis, D. C. Neufeld, D. A. Phillips, T. G. Bell, T. A. Blake, G. A. Cabrit, S. Caux, E. Ceccarelli, C. Cernicharo, J. Crockett, N. R. Daniel, F. Dubernet, M. -L. Emprechtinger, M. Encrenaz, P. Falgarone, E. Gerin, M. Giesen, T. F. Goicoechea, J. R. Goldsmith, P. F. Gupta, H. Joblin, C. Johnstone, D. Langer, W. D. Latter, W. B. Lord, S. D. Maret, S. Martin, P. G. Melnick, G. J. Menten, K. M. Morris, P. Murphy, J. A. Ossenkopf, V. Pagani, L. Pearson, J. C. Perault, M. Plume, R. Qin, S. -L. Salez, M. Schlemmer, S. Stutzki, J. Trappe, N. van der Tak, F. F. S. Vastel, C. Wang, S. Yorke, H. W. Yu, S. Erickson, N. Maiwald, F. W. Kooi, J. Karpov, A. Zmuidzinas, J. Boogert, A. Schieder, R. Zaal, P. TI Herschel observations of ortho- and para-oxidaniumyl (H2O+) in spiral arm clouds toward Sagittarius B2(M) SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; line: profiles; molecular processes ID LASER MAGNETIC-RESONANCE; MOLECULAR-SPECTROSCOPY; COLOGNE DATABASE; SUBMILLIMETER; LINE; BAND; SPECTRUM; B2; HYDROGEN; SPACE AB H2O+ has been observed in its ortho- and para- states toward the massive star forming core Sgr B2(M), located close to the Galactic center. The observations show absorption in all spiral arm clouds between the Sun and Sgr B2. The average o/p ratio of H2O+ in most velocity intervals is 4.8, which corresponds to a nuclear spin temperature of 21 K. The relationship of this spin temperature to the formation temperature and current physical temperature of the gas hosting H2O+ is discussed, but no firm conclusion is reached. In the velocity interval 0-60 km s(-1), an ortho/para ratio of below unity is found, but if this is due to an artifact of contamination by other species or real is not clear. C1 [Schilke, P.; Mueller, H. S. P.; Giesen, T. F.; Schlemmer, S.; Stutzki, J.; Schieder, R.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Schilke, P.; Comito, C.; Menten, K. M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Bergin, E. A.; Crockett, N. R.; Wang, S.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Lis, D. C.; Phillips, T. G.; Bell, T. A.; Emprechtinger, M.; Kooi, J.; Karpov, A.; Zmuidzinas, J.; Boogert, A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Blake, G. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Caux, E.; Joblin, C.; Vastel, C.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [Caux, E.; Joblin, C.; Vastel, C.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Ceccarelli, C.; Maret, S.] Observ Grenoble, Astrophys Lab, F-38041 Grenoble 9, France. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.] Lab Astrofis Mol, Ctr Astrobiol CSIC INTA, Madrid, Spain. [Daniel, F.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Perault, M.] Observ Paris, UMR8112, CNRS, LERMA, F-75231 Paris 05, France. [Daniel, F.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Perault, M.] Ecole Normale Super, F-75231 Paris 05, France. [Dubernet, M. -L.] Univ Paris 06, UMR7092, LPMAA, Paris, France. [Dubernet, M. -L.; Ossenkopf, V.] Observ Paris, LUTH, UMR8102, Meudon, France. [Goldsmith, P. F.; Gupta, H.; Langer, W. D.; Pearson, J. C.; Qin, S. -L.; Yorke, H. W.; Yu, S.; Maiwald, F. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Herbst, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Latter, W. B.; Lord, S. D.; Morris, P.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Martin, P. G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Melnick, G. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Murphy, J. A.; Trappe, N.] Natl Univ Ireland Maynooth, Maynooth, Kildare, Ireland. [Neufeld, D. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Ossenkopf, V.; van der Tak, F. F. S.; Zaal, P.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Erickson, N.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Cabrit, S.; Pagani, L.; Salez, M.] Observ Paris, LERMA, F-75014 Paris, France. [Cabrit, S.; Pagani, L.; Salez, M.; Boogert, A.] Observ Paris, UMR8112, CNRS, F-75014 Paris, France. RP Schilke, P (reprint author), Univ Cologne, Inst Phys 1, Zulpicher Str 77, D-50937 Cologne, Germany. EM schilke@ph1.uni-koeln.de RI Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Trappe, Neil/C-9014-2016; Yu, Shanshan/D-8733-2016; Goldsmith, Paul/H-3159-2016 OI Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281; Mueller, Holger/0000-0002-0183-8927; Trappe, Neil/0000-0003-2527-9821; FU NASA; NSF [AST-0540882]; Bundesministerium fur Bildung und Forschung (BMBF); Deutsches Zentrum fur Luft- und Raumfahrt (DLR) FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. Support for this work was provided by NASA through an award issued by JPL/Caltech. CSO is supported by the NSF, award AST-0540882.; H.S.P.M. is very grateful to the Bundesministerium fur Bildung und Forschung (BMBF) for financial support aimed at maintaining the Cologne Database for Molecular Spectroscopy, CDMS. This support has been administered by the Deutsches Zentrum fur Luft- und Raumfahrt (DLR). We appreciate funding for the ASTRONET Project CATS through the Bundesministerium fur Bildung und Forschung (BMBF). NR 37 TC 25 Z9 25 U1 0 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L11 DI 10.1051/0004-6361/201015087 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900011 ER PT J AU Sonnentrucker, P Neufeld, DA Phillips, TG Gerin, M Lis, DC De Luca, M Goicoechea, JR Black, JH Bell, TA Boulanger, F Cernicharo, J Coutens, A Dartois, E Kazmierczak, M Encrenaz, P Falgarone, E Geballe, TR Giesen, T Godard, B Goldsmith, PF Gry, C Gupta, H Hennebelle, P Herbst, E Hily-Blant, P Joblin, C Kolos, R Krelowski, J Martin-Pintado, J Menten, KM Monje, R Mookerjea, B Pearson, J Perault, M Persson, CM Plume, R Salez, M Schlemmer, S Schmidt, M Stutzki, J Teyssier, D Vastel, C Yu, S Caux, E Gusten, R Hatch, WA Klein, T Mehdi, I Morris, P Ward, JS AF Sonnentrucker, P. Neufeld, D. A. Phillips, T. G. Gerin, M. Lis, D. C. De Luca, M. Goicoechea, J. R. Black, J. H. Bell, T. A. Boulanger, F. Cernicharo, J. Coutens, A. Dartois, E. Kazmierczak, M. Encrenaz, P. Falgarone, E. Geballe, T. R. Giesen, T. Godard, B. Goldsmith, P. F. Gry, C. Gupta, H. Hennebelle, P. Herbst, E. Hily-Blant, P. Joblin, C. Kolos, R. Krelowski, J. Martin-Pintado, J. Menten, K. M. Monje, R. Mookerjea, B. Pearson, J. Perault, M. Persson, C. M. Plume, R. Salez, M. Schlemmer, S. Schmidt, M. Stutzki, J. Teyssier, D. Vastel, C. Yu, S. Caux, E. Guesten, R. Hatch, W. A. Klein, T. Mehdi, I. Morris, P. Ward, J. S. TI Detection of hydrogen fluoride absorption in diffuse molecular clouds with Herschel/HIFI: an ubiquitous tracer of molecular gas SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE molecular processes; astrochemistry; ISM: molecules; submillimeter: ISM ID STAR-FORMING REGIONS; LINE-OF-SIGHT; G10.6-0.4 W31C; W51; W49N; ASTRONOMY; ABUNDANCE; H2O; CO AB We discuss the detection of absorption by interstellar hydrogen fluoride (HF) along the sight line to the submillimeter continuum sources W49N and W51. We have used Herschel's HIFI instrument in dual beam switch mode to observe the 1232.4762 GHz J = 1-0 HF transition in the upper sideband of the band 5a receiver. We detected foreground absorption by HF toward both sources over a wide range of velocities. Optically thin absorption components were detected on both sight lines, allowing us to measure - as opposed to obtain a lower limit on - the column density of HF for the first time. As in previous observations of HF toward the source G10.6-0.4, the derived HF column density is typically comparable to that of water vapor, even though the elemental abundance of oxygen is greater than that of fluorine by four orders of magnitude. We used the rather uncertain N(CH) - N(H-2) relationship derived previously toward diffuse molecular clouds to infer the molecular hydrogen column density in the clouds exhibiting HF absorption. Within the uncertainties, we find that the abundance of HF with respect to H-2 is consistent with the theoretical prediction that HF is the main reservoir of gas-phase fluorine for these clouds. Thus, hydrogen fluoride has the potential to become an excellent tracer of molecular hydrogen, and provides a sensitive probe of clouds of small H-2 column density. Indeed, the observations of hydrogen fluoride reported here reveal the presence of a low column density diffuse molecular cloud along the W51 sight line, at an LSR velocity of similar to 24 km s(-1), that had not been identified in molecular absorption line studies prior to the launch of Herschel. C1 [Sonnentrucker, P.; Neufeld, D. A.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Goldsmith, P. F.; Gupta, H.; Pearson, J.; Yu, S.; Hatch, W. A.; Mehdi, I.; Ward, J. S.] CALTECH, JPL, Pasadena, CA 91125 USA. [Gerin, M.; De Luca, M.; Encrenaz, P.; Falgarone, E.; Godard, B.; Hennebelle, P.; Perault, M.; Salez, M.] Observ Paris, CNRS, LERMA, Paris, France. [Goicoechea, J. R.; Cernicharo, J.; Martin-Pintado, J.] CSIC INTA, Ctr Astrobiol, Madrid 28850, Spain. [Black, J. H.; Persson, C. M.] Chalmers, S-41296 Gothenburg, Sweden. [Boulanger, F.; Dartois, E.] IAS, Orsay, France. [Coutens, A.; Joblin, C.; Vastel, C.; Caux, E.] Univ Toulouse, UPS, CESR, F-31028 Toulouse 4, France. [Coutens, A.; Joblin, C.; Vastel, C.; Caux, E.] CNRS, UMR5187, F-31028 Toulouse 4, France. [Kazmierczak, M.; Krelowski, J.] Nicholas Copernicus Univ, Torun, Poland. [Geballe, T. R.] Gemini Telescope, Hilo, HI USA. [Giesen, T.; Schlemmer, S.; Stutzki, J.] Univ Cologne, Inst Phys 1, D-5000 Cologne 41, Germany. [Gry, C.] Univ Aix Marseille, OAMP, LAM, Marseille, France. [Gry, C.] CNRS, Marseille, France. [Herbst, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Hily-Blant, P.] Lab Astrophys Grenoble, Grenoble, France. [Kolos, R.] PAS, Inst Phys Chem, Warsaw, Poland. [Menten, K. M.; Guesten, R.; Klein, T.] MPI Radioastron, Bonn, Germany. [Mookerjea, B.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Schmidt, M.] Nicolaus Copernicus Astron Ctr, Torun, Poland. [Teyssier, D.] ESA, European Space Astron Ctr, Madrid, Spain. [Morris, P.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. RP Sonnentrucker, P (reprint author), Johns Hopkins Univ, Baltimore, MD 21218 USA. EM sonnentr@pha.jhu.edu RI Coutens, Audrey/M-4533-2014; Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Yu, Shanshan/D-8733-2016; Goldsmith, Paul/H-3159-2016; Martin-Pintado, Jesus/H-6107-2015 OI Coutens, Audrey/0000-0003-1805-3920; Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281; Martin-Pintado, Jesus/0000-0003-4561-3508 FU Polish MNiSW [N 203 393334]; National Aeronautics and Space Administration FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologa (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. M. S. acknowledges support from grant N 203 393334 from Polish MNiSW.; This research was performed in part through a JPL contract funded by the National Aeronautics and Space Administration. NR 22 TC 66 Z9 66 U1 0 U2 12 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L12 DI 10.1051/0004-6361/201015082 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900012 ER PT J AU Sterling, AC Chifor, C Mason, HE Moore, RL Young, PR AF Sterling, A. C. Chifor, C. Mason, H. E. Moore, R. L. Young, P. R. TI Evidence for magnetic flux cancelation leading to an ejective solar eruption observed by Hinode, TRACE, STEREO, and SoHO/MDI SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Sun: filaments, prominences; Sun: coronal mass ejections (CMEs); Sun: UV radiation; Sun: X-rays, gamma rays; Sun: flares ID CORONAL MASS EJECTIONS; X-RAY TELESCOPE; EMERGING FLUX; ACTIVE-REGION; FILAMENT ERUPTIONS; TRANSITION REGION; ATOMIC DATABASE; EMISSION-LINES; SLOW-RISE; FLARES AB Aims. We study the onset of a solar eruption involving a filament ejection on 2007 May 20. Methods. We observe the filament in Ha images from Hinode/SOT and in EUV with TRACE and STEREO/SECCHI/EUVI. Hinode/XRT images are used to study the eruption in soft X-rays. From spectroscopic data taken with Hinode/EIS we obtain bulk-flow velocities, line profiles, and plasma densities in the onset region. The magnetic field evolution was observed in SoHO/MDI magnetograms. Results. We observed a converging motion between two opposite polarity sunspots that form the primary magnetic polarity inversion line (PIL), along which resides filament material before eruption. Positive-flux magnetic elements, perhaps moving magnetic features (MMFs) flowing from the spot region, appear north of the spots, and the eruption onset occurs where these features cancel repeatedly in a negative-polarity region north of the sunspots. An ejection of material observed in H alpha and EUV marks the start of the filament eruption (its "fast-rise"). The start of the ejection is accompanied by a sudden brightening across the PIL at the jet's base, observed in both broad-band images and in EIS. Small-scale transient brightenings covering a wide temperature range (Log T-e = 4.8-6.3) are also observed in the onset region prior to eruption. The preflare transient brightenings are characterized by sudden, localized density enhancements (to above Log n(e) [cm(-3)] = 9.75, in Fe XIII) that appear along the PIL during a time when pre-flare brightenings were occurring. The measured densities in the eruption onset region outside the times of those enhancements decrease with temperature. Persistent downflows (red-shifts) and line-broadening (Fe XII) are present along the PIL. Conclusions. The array of observations is consistent with the pre-eruption sheared-core magnetic field being gradually destabilized by evolutionary tether-cutting flux cancelation that was driven by converging photospheric flows, and the main filament ejection being triggered by flux cancelation between the positive flux elements and the surrounding negative field. A definitive statement however on the eruption's ultimate cause would require comparison with simulations, or additional detailed observations of other eruptions occurring in similar magnetic circumstances. C1 [Sterling, A. C.; Moore, R. L.] NASA, George C Marshall Space Flight Ctr, Space Sci Off VP62, Huntsville, AL 35805 USA. [Chifor, C.; Mason, H. E.] CMS, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England. [Young, P. R.] George Mason Univ, Fairfax, VA 22030 USA. [Young, P. R.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. RP Sterling, AC (reprint author), JAXA Inst Space & Astronaut Sci, Hinode Grp, Chuo Ku, Yoshinodai 3-1-1, Kanagawa 2525210, Japan. EM alphonse.sterling@nasa.gov; cristina.chifor@gmail.com FU University of Cambridge Overseas Trust; Isaac Newton Studentship; NASA; STFC FX We thank L. M. Green for useful discussions, D. Zarro for helpful software assistance, and T. Durgesh for assistance with graphics. We also thank an anonymous referee for helpful comments in an earlier version of this paper. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in co-operation with ESA and NSC (Norway). C.C. is grateful for support received from the University of Cambridge Overseas Trust and an Isaac Newton Studentship. A.C.S. and R.L.M. received support from NASA's Solar Physics Supporting Research and Technology, Heliophysics Guest Investigators, and Living With a Star programs. H.E.M. acknowledges support from STFC. NR 66 TC 22 Z9 22 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR A49 DI 10.1051/0004-6361/201014006 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900110 ER PT J AU Tombesi, F Cappi, M Reeves, JN Palumbo, GGC Yaqoob, T Braito, V Dadina, M AF Tombesi, F. Cappi, M. Reeves, J. N. Palumbo, G. G. C. Yaqoob, T. Braito, V. Dadina, M. TI Evidence for ultra-fast outflows in radio-quiet AGNs I. Detection and statistical incidence of FeK-shell absorption lines SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE black hole physics; X-ray: galaxies; galaxies: Seyfert; line: identification ID X-RAY-SPECTRUM; XMM-NEWTON OBSERVATION; SEYFERT 1 GALAXIES; ACTIVE GALACTIC NUCLEI; BLACK-HOLE WINDS; K-ALPHA-EMISSION; IRON LINE; ASCA OBSERVATIONS; PHOTOIONIZED GAS; ACCRETION DISC AB Context. Blue-shifted Fe K absorption lines have been detected in recent years between 7 and 10 keV in the X-ray spectra of several radio-quiet AGNs. The derived blue-shifted velocities of the lines can often reach mildly relativistic values, up to 0.2-0.4c. These findings are important because they suggest the presence of a previously unknown massive and highly ionized absorbing material outflowing from their nuclei, possibly connected with accretion disk winds/outflows. Aims. The scope of the present work is to statistically quantify the parameters and incidence of the blue-shifted Fe K absorption lines through a uniform analysis on a large sample of radio-quiet AGNs. This allows us to assess their global detection significance and to overcome any possible publication bias. Methods. We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. A simple uniform model composed by an absorbed power-law plus Gaussian emission and absorption lines provided a good fit for all the data sets. We derived the absorption lines parameters and calculated their detailed detection significance making use of the classical F-test and extensive Monte Carlo simulations. Results. We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies higher than 7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3 x 10(-8), and their detection have been independently confirmed by a spectral analysis of the MOS data, with associated random probability <10(-7). We identify the lines as FeXXV and Fe XXVI K-shell resonant absorption. They are systematically blue-shifted, with a velocity distribution ranging from zero up to similar to 0.3c, with a peak and mean value at similar to 0.1c. We detect variability of the lines on both EWs and blue-shifted velocities among different XMM-Newton observations even on time-scales as short as a few days, possibly suggesting somewhat compact absorbers. Moreover, we find no significant correlation between the cosmological red-shifts of the sources and the lines blue-shifted velocities, ruling out any systematic contamination by local absorption. If we define ultra-fast outflows (UFOs) those highly ionized absorbers with outflow velocities higher than 104 km s(-1), then the majority of the lines are consistent with being associated to UFOs and the fraction of objects with detected UFOs in the whole sample is at least similar to 35%. This fraction is similar for type 1 and type 2 sources. The global covering fraction of the absorbers is consequently estimated to be in the range C similar to 0.4-0.6, thereby implying large opening angles. Conclusions. From our systematic X-ray spectral analysis on a large sample of radio-quiet AGNs we have been able to clearly assess the global veracity of the blue-shifted Fe K absorption lines at E > 7 keV and to overcome their publication bias. These lines indicate that UFOs are a rather common phenomenon observable in the central regions of these sources and they are probably the direct signature of AGN accretion disk winds/ejecta. The detailed photo-ionization modeling of these absorbers is presented in a companion paper. C1 [Tombesi, F.; Cappi, M.; Dadina, M.] INAF IASF Bologna, I-40129 Bologna, Italy. [Tombesi, F.; Palumbo, G. G. C.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Tombesi, F.; Yaqoob, T.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Tombesi, F.; Yaqoob, T.] NASA, High Energy Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reeves, J. N.] Univ Keele, Astrophys Grp, Sch Phys & Geog Sci, Keele ST5 5BG, Staffs, England. [Braito, V.