FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Crawford, MK Harlow, RL Deemyad, S Tissen, V Schilling, JS McCarron, EM Tozer, SW Cox, DE Ichikawa, N Uchida, S Huang, Q AF Crawford, MK Harlow, RL Deemyad, S Tissen, V Schilling, JS McCarron, EM Tozer, SW Cox, DE Ichikawa, N Uchida, S Huang, Q TI High-pressure study of structural phase transitions and superconductivity in La(1.48)Nd(0.4)Sr(0.12)CuO(4) SO PHYSICAL REVIEW B LA English DT Article ID OXIDE SUPERCONDUCTORS; HYDROSTATIC-PRESSURE; LOW-TEMPERATURE; LA2-XBAXCUO4; DEPENDENCE; MODULATION; CUPRATE; STRIPES AB We have determined the crystal structures and superconducting transition temperatures of La(1.48)Nd(0.4)Sr(0.12)CuO(4) under nearly hydrostatic pressures in diamond anvil cells to 5.0 GPa and 19.0 GPa, respectively. Synchrotron x-ray powder diffraction measurements were used to establish the pressure-temperature structural phase diagram. Under pressure the superconducting transition temperature increases rapidly from T(c)approximate to 3 K to a maximum value of 22 K at 5 GPa, a pressure slightly greater than that required to stabilize the undistorted I4/mmm structure in the superconducting state. Increasing the pressure further to 19 GPa leads to a decrease in T(c) to similar to 12 K. These results are discussed in relation to earlier high pressure measurements for similar materials. C1 DuPont Co Inc, Cent Res & Dev, Wilmington, DE 19880 USA. Washington Univ, Dept Phys, St Louis, MO 63130 USA. Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Univ Tokyo, Dept Phys, Tokyo 1138656, Japan. Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Russia. RP Crawford, MK (reprint author), DuPont Co Inc, Cent Res & Dev, Wilmington, DE 19880 USA. NR 38 TC 17 Z9 17 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 10 AR 104513 DI 10.1103/PhysRevB.71.104513 PG 6 WC Physics, Condensed Matter SC Physics GA 912GK UT WOS:000228065400081 ER PT J AU Dabrowski, B Avdeev, M Chmaissem, O Kolesnik, S Klamut, PW Maxwell, M Jorgensen, JD AF Dabrowski, B Avdeev, M Chmaissem, O Kolesnik, S Klamut, PW Maxwell, M Jorgensen, JD TI Freezing of octahedral tilts below the Curie temperature in SrRu1-vO3 perovskites SO PHYSICAL REVIEW B LA English DT Article ID SRRUO3; DIFFRACTION AB The crystal structure and magnetic properties of SrRu1-vO3 samples annealed in air (v=0) and high oxygen pressure (v=0.02 and 0.09) were studied as a function of temperature between 10 K and room temperature. Neutron powder diffraction analysis revealed that below T-C=163 K the b and c lattice parameters and the unit cell volume are virtually temperature independent for the stoichiometric material whereas this behavior is less pronounced in the Ru-deficient samples with decreased T-C=135 K and 82 K. We show that this previously reported Invar effect below the ferromagnetic ordering temperature originates from freezing of the octahedral tilting about the [001] axis that can be observed for both stoichiometric and Ru-deficient samples. Spontaneous magnetostriction has the largest effect on the b axis of the orthorhombic Pbnm crystal structure. C1 No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Dabrowski, B (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RI Avdeev, Maxim/A-5625-2008 OI Avdeev, Maxim/0000-0003-2366-5809 NR 14 TC 24 Z9 24 U1 0 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 10 AR 104411 DI 10.1103/PhysRevB.71.104411 PG 5 WC Physics, Condensed Matter SC Physics GA 912GK UT WOS:000228065400047 ER PT J AU Dai, PC Kang, HJ Mook, HA Matsuura, M Lynn, JW Kurita, Y Komiya, S Ando, Y AF Dai, PC Kang, HJ Mook, HA Matsuura, M Lynn, JW Kurita, Y Komiya, S Ando, Y TI Electronic inhomogeneity and competing phases in electron-doped superconducting Pr0.88LaCe0.12CuO4-delta SO PHYSICAL REVIEW B LA English DT Article ID STATIC ANTIFERROMAGNETIC CORRELATIONS; HIGH-TEMPERATURE SUPERCONDUCTOR; CONDENSED-MATTER PHYSICS; T-C SUPERCONDUCTOR; CUPRATE SUPERCONDUCTORS; NEUTRON-SCATTERING; SPURIOUS MAGNETISM; SPIN DYNAMICS; ORDER; FIELD AB We use neutron scattering to demonstrate that electron-doped superconducting Pr0.88LaCe0.12CuO4-delta in the underdoped regime is electronically phase separated in the ground state, showing the coexistence of a superconducting phase with a three-dimensional antiferromagnetically ordered phase and a quasi-two-dimensional spin-density wave modulation. The Neel temperature of both antiferromagnetic phases decreases linearly with increasing superconducting transition temperature (T-c) and vanishes when optimal superconductivity is achieved. These results indicate that the electron-doped copper oxides are close to a quantum critical point, where the delicate energetic balance between different competing states leads to microscopic heterogeneity. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Cent Res Inst Elect Power Ind, Tokyo 2018511, Japan. RP Dai, PC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM daip@ornl.gov RI Dai, Pengcheng /C-9171-2012; Ando, Yoichi/B-8163-2013; Matsuura, Masato/C-2827-2013 OI Dai, Pengcheng /0000-0002-6088-3170; Ando, Yoichi/0000-0002-3553-3355; Matsuura, Masato/0000-0003-4470-0271 NR 32 TC 29 Z9 30 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 10 AR 100502 DI 10.1103/PhysRevB.71.100502 PG 4 WC Physics, Condensed Matter SC Physics GA 912GK UT WOS:000228065400013 ER PT J AU De Marco, M Coffey, D Heary, R Dabrowski, B Klamut, P Maxwell, M Toorongian, S Haka, M AF De Marco, M Coffey, D Heary, R Dabrowski, B Klamut, P Maxwell, M Toorongian, S Haka, M TI Ru-99 Mossbauer effect study of off-stoichiometric SrRu1-vO3 synthesized with different Curie temperatures SO PHYSICAL REVIEW B LA English DT Article ID ITINERANT FERROMAGNET SRRUO3; MAGNETIC-PROPERTIES; ELECTRONIC-STRUCTURE; TRANSPORT-PROPERTIES; SUPERCONDUCTIVITY; PEROVSKITES; TRANSITION AB The Ru-99 Mossbauer effect has been measured in the off-stoichiometric SrRuO3 compounds that have been synthesized with lowered T-C for compositions SrRu1-vO3 (0.0 <= v <= 0.12). The T-C of the compounds range from 162 K (pure SrRuO3) to 45 K (SrRu0.88O3). The isomer shifts of these compounds measured above the T-C for each compound reveal a small change in ion state of Ruthenium from 4+ toward 5+ as the T-C decreases. However, the hyperfine magnetic fields remain at approximately 33 T at 4.2 K in depressed T-C compounds and the absence of quadrupolar features in the spectra indicates that the RuO6 octahedra remain undistorted in these samples. The rapid decrease in T-C with the change in the charge distribution at the Ru site suggests that carrier concentration has a much stronger influence on T-C than the rotation of the RuO6 octahedra seen in the Sr1-xCaxRuO3 system. C1 Buffalo State Coll, Dept Phys, Buffalo, NY 14222 USA. SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. No Illinois Univ, Phys Dept, De Kalb, IL 60439 USA. SUNY Buffalo, Dept Nucl Med, Buffalo, NY 14260 USA. Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland. RP Buffalo State Coll, Dept Phys, 1300 Elmwood Ave, Buffalo, NY 14222 USA. NR 38 TC 5 Z9 5 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 10 AR 104403 DI 10.1103/PhysRevB.71.104403 PG 6 WC Physics, Condensed Matter SC Physics GA 912GK UT WOS:000228065400039 ER PT J AU Dordevic, SV Homes, CC Tu, JJ Valla, T Strongin, M Johnson, PD Gu, GD Basov, DN AF Dordevic, SV Homes, CC Tu, JJ Valla, T Strongin, M Johnson, PD Gu, GD Basov, DN TI Extracting the electron-boson spectral function alpha F-2(omega) from infrared and photoemission data using inverse theory SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; SPIN FLUCTUATIONS; CHARGE DYNAMICS; PHONON DENSITY; STATES; EXCITATIONS; LEAD; BI2SR2CACU2O8; CONDUCTIVITY; SCATTERING AB We present a method for extracting the electron-boson spectral function alpha F-2(omega) from infrared and photoemission data. This procedure is based on inverse theory and will be shown to be superior to previous techniques. Numerical implementation of the algorithm is presented in detail and then used to accurately determine the doping and temperature dependence of the spectral function in several families of high-T-c superconductors. Principal limitations of extracting alpha F-2(omega) from experimental data will be pointed out. We directly compare the IR and angular-resolved photoemission spectroscopy alpha F-2(omega) and discuss the resonance structure in the spectra in terms of existing theoretical models. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Dordevic, SV (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM sasa@bnl.gov RI Gu, Genda/D-5410-2013 OI Gu, Genda/0000-0002-9886-3255 NR 45 TC 60 Z9 60 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 10 AR 104529 DI 10.1103/PhysRevB.71.104529 PG 12 WC Physics, Condensed Matter SC Physics GA 912GK UT WOS:000228065400097 ER PT J AU Ellingson, RJ Engtrakul, C Jones, M Samec, M Rumbles, G Nozik, AJ Heben, MJ AF Ellingson, RJ Engtrakul, C Jones, M Samec, M Rumbles, G Nozik, AJ Heben, MJ TI Ultrafast photoresponse of metallic and semiconducting single-wall carbon nanotubes SO PHYSICAL REVIEW B LA English DT Article ID CARRIER DYNAMICS; ABSORPTION-SPECTROSCOPY; ELECTRONIC-STRUCTURE; QUANTUM DOTS; STATES; PHOTOLUMINESCENCE; RELAXATION; DISPLAY AB Utilizing a transient absorption (TA) technique based on a chirp-corrected broadband probe, we have studied the ultrafast photoresponse of dispersed HiPco single-wall carbon nanotubes (SWNTs) over the range of 440-1050 nm for excitation in the range of 430-1700 nm. While both metallic and semiconducting SWNTs show transient bleaching at their M-11 and S-11 energies for excitation above these energies, metallic SWNTs uniquely exhibit a photoresponse to sub-M-11 excitation. We observe a TA spectral response for metallic SWNTs which is consistent with thermal broadening of the M-11 transition bands. In contrast to metallic SWNTs, specific semiconducting SWNTs exhibit transparency for sub-S-11 excitation, in accord with the expected zero density of states below the first interband transition. We report the observation of a long-lived (tau>1 ns) transient bleach component for three semiconducting SWNT species. C1 Natl Renewable Energy Lab, Ctr Basic Sci, Golden, CO 80401 USA. RP Ellingson, RJ (reprint author), Natl Renewable Energy Lab, Ctr Basic Sci, Golden, CO 80401 USA. RI Jones, Marcus/B-3291-2008; Engtrakul, Chaiwat/H-5634-2011; Ellingson, Randy/H-3424-2013; Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016; OI Jones, Marcus/0000-0001-9912-1168; Rumbles, Garry/0000-0003-0776-1462 NR 43 TC 26 Z9 26 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 11 AR 115444 DI 10.1103/PhysRevB.71.115444 PG 8 WC Physics, Condensed Matter SC Physics GA 912GL UT WOS:000228065500153 ER PT J AU Farid, AK Yu, YG Saxena, A Kumar, P AF Farid, AK Yu, YG Saxena, A Kumar, P TI Spatial structures in a generalized Ginzburg-Landau free energy SO PHYSICAL REVIEW B LA English DT Article ID NARROW SUPERCONDUCTING CHANNELS; PHASE-TRANSITION; BA0.6K0.4BIO3; THERMODYNAMICS AB Searching for characteristic signatures of a higher order phase transition (specifically of the order of three or four), we have calculated the spatial profiles and the energies of a spatially varying order parameter in one dimension. In the case of a pth order phase transition to a superconducting ground state, the free energy density depends on temperature as a(p), where a=a(0)(1-T/T-c) is the reduced temperature. The energy of a domain wall between two degenerate ground states is epsilon(p)similar or equal to a(p-1/2). We have also investigated the effects of a supercurrent in a narrow wire. These effects are limited by a critical current which has a temperature dependence J(c)(T)similar or equal to a((2p-1)/2). The phase slip center profiles and their energies are also calculated. Given the suggestion that the superconducting transition in (Ba1-xKx)BiO3, for x=0.4, may be of the order of four, these predictions have relevance for future experiments. C1 Univ Florida, Dept Phys, Gainesville, FL 32611 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Farid, AK (reprint author), Univ Florida, Dept Phys, POB 118440, Gainesville, FL 32611 USA. EM pkumar@ufl.edu NR 25 TC 0 Z9 0 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 10 AR 104509 DI 10.1103/PhysRevB.71.104509 PG 7 WC Physics, Condensed Matter SC Physics GA 912GK UT WOS:000228065400077 ER PT J AU Feulner, P Ecker, M Jakob, P Romberg, R Weimar, R Menzel, D Fohlisch, A Wurth, W Yang, SH Fadley, CS Larciprete, R Lizzit, S Kostov, KL Tyuliev, G AF Feulner, P Ecker, M Jakob, P Romberg, R Weimar, R Menzel, D Fohlisch, A Wurth, W Yang, SH Fadley, CS Larciprete, R Lizzit, S Kostov, KL Tyuliev, G TI Search for a local effect in multiatom resonant core excitation in a surface species: Photoemission and photon-stimulated desorption from N-2,on Ni(111) SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-FLUORESCENCE; BOND BREAKING; SPECTROSCOPY; NEUTRALS; IONS AB We have investigated photoabsorption, N 1s photoelectron emission, and photon-stimulated desorption (PSD) of N+ ions, from N-2 molecules perpendicularly chemisorbed on Ni(111) surfaces, in the energy range of the Ni 2p(3/2,1/2) excitations. For this system, N 1s photoemission monitors single-core-hole production, whereas PSD of N+ is mainly due to excitation of multiply excited N Is core-hole states. The amplitude variations of these two signals and the kinetic energy distributions (KED's) of the N+ ions were recorded as functions of the photon energy. In addition, we measured the amplitude variations of PE and PSD as a function of the photon incidence angle, which was varied from grazing (7 degrees with respect to the surface) to steeper angles (43 degrees and 50 degrees with respect to the surface). For grazing incidence, strong variations of both the photoelectron and the N+ signals with photon energy and angle of incidence were found in the Ni 2p region which are compatible with x-ray optical (dielectric) effects, one manifestation of multiatom resonant photoemission. The N+ KED's, which are known to depend strongly on the nature of the electronic excitation responsible, did not change across the Ni 2P3/2 threshold, which excludes any type of state selectivity in the interatomic core-coupling effects observed. For N Is photoemission, a first analysis of our data suggests a variation of the N Is signal at the Ni 2p edges also for steeper angles of light incidence, of comparable magnitude to that at grazing incidence. However, more careful x-ray photoelectron spectroscopy experiments and the investigation of electronically stimulated desorption of neutral N-2 molecules and N atoms reveal that these effects are due to a strong increase of beam damage when passing the Ni 2p edge; these effects could be reduced by rapidly scanning the sample under the beam. We thus conclude that for high angles of incidence most of the Ni 2p-related changes in our N Is photoemission signal are due to beam damage. C1 Tech Univ Munich, Phys Dept E 20, D-85747 Garching, Germany. Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. Synchrotrone Trieste, Elettra, Basovizza, Italy. Bulgarian Acad Sci, Inst Gen & Inorgan Chem, Sofia, Bulgaria. MPG, Fritz Haber Inst, Berlin, Germany. TASC, Trieste, Italy. RP Tech Univ Munich, Phys Dept E 20, D-85747 Garching, Germany. RI Jakob, Peter/A-1829-2012 NR 31 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 12 AR 125409 DI 10.1103/PhysRevB.71.125409 PG 8 WC Physics, Condensed Matter SC Physics GA 923QB UT WOS:000228923300124 ER PT J AU Fiete, GA Zarand, G Janko, B Redlinski, P Moca, CP AF Fiete, GA Zarand, G Janko, B Redlinski, P Moca, CP TI Positional disorder, spin-orbit coupling, and frustration in Ga1-xMnxAs SO PHYSICAL REVIEW B LA English DT Article ID DILUTED MAGNETIC SEMICONDUCTORS; III-V SEMICONDUCTORS; CURIE-TEMPERATURE; EPILAYERS; FERROMAGNETISM; STATES AB We study the magnetic properties of metallic Ga1-xMnxAs. We calculate the effective Ruderman-Kittel-Kasuya-Yoshida interaction between Mn spins using several realistic models for the valence band structure of GaAs. We also study the effect of positional disorder of the Mn on the magnetic properties. We find that the interaction between two Mn spins is anisotropic due to spin-orbit coupling both within the so-called spherical approximation and in the more realistic six band model. The spherical approximation strongly overestimates this anisotropy, especially for short distances between Mn ions. Using the obtained effective Hamiltonian we carry out Monte Carlo simulations of finite and zero temperature magnetization and find that, due to orientational frustration of the spins, noncollinear states appear in both valence band approximations for disordered, uncorrelated Mn impurities in the small concentration regime. Introducing correlations among the substitutional Mn positions or increasing the Mn concentration leads to an increase in the remanent magnetization at zero temperature and an almost fully polarized ferromagnetic state. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60429 USA. Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. Tech Univ Budapest, Inst Phys Res, H-1521 Budapest, Hungary. Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. Univ Notre Dame, Dept Phys, Notre Dame, IN 46617 USA. RP Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60429 USA. RI Zarand, Gergely/D-4571-2009; Moca, Catalin Pascu/D-9507-2014 NR 61 TC 19 Z9 19 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 11 AR 115202 DI 10.1103/PhysRevB.71.115202 PG 16 WC Physics, Condensed Matter SC Physics GA 912GL UT WOS:000228065500061 ER PT J AU Fraerman, AA Karetnikova, IR Nefedov, IM Shereshevskii, IA Silaev, MA AF Fraerman, AA Karetnikova, IR Nefedov, IM Shereshevskii, IA Silaev, MA TI Magnetization reversal of a nanoscale ferromagnetic disk placed above a superconductor SO PHYSICAL REVIEW B LA English DT Article ID NANOSTRUCTURES AB Using numerical simulation we have studied a magnetization distribution and a process of magnetization reversal in nanoscale magnets placed above a superconductor plane. In order to consider an influence of the superconductor on the magnetization distribution in the nanomagnet we have used the London approximation. We have found that for usual values of London penetration depth the ground state magnetization is mostly unchanged. But at the same time the fields of vortex nucleation and annihilation change significantly: the interval where the vortex is stable enlarges on 100-200 Oe for the particle above the superconductor. Such fields are experimentally observable so there is a possibility of some practical applications of this effect. C1 Russian Acad Sci, Inst Phys Microstruct, Nizhnii Novgorod 603950, Russia. Argonne Natl Lab, Argonne, IL 60439 USA. RP Fraerman, AA (reprint author), Russian Acad Sci, Inst Phys Microstruct, GSP-105, Nizhnii Novgorod 603950, Russia. RI Silaev, Mihail/A-1479-2015 OI Silaev, Mihail/0000-0001-5629-8860 NR 17 TC 1 Z9 1 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 9 AR 094416 DI 10.1103/PhysRevB.71.094416 PG 7 WC Physics, Condensed Matter SC Physics GA 920WV UT WOS:000228727100070 ER PT J AU Gupta, M Singh, DJ Gupta, R AF Gupta, M Singh, DJ Gupta, R TI Origin of the 20-electron structure of Mg3MnH7: Density functional calculations SO PHYSICAL REVIEW B LA English DT Article ID METAL-HYDRIDES; AB-INITIO; COMPLEX AB The electronic structure and stability of the 20-electron complex hydride, Mg3MnH7 is studied using density functional calculations. The heat of formation is larger in magnitude than that of MgH2. The deviation from the 18-electron rule is explained by the predominantly ionic character of the band structure and a large crystal field splitting of the Mn d bands. In particular, each H provides one deep band accomodating two electrons, while the Mn t(2g) bands hold an additional six electrons per formula unit. C1 Univ Paris 11, EA3547, F-91405 Orsay, France. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Ctr Etud Saclay, Comis Energie Atom, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France. RP Gupta, M (reprint author), Univ Paris 11, EA3547, Batiment 415, F-91405 Orsay, France. RI Singh, David/I-2416-2012 NR 22 TC 5 Z9 5 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 9 AR 092107 DI 10.1103/PhysRevB.71.092107 PG 4 WC Physics, Condensed Matter SC Physics GA 920WV UT WOS:000228727100007 ER PT J AU Halilov, SV Singh, DJ Minar, J Perlov, AY Ebert, H AF Halilov, SV Singh, DJ Minar, J Perlov, AY Ebert, H TI Antiferromagnetic spin fluctuations and proximity to a quantum critical point in Sr2RuO4 SO PHYSICAL REVIEW B LA English DT Article ID TRIPLET SUPERCONDUCTOR SR2RUO4; GAP STRUCTURE; FERROMAGNETISM; CONDUCTIVITY; ANISOTROPY; MAGNETISM; SRRUO3 AB Spin-density functional calculations are used to investigate the proximity to antiferromagnetism and the effects of partial Ti substitution in Sr2RuO4. Ti is found to enter the lattice as Ti4+ with only a small relaxation of the neighboring O ions. The Ti disrupts the Ru-O-Ru chains, leading to an increase in the local density of states, and thereby favors moment formation on the neighboring Ru sites. Supercell calculations and frozen spin-wave calculations show a weak antiferromagnetic instability at the Fermi surface nesting vector implying nearness to a quantum critical point. Properties of Sr2RuO4 are discussed in relation to these results. C1 RJ Mears LLC, Waltham, MA 02451 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Univ Munich, Dept Chem, D-81377 Munich, Germany. RP Halilov, SV (reprint author), RJ Mears LLC, 1100 Winter St,Suite 4700, Waltham, MA 02451 USA. RI Minar, Jan/E-9598-2012; Singh, David/I-2416-2012; Minar, Jan/O-3186-2013 OI Minar, Jan/0000-0001-9735-8479; Minar, Jan/0000-0001-9735-8479 NR 45 TC 9 Z9 9 U1 1 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 10 AR 100503 DI 10.1103/PhysRevB.71.100503 PG 4 WC Physics, Condensed Matter SC Physics GA 912GK UT WOS:000228065400014 ER PT J AU Hucker, M Kim, YJ Gu, GD Tranquada, JM Gaulin, BD Lynn, JW AF Hucker, M Kim, YJ Gu, GD Tranquada, JM Gaulin, BD Lynn, JW TI Neutron scattering study on La1.9Ca1.1Cu2O6+delta and La1.85Sr0.15CaCu2O6+delta SO PHYSICAL REVIEW B LA English DT Article ID COPPER-OXIDE SUPERCONDUCTORS; INCOMMENSURATE MAGNETIC CORRELATIONS; HIGH-TEMPERATURE SUPERCONDUCTIVITY; SINGLE-CRYSTAL LA2-XSRXCUO4; MUON-SPIN ROTATION; DIFFRACTION DATA; SQUARE-LATTICE; ANTIFERROMAGNET SR2CUO2CL2; TRANSITION-TEMPERATURE; DEFECT STRUCTURE AB We present neutron scattering data on two single crystals of the high temperature superconductor La2-x(Ca,Sr)(x)CaCu2O6+delta. The Ca-0.1-doped crystal exhibits a long-range antiferromagnetically ordered ground state. In contrast, the Sr-0.15-doped crystal exhibits short-range antiferromagnetic order as well as weak superconductivity. In both crystals antiferromagnetic correlations are commensurate; however, some results on the Ca-0.1-doped crystal-resemble those on the spin-glass phase of La2-xSrxCuO4, where magnetic correlations became incommensurate. In addition, both crystals show a structural transition from tetragonal to orthorhombic symmetry. Quite remarkably, the temperature dependence and correlation length of the magnetic order is very similar to that of the orthorhombic distortion. We attribute this behavior to an orthorhombic strain-induced interbilayer magnetic coupling, which triggers the antiferromagnetic order. The large size of the crystals made it also possible to study the magnetic diffuse scattering along rods perpendicular to the CuO2 planes in more detail. For comparison we show x-ray diffraction and magnetization data. In particular, for the Ca-0.1-doped crystal these measurements reveal valuable information on the spin-glass transition as well as. a second anomaly associated with the Neel transition. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20742 USA. RP Hucker, M (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RI Tranquada, John/A-9832-2009; Piper, Walter/B-7908-2009; Kim, Young-June /G-7196-2011 OI Tranquada, John/0000-0003-4984-8857; Kim, Young-June /0000-0002-1172-8895 NR 63 TC 6 Z9 6 U1 1 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 9 AR 094510 DI 10.1103/PhysRevB.71.094510 PG 12 WC Physics, Condensed Matter SC Physics GA 920WV UT WOS:000228727100101 ER PT J AU Jones, M Engtrakul, C Metzger, WK Ellingson, RJ Nozik, AJ Heben, MJ Rumbles, G AF Jones, M Engtrakul, C Metzger, WK Ellingson, RJ Nozik, AJ Heben, MJ Rumbles, G TI Analysis of photoluminescence from solubilized single-walled carbon nanotubes SO PHYSICAL REVIEW B LA English DT Article ID RAMAN-SCATTERING; ELECTRONIC-STRUCTURE; AQUEOUS SUSPENSION; FLUORESCENCE; SPECTROSCOPY; SPECTRA; DEPENDENCE; TRANSPORT; ENERGIES; DYNAMICS AB The functional form of the photoluminescence (PL) line shape from individual single-walled carbon nanotube (SWNT) species is found to contain a significant Lorentzian component and the Stokes shift is observed to be very small (< 8 meV), which suggests an excitonic dephasing mechanism that is largely decoupled from surrounding solvent and surfactant molecules. The PL quantum yield (PLQY) of two SWNT species is determined to be similar to 5x10(-4), and it is suggested that this is lower than the "true" value due to quenching of the PL in bundles by metallic tubes. Time-resolved PL measurements reveal a dominant, luminescence lifetime component of 130 ps that, when combined with a predicted natural radiative lifetime of similar to 20 ns, suggests that the true PLQY is similar to 6.5x10(-3). Finally, deconvoluted PL excitation spectra are produced for eight SWNT species, and the appearance of a higher-energy excitonic subband is discussed. C1 Natl Renewable Energy Lab, Ctr Basic Sci, Golden, CO 80401 USA. RP Jones, M (reprint author), Natl Renewable Energy Lab, Ctr Basic Sci, 1617 Cole Blvd, Golden, CO 80401 USA. RI Jones, Marcus/B-3291-2008; Engtrakul, Chaiwat/H-5634-2011; Ellingson, Randy/H-3424-2013; Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016; OI Jones, Marcus/0000-0001-9912-1168; Rumbles, Garry/0000-0003-0776-1462 NR 55 TC 83 Z9 83 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 11 AR 115426 DI 10.1103/PhysRevB.71.115426 PG 9 WC Physics, Condensed Matter SC Physics GA 912GL UT WOS:000228065500135 ER PT J AU Jorge, GA Stern, R Jaime, M Harrison, N Bonca, J El Shawish, S Batista, CD Dabkowska, HA Gaulin, BD AF Jorge, GA Stern, R Jaime, M Harrison, N Bonca, J El Shawish, S Batista, CD Dabkowska, HA Gaulin, BD TI Crystal symmetry and high-magnetic-field specific heat of SrCU2(BO3)(2) SO PHYSICAL REVIEW B LA English DT Article ID SPIN SYSTEM SRCU2(BO3)(2); DIMER GROUND-STATE; WEAK FERROMAGNETISM; TEMPERATURE; ANTIFERROMAGNET; MODEL; ESR AB We report measurements of the specific heat of them quantum spin liquid system SrCu2(BO3)(2) in continuous magnetic fields H of up to 33 T. The specific heat data, when combined with a finite temperature Lanczos diagonalization of the Shastry-Sutherland Hamiltonian, indicate the presence of a nearest neighbor Dzyaloshinsky-Moriya (DM) interaction that violates the crystal symmetry. Moreover, the same DM interaction is required to explain the observed electron spin resonance lines for H vertical bar vertical bar c. C1 Los Alamos Natl Lab, MST NHMFL, Los Alamos, NM 87545 USA. NICPB, Tallinn, Estonia. FMF Univ Ljubljana, Dept Phys, Ljubljana 1000, Slovenia. Jozef Stefan Inst, Ljubljana 1000, Slovenia. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4C6, Canada. Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. RP Los Alamos Natl Lab, MST NHMFL, POB 1663, Los Alamos, NM 87545 USA. RI Piper, Walter/B-7908-2009; Jaime, Marcelo/F-3791-2015; Stern, Raivo/A-5387-2008; Batista, Cristian/J-8008-2016 OI Jaime, Marcelo/0000-0001-5360-5220; Stern, Raivo/0000-0002-6724-9834; NR 29 TC 28 Z9 28 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 9 AR 092403 DI 10.1103/PhysRevB.71.092403 PG 4 WC Physics, Condensed Matter SC Physics GA 920WV UT WOS:000228727100015 ER PT J AU Kashtanov, S Augustson, A Rubensson, JE Nordgren, J Agren, H Guo, JH Luo, Y AF Kashtanov, S Augustson, A Rubensson, JE Nordgren, J Agren, H Guo, JH Luo, Y TI Chemical and electronic structures of liquid methanol from x-ray emission spectroscopy and density functional theory SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; NEUTRON-DIFFRACTION; METHYL-ALCOHOL; MICROWAVE-SPECTRUM; ROOM-TEMPERATURE; BASIS-SETS; ENERGY; APPROXIMATION; SIMULATION; SURFACE AB We have applied x-ray emission spectroscopy and density functional theory (DFT) to study the chemical and electronic structures of liquid methanol. The x-ray emission spectra at carbon and oxygen K edges of methanol in different hydrogen-bonded clusters are simulated. It is shown that hydrogen bonding strongly influences the spectral profile of O K emission, but not the C K emission. The methanol chain and ring conformations show a distinct difference in their electronic structures. The molecular orbitals of chains are strongly localized, whereas for the ring structures they show strong delocalization characteristics and behaviorlike covalent pi orbitals in a conjugated system. A comparison of experimental spectra and DFT calculations suggests that liquid methanol comprises combinations of rings and chains of methanol molecules linked with hydrogen bonds and is dominated by structures with the size of six and eight molecules. C1 Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA. AlbaNova Univ Ctr, Royal Inst Technol, SE-10691 Stockholm, Sweden. Uppsala Univ, Dept Phys, S-75121 Uppsala, Sweden. RP Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA. EM jguo@lbl.gov; luo@theochem.kth.se RI Luo, Yi/B-1449-2009; Agren, Hans/H-7715-2016 OI Luo, Yi/0000-0003-0007-0394; NR 40 TC 48 Z9 48 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 10 AR 104205 DI 10.1103/PhysRevB.71.104205 PG 8 WC Physics, Condensed Matter SC Physics GA 912GK UT WOS:000228065400028 ER PT J AU Kenzelmann, M Batista, CD Chen, Y Broholm, C Reich, DH Park, S Qiu, Y AF Kenzelmann, M Batista, CD Chen, Y Broholm, C Reich, DH Park, S Qiu, Y TI S=1/2 chain in a staggered field: High-energy hound-spinon state and the effects of a discrete lattice SO PHYSICAL REVIEW B LA English DT Article ID DYNAMIC STRUCTURE FACTOR; ANTIFERROMAGNET; CONTINUUM; KCUF3; ZERO AB We report an experimental and theoretical study of the antiferromagnetic S=1/2 chain subject to uniform and staggered fields. Using inelastic neutron scattering, we observe a bound-spinon state at high energies in the linear chain compound CUCl(2)center dot 2((CD3)(2)SO). The excitation is explained with a mean-field theory of interacting S=1/2 fermions and arises from the opening of a gap at the Fermi surface due to confining spinon interactions. The mean-field model also describes the wave-vector dependence of the bound-spinon states, particularly in regions where effects of the discrete lattice are important. We calculate the dynamic structure factor using exact diagonalization of finite length chains, obtaining excellent agreement with the experiments. C1 Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. Korea Atom Energy Res Inst, HANARO Ctr, Taejon, South Korea. RP Kenzelmann, M (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RI Broholm, Collin/E-8228-2011; Kenzelmann, Michel/A-8438-2008; Batista, Cristian/J-8008-2016 OI Broholm, Collin/0000-0002-1569-9892; Kenzelmann, Michel/0000-0001-7913-4826; NR 22 TC 14 Z9 14 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 9 AR 094411 DI 10.1103/PhysRevB.71.094411 PG 8 WC Physics, Condensed Matter SC Physics GA 920WV UT WOS:000228727100065 ER PT J AU Kirakosian, A Comstock, MJ Cho, J Crommie, MF AF Kirakosian, A Comstock, MJ Cho, J Crommie, MF TI Molecular commensurability with a surface reconstruction: STM study of azobenzene on Au(111) SO PHYSICAL REVIEW B LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; SINGLE MOLECULES; PHOTOISOMERIZATION; CHIRALITY AB Azobenzene derivatives form a unique class of photoactive molecules that have the potential for nanoscale optical applications. We have observed the self-assembly behavior of azobenzene molecules adsorbed to Au(111) using scanning tunneling microscopy (STM). We find that azobenzene creates a surprising variety of surface structures whose commensurability with the underlying Au(111) "herringbone" reconstruction is coverage dependent. Two commensurate molecular chain phases exist in the low-coverage regime, and phase conversion between these structures can be induced using the STM tip. In the high-coverage regime we observe incommensurate molecular phases as well as commensurate molecular vacancy ordering. These molecular structures reflect a coverage-dependent competition between molecule-molecule and molecule-substrate interactions. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kirakosian, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Cho, Jongweon/F-3704-2011 NR 22 TC 51 Z9 51 U1 3 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 11 AR 113409 DI 10.1103/PhysRevB.71.113409 PG 4 WC Physics, Condensed Matter SC Physics GA 912GL UT WOS:000228065500035 ER PT J AU Koschny, T Zhang, L Soukoulis, CM AF Koschny, T Zhang, L Soukoulis, CM TI Isotropic three-dimensional left-handed metamaterials SO PHYSICAL REVIEW B LA English DT Article ID NEGATIVE INDEX; REFRACTION; TRANSMISSION; RESONATORS; LENS AB We investigate three-dimensional left-handed and related metamaterials based on a fully symmetric multigap,single-ring split-ring resonator (SRR) design and crossing continuous wires. We demonstrate isotropic transmission properties of a SRR-only metamaterial and the corresponding left-handed material that possesses a negative effective index of refraction due to simultaneously negative effective permeability and permittivity. Minor deviations from complete isotropy are due to the finite thickness of the metamaterial. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. RP Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Soukoulis, Costas/A-5295-2008 NR 23 TC 106 Z9 109 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 12 AR 121103 DI 10.1103/PhysRevB.71.121103 PG 4 WC Physics, Condensed Matter SC Physics GA 923QB UT WOS:000228923300003 ER PT J AU Lazarov, VK Plass, R Poon, HC Saldin, DK Weinert, M Chambers, SA Gajdardziska-Josifovska, M AF Lazarov, VK Plass, R Poon, HC Saldin, DK Weinert, M Chambers, SA Gajdardziska-Josifovska, M TI Structure of the hydrogen-stabilized MgO(111)-(1x1) polar surface: Integrated experimental and theoretical studies SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON-MICROSCOPY; OXIDE SURFACES; MADELUNG PROBLEM; IONIC-CRYSTAL; RECONSTRUCTION; MGO; DIFFRACTION; GROWTH; ENERGY; SPECTROSCOPY AB The surface structure of MgO(111)-(1x1) bulk and thinned single crystals have been investigated by transmission and reflection high-energy electron diffraction, low-energy electron diffraction (LEED), and x-ray photoelectron and Auger electron diffraction. The (1x1) polar surface periodicity is observed both after 800 degrees C annealing in air and also after oxygen plasma cleaning and annealing in ultrahigh vacuum. The x-ray photoelectron spectroscopy and diffraction results were analyzed by simulations based on path-reversed LEED theory and by first-principles calculations to help distinguish between different mechanisms for the stabilization of this extremely polar oxide surface: (1) stabilization by adsorption of a hydrogen monolayer; maintaining the insulating nature of the surface and (2) stabilization of the clean O or Mg terminated 1x1 surface by interlayer relaxations and two-dimensional surface metallization. The analysis favors stabilization by a single OH layer, where hydrogen sits on top of the O ions with O-H bond distance of 0.98 angstrom. The in-plane O and Mg positions fit regular rocksalt sites, the distance between the topmost O and Mg plane is 1.04 angstrom, contracted by similar to 14% with respect to bulk MgO distance of 1.21 angstrom, while the interlayer separation of the deeper layers is close to that of bulk, contracted by less than 1%. The presence of a monolayer of H associated with the terminal layer of oxygen reduces significantly the surface dipole and stabilizes the surface. C1 Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA. Univ Wisconsin, Surface Studies Lab, Milwaukee, WI 53201 USA. Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. RP Lazarov, VK (reprint author), Univ Wisconsin, Dept Phys, POB 413, Milwaukee, WI 53201 USA. EM mgj@uwm.edu RI Gajdardziska-Josifovska, Marija/H-9586-2014; Lazarov, Vlado/E-6206-2012 NR 52 TC 64 Z9 65 U1 3 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 11 AR 115434 DI 10.1103/PhysRevB.71.115434 PG 9 WC Physics, Condensed Matter SC Physics GA 912GL UT WOS:000228065500143 ER PT J AU Lordi, V Yuen, HB Bank, SR Wistey, MA Harris, JS Friedrich, S AF Lordi, V Yuen, HB Bank, SR Wistey, MA Harris, JS Friedrich, S TI Nearest-neighbor distributions in Ga1-xInxNyAs1-y and Ga1-xInxNyAs1-y-zSbz thin films upon annealing SO PHYSICAL REVIEW B LA English DT Article ID HIGH-RESOLUTION SPECTROSCOPY; QUANTUM-WELL; GAAS; LASERS; ABSORPTION; GAINNAS; PHOTOREFLECTANCE; NITROGEN; GAINASN; GROWTH AB We examine the distribution of N-In nearest-neighbor bonds in GaInNAs(Sb) quantum wells (QWs) and observe quantitatively the evolution of the distribution during thermal annealing. We use near-edge x-ray absorption fine structure to compare the behavior of compressively strained quantum wells with relaxed thick-film samples, and find no significant effect of strain on the nearest-neighbor bonding. Photoluminescence (PL) and electroreflectance (ER) spectroscopies are used to quantitatively measure the distribution of N-In nearest-neighbor states for a series of variously annealed GaInNAsSb QW samples. We find that increased annealing temperature or time leads to a blueshift of the band gap that saturates after sufficient annealing. This saturation is related to a thermodynamic equilibration of the N-In nearest-neighbor bonding in the material toward highly In-coordinated states, from an as-grown material having a nearly random bonding arrangement dominated by N-Ga bonds. The different N-In nearest-neighbor states form a fine splitting of the band gap of the material. The average spacing between these levels is found to be considerably smaller for GaInNAsSb (similar to 18 meV) than for GaInNAs (similar to 35 meV). Furthermore, we present absorption measurements that reveal an increased optical efficiency of the higher In-coordinated N states that form upon annealing. Additionally, the line shape observed at room temperature in all of the spectroscopic measurements is Gaussian, indicating a strong exciton-phonon coupling in these alloys. C1 Stanford Univ, Solid State & Photon Lab, Stanford, CA 94305 USA. Lawrence Livermore Natl Lab, Adv Detector Grp, Livermore, CA 94550 USA. RP Stanford Univ, Solid State & Photon Lab, Stanford, CA 94305 USA. EM vlordi@snow.stanford.edu OI Lordi, Vincenzo/0000-0003-2415-4656 NR 29 TC 25 Z9 27 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 12 AR 125309 DI 10.1103/PhysRevB.71.125309 PG 8 WC Physics, Condensed Matter SC Physics GA 923QB UT WOS:000228923300082 ER PT J AU Lyo, SK AF Lyo, SK TI Exciton drag and drift induced by a two-dimensional electron gas SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM-WELL STRUCTURES; TEMPERATURE-DEPENDENCE; ENERGY-TRANSFER; GAAS; RECOMBINATION; LIFETIMES AB We show theoretically that an electric current in a high-mobility quasi-two-dimensional electron layer induces a significant drift of excitons in an adjacent layer through interlayer Coulomb interaction. The exciton gas is shown to drift with a velocity which can be a significant fraction of the electron drift velocity at low temperatures. The estimated drift length is of the order of micrometers or larger during the typical exciton lifetime for GaAs/AlxGa1-xAs double quantum wells. A possible enhancement of the exciton radiative lifetime due to the drift is discussed. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Korea Adv Inst Sci & Technol, Taejon 305701, South Korea. RP Lyo, SK (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 24 TC 0 Z9 0 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 11 AR 115317 DI 10.1103/PhysRevB.71.115317 PG 7 WC Physics, Condensed Matter SC Physics GA 912GL UT WOS:000228065500092 ER PT J AU Mannella, N Rosenhahn, A Watanabe, M Sell, B Nambu, A Ritchey, S Arenholz, E Young, A Tomioka, Y Fadley, CS AF Mannella, N Rosenhahn, A Watanabe, M Sell, B Nambu, A Ritchey, S Arenholz, E Young, A Tomioka, Y Fadley, CS TI Temperature-dependent x-ray absorption spectroscopy of colossal magnetoresistive perovskites SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; LA1-XSRXMNO3; LA1-XCAXMNO3; MANGANITES; DISTORTIONS; TRANSITION; OXIDES AB The temperature dependence of the O K-edge pre-edge structure in the x-ray absorption spectra of the perovskites La(1-x)A(x)MnO(3) (A=Ca,Sr; x=0.3,0.4) reveals a correlation between the disappearance of the splitting in the pre-edge region and the presence of Jahn-Teller distortions. The different magnitudes of the distortions for different compounds are proposed to explain some dissimilarities in the line shapes of the spectra taken above the Curie temperature. C1 Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RIKEN, Hyogo 6795148, Japan. Univ Tokyo, Dept Chem, Tokyo 1130033, Japan. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Correlated Electron Res Ctr, Tsukuba, Ibaraki, Japan. RP Mannella, N (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM norman@electron.lbl.gov RI Rosenhahn, Axel/F-7319-2011 OI Rosenhahn, Axel/0000-0001-9393-7190 NR 26 TC 34 Z9 34 U1 1 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 12 AR 125117 DI 10.1103/PhysRevB.71.125117 PG 5 WC Physics, Condensed Matter SC Physics GA 923QB UT WOS:000228923300043 ER PT J AU Mun, BS Lee, C Stamenkovic, V Markovic, NM Ross, PN AF Mun, BS Lee, C Stamenkovic, V Markovic, NM Ross, PN TI Electronic structure of Pd thin films on Re(0001) studied by high-resolution core-level and valence-band photoemission SO PHYSICAL REVIEW B LA English DT Article ID METAL-FILMS; CHEMISORPTION; OVERLAYERS; PALLADIUM; SURFACES; CLUSTERS; PD(111); SHIFTS AB The electronic structures of Pd thin films grown epitaxially on a Re(0001) single-crystal surface are investigated with high-resolution photoelectron spectroscopy. A clear splitting of the Pd 3d(5/2) core level is observed as the coverage of Pd increases from submonolayer to multilayer. The peak at higher binding energy is assigned to emission from the Pd layer at the interface with the Re substrate, while the other is from "bulk" Pd. The observed valence-band spectrum of the pseudomorphic Pd monolayer on Re clearly revealed a reduction in the density of states near the Fermi level and shifting of the d-band center to higher binding energy. It is possible to reconcile the seemingly contradictory core level and valence-band shifts based on the charge-density maps from the earlier full-potential linearized augmented-plane-wave band-structure calculation by Wu and Freeman. Filling of the Pd d band by electron donation from the substrate does not occur. Rather, the correct physical picture for the electronic modification is substrate-induced charge polarization in the Pd layer. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Mun, BS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Mun, Bongjin /G-1701-2013 NR 21 TC 26 Z9 26 U1 0 U2 11 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 11 AR 115420 DI 10.1103/PhysRevB.71.115420 PG 6 WC Physics, Condensed Matter SC Physics GA 912GL UT WOS:000228065500129 ER PT J AU Nagaoka, K Comstock, MJ Hammack, A Crommie, MF AF Nagaoka, K Comstock, MJ Hammack, A Crommie, MF TI Observation of spatially inhomogeneous electronic structure of Si(100) using scanning tunneling spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID ANGLE-RESOLVED-PHOTOEMISSION; SI(001) SURFACE; RECONSTRUCTED SURFACES; PHASE-TRANSITION; MICROSCOPY; STATES; DIMERS; BAND; GROWTH AB We have used scanning tunneling spectroscopy to probe the local electronic properties of Si(100) near room temperature. In the low-bias filled-state regime we observe a band that is spatially localized to the region between Si dimer rows and that is closer to the Fermi energy than features previously associated with the dangling-bond pi band. In the high-bias empty-state regime we observe strong tip-height dependence for the energy of a band typically associated with antibonding back-bond (B*) and dimer-bond (sigma*) states. This latter effect can be explained through tip-induced band bending. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Natl Inst Mat Sci, Nanomat Lab, Tsukuba, Ibaraki 3050044, Japan. RP Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Hammack, Aaron/A-4843-2011 OI Hammack, Aaron/0000-0002-8966-5978 NR 33 TC 7 Z9 7 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 12 AR 121304 DI 10.1103/PhysRevB.71.121304 PG 4 WC Physics, Condensed Matter SC Physics GA 923QB UT WOS:000228923300013 ER PT J AU Pask, JE Sterne, PA AF Pask, JE Sterne, PA TI Real-space formulation of the electrostatic potential and total energy of solids SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE CALCULATIONS; DIFFERENCE-PSEUDOPOTENTIAL METHOD; FINITE-ELEMENT-METHOD; MOLECULAR-DYNAMICS; METALLIC SODIUM; POINT-DEFECTS; SYSTEMS; CONSTITUTION; COMBINATION; FORMALISM AB We develop expressions for the electrostatic potential and total energy of crystalline solids which are amenable to direct evaluation in real space. Unlike conventional reciprocal-space formulations, no Fourier transforms or reciprocal lattice summations are required, and the formulation is well suited for large-scale, parallel computations. The need for reciprocal-space expressions is eliminated by replacing long-range potentials by equivalent localized charge distributions and incorporating long-range interactions into boundary conditions on the unit cell. In so doing, a simplification of the conventional reciprocal-space formalism is obtained. The equivalence of the real- and reciprocal-space formalisms is demonstrated by direct comparison in self-consistent density-functional calculations. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM pask1@llnl.gov NR 44 TC 27 Z9 27 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 11 AR 113101 DI 10.1103/PhysRevB.71.113101 PG 4 WC Physics, Condensed Matter SC Physics GA 912GL UT WOS:000228065500001 ER PT J AU Passian, A Ritchie, RH Lereu, AL Thundat, T Ferrell, TL AF Passian, A Ritchie, RH Lereu, AL Thundat, T Ferrell, TL TI Curvature effects in surface plasmon dispersion and coupling SO PHYSICAL REVIEW B LA English DT Article ID SLAB INCLUDING RETARDATION; ISLAND FILMS; OPTICAL MICROSCOPY; RADIATIVE DECAY; THIN-FILMS; SPECTRA; SILVER; OSCILLATIONS; EXCITATION; INTERFACE AB We have studied the resonant coupling of surface plasmons in curved thin-film tunneling geometries by obtaining the dispersion relations for the system. The surface plasmon dispersion relations are calculated for a metal-coated dielectric probe above a dielectric half space with and without metal coating. The system is modeled in the prolate spheroidal system, and the dispersion relations are studied as functions of the parameter that defines the boundaries of the tip and the corresponding coating, and as functions of the involved coating thicknesses. Using this type of probe-substrate configuration, the nonradiative surface plasmon coupling mechanism is investigated in the visible spectrum at frequencies relevant to scanning probe microscopy. The simulations of the results predict optical access to the resonant surface modes of the system. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Bourgogne, Dept Phys, F-21011 Dijon, France. RP Passian, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM passianan@ornl.gov RI Lereu, Aude/P-6414-2016 OI Lereu, Aude/0000-0001-7390-7832 NR 76 TC 34 Z9 34 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 11 AR 115425 DI 10.1103/PhysRevB.71.115425 PG 13 WC Physics, Condensed Matter SC Physics GA 912GL UT WOS:000228065500134 ER PT J AU Pierce, JP McCarty, KF AF Pierce, JP McCarty, KF TI Self-assembly and dynamics of oxide nanorods on NiAl(110) SO PHYSICAL REVIEW B LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; ORDERED ALUMINA FILM; OXIDATION; DIFFUSION; SURFACE; AL2O3; NANOSTRUCTURES; SPECTROSCOPY; TEMPERATURE; GROWTH AB We observe the spontaneous formation of parallel oxide rods upon exposing a clean NiA](110) surface to oxygen at elevated temperatures (850-1350 K). By following the self-assembly of individual nanorods in real time with low-energy electron microscopy (LEEM), we are able to investigate the processes by which the rods lengthen along their axes and thicken normal to the surface of the substrate. At a fixed temperature and O-2 pressure, the rods lengthen along their axes at a constant rate. The exponential temperature dependence of this rate yields an activation energy for growth of 1.2 +/- 0.1 eV. The rod growth rates do not change as their ends pass in close proximity (<40 nm) to each other, which suggests that they do not compete for diffusing flux in order to elongate. Both LEEM and scanning tunneling microscopy (STM) studies show that the rods can grow vertically in layer-by-layer fashion. The heights of the rods are extremely bias dependent in STM images, but occur in integer multiples of approximately 2-angstrom-thick oxygen-cation layers. As the rods elongate from one substrate terrace to the next, we commonly see sharp changes in their rates of elongation that result from their tendency to gain (lose) atomic layers as they descend (climb) substrate steps. Diffraction analysis and dark-field imaging with LEEM indicate that the rods are crystalline, with a lattice constant that is well matched to that of the substrate along their length. We discuss the factors that lead to the formation of these highly anisotropic structures. C1 Sandia Natl Labs, Livermore, CA 94551 USA. RP Sandia Natl Labs, Livermore, CA 94551 USA. RI McCarty, Kevin/F-9368-2012 OI McCarty, Kevin/0000-0002-8601-079X NR 29 TC 12 Z9 12 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 12 AR 125428 DI 10.1103/PhysRevB.71.125428 PG 11 WC Physics, Condensed Matter SC Physics GA 923QB UT WOS:000228923300143 ER PT J AU Reboredo, FA Williamson, AJ AF Reboredo, FA Williamson, AJ TI Optimized nonorthogonal localized orbitals for linear scaling quantum Monte Carlo calculations SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE CALCULATIONS; WANNIER FUNCTIONS; SIMULATIONS AB We derive an automatic procedure for generating a set of highly localized, nonorthogonal orbitals for linear scaling quantum Monte Carlo (CMC) calculations. We demonstrate the advantage of these orbitals for calculating the total energy of both semiconducting and metallic systems by studying bulk silicon and the homogeneous electron gas. For silicon, the improved localization of these orbitals reduces the computational time by a factor of 5 and the memory by a factor of 6 compared to localized, orthogonal orbitals. For jellium at typical metallic densities, we demonstrate that the total energy is converged to 3 meV per electron for orbitals truncated within spheres with radii 7r(s), opening the possibility of linear scaling QMC calculations for realistic metallic systems. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM reboredo1@llnl.gov; williamson10@llnl.gov RI Reboredo, Fernando/B-8391-2009 NR 18 TC 27 Z9 27 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 12 AR 121105 DI 10.1103/PhysRevB.71.121105 PG 4 WC Physics, Condensed Matter SC Physics GA 923QB UT WOS:000228923300005 ER PT J AU Rodriguez, EE Proffen, T Llobet, A Rhyne, JJ Mitchell, JF AF Rodriguez, EE Proffen, T Llobet, A Rhyne, JJ Mitchell, JF TI Neutron diffraction study of average and local structure in La0.5Ca0.5MnO3 SO PHYSICAL REVIEW B LA English DT Article ID PAIR DISTRIBUTION FUNCTION; MIXED-VALENCE MANGANITES; CHARGE; PEROVSKITES; PARAMETERS; SCATTERING AB We used neutron powder diffraction to obtain the local and long-range structure of La0.5Ca0.5MnO3 at room temperature and 20 K. By combining Rietveld and pair distribution function analysis of the total neutron scattering data, we have analyzed the structure of the compound using two competing models describing the low temperature phase: first the charge-ordered-orbital-ordered model and second the Mn-Mn dimer model. These structural models fit the 20 K neutron powder diffraction pattern equally well using a Rietveld analysis. Therefore, pair distribution function analysis is used to probe the local and medium-range structure revealing a system with two distinctly distorted Mn octahedra and Mn ions with nonintegral valence states. The distorted octahedra differ with the structural model for the Zener polaron-type Mn - Mn dimer picture proposed for Pr0.60Ca0.40MnO3 and order in a similar checkerboard configuration associated with the CE-type antiferromagnetic structure. Therefore, locally the charge difference and structural ordering between the two Mn is appreciable enough to describe the system at 20 K as "partially charge ordered." C1 Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Rodriguez, EE (reprint author), Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. EM tproffen@lanl.gov RI Llobet, Anna/B-1672-2010; Lujan Center, LANL/G-4896-2012; Proffen, Thomas/B-3585-2009 OI Proffen, Thomas/0000-0002-1408-6031 NR 30 TC 41 Z9 42 U1 1 U2 16 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 10 AR 104430 DI 10.1103/PhysRevB.71.104430 PG 9 WC Physics, Condensed Matter SC Physics GA 912GK UT WOS:000228065400066 ER PT J AU Ronning, F Capan, C Bianchi, A Movshovich, R Lacerda, A Hundley, MF Thompson, JD Pagliuso, PG Sarrao, JL AF Ronning, F Capan, C Bianchi, A Movshovich, R Lacerda, A Hundley, MF Thompson, JD Pagliuso, PG Sarrao, JL TI Field-tuned quantum critical point in CeCoIn5 near the superconducting upper critical field SO PHYSICAL REVIEW B LA English DT Article ID UNCONVENTIONAL SUPERCONDUCTIVITY; HIGH-PRESSURE AB We report a systematic study of high-magnetic-field specific heat and resistivity in single crystals of CeCoIn5 for the field oriented in the basal plane (H parallel to ab)of this tetragonal heavy fermion superconductor. We observe a divergent electronic specific heat as well as an enhanced A coefficient of the T-2 law in resistivity at the lowest temperatures, as the field approaches the upper critical field of the superconducting transition. Together with the results for field along the tetragonal axis (H parallel to c), the emergent picture is that of a magnetic-field-tuned quantum critical point which exists in the vicinity of the superconducting H-c2(0) despite a variation of a factor of 2.4 in H-c2(0) for different field orientations. This suggests that an underlying physical reason exists for the superconducting H-c2(0) to coincide with the quantum critical field. Moreover, we show that the recovery of a Fermi-liquid ground state with increasing magnetic field is more gradual, meaning that the fluctuations responsible for the observed quantum critical phenomena are more robust with respect to magnetic field, when the magnetic field is applied in plane. Together with the close proximity of the quantum critical point and H-c2(0) in CeCoIn5 for both field orientations, the anisotropy in the recovery of the Fermi-liquid state might constitute an important piece of information in identifying the nature of the fluctuations that become critical. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Rossendorf Inc, Forschungszentrum Rossendorf EV, Dresden High Magnet Field Lab, D-01314 Dresden, Germany. Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. RP Ronning, F (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Pagliuso, Pascoal/C-9169-2012; Bianchi, Andrea/E-9779-2010; Inst. of Physics, Gleb Wataghin/A-9780-2017 OI Bianchi, Andrea/0000-0001-9340-6971; NR 28 TC 58 Z9 58 U1 1 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 10 AR 104528 DI 10.1103/PhysRevB.71.104528 PG 7 WC Physics, Condensed Matter SC Physics GA 912GK UT WOS:000228065400096 ER PT J AU Ronning, F Shen, KM Armitage, NP Damascelli, A Lu, DH Shen, ZX Miller, LL Kim, C AF Ronning, F Shen, KM Armitage, NP Damascelli, A Lu, DH Shen, ZX Miller, LL Kim, C TI Anomalous high-energy dispersion in angle-resolved photoemission spectra from the insulating cuprate Ca2CuO2Cl2 SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; FERMI-SURFACE; HUBBARD-MODEL; SUPERCONDUCTORS; SR2CUO2CL2; HOLE; SYSTEMS; OXIDE AB Angle-resolved photoelectron spectroscopic measurements have been performed on an insulating cuprate Ca2CuO2Cl2. High-resolution data taken along the Gamma to the (pi, pi) cut show an additional dispersive feature that merges with the known dispersion of the lowest binding energy feature, which follows the usual strongly renormalized dispersion of approximate to 0.35 eV. This higher energy part reveals a dispersion that is very close to the unrenormalized band predicted by band theory. A transfer of spectral weight from the low energy feature to the high energy feature is observed as the Gamma point is approached. By comparing with theoretical calculations the high energy feature observed here demonstrates that the incoherent portion of the spectral function has significant structure in momentum space due to the presence of various energy scales. C1 Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. Los Alamos Natl Lab, Div MST10, Los Alamos, NM 87545 USA. Univ Oregon, Dept Chem, Eugene, OR 97404 USA. Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. RP Ronning, F (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RI Shen, Kyle/B-3693-2008; damascelli, andrea/P-6329-2014 OI damascelli, andrea/0000-0001-9895-2226 NR 29 TC 72 Z9 73 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 9 AR 094518 DI 10.1103/PhysRevB.71.094518 PG 5 WC Physics, Condensed Matter SC Physics GA 920WV UT WOS:000228727100109 ER PT J AU Segev, D Wei, SH AF Segev, D Wei, SH TI Structure-derived electronic and optical properties of transparent conducting oxides SO PHYSICAL REVIEW B LA English DT Article ID BRILLOUIN-ZONE INTEGRATIONS; AUGMENTED-WAVE METHOD; ELECTRICAL-PROPERTIES; THIN-FILMS; CD2SNO4; CDIN2O4; SEMICONDUCTORS; ZN2SNO4; CDO AB Using the first-principles method, we have studied the stability and electronic band structures of the transparent conducting oxides SnZn2O4, SnCd2O4, and CdIn2O4, Our calculated lowest-energy phases of these compounds are similar to those found experimentally. However, we find an orthorhombic structure of SnZn2O4, which is close in energy to the inverse spinel structure, and a new "inverse" orthorhombic structure for CdIn2O4, with an energy close to that of the inverse spinel structure. The stability of these compounds can be explained by the Coulomb energy, atomic size, and chemical character of the constituent elements. We analyze the chemical character of the band edges and explain the general trend observed in the fundamental band gap and energy difference between the first and second conduction bands. The latter is found to be large for the thermodynamically stable structures, which explains the transparency of these n-type conducting oxides. Based on these analyses, we derive general rules for designing more efficient transparent conducting oxides. We have also calculated the Moss-Burstein electron effective masses and the optical transition matrix elements of these compounds. We find that transitions between the valence band maximum and the conduction band minimum are forbidden by symmetry, and that the optical gaps are about 1 eV larger than the corresponding fundamental band gaps. The same forbidden transitions are found between the first and second conduction bands. Our calculated dependence of the absorption spectrum on the carrier concentration reveals new features for n-type doped transparent conductor oxides. At very high doping concentration, we find a possible "inverse" Moss-Burstein shift, where the apparent band gap decreases with increasing carrier concentration. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Segev, D (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 32 TC 76 Z9 78 U1 1 U2 30 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 12 AR 125129 DI 10.1103/PhysRevB.71.125129 PG 11 WC Physics, Condensed Matter SC Physics GA 923QB UT WOS:000228923300055 ER PT J AU Sidorov, VA Bauer, ED Lee, H Nakatsuji, S Thompson, JD Fisk, Z AF Sidorov, VA Bauer, ED Lee, H Nakatsuji, S Thompson, JD Fisk, Z TI Complex magnetic phase diagram of ferromagnetic CeNiSb3 SO PHYSICAL REVIEW B LA English DT Article ID ELECTRICAL-RESISTIVITY; PHYSICAL-PROPERTIES; HIGH-PRESSURE; SUPERCONDUCTIVITY AB Measurements of electrical resistivity at applied pressures up to 55 kbar have been carried out on single crystals of the ferromagnet CeNiSb3 revealing a complex magnetic phase diagram. The ferromagnetism at ambient pressure at T-c=6 K first increases with pressure up to 25 kbar, then decreases slightly for P > 25 kbar. In the pressure range 35 kbar <= P <= 55 kbar, a second anomaly in the resistivity is found at T-M2, below another higher temperature magnetic phase that is conjectured to be different than the ferromagnetism present at lower pressure. Changes in the physical properties such as the residual resistivity, and low temperature maximum in rho(mag)(T) suggest a modification of the electronic structure where the two magnetic phases coexist with one another above 35 kbar. The critical pressure for the suppression of the lower temperature phase is estimated to be P-c(mag2) similar or equal to 55 kbar, while the increase of both the T-2 coefficient of the electrical resistivity A and residual resistivity rho(o) is suggestive of a quantum critical point associated with the higher temperature magnetic phase at P(c)(mag1)similar to 60 kbar. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. Kyoto Univ, Grad Sch Sci, Dept Phys, Kyoto 6068502, Japan. Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Russia. RP Sidorov, VA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011 NR 16 TC 13 Z9 13 U1 0 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 9 AR 094422 DI 10.1103/PhysRevB.71.094422 PG 4 WC Physics, Condensed Matter SC Physics GA 920WV UT WOS:000228727100076 ER PT J AU Thinh, NQ Vorona, IP Buyanova, IA Chen, WM AF Thinh, NQ Vorona, IP Buyanova, IA Chen, WM TI Properties of Ga-interstitial defects in AlxGa1-xNyP1-y SO PHYSICAL REVIEW B LA English DT Article ID DETECTED MAGNETIC-RESONANCE; ELECTRON-IRRADIATED GAN; BAND-GAP; GAN(X)P1-X ALLOYS; OPTICAL-DETECTION; GANXP1-X ALLOYS; RECOMBINATION; SEMICONDUCTORS; PHOTOLUMINESCENCE; HETEROSTRUCTURES AB A detailed account of the experimental results from optically detected magnetic resonance (ODMR) studies of grown-in defects in (AI)GaNP alloys, prepared by molecular beam epitaxy, is presented. The experimental procedure and an in-depth analysis by a spin Hamiltonian lead to the identification of two Ga-i defects (Ga-i-A and Ga-i-B). New information on the electronic properties of these defects and the recombination processes leading to the observation of the ODMR signals will be provided. These defects are deep-level defects. In conditions when the defect is directly involved in radiative recombination of the near-infrared photoluminescence band, the energy level of the Gai-B defect was estimated to be deeper than similar to 1.2 eV from either the conduction or valence band edge. In most cases, however, these defects act as nonradiative recombination centers, reducing the efficiency of light emission from the alloys. They can thus undermine the performance of potential photonic devices. High thermal stability is observed for these defects. C1 Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden. Suranaree Univ Technol, Sch Phys, Inst Sci, Nakhon Ratchasima, Thailand. Natl Renewable Energy Lab, Golden, CO 80401 USA. Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. Toyohashi Univ Technol, Dept Elect & Elect Engn, Aichi 4418580, Japan. Inst Semicond Phys, UA-03028 Kiev, Ukraine. RP Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden. EM wmc@ifm.liu.se RI Wakahara, Akihiro/C-6653-2011; Chen, Weimin/J-4660-2012; Buyanova, Irina/A-8924-2015 OI Chen, Weimin/0000-0002-6405-9509; Buyanova, Irina/0000-0001-7155-7103 NR 41 TC 31 Z9 31 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 12 AR 125209 DI 10.1103/PhysRevB.71.125209 PG 9 WC Physics, Condensed Matter SC Physics GA 923QB UT WOS:000228923300069 ER PT J AU Turchi, PEA Drchal, V Kudrnovsky, J Colinet, C Kaufman, L Liu, ZK AF Turchi, PEA Drchal, V Kudrnovsky, J Colinet, C Kaufman, L Liu, ZK TI Application of ab initio and CALPHAD thermodynamics to Mo-Ta-W alloys SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION-METAL ALLOYS; PHASE-DIAGRAMS; ELECTRONIC-STRUCTURE; BINARY-ALLOYS; GROUND-STATE; SYSTEM; ENERGY; TRANSFORMATIONS; EQUILIBRIA; LATTICE AB A parameter-free electronic structure approach is applied to the study of stability and chemical order-in substitutional bcc-based Mo-Ta, Ta-W, and Mo-W alloys. The method is based on a Green's function description of the electronic structure of random alloys. Configurational order is treated within the generalized perturbation method, and temperature effects are accounted for by a generalized mean-field approach. The practical application of this study to phase stability in Mo-Ta-W alloys is tested by converting the ab initio output thermodynamics of the three binary subsystems to a format amenable to a CALPHAD treatment. The results of this conversion are then used to predict isothermal sections of the ternary phase diagram of the Mo-Ta-W system that are compared with the results obtained directly from the ab initio approach with the cluster variation method. It is concluded that the proposed CALPHAD conversion of the ab initio results is a viable scheme to capture the alloy properties predicted from first-principles electronic structure calculations. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Acad Sci Czech Republ, Inst Phys, CZ-18040 Prague, Czech Republic. ENSEEG, LTPCM, F-38402 St Martin Dheres, France. MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16803 USA. RP Turchi, PEA (reprint author), Lawrence Livermore Natl Lab, L-353,POB 808, Livermore, CA 94551 USA. RI KUDRNOVSKY, Josef/G-5581-2014; Drchal, Vaclav/G-6259-2014; Liu, Zi-Kui/A-8196-2009 OI KUDRNOVSKY, Josef/0000-0002-9968-6748; Drchal, Vaclav/0000-0002-6628-7417; Liu, Zi-Kui/0000-0003-3346-3696 NR 55 TC 36 Z9 37 U1 2 U2 13 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 9 AR 094206 DI 10.1103/PhysRevB.71.094206 PG 14 WC Physics, Condensed Matter SC Physics GA 920WV UT WOS:000228727100048 ER PT J AU Uberuaga, BP Smith, R Cleave, AR Henkelman, G Grimes, RW Voter, AF Sickafus, KE AF Uberuaga, BP Smith, R Cleave, AR Henkelman, G Grimes, RW Voter, AF Sickafus, KE TI Dynamical simulations of radiation damage and defect mobility in MgO SO PHYSICAL REVIEW B LA English DT Article ID TEMPERATURE-ACCELERATED DYNAMICS; FINDING SADDLE-POINTS; AUGMENTED-WAVE METHOD; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; MOLECULAR-DYNAMICS; DISPLACEMENT CASCADES; DIFFUSION; CRYSTALS; METALS AB Collision cascades are investigated in MgO at energies ranging from 400 eV to 5 keV. Initial energy is imparted to the principle knock-on atom in the lattice and the cascade development is tracked using classical molecular dynamics. Temperature accelerated dynamics is performed on representative defects to follow the behavior to experimental time scales. Molecular statics is used to calculate basic properties of these defects, while density functional theory calculations are used to verify the potential. In the cascades performed at the lowest energy, the lattice either reforms perfectly or, if residual defects remain, these consist of isolated interstitials and vacancies and charge-neutral Mg-O divacancies and di-interstitials. As the energy is increased to 5 keV, isolated interstitials and di-interstitials remain the most common defects but more vacancy clustering can occur and interstitial defects consisting of up to seven atoms have been observed. Molecular statics calculations find that the binding energy per atom of the interstitial clusters increases from 3.5 to over 5 eV as the size increases from 2 to 16 atoms. Long-time-scale dynamics reveal that vacancies essentially never move at room temperature but that some interstitial clusters can diffuse quickly. Although tetrainterstitial interstitial clusters are essentially immobile, there is a long-lived metastable state of the hexainterstitial that diffuses one dimensionally on the nanosecond time scale at room temperature. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England. Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England. RP Uberuaga, BP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Henkelman, Graeme/A-9301-2008; Smith, Roger/C-2550-2013; OI Henkelman, Graeme/0000-0002-0336-7153; Voter, Arthur/0000-0001-9788-7194 NR 40 TC 49 Z9 49 U1 2 U2 27 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 10 AR 104102 DI 10.1103/PhysRevB.71.104102 PG 12 WC Physics, Condensed Matter SC Physics GA 912GK UT WOS:000228065400018 ER PT J AU Venturini, EL Samara, GA Laguta, VV Glinchuk, MD Kondova, IV AF Venturini, EL Samara, GA Laguta, VV Glinchuk, MD Kondova, IV TI Dipolar centers in incipient ferroelectrics: Mn and Fe in KTaO3 SO PHYSICAL REVIEW B LA English DT Article ID DOPED QUANTUM PARAELECTRICS; PHASE-TRANSITIONS; RELAXATION; RELAXOR AB The influence of lattice disorder produced by Mn and Fe substitution on the dielectric properties of the incipient ferroelectric KTaO3 were investigated. Both substituents produce dipolar centers that exhibit relaxational behavior in the audio frequency range. At a concentration of 0.01 at. %, i.e., in the very dilute limits, the Mn center is reflected in a dielectric loss (is an element of '' or tan delta) peak, but not to a measurable degree in the real part (is an element of') of the dielectric function, but a concentration of 0.3 at. % Mn produces measurable anomalies in both is an element of'(T) and the dielectric loss. In the case of Fe, a concentration of 0.3 at. % produces anomalies in the dielectric loss, but not in is an element of'(T). Hydrostatic pressure has a considerable influence on the static and dynamic properties of these materials and provides insights into the physics. The results are discussed in terms of microscopic models for these dipolar centers, and it is shown that all the properties can be understood in terms of the temperature and pressure dependences of the correlation length for dipolar interactions in the highly polarizable KTaO3 host lattice-properties unique to soft ferroelectric mode hosts. A model theory was used to describe the influence of random dipolar fields on the reorientation dynamics. The calculations are found to be in good agreement with the experimental data on the 0.3 % Mn where there are weak dipolar correlations. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Ukrainian Acad Sci, Inst Problems Mat Sci, UA-252180 Kiev, Ukraine. RP Venturini, EL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Laguta, Valentin/G-7302-2014 NR 13 TC 15 Z9 15 U1 1 U2 9 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 9 AR 094111 DI 10.1103/PhysRevB.71.094111 PG 8 WC Physics, Condensed Matter SC Physics GA 920WV UT WOS:000228727100040 ER PT J AU Yuhasz, WM Frederick, NA Ho, PC Butch, NP Taylor, BJ Sayles, TA Maple, MB Betts, JB Lacerda, AH Rogl, P Giester, G AF Yuhasz, WM Frederick, NA Ho, PC Butch, NP Taylor, BJ Sayles, TA Maple, MB Betts, JB Lacerda, AH Rogl, P Giester, G TI Heavy-fermion behavior, crystalline electric field effects, and weak ferromagnetism in SmOs4Sb12 SO PHYSICAL REVIEW B LA English DT Article ID KADOWAKI-WOODS RELATION; MAGNETIC-PROPERTIES; INTERMEDIATE-VALENCE; COMPOUND SMFE4P12; ARROTT PLOTS; SYSTEMS; TEMPERATURE; RESISTIVITY; TRANSITION; ORDER AB The filled skutterudite compound SmOs4Sb12 was prepared in single-crystal form and characterized using x-ray diffraction, specific-heat, electrical resistivity, and magnetization measurements. The SmOs4Sb12 crystals have the LaFe4P12-type structure with lattice parameter a=9.3085 A. Specific-heat measurements indicate a large electronic specific-heat coefficient of approximate to 880 mJ/mol K-2, from which an enhanced effective mass m*approximate to 170m(e) is estimated. The specific-heat data also suggest crystalline electric field (CEF) splitting of the Sm(3+)J=5/2 multiplet into a Gamma(7) doublet ground state and a Gamma(8) quartet excited state separated by similar to 37 K. Electrical resistivity rho(T) measurements reveal a decrease in rho(T) below similar to 50 K that is consistent with CEF splitting of similar to 33 K between a Gamma(7) doublet ground state and Gamma(8) quartet excited state. Specific-heat and magnetic susceptibility measurements display a possible weak ferromagnetic transition at similar to 2.6 K, which could be an intrinsic property of SmOs4Sb12 or possibly due to an unknown impurity phase. C1 Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. Univ Calif San Diego, Inst Pure & Appl Phys Sci, La Jolla, CA 92093 USA. Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. Univ Vienna, Inst Phys Chem, A-1090 Vienna, Austria. Univ Vienna, Inst Mineral & Kristallog, A-1090 Vienna, Austria. RP Yuhasz, WM (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RI Yuhasz, William/C-9418-2009 NR 47 TC 75 Z9 75 U1 1 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 10 AR 104402 DI 10.1103/PhysRevB.71.104402 PG 9 WC Physics, Condensed Matter SC Physics GA 912GK UT WOS:000228065400038 ER PT J AU Zhao, ZY Mani, P Mankey, GJ Gubbiotti, G Tacchi, S Spizzo, F Lee, WT Yu, CT Pechan, MJ AF Zhao, ZY Mani, P Mankey, GJ Gubbiotti, G Tacchi, S Spizzo, F Lee, WT Yu, CT Pechan, MJ TI Magnetic properties of uniaxial synthetic antiferromagnets for spin-valve applications SO PHYSICAL REVIEW B LA English DT Article ID GIANT MAGNETORESISTANCE; NEUTRON REFLECTOMETRY; THIN-FILMS; LAYERS; MULTILAYERS; ANISOTROPY AB The magnetic properties of synthetic antiferromagnetic Si(100)/Ta (5 nm)/Co(t(1))/Ru (0.65 nm)/Co(t(2))/Ta (10 nm) with an obliquely sputtered Ta underlayer are reported as a function of the top Co layer thickness, t(2). The morphological origin of the large in-plane magnetic anisotropy created by the obliquely sputtered Ta underlayer is revealed by atomic force microscopy. The magnetic anisotropy of the base Co layer is determined by measuring the dispersion of the Damon-Eshbach spin-wave mode with Brillouin light scattering. Ferromagnetic resonance measurements and hysteresis loops reveal that both the anisotropy and the saturation field of the trilayer system decrease with increasing top Co layer thickness. The dependence of the saturation field on layer thickness is fitted to an energy minimization equation that contains both bilinear and biquadratic exchange coupling constants. Magnetoresistance and polarized neutron reflectometry results both confirm that the magnetic reversal process of the system is through magnetic domain formation followed by rotation. C1 Univ Alabama, MINT Ctr, University, AL 35486 USA. Univ Roma La Sapienza, INFM, CRS SOFT, I-00185 Rome, Italy. Univ Perugia, Dipartimento Fis, INFM, UdR Perugia, I-06123 Perugia, Italy. Univ Perugia, Unita Perugina, INFM, I-06123 Perugia, Italy. Univ Ferrara, Dipartimento Fis, INFM, I-44100 Ferrara, Italy. Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. Miami Univ, Dept Phys, Oxford, OH 45056 USA. RP Mankey, GJ (reprint author), Univ Alabama, MINT Ctr, University, AL 35486 USA. EM gmankey@mint.ua.edu RI Spizzo, Federico/J-8140-2014; Mankey, Gary/G-9110-2011 OI Spizzo, Federico/0000-0002-9134-4487; Mankey, Gary/0000-0003-3163-5159 NR 20 TC 11 Z9 11 U1 1 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 10 AR 104417 DI 10.1103/PhysRevB.71.104417 PG 5 WC Physics, Condensed Matter SC Physics GA 912GK UT WOS:000228065400053 ER PT J AU Zheludev, A Grenier, B Ressouche, E Regnault, LP Honda, Z Katsumata, K AF Zheludev, A Grenier, B Ressouche, E Regnault, LP Honda, Z Katsumata, K TI Half-ordered state in the anisotropic Haldane-gap antiferromagnet Ni(C5D14N2)(2)N-3(PF6) SO PHYSICAL REVIEW B LA English DT Article ID S=1 HEISENBERG-ANTIFERROMAGNET; MAGNETIC-FIELD; CHAIN AB Neutron diffraction experiments performed on the Haldane gap material Ni(C5D14N2)(2)N-3(PF6) in high magnetic fields applied at an angle to the principal anisotropy axes reveal two consecutive field-induced phase transitions. The low-field phase is the gapped Haldane state, while at high fields the system exhibits a three-dimensional long-range Neel order. In a peculiar phase found in intermediate fields only half of all the spin chains participate in the long-range ordering, while the other half remain disordered and gapped. C1 Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. CEA Grenoble, DRFMC, SPSMS, MDN, F-38054 Grenoble, France. Saitama Univ, Fac Engn, Urawa, Saitama 3388570, Japan. RIKEN, Harima Inst, Sayo, Hyogo 6795148, Japan. RP Zheludev, A (reprint author), Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. EM zheludevai@ornl.gov NR 19 TC 10 Z9 10 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 10 AR 104418 DI 10.1103/PhysRevB.71.104418 PG 4 WC Physics, Condensed Matter SC Physics GA 912GK UT WOS:000228065400054 ER PT J AU Zhou, CG Berciu, M Bhatt, RN AF Zhou, CG Berciu, M Bhatt, RN TI Effects of large disorder on the Hofstadter butterfly SO PHYSICAL REVIEW B LA English DT Article ID MODE QUANTUM WIRES; HALL CONDUCTANCE; MAGNETIC-FIELDS; BLOCH ELECTRONS; MAGNETOTRANSPORT; HETEROSTRUCTURES; FLUCTUATIONS; LOCALIZATION; MODULATION; RESISTANCE AB Motivated by the recent experiments on periodically modulated, two-dimensional electron systems placed in large transversal magnetic fields [S. Melinte et al., Phys. Rev. Lett. 92, 036802 (2004)], we investigate the interplay between the effects of disorder and periodic potentials in the integer quantum Hall regime. In particular, we study the case where disorder is larger than the periodic modulation, but both are small enough that Landau level mixing is negligible. We carry extensive numerical calculations to understand the relevant physics in the lowest Landau level, such as the spectrum and nature (localized or extended) of the wave functions. Based on our results, we propose a qualitative explanation of the new features uncovered recently in these transport measurements. C1 Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. RP Oak Ridge Natl Lab, POB 2008,MS 6164, Oak Ridge, TN 37831 USA. RI Berciu, Mona/O-4889-2014 NR 27 TC 7 Z9 7 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 12 AR 125310 DI 10.1103/PhysRevB.71.125310 PG 13 WC Physics, Condensed Matter SC Physics GA 923QB UT WOS:000228923300083 ER PT J AU Zubelewicz, A Maudlin, PJ Gray, GT Zurek, AK AF Zubelewicz, A Maudlin, PJ Gray, GT Zurek, AK TI Formation of dynamic defect structure in metals subjected to extreme loading conditions SO PHYSICAL REVIEW B LA English DT Article ID STRESS AB We present a method that describes formation of dynamic defect structure in metals subjected to extreme loading conditions. We acknowledge the fact that the plastic deformation at the nanoscales and mesoscales is not continuous. However, at a macroscale (length that is in the range of a submillimeter and larger), the deformation appears to be homogeneous and, therefore, we conclude that at the macroscale the requirement of kinematical compatibility is satisfied. Among all macrolengths there is a smallest one that is considered a characteristic property of the material. In view of the above arguments, we choose to waive the mesocompatibility and replace it with a new criterion that specifies a degree of the kinematical incompatibility in a relationship to the length scale at which the material is observed. We illustrate the theory by solving a plane strain problem. In the course of the analysis, we find that an initially random arrangement of defects may become well organized. At certain extreme conditions the defect structure may experience a dynamic state of strong excitation. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Zubelewicz, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM alek@lanl.gov NR 14 TC 8 Z9 8 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2005 VL 71 IS 10 AR 104107 DI 10.1103/PhysRevB.71.104107 PG 5 WC Physics, Condensed Matter SC Physics GA 912GK UT WOS:000228065400023 ER PT J AU Adam, J Van Orden, JW AF Adam, J Van Orden, JW TI Comprehensive treatment of electromagnetic interactions and three-body spectator equations SO PHYSICAL REVIEW C LA English DT Article ID FEW-BODY PROBLEM; BOUND-STATE; DEUTERON; SYSTEMS; FORCES; ENERGY AB We present a general derivation of the three-body spectator (Gross) equations and of the corresponding electromagnetic currents. As in a previous paper on two-body systems, the wave equations and currents are derived from those for the Bethe-Salpeter equation with the help of an algebraic method using a concise matrix notation. The three-body interactions and currents introduced by the transition to the spectator approach are isolated and the matrix elements of the e.m. current are presented in detail for a system of three indistinguishable particles, namely, for elastic scattering and for two- and three-body breakup. The general expressions are reduced to the one-boson-exchange approximation to make contact with previous work. The method is general in that it does not rely on introduction of the electromagnetic interaction with the help of the minimal replacement. It would therefore work also for other external fields. C1 Acad Sci Czech Republ, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. Jefferson Lab, Newport News, VA 23606 USA. Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RP Adam, J (reprint author), Acad Sci Czech Republ, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. RI Adam, Jiri/G-9785-2014 NR 21 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2005 VL 71 IS 3 AR 034003 DI 10.1103/PhysRevC.71.034003 PG 20 WC Physics, Nuclear SC Physics GA 919UQ UT WOS:000228643500006 ER PT J AU Adams, J Aggarwal, MM Ahammed, Z Amonett, J Anderson, BD Arkhipkin, D Averichev, GS Badyal, SK Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Bekele, S Belaga, VV Bellwied, R Berger, J Bezverkhny, BI Bharadwaj, S Bhasin, A Bhati, AK Bhatia, VS Bichsel, H Billmeier, A Bland, LC Blyth, CO Bonner, BE Botje, M Boucham, A Brandin, A Bravar, A Bystersky, M Cadman, RV Cai, XZ Caines, H Sanchez, MCD Castillo, J Cebra, D Chajecki, Z Chaloupka, P Chattopdhyay, S Chen, HF Chen, Y Cheng, J Cherney, M Chikanian, A Christie, W Coffin, JP Cormier, TM Cramer, JG Crawford, HJ Das, D Das, D de Moura, MM Derevschikov, AA Didenko, L Dietel, T Dogra, SM Dong, WJ Dong, X Draper, JE Du, F Dubey, AK Dunin, VB Dunlop, JC Mazumder, MRD Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Faivre, J Fatemi, R Fedorisin, J Filimonov, K Filip, P Finch, E Fine, V Fisyak, Y Fomenko, K Fu, J Gagliardi, CA Gans, J Ganti, MS Gaudichet, L Geurts, F Ghazikhanian, V Ghosh, G Gonzalez, JE Grachov, O Grebenyuk, O Grosnick, D Guertin, SM Guo, Y Gupta, A Gutierrez, TD Hallman, TJ Hamed, A Hardtke, D Harris, JW Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffmann, GW Huang, HZ Huang, SL Hughes, EW Humanic, TJ Igo, G Ishihara, A Jacobs, P Jacobs, WW Janik, M Jiang, H Jones, PG Judd, EG Kabana, S Kang, K Kaplan, M Keane, D Khodyrev, VY Kiryluk, J Kisiel, A Kislov, EM Klay, J Klein, SR Klyachko, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kutuev, RK Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S Laue, F Lauret, J Lebedev, A Lednicky, R Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, L Liu, QJ Liu, Z Ljubicic, T Llope, WJ Long, H Longacre, RS Lopez-Noriega, M Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Magestro, D Mahajan, S Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Marx, JN Matis, HS Matulenko, YA McClain, CJ McShane, TS Meissner, F Melnick, Y Meschanin, A Miller, ML Minaev, NG Mironov, C Mischke, A Mishra, DK Mitchell, J Mohanty, B Molnar, L Moore, CF Morozov, DA Munhoz, MG Nandi, BK Nayak, SK Nayak, TK Nelson, JM Netrakanti, PK Nikitin, VA Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Petrov, VA Phatak, SC Picha, R Planinic, M Pluta, J Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Rakness, G Raniwala, R Raniwala, S Ravel, O Ray, RL Razin, SV Reichhold, D Reid, JG Renault, G Retiere, F Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Sahoo, R Sakrejda, I Salur, S Sandweiss, J Savin, I Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Schweda, K Seger, J Seyboth, P Shahaliev, E Shao, M Shao, W Sharma, M Shen, WQ Shestermanov, KE Shimanskiy, SS Sichtermann, E Simon, F Singaraju, RN Skoro, G Smimov, N Snellings, R Sood, G Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Suaide, AAP Sugarbaker, E Suite, C Sumbera, M Surrow, B Symons, TJM de Toledo, AS Szarwas, P Tai, A Takahashi, J Tang, AH Tarnowsky, T Thein, D Thomas, JH Timoshenko, S Tokarev, M Trainor, TA Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Urkinbaev, A Van Buren, G van Leeuwen, M Vander Molen, AM Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Vznuzdaev, M Waggoner, WT Wang, F Wang, G Wang, G Wang, XL Wang, Y Wang, Y Wang, ZM Ward, H Watson, JW Webb, JC Weiis, R Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wood, J Wu, J Xu, N Xu, Z Xu, ZZ Yamamoto, E Yepes, P Yarevich, VI Zanevsky, YV Zhang, H Zhang, WM Zhang, ZP Zolnierczuk, PA Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN AF Adams, J Aggarwal, MM Ahammed, Z Amonett, J Anderson, BD Arkhipkin, D Averichev, GS Badyal, SK Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Bekele, S Belaga, VV Bellwied, R Berger, J Bezverkhny, BI Bharadwaj, S Bhasin, A Bhati, AK Bhatia, VS Bichsel, H Billmeier, A Bland, LC Blyth, CO Bonner, BE Botje, M Boucham, A Brandin, A Bravar, A Bystersky, M Cadman, RV Cai, XZ Caines, H Sanchez, MCD Castillo, J Cebra, D Chajecki, Z Chaloupka, P Chattopdhyay, S Chen, HF Chen, Y Cheng, J Cherney, M Chikanian, A Christie, W Coffin, JP Cormier, TM Cramer, JG Crawford, HJ Das, D Das, D de Moura, MM Derevschikov, AA Didenko, L Dietel, T Dogra, SM Dong, WJ Dong, X Draper, JE Du, F Dubey, AK Dunin, VB Dunlop, JC Mazumder, MRD Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Faivre, J Fatemi, R Fedorisin, J Filimonov, K Filip, P Finch, E Fine, V Fisyak, Y Fomenko, K Fu, J Gagliardi, CA Gans, J Ganti, MS Gaudichet, L Geurts, F Ghazikhanian, V Ghosh, G Gonzalez, JE Grachov, O Grebenyuk, O Grosnick, D Guertin, SM Guo, Y Gupta, A Gutierrez, TD Hallman, TJ Hamed, A Hardtke, D Harris, JW Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffmann, GW Huang, HZ Huang, SL Hughes, EW Humanic, TJ Igo, G Ishihara, A Jacobs, P Jacobs, WW Janik, M Jiang, H Jones, PG Judd, EG Kabana, S Kang, K Kaplan, M Keane, D Khodyrev, VY Kiryluk, J Kisiel, A Kislov, EM Klay, J Klein, SR Klyachko, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kutuev, RK Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S Laue, F Lauret, J Lebedev, A Lednicky, R Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, L Liu, QJ Liu, Z Ljubicic, T Llope, WJ Long, H Longacre, RS Lopez-Noriega, M Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Magestro, D Mahajan, S Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Marx, JN Matis, HS Matulenko, YA McClain, CJ McShane, TS Meissner, F Melnick, Y Meschanin, A Miller, ML Minaev, NG Mironov, C Mischke, A Mishra, DK Mitchell, J Mohanty, B Molnar, L Moore, CF Morozov, DA Munhoz, MG Nandi, BK Nayak, SK Nayak, TK Nelson, JM Netrakanti, PK Nikitin, VA Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Petrov, VA Phatak, SC Picha, R Planinic, M Pluta, J Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Rakness, G Raniwala, R Raniwala, S Ravel, O Ray, RL Razin, SV Reichhold, D Reid, JG Renault, G Retiere, F Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Sahoo, R Sakrejda, I Salur, S Sandweiss, J Savin, I Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Schweda, K Seger, J Seyboth, P Shahaliev, E Shao, M Shao, W Sharma, M Shen, WQ Shestermanov, KE Shimanskiy, SS Sichtermann, E Simon, F Singaraju, RN Skoro, G Smimov, N Snellings, R Sood, G Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Suaide, AAP Sugarbaker, E Suite, C Sumbera, M Surrow, B Symons, TJM de Toledo, AS Szarwas, P Tai, A Takahashi, J Tang, AH Tarnowsky, T Thein, D Thomas, JH Timoshenko, S Tokarev, M Trainor, TA Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Urkinbaev, A Van Buren, G van Leeuwen, M Vander Molen, AM Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Vznuzdaev, M Waggoner, WT Wang, F Wang, G Wang, G Wang, XL Wang, Y Wang, Y Wang, ZM Ward, H Watson, JW Webb, JC Weiis, R Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wood, J Wu, J Xu, N Xu, Z Xu, ZZ Yamamoto, E Yepes, P Yarevich, VI Zanevsky, YV Zhang, H Zhang, WM Zhang, ZP Zolnierczuk, PA Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN CA STAR Collaboration TI Transverse-momentum dependent modification of dynamic texture in central Au+Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID MODEL; QCD AB Correlations in the hadron distributions produced in relativistic Au+Au collisions are studied in the discrete wavelet expansion method. The analysis is performed in the space of pseudorapidity (vertical bar eta vertical bar <= 1) and azimuth (full 2 pi) in bins of transverse momentum (p(t)) from 0.14 <= p(t) <= 2.1 GeV/c. In peripheral Au+Au collisions a correlation structure ascribed to minijet fragmentation is observed. It evolves with collision centrality and p, in a way not seen before, which suggests strong dissipation of minijet fragmentation in the longitudinally expanding medium. C1 Univ Birmingham, Birmingham, W Midlands, England. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Bern, CH-3012 Bern, Switzerland. Brookhaven Natl Lab, Upton, NY 11973 USA. CALTECH, Pasadena, CA 91125 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Creighton Univ, Omaha, NE 68178 USA. Nucl Phys Inst AS CR, Prague 25068, Czech Republic. Joint Inst Nucl Res Dubna, Lab High Energy, Dubna, Russia. Joint Inst Nucl Res Dubna, Particle Phys Lab, Dubna, Russia. Goethe Univ Frankfurt, D-6000 Frankfurt, Germany. Inst Phys, Bhubaneswar 751005, Orissa, India. Indian Inst Technol, Bombay 400076, Maharashtra, India. Indiana Univ, Bloomington, IN 47408 USA. Inst Rech Subatom, Strasbourg, France. Univ Jammu, Jammu 180001, India. Kent State Univ, Kent, OH 44242 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. MIT, Cambridge, MA 02139 USA. Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. Michigan State Univ, E Lansing, MI 48824 USA. Moscow Engn Phys Inst, Moscow 115409, Russia. CUNY City Coll, New York, NY 10031 USA. NIKHEF, Amsterdam, Netherlands. Ohio State Univ, Columbus, OH 43210 USA. Panjab Univ, Chandigarh 160014, India. Penn State Univ, University Pk, PA 16802 USA. Inst High Energy Phys, Protvino, Russia. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Rice Univ, Houston, TX 77251 USA. Univ Sao Paulo, Sao Paulo, Brazil. Univ Sci & Technol China, Anhui 230027, Peoples R China. Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. SUBATECH, Nantes, France. Texas A&M Univ, College Stn, TX 77843 USA. Univ Texas, Austin, TX 78712 USA. Tsinghua Univ, Beijing 100084, Peoples R China. Valparaiso Univ, Valparaiso, IN 46383 USA. Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. Warsaw Univ Technol, Warsaw, Poland. Univ Washington, Seattle, WA 98195 USA. Wayne State Univ, Detroit, MI 48201 USA. HZNU, Inst Particle Phys, CCNU, Wuhan 430079, Peoples R China. Yale Univ, New Haven, CT 06520 USA. Univ Zagreb, HR-10002 Zagreb, Croatia. RP Adams, J (reprint author), Univ Birmingham, Birmingham, W Midlands, England. RI Witt, Richard/H-3560-2012; Castillo Castellanos, Javier/G-8915-2013; Ghosh, Gautam/B-7517-2009; Voloshin, Sergei/I-4122-2013; Skoro, Goran/F-3642-2010; Lednicky, Richard/K-4164-2013; Sumbera, Michal/O-7497-2014; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Chen, Yu/E-3788-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Skoro, Goran/P-1229-2014; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Kisiel, Adam/O-8754-2015; Chaloupka, Petr/E-5965-2012; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013 OI Castillo Castellanos, Javier/0000-0002-5187-2779; Sumbera, Michal/0000-0002-0639-7323; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Skoro, Goran/0000-0001-7745-9045; Strikhanov, Mikhail/0000-0003-2586-0405; Kisiel, Adam/0000-0001-8322-9510; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900 NR 20 TC 4 Z9 4 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2005 VL 71 IS 3 AR 031901 DI 10.1103/PhysRevC.71.031901 PG 6 WC Physics, Nuclear SC Physics GA 919UQ UT WOS:000228643500001 ER PT J AU Adler, SS Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Alexander, J Amirikas, R Aphecetche, L Aronson, SH Averbeck, R Awes, TC Azmoun, R Babintsev, V Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bazilevsky, A Belikov, S Berdnikov, Y Bhagavatula, S Boissevain, JG Borel, H Borenstein, S Brooks, ML Brown, DS Bruner, N Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Camard, X Chai, JS Chand, P Chang, WC Chernichenko, S Chi, CY Chiba, J Chiu, M Choi, IJ Choi, J Choudhury, RK Chujo, T Cianciolo, V Cobigo, Y Cole, BA Constantin, P d'Enterria, DG David, G Delagrange, H Denisov, A Deshpande, A Desmond, EJ Dietzsch, O Drapier, O Drees, A du Rietz, R Durum, A Dutta, D Efremenko, YV El Chenawi, K Enokizono, A En'yo, H Esumi, S Ewell, L Fields, DE Fleuret, F Fokin, SL Fox, BD Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fung, SY Garpman, S Ghosh, TK Glenn, A Gogiberidze, G Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Guryn, W Gustafsson, HA Hachiya, T Haggerty, JS Hamagaki, H Hansen, AG Hartouni, EP Harvey, M Hayano, R He, X Heffner, M Hemmick, TK Heuser, JM Hibino, M Hill, JC Holzmann, W Homma, K Hong, B Hoover, A Ichihara, T Ikonnikov, VV Imai, K Isenhower, D Ishihara, M Issah, M Isupov, A Jacak, BV Jang, WY Jeong, Y Jia, J Jinnouchi, O Johnson, BM Johnson, SC Joo, KS Jouan, D Kametani, S Kamihara, N Kang, JH Kapoor, SS Katou, K Kelly, S Khachaturov, B Khanzadeev, A Kikuchi, J Kim, DH Kim, DJ Kim, DW Kim, E Kim, GB Kim, HJ Kistenev, E Kiyomichi, A Kiyoyama, K Klein-Boesing, C Kobayashi, H Kochenda, L Kochetkov, V Koehler, D Kohama, T Kopytine, M Kotchetkov, D Kozlov, A Kroon, PJ Kuberg, CH Kurita, K Kuroki, Y Kweon, MJ Kwon, Y Kyle, GS Lacey, R Ladygin, V Lajoie, JG Lebedev, A Leckey, S Lee, DM Lee, S Leitch, MJ Li, XH Lim, H Litvinenko, A Liu, MX Liu, Y Maguire, CF Makdisi, YI Malakhov, A Manko, VI Mao, Y Martinez, G Marx, MD Masui, H Matathias, F Matsumoto, T McGaughey, PL Melnikov, E Mendenhall, M Messer, F Miake, Y Milan, J Miller, TE Milov, A Mioduszewski, S Mischke, RE Mishra, GC Mitchell, JT Mohanty, AK Morrison, DP Moss, JM Muhlbacher, F Mukhopadhyay, D Muniruzzaman, M Murata, J Nagamiya, S Nagle, JL Nakamura, T Nandi, BK Nara, M Newby, J Nilsson, P Nyanin, AS Nystrand, J O'Brien, E Ogilvie, CA Ohnishi, H Ojha, ID Okada, K Ono, M Onuchin, V Oskarsson, A Otterlund, I Oyama, K Ozawa, K Pal, D Palounek, APT Pantuev, VS Papavassiliou, V Park, J Parmar, A Pate, SF Peitzmann, T Peng, JC Peresedov, V Pinkenburg, C Pisani, RP Plasil, F Purschke, ML Purwar, AK Rak, J Ravinovich, I Read, KF Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosnet, P Ryu, SS Sadler, ME Saito, N Sakaguchi, T Sakai, M Sakai, S Samsonov, V Sanfratello, L Santo, R Sato, HD Sato, S Sawada, S Schutz, Y Semenov, V Seto, R Shaw, MR Shea, TK Shibata, TA Shigaki, K Shiina, T Silva, CL Silvermyr, D Sim, KS Singh, CP Singh, V Sivertz, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Sullivan, JP Takagui, EM Taketani, A Tamai, M Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Tarjan, P Tepe, JD Thomas, TL Tojo, J Torii, H Towell, RS Tserruya, I Tsuruoka, H Tuli, SK Tydesjo, H Tyurin, N van Hecke, HW Velkovska, J Velkovsky, M Villatte, L Vinogradov, AA Volkov, MA Vznuzdaev, E Wang, XR Watanabe, Y White, SN Wohn, FK Woody, CL Xie, W Yang, Y Yanovich, A Yokkaichi, S Young, GR Yushmanov, IE Zajc, WA Zhang, C Zhou, S Zhou, SJ Zolin, L AF Adler, SS Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Alexander, J Amirikas, R Aphecetche, L Aronson, SH Averbeck, R Awes, TC Azmoun, R Babintsev, V Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bazilevsky, A Belikov, S Berdnikov, Y Bhagavatula, S Boissevain, JG Borel, H Borenstein, S Brooks, ML Brown, DS Bruner, N Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Camard, X Chai, JS Chand, P Chang, WC Chernichenko, S Chi, CY Chiba, J Chiu, M Choi, IJ Choi, J Choudhury, RK Chujo, T Cianciolo, V Cobigo, Y Cole, BA Constantin, P d'Enterria, DG David, G Delagrange, H Denisov, A Deshpande, A Desmond, EJ Dietzsch, O Drapier, O Drees, A du Rietz, R Durum, A Dutta, D Efremenko, YV El Chenawi, K Enokizono, A En'yo, H Esumi, S Ewell, L Fields, DE Fleuret, F Fokin, SL Fox, BD Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fung, SY Garpman, S Ghosh, TK Glenn, A Gogiberidze, G Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Guryn, W Gustafsson, HA Hachiya, T Haggerty, JS Hamagaki, H Hansen, AG Hartouni, EP Harvey, M Hayano, R He, X Heffner, M Hemmick, TK Heuser, JM Hibino, M Hill, JC Holzmann, W Homma, K Hong, B Hoover, A Ichihara, T Ikonnikov, VV Imai, K Isenhower, D Ishihara, M Issah, M Isupov, A Jacak, BV Jang, WY Jeong, Y Jia, J Jinnouchi, O Johnson, BM Johnson, SC Joo, KS Jouan, D Kametani, S Kamihara, N Kang, JH Kapoor, SS Katou, K Kelly, S Khachaturov, B Khanzadeev, A Kikuchi, J Kim, DH Kim, DJ Kim, DW Kim, E Kim, GB Kim, HJ Kistenev, E Kiyomichi, A Kiyoyama, K Klein-Boesing, C Kobayashi, H Kochenda, L Kochetkov, V Koehler, D Kohama, T Kopytine, M Kotchetkov, D Kozlov, A Kroon, PJ Kuberg, CH Kurita, K Kuroki, Y Kweon, MJ Kwon, Y Kyle, GS Lacey, R Ladygin, V Lajoie, JG Lebedev, A Leckey, S Lee, DM Lee, S Leitch, MJ Li, XH Lim, H Litvinenko, A Liu, MX Liu, Y Maguire, CF Makdisi, YI Malakhov, A Manko, VI Mao, Y Martinez, G Marx, MD Masui, H Matathias, F Matsumoto, T McGaughey, PL Melnikov, E Mendenhall, M Messer, F Miake, Y Milan, J Miller, TE Milov, A Mioduszewski, S Mischke, RE Mishra, GC Mitchell, JT Mohanty, AK Morrison, DP Moss, JM Muhlbacher, F Mukhopadhyay, D Muniruzzaman, M Murata, J Nagamiya, S Nagle, JL Nakamura, T Nandi, BK Nara, M Newby, J Nilsson, P Nyanin, AS Nystrand, J O'Brien, E Ogilvie, CA Ohnishi, H Ojha, ID Okada, K Ono, M Onuchin, V Oskarsson, A Otterlund, I Oyama, K Ozawa, K Pal, D Palounek, APT Pantuev, VS Papavassiliou, V Park, J Parmar, A Pate, SF Peitzmann, T Peng, JC Peresedov, V Pinkenburg, C Pisani, RP Plasil, F Purschke, ML Purwar, AK Rak, J Ravinovich, I Read, KF Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosnet, P Ryu, SS Sadler, ME Saito, N Sakaguchi, T Sakai, M Sakai, S Samsonov, V Sanfratello, L Santo, R Sato, HD Sato, S Sawada, S Schutz, Y Semenov, V Seto, R Shaw, MR Shea, TK Shibata, TA Shigaki, K Shiina, T Silva, CL Silvermyr, D Sim, KS Singh, CP Singh, V Sivertz, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Sullivan, JP Takagui, EM Taketani, A Tamai, M Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Tarjan, P Tepe, JD Thomas, TL Tojo, J Torii, H Towell, RS Tserruya, I Tsuruoka, H Tuli, SK Tydesjo, H Tyurin, N van Hecke, HW Velkovska, J Velkovsky, M Villatte, L Vinogradov, AA Volkov, MA Vznuzdaev, E Wang, XR Watanabe, Y White, SN Wohn, FK Woody, CL Xie, W Yang, Y Yanovich, A Yokkaichi, S Young, GR Yushmanov, IE Zajc, WA Zhang, C Zhou, S Zhou, SJ Zolin, L CA PHENIX Collaboration TI Systematic studies of the centrality and root S-NN dependence of the dE(T)/d eta and dN(ch)/d eta in heavy ion collisions at midrapidity SO PHYSICAL REVIEW C LA English DT Article ID CHARGED-PARTICLE MULTIPLICITY; PLUS AU COLLISIONS; TRANSVERSE ENERGY-PRODUCTION; NUCLEUS-NUCLEUS COLLISIONS; HIGH-DENSITY QCD; EXCITATION-FUNCTION; AU+AU COLLISIONS; 11.6A GEV/C; PHENIX; MODEL AB The PHENIX experiment at the relativistic heavy ion collider (RHIC) has measured transverse energy and charged particle multiplicity at midrapidity in Au + Au collisions at center-of-mass energies root s(NN) = 19.6, 130, and 200 GeV as a function of centrality. The presented results are compared to measurements from other RHIC experiments and experiments at lower energies. The root s(NN) dependence of dE(T)/d eta and dN(ch)/d eta per pair of participants is consistent with logarithmic scaling for the most central events. The centrality dependence of dE(T)/d eta and dN(ch)/d eta is similar at all measured incident energies. At RHIC energies, the ratio of transverse energy per charged particle was found to be independent of centrality and growing slowly with root s(NN). A survey of comparisons between the data and available theoretical models is also presented. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Abilene Christian Univ, Abilene, TX 79699 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. Univ Calif Riverside, Riverside, CA 92521 USA. CIAE, Beijing, Peoples R China. Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. Columbia Univ, New York, NY 10027 USA. Nevis Labs, Irvington, NY 10533 USA. CEA Saclay, Dapnia, F-91191 Gif Sur Yvette, France. Univ Debrecen, H-4010 Debrecen, Hungary. Florida State Univ, Tallahassee, FL 32306 USA. Georgia State Univ, Atlanta, GA 30303 USA. Hiroshima Univ, Higashihiroshima 7398526, Japan. Inst High Energy Phys, Protvino, Russia. Iowa State Univ, Ames, IA 50011 USA. Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. KAERI, Cyclotron Applicat Lab, Seoul, South Korea. Kangnung Natl Univ, Kangnung 210702, South Korea. High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. Cent Energy Res Estab, Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary. Korea Univ, Seoul 136701, South Korea. Russian Res Ctr, Kurchatov Inst, Moscow, Russia. Kyoto Univ, Kyoto 606, Japan. Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Clermont Ferrand, LPC, CNRS, IN2P3, F-63177 Aubiere, France. Lund Univ, Dept Phys, SE-22100 Lund, Sweden. Univ Munster, Inst Kernphys, D-48149 Munster, Germany. Myongji Univ, Yongin 449728, Kyonggido, South Korea. Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. Univ New Mexico, Albuquerque, NM 87131 USA. New Mexico State Univ, Las Cruces, NM 88003 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Paris 11, IPN Orsay, CNRS, IN2P3, F-91406 Orsay, France. PNPI, Gatchina, Russia. RIKEN, Wako, Saitama 3510198, Japan. Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. St Petersburg State Tech Univ, St Petersburg, Russia. Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Univ Nantes, Ecole Mines Nantes, SUBATECH, CNRS,IN2P3, F-44307 Nantes, France. Univ Tennessee, Knoxville, TN 37996 USA. Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. Vanderbilt Univ, Nashville, TN 37235 USA. Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. Weizmann Inst Sci, IL-76100 Rehovot, Israel. Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adler, SS (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zajc@nevis.columbia.edu RI Semenov, Vitaliy/E-9584-2017; seto, richard/G-8467-2011; Peitzmann, Thomas/K-2206-2012; du Rietz, Rickard/I-3794-2013; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017 OI Peitzmann, Thomas/0000-0002-7116-899X; du Rietz, Rickard/0000-0002-9884-9058; Hayano, Ryugo/0000-0002-1214-7806; Taketani, Atsushi/0000-0002-4776-2315 NR 74 TC 182 Z9 184 U1 6 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2005 VL 71 IS 3 AR 034908 DI 10.1103/PhysRevC.71.034908 PG 25 WC Physics, Nuclear SC Physics GA 919UQ UT WOS:000228643500045 ER PT J AU Basunia, MS Norman, EB Shugart, HA Smith, AR Dolinski, MJ Quiter, BJ AF Basunia, MS Norman, EB Shugart, HA Smith, AR Dolinski, MJ Quiter, BJ TI Measurement of cross sections for the Cu-63(alpha, gamma)Ga-67 reaction from 5.9 to 8.7 MeV SO PHYSICAL REVIEW C LA English DT Article ID ASTROPHYSICAL RP; GAMMA-PROCESSES; REACTION-RATES; RELEVANT; ENERGIES; NUCLEI; DECAY; GA-67 AB We have measured cross sections for the Cu-63(alpha, gamma)Ga-67 reaction in the 5.9- to 8.7-MeV energy range using an activation technique. Natural Cu foils were bombarded with alpha beams from the 88 '' Cyclotron at Lawrence Berkeley National Laboratory (LBNL). Activated foils were counted using a gamma-spectrometry system at LBNL's Low Background Facility. The Cu-63(alpha, gamma)Ga-67 cross sections were determined and compared with the latest NON-SMOKER theoretical values. Experimental cross sections were found to be in agreement with theoretical values. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Basunia, MS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 20 TC 13 Z9 13 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2005 VL 71 IS 3 AR 035801 DI 10.1103/PhysRevC.71.035801 PG 4 WC Physics, Nuclear SC Physics GA 919UQ UT WOS:000228643500054 ER PT J AU Jeon, SY Moore, GD AF Jeon, SY Moore, GD TI Energy loss of leading partons in a thermal QCD medium SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; BREMSSTRAHLUNG AB We consider bremsstrahlung energy toss for hard partons traversing a quark-gluon plasma (QCP). Accounting correctly for the probabilistic nature of the energy loss, and making a leading-order-accurate treatment of bremsstrahlung, we find that the suppression of the spectrum is nearly flat, with the most suppression at energies E similar to 30T (where T is the QGP temperature), without the need for initial state effects such as shadowing and the Cronin effect. This flat pattern should also be observed at the. LHC (Large Hadron Collider) out to an energy of similar to 30 GeV. C1 McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Jeon, SY (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. NR 29 TC 114 Z9 114 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2005 VL 71 IS 3 AR 034901 DI 10.1103/PhysRevC.71.034901 PG 5 WC Physics, Nuclear SC Physics GA 919UQ UT WOS:000228643500038 ER PT J AU Kahane, S Bhattt, KH Raman, S AF Kahane, S Bhattt, KH Raman, S TI Calculation of B(E2) down arrow, spectroscopic quadrupole moments Q(J), and magnetic dipole moments mu(J) for the yrast states in Pt-196 by a projection formalism SO PHYSICAL REVIEW C LA English DT Article ID INTERACTING BOSON MODEL; TRANSIENT FIELD; EXCITED-STATES; O(6) LIMIT; ELECTROMAGNETIC PROPERTIES; GYROMAGNETIC RATIOS; DEFORMED-NUCLEI; SHELL-MODEL; BANDS; OS AB The three major electromagnetic transition quantities, B(E2) down arrow, Q(J), and mu(J), are calculated for the yrast band of Pt-196 by a projection formalism. The valence nucleon space is divided into four sectors of normal and abnormal parity states for neutrons and protons separately. The collective properties are evaluated in each of the four sectors and summed. A comparison is made with the IBM and SO(6) results, and it is shown that the projection calculations are performing equally well using only one fitted parameter and one normalization. C1 Nucl Res Ctr Negev, Dept Phys, IL-84190 Beer Sheva, Israel. Univ Mississippi, Dept Phys & Astron, University, MS 38677 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Kahane, S (reprint author), Nucl Res Ctr Negev, Dept Phys, POB 9001, IL-84190 Beer Sheva, Israel. EM skahane@bgumail.bgu.ac.il NR 29 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2005 VL 71 IS 3 AR 034306 DI 10.1103/PhysRevC.71.034306 PG 8 WC Physics, Nuclear SC Physics GA 919UQ UT WOS:000228643500016 ER PT J AU Kozub, RL Bardayan, DW Batchelder, JC Blackmon, JC Brune, CR Champagne, AE Cizewski, JA Davinson, T Greife, U Gross, CJ Jewett, CC Livesay, RJ Ma, Z Moazen, BH Nesaraja, CD Sahin, L Scott, JP Shapira, D Smith, MS Thomas, JS Woods, PJ AF Kozub, RL Bardayan, DW Batchelder, JC Blackmon, JC Brune, CR Champagne, AE Cizewski, JA Davinson, T Greife, U Gross, CJ Jewett, CC Livesay, RJ Ma, Z Moazen, BH Nesaraja, CD Sahin, L Scott, JP Shapira, D Smith, MS Thomas, JS Woods, PJ TI New constraints on the F-18(p, alpha)O-15 rate in novae from the (d, p) reaction SO PHYSICAL REVIEW C LA English DT Article ID F-18(P,ALPHA)O-15 REACTION; GAMMA)NE-19 AB The degree to which the (p, gamma) and (p, alpha) reactions destroy F-18 at temperatures (1-4) x 10(8) K is important for understanding the synthesis of nuclei in nova explosions and for using the long-lived radionuclide F-18, a target of gamma-ray astronomy, as a diagnostic of nova mechanisms. The reactions are dominated by low-lying proton resonances near the F-18+p threshold (E-x = 6.411 MeV in Ne-19). To gain further information about these resonances, we used a radioactive F-18 beam from the Holifield Radioactive Ion Beam Facility to selectively populate corresponding mirror states in F-19 via the inverse H-2((18)p)F-19 neutron transfer reaction. Neutron spectroscopic factors were measured for states in F-19 in the excitation energy range 0-9 MeV. Widths for corresponding proton resonances in Ne-19 were calculated using a Woods-Saxon potential. The results imply significantly lower F-18(p, gamma)Ne-19 and F-18(p, alpha)O-15 reaction rates than reported previously, thereby increasing the prospect of observing the 511 keV annihilation radiation associated with the decay of F-18 in the ashes ejected from novae. C1 Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. Univ Edinburgh, Dept Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Dumlupinar Univ, Dept Phys, TR-43100 Kutahya, Turkey. RP Kozub, RL (reprint author), Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. NR 32 TC 41 Z9 41 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2005 VL 71 IS 3 AR 032801 DI 10.1103/PhysRevC.71.032801 PG 5 WC Physics, Nuclear SC Physics GA 919UQ UT WOS:000228643500003 ER PT J AU Lalkovski, S Rainovski, G Carpenter, MP Fossan, DB Finnigan, S Ilieva, S Joshi, P Koike, T Paul, ES Pietralla, N Vaman, C Wadsworth, R AF Lalkovski, S Rainovski, G Carpenter, MP Fossan, DB Finnigan, S Ilieva, S Joshi, P Koike, T Paul, ES Pietralla, N Vaman, C Wadsworth, R TI Quasi-gamma band and odd-even staggering effect in Ru-102 SO PHYSICAL REVIEW C LA English DT Article ID NUCLEI; DECAY; TRIAXIALITY; SOFTNESS; REGION; STATES; 102RH; MODEL AB Excited states of the nucleus Ru-102 have been studied using the Zr-96(B-10, p3n) reaction at a beam energy of (MeV)-Me-42. The emitted gamma rays were detected with the Gammasphere spectrometer. The known positive-parity structure built on the second 2(+) state was extended up to the 10(+) and 11(+) states. This structure has been interpreted as a quasi-gamma band. Its energy staggering as a function of spin has been analyzed in order to derive information on the type of triaxiality present in Ru-102, a nucleus that serves as one of the cores for chiral structures in the mass A approximate to 100 region. C1 St Kliment Ohridski Univ Sofia, Fac Phys, Sofia 1164, Bulgaria. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Univ York, Dept Phys, York Y01 5DD, N Yorkshire, England. RP Rainovski, G (reprint author), St Kliment Ohridski Univ Sofia, Fac Phys, Sofia 1164, Bulgaria. RI Carpenter, Michael/E-4287-2015; Rainovski, Georgi/A-3450-2008 OI Carpenter, Michael/0000-0002-3237-5734; Rainovski, Georgi/0000-0002-1729-0249 NR 29 TC 10 Z9 10 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2005 VL 71 IS 3 AR 034318 DI 10.1103/PhysRevC.71.034318 PG 5 WC Physics, Nuclear SC Physics GA 919UQ UT WOS:000228643500028 ER PT J AU Mishustin, IN Satarov, LM Burvenich, TJ Stocker, H Greiner, W AF Mishustin, IN Satarov, LM Burvenich, TJ Stocker, H Greiner, W TI Antibaryons bound in nuclei SO PHYSICAL REVIEW C LA English DT Article ID MEAN-FIELD THEORY; LOW-ENERGY; ANTIPROTON ANNIHILATION; PROTON-NUCLEUS; MOMENTUM RANGE; HEAVY-NUCLEI; P-NUCLEUS; GEV-C; ANTINUCLEON; MATTER AB We study the possibility of producing a new kind of nuclear system that in addition to ordinary nucleons contains a few antibaryons ((B) over bar = (p) over bar, (Lambda) over bar, etc.). The properties of such systems are described within the relativistic mean-field model by employing G-parity transformed interactions for antibaryons. Calculations are first done for infinite systems and then for finite nuclei from He-4 to Pb-208. It is demonstrated that the presence of a real antibaryon leads to a strong rearrangement of a target nucleus, resulting in a significant increase of its binding energy and local compression. Noticeable effects remain even after the antibaryon coupling constants are reduced by a factor of 3-4 compared to G-parity motivated values. We have performed detailed calculations of the antibaryon annihilation rates in the nuclear environment by applying a kinetic approach. It is shown that owing to significant reduction of the reaction Q values, the in-medium annihilation rates should be strongly suppressed, leading to relatively long-lived antibaryon-nucleus systems. Multinucleon annihilation channels are analyzed too. We have also estimated formation probabilities of bound (B) over bar + A systems in (p) over barA reactions and have found that their observation will be feasible at the future GSI antiproton facility. Several observable signatures are proposed. The possibility of producing cold multi-quark-antiquark clusters is discussed. C1 Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. Russian Res Ctr, Kurchatov Inst, Moscow 123182, Russia. Goethe Univ Frankfurt, Inst Theoret Phys, D-60054 Frankfurt, Germany. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Mishustin, IN (reprint author), Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. RI Stoecker, Horst/D-6173-2013 OI Stoecker, Horst/0000-0002-3282-3664 NR 71 TC 41 Z9 44 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2005 VL 71 IS 3 AR 035201 DI 10.1103/PhysRevC.71.035201 PG 32 WC Physics, Nuclear SC Physics GA 919UQ UT WOS:000228643500048 ER PT J AU Terasaki, J Engel, J Bender, M Dobaczewski, J Nazarewicz, W Stoitsov, M AF Terasaki, J Engel, J Bender, M Dobaczewski, J Nazarewicz, W Stoitsov, M TI Self-consistent description of multipole strength in exotic nuclei: Method SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON-RICH NUCLEI; DRIP-LINE NUCLEI; GROUND-STATE PROPERTIES; MEAN-FIELD THEORY; GIANT-RESONANCES; MICROSCOPIC DESCRIPTION; COLLECTIVE EXCITATIONS; SUPERFLUID NUCLEI; DIPOLE STRENGTH; CONTINUUM QRPA AB We use the canonical Hartree-Fock-Bogoliubov basis to implement a self-consistent quasiparticle-random-phase approximation (QRPA) with arbitrary Skyrme energy density functionals and density-dependent pairing functionals. The point of the approach is to accurately describe multipole strength functions in spherical even-even nuclei, including weakly bound drip-line systems. We describe the method and carefully test its accuracy, particularly in handling spurious modes. To illustrate our approach, we calculate isoscalar and isovector monopole, dipole, and quadrupole strength functions in several Sn isotopes, both in the stable region and at the drip lines. We also investigate the consequences of neglecting the spin-orbit or Coulomb residual interactions in the QRPA. C1 Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. RP Terasaki, J (reprint author), Univ N Carolina, Dept Phys & Astron, CB3255, Chapel Hill, NC 27599 USA. EM jterasak@physics.unc.edu; engelj@physics.unc.edu; mbender@phy.anl.gov; dobaczew@fuw.edu.pl; witek@utk.edu; stoitsovmv@ornl.gov RI Bender, Michael/B-9004-2009 NR 85 TC 99 Z9 100 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2005 VL 71 IS 3 AR 034310 DI 10.1103/PhysRevC.71.034310 PG 15 WC Physics, Nuclear SC Physics GA 919UQ UT WOS:000228643500020 ER PT J AU Valiente-Dobon, JJ Svensson, CE O'Leary, CD Ragnarsson, I Andreoiu, C Appelbe, DE Austin, RAE Ball, GC Cameron, JA Carpenter, MP Clark, RM Cromaz, M Dashdorj, D Fallon, P Finlay, P Freeman, SJ Garrett, RE Gorgen, A Grinyer, GF Hodgson, DF Hyland, B Jenkins, D Johnston-Theasby, F Joshi, P Kelsall, NS Macchiavelli, AO Moore, F Mukherjee, G Phillips, AA Reviol, W Sarantites, D Schumaker, MA Seweryniak, D Smith, MB Waddington, JC Wadsworth, R Ward, D Williams, SJ AF Valiente-Dobon, JJ Svensson, CE O'Leary, CD Ragnarsson, I Andreoiu, C Appelbe, DE Austin, RAE Ball, GC Cameron, JA Carpenter, MP Clark, RM Cromaz, M Dashdorj, D Fallon, P Finlay, P Freeman, SJ Garrett, RE Gorgen, A Grinyer, GF Hodgson, DF Hyland, B Jenkins, D Johnston-Theasby, F Joshi, P Kelsall, NS Macchiavelli, AO Moore, F Mukherjee, G Phillips, AA Reviol, W Sarantites, D Schumaker, MA Seweryniak, D Smith, MB Waddington, JC Wadsworth, R Ward, D Williams, SJ TI High-spin rotational structures in Kr-76 SO PHYSICAL REVIEW C LA English DT Article ID FUSION-EVAPORATION REACTIONS; GAMMA-RAY SPECTROSCOPY; 60 MASS REGION; CHANNEL-SELECTION; BANDS; COLLECTIVITY; DEFORMATIONS; GAMMASPHERE; TRANSITIONS; COEXISTENCE AB High-spin states in Kr-76(36)40 have been populated in the Ca-40(Ca-40,4p)Kr-76 fusion-evaporation reaction at abeam energy of 165 MeV and studied using the Gammasphere and Microball multidetector arrays. The ground-state band and two signature-split negative parity bands of Kr-76 have been extended to similar to 30 (h) over bar. Lifetime measurements. using the Doppler-shift attenuation method show that the transition quadrupole moment of these three bands decrease as they approach their maximum-spin states. Two signatures of a new rotational structure with remarkably rigid rotational behavior have been identified. The high-spin properties of these rotational bands are analyzed within the framework of configuration-dependent cranked Nilsson-Strutinsky calculations. C1 Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. Lund Inst Technol, Dept Phys, S-22100 Lund, Sweden. Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. CLRC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4K1, Canada. TRIUMF, Vancouver, BC V6T 2A3, Canada. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. N Carolina State Univ, Raleigh, NC 27695 USA. CEA Saclay, DAPNIA, SPhN, F-91191 Gif Sur Yvette, France. Washington Univ, Dept Chem, St Louis, MO 63130 USA. Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. RP Valiente-Dobon, JJ (reprint author), Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. EM valiente@physics.uoguelph.ca; sven@physics.uoguelph.ca; christopher.oleary@physics.org RI Freeman, Sean/B-1280-2010; Carpenter, Michael/E-4287-2015; OI Freeman, Sean/0000-0001-9773-4921; Carpenter, Michael/0000-0002-3237-5734; Smith, Martin/0000-0003-0834-1574; Gorgen, Andreas/0000-0003-1916-9941 NR 34 TC 18 Z9 19 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2005 VL 71 IS 3 AR 034311 DI 10.1103/PhysRevC.71.034311 PG 13 WC Physics, Nuclear SC Physics GA 919UQ UT WOS:000228643500021 ER PT J AU Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Arguin, JF Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barker, GJ Barnes, VE Barnett, BA Baroiant, S Barone, M Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Ben-Haim, E Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bishai, M Blair, RE Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Bolla, G Bolshov, A Booth, PSL Bortoletto, D Boudreau, J Bourov, S Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canepa, A Casarsa, M Carlsmith, D Carron, S Carosi, R Cavalli-Sforza, M Castro, A Catastini, P Cauz, D Cerri, A Cerrito, L Chapman, J Chen, C Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, ML Chuang, S Chung, JY Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, AG Clark, D Coca, M Connolly, A Convery, M Conway, J Cooper, B Cordelli, M Cortiana, G Cranshaw, J Cuevas, J Culbertson, R Currat, C Cyr, D Dagenhart, D Da Ronco, S D'Auria, S de Barbaro, P De Cecco, S De Lentdecker, G Dell'Agnello, S Dell'Orso, M Demers, S Demortier, L Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR Dorr, C Doksus, P Dominguez, A Donati, S Donega, M Donini, J D'Onofrio, M Dorigo, T Drollinger, V Ebina, K Eddy, N Ehlers, J Ely, R Erbacher, R Erdmann, M Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferretti, C Field, RD Flanagan, G Flaugher, B Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Fujii, Y Furic, I Gajjar, A Gallas, A Galyardt, J Gallinaro, M Garcia-Sciveres, M Garfinkel, AF Gay, C Gerberich, H Gerdes, DW Gerchtein, E Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giolo, K Giordani, M Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, D Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grosso-Pilcher, C Grundler, U Guenther, M da Costa, JG Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Handler, R Happacher, F Hara, K Hare, M Harr, RF Harris, RM Hartmann, F Hatakeyama, K Hauser, J Hays, C Hayward, H Heider, E Heinemann, B Heinrich, J Hennecke, M Herndon, M Hill, C Hirschbuehl, D Hocker, A Hoffman, KD Holloway, A Hou, S Houlden, MA Huffman, BT Huang, Y Hughes, RE Huston, J Ikado, K Incandela, J Introzzi, G Iori, M Ishizawa, Y Issever, C Ivanov, A Iwata, Y Iyutin, B James, E Jang, D Jarrell, J Jeans, D Jensen, H Jeon, EJ Jones, M Joo, KK Jun, SY Junk, T Kamon, T Kang, J Unel, MK Karchin, PE Kartal, S Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, MS Kim, SB Kim, SH Kim, TH Kim, YK King, BT Kirby, M Kirsch, L Klimenko, S Knuteson, B Ko, BR Kobayashi, H Koehn, P Kong, DJ Kondo, K Konigsberg, J Kordas, K Korn, A Korytov, A Kotelnikov, K Kotwal, AV Kovalev, A Kraus, J Kravchenko, I Kreymer, A Kroll, J Kruse, M Krutelyov, V Kuhlmann, SE Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, J Lancaster, M Lander, R Lannon, K Lath, A Latino, G Lauhakangas, R Lazzizzera, I Le, Y Lecci, C LeCompte, T Lee, J Lee, J Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Li, K Lin, C Lin, CS Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, T Liu, Y Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Maksimovic, P Malferrari, L Manca, G Marginean, R Marino, C Martin, A Martin, M Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, M Mazzanti, P McFarland, KS McGivern, D McIntyre, PM McNamara, P NcNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miller, L Miller, R Miller, JS Miquel, R Miscetti, S Mitselmakher, G Miyamoto, A Miyazaki, Y Moggi, N Mohr, B Moore, R Morello, M Fernandez, PAM Mukherjee, A Mulhearn, M Muller, T Mumford, R Munar, A Murat, P Nachtman, J Nahn, S Nakamura, I Nakano, I Napier, A Napora, R Naumov, D Necula, V Niell, F Nielsen, J Nelson, C Nelson, T Neu, C Neubauer, MS Newman-Holmes, C Nigmanov, T Nodulman, L Norniella, O Oesterberg, K Ogawa, T Oh, SH Oh, YD Ohsugi, T Okusawa, T Oldeman, R Orava, R Orejudos, W Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Pashapour, S Patrick, J Pauletta, G Paulini, M Pauly, T Paus, C Pellett, D Penzo, A Phillips, TJ Piacentino, G Piedra, J Pitts, KT Plager, C Pompos, A Pondrom, L Pope, G Portell, X Poukhov, O Prakoshyn, F Pratt, T Pronko, A Proudfoot, J Ptohos, F Punzi, G Rademacker, J Rahaman, MA Rakitine, A Rappoccio, S Ratnikov, F Ray, H Reisert, B Rekovic, V Renton, P Rescigno, M Rimondi, F Rinnert, K Ristori, L Robertson, WJ Robson, A Rodrigo, T Rolli, S Rosenson, L Roser, R Rossin, R Rott, C Russ, J Rusu, V Ruiz, A Ryan, D Saarikko, H Sabik, S Safonov, A St Denis, R Sakumoto, WK Salamanna, G Saltzberg, D Sanchez, C Sansoni, A Santi, L Sarkar, S Sato, K Savard, P Savoy-Navarro, A Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semeria, F Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Siegrist, J Siket, M Sill, A Sinervo, P Sisakyan, A Skiba, A Slaughter, AJ Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Soha, A Somalwar, SV Spalding, J Spezziga, M Spiegel, L Spinella, F Spiropulu, M Squillacioti, P Stadie, H Stelzer, B Stelzer-Chilton, O Strologas, J Stuart, D Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Tafirout, R Takach, SF Takano, H Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tapprogge, S Tecchio, M Teng, PK Terashi, K Tesarek, RJ Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tseng, J Tsuchiya, R Tsuno, S Tsybychev, D Turini, N Turner, M Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vacavant, L Vaiciulis, A Varganov, A Vataga, E Vejcik, S Velev, G Veszpremi, V Veramendi, G Vickey, T Vidal, R Vila, I Vilar, R Vollrath, I Volobouev, I von der Mey, M Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Yamashita, T Yamamoto, K Wan, Z Wang, MJ Wang, SM Warburton, A Ward, B Waschke, S Waters, D Watts, T Weber, M Wester, WC Whitehouse, B Wicklund, AB Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolter, M Worcester, M Worm, S Wright, T Wu, X Wurthwein, F Wyatt, A Yagil, A Yang, C Yang, UK Yao, W Yeh, GP Yi, K Yoh, J Yoon, P Yorita, K Yoshida, T Yu, I Yu, S Yu, Z Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhou, J Zsenei, A Zucchelli, S AF Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Arguin, JF Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barker, GJ Barnes, VE Barnett, BA Baroiant, S Barone, M Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Ben-Haim, E Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bishai, M Blair, RE Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Bolla, G Bolshov, A Booth, PSL Bortoletto, D Boudreau, J Bourov, S Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canepa, A Casarsa, M Carlsmith, D Carron, S Carosi, R Cavalli-Sforza, M Castro, A Catastini, P Cauz, D Cerri, A Cerrito, L Chapman, J Chen, C Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, ML Chuang, S Chung, JY Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, AG Clark, D Coca, M Connolly, A Convery, M Conway, J Cooper, B Cordelli, M Cortiana, G Cranshaw, J Cuevas, J Culbertson, R Currat, C Cyr, D Dagenhart, D Da Ronco, S D'Auria, S de Barbaro, P De Cecco, S De Lentdecker, G Dell'Agnello, S Dell'Orso, M Demers, S Demortier, L Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR Dorr, C Doksus, P Dominguez, A Donati, S Donega, M Donini, J D'Onofrio, M Dorigo, T Drollinger, V Ebina, K Eddy, N Ehlers, J Ely, R Erbacher, R Erdmann, M Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferretti, C Field, RD Flanagan, G Flaugher, B Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Fujii, Y Furic, I Gajjar, A Gallas, A Galyardt, J Gallinaro, M Garcia-Sciveres, M Garfinkel, AF Gay, C Gerberich, H Gerdes, DW Gerchtein, E Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giolo, K Giordani, M Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, D Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grosso-Pilcher, C Grundler, U Guenther, M da Costa, JG Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Handler, R Happacher, F Hara, K Hare, M Harr, RF Harris, RM Hartmann, F Hatakeyama, K Hauser, J Hays, C Hayward, H Heider, E Heinemann, B Heinrich, J Hennecke, M Herndon, M Hill, C Hirschbuehl, D Hocker, A Hoffman, KD Holloway, A Hou, S Houlden, MA Huffman, BT Huang, Y Hughes, RE Huston, J Ikado, K Incandela, J Introzzi, G Iori, M Ishizawa, Y Issever, C Ivanov, A Iwata, Y Iyutin, B James, E Jang, D Jarrell, J Jeans, D Jensen, H Jeon, EJ Jones, M Joo, KK Jun, SY Junk, T Kamon, T Kang, J Unel, MK Karchin, PE Kartal, S Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, MS Kim, SB Kim, SH Kim, TH Kim, YK King, BT Kirby, M Kirsch, L Klimenko, S Knuteson, B Ko, BR Kobayashi, H Koehn, P Kong, DJ Kondo, K Konigsberg, J Kordas, K Korn, A Korytov, A Kotelnikov, K Kotwal, AV Kovalev, A Kraus, J Kravchenko, I Kreymer, A Kroll, J Kruse, M Krutelyov, V Kuhlmann, SE Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, J Lancaster, M Lander, R Lannon, K Lath, A Latino, G Lauhakangas, R Lazzizzera, I Le, Y Lecci, C LeCompte, T Lee, J Lee, J Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Li, K Lin, C Lin, CS Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, T Liu, Y Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Maksimovic, P Malferrari, L Manca, G Marginean, R Marino, C Martin, A Martin, M Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, M Mazzanti, P McFarland, KS McGivern, D McIntyre, PM McNamara, P NcNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miller, L Miller, R Miller, JS Miquel, R Miscetti, S Mitselmakher, G Miyamoto, A Miyazaki, Y Moggi, N Mohr, B Moore, R Morello, M Fernandez, PAM Mukherjee, A Mulhearn, M Muller, T Mumford, R Munar, A Murat, P Nachtman, J Nahn, S Nakamura, I Nakano, I Napier, A Napora, R Naumov, D Necula, V Niell, F Nielsen, J Nelson, C Nelson, T Neu, C Neubauer, MS Newman-Holmes, C Nigmanov, T Nodulman, L Norniella, O Oesterberg, K Ogawa, T Oh, SH Oh, YD Ohsugi, T Okusawa, T Oldeman, R Orava, R Orejudos, W Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Pashapour, S Patrick, J Pauletta, G Paulini, M Pauly, T Paus, C Pellett, D Penzo, A Phillips, TJ Piacentino, G Piedra, J Pitts, KT Plager, C Pompos, A Pondrom, L Pope, G Portell, X Poukhov, O Prakoshyn, F Pratt, T Pronko, A Proudfoot, J Ptohos, F Punzi, G Rademacker, J Rahaman, MA Rakitine, A Rappoccio, S Ratnikov, F Ray, H Reisert, B Rekovic, V Renton, P Rescigno, M Rimondi, F Rinnert, K Ristori, L Robertson, WJ Robson, A Rodrigo, T Rolli, S Rosenson, L Roser, R Rossin, R Rott, C Russ, J Rusu, V Ruiz, A Ryan, D Saarikko, H Sabik, S Safonov, A St Denis, R Sakumoto, WK Salamanna, G Saltzberg, D Sanchez, C Sansoni, A Santi, L Sarkar, S Sato, K Savard, P Savoy-Navarro, A Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semeria, F Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Siegrist, J Siket, M Sill, A Sinervo, P Sisakyan, A Skiba, A Slaughter, AJ Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Soha, A Somalwar, SV Spalding, J Spezziga, M Spiegel, L Spinella, F Spiropulu, M Squillacioti, P Stadie, H Stelzer, B Stelzer-Chilton, O Strologas, J Stuart, D Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Tafirout, R Takach, SF Takano, H Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tapprogge, S Tecchio, M Teng, PK Terashi, K Tesarek, RJ Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tseng, J Tsuchiya, R Tsuno, S Tsybychev, D Turini, N Turner, M Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vacavant, L Vaiciulis, A Varganov, A Vataga, E Vejcik, S Velev, G Veszpremi, V Veramendi, G Vickey, T Vidal, R Vila, I Vilar, R Vollrath, I Volobouev, I von der Mey, M Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Yamashita, T Yamamoto, K Wan, Z Wang, MJ Wang, SM Warburton, A Ward, B Waschke, S Waters, D Watts, T Weber, M Wester, WC Whitehouse, B Wicklund, AB Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolter, M Worcester, M Worm, S Wright, T Wu, X Wurthwein, F Wyatt, A Yagil, A Yang, C Yang, UK Yao, W Yeh, GP Yi, K Yoh, J Yoon, P Yorita, K Yoshida, T Yu, I Yu, S Yu, Z Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhou, J Zsenei, A Zucchelli, S CA CDF Collaboration TI Measurement of the moments of the hadronic invariant mass distribution in semileptonic B decays SO PHYSICAL REVIEW D LA English DT Article ID SPECTRAL MOMENTS; MESON DECAYS AB Using 180 pb(-1) of data collected with the CDF II detector at the Tevatron, we measure the first two moments of the hadronic invariant mass-squared distribution in charmed semileptonic B decays. From these we determine the nonperturbative Heavy Quark Effective Theory parameters Lambda and lambda(1) used to relate the B meson semileptonic branching ratio to the CKM matrix element vertical bar V(ch)vertical bar. For a minimum lepton momentum of 0.7 GeV/c in the B rest frame we measure the first two moments of the D-** -> D((*))pi component to be < m(D**)(2)> = (5.83 +/- 0.16(stat) +/- 0.08(syst)) GeV2/c(4) and <(M-D**(2) - < m(D**)(2)>)(2)> = (130 +/- 0.69(stat) +/- 0.22(syst)) GeV4/c(8). Combining these with the discrete mass terms from the D and D* mesons, we find the total moments to be < M-Xc(2)> - (m) over bar (2)(D) = (0.467 +/- 0.038(stat) +/- 0.068(syst)) GeV2/c(4) and <(M-Xc(2) - < M-Xc(2)>)(2)) = (1.05 +/- 0.26(stat) +/- 0.13(syst)) GeV4/c(8), where (m) over bar (2)(D) is the spin-averaged D mass. The systematic error is dominated by the uncertainties in the world-average branching ratios used to combine the D, D*, and D** contributions. The analysis makes no assumptions about the shape or resonant structure of the D-** -> D((*))pi invariant mass distribution. C1 Univ Florida, Gainesville, FL 32611 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst fis Cantabria, Santander 39005, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Helsinki Grp, Helsinki Inst Phys, FIN-00044 Helsinki, Finland. Univ Helsinki, Dept Phys Sci, Div High Energy Phys, FIN-00044 Helsinki, Finland. Hiroshima Univ, Higashihiroshima 724, Japan. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Seoul Natl Univ, Seoul 151742, South Korea. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. MIT, Cambridge, MA 02139 USA. Univ Toronto, Toronto, ON M5S 1A7, Canada. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, I-56100 Pisa, Italy. Scuola Normale Super Pisa, I-56100 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Texas Tech Univ, Lubbock, TX 79409 USA. Univ Trieste Udine, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Univ Florida, Gainesville, FL 32611 USA. RI Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Gallas Torreira, Abraham Antonio/K-6508-2014; Scodellaro, Luca/K-9091-2014; Connolly, Amy/J-3958-2013; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Cabrera Urban, Susana/H-1376-2015; Cavalli-Sforza, Matteo/H-7102-2015; ciocci, maria agnese /I-2153-2015; Introzzi, Gianluca/K-2497-2015; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Wolter, Marcin/A-7412-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Chiarelli, Giorgio/E-8953-2012; Lancaster, Mark/C-1693-2008; Ruiz, Alberto/E-4473-2011; Ivanov, Andrew/A-7982-2013; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Lazzizzera, Ignazio/E-9678-2015; OI Warburton, Andreas/0000-0002-2298-7315; Gallas Torreira, Abraham Antonio/0000-0002-2745-7954; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Chiarelli, Giorgio/0000-0001-9851-4816; Ruiz, Alberto/0000-0002-3639-0368; Ivanov, Andrew/0000-0002-9270-5643; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Miquel, Ramon/0000-0002-6610-4836; Osterberg, Kenneth/0000-0003-4807-0414; Goldstein, Joel/0000-0003-1591-6014; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Lazzizzera, Ignazio/0000-0001-5092-7531; Lami, Stefano/0000-0001-9492-0147; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380 NR 19 TC 28 Z9 28 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 051103 DI 10.1103/PhysRevD.71.051103 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000003 ER PT J AU Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Arguin, JF Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barker, GJ Barnes, VE Barnett, BA Baroiant, S Barone, M Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Ben-Haim, E Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bishai, M Blair, RE Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Bolla, G Bolshov, A Booth, PSL Bortoletto, D Boudreau, J Bourov, S Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canepa, A Casarsa, M Carlsmith, D Carron, S Carosi, R Cavalli-Sforza, M Castro, A Catastini, P Cauz, D Cerri, A Cerrito, L Chapman, J Chen, C Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, ML Chuang, S Chung, JY Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, AG Clark, D Coca, M Connolly, A Convery, M Conway, J Cooper, B Cordelli, M Cortiana, G Cranshaw, J Cuevas, J Culbertson, R Currat, C Cyr, D Dagenhart, D Da Ronco, S D'Auria, S de Barbaro, P De Cecco, S De Lentdecker, G Dell'Agnello, S Dell'Orso, M Demers, S Demortier, L Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR Dorr, C Doksus, P Dominguez, A Donati, S Donega, M Donini, J D'Onofrio, M Dorigo, T Drollinger, V Ebina, K Eddy, N Ehlers, J Ely, R Erbacher, R Erdmann, M Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferretti, C Field, RD Flanagan, G Flaugher, B Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Fujii, Y Furic, I Gajjar, A Gallas, A Galyardt, J Gallinaro, M Garcia-Sciveres, M Garfinkel, AF Gay, C Gerberich, H Gerdes, DW Gerchtein, E Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giolo, K Giordani, M Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, D Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grosso-Pilcher, C Grundler, U Guenther, M da Costa, JG Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Handler, R Happacher, F Hara, K Hare, M Harr, RF Harris, RM Hartmann, F Hatakeyama, K Hauser, J Hays, C Hayward, H Heider, E Heinemann, B Heinrich, J Hennecke, M Herndon, M Hill, C Hirschbuehl, D Hocker, A Hoffman, KD Holloway, A Hou, S Houlden, MA Huffman, BT Huang, Y Hughes, RE Huston, J Ikado, K Incandela, J Introzzi, G Iori, M Ishizawa, Y Issever, C Ivanov, A Iwata, Y Iyutin, B James, E Jang, D Jarrell, J Jeans, D Jensen, H Jeon, EJ Jones, M Joo, KK Jun, S Junk, T Kamon, T Kan, J Unel, MK Karchin, PE Kartal, S Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, MS Kim, SB Kim, SH Kim, TH Kim, YK King, BT Kirby, M Kirsch, L Klimenko, S Knuteson, B Ko, BR Kobayashi, H Koehn, P Kong, DJ Kondo, K Konigsberg, J Kordas, K Korn, A Korytov, A Kotelnikov, K Kotwal, AV Kovalev, A Kraus, J Kravchenko, I Kreymer, A Kroll, J Kruse, M Krutelyov, V Kuhlmann, SE Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, J Lancaster, M Lander, R Lannon, K Lath, A Latino, G Lauhakangas, R Lazzizzera, I Le, Y Lecci, C LeCompte, T Lee, J Lee, J Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Li, K Lin, C Lin, CS Lindgren, M Liss, TM Lister, A Litvintsev, DO Liu, T Liu, Y Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Maksimovic, P Malferrari, L Manca, G Marginean, R Marino, C Martin, A Martin, M Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, M Mazzanti, P McFarland, KS McGivern, D McIntyre, PM McNamara, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miller, L Miller, R Miller, JS Miquel, R Miscetti, S Mitselmakher, G Miyamoto, A Miyazaki, Y Moggi, N Mohr, B Moore, R Morello, M Fernandez, PAM Mukherjee, A Mulhearn, M Muller, T Mumford, R Munar, A Murat, P Nachtman, J Nahn, S Nakamura, I Nakano, I Napier, A Napora, R Naumov, D Necula, V Niell, F Nielsen, J Nelson, C Nelson, T Neu, C Neubauer, MS Newman-Holmes, C Nigmanov, T Nodulman, L Norniella, O Oesterberg, K Ogawa, T Oh, SH Oh, YD Ohsugi, T Okusawa, T Oldeman, R Orava, R Orejudos, W Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Pashapour, S Patrick, J Pauletta, G Paulini, M Pauly, T Paus, C Pellett, D Penzo, A Phillips, TJ Piacentino, G Piedra, J Pitts, KT Plager, C Pompos, A Pondrom, L Pope, G Portell, X Poukhov, O Prakoshyn, F Pratt, T Pronko, A Proudfoot, J Ptohos, F Punzi, G Rademacker, J Rahaman, MA Rakitine, A Rappoccio, S Ratnikov, F Ray, H Reisert, B Rekovic, V Renton, P Rescigno, M Rimondi, F Rinnert, K Ristori, L Robertson, WJ Robson, A Rodrigo, T Rolli, S Rosenson, L Roser, R Rossin, R Rott, C Russ, J Rusu, V Ruiz, A Ryan, D Saarikko, H Sabik, S Safonov, A St Denis, R Sakumoto, WK Salamanna, G Saltzberg, D Sanchez, C Sansoni, A Santi, L Sarkar, S Sato, K Savard, P Savoy-Navarro, A Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semeria, F Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Siegrist, J Siket, M Sill, A Sinervo, P Sisakyan, A Skiba, A Slaughter, AJ Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Soha, A Somalwar, SV Spalding, J Spezziga, M Spiegel, L Spinella, F Spiropulu, M Squillacioti, P Stadie, H Stelzer, B Stelzer-Chilton, O Strologas, J Stuart, D Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Tafirout, R Takach, SF Takano, H Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tapprogge, S Tecchio, M Teng, PK Terashi, K Tesarek, RJ Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tseng, J Tsuchiya, R Tsuno, S Tsybychev, D Turini, N Turner, M Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vacavant, L Vaiciulis, A Varganov, A Vataga, E Vejcik, S Velev, G Veszpremi, V Veramendi, G Vickey, T Vidal, R Vila, I Vilar, R Vollrath, I Volobouev, O von der Mey, M Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Yamashita, T Yamamoto, K Wan, Z Wang, MJ Wang, SM Warburton, A Ward, B Waschke, S Waters, D Watts, T Weber, M Wester, WC Whitehouse, B Wicklund, AB Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wolter, M Worcester, M Worm, S Wright, T Wu, X Wurthwein, E Wyatt, A Yagil, A Wang, C Yang, UK Yao, W Yeh, GP Yi, K Yoh, J Yoon, P Yorita, K Yoshida, T Yu, I Yu, S Yu, Z Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhou, J Zsenei, A Zucchelli, S AF Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Arguin, JF Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barker, GJ Barnes, VE Barnett, BA Baroiant, S Barone, M Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Ben-Haim, E Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bishai, M Blair, RE Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Bolla, G Bolshov, A Booth, PSL Bortoletto, D Boudreau, J Bourov, S Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canepa, A Casarsa, M Carlsmith, D Carron, S Carosi, R Cavalli-Sforza, M Castro, A Catastini, P Cauz, D Cerri, A Cerrito, L Chapman, J Chen, C Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, ML Chuang, S Chung, JY Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, AG Clark, D Coca, M Connolly, A Convery, M Conway, J Cooper, B Cordelli, M Cortiana, G Cranshaw, J Cuevas, J Culbertson, R Currat, C Cyr, D Dagenhart, D Da Ronco, S D'Auria, S de Barbaro, P De Cecco, S De Lentdecker, G Dell'Agnello, S Dell'Orso, M Demers, S Demortier, L Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR Dorr, C Doksus, P Dominguez, A Donati, S Donega, M Donini, J D'Onofrio, M Dorigo, T Drollinger, V Ebina, K Eddy, N Ehlers, J Ely, R Erbacher, R Erdmann, M Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferretti, C Field, RD Flanagan, G Flaugher, B Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Fujii, Y Furic, I Gajjar, A Gallas, A Galyardt, J Gallinaro, M Garcia-Sciveres, M Garfinkel, AF Gay, C Gerberich, H Gerdes, DW Gerchtein, E Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giolo, K Giordani, M Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, D Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grosso-Pilcher, C Grundler, U Guenther, M da Costa, JG Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Handler, R Happacher, F Hara, K Hare, M Harr, RF Harris, RM Hartmann, F Hatakeyama, K Hauser, J Hays, C Hayward, H Heider, E Heinemann, B Heinrich, J Hennecke, M Herndon, M Hill, C Hirschbuehl, D Hocker, A Hoffman, KD Holloway, A Hou, S Houlden, MA Huffman, BT Huang, Y Hughes, RE Huston, J Ikado, K Incandela, J Introzzi, G Iori, M Ishizawa, Y Issever, C Ivanov, A Iwata, Y Iyutin, B James, E Jang, D Jarrell, J Jeans, D Jensen, H Jeon, EJ Jones, M Joo, KK Jun, S Junk, T Kamon, T Kan, J Unel, MK Karchin, PE Kartal, S Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, MS Kim, SB Kim, SH Kim, TH Kim, YK King, BT Kirby, M Kirsch, L Klimenko, S Knuteson, B Ko, BR Kobayashi, H Koehn, P Kong, DJ Kondo, K Konigsberg, J Kordas, K Korn, A Korytov, A Kotelnikov, K Kotwal, AV Kovalev, A Kraus, J Kravchenko, I Kreymer, A Kroll, J Kruse, M Krutelyov, V Kuhlmann, SE Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, J Lancaster, M Lander, R Lannon, K Lath, A Latino, G Lauhakangas, R Lazzizzera, I Le, Y Lecci, C LeCompte, T Lee, J Lee, J Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Li, K Lin, C Lin, CS Lindgren, M Liss, TM Lister, A Litvintsev, DO Liu, T Liu, Y Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Maksimovic, P Malferrari, L Manca, G Marginean, R Marino, C Martin, A Martin, M Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, M Mazzanti, P McFarland, KS McGivern, D McIntyre, PM McNamara, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miller, L Miller, R Miller, JS Miquel, R Miscetti, S Mitselmakher, G Miyamoto, A Miyazaki, Y Moggi, N Mohr, B Moore, R Morello, M Fernandez, PAM Mukherjee, A Mulhearn, M Muller, T Mumford, R Munar, A Murat, P Nachtman, J Nahn, S Nakamura, I Nakano, I Napier, A Napora, R Naumov, D Necula, V Niell, F Nielsen, J Nelson, C Nelson, T Neu, C Neubauer, MS Newman-Holmes, C Nigmanov, T Nodulman, L Norniella, O Oesterberg, K Ogawa, T Oh, SH Oh, YD Ohsugi, T Okusawa, T Oldeman, R Orava, R Orejudos, W Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Pashapour, S Patrick, J Pauletta, G Paulini, M Pauly, T Paus, C Pellett, D Penzo, A Phillips, TJ Piacentino, G Piedra, J Pitts, KT Plager, C Pompos, A Pondrom, L Pope, G Portell, X Poukhov, O Prakoshyn, F Pratt, T Pronko, A Proudfoot, J Ptohos, F Punzi, G Rademacker, J Rahaman, MA Rakitine, A Rappoccio, S Ratnikov, F Ray, H Reisert, B Rekovic, V Renton, P Rescigno, M Rimondi, F Rinnert, K Ristori, L Robertson, WJ Robson, A Rodrigo, T Rolli, S Rosenson, L Roser, R Rossin, R Rott, C Russ, J Rusu, V Ruiz, A Ryan, D Saarikko, H Sabik, S Safonov, A St Denis, R Sakumoto, WK Salamanna, G Saltzberg, D Sanchez, C Sansoni, A Santi, L Sarkar, S Sato, K Savard, P Savoy-Navarro, A Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semeria, F Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Siegrist, J Siket, M Sill, A Sinervo, P Sisakyan, A Skiba, A Slaughter, AJ Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Soha, A Somalwar, SV Spalding, J Spezziga, M Spiegel, L Spinella, F Spiropulu, M Squillacioti, P Stadie, H Stelzer, B Stelzer-Chilton, O Strologas, J Stuart, D Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Tafirout, R Takach, SF Takano, H Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tapprogge, S Tecchio, M Teng, PK Terashi, K Tesarek, RJ Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tseng, J Tsuchiya, R Tsuno, S Tsybychev, D Turini, N Turner, M Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vacavant, L Vaiciulis, A Varganov, A Vataga, E Vejcik, S Velev, G Veszpremi, V Veramendi, G Vickey, T Vidal, R Vila, I Vilar, R Vollrath, I Volobouev, O von der Mey, M Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Yamashita, T Yamamoto, K Wan, Z Wang, MJ Wang, SM Warburton, A Ward, B Waschke, S Waters, D Watts, T Weber, M Wester, WC Whitehouse, B Wicklund, AB Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wolter, M Worcester, M Worm, S Wright, T Wu, X Wurthwein, E Wyatt, A Yagil, A Wang, C Yang, UK Yao, W Yeh, GP Yi, K Yoh, J Yoon, P Yorita, K Yoshida, T Yu, I Yu, S Yu, Z Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhou, J Zsenei, A Zucchelli, S CA CDF Collaboration TI Measurement of the forward-backward charge asymmetry from W -> ev production in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID ELECTROMAGNETIC CALORIMETER; PARTON DISTRIBUTIONS; CDF AB We report a measurement of the forward-backward charge asymmetry of electrons from W boson decays in p (p) over bar collisions root s = 1.96 TeV using a data sample of 170 pb(-1) collected by the Collider Detector at Fermilab. The asymmetry is measured as a function of electron rapidity and transverse energy and provides new input on the momentum fraction dependence of the u and d quark parton distribution functions within the proton. C1 Univ Florida, Gainesville, FL 32611 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Helsinki Inst Phys, Helsinki Grp, FIN-00014 Helsinki, Finland. Univ Helsinki, Dept Phys Sci, Div High Energy Phys, FIN-00014 Helsinki, Finland. Hiroshima Univ, Higashihiroshima 724, Japan. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Seoul Natl Univ, Seoul 151742, South Korea. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, I-56100 Pisa, Italy. Scuola Normale Super Pisa, I-56100 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Texas Tech Univ, Lubbock, TX 79409 USA. Univ Trieste Udine, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Univ Florida, Gainesville, FL 32611 USA. RI Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Gallas Torreira, Abraham Antonio/K-6508-2014; Scodellaro, Luca/K-9091-2014; Connolly, Amy/J-3958-2013; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Cavalli-Sforza, Matteo/H-7102-2015; ciocci, maria agnese /I-2153-2015; Prokoshin, Fedor/E-2795-2012; Introzzi, Gianluca/K-2497-2015; Chiarelli, Giorgio/E-8953-2012; Lancaster, Mark/C-1693-2008; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Wolter, Marcin/A-7412-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Gorelov, Igor/J-9010-2015; Leonardo, Nuno/M-6940-2016 OI Warburton, Andreas/0000-0002-2298-7315; Gallas Torreira, Abraham Antonio/0000-0002-2745-7954; Scodellaro, Luca/0000-0002-4974-8330; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Prokoshin, Fedor/0000-0001-6389-5399; Introzzi, Gianluca/0000-0002-1314-2580; Chiarelli, Giorgio/0000-0001-9851-4816; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Gorelov, Igor/0000-0001-5570-0133; Leonardo, Nuno/0000-0002-9746-4594 NR 14 TC 47 Z9 47 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 051104 DI 10.1103/PhysRevD.71.051104 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000004 ER PT J AU Acosta, D Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Arguin, JF Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barker, GJ Barnes, VE Barnett, BA Baroiant, S Barone, M Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bishai, M Blair, RE Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Bolla, G Bolshov, A Booth, PSL Bortoletto, D Boudreau, J Bourov, S Bromberg, C Brubaker, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Calafiura, P Campanelli, M Campbell, M Canepa, A Casarsa, M Carlsmith, D Carron, S Carosi, R Cavalli-Sforza, M Castro, A Catastini, P Cauz, D Cerri, A Cerri, C Cerrito, L Chapman, J Chen, C Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chu, ML Chuang, S Chung, JY Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, AG Clark, D Coca, M Connolly, A Convery, M Conway, J Cooper, B Cordelli, M Cortiana, G Cranshaw, J Cuevas, J Culbertson, R Currat, C Cyr, D Dagenhart, D Da Ronco, S D'Auria, S de Barbaro, P De Cecco, S De Lentdecker, G Dell'Agnello, S Dell'Orso, M Demers, S Demortier, L Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR Doksus, P Dominguez, A Donati, S Donega, M Donini, J D'Onofrio, M Dorigo, T Drollinger, V Ebina, K Eddy, N Ely, R Erbacher, R Erdmann, M Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Feild, RG Feindt, M Fernandez, JP Ferretti, C Field, RD Fiori, I Flanagan, G Flaugher, B Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, J Frisch, H Fujii, Y Furic, I Gajjar, A Gallas, A Galyardt, J Gallinaro, M Garcia-Sciveres, M Garfinkel, AF Gay, C Gerberich, H Gerdes, DW Gerchtein, E Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giolo, K Giordani, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, D Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grosso-Pilcher, C Guenther, M da Costa, JG Haber, C Hahn, K Hahn, SR Halkiadakis, E Handler, R Happacher, F Hara, K Hare, M Harr, RF Harris, RM Hartmann, F Hatakeyama, K Hauser, J Hays, C Hayward, H Heider, E Heinemann, B Heinrich, J Hennecke, M Herndon, M Hill, C Hirschbuehl, D Hocker, A Hoffman, KD Holloway, A Hou, S Houlden, MA Huffman, BT Huang, Y Hughes, RE Huston, J Ikado, K Incandela, J Introzzi, G Iori, M Ishizawa, Y Issever, C Ivanov, A Iwata, Y Iyutin, B James, E Jang, D Jarrell, J Jeans, D Jensen, H Jeon, EJ Jones, M Joo, KK Jun, S Junk, T Kamon, T Kang, J Unel, MK Karchin, PE Kartal, S Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, MS Kim, SB Kim, SH Kim, TH Kim, YK King, BT Kirby, M Kirsch, L Klimenko, S Knuteson, B Ko, BR Kobayashi, H Koehn, P Kong, DJ Kondo, K Konigsberg, J Kordas, K Korn, A Korytov, A Kotelnikov, K Kotwal, AV Kovalev, A Kraus, J Kravchenko, I Kreymer, A Kroll, J Kruse, M Krutelyov, V Kuhlmann, SE Kuznetsova, N Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, J Lancaster, M Lander, R Lannon, K Lath, A Latino, G Lauhakangas, R Lazzizzera, I Le, Y Lecci, C LeCompte, T Lee, J Lee, J Lee, SW Leonardo, N Leone, S Lewis, JD Li, K Lin, C Lin, CS Lindgren, M Liss, TM Litvintsev, DO Liu, T Liu, Y Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Maksimovic, P Malferrari, L Manca, G Marginean, R Martin, M Martin, A Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, M Mazzanti, P McFarland, KS McGivern, D McIntyre, PM McNamara, P NcNulty, R Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miller, L Miller, R Miller, JS Miquel, R Miscetti, S Mitselmakher, G Miyamoto, A Miyazaki, Y Moggi, N Mohr, B Moore, R Morello, M Mukherjee, A Mulhearn, M Muller, T Mumford, R Munar, A Murat, P Nachtman, J Nahn, S Nakamura, I Nakano, I Napier, A Napora, R Naumov, D Necula, V Niell, F Nielsen, J Nelson, C Nelson, T Neu, C Neubauer, MS Newman-Holmes, C Nicollerat, AS Nigmanov, T Nodulman, L Norniella, O Oesterberg, K Ogawa, T Oh, SH Oh, YD Ohsugi, T Okusawa, T Oldeman, R Orava, R Orejudos, W Pagliarone, C Palmonari, F Paoletti, R Papadimitriou, V Pashapour, S Patrick, J Pauletta, G Paulini, M Pauly, T Paus, C Pellett, D Penzo, A Phillips, TJ Piacentino, G Piedra, J Pitts, KT Plager, C Pompos, A Pondrom, L Pope, G Poukhov, O Prakoshyn, F Pratt, T Pronko, A Proudfoot, J Ptohos, F Punzi, G Rademacker, J Rakitine, A Rappoccio, S Ratnikov, F Ray, H Reichold, A Reisert, B Rekovic, V Renton, P Rescigno, M Rimondi, F Rinnert, K Ristori, L Robertson, WJ Robson, A Rodrigo, T Rolli, S Rosenson, L Roser, R Rossin, R Rott, C Russ, J Ruiz, A Ryan, D Saarikko, H Safonov, A St Denis, R Sakumoto, WK Salamanna, G Saltzberg, D Sanchez, C Sansoni, A Santi, L Sarkar, S Sato, K Savard, P Savoy-Navarro, A Schemitz, P Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semeria, F Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Siegrist, J Siket, M Sill, A Sinervo, P Sisakyan, A Skiba, A Slaughter, AJ Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Somalwar, SV Spalding, J Spezziga, M Spiegel, L Spinella, F Spiropulu, M Squillacioti, P Stadie, H Stefanini, A Stelzer, B Stelzer-Chilton, O Strologas, J Stuart, D Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Tafirout, R Takach, SF Takano, H Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tapprogge, S Tecchio, M Teng, PK Terashi, K Tesarek, RJ Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Trischuk, W Tseng, J Tsuchiya, R Tsuno, S Tsybychev, D Turini, N Turner, M Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vacavant, L Vaiciulis, A Varganov, A Vataga, E Vejcik, S Velev, G Veramendi, G Vickey, T Vidal, R Vila, I Vilar, R Volobouev, I von der Mey, M Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, MJ Wang, SM Warburton, A Ward, B Waschke, S Waters, D Watts, T Weber, M Wester, WC Whitehouse, B Wicklund, AB Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolter, M Worcester, M Worm, S Wright, T Wu, X Wurthwein, F Wyatt, A Yagil, A Yamashita, T Yamamoto, K Yang, UK Yao, W Yeh, GP Yi, K Yoh, J Yoon, P Yorita, K Yoshida, T Yu, I Yu, S Yu, Z Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhou, J Zsenei, A Zucchelli, S AF Acosta, D Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Arguin, JF Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barker, GJ Barnes, VE Barnett, BA Baroiant, S Barone, M Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bishai, M Blair, RE Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Bolla, G Bolshov, A Booth, PSL Bortoletto, D Boudreau, J Bourov, S Bromberg, C Brubaker, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Calafiura, P Campanelli, M Campbell, M Canepa, A Casarsa, M Carlsmith, D Carron, S Carosi, R Cavalli-Sforza, M Castro, A Catastini, P Cauz, D Cerri, A Cerri, C Cerrito, L Chapman, J Chen, C Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chu, ML Chuang, S Chung, JY Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, AG Clark, D Coca, M Connolly, A Convery, M Conway, J Cooper, B Cordelli, M Cortiana, G Cranshaw, J Cuevas, J Culbertson, R Currat, C Cyr, D Dagenhart, D Da Ronco, S D'Auria, S de Barbaro, P De Cecco, S De Lentdecker, G Dell'Agnello, S Dell'Orso, M Demers, S Demortier, L Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR Doksus, P Dominguez, A Donati, S Donega, M Donini, J D'Onofrio, M Dorigo, T Drollinger, V Ebina, K Eddy, N Ely, R Erbacher, R Erdmann, M Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Feild, RG Feindt, M Fernandez, JP Ferretti, C Field, RD Fiori, I Flanagan, G Flaugher, B Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, J Frisch, H Fujii, Y Furic, I Gajjar, A Gallas, A Galyardt, J Gallinaro, M Garcia-Sciveres, M Garfinkel, AF Gay, C Gerberich, H Gerdes, DW Gerchtein, E Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giolo, K Giordani, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, D Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grosso-Pilcher, C Guenther, M da Costa, JG Haber, C Hahn, K Hahn, SR Halkiadakis, E Handler, R Happacher, F Hara, K Hare, M Harr, RF Harris, RM Hartmann, F Hatakeyama, K Hauser, J Hays, C Hayward, H Heider, E Heinemann, B Heinrich, J Hennecke, M Herndon, M Hill, C Hirschbuehl, D Hocker, A Hoffman, KD Holloway, A Hou, S Houlden, MA Huffman, BT Huang, Y Hughes, RE Huston, J Ikado, K Incandela, J Introzzi, G Iori, M Ishizawa, Y Issever, C Ivanov, A Iwata, Y Iyutin, B James, E Jang, D Jarrell, J Jeans, D Jensen, H Jeon, EJ Jones, M Joo, KK Jun, S Junk, T Kamon, T Kang, J Unel, MK Karchin, PE Kartal, S Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, MS Kim, SB Kim, SH Kim, TH Kim, YK King, BT Kirby, M Kirsch, L Klimenko, S Knuteson, B Ko, BR Kobayashi, H Koehn, P Kong, DJ Kondo, K Konigsberg, J Kordas, K Korn, A Korytov, A Kotelnikov, K Kotwal, AV Kovalev, A Kraus, J Kravchenko, I Kreymer, A Kroll, J Kruse, M Krutelyov, V Kuhlmann, SE Kuznetsova, N Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, J Lancaster, M Lander, R Lannon, K Lath, A Latino, G Lauhakangas, R Lazzizzera, I Le, Y Lecci, C LeCompte, T Lee, J Lee, J Lee, SW Leonardo, N Leone, S Lewis, JD Li, K Lin, C Lin, CS Lindgren, M Liss, TM Litvintsev, DO Liu, T Liu, Y Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Maksimovic, P Malferrari, L Manca, G Marginean, R Martin, M Martin, A Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, M Mazzanti, P McFarland, KS McGivern, D McIntyre, PM McNamara, P NcNulty, R Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miller, L Miller, R Miller, JS Miquel, R Miscetti, S Mitselmakher, G Miyamoto, A Miyazaki, Y Moggi, N Mohr, B Moore, R Morello, M Mukherjee, A Mulhearn, M Muller, T Mumford, R Munar, A Murat, P Nachtman, J Nahn, S Nakamura, I Nakano, I Napier, A Napora, R Naumov, D Necula, V Niell, F Nielsen, J Nelson, C Nelson, T Neu, C Neubauer, MS Newman-Holmes, C Nicollerat, AS Nigmanov, T Nodulman, L Norniella, O Oesterberg, K Ogawa, T Oh, SH Oh, YD Ohsugi, T Okusawa, T Oldeman, R Orava, R Orejudos, W Pagliarone, C Palmonari, F Paoletti, R Papadimitriou, V Pashapour, S Patrick, J Pauletta, G Paulini, M Pauly, T Paus, C Pellett, D Penzo, A Phillips, TJ Piacentino, G Piedra, J Pitts, KT Plager, C Pompos, A Pondrom, L Pope, G Poukhov, O Prakoshyn, F Pratt, T Pronko, A Proudfoot, J Ptohos, F Punzi, G Rademacker, J Rakitine, A Rappoccio, S Ratnikov, F Ray, H Reichold, A Reisert, B Rekovic, V Renton, P Rescigno, M Rimondi, F Rinnert, K Ristori, L Robertson, WJ Robson, A Rodrigo, T Rolli, S Rosenson, L Roser, R Rossin, R Rott, C Russ, J Ruiz, A Ryan, D Saarikko, H Safonov, A St Denis, R Sakumoto, WK Salamanna, G Saltzberg, D Sanchez, C Sansoni, A Santi, L Sarkar, S Sato, K Savard, P Savoy-Navarro, A Schemitz, P Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semeria, F Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Siegrist, J Siket, M Sill, A Sinervo, P Sisakyan, A Skiba, A Slaughter, AJ Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Somalwar, SV Spalding, J Spezziga, M Spiegel, L Spinella, F Spiropulu, M Squillacioti, P Stadie, H Stefanini, A Stelzer, B Stelzer-Chilton, O Strologas, J Stuart, D Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Tafirout, R Takach, SF Takano, H Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tapprogge, S Tecchio, M Teng, PK Terashi, K Tesarek, RJ Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Trischuk, W Tseng, J Tsuchiya, R Tsuno, S Tsybychev, D Turini, N Turner, M Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vacavant, L Vaiciulis, A Varganov, A Vataga, E Vejcik, S Velev, G Veramendi, G Vickey, T Vidal, R Vila, I Vilar, R Volobouev, I von der Mey, M Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, MJ Wang, SM Warburton, A Ward, B Waschke, S Waters, D Watts, T Weber, M Wester, WC Whitehouse, B Wicklund, AB Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolter, M Worcester, M Worm, S Wright, T Wu, X Wurthwein, F Wyatt, A Yagil, A Yamashita, T Yamamoto, K Yang, UK Yao, W Yeh, GP Yi, K Yoh, J Yoon, P Yorita, K Yoshida, T Yu, I Yu, S Yu, Z Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhou, J Zsenei, A Zucchelli, S CA CDF Collaboration TI Measurement of the forward-backward charge asymmetry of electron-positron pairs in (p)over-barp collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID CENTRAL ELECTROMAGNETIC CALORIMETER; HADRONIC COLLISIONS; TRANSVERSE-MOMENTUM; CROSS-SECTION; HIGH-ENERGIES; CDF; UPGRADE; DISTRIBUTIONS; NUCLEON; TRIGGER AB We present a measurement of the mass dependence of the forward-backward charge asymmetry (A(FB)) for e(+)e(-) pairs produced via an intermediate Z/gamma(*) with mass M-ee > 40 GeV/c(2). We study the constraints on the Z-quark couplings imposed by our measurement. We analyze an integrated luminosity of 72 pb(-1) collected by the CDF-II detector in (p) over barp collisions at root s = 1.96 TeV at the Fermilab Tevatron. A comparison of the uncorrected AFB between data and standard model Monte Carlo gives good agreement with a chi(2)/DOF of 15.7/15. The couplings measurements are also consistent with standard model predictions. C1 Univ Florida, Gainesville, FL 32611 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys Sci, Div High Energy Phys, FIN-00044 Helsinki, Finland. Univ Helsinki, Helsinki Inst Phys, Helsinki Grp, FIN-00044 Helsinki, Finland. Hiroshima Univ, Higashihiroshima 724, Japan. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, I-56100 Pisa, Italy. Scuola Normale Super Pisa, I-56100 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Texas Tech Univ, Lubbock, TX 79409 USA. Univ Triest Udine, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Univ Florida, Gainesville, FL 32611 USA. RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Wolter, Marcin/A-7412-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Lancaster, Mark/C-1693-2008; Chiarelli, Giorgio/E-8953-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Gallas Torreira, Abraham Antonio/K-6508-2014; Scodellaro, Luca/K-9091-2014; Connolly, Amy/J-3958-2013; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Cavalli-Sforza, Matteo/H-7102-2015; ciocci, maria agnese /I-2153-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016 OI Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Chiarelli, Giorgio/0000-0001-9851-4816; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Gallas Torreira, Abraham Antonio/0000-0002-2745-7954; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594 NR 42 TC 58 Z9 58 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 052002 DI 10.1103/PhysRevD.71.052002 PG 30 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000012 ER PT J AU Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Arguin, JF Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barker, GJ Barnes, VE Barnett, BA Baroiant, S Barone, M Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Ben-Haim, E Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bishai, M Blair, RE Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Bolla, G Bolshov, A Booth, PSL Bortoletto, D Boudreau, J Bourov, S Bromberg, C Brubaker, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canepa, A Casarsa, M Carlsmith, D Carron, S Carosi, R Cavalli-Sforza, M Castro, A Catastini, P Cauz, D Cerri, A Cerri, C Cerrito, L Chapman, J Chen, C Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chu, ML Chuang, S Chung, JY Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, AG Clark, D Coca, M Connolly, A Convery, M Conway, J Cooper, B Cordelli, M Cortiana, G Cranshaw, J Cuevas, J Culbertson, R Currat, C Cyr, D Dagenhart, D Da Ronco, S D'Auria, S de Barbaro, P De Cecco, S De Lentdecker, G Dell'Agnello, S Dell'Orso, M Demers, S Demortier, L Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR Doksus, P Dominguez, A Donati, S Donega, M Donini, J D'Onofrio, M Dorigo, T Drollinger, V Ebina, K Eddy, N Ely, R Erbacher, R Erdmann, M Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Feild, RG Feindt, M Fernandez, JP Ferretti, C Field, RD Fiori, I Flanagan, G Flaugher, B Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Frisch, H Fujii, Y Furic, I Gajjar, A Gallas, A Galyardt, J Gallinaro, M Garcia-Sciveres, M Garfinkel, AF Gay, C Gerberich, H Gerdes, DW Gerchtein, E Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giolo, K Giordani, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, D Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grosso-Pilcher, C Grundler, U Guenther, M da Costa, JG Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Handler, R Happacher, F Hara, K Hare, M Harr, RF Harris, RM Hartmann, F Hatakeyama, K Hauser, J Hays, C Hayward, H Heider, E Heinemann, B Heinrich, J Hennecke, M Herndon, M Hill, C Hirschbuehl, D Hocker, A Hoffman, KD Holloway, A Hou, S Houlden, MA Huffman, BT Huang, Y Hughes, RE Huston, J Ikado, K Incandela, J Introzzi, G Iori, M Ishizawa, Y Issever, C Ivanov, A Iwata, Y Iyutin, B James, E Jang, D Jarrell, J Jeans, D Jensen, H Jeon, EJ Jones, M Joo, KK Jun, S Junk, T Kamon, T Kang, J Unel, MK Karchin, PE Kartal, S Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, MS Kim, SB Kim, SH Kim, TH Kim, YK King, BT Kirby, M Kirsch, L Klimenko, S Knuteson, B Ko, BR Kobayashi, H Koehn, P Kong, DJ Kondo, K Konigsberg, J Kordas, K Korn, A Korytov, A Kotelnikov, K Kotwal, AV Kovalev, A Kraus, J Kravchenko, I Kreymer, A Kroll, J Kruse, M Krutelyov, V Kuhlmann, SE Kuznetsova, N Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, J Lancaster, M Lander, R Lannon, K Lath, A Latino, G Lauhakangas, R Lazzizzera, I Le, Y Lecci, C LeCompte, T Lee, J Lee, J Lee, SW Lefevre, R Leonardo, N Leone, S Lewis, JD Li, K Lin, C Lin, CS Lindgren, M Liss, TM Litvintsev, DO Liu, T Liu, Y Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Maksimovic, P Malferrari, L Manca, G Marginean, R Martin, M Martin, A Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, M Mazzanti, P McFarland, KS McGivern, D McIntyre, PM McNamara, P NcNulty, R Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miller, L Miller, R Miller, JS Miquel, R Miscetti, S Mitselmakher, G Miyamoto, A Miyazaki, Y Moggi, N Mohr, B Moore, R Morello, M Mukherjee, A Mulhearn, M Muller, T Mumford, R Munar, A Murat, P Nachtman, J Nahn, S Nakamura, I Nakano, I Napier, A Napora, R Naumov, D Necula, V Niell, F Nielsen, J Nelson, C Nelson, T Neu, C Neubauer, MS Newman-Holmes, C Nicollerat, AS Nigmanov, T Nodulman, L Norniella, O Oesterberg, K Ogawa, T Oh, SH Oh, YD Ohsugi, T Okusawa, T Oldeman, R Orava, R Orejudos, W Pagliarone, C Palmonari, F Paoletti, R Papadimitriou, V Pashapour, S Patrick, J Pauletta, G Paulini, M Pauly, T Paus, C Pellett, D Penzo, A Phillips, TJ Piacentino, G Piedra, J Pitts, KT Plager, C Pompos, A Pondrom, L Pope, G Poukhov, O Prakoshyn, F Pratt, T Pronko, A Proudfoot, J Ptohos, F Punzi, G Rademacker, J Rakitine, A Rappoccio, S Ratnikov, F Ray, H Reichold, A Reisert, B Rekovic, V Renton, P Rescigno, M Rimondi, F Rinnert, K Ristori, L Robertson, WJ Robson, A Rodrigo, T Rolli, S Rosenson, L Roser, R Rossin, R Rott, C Russ, J Ruiz, A Ryan, D Saarikko, H Sabik, S Safonov, A St Denis, R Sakumoto, WK Salamanna, G Saltzberg, D Sanchez, C Sansoni, A Santi, L Sarkar, S Sato, K Savard, P Savoy-Navarro, A Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semeria, F Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Siegrist, J Siket, M Sill, A Sinervo, P Sisakyan, A Skiba, A Slaughter, AJ Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Somalwar, SV Spalding, J Spezziga, M Spiegel, L Spinella, F Spiropulu, M Squillacioti, P Stadie, H Stefanini, A Stelzer, B Stelzer-Chilton, O Strologas, J Stuart, D Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Tafirout, R Takach, SF Takano, H Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tapprogge, S Tecchio, M Teng, PK Terashi, K Tesarek, RJ Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tseng, J Tsuchiya, R Tsuno, S Tsybychev, D Turini, N Turner, M Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vacavant, L Vaiciulis, A Varganov, A Vataga, E Vejcik, S Velev, G Veszpremi, V Veramendi, G Vickey, T Vidal, R Vila, I Vilar, R Vollrath, I Volobouev, I von der Mey, M Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Yamashita, T Yamamoto, K Wan, Z Wang, MJ Wang, SM Warburton, A Ward, B Waschke, S Waters, D Watts, T Weber, M Wester, WC Whitehouse, B Wicklund, AB Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolter, M Worcester, M Worm, S Wright, T Wu, X Wurthwein, F Wyatt, A Yagil, A Yang, UK Yao, W Yeh, GP Yi, K Yoh, J Yoon, P Yorita, K Yoshida, T Yu, I Yu, S Yu, Z Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhou, J Zsenei, A Zucchelli, S AF Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Arguin, JF Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barker, GJ Barnes, VE Barnett, BA Baroiant, S Barone, M Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Ben-Haim, E Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bishai, M Blair, RE Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Bolla, G Bolshov, A Booth, PSL Bortoletto, D Boudreau, J Bourov, S Bromberg, C Brubaker, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canepa, A Casarsa, M Carlsmith, D Carron, S Carosi, R Cavalli-Sforza, M Castro, A Catastini, P Cauz, D Cerri, A Cerri, C Cerrito, L Chapman, J Chen, C Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chu, ML Chuang, S Chung, JY Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, AG Clark, D Coca, M Connolly, A Convery, M Conway, J Cooper, B Cordelli, M Cortiana, G Cranshaw, J Cuevas, J Culbertson, R Currat, C Cyr, D Dagenhart, D Da Ronco, S D'Auria, S de Barbaro, P De Cecco, S De Lentdecker, G Dell'Agnello, S Dell'Orso, M Demers, S Demortier, L Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR Doksus, P Dominguez, A Donati, S Donega, M Donini, J D'Onofrio, M Dorigo, T Drollinger, V Ebina, K Eddy, N Ely, R Erbacher, R Erdmann, M Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Feild, RG Feindt, M Fernandez, JP Ferretti, C Field, RD Fiori, I Flanagan, G Flaugher, B Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Frisch, H Fujii, Y Furic, I Gajjar, A Gallas, A Galyardt, J Gallinaro, M Garcia-Sciveres, M Garfinkel, AF Gay, C Gerberich, H Gerdes, DW Gerchtein, E Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giolo, K Giordani, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, D Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grosso-Pilcher, C Grundler, U Guenther, M da Costa, JG Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Handler, R Happacher, F Hara, K Hare, M Harr, RF Harris, RM Hartmann, F Hatakeyama, K Hauser, J Hays, C Hayward, H Heider, E Heinemann, B Heinrich, J Hennecke, M Herndon, M Hill, C Hirschbuehl, D Hocker, A Hoffman, KD Holloway, A Hou, S Houlden, MA Huffman, BT Huang, Y Hughes, RE Huston, J Ikado, K Incandela, J Introzzi, G Iori, M Ishizawa, Y Issever, C Ivanov, A Iwata, Y Iyutin, B James, E Jang, D Jarrell, J Jeans, D Jensen, H Jeon, EJ Jones, M Joo, KK Jun, S Junk, T Kamon, T Kang, J Unel, MK Karchin, PE Kartal, S Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, MS Kim, SB Kim, SH Kim, TH Kim, YK King, BT Kirby, M Kirsch, L Klimenko, S Knuteson, B Ko, BR Kobayashi, H Koehn, P Kong, DJ Kondo, K Konigsberg, J Kordas, K Korn, A Korytov, A Kotelnikov, K Kotwal, AV Kovalev, A Kraus, J Kravchenko, I Kreymer, A Kroll, J Kruse, M Krutelyov, V Kuhlmann, SE Kuznetsova, N Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, J Lancaster, M Lander, R Lannon, K Lath, A Latino, G Lauhakangas, R Lazzizzera, I Le, Y Lecci, C LeCompte, T Lee, J Lee, J Lee, SW Lefevre, R Leonardo, N Leone, S Lewis, JD Li, K Lin, C Lin, CS Lindgren, M Liss, TM Litvintsev, DO Liu, T Liu, Y Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Maksimovic, P Malferrari, L Manca, G Marginean, R Martin, M Martin, A Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, M Mazzanti, P McFarland, KS McGivern, D McIntyre, PM McNamara, P NcNulty, R Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miller, L Miller, R Miller, JS Miquel, R Miscetti, S Mitselmakher, G Miyamoto, A Miyazaki, Y Moggi, N Mohr, B Moore, R Morello, M Mukherjee, A Mulhearn, M Muller, T Mumford, R Munar, A Murat, P Nachtman, J Nahn, S Nakamura, I Nakano, I Napier, A Napora, R Naumov, D Necula, V Niell, F Nielsen, J Nelson, C Nelson, T Neu, C Neubauer, MS Newman-Holmes, C Nicollerat, AS Nigmanov, T Nodulman, L Norniella, O Oesterberg, K Ogawa, T Oh, SH Oh, YD Ohsugi, T Okusawa, T Oldeman, R Orava, R Orejudos, W Pagliarone, C Palmonari, F Paoletti, R Papadimitriou, V Pashapour, S Patrick, J Pauletta, G Paulini, M Pauly, T Paus, C Pellett, D Penzo, A Phillips, TJ Piacentino, G Piedra, J Pitts, KT Plager, C Pompos, A Pondrom, L Pope, G Poukhov, O Prakoshyn, F Pratt, T Pronko, A Proudfoot, J Ptohos, F Punzi, G Rademacker, J Rakitine, A Rappoccio, S Ratnikov, F Ray, H Reichold, A Reisert, B Rekovic, V Renton, P Rescigno, M Rimondi, F Rinnert, K Ristori, L Robertson, WJ Robson, A Rodrigo, T Rolli, S Rosenson, L Roser, R Rossin, R Rott, C Russ, J Ruiz, A Ryan, D Saarikko, H Sabik, S Safonov, A St Denis, R Sakumoto, WK Salamanna, G Saltzberg, D Sanchez, C Sansoni, A Santi, L Sarkar, S Sato, K Savard, P Savoy-Navarro, A Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semeria, F Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Siegrist, J Siket, M Sill, A Sinervo, P Sisakyan, A Skiba, A Slaughter, AJ Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Somalwar, SV Spalding, J Spezziga, M Spiegel, L Spinella, F Spiropulu, M Squillacioti, P Stadie, H Stefanini, A Stelzer, B Stelzer-Chilton, O Strologas, J Stuart, D Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Tafirout, R Takach, SF Takano, H Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tapprogge, S Tecchio, M Teng, PK Terashi, K Tesarek, RJ Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tseng, J Tsuchiya, R Tsuno, S Tsybychev, D Turini, N Turner, M Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vacavant, L Vaiciulis, A Varganov, A Vataga, E Vejcik, S Velev, G Veszpremi, V Veramendi, G Vickey, T Vidal, R Vila, I Vilar, R Vollrath, I Volobouev, I von der Mey, M Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Yamashita, T Yamamoto, K Wan, Z Wang, MJ Wang, SM Warburton, A Ward, B Waschke, S Waters, D Watts, T Weber, M Wester, WC Whitehouse, B Wicklund, AB Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolter, M Worcester, M Worm, S Wright, T Wu, X Wurthwein, F Wyatt, A Yagil, A Yang, UK Yao, W Yeh, GP Yi, K Yoh, J Yoon, P Yorita, K Yoshida, T Yu, I Yu, S Yu, Z Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhou, J Zsenei, A Zucchelli, S CA CDF Collaboration TI Measurement of the t(t)over-bar production cross section in p(p)over-bar collisions at root s=1.96 TeV using lepton plus jets events with secondary vertex b-tagging SO PHYSICAL REVIEW D LA English DT Article ID ELECTROMAGNETIC CALORIMETER; PBARP COLLISIONS; CDF; UPGRADE; SIMULATION AB We present a measurement of the t (t) over bar production cross section using events with one charged lepton and jets from pp collisions at a center-of-mass energy of 1.96 TeV. In these events, heavy flavor quarks from top quark decay are identified with a secondary vertex tagging algorithm. From 162 pb(-1) of data collected by the Collider Detector at Fermilab, a total of 48 candidate events are selected, where 13.5 +/- 1.8 events are expected from background contributions. We measure a t (t) over bar production cross section of 5.6(-1.1)(+1.2)(stat.)(-0.6)(+0.9)(syst.) pb. C1 Univ Florida, Gainesville, FL 32611 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Helsinki Inst Phys, Helsinki Grp, Helsinki, Finland. Univ Helsinki, Dept Phys Sci, Div High Energy Phys, FIN-00044 Helsinki, Finland. Hiroshima Univ, Higashihiroshima 724, Japan. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Penn, Philadelphia, PA 19104 USA. Scuola Normale Super Pisa, I-56100 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56100 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Texas Tech Univ, Lubbock, TX 79409 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Univ Florida, Gainesville, FL 32611 USA. RI Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Gallas Torreira, Abraham Antonio/K-6508-2014; Scodellaro, Luca/K-9091-2014; Connolly, Amy/J-3958-2013; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Cavalli-Sforza, Matteo/H-7102-2015; ciocci, maria agnese /I-2153-2015; Prokoshin, Fedor/E-2795-2012; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Leonardo, Nuno/M-6940-2016; Annovi, Alberto/G-6028-2012; Chiarelli, Giorgio/E-8953-2012; Lancaster, Mark/C-1693-2008; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Wolter, Marcin/A-7412-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Ivanov, Andrew/A-7982-2013 OI Warburton, Andreas/0000-0002-2298-7315; Gallas Torreira, Abraham Antonio/0000-0002-2745-7954; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Prokoshin, Fedor/0000-0001-6389-5399; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Leonardo, Nuno/0000-0002-9746-4594; Annovi, Alberto/0000-0002-4649-4398; Chiarelli, Giorgio/0000-0001-9851-4816; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Ivanov, Andrew/0000-0002-9270-5643 NR 33 TC 154 Z9 154 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 052003 DI 10.1103/PhysRevD.71.052003 PG 28 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000013 ER PT J AU Alexander, S Martin, J AF Alexander, S Martin, J TI Birefringent gravitational waves and the consistency check of inflation SO PHYSICAL REVIEW D LA English DT Article AB In this work we show that the gravitational Chem-Simons term, aside from being a key ingredient in inflationary baryogenesis, modifies superhorizon gravitational waves produced during inflation. We compute the super-Hubble gravitational power spectrum in the slow-roll approximation and show that its overall amplitude is modified while its spectral index remains unchanged (at leading order in the slow-roll parameters). Then, we calculate the correction to the tensor to scalar ratio, T/S. We find a correction of T/S which is dependent on N (more precisely quadratic in N), the parameter characterizing the amplitude of the Chem-Simons terms. In a stringy embedding of the leptogenesis mechanism, N is the ratio between the Planck scale and the fundamental string scale. Thus, in principle, we provide a direct probe of leptogenesis due to stringy dynamics in the cosmic microwave background. However, we demonstrate that the corresponding correction of T/S is in fact very small and not observable in the regime where our calculations are valid. To obtain a sizable effect, we argue that a nonlinear calculation is necessary. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. CNRS, GReCO, Inst Astrophys Paris, FRE 2435, F-75014 Paris, France. RP Alexander, S (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM stephon@itp.stanford.edu; jmartin@iap.fr NR 23 TC 56 Z9 56 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2821 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 6 AR 063526 DI 10.1103/PhysRevD.71.063526 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SS UT WOS:000228490100034 ER PT J AU Aubert, B Barate, R Boutigny, D Couderc, F Gaillard, JM Hicheur, A Karyotakis, Y Lees, JP Tisserand, V Zghiche, A Palano, A Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Borgland, AW Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Shelkov, VG Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Steinke, M Boyd, JT Chevalier, N Cottingham, WN Kelly, MP Latham, TE Wilson, FF Cuhadar-Donszelmann, T Hearty, C Knecht, NS Mattison, TS McKenna, JA Thiessen, D Khan, A Kyberd, P Teodorescu, L Blinov, VE Druzhinin, VP Golubev, VB Ivanchenko, VN Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bruinsma, M Chao, M Eschrich, I Kirkby, D Lankford, AJ Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Foulkes, SD Gary, JW Shen, BC Wang, K del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Dahmes, B Levy, SL Long, O Lu, A Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Heusch, CA Lockman, WS Schalk, T Schmitz, RE Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Yang, S Jayatilleke, S Mancinelli, G Meadows, BT Sokoloff, MD Abe, T Blanc, F Bloom, P Chen, S Ford, WT Nauenberg, U Olivas, A Rankin, P Smith, JG Zhang, J Zhang, L Chen, A Harton, JL Soffer, A Toki, WH Wilson, RJ Zeng, QL Altenburg, D Brandt, T Brose, J Dickopp, M Feltresi, E Hauke, A Lacker, HM Muller-Pfefferkorn, R Nogowski, R Otto, S Petzold, A Schubert, J Schubert, KR Schwierz, R Spaan, B Sundermann, JE Bernard, D Bonneaud, GR Brochard, F Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Lavin, D Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Sarti, A Treadwell, E Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Crosetti, G Lo Vetere, M Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Bailey, S Brandenburg, G Morii, M Won, E Dubitzky, RS Langenegger, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Gaillard, JR Morton, GW Nash, JA Taylor, GP Charles, MJ Grenier, GJ Mallik, U Cochran, J Crawley, HB Lamsa, J Meyer, WT Prell, S Rosenberg, EI Yi, J Davier, M Grosdidier, G Hocker, A Laplace, S Le Diberder, F Lepeltier, V Lutz, AM Petersen, TC Plaszczynski, S Schune, MH Tantot, L Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Coleman, JP Forster, IJ Fry, JR Gabathuler, E Gamet, R Parry, RJ Payne, DJ Sloane, RJ Touramanis, C Back, JJ Cormack, CM Harrison, PF Di Lodovico, F Mohanty, GB Brown, CL Cowan, G Flack, RL Flaecher, HU Green, MG Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Winter, MA Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Hart, PA Hodgkinson, MC Lafferty, GD Lyon, AJ Williams, JC Farbin, A Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Lillard, V Roberts, DA Blaylock, G Dallapiccola, C Flood, KT Hertzbach, SS Kofler, R Koptchev, VB Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Sciolla, G Taylor, F Yamamoto, RK Mangeol, DJJ Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Nicholson, H Cavallo, N Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Wilden, L Jessop, CP LoSecco, JM Gabriel, TA Allmendinger, T Brau, B Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Potter, CT Sinev, NB Strom, D Torrence, E Colecchia, F Dorigo, A Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Tiozzo, G Voci, C Benayoun, M Briand, H Chauveau, J David, P de la Vaissiere, C Del Buono, L Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Pivk, M Roos, L T'Jampens, S Therin, G Manfredi, PF Re, V Behera, PK Gladney, L Guo, QH Panetta, J Anulli, F Biasini, M Peruzzi, IM Pioppi, M Angelini, C Batignani, G Bettarini, S Bondioli, M Bucci, F Calderini, G Carpinelli, M Del Gamba, V Forti, F Giorgi, MA Lusiani, A Marchiori, G Martinez-Vidal, F Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Sandrelli, F Walsh, J Haire, M Judd, D Paick, K Wagoner, DE Danielson, N Elmer, P Lau, YP Lu, C Miftakov, V Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Pierini, M Piredda, G Tehrani, FS Voena, C Christ, S Wagner, G Waldi, R Adye, T De Groot, N Franek, B Geddes, NI Gopal, GP Olaiya, EO Aleksan, R Emery, S Gaidot, A Ganzhur, SF Giraud, PF de Monchenault, GH Kozanecki, W Langer, M Legendre, M London, GW Mayer, B Schott, G Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Convery, MR Cristinziani, M De Nardo, G Dong, D Dorfan, J Dujmic, D Dunwoodie, W Elsen, EE Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Petrak, S Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Simi, G Snyder, A Soha, A Stelzer, J Su, D Sullivan, MK Va'vra, J Wagner, SR Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Young, CC Burchat, PR Edwards, AJ Meyer, TI Petersen, BA Roat, C Ahmed, S Alam, MS Ernst, JA Saeed, MA Saleem, M Wappler, FR Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Kim, H Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bomben, M Borean, C Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Poropat, P Vitale, L Vuagnin, G Panvini, RS Banerjee, S Brown, CM Fortin, D Jackson, PD Kowalewski, R Roney, JM Band, HR Dasu, S Datta, M Eichenbaum, AM Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mihalyi, A Mohapatra, AK Pan, Y Prepost, R Rubin, AE Sekula, SJ Tan, P von Wimmersperg-Toeller, JH Wu, J Wu, SL Yu, Z Greene, MG Neal, H AF Aubert, B Barate, R Boutigny, D Couderc, F Gaillard, JM Hicheur, A Karyotakis, Y Lees, JP Tisserand, V Zghiche, A Palano, A Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Borgland, AW Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Shelkov, VG Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Steinke, M Boyd, JT Chevalier, N Cottingham, WN Kelly, MP Latham, TE Wilson, FF Cuhadar-Donszelmann, T Hearty, C Knecht, NS Mattison, TS McKenna, JA Thiessen, D Khan, A Kyberd, P Teodorescu, L Blinov, VE Druzhinin, VP Golubev, VB Ivanchenko, VN Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bruinsma, M Chao, M Eschrich, I Kirkby, D Lankford, AJ Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Foulkes, SD Gary, JW Shen, BC Wang, K del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Dahmes, B Levy, SL Long, O Lu, A Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Heusch, CA Lockman, WS Schalk, T Schmitz, RE Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Yang, S Jayatilleke, S Mancinelli, G Meadows, BT Sokoloff, MD Abe, T Blanc, F Bloom, P Chen, S Ford, WT Nauenberg, U Olivas, A Rankin, P Smith, JG Zhang, J Zhang, L Chen, A Harton, JL Soffer, A Toki, WH Wilson, RJ Zeng, QL Altenburg, D Brandt, T Brose, J Dickopp, M Feltresi, E Hauke, A Lacker, HM Muller-Pfefferkorn, R Nogowski, R Otto, S Petzold, A Schubert, J Schubert, KR Schwierz, R Spaan, B Sundermann, JE Bernard, D Bonneaud, GR Brochard, F Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Lavin, D Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Sarti, A Treadwell, E Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Crosetti, G Lo Vetere, M Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Bailey, S Brandenburg, G Morii, M Won, E Dubitzky, RS Langenegger, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Gaillard, JR Morton, GW Nash, JA Taylor, GP Charles, MJ Grenier, GJ Mallik, U Cochran, J Crawley, HB Lamsa, J Meyer, WT Prell, S Rosenberg, EI Yi, J Davier, M Grosdidier, G Hocker, A Laplace, S Le Diberder, F Lepeltier, V Lutz, AM Petersen, TC Plaszczynski, S Schune, MH Tantot, L Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Coleman, JP Forster, IJ Fry, JR Gabathuler, E Gamet, R Parry, RJ Payne, DJ Sloane, RJ Touramanis, C Back, JJ Cormack, CM Harrison, PF Di Lodovico, F Mohanty, GB Brown, CL Cowan, G Flack, RL Flaecher, HU Green, MG Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Winter, MA Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Hart, PA Hodgkinson, MC Lafferty, GD Lyon, AJ Williams, JC Farbin, A Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Lillard, V Roberts, DA Blaylock, G Dallapiccola, C Flood, KT Hertzbach, SS Kofler, R Koptchev, VB Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Sciolla, G Taylor, F Yamamoto, RK Mangeol, DJJ Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Nicholson, H Cavallo, N Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Wilden, L Jessop, CP LoSecco, JM Gabriel, TA Allmendinger, T Brau, B Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Potter, CT Sinev, NB Strom, D Torrence, E Colecchia, F Dorigo, A Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Tiozzo, G Voci, C Benayoun, M Briand, H Chauveau, J David, P de la Vaissiere, C Del Buono, L Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Pivk, M Roos, L T'Jampens, S Therin, G Manfredi, PF Re, V Behera, PK Gladney, L Guo, QH Panetta, J Anulli, F Biasini, M Peruzzi, IM Pioppi, M Angelini, C Batignani, G Bettarini, S Bondioli, M Bucci, F Calderini, G Carpinelli, M Del Gamba, V Forti, F Giorgi, MA Lusiani, A Marchiori, G Martinez-Vidal, F Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Sandrelli, F Walsh, J Haire, M Judd, D Paick, K Wagoner, DE Danielson, N Elmer, P Lau, YP Lu, C Miftakov, V Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Pierini, M Piredda, G Tehrani, FS Voena, C Christ, S Wagner, G Waldi, R Adye, T De Groot, N Franek, B Geddes, NI Gopal, GP Olaiya, EO Aleksan, R Emery, S Gaidot, A Ganzhur, SF Giraud, PF de Monchenault, GH Kozanecki, W Langer, M Legendre, M London, GW Mayer, B Schott, G Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Convery, MR Cristinziani, M De Nardo, G Dong, D Dorfan, J Dujmic, D Dunwoodie, W Elsen, EE Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Petrak, S Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Simi, G Snyder, A Soha, A Stelzer, J Su, D Sullivan, MK Va'vra, J Wagner, SR Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Young, CC Burchat, PR Edwards, AJ Meyer, TI Petersen, BA Roat, C Ahmed, S Alam, MS Ernst, JA Saeed, MA Saleem, M Wappler, FR Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Kim, H Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bomben, M Borean, C Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Poropat, P Vitale, L Vuagnin, G Panvini, RS Banerjee, S Brown, CM Fortin, D Jackson, PD Kowalewski, R Roney, JM Band, HR Dasu, S Datta, M Eichenbaum, AM Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mihalyi, A Mohapatra, AK Pan, Y Prepost, R Rubin, AE Sekula, SJ Tan, P von Wimmersperg-Toeller, JH Wu, J Wu, SL Yu, Z Greene, MG Neal, H CA BABAR Collaboration TI Measurement of the (B)over-bar(0)-> D(*+)l(-)(nu)over-bar(l) decay rate and vertical bar V-cb vertical bar SO PHYSICAL REVIEW D LA English DT Article ID FORM-FACTORS; SEMILEPTONIC DECAY; DISPERSIVE BOUNDS; MESON DECAYS; HEAVY MESONS AB We present a measurement of the Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-cb vertical bar based on a sample of about 53 700 (B) over bar (0) -> D*(+)l(-)(nu) over bar (l) decays observed by the BABAR detector. We obtain the branching fraction averaged over l = e, mu, B((B) over bar (0) -> D*(+)l(-)(nu) over bar (l)) = (4.90 +/- 0.07(stat.)(-0.35)(+0.36)(syst.))%. We measure the differential decay rate as a function of iv, the relativistic boost gamma of the D*+ in the Wo rest frame. By extrapolating d Gamma/dw to the kinematic limit w -> 1, we extract the product of vertical bar V-cb vertical bar and the axial form factor A(1)(w = 1). We combine this measurement with a lattice QCD calculation of A(1)(w = 1) to determine vertical bar V-cb vertical bar = (38.7 +/- 0.3(stat.) +/- 1.7(syst.)(-1.3)(+1.5)(theory)) x 10(-3). C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Florida A&M Univ, Tallahassee, FL 32307 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Lab Accelerateur Lineaire, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 72E, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Lab Rene JA Levesque, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Pavia, Dipartimento Elettron, I-27100 Pavia, Italy. Ist Nazl Fis Nucl, I-27100 Pavia, Italy. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Scuola Normale Super Pisa, Dipartimento Fis, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Univ Basilicata, I-85100 Potenza, Italy. Univ Valencia, CSIC, Inst Fis Corpuscular, IFIC, Valencia, Spain. RP Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Luppi, Eleonora/A-4902-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; Lusiani, Alberto/N-2976-2015; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; crosetti, nanni/H-3040-2011; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; M, Saleem/B-9137-2013; Sarti, Alessio/I-2833-2012; Cavallo, Nicola/F-8913-2012; de Groot, Nicolo/A-2675-2009; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016 OI Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Lusiani, Alberto/0000-0002-6876-3288; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Sarti, Alessio/0000-0001-5419-7951; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636 NR 21 TC 14 Z9 14 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 051502 DI 10.1103/PhysRevD.71.051502 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000008 ER PT J AU Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges-Pous, E Palano, A Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Borgland, AW Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Chevalier, N Cottingham, WN Kelly, MP Latham, TE Wilson, FF Cuhadar-Donszelmann, T Hearty, C Knecht, NS Mattison, TS McKenna, JA Thiessen, D Khan, A Kyberd, P Teodorescu, L Blinov, AE Blinov, VE Druzhinin, VP Golubev, VB Ivanchenko, VN Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bruinsma, M Chao, M Eschrich, I Kirkby, D Lankford, AJ Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Weinstein, AJR Foulkes, SD Gary, JW Long, O Shen, BC Wang, K del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Lu, A Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Yang, S Jayatilleke, S Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, P Chen, S Ford, WT Nauenberg, U Olivas, A Rankin, P Ruddick, WO Smith, JG Ulmer, KA Zhang, J Zhang, L Chen, A Eckhart, EA Harton, JL Soffer, A Toki, WH Wilson, RJ Zeng, Q Spaan, B Altenburg, D Brandt, T Brose, J Dickopp, M Feltresi, E Hauke, A Lacker, HM Maly, E Nogowski, R Otto, S Petzold, A Schott, G Schubert, J Schubert, KR Schwierz, R Sundermann, JE Bernard, D Bonneaud, GR Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Sarti, A Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Crosetti, G Lo Vetere, M Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Bailey, S Brandenburg, G Chaisanguanthum, KS Morii, M Won, E Dubitzky, RS Langenegger, U Marks, J Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Gaillard, JR Morton, GW Nash, JA Nikolich, MB Taylor, GP Charles, MJ Grenier, GJ Mallik, U Mohapatra, AK Cochran, J Crawley, HB Lamsa, J Meyer, WT Prell, S Rosenberg, EI Rubin, AE Yi, J Arnaud, N Davier, M Giroux, X Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Petersen, TC Pierini, M Plaszczynski, S Schune, MH Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Coleman, JP Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Parry, RJ Payne, DJ Touramanis, C Cormack, CM Di Lodovico, F Brown, CL Cowan, G Flack, RL Flaecher, HU Green, MG Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Winter, MA Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Hodgkinson, MC Lafferty, GD Naisbit, MT Williams, JC Chen, C Farbin, A Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Lillard, V Roberts, DA Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Koptchev, VB Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Koeneke, K Sciolla, G Sekula, SJ Taylor, F Yamamoto, RK Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Nicholson, H Cavallo, N Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Wilden, L Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Lu, M Potter, CT Sinev, NB Strom, D Torrence, E Colecchia, F Dorigo, A Galeazzi, E Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, E Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Guo, QH Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bondioli, M Bucci, F Calderini, G Carpinelli, M Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Simi, G Walsh, J Haire, M Judd, D Paick, K Wagoner, DE Danielson, N Elmer, P Lau, YP Lu, C Miftakov, V Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Cavoto, G Christ, S Schroder, H Wagner, G Waldi, R Adye, T De Groot, N Franek, B Gopal, GP Olaiya, EO Aleksan, R Emery, S Gaidot, A Ganzhur, SF Giraud, PF Graziani, G de Monchenault, GH Kozanecki, W Legendre, M London, GW Mayer, B Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Abe, T Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Claus, R Convery, MR Cristinziani, M De Nardo, G Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Soha, A Stelzer, J Strube, J Su, D Sullivan, MK Va'vra, J Wagner, SR Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Young, CC Strube, J Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Ahmed, M Ahmed, S Alam, MS Ernst, JA Saeed, MA Saleem, M Wappler, FR Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Kim, H Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Poropat, P Vitale, L Vuagnin, G Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Jackson, PD Kowalewski, R Roney, JM Sobie, RJ Back, JJ Harrison, PF Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mihalyi, A Pan, Y Prepost, R Tan, P von Wimmersperg-Toeller, JH Wu, J Wu, SL Yu, Z Greene, MG Neal, H AF Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges-Pous, E Palano, A Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Borgland, AW Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Chevalier, N Cottingham, WN Kelly, MP Latham, TE Wilson, FF Cuhadar-Donszelmann, T Hearty, C Knecht, NS Mattison, TS McKenna, JA Thiessen, D Khan, A Kyberd, P Teodorescu, L Blinov, AE Blinov, VE Druzhinin, VP Golubev, VB Ivanchenko, VN Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bruinsma, M Chao, M Eschrich, I Kirkby, D Lankford, AJ Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Weinstein, AJR Foulkes, SD Gary, JW Long, O Shen, BC Wang, K del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Lu, A Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Yang, S Jayatilleke, S Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, P Chen, S Ford, WT Nauenberg, U Olivas, A Rankin, P Ruddick, WO Smith, JG Ulmer, KA Zhang, J Zhang, L Chen, A Eckhart, EA Harton, JL Soffer, A Toki, WH Wilson, RJ Zeng, Q Spaan, B Altenburg, D Brandt, T Brose, J Dickopp, M Feltresi, E Hauke, A Lacker, HM Maly, E Nogowski, R Otto, S Petzold, A Schott, G Schubert, J Schubert, KR Schwierz, R Sundermann, JE Bernard, D Bonneaud, GR Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Sarti, A Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Crosetti, G Lo Vetere, M Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Bailey, S Brandenburg, G Chaisanguanthum, KS Morii, M Won, E Dubitzky, RS Langenegger, U Marks, J Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Gaillard, JR Morton, GW Nash, JA Nikolich, MB Taylor, GP Charles, MJ Grenier, GJ Mallik, U Mohapatra, AK Cochran, J Crawley, HB Lamsa, J Meyer, WT Prell, S Rosenberg, EI Rubin, AE Yi, J Arnaud, N Davier, M Giroux, X Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Petersen, TC Pierini, M Plaszczynski, S Schune, MH Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Coleman, JP Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Parry, RJ Payne, DJ Touramanis, C Cormack, CM Di Lodovico, F Brown, CL Cowan, G Flack, RL Flaecher, HU Green, MG Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Winter, MA Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Hodgkinson, MC Lafferty, GD Naisbit, MT Williams, JC Chen, C Farbin, A Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Lillard, V Roberts, DA Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Koptchev, VB Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Koeneke, K Sciolla, G Sekula, SJ Taylor, F Yamamoto, RK Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Nicholson, H Cavallo, N Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Wilden, L Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Lu, M Potter, CT Sinev, NB Strom, D Torrence, E Colecchia, F Dorigo, A Galeazzi, E Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, E Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Guo, QH Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bondioli, M Bucci, F Calderini, G Carpinelli, M Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Simi, G Walsh, J Haire, M Judd, D Paick, K Wagoner, DE Danielson, N Elmer, P Lau, YP Lu, C Miftakov, V Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Cavoto, G Christ, S Schroder, H Wagner, G Waldi, R Adye, T De Groot, N Franek, B Gopal, GP Olaiya, EO Aleksan, R Emery, S Gaidot, A Ganzhur, SF Giraud, PF Graziani, G de Monchenault, GH Kozanecki, W Legendre, M London, GW Mayer, B Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Abe, T Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Claus, R Convery, MR Cristinziani, M De Nardo, G Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Soha, A Stelzer, J Strube, J Su, D Sullivan, MK Va'vra, J Wagner, SR Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Young, CC Strube, J Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Ahmed, M Ahmed, S Alam, MS Ernst, JA Saeed, MA Saleem, M Wappler, FR Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Kim, H Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Poropat, P Vitale, L Vuagnin, G Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Jackson, PD Kowalewski, R Roney, JM Sobie, RJ Back, JJ Harrison, PF Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mihalyi, A Pan, Y Prepost, R Tan, P von Wimmersperg-Toeller, JH Wu, J Wu, SL Yu, Z Greene, MG Neal, H CA BABAR Collaboration TI e(+)e(-) -> pi(+)pi(-)pi(+)pi(-), K+K-pi(+)pi(-), and K+K-K+K- cross sections at center-of-mass energies 0.5-4.5 GeV measured with initial-state radiation SO PHYSICAL REVIEW D LA English DT Article ID BHABHA SCATTERING; TAGGED PHOTONS; MONTE-CARLO; PHYSICS AB We study the process e(+)e- -> pi(+)pi(-)pi(+)pi(-) gamma, with a hard photon radiated from the initial state. About 60 000 fully reconstructed events have been selected from 89 fb(-1) of BABAR data. The invariant mass of the hadronic final state defines the effective e(+)e(-) e(+)e(-) center-of-mass energy, so that these data can be compared with the corresponding direct e(+)e(-) measurements. From the 4 pi -mass spectrum, the cross section for the process e(+)e(-) -> pi(+)pi(-)pi(+)pi(-) is measured for center-of-mass energies from 0.6 to 4.5 GeV. The uncertainty in the cross section measurement is typically 5%. We also measure the cross sections for the final states K+K- pi(+)pi(-) and K+K-K+K-. We observe the J/psi in all three finial states and measure the corresponding branching fractions. We search for X(3872) in J/psi(-> mu(+)mu(-))pi(+)pi(-) and obtain an upper limit on the product of the e(+)e(-) width of the X(3872) and the branching fraction for X(3872) -> J/psi pi(+)pi(-). C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Lab Accelerateur Lineaire, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 72E, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Lab Rene JA Levesque, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Scuola Normale Super Pisa, Dipartimento Fis, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77466 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Univ Oregon, Eugene, OR 97403 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Univ Basilicata, I-85100 Potenza, Italy. RP Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Luppi, Eleonora/A-4902-2015; Rotondo, Marcello/I-6043-2012; Neri, Nicola/G-3991-2012; Sarti, Alessio/I-2833-2012; Bellini, Fabio/D-1055-2009; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; crosetti, nanni/H-3040-2011; Roe, Natalie/A-8798-2012; Forti, Francesco/H-3035-2011; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; M, Saleem/B-9137-2013; Cavallo, Nicola/F-8913-2012; Grancagnolo, Sergio/J-3957-2015; Mir, Lluisa-Maria/G-7212-2015; Kravchenko, Evgeniy/F-5457-2015; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Morandin, Mauro/A-3308-2016; Martinez Vidal, F*/L-7563-2014; Di Lodovico, Francesca/L-9109-2016; Peters, Klaus/C-2728-2008; Lo Vetere, Maurizio/J-5049-2012; Della Ricca, Giuseppe/B-6826-2013; Calabrese, Roberto/G-4405-2015; Lusiani, Alberto/A-3329-2016; Kolomensky, Yury/I-3510-2015; Lusiani, Alberto/N-2976-2015 OI Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Luppi, Eleonora/0000-0002-1072-5633; Rotondo, Marcello/0000-0001-5704-6163; Neri, Nicola/0000-0002-6106-3756; Sarti, Alessio/0000-0001-5419-7951; Bellini, Fabio/0000-0002-2936-660X; Raven, Gerhard/0000-0002-2897-5323; Forti, Francesco/0000-0001-6535-7965; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; FORD, WILLIAM/0000-0001-8703-6943; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Grancagnolo, Sergio/0000-0001-8490-8304; Mir, Lluisa-Maria/0000-0002-4276-715X; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Morandin, Mauro/0000-0003-4708-4240; Martinez Vidal, F*/0000-0001-6841-6035; Di Lodovico, Francesca/0000-0003-3952-2175; Peters, Klaus/0000-0001-7133-0662; Lo Vetere, Maurizio/0000-0002-6520-4480; Della Ricca, Giuseppe/0000-0003-2831-6982; Calabrese, Roberto/0000-0002-1354-5400; Lusiani, Alberto/0000-0002-6876-3288; Kolomensky, Yury/0000-0001-8496-9975; Lusiani, Alberto/0000-0002-6876-3288 NR 28 TC 414 Z9 416 U1 7 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 052001 DI 10.1103/PhysRevD.71.052001 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000011 ER PT J AU Baek, S Hamel, P London, D Datta, A Suprun, DA AF Baek, S Hamel, P London, D Datta, A Suprun, DA TI B -> pi K puzzle and new physics SO PHYSICAL REVIEW D LA English DT Article ID DECAYS; ASYMMETRIES; GAMMA AB The present B --> pi K data is studied in the context of the standard model (SM) and with new physics (NP). We confirm that the SM has difficulties explaining the B --> pi K measurements. By adopting an effective-lagrangian parametrization of NP effects, we are able to rule out several classes of NP. Our model-independent analysis shows that the B --> pi K data can be accommodated by NP in the electroweak penguin sector. C1 Univ Montreal, Lab Rene JA Levesque, Montreal, PQ H3C 3J7, Canada. Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Univ Montreal, Lab Rene JA Levesque, CP 6128,Succ Centreville, Montreal, PQ H3C 3J7, Canada. NR 36 TC 85 Z9 85 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 057502 DI 10.1103/PhysRevD.71.057502 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000082 ER PT J AU Barenboim, G Requejo, OM Quigg, C AF Barenboim, G Requejo, OM Quigg, C TI Undulant Universe: Expansion with alternating eras of acceleration and deceleration SO PHYSICAL REVIEW D LA English DT Article ID EQUATION-OF-STATE; DARK ENERGY; COSMOLOGICAL CONSTANT; SUPERNOVAE; CONSTRAINTS AB If the equation of state for "dark energy" varies periodically, the expansion of the Universe may have undergone alternating eras of acceleration and deceleration. We examine a specific form that survives existing observational tests, does not single out the present state of the Universe as exceptional, and suggests a future much like the matter-dominated past: a smooth expansion without a final inflationary epoch. C1 Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain. Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Univ Valencia, Dept Fis Teor, Carrer Dr Moliner 50, E-46100 Burjassot, Valencia, Spain. EM Gabriela.Barenboim@uv.es; omena@fnal.gov; quigg@fnal.gov NR 34 TC 22 Z9 23 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 6 AR 063533 DI 10.1103/PhysRevD.71.063533 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SS UT WOS:000228490100041 ER PT J AU Baur, U Juste, A Orr, LH Rainwater, D AF Baur, U Juste, A Orr, LH Rainwater, D TI Probing electroweak top quark couplings at hadron colliders SO PHYSICAL REVIEW D LA English DT Article ID ELECTRIC-DIPOLE MOMENT; EXTENDED TECHNICOLOR; LINEAR COLLIDER; PAIR PRODUCTION; STANDARD-MODEL; CP VIOLATION; PRECISION TESTS; S-MATRIX; PHYSICS; VERTEX AB We consider QCD tt gamma and ttZ production at hadron colliders as a tool to measure the tt gamma and ttz couplings. At the Tevatron it may be possible to perform a first, albeit not very precise, test of the tt gamma vector and axial vector couplings in tt gamma production, provided that more than 5 fb(-1) of integrated luminosity are accumulated. The ttZ cross section at the Tevatron is too small to be observable. At the CERN Large Hadron Collider (LHC) it will be possible to probe the tt gamma couplings at the few-percent level, which approaches the precision which one hopes to achieve with a next-generation e(+)e(-) linear collider. The LHC's capability of associated QCD ttV (V = gamma, Z) production has the added advantage that the tt gamma and ttZ couplings are not entangled. For an integrated luminosity of 300 fb(-1), the ttZ vector (axial vector) coupling can be determined with an uncertainty of 45 - 85% (15 - 20%), whereas the dimension-five dipole form factors can be measured with a precision of 50 - 55%. The achievable limits improve typically by a factor of 2 - 3 for the luminosity-upgraded (3 ab(-1)) LHC. C1 SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. RP SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. EM baur@ubhex.physics.buffalo.edu; juste@fnal.gov; orr@pas.rochester.edu; rain@pas.rochester.edu RI Juste, Aurelio/I-2531-2015; OI Juste, Aurelio/0000-0002-1558-3291; rainwater, david/0000-0002-3668-4331 NR 82 TC 50 Z9 50 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 054013 DI 10.1103/PhysRevD.71.054013 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000032 ER PT J AU Bedaque, PF Griesshammer, HW Rupak, G AF Bedaque, PF Griesshammer, HW Rupak, G TI A nucleon in a tiny box SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; SCATTERING AB We use Chiral Perturbation Theory to compute the nucleon mass-shift due to finite volume and temperature effects. Our results are valid up to next-to-leading-order in the "epsilon-regime" (mL similar to m beta << 1) as well as in the "p-regime" (mL similar to m beta >> 1). Based on the two leading orders, we discuss the convergence of the expansion as a function of the lattice size and quark masses. This result can be used to extrapolate lattice results obtained from lattice sizes smaller than the pion cloud, avoiding the numerical simulation of physics under theoretical control. An extraction of the low-energy coefficient c(3) of the chiral Lagrangean from lattice simulations at small volumes and a "magic" ratio beta = 1.22262L might be possible. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Inst Theoret Phys, D-85747 Garching, Germany. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM pfbedaque@lbl.gov; hgrie@ph.tum.de; grupak@lanl.gov NR 16 TC 16 Z9 16 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 054015 DI 10.1103/PhysRevD.71.054015 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000034 ER PT J AU Bousso, R AF Bousso, R TI Cosmology and the S matrix SO PHYSICAL REVIEW D LA English DT Article ID FALSE-VACUUM BUBBLES; EVENT HORIZONS; BLACK-HOLES; SECOND LAW; UNIVERSE; EVOLUTION; ENTROPY; THERMODYNAMICS; CREATION; PHYSICS AB We study conditions for the existence of asymptotic observables in cosmology. With the exception of de Sitter space, the thermal properties of accelerating universes permit arbitrarily long observations, and guarantee the production of accessible states of arbitrarily large entropy. This suggests that some asymptotic observables may exist, despite the presence of an event horizon. Comparison with decelerating universes shows surprising similarities: Neither type suffers from the limitations encountered in de Sitter space, such as thermalization and boundedness of entropy. However, we argue that no realistic cosmology permits the global observations associated with an S matrix. C1 Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bousso, R (reprint author), Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. EM bousso@lbl.gov NR 58 TC 138 Z9 140 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2821 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 6 AR 064024 DI 10.1103/PhysRevD.71.064024 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SS UT WOS:000228490100069 ER PT J AU Carroll, SM De Felice, A Duvvuri, V Easson, DA Trodden, M Turner, MS AF Carroll, SM De Felice, A Duvvuri, V Easson, DA Trodden, M Turner, MS TI Cosmology of generalized modified gravity models - art. no. 065313 SO PHYSICAL REVIEW D LA English DT Article ID PROBE WMAP OBSERVATIONS; ANGULAR POWER SPECTRUM; INVERSE POWERS; 1/R GRAVITY; SUPERNOVAE; UNIVERSE; EXPANSION; CURVATURE; SCALAR AB We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the far future evolution of the Universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models. C1 Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. Fermilab Natl Accelerator Lab, NASA Fermilab Astrophys Ctr, Batavia, IL 60510 USA. RP Univ Chicago, Enrico Fermi Inst, Dept Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM carroll@theory.uchicago.edu; defelice@physics.syr.edu; duvvuri@theory.uchicago.edu; easson@physics.syr.edu; trodden@physics.syr.edu; mturner@oddjob.uchicago.edu NR 42 TC 401 Z9 403 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 6 AR 063513 DI 10.1103/PhysRevD.71.063513 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SS UT WOS:000228490100021 ER PT J AU Chen, YC Burnstein, RA Chakravorty, A Chan, A Choong, WS Clark, K Dukes, EC Durandet, C Felix, J Gidal, G Gu, P Gustafson, HR Ho, C Holmstrom, T Huang, M James, C Jenkins, CM Kaplan, DM Lederman, LM Leros, N Longo, MJ Lopez, F Lu, LC Luebke, W Luk, KB Nelson, KS Parks, HK Perroud, JP Rajaram, D Rubin, HA Teng, PK Volk, J White, CG White, SL Zyla, P AF Chen, YC Burnstein, RA Chakravorty, A Chan, A Choong, WS Clark, K Dukes, EC Durandet, C Felix, J Gidal, G Gu, P Gustafson, HR Ho, C Holmstrom, T Huang, M James, C Jenkins, CM Kaplan, DM Lederman, LM Leros, N Longo, MJ Lopez, F Lu, LC Luebke, W Luk, KB Nelson, KS Parks, HK Perroud, JP Rajaram, D Rubin, HA Teng, PK Volk, J White, CG White, SL Zyla, P CA HyoerCP Collaboration TI Measurement of the a asymmetry parameter for the Omega(-) -> Lambda K- decay SO PHYSICAL REVIEW D LA English DT Article ID HYPERON; LIFETIME; SPIN AB We have measured the a parameter of the Omega(-) -> Lambda K- decay using data collected with the HyperCP spectrometer during the 1997 fixed-target run at Fermilab. Analyzing a sample of 0.96 x 10(6) Omega(-) -> Lambda K-, Lambda -> p pi(-) decays, we obtain an alpha(Omega)alpha(Lambda) = [1.33 +/- 0.33(stat) +/- 0.52(syst)] 10(-2). With the accepted value of alpha(Lambda), alpha(Omega) an is found to be [2.07 +/- 0.51(stat) +/- 0.81(syst)] x 10(-2). C1 Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Univ Calif Berkeley, Berkeley, CA 94720 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Guanajuato, Leon 37000, Mexico. IIT, Chicago, IL 60616 USA. Univ Lausanne, CH-1015 Lausanne, Switzerland. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Univ S Alabama, Mobile, AL 36688 USA. Univ Virginia, Charlottesville, VA 22904 USA. RP Acad Sinica, Inst Phys, Taipei 11529, Taiwan. NR 13 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 051102 DI 10.1103/PhvsRevD.71.051102 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000002 ER PT J AU Grossman, Y Harnik, R Perez, G Schwartz, MD Surujon, Z AF Grossman, Y Harnik, R Perez, G Schwartz, MD Surujon, Z TI Twisted split fermions SO PHYSICAL REVIEW D LA English DT Article ID EXTRA DIMENSIONS; FLAVOR VIOLATION; MASSES; NEUTRINOS; MECHANISM; DOUBLET; TRIPLET; GUTS AB The observed flavor structure of the standard model arises naturally in "split fermion" models which localize fermions at different places in an extra dimension. It has, until now, been assumed that the bulk masses for such fermions can be chosen to be flavor diagonal simultaneously at every point in the extra dimension, with all the flavor violation coming from the Yukawa couplings to the Higgs field. We consider the more natural possibility in which the bulk masses cannot be simultaneously diagonalized, that is, that they are twisted in flavor space. We show that, in general, this does not disturb the natural generation of hierarchies in the flavor parameters. Moreover, it is conceivable that all the flavor mixing and CP-violation in the standard model may come only from twisting, with the five-dimensional Yukawa couplings taken to be universal. C1 Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. OI SCHWARTZ, MATTHEW/0000-0001-6344-693X NR 48 TC 26 Z9 26 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 056007 DI 10.1103/PhysRevD.71.056007 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000079 ER PT J AU Iida, K AF Iida, K TI Magnetic vortex in color-flavor locked quark matter SO PHYSICAL REVIEW D LA English DT Article AB Within Ginzburg-,Landau theory, we study the structure of a magnetic vortex in color-flavor locked quark matter. This vortex is characterized by winding of the SU(3) phase in color-flavor space, as well as by the presence of a color-flavor unlocked condensate in the core. We estimate the upper and lower critical fields and the critical Ginzburg-Landau parameter that distinguishes between type I and type II superconductors. C1 Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. NR 20 TC 26 Z9 26 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 054011 DI 10.1103/PhysRevD.71.05401 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000030 ER PT J AU Iida, K Matsuura, T Tachibana, M Hatsuda, T AF Iida, K Matsuura, T Tachibana, M Hatsuda, T TI Thermal phase transitions and gapless quark spectra in quark matter at high density SO PHYSICAL REVIEW D LA English DT Article ID 2-FLAVOR COLOR SUPERCONDUCTOR; SYMMETRY-BREAKING; FLAVOR LOCKING; BARYON DENSITY; GROUND-STATE; QCD; SYSTEMS AB Thermal color superconducting phase transitions in three-flavor quark matter at high baryon density are investigated in the Ginzburg-Landau (GL) approach. We constructed the GL potential near the boundary with a normal phase by taking into account nonzero quark masses, electric charge neutrality, and color charge neutrality. We found that the density of states averaged over paired quarks plays a crucial role in determining the phases near the boundary. By performing a weak coupling calculation of the parameters characterizing the GL potential terms of second order in the pairing gap, we show that three successive second-order phase transitions take place as the temperature increases: a modified color-flavor locked phase (ud, ds, and its pairings) -> a dSC phase (ud and ds pairings) -> an isoscalar pairing phase (ud pairing) -> a normal phase (no pairing). The Meissner masses of the gluons and the number of gapless quark modes are also studied analytically in each of these phases. C1 Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. RP Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RI Hatsuda, Tetsuo/C-2901-2013 NR 47 TC 22 Z9 22 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 054003 DI 10.1103/PhysRevD.71.054003 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000022 ER PT J AU Jeschonnek, S Van Orden, JW AF Jeschonnek, S Van Orden, JW TI Modeling quark-hadron duality in polarization observables SO PHYSICAL REVIEW D LA English DT Review ID NEUTRON SPIN STRUCTURE; BLOOM-GILMAN DUALITY; CONFINED RELATIVISTIC-PARTICLES; NUCLEON STRUCTURE FUNCTIONS; STRUCTURE-FUNCTION G(1)(N); DEEP-INELASTIC SCATTERING; TIME-LIKE RESPONSE; RESONANCE REGION; LOCAL-DUALITY; SUM-RULES AB We apply a model for the study of quark-hadron duality in inclusive electron scattering to the calculation of spin observables. The model is based on solving the Dirac equation numerically for a scalar confining linear potential and a vector color Coulomb potential. We qualitatively reproduce the features of quark-hadron duality for all potentials considered, and discuss the onset of scaling and duality for the responses, spin structure functions, and polarization asymmetries. Duality may be applied to gain access to kinematic regions which are hard to access in deep inelastic scattering, namely, for X-Bj --> 1, and we discuss which observables are most suitable for this application of duality. C1 Ohio State Univ, Dept Phys, Lima, OH 45804 USA. Jefferson Lab, Newport News, VA 23606 USA. Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RP Ohio State Univ, Dept Phys, Lima, OH 45804 USA. NR 101 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 054019 DI 10.1103/PhysRevD.71.054019 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000038 ER PT J AU Kisslinger, LS Walawalkar, S Johnson, MB AF Kisslinger, LS Walawalkar, S Johnson, MB TI Basic treatment of QCD phase transition bubble nucleation SO PHYSICAL REVIEW D LA English DT Article ID QUARK-HADRON TRANSITION; PRIMORDIAL MAGNETIC-FIELDS; EARLY UNIVERSE; FALSE VACUUM; COLLISIONS; DECAY; IMPURITIES; GROWTH AB Starting from the QCD Lagrangian and the surface tension of QCD bubbles we derive the critical size of bubbles, the nucleation probability and the nucleation site separation distance. C1 Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kisslinger, LS (reprint author), Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. EM kissling@andrew.cmu.edu; sameer@andrew.cmu.edu; mbjohnson@lanl.gov NR 33 TC 7 Z9 7 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2821 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 6 AR 065017 DI 10.1103/PhysRevD.71.065017 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SS UT WOS:000228490100092 ER PT J AU Kramer, M Plehn, T Spira, M Zerwas, PM AF Kramer, M Plehn, T Spira, M Zerwas, PM TI Pair production of scalar leptoquarks at the CERN LHC SO PHYSICAL REVIEW D LA English DT Article ID HIGGS-BOSON PRODUCTION; HADRON-HADRON COLLISIONS; FERMILAB TEVATRON; CROSS-SECTION; COLLIDERS; ANNIHILATION; SEARCH; SQUARK; HERA; QCD AB Theoretical predictions for the production cross sections of leptoquarks at the CERN LHC are presented including higher-order QCD corrections. These corrections reduce the dependence on the renormalization/factorization scales significantly. Moreover, they are required to exploit the leptoquark mass reach of the LHC experiments. In this sequel to an earlier analysis performed for the Tevatron collider we extend the leptoquark analysis to the LHC energy. C1 Univ Edinburgh, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland. CERN, Div Theory, CH-1211 Geneva, Switzerland. Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. Paul Scherrer Inst, CH-5232 Villigen, Switzerland. DESY, D-22603 Hamburg, Germany. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Univ Edinburgh, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland. NR 40 TC 50 Z9 50 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 057503 DI 10.1103/PhysRevD.71.057503 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000083 ER PT J AU Osipenko, M Simula, S Melnitchouk, W Bosted, P Burkert, V Christy, E Griffioen, K Keppel, C Kuhn, S Ricco, G AF Osipenko, M Simula, S Melnitchouk, W Bosted, P Burkert, V Christy, E Griffioen, K Keppel, C Kuhn, S Ricco, G TI Global analysis of data on the proton structure function g(1) and the extraction of its moments SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC-SCATTERING; STRUCTURE FUNCTIONS G(2); QUARK-HADRON DUALITY; SPIN STRUCTURE; HIGHER TWISTS; SUM-RULES; POSITIVITY CONSTRAINTS; POLARIZED PROTONS; POWER CORRECTIONS; HARD PROCESSES AB Inspired by recent measurements with the CLAS detector at Jefferson Lab, we perform a self-consistent analysis of world data on the proton structure function g(1) in the range 0.17 < Q(2) < 30 (GeV/c)(2). We compute for the first time low-order moments of g, and study their evolution from small to large values of Q(2). The analysis includes the latest data on both the unpolarized inclusive cross sections and the ratio R = sigma(L)/sigma(T) from Jefferson Lab, as well as a new model for the transverse asymmetry A(2) in the resonance region. The contributions of both leading and higher twists are extracted, taking into account effects from radiative corrections beyond the next-to-leading order by means of soft-gluon resummation techniques. The leading twist is determined with remarkably good accuracy and is compared with the predictions obtained using various polarized parton distribution sets available in the literature. The contribution of higher twists to the g(1) moments is found to be significantly larger than in the case of the unpolarized structure function F-2. C1 Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. Skobeltsyn Inst Nucl Phys, Moscow 119992, Russia. Ist Nazl Fis Nucl, Sez Roma 3, I-00146 Rome, Italy. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Hampton Univ, Hampton, VA 23668 USA. Coll William & Mary, Williamsburg, VA 23187 USA. Old Dominion Univ, Norfolk, VA 23529 USA. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. RP Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. EM osipenko@ge.infn.it RI Osipenko, Mikhail/N-8292-2015 OI Osipenko, Mikhail/0000-0001-9618-3013 NR 76 TC 28 Z9 28 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 054007 DI 10.1103/PhysRevD.71.054007 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000026 ER PT J AU Sibirtsev, A Haidenbauer, J Krewald, S Meissner, UG Thomas, AW AF Sibirtsev, A Haidenbauer, J Krewald, S Meissner, UG Thomas, AW TI Near threshold enhancement of the p(p)over-bar mass spectrum in J/Psi decay SO PHYSICAL REVIEW D LA English DT Article ID ELECTROMAGNETIC FORM-FACTORS; NUCLEON-ANTINUCLEON SYSTEM; FINAL-STATE INTERACTION; MESON-BARYON DYNAMICS; TIME-LIKE REGION; BOUND-STATES; RESONANCES; PROTON; SCATTERING; MODEL AB We investigate the nature of the near-threshold enhancement in the pp invariant-mass spectrum of the reaction J/ Psi --> gamma pp reported recently by the BES Collaboration. Using the Julich NN model we show that the mass dependence of the pp spectrum close to the threshold can be reproduced by the S-wave pp final state interaction in the isospin I = 1 state within the Watson-Migdal approach. However, because of our poor knowledge of the NN interaction near-threshold and of the J/Psi --> gamma pp reaction mechanism and in view of the controversal situation in the decay J/Psi --> pi(0) pp, where no obvious signs of a pp final state interaction are seen, explanations other than final state interactions cannot be ruled out at the present stage. C1 Univ Bonn, Helmholtz Inst Strahlen & Kernphys Theorie, D-53115 Bonn, Germany. Forschungszentrum Julich, Inst Kernphys Theorie, D-52425 Julich, Germany. Jefferson Lab, Newport News, VA 23606 USA. RP Univ Bonn, Helmholtz Inst Strahlen & Kernphys Theorie, Nussallee 14-16, D-53115 Bonn, Germany. RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X NR 51 TC 108 Z9 113 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2005 VL 71 IS 5 AR 054010 DI 10.1103/PhysRevD.71.054010 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 917SR UT WOS:000228490000029 ER PT J AU Chiam, KH Cross, MC Greenside, HS Fischer, PF AF Chiam, KH Cross, MC Greenside, HS Fischer, PF TI Enhanced tracer transport by the spiral defect chaos state of a convecting fluid SO PHYSICAL REVIEW E LA English DT Article ID RAYLEIGH-BENARD CONVECTION; ANOMALOUS DIFFUSION; PATTERN-FORMATION; CAPILLARY WAVES; LEVY FLIGHTS; FLOW; TIME; ADVECTION; DYNAMICS AB To understand how spatiotemporal chaos may modify material transport, we use direct numerical simulations of the three-dimensional Boussinesq equations and of an advection-diffusion equation to study the transport of a passive tracer by the spiral defect chaos state of a convecting fluid. The simulations show that the transport is diffusive and is enhanced by the spatiotemporal chaos. The enhancement in tracer diffusivity follows two regimes. For large Peclet numbers (that is, small molecular diffusivities of the tracer), we find that the enhancement is proportional to the Peclet number. For small Peclet numbers, the enhancement is proportional to the square root of the Peclet number. We explain the presence of these two regimes in terms of how the local transport depends on the local wave numbers of the convection rolls. For large Peclet numbers, we further find that defects cause the tracer diffusivity to be enhanced locally in the direction orthogonal to the local wave vector but suppressed in the direction of the local wave vector. C1 CALTECH, Pasadena, CA 91125 USA. Duke Univ, Dept Phys, Durham, NC 27708 USA. Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Chiam, KH (reprint author), CALTECH, Mail Code 114-36, Pasadena, CA 91125 USA. EM ChiamKH@MailAPS.ORG NR 30 TC 6 Z9 6 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1063-651X J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2005 VL 71 IS 3 AR 036205 DI 10.1103/PhysRevE.71.036205 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 922EC UT WOS:000228818200068 PM 15903544 ER PT J AU Daligault, J Murillo, MS AF Daligault, J Murillo, MS TI Semiclassical model for the ionic self-diffusion coefficient in white dwarfs SO PHYSICAL REVIEW E LA English DT Article ID ONE-COMPONENT PLASMA; YUKAWA SYSTEMS; DYNAMICS; INTERIORS; MATTER; NE-22 AB Under the extreme conditions of massive white dwarfs, which have ionic densities that exceed 10(29) cm(-3), the ions can be both very strongly coupled and partially degenerate. We present a simple model for self-diffusion in such white dwarfs that utilizes the known one-component plasma diffusion coefficient and scalings derived from the short-time expansions of the velocity autocorrelation function and the memory function. Since the ions are weakly degenerate, we utilize a simple semiclassical correction to the classical dynamics. We find enhanced diffusion, relative to the purely classical calculation, which is more significant at smaller values of the Coulomb coupling parameter. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Daligault, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 18 TC 14 Z9 14 U1 0 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1063-651X J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2005 VL 71 IS 3 AR 036408 DI 10.1103/PhysRevE.71.036408 PN 2 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 922EC UT WOS:000228818200113 PM 15903589 ER PT J AU Detwiler, RL Rajaram, H Glass, RJ AF Detwiler, RL Rajaram, H Glass, RJ TI Satiated relative permeability of variable-aperture fractures SO PHYSICAL REVIEW E LA English DT Article ID WALLED ROCK FRACTURES; 2-PHASE FLOW; INVASION PERCOLATION; CONTINUUM PERCOLATION; MODEL; CONDUCTIVITY; VISUALIZATION; DISSOLUTION; PLANE AB Experimental studies of capillary-dominated displacements in variable-aperture fractures have demonstrated the occurrence of a satiated state at the end of invasion, where significant entrapment of the displaced phase occurs. The structure of this entrapped phase controls the behavior of flow and transport processes in the flowing phase. Recent studies have shown that the areal saturation of the flowing phase at satiation (S-f) is largely controlled by a single parameter C/delta, where C, the curvature number, weighs the mean in-plane interfacial curvature relative to the mean out-of-plane interfacial curvature, and delta, the coefficient of variation of the aperture field, represents the strength of interface roughening induced by aperture variations. Here we consider the satiated relative permeability (k(rs)) to the flowing phase, which is defined as the relative permeability when the defending phase is fully entrapped. The satiated relative permeability is shown to be a well-defined function of S-f over a wide range of C/delta, ranging from capillary fingering with significant entrapment (C/delta -> 0) to smooth invasion with very little entrapment (C/delta>1). We develop a relationship for k(rs) as a function of S-f, by combining theoretical results for the effective permeability in a spatially correlated random permeability field, with results from continuum percolation theory for quantifying the influence of the entrapped phase. The resulting model for k(rs) also involves a dependence on delta. The predicted relative permeability values are accurate across the entire range of phase structures representative of capillary-dominated displacements in variable-aperture fractures. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA. Sandia Natl Labs, Flow Visualizat & Proc Lab, Albuquerque, NM 87185 USA. RP Detwiler, RL (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. RI Detwiler, Russell/C-3228-2008 OI Detwiler, Russell/0000-0002-7693-9271 NR 33 TC 6 Z9 6 U1 0 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1063-651X J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2005 VL 71 IS 3 AR 031114 DI 10.1103/PhysRevE.71.031114 PN 1 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 919PM UT WOS:000228630000019 PM 15903413 ER PT J AU Ernst, MH AF Ernst, MH TI Universal power law tails of time correlation functions SO PHYSICAL REVIEW E LA English DT Article ID DISSIPATIVE PARTICLE DYNAMICS; STATIONARY RANDOM-MEDIA; HARD-SPHERE FLUIDS; ENERGY-CONSERVATION; BEHAVIOR; EQUATION; DECAY AB The universal power law tails of single particle and multiparticle time correlation functions are derived from a unifying point of view, solely using the hydrodynamic modes of the system. The theory applies to general correlation functions and to systems more general than classical fluids. Moreover, it is argued that the collisional transfer part of the stress-stress correlation function in dense classical fluids has the same long-time tail similar to t(-1-d/2) as the velocity autocorrelation function in Lorentz gases. C1 Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. Univ Utrecht, Inst Theoret Phys, NL-3508 TD Utrecht, Netherlands. RP Los Alamos Natl Lab, CNLS, POB 1663, Los Alamos, NM 87545 USA. NR 26 TC 9 Z9 9 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2005 VL 71 IS 3 AR 030101 DI 10.1103/PhysRevE.71.030101 PN 1 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 919PM UT WOS:000228630000001 PM 15903395 ER PT J AU Geissler, PL Reichman, DR AF Geissler, PL Reichman, DR TI Short-ranged attractions in jammed liquids: How cooling can melt a glass SO PHYSICAL REVIEW E LA English DT Article ID KINETIC ISING-MODEL; SUPERCOOLED LIQUIDS; COLLOIDAL GLASS; TRANSITION; RELAXATION; DYNAMICS; SYSTEM; FLUID AB We demonstrate that an extended picture of kinetic constraints in glass-forming liquids is sufficient to explain dynamic anomalies observed in dense suspensions of strongly attracting colloidal particles. We augment a simple model of heterogeneous relaxation with static attractions between facilitating excitations, in a way that mimics the structural effect of short-ranged interparticle attractions. The resulting spatial correlations among facilitated and unfacilitated regions give rise to relaxation mechanisms that account for nonmonotonic dependence of relaxation times on attraction strength as well as logarithmic decay of density correlations in time. These unusual features are a simple consequence of spatial segregation of kinetic constraints, suggesting an alternative physical perspective on attractive colloids than that suggested by mode-coupling theory. Based on the behavior of our model, we predict a crossover from super-Arrhenius to Arrhenius temperature dependence as attractions become dominant at fixed packing fraction. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci & Mat Sci Div, Berkeley, CA 94720 USA. Columbia Univ, Dept Chem, New York, NY 10027 USA. RP Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. NR 33 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2005 VL 71 IS 3 AR 031206 DI 10.1103/PhysRevE.71.031206 PN 1 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 919PM UT WOS:000228630000025 PM 15903419 ER PT J AU Krapivsky, PL Redner, S AF Krapivsky, PL Redner, S TI Network growth by copying SO PHYSICAL REVIEW E LA English DT Article ID SCIENTIFIC COLLABORATION; COMPLEX NETWORKS; WEB AB We introduce a growing network model in which a new node attaches to a randomly selected node, as well as to all ancestors of the target node. This mechanism produces a sparse, ultrasmall network where the average node degree grows logarithmically with network size while the network diameter equals 2. We determine basic geometrical network properties, such as the size dependence of the number of links and the in- and out-degree distributions. We also compare our predictions with real networks where the node degree also grows slowly with time-the Internet and the citation network of all Physical Review papers. C1 Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA. Boston Univ, Dept Phys, Boston, MA 02215 USA. Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Krapivsky, PL (reprint author), Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA. EM paulk@bu.edu; redner@bu.edu RI Krapivsky, Pavel/A-4612-2014 NR 26 TC 56 Z9 66 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2005 VL 71 IS 3 AR 036118 DI 10.1103/PhysRevE.71.036118 PN 2 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 922EC UT WOS:000228818200028 PM 15903504 ER PT J AU Lamoreaux, SK Buttler, WT AF Lamoreaux, SK Buttler, WT TI Thermal noise limitations to force measurements with torsion pendulums: Applications to the measurement of the Casimir force and its thermal correction SO PHYSICAL REVIEW E LA English DT Article ID MU-M RANGE; EQUIVALENCE PRINCIPLE AB A general analysis of thermal noise in torsion pendulums is presented. The specific case where the torsion angle is kept fixed by electronic feedback is analyzed. This analysis is applied to a recent experiment that employed a torsion pendulum to measure the Casimir force. The ultimate limit to the distance at which the Casimir force can be measured to high accuracy is discussed, and in particular we elaborate on the prospects for measuring the thermal correction. C1 Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Lamoreaux, SK (reprint author), Los Alamos Natl Lab, Div Phys, P-23,MS H803, Los Alamos, NM 87545 USA. NR 23 TC 21 Z9 21 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1063-651X J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2005 VL 71 IS 3 AR 036109 DI 10.1103/PhysRevE.71.036109 PN 2 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 922EC UT WOS:000228818200019 PM 15903495 ER PT J AU Ramaprabhu, P Dimonte, G AF Ramaprabhu, P Dimonte, G TI Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio SO PHYSICAL REVIEW E LA English DT Article ID PARALLEL COMPUTATION; BUBBLE MERGER; FLUIDS; SIMULATIONS; DEPENDENCE; CONVECTION; FRONTS; SCHEME; FLOW; LAWS AB The behavior of a periodic array of Rayleigh-Taylor bubbles (and spikes) of wavelength lambda is investigated at different density ratios using three-dimensional numerical simulations. The scaled bubble and spike velocities (v(b,s)/root Ag lambda/2), are found to vary with the Atwood number A, and are compared with recent potential flow theories. Simulations at different grid resolutions reveal that the convergence rates of bubble velocities improve with increasing A, while the converse holds true for spike velocities. The asymptotic radius of curvature at the bubble tip is found to be independent of A, consistent with potential flow theory. These results are useful in validating potential flow theory models of the nonlinear stage of the Rayleigh-Taylor instability. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ramaprabhu, P (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 38 TC 29 Z9 29 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2005 VL 71 IS 3 AR 036314 DI 10.1103/PhysRevE.71.036314 PN 2 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 922EC UT WOS:000228818200105 PM 15903581 ER PT J AU Smith, DR Vier, DC Koschny, T Soukoulis, CM AF Smith, DR Vier, DC Koschny, T Soukoulis, CM TI Electromagnetic parameter retrieval from inhomogeneous metamaterials SO PHYSICAL REVIEW E LA English DT Article ID PHOTONIC BAND-STRUCTURE; NEGATIVE INDEX; PERMEABILITY; PERMITTIVITY; REFRACTION; COMPOSITES; CRYSTALS; LENS AB We discuss the validity of standard retrieval methods that assign bulk electromagnetic properties, such as the electric permittivity epsilon and the magnetic permeability mu, from calculations of the scattering (S) parameters for finite-thickness samples. S-parameter retrieval methods have recently become the principal means of characterizing artificially structured metamaterials, which, by nature, are inherently inhomogeneous. While the unit cell of a metamaterial can be made considerably smaller than the free space wavelength, there remains a significant variation of the phase across the unit cell at operational frequencies in nearly all metamaterial structures reported to date. In this respect, metamaterials do not rigorously satisfy an effective medium limit and are closer conceptually to photonic crystals. Nevertheless, we show here that a modification of the standard S-parameter retrieval procedure yields physically reasonable values for the retrieved electromagnetic parameters, even when there is significant inhomogeneity within the unit cell of the structure. We thus distinguish a metamaterial regime, as opposed to the effective medium or photonic crystal regimes, in which a refractive index can be rigorously established but where the wave impedance can only be approximately defined. We present numerical simulations on typical metamaterial structures to illustrate the modified retrieval algorithm and the impact on the retrieved material parameters. We find that no changes to the standard retrieval procedures are necessary when the inhomogeneous unit cell is symmetric along the propagation axis; however, when the unit cell does not possess this symmetry, a modified procedure-in which a periodic structure is assumed-is required to obtain meaningful electromagnetic material parameters. C1 Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Fdn Res & Technol Hellas, Iraklion 71110, Crete, Greece. RP Smith, DR (reprint author), Duke Univ, Dept Elect & Comp Engn, Box 90291, Durham, NC 27708 USA. EM drsmith@ee.duke.edu RI Soukoulis, Costas/A-5295-2008; Smith, David/E-4710-2012; Schurig, David/A-3647-2008 NR 26 TC 1098 Z9 1157 U1 61 U2 304 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2005 VL 71 IS 3 AR 036617 DI 10.1103/PhysRevE.71.036617 PN 2 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 922EC UT WOS:000228818200139 PM 15903607 ER PT J AU Terrones, G AF Terrones, G TI Fastest growing linear Rayleigh-Taylor modes at solid/fluid and solid/solid interfaces SO PHYSICAL REVIEW E LA English DT Article ID ELASTIC-PLASTIC SOLIDS; ACCELERATION INSTABILITY; SIMULATIONS; GROWTH; METALS; FLUIDS; PLATES; SHELLS AB Previous linear stability analyses of the Rayleigh-Taylor instability problem for elastic solids have been restricted to calculating the cutoff wavelength lambda(c) (zero growth rate) in the limit of Atwood number A of unity. Here, we rigorously derive the dispersion relations for solid/fluid and solid/solid interfaces and perform a systematic investigation to compute the most unstable modes (maximum growth rate) for all A. After rationalizing the dispersion relations into multivariable polynomials, we compute the physically meaningful wavelength lambda and growth rate sigma for all unstable disturbances as a function of the mechanical properties of the participating media (shear moduli, dynamic viscosity, and density contrast) and acceleration. It is shown that at these interfaces, the onset of instability can only arise via monotonically growing disturbances. For solid/fluid and solid/solid interfaces, the locus of the most unstable wavelength lambda(m) and growth rate sigma(m) pairs are calculated to cover the entire range of behavior in dimensionless space. We find that under certain conditions, at solid/fluid interfaces, two configurations with distinct A can have the same lambda(m) (a behavior that does not occur at solid/solid interfaces). In terms of estimating sigma(m),lambda(m), and lambda(c), the applicability of our results extends to layers of finite thickness h provided h>lambda/2. We suggest a plausible mechanism to explain the wavelength selection process in nominally smooth magnetically imploded liners observed in recent experiments. C1 Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. RP Terrones, G (reprint author), Los Alamos Natl Lab, Div Appl Phys, POB 1663, Los Alamos, NM 87545 USA. OI Terrones, Guillermo/0000-0001-8245-5022 NR 30 TC 23 Z9 23 U1 3 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1063-651X J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2005 VL 71 IS 3 AR 036306 DI 10.1103/PhysRevE.71.036306 PN 2 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 922EC UT WOS:000228818200097 PM 15903573 ER PT J AU Wang, CX AF Wang, CX TI Formulas for tune shift and beta beat due to perturbations in circular accelerators SO PHYSICAL REVIEW E LA English DT Article AB Rigorous formulas for nonlinear tune shift and beta-function distortion due to perturbations in the focusing forces are presented, which complement the well-known tune-shift formula for quadrupole errors. Using these formulas, the calculation of nonlinear chromaticity given by Takao [Phys. Rev. E 70, 016501 (2004)] can be greatly simplified and extended to higher order. In addition, an expression for the nonlinear chromatic beta-function distortion is given. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Wang, CX (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wangcx@aps.anl.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2005 VL 71 IS 3 AR 036502 DI 10.1103/PhysRevE.71.036502 PN 2 PG 3 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 922EC UT WOS:000228818200121 PM 15903597 ER PT J AU Calaga, R Tomas, R Franchi, A AF Calaga, R Tomas, R Franchi, A TI Betatron coupling: Merging Hamiltonian and matrix approaches SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID BEAM DYNAMICS AB Betatron coupling is usually analyzed using either matrix formalism or Hamiltonian perturbation theory. The latter is less exact but provides a better physical insight. In this paper direct relations are derived between the two formalisms. This makes it possible to interpret the matrix approach in terms of resonances, as well as use results of both formalisms indistinctly. An approach to measure the complete coupling matrix and its determinant from turn-by-turn data is presented. Simulations using methodical accelerator design MAD-X, an accelerator design and tracking program, were performed to validate the relations and understand the scope of their application to real accelerators such as the Relativistic Heavy Ion Collider. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. GSI Darmstadt, D-64291 Darmstadt, Germany. RP Calaga, R (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 17 TC 12 Z9 12 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2005 VL 8 IS 3 AR 034001 DI 10.1103/PhysRevSTAB.8.034001 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 906BR UT WOS:000227616000005 ER PT J AU Lewellen, JW Noonan, J AF Lewellen, J. W. Noonan, J. TI Field-emission cathode gating for rf electron guns SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We present a novel method of combining the most desirable characteristics of thermionic-cathode and photocathode rf guns, using a field-emission cathode and multiple rf frequencies. Simulations indicate that extremely low-emittance beams (on the order of 2 nm normalized emittance) at moderate beam currents (1 mA) and beam energies of similar to 2 MeV can be obtained using this technique. The resulting gun design promises to be useful as a driver source for a number of applications, including high-voltage electron microscopy, precision electron-beam welding, and long-wavelength (THz) radiation generation; we include performance calculations for the electron microscopy and precision welding applications. C1 [Lewellen, J. W.; Noonan, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Lewellen, JW (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy, Office of Basic Energy Sciences [W-31-109-ENG-38] FX The authors wish to thank Courtlandt Bohn (Northern Illinois University), David Dowell (Stanford Linear Accelerator Center), and Todd Smith (Stanford University) for interesting discussions, support, and encouragement. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38. NR 26 TC 19 Z9 19 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2005 VL 8 IS 3 AR 033502 DI 10.1103/PhysRevSTAB.8.033502 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA V25ZJ UT WOS:000208515600001 ER PT J AU Na, YCN Siemann, RH Byer, RL AF Na, YCN Siemann, RH Byer, RL TI Energy efficiency of an intracavity coupled, laser-driven linear accelerator pumped by an external laser SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We calculate the optimum energy efficiency of a laser-driven linear accelerator by adopting a simple linear model. In the case of single bunch operation, the energy efficiency can be enhanced by incorporating the accelerator into a cavity that is pumped by an external laser. In the case of multiple bunch operation, the intracavity configuration is less advantageous because the strong wakefield generated by the electron beam is also recycled. Finally, the calculation indicates that the luminosity of a linear collider based on such a structure is comparably small if high efficiency is desired. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA. RP Na, YCN (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 7 TC 11 Z9 11 U1 1 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2005 VL 8 IS 3 AR 031301 DI 10.1103/PhysRevSTAB.8.031301 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 906BR UT WOS:000227616000003 ER PT J AU Mikaelian, KO AF Mikaelian, KO TI Richtmyer-Meshkov instability of arbitrary shapes SO PHYSICS OF FLUIDS LA English DT Article ID RAYLEIGH-TAYLOR; AIR/SF6 INTERFACE; SURFACE-TENSION; GROWTH-RATE; FLUIDS; VISCOSITY; STABILITY; EQUATIONS; MODEL AB We consider the effect of a shock passing through an arbitrarily shaped interface y(x,0) between two fluids. The evolution of the interface into a new shape, written formally as y(x,t)=y(x,0)+tF(x), is found by applying the linear, classical Richtmyer-Meshkov instability result to each mode in the Fourier expansion of the original interface. We provide several examples where the new shape F(x) can be found analytically. For any interface y(x,0) we define an associated dual interface y(dual)(x,0) and show that F(x)=dy(dual)(x,0)/dx. Representing a shock by a new mathematical operator we find how y(x,0), y(dual)(x,0), and F(x) transform under the effect of a shock. Kink-singularities are found in F(x) when and where y(x,0) has a discontinuous change in its first derivative. These are the locations where jetting occurs. We briefly discuss the effects of nonlinearity, compressibility, viscosity, etc., all of which suppress kink-singularities, and present hydrocode simulations of shock tube and high-explosive-driven experiments to highlight the influence of compressibility, nonlinearity, and material strength. (C) 2005 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Mikaelian, KO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 40 TC 29 Z9 30 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD MAR PY 2005 VL 17 IS 3 AR 034101 DI 10.1063/1.1848547 PG 13 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 902QW UT WOS:000227372600034 ER PT J AU Yoon, SS AF Yoon, SS TI Droplet distributions at the liquid core of a turbulent spray SO PHYSICS OF FLUIDS LA English DT Article ID MAXIMUM-ENTROPY FORMALISM; SIZE DISTRIBUTION; FUEL SPRAYS; STILL GASES; AMBIENT AIR; ARGON JETS; SURFACE; INSTABILITY; PREDICTION; MODEL AB Initial droplet distributions at the liquid core are examined for various Weber number and pulsing conditions. While experimental investigation in the liquid core region is nearly impossible due to difficulty in the optical access to the region, the distribution at the region is investigated computationally, and typical droplet distributions are identified. It is found that the Nukiyama-Tanasawa and log-normal distributions can best describe the droplet size and velocity distributions, respectively. By comparing computational results obtained at the liquid core (0 c(12) > c(44) for NbN, but c(11) > c(44) > c(12) for HfN and ZrN, which are in good agreement with the neutron scattering data. The cubic delta-NbN superconducting phase possesses a bulk modulus of 348 GPa, comparable to that of cubic boron nitride, and a Vickers hardness of 20 GPa, which is close to sapphire. Theoretical calculations for NbN show that all elastic moduli increase monotonically with increasing pressure. These results suggest technological applications of such materials in extreme environments. C1 Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr Div, Los Alamos, NM 87545 USA. CALTECH, Dept Chem, Pasadena, CA 91126 USA. RP Hemley, RJ (reprint author), Carnegie Inst Sci, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM r.hemley@gl.ciw.edu RI Lujan Center, LANL/G-4896-2012; Struzhkin, Viktor/J-9847-2013; Wu, Zhigang/K-2554-2014; Cohen, Ronald/B-3784-2010 OI Struzhkin, Viktor/0000-0002-3468-0548; Wu, Zhigang/0000-0001-8959-2345; Cohen, Ronald/0000-0001-5871-2359 NR 30 TC 165 Z9 168 U1 1 U2 49 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 1 PY 2005 VL 102 IS 9 BP 3198 EP 3201 DI 10.1073/pnas.0500174102 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 903KC UT WOS:000227423700008 PM 15728352 ER PT J AU Kim, JS DeGiovanni, A Jancarik, J Adams, PD Yokota, H Kim, R Kim, SH AF Kim, JS DeGiovanni, A Jancarik, J Adams, PD Yokota, H Kim, R Kim, SH TI Crystal structure of DNA sequence specificity subunit of a type I restriction-modification enzyme and its functional implications SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE structural genomics; gi 15669898 ID ESCHERICHIA-COLI; RECOGNITION SUBUNIT; ENDONUCLEASE; PROTEINS; RECOMBINATION; DIVERSITY; MECHANISM; PRODUCTS; CLEAVAGE; SYSTEM AB Type I restriction-modification enzymes are differentiated from type II and type III enzymes by their recognition of two specific dsDNA sequences separated by a given spacer and cleaving DNA randomly away from the recognition sites. They are oligomeric proteins formed by three subunits: a specificity subunit, a methylation subunit, and a restriction subunit. We solved the crystal structure of a specificity subunit from Methanococcus jannaschii at 2.4-Angstrom resolution. Two highly conserved regions (CRs) in the middle and at the C terminus form a coiled-coil of long antiparallel alpha-helices. Two target recognition domains form globular structures with almost identical topologies and two separate DNA binding clefts with a modeled DNA helix axis positioned across the CR helices. The structure suggests that the coiled-coil CRs act as a molecular ruler for the separation between two recognized DNA sequences. Furthermore, the relative orientation of the two DNA binding clefts suggests kinking of bound dsDNA and exposing of target adenines from the recognized DNA sequences. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Struct Gen Ctr, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kim, SH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM shkim@cchem.berkeley.edu RI Adams, Paul/A-1977-2013 OI Adams, Paul/0000-0001-9333-8219 FU NIGMS NIH HHS [P50 GM062412, GM 62412] NR 35 TC 49 Z9 52 U1 0 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 1 PY 2005 VL 102 IS 9 BP 3248 EP 3253 DI 10.1073/pnas.0409851102 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 903KC UT WOS:000227423700017 PM 15728358 ER PT J AU Kumaran, D Eswaramoorthy, S Studier, FW Swaminathan, S AF Kumaran, D Eswaramoorthy, S Studier, FW Swaminathan, S TI Structure and mechanism of ADP-ribose-1"-monophosphatase (Appr-1"-pase), a ubiquitous cellular processing enzyme SO PROTEIN SCIENCE LA English DT Article DE ADP-ribose-1"-monophosphate; tRNA splicing pathway; structural genomics; X-ray structure ID RIBOSE 1,2-CYCLIC PHOSPHATE; CYCLIC PHOSPHODIESTERASE; ESCHERICHIA-COLI; PROTEIN; REFINEMENT; RESOLUTION; PYROPHOSPHATASE; EXPRESSION; PROGRAM; DOMAINS AB Appr-1"-pase, an important and ubiquitous cellular processing enzyme involved in the tRNA splicing pathway, catalyzes the conversion of ADP-ribose-1"monophosphate (Appr-1"-p) to ADP-ribose. The structures of the native enzyme from the yeast and its complex with ADP-ribose were determined to 1.9 Angstrom and 2.05 Angstrom, respectively. Analysis of the three-dimensional structure of this protein, selected as a target in a structural genomics project, reveals its putative function and provides clues to the catalytic mechanism. The structure of the 284-amino acid protein shows a two-domain architecture consisting of a three-layer alphabetaalpha sandwich N-terminal domain connected to a small C-terminal helical domain. The structure of Appr-1"-pase in complex with the product, ADP-ribose, reveals an active-site water molecule poised for nucleophilic attack on the terminal phosphate group. Loop-region residues Asn 80, Asp 90, and His 145 may form a catalytic triad. C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov FU NIGMS NIH HHS [GM62529, P50 GM062529] NR 29 TC 27 Z9 29 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD MAR PY 2005 VL 14 IS 3 BP 719 EP 726 DI 10.1110/ps.041132005 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 899AD UT WOS:000227116400016 PM 15722447 ER PT J AU Faham, S Boulting, GL Massey, EA Yohannan, S Yang, D Bowie, JU AF Faham, S Boulting, GL Massey, EA Yohannan, S Yang, D Bowie, JU TI Crystallization of bacteriorhodopsin from bicelle formulations at room temperature SO PROTEIN SCIENCE LA English DT Article DE membrane protein; lipid cubic phase; crystallization method; twinning ID SENSORY RHODOPSIN-II; MEMBRANE-PROTEIN; DIPOLAR COUPLINGS; CRYSTALS; RESOLUTION; AGAROSE; PHASES AB We showed previously that high-quality crystals of bacteriorhodopsin (bR) from Halobacterium salinarum can be obtained from bicelle-forming DMPC/CHAPSO mixtures at 37degreesC. As many membrane proteins are not sufficiently stable for crystallization at this high temperature, we tested whether the bicelle method could be applied at a lower temperature. Here we show that bR can be crystallized at room temperature using two different bicelle-forming compositions: DMPC/CHAPSO and DTPC/CHAPSO. The DTPC/CHAPSO crystals grown at room temperature are essentially identical to the previous, twinned crystals: space group P2(1) with unit cell dimensions of a = 44.7 Angstrom, b = 108.7 Angstrom, c = 55.8 Angstrom, beta = 113.6degrees. The room-temperature DMPC/CHAPSO crystals are untwinned, however, and belong to space group C222(1) with the following unit cell dimensions: a = 44.7 Angstrom, b = 102.5 Angstrom, c = 128.2 Angstrom. The bR protein packs into almost identical layers in the two crystal forms, but the layers stack differently. The new untwinned crystal form yielded clear density for a previously unresolved CHAPSO molecule inserted between protein subunits within the layers. The ability to grow crystals at room temperature significantly expands the applicability of bicelle crystallization. C1 Univ Calif Los Angeles, UCLA DOE Ctr Genom & Proteom, Inst Mol Biol, Dept Chem & Biochem, Los Angeles, CA 90095 USA. RP Bowie, JU (reprint author), Univ Calif Los Angeles, UCLA DOE Ctr Genom & Proteom, Inst Mol Biol, Dept Chem & Biochem, 655 Boyer Hall,611 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM bowie@mbi.ucla.edu FU NIGMS NIH HHS [R01 GM63919, R01 GM063919] NR 18 TC 50 Z9 51 U1 2 U2 9 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD MAR PY 2005 VL 14 IS 3 BP 836 EP 840 DI 10.1110/ps.041167605 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 899AD UT WOS:000227116400029 PM 15689517 ER PT J AU Roberts, A Lee, SY McCullagh, E Silversmith, RE Wemmer, DE AF Roberts, A Lee, SY McCullagh, E Silversmith, RE Wemmer, DE TI YbiV from Escherichia coli K12 is a HAD phosphatase SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE phosphatase; YbiV; phosphoaspartate intermediate; HAD superfamily ID CRYSTAL-STRUCTURE; COLI K-12; PHOSPHOSERINE PHOSPHATASE; ANGSTROM RESOLUTION; MOLECULAR-CLONING; DATABASE SEARCH; GENOME SEQUENCE; GENE; PATHWAY; TRANSCRIPTION AB The protein YbiV from Escherichia coli K12 MG1655 is a hypothetical protein with sequence homology to the haloacid dehalogenase (HAD) superfamily of proteins. Although numerous members of this family have been identified, the functions of few are known. Using the crystal structure, sequence analysis, and biochemical assays, we have characterized YbiV as a HAD phosphatase. The crystal structure of YbiV reveals a two-domain protein, one with the characteristic HAD hydrolase fold, the other an inserted alpha/beta fold. In an effort to understand the mechanism, we also solved and report the structures of YbiV in complex with beryllofluoride (BeF3-) and aluminum trifluoride (AlF3), which have been shown to mimic the phosphorylated intermediate and transition state for hydrolysis, respectively, in analogy to other HAD phosphatases. Analysis of the structures reveals the substrate-binding cavity, which is hydrophilic in nature. Both structure and sequence homology indicate YbiV may be a sugar phosphatase, which is supported by biochemical assays that measured the release of free phosphate on a number of sugar-like substrates. We also investigated available genomic and functional data in an effort to determine the physiological substrate. (C) 2005 Wiley-Liss, Inc. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA USA. Univ Calif Berkeley, Grad Grp Biophys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cellular Biol, Berkeley, CA 94720 USA. Univ N Carolina, Dept Microbiol & Immunol, Chapel Hill, NC USA. RP Wemmer, DE (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM DEwemmer@lbl.gov FU NIGMS NIH HHS [GM 62163, GM050860] NR 50 TC 21 Z9 25 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 EI 1097-0134 J9 PROTEINS JI Proteins PD MAR 1 PY 2005 VL 58 IS 4 BP 790 EP 801 DI 10.1002/prot.20267 PG 12 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 898WE UT WOS:000227106100003 PM 15657928 ER PT J AU Han, GW Schwarzenbacher, R Page, R Jaroszewski, L Abdubek, P Ambing, E Biorac, T Canaves, JM Chiu, HJ Dai, XP Deacon, DM DiDonato, M Elsliger, MA Godzik, A Grittini, C Grzechnik, SK Hale, J Hampton, E Haugen, J Hornsby, M Klock, HE Koesema, E Kreusch, A Kuhn, P Lesley, SA Levin, I McMullan, D McPhillips, YM Miller, MD Morse, A Moy, K Nigoghossian, E Ouyang, J Paulsen, J Quijano, K Reyes, R Sims, E Spraggon, G Stevens, RC van den Bedem, H Velasquez, J Vincent, J von Delft, F Wang, XH West, B White, A Wolf, G Xu, QP Zagnitko, O Hodgson, KO Wooley, J Wilson, IA AF Han, GW Schwarzenbacher, R Page, R Jaroszewski, L Abdubek, P Ambing, E Biorac, T Canaves, JM Chiu, HJ Dai, XP Deacon, DM DiDonato, M Elsliger, MA Godzik, A Grittini, C Grzechnik, SK Hale, J Hampton, E Haugen, J Hornsby, M Klock, HE Koesema, E Kreusch, A Kuhn, P Lesley, SA Levin, I McMullan, D McPhillips, YM Miller, MD Morse, A Moy, K Nigoghossian, E Ouyang, J Paulsen, J Quijano, K Reyes, R Sims, E Spraggon, G Stevens, RC van den Bedem, H Velasquez, J Vincent, J von Delft, F Wang, XH West, B White, A Wolf, G Xu, QP Zagnitko, O Hodgson, KO Wooley, J Wilson, IA TI Crystal structure of an alanine-glyoxylate aminotransferase from Anabaena sp at 1.70 A resolution reveals a noncovalently linked PLP cofactor SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID PRIMARY HYPEROXALURIA TYPE-1; ELECTRON-DENSITY MAPS; GEOMETRY C1 Scripps Res Inst, Joint Ctr Struct Genom, La Jolla, CA 92037 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. San Diego Supercomp Ctr, La Jolla, CA USA. Novartis Res Fdn, Genom Inst, San Diego, CA USA. Univ Calif San Diego, San Diego, CA 92103 USA. RP Wilson, IA (reprint author), Scripps Res Inst, Joint Ctr Struct Genom, BCC206,10550 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM wilson@scripps.edu RI Godzik, Adam/A-7279-2009; Stevens, Raymond/K-7272-2015 OI Godzik, Adam/0000-0002-2425-852X; Stevens, Raymond/0000-0002-4522-8725 FU NIGMS NIH HHS [P50 GM62411] NR 18 TC 10 Z9 10 U1 0 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 EI 1097-0134 J9 PROTEINS JI Proteins PD MAR 1 PY 2005 VL 58 IS 4 BP 971 EP 975 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 898WE UT WOS:000227106100020 PM 15657930 ER PT J AU Xu, QP Schwarzenbacher, R McMullan, D Abdubek, P Ambing, E Bioac, T Canaves, JM Chiu, HJ Dai, XP Deacon, DM DiDonato, M Elsliger, MA Godzik, A Grittini, C Grzechnik, SK Hampton, E Hornsby, M Jaroszewski, L Klock, HE Koesema, E Kreusch, A Kuhn, P Lesley, SA Levin, I Miller, MD Morse, A Moy, K Ouyang, J Page, R Quijano, K Reyes, R Robb, A Sims, E Spraggon, G Stevens, RC van den Bedem, H Velasquez, J Vincent, J von Delft, F Wang, XH West, B White, A Wolf, G Zagnitko, O Hodgson, KO Wooley, J Wilson, IA AF Xu, QP Schwarzenbacher, R McMullan, D Abdubek, P Ambing, E Bioac, T Canaves, JM Chiu, HJ Dai, XP Deacon, DM DiDonato, M Elsliger, MA Godzik, A Grittini, C Grzechnik, SK Hampton, E Hornsby, M Jaroszewski, L Klock, HE Koesema, E Kreusch, A Kuhn, P Lesley, SA Levin, I Miller, MD Morse, A Moy, K Ouyang, J Page, R Quijano, K Reyes, R Robb, A Sims, E Spraggon, G Stevens, RC van den Bedem, H Velasquez, J Vincent, J von Delft, F Wang, XH West, B White, A Wolf, G Zagnitko, O Hodgson, KO Wooley, J Wilson, IA TI Crystal structure of a formiminotetrahydrofolate cyclodeaminase (TM1560) from Thermotoga maritima at 2.80 A resolution reveals a new fold SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID FORMIMINOTRANSFERASE-CYCLODEAMINASE; GEOMETRY; PROGRAM; ENZYME C1 Scripps Res Inst, Joint Ctr Struct Genom, La Jolla, CA 92037 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. San Diego Supercomp Ctr, La Jolla, CA USA. Novartis Res Fdn, Genom Inst, San Diego, CA USA. Univ Calif San Diego, San Diego, CA 92103 USA. RP Wilson, IA (reprint author), Scripps Res Inst, Joint Ctr Struct Genom, BCC206,10550 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM wilson@scripps.edu RI Godzik, Adam/A-7279-2009; Stevens, Raymond/K-7272-2015; OI Godzik, Adam/0000-0002-2425-852X; Stevens, Raymond/0000-0002-4522-8725; van den Bedem, Henry/0000-0003-2358-841X FU NIGMS NIH HHS [P50 GM62411] NR 17 TC 1 Z9 1 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 EI 1097-0134 J9 PROTEINS JI Proteins PD MAR 1 PY 2005 VL 58 IS 4 BP 976 EP 981 DI 10.1002/prot.20364 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 898WE UT WOS:000227106100021 PM 15651027 ER PT J AU Hodell, DA Brenner, M Curtis, JH Medina-Gonzalez, R Can, EIC Albornaz-Pat, A Guilderson, TP AF Hodell, DA Brenner, M Curtis, JH Medina-Gonzalez, R Can, EIC Albornaz-Pat, A Guilderson, TP TI Climate change on the Yucatan Peninsula during the little ice age SO QUATERNARY RESEARCH LA English DT Article DE climate change; little ice age; isotope ID MAYA LOWLANDS; INTERANNUAL VARIABILITY; ENVIRONMENTAL-CHANGE; CARIBBEAN RAINFALL; CHICXULUB CRATER; ATLANTIC-OCEAN; WARM PERIOD; MEXICO; HOLOCENE; CIRCULATION AB We studied a 5.1-m sediment core from Aguada X'caamal (20 degrees 36.6'N, 89 degrees 42.9'W), a small sinkhole lake in northwest Yucatan, Mexico. Between 1400 and 1500 A.D., oxygen isotope ratios of ostracod and gastropod carbonate increased by an average of 2.2 parts per thousand and the benthic foraminifer Ammonia beccarii parkinsoniana appeared in the sediment profile, indicating a hydrologic change that included increased lake water salinity. Pollen from a core in nearby Cenote San Jose Chulchaca showed a decrease in mesic forest taxa during the same period. Oxygen isotopes of shell carbonate in sediment cores from Lakes Chichancanab (19 degrees 53.0'N, 88 degrees 46.0'W) and Salpeten (16 degrees 58.6'N, 89 degrees 40.5'W) to the south also increased in the mid-15th century, but less so than in Aguada X'caamal. Climate change in the 15th century is also supported by historical accounts of cold and famine described in Maya and Aztec chronicles. We conclude that climate became drier on the Yucatan Peninsula in the 15th century A.D. near the onset of the Little Ice Age (LIA). Comparison of results from the Yucatan Peninsula with other circum-Caribbean paleoclimate records indicates a coherent climate response for this region at the beginning of the LIA. At that time, sea surface temperatures cooled and aridity in the circum-Caribbean region increased. (c) 2004 University of Washington. All rights reserved. C1 Univ Florida, Dept Geol Sci, Gainesville, FL 32611 USA. Univ Florida, Land Use & Environm Change Inst, Gainesville, FL 32611 USA. Univ Autonoma Yucatan, Dept Ecol, Merida, Venezuela. Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. RP Hodell, DA (reprint author), Univ Florida, Dept Geol Sci, Gainesville, FL 32611 USA. EM dhodell@geology.ufl.edu NR 63 TC 105 Z9 115 U1 0 U2 50 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0033-5894 J9 QUATERNARY RES JI Quat. Res. PD MAR PY 2005 VL 63 IS 2 BP 109 EP 121 DI 10.1016/j.yqres.2004.11.004 PG 13 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 905MZ UT WOS:000227574100001 ER PT J AU Miller, JH Zheng, F Jin, S Opresko, LK Wiley, HS Resat, H AF Miller, JH Zheng, F Jin, S Opresko, LK Wiley, HS Resat, H TI A model of cytokine shedding induced by low doses of gamma radiation SO RADIATION RESEARCH LA English DT Article ID INDUCED GENOMIC INSTABILITY; PROTEIN-KINASE PATHWAY; IONIZING-RADIATION; BYSTANDER RESPONSES; ACTIVATION; RECEPTOR; ALPHA; PROLIFERATION; SENSITIVITY; EXPOSURE AB A model for sustained shedding of epidermal growth factor (EGF) in response to low doses of gamma radiation was developed based on a time delay in the feedback from mitogen-activated protein kinase (MAPK) activation to metalloprotease activity in an autocrine signaling process. We determined the kinetic parameters of our model using the data available for MAPK activation by gamma irradiation in the 1-2-Gy dose range and then showed that predictions of the model were consistent with experimental results for the kinetics of EGF shedding into the growth medium after exposure of human mammary epithelial cells to 1-5 cGy of gamma radiation in the presence of antibodies that block ligand binding to EGF receptors. The model allowed us to estimate the rate of radiation-induced cytokine release per cell from measurements of EGF concentration in the growth medium and to assess the effectiveness of EGF shedding and subsequent diffusion through the medium as a mechanism for signal transmission between hit cells and bystanders. (C) 2005 by Radiation Research Society. C1 WSU TC, EECS, Richland, WA 99354 USA. Pacific NE Natl Lab, Richland, WA 99354 USA. RP Miller, JH (reprint author), WSU TC, EECS, 2710 Univ Dr, Richland, WA 99354 USA. EM jhmiller@tricity.wsu.edu OI Wiley, Steven/0000-0003-0232-6867 NR 20 TC 5 Z9 5 U1 0 U2 1 PU RADIATION RESEARCH SOC PI OAK BROOK PA 820 JORIE BOULEVARD, OAK BROOK, IL 60523 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD MAR PY 2005 VL 163 IS 3 BP 337 EP 342 DI 10.1667/RR3321 PG 6 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 900ZK UT WOS:000227252600012 PM 15733041 ER PT J AU Goldheim, D Slowinski, G Daniele, J Hummel, E Tao, J AF Goldheim, D Slowinski, G Daniele, J Hummel, E Tao, J TI Extracting value from intellectual assets SO RESEARCH-TECHNOLOGY MANAGEMENT LA English DT Article DE intellectual asset management; strategy; technology valuation AB Intellectual assets are fundamental to the operation of technology-intensive firms. Companies skilled at managing intellectual property as a business strategy protect the core of the business while licensing IP to generate a return on investment. Developing a reasonable and defensible valuation model is key to the success of any intellectual asset management program. A previous article described how leading firms strategically organize their intellectual asset portfolios (RTM, Jan.-Feb. 2005). This article describes the valuation of IP, specific methods for extracting value from the IP portfolio, organizing,for out-licensing technology, and the career opportunities for licensing professionals. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Rutgers State Univ, Sch Business, Newark, NJ 07102 USA. Alliance Management Grp Inc, Gladstone, NJ USA. Acord Technol, R&D & Intellectual Property Commercializat Firm, La Jolla, CA USA. Bell Labs, Lucent Technol, Business Dev, Murray Hill, NJ 07974 USA. Air Prod & Chem Inc, Technol Partnerships, Allentown, PA USA. RP Goldheim, D (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM dlgoldh@sandia.gov; gene@strategicalliance.com; daniele@acorntech.com; ehummel@lucent.com; taojc@apci.com NR 2 TC 5 Z9 5 U1 1 U2 11 PU INDUSTRIAL RESEARCH INSTITUTE, INC PI ARLINGTON PA 2200 CLARENDON BLVD, STE 1102, ARLINGTON, VA 22201 USA SN 0895-6308 J9 RES TECHNOL MANAGE JI Res.-Technol. Manage. PD MAR-APR PY 2005 VL 48 IS 2 BP 43 EP 48 PG 6 WC Business; Engineering, Industrial; Management SC Business & Economics; Engineering GA 005GT UT WOS:000234811300009 ER PT J AU Das, S AF Das, S TI Life cycle energy impacts of automotive liftgate inner SO RESOURCES CONSERVATION AND RECYCLING LA English DT Article DE life cycle; lightweight vehicle; temporal energy analysis; material substitution; aluminum; steel AB This paper compares the life cycle energy use of a cast-aluminum, rear liftgate inner and a conventional. stamped steel liftgate inner used in a minivan. Using the best available aggregate life cycle inventory data and a simple spreadsheet-level analysis, energy comparisons were made at both the single-vehicle and vehicle-fleet levels. Since the product manufacture and use are distributed over long periods of time that, in a fleet, are not simple linear combinations of single product life cycles. Thus, it is all the products in use over a period of time, rather than a single product, that are more appropriate for the life cycle analysis. Using a set of consistent data, analyses also examine sensitivity to the level of analysis and the assumptions to determine the most favorable materials with respect to life cycle energy benefits. As expected, life cycle energy impacts of aluminum are lower than steel at a single-vehicle level energy savings are determined to be 1.8 GJ/vehicle. Most energy savings occur at the vehicle operation phase due to improved fuel economy from lightweighting. The energy benefits are realized only very close to the average vehicle life of 14 years. With the incremental growth of the vehicle fleet, it takes longer-about 21 years-for aluminum to achieve life cycle equivalence with steel. The number of years aluminum needs to achieve equivalence with steel was found to be quite sensitive to aluminum manufacturing energy and fuel economy. As the steel industry races to compete with other materials for automotive lightweighting, a systems approach, instead of part-to-part comparison, is more appropriate in the determination of viability of aluminum substitution from an energy perspective. Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Natl Transportat Res Ctr, Engn Sci & Technol Div, Knoxville, TN 37932 USA. RP Das, S (reprint author), Oak Ridge Natl Lab, Natl Transportat Res Ctr, Engn Sci & Technol Div, 2360 Cherahala Blvd,Room 1-05, Knoxville, TN 37932 USA. EM dass@ornl.gov NR 22 TC 13 Z9 13 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-3449 J9 RESOUR CONSERV RECY JI Resour. Conserv. Recycl. PD MAR PY 2005 VL 43 IS 4 BP 375 EP 390 DI 10.1016/j.resconrec.2004.07.003 PG 16 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 900ZM UT WOS:000227252800004 ER PT J AU Thom, RM Williams, GW Diefenderfer, HL AF Thom, RM Williams, GW Diefenderfer, HL TI Balancing the need to develop coastal areas with the desire for an ecologically functioning coastal environment: Is net ecosystem improvement possible? SO RESTORATION ECOLOGY LA English DT Article; Proceedings Paper CT Symposium on Sustainability Science and Estuarine Habitat Restoration held at the Biennial Estuarine Research Federation Conference CY SEP 14-18, 2003 CL Washington, DC SP Soc Ecol Restorat, Int Estuarine Res Federat DE docks; eelgrass; nearshore; net ecosystem improvement; restoration; sustainability ID RESTORATION PROJECTS; ADAPTIVE MANAGEMENT AB The global human population is growing exponentially, close to a majority lives and works near the coast, and coastal commerce and development are critical to the economies of many nations. Hence, coastal areas will continue to be a major focus of development and economic activity. People desire the economic advantages provided by coastal development along with the fisheries and social commodities supported by estuarine and coastal ecosystems. Because of these facts, we view the challenge of balancing coastal development with enhancing nearshore marine and estuarine ecosystems (i.e., net ecosystem improvement) as the top priority for coastal researchers in this century. Our restoration research in Pacific Northwest estuaries and participation in nearshore project design and impact mitigation has largely dealt with these competing goals. To this end, we have applied conceptual models, comprehensive assessment methods, and principles of restoration ecology, conservation biology, and adaptive management to incorporate science into decisions about uses of estuarine systems. Case studies of Bainbridge Island and the Columbia River demonstrate the use of objective, defensible methods to prioritize tidally influenced shorelines and habitats (i.e., riparian forests, marshes, unvegetated flats, rocky shores, seagrass meadows, kelp forests) for preservation, conservation, and restoration. Case studies of Clinton, Washington, and Port Townsend, Washington, demonstrate the incorporation of an ecological perspective and technological solutions into design of overwater structures to minimize impacts on nearshore ecosystems. Adaptive management has allowed coastal development and restoration uncertainties to be better evaluated, with the information used to improve management decisions. Although unproven on a large scale, we think these kinds of methods can contribute to the net improvement of already degraded ecosystems. The ingredients include applied science to understand the issues, education, incentives, empirical data, cumulative impact analysis, and an effective adaptive management program. Because the option of net ecosystem improvement is often more costly than alternatives such as no net loss, commitment by the local or regional community to this approach is essential. C1 Battelle Marine Sci Lab, Sequim, WA 98382 USA. RP Thom, RM (reprint author), Battelle Marine Sci Lab, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA. EM ron.thom@pnl.gov NR 33 TC 15 Z9 19 U1 2 U2 37 PU BLACKWELL PUBLISHING INC PI MALDEN PA 350 MAIN ST, MALDEN, MA 02148 USA SN 1061-2971 J9 RESTOR ECOL JI Restor. Ecol. PD MAR PY 2005 VL 13 IS 1 BP 193 EP 203 DI 10.1111/j.1526-100X.2005.00024.x PG 11 WC Ecology SC Environmental Sciences & Ecology GA 902YL UT WOS:000227392500024 ER PT J AU Wang, ZH Beinke, PD Barnes, CW Martin, MW Mignardot, E Wurden, GA Hsu, SC Intrator, TP Munson, CP AF Wang, ZH Beinke, PD Barnes, CW Martin, MW Mignardot, E Wurden, GA Hsu, SC Intrator, TP Munson, CP TI A Penning-assisted subkilovolt coaxial plasma source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB A Penning-assisted 20 MW coaxial plasma source (plasma gun), which can achieve breakdown at sub-kV voltages, is described. The minimum breakdown voltage is about 400 V, significantly lower than previously reported values of 1-5 kV. The Penning region for electrons is created using a permanent magnet assembly, which is mounted to the inside of the cathode of the coaxial plasma source. A theoretical model for the breakdown is given. A 900 V 0.5 F capacitor bank supplies energy for gas breakdown and plasma sustainment from 4 to 6 ms duration. Typical peak gun current is about 100 kA and gun voltage between anode and cathode after breakdown is about 200 V. A circuit model is used to understand the current-voltage characteristics of the coaxial gun plasma. Energy deposited into the plasma accounts for about 60% of the total capacitor bank energy. This plasma source is uniquely suitable for studying multi-MW multi-ms plasmas with sub-MJ capacitor bank energy. (C) 2005 American Institute of Physics. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, ZH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM zwang@lanl.gov RI Wurden, Glen/A-1921-2017 OI Wurden, Glen/0000-0003-2991-1484 NR 17 TC 12 Z9 12 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2005 VL 76 IS 3 AR 033501 DI 10.1063/1.1855071 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 904WV UT WOS:000227530200015 ER PT J AU Joy, DC AF Joy, DC TI Modeling electron transport - time of flight BSE spectroscopy SO SCANNING LA English DT Article; Proceedings Paper CT 16th Annual Scanning Conference CY APR 05-07, 2005 CL Monterey, CA SP Fdn Advances Med & Sci C1 Univ Tennessee, Knoxville, TN USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Joy, DC (reprint author), Univ Tennessee, Knoxville, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU FAMS INC PI MAHWAH PA BOX 832, MAHWAH, NJ 07430-0832 USA SN 0161-0457 J9 SCANNING JI Scanning PD MAR-APR PY 2005 VL 27 IS 2 BP 83 EP 83 PG 1 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 909GQ UT WOS:000227848800037 ER PT J AU Iwanczyk, JS Barkan, S Saveliev, VD Tull, CR Feng, L Patt, BE Newbury, DE Small, JA Zaluzec, NJ AF Iwanczyk, JS Barkan, S Saveliev, VD Tull, CR Feng, L Patt, BE Newbury, DE Small, JA Zaluzec, NJ TI Silicon multi-cathode detector (SMCD) developments for microanalysis and high-speed elemental mapping SO SCANNING LA English DT Article; Proceedings Paper CT 16th Annual Scanning Conference CY APR 05-07, 2005 CL Monterey, CA SP Fdn Advances Med & Sci C1 Radiant Detector Technol, Northridge, CA USA. Natl Inst Stand & Technol, Gaithersburg, MD USA. Argonne Natl Lab, Electron Microscopy Ctr, Argonne, IL 60439 USA. RP Iwanczyk, JS (reprint author), Radiant Detector Technol, Northridge, CA USA. NR 0 TC 0 Z9 0 U1 2 U2 3 PU FAMS INC PI MAHWAH PA BOX 832, MAHWAH, NJ 07430-0832 USA SN 0161-0457 J9 SCANNING JI Scanning PD MAR-APR PY 2005 VL 27 IS 2 BP 94 EP 94 PG 1 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 909GQ UT WOS:000227848800054 ER PT J AU Kotula, PG Keenan, MR AF Kotula, PG Keenan, MR TI Fast, comprehensive and unbiased multivariate statistical analysis of x-ray spectral images from the scanning electron microscopy and scanning transmission electron microscope SO SCANNING LA English DT Article; Proceedings Paper CT 16th Annual Scanning Conference CY APR 05-07, 2005 CL Monterey, CA SP Fdn Advances Med & Sci C1 Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA. NR 5 TC 0 Z9 0 U1 0 U2 1 PU FAMS INC PI MAHWAH PA BOX 832, MAHWAH, NJ 07430-0832 USA SN 0161-0457 J9 SCANNING JI Scanning PD MAR-APR PY 2005 VL 27 IS 2 BP 95 EP 96 PG 2 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 909GQ UT WOS:000227848800056 ER PT J AU Plomp, M Leighton, TJ Wheeler, KE Malkin, AJ AF Plomp, M Leighton, TJ Wheeler, KE Malkin, AJ TI Bacillus spore coat ultrastructure, assembly and environmental dynamics SO SCANNING LA English DT Article; Proceedings Paper CT 16th Annual Scanning Conference CY APR 05-07, 2005 CL Monterey, CA SP Fdn Advances Med & Sci C1 Lawrence Livermore Natl Lab, Biosecur & Nanosci Lab, Livermore, CA USA. Childrens Hosp Oakland, Res Inst, Oakland, CA 94609 USA. RP Plomp, M (reprint author), Lawrence Livermore Natl Lab, Biosecur & Nanosci Lab, Livermore, CA USA. NR 1 TC 0 Z9 0 U1 0 U2 1 PU FAMS INC PI MAHWAH PA BOX 832, MAHWAH, NJ 07430-0832 USA SN 0161-0457 J9 SCANNING JI Scanning PD MAR-APR PY 2005 VL 27 IS 2 BP 97 EP 98 PG 2 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 909GQ UT WOS:000227848800058 ER PT J AU Cheung, CL Chung, SW De Yoreo, JJ Chatterji, A Lin, T Johnson, JE AF Cheung, CL Chung, SW De Yoreo, JJ Chatterji, A Lin, T Johnson, JE TI Atomic force microscopy investigation of virus aggregation and assembly at chemical templates formed by scanned probe nanolithography SO SCANNING LA English DT Article; Proceedings Paper CT 16th Annual Scanning Conference CY APR 05-07, 2005 CL Monterey, CA SP Fdn Advances Med & Sci C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA USA. Scripps Res Inst, Dept Mol Biol, La Jolla, CA USA. RP Cheung, CL (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA USA. RI Cheung, Chin Li/B-8270-2013 NR 0 TC 0 Z9 0 U1 0 U2 0 PU FAMS INC PI MAHWAH PA BOX 832, MAHWAH, NJ 07430-0832 USA SN 0161-0457 J9 SCANNING JI Scanning PD MAR-APR PY 2005 VL 27 IS 2 BP 99 EP 100 PG 2 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 909GQ UT WOS:000227848800060 ER PT J AU Xu, XW Tapponnier, P Van Der Woerd, J Ryerson, FJ Wang, F Zheng, RZ Chen, WB Ma, WT Yu, GH Chen, GH Meriaux, AS AF Xu, XW Tapponnier, P Van Der Woerd, J Ryerson, FJ Wang, F Zheng, RZ Chen, WB Ma, WT Yu, GH Chen, GH Meriaux, AS TI Late quaternary sinistral slip rate along the Altyn Tagh Fault and its structural transformation model SO SCIENCE IN CHINA SERIES D-EARTH SCIENCES LA English DT Article DE Altyn Tagh Fault; sinistral strike-slip rate; structural transformation; extrusion tectonics ID CHINA; TIBET; TECTONICS; GANSU; SHAN; MANTLE; ASIA AB Based on technical processing of high-resolution SPOT images and aerophotos, detailed mapping of offset landforms in combination with field examination and displacement measurement, and dating of offset geomorphic surfaces by using carbon fourteen (C-14), cosmogenic nuclides (Be-10+Al-26) and thermoluminescence (TL) methods, the Holocene sinistral slip rates on different segments of the Altyn Tagh Fault (ATF) are obtained. The slip rates reach 17.5 +/- 2 mm/a on the central and western segments west of Aksay Town, 11 +/- 3.5 mm/a on the Subei-Shibaocheng segment, 4.8 +/- 1.0 mm/a on the Sulehe segment and only 2.2 +/- 0.2 mm/a on the Kuantanshan segment, an easternmost segment of the ATF The sudden change points for loss of sinistral slip rates are located at the Subei, Shibaocheng and Shulehe triple junctions where NW-trending active thrust faults splay from the ATF and propagate southeastward. Slip vector analyses indicate that the loss of the sinistral slip rates from west to east across a triple junction has structurally transformed into local crustal shortening perpendicular to the active thrust faults and strong uplifting of the thrust sheets to form the NW-trending Danghe Nanshan, Daxueshan and Qilianshan Ranges. Therefore, the eastward extrusion of the northern Qinghai-Tibetan Plateau is limited and this is in accord with "the imbricated thrusting transformation-limited extrusion model". C1 China Earthquake Adm, Inst Geol, Beijing 100029, Peoples R China. Inst Phys Globe, Lab Tecton, Paris, France. Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94550 USA. RP Xu, XW (reprint author), China Earthquake Adm, Inst Geol, Beijing 100029, Peoples R China. EM xxiwei@public3.bta.net.cn RI Meriaux, Anne-Sophie/G-1754-2010; Tapponnier, .Paul/B-7033-2011 OI Tapponnier, .Paul/0000-0002-7135-1962 NR 27 TC 37 Z9 45 U1 1 U2 7 PU SCIENCE CHINA PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1006-9313 J9 SCI CHINA SER D JI Sci. China Ser. D-Earth Sci. PD MAR PY 2005 VL 48 IS 3 BP 384 EP 397 DI 10.1360/02yd0436 PG 14 WC Geosciences, Multidisciplinary SC Geology GA 921MC UT WOS:000228767700010 ER PT J AU Brady, MP Armstrong, BL Lin, HT Lance, MJ More, KL Walker, LR Huang, F Weaver, ML AF Brady, MP Armstrong, BL Lin, HT Lance, MJ More, KL Walker, LR Huang, F Weaver, ML TI Feasibility assessment of self-grading metallic EBCs/TBCs to protect Si-Based bond coat alloys for ceramics SO SCRIPTA MATERIALIA LA English DT Article DE silicon nitride; oxidation; coating; surface alloying; environmental barrier coatings (EBC); thermal barrier coatings (TBC) ID ENVIRONMENTAL BARRIER COATINGS; WATER-VAPOR; OXIDATION AB A sputtered 7 (TiAl) + Laves TiAlCr coating formed an adherent Al2O3 scale on SN 282 Si3N4 when oxidized. A Ti-N rich layer was formed at the TiAlCr-Si3N4 interface, which effectively resulted in beneficial local Al enrichment underneath the growing Al2O3 scale, rather than detrimental Al loss to the substrate. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. Univ Alabama, Tuscaloosa, AL 35487 USA. RP Brady, MP (reprint author), Oak Ridge Natl Lab, Div Met & Ceram, MS 6115, Oak Ridge, TN 37831 USA. EM bradymp@ornl.gov RI Brady, Michael/A-8122-2008; More, Karren/A-8097-2016; Lance, Michael/I-8417-2016; Armstrong, Beth/E-6752-2017 OI Brady, Michael/0000-0003-1338-4747; More, Karren/0000-0001-5223-9097; Lance, Michael/0000-0001-5167-5452; Armstrong, Beth/0000-0001-7149-3576 NR 19 TC 5 Z9 6 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAR PY 2005 VL 52 IS 5 BP 393 EP 397 DI 10.1016/j.scriptamat.2004.10.024 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 887XM UT WOS:000226338800010 ER PT J AU Sharif, AA Misra, A Mitchell, TE AF Sharif, AA Misra, A Mitchell, TE TI Strength of MoSi2-based crystals at ultra-high temperature SO SCRIPTA MATERIALIA LA English DT Article DE single crystal growth; compression test; transition metal silicides; high temperature deformation ID MOSI2 SINGLE-CRYSTALS; DEFORMATION MECHANISMS; PLASTIC-DEFORMATION AB The ultra-high temperature compressive strengths of [001] oriented MoSi2 single crystals are significantly higher than other orientations even at homologous temperatures approaching 0.95. A factor of two increase in the yield strength for [0 0 1] orientation was observed with only 1 at.% of substitutional alloying with Nb. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Calif State Univ Los Angeles, Dept Mech Engn, Los Angeles, CA 90032 USA. Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Sharif, AA (reprint author), Calif State Univ Los Angeles, Dept Mech Engn, 5151 State Univ Dr, Los Angeles, CA 90032 USA. EM aasharif@calstatela.edu RI Misra, Amit/H-1087-2012 NR 15 TC 14 Z9 14 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAR PY 2005 VL 52 IS 5 BP 399 EP 402 DI 10.1016/j.scriptamat.2004.10.027 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 887XM UT WOS:000226338800011 ER PT J AU Jaramillo, RA Babu, SS Ludtka, GM Kisner, RA Wilgen, JB Mackiewicz-Ludtka, G Nicholson, DM Kelly, SM Muruaananth, M Bhadeshia, HKDH AF Jaramillo, RA Babu, SS Ludtka, GM Kisner, RA Wilgen, JB Mackiewicz-Ludtka, G Nicholson, DM Kelly, SM Muruaananth, M Bhadeshia, HKDH TI Effect of 30 T magnetic field on transfomations in a novel bainitic steel SO SCRIPTA MATERIALIA LA English DT Article DE steel; transformations; magnetic field; pearlite; martensite; bainite; continuous cooling ID LOW-TEMPERATURE BAINITE; TRANSFORMATION AB The continuous cooling transformation characteristics of novel bainitic steels have been studied. both under ordinary conditions and whilst subjected to a 30 T magnetic field. The magnetic field has been found to completely change the microstructure obtained, from a mixture of bainite and martensite to one containing an incredibly fine pearlite with an interlamellar spacing of about 50 nm. As a consequence, the pearlite is found to be much harder than any other examples found in the published literature. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Joint Inst Computat Sci, Oak Ridge, TN 37831 USA. Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA. Nanyang Technol Univ, Sch Mat Engn, Singapore 639798, Singapore. Univ Cambridge, Cambridge CB2 3QZ, England. RP Oak Ridge Natl Lab, Div Met & Ceram, POB 2008,MS6064, Oak Ridge, TN 37831 USA. EM jaramillora@ornl.gov RI Babu, Sudarsanam/D-1694-2010 OI Babu, Sudarsanam/0000-0002-3531-2579 NR 12 TC 35 Z9 42 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAR PY 2005 VL 52 IS 6 BP 461 EP 466 DI 10.1016/j.scriptamat.2004.11.015 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 891EJ UT WOS:000226563800006 ER PT J AU Cui, XL Liu, GD Li, LY Yantasee, W Lin, YH AF Cui, XL Liu, GD Li, LY Yantasee, W Lin, YH TI Electrochemical sensor based on carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides for detection of heavy metals SO SENSOR LETTERS LA English DT Article DE adsorptive stripping voltammetry; chemically modified electrode; nanostructured; cryptomelane-type manganese oxides; carbon paste electrode; heavy metals ID ANODIC-STRIPPING VOLTAMMETRY; SELF-ASSEMBLED MONOLAYER; MESOPOROUS SILICA SAMMS; FILM ELECTRODE; LEAD; CADMIUM; MERCURY; COPPER AB A carbon paste electrode modified with nanostructured cryptomelane-type (potassium) manganese oxides was evaluated as new electrochemical sensor for the detection of heavy metal ions in aqueous media. The cryptomelane-type manganese oxides are nanofibrous crystals with sub-nanometer tunnels which provide excellent sites for ion-exchanges. The adsorptive stripping voltammetry (ASV) technique involves preconcentration of the metal ions into nanostructured cryptomelane-type manganese oxides under an open circuit, then electrolysis of the preconcentrated species, followed by a square-wave potential sweep towards positive values. Factors affecting the preconcentration process were investigated using lead ion as the model analyte. The voltammetric responses increased with the preconcentration time from 2 to 30 min, and also linearly with lead ion concentrations ranging from 50 to 1200 ppb. The detection limits of target metal ion were 10 ppb after 4 min preconcentration and improved to 1 ppb after 20 min preconcentration. The potential for simultaneous detection of lead, silver, and copper is also discussed. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. RP Lin, YH (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 NR 27 TC 6 Z9 6 U1 1 U2 7 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1546-198X J9 SENS LETT JI Sens. Lett. PD MAR PY 2005 VL 3 IS 1 BP 16 EP 21 DI 10.1166/sl.2005.004 PG 6 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation; Physics, Applied SC Chemistry; Electrochemistry; Instruments & Instrumentation; Physics GA 004QA UT WOS:000234766100002 ER PT J AU Bochev, P Lehoucq, RB AF Bochev, P Lehoucq, RB TI On the finite element solution of the pure Neumann problem SO SIAM REVIEW LA English DT Article DE finite elements; Neumann problem; Rayleigh-Ritz minimization; regularization; quadratic programming AB This paper considers the finite element approximation and algebraic solution of the pure Neumann problem. Our goal is to present a concise variational framework for the finite element solution of the Neumann problem that focuses on the interplay between the algebraic and variational problems. While many of the results that stem from our analysis are known by some experts, they are seldom derived in a rigorous fashion and remain part of numerical folklore. As a result, this knowledge is not accessible (or appreciated) by many practitioners-both novices and experts-in one source. Our paper contributes a simple, yet insightful link between the continuous and algebraic variational forms that will prove useful. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bochev, P (reprint author), Sandia Natl Labs, POB 5800,MS 1110, Albuquerque, NM 87185 USA. EM pbboche@sandia.gov; rblehou@sandia.gov NR 22 TC 72 Z9 72 U1 0 U2 4 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0036-1445 J9 SIAM REV JI SIAM Rev. PD MAR PY 2005 VL 47 IS 1 BP 50 EP 66 DI 10.1137/S0036144503426074 PG 17 WC Mathematics, Applied SC Mathematics GA 899BF UT WOS:000227119200003 ER PT J AU Negra, C Ross, DS Lanzirotti, A AF Negra, C Ross, DS Lanzirotti, A TI Soil manganese oxides and trace metals: Competitive sorption and microfocused synchrotron X-ray fluorescence mapping SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID FE-MN NODULES; CHROMIUM(III) OXIDATION; FERROMANGANESE NODULES; SYNTHETIC BIRNESSITE; CAUSE REDUCTION; NEW-ZEALAND; IRON; ADSORPTION; MECHANISM; SURFACES AB Trace metal accumulation by Mn in synthetic oxides and soil nodules has been attributed to specific adsorption and oxidation at Mn oxide surfaces, yet little is known about trace metal interactions with Mn in bulk soil. We investigated competitive effects of trace metal pretreatment on Cr oxidation in well-aerated, high-Mn soils, as well as accumulation of added Pb, Co, and Cu by soil Mn using microfocused synchrotron x-ray fluorescence (mu SXRF). Short-term equilibrations of divalent Mn, Co, Pb, Cu, and Ni with soil samples weighed to contain equivalent amounts of (NH2OHHCl)-H-.-extractable Mn resulted in substantial interference in Cr oxidation, confirming metal interactions with Cr-oxidizing sites on Mn oxide surfaces. Interference by Cu and Pb was greatest in samples likely to be low in competing sorbents, that is, low-pH soils and smaller samples of higher Mn soils, respectively. Strongest interference in Cr oxidation resulted from Mn and Co addition, suggesting specific affinity for soil Mn oxide surfaces, and was greatest in high-pH, high-Mn-valence soils previously shown to have the greatest Cr oxidation capacity. Nickel showed the weakest effect. Micro-SXRF scans revealed substantial spatial correlation of soil Mn with added Co and Pb, but Pb microdistribution was equally correlated with soil Fe. Only modest overlap of soil Mn with added Cu was observed. Our data suggest that specific affinity of Pb, Cu, and Ni for soil Mn oxides was weaker than that of Mn and Co. Higher Mn oxide valence may enhance sorption and subsequent oxidation of these oxidizable metals. C1 Univ Vermont, Dept Plant & Soil Sci, Burlington, VT 05405 USA. Brookhaven Natl Lab, Univ Chicago CARS, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Negra, C (reprint author), Univ Vermont, Dept Plant & Soil Sci, Hills Bldg, Burlington, VT 05405 USA. EM christine.negra@uvm.edu RI Ross, Donald/A-4477-2008 OI Ross, Donald/0000-0002-5390-6602 NR 48 TC 23 Z9 24 U1 3 U2 20 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAR-APR PY 2005 VL 69 IS 2 BP 353 EP 361 PG 9 WC Soil Science SC Agriculture GA 908KZ UT WOS:000227787200008 ER PT J AU Allison, VJ Miller, RM AF Allison, VJ Miller, RM TI Soil grinding increases the relative abundance of eukaryotic phospholipid fatty acids SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID ARBUSCULAR MYCORRHIZAL FUNGI; MICROBIAL COMMUNITIES; BIOMASS; PROFILES; SHIFTS AB Pretreatment of soil samples, such as grinding and sample size, can potentially affect phospholipid fatty acid (PLFA) extraction efficiencies. The objective of this study was to determine how soil pretreatment affects PLFA analysis and interpretation. Two grinding (ground and control) and five soil sample sizes (0.125-5 g) in factorial combinations were applied to restored or remnant prairie soils. In the restored soil, the smaller soil aliquots were more likely to result in outlying values of community composition, suggesting small-scale heterogeneity in microbial community distribution. Grinding reduced this variability in community composition, with no outliers, even with the lowest size in ground soils. However, grinding increased the abundance of eukaryotic relative to prokaryotic PLFAs, and we hypothesize that grinding exposed root cells and the interior of fungal hyphae to extraction. We suggest that in soils with high root densities, soils should not be ground as grinding may obscure changes in the microbial community by exaggerating the eukaryotic signal from roots. However, in soils with low rooting densities, grinding will reduce heterogeneity and ensure that eukaryotic biomarkers are not underestimated. C1 Argonne Natl Lab, Div Environm Res, Argonne, IL 60439 USA. RP Allison, VJ (reprint author), Argonne Natl Lab, Div Environm Res, Bldg 203,E-133,9700 S Cass Ave, Argonne, IL 60439 USA. EM vallison@anl.gov NR 16 TC 7 Z9 7 U1 2 U2 6 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAR-APR PY 2005 VL 69 IS 2 BP 423 EP 426 PG 4 WC Soil Science SC Agriculture GA 908KZ UT WOS:000227787200016 ER PT J AU Ramdas, AK Haller, EE AF Ramdas, AK Haller, EE TI Isotopic effects in semiconductors SO SOLID STATE COMMUNICATIONS LA English DT Editorial Material C1 Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Haller, EE (reprint author), Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD MAR PY 2005 VL 133 IS 11 BP 691 EP 691 DI 10.1016/j.ssc.2004.12.022 PG 1 WC Physics, Condensed Matter SC Physics GA 913AB UT WOS:000228120800001 ER PT J AU Haller, EE AF Haller, EE TI Isotopically controlled semiconductors SO SOLID STATE COMMUNICATIONS LA English DT Article DE isotopes; semiconductors; diffusion; metal-insulator transition; nuclear spin; neutron transmutation doping; spectroscopies ID METAL-INSULATOR-TRANSITION; NATURAL GE CRYSTALS; THERMAL-CONDUCTIVITY; ISOTOPE HETEROSTRUCTURES; SELF-DIFFUSION; NEUTRON-TRANSMUTATION; LATTICE-CONSTANT; ENRICHED SILICON; OPTICAL PHONONS; SINGLE-CRYSTAL AB A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the cold war when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons, which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of solid state communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him. (c) 2005 Elsevier Ltd. All rights reserved. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Haller, EE (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. NR 77 TC 17 Z9 17 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD MAR PY 2005 VL 133 IS 11 BP 693 EP 707 DI 10.1016/j.ssc.2004.12.021 PG 15 WC Physics, Condensed Matter SC Physics GA 913AB UT WOS:000228120800002 ER PT J AU Ramdas, AK Rodriguez, S Tsoi, S Haller, EE AF Ramdas, AK Rodriguez, S Tsoi, S Haller, EE TI Electronic band gaps of semiconductors as influenced by their isotopic composition SO SOLID STATE COMMUNICATIONS LA English DT Article DE electron-phonon interactions; electronic band structure; light absorption and reflection; luminescence ID INDIRECT ENERGY-GAP; CYCLOTRON RESONANCE; ENRICHED SILICON; LATTICE-CONSTANT; GERMANIUM; GE; DEPENDENCE; ABSORPTION; CRYSTALS; DIAMOND AB The present paper focuses on the renormalization effects of the band gaps in the electronic band structure of the elemental semiconductors traced to zero-point vibrations. Electron-phonon interaction and volume changes (in combination with anharmonicity) are the underlying microscopic mechanisms, both dependent on M-1/2, M being the average isotopic mass. Thus isotopically controlled crystals offer an extraordinary opportunity to test the theoretical predictions with a variety of spectroscopic techniques. The paper discusses the theoretical predictions and their experimental verifications, exploiting derivative and photoluminescence spectroscopy. Illustrative examples on Si and Ge, drawn from the investigations of the authors, are presented. (c) 2005 Elsevier Ltd. All rights reserved. C1 Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ramdas, AK (reprint author), Purdue Univ, Dept Phys, 1396 Phys Bldg,525 Northwestern Ave, W Lafayette, IN 47907 USA. EM akr@physics.purdue.edu NR 43 TC 10 Z9 10 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD MAR PY 2005 VL 133 IS 11 BP 709 EP 714 DI 10.1016/j.ssc.2004.12.038 PG 6 WC Physics, Condensed Matter SC Physics GA 913AB UT WOS:000228120800003 ER PT J AU Bracht, HA Silvestri, HH Haller, EE AF Bracht, HA Silvestri, HH Haller, EE TI Advanced diffusion studies with isotopically controlled materials SO SOLID STATE COMMUNICATIONS LA English DT Article DE semiconductors; point defects; foreign atom diffusion; self-diffusion; SIMS; stable isotopes ID GAAS ISOTOPE HETEROSTRUCTURES; GALLIUM SELF-DIFFUSION; SIC SINGLE-CRYSTALS; ZINC DIFFUSION; SI/SIO2 INTERFACE; DOPANT DIFFUSION; POINT-DEFECTS; OUT-DIFFUSION; GERMANIUM; SILICON AB The use of enriched stable isotopes combined with modern epitaxial deposition and depth profiling techniques enables the preparation of material heterostructures, highly appropriate for self- and foreign-atom diffusion experiments. Over the past decade we have performed diffusion studies with isotopically enriched elemental and compound semiconductors. In the present paper, we highlight our recent results and demonstrate that the use of isotopically enriched materials ushered in a new era in the study of diffusion in solids, which yields greater insight into the properties of native defects and their roles in diffusion. Our approach of studying atomic diffusion is not limited to semiconductors and can be applied also to other material systems. Current areas of our research concern the diffusion in the silicon-germanium alloys and glassy materials such as silicon dioxide and ion conducting silicate glasses. (c) 2005 Elsevier Ltd. All rights reserved. C1 Univ Munster, Inst Mat Phys, D-48149 Munster, Germany. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Bracht, HA (reprint author), Univ Munster, Inst Mat Phys, Sonderforsch Bereich 458, D-48149 Munster, Germany. EM bracht@uni-muenster.de; eehaller@lbl.gov NR 45 TC 15 Z9 15 U1 3 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD MAR PY 2005 VL 133 IS 11 BP 727 EP 735 DI 10.1016/j.ssc.2004.12.024 PG 9 WC Physics, Condensed Matter SC Physics GA 913AB UT WOS:000228120800005 ER PT J AU Delmau, LH Bonnesen, PV Herlinger, AW Chiarizia, R AF Delmau, LH Bonnesen, PV Herlinger, AW Chiarizia, R TI Aggregation behaviour of solvent modifiers for the extraction of cesium from caustic media SO SOLVENT EXTRACTION AND ION EXCHANGE LA English DT Article DE osmometry; aggregation; calixarene crown ethers; fluorinated solvent modifiers ID SUBSTITUTED DIPHOSPHONIC ACIDS; NUCLEAR-MAGNETIC-RESONANCE; APPARENT HEAT-CAPACITIES; ALCOHOL SELF-ASSOCIATION; NEAR-INFRARED SPECTRA; TERT-BUTYL ALCOHOL; NON-POLAR SOLVENTS; CARBON-TETRACHLORIDE; ULTRASONIC ABSORPTION; METAL EXTRACTION AB Fluorinated alcohols are being used as diluent modifiers for the selective extraction of cesium from caustic media by calixarene-crown ethers. Previous work has established the equilibria taking place in solution during cesium extraction and the stoichiometry of the complexes formed in the organic phase, but the aggregation behaviour of the modifiers remains to be precisely understood. Therefore, vapour pressure osmometry experiments were carried out to gain further insight. The aggregation state of a variety of fluorinated and non-fluorinated alkylphenoxy alcohols and 1-decanol in n-heptane, was determined at 25 degrees C. These alcohols were found to form aggregates containing between three and five (most frequently four) molecules. Introduction of these independently investigated aggregation equilibria for the solvent modifiers in the data modeling improved the ability of our extraction model to correctly predict metal distribution ratios. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Loyola Univ, Dept Chem, Chicago, IL 60626 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Delmau, LH (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008,MS-6119-4500S, Oak Ridge, TN 37831 USA. EM delmaulh@ornl.gov RI Bonnesen, Peter/A-1889-2016 OI Bonnesen, Peter/0000-0002-1397-8281 NR 47 TC 3 Z9 3 U1 1 U2 6 PU MARCEL DEKKER INC PI NEW YORK PA 270 MADISON AVE, NEW YORK, NY 10016 USA SN 0736-6299 J9 SOLVENT EXTR ION EXC JI Solvent Extr. Ion Exch. PD MAR-APR PY 2005 VL 23 IS 2 BP 145 EP 169 DI 10.1081/SEI-20049901 PG 25 WC Chemistry, Multidisciplinary SC Chemistry GA 910GU UT WOS:000227919700001 ER PT J AU Warpinski, NR Sullivan, RB Uhl, JE Waltman, CK Machovoe, SR AF Warpinski, NR Sullivan, RB Uhl, JE Waltman, CK Machovoe, SR TI Improved microseismic fracture mapping using perforation timing measurements for velocity calibration SO SPE JOURNAL LA English DT Article; Proceedings Paper CT 2003 SPE Annual Technical Conference and Exhibition CY OCT 05-08, 2003 CL DENVER, CO SP Soc Petr Engineers ID FENTON-HILL; HYDRAULIC STIMULATION; TRAVEL-TIMES; NEW-MEXICO; SITE; MICROEARTHQUAKES AB A method is decribed wherein microseismic mapping of hydraulic fractures is improved by using crosswell data to calibrate and/or verify dipole-sonic-velocity data. In the perforation-timing procedure, crosswell-velocity data are obtained by monitoring the firing pulse from the receiver-orientation perforations and recording the timing pulse along with the arrival data. From these results, a simple ID model of velocities can be extracted and used to validate, refine, or correct the detailed dipole-sonic data or provide a warning of discrepancies. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Anadarko Petr Corp, The Woodlands, TX USA. Pinnacle Technol, Houston, TX USA. RP Warpinski, NR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM nrwarpi@sandia.gov; charlie.waltman@pinntech.com NR 30 TC 12 Z9 16 U1 0 U2 4 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1086-055X J9 SPE J JI SPE J. PD MAR PY 2005 VL 10 IS 1 BP 14 EP 23 PG 10 WC Engineering, Petroleum SC Engineering GA 913AY UT WOS:000228123500004 ER PT J AU Lee, HKH Higdon, DM Calder, CA Holloman, CH AF Lee, HKH Higdon, DM Calder, CA Holloman, CH TI Efficient models for correlated data via convolutions of intrinsic processes SO STATISTICAL MODELLING LA English DT Article DE conditional autoregression; inverse problem; moving average; nonstationarity; spatial correlation ID FIELD; SIMULATIONS; CALIBRATION AB Gaussian processes (GP) have proven to be useful and versatile stochastic models in a wide variety of applications including Computer experiments, environmental monitoring, hydrology and climate modeling. A GP model is determined by its mean and covariance functions. In most cases, the mean is specified to be a constant, or some other simple linear function, whereas the covariance function is governed by a few parameters. A Bayesian formulation is attractive as it allows for formal incorporation of uncertainty regarding the parameters governing the GP. However, estimation of these parameters can be problematic. Large datasets, posterior correlation and inverse problems can all lead to difficulties in exploring the posterior distribution. Here, we propose an alternative model which is quite tractable computationally - even with large datasets or indirectly observed data - while still maintaining the flexibility and adaptiveness of traditional GP models. This model is based on convolving simple Markov random fields with a smoothing kernel. We consider applications in hydrology and aircraft prototype testing. C1 Univ Calif Santa Cruz, Sch Engn, Santa Cruz, CA 95064 USA. Los Alamos Natl Lab, Los Alamos, NM USA. Ohio State Univ, Columbus, OH 43210 USA. JP Morgan Chase, Columbus, OH USA. RP Lee, HKH (reprint author), Univ Calif Santa Cruz, Sch Engn, 1156 High St, Santa Cruz, CA 95064 USA. EM herbie@ams.ucsc.edu OI Calder, Catherine/0000-0002-4459-1418 NR 39 TC 15 Z9 15 U1 0 U2 3 PU ARNOLD, HODDER HEADLINE PLC PI LONDON PA 338 EUSTON ROAD, LONDON NW1 3BH, ENGLAND SN 1471-082X J9 STAT MODEL JI Stat. Model. PD MAR PY 2005 VL 5 IS 1 BP 53 EP 74 DI 10.1191/1471082X05st085oa PG 22 WC Statistics & Probability SC Mathematics GA 916ZV UT WOS:000228426500004 ER PT J AU Paranthaman, MP Aytug, T Zhai, HY Heatherly, L Goyal, A Christen, DK AF Paranthaman, MP Aytug, T Zhai, HY Heatherly, L Goyal, A Christen, DK TI Growth of YBCO films on MgO-based rolling-assisted biaxially textured substrates templates SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID THICK YBA2CU3O7-DELTA FILMS; COATED CONDUCTORS; DEPOSITION; LAYERS; IBAD AB We have developed a simple alternative buffer layer architecture for the rolling-assisted biaxially textured substrates (RABiTS) approach. Buffer layers with both oxygen and metal diffusion barrier properties are of interest. Cube textured magnesium oxide MgO buffers were grown directly on biaxially textured Ni and Ni-W3 at.% substrates using electron beam evaporation. We have also grown epitaxial MgO layers on 2 m long textured Ni-W3 at.% tapes in a reel-to-reel e-beam evaporation. Highly textured LaMnO3 (LMO) buffers were grown on MgO-buffered Ni substrates using rf sputtering. MgO and LMO buffers have been proved to be good oxygen diffusion barriers and Ni diffusion barriers, respectively. YBCO films with a J(C) of 1 x 10(6) A cm(-2) at 77 K and self-field were grown on this newly developed architecture of LMO/MgO/Ni using pulsed laser deposition. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Paranthaman, MP (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Paranthaman, Mariappan/N-3866-2015 OI Paranthaman, Mariappan/0000-0003-3009-8531 NR 12 TC 10 Z9 11 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2005 VL 18 IS 3 BP 223 EP 228 DI 10.1088/0953-2048/18/3/003 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 911TF UT WOS:000228027200006 ER PT J AU Solovyov, VF Wiesmann, HJ Suenaga, M AF Solovyov, VF Wiesmann, HJ Suenaga, M TI Nucleation of YBa2Cu3O7-x on buffered metallic substrates in thick precursor films made by the BaF2 process SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID METALORGANIC DEPOSITION; GROWTH; SRTIO3; CONVERSION; RABITS AB We present experimental data on direct measurements of area densities of YBa2Cu3O7-x, YBCO, nuclei in fluorinated precursor films which are on CeO2 buffered metallic and single-crystalline SrTiO3 Substrates. The area density of the YBCO nuclei was measured by polarized-light microscopy after the nuclei had grown to the surface of the film. The density was found to depend strongly not only on processing conditions, but also on the type of the substrate. We also established a correlation between the area density of the nuclei and the nucleation of the randomly and c-axis oriented YBCO Grains in the films. A model which was based on classical nucleation theory predicted that the nucleation was a result of collective interactions among the existing nuclei. Also, it predicted qualitatively some aspects of the functional dependence of the nucleus density on processing parameters. It was found that J(C) values of very-large-grained c-axis-oriented YBCO films were low due to weak connectivity at grain boundaries. C1 Brookhaven Natl Lab, Dept Mat Sci, Upton, NY 11973 USA. RP Solovyov, VF (reprint author), Brookhaven Natl Lab, Dept Mat Sci, 76 Cornell Ave, Upton, NY 11973 USA. RI Solovyov, Vyacheslav/A-7724-2009; OI Solovyov, Vyacheslav/0000-0003-1879-9802 NR 23 TC 24 Z9 25 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2005 VL 18 IS 3 BP 239 EP 248 DI 10.1088/0953-20418/18/3/006 PG 10 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 911TF UT WOS:000228027200009 ER PT J AU Uprety, KK Ma, B Koritala, RE Fisher, BL Dorris, SE Balachandran, U AF Uprety, KK Ma, B Koritala, RE Fisher, BL Dorris, SE Balachandran, U TI Growth and properties of YBCO-coated conductors on biaxially textured MgO films prepared by inclined substrate deposition SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID IBAD; PLD-CEO2; PLD; SRL AB YBa2Cu3O7-delta (YBCO) films were fabricated on SrRuO3 (SRO)-buffered MgO templates grown on Hastelloy C276 metallic substrates, on which the MgO layers had been deposited by inclined substrate deposition (ISD) using electron beam evaporation. YBCO and SRO films were deposited by pulsed laser deposition (PLD). ISD-MgO substrates fabricated with two different substrate inclination angles (alpha = 35 degrees and 55 degrees) were used to grow YBCO films. High transport critical current density, J(C) = 1.4 x 10(6) A cm(-2), has been measured at 77 K in self-field for YBCO film grown on ISD-MgO with alpha = 35 degrees, whereas YBCO film grown on ISD-MgO with alpha = 55 degrees had a lower J(C) = 0.5 x 10(6) A cm(-2). X-ray pole figure patterns revealed a cube-on-cube orientation relationship among YBCO, SRO, and ISD-MgO films, with the c-axis of the YBCO film being tilted. X-ray omega and phi-scans revealed good in-plane and out-of-plane textures of YBCO film grown on ISD-MgO substrate. The YBCO film grown on ISD-MgO with substrate inclination angle alpha = 35 degrees had a YBCO(005) phi-scan full width at half maximum (FWHM) = 5.8 degrees and a YBCO(007) omega-scan FWHM = 2.8 degrees, while YBCO film with alpha = 55 degrees had YBCO(005) phi-scan FWHM = 5.4 degrees and YBCO(007) omega-scan FWHM = 2.6 degrees. C1 Argonne Natl Lab, Energy Technol Div, Argonne, IL 60439 USA. RP Uprety, KK (reprint author), Argonne Natl Lab, Energy Technol Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Koritala, Rachel/F-1774-2011; Ma, Beihai/I-1674-2013 OI Ma, Beihai/0000-0003-3557-2773 NR 8 TC 7 Z9 7 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2005 VL 18 IS 3 BP 294 EP 298 DI 10.1088/0953-2048/18/015 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 911TF UT WOS:000228027200018 ER PT J AU Rose V Podgursky V Costina, L Franchy, R Ibach, H AF Rose, V Podgursky, V Costina, L Franchy, R Ibach, H TI High temperature oxidation of CoAl(100) SO SURFACE SCIENCE LA English DT Article DE AES; LEED; EELS; STM; oxidation; cobalt; aluminum; alumina ID IONIC CRYSTAL SLAB; AMORPHOUS AL2O3; OPTICAL MODES; SURFACE; GROWTH; FILMS; NIAL(111); VIBRATION AB We have employed Auger electron spectroscopy (AES), high resolution electron energy loss spectroscopy (EELS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) to investigate the growth of an Al(2)O(3) film on CoAl(1 0 0). While exposure to oxygen at room temperature leads to the formation of amorphous alumina, subsequent annealing at higher temperatures results in the growth of well-ordered theta-Al(2)O(3). Well-ordered Al(2)O(3) films are also formed by oxidation at temperatures of 800 K and above. The oxide is characterized by Fuchs-Kliewer modes at around 430, 630, 780 and 920 cm(-1). Oxide islands grow in two sets of domains perpendicular to each other. Under ultra-high vacuum conditions, self-limiting thickness of the oxide layer (9-10 Angstrom) has been found. The band gap of the theta-Al(2)O(3) film on CoAl(1 0 0) is 4.3-4.5 eV. (C) 2005 Elsevier B.V. All rights reserved. C1 Forschungszentrum Julich, Inst Schichten & Grenzflachen, ISG 3, D-52425 Julich, Germany. RP Rose V (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM v.rose@fz-juelich.de RI Rose, Volker/B-1103-2008; Podgursky, Vitali/J-4434-2014; OI Rose, Volker/0000-0002-9027-1052; Podgursky, Vitali/0000-0002-1887-8976 NR 30 TC 22 Z9 22 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAR 1 PY 2005 VL 577 IS 2-3 BP 139 EP 150 DI 10.1016/j.susc.2004.12.028 PG 12 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 904WZ UT WOS:000227530600007 ER PT J AU Kellogg, GL Bartelt, NC AF Kellogg, GL Bartelt, NC TI Surface-diffusion-limited island decay on Rh(001) SO SURFACE SCIENCE LA English DT Article DE low energy electron microscopy (LEEM); surface diffusion; surface structure, morphology, roughness and topography; rhodium; single crystal surfaces ID SELF-DIFFUSION; PT(111); ENERGY; BULK AB We use low-energy electron microscopy to study the mechanisms of thermal smoothing on Rh(0 0 1) surfaces at high temperature. By examining the change of areas of two-dimensional islands as a function of time and temperature, we find that smoothing from 1210 K to 1450 K is limited by the rate of surface diffusion on terraces and not by bulk vacancy diffusion as observed in other systems in the same temperature range. However, the activation energy we measure for island decay is inconsistent with previous measurements and calculations of the activation energy of surface diffusion and the adatom formation energy. This inconsistency combined with an unexpectedly large activation entropy suggests a surface transport mechanism other than simple hopping of adatoms across the surface. (C) 2005 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Surface & Interface Sci, Albuquerque, NM 87185 USA. Sandia Natl Labs, Livermore, CA 94551 USA. RP Kellogg, GL (reprint author), Sandia Natl Labs, Surface & Interface Sci, Mail Stop 1415, Albuquerque, NM 87185 USA. EM glkello@sandia.gov RI Bartelt, Norman/G-2927-2012 NR 16 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAR 1 PY 2005 VL 577 IS 2-3 BP 151 EP 157 DI 10.1016/j.susc.2005.01.003 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 904WZ UT WOS:000227530600008 ER PT J AU Faeder, JR Blinov, ML Goldstein, B Hlavacek, WS AF Faeder, JR Blinov, ML Goldstein, B Hlavacek, WS TI Combinatorial complexity and dynamical restriction of network flows in signal transduction SO SYSTEMS BIOLOGY LA English DT Article ID FC-EPSILON-RI; HIGH-AFFINITY RECEPTOR; GROWTH-FACTOR RECEPTOR; TYROSINE PHOSPHORYLATION; MASS-SPECTROMETRY; SYSTEMS BIOLOGY; CELL-ACTIVATION; KINASE; IGE; PROTEOMICS AB The activities and interactions of proteins that govern the cellular response to a signal generate a multitude of protein phosphorylation states and heterogeneous protein complexes. Here, using a computational model that accounts for 307 molecular species implied by specified interactions of four proteins involved in signalling by the immunoreceptor Fc epsilon RI, we determine the relative importance of molecular species that can be generated during signalling, chemical transitions among these species, and reaction paths that lead to activation of the protein tyrosine kinase (PTK) Syk. By all of these measures and over two- and ten-fold ranges of model parameters - rate constants and initial concentrations - only a small portion of the biochemical network is active. The spectrum of active complexes, however, can be shifted dramatically, even by a change in the concentration of a single protein, which suggests that the network can produce qualitatively different responses under different cellular conditions and in response to different inputs. Reduced models that reproduce predictions of the full model for a particular set of parameters lose their predictive capacity when parameters are varied over two-fold ranges. C1 Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. RP Faeder, JR (reprint author), Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Mail Stop K710, Los Alamos, NM 87545 USA. EM faeder@lanl.gov FU NCRR NIH HHS [RR18754]; NIGMS NIH HHS [GM35556] NR 50 TC 37 Z9 38 U1 1 U2 2 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1741-2471 J9 SYSTEMS BIOL JI Syst. Biol. PD MAR PY 2005 VL 2 IS 1 BP 5 EP 15 DI 10.1049/sb:20045031 PG 11 WC Cell Biology SC Cell Biology GA 963KJ UT WOS:000231802900001 PM 17091578 ER PT J AU Fernandez, AM Bhattacharya, RN AF Fernandez, AM Bhattacharya, RN TI Electrodeposition of CuIn1-xGaxSe2 precursor films: optimization of film composition and morphology SO THIN SOLID FILMS LA English DT Article DE electrodeposition; CIGS; composition; microcracks ID PHOTOVOLTAIC CELLS; DEVICE AB In this paper, we report the preparation of CuIn1-xGaxSe2 (CIGS) films using electrodeposition. The influence of individual salt concentration on film composition is discussed in detail. We observed that CuCl, and H2SeO3 in the deposition bath strongly influence the film composition compared to GaCl3 and InCl3 salts. The deposited film morphology was also strongly influenced by the film composition. We also observed microcracks in the films when the films were deposited at low concentrations of CuCl2, InCl3, and GaCl3 salts and at high concentrations of H2SeO3. (C) 2004 Published by Elsevier B.V. C1 Univ Nacl Autonoma Mexico, CIE, Dept Mat Solares, Temixco 62580, Morelos, Mexico. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Univ Nacl Autonoma Mexico, CIE, Dept Mat Solares, Av Xochicaleo S-N,Col Centro, Temixco 62580, Morelos, Mexico. EM afm@cie.unam.mx NR 6 TC 60 Z9 64 U1 3 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD MAR 1 PY 2005 VL 474 IS 1-2 BP 10 EP 13 DI 10.1016/j.tsf.2004.02.104 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 895TQ UT WOS:000226886900002 ER PT J AU Mahajan, D Allison, JD AF Mahajan, D Allison, JD TI Synthetic clean fuels from natural gas and coal-bed methane - Preface SO TOPICS IN CATALYSIS LA English DT Editorial Material C1 SUNY Stony Brook, Dept Mat Sci & Engn, Chem & Mol Engn Program, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Energy Sci Technol Dept, Adv Fuels Grp, Upton, NY 11973 USA. Cono Cophillips, Strateg Res, Ponca City, OK 74602 USA. RP Mahajan, D (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Chem & Mol Engn Program, Stony Brook, NY 11794 USA. EM devinder.mahajan@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2005 VL 32 IS 3-4 BP 93 EP 94 DI 10.1007/s11244-005-2877-6 PG 2 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 933FH UT WOS:000229613800001 ER PT J AU Lai, CCA Dietrich, DE Bowman, MJ AF Lai, CCA Dietrich, DE Bowman, MJ TI Global warming and the mining of oceanic methane hydrate SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT Symposium on Synthetic Clean Fuels from Natural Gas and Coal-Bed Methane CY SEP 07-11, 2003 CL New York, NY DE global warming; methane hydrate; greenhouse gases; methane; carbon dioxide; methane oxidation; methane bubbles; ocean warming; heat content ID ARCTIC-OCEAN; NORDIC SEAS; ATLANTIC INFLOW AB The impacts of global warming oil the environment. economy and society are presently receiving much attention by the international community. However, the extent to which anthropogenic factors are the main cause of global warming, is still being, debated. There are obviously large stakes associated with the validity of any theory since that will indicate what actions need to be taken to protect the human race's only home-Earth. Most studies of global warming have investigated the rates and quantities of carbon dioxide emitted into the atmosphere since the beginning of the industrial revolution. In this paper, We focus on the earth's carbon budget and the associated energy transfer between various components of the climate system. This research invokes some new concepts: (i) certain biochemical processes which strongly interact with geophysical processes in climate system: (ii) a hypothesis that internal processes in the oceans rather than in the atmosphere are Lit the center of global warming; (iii) chemical energy stored in biochemical processes call significantly affect ocean dynamics and therefore the climate system. Based oil those concepts. we propose a new hypothesis for global warming. We also propose I revolutionary strategy to deal with global climate change and provide domestic energy security at the same time. Recent ocean exploration indicates that huge deposits of oceanic methane hydrate deposits exist on the seafloor on continental margins. Methane hydrate transforms into water and methane gas when it dissociates. So, this potentially could provide the United States with energy security if the technology for mining in the 200-mile EEZ is developed and is economically viable. Further, methane hydrate is a relatively environmentally, benign, clean fuel. Such technology would help industry reduce carbon dioxide emissions to the atmosphere, I rid thus reduce global warming by harnessing, the energy from the deep sea. C1 Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. AcuSea Inc, Albuquerque, NM USA. SUNY Stony Brook, Marine Sci Res Ctr, Stony Brook, NY 11794 USA. RP Lai, CCA (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM cal@lanl.gov NR 20 TC 1 Z9 1 U1 1 U2 16 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2005 VL 32 IS 3-4 BP 95 EP 99 DI 10.1007/s11244-005-2879-4 PG 5 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 933FH UT WOS:000229613800002 ER PT J AU Servio, P Eaton, MW Mahajan, D Winters, WJ AF Servio, P Eaton, MW Mahajan, D Winters, WJ TI Fundamental challenges to methane recovery from gas hydrates SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT Symposium on Syntheric Clean Fuels from Natural Gas and Coal-Bed Methane CY SEP 07-11, 2003 CL New York, NY DE gas hydrate; hydrate kinetics; host sediments; methane hydrate; BSR ID DECOMPOSITION; KINETICS; DISSOCIATION; NUCLEATION; WATER AB The growing use of natural gas. cleanest of all available fossils fuels. is already raising concern regarding the long-term supply of this precious resource, The amount of methane in gas hydrates is much greater than all other presently known sources of methane. This paper describes some fundamental challenges, the location. magnitude, and feasibility of recovery, which must be addressed to recover methane from dispersed hydrate sources. For methane recovery, we briefly describe kinetic models of methane hydrate decomposition for temperature and pressure conditions that mimic in situ methane hydrate stability. We also propose the catalytic role of sediment impurities, if any, in inducing nucleation sites for hydrate formation. The availability of plentiful methane is important to avoid future energy crises. such as that which crippled the world economy three decades ago. C1 Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. US Geol Survey, Woods Hole, MA 02543 USA. RP Mahajan, D (reprint author), Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. EM dmahajan@bnl.gov NR 44 TC 1 Z9 1 U1 2 U2 8 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2005 VL 32 IS 3-4 BP 101 EP 107 DI 10.1007/s11244-005-2881-x PG 7 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 933FH UT WOS:000229613800003 ER PT J AU Taylor, CE AF Taylor, CE TI Photocatalytic conversion of methane contained in methane hydrates SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT Symposium on Syntheric Clean Fuels from Natural Gas and Coal-Bed Methane CY SEP 07-11, 2003 CL New York, NY AB Photocatalytic conversion of methane dissolved in water at 1 MPa and 100 MPa, and methane contained in methane hydrates was performed. Several photocatalysts based on tungsten oxide and titania was investigated. Both full spectrum and visible light were used as the illumination Source. Our results indicate that the photocatalyst with the highest level of conversion of methane is the lanthanum-doped tungsten oxide. The main products of photocatalysis are hydrogen and methanol. C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Taylor, CE (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM charles.taylor@netl.doe.gov NR 11 TC 7 Z9 9 U1 2 U2 17 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2005 VL 32 IS 3-4 BP 179 EP 184 DI 10.1007/s11244-005-2889-2 PG 6 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 933FH UT WOS:000229613800011 ER PT J AU Fish, RH Rabion, A Neimann, K Neumann, R Vincent, JM Contel, M Izuel, C Villuendas, PR Alonso, PJ AF Fish, RH Rabion, A Neimann, K Neumann, R Vincent, JM Contel, M Izuel, C Villuendas, PR Alonso, PJ TI Precatalyst separation paradigms: alkane functionalization in water utilizing in situ formed [Fe2O(eta(1)-H2O)(eta '-OAc)(TPA)(2)](3+), embedded in surface-derivatized silica, as an MMO model, and fluorous biphasic catalysis for alkane, alkene, and alcohol oxidation chemistry SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT Symposium on Syntheric Clean Fuels from Natural Gas and Coal-Bed Methane CY SEP 07-11, 2003 CL New York, NY ID SPANNING STEROIDAL METALLOPORPHYRINS; MONOOXYGENASE ENZYME MODELS; TERT-BUTYL HYDROPEROXIDE; BIOMIMETIC OXIDATION; M(C8F17(CH2)(2)CO2)(2) M; OXYGEN; VESICLES; HYDROCARBONS; COMPLEXES; MICELLES AB Two precatalyst separation paradigms will be reviewed. The first involves the biomimetic, methane monoxygenase enzyme (MMO) precatalyst, [Fe2O(eta(1)-H2O)(eta(1)-OAc)(TPA)(2)](3+) (TPA = tris[(2-pyridyl)methyl]amine). 1, formed in situ at pH 4.2 from (Fe2O(mu-OAc)(TPA)(2)](3+), 2, which was embedded ill all amorphous silicate surface modified by a combination of hydrophilic polyethylene oxide and hydrophobic polypropylene oxide. for case of separation from the products formed. The resulting, catalytic assembly was found to be a biomimetic model for the MMO active site within a hydrophobic macroenvironment, allowing alkane functionalization with t-butyl hydroperoxide (TBHP)/O-2 ill all aqueous reaction medium (pH 4.2). For example. cyclohexane was oxidized to a mixture of cyclohexanone. cyclohexanol, and cyclohexyl-t-butyl peroxide, ill a ratio of similar to 3:1:2. The balance between polyethylene oxide and polypropylene oxide, tethered on the silica surface. Was crucial for maximizing the catalytic activity. Moreover. the mechanism for the silica-based catalytic assembly Was found to occur via the Haber-Weiss process. The second precatalyst separation paradigm. the rise of the fluorous solvents, which is predicated oil solubilizing the precatalyst ill a fluorocarbon solution. allows the functionalization of alkanes and alkenes, while selective oxidation of alcohols to aldehydes was also possible: both precatalyst and product are ill separate solvent phases. A discussion concerning both separation of precatalyst from product approaches will be presented. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Weizmann Inst Sci, Dept Organ Chem, IL-76100 Rehovot, Israel. Univ Bordeaux 1, CNRS, UMR 5802, Chim Organ & Organomet Lab, F-33405 Talence, France. Univ Zaragoza, CSIC, Dept Quim Inorgan, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. RP Fish, RH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM rhfish@lbl.gov RI Alonso, Pablo/L-2759-2014 OI Alonso, Pablo/0000-0003-3449-4929 NR 24 TC 8 Z9 8 U1 0 U2 10 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2005 VL 32 IS 3-4 BP 185 EP 196 DI 10.1007/s11244-005-2890-9 PG 12 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 933FH UT WOS:000229613800012 ER PT J AU Mahajan, D AF Mahajan, D TI Atom-economical reduction of carbon monoxide to methanol catalyzed by soluble transition metal complexes at low temperatures SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT Symposium on Synthetic Clean Fuels from Natural Gas and Coal-Bed Methane CY SEP 07-11, 2003 CL New York, NY DE atom-economical catalysis; carbon monoxide reduction; methanol synthesis; single-site catalyst; hydrogenation ID HOMOGENEOUS CATALYSIS; NICKEL; GAS; HYDROGENATION; WATER AB Hydrocarbons and methanol Lire considered the preferred products of catalytic reduction of carbon monoxide derived front clean natural gas. In this paper, we focus on atom-economical synthesis of methanol catalyzed by Soluble transition metal complexes as single-site catalyst precursors Under mild reaction conditions. Of the metal systems reported in the literature. Ni complexes activated by alkoxide bases affected homogeneous CO reduction to methanol at low temperatures (80 degrees-130 degrees C) and low pressures (2000-5000 kPa) to achieve CO conversion and methanol selectivity of > 90% and > 95%, respectively. The involvement of mono- and multi-nuclear Ni species that readily interconvert under Methanol producing conditions is invoked. A process based on such an active catalyst system would position methanol to be considered in inexpensive feedstock for the synthesis of other derivatives. C1 SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. RP Mahajan, D (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM devinder.mahajan@stonybrook.edu NR 29 TC 5 Z9 5 U1 2 U2 8 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2005 VL 32 IS 3-4 BP 209 EP 214 DI 10.1007/s11244-005-2892-7 PG 6 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 933FH UT WOS:000229613800014 ER PT J AU Koetzle, TF Schultz, AJ AF Koetzle, TF Schultz, AJ TI Single-crystal neutron diffraction: a valuable tool for probing bond activation in transition metal sigma complexes SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT Symposium on Syntheric Clean Fuels from Natural Gas and Coal-Bed Methane CY SEP 07-11, 2003 CL New York, NY DE neutron diffraction; Spallation Neutron Source; Crystal Structure; sigma complexes; Bond Activation AB Transition metal a complexes are ubiquitous intermediates in metal-catalyzed reactions, including hydrogenations, activation and functionalization reactions of hydrocarbons. and hydroborations. For over 20 years, single-crystal neutron diffraction has been exploited to investigate bond activation in these systems. Topics investigated include H-H activation in H, complexes, C-H activation in agostic systems and, most recently, B-H activation in a catecholborane metal complex. These results are illustrated here drawing upon studies carried out at both pulsed neutron sources and steady-state reactors. Despite notable successes such as those that we highlight, however, single-crystal neutron diffraction has seen somewhat limited application here to date primarily due to the need for large crystals. Revolutionary improvements are anticipated with the advent of a new generation of sources including the Spallation Neutron Source (SNS) that is scheduled to become operational at Oak Ridge, TN in 2006. At the SNS, it will be possible to work with crystals approaching the size commonly used in X-ray studies employing laboratory sources and to greatly expand the range of materials that are open to investigation. C1 Argonne Natl Lab, IPNS Div, Argonne, IL 60439 USA. RP Koetzle, TF (reprint author), Argonne Natl Lab, IPNS Div, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 12 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2005 VL 32 IS 3-4 BP 251 EP 255 DI 10.1007/s11244-005-2906-5 PG 5 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 933FH UT WOS:000229613800019 ER PT J AU Koga, T Li, C Sun, Y Brazin, A Rafailovich, MH Sokolov, JC Douglas, JF Mahajan, D AF Koga, T Li, C Sun, Y Brazin, A Rafailovich, MH Sokolov, JC Douglas, JF Mahajan, D TI Surface modification of polymeric nanocomposite thin films using supercritical carbon dioxide SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT Symposium on Syntheric Clean Fuels from Natural Gas and Coal-Bed Methane CY SEP 07-11, 2003 CL New York, NY DE supercritical carbon dioxide; inorganic nanoparticles; low-density polymer thin films; glass transition; X-ray reflectivity ID FLUIDS; REFLECTIVITY; CATALYSIS; SOLVENT; GOLD AB We report on an efficient and environmentally friendly means to modify surface properties of polymer films supported for nanoparticles. Ultrathin polystyrene (PS) films (< 300 angstrom) in which inorganic nanoparticles were embedded, were exposed to supercritical carbon dioxide (scCO(2)). The swollen structure was then preserved by quickly evaporating CO2. X-ray reflectivity (XR) results showed that this procedure produced polymeric nanocomposite films with a low-density region of about 150 A at the polymer/air interface. The formation of the low-density layer was independent of the nature of the particles, indicating that the Surface modification through exposure to scCO(2) may be a universal phenomenon regardless of a choice of nanoparticles. C1 SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. HAFTR High Sch, Cedarhurst, NY 11516 USA. NIST, Div Polymers, Gaithersburg, MD 20899 USA. Brookhaven Natl Lab, Energy Sci & Dept, Upton, NY 11973 USA. RP Koga, T (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM tkoga@notes.cc.sunysb.edu RI Koga, Tadanori/A-4007-2010; Sun, Yuan/B-2250-2010 NR 25 TC 2 Z9 2 U1 0 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2005 VL 32 IS 3-4 BP 257 EP 262 DI 10.1007/s11244-005-2907-4 PG 6 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 933FH UT WOS:000229613800020 ER PT J AU Jones, KW Feng, H Lanzirotti, A Mahajan, D AF Jones, KW Feng, H Lanzirotti, A Mahajan, D TI Mapping metal catalysts using synchrotron computed microtomography (CMT) and micro-X-ray fluorescence (mu XRF) SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT Symposium on Syntheric Clean Fuels from Natural Gas and Coal-Bed Methane CY SEP 07-11, 2003 CL New York, NY DE catalysis; Fischer-Tropsch (F-T) synthesis; computed microtomography (CMT); clean fuels; hydrocarbon synthesis; X-ray fluorescence ID FISCHER-TROPSCH SYNTHESIS; ULTRAFINE PARTICLES; IRON AB Gas-to-liquids (GTL) is a viable pathway to synthesize clean fuels from natural gas. The continuing technological advances in natural gas conversion technology have led several companies to make investment in the Fischer-Tropsch (F-T) route to synthesize clean hydrocarbon fuels. But, a highly efficient gas conversion process to capitalize oil remote natural gas fields still remains elusive. Heterogeneous catalyst assemblies are typically utilized in the GTL conversion reactions but all in-depth characterization of catalytic materials is needed to design the next-generation more efficient catalysts. Computed microtomography (CMT) and micro-X-ray fluorescence (mu XRF), techniques at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL), are complementary methods that allow mapping of catalyst constituents. We describe here the experimental apparatus and dive examples Of utilization of these techniques in catalyst characterization in different processes. The potential of using CMT and mu XRF techniques for monitoring changes in the catalyst composition during F T synthesis are discussed and an example based oil the use of X-ray fluorescence imaging is presented. C1 Brookhaven Natl Lab, Dept Environm Sci, Lab Earth & Environm Sci, Upton, NY 11973 USA. Montclair State Univ, Dept Earth & Environm Studies, Montclair, NJ 07043 USA. Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. RP Jones, KW (reprint author), Brookhaven Natl Lab, Dept Environm Sci, Lab Earth & Environm Sci, Upton, NY 11973 USA. EM kwj@bnl.gov NR 25 TC 13 Z9 13 U1 2 U2 9 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2005 VL 32 IS 3-4 BP 263 EP 272 DI 10.1007/s11244-005-2908-3 PG 10 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 933FH UT WOS:000229613800021 ER PT J AU Sargent, M AF Sargent, M TI Detector could protect against bioterrorism SO TRAC-TRENDS IN ANALYTICAL CHEMISTRY LA English DT News Item C1 Lawrence Livermore Natl Lab, Livermore, CA USA. RP Sargent, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0165-9936 J9 TRAC-TREND ANAL CHEM JI Trac-Trends Anal. Chem. PD MAR PY 2005 VL 24 IS 3 BP III EP IV DI 10.1016/j.trac.2005.01.008 PG 2 WC Chemistry, Analytical SC Chemistry GA 910MJ UT WOS:000227935300002 ER PT J AU Truhan, JJ Qu, J Blau, PJ AF Truhan, JJ Qu, J Blau, PJ TI A rig test to measure friction and wear of heavy duty diesel engine piston rings and cylinder liners using realistic lubricants SO TRIBOLOGY INTERNATIONAL LA English DT Article; Proceedings Paper CT Conference on Boundary Lubrication CY AUG 03-07, 2003 CL Copper Mt, CO SP Engn Conf Int Inc DE friction; wear; piston ring; cylinder liner; diesel engine AB Laboratory tests to evaluate piston ring and cylinder liner materials for their friction and wear behavior in realistic engine oils are described to support the development of new standard test methods. A ring segment was tested against a flat specimen of gray cast iron typical of cylinder liners. A wide range of lubricants including Jet A aviation fuel, mineral oil, and a new and engine-aged, fully formulated 15W40 heavy duty oil were used to evaluate the sensitivity of the tests to lubricant condition. Test temperatures ranged from 25 to 100 degreesC. A stepped load procedure was used to evaluate friction behavior using a run-in ring segment. At 100 degreesC, all lubricants showed boundary lubrication behavior, however, differences among the lubricants could be detected. Wear tests were carried out at 240 N for 6 It at 100 degreesC with new ring segments. The extent of wear was measured by weight loss, wear volume and wear depth using a geometric model that takes into account compound curvatures before and after testing. Wear volume by weight loss compared well with profilometry. Laboratory test results are compared to engine wear rates. (C) 2004 Elsevier Ltd. All rights reserved. C1 Univ Tennessee, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Truhan, JJ (reprint author), POB 2008,MS 6063, Oak Ridge, TN 37831 USA. EM truhanjjjr@ornl.gov OI Qu, Jun/0000-0001-9466-3179 NR 7 TC 45 Z9 48 U1 0 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-679X J9 TRIBOL INT JI Tribol. Int. PD MAR PY 2005 VL 38 IS 3 BP 211 EP 218 DI 10.1016/j.triboint.2004.08.003 PG 8 WC Engineering, Mechanical SC Engineering GA 900DP UT WOS:000227195900002 ER PT J AU Kovalchenko, A Ajayi, O Erdemir, A Fenske, G Etsion, I AF Kovalchenko, A Ajayi, O Erdemir, A Fenske, G Etsion, I TI The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact SO TRIBOLOGY INTERNATIONAL LA English DT Article; Proceedings Paper CT Conference on Boundary Lubrication CY AUG 03-07, 2003 CL Copper Mt, CO SP Engn Conf Int Inc DE laser surface texturing; friction; machine element; lubrication regime; hydrodynamics; lambda ratio; microdimpling ID RECIPROCATING AUTOMOTIVE COMPONENTS; MECHANICAL SEAL AB Laser surface texturing (LST) is an emerging effective method for improving the tribological performance of friction units lubricated with oil. In LST technology, a pulsating laser beam is used to create thousands of arranged microdimples on a surface by a material ablation process. These dimples generate hydrodynamic pressure between oil-lubricated parallel sliding surfaces. The impact of LST on lubricating-regime transitions was investigated in this study. Tribological experiments were conducted with a pin-on-disk apparatus at sliding speeds in the range of 0.015-0.75 m/s and nominal contact pressures that ranged from 0.16 to 1.6 MPa. Two oils with different viscosities (54.8 and 124.7 cSt at 40 degreesC) were used as lubricants. The test results showed that laser texturing expanded the contact parameters in terms of load and speed for hydrodynamic lubrication, as indicated by friction transitions on the Stribeck curve. The beneficial effects of laser surface texturing are more pronounced at higher speeds and loads and with higher viscosity oil. (C) 2004 Elsevier Ltd. All rights reserved. C1 Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA. Technion Israel Inst Technol, Dept Mech Engn, IL-32000 Haifa, Israel. RP Ajayi, O (reprint author), Argonne Natl Lab, Div Energy Technol, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ajayi@anl.gov RI Etsion, Izhak/B-1043-2008 NR 5 TC 195 Z9 227 U1 8 U2 98 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-679X J9 TRIBOL INT JI Tribol. Int. PD MAR PY 2005 VL 38 IS 3 BP 219 EP 225 DI 10.1016/j.triboint.2004.08.004 PG 7 WC Engineering, Mechanical SC Engineering GA 900DP UT WOS:000227195900003 ER PT J AU Erdemir, A AF Erdemir, A TI Review of engineered tribological interfaces for improved boundary lubrication SO TRIBOLOGY INTERNATIONAL LA English DT Article; Proceedings Paper CT Conference on Boundary Lubrication CY AUG 03-07, 2003 CL Copper Mt, CO SP Engn Conf Int Inc DE surface engineering; nanocomposite coatings; superhardness; engines; lubricants; additives; laser texturing; friction; wear ID LASER-ABLATION; CARBON-FILMS; LOW-FRICTION; COATINGS; SURFACE; NANOPARTICLES; PERFORMANCE; CERAMICS; BEHAVIOR; OILS AB Recent advances in smart surface engineering and coating technologies offer unique possibilities for better controlling friction and wear under boundary or marginally lubricated rolling, sliding or rotating contact conditions. Specifically, such coatings can be tailored to meet the increasingly multi-functional application needs of future engine systems by enabling them to operate in lower viscosity oils with reduced sulfur and phosphorous. Using these technologies, researchers have already pioneered the development of a variety of nano-composite and super-hard coatings providing longer tool life in demanding machining and manufacturing applications. The same technologies can also be used in the design and development of novel coating architectures providing lower friction and wear under boundary-lubricated sliding conditions. For example, such coatings can be tailored in a very special way that while one of the phases can favorably react with certain additives in engine oils to result in an ideal chemical boundary film; the other phases can provide super-hardness and hence resists wear and scuffing. Because of their very dense microstructure and high chemical inertness, these coatings can also provide superior protection against oxidation and corrosive attacks in aggressive environments. The use of solid lubricant coatings may also improve the tribological properties of sliding contact interfaces under boundary lubricated sliding conditions. When fluid and boundary films fails or is broken down, such coatings can carry the load and act as a back-up lubricant. Other smart surface technologies such as laser texturing and/or dimpling, laser-glazing and -shotpeening have also become very popular in recent years. In particular, laser texturing of control or coated surfaces have opened up new possibilities for further manipulation of the lubrication regimes in classical Stribeck diagrams. Controlling dimple size, shape, orientation, and density, researchers were able to modify both the width and the height of the boundary lubrication regimes and thus achieve lower friction and wear at sliding and rotating contact interfaces. Overall, smart surface engineering and coating technologies have matured over the years and they now become an integral part of advanced machining and manufacturing applications. They can also be used to meet the increasingly stringent and multi-functional application needs of demanding tribological applications. In this paper, selected examples of recently developed novel surface engineering and coating technologies are introduced, and the fundamental tribological mechanisms that control their friction and wear behavior under boundary lubrication regimes are presented. (C) 2004 Elsevier Ltd. All rights reserved. C1 Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA. RP Erdemir, A (reprint author), Argonne Natl Lab, Div Energy Technol, 9700 S Cass Ave,ET-212, Argonne, IL 60439 USA. EM erdemir@anl.gov NR 40 TC 223 Z9 242 U1 22 U2 192 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-679X J9 TRIBOL INT JI Tribol. Int. PD MAR PY 2005 VL 38 IS 3 BP 249 EP 256 DI 10.1016/j.triboint.2004.08.008 PG 8 WC Engineering, Mechanical SC Engineering GA 900DP UT WOS:000227195900007 ER PT J AU Ajayi, OO Hersberger, JG Zhang, J Yoon, H Fenske, GR AF Ajayi, OO Hersberger, JG Zhang, J Yoon, H Fenske, GR TI Microstructural evolution during scuffing of hardened 4340 steel - implication for scuffing mechanism SO TRIBOLOGY INTERNATIONAL LA English DT Article; Proceedings Paper CT Conference on Boundary Lubrication CY AUG 03-07, 2003 CL Copper Mt, CO SP Engn Conf Int Inc DE scuffing; SEM; sliding surfaces; plastic deformation; shear instability; microstructure AB Microstructural changes occurring during scuffing failure in hardened 4340 steel were studied with a block-on-ring test rig using a step-loading test protocol. Tests were interrupted before, during, and after scuffing. Both surface and sub-surface changes in the original tempered microstructure were characterized by scanning electron microscopy. Results of our study showed that scuffing occurred by severe and sudden plastic deformation of near-surface material in a sub-second time frame. Based on this observation and other previously observed microstructural changes, i.e. formation of a large fraction of retained austenite during scuffing, a scuffing mechanism based on adiabatic shear instability is proposed. The proposed scuffing mechanism can effectively explain most of the phenomenological observations associated with scuffing failure. (C) 2004 Elsevier Ltd. All rights reserved. C1 Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA. Caterpillar Inc, Adv Mat Technol Div, Peoria, IL 61656 USA. RP Ajayi, OO (reprint author), Argonne Natl Lab, Div Energy Technol, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ajayi@anl.gov NR 8 TC 28 Z9 28 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-679X J9 TRIBOL INT JI Tribol. Int. PD MAR PY 2005 VL 38 IS 3 BP 277 EP 282 DI 10.1016/j.triboint.2004.08.011 PG 6 WC Engineering, Mechanical SC Engineering GA 900DP UT WOS:000227195900010 ER PT J AU Hershberger, J Ajayi, OO Fenske, GR AF Hershberger, J Ajayi, OO Fenske, GR TI Zinc content of ZDDP films formed thermally and mechanically SO TRIBOLOGY INTERNATIONAL LA English DT Article; Proceedings Paper CT Conference on Boundary Lubrication CY AUG 03-07, 2003 CL Copper Mt, CO SP Engn Conf Int Inc DE surface; chemical analysis; lubricant; additives; lubrication; boundary ID ANTIWEAR FILMS; SURFACE; DIALKYLDITHIOPHOSPHATES; DITHIOPHOSPHATE; OIL AB Reaction films of zinc dialkyl dithiophosphate (ZDDP) were formed on flats of polished steel, and the Zn content of the films was determined. Films formed thermally were compared to those formed mechanically in reciprocating wear; both types were formed by using lubricants with a range of ZDDP concentrations. Grazing-incidence X-ray fluorescence was used to quantify the areal density of Zn and to verify that the measured fluorescence was due to a reaction film and not from debris or the bulk oil. The amount of Zn in the films generally rose with increasing ZDDP concentration, but films formed thermally were found to contain more Zn than those formed mechanically. Several possible explanations for this difference have been discussed. (C) 2004 Elsevier Ltd. All rights reserved. C1 Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA. RP Hershberger, J (reprint author), Argonne Natl Lab, Div Energy Technol, Bldg 212,9700 S Cass Ave, Argonne, IL 60439 USA. EM jhersh@anl.gov NR 12 TC 6 Z9 9 U1 1 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-679X J9 TRIBOL INT JI Tribol. Int. PD MAR PY 2005 VL 38 IS 3 BP 299 EP 303 DI 10.1016/j.triboint.2004.08.013 PG 5 WC Engineering, Mechanical SC Engineering GA 900DP UT WOS:000227195900013 ER PT J AU Akonko, S Li, DY Ziomek-Moroz, M AF Akonko, S Li, DY Ziomek-Moroz, M TI Effects of cathodic protection on corrosive wear of 304 stainless steel SO TRIBOLOGY LETTERS LA English DT Article DE cathodic protection; corrosive wear; enforced current ID STAINLESS-STEEL AB Corrosive wear involves interaction of electrochemical and mechanical processes. The synergism of these two processes often results in significant material loss, compared to those caused by individual processes. Reduction of either corrosion or wear may effectively decrease material loss under certain circumstances. Since cathodic protection can reduce corrosion of metallic materials, it may also diminish corrosive wear if the corrosion process is suppressed. However, under a cathodic potential (potentiostatic condition) or enforced current (galvanosatic condition), properties of a material could be affected and thus its corrosive wear behavior could be different from what is expected. The present research demonstrated that cathodic protection under potentiostatic condition was beneficial under low wearing force but it became ineffective under higher wearing forces or more negative cathodic potentials. Hydrogen embrittlement could be responsible for this change. C1 Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada. US DOE, Albany Res Ctr, Albany, OR 97321 USA. RP Li, DY (reprint author), Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada. EM Dongyang.Li@ualberta.ca NR 17 TC 16 Z9 22 U1 1 U2 13 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1023-8883 J9 TRIBOL LETT JI Tribol. Lett. PD MAR PY 2005 VL 18 IS 3 BP 405 EP 410 DI 10.1007/s11249-004-3205-1 PG 6 WC Engineering, Chemical; Engineering, Mechanical SC Engineering GA 910NH UT WOS:000227937900015 ER PT J AU Miller, MK Russell, KF Thompson, GB AF Miller, MK Russell, KF Thompson, GB TI Strategies for fabricating atom probe specimens with a dual beam FIB SO ULTRAMICROSCOPY LA English DT Article DE atom probe; focused ion beam; ion milling; specimen preparation ID FIELD-ION MICROSCOPY; MULTILAYER FILM STRUCTURES; CEMENTED CARBIDES; TUNGSTEN AB A FIB-based lift-out method for preparing atom probe specimens at site specific locations such as coarse precipitates, grain boundaries, interphase interfaces, denuded zones, heat affected zones, implanted, near surface and subsurface regions, shear bands, etc. has been developed. FIB-based methods for the fabrication of atom probe specimens from thin ribbons, sheet stock, and powders have been developed. Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35487 USA. RP Miller, MK (reprint author), Oak Ridge Natl Lab, Div Met & Ceram, POB 2008,Bldg 4500S,MS 6136, Oak Ridge, TN 37831 USA. EM millermk@ornl.gov NR 37 TC 155 Z9 155 U1 2 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD MAR PY 2005 VL 102 IS 4 BP 287 EP 298 DI 10.1016/J.ULTRAMIC.2004.10.011 PG 12 WC Microscopy SC Microscopy GA 900FK UT WOS:000227200600004 PM 15694675 ER PT J AU Cosgriff, EC Oxley, MP Allen, LJ Pennycook, SJ AF Cosgriff, EC Oxley, MP Allen, LJ Pennycook, SJ TI The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope SO ULTRAMICROSCOPY LA English DT Article DE delocalization of inelastic scattering; core-loss spectroscopy; scanning transmission electron microscopy ID ATOMIC SCATTERING FACTORS; ENERGY-LOSS SPECTROSCOPY; INELASTIC-SCATTERING; SHELL IONIZATION; K-SHELL; CRYSTALS AB The 'delocalization' of inelastic scattering is an important issue for the ultimate spatial resolution of core-loss spectroscopy in the electron microscope. This paper investigates the resolution of scanning transmission electron microscopy images for single, isolated atoms. Images are simulated from first principles using a nonlocal model for electron core-loss spectroscopy. The role of the width of the probe relative to the delocalization of the underlying ionization interaction is considered. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. Oak Ridge Natl Lab, Div Condensed Matter Sci, Oak Ridge, TN 37831 USA. RP Allen, LJ (reprint author), Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. EM Ija@physics.unimelb.edu.au NR 26 TC 40 Z9 40 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD MAR PY 2005 VL 102 IS 4 BP 317 EP 326 DI 10.1016/j.ultramic.2004.11.001 PG 10 WC Microscopy SC Microscopy GA 900FK UT WOS:000227200600007 PM 15694678 ER PT J AU Disselkamp, RS Hart, TR Williams, AM White, JF Peden, CHF AF Disselkamp, RS Hart, TR Williams, AM White, JF Peden, CHF TI Ultrasound-assisted hydrogenation of cinnamaldehyde SO ULTRASONICS SONOCHEMISTRY LA English DT Article DE catalysis; hydrogenation; product state distribution; sonochemistry ID HETEROGENEOUS METAL CATALYSIS; LIQUID-PHASE HYDROGENATION; PLATINUM CATALYSTS; CARBONYL-COMPOUNDS; ADSORPTION; PALLADIUM; REDUCTION; KINETICS AB The hydrogenation, employing hydrogen gas, of cinnamaldehyde was performed using Pd-black and Raney Ni catalysts at 298 3 K in a water-cooled (jacketed) reaction vessel. Sampling at pre-determined time intervals and GUMS analysis yielded time-dependent product state distribution information. A kinetic modeling of the data revealed that cinnamaldehyde was both hydrogenated directly to the final product benzenepropanol, as well as a fraction being converted to the intermediate benzenepropanal, where the latter was subsequently hydrogenated to benzenepropanol. Comparing the ultrasound-assisted and blank (stirred) experiments revealed that a higher maximum relative concentration of the intermediate benzenepropanal was formed in the ultrasound experiments compared to the stirred experiment. The activity of the ultrasound experiments compared to blank were 9-fold and 20-fold greater for the Pd-black and Raney Ni catalysts, respectively. Finally, an application of the Bell-Evans-Polanyi principle to yield an estimate of the ratio of rate coefficients for benzenepropanal and benzenepropanol formation was performed by considering chemical group energy differences and surface adsorption energy differences in the first mechanistic step of hydrogenation. (C) 2004 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Disselkamp, RS (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, 3335 Q Ave,POB 999, Richland, WA 99352 USA. EM robert.disselkamp@pnl.gov OI Peden, Charles/0000-0001-6754-9928; Hart, Todd/0000-0001-8013-0689 NR 28 TC 21 Z9 25 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1350-4177 J9 ULTRASON SONOCHEM JI Ultrason. Sonochem. PD MAR PY 2005 VL 12 IS 4 BP 319 EP 324 DI 10.1016/j.ultsonch.2003.12.006 PG 6 WC Acoustics; Chemistry, Multidisciplinary SC Acoustics; Chemistry GA 869AB UT WOS:000224953400013 PM 15501717 ER PT J AU Pilat, JF AF Pilat, JF TI Reassessing security assurances in a unipolar world SO WASHINGTON QUARTERLY LA English DT Article C1 Los Alamos Natl Lab, Nucl Nonproliferat Div, Los Alamos, NM 87545 USA. RP Pilat, JF (reprint author), Los Alamos Natl Lab, Nucl Nonproliferat Div, Los Alamos, NM 87545 USA. NR 14 TC 4 Z9 4 U1 1 U2 1 PU M I T PRESS PI CAMBRIDGE PA FIVE CAMBRIDGE CENTER, CAMBRIDGE, MA 02142 USA SN 0163-660X J9 WASH QUART JI Wash. Q. PD SPR PY 2005 VL 28 IS 2 BP 159 EP 170 DI 10.1162/0163660053295284 PG 12 WC International Relations; Law SC International Relations; Government & Law GA 908HN UT WOS:000227778200011 ER PT J AU McKeown, JT Sugar, JD Gronsky, R Glaeser, AM AF McKeown, JT Sugar, JD Gronsky, R Glaeser, AM TI Processing of alumina-niobium interfaces via liquid-film-assisted joining SO WELDING JOURNAL LA English DT Article DE alumina; niobium; diffusion brazing; liquid-film-assisted joining; copper film; fracture path; area fracture of contact ID METAL-CERAMIC INTERFACES; BONDED NB/AL2O3 INTERFACES; ELECTRON-MICROSCOPY; COPPER/NIOBIUM/COPPER INTERLAYERS; CU/NB/CU INTERLAYERS; NB-AL2O3 INTERFACES; THEORETICAL-MODEL; CHEMISTRY; SAPPHIRE; FRACTURE AB Alumina-niobium interfaces were fabricated at 1400degreesC via solid-state diffusion brazing of a 127-mum-thick niobium foil between alumina blocks. Prior to brazing, some of the alumina mating surfaces, both polished and unpolished, were evaporation-coated with copper films circle plus1.4, circle plus3.0, and circle plus5.5 mum thick to induce liquid-film-assisted joining at the brazing temperature. The effects of copper film thickness and surface roughness on fracture characteristics and ceramic-metal interfacial microstructure were investigated by room-temperature four-point bend tests, optical microscopy, profilometry, and atomic force microscopy. The average strength of bonds between niobium and polished alumina substrates increased with the introduction of copper film interlayers, and the scatter in strength tended to decrease, with an optimum combination of strength and Weibull modulus arising for a copper film thickness of 3.0 mum. The strength characteristics of niobium bonded to unpolished alumina substrates were also improved by liquid-film-assisted joining, but were unaffected by the thickness of the copper interlayers. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA USA. RP McKeown, JT (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. NR 55 TC 1 Z9 1 U1 1 U2 2 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD MAR PY 2005 VL 84 IS 3 BP 41S EP 51S PG 11 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 901HT UT WOS:000227274300011 ER PT J AU Labbe, N Rials, TG Kelley, SS Cheng, ZM Kim, JY Li, Y AF Labbe, N Rials, TG Kelley, SS Cheng, ZM Kim, JY Li, Y TI FT-IR imaging and pyrolysis-molecular beam mass spectrometry: new tools to investigate wood tissues SO WOOD SCIENCE AND TECHNOLOGY LA English DT Article DE FT-IR imaging; pyrolysis mass spectrometry; transgenic aspen; xylem; multivariate analysis ID CELLULOSE CRYSTALLINE-STRUCTURE; INFRARED-SPECTRA; POLYMERS; LIGNIN; SPECTROSCOPY; EXPRESSION; PRODUCTS; SEQUENCE; BIOMASS; PLANTS AB Fourier transform infrared (FT-IR) microimaging spectroscopy and pyrolysis molecular beam mass spectrometry (py-MBMS) were used as rapid analysis tools to evaluate differences in the chemical composition of 1-year-old transgenic aspens. Multivariate analysis of the spectroscopic data sets was used to compare the cell wall composition of nontransformed control to transgenic aspen plants with GRP-iaaM gene and with GRP-iaaM/35S-ACCase gene. Principal component analysis (PCA) was applied to both the FT-IR and py-MBMS spectra, which revealed sample groupings due to differences in chemical composition. Evaluating the PCA loadings allows determination of the chemical features responsible for the groupings. The FT-IR microimaging data was also used to monitor changes in the chemical composition as a function of the distance from the pith to the bark using partial least squares (PLS) analysis. The analysis shows that the changes in the composition of the xylem that occur over one annual growth ring can be monitored with FT-IR microimaging. C1 Univ Tennessee, Tennessee Forest Prod Ctr, Knoxville, TN 37996 USA. Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. Univ Connecticut, Dept Plant Sci, Transgenic Plant Facil, Storrs, CT 06269 USA. RP Labbe, N (reprint author), Univ Tennessee, Tennessee Forest Prod Ctr, 2506 Jacob Dr, Knoxville, TN 37996 USA. EM nlabbe@utk.edu OI Cheng, Zong-Ming/0000-0002-1811-591X NR 44 TC 67 Z9 71 U1 2 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0043-7719 J9 WOOD SCI TECHNOL JI Wood Sci. Technol. PD MAR PY 2005 VL 39 IS 1 BP 61 EP U19 DI 10.1007/s00226-004-0274-0 PG 17 WC Forestry; Materials Science, Paper & Wood SC Forestry; Materials Science GA 905IN UT WOS:000227561900006 ER PT J AU Berger, JR Martin, PA Mantic, V Gray, LJ AF Berger, JR Martin, PA Mantic, V Gray, LJ TI Fundamental solutions for steady-state heat transfer in an exponentially graded anisotropic material SO ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK LA English DT Article DE Green's functions; functionally graded materials; heat conduction ID VARYING THERMAL-CONDUCTIVITY; BOUNDARY INTEGRAL-EQUATION; MEDIA AB Heat conduction in an anisotropic inhomogeneous medium is considered. The conductivities vary exponentially in one fixed but arbitrary direction. The Green's function corresponding to a point source is constructed. Two methods are used, one using Fourier transforms and one involving certain changes of variables in the governing partial differential equation. Solutions in both two and three dimensions are derived. They can be used as a basic ingredient in the formulation of boundary integral equations for graded anisotropic materials. C1 Colorado Sch Mines, Div Engn, Golden, CO 80401 USA. Colorado Sch Mines, Dept Math & Comp Sci, Golden, CO 80401 USA. Univ Seville, Escuela Super Ingn, Seville 41092, Spain. Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Berger, JR (reprint author), Colorado Sch Mines, Div Engn, Golden, CO 80401 USA. RI Mantic, Vladislav/G-1111-2010; Martin, Paul/D-3398-2009; Berger, John/F-5169-2010 OI Mantic, Vladislav/0000-0002-7569-7442; NR 18 TC 16 Z9 17 U1 0 U2 5 PU BIRKHAUSER VERLAG AG PI BASEL PA VIADUKSTRASSE 40-44, PO BOX 133, CH-4010 BASEL, SWITZERLAND SN 0044-2275 J9 Z ANGEW MATH PHYS JI Z. Angew. Math. Phys. PD MAR PY 2005 VL 56 IS 2 BP 293 EP 303 DI 10.1007/s00033-004-1131-6 PG 11 WC Mathematics, Applied SC Mathematics GA 915SY UT WOS:000228332700008 ER PT J AU Gu, LH Falge, EM Boden, T Baldocchi, DD Black, TA Saleska, SR Suni, T Verma, SB Vesala, T Wofsy, SC Xu, LK AF Gu, LH Falge, EM Boden, T Baldocchi, DD Black, TA Saleska, SR Suni, T Verma, SB Vesala, T Wofsy, SC Xu, LK TI Objective threshold determination for nighttime eddy flux filtering SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE eddy covariance; turbulence; friction velocity; net ecosystem exchange; fluxes; moving point test ID SURFACE-AIR EXCHANGE; CARBON-DIOXIDE; LONG-TERM; TALL VEGETATION; MICROMETEOROLOGICAL OBSERVATIONS; MIDLATITUDE FOREST; SEASONAL-VARIATION; DECIDUOUS FOREST; ENERGY EXCHANGES; BOREAL FOREST AB We recommend an automated statistical method (Moving Point Test, or MPT) to determine the friction velocity (u(*)) thresholds in nighttime eddy flux filtering. Our intention is to make the determination of the u* thresholds objective and reproducible and to keep flux treatment consistent over time and across sites. In developing the MPT method, we recognize that both ecosystem respiration and u* exhibit diurnal and seasonal cycles and there are potential correlative changes between them, which must be removed before u* can be used as a filter criterion. MPT uses an iterative approach to simultaneously determine a valid temperature response function, which is used to normalize nighttime flux measurements, and identify u* thresholds based on the normalized fluxes. Tests show that MPT works well for a variety of scenarios and vegetation types. We also recommend that in order to increase the reliability of nighttime flux filters, a detailed measurement of mean CO2 concentration profiles need to be employed to calculate canopy storage changes accurately. Preferably, multiple profiles at different locations within the nighttime flux footprint should be used so that volume-averaged storage changes can be made. In addition, efforts should be made to minimize measurement gaps in summer nights as much as possible because of the short-time duration and frequent calm conditions, which greatly limit the amount of reliable data. We emphasize that the MPT method is not meant to be a final solution to the nighttime flux issue. Continuous theoretical and experimental researches are still needed to overcome the challenges in measuring nighttime fluxes accurately. (C) 2004 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. Univ Bayreuth, Bayreuth, Germany. Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA USA. Univ British Columbia, Fac Agr Sci, Vancouver, BC V5Z 1M9, Canada. Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys Sci, Helsinki, Finland. Univ Nebraska, Sch Nat Resources, Lincoln, NE USA. RP Gu, LH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Bldg 1509,Mail Stop 6335, Oak Ridge, TN 37831 USA. EM lianhong-gu@ornl.gov RI Baldocchi, Dennis/A-1625-2009; Gu, Lianhong/H-8241-2014; Vesala, Timo/C-3795-2017 OI Baldocchi, Dennis/0000-0003-3496-4919; Gu, Lianhong/0000-0001-5756-8738; Vesala, Timo/0000-0002-4852-7464 NR 27 TC 158 Z9 164 U1 3 U2 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD FEB 28 PY 2005 VL 128 IS 3-4 BP 179 EP 197 DI 10.1016/j.agrformet.2004.11.006 PG 19 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA 898XB UT WOS:000227108400003 ER PT J AU Leonard, F Jones, FE Talin, AA Dentinger, PM AF Leonard, F Jones, FE Talin, AA Dentinger, PM TI Robustness of nanotube electronic transport to conformational deformations SO APPLIED PHYSICS LETTERS LA English DT Article ID WALLED CARBON NANOTUBES; TRANSISTORS; JUNCTIONS; DEVICES AB We present experimental observation and theoretical analysis of looping carbon nanotubes connecting two electrodes. The measured conductance of the nanotubes is not strongly affected by the presence of these conformational defects, a result that is confirmed by quantum transport calculations. Our work indicates that solution-based fabrication methods for carbon nanotube devices can have high conformational defect tolerance, except for defects with 5-10 nanometer bending radius. (C) 2005 American Institute of Physics. C1 Sandia Natl Labs, Livermore, CA 94551 USA. RP Leonard, F (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. NR 20 TC 6 Z9 6 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 28 PY 2005 VL 86 IS 9 AR 093112 DI 10.1063/1.1873054 PG 3 WC Physics, Applied SC Physics GA 924PT UT WOS:000228991600063 ER PT J AU Gilliss, SR Bentley, J Carter, CB AF Gilliss, SR Bentley, J Carter, CB TI Electron energy-loss spectroscopic study of the surface of ceria abrasives SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 9th International Symposium on Advanced Physical Fields CY MAR 01, 2004 CL Tsukuba, JAPAN DE CMP; ceria; EELS; segregation; non-stoichiometry ID DOPED CERIA; GLASS; NONSTOICHIOMETRY; DEFECT AB Surfaces of ceria (CeO2) particles have been studied by electron energy-loss spectroscopy in a field-emission gun scanning transmission electron microscope. All the ceria particles analyzed contained Ce3+ at the surface. Rare-earth impurities such as La were enriched at the surface and were observed for particles ranging from tens to hundreds of nanometers in size. Fluorine in the abrasives corresponded to a lower average cerium valence. Time series investigations indicate that fluorine substitutes on the oxygen sub-lattice and is charge-balanced by some cerium changing from Ce4+ to Ce3+ (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Carter, CB (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE,151 Amundson Hall, Minneapolis, MN 55455 USA. EM carter@cems.umn.edu RI Carter, C. Barry/E-6478-2010 OI Carter, C. Barry/0000-0003-4251-9102 NR 26 TC 42 Z9 43 U1 0 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD FEB 28 PY 2005 VL 241 IS 1-2 BP 61 EP 67 DI 10.1016/j.apsusc.2004.09.018 PG 7 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 893HD UT WOS:000226709000013 ER PT J AU Song, M Mitsuishi, K Furuya, K Allen, CW Birtcher, RC Donnelly, SE AF Song, M Mitsuishi, K Furuya, K Allen, CW Birtcher, RC Donnelly, SE TI Structure variation of nanometer-sized Xe particles embedded in Al crystals SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 9th International Symposium on Advanced Physical Fields CY MAR 01, 2004 CL Tsukuba, JAPAN DE Xe; Al; nanoparticle; nanostructure; HREM ID TRANSMISSION ELECTRON-MICROSCOPE; IN-SITU; IMPLANTED ALUMINUM; 300 K; XENON; PRECIPITATION; COALESCENCE; IRRADIATION; CAVITIES; METALS AB Nanometer-sized Xe particles embedded in Al are observed with an off-Bragg condition high resolution trans-mission electron microscopy. It is found that a Xe particle with size of about 1 nm shows quite different structural properties from those with larger sizes. It changes structure from an f.c.c. to another one, changes orientation with the same f.c.c. structure, or changes shape and sizes. These changes are attributed to (1) a high mobility of atoms on Xe/Al interface due to irradiation of 1 MeV electron beam and irradiation enhanced interfacial diffusion; (2) a smaller barrier in energy for shape change of a smaller Al void where the Xe particle is constrained; (3) a larger fraction of atoms on Xe/Al interface for a smaller Xe particle. (C) 2004 Elsevier B.V. All rights reserved. C1 Natl Inst Mat Sci, High Voltage Electron Microscopy Stn, Tsukuba, Ibaraki 3050003, Japan. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Univ Salford, Joint Phys Lab, Salford M5 4WT, Lancs, England. RP Song, M (reprint author), Natl Inst Mat Sci, High Voltage Electron Microscopy Stn, 3-13 Sakura, Tsukuba, Ibaraki 3050003, Japan. EM minghui.song@nims.go.jp OI Donnelly, Stephen/0000-0002-9749-5550 NR 22 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD FEB 28 PY 2005 VL 241 IS 1-2 BP 96 EP 101 DI 10.1016/j.apsusc.2004.09.024 PG 6 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 893HD UT WOS:000226709000019 ER PT J AU Sharma, HR Shimoda, M Fournee, V Ross, AR Lograsso, TA Tsai, AP AF Sharma, HR Shimoda, M Fournee, V Ross, AR Lograsso, TA Tsai, AP TI First steps in the growth of Cu thin films on the five-fold surface of the icosahedral Al-Cu-Fe quasicrystal SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 9th International Symposium on Advanced Physical Fields CY MAR 01, 2004 CL Tsukuba, JAPAN DE scanning tunneling microscopy; epitaxy; metallic surfaces; copper; alloys ID CATALYST AB The growth of Cu on the five-fold surface of the icosahedral Al-Cu-Fe is investigated by scanning tunneling microscopy. The clean surface. exhibits atomically flat terraces separated by steps of different heights. The steps are found to be frequently bunched. For a coverage close to a monolayer, Cu forms a nearly closed film of a height corresponding to a monolayer of Cu. The film, however, does not exhibit long-range order. (C) 2004 Elsevier B.V. All rights reserved. C1 Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. Ecole Mines, CNRS, UMR7584, LSG2M, F-54042 Nancy, France. Ames Lab, Dept Mat Sci & Engn, Ames, IA 50011 USA. Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. RP Sharma, HR (reprint author), Natl Inst Mat Sci, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan. EM hemraj.shrma@nims.go.jp OI Shimoda, Masahiko/0000-0002-6822-2836; Sharma, Hem Raj/0000-0003-0456-6258 NR 11 TC 6 Z9 6 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD FEB 28 PY 2005 VL 241 IS 1-2 BP 256 EP 260 DI 10.1016/j.apsusc.2004.09.042 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 893HD UT WOS:000226709000050 ER PT J AU Somorjai, GA Rioux, RM AF Somorjai, GA Rioux, RM TI High technology catalysts towards 100% selectivity fabrication, characterization and reaction studies SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 11th Nordic Symposium on Catalysis CY MAY 23-25, 2004 CL Oulu, FINLAND DE catalysis; selectivity; activity; nanoparticles; high technology; fabrication; characterization; reaction studies ID ELECTRON-BEAM LITHOGRAPHY; SUM-FREQUENCY GENERATION; SINGLE-CRYSTAL SURFACES; ETHYLENE HYDROGENATION; MODEL CATALYSTS; PLATINUM NANOPARTICLES; HYDROCARBON REACTIONS; MESOPOROUS SILICA; PT(111); SIZE AB Catalysis in the 20th century focused primarily on activity, increasing turnover rates to produce more molecules per unit time. High selectivity was of lesser concern because disposal of undesirable byproducts was not costly and raw materials were abundant. This has changed in the 21st century because waste disposal is now expensive and the negative ecological impacts are well-documented. As a result, the present focus and roadmap of catalysis science is to achieve high selectivity in all catalyst-based chemical processes. Our knowledge of the molecular ingredients that influence selectivity is poor compared to our understanding of activity. There are six identifiable features that influence both catalyst activity and selectivity. They are metal surface structure, bonding modifier additives, mobility of metal clusters to restructure as well as the mobility of adsorbates on these clusters, selective site blocking, bifunctionality, and oxide-metal interface sites. Identification of the molecular ingredients of catalyst activity and selectivity provides opportunity for catalyst design, combined catalyst synthesis, characterization and reaction studies. In order to obtain high selectivity towards the ultimate goal of 100% selectivity, synthetic methods that enable molecular control over the size, location, structure of the metallic nanoparticles and catalyst promoters must be developed. We are attempting to do this by fabricating two- and three-dimensional catalysts. Two-dimensional nanoparticle or nanowire array catalysts are fabricated by electron beam lithography (EBL) or size reduction lithography (SRL). Arrays with metal surface areas of about I mm(2) or 10(9) nanoparticles are fabricated by EBL. These model catalyst systems enable the study of high-turnover reactions such as ethylene hydrogenation. SRL and a lithographic polymer imprinting technique are used to produce nanowire or nanodot array model catalysts with metallic surface areas up to I cm(2) or 10(11) nanoparticles. High surface area (1 m(2) Or 10(15) nanoparticles) is produced by a one-step method in which polymer-stabilized monodisperse nanoparticles are synthesized in solution and incorporated into high-surface area mesoporous silica mechanically or through hydrothermal synthesis. Both types of model catalysts are characterized by a variety of physical and chemical techniques and are catalytically active for hydrocarbon conversion test reactions. Our catalyst design approach combines synthesis (fabrication), characterization and reaction studies. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@socrates.berkeley.edu NR 56 TC 103 Z9 103 U1 3 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD FEB 28 PY 2005 VL 100 IS 3-4 BP 201 EP 215 DI 10.1016/j.cattod.2004.07.059 PG 15 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 928MF UT WOS:000229275100002 ER PT J AU Chung, ID Britt, P Xie, D Harth, E Mays, J AF Chung, ID Britt, P Xie, D Harth, E Mays, J TI Synthesis of amino acid-based polymers via atom transfer radical polymerization in aqueous media at ambient temperature SO CHEMICAL COMMUNICATIONS LA English DT Article ID GLASS-IONOMER CEMENTS; T-BUTYL ACRYLATE; METHYL-METHACRYLATE; BLOCK-COPOLYMERS; HEMA AB Well-defined acryloyl beta-alanine (ABA) polymers were synthesized directly via atom transfer radical polymerization (ATRP) under near physiological conditions using various water soluble initiators with high yield and narrow molecular weight distributions. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Indiana Univ Purdue Univ, Dept Biomed Engn, Indianapolis, IN 46202 USA. Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. RP Mays, J (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM jimmymays@utk.edu NR 18 TC 33 Z9 33 U1 0 U2 7 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PD FEB 28 PY 2005 IS 8 BP 1046 EP 1048 DI 10.1039/b416591h PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 905ZG UT WOS:000227609700022 PM 15719111 ER PT J AU Gartling, DK AF Gartling, DK TI Multipoint constraint methods for moving body and non-contiguous mesh simulations SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article; Proceedings Paper CT 5th World Congress on Computational Mechanics CY JUL 07-12, 2002 CL Vienna, AUSTRIA DE finite element; sliding mesh; multipoint constraint ID FICTITIOUS DOMAIN METHOD; FINITE-ELEMENT-METHOD; INCOMPRESSIBLE FLUID; FLOW COMPUTATIONS; INTERFACES; BOUNDARIES; STRATEGY AB A sliding mesh method is demonstrated for moving body simulations involving thermal and fluid problems. Static problems with non-contiguous mesh constructions are also solved using the same methodology. The proposed algorithm employs a parallel implementation of multipoint constraints with an efficient node-in-mesh search procedure. A simple method for treating the problem of partially covered/exposed element surfaces is also summarized. Several examples of static and dynamic thermal conduction and viscous flow problems illustrate the algorithms. Published in 2004 by John Wiley Sons, Ltd. C1 Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Gartling, DK (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM dkgartl@sandia.gov NR 30 TC 5 Z9 5 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD FEB 28 PY 2005 VL 47 IS 6-7 BP 471 EP 489 DI 10.1002/fld.826 PG 19 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 901CE UT WOS:000227259800003 ER PT J AU Aguilar, A Emmons, ED Gharaibeh, MF Covington, AM Bozek, JD Ackerman, G Canton, S Rude, B Schlachter, AS Hinojosa, G Alvarez, I Cisneros, C McLaughlin, BM Phaneuf, RA AF Aguilar, A Emmons, ED Gharaibeh, MF Covington, AM Bozek, JD Ackerman, G Canton, S Rude, B Schlachter, AS Hinojosa, G Alvarez, I Cisneros, C McLaughlin, BM Phaneuf, RA TI Photoionization of ions of the nitrogen isoelectronic sequence: experiment and theory for F2+ and Ne3+ SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID X-RAY SPECTROSCOPY; CROSS-SECTIONS; RADIATIVE RECOMBINATION; OSCILLATOR-STRENGTHS; HIGH-RESOLUTION; TRANSITIONS; HELIUM; OXYGEN; STATES AB Absolute photoionization measurements are reported for admixtures of the ground and metastable states of F2+ from 56.3 eV to 75.6 eV, and of Ne3+ from 89.3 eV to 113.8 eV. The S-4 degrees ground-state and the D-2 degrees and P-2 degrees metastable-state fractions present in the primary ion beams were estimated from photoion yield measurements near their respective threshold energies. Most of the observed resonance structure has been spectroscopically assigned. The measurements are compared with new R-matrix theoretical calculations and with those in the TOPbase astrophysical database. The systematic behaviour of the quantum-defect parameter is analysed as a function of the nuclear charge for four Rydberg series observed in both species, and compared to published data for O+ and N. C1 Univ Nevada, Dept Phys, Reno, NV 89557 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62131, Morelos, Mexico. Harvard Smithsonian Ctr Astrophys, Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA. Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. RP Aguilar, A (reprint author), NIST, Atom Phys Div, 100 Bur Dr,Stop 8421, Gaithersburg, MD 20899 USA. EM phaneuf@physics.unr.edu RI Bozek, John/E-4689-2010; Bozek, John/E-9260-2010; Canton, Sophie/A-8432-2016 OI Bozek, John/0000-0001-7486-7238; NR 28 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD FEB 28 PY 2005 VL 38 IS 4 BP 343 EP 361 DI 10.1088/0953-4075/38/4/003 PG 19 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 914TD UT WOS:000228249700004 ER PT J AU Cohen, JS AF Cohen, JS TI Dissociation and ionization in capture of antiprotons and negative muons by the hydrogen molecular ion SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID DIABATIC-STATE TREATMENT; PROTONIUM FORMATION; ATOMIC-COLLISIONS; MESON MODERATION; PARTICLES; MIXTURES; DYNAMICS AB Cross sections and initial quantum number distributions are calculated for capture of the antiproton ((p) over bar) and negative muon (mu(-)) by the hydrogen molecular ion H-2(+) using the fermion molecular dynamics method. The capture of P is found to be almost entirely adiabatic, occurring via target dissociation without ionization, but nonadiabatic effects are found to play a significant role in the capture of mu(-), especially at the higher capture energies. Generally good agreement is obtained with the recent adiabatic classical-trajectory Monte Carlo calculation of Sakimoto (2004 J. Phys. B: At. Mol. Opt. Phys. 37 2255). The capture properties of H-2(+) are shown to be completely different from those of both the H atom and neutral H-2 molecule. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Cohen, JS (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM cohen@lanl.gov NR 29 TC 13 Z9 13 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD FEB 28 PY 2005 VL 38 IS 4 BP 441 EP 456 DI 10.1088/0953-4075/38/4/011 PG 16 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 914TD UT WOS:000228249700012 ER PT J AU Segalman, RA AF Segalman, RA TI Patterning with block copolymer thin films SO MATERIALS SCIENCE & ENGINEERING R-REPORTS LA English DT Review DE block copolymers; nanopatterning; thin films; microphase separation; polymer self-assembly; block copolymer lithography ID ASYMMETRIC DIBLOCK COPOLYMERS; SATURATED-HYDROCARBON POLYMERS; RECHARGEABLE LITHIUM BATTERIES; SURFACE-INDUCED ORIENTATION; ANGLE NEUTRON-SCATTERING; ABC TRIBLOCK COPOLYMERS; ATOMIC-FORCE MICROSCOPY; ION MASS-SPECTROMETRY; PHASE-BEHAVIOR; ELECTRIC-FIELD AB The nanometer-scale architectures in thin films of self-assembling block copolymers have inspired a variety of new applications. For example, the uniformly sized and shaped nanodomains formed in the films have been used for nanolithography, nanoparticle synthesis, and high-density information storage media. Imperative to all of these applications, however, is a high degree of control over orientation of the nanodomains relative to the surface of the film as well as control over order in the plane of the film. Induced fields including electric, shear, and surface fields have been demonstrated to influence orientation. Both heteroepitaxy and graphoepitaxy can induce positional order on the nanodomains in the plane of the film. This article will briefly review a variety of mechanisms for gaining control over block copolymer order as well as many of the applications of these materials. Particular attention is paid to the potential of perfecting long-range two-dimensional order over a broader range of length scales and the extension of these concepts to functional materials and more complex architectures. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Chem Engn, Div Sci Mat, Lawrence Berkeley Labs, Berkeley, CA 94720 USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem Engn, Div Sci Mat, Lawrence Berkeley Labs, 201D Gilman Hall, Berkeley, CA 94720 USA. EM segalman@berkeley.edu OI Segalman, Rachel/0000-0002-4292-5103 NR 235 TC 656 Z9 657 U1 36 U2 432 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0927-796X EI 1879-212X J9 MAT SCI ENG R JI Mater. Sci. Eng. R-Rep. PD FEB 28 PY 2005 VL 48 IS 6 BP 191 EP 226 DI 10.1016/j.mser.2004.12.003 PG 36 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 922VU UT WOS:000228868800001 ER PT J AU Tang, YJ Zakharov, LN Rheingold, AL Kemp, RA AF Tang, YJ Zakharov, LN Rheingold, AL Kemp, RA TI Synthesis and structural characterization of magnesium amide complexes containing -N[(R)(SiMe3)] ligands SO ORGANOMETALLICS LA English DT Article ID CRYSTAL-STRUCTURES; METALS MAGNESIUM; CARBON-DIOXIDE; FIXATION; ZINC; DERIVATIVES; ACTIVATION; STRONTIUM; ELEMENTS; CADMIUM AB Reaction of anhydrous magnesium bromide with 2 equiv of Me3Si(R)NLi (R = i-Pr, benzyl, mesityl, and SiMe(2)t-Bu) in diethyl ether at ambient temperature followed by treatment with donor solvents such as THF, hexamethylphosphoramide (HMPA), pyridine (py), or 4-(dimethylamino)pyridine (DMAP) affords [(Me3Si)(R)N](2)Mg(L)(n) [R = i-Pr, L = DMAP, n = 2, 1; R = benzyl, L = DMAP, n = 2, 2; R = benzyl, L = HMPA, n = 2, 3; R = mesityl, L = THF, n = 2, 4; R = mesityl, L = py, n = 2, 5; R = SiMe2t-Bu, L = py, n = 1, 91. If R is cyclohexyl (Cy), the reaction in diethyl ether initially yields the solvent-free dimer Mg-2 [N(Cy)(SiMe3)](4), 6, which reacts with excess DMAP to yield Mg[N(Cy)(SiMe3)](2)(DMAP)(2), 7. If R is either the sterically crowded ligand SiPh(2)t-Bu or adamantyl (Ad), the reaction produces solvent-free Mg[N(SiPh(2)t-Bu)(SiMe3)](2), 8, and Mg[N(Ad)(SiMe3)](2)(Et2O), 10, respectively. All of these complexes were characterized by spectral and analytical data. The structures of complexes 1, 2, and 4-10 were confirmed by single-crystal X-ray diffraction analyses. C1 Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA. Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Kemp, RA (reprint author), Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA. EM rakemp@unm.edu NR 38 TC 19 Z9 19 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD FEB 28 PY 2005 VL 24 IS 5 BP 836 EP 841 DI 10.1021/om049203c PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 898TD UT WOS:000227098200015 ER PT J AU Sinha, SK AF Sinha, SK TI Proceedings of the eighth international conference on surface X-ray and neutron scattering - Foreword SO PHYSICA B-CONDENSED MATTER LA English DT Editorial Material ID RESONANT MAGNETIC SCATTERING; TOTAL-EXTERNAL-REFLECTION; ROUGH SURFACES; THIN-FILM; INTERFACE STRUCTURE; SINGLE-CRYSTALS; TRUNCATION RODS; WAVE-GUIDES; MULTILAYERS; GRAPHITE C1 Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sinha, SK (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM ssinha@physics.ucsd.edu NR 55 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 28 PY 2005 VL 357 IS 1-2 BP VII EP X DI 10.1016/j.physb.2004.11.006 PG 4 WC Physics, Condensed Matter SC Physics GA 901VB UT WOS:000227309100001 ER PT J AU Hamilton, WA Porcar, L Magid, LJ AF Hamilton, WA Porcar, L Magid, LJ TI Using neutron reflectometry and reflection geometry 'near-surface" SANS to investigate surfactant micelle organization at a solid-solution interface SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference on Surface X-Ray and Neutron Scattering (SXNS-8) CY JUN 28-JUL 02, 2004 CL Bad Honnef, GERMANY DE neutron reflectometry; SANS; CTAB; micelles; Poiseuille shear ID SCATTERING; SHEAR; CELL AB We have used simultaneous neutron reflectometry (NR) and reflection geometry "near-surface" small angle neutron scattering (NS-SANS) to investigate the ordering of cetyltrimethylammoniurn bromide (CTAB) micelles in aqueous (D2O) solution in the proximity of a quartz surface as a function of concentration and temperature. The NR measurements allow us to determine coherent micellar organization within a few thousand angstroms of the interface while NS-SANS allows simultaneous monitoring of "bulk" states to the greater depth of grazing incidence penetration into the solution, typically 10-100 mum. We illustrate the utility of this monitoring using the example of an apparent Poiseuille surface shear-induced change in micellar organization which is more probably the result of slight temperature increase. (C) 2004 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Ctr Neutron Scattering, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Univ Maryland, College Pk, MD 20742 USA. Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Hamilton, WA (reprint author), Oak Ridge Natl Lab, Ctr Neutron Scattering, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. EM HamiltonWA@ornl.gov NR 12 TC 4 Z9 4 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 28 PY 2005 VL 357 IS 1-2 BP 88 EP 93 DI 10.1016/j.physb.2004.11.028 PG 6 WC Physics, Condensed Matter SC Physics GA 901VB UT WOS:000227309100018 ER PT J AU Pfeifer, MA Robach, O Ocko, BM Robinson, IK AF Pfeifer, MA Robach, O Ocko, BM Robinson, IK TI Thickness-related instability of Cu thin films on Ag(100) SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference on Surface X-Ray and Neutron Scattering (SXNS-8) CY JUN 28-JUL 02, 2004 CL Bad Honnef, GERMANY DE CuAg; martensitic transformations; surface buckling ID X-RAY-DIFFRACTION AB Copper and silver have a sufficiently large mismatch of lattice parameters that the growth of Cu on Ag(100) substrates stabilizes the metastable body-centered cubic (BCC) form of Cu. This paper reports that layer-by-layer growth of the BCC film occurs up to a critical thickness of 10 ML, beyond which a structural instability arises in the thin film. This leads to a uniaxial laterally modulated phase giving rise to satellite peaks in the diffraction from both film and substrate. The characteristic dependence of satellite spacing versus film thickness is interpreted in terms of four possible variants of the modulated film structure. Only one of these variants is consistent with the observed growth behavior. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Illinois, Loomis Lab Phys, Dept Phys, Urbana, IL 61801 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Ocko, BM (reprint author), Univ Illinois, Loomis Lab Phys, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM ben@solids.phy.bnl.gov RI Pfeifer, Mark/C-4132-2011 NR 6 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 28 PY 2005 VL 357 IS 1-2 BP 152 EP 158 DI 10.1016/j.physb.2004.11.047 PG 7 WC Physics, Condensed Matter SC Physics GA 901VB UT WOS:000227309100032 ER PT J AU Feng, R Conrad, EH Kim, C Miceli, R Tringides, MC AF Feng, R Conrad, EH Kim, C Miceli, R Tringides, MC TI The evolution of the structure of quantum size effect Pb nanocrystals on Si(111) 7 x 7 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference on Surface X-Ray and Neutron Scattering (SXNS-8) CY JUN 28-JUL 02, 2004 CL Bad Honnef, GERMANY DE nanocrystals; quantum size effect; surface X-ray scattering ID LOW-TEMPERATURES; GROWTH; PB/SI(111)-(7X7); SURFACES; DISORDER; ISLANDS; UNIFORM AB We have carried out diffuse X-ray scattering measurements of the growth of Pb nanocrystalline islands on Si(111). Analysis of our data shows that islands growing on an initially rough wetting layer transforms the portion of the wetting layer below them into ordered fcc sites. Therefore, the islands grow directly on top of the Si surface with a disordered wetting layer occupying the region between the islands and, consequently, the island height responsible for the quantum well depth is one layer thicker than reported by LEED and STM. These islands have an extremely good vertical order until the islands coalesce into a closed film. At that point the disorder of the film increases consistent with misfit strain relaxation. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. Georgia Inst Technol, Sch Phys, Atlanta, GA 30327 USA. Iowa State Univ, Dept Phys, Ames Lab, USDOE, Ames, IA 50011 USA. RP Tringides, MC (reprint author), Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. EM tringides@ameslab.gov NR 15 TC 5 Z9 5 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 28 PY 2005 VL 357 IS 1-2 BP 175 EP 179 DI 10.1016/j.physb.2004.11.051 PG 5 WC Physics, Condensed Matter SC Physics GA 901VB UT WOS:000227309100036 ER PT J AU Dourdain, S Rezaire, A Mehdi, A Ocko, BM Gibaud, A AF Dourdain, S Rezaire, A Mehdi, A Ocko, BM Gibaud, A TI Real time GISAXS study of micelle hydration in CTAB templated silica thin films SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference on Surface X-Ray and Neutron Scattering (SXNS-8) CY JUN 28-JUL 02, 2004 CL Bad Honnef, GERMANY DE GISAXS; thin films ID X-RAY-SCATTERING; MECHANISM AB We have used grazing incidence small angle X-ray scattering (GISAXS) experiments to probe the mesoscopic organization of cetyltrimethyl ammonium bromide (CTAB) templated silica thin films combined to optical interferometry to monitor the macroscopic evolution of these films as a function of relative humidity (RH). The combination of these two experiments permits to address how water can penetrate or quit the silica network during cycling the RH. We report both the fast and the long time responses of these hybrid materials upon cycling the RH. We show that at high RH a hydration layer of one water molecule covers the micelles. Long time response evidences that the silica network remains flexible along the normal to the films for several hours. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Maine, Fac Sci, CNRS, UMR 6087, F-72085 Le Mans, France. Univ Montpellier 2, CNRS, UMR 5637, Lab Chim Mol & Organ Solide, F-34095 Montpellier 5, France. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Gibaud, A (reprint author), Univ Maine, Fac Sci, CNRS, UMR 6087, F-72085 Le Mans, France. EM alain.gibaud@univ-lemans.fr RI Dourdain, Sandrine/C-3765-2016 OI Dourdain, Sandrine/0000-0003-4828-4092 NR 12 TC 10 Z9 10 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 28 PY 2005 VL 357 IS 1-2 BP 180 EP 184 DI 10.1016/j.physb.2004.11.052 PG 5 WC Physics, Condensed Matter SC Physics GA 901VB UT WOS:000227309100037 ER PT J AU Radziemski, L Cremers, DA Benelli, K Khoo, C Harris, RD AF Radziemski, L Cremers, DA Benelli, K Khoo, C Harris, RD TI Use of the vacuum ultraviolet spectral region for laser-induced breakdown spectroscopy-based Martian geology and exploration SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE laser-induced breakdown spectroscopy; LIBS; Mars; geological analysis ID INDUCED PLASMA SPECTROSCOPY; REDUCED PRESSURE; EMISSION CHARACTERISTICS; STEEL ANALYSIS; SOIL; SPECTROMETRY; ATMOSPHERE; LIBS AB Several elements important to planetary geology (e.g. Br, C, Cl, P, S) and the human exploration of Mars (e.g. toxic elements such as As) have strong emission lines in the purge and vacuum ultraviolet (VUV) spectral region (100-200 nm). This spectral region has not been extensively studied for space applications using geological samples. We studied emissions from the laser-induced breakdown spectroscopy (LIBS) plasma in this region using a sample chamber filled with 7 torr (930 Pa) Of CO2 to simulate the Martian atmosphere. Pressures down to 0.02 torr were also used to evaluate the effect of the residual CO2 on the spectra and to begin investigating the use of VUV-LIBS for airless bodies such as asteroids and the Moon. Spectra were recorded using a 0.3-m vacuum spectrometer with an intensified CCD (ICCD) camera. The effects of time delay and laser energy on LIBS detection at reduced pressure were examined. The effect of ambient CO2 on the detection of C in soil was also evaluated. Lines useful for the spectrochemical analysis of As, Br, C, Cl, P, and S were determined and calibration curves were prepared for these elements. Although LIBS is being developed for stand-off analysis at many meters distance, the experiments reported here were aimed at in-situ (close-up) analysis. (c) 2005 Elsevier B.V. All rights reserved. C1 Res Corp, Tucson, AZ 85712 USA. Los Alamos Natl Lab, Grp CADI, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Grp EES 2, Los Alamos, NM 87545 USA. RP Radziemski, L (reprint author), Res Corp, 4703 E Camp Lowell,Suite 201, Tucson, AZ 85712 USA. EM ljr@rescorp.org NR 33 TC 50 Z9 53 U1 3 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD FEB 28 PY 2005 VL 60 IS 2 BP 237 EP 248 DI 10.1016/j.sab.2004.12.007 PG 12 WC Spectroscopy SC Spectroscopy GA 914QD UT WOS:000228241700005 ER PT J AU Wu, YS Pan, LH AF Wu, YS Pan, LH TI An analytical solution for transient radial flow through unsaturated fractured porous media SO WATER RESOURCES RESEARCH LA English DT Article AB [1] This paper presents analytical solutions for one-dimensional radial transient flow through a horizontal, unsaturated fractured rock formation. In these solutions, unsaturated flow through fractured media is described by a linearized Richards' equation, while fracture-matrix interaction is handled using the dual-continuum concept. Although linearizing Richards' equation requires a specially correlated relationship between relative permeability and capillary pressure functions for both fractures and matrix, these specially formed relative permeability and capillary pressure functions are still physically meaningful. These analytical solutions can thus be used to describe the transient behavior of unsaturated flow in fractured media under the described model conditions. They can also be useful in verifying numerical simulation results, which as demonstrated in this paper, are otherwise difficult to validate. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Wu, YS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM yswu@lbl.gov RI Wu, Yu-Shu/A-5800-2011; Pan, Lehua/G-2439-2015 NR 14 TC 2 Z9 2 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB 26 PY 2005 VL 41 IS 2 AR W02029 DI 10.1029/2004WR003107 PG 6 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 904WJ UT WOS:000227528500001 ER PT J AU Huang, B Foote, LJ Lankford, TK Davern, SM McKeown, CK Kennel, SJ AF Huang, B Foote, LJ Lankford, TK Davern, SM McKeown, CK Kennel, SJ TI A diabody that dissociates to monomer forms at low concentration: effects on binding activity and tumor targeting SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE diabody; dissociation; tumor targeting ID SINGLE-CHAIN FV; ANTIBODY FRAGMENTS; CRYSTAL-STRUCTURE; BIODISTRIBUTION; LOCALIZATION; ORIENTATION; XENOGRAFTS; EXPRESSION; AFFINITY; COMPLEX AB A human scFv, 15-9, was selected from a phage display library for binding to murine laminin-1. A diabody was made from the scFv by shortening the linker from 15 to 5 amino acids between the VH and VL sequence. Radioiodinated scFv and diabody were analyzed for size, binding to laminin, and biodistribution in tumor bearing mice. Diabody preparations at concentrations greater than 10 nM were largely dimer forms (similar to60 kDa) as judged by gel filtration, but diluted diabody was eluted as a monomer (similar to30 kDa). At low concentrations the radiolabeled diabody did not bind well to laminin. The 1251 diabody had significantly lower accumulation in tumors than did the scFv when injected at lower concentrations. These data indicate that the diabody dimer dissociates at concentrations of about 10 nM resulting in monomers with no binding activity for laminin and poor tumor homing properties. (C) 2004 Elsevier Inc. All rights reserved. C1 Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. Univ Tennessee, Med Res Ctr, Knoxville, TN USA. RP Kennel, SJ (reprint author), Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. EM kennelsj@ornl.gov NR 28 TC 18 Z9 18 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD FEB 25 PY 2005 VL 327 IS 4 BP 999 EP 1005 DI 10.1016/j.bbrc.2004.12.114 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 892RN UT WOS:000226667800006 PM 15652494 ER PT J AU Campisi, J AF Campisi, J TI Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors SO CELL LA English DT Review ID HUMAN-DIPLOID FIBROBLASTS; MAMMARY EPITHELIAL-CELLS; RAS-INDUCED SENESCENCE; REPLICATIVE LIFE-SPAN; DNA-DAMAGE RESPONSE; CELLULAR SENESCENCE; STEM-CELL; PREMATURE SENESCENCE; ONCOGENIC RAS; GENE-EXPRESSION AB Cells from organisms with renewable tissues can permanently withdraw from the cell cycle in response to diverse stress, including dysfunctional telomeres, DNA damage, strong mitogenic signals, and disrupted chromatin. This response, termed cellular senescence, is controlled by the p53 and RB tumor suppressor proteins and constitutes a potent anticancer mechanism. Nonetheless, senescent cells acquire phenotypic changes that may contribute to aging and certain age-related diseases, including late-life cancer. Thus, the senescence response may be antagonistically pleiotropic, promoting early-life survival by curtailing the development of cancer but eventually limiting longevity as dysfunctional senescent cells accumulate. C1 Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Buck Inst Age Res, Novato, CA 94545 USA. RP Campisi, J (reprint author), Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM jcampisi@lbl.gov NR 101 TC 1213 Z9 1275 U1 23 U2 216 PU CELL PRESS PI CAMBRIDGE PA 1100 MASSACHUSETTS AVE, CAMBRIDGE, MA 02138 USA SN 0092-8674 J9 CELL JI Cell PD FEB 25 PY 2005 VL 120 IS 4 BP 513 EP 522 DI 10.1016/j.cell.2005.02.003 PG 10 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 901GR UT WOS:000227271500008 PM 15734683 ER PT J AU Burgess, I Li, M Horswell, SL Szymanski, G Lipkowski, J Satija, S Majewski, J AF Burgess, I Li, M Horswell, SL Szymanski, G Lipkowski, J Satija, S Majewski, J TI Influence of the electric field on a bio-mimetic film supported on a gold electrode SO COLLOIDS AND SURFACES B-BIOINTERFACES LA English DT Article; Proceedings Paper CT 10th International Conference on Organized Molecular Films CY OCT 05-10, 2003 CL Beijing, PEOPLES R CHINA SP Chinese Acad Sci, Inst Chem, Peking Univ, Natl Nat Sci Fdn China, Minist Sci & Technol, P&G, BASF DE biological membrane; phospholipid vesicles; quartz ID NEUTRON REFLECTIVITY; PHOSPHOLIPID-VESICLES; ADSORPTION; INTERFACE; BILAYERS; CHANNELS; SURFACE; LAYERS AB A model biological membrane was formed by fusion of mixed cholesterol and DMPC (dimyristoylphosphatidylcholine) phospholipid vesicles onto a gold-coated quartz support. The gold surface was charged and the influence of the charge at the solid support on the structure and integrity of the phospholipid bilayer was investigated using the specular reflection of neutrons and electrochemical measurements. When the surface charge density is close to zero, the lipid vesicles fuse directly on the surface to form a bilayer with a small number of defects and hence low water content. When the support's surface is negatively charged the film swells and incorporates water due to the field driven poration of the membrane. When the charge density is more negative then -8 mu C cm(-1) the bilayer is detached from the metal surface. However, it remains in close proximity to the metal electrode, suspended on a thin cushion of water. The film thicknesses, calculated from neutron reflectivity, have allowed us to determine the tilt angle of the lipid molecules as a function of the support's charge density. The lipid molecules are tilted 55 degrees from the surface normal at zero charge density but become significantly more perpendicular (30 degrees tilt angle) at charge densities more negative than -8 mu C cm(-1). The tilt angle measurements are in very good agreement with previous IR studies. This paper describes the highlights of a more in-depth study which is fully described in [1]. Published by Elsevier B.V. C1 Univ Guelph, Dept Chem & Biochem, Guelph, ON N1G 2W1, Canada. NIST, NIST Ctr Neutron Res, Gaithersburg, MD USA. RP Majewski, J (reprint author), Los Alamos Natl Lab, LANSCE12, MLNSCE, Los Alamos, NM 87545 USA. EM jarek@lanl.gov RI Lujan Center, LANL/G-4896-2012 NR 27 TC 33 Z9 34 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-7765 J9 COLLOID SURFACE B JI Colloid Surf. B-Biointerfaces PD FEB 25 PY 2005 VL 40 IS 3-4 SI SI BP 117 EP 122 DI 10.1016/j.colsurfb.2004.10.029 PG 6 WC Biophysics; Chemistry, Physical; Materials Science, Biomaterials SC Biophysics; Chemistry; Materials Science GA 905DJ UT WOS:000227547600002 PM 15708498 ER PT J AU Miller, CE Majewski, J Kjaer, K Weygand, M Faller, R Satija, S Kuhl, TL AF Miller, CE Majewski, J Kjaer, K Weygand, M Faller, R Satija, S Kuhl, TL TI Neutron and X-ray scattering studies of cholera toxin interactions with lipid monolayers at the air-liquid interface SO COLLOIDS AND SURFACES B-BIOINTERFACES LA English DT Article; Proceedings Paper CT 10th International Conference on Organized Molecular Films CY OCT 05-10, 2003 CL Beijing, PEOPLES R CHINA SP Chinese Acad Sci, Inst Chem, Peking Univ, Natl Nat Sci Fdn China, Minist Sci & Technol, P&G, BASF DE neutron reflectivity; X-ray reflectivity; X-ray grazing incidence diffraction; protein binding; model biomembranes; X-ray beam damage ID CRYSTAL-STRUCTURE AB Using neutron/X-ray reflectivity and X-ray grazing incidence diffraction (GID), we have characterized the structure of mixed DPPE:GM, lipid monolayers before and during the binding of cholera toxin (CTAB(5)) or its B subunit (CTB5). Structural parameters such as the density and thickness of the lipid layer, extension of the GM(1) oligosaccharide headgroup, and orientation and position of the protein upon binding are reported. Both CTAB5 and CTB5 were measured to have similar to 50% coverage when bound to the lipid monolayer. X-ray GID experiments show that both the lipid monolayer and the cholera toxin layer are crystalline. The effects of X-ray beam damage have been assessed and the monolayer/toxin structure does not change with time after protein binding has saturated. Published by Elsevier B.V. C1 Los Alamos Natl Lab, Manuel Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA. Riso Natl Lab, Dept Phys, DK-4000 Roskilde, Denmark. Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Majewski, J (reprint author), Los Alamos Natl Lab, Manuel Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. EM jarek@lanl.gov RI Lujan Center, LANL/G-4896-2012 NR 8 TC 7 Z9 7 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-7765 J9 COLLOID SURFACE B JI Colloid Surf. B-Biointerfaces PD FEB 25 PY 2005 VL 40 IS 3-4 SI SI BP 159 EP 163 DI 10.1016/j.colsurfb.2004.10.009 PG 5 WC Biophysics; Chemistry, Physical; Materials Science, Biomaterials SC Biophysics; Chemistry; Materials Science GA 905DJ UT WOS:000227547600010 PM 15708506 ER PT J AU Douglas, TA Sturm, M Simpson, WR Brooks, S Lindberg, SE Perovich, DK AF Douglas, TA Sturm, M Simpson, WR Brooks, S Lindberg, SE Perovich, DK TI Elevated mercury measured in snow and frost flowers near Arctic sea ice leads SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID POLAR SUNRISE; TROPOSPHERIC CHEMISTRY; ATMOSPHERIC MERCURY; GASEOUS MERCURY; SURFACE; OZONE; DEPLETION; SPRINGTIME; GROWTH; AREA AB Elevated mercury concentrations have been reported in arctic coastal snow far from emission sources. The mercury is deposited during mercury depletion events (MDEs), a set of photochemical atmospheric reactions involving reactive halogens. The highest mercury concentrations are clustered near the coast, leading to speculation that sea ice or sea ice leads play a role in MDEs. The nature of this connection is not fully understood. We report mercury concentrations up to 820 ng/L in snow and frost flowers along sea ice leads near Barrow, Alaska. These concentrations are nine times higher than values from nearby coastal snow and are almost half of the mercury maximum contaminant level in United States drinking water. The high values were found only near leads that had convective plumes above open water suggesting that the same processes that produce a supersaturated environment for water vapor near sea ice leads may be instrumental in mercury deposition. C1 USA, Cold Reg Res & Engn Lab, Ft Wainwright, AK USA. Univ Alaska, Dept Chem, Fairbanks, AK 99701 USA. Univ Alaska, Inst Geophys, Fairbanks, AK 99701 USA. Natl Ocean & Atmospher Adm, Atmospher Turbulence & Diffus Div, Oak Ridge, TN USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. USA, Cold Reg Res & Engn Lab, Hanover, NH 03755 USA. RP Douglas, TA (reprint author), USA, Cold Reg Res & Engn Lab, Ft Wainwright, AK USA. EM thomas.a.douglas@erdc.usace.army.mil RI Simpson, William/I-2859-2014 OI Simpson, William/0000-0002-8596-7290 NR 22 TC 46 Z9 48 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 25 PY 2005 VL 32 IS 4 AR L04502 DI 10.1029/2004GL022132 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 904VE UT WOS:000227525400008 ER PT J AU Weinberger, JL Brown, KM Long, PE AF Weinberger, JL Brown, KM Long, PE TI Painting a picture of gas hydrate distribution with thermal images SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID METHANE HYDRATE; CASCADIA MARGIN; SEDIMENTS; RIDGE; CONSTRAINTS; DEPOSITS; PALEOCENE; FLUID AB A study of cold thermal anomalies identified in continuous down-core records of thermal structure acquired by an infrared (IR) camera during Ocean Drilling Program (ODP) Leg 204 to southern Hydrate Ridge, is combined with core-based observations of structure and lithology, to present new insights into the influence of lithology on hydrate distribution in an accretionary margin. Hydrate distribution is spatially associated with < 0.5 cm thick, laterally discontinuous sand horizons that compose < 1 % of the sedimentary section at all sites. Proximity to the fractured ridge crest determines the extent to which individual sand horizons host hydrate, with 70 % of the horizons hosting hydrate at the crest and only 29 % in the basin. This trend is consistent with focused up-dip migration of fluids along permeable lithologic conduits, and shows that lateral flow may be as important as vertical diffusion and fracture flow in determining gas hydrate distribution at Hydrate Ridge. C1 Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. Pacific NW Natl Lab, Richland, WA USA. RP Weinberger, JL (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. EM jlweinbe@ucsd.edu RI Long, Philip/F-5728-2013 OI Long, Philip/0000-0003-4152-5682 NR 27 TC 27 Z9 27 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 25 PY 2005 VL 32 IS 4 AR L04609 DI 10.1029/2004GL021437 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 904VE UT WOS:000227525400002 ER PT J AU Radtke, CW Polydore, CL Cox, SB Cobb, GP AF Radtke, CW Polydore, CL Cox, SB Cobb, GP TI Vapor-phase analysis of isobutyl acetate, isopropyl acetate, n-propyl acetate and their respective alcohols using solid-phase microextraction-gas chromatography with a mass selective detector SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE SPME; GC-MS; volatiles; soil gas; ester; alcohol ID VOLATILE ORGANIC-COMPOUNDS; SPME; SPECTROMETRY; OPTIMIZATION; METABOLITES; CALIBRATION; COMPONENTS; PRODUCTS; GC/MS; MVOCS AB A solid-phase microextraction (SPME)-GC-MS method for three esters and the corresponding alcohols was tested for responses in accuracy, within-run precision (repeatability), and between-run precision (reproducibility) due to individual operators, individual analysis days, and differing analyte concentrations. At 5 ppm (v/v) [ppmv], three of the six analytes showed significant (p < 0.05) operator effects, while five of six analytes gave a significant effect due to the days of analysis. At 20 ppmv, five of the six analytes gave significant operator and daily effects. At 100ppmv, all the arialytes showed significant daily effects but no operator effects were observed. The repeatability was concentration dependent, with all six analytes combining for an average RSD of 12.1 +/- 6.1 % at 1 ppmv, becoming most precise at 50 ppmv at 1.01 +/- 0.45%, then increasing at 100 ppmv to 4.12 +/- 1.88%. The contributors to error trended as: concentration > daily effects > operator. (C) 2005 Elsevier B.V. All rights reserved. C1 Idaho Natl Engn & Environm Lab, Dept Biotechnol, Idaho Falls, ID 83415 USA. Texas Tech Univ, Inst Environm & Human Hlth, Lubbock, TX 79416 USA. RP Radtke, CW (reprint author), Idaho Natl Engn & Environm Lab, Dept Biotechnol, Idaho Falls, ID 83415 USA. EM radtcw@inel.gov RI Cox, Stephen/A-5037-2010 NR 25 TC 2 Z9 2 U1 3 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD FEB 25 PY 2005 VL 1066 IS 1-2 BP 225 EP 230 DI 10.1016/j.chroma.2005.01.019 PG 6 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 904MY UT WOS:000227503600028 PM 15794575 ER PT J AU Au, M AF Au, M TI Hydrogen storage properties of magnesium based nanostructured composite materials SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY LA English DT Article DE magnesium; hydrogen storage; nanostructured materials; composite ID ALLOYS; HYDRIDES; SORPTION; MG; MECHANISM; METALS AB In this work, nanostructured composite materials Mg-Ni, Mg-Ni-La, Mg-Ni-Ce and Mg-LaNi5 have been synthesized using the mechanical alloying process. The new materials produced have been investigated by X-ray diffraction (XRD), transition electron microscope (TEM), scanning electron microscope (SEM) and electron energy dispersion spectrum (EDS) for their phase compositions, crystal structure, grain size, particle morphology and the distribution of catalyst element. Hydrogen storage capacities and the hydriding-dehydriding kinetics of the new materials have been measured at different temperatures using a Sieverts apparatus. The results show that amorphous/nanostructured composite material Mg 50 wt.%-Ni 50 wt.% absorbs 5.9 wt.% within 5 min and desorbs 5.1 wt.% hydrogen within 15 min at 250degreesC, respectively. It is confirmed that mechanical alloying that reduces particle size and introduces mechanical stress accelerates the hydrogenation kinetics of the magnesium based materials even at low temperature. But, to release the absorbed hydrogen from the mechanical alloyed materials, a high temperature is still required. It is believed that the dehydriding temperature is largely controlled by the thermodynamic stability of magnesium hydride. It is found that doping Mg-Ni nano/amorphous composite materials with lanthanum, cerium and LaNi5 alloy reduces the hydriding and dehydriding temperatures. The composite material Mg 80 wt.%-LaNi5 20 wt.% absorbs 1.96% hydrogen and releases 1.75 wt.% hydrogen at 25degreesC, which suggests the formation of unstable hydrides. Although the stability of MgH2 cannot be easily reduced by ball milling alone, the results suggest the thermodynamic behavior of Mg-Ni nano/amorphous composite materials can be alternated by additives such as La, LaNi5 or other effective elements. Published by Elsevier B.V. C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Au, M (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM ming.au@srs.gov RI Mahalingam, Arjun/G-8586-2011 NR 21 TC 54 Z9 60 U1 0 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5107 J9 MAT SCI ENG B-SOLID JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. PD FEB 25 PY 2005 VL 117 IS 1 BP 37 EP 44 DI 10.1016/j.mseb.2004.10.017 PG 8 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 899RW UT WOS:000227163500007 ER PT J AU Bae, HJ Sigman, J Norton, DP Boatner, L AF Bae, HJ Sigman, J Norton, DP Boatner, L TI Dielectric properties of Ti-doped K(Ta,Nb)O-3 thin films grown by pulsed laser deposition SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY LA English DT Article DE perovskite; potassium tantalate; tunable dielectric ID POTASSIUM-TANTALATE; KTA1-XNBXO3; RELAXATION; CRYSTALS; TARGETS; RANGE AB We have investigated the growth and dielectric properties of K(Ta,Nb)O-3 films doped with Ti. Titanium (+4) substitution on the group V (Nb/Ta) site should introduce an acceptor state, thus reducing dielectric losses due to defect-induced donor states. Using 3% Ti-doped targets, K(Ta,Nb)O-3:Ti films were grown on MgO(001) crystals using pulsed-laser deposition. A reduction in the loss tangent was observed for Ti-doped K(Ta,Nb)O-3 relative to undoped films, although a reduction in tunability is also seen. The crystallinity, morphology, dielectric constant, and tunability of K(Ta,Nb)O-3:Ti films are reported. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32603 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Norton, DP (reprint author), Univ Florida, Dept Mat Sci & Engn, 100 Rhines Hall,POB 116400, Gainesville, FL 32603 USA. EM dnort@mse.ufl.edu RI Boatner, Lynn/I-6428-2013 OI Boatner, Lynn/0000-0002-0235-7594 NR 25 TC 6 Z9 6 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5107 J9 MAT SCI ENG B-SOLID JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. PD FEB 25 PY 2005 VL 117 IS 1 BP 87 EP 91 DI 10.1016/j.mseb.2004.09.029 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 899RW UT WOS:000227163500014 ER PT J AU Besseling, R Kes, PH Drose, T Vinokur, VM AF Besseling, R Kes, PH Drose, T Vinokur, VM TI Depinning and dynamics of vortices confined in mesoscopic flow channels SO NEW JOURNAL OF PHYSICS LA English DT Article ID CHARGE-DENSITY-WAVES; DRIVEN VORTEX LATTICES; FLUX-LINE-LATTICE; FRENKEL-KONTOROVA MODEL; MAGNETIC-BUBBLE ARRAYS; ONE-DIMENSIONAL CDW; SUPERCONDUCTING FILMS; II SUPERCONDUCTORS; DIELECTRIC SUSCEPTIBILITY; TYPE-2 SUPERCONDUCTORS AB We study numerically and analytically the behaviour of vortex matter in artificial flow channels confined by pinned vortices in the channel edges (CEs). The critical current density J(s) for channel flow is governed by the interaction with the static vortices in the CEs. Motivated by early experiments which showed oscillations of Js on changing (in) commensurability between the channel width w and the natural vortex row spacing b(0), we study structural changes associated with (in) commensurability and their effect on Js and the dynamics. The behaviour depends crucially on the presence of disorder in the arrays in the CEs. For ordered CEs, maxima in J(s) occur at commensurability w = nb(0) (n is an integer), while for w not equal nb(0) defects along the CEs cause a vanishing J(s). For weak disorder, the sharp peaks in J(s) are reduced in height and broadened via nucleation and pinning of defects. The corresponding structures in the channels (for zero or weak disorder) are quasi-1D n row configurations, which can be adequately described by a (disordered) sine-Gordon model. For larger disorder, matching between the longitudinal vortex spacings inside and outside the channel becomes irrelevant and, for w similar or equal to nb(0), the shear current J(s) levels at similar to 30% of the value J(s)(0) for the ideal commensurate lattice. Around 'half filling' (w/b(0) similar or equal to n +/- 1/2), the disorder leads to new phenomena, namely stabilization and pinning of misaligned dislocations and coexistence of n and n +/- 1 rows in the channel. At sufficient disorder, these quasi-2D structures cause a maximum in J(s) around mismatch, while J(s) smoothly decreases towards matching due to annealing of the misaligned regions. Near threshold, motion inside the channel is always plastic. We study the evolution of static and dynamic structures on changing w/b(0), the relation between the J(s) modulations and transverse fluctuations in the channels and find dynamic ordering of the arrays at a velocity with a matching dependence similar to J(s). We finally compare our numerical findings at strong disorder with recent mode-locking experiments, and find good qualitative agreement. C1 Leiden Univ, Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands. Univ Hamburg, Inst Theoret Phys 1, D-20355 Hamburg, Germany. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Besseling, R (reprint author), Univ Edinburgh, Sch Phys, Kings Bldg,Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland. EM rbesseli@ph.ed.ac.uk RI Besseling, Rut/A-7475-2011 OI Besseling, Rut/0000-0002-6144-3054 NR 97 TC 24 Z9 24 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 25 PY 2005 VL 7 AR 71 DI 10.1088/1367-2630/7/1/071 PG 53 WC Physics, Multidisciplinary SC Physics GA 917LR UT WOS:000228463900001 ER PT J AU Eisner, WR Bockheim, JG Hinkel, KM Brown, TA Nelson, FE Peterson, KM Jones, BM AF Eisner, WR Bockheim, JG Hinkel, KM Brown, TA Nelson, FE Peterson, KM Jones, BM TI Paleoenvironmental analyses of an organic deposit from an erosional landscape remnant, Arctic Coastal Plain of Alaska SO PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY LA English DT Article DE Alaska; arctic environnient; holocene; permafrost; pollen analysis; soil organic carbon; tundra ID THAW-LAKE BASINS; NORTHERN ALASKA; EARLY HOLOCENE; POPULUS-BALSAMIFERA; THERMAL MAXIMUM; LATE WISCONSIN; BARROW ALASKA; BROOKS RANGE; CARBON POOLS; POLLEN AB The dominant landscape process on the Arctic Coastal Plain of northern Alaska is the formation and drainage of thaw lakes. Lakes and drained thaw-lake basins account for approximately 75% of the modem surface expression of the Barrow Peninsula. The thaw-lake cycle usually obliterates lacustrine or peat sediments from previous cycles, which could otherwise be used for paleoecological reconstruction of long-term landscape and vegetation changes. Several possible erosional remnants of a former topographic surface that predates the formation of the thaw lakes have been tentatively identified. These remnants are characterized by a higher elevation, a thick organic layer with very high ground ice content in the upper permafrost and a plant community somewhat atypical of the region. Ten soil cores were collected from one site, and one core was intensively sampled for soil organic carbon content, pollen analysis and C-14 dating. The lowest level of the organic sediments represents the earliest phase of plant growth and dates to ca. 9000 cal BP. Palynological, evidence indicates the presence of mesic shrub tundra (including sedge, birch, willow and heath vegetation), and microfossil indicators point to wetter eutrophic conditions during this period. Carbon accumulation was rapid due to high net primary productivity in a relatively nutrient-rich environment. These results are interpreted as the local response to ameliorating climate during the early Holocene. The middle Holocene portion of the record contains an unconformity, indicating that between 8200 and 4200 cal BP sediments were eroded from the site, presumably in response to wind activity during a drier period centered around 4500 cal BP. The modem vegetation community of the erosional remnant was established after 4200 cal BP and peat growth resumed. During the late Holocene, carbon accumulation rates (CARs) were greatly reduced in response to the combined effects of declining productivity associated with climatic cooling, and increased nutrient stress as paludification and permafrost aggradation sequestered mineral nutrients. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Cincinnati, Dept Geog, Cincinnati, OH 45221 USA. Univ Wisconsin, Dept Soil Sci, Madison, WI 53706 USA. Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. Univ Delaware, Dept Geog, Newark, DE 19716 USA. Univ Alaska, Dept Biol Sci, Anchorage, AK 99508 USA. RP Eisner, WR (reprint author), Univ Cincinnati, Dept Geog, ML 131, Cincinnati, OH 45221 USA. EM wendy.eisner@uc.edu NR 73 TC 25 Z9 25 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-0182 J9 PALAEOGEOGR PALAEOCL JI Paleogeogr. Paleoclimatol. Paleoecol. PD FEB 25 PY 2005 VL 217 IS 3-4 BP 187 EP 204 DI 10.1016/j.palaeo.2004.11.025 PG 18 WC Geography, Physical; Geosciences, Multidisciplinary; Paleontology SC Physical Geography; Geology; Paleontology GA 901VJ UT WOS:000227309900002 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burnett, TH Busato, E Butler, JM Bystricky, J Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Chevalier, L Cho, DK Choi, S Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Coss, J Cothenet, A Cousinou, MC Crepe-Renaudin, S Cristetiu, M Cummings, MAC Cutts, D da Motta, H Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De la Cruz-Burelo, E Martins, CD Dean, S Deliot, F Delsart, PA Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Eltzroth, JT Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, D Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Freeman, W Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Ginther, G Golling, T Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Jostlein, H Juste, A Kado, MM Kafer, D Kahl, W Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, KH Klima, B Klute, M Kohli, JM Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Krzywdzinski, S Kuleshov, S Kulik, Y Kunori, S Kupco, A Kurca, T Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, SW Lee, WM Leflat, A Lehner, F Leonidopoulos, C Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magerkurth, A Magnan, AM Makovec, N Mal, PK Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melanson, HL Melnitchouk, A Merkin, M Merritt, KW Meyer, A Miettinen, H Mihalcea, D Mitrevski, J Mokhov, N Molina, J Mondal, NK Montgomery, HE Moore, RW Muanza, GS Mulders, M Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Garzon, GJOY Padley, P Parashar, N Park, J Park, SK Parsons, J Partridge, R Parua, N Patwa, A Perea, PM Perez, E Peters, O Petroff, P Petteni, M Phaf, L Piegaia, R Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pope, BG da Silva, WLP Prosper, HB Protopopescu, S Przybycien, MB Qian, J Quadt, A Quinn, B Rani, KJ Rapidis, PA Ratoff, PN Reay, NW Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schukin, AA Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shephard, WD Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Song, Y Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Steinbruck, G Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tentindo-Repond, S Thomas, E Thooris, B Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Anh, TV Wahl, HD Walker, R Wang, L Wang, ZM Warchol, J Warsinsky, M Watts, G Wayne, M Weber, M Weerts, H Wegner, M Wermes, N White, A White, V Whiteson, D Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG Zylberstejn, A AF Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burnett, TH Busato, E Butler, JM Bystricky, J Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Chevalier, L Cho, DK Choi, S Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Coss, J Cothenet, A Cousinou, MC Crepe-Renaudin, S Cristetiu, M Cummings, MAC Cutts, D da Motta, H Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De la Cruz-Burelo, E Martins, CD Dean, S Deliot, F Delsart, PA Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Eltzroth, JT Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, D Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Freeman, W Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Ginther, G Golling, T Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Jostlein, H Juste, A Kado, MM Kafer, D Kahl, W Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, KH Klima, B Klute, M Kohli, JM Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Krzywdzinski, S Kuleshov, S Kulik, Y Kunori, S Kupco, A Kurca, T Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, SW Lee, WM Leflat, A Lehner, F Leonidopoulos, C Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magerkurth, A Magnan, AM Makovec, N Mal, PK Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melanson, HL Melnitchouk, A Merkin, M Merritt, KW Meyer, A Miettinen, H Mihalcea, D Mitrevski, J Mokhov, N Molina, J Mondal, NK Montgomery, HE Moore, RW Muanza, GS Mulders, M Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Garzon, GJOY Padley, P Parashar, N Park, J Park, SK Parsons, J Partridge, R Parua, N Patwa, A Perea, PM Perez, E Peters, O Petroff, P Petteni, M Phaf, L Piegaia, R Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pope, BG da Silva, WLP Prosper, HB Protopopescu, S Przybycien, MB Qian, J Quadt, A Quinn, B Rani, KJ Rapidis, PA Ratoff, PN Reay, NW Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schukin, AA Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shephard, WD Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Song, Y Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Steinbruck, G Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tentindo-Repond, S Thomas, E Thooris, B Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Anh, TV Wahl, HD Walker, R Wang, L Wang, ZM Warchol, J Warsinsky, M Watts, G Wayne, M Weber, M Weerts, H Wegner, M Wermes, N White, A White, V Whiteson, D Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG Zylberstejn, A TI Search for the flavour-changing neutral current B-s(0)->mu+mu- in p(p)over-bar collisions at root s=1.96 TeV with the D0 dectector SO PHYSICAL REVIEW LETTERS LA English DT Article ID B-S; QCD CORRECTIONS; MU(+) MU(-); RUN-II; DECAYS; MODELS AB We present the results of a search for the flavor-changing neutral current decay B-s(0)-->mu(+)mu(-) using a data set with integrated luminosity of 240 pb(-1) of p (p) over bar collisions at roots=1.96 TeV collected with the D0 detector in run II of the Fermilab Tevatron collider. We find the upper limit on the branching fraction to be B(B-s(0)-->mu(+)mu(-))less than or equal to5.0x10(-7) at the 95% C.L. assuming no contributions from the decay B-d(0)-->mu(+)mu(-) in the signal region. This limit is the most stringent upper bound on the branching fraction B-s(0)-->mu(+)mu(-) to date. C1 Joint Nucl Res Inst, Dubna, Russia. Univ Buenos Aires, Buenos Aires, DF, Argentina. LAFEX, Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. Univ Estado Rio de Janerio, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. McGill Univ, Montreal, PQ, Canada. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. Univ Paris 06, LPNHE, CNRS, IN2P3, Paris, France. Univ Paris 07, CNRS, IN2P3, Paris, France. CEA, DAPNIA, Serv Phys Particules, Saclay, France. Univ Haute Alsace, Mulhouse, France. Univ Strasbourg, CNRS, IReS, IN2P3, Strasbourg, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys A 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Punjabi Univ, Chandigarh 160014, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. NIKHEF, FOM Inst, Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Univ Mississippi, University, MS 38677 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Joint Nucl Res Inst, Dubna, Russia. RI Merkin, Mikhail/D-6809-2012; Nomerotski, Andrei/A-5169-2010; Yip, Kin/D-6860-2013; Kuleshov, Sergey/D-9940-2013; Novaes, Sergio/D-3532-2012; Gutierrez, Phillip/C-1161-2011; De, Kaushik/N-1953-2013; Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Telford, Paul/B-6253-2011; Fisher, Wade/N-4491-2013; Leflat, Alexander/D-7284-2012 OI Yip, Kin/0000-0002-8576-4311; Kuleshov, Sergey/0000-0002-3065-326X; Novaes, Sergio/0000-0003-0471-8549; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; NR 25 TC 80 Z9 80 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 25 PY 2005 VL 94 IS 7 AR 071802 DI 10.1103/PhysRevLett.97.071802 PG 7 WC Physics, Multidisciplinary SC Physics GA 900WT UT WOS:000227245700014 PM 15783803 ER PT J AU Freund, HP O'Shea, PG Biedron, SG AF Freund, HP O'Shea, PG Biedron, SG TI Nonlinear harmonic generation in free-electron lasers with helical wigglers SO PHYSICAL REVIEW LETTERS LA English DT Article ID RADIATION AB It is widely believed that harmonics are suppressed in helical wigglers. However, linear harmonic generation (LHG) occurs by an azimuthal resonance that excites circularly polarized, off-axis waves, where the hth harmonic varies as exp(ihtheta). Nonlinear harmonic generation (NHG) is driven by bunching at the fundamental and has different properites from LHG. While NHG has been studied in planar wigglers, there has been no analysis of NHG in helical wigglers. The 3D simulation code MEDUSA has been modified for this purpose, and it is shown that NHG is substantial in helical wigglers and that the even and odd harmonics have comparable intensities. C1 Sci Applicat Int Corp, Mclean, VA 22102 USA. Univ Maryland, College Pk, MD 20742 USA. Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Freund, HP (reprint author), Sci Applicat Int Corp, Mclean, VA 22102 USA. NR 19 TC 11 Z9 11 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 25 PY 2005 VL 94 IS 7 AR 074802 DI 10.1103/PhysRevLett.94.074802 PG 4 WC Physics, Multidisciplinary SC Physics GA 900WT UT WOS:000227245700033 PM 15783822 ER PT J AU Guest, JR Choi, JH Hansis, E Povilus, AP Raithel, G AF Guest, JR Choi, JH Hansis, E Povilus, AP Raithel, G TI Laser cooling and magnetic trapping at several Tesla SO PHYSICAL REVIEW LETTERS LA English DT Article ID ULTRACOLD NEUTRAL PLASMA; RYDBERG ATOMS; COLD; GAS AB Laser cooling and magnetic trapping of Rb-85 atoms have been performed in extremely strong and tunable magnetic fields, extending these techniques to a new regime and setting the stage for a variety of cold atom and plasma experiments. Using a superconducting Ioffe-Pritchard trap and an optical molasses, 2.4x10(7) atoms were laser cooled to the Doppler limit and magnetically trapped at bias fields up to 2.9 T. At magnetic fields up to 6 T, 3x10(6) cold atoms were laser cooled in a pulsed loading scheme. These bias fields are well beyond an order of magnitude larger than those in previous experiments. Loading rates, molasses lifetimes, magnetic-trapping times, and temperatures were measured using photoionization and electron detection. C1 Univ Michigan, Dept Phys, FOCUS Ctr, Ann Arbor, MI 48109 USA. RP Guest, JR (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Guest, Jeffrey/B-2715-2009 OI Guest, Jeffrey/0000-0002-9756-8801 NR 26 TC 21 Z9 21 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 25 PY 2005 VL 94 IS 7 AR 073003 DI 10.1103/PhysRevLett.94.073003 PG 4 WC Physics, Multidisciplinary SC Physics GA 900WT UT WOS:000227245700024 PM 15783813 ER PT J AU Hu, SX Collins, LA AF Hu, SX Collins, LA TI Imaging molecular structures by electron diffraction using an intense few-cycle pulse SO PHYSICAL REVIEW LETTERS LA English DT Article ID ABOVE-THRESHOLD IONIZATION; NONSEQUENTIAL DOUBLE-IONIZATION; STRONG-FIELD IONIZATION; LASER-PULSES; WAVE-PACKETS; COMPRESSION; ULTRASHORT; EXCITATION; EMISSION; DYNAMICS AB As an intense few-cycle pulse interacts with an atomic or molecular target, its strong oscillating field may first pull electrons out of the target and subsequently drive them back to scatter on the target. The scattering may occur only a few times or even once during the interaction. This unique property of few-cycle pulses enables one to image ultrafast transient structures of matter by the means of pulse-driven electron diffraction. We demonstrated this phenomenon with K-2(+) via three-dimensional calculations of the time-dependent Schrodinger equation. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM suxing@lanl.gov; lac@lanl.gov RI Hu, Suxing/A-1265-2007 OI Hu, Suxing/0000-0003-2465-3818 NR 43 TC 60 Z9 61 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 25 PY 2005 VL 94 IS 7 AR 073004 DI 10.1103/PhysRevLett.94.073004 PG 4 WC Physics, Multidisciplinary SC Physics GA 900WT UT WOS:000227245700025 PM 15783814 ER PT J AU Kierfeld, J Vinokur, VM AF Kierfeld, J Vinokur, VM TI Competitive localization of vortex lines and interacting bosons SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; CORRELATED DISORDER AB We present a theory for the localization of three-dimensional vortex lines or two-dimensional bosons with a short-ranged repulsive interaction which are competing for a single columnar defect or potential well. For two vortices we use a necklace model approach to find a new kind of delocalization transition between two different states with a single bound particle. This exchange-delocalization transition is characterized by the onset of vortex exchange on the defect for sufficiently weak vortex-vortex repulsion or sufficiently weak binding energy corresponding to high temperature. We calculate the transition point and order of the exchange-delocalization transition. A generalization of this transition to an arbitrary vortex number is proposed. C1 Max Planck Inst Limnol, D-14424 Potsdam, Germany. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kierfeld, J (reprint author), Max Planck Inst Limnol, D-14424 Potsdam, Germany. RI Kierfeld, Jan/A-2659-2009 OI Kierfeld, Jan/0000-0003-4291-0638 NR 13 TC 7 Z9 7 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 25 PY 2005 VL 94 IS 7 AR 077005 DI 10.1103/PhysRevLett.94.077005 PG 4 WC Physics, Multidisciplinary SC Physics GA 900WT UT WOS:000227245700057 PM 15783846 ER PT J AU Park, C Fenter, PA Sturchio, NC Regalbuto, JR AF Park, C Fenter, PA Sturchio, NC Regalbuto, JR TI Probing outer-sphere adsorption of aqueous metal complexes at the oxide-water interface with resonant anomalous X-ray reflectivity SO PHYSICAL REVIEW LETTERS LA English DT Article ID SCATTERING; ABSORPTION; DEPOSITION; OXIDATION; SILICA; MODEL; LAYER AB Resonant anomalous x-ray reflectivity near the Pt L-III edge simultaneously revealed the geometric and spectroscopic structures of Pt(NH3)(4)(2+) ions adsorbed at the quartz(100)-water interface. The derived Pt geometric subprofile shows two discrete "outer-sphere'' adsorbed layers, and the interface-specific x-ray absorption edge profile exhibits a significant white-line enhancement compared to the bulk-solution species. C1 Argonne Natl Lab, Div Environm Res, Argonne, IL 60439 USA. Univ Illinois, Dept Earth & Environm Sci, Chicago, IL 60607 USA. Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA. RP Park, C (reprint author), Argonne Natl Lab, Div Environm Res, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Park, Changyong/A-8544-2008 OI Park, Changyong/0000-0002-3363-5788 NR 24 TC 50 Z9 50 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 25 PY 2005 VL 94 IS 7 AR 076104 DI 10.1103/PhysRevLett.94.076104 PG 4 WC Physics, Multidisciplinary SC Physics GA 900WT UT WOS:000227245700042 PM 15783831 ER PT J AU Schiavilla, R Benhar, O Kievsky, A Marcucci, LE Viviani, M AF Schiavilla, R Benhar, O Kievsky, A Marcucci, LE Viviani, M TI Polarization transfer in He-4(e ->,e(')p ->)H-3: Is the ratio G(Ep)/G(Mp) modified in the nuclear medium? SO PHYSICAL REVIEW LETTERS LA English DT Article ID COULOMB SUM-RULE; ELASTIC-SCATTERING; RESPONSE FUNCTIONS; ENERGIES; SIZE AB Polarization observables in the He-4((e) over right arrow ,e'(p) over right arrowp-->)H-3 reaction are calculated using accurate three- and four-nucleon bound-state wave functions, a realistic model for the nuclear electromagnetic current operator, and a treatment of final-state interactions with an optical potential. In contrast to earlier studies, no significant discrepancies are found between theory and experiment both for the ratio of transverse to longitudinal polarization transfers and for the induced polarization, when free-nucleon electromagnetic form factors are used in the current operator. The present results challenge the current interpretation of the experimental data in terms of medium-modified form factors. C1 Jefferson Lab, Newport News, VA 23606 USA. Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56100 Pisa, Italy. Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy. RP Schiavilla, R (reprint author), Jefferson Lab, Newport News, VA 23606 USA. RI kievsky, alejandro/A-7123-2011; Benhar, Omar/J-6044-2012 OI Benhar, Omar/0000-0001-6818-9215 NR 42 TC 30 Z9 30 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 25 PY 2005 VL 94 IS 7 AR 072303 DI 10.1103/PhysRevLett.94.072303 PG 4 WC Physics, Multidisciplinary SC Physics GA 900WT UT WOS:000227245700018 PM 15783807 ER PT J AU Tringides, MC Hupalo, M AF Tringides, MC Hupalo, M TI Comment on "Thermal stability and electronic structure of atomically uniform Pb films on Si(111)" SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material ID LOW-TEMPERATURES C1 Iowa State Univ Sci & Technol, Dept Phys, Ames, IA 50011 USA. Iowa State Univ Sci & Technol, Ames Lab, USDOE, Ames, IA 50011 USA. RP Tringides, MC (reprint author), Iowa State Univ Sci & Technol, Dept Phys, Ames, IA 50011 USA. NR 7 TC 3 Z9 3 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 25 PY 2005 VL 94 IS 7 AR 079701 DI 10.1103/PhysRevLett.94.079701 PG 1 WC Physics, Multidisciplinary SC Physics GA 900WT UT WOS:000227245700076 PM 15783865 ER PT J AU Flasar, FM Achterberg, RK Conrath, BJ Pearl, JC Bjoraker, GL Jennings, DE Romani, PN Simon-Miller, AA Kunde, VG Nixon, CA Bezard, B Orton, GS Spilker, LJ Spencer, JR Irwin, PGJ Teanby, NA Owen, TC Brasunas, J Segura, ME Carlson, RC Mamoutkine, A Gierasch, PJ Schinder, PJ Showaiter, MR Ferrari, C Barucci, A Courtin, R Coustenis, A Fouchet, T Gautier, D Lellouch, E Marten, A Prange, R Strobel, DF Calcutt, SB Read, PL Taylor, FW Bowles, N Samuelson, RE Abbas, MM Raulin, F Ade, P Edgington, S Pilorz, S Wallis, B Wishnow, EH AF Flasar, FM Achterberg, RK Conrath, BJ Pearl, JC Bjoraker, GL Jennings, DE Romani, PN Simon-Miller, AA Kunde, VG Nixon, CA Bezard, B Orton, GS Spilker, LJ Spencer, JR Irwin, PGJ Teanby, NA Owen, TC Brasunas, J Segura, ME Carlson, RC Mamoutkine, A Gierasch, PJ Schinder, PJ Showaiter, MR Ferrari, C Barucci, A Courtin, R Coustenis, A Fouchet, T Gautier, D Lellouch, E Marten, A Prange, R Strobel, DF Calcutt, SB Read, PL Taylor, FW Bowles, N Samuelson, RE Abbas, MM Raulin, F Ade, P Edgington, S Pilorz, S Wallis, B Wishnow, EH TI Temperatures, winds, and composition in the saturnian system SO SCIENCE LA English DT Article ID GALILEO PHOTOPOLARIMETER-RADIOMETER; VOYAGER INFRARED MEASUREMENTS; 1990 EQUATORIAL DISTURBANCE; GIANT PLANETS; CLOUD LEVEL; ZONAL WINDS; RINGS; STRATOSPHERE; ABUNDANCES; ATMOSPHERE AB Stratospheric temperatures on Saturn imply a strong decay of the equatorial winds with attitude. If the decrease in winds reported from recent Hubble Space Telescope images is not a temporal change, then the features tracked must have been at least 130 kilometers higher than in earlier studies. Saturn's south polar stratosphere is warmer than predicted from simple radiative models. The C/H ratio on Saturn is seven times solar, twice Jupiter's. Saturn's ring, temperatures have radial variations down to the smallest scale resolved (100 kilometers). Diurnal surface temperature variations on Phoebe suggest a more porous regolith than on the jovian satellites. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Sci Syst & Applicat Inc, Lanham, MD 20706 USA. Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. Univ Maryland, Dept Astron, College Pk, MD 20742 USA. Observ Paris, CNRS, UMR 8109, LESIA, F-91925 Meudon, France. CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA. Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. QSS Grp Inc, Lanham, MD 20706 USA. NASA, Ames Res Ctr, Stanford Univ, Moffett Field, CA 94035 USA. CEA Saclay, Serv Astrophys, F-91191 Gif Sur Yvette, France. Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. NASA, George C Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr SD50, Huntsville, AL 35812 USA. Univ Paris 07, LISA, F-94010 Creteil, France. Univ Paris 12, CNRS, UMR 7583, F-94010 Creteil, France. Univ Cardiff, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Calif Berkeley, Space Sci Lab, Livermore, CA 94551 USA. RP Flasar, FM (reprint author), NASA, Goddard Space Flight Ctr, Code 693, Greenbelt, MD 20771 USA. EM f.m.flasar@nasa.gov RI Nixon, Conor/A-8531-2009; Flasar, F Michael/C-8509-2012; Romani, Paul/D-2729-2012; Bjoraker, Gordon/D-5032-2012; Jennings, Donald/D-7978-2012; brasunas, john/I-2798-2013; Simon, Amy/C-8020-2012; Ferrari, Cecile/P-9735-2016; Fouchet, Thierry/C-6374-2017; OI Nixon, Conor/0000-0001-9540-9121; Simon, Amy/0000-0003-4641-6186; Ferrari, Cecile/0000-0001-5962-7439; Fouchet, Thierry/0000-0001-9040-8285; Teanby, Nicholas/0000-0003-3108-5775; Calcutt, Simon/0000-0002-0102-3170; Irwin, Patrick/0000-0002-6772-384X NR 29 TC 113 Z9 113 U1 0 U2 10 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 25 PY 2005 VL 307 IS 5713 BP 1247 EP 1251 DI 10.1126/science.1105806 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 901WP UT WOS:000227313200041 PM 15618486 ER PT J AU Young, DT Berthelier, JJ Blanc, M Burch, JL Bolton, S Coates, AJ Crary, FJ Goldstein, R Grande, M Hill, TW Johnson, RE Baragiola, RA Kelha, V McComas, DJ Mursula, K Sittler, EC Svenes, KR Szego, K Tanskanen, P Thomsen, MF Bakshi, S Barraclough, BL Bebesi, Z Delapp, D Dunlop, MW Gosling, JT Furman, JD Gilbert, LK Glenn, D Holmlund, C Illiano, JM Lewis, GR Linder, DR Maurice, S McAndrews, HJ Narheim, BT Pallier, E Reisenfeld, D Rymer, AM Smith, HT Tokar, RL Vilppola, J Zinsmeyer, C AF Young, DT Berthelier, JJ Blanc, M Burch, JL Bolton, S Coates, AJ Crary, FJ Goldstein, R Grande, M Hill, TW Johnson, RE Baragiola, RA Kelha, V McComas, DJ Mursula, K Sittler, EC Svenes, KR Szego, K Tanskanen, P Thomsen, MF Bakshi, S Barraclough, BL Bebesi, Z Delapp, D Dunlop, MW Gosling, JT Furman, JD Gilbert, LK Glenn, D Holmlund, C Illiano, JM Lewis, GR Linder, DR Maurice, S McAndrews, HJ Narheim, BT Pallier, E Reisenfeld, D Rymer, AM Smith, HT Tokar, RL Vilppola, J Zinsmeyer, C TI Composition and dynamics of plasma in Saturn's magnetosphere SO SCIENCE LA English DT Article ID WATER ICE; MODEL; INJECTIONS; VOYAGER-2; TRANSPORT; ORBIT AB During Cassini's initial orbit, we observed a dynamic magnetosphere composed primarily of a complex mixture of water-derived atomic and molecular ions. We have identified four distinct regions characterized by differences in both bulk plasma properties and ion composition. Protons are the dominant species outside about 9 R(s) (where R(s) is the radial distance from the center of Saturn), whereas inside, the plasma consists primarily of a corotating comet-like mix of water-derived ions with similar to3% N+. Over the A and B rings, we found an ionosphere in which O(2)(+) and O(+) are dominant, which suggests the possible existence of a layer of O(2). gas similar to the atmospheres of Europa and Ganymede. C1 SW Res Inst, San Antonio, TX 78238 USA. Observ St Maur, Ctr Etud Environm Terr & Planetaires, F-94107 St Maur, France. Observ Midi Pyrenees, F-31400 Toulouse, France. CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. UCL, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. Univ Virginia, Charlottesville, VA USA. Univ Oulu, Dept Phys Sci, Oulu 90014, Finland. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Norwegian Def Res Estab, Div Elect, N-2027 Kjeller, Norway. KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary. Los Alamos Natl Lab, Space & Atmospher Sci Grp, Los Alamos, NM 87545 USA. Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. RP Young, DT (reprint author), SW Res Inst, San Antonio, TX 78238 USA. EM dyoung@swri.edu RI Coates, Andrew/C-2396-2008; Mursula, Kalevi/L-8952-2014; Reisenfeld, Daniel/F-7614-2015; Smith, Howard/H-4662-2016; Grande, Manuel/C-2242-2013 OI Coates, Andrew/0000-0002-6185-3125; Mursula, Kalevi/0000-0003-4892-5056; Smith, Howard/0000-0003-3537-3360; Grande, Manuel/0000-0002-2233-2618 NR 36 TC 209 Z9 209 U1 3 U2 14 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 25 PY 2005 VL 307 IS 5713 BP 1262 EP 1266 DI 10.1126/science.1106151 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 901WP UT WOS:000227313200045 PM 15731443 ER PT J AU Wang, J Scholl, A Zheng, H Ogale, SB Viehland, D Schlom, DG Spaldin, NA Rabe, KM Wuttig, M Mohaddes, L Neaton, J Waghmare, U Zhao, T Ramesh, R AF Wang, J Scholl, A Zheng, H Ogale, SB Viehland, D Schlom, DG Spaldin, NA Rabe, KM Wuttig, M Mohaddes, L Neaton, J Waghmare, U Zhao, T Ramesh, R TI Response to comment on "Epitaxial BiFeO3 multiferroic thin film heterostructures" SO SCIENCE LA English DT Editorial Material C1 Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Univ Maryland, Dept Phys, College Pk, MD 20742 USA. Virginia Polytech Inst & State Univ, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA. Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Bangalore 560012, Karnataka, India. RP Wang, J (reprint author), Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. EM rramesh@berkeley.edu RI Spaldin, Nicola/A-1017-2010; Schlom, Darrell/J-2412-2013; Scholl, Andreas/K-4876-2012; WANG, Junling/B-3596-2009 OI Spaldin, Nicola/0000-0003-0709-9499; Schlom, Darrell/0000-0003-2493-6113; WANG, Junling/0000-0003-3663-7081 NR 9 TC 34 Z9 34 U1 8 U2 105 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 25 PY 2005 VL 307 IS 5713 DI 10.1126/science.1103959 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 901WP UT WOS:000227313200025 ER PT J AU Collyer, ML Novak, JM Stockwell, CA AF Collyer, ML Novak, JM Stockwell, CA TI Morphological divergence of native and recently established populations of White Sands Pupfish (Cyprinodon tularosa) SO COPEIA LA English DT Article ID BODY SHAPE; GEOMETRIC MORPHOMETRICS; THREESPINE STICKLEBACK; BREEDING TERRITORIES; CONSERVATION; REVOLUTION; ALLOMETRY; TELEOSTEI; EVOLUTION AB We used landmark-based geometric morphometric methods to describe patterns of body shape variation and shape covariation with size among populations of the threatened White Sands Pupfish (Cyprinodon tularosa), a species that occurs in dissimilar aquatic habitats. White Sands Puplish populations include two genetically distinct, native populations that have been historically isolated in Salt Creek, a saline river, and Malpais Spring, a brackish spring. In addition, two populations were established approximately 30 years before this study by translocation of fish from Salt Creek to Lost River (a saline river) and Mound Spring (a brackish spring). We found significant body shape variation among populations and between males and females. Body shapes were more slender for females than for males and more slender for saline river populations than brackish spring populations. Introductions of pupfish to new habitats resulted in significant departures in body shape and shape allometry from the native Salt Creek population. Shape divergence was more pronounced for the Mound Spring population, which is consistent with a greater change in abiotic conditions. Although Mound Spring pupfish, like Malpais Spring pupfish, were more deep-bodied than saline river pupfish, differences in body shape and the level of sexual dimorphism were significant between the two brackish spring populations, indicating that deep-bodied shapes may be achieved from different anatomical configurations. The significant shape divergence of introduced populations warrants consideration for the conservation of this rare species, as creation of refuge populations for native stocks is a current management strategy. C1 Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. N Dakota State Univ, Dept Biol Sci, Fargo, ND 58102 USA. RP Collyer, ML (reprint author), Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Dept Stat, 315F Snedecor Hall, Ames, IA 50011 USA. EM collyer@iastate.edu; jnovak@usd.edu; craig.stockwell@ndsu.nodak.edu RI Rohlf, F/A-8710-2008 NR 56 TC 28 Z9 28 U1 0 U2 7 PU AMER SOC ICHTHYOLOGISTS HERPETOLOGISTS PI CHARLESTON PA UNIV CHARLESTON, GRICE MARINE LABORATORY, 205 FORT JOHNSON RD, CHARLESTON, SC 29412 USA SN 0045-8511 J9 COPEIA JI Copeia PD FEB 24 PY 2005 IS 1 BP 1 EP 11 DI 10.1643/CG-03-303R1 PG 11 WC Zoology SC Zoology GA 901OE UT WOS:000227291000001 ER PT J AU Glaudas, X Farrell, TN May, PG AF Glaudas, X Farrell, TN May, PG TI Defensive behavior of free-ranging pygmy rattlesnakes (Sistrurus miliarius) SO COPEIA LA English DT Article ID COTTONMOUTHS AGKISTRODON-PISCIVORUS; CROTALUS-VIRIDIS-VIRIDIS; PRAIRIE RATTLESNAKES; ANTIPREDATOR TACTICS; BODY-TEMPERATURE; CENTRAL FLORIDA; SNAKES; THAMNOPHIS; SIZE; SEX AB Sistrurus miliarius frequently bites humans in the southeastern United States. We used a large population of S. miliarius in central Florida to investigate the importance of several factors on the defensive behavior of this species. Upon detection of a snake, we tapped the snout of the snake with a gloved hand. We recorded whether the snake struck or fled. Our large sample size (N = 336) allowed its to make strong conclusions regarding the defensive behavior of this rattlesnake species. Overall, only 27 snakes (8%) bit the glove indicating that this species is rather nonaggressive. Initial posture was the only factor that influenced striking behavior; uncoiled snakes struck significantly more than coiled snakes. Fleeing behavior was affected by three variables: sex; whether the snake was about to shed; and initial posture. Females fled more often than males, as did snakes about to shed. Initial posture is the only factor that affected both response variables, and uncoiled individuals were more likely to flee than coiled snakes. C1 Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. Stetson Univ, Dept Biol, Deland, FL 32720 USA. RP Glaudas, X (reprint author), Univ Nevada, Dept Biol Sci, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA. EM glaudasx@unlv.nevada.edu OI Glaudas, Xavier/0000-0002-1333-7791 NR 31 TC 6 Z9 6 U1 16 U2 50 PU AMER SOC ICHTHYOLOGISTS HERPETOLOGISTS PI CHARLESTON PA UNIV CHARLESTON, GRICE MARINE LABORATORY, 205 FORT JOHNSON RD, CHARLESTON, SC 29412 USA SN 0045-8511 J9 COPEIA JI Copeia PD FEB 24 PY 2005 IS 1 BP 196 EP 200 DI 10.1643/CH-03-253R1 PG 5 WC Zoology SC Zoology GA 901OE UT WOS:000227291000022 ER PT J AU Bartels, DM Takahashi, K Cline, JA Marin, TW Jonah, CD AF Bartels, DM Takahashi, K Cline, JA Marin, TW Jonah, CD TI Pulse radiolysis of supercritical water. 3. Spectrum and thermodynamics of the hydrated electron SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID OPTICAL-ABSORPTION SPECTRUM; AQUEOUS SOLVATED ELECTRON; RESONANCE RAMAN-SPECTRA; MOLECULAR-DYNAMICS; CHEMICAL-REACTIONS; ATOMIC-HYDROGEN; ION SOLVATION; TEMPERATURE; SPECTROSCOPY; SIMULATION AB Spectra of the hydrated electron in pressurized light and heavy water at temperatures up to and beyond the critical temperature are reported, for wavelengths between 0.4 and 1.7 mum. In agreement with previous work, spectra can be approximately represented by a Gaussian function on the low-energy side, and a Lorentzian function on the high-energy side in subcritical water, but deviations from this form are very clear above 200 degreesC. The spectrum shifts strongly to the red as temperature rises. At supercritical temperatures, the spectrum shifts slightly to the red as density decreases, and the Gaussian - Lorentzian form is a very poor description. Application of spectral moment theory allows one to make an estimate of the average size of the electron wave function and of its kinetic energy. It appears that for water densities below about 0.6 g/cc, and down to below 0.1 g/cc, the average radius of gyration for the electron remains constant at around 3.4 Angstrom, and its absorption maximum is near 0.9 eV. For higher densities, the electron is squeezed into a smaller cavity and the spectrum is shifted to the blue. The enthalpy and free energy of electron hydration are derived as a function of temperature on the basis of existing equilibrium data and absolute proton hydration energies derived from the cluster-based common point method. In a discussion, we compare the effective "size" of the hydrated electron derived from both methods. C1 Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Bartels, DM (reprint author), Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA. EM bartels@hertz.rad.nd.edu RI Marin, Timothy/E-3446-2010; Takahashi, Kenji/C-8846-2011; Takahashi, Kenji/F-4885-2014 NR 52 TC 79 Z9 79 U1 0 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 24 PY 2005 VL 109 IS 7 BP 1299 EP 1307 DI 10.1021/jp0457141 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 898XC UT WOS:000227108500006 PM 16833444 ER PT J AU Holroyd, R Nishikawa, M Itoh, K AF Holroyd, R Nishikawa, M Itoh, K TI Properties and reactions of charged species in nonpolar supercritical fluids SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Review ID DEFORMATION-POTENTIAL-THEORY; PARTIAL MOLAR VOLUMES; ELECTRON-MOBILITY; CARBON-DIOXIDE; EXCESS ELECTRONS; HIGH-PRESSURE; DENSITY-DEPENDENCE; PULSE-RADIOLYSIS; FIELD STRENGTH; LIQUID XENON AB This review focuses on the properties and reactions of charged species in supercritical fluids. The techniques of pulse conductivity and transient absorption are used to follow the behavior of charged species. We begin with a discussion of the mobilities, yields, and energy levels of electrons. Studies of the pressure dependence of electron attachment reactions lead to information on the magnitude of activation volumes. This as well as diffusion and energetics are factors that influence the rates of electron attachment. The free energy changes in electron attachment-detachment equilibrium reactions decrease rapidly at pressures where the compressibility maximizes. The transport properties of ions in supercritical fluids are also discussed, as these studies provide a straightforward indication of the degree of interaction between ions and the medium. We conclude with a review of electron transfer reactions in supercritical fluids. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Kanagawa Inst Technol, Fac Engn, Atsugi 2430292, Japan. Univ Tokyo, Dept Pure & Appl Sci, Tokyo 1538902, Japan. RP Holroyd, R (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. NR 68 TC 6 Z9 6 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 24 PY 2005 VL 109 IS 7 BP 2478 EP 2486 DI 10.1021/jp0471296 PG 9 WC Chemistry, Physical SC Chemistry GA 898XF UT WOS:000227108800003 PM 16851245 ER PT J AU Blackburn, JL Selmarten, DC Ellingson, RJ Jones, M Micic, O Nozik, AJ AF Blackburn, JL Selmarten, DC Ellingson, RJ Jones, M Micic, O Nozik, AJ TI Electron and hole transfer from indium phosphide quantum dots SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CDSE NANOPARTICLES; SEMICONDUCTOR NANOCRYSTALS; SOLAR-CELLS; SPECTROSCOPY; DYNAMICS; TIO2; PHOTOCONDUCTIVITY; RELAXATION; FILMS; DYE AB Electron- and hole-transfer reactions are studied in colloidal InP quantum dots (QDs). Photoluminescence quenching and time-resolved transient absorption (TA) measurements are utilized to examine hole transfer from photoexcited InP QDs to the hole acceptor N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and electron transfer to nanocrystalline titanium dioxide (TiO2) films. Core-confined holes are effectively quenched by TMPD, resulting in a new similar to4-ps component in the TA decay. It is found that electron transfer to TiO2 is primarily mediated through surface-localized states on the InP QDs. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Blackburn, JL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Jones, Marcus/B-3291-2008; Blackburn, Jeffrey/D-7344-2012; Ellingson, Randy/H-3424-2013; Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016 OI Jones, Marcus/0000-0001-9912-1168; NR 29 TC 87 Z9 90 U1 6 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 24 PY 2005 VL 109 IS 7 BP 2625 EP 2631 DI 10.1021/jp046781y PG 7 WC Chemistry, Physical SC Chemistry GA 898XF UT WOS:000227108800025 PM 16851267 ER PT J AU Rodriguez, JA Abreu, IA AF Rodriguez, JA Abreu, IA TI Chemical activity of iron in [2Fe-2S]-protein centers and FeS2(100) surfaces SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID DENSITY-FUNCTIONAL THEORY; NITROGENASE FEMO COFACTOR; ELECTRONIC-STRUCTURE; WAVE FUNCTIONS; NITRIC-OXIDE; ADSORPTION; CLUSTER; REACTIVITY; PROTEINS; ENERGY AB Iron atoms bonded to sulfur play an important role in proteins, heterogeneous catalysts, and gas sensors. First-principles density functional calculations were used to investigate the structure and chemical activity of a unique [2Fe-2S] center in the split-Soret cytochrome c (Ssc) from Desulfovibrio desulfuricans. In agreement with a previously proposed structural model [Abreu et al., J. Biol. Inorg. Chem. 2003, 8, 360], it is found that the [2Fe-2S] cluster is located in a surface pocket of the Ssc and bonded to only three cysteines. The [2Fe-2S] center in the Ssc is nonplanar and somewhat distorted with respect to canonical [2Fe-2S] centers seen in proteins where the iron-sulfur unit is bonded to four cysteines. In the Ssc, the lack of one Fe-cysteine bond is partially compensated by the separation between the cysteines that minimizes electrostatic repulsion among these ligands. The unique structure of the [2Fe-2S] center in the Ssc makes the center more chemically active than canonical [2Fe-2S] centers in proteins, (RS)(4)[2Fe-2S] inorganic complexes, and an FeS (100) surface. A [2Fe-2S] center in the Ssc interacts efficiently with electron acceptors (O-2, NO, CO) and poorly with a Lewis base such as H2O. The interaction with molecular oxygen is so strong that eventually oxidatively destroys the [2Fe-2S] unit. The bonding energy of the ligands to the [2Fe-2S] centers and FeS,(100) surface increases following the sequence: H2O much less than CO < NO < O-2. The higher the electron affinity of the ligand, the larger its bonding energy. A relatively large positive charge on the Fe cations in FeS2(100) makes this sulfide surface less reactive toward O-2, CO, and NO than the [2Fe-2S] centers in proteins and inorganic complexes. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Abreu, Isabel/I-5081-2013 OI Abreu, Isabel/0000-0002-5566-2146 NR 65 TC 13 Z9 13 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 24 PY 2005 VL 109 IS 7 BP 2754 EP 2762 DI 10.1021/jp0405355 PG 9 WC Chemistry, Physical SC Chemistry GA 898XF UT WOS:000227108800042 PM 16851284 ER PT J AU Wilson, D Aster, R West, M Ni, J Grand, S Gao, W Baldridge, WS Semken, S Patel, P AF Wilson, D Aster, R West, M Ni, J Grand, S Gao, W Baldridge, WS Semken, S Patel, P TI Lithospheric structure of the Rio Grande rift SO NATURE LA English DT Article ID TECTONIC EVOLUTION; UNITED-STATES; TELESEISMIC P; NEW-MEXICO; EXTENSION; BENEATH; REGION; UPLIFT; SCALE; MODEL AB A high-resolution, regional passive seismic experiment(1-6) in the Rio Grande rift region of the southwestern United States has produced new images of upper-mantle velocity structure and crust-mantle topography. Synthesizing these results with geochemical(7-9) and other geophysical(10-13) evidence reveals highly symmetric lower-crustal and upper-mantle lithosphere extensional deformation, suggesting a pure-shear rifting mechanism for the Rio Grande rift. Extension in the lower crust is distributed over a region four times the width of the rift's surface expression. Here we propose that the laterally distributed, pure shear extension is a combined effect of low strain rate and a regionally elevated geotherm, possibly abetted by pre-existing lithospheric structures, at the time of rift initiation. Distributed extension in the lower crust and mantle has induced less concentrated vertical mantle upwelling and less vigorous small-scale convection(14) than would have arisen from more localized deformation. This lack of highly focused mantle upwelling may explain a deficit of rift-related volcanics in the Rio Grande rift compared to other major rift systems such as the Kenya rift(15,16). C1 New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. New Mexico Inst Min & Technol, Geophys Res Ctr, Socorro, NM 87801 USA. Arizona State Univ, Dept Geol Sci, Tempe, AZ 85287 USA. Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. Univ Texas, Jackson Sch Geosci, Austin, TX 78712 USA. New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. RP Wilson, D (reprint author), New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. EM davew@ees.nmt.edu RI Grand, Stephen/B-4238-2011; Aster, Richard/E-5067-2013 OI Aster, Richard/0000-0002-0821-4906 NR 30 TC 51 Z9 52 U1 3 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD FEB 24 PY 2005 VL 433 IS 7028 BP 851 EP 855 DI 10.1038/nature03297 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 899VT UT WOS:000227174600038 PM 15729338 ER PT J AU Ramirez, AL Nitao, JJ Hanley, WG Aines, R Glaser, RE Sengupta, SK Dyer, KM Hickling, TL Daily, WD AF Ramirez, AL Nitao, JJ Hanley, WG Aines, R Glaser, RE Sengupta, SK Dyer, KM Hickling, TL Daily, WD TI Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID 3-D RESISTIVITY; VADOSE ZONE; TOMOGRAPHY; CONVERGENCE; ALGORITHMS AB We describe a stochastic inversion method for mapping subsurface regions where the electrical resistivity is changing. The technique combines prior information, electrical resistance data, and forward models to produce subsurface resistivity models that are most consistent with all available data. Bayesian inference and a Metropolis simulation algorithm form the basis for this approach. Attractive features include its ability (1) to provide quantitative measures of the uncertainty of a generated estimate and (2) to allow alternative model estimates to be identified, compared, and ranked. Methods that monitor convergence and summarize important trends of the posterior distribution are introduced. Results from a physical model test and a field experiment were used to assess performance. The presented stochastic inversions provide useful estimates of the most probable location, shape, and volume of the changing region and the most likely resistivity change. The proposed method is computationally expensive, requiring the use of extensive computational resources to make its application practical. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ramirez, AL (reprint author), Lawrence Livermore Natl Lab, POB 808,L-208, Livermore, CA 94550 USA. EM ramirez3@llnl.gov RI Aines, Roger/A-2013-2013 NR 39 TC 32 Z9 32 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD FEB 23 PY 2005 VL 110 IS B2 AR B02101 DI 10.1029/2004JB003449 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 904VZ UT WOS:000227527500003 ER PT J AU Han, ZH Budnick, JI Hines, WA Dabrowski, B Kolesnik, S Maxwell, T AF Han, ZH Budnick, JI Hines, WA Dabrowski, B Kolesnik, S Maxwell, T TI Nuclear magnetic resonance study of the enhanced ferromagnetic ordering in polycrystalline SrRu1-xCrxO3 (0 <= x <= 0.12) SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID SINGLE-CRYSTAL; TRANSPORT-PROPERTIES; SRRUO3; SR1-XCAXRUO3; TEMPERATURE AB The ferromagnetic ordering temperature of SrRu1-xCrxO3 increases to 175 and 186 K for x = 0.05 and 0.12, respectively, from 162 K for SrRuO3 (x = 0). Cr-53 and Ru-99.101 nuclear magnetic resonance reveals that Cr is in a 'valence state' of Cr3+ (t(2g)(3+)), and Ru is in a mixed valence state, namely, Ru4+ (t(2g)(3 up arrow vertical bar down arrow)) and Ru5+ (t(2g)(3 up arrow)). A single Ru NMR signal corresponding to Ru(4+delta)+ observed, indicating that the spin-down electron in the Ru 4d shell is less localized in SrRu1-xCrxO3 (x not equal 0). This result is consistent with a broadened Ru t(2g) band and a possible Ru4+(d(4))-O2--Ru5+(d(3)) as well as Ru4+(d(4))-O2--Cr3+(d(3)) double-exchange interaction. This exchange interaction involves the Cr3+ in the ferromagnetic ordering and enhances the ordering temperature. C1 Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA. No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Han, ZH (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. EM zhan@phys.uconn.edu RI Han, Zhaohui/A-1118-2007 NR 20 TC 31 Z9 31 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 23 PY 2005 VL 17 IS 7 BP 1193 EP 1200 DI 10.1088/0953-8984/17/7/011 PG 8 WC Physics, Condensed Matter SC Physics GA 905QW UT WOS:000227585500015 ER PT J AU Drymiotis, F Singleton, J Harrison, N Lashley, JC Bangura, A Mielke, CH Balicas, L Fisk, Z Migliori, A Smith, JL AF Drymiotis, F Singleton, J Harrison, N Lashley, JC Bangura, A Mielke, CH Balicas, L Fisk, Z Migliori, A Smith, JL TI Suppression of the gamma-alpha structural phase transition in Ce0.8La0.1Th0.1 by large magnetic fields SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID VALENCE TRANSITION; DETAILED ANALYSIS; CERIUM ALLOYS; CE; SPECTROSCOPY; YBINCU4; STATE AB The gamma-alpha transition in Ce0.8La0.1Th0.1 is measured as a function of applied magnetic field using both resistivity and magnetization. The gamma-alpha transition temperature decreases with increasing magnetic field, reaching zero temperature at around 56 T. The magnetic-field dependence of the transition temperature is quantitatively reproduced by a model that invokes the field and temperature dependence of the entropy of the 4f-electron moments of the gamma phase. C1 Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Drymiotis, F (reprint author), Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RI Mielke, Charles/S-6827-2016 OI Mielke, Charles/0000-0002-2096-5411 NR 26 TC 27 Z9 27 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 23 PY 2005 VL 17 IS 7 BP L77 EP L83 DI 10.1088/0953-8984/17/7/L01 PG 7 WC Physics, Condensed Matter SC Physics GA 905QW UT WOS:000227585500001 ER PT J AU Lu, HP AF Lu, HP TI Site-specific Raman spectroscopy and chemical dynamics of nanoscale interstitial systems SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Review ID SURFACE-ENHANCED RAMAN; ATOMIC-FORCE MICROSCOPY; SCATTERING FLUCTUATION DYNAMICS; SCANNING OPTICAL MICROSCOPY; RHODAMINE 6G MOLECULES; LARGE AG NANOCRYSTALS; SINGLE-MOLECULE; RESONANCE RAMAN; ELECTRIC-FIELD; SILVER NANOPARTICLES AB Site-specific spectroscopy is critical for a molecular-level understanding of the mechanisms and dynamics of the inhomogeneous chemical processes crucial for catalysis, surface and interfacial chemistry, and membrane protein dynamics in living cells. Surface-enhanced Raman scattering (SERS) spectroscopy and microscopy combined with atomic force microscopy (AFM) using metal-coated AFM tips have proven to be powerful in spectroscopic analysis of inhomogeneous processes, providing correlated topographic and spectroscopic information at the nanoscale from sites in highly heterogeneous environments. It has recently been observed that SERS spectral fluctuations are pertinent to site-specific spectroscopy and microscopy. Such fluctuations are important in that they hold promise for the study of molecular structure and dynamics at a single-molecule level. This article reviews our recent work on characterization and analysis of SERS spectral fluctuation dynamics at the nanoscale in metallic interstitial sites. Fluctuations were found to accompany nanoscale confined electromagnetic near-field enhancement. The result of such confinement is that only a few molecules dominate the far-field SERS spectral signal detected in microscopic measurements that probe one nanoscale 'hot' site at a time. The fluctuation amplitude significantly decreased with the number of molecules confined at the nanoscale-local field. A new AFM-coupled two-channel photon time-stamping system, enabling in situ correlation of the topographic and spectroscopic information for single nanoparticle clusters, was used to record the Raman intensity fluctuation trajectories at a submicrosecond resolution. Experimentally, we found that SERS fluctuation dynamics are highly inhomogeneous amongst nanocluster interstitial sites although molecular translational and rotational motions at the interstitial sites can account for the SERS spectral fluctuations. To further understand these fluctuations at the nanoscale interstitial sites and nanostructures, field enhancement and field distribution at different interstitial site topographies and rough fractal surfaces were studied using finite element method computational simulation in a classic electrodynamics approach. C1 Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. RP Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. EM peter.lu@pnl.gov NR 82 TC 24 Z9 24 U1 4 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 23 PY 2005 VL 17 IS 7 BP R333 EP R355 DI 10.1088/0953-8984/17/7/R02 PG 23 WC Physics, Condensed Matter SC Physics GA 905QW UT WOS:000227585500003 ER PT J AU Dabkowska, I Gutowski, M Rak, J AF Dabkowska, I Gutowski, M Rak, J TI Interaction with glycine increases stability of a mutagenic tautomer of uracil. A density functional theory study SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HYDROGEN-BONDED COMPLEXES; DIPOLE-BOUND ANIONS; PROTON-TRANSFER; GAS-PHASE; AB-INITIO; DEPROTONATION ENTHALPIES; MOLECULAR-INTERACTIONS; SEMIEMPIRICAL METHODS; ORGANIC-MOLECULES; ADENINE-THYMINE AB The most stable structures for the gas-phase complexes of minor tautomers of uracil (U) with glycine (G) were characterized at the density functional B3LYP/6-31++G** level of theory. These are cyclic structures stabilized by two hydrogen bonds. The relative stability of isolated tautomers of uracil was rationalized by using thermodynamic and structural arguments. The stabilization energies for complexes between the tautomers of U and G result from interplay between the stabilizing two-body interaction energies and destabilizing one-body terms. The latter are related to the energies of (i) tautomerization of the unperturbed moieties and (ii) distortions of the resulting rare tautomers in the complex. The two-body term describes the interaction energy between distorted tautomers. The two-body interaction energy term correlates with perturbations of length of the proton-donor bonds as well as with deprotonation enthalpies and proton affinities of the appropriate monomer sites. It was demonstrated that the relative instability of rare tautomers of uracil is diminished due to their interactions with glycine. In particular, the instability of the third most stable tautomer (U-III) is decreased from 11.9 kcal/mol for non-interacting uracil to 6.7 kcal/mol for uracil in a complex with the zwitterionic tautomer of glycine. A decrease of instability by 5.2 kcal/mol could result in an increase of concentration of U-III by almost 5 orders of magnitude. This is the tautomer with proton donor and acceptor sites matching guanine rather than adenine. Moreover, kinetic characteristics obtained for the glycine-assisted conversion of the most stable tautomer of uracil (U-I) to U-III indicate that the U-I<---->U-III thermodynamic equilibrium could be easily attained at room temperature. The resulting concentration of this tautomer falls in a mutationally significant range. C1 Gdansk Tech Univ, Dept Chem, PL-80952 Gdansk, Poland. Pacific NW Natl Lab, Chem Sci Div, Richland, WA 99352 USA. RP Dabkowska, I (reprint author), Gdansk Tech Univ, Dept Chem, Sobieskiego 18, PL-80952 Gdansk, Poland. EM maciej.gutowski@pnl.gov; janusz@raptor.chem.univ.gda.pl NR 60 TC 27 Z9 27 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 23 PY 2005 VL 127 IS 7 BP 2238 EP 2248 DI 10.1021/ja048730k PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 898TP UT WOS:000227099400044 PM 15713102 ER PT J AU Lo, WC Sposito, G Majer, E AF Lo, WC Sposito, G Majer, E TI Wave propagation through elastic porous media containing two immiscible fluids SO WATER RESOURCES RESEARCH LA English DT Article ID 2-PHASE FLUID; HYDRAULIC CONDUCTIVITY; CONSTITUTIVE THEORY; COMPRESSIONAL WAVE; FREQUENCY RANGE; FLOW; EQUATIONS; MODEL; SATURATION; THERMODYNAMICS AB Acoustic wave phenomena in porous media containing multiphase fluids have received considerable attention in recent years because of an increasing scientific awareness of poroelastic behavior in groundwater aquifers. To improve quantitative understanding of these phenomena, a general set of coupled partial differential equations was derived to describe dilatational wave propagation through an elastic porous medium permeated by two immiscible fluids. These equations, from which previous models of dilatational wave propagation can be recovered as special cases, incorporate both inertial coupling and viscous drag in an Eulerian frame of reference. Two important poroelasticity concepts, the linearized increment of fluid content and the closure relation for porosity change, originally defined for an elastic porous medium containing a single fluid, also are generalized for a two- fluid system. To examine the impact of relative fluid saturation and wave excitation frequency ( 50, 100, 150, and 200 Hz) on free dilatational wave behavior in unconsolidated porous media, numerical simulations of the three possible modes of wave motion were conducted for Columbia fine sandy loam containing either an air- water or oil- water mixture. The results showed that the propagating ( P1) mode, which results from in- phase motions of the solid framework and the two pore fluids, moves with a speed equal to the square root of the ratio of an effective bulk modulus to an effective density of the fluid- containing porous medium, regardless of fluid saturation and for both fluid mixtures. The nature of the pore fluids exerts a significant influence on the attenuation of the P1 wave. In the air- water system, attenuation was controlled by material density differences and the relative mobilities of the pore fluids, whereas in the oil- water system an effective kinematic shear viscosity of the pore fluids was the controlling parameter. On the other hand, the speed and attenuation of the two diffusive modes ( P2, resulting from out- of- phase motions of the solid framework and the fluids, and P3, the result of capillary pressure fluctuations) were closely associated with an effective dynamic shear viscosity of the pore fluids. The P2 and P3 waves also had the same constant value of the quality factor, and by comparison of our results with previous research on these two dilatational wave modes in sandstones, both were found to be sensitive to the state of consolidation of the porous medium. C1 Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Dept Geophys & Geomech, Berkeley, CA 94720 USA. RP Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM lowc@nature.berkeley.edu NR 63 TC 74 Z9 79 U1 4 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB 23 PY 2005 VL 41 IS 2 AR W02025 DI 10.1029/2004WR003162 PG 20 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 904WI UT WOS:000227528400001 ER PT J AU Leys, SP Rohksar, DS Degnan, BM AF Leys, SP Rohksar, DS Degnan, BM TI Sponges SO CURRENT BIOLOGY LA English DT Editorial Material C1 Univ Alberta, Dept Biol Sci CW 405, Edmonton, AB T6G 2E9, Canada. US DOE, Joint Genom Inst, Walnut Creek, CA 94598 USA. Univ Queensland, Sch Integrat Biol, Brisbane, Qld 4072, Australia. RP Leys, SP (reprint author), Univ Alberta, Dept Biol Sci CW 405, Edmonton, AB T6G 2E9, Canada. EM sleys@ualberta.ca; dsrokhsar@lbl.gov; b.degnan@uq.edu.au RI Leys, Sally/A-2660-2014 NR 7 TC 9 Z9 9 U1 2 U2 5 PU CELL PRESS PI CAMBRIDGE PA 1100 MASSACHUSETTS AVE, CAMBRIDGE, MA 02138 USA SN 0960-9822 J9 CURR BIOL JI Curr. Biol. PD FEB 22 PY 2005 VL 15 IS 4 BP R114 EP R115 DI 10.1016/j.cub.2005.02.005 PG 2 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 901FC UT WOS:000227267400005 PM 15723776 ER PT J AU Fernandez-Nieves, A Marquez, M AF Fernandez-Nieves, A Marquez, M TI Electrophoresis of ionic microgel particles: From charged hard spheres to polyelectrolyte-like behavior SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID AQUEOUS-SOLUTIONS; VISCOSITY; MOBILITY; DELIVERY; MODEL; GELS AB We perform electrophoretic mobility measurements of ionic microgel particles in the deswollen and swollen phases. The results show that microgels behave as charged hard spheres in the first case and as free-draining spherical polyelectrolytes in the latter. A unified theory for the electrophoresis of polyelectrolyte-coated particles [H. Ohshima, Adv. Colloid Interface Sci. 62, 189 (1995)] is shown to contain the essential physics for describing the experiments, upon adequate consideration of the particles swelling behavior and network-solvent friction variations. (C) 2005 American Institute of Physics. C1 Univ Almeria, Dept Appl Phys, Grp Complex Fluids Phys, Almeria 04120, Spain. PMUSA, New Technol Res Dept, INEST Grp, Richmond, VA 23298 USA. Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Fernandez-Nieves, A (reprint author), Univ Almeria, Dept Appl Phys, Grp Complex Fluids Phys, Almeria 04120, Spain. NR 33 TC 24 Z9 24 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 22 PY 2005 VL 122 IS 8 AR 084702 DI 10.1063/1.1844392 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 902QS UT WOS:000227372200062 PM 15836072 ER PT J AU Cherry, BR Fujimoto, CH Cornelius, CJ Alam, TM AF Cherry, BR Fujimoto, CH Cornelius, CJ Alam, TM TI Investigation of domain size in polymer membranes using double-quantum-filtered spin diffusion magic angle spinning NMR SO MACROMOLECULES LA English DT Article ID SOLID-STATE NMR; NUCLEAR-MAGNETIC-RESONANCE; SPUN NYLON-6 FIBERS; HETEROGENEOUS POLYMERS; H-1-NMR SPECTROSCOPY; CHEMICAL-EXCHANGE; HIGH-SPEED; COEFFICIENTS; RELAXATION; NAFION AB Solid-state H-1 magic angle spinning (MAS) NMR was used to investigate sulfonated Diels-Alder poly(phenlylene) polymer membranes. Under high spinning speed H-1 MAS conditions, the proton environments of the sulfonic acid and phenylene polymer backbone are resolved. A double-quantum (DQ) filter using the rotor-synchronized back-to-back (BABA) NMR multiple-pulse sequence allowed the selective suppression of the sulfonic proton environment in the H-1 MAS NMR spectra. This DQ filter in conjunction with a spin diffusion NMR experiment was then used to measure the domain size of the sulfonic acid component within the membrane. In addition, the temperature dependence of the sulfonic acid spin-spin relaxation time (T-2) was determined, providing an estimate of the activation energy for the proton dynamics of the dehydrated membrane. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Alam, TM (reprint author), Sandia Natl Labs, MS 0886, Albuquerque, NM 87185 USA. EM tmalam@sandia.gov NR 46 TC 35 Z9 35 U1 3 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 22 PY 2005 VL 38 IS 4 BP 1201 EP 1206 DI 10.1021/ma047885+ PG 6 WC Polymer Science SC Polymer Science GA 898OF UT WOS:000227085400027 ER PT J AU Hahn, H Chakraborty, AK Das, J Pople, JA Balsara, NP AF Hahn, H Chakraborty, AK Das, J Pople, JA Balsara, NP TI Order-disorder transitions in cross-linked block copolymer solids SO MACROMOLECULES LA English DT Article ID MOLECULAR-WEIGHT; THERMOPLASTIC ELASTOMERS; MICROPHASE SEPARATION; DIBLOCK COPOLYMERS; NEMATIC ELASTOMERS; POLYMERS; MELTS; POLYMERIZATION; POLYISOPRENE; NANOSPHERES AB The nature of order-disorder transitions in cross-linked diblock copolymer melts was studied using small-angle X-ray scattering (SAXS) and birefringence measurements. Experiments were conducted on cross-linked polystyrene-block-polyisoprene copolymer samples wherein the polyisoprene block was selectively cross-linked at a temperature well above the order-disorder transition temperature of the pure block copolymer. We find a reversible transition from a disordered gel to an ordered gel when the cross-linking density is below a critical value. The rheological properties of disordered block copolymer gels are very different from that of cross-linked homopolymer gels. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Stanford Linear Accelerator Ctr, Stanford Synchrotron Lab, Stanford, CA 94309 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RI Das, Jayajit/E-2951-2011 NR 49 TC 12 Z9 12 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 22 PY 2005 VL 38 IS 4 BP 1277 EP 1285 DI 10.1021/ma0485843 PG 9 WC Polymer Science SC Polymer Science GA 898OF UT WOS:000227085400036 ER PT J AU Fornasiero, F Prausnitz, JM Radke, CJ AF Fornasiero, F Prausnitz, JM Radke, CJ TI Multicomponent diffusion in highly asymmetric systems. An extended Maxwell-Stefan model for starkly different-sized, segment-accessible chain molecules SO MACROMOLECULES LA English DT Article ID POLYMER-SOLVENT SYSTEMS; STATISTICAL-MECHANICAL THEORY; FREE-VOLUME THEORIES; METHANOL FUEL-CELL; MEMBRANE-TRANSPORT; SELF-DIFFUSION; MASS-TRANSFER; COUPLED DIFFUSION; LIQUID-MIXTURES; FRICTION MODEL AB An extended version of the Maxwell-Stefan (EMS) equation is proposed to describe transport in multicomponent solutions of molecules that are starkly different in size and whose segments are all accessible for mutual frictional interactions. The proposed modification corrects the friction factor between the colliding molecules by replacing the molar species concentration by the molar segment concentration, or equivalently, by the volume fraction of the component. The new expression for the friction factor is consistent with the kinetic theory of Curtiss and Bird for polymer solutions in the limit of linear isotropic systems. When the classical generalized Maxwell-Stefan equation is applied to diffusion in a membrane-solvent system, the (unknown) molecular weight of the membrane must be specified. In EMS, however, such a specification is not required. Further, in contrast to a previous equation for polymer solutions proposed by Heintz and Stephan (J. Membr. Sci. 1994, 89, 153), EMS is consistent with restrictions given by the Gibbs-Duhem equation and by Onsager's reciprocity relations. The multicomponent diffusion equation proposed here is appropriate for modeling mass transfer in a variety of technologies, including membrane-separation operations, polymer drying and coating, and multicomponent transport in biological membranes, cells, and drug-delivery systems. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Chem Engn & Vis Sci Dept, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Chem & Earth Sci Div, Berkeley, CA 94720 USA. RP Radke, CJ (reprint author), Univ Calif Berkeley, Dept Chem Engn, 101E Gilman Hall, Berkeley, CA 94720 USA. EM f_fornasiero@berkeley.edu; prausnit@cchem.berkeley.edu; radke@berkeley.edu RI Fornasiero, Francesco/I-3802-2012 NR 59 TC 30 Z9 31 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 22 PY 2005 VL 38 IS 4 BP 1364 EP 1370 DI 10.1021/ma040133v PG 7 WC Polymer Science SC Polymer Science GA 898OF UT WOS:000227085400047 ER PT J AU Terao, K Farmer, BS Nakamura, Y Iatrou, H Hong, KL Mays, JW AF Terao, K Farmer, BS Nakamura, Y Iatrou, H Hong, KL Mays, JW TI Radius of gyration of polystyrene combs and centipedes in a Theta solvent SO MACROMOLECULES LA English DT Article ID RADICAL POLYMERIZATION BEHAVIOR; LIGHT-SCATTERING DETECTOR; EXCLUDED-VOLUME; BRANCHED POLYMERS; MOLECULAR-WEIGHT; CONFORMATIONAL PROPERTIES; STAR POLYSTYRENE; CHAIN STIFFNESS; DILUTE-SOLUTION; CYCLOHEXANE AB The molecular weight dependence of the radii of gyration R-g in a theta solvent (trans-decalin) of one regular branched comb and three regular centipede polystyrenes was studied using a gel permeation chromatography system equipped with a two-angle light scattering detector and a refractive index detector. R, in trans-decalin for each sample of particular molecular weight was about 25% smaller than that in a good solvent (tetrahydrofuran, THF). On the other hand, they are 20-40% larger than the theoretical values from the Gaussian chain model. This difference can be explained with the wormlike comb model developed by Nakamura et al. (Macromolecules 2000,33, 8323-8328). Persistence lengths thus obtained for each sample were about half of that determined in THF solution. However, they are significantly larger than that for linear polystyrene. These results suggest that a main chain stiffening effect exists in comb polystyrenes even in a theta solvent. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Gunma Univ, Dept Biol & Chem Engn, Kiryu, Gumma 3768515, Japan. Kyoto Univ, Dept Polymer Chem, Nishikyo Ku, Kyoto 6158510, Japan. Univ Athens, Dept Chem, GR-15771 Athens, Greece. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Terao, K (reprint author), Univ Tennessee, Dept Chem, 552 Buehler Hall, Knoxville, TN 37996 USA. EM terao@bce.gunma-u.ac.jp; jimmymays@utk.edu RI Terao, Ken/B-9143-2008; Hong, Kunlun/E-9787-2015 OI Terao, Ken/0000-0001-7363-4491; Hong, Kunlun/0000-0002-2852-5111 NR 36 TC 16 Z9 16 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 22 PY 2005 VL 38 IS 4 BP 1447 EP 1450 DI 10.1021/ma049485s PG 4 WC Polymer Science SC Polymer Science GA 898OF UT WOS:000227085400057 ER PT J AU Dagotto, E AF Dagotto, E TI Open questions in CMR manganites, relevance of clustered states and analogies with other compounds including the cuprates SO NEW JOURNAL OF PHYSICS LA English DT Article ID SUPERCONDUCTOR-INSULATOR TRANSITION; HIGH-TEMPERATURE SUPERCONDUCTORS; PHASE-SEPARATION; T-C; COLOSSAL MAGNETORESISTANCE; DOPED MANGANITES; THIN-FILMS; FERROELECTRICS; DESTRUCTION; EXCITATIONS AB This is an informal paper that contains a list of 'things we know' and 'things we do not know' in manganites and other compounds. It is adapted from the Conclusions chapter of a recent book by the author, Nanoscale Phase Separation and Colossal Magnetoresistance. The Physics of Manganites and Related Compounds ( Berlin: Springer-Verlag; 2002), but it also contains a summary of some of the most important recent results in the field. It is argued that the current main theoretical and experimental frameworks to rationalize the results of recent manganite investigations are based on the discovery of tendencies towards nanoscale inhomogeneous states, both in experiments and in simulations of models. The colossal magnetoresistance effect appears to be closely linked to these mixed-phase tendencies, although considerably more work is needed to fully confirm these ideas. The paper also includes information on cuprates, diluted magnetic semiconductors, relaxor ferroelectrics, cobaltites and organic and heavy fermion superconductors. These materials potentially share some common phenomenology with the manganites, such as a temperature scale T* above the ordering temperature where anomalous behaviour starts. Many of these materials also present low-temperature phase competition. The possibility of colossal-like effects in compounds that do not involve ferromagnets is briefly discussed. In particular, colossal effects in cuprates are explained. Overall, it is concluded that inhomogeneous 'clustered' states should be considered as a new paradigm in condensed matter physics, since their presence appears to be far more common than previously anticipated. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Dagotto, E (reprint author), Univ Tennessee, Dept Phys & Astron, 401 Nielsen Phys Bldg, Knoxville, TN 37996 USA. EM edagotto@utk.edu NR 82 TC 260 Z9 263 U1 2 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 22 PY 2005 VL 7 AR 67 DI 10.1088/1367-2630/7/1/067 PG 28 WC Physics, Multidisciplinary SC Physics GA 917LN UT WOS:000228463400001 ER PT J AU Bielejec, E Seamons, JA Reno, JL Lilly, MR AF Bielejec, E Seamons, JA Reno, JL Lilly, MR TI Tunneling and nonlinear transport in a vertically coupled GaAs/AlGaAs double quantum wire system SO APPLIED PHYSICS LETTERS LA English DT Article ID SPECTROSCOPY AB We report low-dimensional tunneling in an independently contacted vertically coupled quantum wire system. This nanostructure is fabricated in a high quality GaAs/AlGaAs parallel double quantum well heterostructure. Using a unique flip chip technique to align top and bottom split gates to form low-dimensional constrictions in each of the independently contacted quantum wells we explicitly control the subband occupation of the individual wires. In addition to the expected two-dimensional (2D)-2D tunneling results, we have found additional tunneling features that are related to the one-dimensional quantum wires. (c) 2005 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bielejec, E (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM esbiele@sandia.gov NR 14 TC 15 Z9 15 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 21 PY 2005 VL 86 IS 8 AR 083101 DI 10.1063/1.1871340 PG 3 WC Physics, Applied SC Physics GA 905YZ UT WOS:000227609000057 ER PT J AU Hu, YF Si, WD Sutter, E Li, Q AF Hu, YF Si, WD Sutter, E Li, Q TI In situ growth of c-axis-oriented Ca3CO4O9 thin films on Si(100) SO APPLIED PHYSICS LETTERS LA English DT Article ID THERMOELECTRIC PROPERTIES AB High-quality c-axis-oriented Ca3Co4O9 thin films have been grown directly on Si (100) wafers by pulsed-laser deposition without prechemical treatment of the substrate surface. Cross-sectional transmission electron microscopy shows good crystallinity of the Ca3Co4O9 films. The Seebeck coefficient and resistivity of the Ca3Co4O9 thin films on Si (100) substrate are 126 mu V/K and 4.3 m Omega cm, respectively, at room temperature, comparable to the single-crystal samples. This advance demonstrates the possibility of integrating the cobaltate-based high thermoelectric materials with the current state-of-the-art silicon technology for thermoelectricity-on-a-chip applications. (c) 2005 American Institute of Physics. C1 Brookhaven Natl Lab, Dept Mat Sci, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Hu, YF (reprint author), Brookhaven Natl Lab, Dept Mat Sci, Upton, NY 11973 USA. EM qiangli@bnl.gov NR 11 TC 66 Z9 67 U1 4 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 21 PY 2005 VL 86 IS 8 AR 082103 DI 10.1063/1.1868873 PG 3 WC Physics, Applied SC Physics GA 905YZ UT WOS:000227609000034 ER PT J AU Imangholi, B Hasselbeck, MP Sheik-Bahae, M Epstein, RI Kurtz, S AF Imangholi, B Hasselbeck, MP Sheik-Bahae, M Epstein, RI Kurtz, S TI Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures SO APPLIED PHYSICS LETTERS LA English DT Article ID MINORITY-CARRIER LIFETIME; VELOCITY; GAAS AB Photoluminescence of GaAs passivated with GaInP is studied over the temperature range 7 - 450 K. Different photocarrier recombination mechanisms are identified as the temperature changes. An interface recombination velocity of less than 0.6 cm/s is measured at 300 K. Lift-off processing inhibits but does not preclude laser cooling of GaAs. (c) 2005 American Institute of Physics. C1 Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Imangholi, B (reprint author), Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. EM babak@unm.edu NR 11 TC 32 Z9 32 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 21 PY 2005 VL 86 IS 8 AR 081104 DI 10.1063/1.1868068 PG 3 WC Physics, Applied SC Physics GA 905YZ UT WOS:000227609000004 ER PT J AU Kucheyev, SO Biener, J Wang, YM Baumann, TF Wu, KJ van Buuren, T Hamza, AV Satcher, JH Elam, JW Pellin, MJ AF Kucheyev, SO Biener, J Wang, YM Baumann, TF Wu, KJ van Buuren, T Hamza, AV Satcher, JH Elam, JW Pellin, MJ TI Atomic layer deposition of ZnO on ultralow-density nanoporous silica aerogel monoliths SO APPLIED PHYSICS LETTERS LA English DT Article ID X-RAY-ABSORPTION; ELECTRONIC-STRUCTURE; TIO2 NANOPARTICLES; SPECTROSCOPY; SIZE AB We report on atomic layer deposition of an similar to 2-nm-thick ZnO layer on the inner surface of ultralow-density (similar to 0.5% of the full density) nanoporous silica aerogel monoliths with an extremely large effective aspect ratio of similar to 10(5) (defined as the ratio of the monolith thickness to the average pore size). The resultant monoliths are formed by amorphous-SiO2 core/wurtzite-ZnO shell nanoparticles which are randomly oriented and interconnected into an open-cell network with an apparent density of similar to 3% and a surface area of similar to 100 m(2) g(-1). Secondary ion mass spectrometry and high-resolution transmission electron microscopy imaging reveal excellent uniformity and crystallinity of ZnO coating. Oxygen K-edge and Zn L-3-edge soft x-ray absorption near-edge structure spectroscopy shows broadened O p- as well as Zn s- and d-projected densities of states in the conduction band. (c) 2005 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Kucheyev, SO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM kucheyev@llnl.gov RI Pellin, Michael/B-5897-2008; Wang, Yinmin (Morris)/F-2249-2010 OI Pellin, Michael/0000-0002-8149-9768; Wang, Yinmin (Morris)/0000-0002-7161-2034 NR 24 TC 49 Z9 49 U1 1 U2 41 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 21 PY 2005 VL 86 IS 8 AR 083108 DI 10.1063/1.1870122 PG 3 WC Physics, Applied SC Physics GA 905YZ UT WOS:000227609000064 ER PT J AU Liang, Y Curless, J McCready, D AF Liang, Y Curless, J McCready, D TI Band alignment at epitaxial SrTiO3-GaAs(001) heterojunction SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-BEAM EPITAXY; HETEROEPITAXY; SPECTROSCOPY AB Band discontinuities and band bending at the epitaxial SrTiO3/GaAs(001) interface were investigated using x-ray and ultraviolet photoelectron spectroscopy. Results showed that the epitaxial SrTiO3/GaAs(001) formed a type II heterojunction with conduction and valence band offsets being 0.6 and 2.5 eV, respectively, for both n- and p-GaAs(001) substrates. The photoemission results further revealed that Fermi level was unpinned at the epitaxial SrTO3/GaAs(001) interface. (c) 2005 American Institute of Physics. C1 Freescale Semicond Inc, Tempe, AZ 85284 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Liang, Y (reprint author), Freescale Semicond Inc, Tempe, AZ 85284 USA. EM yong.liang@freescale.com NR 15 TC 21 Z9 21 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 21 PY 2005 VL 86 IS 8 AR 082905 DI 10.1063/1.1871364 PG 3 WC Physics, Applied SC Physics GA 905YZ UT WOS:000227609000055 ER PT J AU Rajagopalan, S Little, AL Bourke, MAM Vaidyanathan, R AF Rajagopalan, S Little, AL Bourke, MAM Vaidyanathan, R TI Elastic modulus of shape-memory NiTi from in situ neutron diffraction during macroscopic loading, instrumented indentation, and extensometryl SO APPLIED PHYSICS LETTERS LA English DT Article ID SUPERELASTIC NITI; TIC COMPOSITES; ALLOYS AB The elastic modulus of B19' shape-memory NiTi was determined using three techniques; from the response of lattice planes measured using in situ neutron diffraction during loading, instrumented indentation using a spherical indenter and macroscopic extensometry. The macroscopic measurements resulted in a modulus of 68 GPa, significantly less than the 101 GPa from indentation and the lattice plane average of 109 GPa from neutron diffraction. Evidence from the neutron measurements suggests that the disparity derives from the onset of small amounts of twinning at stresses less that 40 MPa, which might otherwise be considered elastic from a macroscopic view point. (c) 2005 American Institute of Physics. C1 Univ Cent Florida, AMPAC, Orlando, FL 32816 USA. Los Alamos Natl Lab, LANSCE MST, Los Alamos, NM 87545 USA. RP Rajagopalan, S (reprint author), Univ Cent Florida, AMPAC, Orlando, FL 32816 USA. EM raj@mail.ucf.edu RI Wagner, Martin/A-6880-2008 NR 22 TC 69 Z9 69 U1 4 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 21 PY 2005 VL 86 IS 8 AR 081901 DI 10.1063/1.18634337 PG 3 WC Physics, Applied SC Physics GA 905YZ UT WOS:000227609000015 ER PT J AU Shamoto, S Yamada, N Matsunaga, T Proffen, T Richardson, JW Chung, JH Egami, T AF Shamoto, S Yamada, N Matsunaga, T Proffen, T Richardson, JW Chung, JH Egami, T TI Large displacement of germanium atoms in crystalline Ge2Sb2Te5 SO APPLIED PHYSICS LETTERS LA English DT Article ID LOCAL-STRUCTURE; AMORPHOUS GETE; THIN-FILMS; X-RAY; ABSORPTION; MEMORY; ALLOY; SNTE AB Local structure of NaCl-type crystalline Ge2Sb2Te5 has been studied by the atomic pair distribution function analysis of pulsed neutron powder diffraction data. We have found the large displacement of germanium atoms in this crystalline phase. Usually,, such a large lattice distortion has disadvantages for the electric conductivity. The electronic band structure, however, implies that this significant distortion in addition to the lattice defect at Na site reduces only thermal conductivity, while the highly ordered tellurium atoms at Cl site keep high electric conductivity. (c) 2005 American Institute of Physics. C1 Japan Atom Energy Res Inst, Neutron Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. Matsushita Elect Ind Co Ltd, Storage Media Syst Dev Ctr, Moriguchi, Osaka 5708501, Japan. Matsushita Technores Inc, Characterizat Technol Grp, Moriguchi, Osaka 5708501, Japan. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Shamoto, S (reprint author), Japan Atom Energy Res Inst, Neutron Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. EM shamoto@neutrons.tokai.jaeri.go.jp RI Lujan Center, LANL/G-4896-2012; Proffen, Thomas/B-3585-2009 OI Proffen, Thomas/0000-0002-1408-6031 NR 17 TC 39 Z9 39 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 21 PY 2005 VL 86 IS 8 AR 081904 DI 10.1063/1.1861976 PG 3 WC Physics, Applied SC Physics GA 905YZ UT WOS:000227609000018 ER PT J AU Strachan, A Goddard, WA AF Strachan, A Goddard, WA TI Large electrostrictive strain at gigahertz frequencies in a polymer nanoactuator: Computational device design SO APPLIED PHYSICS LETTERS LA English DT Article ID POLY(VINYLIDENE FLUORIDE-TRIFLUOROETHYLENE) COPOLYMER; FLUORIDE); BEHAVIOR AB Using molecular dynamics with a first-principles-based force field (denoted MSXX), we show that large electrostrictive strains (similar to 5%) at extremely high frequencies (over similar to 10(9) Hz) can be achieved in a poly(vinylidene-fluoride) nanoactuator if the packing density of the polymer chains is chosen appropriately. We control the packing density by assembling the polymer chains on a silicon < 111 > surface with one-half coverage. Under these conditions, the equilibrium, zero electric field conformation of the polymer contains a combination of gauche and trans bonds. This structure can be transformed to an all-T conformation by applying an external electric field. Such molecular transformation is accompanied by a large deformation in the direction of the polymer chains. The device shows typical electrostrictive behavior with strain proportional to the square of the polarization. (c) 2005 American Institute of Physics. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. CALTECH, Beckman Inst 13 974, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. RP Strachan, A (reprint author), Los Alamos Natl Lab, Div Theoret, MS G756, Los Alamos, NM 87545 USA. EM strachan@lanl.gov NR 9 TC 8 Z9 8 U1 2 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 21 PY 2005 VL 86 IS 8 AR 083103 DI 10.1063/1.1862343 PG 3 WC Physics, Applied SC Physics GA 905YZ UT WOS:000227609000059 ER PT J AU Schmued, LC Stowers, CC Scallet, AC Xu, LL AF Schmued, LC Stowers, CC Scallet, AC Xu, LL TI Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons SO BRAIN RESEARCH LA English DT Article DE neumpathology; neurotoxicology; kainic acid; apoptosis; necrosis; excitotoxicity; hypoxia ID RAT FOREBRAIN; KAINIC ACID; LOCALIZATION; EXPOSURE; METHAMPHETAMINE; PROGRESSION; CORTEX; MYELIN; DAMAGE AB The causes and effects of neuronal degeneration are of major interest to a wide variety of neuroscientists. Paralleling this growing interest is an increasing number of methods applicable to the detection of neuronal degeneration. The earliest methods employing aniline dyes were methodologically simple, but difficult to interpret due to a lack of staining specificity. In an attempt to circumvent this problem, numerous suppressed silver methods have been introduced. However, these methods are labor intensive, incompatible with most other histochemical procedures and notoriously capricious. In an attempt to develop a tracer with the methodological simplicity and reliability of conventional stains but with the specificity of an ideal suppressed silver preparation, the Fluoro-Jade dyes were developed. Fluoro-Jade C, like its predecessors, Fluoro-Jade and Fluoro-Jade B, was found to stain all degenerating neurons, regardless of specific insult or mechanism of cell death. Therefore, the patterns of neuronal degeneration seen following exposure to either the glutamate agonist, kainic acid, or the inhibitor of mitochondrial respiration, 3-NPA, were the same for all of the Fluoro-Jade dyes. However, there was a qualitative difference in the staining characteristics of the three fluorochromes. Specifically, Fluoro-Jade C exhibited the greatest signal to background ratio, as well as the highest resolution. This translates to a stain of maximal contrast and affinity for degenerating neurons. This makes it ideal for localizing not only degenerating nerve cell bodies, but also distal dendrites, axons and terminals. The dye is highly resistant to fading and is compatible with virtually all histological processing and staining protocols. Triple labeling was accomplished by staining degenerating neurons with Fluoro-Jade C, cell nuclei with DAPI and activated astrocytes with GFAP immunofluoresence. Published by Elsevier B.V. C1 US FDA, Natl Ctr Toxicol Res, Div Neurotoxicol, Jefferson, AR 72079 USA. Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. ORISE, Inst Sci & Educ, Oak Ridge, TN 37813 USA. RP Schmued, LC (reprint author), US FDA, Natl Ctr Toxicol Res, Div Neurotoxicol, Jefferson, AR 72079 USA. EM lschmued@nctr.fda.gov NR 23 TC 319 Z9 329 U1 4 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0006-8993 J9 BRAIN RES JI Brain Res. PD FEB 21 PY 2005 VL 1035 IS 1 BP 24 EP 31 DI 10.1016/j.brainres.2004.11.054 PG 8 WC Neurosciences SC Neurosciences & Neurology GA 905BL UT WOS:000227542400003 PM 15713273 ER PT J AU Manson, JL Lancaster, T Chapon, LC Blundell, SJ Schlueter, JA Brooks, ML Pratt, FL Nygren, CL Qualls, JS AF Manson, JL Lancaster, T Chapon, LC Blundell, SJ Schlueter, JA Brooks, ML Pratt, FL Nygren, CL Qualls, JS TI Cu(HCO2)(2)(pym) (pym = pyrimidine): low-dimensional magnetic Behavior and long-range ordering in a quantum-spin lattice SO INORGANIC CHEMISTRY LA English DT Article ID BRIDGED COPPER(II) DIMER; CRYSTAL-STRUCTURE; SPECTROSCOPIC PROPERTIES; COORDINATION POLYMERS; DEGREES-C; COMPLEXES; TEMPERATURE; FORMATE; MUONS; ANTIFERROMAGNET C1 Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Univ Oxford, Clarendon Lab, Dept Phys, Oxford OX1 3PU, England. Rutherford Appleton Lab, ISIS Dept, Didcot OX11 0QX, Oxon, England. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Rutherford Appleton Lab, ISIS Muon Facil, Didcot OX11 0QX, Oxon, England. Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Univ Texas Pan Amer, Dept Phys & Geol, Edinburg, TX 78539 USA. RP Manson, JL (reprint author), Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. EM jmanson@ewu.edu NR 40 TC 31 Z9 31 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 21 PY 2005 VL 44 IS 4 BP 989 EP 995 DI 10.1021/ic048723x PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 899UY UT WOS:000227172200038 PM 15859278 ER PT J AU Yan, C Sinkine, N Wojcik, R AF Yan, C Sinkine, N Wojcik, R TI Linear beam raster for cryogenic targets SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE beam raster; cryogemic targets; beam heating; H-bridge AB Based on the H-bridge switch technique a linear beam raster system was developed in 2002. The system generates a rectangular raster pattern with highly uniform (similar to 95%) raster density distribution on cryogenic targets. The two raster frequencies are 24.96 and 25.08 kHz. The turning time at the vertex is 200 ns and the scan linearity is 98%. The beam-heating effect on the target is effectively eliminated. The new raster system allows the use of higher beam current toward 200 muA in many of the experimental proposals at end station Hall A and Hall C of the Jefferson tab. (C) 2004 Elsevier B.V. All rights reserved. C1 Thomas Jefferson Natl Accelerator Facil, Div Phys, Newport News, VA 23606 USA. RP Yan, C (reprint author), Thomas Jefferson Natl Accelerator Facil, Div Phys, MS 12H,12000 Jefferson Ave, Newport News, VA 23606 USA. EM yan@jlab.org NR 9 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2005 VL 539 IS 1-2 BP 1 EP 15 DI 10.1016/j.nima.2004.09.034 PG 15 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 904DG UT WOS:000227475700001 ER PT J AU Anulli, F Baldini, R Calcaterra, A Daniello, L de Sangro, R Finocchiaro, G Patteri, P Piccolo, M Santoni, M Zallo, A Cheng, CH Lange, DJ Wright, DM Boyce, R Krebs, J Messner, R Putallaz, G Wisniewski, WJ Buzzo, D Crosetti, G LoVetere, M Minutoli, S Passaggio, S Pollovio, P Robutti, E Tosi, S Trovato, A Cartaro, C Fabozzi, F Lista, L Piccolo, D Paolucci, P Avanzini, C Carpinelli, M Forti, F Neri, N Paoloni, E Rizzi, D Bellini, F Buccheri, A Cavoto, G del Reg, D Faccini, R Ferrarotto, F Ferroni, F Gargiulo, C Gaspero, M Lunadei, R Mazzoni, MA Morganti, S Pelosi, A Pierini, M Piredda, G Voena, C Sinev, N Strom, D Foulkes, S Wang, K Band, HR Hollar, J Tan, P AF Anulli, F Baldini, R Calcaterra, A Daniello, L de Sangro, R Finocchiaro, G Patteri, P Piccolo, M Santoni, M Zallo, A Cheng, CH Lange, DJ Wright, DM Boyce, R Krebs, J Messner, R Putallaz, G Wisniewski, WJ Buzzo, D Crosetti, G LoVetere, M Minutoli, S Passaggio, S Pollovio, P Robutti, E Tosi, S Trovato, A Cartaro, C Fabozzi, F Lista, L Piccolo, D Paolucci, P Avanzini, C Carpinelli, M Forti, F Neri, N Paoloni, E Rizzi, D Bellini, F Buccheri, A Cavoto, G del Reg, D Faccini, R Ferrarotto, F Ferroni, F Gargiulo, C Gaspero, M Lunadei, R Mazzoni, MA Morganti, S Pelosi, A Pierini, M Piredda, G Voena, C Sinev, N Strom, D Foulkes, S Wang, K Band, HR Hollar, J Tan, P TI BaBar forward endcap upgrade SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE RPC; muon detection ID PERFORMANCE; CHAMBERS AB The muon and neutral hadron detector (instrumented flux return or IFR) in the forward endcap of the BaBar detector at SLAC was upgraded by the installation of a new generation of resistive plate chambers (RPCs) and by increasing the absorber. The chamber replacement was made necessary by the rapid aging and efficiency loss of the original BaBar RPCs. Based on our experience with those original RPCs and 24 RPCs with thinner linseed oil treatments, improvements in the design, construction, and testing of the new generation RPCs were implemented and are described in detail. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. Lawrence Livermore Natl Lab, Livermore, CA USA. Stanford Linear Accelerator Ctr, Menlo Pk, CA USA. Univ Genoa, Genoa, Italy. Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. Univ Naples Federico II, Naples, Italy. Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. Univ Pisa, Pisa, Italy. Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. Univ Oregon, Eugene, OR 97403 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Wisconsin, Madison, WI 53706 USA. RP Ferroni, F (reprint author), Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 2, I-00185 Rome, Italy. EM fernando.ferroni@roma1.infn.it RI Lista, Luca/C-5719-2008; Lo Vetere, Maurizio/J-5049-2012; Bellini, Fabio/D-1055-2009; Forti, Francesco/H-3035-2011; crosetti, nanni/H-3040-2011; Neri, Nicola/G-3991-2012; de Sangro, Riccardo/J-2901-2012; Calcaterra, Alessandro/P-5260-2015; OI Lo Vetere, Maurizio/0000-0002-6520-4480; Bellini, Fabio/0000-0002-2936-660X; Forti, Francesco/0000-0001-6535-7965; Neri, Nicola/0000-0002-6106-3756; de Sangro, Riccardo/0000-0002-3808-5455; Calcaterra, Alessandro/0000-0003-2670-4826; Paoloni, Eugenio/0000-0001-5969-8712; Carpinelli, Massimo/0000-0002-8205-930X; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X NR 10 TC 10 Z9 10 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2005 VL 539 IS 1-2 BP 155 EP 171 DI 10.1016/j.nima.2004.10.034 PG 17 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 904DG UT WOS:000227475700018 ER PT J AU Ice, GE Hubbard, CR Larson, BC Pang, JWL Budal, JD Spooner, S Vogel, SC AF Ice, GE Hubbard, CR Larson, BC Pang, JWL Budal, JD Spooner, S Vogel, SC TI Kirkpatrick-Baez microfocusing optics for thermal neutrons SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE neutron focusing; Kirkpatrick-Baez; supermirrors; neutron microbeams ID X-RAY MIRRORS; SYNCHROTRON-RADIATION; DIFFRACTION AB Kirkpatrick-Baez neutron supermirrors can efficiently focus neutron beams into small areas with a maximum divergence that is limited by the mirror critical angle. The size of the focal spot is primarily determined by geometrical demagnification of the source and by figure errors in the mirror shape. Ray-tracing calculations show that high-performance Kirkpatrick-Baez supermirrors can preserve neutron-source brilliance when focusing down to tens of microns and can focus approximately two orders of magnitude greater power into 100 mum than is practical without focusing. The predicted performance is near the theoretical limit set by the source brilliance. We describe the phase space arguments, ray-tracing calculations and actual performance of an M3 supermirror system designed to produce a focal spot below 100 mum. Although the current design is optimized for neutron polychromatic microdiffraction, the design principles are widely applicable to a range of neutron science. (C) 2004 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ice, GE (reprint author), Oak Ridge Natl Lab, Rm B260,POB 2008,Bldg 4500S,MS-6118, Oak Ridge, TN 37831 USA. EM icege@ornl.gov RI Lujan Center, LANL/G-4896-2012; Budai, John/R-9276-2016; OI Budai, John/0000-0002-7444-1306; Vogel, Sven C./0000-0003-2049-0361 NR 16 TC 32 Z9 32 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2005 VL 539 IS 1-2 BP 312 EP 320 DI 10.1016/j.nima.2004.10.005 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 904DG UT WOS:000227475700030 ER PT J AU Protopopescu, D Hersman, FW Holtrop, M Adams, G Ambrozewicz, P Anciant, E Anghinolfi, M Asavapibhop, B Asryan, G Audit, G Auger, T Avakian, H Bagdasaryan, H Ball, JP Barrow, S Battaglieri, M Beard, K Bektasoglu, M Bellis, M Benmouna, N Berman, BL Bertozzi, W Bianchi, N Biselli, AS Boiarinov, S Bonner, BE Bouchigny, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Burkert, VD Butuceanu, C Calarco, JR Carman, DS Carnahan, B Cetina, C Chen, S Cole, PL Coleman, A Cords, D Corvisiero, P Crabb, D Crannell, H Curmnings, JP Debruyne, D De Sanctis, E DeVita, R Degtyarenko, PV Dennis, L Dharmawardane, KV Dhuga, KS Djalali, C Dodge, GE Doughty, D Dragovitsch, P Dugger, M Dytman, S Dzyubak, OP Egiyan, H Egiyan, KS Elouadrhiri, L Empl, A Eugenio, P Fatemi, R Feuerbach, RJ Forest, TA Funsten, H Gavalian, G Gilad, S Gilfoyle, GP Giovanetti, KL Girard, P Gordon, CIO Gothe, RW Griffioen, KA Guidal, M Guillo, M Guler, N Guo, L Gyurjyan, V Hadjidakis, C Hakobyan, RS Hardie, J Heddle, D Hicks, K Hleiqawi, I Hu, J Hyde-Wright, CE Ingram, W Ireland, D Ito, MM Jenkins, D Joo, K Juengst, HG Kelley, JH Kellie, JD Khandaker, M Kim, KY Kim, K Kim, W Klein, A Klein, FJ Klimenko, AV Klusman, M Kossov, M Kramer, LH Kuhn, SE Kuhn, J Lachniet, J Laget, JM Langheinrich, J Lawrence, D Lee, T Li, J Livingston, K Lukashin, K Manak, JJ Marchand, C McAleer, S McLauchlan, ST McNabb, JWC Mecking, BA Melone, JJ Mestayer, MD Meyer, CD Mikhailov, K Minehart, R Mirazita, M Miskimen, R Morand, L Morrow, SA Muccifora, V Mueller, J Mutchler, GS Napolitano, J Nasseripour, R Nelson, SO Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niyazov, RA Nozar, M O'Rielly, GV Osipenko, M Ostrovidov, A Park, K Pasyuk, E Peterson, G Philips, SA Pivnyuk, N Pocanic, D Pogorelko, O Polli, E Pozdniakov, S Preedom, BM Price, JW Prok, Y Qin, LM Raue, BA Riccardi, G Ricco, G Ripani, M Ritchie, BG Ronchetti, F Rosner, G Rossi, P Rowntree, D Rubin, PD Ryckebusch, J Sabatie, F Sabourov, K Salgado, C Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Sharabian, YG Shaw, J Simionatto, S Skabelin, AV Smith, ES Smith, LC Sober, DI Spraker, M Stavinsky, A Stepanyan, S Stokes, BE Stoler, P Strauch, S Taiuti, M Taylor, S Tedeschi, DJ Thoma, U Thompson, R Tkabladze, A Todor, L Tur, C Ungaro, M Vineyard, MF Vlassov, AV Wang, K Weinstein, LB Weller, H Weygand, DP Whisnant, CS Williams, M Wolin, E Wood, MH Yegneswaran, A Yun, J Zana, L Zhang, B AF Protopopescu, D Hersman, FW Holtrop, M Adams, G Ambrozewicz, P Anciant, E Anghinolfi, M Asavapibhop, B Asryan, G Audit, G Auger, T Avakian, H Bagdasaryan, H Ball, JP Barrow, S Battaglieri, M Beard, K Bektasoglu, M Bellis, M Benmouna, N Berman, BL Bertozzi, W Bianchi, N Biselli, AS Boiarinov, S Bonner, BE Bouchigny, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Burkert, VD Butuceanu, C Calarco, JR Carman, DS Carnahan, B Cetina, C Chen, S Cole, PL Coleman, A Cords, D Corvisiero, P Crabb, D Crannell, H Curmnings, JP Debruyne, D De Sanctis, E DeVita, R Degtyarenko, PV Dennis, L Dharmawardane, KV Dhuga, KS Djalali, C Dodge, GE Doughty, D Dragovitsch, P Dugger, M Dytman, S Dzyubak, OP Egiyan, H Egiyan, KS Elouadrhiri, L Empl, A Eugenio, P Fatemi, R Feuerbach, RJ Forest, TA Funsten, H Gavalian, G Gilad, S Gilfoyle, GP Giovanetti, KL Girard, P Gordon, CIO Gothe, RW Griffioen, KA Guidal, M Guillo, M Guler, N Guo, L Gyurjyan, V Hadjidakis, C Hakobyan, RS Hardie, J Heddle, D Hicks, K Hleiqawi, I Hu, J Hyde-Wright, CE Ingram, W Ireland, D Ito, MM Jenkins, D Joo, K Juengst, HG Kelley, JH Kellie, JD Khandaker, M Kim, KY Kim, K Kim, W Klein, A Klein, FJ Klimenko, AV Klusman, M Kossov, M Kramer, LH Kuhn, SE Kuhn, J Lachniet, J Laget, JM Langheinrich, J Lawrence, D Lee, T Li, J Livingston, K Lukashin, K Manak, JJ Marchand, C McAleer, S McLauchlan, ST McNabb, JWC Mecking, BA Melone, JJ Mestayer, MD Meyer, CD Mikhailov, K Minehart, R Mirazita, M Miskimen, R Morand, L Morrow, SA Muccifora, V Mueller, J Mutchler, GS Napolitano, J Nasseripour, R Nelson, SO Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niyazov, RA Nozar, M O'Rielly, GV Osipenko, M Ostrovidov, A Park, K Pasyuk, E Peterson, G Philips, SA Pivnyuk, N Pocanic, D Pogorelko, O Polli, E Pozdniakov, S Preedom, BM Price, JW Prok, Y Qin, LM Raue, BA Riccardi, G Ricco, G Ripani, M Ritchie, BG Ronchetti, F Rosner, G Rossi, P Rowntree, D Rubin, PD Ryckebusch, J Sabatie, F Sabourov, K Salgado, C Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Sharabian, YG Shaw, J Simionatto, S Skabelin, AV Smith, ES Smith, LC Sober, DI Spraker, M Stavinsky, A Stepanyan, S Stokes, BE Stoler, P Strauch, S Taiuti, M Taylor, S Tedeschi, DJ Thoma, U Thompson, R Tkabladze, A Todor, L Tur, C Ungaro, M Vineyard, MF Vlassov, AV Wang, K Weinstein, LB Weller, H Weygand, DP Whisnant, CS Williams, M Wolin, E Wood, MH Yegneswaran, A Yun, J Zana, L Zhang, B CA CLAS Collaboration TI Survey of ALT ' asymmetries in semi-exclusive electron scattering on He-4 and C-12 SO NUCLEAR PHYSICS A LA English DT Article DE NUCLEAR REACTIONS He-4, C-12 (polarised e,e ' p), E=2.261, 4.461 GeV; measured single spin azimuthal asymmetries vs missing momentum, missing energy; deduced final state interaction effects; comparisons with model predictions ID POLARIZED ELECTRONS; NUCLEON EMISSION; E'P REACTIONS; KNOCKOUT AB Single spin azimuthal asymmetries A(LT') were measured at Jefferson Lab using 2.2 and 4.4 GeV longitudinally polarised electrons incident on He-4 and C-12 targets in the CLAS detector. ALT' is related to the imaginary part of the longitudinal-transverse interference and in quasifree nucleon knockout it provides an unambiguous signature for final state interactions (FSI). Experimental values of ALT' were found to be below 5 %, typically \A(LT')\ less than or equal to 3 % for data with good statistical precision. Optical model in eikonal approximation (OMEA) and relativistic multiple-scattering Glauber approximation (RMSGA) calculations are shown to be consistent with the measured asymmetries. (C) 2004 Elsevier B.V. All rights reserved. C1 Arizona State Univ, Tempe, AZ 85287 USA. CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Catholic Univ Amer, Washington, DC 20064 USA. Christopher Newport Univ, Newport News, VA 23606 USA. Univ Connecticut, Storrs, CT 06269 USA. Duke Univ, Durham, NC 27708 USA. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Florida Int Univ, Miami, FL 33199 USA. Florida State Univ, Tallahassee, FL 32306 USA. State Univ Ghent, Dept Subatom & Radiat Phys, Ghent, Belgium. Univ Giessen, Inst Phys, D-35392 Giessen, Germany. George Washington Univ, Washington, DC 20052 USA. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. Inst Phys Nucl Orsay, Orsay, France. Inst Theoret & Expt Phys, Moscow 117259, Russia. James Madison Univ, Harrisonburg, VA 22807 USA. Kyungpook Natl Univ, Taegu 702701, South Korea. MIT, Cambridge, MA 02139 USA. Univ Massachusetts, Amherst, MA 01003 USA. Univ New Hampshire, Durham, NH 03824 USA. Norfolk State Univ, Norfolk, VA 23504 USA. Ohio Univ, Athens, OH 45701 USA. Old Dominion Univ, Norfolk, VA 23529 USA. Penn State Univ, University Pk, PA 16802 USA. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Univ Rome III, I-00146 Rome, Italy. Rensselaer Polytech Inst, Troy, NY 12180 USA. Rice Univ, Houston, TX 77005 USA. Univ Richmond, Richmond, VA 23173 USA. Univ S Carolina, Columbia, SC 29208 USA. Thomas Jefferson Natl Accelerator Fac, Newport News, VA 23606 USA. Union Coll, Schenectady, NY 12308 USA. Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Univ Virginia, Charlottesville, VA 22901 USA. Coll William & Mary, Williamsburg, VA 23187 USA. Yerevan Phys Inst, Yerevan 375036, Armenia. RP Protopopescu, D (reprint author), Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. EM protopop@jlab.org RI Ireland, David/E-8618-2010; Bektasoglu, Mehmet/A-2074-2012; Protopopescu, Dan/D-5645-2012; riccardi, gabriele/A-9269-2012; Zana, Lorenzo/H-3032-2012; Brooks, William/C-8636-2013; Schumacher, Reinhard/K-6455-2013; Auger, Thierry/L-1073-2013; Meyer, Curtis/L-3488-2014; Debruyne, Dimitri/A-8262-2015; Sabatie, Franck/K-9066-2015; OI Ireland, David/0000-0001-7713-7011; Brooks, William/0000-0001-6161-3570; Schumacher, Reinhard/0000-0002-3860-1827; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Ryckebusch, Jan/0000-0001-7750-1522 NR 36 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD FEB 21 PY 2005 VL 748 IS 3-4 BP 357 EP 373 DI 10.1016/j.nuclphysa.2004.11.009 PG 17 WC Physics, Nuclear SC Physics GA 897IK UT WOS:000226997100001 ER PT J AU Zhu, SL Maekawa, CM Holstein, BR Rarnsey-Musolf, MJ van Kolck, U AF Zhu, SL Maekawa, CM Holstein, BR Rarnsey-Musolf, MJ van Kolck, U TI Nuclear parity violation in effective field theory SO NUCLEAR PHYSICS A LA English DT Review ID CHIRAL PERTURBATION-THEORY; PROTON-PROTON-SCATTERING; ANAPOLE FORM-FACTOR; NON-CONSERVING ASYMMETRY; P-P SCATTERING; LOW-ENERGY; COUPLING H(PI-NN)((1)); CIRCULAR-POLARIZATION; ELECTRON-SCATTERING; 2-NUCLEON SYSTEMS AB We reformulate the analysis of nuclear parity violation (PV) within the framework of effective field theory (EFT). To O(Q), the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV pi N N coupling. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV. C1 Univ Massachusetts, Dept Phys, LGRT, Amherst, MA 01003 USA. Peking Univ, Dept Phys, Beijing 100871, Peoples R China. CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA. Fundacao Univ Fed Rio Grande, Dept Fis, BR-96201 Rio Grande, RS, Brazil. Thomas Jefferson Natl Accelerator Fac, Theory Grp, Newport News, VA 23606 USA. Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. Brookhaven Natl Lab, Res Ctr, RIKEN, BNL, Upton, NY 11973 USA. RP Univ Massachusetts, Dept Phys, LGRT, Amherst, MA 01003 USA. EM holstein@physics.umass.edu NR 142 TC 108 Z9 108 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD FEB 21 PY 2005 VL 748 IS 3-4 BP 435 EP 498 DI 10.1016/j.nuclphysa.2004.10.032 PG 64 WC Physics, Nuclear SC Physics GA 897IK UT WOS:000226997100006 ER PT J AU Kharzeev, D Levin, E McLerran, L AF Kharzeev, D Levin, E McLerran, L TI Jet azimuthal correlations and parton saturation in the color glass condensate SO NUCLEAR PHYSICS A LA English DT Article ID GLUON DISTRIBUTION-FUNCTIONS; HEAVY-ION COLLISIONS; HIGH-DENSITY QCD; NUCLEAR COLLISIONS; HIGH-ENERGY; SEMIHARD PROCESSES; ELLIPTIC FLOW; CROSS-SECTION; SMALL-X; EVOLUTION AB We consider the influence of parton saturation in the color glass condensate on the back-to-back azimuthal correlations of high-P-T hadrons in pA (or dA) collisions. When both near-side and away-side hadrons are detected at mid-rapidity at RHIC energy, the effects of parton saturation are constrained to transverse momenta below the saturation scale P-T less than or equal to Q(s); in this case the back-to-back correlations do not disappear but exhibit broadening. In addition, the uncorrelated background reduces the apparent strength of back-to-back correlations in AA collisions. When near-side and away-side hadrons are separated by several units of rapidity, quantum evolution effects lead to the depletion of back-to-back correlations as a function of rapidity interval between the detected hadrons (at fixed PT). This applies to both pp and pA (or dA) collisions; however, due to the initial conditions provided by the color glass condensate, the depletion of the back-to-back correlations is significantly stronger in the pA case. An experimental study of this effect would thus help to clarify the origin of the high-PT hadron suppression at forward rapidities observed recently at RHIC. (C) 2004 Elsevier B.V. All rights reserved. C1 Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, HEP Dept, IL-69978 Tel Aviv, Israel. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, HEP Dept, IL-69978 Tel Aviv, Israel. EM leving@post.tau.ac.il NR 55 TC 76 Z9 76 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD FEB 21 PY 2005 VL 748 IS 3-4 BP 627 EP 640 DI 10.1016/j.nuclphysa.2004.10.031 PG 14 WC Physics, Nuclear SC Physics GA 897IK UT WOS:000226997100014 ER PT J AU Ortiz, G Somma, R Dukelsky, J Rombouts, S AF Ortiz, G Somma, R Dukelsky, J Rombouts, S TI Exactly-solvable models derived from a generalized Gaudin algebra SO NUCLEAR PHYSICS B LA English DT Article ID SENIORITY-ZERO STATES; INTEGRABLE MODELS; METALLIC GRAINS; NUMBER; SUPERCONDUCTIVITY; SYSTEMS; DIAGONALIZATION; NUCLEI; CHARGE; LIMIT AB We introduce a generalized Gaudin Lie algebra and a complete set of mutually commuting quantum invariants allowing the derivation of several families of exactly solvable Hamiltonians. Different Hamiltonians correspond to different representations of the generators of the algebra. The derived exactly-solvable generalized Gaudin models include the Hamiltonians of Bardeen-Cooper-Schrieffer, Suhl-Matthias-Walker, Lipkin-Meshkov-Glick, the generalized Dicke and atom-molecule, the nuclear interacting boson model, a new exactly-solvable Kondo-like impurity model, and many more that, have not been exploited in the physics literature yet. (C) 2004 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. CSIC, Inst Estruct Mat, E-28006 Madrid, Spain. Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. RP Ortiz, G (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM ortiz@viking.lani.gov; somma@viking.lanl.gov; dukelsky@iem.cfmac.csic.es; stefan.rombouts@rug.ac.be RI Dukelsky, Jorge/I-1118-2015 OI Dukelsky, Jorge/0000-0002-7715-5487 NR 67 TC 88 Z9 88 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD FEB 21 PY 2005 VL 707 IS 3 BP 421 EP 457 DI 10.1016/j.nuclphysb.2004.11.008 PG 37 WC Physics, Particles & Fields SC Physics GA 897UR UT WOS:000227031400006 ER PT J AU Pagot, E Fiedler, S Cloetens, P Bravin, A Coan, P Fezzaa, K Baruchel, J Hartwig, J AF Pagot, E Fiedler, S Cloetens, P Bravin, A Coan, P Fezzaa, K Baruchel, J Hartwig, J TI Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID SYNCHROTRON-RADIATION; MAMMOGRAPHY; RADIOGRAPHY AB Two x-ray phase contrast imaging techniques are compared in a quantitative way for future mammographic applications: diffraction enhanced imaging (DEI) and phase propagation imaging (PPI). DEI involves, downstream of the sample, an analyser crystal acting as an angular filter for x-rays refracted by the sample. PPI simply uses the propagation (Fresnel diffraction) of the monochromatic and partially coherent x-ray beam over large distances. The information given by the two techniques is assessed by theoretical simulations and compared at the level of the experimental results for different kinds of samples (phantoms and real tissues). The imaging parameters such as the energy, the angular position of the analyser crystal in the DEI case or the sample to detector distance in the PPI case were varied in order to optimize the image quality in terms of contrast, visibility and figure of merit. C1 European Synchrotron Radiat Facil, F-38043 Grenoble, France. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Pagot, E (reprint author), European Synchrotron Radiat Facil, BP 220,6 Rue Horowitz, F-38043 Grenoble, France. EM elodie.pagot@jrc.it RI bravin, alberto/B-4911-2008; Coan, Paola/L-8804-2013; Bravin, Alberto/R-8633-2016 OI Coan, Paola/0000-0003-1399-2398; Bravin, Alberto/0000-0001-6868-2755 NR 27 TC 73 Z9 76 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 J9 PHYS MED BIOL JI Phys. Med. Biol. PD FEB 21 PY 2005 VL 50 IS 4 BP 709 EP 724 DI 10.1088/0031-9155/50/4/010 PG 16 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 903XE UT WOS:000227458100011 PM 15773629 ER PT J AU Workman, J Fincke, JR Kyrala, GA Pierce, T AF Workman, J Fincke, JR Kyrala, GA Pierce, T TI Uniform large-area x-ray imaging at 9 keV using a backlit pinhole SO APPLIED OPTICS LA English DT Article ID NATIONAL-IGNITION-FACILITY; LASER-PRODUCED PLASMAS; ABSORPTION-SPECTROSCOPY; PROJECTION RADIOGRAPHY; TARGETS; MICROSCOPY; RADIATION; CRYSTALS; SHOCK AB The development and application of point backlighting at high x-ray energies is an essential step in diagnosing radiation-driven experiments. The point-backlighting technique provides uniform backlighter irradiance over a large field of view. This technique circumvents the large laser energy required for area backlighters at energies of 9 keV and above. We present the results of a Zn 9 keV point-backlighter source using the technique of pinhole aperturing to define the source size and hence the resolution. Details of the design and application of this technique to an undriven gold-walled hohlraum are described. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Workman, J (reprint author), Los Alamos Natl Lab, Box 1663,Mail Stop E-526, Los Alamos, NM 87545 USA. EM workman@lanl.gov NR 30 TC 9 Z9 10 U1 1 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD FEB 20 PY 2005 VL 44 IS 6 BP 859 EP 865 DI 10.1364/AO.44.000859 PG 7 WC Optics SC Optics GA 900GN UT WOS:000227203500003 PM 15751674 ER PT J AU Liebendorfer, M Rampp, M Janka, HT Mezzacappa, A AF Liebendorfer, M Rampp, M Janka, HT Mezzacappa, A TI Supernova simulations with Boltzmann neutrino transport: A comparison of methods SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; methods : numerical; neutrinos; radiative transfer; relativity; supernovae : general ID CORE-COLLAPSE SUPERNOVAE; R-PROCESS; RADIATION HYDRODYNAMICS; ELECTRON SCATTERING; MASSIVE STARS; DRIVEN WINDS; NUCLEOSYNTHESIS; EVOLUTION; EQUATION; SHOCK AB Accurate neutrino transport has been built into spherically symmetric simulations of stellar core collapse and postbounce evolution. The results of such simulations agree that spherically symmetric models with standard microphysical input fail to explode by the delayed, neutrino-driven mechanism. Independent groups implemented fundamentally different numerical methods to tackle the Boltzmann neutrino transport equation. Here we present a direct and detailed comparison of such neutrino radiation-hydrodynamics simulations for two codes, AGILE-BOLTZTRAN of the Oak Ridge - Basel group and VERTEX of the Garching group. The former solves the Boltzmann equation directly by an implicit, general relativistic discrete-angle method on the adaptive grid of a conservative implicit hydrodynamics code with second-order TVD advection. In contrast, the latter couples a variable Eddington factor technique with an explicit, moving- grid, conservative high-order Riemann solver with important relativistic effects treated by an effective gravitational potential. The presented study is meant to test our neutrino radiation-hydrodynamics implementations and to provide a data basis for comparisons and verifications of supernova codes to be developed in the future. Results are discussed for simulations of the core collapse and postbounce evolution of a 13 M-. star with Newtonian gravity and a 15 M-. star with relativistic gravity. C1 Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Max Planck Inst Astrophys, D-85741 Garching, Germany. RP Liebendorfer, M (reprint author), Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. RI Mezzacappa, Anthony/B-3163-2017 OI Mezzacappa, Anthony/0000-0001-9816-9741 NR 55 TC 181 Z9 181 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2005 VL 620 IS 2 BP 840 EP 860 DI 10.1086/427203 PN 1 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 903DN UT WOS:000227405800025 ER PT J AU Wang, H Bell, RC Iedema, MJ Tsekouras, AA Cowin, JP AF Wang, H Bell, RC Iedema, MJ Tsekouras, AA Cowin, JP TI Sticky ice grains aid planet formation: Unusual properties of cryogenic water ice SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; dust, extinction; molecular processes ID MAGNETIC AGGREGATION; PARTICLES; MICROGRAVITY; CONDENSATION; COAGULATION; TEMPERATURE; CHEMISTRY; UNIVERSE; ORIGIN; GROWTH AB There is limited time for the dust in the nebula around a newborn star to form planetesimals: in a few million years or less the star's stellar winds will disperse most of the unagglomerated dust. It has been difficult to explain the efficiency by which dust grains must have agglomerated to form planetesimals in circumstellar disks. A major obstacle is the fragility of aggregates, leading to collisional fragmentation, which makes it difficult for them to grow to, and beyond, meter-sized bodies. The distinct properties of cryogenic ( 5 - 100 K) amorphous water ice, which composes or coats the grains in the cooler parts of the nebulae (greater than or similar to Jovian distances), may be able to account for the rapid agglomeration. Measurements are presented that show that this ice readily acquires persistent macroscopic electric dipoles, strongly enhancing grain-grain adhesion. In addition, measurements were made showing that vapor-deposited amorphous water ice is also highly mechanically inelastic ( approximate to 10% rebound). Together these may explain this efficient net sticking and net growth. Similar properties of higher temperature grains may aid agglomeration in the inner regions of the nebulae. C1 Natl Ctr Nanosci & Nanotechnol, Beijing 100080, Peoples R China. Penn State Univ, Dept Chem, Altoona, PA 16601 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Univ Athens, Dept Chem, GR-15771 Athens, Greece. RP Natl Ctr Nanosci & Nanotechnol, 21st North St, Beijing 100080, Peoples R China. EM hf_wang@hotmail.com; rcb155@psu.edu; martin.iedema@pnl.gov; thanost@cc.uoa.gr; jp.cowin@pnl.gov OI Tsekouras, Athanassios/0000-0002-4757-324X NR 34 TC 30 Z9 30 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2005 VL 620 IS 2 BP 1027 EP 1032 DI 10.1086/427072 PN 1 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 903DN UT WOS:000227405800042 ER PT J AU Wang, XF Wang, LF Zhou, X Lou, YQ Li, ZW AF Wang, XF Wang, LF Zhou, X Lou, YQ Li, ZW TI A novel color parameter as a luminosity calibrator for type Ia supernovae SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; distance scale; supernovae : general ID COSMOLOGICAL PARAMETERS; PRECISE DISTANCE; HUBBLE CONSTANT; GALAXIES AB Type Ia supernovae (SNe Ia) provide us with a unique tool for measuring extragalactic distances and determining cosmological parameters. As a result, the precise and effective calibration for peak luminosities of SNe Ia becomes extremely crucial and thus is critically scrutinized for cosmological explorations. In this Letter, we reveal clear evidence for a tight linear correlation between peak luminosities of SNe Ia and their B - V colors similar to 12 days after the B maximum denoted by DeltaC(12). By introducing such a novel color parameter, DeltaC(12), this empirical correlation allows us to uniformly standardize SNe Ia with decline rates Deltam(15) in the range of 0.8 < &UDelta;m(15) < 2.0 and to reduce scatters in estimating their peak luminosities from similar to0.5 mag to the levels of 0.18 and 0.12 mag in the V and I bands, respectively. For a sample of SNe Ia with insignificant reddenings of host galaxies [e.g., E(B - V)(host) less than or similar to 0.06 mag], the scatter drops further to only 0.07 mag (or 3% - 4% in distance), which is comparable to observational accuracies and is better than other calibrations for SNe Ia. This would impact observational and theoretical studies of SNe Ia and cosmological scales and parameters. C1 Chinese Acad Sci, Natl Astron Observ China, Beijing 100012, Peoples R China. Tsing Hua Univ, Dept Phys, Beijing 100084, Peoples R China. Tsing Hua Univ, Tsinghua Ctr Astrophys, Beijing 100084, Peoples R China. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. RP Wang, XF (reprint author), Chinese Acad Sci, Natl Astron Observ China, A20 Datun Rd, Beijing 100012, Peoples R China. EM wxf@vega.bac.pku.edu.cn; louyq@tsinghua.edu.cn RI Wang, Xiaofeng/J-5390-2015 NR 26 TC 46 Z9 49 U1 0 U2 5 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2005 VL 620 IS 2 BP L87 EP L90 DI 10.1086/428774 PN 2 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 903DP UT WOS:000227406000004 ER PT J AU Kang, SH Jeong, S Kim, D He, Y Yeung, ES AF Kang, SH Jeong, S Kim, D He, Y Yeung, ES TI Femtomol single-DNA molecules analysis by electro field strength in a microfluidic chip using TIRFM SO BULLETIN OF THE KOREAN CHEMICAL SOCIETY LA English DT Article DE single-molecule detection; microchip; TIRFM ID CAPILLARY-ELECTROPHORESIS; LIQUID/SOLID INTERFACES; FLUORESCENCE MICROSCOPY; INDIVIDUAL MOLECULES; PROTEIN MOLECULES; SURFACE-DIFFUSION; AQUEOUS-SOLUTION; SUPERCOILED DNA; ADSORPTION; DYNAMICS C1 Chonbuk Natl Univ, Dept Chem, Jeonju 561756, South Korea. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. US DOE, Ames Lab, Ames, IA 50011 USA. RP Kang, SH (reprint author), Chonbuk Natl Univ, Dept Chem, Jeonju 561756, South Korea. EM shkang@chonbuk.kr NR 39 TC 7 Z9 7 U1 1 U2 4 PU KOREAN CHEMICAL SOC PI SEOUL PA 635-4 YEOGSAM-DONG, KANGNAM-GU, SEOUL 135-703, SOUTH KOREA SN 0253-2964 J9 B KOR CHEM SOC JI Bull. Korean Chem. Soc. PD FEB 20 PY 2005 VL 26 IS 2 BP 315 EP 318 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 906FL UT WOS:000227625800028 ER PT J AU Halpern, MB Helfgottt, C AF Halpern, MB Helfgottt, C TI The general twisted open WZW string SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE string theory; conformal field theory; orbifolds; branes ID CONFORMAL FIELD-THEORY; AFFINE-VIRASORO ACTION; PION-QUARK MODEL; PERMUTATION ORBIFOLDS; OPERATOR ALGEBRA; GROUP-MANIFOLDS; 2 DIMENSIONS; CONSTRUCTION; BOUNDARY; GEOMETRY AB We recently studied two large but disjoint classes of twisted open WZW strings: the open-string sectors of the WZW orientation orbifolds and the so-called basic class of twisted open WZW strings. In this paper, we discuss all T-dualizations of the basic class to construct the general twisted open WZW string - which includes the disjoint classes above as special cases. For the general case, we give the branes and twisted non-commutative geometry at the classical level and the twisted open-string KZ equations at the operator level. Many examples of the general construction are discussed, including in particular the simple case of twisted free-bosonic open strings. We also revisit the open-string sectors of the general WZW orientation orbifold in further detail. For completeness, we finally review the general twisted boundary state equation which provides a complementary description of the general twisted open WZW string. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Halpern, MB (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM halpern@physics.berkeley.edu; helfgott@socrates.berkeley.edu NR 69 TC 15 Z9 15 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD FEB 20 PY 2005 VL 20 IS 5 BP 923 EP 992 DI 10.1142/S0217751X05020628 PG 70 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 909IR UT WOS:000227854100002 ER PT J AU Goldman, T Nieto, MM AF Goldman, T Nieto, MM TI Occam's Higgs: A phenomenological solution to the electroweak hierarchy problem SO MODERN PHYSICS LETTERS A LA English DT Article DE hierarchy problem; Higgs mass; slow-roll inflation ID WEAK INTERACTIONS; HIGH-ENERGIES; BOSON MASS AB We propose a phenomenological solution to the electroweak hierarchy problem. It predicts no new particles beyond those in the Standard Model. The Higgs is arbitrarily massive and slow-roll inflation can be implemented naturally. Loop corrections will be negligible even for large cutoffs. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Goldman, T (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM t.goldman@post.harvard.edu; mmn@lanl.gov NR 21 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD FEB 20 PY 2005 VL 20 IS 5 BP 329 EP 334 DI 10.1142/S0217732305016592 PG 6 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 902GP UT WOS:000227343000004 ER PT J AU Park, J Huang, Y Turton, R Famouri, P Boyle, EJ AF Park, J Huang, Y Turton, R Famouri, P Boyle, EJ TI The control of bed height and solids circulation rate in the standpipe of a cold flow circulating fluidized bed SO POWDER TECHNOLOGY LA English DT Article DE circulating fluidized bed; bed height; Kalman filter; solids circulation rate AB Circulating fluidized beds (CFBs) are used widely in the chemical industry. Knowing or estimating the bed height in the standpipe and the solids circulation rate are essential for effective control of the system. This paper incorporates a 2-region model to calculate the bed height in the standpipe with a Kalman filter algorithm to estimate the solids circulation rate (SCR). Simulations of both the standpipe bed height and SCR were compared with experimental data and shown to give good agreement. In addition, a neural network method was applied to model the entire cold flow CFB system and measured data sets were used to train the neurons of the network. Finally, a linear controller was applied to control both the bed height and solids circulation rate to desired set points. Simulations were performed for both positive and negative step inputs for both variables and satisfactory control was demonstrated using this controller in combination with the neutral network and Kalman estimator. Published by Elsevier B.V. C1 W Virginia Univ, Dept Chem Engn, Morgantown, WV 26508 USA. W Virginia Univ, Lane Dept Comp Sci & Elect Engn, Morgantown, WV 26506 USA. Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Turton, R (reprint author), W Virginia Univ, Dept Chem Engn, 433 Engn Sci Bldg, Morgantown, WV 26508 USA. EM riturton@mail.wvu.edu NR 25 TC 8 Z9 8 U1 2 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD FEB 20 PY 2005 VL 150 IS 3 BP 176 EP 184 DI 10.1016/j.powtec.2005.01.002 PG 9 WC Engineering, Chemical SC Engineering GA 913HI UT WOS:000228141800004 ER PT J AU Burnham, AK Weese, RK AF Burnham, AK Weese, RK TI Kinetics of thermal degradation of explosive binders Viton A, Estane, and Kel-F SO THERMOCHIMICA ACTA LA English DT Article DE Viton A; Kel-F; Estane; pyrolysis; chemical kinetics; kinetic analysis; activation energy; non-linear regression; isoconversional kinetics ID HEATING RATE; PYROLYSIS; MODEL; PART AB The use of isoconversional, sometimes called model-free, kinetic analysis methods have recently gained favor in the thermal analysis community. Although these methods are very useful and instructive, the conclusion by some that model fitting is a poor approach is largely due to improper use of model fitting, such as fitting a single heating rate or multiple heating rates separately. The current paper shows the ability of model fitting to correlate reaction data over very wide time-temperature regimes for three polymers of interest for formulating high explosives: Estane 5703 P (poly[ester urethane] block copolymer), Viton A (vinylidene-hexafluoropropene copolymer), and Kel-F 800 (vinylidene-chlorotrifluorethene copolymer). The Kel-F required two parallel reactions-one describing an early decomposition process accounting for similar to1% weight loss and a second autocatalytic reaction describing the remainder of pyrolysis. Essentially no residue was obtained. Viton A and Estane also required two parallel reactions for primary pyrolysis. For Viton A, the first reaction is also a minor, early process, but for Estate, it accounts for 42% of the mass loss. In addition, these two polymers yield 2-3% of residue, and the amount depends on the heating rate. This is an example of a competitive reaction between volatilization and char formation, which violates the basic tenet of the isoconversional approach and is an example of why it has limitations. Although more complicated models have been used in the literature for this type of process, we model our data well with a simple addition to the standard model in which the char yield is a function of the logarithm of the heating rate. (C) 2004 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Burnham, AK (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM burnham1@llnl.gov NR 26 TC 32 Z9 36 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-6031 J9 THERMOCHIM ACTA JI Thermochim. Acta PD FEB 20 PY 2005 VL 426 IS 1-2 BP 85 EP 92 DI 10.1016/j.tca.2004.07.009 PG 8 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA 895TV UT WOS:000226887500011 ER PT J AU Roark, EB Guilderson, TP Flood-Page, S Dunbar, RB Ingram, BL Fallon, SJ McCulloch, M AF Roark, EB Guilderson, TP Flood-Page, S Dunbar, RB Ingram, BL Fallon, SJ McCulloch, M TI Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID DEEP-SEA CORALS; SEDIMENT TRAPS; CARBON AB Deep-sea coral communities have long been recognized by fisherman as areas that support large populations of commercial fish. As a consequence, many deep-sea coral communities are threatened by bottom trawling. Successful management and conservation of this widespread deep-sea habitat requires knowledge of the age and growth rates of deep-sea corals. These organisms also contain important archives of intermediate and deep-water variability, and are thus of interest in the context of decadal to century-scale climate dynamics. Here, we present Delta(14)C data that suggest that bamboo corals from the Gulf of Alaska are long-lived ( 75-126 years) and that they acquire skeletal carbon from two distinct sources. Independent verification of our growth rate estimates and coral ages is obtained by counting seasonal Sr/Ca cycles and probable lunar cycle growth bands. C1 Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. Univ Calif Santa Cruz, Dept Sci Biol, Santa Cruz, CA 95064 USA. Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia. Stanford Univ, Stanford, CA 94305 USA. Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Roark, EB (reprint author), Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. EM ebroark@socrates.berkeley.edu; tguilderson@llnl.gov; dunbar@stanford.edu; ingram@eps.berkeley.edu; fallon4@llnl.gov; malcolm.mcculloch@anu.edu.au RI Fallon, Stewart/G-6645-2011; McCulloch, Malcolm/C-3651-2009; Roark, Erin/D-4124-2013 OI Fallon, Stewart/0000-0002-8064-5903; Roark, Erin/0000-0002-1742-9642 NR 20 TC 57 Z9 58 U1 2 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 19 PY 2005 VL 32 IS 4 AR L04606 DI 10.1029/2004GL021919 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 900KG UT WOS:000227213200007 ER PT J AU Bansal, A Gough, E Sabbaj, S Ritter, D Yusim, K Sfakianos, G Aldrovandi, G Kaslow, RA Wilson, CM Mulligan, MJ Kilby, JM Goepfert, PA AF Bansal, A Gough, E Sabbaj, S Ritter, D Yusim, K Sfakianos, G Aldrovandi, G Kaslow, RA Wilson, CM Mulligan, MJ Kilby, JM Goepfert, PA TI CD8 T-cell responses in early HIV-1 infection are skewed towards high entropy peptides SO AIDS LA English DT Article DE CD8 T cells; HIV-1; variable proteins; conserved proteins; entropy and CTL escape ID VIRUS TYPE-1 INFECTION; LOW VIRAL LOAD; CLASS-I; LYMPHOCYTE ESCAPE; ADOLESCENT MINORITIES; EXPRESSION KINETICS; DISEASE PROGRESSION; IMMUNE-RESPONSES; AUTOLOGOUS VIRUS; VIREMIA AB Objective: To understand the mechanisms underlying the differential targeting of T-cell responses during HIV-1 disease progression. Design: We performed a cross-sectional analysis of HIV specific CD8 T-cell responses in peripheral blood mononuclear cells (PBMC) obtained from 21 subjects with well characterized acute or early infection and 88 subjects with chronic HIV-1 infection. We also performed a longitudinal analysis of T-cell responses in five early infected subjects one of whom was studied extensively over a 4-year-period. Methods: PBMC were stimulated with pools of pepticles encompassing all of the HIV-1 proteins in an interferon-gamma ELISpot assay. A mean entropy score was calculated for each pepticle in the HIV-1 genome. Results: The early infected group preferentially targeted variable pepticles with higher entropy while responses towards more conserved pepticles with lower entropy predominated in the group with chronic infection. In five early infected subjects followed longitudinally, responses to variable proteins declined while those to conserved proteins increased over time. In the subject who was followed for 4 years, epitopes in Vif and Nef were targeted early and escape occurred in three of these four epitopes. During the chronic phase of his infection, the early responses waned with an associated increase in breadth of T-cell responses mainly to Gag and Pol epitopes. Conclusion: Taken together, these data demonstrate that HIV-specific CD8 T cells are directed preferentially to the variable pepticles in early infection but diminish in frequency during chronic disease, in large part due to cytotoxic T lymphocyte escape. (c) 2005 Lippincott Williams C Wilkins C1 Univ Alabama, Sch Med, Dept Med, Birmingham, AL 35294 USA. Univ Alabama, Sch Med, Dept Microbiol, Birmingham, AL 35294 USA. Univ Alabama, Sch Med, Dept Pediat, Birmingham, AL 35294 USA. Univ Alabama, Sch Publ Hlth, Birmingham, AL 35294 USA. Los Alamos Natl Lab, Los Alamos, NM USA. Childrens Hosp Los Angeles, Dept Pediat, Los Angeles, CA 90027 USA. RP Goepfert, PA (reprint author), Univ Alabama, Sch Med, Dept Med, 908,20th St S,CCB 330, Birmingham, AL 35294 USA. EM paulg@uab.edu OI Sabbaj, Steffanie/0000-0003-4052-6819; Kilby, J. Michael/0000-0003-3222-1003 FU NIAID NIH HHS [AI41530, AI49126]; NICHD NIH HHS [U01 HD32830] NR 52 TC 42 Z9 42 U1 1 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0269-9370 J9 AIDS JI Aids PD FEB 18 PY 2005 VL 19 IS 3 BP 241 EP 250 PG 10 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 910ZH UT WOS:000227970200002 PM 15718834 ER PT J AU Custelcean, R Gorbunova, MG Bonnesen, PV AF Custelcean, R Gorbunova, MG Bonnesen, PV TI Steric control over hydrogen bonding in crystalline organic solids: A structural study of N,N '-dialkylthioureas SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE crystal engineering; hydrogen bonds; noncovalent interactions; steric control; thiourea ID SUPRAMOLECULAR ASSOCIATION; COORDINATION POLYMERS; MOLECULAR TECTONICS; 1/1 COMPLEXES; DESIGN; NETWORKS; CHEMISTRY; FRAMEWORKS; ISOMERISM; ARCHITECTURE AB Hydrogen bonding in crystalline N,N'-dialkylthioureas was examined with the help of single-crystal Xray diffraction, DFT calculations, and Cambridge Structural Database (CSD) analysis. A CSD survey indicated that unlike the related urea derivatives, which persistently self-assemble into one-dimensional hydrogen-bonded chains, the analogous thioureas can form two different hydrogen-bonding motifs in the solid state: chains, structurally similar with those found in ureas, and dimers, that further associate into hydrogen-bonded layers. The formation of one motif or another can be manipulated by the bulkiness of the organic substituents on the thiourea group, which provides a clear example of steric control over the hydrogen bonding arrangement in crystalline organic solids. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Custelcean, R (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008,MS-6119, Oak Ridge, TN 37831 USA. EM custelceanr@ornl.gov RI Custelcean, Radu/C-1037-2009; Bonnesen, Peter/A-1889-2016 OI Custelcean, Radu/0000-0002-0727-7972; Bonnesen, Peter/0000-0002-1397-8281 NR 53 TC 53 Z9 53 U1 0 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0947-6539 J9 CHEM-EUR J JI Chem.-Eur. J. PD FEB 18 PY 2005 VL 11 IS 5 BP 1459 EP 1466 DI 10.1002/chem.200400973 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 901DA UT WOS:000227262000010 PM 15651024 ER PT J AU White, MA Hoffman, F Hargrove, WW Nemani, RR AF White, MA Hoffman, F Hargrove, WW Nemani, RR TI A global framework for monitoring phenological responses to climate change SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID VEGETATION INDEX; RESOLUTION; FOOTPRINT; FOREST; AREAS AB Remote sensing of vegetation phenology is an important method with which to monitor terrestrial responses to climate change, but most approaches include signals from multiple forcings, such as mixed phenological signals from multiple biomes, urbanization, political changes, shifts in agricultural practices, and disturbances. Consequently, it is difficult to extract a clear signal from the usually assumed forcing: climate change. Here, using global 8 km 1982 to 1999 Normalized Difference Vegetation Index (NDVI) data and an eight-element monthly climatology, we identified pixels whose wavelet power spectrum was consistently dominated by annual cycles and then created phenologically and climatically self-similar clusters, which we term phenoregions. We then ranked and screened each phenoregion as a function of landcover homogeneity and consistency, evidence of human impacts, and political diversity. Remaining phenoregions represented areas with a minimized probability of non-climatic forcings and form elemental units for long-term phenological monitoring. C1 Utah State Univ, Dept Aquat Watershed & Earth Resources, Logan, UT 84322 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP White, MA (reprint author), Utah State Univ, Dept Aquat Watershed & Earth Resources, Old Main Hall 5240, Logan, UT 84322 USA. EM mikew@cc.usu.edu RI Hoffman, Forrest/B-8667-2012; OI Hoffman, Forrest/0000-0001-5802-4134; White, Michael/0000-0002-0238-8913 NR 21 TC 75 Z9 85 U1 3 U2 36 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 18 PY 2005 VL 32 IS 4 AR L04705 DI 10.1029/2004GL021961 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 900KF UT WOS:000227213100006 ER PT J AU Hendriks, BS Orr, G Wells, A Wiley, HS Lauffenburger, DA AF Hendriks, BS Orr, G Wells, A Wiley, HS Lauffenburger, DA TI Parsing ERK activation reveals quantitatively equivalent contributions from epidermal growth factor receptor and HER2 in human mammary epithelial cells SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID NEU DIFFERENTIATION FACTOR; ERBB SIGNALING NETWORK; KINASE CASCADE; BREAST-CANCER; EGF-RECEPTOR; ENDOCYTIC SYSTEM; TRAFFICKING; DIVERSIFICATION; AMPLIFICATION; TRANSDUCTION AB HER2, a member of the epidermal growth factor receptor (EGFR) tyrosine kinase family, functions as an accessory EGFR signaling component and alters EGFR trafficking by heterodimerization. HER2 overexpression leads to aberrant cell behavior including enhanced proliferation and motility. Here we applied a combination of computational modeling and quantitative experimental studies of the dynamic interactions between EGFR and HER2 and their downstream activation of ERK to understand this complex signaling system. Using cells expressing different levels of HER2 relative to the EGFR, we could separate relative contributions of EGFR and HER2 to signaling amplitude and duration. Based on our model calculations, we demonstrated that, in contrast with previous suggestions in the literature, the intrinsic capabilities of EGFR and HER2 to activate ERK were quantitatively equivalent. We found that HER2-mediated effects on EGFR dimerization and trafficking were sufficient to explain the observed HER2-mediated amplification of epidermal growth factor-induced ERK signaling. Our model suggests that transient amplification of ERK activity by HER2 arises predominantly from the 2-to-1 stoichiometry of receptor kinase to bound ligand in EGFR/HER2 heterodimers compared with the 1-to-1 stoichiometry of the EGFR homodimer, but alterations in receptor trafficking yielding increased EGFR sparing cause the sustained HER2-mediated enhancement of ERK signaling. C1 MIT, Dept Chem Engn, Cambridge, MA 02139 USA. MIT, Dept Biol, Biol Engn Div, Cambridge, MA 02139 USA. MIT, Canc Res Ctr, Cambridge, MA 02139 USA. Univ Pittsburgh, Dept Pathol, Pittsburgh, PA 15261 USA. Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Lauffenburger, DA (reprint author), MIT, Dept Chem Engn, Cambridge, MA 02139 USA. EM lauffen@mit.edu OI Wiley, Steven/0000-0003-0232-6867; Wells, Alan/0000-0002-1637-8150 FU NCI NIH HHS [CA88865, CA96504] NR 40 TC 44 Z9 45 U1 0 U2 3 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 18 PY 2005 VL 280 IS 7 BP 6157 EP 6169 DI 10.1074/jbc.M41091200 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 900LT UT WOS:000227217100123 PM 15572377 ER PT J AU Adams, J Aggarwal, MM Ahammed, Z Amonett, J Anderson, BD Arkhipkin, D Averichev, GS Badyal, SK Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Bekele, S Belaga, VV Bellwied, R Berger, J Bezverkhny, BI Bharadwaj, S Bhasin, A Bhati, AK Bhatia, VS Bichsel, H Billmeier, A Bland, LC Blyth, CO Bonner, BE Botje, M Boucham, A Brandin, AV Bravar, A Bystersky, M Cadman, RV Cai, XZ Caines, H Calderon de la Barca Sanchez, M Castillo, J Cebra, D Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, Y Cheng, J Cherney, M Chikanian, A Christie, W Coffin, JP Cormier, TM Cramer, JG Crawford, HJ Das, D Das, S de Moura, MM Derevschikov, AA Didenko, L Dietel, T Dogra, SM Dong, WJ Dong, X Draper, JE Du, F Dubey, AK Dunin, VB Dunlop, JC Dutta Mazumdar, MR Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Faivre, J Fatemi, R Fedorisin, J Filimonov, K Filip, P Finch, E Fine, V Fisyak, Y Fomenko, K Fu, J Gagliardi, CA Gaillard, L Gans, J Ganti, MS Gaudichet, L Geurts, F Ghazikhanian, V Ghosh, P Gonzalez, JE Grachov, O Grebenyuk, O Grosnick, D Guertin, SM Guo, Y Gupta, A Gutierrez, TD Hallman, TJ Hamed, A Hardtke, D Harris, JW Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffmann, GW Huang, HZ Huang, SL Hughes, EW Humanic, TJ Igo, G Ishihara, A Jacobs, P Jacobs, WW Janik, M Jiang, H Jones, PG Judd, EG Kabana, S Kang, K Kaplan, M Keane, D Khodyrev, VY Kiryluk, J Kisiel, A Kislov, EM Klay, J Klein, SR Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kutuev, RK Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S Laue, F Lauret, J Lebedev, A Lednicky, R Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, L Liu, QJ Liu, Z Ljubicic, T Llope, WJ Long, H Longacre, RS Lopez-Noriega, M Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Magestro, D Mahajan, S Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Marx, JN Matis, HS Matulenko, YA McClain, CJ McShane, TS Meissner, F Melnick, Y Meschanin, A Miller, ML Minaev, NG Mironov, C Mischke, A Mishra, DK Mitchell, J Mohanty, B Molnar, L Moore, CF Morozov, DA Munhoz, MG Nandi, BK Nayak, SK Nayak, TK Nelson, JM Netrakanti, PK Nikitin, VA Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Petrov, VA Phatak, SC Picha, R Planinic, M Pluta, J Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Rakness, G Raniwala, R Raniwala, S Ravel, O Ray, RL Razin, SV Reichhold, D Reid, JG Renault, G Retiere, F Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Sahoo, R Sakrejda, I Salur, S Sandweiss, J Sarsour, M Savin, I Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Schweda, K Seger, J Seyboth, P Shahaliev, E Shao, M Shao, W Sharma, M Shen, WQ Shestermanov, KE Shimanskiy, SS Sichtermann, E Simon, F Singaraju, RN Skoro, G Smirnov, N Snellings, R Sood, G Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Suaide, AAP Sugarbaker, E Suire, C Sumbera, M Surrow, B Symons, TJM Szanto de Toledo, A Szarwas, P Tai, A Takahashi, J Tang, AH Tarnowsky, T Thein, D Thomas, JH Timoshenko, S Tokarev, M Trainor, TA Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Urkinbaev, A Van Buren, G van Leeuwen, M Vander Molen, AM Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Vznuzdaev, M Waggoner, WT Wang, F Wang, G Wang, G Wang, XL Wang, Y Wang, Y Wang, ZM Ward, H Watson, JW Webb, JC Wells, R Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wood, J Wu, J Xu, N Xu, Z Xu, ZZ Yamamoto, E Yepes, P Yurevich, VI Zanevsky, YV Zhang, H Zhang, WM Zhang, ZP Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN AF Adams, J Aggarwal, MM Ahammed, Z Amonett, J Anderson, BD Arkhipkin, D Averichev, GS Badyal, SK Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Bekele, S Belaga, VV Bellwied, R Berger, J Bezverkhny, BI Bharadwaj, S Bhasin, A Bhati, AK Bhatia, VS Bichsel, H Billmeier, A Bland, LC Blyth, CO Bonner, BE Botje, M Boucham, A Brandin, AV Bravar, A Bystersky, M Cadman, RV Cai, XZ Caines, H Calderon de la Barca Sanchez, M Castillo, J Cebra, D Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, Y Cheng, J Cherney, M Chikanian, A Christie, W Coffin, JP Cormier, TM Cramer, JG Crawford, HJ Das, D Das, S de Moura, MM Derevschikov, AA Didenko, L Dietel, T Dogra, SM Dong, WJ Dong, X Draper, JE Du, F Dubey, AK Dunin, VB Dunlop, JC Dutta Mazumdar, MR Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Faivre, J Fatemi, R Fedorisin, J Filimonov, K Filip, P Finch, E Fine, V Fisyak, Y Fomenko, K Fu, J Gagliardi, CA Gaillard, L Gans, J Ganti, MS Gaudichet, L Geurts, F Ghazikhanian, V Ghosh, P Gonzalez, JE Grachov, O Grebenyuk, O Grosnick, D Guertin, SM Guo, Y Gupta, A Gutierrez, TD Hallman, TJ Hamed, A Hardtke, D Harris, JW Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffmann, GW Huang, HZ Huang, SL Hughes, EW Humanic, TJ Igo, G Ishihara, A Jacobs, P Jacobs, WW Janik, M Jiang, H Jones, PG Judd, EG Kabana, S Kang, K Kaplan, M Keane, D Khodyrev, VY Kiryluk, J Kisiel, A Kislov, EM Klay, J Klein, SR Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kutuev, RK Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S Laue, F Lauret, J Lebedev, A Lednicky, R Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, L Liu, QJ Liu, Z Ljubicic, T Llope, WJ Long, H Longacre, RS Lopez-Noriega, M Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Magestro, D Mahajan, S Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Marx, JN Matis, HS Matulenko, YA McClain, CJ McShane, TS Meissner, F Melnick, Y Meschanin, A Miller, ML Minaev, NG Mironov, C Mischke, A Mishra, DK Mitchell, J Mohanty, B Molnar, L Moore, CF Morozov, DA Munhoz, MG Nandi, BK Nayak, SK Nayak, TK Nelson, JM Netrakanti, PK Nikitin, VA Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Petrov, VA Phatak, SC Picha, R Planinic, M Pluta, J Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Rakness, G Raniwala, R Raniwala, S Ravel, O Ray, RL Razin, SV Reichhold, D Reid, JG Renault, G Retiere, F Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Sahoo, R Sakrejda, I Salur, S Sandweiss, J Sarsour, M Savin, I Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Schweda, K Seger, J Seyboth, P Shahaliev, E Shao, M Shao, W Sharma, M Shen, WQ Shestermanov, KE Shimanskiy, SS Sichtermann, E Simon, F Singaraju, RN Skoro, G Smirnov, N Snellings, R Sood, G Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Suaide, AAP Sugarbaker, E Suire, C Sumbera, M Surrow, B Symons, TJM Szanto de Toledo, A Szarwas, P Tai, A Takahashi, J Tang, AH Tarnowsky, T Thein, D Thomas, JH Timoshenko, S Tokarev, M Trainor, TA Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Urkinbaev, A Van Buren, G van Leeuwen, M Vander Molen, AM Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Vznuzdaev, M Waggoner, WT Wang, F Wang, G Wang, G Wang, XL Wang, Y Wang, Y Wang, ZM Ward, H Watson, JW Webb, JC Wells, R Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wood, J Wu, J Xu, N Xu, Z Xu, ZZ Yamamoto, E Yepes, P Yurevich, VI Zanevsky, YV Zhang, H Zhang, WM Zhang, ZP Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN TI Open charm yields in d+Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-ION COLLISIONS; RESISTIVE PLATE CHAMBERS; DEPENDENCE; ELECTRONS; ENERGIES; PAIRS; PP AB Midrapidity open charm spectra from direct reconstruction of D-0((D) over bar (0))-->K(-/+)pi(+/-) in d(+)Au collisions and indirect electron-positron measurements via charm semileptonic decays in p+p and d+Au collisions at roots(NN)=200 GeV are reported. The D-0((D) over bar (0)) spectrum covers a transverse momentum (p(T)) range of 0.1< p(T) < 3 GeV/c, whereas the electron spectra cover a range of 1< p(T) < 4 GeV/c. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at midrapidity for open charm production from d+Au collisions at BNL RHIC is dsigma(c)((c)) over bar (NN)/dy=0.30+/-0.04(stat)+/-0.09(syst) mb. The results are compared to theoretical calculations. Implications for charmonium results in A+A collisions are discussed. C1 Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Bern, CH-3012 Bern, Switzerland. Brookhaven Natl Lab, Upton, NY 11973 USA. CALTECH, Pasadena, CA 91125 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Creighton Univ, Omaha, NE 68178 USA. AS CR, Nucl Phys Inst, Rez 25068, Czech Republic. Joint Inst Nucl Res Dubna, Lab High Energy, Dubna, Russia. Joint Inst Nucl Res Dubna, Particle Phys Lab, Dubna, Russia. Goethe Univ Frankfurt, D-6000 Frankfurt, Germany. Inst Phys, Bhubaneswar 751005, Orissa, India. Indian Inst Technol, Bombay 400076, Maharashtra, India. Indiana Univ, Bloomington, IN 47408 USA. Inst Rech Subatom, Strasbourg, France. Univ Jammu, Jammu 180001, India. Kent State Univ, Kent, OH 44242 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. MIT, Cambridge, MA 02139 USA. Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. Michigan State Univ, E Lansing, MI 48824 USA. CUNY City Coll, New York, NY 10031 USA. NIKHEF H, NL-1009 DB Amsterdam, Netherlands. Ohio State Univ, Columbus, OH 43210 USA. Panjab Univ, Chandigarh 160014, India. Penn State Univ, University Pk, PA 16802 USA. Inst High Energy Phys, Protvino, Russia. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Rice Univ, Houston, TX 77251 USA. Univ Sao Paulo, BR-05508 Sao Paulo, Brazil. Univ Sci & Technol China, Anhui 230027, Peoples R China. Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. SUBATECH, Nantes, France. Texas A&M Univ, College Stn, TX 77843 USA. Univ Texas, Austin, TX 78712 USA. Tsinghua Univ, Beijing 100084, Peoples R China. Valparaiso Univ, Valparaiso, IN 46383 USA. Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. Warsaw Univ Technol, Warsaw, Poland. Univ Washington, Seattle, WA 98195 USA. Wayne State Univ, Detroit, MI 48201 USA. HZNU, CCNU, Inst Particle Phys, Wuhan 430079, Peoples R China. Yale Univ, New Haven, CT 06520 USA. Univ Zagreb, HR-10002 Zagreb, Croatia. RP Univ Birmingham, Birmingham B15 2TT, W Midlands, England. RI Chen, Yu/E-3788-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Castillo Castellanos, Javier/G-8915-2013; Lednicky, Richard/K-4164-2013; Dong, Xin/G-1799-2014; Skoro, Goran/F-3642-2010; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Sumbera, Michal/O-7497-2014; Skoro, Goran/P-1229-2014; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Kisiel, Adam/O-8754-2015; Chaloupka, Petr/E-5965-2012; Suaide, Alexandre/L-6239-2016; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013 OI Peitzmann, Thomas/0000-0002-7116-899X; Castillo Castellanos, Javier/0000-0002-5187-2779; Dong, Xin/0000-0001-9083-5906; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Sumbera, Michal/0000-0002-0639-7323; Skoro, Goran/0000-0001-7745-9045; Strikhanov, Mikhail/0000-0003-2586-0405; Kisiel, Adam/0000-0001-8322-9510; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900 NR 38 TC 163 Z9 165 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 18 PY 2005 VL 94 IS 6 AR 062301 DI 10.1103/PhysRevLett.94.062301 PG 6 WC Physics, Multidisciplinary SC Physics GA 899JJ UT WOS:000227140400017 PM 15783724 ER PT J AU Amendt, PA Robey, HF Park, HS Tipton, RE Turner, RE Milovich, JL Bono, M Hibbard, R Louis, H Wallace, R Glebov, VY AF Amendt, PA Robey, HF Park, HS Tipton, RE Turner, RE Milovich, JL Bono, M Hibbard, R Louis, H Wallace, R Glebov, VY TI Hohlraum-driven ignitionlike double-shell implosions on the omega laser facility SO PHYSICAL REVIEW LETTERS LA English DT Article ID TARGETS; DESIGN AB High-convergence ignitionlike double-shell implosion experiments have been performed on the Omega laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using cylindrical gold hohlraums with 40 drive beams. Repeatable, dominant primary (2.45 MeV) neutron production from the mix-susceptible compressional phase of a double-shell implosion, using fall-line design optimization and exacting fabrication standards, is experimentally inferred from time-resolved core x-ray imaging. Effective control of fuel-pusher mix during final compression is essential for achieving noncryogenic ignition with double-shell targets on the National Ignition Facility [Paisner et al., Laser Focus World 30, 75 (1994)]. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Amendt, PA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 16 TC 24 Z9 26 U1 0 U2 10 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 18 PY 2005 VL 94 IS 6 AR 065004 DI 10.1103/PhysLettRev.94.065004 PG 4 WC Physics, Multidisciplinary SC Physics GA 899JJ UT WOS:000227140400032 PM 15783739 ER PT J AU del-Castillo-Negrete, D Carreras, BA Lynch, VE AF del-Castillo-Negrete, D Carreras, BA Lynch, VE TI Nondiffusive transport in plasma turbulence: A fractional diffusion approach SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANOMALOUS TRANSPORT; RANDOM-WALKS; CONFINEMENT; MODEL AB Numerical evidence of nondiffusive transport in three-dimensional, resistive pressure-gradient-driven plasma turbulence is presented. It is shown that the probability density function (pdf) of tracer particles' radial displacements is strongly non-Gaussian and exhibits algebraic decaying tails. To model these results we propose a macroscopic transport model for the pdf based on the use of fractional derivatives in space and time that incorporate in a unified way space-time nonlocality (non-Fickian transport), non-Gaussianity, and nondiffusive scaling. The fractional diffusion model reproduces the shape and space-time scaling of the non-Gaussian pdf of turbulent transport calculations. The model also reproduces the observed superdiffusive scaling. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP del-Castillo-Negrete, D (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM delcastillod@ornl.gov RI Lynch, Vickie/J-4647-2012; OI Lynch, Vickie/0000-0002-5836-7636; del-Castillo-Negrete, Diego/0000-0001-7183-801X NR 18 TC 88 Z9 88 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 18 PY 2005 VL 94 IS 6 AR 065003 DI 10.1103/PhysRevLett.94.065003 PG 4 WC Physics, Multidisciplinary SC Physics GA 899JJ UT WOS:000227140400031 PM 15783738 ER PT J AU Gambino, P Haisch, U Misiak, M AF Gambino, P Haisch, U Misiak, M TI Determining the sign of the b -> s gamma amplitude SO PHYSICAL REVIEW LETTERS LA English DT Article ID RARE B-DECAYS; DILEPTON INVARIANT MASS; STANDARD MODEL; SUPERSYMMETRY AB The latest Belle and BABAR measurements of the inclusive (B) over bar --> X(s)l(+)l(-) branching ratio have smaller errors and lower central values than the previous ones. We point out that these results indicate that the sign of the b --> sgamma amplitude is the same as in the standard model. This underscores the importance of (B) over bar --> X(s)l(+)l(-) in searches for new physics, and may be relevant for neutralino-dark matter analyses within the minimal supersymmetric standard model. C1 Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy. Fermilab Natl Accelerator Lab, Theoret Phys Dept, Batavia, IL 60510 USA. Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. RP Ist Nazl Fis Nucl, I-10125 Turin, Italy. OI Gambino, Paolo/0000-0002-7433-4914 NR 30 TC 74 Z9 75 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 18 PY 2005 VL 94 IS 6 AR 061803 DI 10.1103/PhysRevLett.94.061803 PG 4 WC Physics, Multidisciplinary SC Physics GA 899JJ UT WOS:000227140400015 PM 15783722 ER PT J AU Goncharov, AF Manaa, MR Zaug, JM Gee, RH Fried, LE Montgomery, WB AF Goncharov, AF Manaa, MR Zaug, JM Gee, RH Fried, LE Montgomery, WB TI Polymerization of formic acid under high pressure SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOLECULAR-DYNAMICS; DENSITY; ICE; PSEUDOPOTENTIALS; APPROXIMATION; DECOMPOSITION; EXCHANGE; CRYSTAL; SOLIDS; DIMER AB We report Raman, infrared, and x-ray diffraction (XRD) measurements, along with ab initio calculations on formic acid ( FA) under pressure up to 50 GPa. We find an infinite chain Pna2(1) structure to be a high-pressure phase at room temperature. Our data indicate the symmetrization and a partially covalent character of the intrachain hydrogen bonds above approximately 20 GPa. Raman spectra and XRD patterns indicate a loss of long-range order at pressures above 40 GPa, with a large hysteresis upon decompression. We attribute this behavior to a three-dimensional polymerization of FA. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Calif Berkeley, Dept Planetary Sci, Berkeley, CA 94720 USA. RP Goncharov, AF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Montgomery, Wren/K-6369-2013; Fried, Laurence/L-8714-2014 OI Montgomery, Wren/0000-0002-8076-8575; Fried, Laurence/0000-0002-9437-7700 NR 27 TC 47 Z9 47 U1 4 U2 17 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 18 PY 2005 VL 94 IS 6 AR 065505 DI 10.1103/PhysRevLett.94.065505 PG 4 WC Physics, Multidisciplinary SC Physics GA 899JJ UT WOS:000227140400039 PM 15783746 ER PT J AU Grigorenko, AN Bending, SJ Grigorieva, IV Koshelev, AE Tamegai, T Ooi, S AF Grigorenko, AN Bending, SJ Grigorieva, IV Koshelev, AE Tamegai, T Ooi, S TI Tilt of pancake vortex stacks in layered superconductors in the crossing lattice regime SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANGULAR-DEPENDENCE; SINGLE-CRYSTALS; CHAIN STATE; VORTICES; SURFACE; FIELDS; BI2SR2CACU2O8+DELTA; BEHAVIOR; MOTION; MODEL AB We study crossing vortices in strongly anisotropic Bi2Sr2CaCu2O8+delta single crystals. Using scanning Hall probe microscopy and Bitter decoration techniques, we find an asymmetry of magnetic field profiles produced by pancake vortices (PVs), which are interacting with Josephson vortices (JVs), near the surface of the crystal. We attribute the observed asymmetry to a substantial tilt (14-18 degrees) of PV stacks, which is produced by the torque due to the surface currents and JVs. We calculate the tilt angle and obtain agreement with experimental data when the irreversible in-plane magnetization is included. A further refinement to the model is considered which accounts for a reduction in the PV stack line tension near the sample surface. C1 Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England. Univ Bath, Sch Phys, Bath BA2 7AY, Avon, England. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan. RP Grigorenko, AN (reprint author), Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England. RI Tamegai, Tsuyoshi /C-6656-2011; Koshelev, Alexei/K-3971-2013 OI Koshelev, Alexei/0000-0002-1167-5906 NR 33 TC 13 Z9 13 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 18 PY 2005 VL 94 IS 6 AR 067001 DI 10.1103/PhysRevLett.94.067001 PG 4 WC Physics, Multidisciplinary SC Physics GA 899JJ UT WOS:000227140400059 PM 15783766 ER PT J AU Habib, S Heitmann, K Jungman, G AF Habib, S Heitmann, K Jungman, G TI Inverse-scattering theory and the density perturbations from inflation SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANGULAR POWER SPECTRUM; ANISOTROPY AB We show how to use inverse-scattering theory as the basis for the inflationary reconstruction program, the goal of which is to gain information about the physics which drives inflation. Inverse-scattering theory provides an effective and well-motivated procedure, having a sound mathematical basis and being of sufficient generality that it can be considered the foundation for a nonparametric reconstruction program. We show how simple properties of the power spectrum translate directly into statements about the evolution of the background geometry during inflation. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Habib, S (reprint author), Los Alamos Natl Lab, T-8, Los Alamos, NM 87545 USA. NR 16 TC 11 Z9 11 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 18 PY 2005 VL 94 IS 6 AR 061303 DI 10.1103/PhysRevLett.94.061303 PG 4 WC Physics, Multidisciplinary SC Physics GA 899JJ UT WOS:000227140400011 PM 15783718 ER PT J AU Scully, SWJ Emmons, ED Gharaibeh, MF Phaneuf, RA Kilcoyne, ALD Schlachter, AS Schippers, S Muller, A Chakraborty, HS Madjet, ME Rost, JM AF Scully, SWJ Emmons, ED Gharaibeh, MF Phaneuf, RA Kilcoyne, ALD Schlachter, AS Schippers, S Muller, A Chakraborty, HS Madjet, ME Rost, JM TI Photoexcitation of a volume plasmon in C-60 ions SO PHYSICAL REVIEW LETTERS LA English DT Article ID SIMPLE METAL-CLUSTERS; ELECTRON-IMPACT; FULLERENE IONS; GAS-PHASE; PHOTOIONIZATION; C60; PHOTOABSORPTION; FRAGMENTATION; ULTRAVIOLET; BUCKMINSTERFULLERENE AB Neutral C-60 is well known to exhibit a giant resonance in its photon absorption spectrum near 20 eV. This is associated with a surface plasmon, where delocalized electrons oscillate as a whole relative to the ionic cage. Absolute photoionization cross-section measurements for C-60(+), C-60(2+), and C-60(3+) ions in the