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. RP Tombesi, F (reprint author), INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. EM tombesi@iasfbo.inaf.it RI Cappi, Massimo/F-4813-2015; OI Cappi, Massimo/0000-0001-6966-8920; Dadina, Mauro/0000-0002-7858-7564; Braito, Valentina/0000-0002-2629-4989 FU ASI [I/088/06/0] FX This paper is part of the PhD thesis in Astronomy of FT from the University of Bologna. We refer the reader to that document for more detailed information. This paper is based on observations obtained with the XMM-Newton satellite, an ESA funded mission with contributions by ESA member states and USA. F.T. thank Prof. K.A. Pounds for useful discussion. M.C. acknowledge financial support from ASI under contract I/088/06/0. The authors thank the anonymous referee for suggestions that led to important improvements in the paper. NR 94 TC 165 Z9 167 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR A57 DI 10.1051/0004-6361/200913440 PG 35 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900118 ER PT J AU van der Wiel, MHD van der Tak, FFS Lis, DC Bell, T Bergin, EA Comito, C Emprechtinger, M Schilke, P Caux, E Ceccarelli, C Baudry, A Goldsmith, PF Herbst, E Langer, W Lord, S Neufeld, D Pearson, J Phillips, T Rolffs, R Yorke, H Bacmann, A Benedettini, M Blake, GA Boogert, A Bottinelli, S Cabrit, S Caselli, P Castets, A Cernicharo, J Codella, C Coutens, A Crimier, N Demyk, K Dominik, C Encrenaz, P Falgarone, E Fuente, A Gerin, M Helmich, F Hennebelle, P Henning, T Hily-Blant, P Jacq, T Kahane, C Kama, M Klotz, A Lefloch, B Lorenzani, A Maret, S Melnick, G Nisini, B Pacheco, S Pagani, L Parise, B Salez, M Saraceno, P Schuster, K Tielens, AGGM Vastel, C Viti, S Wakelam, V Walters, A Wyrowski, F Edwards, K Zmuidzinas, J Morris, P Samoska, LA Teyssier, D AF van der Wiel, M. H. D. van der Tak, F. F. S. Lis, D. C. Bell, T. Bergin, E. A. Comito, C. Emprechtinger, M. Schilke, P. Caux, E. Ceccarelli, C. Baudry, A. Goldsmith, P. F. Herbst, E. Langer, W. Lord, S. Neufeld, D. Pearson, J. Phillips, T. Rolffs, R. Yorke, H. Bacmann, A. Benedettini, M. Blake, G. A. Boogert, A. Bottinelli, S. Cabrit, S. Caselli, P. Castets, A. Cernicharo, J. Codella, C. Coutens, A. Crimier, N. Demyk, K. Dominik, C. Encrenaz, P. Falgarone, E. Fuente, A. Gerin, M. Helmich, F. Hennebelle, P. Henning, T. Hily-Blant, P. Jacq, T. Kahane, C. Kama, M. Klotz, A. Lefloch, B. Lorenzani, A. Maret, S. Melnick, G. Nisini, B. Pacheco, S. Pagani, L. Parise, B. Salez, M. Saraceno, P. Schuster, K. Tielens, A. G. G. M. Vastel, C. Viti, S. Wakelam, V. Walters, A. Wyrowski, F. Edwards, K. Zmuidzinas, J. Morris, P. Samoska, L. A. Teyssier, D. TI Herschel/HIFI observations of spectrally resolved methylidyne signatures toward the high-mass star-forming core NGC 6334I SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; ISM: molecules; ISM: individual objects: NGC 6334I ID INTERSTELLAR CLOUDS; MOLECULAR CLOUDS; GROUND-STATE; CH; SPECTROSCOPY; REGIONS; MODELS; ABUNDANCES; NGC-6334; I(N) AB Context. In contrast to the more extensively studied dense star-forming cores, little is known about diffuse gas surrounding star-forming regions. Aims. We study the molecular gas in the Galactic high-mass star-forming region NGC 6334I, which contains diffuse, quiescent components that are inconspicuous in widely used molecular tracers such as CO. Methods. We present Herschel/HIFI observations of methylidyne (CH) toward NGC 6334I observed as part of the "Chemical HErschel Survey of Star forming regions" (CHESS) key program. HIFI resolves each of the six hyperfine components of the lowest rotational transition (J = 3/2-1/2) of CH, observed in both emission and absorption. Results. The CH emission features appear close to the systemic velocity of NGC 6334I, while its measured FWHM linewidth of 3 km s(-1) is smaller than previously observed in dense gas tracers such as NH3 and SiO. The CH abundance in the hot core is similar to 7 x 10(-11), two to three orders of magnitude lower than in diffuse clouds. While other studies find distinct outflows in, e. g., CO and H2O toward NGC 6334I, we do not detect any outflow signatures in CH. At least two redshifted components of cold absorbing material must be present at -3.0 and +6.5 km s(-1) to explain the absorption signatures. We derive a CH column density (N-CH) of 7 x 10(13) and 3 x 10(13) cm(-2) for these two absorbing clouds. We find evidence of two additional absorbing clouds at +8.0 and 0.0 km s(-1), both with N-CH approximate to 2 x 10(13) cm(-2). Turbulent linewidths for the four absorption components vary between 1.5 and 5.0 km s(-1) in FWHM. We constrain the physical properties and locations of the clouds by matching our CH absorbers with the absorption signatures seen in other molecular tracers. Conclusions. In the hot core, molecules such as H2O and CO trace gas that is heated and dynamically influenced by outflow activity, whereas the CH molecule traces more quiescent material. The four CH absorbing clouds have column densities and turbulent properties that are consistent with those of diffuse clouds: two are located in the direct surroundings of NGC 6334, and two are unrelated foreground clouds. Local density and dynamical effects influence the chemical composition of the physical components of NGC 6334, which causes some components to be seen in CH but not in other tracers, and vice versa. C1 [van der Wiel, M. H. D.; van der Tak, F. F. S.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [van der Wiel, M. H. D.; van der Tak, F. F. S.; Helmich, F.] SRON Netherlands Inst Space Res, Groningen, Netherlands. [Goldsmith, P. F.; Langer, W.; Pearson, J.; Yorke, H.; Samoska, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bergin, E. A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Comito, C.; Schilke, P.; Rolffs, R.; Parise, B.; Wyrowski, F.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Schilke, P.; Rolffs, R.] Univ Cologne, Inst Phys, Cologne, Germany. [Caux, E.; Bottinelli, S.; Coutens, A.; Demyk, K.; Klotz, A.; Vastel, C.; Walters, A.] Univ Toulouse 3, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse, France. [Caux, E.; Bottinelli, S.; Coutens, A.; Demyk, K.; Klotz, A.; Vastel, C.; Walters, A.] CNRS INSU, UMR 5187, Toulouse, France. [Ceccarelli, C.; Bacmann, A.; Castets, A.; Crimier, N.; Hily-Blant, P.; Kahane, C.; Lefloch, B.; Maret, S.; Pacheco, S.] Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. [Ceccarelli, C.; Baudry, A.; Bacmann, A.; Castets, A.; Jacq, T.; Wakelam, V.] Univ Bordeaux, Lab Astrophys Bordeaux, Floirac, France. [Ceccarelli, C.; Baudry, A.; Bacmann, A.; Castets, A.; Jacq, T.; Wakelam, V.] CNRS INSU, UMR 5804, Floirac, France. [Herbst, E.] Ohio State Univ, Columbus, OH 43210 USA. [Benedettini, M.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Rome, Italy. [Lord, S.; Boogert, A.] CALTECH, Infared Proc & Anal Ctr, Pasadena, CA 91109 USA. [Neufeld, D.] Johns Hopkins Univ, Baltimore, MD USA. [Cabrit, S.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Hennebelle, P.; Pagani, L.; Salez, M.] UCP, UPMC, ENS,Lab Etud Rayonnement & Matiere Astrophys, OP,UMR CNRS INSU 8112, Paris, France. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Cernicharo, J.; Crimier, N.] CSIC INTA, Ctr Astrobiol, Madrid, Spain. [Codella, C.; Lorenzani, A.] INAF Osservatorio Astrofis Arcetri, Florence, Italy. [Dominik, C.; Kama, M.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6525 ED Nijmegen, Netherlands. [Fuente, A.] IGN Observ Astron Nacl, Alcala De Henares, Spain. [Henning, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Melnick, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Nisini, B.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Schuster, K.] Inst Radio Astron Millimetr, Grenoble, France. [Viti, S.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Edwards, K.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Teyssier, D.] ESA, European Space Astron Ctr, Madrid, Spain. RP van der Wiel, MHD (reprint author), Univ Groningen, Kapteyn Astron Inst, POB 800, NL-9700 AV Groningen, Netherlands. EM wiel@astro.rug.nl RI Coutens, Audrey/M-4533-2014; Fuente, Asuncion/G-1468-2016; Goldsmith, Paul/H-3159-2016; van der Wiel, Matthijs/M-4531-2014 OI Coutens, Audrey/0000-0003-1805-3920; Fuente, Asuncion/0000-0001-6317-6343; Lorenzani, Andrea/0000-0002-4685-3434; Wakelam, Valentine/0000-0001-9676-2605; Kama, Mihkel/0000-0003-0065-7267; Codella, Claudio/0000-0003-1514-3074; , Brunella Nisini/0000-0002-9190-0113; Maret, Sebastien/0000-0003-1104-4554; van der Wiel, Matthijs/0000-0002-4325-3011 NR 32 TC 13 Z9 13 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L43 DI 10.1051/0004-6361/201015096 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900043 ER PT J AU Vastel, C Ceccarelli, C Caux, E Coutens, A Cernicharo, J Bottinelli, S Demyk, K Faure, A Wiesenfeld, L Scribano, Y Bacmann, A Hily-Blant, P Maret, S Walters, A Bergin, EA Blake, GA Castets, A Crimier, N Dominik, C Encrenaz, P Gerin, M Hennebelle, P Kahane, C Klotz, A Melnick, G Pagani, L Parise, B Schilke, P Wakelam, V Baudry, A Bell, T Benedettini, M Boogert, A Cabrit, S Caselli, P Codella, C Comito, C Falgarone, E Fuente, A Goldsmith, PF Helmich, F Henning, T Herbst, E Jacq, T Kama, M Langer, W Lefloch, B Lis, D Lord, S Lorenzani, A Neufeld, D Nisini, B Pacheco, S Pearson, J Phillips, T Salez, M Saraceno, P Schuster, K Tielens, X van der Tak, F van der Wiel, MHD Viti, S Wyrowski, F Yorke, H Cais, P Krieg, JM Olberg, M Ravera, L AF Vastel, C. Ceccarelli, C. Caux, E. Coutens, A. Cernicharo, J. Bottinelli, S. Demyk, K. Faure, A. Wiesenfeld, L. Scribano, Y. Bacmann, A. Hily-Blant, P. Maret, S. Walters, A. Bergin, E. A. Blake, G. A. Castets, A. Crimier, N. Dominik, C. Encrenaz, P. Gerin, M. Hennebelle, P. Kahane, C. Klotz, A. Melnick, G. Pagani, L. Parise, B. Schilke, P. Wakelam, V. Baudry, A. Bell, T. Benedettini, M. Boogert, A. Cabrit, S. Caselli, P. Codella, C. Comito, C. Falgarone, E. Fuente, A. Goldsmith, P. F. Helmich, F. Henning, T. Herbst, E. Jacq, T. Kama, M. Langer, W. Lefloch, B. Lis, D. Lord, S. Lorenzani, A. Neufeld, D. Nisini, B. Pacheco, S. Pearson, J. Phillips, T. Salez, M. Saraceno, P. Schuster, K. Tielens, X. van der Tak, F. van der Wiel, M. H. D. Viti, S. Wyrowski, F. Yorke, H. Cais, P. Krieg, J. M. Olberg, M. Ravera, L. TI Ortho-to-para ratio of interstellar heavy water SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; ISM: molecules; submillimeter: ISM; ISM: abundances; molecular processes; line: identification ID PROTOSTAR IRAS 16293-2422; SPECTROSCOPY; CONSTRAINTS; ENVELOPE AB Context. Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular D/H ratios have been found in the environments of low-mass star-forming regions, and in particular the Class 0 protostar IRAS 16293-2422. Aims. The CHESS (Chemical HErschel Surveys of Star forming regions) key program aims to study the molecular complexity of the interstellar medium. The high sensitivity and spectral resolution of the Herschel/HIFI instrument provide a unique opportunity to observe the fundamental 1(1,1)-0(0,0) transition of the ortho-D2O molecule, which is inaccessible from the ground, and determine the ortho-to-para D2O ratio. Methods. We detected the fundamental transition of the ortho-D2O molecule at 607.35 GHz towards IRAS 16293-2422. The line is seen in absorption with a line opacity of 0.62 +/- 0.11 (1 sigma). From the previous ground-based observations of the fundamental 1(1,0)-1(0,1) transition of para-D2O seen in absorption at 316.80 GHz, we estimate a line opacity of 0.26 +/- 0.05 (1 sigma). Results. We show that the observed absorption is caused by the cold gas in the envelope of the protostar. Using these new observations, we estimate for the first time the ortho-to-para D2O ratio to be lower than 2.6 at a 3 sigma level of uncertainty, which should be compared with the thermal equilibrium value of 2:1. C1 [Vastel, C.; Caux, E.; Coutens, A.; Bottinelli, S.; Demyk, K.; Walters, A.; Klotz, A.; Ravera, L.] Univ Toulouse 3, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse, France. [Vastel, C.; Caux, E.; Coutens, A.; Bottinelli, S.; Demyk, K.; Walters, A.; Klotz, A.; Ravera, L.] CNRS INSU, UMR 5187, Toulouse, France. [Ceccarelli, C.; Faure, A.; Wiesenfeld, L.; Bacmann, A.; Hily-Blant, P.; Maret, S.; Castets, A.; Crimier, N.; Kahane, C.; Lefloch, B.; Pacheco, S.] Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. [Ceccarelli, C.; Bacmann, A.; Castets, A.; Wakelam, V.; Baudry, A.; Jacq, T.; Cais, P.] Univ Bordeaux, Lab Astrophys Bordeaux, Floirac, France. [Ceccarelli, C.; Bacmann, A.; Castets, A.; Wakelam, V.; Baudry, A.; Cais, P.] CNRS INSU, UMR 5804, Floirac, France. [Cernicharo, J.; Crimier, N.] CSIC INTA, Ctr Astrobiol, Madrid, Spain. [Scribano, Y.] CNRS, UMR 5209, Lab Interdisciplinaire Carnot Bourgogne, Dijon, France. [Bergin, E. A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Boogert, A.; Lord, S.] CALTECH, Infared Proc & Anal Ctr, Pasadena, CA 91109 USA. [Dominik, C.; Kama, M.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6525 ED Nijmegen, Netherlands. [Encrenaz, P.; Gerin, M.; Hennebelle, P.; Pagani, L.; Cabrit, S.; Falgarone, E.; Salez, M.; Krieg, J. M.] UCP, UPMC, ENS,UMR CNRS INSU 8112, Lab Etudes Rayonnement & Matiere Astrophys,OP, Paris, France. [Melnick, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Parise, B.; Schilke, P.; Comito, C.; Wyrowski, F.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Schilke, P.] Univ Cologne, Inst Phys, Cologne, Germany. [Benedettini, M.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Rome, Italy. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Codella, C.; Lorenzani, A.] INAF Osservatorio Astrofis Arcetri, Florence, Italy. [Fuente, A.] IGN Observ Astron Nacl, Alcala De Henares, Spain. [Goldsmith, P. F.; Langer, W.; Pearson, J.; Yorke, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Helmich, F.; van der Tak, F.; van der Wiel, M. H. D.; Olberg, M.] SRON Netherlands Inst Space Res, Groningen, Netherlands. [Henning, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Neufeld, D.] Ohio State Univ, Columbus, OH 43210 USA. [Nisini, B.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Schuster, K.] Inst Radio Astron Millimetr, Grenoble, France. [Tielens, X.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [van der Tak, F.; van der Wiel, M. H. D.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AB Groningen, Netherlands. [Viti, S.] UCL, Dept Phys & Astron, London, England. [Olberg, M.] Chalmers, Goterborg, Sweden. RP Vastel, C (reprint author), Univ Toulouse 3, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse, France. EM vastel@cesr.fr RI van der Wiel, Matthijs/M-4531-2014; Coutens, Audrey/M-4533-2014; Fuente, Asuncion/G-1468-2016; Goldsmith, Paul/H-3159-2016; OI van der Wiel, Matthijs/0000-0002-4325-3011; Coutens, Audrey/0000-0003-1805-3920; Fuente, Asuncion/0000-0001-6317-6343; Lorenzani, Andrea/0000-0002-4685-3434; Wakelam, Valentine/0000-0001-9676-2605; Kama, Mihkel/0000-0003-0065-7267; Codella, Claudio/0000-0003-1514-3074; , Brunella Nisini/0000-0002-9190-0113; Maret, Sebastien/0000-0003-1104-4554 NR 21 TC 29 Z9 29 U1 1 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L31 DI 10.1051/0004-6361/201015101 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900031 ER PT J AU Velusamy, T Langer, WD Pineda, JL Goldsmith, PF Li, D Yorke, HW AF Velusamy, T. Langer, W. D. Pineda, J. L. Goldsmith, P. F. Li, D. Yorke, H. W. TI [CII] observations of H-2 molecular layers in transition clouds SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: structure; ISM: molecules; ISM: atoms; submillimeter: ISM ID RAY IONIZATION RATE; DIFFUSE INTERSTELLAR CLOUDS; GALACTIC PLANE; LINE EMISSION; MILKY-WAY; DARK GAS; HERSCHEL; REGIONS; CO; PHOTODISSOCIATION AB We present the first results on the diffuse transition clouds observed in [CII] line emission at 158 mu m (1.9 THz) towards Galactic longitudes near 340. (5 LOSs) & 20. (11 LOSs) as part of the HIFI tests and GOT C+ survey. Out of the total 146 [CII] velocity components detected by profile fitting we identify 53 as diffuse molecular clouds with associated (CO)-C-12 emission but without 13CO emission and characterized by AV < 5 mag. We estimate the fraction of the [CII] emission in the diffuse HI layer in each cloud and then determine the [CII] emitted from the molecular layers in the cloud. We show that the excess [CII] intensities detected in a few clouds is indicative of a thick H-2 layer around the CO core. The wide range of clouds in our sample with thin to thick H-2 layers suggests that these are at various evolutionary states characterized by the formation of H-2 and CO layers from HI and C+, respectively. In about 30% of the clouds the H-2 column densities (" dark gas") traced by the [CII] is 50% or more than that traced by (CO)-C-12 emission. On the average similar to 25% of the total H-2 in these clouds is in an H-2 layer which is not traced by CO. We use the HI, [CII], and (CO)-C-12 intensities in each cloud along with simple chemical models to obtain constraints on the FUV fields and cosmic ray ionization rates. C1 [Velusamy, T.; Langer, W. D.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Velusamy, T (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM velusamy@jpl.nasa.gov RI Goldsmith, Paul/H-3159-2016 FU Commonwealth of Australia FX We thank the referee for suggestions. This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The Mopra Telescope is managed by the Australia Telescope, and funded by the Commonwealth of Australia for operation as a National Facility by the CSIRO. NR 27 TC 26 Z9 26 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L18 DI 10.1051/0004-6361/201015091 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900018 ER PT J AU Wampfler, SF Herczeg, GJ Bruderer, S Benz, AO van Dishoeck, EF Kristensen, LE Visser, R Doty, SD Melchior, M van Kempen, TA Yildiz, UA Dedes, C Goicoechea, JR Baudry, A Melnick, G Bachiller, R Benedettini, M Bergin, E Bjerkeli, P Blake, GA Bontemps, S Braine, J Caselli, P Cernicharo, J Codella, C Daniel, F di Giorgio, AM Dominik, C Encrenaz, P Fich, M Fuente, A Giannini, T de Graauw, T Helmich, F Herpin, F Hogerheijde, MR Jacq, T Johnstone, D Jorgensen, JK Larsson, B Lis, D Liseau, R Marseille, M Mc Coey, C Neufeld, D Nisini, B Olberg, M Parise, B Pearson, JC Plume, R Risacher, C Santiago-Garcia, J Saraceno, P Shipman, R Tafalla, M van der Tak, FFS Wyrowski, F Roelfsema, P Jellema, W Dieleman, P Caux, E Stutzki, J AF Wampfler, S. F. Herczeg, G. J. Bruderer, S. Benz, A. O. van Dishoeck, E. F. Kristensen, L. E. Visser, R. Doty, S. D. Melchior, M. van Kempen, T. A. Yildiz, U. A. Dedes, C. Goicoechea, J. R. Baudry, A. Melnick, G. Bachiller, R. Benedettini, M. Bergin, E. Bjerkeli, P. Blake, G. A. Bontemps, S. Braine, J. Caselli, P. Cernicharo, J. Codella, C. Daniel, F. di Giorgio, A. M. Dominik, C. Encrenaz, P. Fich, M. Fuente, A. Giannini, T. de Graauw, Th. Helmich, F. Herpin, F. Hogerheijde, M. R. Jacq, T. Johnstone, D. Jorgensen, J. K. Larsson, B. Lis, D. Liseau, R. Marseille, M. Mc Coey, C. Neufeld, D. Nisini, B. Olberg, M. Parise, B. Pearson, J. C. Plume, R. Risacher, C. Santiago-Garcia, J. Saraceno, P. Shipman, R. Tafalla, M. van der Tak, F. F. S. Wyrowski, F. Roelfsema, P. Jellema, W. Dieleman, P. Caux, E. Stutzki, J. TI Herschel observations of the hydroxyl radical (OH) in young stellar objects SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; stars: formation; ISM: molecules; ISM: jets and outflows; ISM: individual objects: HH 46 ID PHYSICAL STRUCTURE; PACS SPECTROSCOPY; MOLECULAR CLOUD; MASS PROTOSTARS; CLASS-0 SOURCES; CO OBSERVATIONS; FIRS 2; HH 46; EMISSION; PHOTODISSOCIATION AB Aims. "Water In Star-forming regions with Herschel" (WISH) is a Herschel key program investigating the water chemistry in young stellar objects (YSOs) during protostellar evolution. Hydroxyl (OH) is one of the reactants in the chemical network most closely linked to the formation and destruction of H2O. High-temperature (T greater than or similar to 250 K) chemistry connects OH and H2O through the OH + H-2 double left right arrow H2O + H reactions. Formation of H2O from OH is efficient in the high-temperature regime found in shocks and the innermost part of protostellar envelopes. Moreover, in the presence of UV photons, OH can be produced from the photo-dissociation of H2O through H2O + gamma(UV) double right arrow OH + H. Methods. High-resolution spectroscopy of the 163.12 mu m triplet of OH towards HH 46 and NGC 1333 IRAS 2A was carried out with the Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory. The low-and intermediate-mass protostars HH 46, TMR 1, IRAS 15398-3359, DK Cha, NGC 7129 FIRS 2, and NGC 1333 IRAS 2A were observed with the Photodetector Array Camera and Spectrometer (PACS) on Herschel in four transitions of OH and two [OI] lines. Results. The OH transitions at 79, 84, 119, and 163 mu m and [OI] emission at 63 and 145 mu m were detected with PACS towards the class I low-mass YSOs as well as the intermediate-mass and class I Herbig Ae sources. No OH emission was detected from the class 0 YSO NGC 1333 IRAS 2A, though the 119 mu m was detected in absorption. With HIFI, the 163.12 mu m was not detected from HH 46 and only tentatively detected from NGC 1333 IRAS 2A. The combination of the PACS and HIFI results for HH 46 constrains the line width (FWHM greater than or similar to 11 km s(-1)) and indicates that the OH emission likely originates from shocked gas. This scenario is supported by trends of the OH flux increasing with the [OI] flux and the bolometric luminosity, as found in our sample. Similar OH line ratios for most sources suggest that OH has comparable excitation temperatures despite the different physical properties of the sources. C1 [Wampfler, S. F.; Bruderer, S.; Benz, A. O.; Melchior, M.; Dedes, C.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Herczeg, G. J.; van Dishoeck, E. F.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [van Dishoeck, E. F.; Kristensen, L. E.; Visser, R.; Yildiz, U. A.; Hogerheijde, M. R.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Doty, S. D.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Melchior, M.] Univ Appl Sci NW, Inst Technol 4D, CH-5210 Windisch, Switzerland. [van Kempen, T. A.; Melnick, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Goicoechea, J. R.; Cernicharo, J.; Daniel, F.] CSIC INTA, Dept Astrofis, Ctr Astrobiol, Madrid 28850, Spain. [Baudry, A.; Bontemps, S.; Braine, J.; Herpin, F.; Jacq, T.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Baudry, A.; Bontemps, S.; Braine, J.; Herpin, F.; Jacq, T.] CNRS INSU, UMR 5804, Floirac, France. [Bachiller, R.; Tafalla, M.] Observ Astron Nacl IGN, Madrid 28014, Spain. [Benedettini, M.; di Giorgio, A. M.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Area Ric Tor Vergata, I-00133 Rome, Italy. [Bergin, E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Bjerkeli, P.; Liseau, R.; Olberg, M.] Chalmers, Onsala Space Observ, Dept Radio & Space Sci, S-43992 Onsala, Sweden. [Blake, G. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Caselli, P.; Codella, C.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Encrenaz, P.] Observ Paris, LERMA, F-75014 Paris, France. [Encrenaz, P.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [Fich, M.; Mc Coey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Fuente, A.] Observ Astron Nacl, Alcala De Henares 28803, Spain. [Giannini, T.; Nisini, B.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [de Graauw, Th.; Helmich, F.; Marseille, M.; Risacher, C.; Shipman, R.; van der Tak, F. F. S.; Roelfsema, P.; Jellema, W.; Dieleman, P.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Johnstone, D.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Jorgensen, J. K.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen K, Denmark. [Larsson, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Lis, D.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Mc Coey, C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Neufeld, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Parise, B.; Wyrowski, F.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Pearson, J. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Santiago-Garcia, J.] IRAM, E-18012 Granada, Spain. [van der Tak, F. F. S.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Caux, E.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [Caux, E.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Stutzki, J.] Univ Cologne, Inst Phys 1, KOSMA, D-50937 Cologne, Germany. RP Wampfler, SF (reprint author), ETH, Inst Astron, CH-8093 Zurich, Switzerland. EM wsusanne@astro.phys.ethz.ch RI Kristensen, Lars/F-4774-2011; Visser, Ruud/J-8574-2012; Jorgensen, Jes Kristian/L-7936-2014; Wampfler, Susanne/D-2270-2015; Fuente, Asuncion/G-1468-2016; Yildiz, Umut/C-5257-2011; OI Kristensen, Lars/0000-0003-1159-3721; Jorgensen, Jes Kristian/0000-0001-9133-8047; Wampfler, Susanne/0000-0002-3151-7657; Fuente, Asuncion/0000-0001-6317-6343; Bjerkeli, Per/0000-0002-7993-4118; Codella, Claudio/0000-0003-1514-3074; Yildiz, Umut/0000-0001-6197-2864; Giannini, Teresa/0000-0002-0224-096X; , Brunella Nisini/0000-0002-9190-0113 FU Swiss National Science Foundation [200020-113556] FX The work on star formation at ETH Zurich is partially funded by the Swiss National Science Foundation (grant nr. 200020-113556). This program is made possible thanks to the Swiss HIFI guaranteed time program. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronmico Nacional (IGN), Centro de Astrobiologa (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. NR 35 TC 23 Z9 23 U1 0 U2 9 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L36 DI 10.1051/0004-6361/201015112 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900036 ER PT J AU Wess, A Requena-Torres, MA Gusten, R Garcia-Burillo, S Harris, AI Israel, FP Klein, T Kramer, C Lord, S Martin-Pintado, J Rollig, M Stutzki, J Szczerba, R van der Werf, PP Philipp-May, S Yorke, H Akyilmaz, M Gal, C Higgins, R Marston, A Roberts, J Schloder, F Schultz, M Teyssier, D Whyborn, N Wunsch, HJ AF Wess, A. Requena-Torres, M. A. Guesten, R. Garcia-Burillo, S. Harris, A. I. Israel, F. P. Klein, T. Kramer, C. Lord, S. Martin-Pintado, J. Roellig, M. Stutzki, J. Szczerba, R. van der Werf, P. P. Philipp-May, S. Yorke, H. Akyilmaz, M. Gal, C. Higgins, R. Marston, A. Roberts, J. Schloeder, F. Schultz, M. Teyssier, D. Whyborn, N. Wunsch, H. J. TI HIFI spectroscopy of low-level water transitions in M 82 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE line: formation; galaxies: ISM; ISM: molecules; galaxies: individual: M82; infrared: galaxies; submillimeter: galaxies ID STAR-FORMATION; MOLECULAR GAS; MARKARIAN 231; M82; EXCITATION; GALAXIES; REGIONS; AMMONIA; NUCLEI; ULIRGS AB We present observations of the rotational ortho-water ground transition, the two lowest para-water transitions, and the ground transition of ionised ortho-water in the archetypal starburst galaxy M82, performed with the HIFI instrument on the Herschel Space Observatory. These observations are the first detections of the para-H2O(1(11)-0(00)) (1113 GHz) and ortho-H2O+(1(11)-0(00)) (1115 GHz) lines in an extragalactic source. All three water lines show different spectral line profiles, underlining the need for high spectral resolution in interpreting line formation processes. Using the line shape of the para-H2O(1(11)-0(00)) and ortho-H2O+(1(11)-0(00)) absorption profile in conjunction with high spatial resolution CO observations, we show that the (ionised) water absorption arises from a similar to 2000 pc(2) region within the HIFI beam located about similar to 50 pc east of the dynamical centre of the galaxy. This region does not coincide with any of the known line emission peaks that have been identified in other molecular tracers, with the exception of HCO. Our data suggest that water and ionised water within this region have high (up to 75%) area-covering factors of the underlying continuum. This indicates that water is not associated with small, dense cores within the ISM of M82 but arises from a more widespread diffuse gas component. C1 [Wess, A.; Requena-Torres, M. A.; Guesten, R.; Klein, T.; Philipp-May, S.; Wunsch, H. J.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Garcia-Burillo, S.] Observ Madrid, OAN, Madrid 28014, Spain. [Harris, A. I.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Israel, F. P.; van der Werf, P. P.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Kramer, C.] IRAM, E-18012 Granada, Spain. [Lord, S.] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA. [Martin-Pintado, J.; Roberts, J.] CSIC, Ctr Astrobiol, INTA, Madrid 28850, Spain. [Roellig, M.; Stutzki, J.; Akyilmaz, M.; Gal, C.; Schloeder, F.; Schultz, M.] Univ Cologne, KOSMA, Inst Phys 1, D-50937 Cologne, Germany. [Szczerba, R.] Nicholas Copernicus Astron Ctr, PL-87100 Torun, Poland. [Yorke, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Whyborn, N.] Joint ALMA Off, Santiago, Chile. [Marston, A.] ESA, European Space Astron Ctr, Madrid, Spain. [Higgins, R.] Natl Univ Ireland Maynooth, Expt Phys Dept, Maynooth, Kildare, Ireland. RP Wess, A (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. EM aweiss@mpifr-bonn.mpg.de RI Martin-Pintado, Jesus/H-6107-2015; OI Martin-Pintado, Jesus/0000-0003-4561-3508; Garcia-Burillo, Santiago/0000-0003-0444-6897 FU NASA, JPL/Caltech; MCINN [ESP2007-65812-CO2-01]; Polish MNiSW [203 393334] FX A.H., S.L. acknowledge support for this work by NASA through an award issued by JPL/Caltech. J.M.P. and J.R. have been partially supported by MCINN grant ESP2007-65812-CO2-01. RSz acknowledges support from grant No. 203 393334 from the Polish MNiSW. NR 29 TC 27 Z9 27 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L1 DI 10.1051/0004-6361/201015078 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900001 ER PT J AU Wyrowski, F van der Tak, F Herpin, F Baudry, A Bontemps, S Chavarria, L Frieswijk, W Jacq, T Marseille, M Shipman, R van Dishoeck, EF Benz, AO Caselli, P Hogerheijde, MR Johnstone, D Liseau, R Bachiller, R Benedettini, M Bergin, E Bjerkeli, P Blake, G Braine, J Bruderer, S Cernicharo, J Codella, C Daniel, F di Giorgio, AM Dominik, C Doty, SD Encrenaz, P Fich, M Fuente, A Giannini, T Goicoechea, JR de Graauw, T Helmich, F Herczeg, GJ Jorgensen, JK Kristensen, LE Larsson, B Lis, D McCoey, C Melnick, G Nisini, B Olberg, M Parise, B Pearson, JC Plume, R Risacher, C Santiago, J Saraceno, P Tafalla, M van Kempen, TA Visser, R Wampfler, S Yildiz, UA Black, JH Falgarone, E Gerin, M Roelfsema, P Dieleman, P Beintema, D De Jonge, A Whyborn, N Stutzki, J Ossenkopf, V AF Wyrowski, F. van der Tak, F. Herpin, F. Baudry, A. Bontemps, S. Chavarria, L. Frieswijk, W. Jacq, T. Marseille, M. Shipman, R. van Dishoeck, E. F. Benz, A. O. Caselli, P. Hogerheijde, M. R. Johnstone, D. Liseau, R. Bachiller, R. Benedettini, M. Bergin, E. Bjerkeli, P. Blake, G. Braine, J. Bruderer, S. Cernicharo, J. Codella, C. Daniel, F. di Giorgio, A. M. Dominik, C. Doty, S. D. Encrenaz, P. Fich, M. Fuente, A. Giannini, T. Goicoechea, J. R. de Graauw, Th. Helmich, F. Herczeg, G. J. Jorgensen, J. K. Kristensen, L. E. Larsson, B. Lis, D. McCoey, C. Melnick, G. Nisini, B. Olberg, M. Parise, B. Pearson, J. C. Plume, R. Risacher, C. Santiago, J. Saraceno, P. Tafalla, M. van Kempen, T. A. Visser, R. Wampfler, S. Yildiz, U. A. Black, J. H. Falgarone, E. Gerin, M. Roelfsema, P. Dieleman, P. Beintema, D. De Jonge, A. Whyborn, N. Stutzki, J. Ossenkopf, V. TI Variations in H2O+/H2O ratios toward massive star-forming regions SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: clouds; ISM: molecules; submillimeter: ISM; stars: formation ID LASER MAGNETIC-RESONANCE; LINE; ASTRONOMY; CHEMISTRY; SIGHT; DR21; HIFI; W51 AB Early results from the Herschel Space Observatory revealed the water cation H2O+ to be an abundant ingredient of the interstellar medium. Here we present new observations of the H2O and H2O+ lines at 1113.3 and 1115.2 GHz using the Herschel Space Observatory toward a sample of high-mass star-forming regions to observationally study the relation between H2O and H2O+. Nine out of ten sources show absorption from H2O+ in a range of environments: the molecular clumps surrounding the forming and newly formed massive stars, bright high-velocity outflows associated with the massive protostars, and unrelated low-density clouds along the line of sight. Column densities per velocity component of H2O+ are found in the range of 10(12) to a few 10(13) cm(-2). The highest N(H2O+) column densities are found in the outflows of the sources. The ratios of H2O+/H2O are determined in a range from 0.01 to a few and are found to differ strongly between the observed environments with much lower ratios in the massive (proto) cluster envelopes (0.01-0.1) than in outflows and diffuse clouds. Remarkably, even for source components detected in H2O in emission, H2O+ is still seen in absorption. C1 [Wyrowski, F.; Parise, B.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [van der Tak, F.; Marseille, M.; Shipman, R.; Helmich, F.; Dieleman, P.; Beintema, D.; De Jonge, A.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [van der Tak, F.; Frieswijk, W.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Herpin, F.; Baudry, A.; Bontemps, S.; Chavarria, L.; Jacq, T.; Braine, J.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Herpin, F.; Baudry, A.; Bontemps, S.; Chavarria, L.; Jacq, T.; Braine, J.] CNRS INSU, UMR 5804, Floirac, France. [van Dishoeck, E. F.; Herczeg, G. J.] Max Planck Inst Extraterestr Phys, Garching, Germany. [van Dishoeck, E. F.; Hogerheijde, M. R.; Visser, R.; Yildiz, U. A.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Benz, A. O.; Bruderer, S.; Wampfler, S.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Johnstone, D.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Liseau, R.; Bjerkeli, P.; Olberg, M.; Black, J. H.] Chalmers, Onsala Space Observ, Dept Radio & Space Sci, S-43992 Onsala, Sweden. [Bachiller, R.; Fuente, A.; Santiago, J.; Tafalla, M.] IGN Observ Astron Nacl, Alcala De Henares 28800, Spain. [Benedettini, M.; Codella, C.; di Giorgio, A. M.; Giannini, T.; Nisini, B.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Area Ric Tor Vergata, I-00133 Rome, Italy. [Benedettini, M.; Bergin, E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Blake, G.; Lis, D.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Cernicharo, J.; Goicoechea, J. R.] INTA CSIC, CAB, Dept Astrophys, Torrejon De Ardoz 28850, Spain. [Daniel, F.; Falgarone, E.; Gerin, M.] Observ Paris, LERMA UMR CNRS 8112, F-92195 Meudon, France. [Daniel, F.] CSIC, Dept Mol & Infrared Astrophys, E-28006 Madrid, Spain. [Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Doty, S. D.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Encrenaz, P.] Observ Paris, LERMA, F-75014 Paris, France. [Encrenaz, P.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [Fich, M.; McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [de Graauw, Th.; Whyborn, N.] Joint ALMA Off, Santiago, Chile. [Jorgensen, J. K.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Larsson, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Melnick, G.; van Kempen, T. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Pearson, J. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Stutzki, J.; Ossenkopf, V.] Univ Cologne, Inst Phys, D-50937 Cologne, Germany. RP Wyrowski, F (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. EM wyrowski@mpifr-bonn.mpg.de RI Yildiz, Umut/C-5257-2011; Kristensen, Lars/F-4774-2011; Visser, Ruud/J-8574-2012; Jorgensen, Jes Kristian/L-7936-2014; Wampfler, Susanne/D-2270-2015; Fuente, Asuncion/G-1468-2016; OI Yildiz, Umut/0000-0001-6197-2864; Kristensen, Lars/0000-0003-1159-3721; Jorgensen, Jes Kristian/0000-0001-9133-8047; Wampfler, Susanne/0000-0002-3151-7657; Fuente, Asuncion/0000-0001-6317-6343; Bjerkeli, Per/0000-0002-7993-4118; Codella, Claudio/0000-0003-1514-3074; Giannini, Teresa/0000-0002-0224-096X; , Brunella Nisini/0000-0002-9190-0113 NR 20 TC 22 Z9 22 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L34 DI 10.1051/0004-6361/201015110 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900034 ER PT J AU Yildiz, UA van Dishoeck, EF Kristensen, LE Visser, R Jorgensen, JK Herczeg, GJ van Kempen, TA Hogerheijde, MR Doty, SD Benz, AO Bruderer, S Wampfler, SF Deul, E Bachiller, R Baudry, A Benedettini, M Bergin, E Bjerkeli, P Blake, GA Bontemps, S Braine, J Caselli, P Cernicharo, J Codella, C Daniel, F di Giorgio, AM Dominik, C Encrenaz, P Fich, M Fuente, A Giannini, T Goicoechea, JR de Graauw, T Helmich, F Herpin, F Jacq, T Johnstone, D Larsson, B Lis, D Liseau, R Liu, FC Marseille, M McCoey, C Melnick, G Neufeld, D Nisini, B Olberg, M Parise, B Pearson, JC Plume, R Risacher, C Santiago-Garcia, J Saraceno, P Shipman, R Tafalla, M Tielens, AGGM van der Tak, F Wyrowski, F Dieleman, P Jellema, W Ossenkopf, V Schieder, R Stutzki, J AF Yildiz, U. A. van Dishoeck, E. F. Kristensen, L. E. Visser, R. Jorgensen, J. K. Herczeg, G. J. van Kempen, T. A. Hogerheijde, M. R. Doty, S. D. Benz, A. O. Bruderer, S. Wampfler, S. F. Deul, E. Bachiller, R. Baudry, A. Benedettini, M. Bergin, E. Bjerkeli, P. Blake, G. A. Bontemps, S. Braine, J. Caselli, P. Cernicharo, J. Codella, C. Daniel, F. di Giorgio, A. M. Dominik, C. Encrenaz, P. Fich, M. Fuente, A. Giannini, T. Goicoechea, J. R. de Graauw, Th. Helmich, F. Herpin, F. Jacq, T. Johnstone, D. Larsson, B. Lis, D. Liseau, R. Liu, F. -C. Marseille, M. McCoey, C. Melnick, G. Neufeld, D. Nisini, B. Olberg, M. Parise, B. Pearson, J. C. Plume, R. Risacher, C. Santiago-Garcia, J. Saraceno, P. Shipman, R. Tafalla, M. Tielens, A. G. G. M. van der Tak, F. Wyrowski, F. Dieleman, P. Jellema, W. Ossenkopf, V. Schieder, R. Stutzki, J. TI Herschel/HIFI observations of high-J CO lines in the NGC 1333 low-mass star-forming region SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; stars: formation; ISM: jets and outflows; ISM: molecules ID NGC-1333 IRAS-4; DENSE CORES; PROTOSTARS; ENVELOPES; ABUNDANCE; H2CO; EVOLUTION; WATER; DUST; HIFI AB Herschel/HIFI observations of high-J lines (up to J(u) = 10) of (CO)-C-12, (CO)-C-13 and (CO)-O-18 are presented toward three deeply embedded low-mass protostars, NGC 1333 IRAS 2A, IRAS 4A, and IRAS 4B, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. The spectrally-resolved HIFI data are complemented by ground-based observations of lower-J CO and isotopologue lines. The (CO)-C-12 10-9 profiles are dominated by broad (FWHM 25-30 km s(-1)) emission. Radiative transfer models are used to constrain the temperature of this shocked gas to 100-200 K. Several CO and (CO)-C-13 line profiles also reveal a medium-broad component (FWHM5-10 km s(-1)), seen prominently in H2O lines. Column densities for both components are presented, providing a reference for determining abundances of other molecules in the same gas. The narrow (CO)-O-18 9-8 lines probe the warmer part of the quiescent envelope. Their intensities require a jump in the CO abundance at an evaporation temperature around 25 K, thus providing new direct evidence for a CO ice evaporation zone around low-mass protostars. C1 [Yildiz, U. A.; van Dishoeck, E. F.; Kristensen, L. E.; Visser, R.; van Kempen, T. A.; Hogerheijde, M. R.; Deul, E.; Tielens, A. G. G. M.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Dishoeck, E. F.; Herczeg, G. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Jorgensen, J. K.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen K, Denmark. [van Kempen, T. A.; Melnick, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Doty, S. D.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Benz, A. O.; Bruderer, S.; Wampfler, S. F.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Bachiller, R.; Tafalla, M.] Observ Astron Nacl IGN, Madrid 28014, Spain. [Baudry, A.; Bontemps, S.; Braine, J.; Herpin, F.; Jacq, T.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Baudry, A.; Bontemps, S.; Braine, J.; Herpin, F.; Jacq, T.] CNRS INSU, UMR 5804, Floirac, France. [Benedettini, M.; di Giorgio, A. M.; Saraceno, P.] INAF Ist Fis Spazio Interplanetario, Area Ric Tor Vergata, I-00133 Rome, Italy. [Bergin, E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Bjerkeli, P.; Liseau, R.; Olberg, M.] Chalmers, Onsala Space Observ, Dept Radio & Space Sci, S-43992 Onsala, Sweden. [Blake, G. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Caselli, P.; Codella, C.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.] CSIC INTA, Ctr Astrobiol, Dept Astrofis, Madrid 28850, Spain. [Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Encrenaz, P.] Observ Paris, LERMA, F-75014 Paris, France. [Encrenaz, P.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [Fich, M.; McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Fuente, A.] Observ Astron Nacl, Alcala De Henares 28803, Spain. [Giannini, T.; Nisini, B.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [de Graauw, Th.; Helmich, F.; Marseille, M.; Risacher, C.; Shipman, R.; van der Tak, F.; Dieleman, P.; Jellema, W.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Johnstone, D.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Larsson, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Lis, D.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Liu, F. -C.; Parise, B.; Wyrowski, F.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Neufeld, D.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Pearson, J. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Santiago-Garcia, J.] IRAM, E-18012 Granada, Spain. [van der Tak, F.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Ossenkopf, V.; Schieder, R.; Stutzki, J.] Univ Cologne, Inst Phys 1, KOSMA, D-50937 Cologne, Germany. RP Yildiz, UA (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. EM yildiz@strw.leidenuniv.nl RI Jorgensen, Jes Kristian/L-7936-2014; Wampfler, Susanne/D-2270-2015; Fuente, Asuncion/G-1468-2016; Yildiz, Umut/C-5257-2011; Kristensen, Lars/F-4774-2011; Visser, Ruud/J-8574-2012; OI Jorgensen, Jes Kristian/0000-0001-9133-8047; Wampfler, Susanne/0000-0002-3151-7657; Fuente, Asuncion/0000-0001-6317-6343; Bjerkeli, Per/0000-0002-7993-4118; Codella, Claudio/0000-0003-1514-3074; Yildiz, Umut/0000-0001-6197-2864; Kristensen, Lars/0000-0003-1159-3721; Giannini, Teresa/0000-0002-0224-096X; , Brunella Nisini/0000-0002-9190-0113 NR 31 TC 38 Z9 38 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR L40 DI 10.1051/0004-6361/201015119 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900040 ER PT J AU Anderson, LD Snowden, SL Bania, TM AF Anderson, L. D. Snowden, S. L. Bania, T. M. TI X-RAY SHADOWING EXPERIMENTS TOWARD INFRARED DARK CLOUDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: structure; ISM: clouds; plasmas; X-rays: diffuse background; X-rays: ISM ID GALACTIC RING SURVEY; CHARGE-EXCHANGE EMISSION; XMM-NEWTON OBSERVATIONS; LOCAL BUBBLE; DISTANCE AMBIGUITY; H-I; RESOLUTION; MODELS; GALAXY; SOLAR AB We searched for X-ray shadowing toward two infrared dark clouds (IRDCs) using the MOS detectors on XMM-Newton to learn about the Galactic distribution of X-ray emitting plasma. IRDCs make ideal X-ray shadowing targets of 3/4 keV photons due to their high column densities, relatively large angular sizes, and known kinematic distances. Here we focus on two clouds near 30 degrees. Galactic longitude at distances of 2 and 5 kpc from the Sun. We derive the foreground and background column densities of molecular and atomic gas in the direction of the clouds. We find that the 3/4 keV emission must be distributed throughout the Galactic disk. It is therefore linked to the structure of the cooler material of the interstellar medium and to the birth of stars. C1 [Anderson, L. D.; Bania, T. M.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Snowden, S. L.] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. RP Anderson, LD (reprint author), Lab Astrophys Marseille, 38 Rue F Joliot Curie, F-13388 Marseille 13, France. RI Snowden, Steven/D-5292-2012; Bania, Thomas/H-2318-2014 FU ESA Member States; NASA; NASA XMM-Newton Guest Observer [NNX06AG73G, NNG05GP68G]; National Science Foundation [AST-9800334, AST-0098562, AST-0100793, AST-0228993, AST-0507657] FX This research was based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, and was supported by NASA XMM-Newton Guest Observer grants including NNX06AG73G and NNG05GP68G. We make use of molecular line data from the Boston University-FCRAO Galactic Ring Survey (GRS). The GRS is a joint project of Boston University and the Five College Radio Astronomy Observatory (FCRAO), funded by the National Science Foundation under grants AST-9800334, AST-0098562, AST-0100793, AST-0228993, and AST-0507657. We also make use of data from the VLA Galactic plane survey (VGPS). The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. We thank the referee for a careful reading of this paper and helpful comments which greatly improved its clarity. NR 43 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2010 VL 721 IS 2 BP 1319 EP 1328 DI 10.1088/0004-637X/721/2/1319 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TP UT WOS:000282193600029 ER PT J AU Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bonamente, E Borgland, AW Bregeon, J Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Corbel, S Cutini, S D'Ammando, F Dermer, CD de Angelis, A de Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Escande, L Favuzzi, C Fegan, SJ Ferrara, EC Fuhrmann, L Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giebels, B Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grove, JE Guiriec, S Hadasch, D Hayashida, M Hays, E Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Larsson, S Latronico, L Lee, SH Garde, ML Longo, F Loparco, F Lott, B Lubrano, P Madejski, GM Makeev, A Marchili, N Mazziotta, MN McEnery, JE Mehault, J Michelson, PF Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nalewajko, K Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reyes, LC Ripken, J Ritz, S Roth, M Sadrozinski, HFW Sanchez, D Sander, A Scargle, JD Sgro, C Sikora, M Siskind, EJ Spandre, G Spinelli, P Strickman, MS Suson, DJ Takahashi, H Takahashi, T Tanaka, T Tanaka, Y Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Usher, TL Vandenbroucke, J Vilchez, N Vitale, V Waite, AP Wang, P Wehrle, AE Winer, BL Yang, Z Ylinen, T Ziegler, M AF Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Corbel, S. Cutini, S. D'Ammando, F. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Escande, L. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Fuhrmann, L. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grove, J. E. Guiriec, S. Hadasch, D. Hayashida, M. Hays, E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Larsson, S. Latronico, L. Lee, S. -H. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lubrano, P. Madejski, G. M. Makeev, A. Marchili, N. Mazziotta, M. N. McEnery, J. E. Mehault, J. Michelson, P. F. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nalewajko, K. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reyes, L. C. Ripken, J. Ritz, S. Roth, M. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Scargle, J. D. Sgro, C. Sikora, M. Siskind, E. J. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Tanaka, Y. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Usher, T. L. Vandenbroucke, J. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Wehrle, A. E. Winer, B. L. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI GAMMA-RAY SPACE TELESCOPE OBSERVATIONS OF GAMMA-RAY OUTBURSTS FROM 3C 454.3 IN 2009 DECEMBER AND 2010 APRIL SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; gamma rays: galaxies; quasars: individual (3C 454.3) ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; BLAZAR 3C-454.3; MULTIWAVELENGTH OBSERVATIONS; INFRARED OBSERVATIONS; CRAZY-DIAMOND; FLARE; VARIABILITY; COMPTON; SYNCHROTRON AB The flat spectrum radio quasar 3C 454.3 underwent an extraordinary outburst in 2009 December when it became the brightest gamma-ray source in the sky for over 1 week. Its daily flux measured with the Fermi-Large Area Telescope at photon energiesE > 100 MeV reached F-100 = 22 +/- 1 x 10(6) photon cm(-2) s(-1), representing the highest daily flux of any blazar ever recorded in high-energy. -rays. It again became the brightest source in the sky in 2010 April, triggering a pointed-mode observation by Fermi. The correlated. -ray temporal and spectral properties during these exceptional events are presented and discussed. The main results show flux variability over time scales less than 3 hr and very mild spectral variability with an indication of gradual hardening preceding major flares. The light curves during periods of enhanced activity in 2008 July-August and 2010 December show strong resemblance, with a flux plateau of a few days preceding the major flare. No consistent loop pattern emerged in the. -ray spectral index versus the flux plane as would be expected in acceleration and cooling scenarios. The maximum energy of a photon from 3C 454.3 is approximate to 20 GeV and a minimum Doppler factor of approximate to 13 is derived. The gamma-ray spectrum of 3C 454.3 shows a significant spectral break between approximate to 2 and 3 GeV that is very weakly dependent on the flux state, even when the flux changes by an order of magnitude. C1 [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Corbel, S.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,CEA,IRFU,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] IEEC CSIC, Inst Ciencies Espai, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.; Gasparrini, D.; Giommi, P.] Sci Data Ctr, ASI, I-00044 Rome, Italy. [Celik, Oe; Ferrara, E. C.; Gehrels, N.; Hays, E.; McEnery, J. E.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe] NASA, CRESST, Greenbelt, MD 20771 USA. [Celik, Oe] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Makeev, A.; Strickman, M. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, Lab Phys Theor & Astroparticles, IN2P3, Montpellier, France. [Corbel, S.] Inst Univ France, F-75005 Paris, France. [D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy. [D'Ammando, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-00133 Rome, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-00133 Rome, Italy. [Dumora, D.; Escande, L.; Lott, B.] Univ Bordeaux 1, CNRS, Ctr Etud Nucl Bordeaux Gradignan, IN2P3, F-33175 Gradignan, France. [Fuhrmann, L.; Marchili, N.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF, Ist Radioastron, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Larsson, S.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Larsson, S.; Garde, M. Llena; Ripken, J.; Yang, Z.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Nalewajko, K.; Sikora, M.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Takahashi, T.; Tanaka, Y.] JAXA, Inst Space & Astronaut Sci, Kanagawa 2298510, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Sander, A.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wehrle, A. E.] Space Sci Inst, Boulder, CO 80301 USA. [Ylinen, T.] Royal Inst Technol KTH, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Ackermann, M (reprint author), Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. EM charles.dermer@nrl.navy.mil; escande@cenbg.in2p3.fr; lott@cenbg.in2p3.fr; tanaka@astro.isas.jaxa.jp RI Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Gargano, Fabio/O-8934-2015 OI Cutini, Sara/0000-0002-1271-2924; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Giroletti, Marcello/0000-0002-8657-8852; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Gargano, Fabio/0000-0002-5055-6395 FU Department of Energy in the United States; Commissariate a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariate a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 56 TC 85 Z9 85 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2010 VL 721 IS 2 BP 1383 EP 1396 DI 10.1088/0004-637X/721/2/1383 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TP UT WOS:000282193600036 ER PT J AU Abdo, AA Ackermann, M Agudo, I Ajello, M Allafort, A Aller, HD Aller, MF Antolini, E Arkharov, AA Axelsson, M Bach, U Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berdyugin, A Berenji, B Blandford, RD Blinov, DA Bloom, ED Boettcher, M Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Buemi, CS Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carosati, D Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Chekhtman, A Chen, WP Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Corbel, S Costamante, L Dermer, CD de Angelis, A de Palma, F Donato, D Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Forne, E Fortin, P Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giebels, B Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grove, JE Guiriec, S Gurwell, MA Gusbar, C Gomez, JL Hadasch, D Hagen-Thorn, VA Hayashida, M Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kimeridze, G Knodlseder, J Konstantinova, TS Kopatskaya, EN Koptelova, E Kovalev, YY Kurtanidze, OM Kuss, M Lahteenmaki, A Lande, J Larionov, VM Larionova, EG Larionova, LV Larsson, S Latronico, L Lee, SH Leto, P Lister, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Massaro, E Mazziotta, MN McConville, W McEnery, JE McHardy, IM Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morozova, DA Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Nikolashvili, MG Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pasanen, M Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Pushkarev, AB Raino, S Raiteri, CM Rando, R Razzano, M Reimer, A Reimer, O Reinthal, R Ripken, J Ritz, S Roca-Sogorb, M Rodriguez, AY Roth, M Roustazadeh, P Ryde, F Sadrozinski, HFW Sander, A Scargle, JD Sgro, C Sigua, LA Smith, PD Sokolovsky, K Spandre, G Spinelli, P Starck, JL Strickman, MS Suson, DJ Takahashi, H Takahashi, T Takalo, LO Tanaka, T Taylor, B Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Tornikoski, M Torres, DF Tosti, G Tramacere, A Trigilio, C Troitsky, IS Umana, G Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Villata, M Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Agudo, I. Ajello, M. Allafort, A. Aller, H. D. Aller, M. F. Antolini, E. Arkharov, A. A. Axelsson, M. Bach, U. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berdyugin, A. Berenji, B. Blandford, R. D. Blinov, D. A. Bloom, E. D. Boettcher, M. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Buemi, C. S. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carosati, D. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe Chekhtman, A. Chen, W. P. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Corbel, S. Costamante, L. Dermer, C. D. de Angelis, A. de Palma, F. Donato, D. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Forne, E. Fortin, P. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grove, J. E. Guiriec, S. Gurwell, M. A. Gusbar, C. Gomez, J. L. Hadasch, D. Hagen-Thorn, V. A. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kimeridze, G. Knoedlseder, J. Konstantinova, T. S. Kopatskaya, E. N. Koptelova, E. Kovalev, Y. Y. Kurtanidze, O. M. Kuss, M. Lahteenmaki, A. Lande, J. Larionov, V. M. Larionova, E. G. Larionova, L. V. Larsson, S. Latronico, L. Lee, S. -H. Leto, P. Lister, M. L. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Massaro, E. Mazziotta, M. N. McConville, W. McEnery, J. E. McHardy, I. M. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morozova, D. A. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Nikolashvili, M. G. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pasanen, M. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Pushkarev, A. B. Raino, S. Raiteri, C. M. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reinthal, R. Ripken, J. Ritz, S. Roca-Sogorb, M. Rodriguez, A. Y. Roth, M. Roustazadeh, P. Ryde, F. Sadrozinski, H. F. -W. Sander, A. Scargle, J. D. Sgro, C. Sigua, L. A. Smith, P. D. Sokolovsky, K. Spandre, G. Spinelli, P. Starck, J. -L. Strickman, M. S. Suson, D. J. Takahashi, H. Takahashi, T. Takalo, L. O. Tanaka, T. Taylor, B. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Tornikoski, M. Torres, D. F. Tosti, G. Tramacere, A. Trigilio, C. Troitsky, I. S. Umana, G. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Villata, M. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE AND MULTI-WAVELENGTH OBSERVATIONS OF THE FLARING ACTIVITY OF PKS 1510-089 BETWEEN 2008 SEPTEMBER AND 2009 JUNE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: jets; gamma rays: galaxies; quasars: individual (PKS 1510-089) ID GAMMA-RAY EMISSION; GALACTIC NUCLEI; X-RAY; SPECTRAL PROPERTIES; RELATIVISTIC JET; COMPLETE SAMPLE; RADIO-SOURCES; EGRET DATA; 3C 454.3; BLAZAR AB We report on the multi-wavelength observations of PKS 1510-089 (a flat spectrum radio quasar (FSRQ) at z = 0.361) during its high activity period between 2008 September and 2009 June. During this 11 month period, the source was characterized by a complex variability at optical, UV, and gamma-ray bands, on timescales down to 6-12 hr. The brightest gamma-ray isotropic luminosity, recorded on 2009 March 26, was similar or equal to 2 x 1048 erg s-1. The spectrum in the Fermi Large Area Telescope energy range shows a mild curvature described well by a log-parabolic law, and can be understood as due to the Klein-Nishina effect. The. -ray flux has a complex correlation with the other wavelengths. There is no correlation at all with the X-ray band, a weak correlation with the UV, and a significant correlation with the optical flux. The. -ray flux seems to lead the optical one by about 13 days. From the UV photometry, we estimated a black hole mass of similar or equal to 5.4 x 10(8)M(circle dot) and an accretion rate of similar or equal to 0.5M(circle dot) yr(-1). Although the power in the thermal and non-thermal outputs is smaller compared to the very luminous and distant FSRQs, PKS 1510-089 exhibits a quite large Compton dominance and a prominent big blue bump (BBB) as observed in the most powerful gamma-ray quasars. The BBB was still prominent during the historical maximum optical state in 2009 May, but the optical/ UV spectral index was softer than in the quiescent state. This seems to indicate that the BBB was not completely dominated by the synchrotron emission during the highest optical state. We model the broadband spectrum assuming a leptonic scenario in which the inverse Compton emission is dominated by the scattering of soft photons produced externally to the jet. The resulting model-dependent jet energetic content is compatible with a scenario in which the jet is powered by the accretion disk, with a total efficiency within the Kerr black hole limit. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Costamante, L.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Costamante, L.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Agudo, I.; Gomez, J. L.; Roca-Sogorb, M.] CSIC, Inst Astrofis Andalucia, Granada 18080, Spain. [Agudo, I.] Boston Univ, Inst Astrophys Res, Boston, MA 02215 USA. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Antolini, E.; Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Antolini, E.; Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Arkharov, A. A.; Larionov, V. M.; Pushkarev, A. B.] Pulkovo Observ, St Petersburg 196140, Russia. [Axelsson, M.; Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.] Lund Observ, SE-22100 Lund, Sweden. [Axelsson, M.; Conrad, J.; Larsson, S.; Ripken, J.; Ryde, F.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Bach, U.; Kovalev, Y. Y.; Pushkarev, A. B.; Sokolovsky, K.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Corbel, S.; Grenier, I. A.; Naumann-Godo, M.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Berdyugin, A.; Pasanen, M.; Reinthal, R.; Takalo, L. O.] Univ Turku, Tuorla Observ, FI-21500 Piikkio, Finland. [Blinov, D. A.; Hagen-Thorn, V. A.; Konstantinova, T. S.; Kopatskaya, E. N.; Larionov, V. M.; Larionova, E. G.; Larionova, L. V.; Morozova, D. A.; Nikolashvili, M. G.; Troitsky, I. S.] St Petersburg State Univ, Astron Inst, St Petersburg, Russia. [Boettcher, M.; Gusbar, C.; Roustazadeh, P.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Buemi, C. S.; Leto, P.; Trigilio, C.; Umana, G.] Osserv Astrofis Catania, I-95123 Catania, Italy. [Burnett, T. H.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Carosati, D.] EPT Observ, Tijarafe, La Palma, Spain. [Cavazzuti, E.; Gasparrini, D.] Agenzia Spaziale Italiana ASI, Sci Data Ctr, I-00044 Frascati, Italy. [Celik, Oe; Donato, D.; Ferrara, E. C.; Gehrels, N.; Hays, E.; McConville, W.; McEnery, J. E.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] NASA, CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Chen, W. P.; Koptelova, E.] Natl Cent Univ, Grad Inst Astron, Chungli 32054, Taiwan. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Conrad, J.; Larsson, S.; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Corbel, S.] Inst Univ France, F-75005 Paris, France. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dumora, D.; Lott, B.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Lott, B.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Forne, E.] Agrupaci Astron Sabadell, Sabadell 08206, Spain. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] Ist Radioastron, INAF, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Gurwell, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hagen-Thorn, V. A.; Larionov, V. M.] Isaac Newton Inst Chile, St Petersburg Branch, St Petersburg, Russia. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] Inst Phys & Chem Res RIKEN, Cosm Radiat Lab, Saitama 3510198, Japan. [Kimeridze, G.; Kurtanidze, O. M.; Sigua, L. A.] Abastumani Observ, GE-0301 Abastumani, Rep of Georgia. [Knoedlseder, J.; Vilchez, N.] Ctr Etud Spatiale Rayonnements, CNRS, UPS, F-31028 Toulouse 4, France. [Kovalev, Y. Y.; Sokolovsky, K.] PN Lebedev Phys Inst, Ctr Astro Space, Moscow 117810, Russia. [Lahteenmaki, A.; Tornikoski, M.] Aalto Univ, Metsahovi Radio Observ, FIN-02540 Kylmala, Finland. [Lister, M. L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Massaro, E.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [McHardy, I. M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Okumura, A.; Ozaki, M.; Takahashi, T.] Inst Space & Astronaut Sci, JAXA, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Pushkarev, A. B.] Crimean Astrophys Observ, UA-98409 Nauchnyi, Ukraine. [Raiteri, C. M.; Villata, M.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, Italy. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Taylor, B.] Lowell Observ, Flagstaff, AZ 86001 USA. [Tramacere, A.] Consorzio Interuniversitario Fis Spaziale CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM enrico.massaro@uniroma1.it RI Grishina, Tatiana/H-6873-2013; Hagen-Thorn, Vladimir/H-3983-2013; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Pushkarev, Alexander/M-9997-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Blinov, Dmitry/G-9925-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Kovalev, Yuri/J-5671-2013; Lahteenmaki, Anne/L-5987-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Kurtanidze, Omar/J-6237-2014; Funk, Stefan/B-7629-2015; Sokolovsky, Kirill/D-2246-2015; Agudo, Ivan/G-1701-2015; Morozova, Daria/H-1298-2013; Troitskiy, Ivan/K-7979-2013; Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Larionov, Valeri/H-1349-2013; Kopatskaya, Evgenia/H-4720-2013; Larionova, Elena/H-7287-2013 OI Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Axelsson, Magnus/0000-0003-4378-8785; Giroletti, Marcello/0000-0002-8657-8852; Villata, Massimo/0000-0003-1743-6946; Giordano, Francesco/0000-0002-8651-2394; Larionova, Liudmila/0000-0002-0274-1481; De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Leto, Paolo/0000-0003-4864-2806; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; Raiteri, Claudia Maria/0000-0003-1784-2784; Grishina, Tatiana/0000-0002-3953-6676; Hagen-Thorn, Vladimir/0000-0002-6431-8590; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Buemi, Carla Simona/0000-0002-7288-4613; Blinov, Dmitry/0000-0003-0611-5784; Kovalev, Yuri/0000-0001-9303-3263; Funk, Stefan/0000-0002-2012-0080; Sokolovsky, Kirill/0000-0001-5991-6863; Agudo, Ivan/0000-0002-3777-6182; Morozova, Daria/0000-0002-9407-7804; Troitskiy, Ivan/0000-0002-4218-0148; Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Larionov, Valeri/0000-0002-4640-4356; Kopatskaya, Evgenia/0000-0001-9518-337X; Larionova, Elena/0000-0002-2471-6500 FU Russian Foundation for Basic Research [08- 0200545] FX The Lebedev Physical Institute team was partly supported by the Russian Foundation for Basic Research (project 08- 0200545). K. S. was supported by stipend from the IMPRS for Astronomy and Astrophysics. We thank A. P. Marscher and S. Jorstad for providing multi- wavelength data. NR 78 TC 57 Z9 57 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2010 VL 721 IS 2 BP 1425 EP 1447 DI 10.1088/0004-637X/721/2/1425 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TP UT WOS:000282193600041 ER PT J AU Brown, PJ Roming, PWA Milne, P Bufano, F Ciardullo, R Elias-Rosa, N Filippenko, AV Foley, RJ Gehrels, N Gronwall, C Hicken, M Holland, ST Hoversten, EA Immler, S Kirshner, RP Li, WD Mazzali, P Phillips, MM Pritchard, T Still, M Turatto, M Vanden Berk, D AF Brown, Peter J. Roming, Peter W. A. Milne, Peter Bufano, Filomena Ciardullo, Robin Elias-Rosa, Nancy Filippenko, Alexei V. Foley, Ryan J. Gehrels, Neil Gronwall, Caryl Hicken, Malcolm Holland, Stephen T. Hoversten, Erik A. Immler, Stefan Kirshner, Robert P. Li, Weidong Mazzali, Paolo Phillips, Mark M. Pritchard, Tyler Still, Martin Turatto, Massimo Vanden Berk, Daniel TI THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET SO ASTROPHYSICAL JOURNAL LA English DT Article DE distance scale; dust, extinction; galaxies: distances and redshifts; supernovae: general; ultraviolet: general ID HUBBLE-SPACE-TELESCOPE; SURFACE BRIGHTNESS FLUCTUATIONS; HIGH-REDSHIFT SUPERNOVAE; EARLY-TYPE GALAXIES; LIGHT-CURVE SHAPES; DIGITAL SKY SURVEY; K-CORRECTIONS; DARK ENERGY; DECLINE-RATE; LUMINOSITY INDICATORS AB We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1(rc) covering similar to 2600-3300 (A) over circle after removing optical light, and u approximate to 3000-4000 (A) over circle) compared to a mid-UV filter (uvm2 approximate to 2000-2400 (A) over circle). The uvw1(rc) - b colors show a scatter of similar to 0.3 mag while uvm2-b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2 - uvw1 colors implies significantly larger spectral variability below 2600 (A) over circle. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with the optical decay rate with a scatter of 0.4 mag, comparable to that found for the optical in our sample. However, in the mid-UV the scatter is larger, similar to 1 mag, possibly indicating differences in metallicity. We find no strong correlation between either the UV light-curve shapes or the UV colors and the UV absolute magnitudes. With larger samples, the UV luminosity might be useful as an additional constraint to help determine distance, extinction, and metallicity in order to improve the utility of SNe Ia as standardized candles. C1 [Brown, Peter J.; Roming, Peter W. A.; Ciardullo, Robin; Gronwall, Caryl; Hoversten, Erik A.; Pritchard, Tyler] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Milne, Peter] Univ Arizona, Steward Observ, Tucson, AZ 85719 USA. [Bufano, Filomena; Mazzali, Paolo] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Elias-Rosa, Nancy] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Filippenko, Alexei V.; Li, Weidong] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Foley, Ryan J.; Hicken, Malcolm; Kirshner, Robert P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Gehrels, Neil; Holland, Stephen T.; Immler, Stefan] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Holland, Stephen T.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Holland, Stephen T.; Immler, Stefan] NASA GFC, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Immler, Stefan] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Mazzali, Paolo] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Mazzali, Paolo] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Phillips, Mark M.] Las Campanas Observ, La Serena, Chile. [Still, Martin] Univ Coll London, Dept Space & Climate Phys, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Still, Martin] NASA, Ames Res Ctr, Moffett Field, CA 93045 USA. [Turatto, Massimo] Osserv Astrofis Catania, I-95123 Catania, Italy. [Vanden Berk, Daniel] St Vincent Coll, Latrobe, PA 15650 USA. RP Brown, PJ (reprint author), Univ Utah, Dept Phys & Astron, 115 South 1400 East 201, Salt Lake City, UT 84112 USA. EM pbrown@physics.utah.edu RI Gehrels, Neil/D-2971-2012; Elias-Rosa, Nancy/D-3759-2014; OI Elias-Rosa, Nancy/0000-0002-1381-9125; Turatto, Massimo/0000-0002-9719-3157 FU NASA [NAS5-00136, NNH06ZDA001N]; NSF [AST-0908886, NNX09AG54G, AST-0907903]; PRIN of Italian Ministry of University and Science Research [2006022731] FX We are grateful to A. Goobar for extending his circumstellar extinction model into the UV for us. This work is supported at Penn State University by NASA contract NAS5-00136 and Swift Guest Investigator grant NNH06ZDA001N. A.V.F. is grateful for the support of NSF grant AST-0908886 and Swift Guest Investigator grant NNX09AG54G. This work made use of public data in the Swift data archive and the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The CfA Supernova Program at Harvard University is supported by NSF grant AST-0907903. The work of M.T. is supported by grant no.. 2006022731 of the PRIN of Italian Ministry of University and Science Research. NR 116 TC 53 Z9 53 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2010 VL 721 IS 2 BP 1608 EP 1626 DI 10.1088/0004-637X/721/2/1608 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TP UT WOS:000282193600057 ER PT J AU Milne, PA Brown, PJ Roming, PWA Holland, ST Immler, S Filippenko, AV Ganeshalingam, M Li, WD Stritzinger, M Phillips, MM Hicken, M Kirshner, RP Challis, PJ Mazzali, P Schmidt, BP Bufano, F Gehrels, N Vanden Berk, D AF Milne, Peter A. Brown, Peter J. Roming, Peter W. A. Holland, Stephen T. Immler, Stefan Filippenko, Alexei V. Ganeshalingam, Mohan Li, Weidong Stritzinger, Maximilian Phillips, Mark M. Hicken, Malcolm Kirshner, Robert P. Challis, Peter J. Mazzali, Paolo Schmidt, Brian P. Bufano, Filomena Gehrels, Neil Vanden Berk, Daniel TI NEAR-ULTRAVIOLET PROPERTIES OF A LARGE SAMPLE OF TYPE Ia SUPERNOVAE AS OBSERVED WITH THE Swift UVOT SO ASTROPHYSICAL JOURNAL LA English DT Article DE distance scale; dust, extinction; galaxies: distances and redshifts; supernovae: general; ultraviolet: general ID HUBBLE-SPACE-TELESCOPE; ULTRA-VIOLET/OPTICAL TELESCOPE; LIGHT-CURVE SHAPES; X-RAY OBSERVATIONS; II-P SUPERNOVAE; DECLINE-RATE; INFRARED OBSERVATIONS; OPTICAL PHOTOMETRY; IMPROVED DISTANCES; SYNTHETIC SPECTRA AB We present ultraviolet (UV) and optical photometry of 26 Type Ia supernovae (SNe Ia) observed from 2005 March to 2008 March with the NASA Swift Ultraviolet and Optical Telescope (UVOT). The dataset consists of 2133 individual observations, making it by far the most complete study of the UV emission from SNe Ia to date. Grouping the SNe into three subclasses as derived from optical observations, we investigate the evolution of the colors of these SNe, finding a high degree of homogeneity within the normal subclass, but dramatic differences between that group and the subluminous and SN 2002cx-like groups. For the normal events, the redder UV filters on UVOT (u, uvw1) show more homogeneity than do the bluer UV filters (uvm2, uvw2). Searching for purely UV characteristics to determine existing optically based groupings, we find the peak width to be a poor discriminant, but we do see a variation in the time delay between peak emission and the late, flat phase of the light curves. The UV light curves peak a few days before the B band for most subclasses (as was previously reported by Jha et al.), although the SN 2002cx-like objects peak at a very early epoch in the UV. That group also features the bluest emission observed among SNe Ia. As the observational campaign is ongoing, we discuss the critical times to observe, as determined by this study, in order to maximize the scientific output of future observations. C1 [Milne, Peter A.] Univ Arizona, Steward Observ, Tucson, AZ 85719 USA. [Brown, Peter J.; Roming, Peter W. A.; Vanden Berk, Daniel] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Holland, Stephen T.; Immler, Stefan; Bufano, Filomena; Gehrels, Neil] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Holland, Stephen T.; Immler, Stefan] Univ Space Res Assoc, Columbia, MD 21044 USA. [Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Stritzinger, Maximilian; Phillips, Mark M.] Carnegie Observ, Las Campanas Observ, La Serena, Chile. [Stritzinger, Maximilian] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Hicken, Malcolm; Kirshner, Robert P.; Challis, Peter J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Mazzali, Paolo] Astron Observ Padova, INAF, I-35122 Padua, Italy. [Mazzali, Paolo] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Schmidt, Brian P.] Australian Natl Univ, Res Sch Astron & Astrophys, Mt Stromlo Observ, Weston, ACT 2611, Australia. [Bufano, Filomena] Univ Padua, Dipartmento Astron, I-35122 Padua, Italy. [Vanden Berk, Daniel] St Vincent Coll, Latrobe, PA USA. RP Milne, PA (reprint author), Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85719 USA. RI Gehrels, Neil/D-2971-2012; OI Schmidt, Brian/0000-0001-6589-1287; stritzinger, maximilian/0000-0002-5571-1833 FU National Science Foundation (NSF) [AST-0607485, AST-0908886, AST-0606772, AST-0907903]; TABASGO Foundation; US Department of Energy [DE-FC02-06ER41453, DE-FG02-08ER41563, NNX09AG54G]; NASA [NAS5-00136]; Sun Microsystems, Inc.; Hewlett-Packard Company; AutoScope Corporation; Lick Observatory; University of California; Sylvia & Jim Katzman Foundation FX We thank the Mission Operations team at Penn State University for scheduling so many UVOT SN Ia observations on short notice. We are grateful to Stephane Blondin for his efforts on behalf of the CfA Supernova Program, and X. Wang for categorization of NHV and NNN SNe Ia. P.A.M. thanks K. Krisciunas for assistance in obtaining information on specific supernovae. The research of A.V.F.'s supernova group at UC Berkeley is supported by National Science Foundation (NSF) grants AST-0607485 and AST-0908886, the TABASGO Foundation, US Department of Energy SciDAC grant DE-FC02-06ER41453, US Department of Energy grant DE-FG02-08ER41563, and Swift Guest Investigator grant NNX09AG54G. The work at PSU is sponsored by NASA contract NAS5-00136. KAIT and its ongoing operations were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia & Jim Katzman Foundation, and the TABASGO Foundation. Supernova research at the Harvard College Observatory is supported in part by the NSF through grants AST-0606772 and AST-0907903. NR 96 TC 41 Z9 41 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2010 VL 721 IS 2 BP 1627 EP 1655 DI 10.1088/0004-637X/721/2/1627 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TP UT WOS:000282193600058 ER PT J AU He, JA Gao, K Vidali, G Bennett, CJ Kaiser, RI AF He, Jiao Gao, Kun Vidali, Gianfranco Bennett, Chris J. Kaiser, Ralf I. TI FORMATION OF MOLECULAR HYDROGEN FROM METHANE ICE SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; cosmic rays; infrared: ISM; ISM: molecules; methods: laboratory; molecular processes ID COSMIC-RAY PARTICLES; AMORPHOUS WATER ICE; INTERSTELLAR ICES; LOW-TEMPERATURE; H-2 FORMATION; BEARING MOLECULES; SURFACE-REACTIONS; CARBON-DIOXIDE; SOLAR-SYSTEM; D2O ICE AB To study the formation of molecular hydrogen in the wake of the processing of interstellar ices by energetic cosmic-ray particles, we investigated the interaction of energetic electrons, as formed in the track of galactic cosmic-ray particles, with deuterated methane ices (CD(4)) at 11 K. The energetic electrons mimic energy-transfer processes that occur in the track of the trajectories of energetic cosmic-ray particles; deuterated methane ice was utilized to discriminate the molecular deuterium (m/z = 4) formed during the radiation exposure from the residual molecular hydrogen gas (m/z = 2) released inside the ultrahigh vacuum scattering chamber from outgassing of the stainless steel material. The ices were characterized online and in situ using Fourier transform infrared spectroscopy, while the evolution of the molecular deuterium (D(2)) into the gas phase was monitored using a mass spectrometer. A mass spectrometric signal proportional to the number density of the deuterium molecules generated inside the ice and released during the irradiation was analyzed kinetically using a set of coupled rate equations. From the fit to the experimental data, we obtain activation energies for the diffusion of atomic deuterium (E(0) = 37 +/- 1 meV), and for the desorption of atomic (E(1) = 32 +/- 1 meV) and molecular deuterium (E(2) = 32 +/- 1 meV). These energies are placed in context and then transferred to atomic and molecular hydrogen to yield astrophysically relevant data. The experimental yield of molecular deuterium is then used to calculate the formation rate of molecular hydrogen due to cosmic-ray interaction with ice-covered grains in dense clouds. C1 [He, Jiao; Gao, Kun; Vidali, Gianfranco] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Vidali, Gianfranco; Bennett, Chris J.; Kaiser, Ralf I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. [Bennett, Chris J.; Kaiser, Ralf I.] Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA. RP He, JA (reprint author), Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. RI He, Jiao/D-7176-2011; OI He, Jiao/0000-0003-2382-083X; Bennett, Christopher/0000-0002-4181-6976 FU NASA Astrobiology Institute of the University of Hawai'i; NSF [AST-0507405]; National Aeronautics Space Administration (NASA Astrobiology Institute through the Office of Space Science) [NNA09DA77A] FX G.V. acknowledges partial support from the NASA Astrobiology Institute of the University of Hawai'i and from the NSF Grant AST-0507405. The experiments in Hawaii (C.J.B. and R.I.K.) were financed by the National Aeronautics Space Administration (NASA Astrobiology Institute under Cooperative Agreement No. NNA09DA77A issued through the Office of Space Science). NR 60 TC 6 Z9 6 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2010 VL 721 IS 2 BP 1656 EP 1662 DI 10.1088/0004-637X/721/2/1656 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TP UT WOS:000282193600059 ER PT J AU Dupuy, TJ Liu, MC Bowler, BP Cushing, MC Helling, C Witte, S Hauschildt, P AF Dupuy, Trent J. Liu, Michael C. Bowler, Brendan P. Cushing, Michael C. Helling, Christiane Witte, Soeren Hauschildt, Peter TI STUDYING THE PHYSICAL DIVERSITY OF LATE-M DWARFS WITH DYNAMICAL MASSES SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; binaries: general; binaries: visual; brown dwarfs; infrared: stars; stars: low-mass; techniques: high angular resolution ID ADAPTIVE-OPTICS SYSTEM; NEAR-INFRARED SPECTRA; YOUNG BROWN DWARFS; EXTRASOLAR GIANT PLANETS; VOLUME-LIMITED SAMPLE; FIELD L-DWARFS; T-DWARFS; ULTRACOOL DWARFS; CHEMICAL-COMPOSITION; TELESCOPE FACILITY AB We present a systematic study of the physical properties of late-M dwarfs based on high-quality dynamical mass measurements and near-infrared (NIR) spectroscopy. We use astrometry from Keck natural and laser guide star adaptive optics imaging to determine orbits for the late-M binaries LP 349-25AB (M7.5+M8), LHS 1901AB (M6.5+M6.5), and Gl 569Bab (M8.5+M9). We find that LP 349-25AB (M(tot) = 0.120(-0.007)(+0.0008) M(circle dot)) is a pair of young brown dwarfs for which Lyon and Tucson evolutionary models jointly predict an age of 140 +/- 30 Myr, consistent with the age of the Pleiades. However, at least the primary component seems to defy the empirical Pleiades lithium depletion boundary, implying that the system is in fact older (if the parallax is correct) and that evolutionary models under-predict the component luminosities for this magnetically active binary. We find that LHS 1901AB is a pair of very low-mass stars (M(tot) = 0.194(-0.021)(+0.025) M(circle dot)) with evolutionary model-derived ages consistent with the old age (>6Gyr) implied by its lack of activity. Our improved orbit for Gl 569Bab results in a higher mass for this binary (M(tot) = 0.140(-0.008)(+0.009) M(circle dot)) compared to previous work (0.125 +/- 0.007 M(circle dot)). We use these mass measurements along with our published results for 2MASS J2206-2047AB (M8+M8) to test four sets of ultracool model atmospheres currently in use. Fitting these models to our NIR integrated-light spectra provides temperature estimates warmer by approximate to 250 K than those derived independently from Dusty evolutionary models given the measured masses and luminosities. We propose that model atmospheres are more likely to be the source of this discrepancy, as it would be difficult to explain a uniform temperature offset over such a wide range of masses, ages, and activity levels in the context of evolutionary models. This contrasts with the conclusion of Konopacky et al. that model-predicted masses (given input T(eff) and L(bol)) are at fault for differences between theory and observations. In addition, we find an opposite (and smaller) mass discrepancy from what they report when we adopt their model-testing approach: masses are too high rather than too low because our T(eff) estimates derived from fitting NIR spectra are approximate to 650 K higher than their values from fitting broadband photometry alone. C1 [Dupuy, Trent J.; Liu, Michael C.; Bowler, Brendan P.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Cushing, Michael C.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Helling, Christiane] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Witte, Soeren; Hauschildt, Peter] Hamburger Sternwarte, D-21029 Hamburg, Germany. RP Dupuy, TJ (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. FU W. M. Keck Foundation; NSF [AST-0507833, AST-0909222] FX Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.; It is a pleasure to thank Joel Aycock, Randy Campbell, Al Conrad, Heather Hershley, Jim Lyke, Jason McIlroy, Gary Punawai, Julie Riviera, Hien Tran, Cynthia Wilburn, and the Keck Observatory staff for assistance with the Keck observations. We are very grateful to Michal Simon and Chad Bender for providing us with their Keck/NIRC2 images of Gl 569Bab. We also thank France Allard for providing evolutionary models with near-infrared photometry on the MKO system, Travis Barman for providing us with the Gaia-Dusty model spectra, Kelle Cruz for providing the optical spectrum of LP 349-25, Adam Burgasser for providing the SpeX prism spectrum of Gl 569A, Brian Cameron for making available his NIRC2 distortion solution, and Celine Reyle for customized Besancon Galaxy models. We are indebted to Katelyn Allers for assistance in obtaining IRTF/SpeX data of Gl 569B. Our research has employed the 2MASS data products; NASA's Astrophysical Data System; the SIMBAD database operated at CDS, Strasbourg, France; and the M, L, and T dwarf compendium housed at http://www.DwarfArchives.org and maintained by Chris Gelino, Davy Kirkpatrick, and Adam Burgasser (Kirkpatrick 2003; Gelino et al. 2004). M.C.L., T.J.D., and B.P.B. acknowledge support for this work from NSF grants AST-0507833 and AST-0909222. Finally, the authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 107 TC 60 Z9 60 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2010 VL 721 IS 2 BP 1725 EP 1747 DI 10.1088/0004-637X/721/2/1725 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TP UT WOS:000282193600065 ER PT J AU Nakamura, M Garofalo, D Meier, DL AF Nakamura, Masanori Garofalo, David Meier, David L. TI A MAGNETOHYDRODYNAMIC MODEL OF THE M87 JET. I. SUPERLUMINAL KNOT EJECTIONS FROM HST-1 AS TRAILS OF QUAD RELATIVISTIC MHD SHOCKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (M87); galaxies: jets; magnetohydrodynamics (MHD); methods: numerical ID ELECTRON-POSITRON PLASMAS; RADIO GALAXY M87; MAGNETIC-FIELD; BLACK-HOLE; HIGH-RESOLUTION; 2 CENTIMETERS; COSMIC-RAYS; ACCELERATION; EMISSION; POLARIMETRY AB This is the first in a series of papers that introduces a new paradigm for understanding the jet in M87: a collimated relativistic flow in which strong magnetic fields play a dominant dynamical role. Here, we focus on the flow downstream of HST-1-an essentially stationary flaring feature that ejects trails of superluminal components. We propose that these components are quad relativistic magnetohydrodynamic shock fronts (forward/reverse fast and slow modes) in a narrow jet with a helically twisted magnetic structure. And we demonstrate the properties of such shocks with simple one-dimensional numerical simulations. Quasi-periodic ejections of similar component trails may be responsible for the M87 jet substructures observed further downstream on 10(2)-10(3) pc scales. This new paradigm requires the assimilation of some new concepts into the astrophysical jet community, particularly the behavior of slow/fast-mode waves/shocks and of current-driven helical kink instabilities. However, the prospects of these ideas applying to a large number of other jet systems may make this worth the effort. C1 [Nakamura, Masanori] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Nakamura, Masanori] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Garofalo, David; Meier, David L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Nakamura, M (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. EM nakamura@stsci.edu; david.a.garofalo@jpl.nasa.gov; david.l.meier@jpl.nasa.gov FU Department of Physics and Astronomy at Johns Hopkins University; Space Telescope Science Institute; National Aeronautics and Space Administration FX Stimulating discussions with Colin A. Norman, Keiichi Asada, and Jose Gracia are gratefully acknowledged. M.N. is supported by the Allan C. Davis fellowship jointly awarded by the Department of Physics and Astronomy at Johns Hopkins University and the Space Telescope Science Institute. Part of this research described was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration. D.G. is supported by the NASA Postdoctoral Program at NASA JPL administered by Oak Ridge Associated Universities through contract with NASA. NR 51 TC 21 Z9 21 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2010 VL 721 IS 2 BP 1783 EP 1789 DI 10.1088/0004-637X/721/2/1783 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TP UT WOS:000282193600069 ER PT J AU Agol, E Cowan, NB Knutson, HA Deming, D Steffen, JH Henry, GW Charbonneau, D AF Agol, Eric Cowan, Nicolas B. Knutson, Heather A. Deming, Drake Steffen, Jason H. Henry, Gregory W. Charbonneau, David TI THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems ID HUBBLE-SPACE-TELESCOPE; HOT SUPER-EARTHS; EXTRASOLAR PLANET; ATMOSPHERIC CIRCULATION; TRANSMISSION SPECTRUM; INFRARED-EMISSION; TIMING VARIATIONS; SYSTEM HD-189733; ROTATION PERIOD; LIGHT CURVES AB We present observations of six transits and six eclipses of the transiting planet system HD 189733 taken with the Spitzer Space Telescope's Infrared Array Camera (IRAC) at 8 mu m, as well as a re-analysis of previously published data. We use several novel techniques in our data analysis, the most important of which is a new correction for the detector "ramp" variation with a double-exponential function, which performs better and is a better physical model for this detector variation. Our main scientific findings are (1) an upper limit on the variability of the dayside planet flux of 2.7% (68% confidence); (2) the most precise set of transit times measured for a transiting planet, with an average accuracy of 3 s; (3) a lack of transit-timing variations, excluding the presence of second planets in this system above 20% of the mass of Mars in low-order mean-motion resonance at 95% confidence; (4) a confirmation of the planet's phase variation, finding the night side is 64% as bright as the day side, as well as an upper limit on the nightside variability of 17% (68% confidence); (5) a better correction for stellar variability at 8 mu m causing the phase function to peak 3.5 hr before secondary eclipse, confirming that the advection and radiation timescales are comparable at the 8 mu m photosphere; (6) variation in the depth of transit, which possibly implies variations in the surface brightness of the portion of the star occulted by the planet, posing a fundamental limit on non-simultaneous multi-wavelength transit absorption measurements of planet atmospheres; (7) a measurement of the infrared limb darkening of the star, which is in good agreement with stellar atmosphere models; (8) an offset in the times of secondary eclipse of 69 s, which is mostly accounted for by a 31 s light-travel time delay and 33 s delay due to the shift of ingress and egress by the planet hot spot; this confirms that the phase variation is due to an offset hot spot on the planet; (9) a retraction of the claimed eccentricity of this system due to the offset of secondary eclipse, which is now just an upper limit; and (10) high-precision measurements of the parameters of this system. These results were enabled by the exquisite photometric precision of Spitzer IRAC; for repeat observations the scatter is less than 0.35 mmag over the 590 day timescale of our observations after decorrelating with detector parameters. C1 [Agol, Eric; Cowan, Nicolas B.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Agol, Eric] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93110 USA. [Agol, Eric] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93110 USA. [Knutson, Heather A.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Deming, Drake] NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA. [Steffen, Jason H.] Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. [Henry, Gregory W.] Tennessee State Univ, Ctr Excellence Informat Syst, Nashville, TN 37209 USA. [Charbonneau, David] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Agol, E (reprint author), Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. RI Steffen, Jason/A-4320-2013; Agol, Eric/B-8775-2013; OI Agol, Eric/0000-0002-0802-9145; Charbonneau, David/0000-0002-9003-484X FU NASA; Miller Institute for Basic Research in Science; National Science Foundation [NSF PHY05-51164, 0645416] FX This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology under contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. E.A. acknowledges the hospitality of the Institute for Theory and Computation at the Harvard-Smithsonian Center for Astrophysics, the Michigan Center for Theoretical Physics, and the Kavli Institute for Theoretical Physics where portions of this work were completed. H.A.K. is supported by a fellowship from the Miller Institute for Basic Research in Science. This research was supported in part by the National Science Foundation under grant No. NSF PHY05-51164 and CAREER grant No. 0645416. NR 70 TC 125 Z9 125 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2010 VL 721 IS 2 BP 1861 EP 1877 DI 10.1088/0004-637X/721/2/1861 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TP UT WOS:000282193600076 ER PT J AU Terada, Y Ishida, M Bamba, A Mukai, K Hayashi, T Harayama, A AF Terada, Y. Ishida, M. Bamba, A. Mukai, K. Hayashi, T. Harayama, A. TI X-RAY OBSERVATION OF AM HERCULIS IN A VERY LOW STATE WITH SUZAKU SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; novae, cataclysmic variables; plasmas; stars: individual (AM Herculis) ID MAGNETIZED WHITE-DWARF; TEV GAMMA-RAYS; CATACLYSMIC VARIABLES; SUPERNOVA-REMNANTS; RADIO-EMISSION; SPECTRUM; ASCA; ACCELERATION; OUTBURST; CHANDRA AB The X-ray observation of AM Herculis (AM Her) in a very low state was performed with Suzaku in 2008 October. One flare event with a timescale of similar to 3700 s was detected at the X-ray luminosity of 6.0 x 10(29) erg s(-1) in the 0.5-10 keV band at the assumed distance of 91 pc. The X-ray spectrum is represented by a thermal plasma emission model with a temperature of 8.67(-1.14)(+1.31) keV. During the quiescence in the flare interval, Suzaku also detected significant X-rays at a luminosity of 1.7 x 10(29) erg s(-1) in the 0.5-10 keV band, showing a clear spin modulation at a period of 0.1289273(2) days at BJD 2454771.581. The X-ray spectra in the quiescence were represented by a MEKAL + Power Law model or a single CEMEKL model, which are also supported by phase-resolved analyses. A correlation between the temperature and the volume emission measure was found together with historical X-ray measurements of AM Her in various states. In order to account for a possible non-thermal emission from AM Her, particle acceleration mechanisms in the AM Her system are also discussed, including the new proposal of a shock acceleration process on the top of the accretion column. C1 [Terada, Y.; Harayama, A.] Saitama Univ, Grad Sch Sci & Engn, Sakura Ku, Saitama 3388570, Japan. [Ishida, M.; Bamba, A.; Hayashi, T.] Japan Aerosp Explorat Agcy JAXA, ISAS, Dept High Energy Astrophys, Sagamihara, Kanagawa 2298510, Japan. [Ishida, M.; Hayashi, T.] Tokyo Metropolitan Univ, Fac Sci, Dept Phys, Hachioji, Tokyo 1920397, Japan. [Bamba, A.] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 2, Ireland. [Mukai, K.] NASA, Goddard Space Flight Ctr, Explorat Universe Div, Greenbelt, MD 20771 USA. RP Terada, Y (reprint author), Saitama Univ, Grad Sch Sci & Engn, Sakura Ku, 255 Simo Ohkubo, Saitama 3388570, Japan. EM terada@phy.saitama-u.ac.jp RI Terada, Yukikatsu/A-5879-2013; XRAY, SUZAKU/A-1808-2009 OI Terada, Yukikatsu/0000-0002-2359-1857; FU MEXT [19740168]; Japanese Ministry of Education, Culture, Sports, Science and Technology [22684012] FX The authors thank all the members of the Suzaku team for their contributions to the maintenance of the instruments and software, spacecraft operation, and calibrations. We thank Dr. R. Yamazaki from the Aoyama Gakuin University for his useful comments and discussions on particle acceleration. We also thank Professor K. Makishima from the University of Tokyo and RIKEN for his continuous help and discussions. We thank the referees and the editor for their careful readings and helpful comments in preparing the paper. This work was supported in part by the Grant-in-Aid for Young Scientists (B) of the MEXT, No. 19740168 (Y.T.), and by Grant-in-Aid for Scientific Research of the Japanese Ministry of Education, Culture, Sports, Science and Technology, No. 22684012 (A.B.). NR 56 TC 4 Z9 4 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2010 VL 721 IS 2 BP 1908 EP 1918 DI 10.1088/0004-637X/721/2/1908 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TP UT WOS:000282193600080 ER PT J AU Acciari, VA Aliu, E Arlen, T Beilicke, M Benbow, W Bottcher, M Bradbury, SM Buckley, JH Bugaev, V Butt, Y Byrum, K Cannon, A Celik, O Cesarini, A Chow, YC Ciupik, L Cogan, P Cui, W Daniel, MK Dickherber, R Ergin, T Falcone, A Fegan, SJ Finley, JP Fortin, P Fortson, L Furniss, A Gall, D Gibbs, K Gillanders, GH Godambe, S Grube, J Guenette, R Gyuk, G Hanna, D Hays, E Holder, J Horan, D Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Kildea, J Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Maier, G McCann, A McCutcheon, M Millis, J Moriarty, P Mukherjee, R Nagai, T Ong, RA Otte, AN Pandel, D Perkins, JS Petry, D Pizlo, F Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Schroedter, M Sembroski, GH Smith, AW Steele, D Swordy, SP Theiling, M Toner, JA Varlotta, A Vassiliev, VV Wagner, RG Wakely, SP Ward, JE Weekes, TC Weinstein, A Williams, DA Wissel, S Wood, M Zitzer, B AF Acciari, V. A. Aliu, E. Arlen, T. Beilicke, M. Benbow, W. Boettcher, M. Bradbury, S. M. Buckley, J. H. Bugaev, V. Butt, Y. Byrum, K. Cannon, A. Celik, O. Cesarini, A. Chow, Y. C. Ciupik, L. Cogan, P. Cui, W. Daniel, M. K. Dickherber, R. Ergin, T. Falcone, A. Fegan, S. J. Finley, J. P. Fortin, P. Fortson, L. Furniss, A. Gall, D. Gibbs, K. Gillanders, G. H. Godambe, S. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Hays, E. Holder, J. Horan, D. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Kildea, J. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Maier, G. McCann, A. McCutcheon, M. Millis, J. Moriarty, P. Mukherjee, R. Nagai, T. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Petry, D. Pizlo, F. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Schroedter, M. Sembroski, G. H. Smith, A. W. Steele, D. Swordy, S. P. Theiling, M. Toner, J. A. Varlotta, A. Vassiliev, V. V. Wagner, R. G. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Williams, D. A. Wissel, S. Wood, M. Zitzer, B. TI VERITAS OBSERVATIONS OF A VERY HIGH ENERGY gamma-RAY FLARE FROM THE BLAZAR 3C 66A (vol 693, pg L104, 2009) SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Correction C1 [Acciari, V. A.; Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Aliu, E.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Aliu, E.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Arlen, T.; Celik, O.; Chow, Y. C.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Gibbs, K.; Kildea, J.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Boettcher, M.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Athens, OH 45701 USA. [Bradbury, S. M.; Daniel, M. K.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Butt, Y.; Ergin, T.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cogan, P.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Cui, W.; Finley, J. P.; Gall, D.; Pizlo, F.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Fortin, P.; Mukherjee, R.] Columbia Univ, Dept Phys & Astron, Barnard Coll, New York, NY 10027 USA. [Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Godambe, S.; Hui, C. M.; Kieda, D.; LeBohec, S.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Hays, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Horan, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Imran, A.; Krennrich, F.; Nagai, T.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA. [Petry, D.] European So Observ, D-85748 Garching, Germany. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. RP Acciari, VA (reprint author), Galway Mayo Inst Technol, Dept Life & Phys Sci, Dublin Rd, Galway, Ireland. EM jperkins@cfa.harvard.edu RI Hays, Elizabeth/D-3257-2012; Daniel, Michael/A-2903-2010 OI Daniel, Michael/0000-0002-8053-7910 NR 3 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 1 PY 2010 VL 721 IS 2 BP L203 EP L204 DI 10.1088/2041-8205/721/2/L203 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TB UT WOS:000282192200027 ER PT J AU Currie, T Bailey, V Fabrycky, D Murray-Clay, R Rodigas, T Hinz, P AF Currie, Thayne Bailey, Vanessa Fabrycky, Daniel Murray-Clay, Ruth Rodigas, Timothy Hinz, Phil TI HIGH-CONTRAST 3.8 mu m IMAGING OF THE BROWN DWARF/PLANET-MASS COMPANION TO GJ 758 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE brown dwarfs ID YOUNG SUBSTELLAR COMPANION; EXTRASOLAR GIANT PLANETS; HR 8799; BINARY-SYSTEM; DWARFS; DISCOVERY; STARS; DISK; SUN; AGE AB We present L'-band (3.8 mu m) MMT/Clio high-contrast imaging data for the nearby star GJ 758, which was recently reported by Thalmann et al. to have one-possibly two-faint comoving companions (GJ 758B and "C," respectively). GJ 758B is detected in two distinct data sets. Additionally, we report a possible detection of the object identified by Thalmann et al. as " GJ 758C" in our more sensitive data set, though it is likely a residual speckle. However, if it is the same object as that reported by Thalmann et al. it cannot be a companion in a bound orbit. GJ 758B has an H - L' color redder than nearly all known L-T8 dwarfs. Based on comparisons with the COND evolutionary models, GJ 758B has T(e) similar to 560 K(-90K)(+150K) and a mass ranging from similar to 10-20 M(J) if it is similar to 1 Gyr old to similar to 25-40 M(J) if it is 8.7 Gyr old. GJ 758B is likely in a highly eccentric orbit, e similar to 0.73(-0.21)(+ 0.12), with a semimajor axis of similar to 44AU(-14AU)(+32AU). Though GJ 758B is sometimes discussed within the context of exoplanet direct imaging, its mass is likely greater than the deuterium-burning limit and its formation may resemble that of binary stars rather than that of Jovian-mass planets. C1 [Currie, Thayne] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bailey, Vanessa; Rodigas, Timothy; Hinz, Phil] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Fabrycky, Daniel; Murray-Clay, Ruth] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Currie, T (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. FU NASA; Michelson Fellowship; Institute for Theory and Computation Fellowship FX We thank the anonymous referee and Adam Kraus for suggestions that strengthened this Letter and Adam Burgasser, Marc Kuchner, Scott Kenyon, and Jonathan Irwin for other useful discussions. T.C. is supported by a NASA Postdoctoral Fellowship, D.F. is supported by a Michelson Fellowship, and R.M.-C. is supported by an Institute for Theory and Computation Fellowship. NR 40 TC 15 Z9 15 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 1 PY 2010 VL 721 IS 2 BP L177 EP L181 DI 10.1088/2041-8205/721/2/L177 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TB UT WOS:000282192200022 ER PT J AU Hueso, R Wesley, A Go, C Perez-Hoyos, S Wong, MH Fletcher, LN Sanchez-Lavega, A Boslough, MBE De Pater, I Orton, GS Simon-Miller, AA Djorgovski, SG Edwards, ML Hammel, HB Clarke, JT Noll, KS Yanamandra-Fisher, PA AF Hueso, R. Wesley, A. Go, C. Perez-Hoyos, S. Wong, M. H. Fletcher, L. N. Sanchez-Lavega, A. Boslough, M. B. E. De Pater, I. Orton, G. S. Simon-Miller, A. A. Djorgovski, S. G. Edwards, M. L. Hammel, H. B. Clarke, J. T. Noll, K. S. Yanamandra-Fisher, P. A. TI FIRST EARTH-BASED DETECTION OF A SUPERBOLIDE ON JUPITER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: atmospheres; planets and satellites: general; planets and satellites: individual (Jupiter) ID IMPACT; FIREBALL; RATES AB Cosmic collisions on planets cause detectable optical flashes that range from terrestrial shooting stars to bright fireballs. On 2010 June 3 a bolide in Jupiter's atmosphere was simultaneously observed from the Earth by two amateur astronomers observing Jupiter in red and blue wavelengths. The bolide appeared as a flash of 2 s duration in video recording data of the planet. The analysis of the light curve of the observations results in an estimated energy of the impact of (0.9-4.0) x 10(15) J which corresponds to a colliding body of 8-13 m diameter assuming a mean density of 2 g cm(-3). Images acquired a few days later by the Hubble Space Telescope and other large ground-based facilities did not show any signature of aerosol debris, temperature, or chemical composition anomaly, confirming that the body was small and destroyed in Jupiter's upper atmosphere. Several collisions of this size may happen on Jupiter on a yearly basis. A systematic study of the impact rate and size of these bolides can enable an empirical determination of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. The serendipitous recording of this optical flash opens a new window in the observation of Jupiter with small telescopes. C1 [Hueso, R.; Perez-Hoyos, S.; Sanchez-Lavega, A.] Univ Basque Country, Bilbao 48013, Spain. [Wesley, A.] Acquerra Pty Ltd, Murrumbateman, NSW 2582, Australia. [Go, C.] Univ San Carlos, Dept Phys, Cebu, Philippines. [Wong, M. H.; De Pater, I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Fletcher, L. N.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Boslough, M. B. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Orton, G. S.; Yanamandra-Fisher, P. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Simon-Miller, A. A.] Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Djorgovski, S. G.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Edwards, M. L.] AURA, Gemini Observ, La Serena 603, Chile. [Hammel, H. B.] Space Sci Inst, Boulder, CO 80301 USA. [Clarke, J. T.] Boston Univ, Boston, MA 02215 USA. [Noll, K. S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Hueso, R (reprint author), Univ Basque Country, Bilbao 48013, Spain. EM ricardo.hueso@ehu.es RI Fletcher, Leigh/D-6093-2011; Simon, Amy/C-8020-2012; Noll, Keith/C-8447-2012; Clarke, John/C-8644-2013; Perez-Hoyos, Santiago/L-7543-2014; OI Fletcher, Leigh/0000-0001-5834-9588; Simon, Amy/0000-0003-4641-6186; Perez-Hoyos, Santiago/0000-0002-2587-4682; Sanchez-Lavega, Agustin/0000-0001-7355-1522; Hueso, Ricardo/0000-0003-0169-123X FU Spanish MICIIN [AYA2009-10701]; FEDER; Grupos Gobierno Vasco [IT-464-07]; Glasstone Science Fellowship; NASA [NAS 5-26555]; NSF [AST-0909182]; Ajax Foundation; HST [GO/DD-12119]; National Science Foundation (United States); Science and Technology Facilities Council (United Kingdom); National Research Council (Canada); CONICYT (Chile); Australian Research Council (Australia); Ministerio da Ciencia e Tecnologia (Brazil); Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina); W. M. Keck Foundation; Planetary Astronomy Program. FX This work was supported by the Spanish MICIIN project AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07. L.N.F. was supported by a Glasstone Science Fellowship at the University of Oxford. G.S.O. and P.A.Y.-F. acknowledge support from NASA grants to the Jet Propulsion Laboratory, California Institute of Technology. S.G.D. acknowledges a partial support from the NSF grant AST-0909182 and from the Ajax Foundation. We thank J. Harrington for discussions and A. Stephens, C. Trujillo, J. Radomski, T. Greathouse, M. Richter, and C. Tsang for obtaining part of the ground-based observations. This work was partially based on observations from the following telescopes. (1) HST (program GO/DD-12119), with support provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. (2) TRECS and NIRI at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). (3) VLT/VISIR at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile. (4) NIRC2 at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. (5) TEXES at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement n infinity NNX-08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. NR 26 TC 14 Z9 14 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 1 PY 2010 VL 721 IS 2 BP L129 EP L133 DI 10.1088/2041-8205/721/2/L129 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TB UT WOS:000282192200012 ER PT J AU Guyon, O Martinache, F Belikov, R Soummer, R AF Guyon, Olivier Martinache, Frantz Belikov, Ruslan Soummer, Remi TI HIGH PERFORMANCE PIAA CORONAGRAPHY WITH COMPLEX AMPLITUDE FOCAL PLANE MASKS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE instrumentation: adaptive optics; techniques: high angular resolution ID PUPIL LYOT CORONAGRAPHS; APODIZED-PUPIL; APODIZATION CORONAGRAPH; STELLAR CORONAGRAPHY; PHASE MASK; APERTURES; TELESCOPE; PRINCIPLE AB We describe a coronagraph approach where the performance of a Phase-Induced Amplitude Apodization (PIAA) coronagraph is improved by using a partially transmissive phase-shifting focal plane mask and a Lyot stop. This approach combines the low inner working angle offered by phase mask coronagraphy, the full throughput and uncompromized angular resolution of the PIAA approach, and the design flexibility of Apodized Pupil Lyot Coronagraph. A PIAA complex mask coronagraph (PIAACMC) is fully described by the focal plane mask size, or, equivalently, its complex transmission which ranges from 0 (opaque) to -1 (phase shifting). For all values of the transmission, the PIAACMC theoretically offers full on-axis extinction and 100% throughput at large angular separations. With a pure phase focal plane mask (complex transmission = -1), the PIAACMC offers 50% throughput at 0.64 lambda/D while providing total extinction of an on-axis point source. This performance is very close to the "fundamental performance limit" of coronagraphy derived from first principles. For very high contrast level, imaging performance with PIAACMC is in practice limited by the angular size of the on-axis target (usually a star). We show that this fundamental limitation must be taken into account when choosing the optimal value of the focal plane mask size in the PIAACMC design. We show that the PIAACMC enables visible imaging of Jupiter-like planets at approximate to 1.2 lambda/D from the host star, and can therefore offer almost three times more targets than a PIAA coronagraph optimized for this type of observation. We find that for visible imaging of Earth-like planets, the PIAACMC gain over a PIAA is probably much smaller, as coronagraphic performance is then strongly constrained by stellar angular size. For observations at "low" contrast (below approximate to 10(8)), the PIAACMC offers significant performance enhancement over PIAA. This is especially relevant for ground-based high contrast imaging systems in the near-IR, where PIAACMC enables high contrast high efficiency imaging within 1 lambda/D. Manufacturing tolerances for the focal plane mask are quantified for a few representative PIAACMC designs. C1 [Guyon, Olivier; Martinache, Frantz] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Guyon, Olivier] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Belikov, Ruslan] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Soummer, Remi] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Guyon, O (reprint author), Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, 650 N Aohoku Pl, Hilo, HI 96720 USA. EM guyon@naoj.org NR 27 TC 54 Z9 54 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD OCT PY 2010 VL 190 IS 2 BP 220 EP 232 DI 10.1088/0067-0049/190/2/220 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 675QM UT WOS:000283845500002 ER PT J AU Tenenbaum, ED Dodd, JL Milam, SN Woolf, NJ Ziurys, LM AF Tenenbaum, E. D. Dodd, J. L. Milam, S. N. Woolf, N. J. Ziurys, L. M. TI THE ARIZONA RADIO OBSERVATORY 1 mm SPECTRAL SURVEY OF IRC+10216 AND VY CANIS MAJORIS (215-285 GHz) SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE astrochemistry; circumstellar matter; stars: AGB and post-AGB; stars: individual (IRC+10216, VY CMa); supergiants ID RICH CIRCUMSTELLAR ENVELOPES; OXYGEN-RICH; LINE SURVEY; PHOSPHORUS CHEMISTRY; HIGH-RESOLUTION; INNER ENVELOPE; EVOLVED STARS; CARBON-RICH; IRC +10216; MASS-LOSS AB A low noise (1 sigma rms similar to 3 mK) 1 mm spectral survey (214.5-285.5 GHz) of the oxygen-rich supergiant VY Canis Majoris and the carbon-rich asymptotic giant branch star IRC + 10216 has been conducted using the Arizona Radio Observatory's 10 m Submillimeter Telescope. Here the complete data set is presented. This study, carried out with a new ALMA-type receiver, marks the first continuous band scan of an O-rich circumstellar envelope, and the most sensitive survey to date of IRC + 10216. In VY CMa, 130 distinct molecular lines were detected, 14 of which cannot be identified; in IRC + 10216, 717 lines were observed, with 126 features remaining unidentified. In the 1 mm bands of VY CMa and IRC + 10216, emission is present from 18 and 32 different chemical compounds, respectively, with 10 species common to both sources. Many narrow emission lines were observed in both circumstellar shells, arising from vibrationally excited molecules and from refractory-containing species. Line profiles in VY CMa also exhibit a variety of different shapes, caused by the complex, asymmetric outflow of this object. The survey highlights the fact that C-rich and O-rich circumstellar envelopes are chemically interesting, and both are sources of new interstellar molecules. The high number of unidentified lines and the unreliable rest frequencies for known species such as NaCN indicate the need for additional laboratory spectroscopy studies. C1 [Tenenbaum, E. D.; Dodd, J. L.; Woolf, N. J.; Ziurys, L. M.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Tenenbaum, E. D.; Dodd, J. L.; Woolf, N. J.; Ziurys, L. M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Tenenbaum, E. D.; Dodd, J. L.; Ziurys, L. M.] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. [Milam, S. N.] NASA Goddard, Space Flight Ctr, Astrochem Lab, Greenbelt, MD 20771 USA. [Ziurys, L. M.] Univ Arizona, Arizona Radio Observ, Tucson, AZ 85721 USA. RP Tenenbaum, ED (reprint author), Univ Arizona, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM tenenbaum@strw.leidenuniv.nl; jldodd@email.arizona.edu; Stefanie.N.Milam@nasa.gov; nwoolf@as.arizona.edu; lziurys@email.arizona.edu RI Milam, Stefanie/D-1092-2012 OI Milam, Stefanie/0000-0001-7694-4129 FU NSF [AST-06-07803, AST-09-06534]; NASA Astrobiology Institute [CAN-02-0SS02] FX We thank the operators, engineers, and support staff of the ARO for their assistance, and Dr. Aldo Apponi for his input when initiating the survey. We also thank A. Kerr and the National Radio Astronomy Observatory and A. Lichtenberger of the University of Virginia Microfabrication Laboratory for the Band 6 mixer development. Finally, we appreciate Karl Menten for sharing his insights on water emission in VY CMa. This research is supported by NSF grant AST-06-07803 and AST-09-06534 and the NASA Astrobiology Institute under cooperative agreement CAN-02-0SS02 issued through the Office of Space Science. E. D. T. acknowledges support from an NSF graduate research fellowship. NR 60 TC 41 Z9 41 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD OCT PY 2010 VL 190 IS 2 BP 348 EP 417 DI 10.1088/0067-0049/190/2/348 PG 70 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 675QM UT WOS:000283845500011 ER PT J AU Civerolo, K Hogrefe, C Zalewsky, E Hao, W Sistla, G Lynn, B Rosenzweig, C Kinney, PL AF Civerolo, Kevin Hogrefe, Christian Zalewsky, Eric Hao, Winston Sistla, Gopal Lynn, Barry Rosenzweig, Cynthia Kinney, Patrick L. TI Evaluation of an 18-year CMAQ simulation: Seasonal variations and long-term temporal changes in sulfate and nitrate SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE CMAQ; Model evaluation; Atmospheric deposition; Emissions ID MODEL; US AB This paper compares spatial and seasonal variations and temporal trends in modeled and measured concentrations of sulfur and nitrogen compounds in wet and dry deposition over an 18-year period (1988-2005) over a portion of the northeastern United States. Substantial emissions reduction programs occurred over this time period, including Title IV of the Clean Air Act Amendments of 1990 which primarily resulted in large decreases in sulfur dioxide (SO(2)) emissions by 1995, and nitrogen oxide (NO(x)) trading programs which resulted in large decreases in warm season NO(x) emissions by 2004. Additionally, NO(x) emissions from mobile sources declined more gradually over this period. The results presented here illustrate the use of both operational and dynamic model evaluation and suggest that the modeling system largely captures the seasonal and long-term changes in sulfur compounds. The modeling system generally captures the long-term trends in nitrogen compounds, but does not reproduce the average seasonal variation or spatial patterns in nitrate. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Civerolo, Kevin; Hogrefe, Christian; Zalewsky, Eric; Hao, Winston; Sistla, Gopal] New York State Dept Environm Conservat, Div Air Resources, Albany, NY 12233 USA. [Hogrefe, Christian] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA. [Lynn, Barry] Weather It Is Ltd, Efrat, Israel. [Rosenzweig, Cynthia] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Kinney, Patrick L.] Columbia Univ, Mailman Sch Publ Hlth, New York, NY USA. RP Civerolo, K (reprint author), New York State Dept Environm Conservat, Div Air Resources, 625 Broadway, Albany, NY 12233 USA. EM kxcivero@gw.dec.state.ny.us RI Kinney, Patrick/H-7914-2012; OI Civerolo, Kevin/0000-0003-1536-2664 FU New York State Department of Environmental Conservation (NYSDEC); National Oceanic and Atmospheric Administration (NOAA) [NAO40AR4310185185] FX This work was supported by the New York State Department of Environmental Conservation (NYSDEC). It was also supported by the National Oceanic and Atmospheric Administration (NOAA) under award NAO40AR4310185185, but it has not been subjected to its required peer and policy review. The views expressed here do not necessarily reflect those of the NYSDEC or NOAA, and no official endorsement should be inferred. NR 16 TC 12 Z9 12 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD OCT PY 2010 VL 44 IS 31 BP 3745 EP 3752 DI 10.1016/j.atmosenv.2010.06.056 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 650UL UT WOS:000281878000002 ER PT J AU Chen, SA Ren, XR Mao, JQ Chen, Z Brune, WH Lefer, B Rappengluck, B Flynn, J Olson, J Crawford, JH AF Chen, Shuang Ren, Xinrong Mao, Jingqiu Chen, Zhong Brune, William H. Lefer, Barry Rappenglueck, Bernhard Flynn, James Olson, Jennifer Crawford, James H. TI A comparison of chemical mechanisms based on TRAMP-2006 field data SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Hydroxyl radical; Hydroperoxy radical; Model intercomparison; Chemical mechanisms; Atmospheric chemistry ID VOLATILE ORGANIC-COMPOUNDS; MCM V3 PART; TROPOSPHERIC DEGRADATION; PHOTOCHEMICAL OZONE; ATMOSPHERIC OXIDATION; DETAILED MECHANISM; HO2 CONCENTRATIONS; SOUTHERN-OXIDANTS; OH REACTIVITY; CHEMISTRY AB A comparison of a model using five widely known mechanisms (RACM, CB05, LaRC, SAPRC-99, SAPRC-07, and MCMv3.1) has been conducted based on the TexAQS II Radical and Aerosol Measurement Project (TRAMP-2006) field data in 2006. The concentrations of hydroxyl (OH) and hydroperoxy (HO2) radicals were calculated by a zero-dimensional box model with each mechanism and then compared with the OH and HO2 measurements. The OH and HO2 calculated by the model with different mechanisms show similarities and differences with each other and with the measurements. First, measured OH and HO2 are generally greater than modeled for all mechanisms, with the median modeled-to-measured ratios ranging from about 0.8 (CB05) to about 0.6 (SAPRC-99). These differences indicate that either measurement errors, the effects of unmeasured species or chemistry errors in the model or the mechanisms, with some errors being independent of the mechanism used. Second, the modeled and measured ratios of HO2/OH agree when NO is about 1 ppbv, but the modeled ratio is too high when NO was less and too low when NO is more, as seen in previous studies. Third, mechanism-mechanism HOx differences are sensitive to the environmental conditions - in more polluted conditions, the mechanism-mechanism differences are less. This result suggests that, in polluted conditions, the mechanistic details are less important than in cleaner conditions, probably because of the dominance of reactive nitrogen chemistry under polluted conditions. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Chen, Shuang; Ren, Xinrong; Mao, Jingqiu; Chen, Zhong; Brune, William H.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Lefer, Barry; Rappenglueck, Bernhard; Flynn, James] Univ Houston, Earth & Atmospher Sci Dept, Houston, TX 77204 USA. [Olson, Jennifer; Crawford, James H.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Chen, SA (reprint author), Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA. EM suc185@psu.edu RI Mao, Jingqiu/F-2511-2010; Crawford, James/L-6632-2013; Ren, Xinrong/E-7838-2015; OI Mao, Jingqiu/0000-0002-4774-9751; Crawford, James/0000-0002-6982-0934; Ren, Xinrong/0000-0001-9974-1666; Lefer, Barry/0000-0001-9520-5495 FU NSF [0209972]; HARC [H78, H86] FX We thank other participants (especially Dr. Renyi Zhang, Dr. Winston T. Luke, and Dr. Jack E. Dibb) in the TRAMP-2006 field campaign for sharing the data to make the model calculations possible. DNPH data obtained at Clinton site was made available by courtesy of Texas Commission on Environmental Quality (TCEQ). This study was supported by NSF (0209972) and HARC (TERC Project H78 and H86). NR 52 TC 31 Z9 31 U1 0 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD OCT PY 2010 VL 44 IS 33 SI SI BP 4116 EP 4125 DI 10.1016/j.atmosenv.2009.05.027 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 663ER UT WOS:000282866300013 ER PT J AU Flynn, J Lefer, B Rappengluck, B Leuchner, M Perna, R Dibb, J Ziemba, L Anderson, C Stutz, J Brune, W Ren, XR Mao, JQ Luke, W Olson, J Chen, G Crawford, J AF Flynn, James Lefer, Barry Rappenglueck, Bernhard Leuchner, Michael Perna, Ryan Dibb, Jack Ziemba, Luke Anderson, Casey Stutz, Jochen Brune, William Ren, Xinrong Mao, Jingqiu Luke, Winston Olson, Jennifer Chen, Gao Crawford, James TI Impact of clouds and aerosols on ozone production in Southeast Texas SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE TexAQS-II; TRAMP; Photolysis rates; Ozone production; Radiative transfer model; Photochemical box model ID PHOTOLYSIS RATE COEFFICIENT; MEXICO-CITY; PHOTOCHEMICAL SMOG; RADIATIVE-TRANSFER; TRACE-P; RATES; NO2; SENSITIVITY; FREQUENCIES; PROFILES AB A radiative transfer model and photochemical box model are used to examine the effects of clouds and aerosols on actinic flux and photolysis rates, and the impacts of changes in photolysis rates on ozone production and destruction rates in a polluted urban environment like Houston, Texas. During the TexAQS-II Radical and Aerosol Measurement Project the combined cloud and aerosol effects reduced j(NO2) photolysis frequencies by nominally 17%, while aerosols reduced j(NO2) by 3% on six clear sky days. Reductions in actinic flux due to attenuation by clouds and aerosols correspond to reduced net ozone formation rates with a nearly one-to-one relationship. The overall reduction in the net ozone production rate due to reductions in photolysis rates by clouds and aerosols was approximately 8 ppbv h(-1). (C) 2009 Elsevier Ltd. All rights reserved, C1 [Flynn, James; Lefer, Barry; Rappenglueck, Bernhard; Leuchner, Michael; Perna, Ryan] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. [Dibb, Jack; Ziemba, Luke; Anderson, Casey] Univ New Hampshire, Dept Earth Sci, Durham, NH 03824 USA. [Brune, William; Ren, Xinrong; Mao, Jingqiu] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Stutz, Jochen] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Luke, Winston] NOAA, Air Resources Lab, Silver Spring, MD 20910 USA. [Olson, Jennifer; Chen, Gao; Crawford, James] NASA, Chem & Dynam Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Lefer, B (reprint author), Univ Houston, Dept Earth & Atmospher Sci, 4800 Calhoun Rd, Houston, TX 77204 USA. EM blefer@uh.edu RI Mao, Jingqiu/F-2511-2010; Crawford, James/L-6632-2013; Stutz, Jochen/K-7159-2014; Luke, Winston/D-1594-2016; Ren, Xinrong/E-7838-2015; OI Mao, Jingqiu/0000-0002-4774-9751; Crawford, James/0000-0002-6982-0934; Luke, Winston/0000-0002-1993-2241; Ren, Xinrong/0000-0001-9974-1666; Leuchner, Michael/0000-0002-0927-2622; Lefer, Barry/0000-0001-9520-5495 FU Houston Advanced Research Center; Texas Commission on Environmental Quality FX We would like to thank the Houston Advanced Research Center and the Texas Commission on Environmental Quality for their financial support. We would also like to thank the USDA-UVB monitoring program, Fong Ngan, Daewon Byun, and Mark Estes for providing assistance in data analysis and guidance. NR 26 TC 13 Z9 13 U1 2 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD OCT PY 2010 VL 44 IS 33 SI SI BP 4126 EP 4133 DI 10.1016/j.atmosenv.2009.09.005 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 663ER UT WOS:000282866300014 ER PT J AU Opperman, RA Waldie, JMA Natapoff, A Newman, DJ Jones, JA AF Opperman, Roedolph A. Waldie, James M. A. Natapoff, Alan Newman, Dava J. Jones, Jeffrey A. TI Probability of Spacesuit-Induced Fingernail Trauma Is Associated with Hand Circumference SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE fingernail delamination; onycholysis; extravehicular activity; anthropometric data; EMU glove; hand injury; space suit; astronaut ID INJURIES AB OPPERMAN RA, WALDIE JMA, NATAPOFF A, NEWMAN DJ, JONES JA. Probability of spacesuit-induced fingernail trauma is associated with hand circumference. Aviat Space Environ Med 2010; 81:907-13. Introduction: A significant number of astronauts sustain hand injuries during extravehicular activity training and operations. These hand injuries have been known to cause fingernail delamination (onycholysis) that requires medical intervention. This study investigated correlations between the anthropometrics of the hand and susceptibility to injury. Methods: The analysis explored the hypothesis that crewmembers with a high finger-to-hand size ratio are more likely to experience injuries. A database of 232 crewmembers' injury records and anthropometrics was sourced from NASA Johnson Space Center. Results: No significant effect of finger-to-hand size was found on the probability of injury, but circumference and width of the metacarpophalangeal (MCP) joint were found to be significantly associated with injuries by the Kruskal-Wallis test. A multivariate logistic regression showed that hand circumference is the dominant effect on the likelihood of onycholysis. Discussion: Male crewmembers with a hand circumference >22.86 cm (9") have a 19.6% probability of finger injury, but those with hand circumferences <= 22.86 cm (9") only have a 5.6% chance of injury. Findings were similar for female crewmembers. This increased probability may be due to constriction at large MCP joints by the current NASA Phase VI glove. Constriction may lead to occlusion of vascular flow to the fingers that may increase the chances of onycholysis. Injury rates are lower on gloves such as the superseded series 4000 and the Russian Orlan that provide more volume for the MCP joint. This suggests that we can reduce onycholysis by modifying the design of the current gloves at the MCP joint. C1 [Newman, Dava J.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Newman, DJ (reprint author), MIT, Dept Aeronaut & Astronaut, 77 Massachusetts Ave,Rm 33-307, Cambridge, MA 02139 USA. EM dnewman@mit.edu FU ILC Dover; NASA-JSC FX The authors would like to thank ILC Dover as primary sponsor of this project, particularly Phil Spampinato and Keith Splawn. We would also like to thank Dr. Robert Ploutz-Snyder from NASA-JSC for his input and feedback and Dr. Samuel Strauss and Dr. Richard Scheuring for contributing findings to the EVA injury database. Lastly we would like to thank the NASA-JSC engineers and scientists who supported this effort. NR 23 TC 1 Z9 1 U1 0 U2 7 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD OCT PY 2010 VL 81 IS 10 BP 907 EP 913 DI 10.3357/ASEM.2810.2010 PG 7 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 654DS UT WOS:000282149300001 PM 20922881 ER PT J AU Miller, CA Peters, BT Brady, RR Richards, JR Ploutz-Snyder, RJ Mulavara, AP Bloomberg, JJ AF Miller, Christopher A. Peters, Brian T. Brady, Rachel R. Richards, Jason R. Ploutz-Snyder, Robert J. Mulavara, Ajitkumar P. Bloomberg, Jacob J. TI Changes in Toe Clearance During Treadmill Walking After Long-Duration Spaceflight SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE kinematics; microgravity; sensorimotor control ID NEUROMUSCULAR ACTIVATION PATTERNS; SPACE-FLIGHT; SWING PHASE; GAIT; KINEMATICS; FOOT; LOCOMOTION; WEIGHTLESSNESS; MICROGRAVITY; VARIABILITY AB MILLER CA, PETERS BT, BRADY RR, RICHARDS JR, PLOUTZ-SNYDER RJ, MULAVARA AP, BLOOMBERG P. Changes in toe clearance during treadmill walking after long-duration spaceflight. Aviat Space Environ Med 2010; 81:919-28. Introduction: Astronauts exhibit sensorimotor changes upon return from long-duration spaceflight that can result in altered gait kinematics and possibly an increased risk of tripping. Toe trajectory during locomotion is a precise motor control task involving both legs, thus providing a composite metric of locomotor control. The purpose of this study was to determine whether astronauts are at an increased risk of tripping after their return from long-duration spaceflight. This was accomplished by assessing the pre- to postflight changes in toe clearance during treadmill walking. Methods: Ten crewmembers walked on a treadmill while performing a visual-acuity task pre- and postflight. Results: In the three subjects on whom landing clay data were available, each exhibited a characteristic of increased tripping risk on landing clay: either a decreased median toe clearance or an increased interquartile range (a measure of variance). For all crewmembers, toe clearance median and interquartile range were not significantly different from preflight for the other postflight sessions (the earliest being 1 d after landing). A follow-up analysis showed that changes in foot pitch, ankle dorsiflexion, and pelvis roll angles were significant predictors of changes in toe clearance. Discussion: The landing-day observations indicated an increased risk of tripping, which may pose a hazard during locomotion immediately upon return to Earth, especially in an emergency scenario. However, tripping risk on subsequent clays was not different than preflight. The joint angle analysis suggested that the crewmembers tried to reestablish their normal walking pattern postflight, instead of developing a new motor control strategy. C1 [Miller, Christopher A.] NASA, Lyndon B Johnson Space Ctr, Wyle Integrated Sci & Engn Grp, Houston, TX 77058 USA. [Ploutz-Snyder, Robert J.; Mulavara, Ajitkumar P.] Univ Space Res Assoc, Houston, TX USA. RP Miller, CA (reprint author), NASA, Lyndon B Johnson Space Ctr, Wyle Integrated Sci & Engn Grp, Mail Code HAC 272,1290 Hercules Dr,Suite 120, Houston, TX 77058 USA. EM chris.miller-1@nasa.gov FU National Aeronautics and Space Administration FX The authors wish to thank: Jeremy Houser and Ann Marshburn for their assistance during data collection and initial analysis; John DeWitt for reviewing the manuscript; and the test subjects for their time and effort. This work was supported by the National Aeronautics and Space Administration. The authors have no conflicts of interest related to this paper. NR 45 TC 5 Z9 6 U1 1 U2 4 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD OCT PY 2010 VL 81 IS 10 BP 919 EP 928 DI 10.3357/ASEM.2680.2010 PG 10 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 654DS UT WOS:000282149300003 PM 20922883 ER PT J AU Driggers, WB Burgess, GH Hamilton, AN Hopkins, NM Schobernd, CM AF Driggers, William B., III Burgess, George H. Hamilton, Alonzo N., Jr. Hopkins, Nicholas M. Schobernd, Christina M. TI SQUALIOLUS LATICAUDUS IN THE WESTERN NORTH ATLANTIC OCEAN: DISTRIBUTIONAL AND LIFE HISTORY OBSERVATIONS SO BULLETIN OF MARINE SCIENCE LA English DT Article ID GULF-OF-MEXICO; 1ST RECORD; SHARK AB The spined pygmy shark (Squaliolus laticaudus Smith and Radcliffe, 1912) is among the smallest known species of sharks and despite its wide distribution, fewer than 100 specimens have been reported globally. On 28 October 2007, 24 spined pygmy sharks, with total lengths ranging from 120 to 210 mm, were collected in a single deepwater trawl in the northern Gulf of Mexico. All specimens, with the exception of two females, were immature. Follicle conditions in the two mature females indicated that vitellogenesis and gestation are consecutive. The stomachs of six specimens contained single cephalopod or teleost prey. Our catch and examinations of museum accessed specimens confirm the questioned presence of spined pygmy sharks in the Gulf of Mexico and demonstrate that it is more widely distributed in the western North Atlantic Ocean than previously known. C1 [Driggers, William B., III; Hamilton, Alonzo N., Jr.; Hopkins, Nicholas M.; Schobernd, Christina M.] Se Fisheries Sci Ctr, Natl Marine Fisheries Serv, Mississippi Labs, Pascagoula, MS 39567 USA. [Burgess, George H.] Univ Florida, Florida Museum Nat Hist, Florida Program Shark Res, Gainesville, FL 32611 USA. RP Driggers, WB (reprint author), Se Fisheries Sci Ctr, Natl Marine Fisheries Serv, Mississippi Labs, 3209 Frederic St, Pascagoula, MS 39567 USA. EM william.driggers@noaa.gov NR 22 TC 2 Z9 2 U1 0 U2 2 PU ROSENSTIEL SCH MAR ATMOS SCI PI MIAMI PA 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 USA SN 0007-4977 J9 B MAR SCI JI Bull. Mar. Sci. PD OCT PY 2010 VL 86 IS 4 BP 831 EP 838 DI 10.5343/bms.2010.1009 PG 8 WC Marine & Freshwater Biology; Oceanography SC Marine & Freshwater Biology; Oceanography GA 668PI UT WOS:000283281600005 ER PT J AU Czapla-Myers, JS Thome, KJ Leisso, NP AF Czapla-Myers, Jeffrey S. Thome, Kurtis J. Leisso, Nathan P. TI Radiometric calibration of earth-observing sensors using an automated test site at Railroad Valley, Nevada SO CANADIAN JOURNAL OF REMOTE SENSING LA English DT Article AB The Remote Sensing Group (RSG) at the University of Arizona uses the reflectance-based approach to radiometrically calibrate airborne and spaceborne sensors in the solar-reflective regime. The Radiometric Calibration Test Site (RadCaTS) concept was developed in 2004 to increase the amount of ground-based data collected. RadCaTS provides a methodology to determine the surface reflectance for any arbitrary test site in the absence of ground personnel. It is founded on the reflectance-based approach and has successfully operated at Railroad Valley, Nevada, with a suite of instruments including nadir-viewing multispectral radiometers, a Cimel sun photometer, and a meteorological station. RadCaTS data are currently used by RSG to supplement those collected by on-site personnel. This work presents a description of the RadCaTS automated concept, including the process used to determine surface reflectance and top-of-atmosphere (TOA) spectral radiance. The instrumentation required to measure the surface and atmosphere is introduced, followed by discussions regarding their placement on the 1 km 2 site at Railroad Valley and their calibration. Lastly, the RadCaTS results are compared with those obtained from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Terra Moderate Resolution Imaging Spectrometer (MODIS). The average percent difference in TOA spectral radiance is 4.1% between the six bands of ETM+ and RadCaTS and 3.6% between the seven land bands of Terra MODIS and RadCaTS. C1 [Czapla-Myers, Jeffrey S.; Leisso, Nathan P.] Univ Arizona, Coll Opt Sci, Remote Sensing Grp, Tucson, AZ 85721 USA. [Thome, Kurtis J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Czapla-Myers, JS (reprint author), Univ Arizona, Coll Opt Sci, Remote Sensing Grp, 1630 E Univ Blvd, Tucson, AZ 85721 USA. EM j.czapla-myers@optics.arizona.edu OI Czapla-Myers, Jeffrey/0000-0003-4804-5358 FU NASA [NNX08AC55A] FX The authors would like to acknowledge the US Bureau of Land Management Tonopah, Nevada, office for their assistance in obtaining access to Railroad Valley. We would also like to thank the many participants who have worked on the instrumentation and data collection used in the RadCaTS work. This research is supported by NASA cooperative agreement NNX08AC55A. NR 37 TC 10 Z9 12 U1 2 U2 23 PU CANADIAN AERONAUTICS SPACE INST PI KANATA PA 350 TERRY FOX DR, STE 104, KANATA, ON K2K 2W5, CANADA SN 1712-7971 J9 CAN J REMOTE SENS JI Can. J. Remote Sens. PD OCT PY 2010 VL 36 IS 5 SI SI BP 474 EP 487 PG 14 WC Remote Sensing SC Remote Sensing GA V23QE UT WOS:000208356500005 ER PT J AU Zibordi, G Holben, B Melin, F D'Alimonte, D Berthon, JF Slutsker, I Giles, D AF Zibordi, G. Holben, B. Melin, F. D'Alimonte, D. Berthon, J. -F. Slutsker, I. Giles, D. TI AERONET-OC: an overview SO CANADIAN JOURNAL OF REMOTE SENSING LA English DT Article AB The ocean color component of the Aerosol Robotic Network (AERONET-OC) was established to support satellite ocean color validation activities in coastal waters through standardized measurements of atmospheric and marine optical quantities. Specifically, AERONET-OC can provide in situ spectral values of the normalized water-leaving radiance, L-WN, and aerosol optical thickness, tau(a), through autonomous radiometers operating on fixed platforms in coastal waters. This work presents the rationale for the network and an overview of the measurement sites and applications. Focus is brought to the assessment of accuracies of coastal L-WN from current satellite ocean color sensors: the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) onboard the OrbView-2 satellite, the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua platforms, and the Medium Resolution Imaging Spectrometer (MERIS) onboard the Envisat platform. C1 [Zibordi, G.; Melin, F.; Berthon, J. -F.] European Commiss, Joint Res Ctr, Inst Environm & Sustainabil, Ispra, Italy. [D'Alimonte, D.] Univ Nova Lisboa, Ctr Inteligencia Artificial, Caparica, Portugal. [Slutsker, I.; Giles, D.] NASA, Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD 20771 USA. RP Zibordi, G (reprint author), European Commiss, Joint Res Ctr, Inst Environm & Sustainabil, Ispra, Italy. EM giuseppe.zibordi@jrc.ec.europa.eu RI D'Alimonte, Davide/I-6531-2013 OI D'Alimonte, Davide/0000-0001-7217-7057 FU ESA Cal/Val at the AAOT site FX The authors wish to thank the AERONET team for the continuous effort in supporting AERONET-OC, the NASA Ocean Biology Processing Group for granting access to the MODIS and SeaWiFS data, and the ESA Cal/Val Program for delivering the MERIS data products and the support provided at the AAOT site. NR 42 TC 11 Z9 11 U1 0 U2 5 PU CANADIAN AERONAUTICS & SPACE INST PI KANATA PA 350 TERRY FOX DR, STE 104, KANATA, ON K2K 2W5, CANADA SN 0703-8992 EI 1712-7971 J9 CAN J REMOTE SENS JI Can. J. Remote Sens. PD OCT PY 2010 VL 36 IS 5 SI SI BP 488 EP 497 PG 10 WC Remote Sensing SC Remote Sensing GA V23QE UT WOS:000208356500006 ER PT J AU Cao, CY Uprety, S Xiong, J Wu, AS Jing, P Smith, D Chander, G Fox, N Ungar, S AF Cao, Changyong Uprety, Sirish Xiong, Jack Wu, Aisheng Jing, Ping Smith, David Chander, Gyanesh Fox, Nigel Ungar, Stephen TI Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites SO CANADIAN JOURNAL OF REMOTE SENSING LA English DT Article AB Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75 degrees 06'S, 123 degrees 21'E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4-1.0 mu m range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 mu m, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of similar to 1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2-SeaWiFS, Terra-Aqua MODIS, Earth Observing 1 (EO-1) - Hyperion, Meteorological Operational satellite programme (MetOp) - Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) - dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part of the framework for climate change detection and data quality assurance for the Global Earth Observation System of Systems (GEOSS). C1 [Cao, Changyong] NOAA, Ctr Satellite Applicat & Res STAR, NESDIS, Camp Springs, MD 20746 USA. [Uprety, Sirish] Perot Syst Govt Serv Inc PSGS, Fairfax, VA 22031 USA. [Xiong, Jack; Ungar, Stephen] NASA, Goddard Space Flight Ctr, Greenbelt, MD 21771 USA. [Wu, Aisheng] Sigma Space Corp, Lanham, MD USA. [Jing, Ping] IM Syst Grp Inc IMSG, Rockville, MD 20852 USA. [Smith, David] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Chander, Gyanesh] US Geol Survey, SGT Inc, Earth Resources Observat & Sci EROS Ctr, Sioux Falls, SD 57198 USA. [Fox, Nigel] Natl Phys Lab, Teddington TW11 0LW, Middx, England. RP Cao, CY (reprint author), NOAA, Ctr Satellite Applicat & Res STAR, NESDIS, Camp Springs, MD 20746 USA. EM changyong.cao@noaa.gov RI Cao, Changyong/F-5578-2010 FU CEOS-WGCV Dome C project; NOAA NESDIS Center for Satellite Applications and Research; NPOESS Preparatory Project (NPP) Integrated Program Office (IPO) FX This study is part of the CEOS-WGCV Dome C project during 2008-2009 in support of the CEOS Strategic Implementation Team (SIT) actions and the World Meteorological Organization - Global Space-based Inter-Calibration System (WMO-GSICS). The study was partially funded by the NOAA NESDIS Center for Satellite Applications and Research, the NPOESS Preparatory Project (NPP) Integrated Program Office (IPO) - Joint Polar Satellite System (JPSS) Cal/Val program, and the respective space agencies involved. The authors would like to thank Istvan Laszlo, Pubu Ciren, and Lawrence Flynn for fruitful discussions on the atmospheric effects at Dome C. We thank Pascal Lecomte, Philippe Goryl, and Marie-Claire Greening of ESA; Bruce Guenther, Heather Kilcoyne, and Ray Godin of the IPO; Greg Stenssas of USGS; Patrice Henry of CNES; Steve Mackin of DMC International Imaging (DMCII); Stephen Hudson of the University of Washington; Petya Campbell and Lawrence Ong of GSFC; and all participating CEOS-WGCV members for their facilitation and contributions to this study. We also thank Fangfang Yu, Frank Padula, Xiangqian Wu, and Bob Iacovazzi, and the anonymous reviewers for reviewing the manuscript and providing valuable comments and suggestions. The manuscript contents are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the US government. NR 34 TC 27 Z9 28 U1 1 U2 5 PU CANADIAN AERONAUTICS SPACE INST PI KANATA PA 350 TERRY FOX DR, STE 104, KANATA, ON K2K 2W5, CANADA SN 1712-7971 J9 CAN J REMOTE SENS JI Can. J. Remote Sens. PD OCT PY 2010 VL 36 IS 5 SI SI BP 498 EP 513 PG 16 WC Remote Sensing SC Remote Sensing GA V23QE UT WOS:000208356500007 ER PT J AU Xiong, XX Wu, AS Wenny, B Choi, J Angal, A AF Xiong, Xiaoxiong (Jack) Wu, Aisheng Wenny, Brian Choi, Jason Angal, Amit TI Progress and lessons from MODIS calibration intercomparison using ground test sites SO CANADIAN JOURNAL OF REMOTE SENSING LA English DT Article AB Calibration accuracy and stability are key performance parameters for Earth-observing satellites. They have direct impact on the quality of science data products derived from sensor observations. Meanwhile, calibration consistency between spectral bands or among sensors also plays a critical role when deriving data products using multiple spectral bands and constructing long-term climate data records (CDR) using observations made by different sensors. The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Terra and Aqua missions. To maintain its on-orbit calibration accuracy and monitor its calibration stability, MODIS was designed and built with a set of onboard calibrators (OBCs), which can be operated continuously or on an as needed basis. In addition to regular onboard calibration activities, extensive efforts have been made by MODIS calibration scientists and members of the MODIS Characterization Support Team (MCST) to validate the calibration accuracy of each sensor and to quantify the calibration consistency between both Terra and Aqua MODIS. This paper provides a brief description of MODIS on-orbit calibration methodologies and an overview of recent progress and lessons learned from MODIS calibration intercomparison studies through the use of ground reference sites. Specifically, the simultaneous nadir overpass (SNO) and double difference approaches over invariant reference sites, such as the Dome C, Libya-4 desert, and Lake Tahoe buoy sites, are illustrated. Examples derived from different intercomparison approaches and their applications for different sensors and spectral bands are presented, focusing on examining their calibration differences. Results from the Libya-4 desert site show that Terra and Aqua MODIS 0.65 and 0.85 mu m channels have been well calibrated, with excellent long-term stability of better than 1.0%. Using the SNO approach, the Terra and Aqua MODIS calibration consistency is found to be within 1.5% and 0.6% for the 0.65 and 0.85 mu m channels, respectively, and 0.02 K and 0.04 K for the 11 and 12 mu m channels, respectively. C1 [Xiong, Xiaoxiong (Jack)] NASA, Sci Explorat Directorate, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wu, Aisheng; Wenny, Brian; Choi, Jason] Sigma Space Corp, Lanham, MD 20706 USA. [Angal, Amit] SSAI, Lanham, MD 20706 USA. RP Xiong, XX (reprint author), NASA, Sci Explorat Directorate, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Xiaoxiong.Xiong-1@nasa.gov NR 40 TC 10 Z9 10 U1 0 U2 4 PU CANADIAN AERONAUTICS SPACE INST PI KANATA PA 350 TERRY FOX DR, STE 104, KANATA, ON K2K 2W5, CANADA SN 1712-7971 J9 CAN J REMOTE SENS JI Can. J. Remote Sens. PD OCT PY 2010 VL 36 IS 5 SI SI BP 540 EP 552 PG 13 WC Remote Sensing SC Remote Sensing GA V23QE UT WOS:000208356500010 ER PT J AU Padula, FP Schott, JR Barsi, JA Raqueno, NG Hook, SJ AF Padula, Francis P. Schott, John R. Barsi, Julia A. Raqueno, Nina G. Hook, Simon J. TI Calibration of Landsat 5 thermal infrared channel: updated calibration history and assessment of the errors associated with the methodology SO CANADIAN JOURNAL OF REMOTE SENSING LA English DT Article AB The Landsat 5 thermal band lifetime calibration is being updated based on an improved calibration method that uses water temperatures observed by buoys at deep water sites and thermal and radiative transfer models. An uncertainty propagation analysis was constructed to determine the expected uncertainty in temperature (one standard deviation) at the sensor for this historic vicarious calibration process. The historical calibration effort fused environmental data sources that feed a forward modeling vicarious calibration process. The process consists of three major modeling efforts: subsurface temperature to water skin temperature, atmospheric radiative transfer, and sensor noise modeling. Each modeling effort was investigated uniquely, and the results were combined to derive the total process error. The uncertainty propagation results indicate that the historic vicarious calibration process has an expected uncertainty of +/- 0.5 K. This conclusion is consistent with the observed root mean square error (RMSE) between observed and predicted values using this method. After the instrument calibration was updated, the difference between instrument-derived radiance (observed data spanning a 23 year period) and radiance estimated using the subsurface buoy temperatures was 0.6 K RMSE. This demonstrates that the residual error in the observed calibration results and the expected process uncertainty are essentially comparable. Using the error analysis results, the data from the historical buoy temperature study were combined with data from traditional surface temperature and radiance studies (1999-2000) to generate a lifetime calibration update for the Landsat 5 instrument. The final calibration uses data from the long established thermal calibration sites on the Great Lakes (Erie and Ontario), the Salton Sea, and Lake Tahoe, as well as a number of additional deep water sites where National Oceanic and Atmospheric Administration (NOAA) bouys and atmospheric sounding data provide adequate ground truth for the historical calibration approach. This updated calibration has been implemented in the U.S. Geological Survey (USGS) - National Aeronautics and Space Administration (NASA) processing system. These results indicate that the image data is calibrated to better than 0.67 K (one sigma) over its 25+ year record. While this work rigorously investigated the historic thermal vicarious calibration process for Landsat 5 Thematic Mapper (TM), the approach and the new study sites can be easily extended to the investigation of similar systems. C1 [Padula, Francis P.] Integr Applicat Inc, Chantilly, VA 20151 USA. [Schott, John R.; Raqueno, Nina G.] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA. [Barsi, Julia A.] Space Sci & Applicat Inc, Greenbelt, MD 20781 USA. [Hook, Simon J.] NASA, CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Padula, FP (reprint author), Integr Applicat Inc, Chantilly, VA 20151 USA. EM frank.padula@gmail.com FU NASA [NNX08AE21G] FX The material is based upon work supported by NASA under award No. NNX08AE21G. NR 27 TC 5 Z9 5 U1 0 U2 6 PU CANADIAN AERONAUTICS & SPACE INST PI KANATA PA 350 TERRY FOX DR, STE 104, KANATA, ON K2K 2W5, CANADA SN 0703-8992 EI 1712-7971 J9 CAN J REMOTE SENS JI Can. J. Remote Sens. PD OCT PY 2010 VL 36 IS 5 SI SI BP 617 EP 630 PG 14 WC Remote Sensing SC Remote Sensing GA V23QE UT WOS:000208356500015 ER PT J AU Campagnola, S Strange, NJ Russell, RP AF Campagnola, Stefano Strange, Nathan J. Russell, Ryan P. TI A fast tour design method using non-tangent v-infinity leveraging transfer SO CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY LA English DT Article DE N-body; Resonance; Enceladus orbiter; VILT; Gravity assists; Artificial satellites ID TRAJECTORY DESIGN; MISSION; GRAPH AB The announced missions to the Saturn and Jupiter systems renewed the space community interest in simple design methods for gravity assist tours at planetary moons. A key element in such trajectories are the V-Infinity Leveraging Transfers (VILT) which link simple impulsive maneuvers with two consecutive gravity assists at the same moon. VILTs typically include a tangent impulsive maneuver close to an apse location, yielding to a desired change in the excess velocity relative to the moon. In this paper we study the VILT solution space and derive a linear approximation which greatly simplifies the computation of the transfers, and is amenable to broad global searches. Using this approximation, Tisserand graphs, and heuristic optimization procedure we introduce a fast design method for multiple-VILT tours. We use this method to design a trajectory from a highly eccentric orbit around Saturn to a 200-km science orbit at Enceladus. The trajectory is then recomputed removing the linear approximation, showing a Delta v change of < 4%. The trajectory is 2.7 years long and comprises 52 gravity assists at Titan, Rhea, Dione, Tethys, and Enceladus, and several deterministic maneuvers. Total Delta v is only 445 m/s, including the Enceladus orbit insertion, almost 10 times better then the 3.9 km/s of the Enceladus orbit insertion from the Titan-Enceladus Hohmann transfer. The new method and demonstrated results enable a new class of missions that tour and ultimately orbit small mass moons. Such missions were previously considered infeasible due to flight time and Delta v constraints. C1 [Campagnola, Stefano] Univ So Calif, Los Angeles, CA 90089 USA. [Strange, Nathan J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Russell, Ryan P.] Georgia Inst Technol, Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. RP Campagnola, S (reprint author), JAXA ISAS, 3-1-1 Yoshinodai, Kanagawa 2998510, Japan. EM stefano.campagnola@missionanalysis.org NR 19 TC 12 Z9 12 U1 1 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0923-2958 J9 CELEST MECH DYN ASTR JI Celest. Mech. Dyn. Astron. PD OCT PY 2010 VL 108 IS 2 BP 165 EP 186 DI 10.1007/s10569-010-9295-1 PG 22 WC Astronomy & Astrophysics; Mathematics, Interdisciplinary Applications SC Astronomy & Astrophysics; Mathematics GA 654NE UT WOS:000282174200004 ER PT J AU Zahnle, K Schaefer, L Fegley, B AF Zahnle, Kevin Schaefer, Laura Fegley, Bruce TI Earth's Earliest Atmospheres SO COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY LA English DT Article ID AMINO-ACID-CONCENTRATIONS; PRIMORDIAL TERRESTRIAL ATMOSPHERE; EXTRATERRESTRIAL ORGANIC-MATTER; SINGLE-IMPACT HYPOTHESIS; PRIMITIVE EARTH; HYDROTHERMAL SYSTEMS; PREBIOTIC SYNTHESIS; CARBONACEOUS METEORITES; GEOCHEMICAL CONSTRAINTS; MURCHISON METEORITE AB Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth's atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth's subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO-or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases. C1 [Zahnle, Kevin] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Schaefer, Laura; Fegley, Bruce] Washington Univ, Planetary Chem Lab, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Schaefer, Laura; Fegley, Bruce] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA. RP Zahnle, K (reprint author), NASA, Ames Res Ctr, Div Space Sci, MS 245-3, Moffett Field, CA 94035 USA. EM kevin.j.zahnle@nasa.gov FU NASA FX The authors would like to thank NASA's Exobiology and Astrobiology Program for support. NR 113 TC 47 Z9 47 U1 10 U2 107 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1943-0264 J9 CSH PERSPECT BIOL JI Cold Spring Harbor Perspect. Biol. PD OCT PY 2010 VL 2 IS 10 AR a004895 DI 10.1101/cshperspect.a004895 PG 17 WC Cell Biology SC Cell Biology GA 657WY UT WOS:000282451000012 PM 20573713 ER PT J AU Dunham, DW Genova, AL AF Dunham, D. W. Genova, A. L. TI Using Venus for Locating Space Observatories to Discover Potentially Hazardous Asteroids SO COSMIC RESEARCH LA English DT Article; Proceedings Paper CT International Symposium on Near-Earth Hazardous Asteroids CY OCT 12-16, 2009 CL MALTA AB The paper outlines the history of space missions for discovery and observation of near-earth objects, whose orbits are within that of the Earth, with using Venus gravity to enter the orbits advantageous for observing the Atira asteroids. C1 [Dunham, D. W.] Kinet X Inc, Greenbelt, MD 20770 USA. [Genova, A. L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Dunham, DW (reprint author), Kinet X Inc, 7913 Kara Ct, Greenbelt, MD 20770 USA. NR 17 TC 1 Z9 1 U1 0 U2 2 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0010-9525 J9 COSMIC RES+ JI Cosmic Res. PD OCT PY 2010 VL 48 IS 5 BP 424 EP 429 DI 10.1134/S0010952510050084 PG 6 WC Engineering, Aerospace; Astronomy & Astrophysics SC Engineering; Astronomy & Astrophysics GA 664OO UT WOS:000282971800008 ER EF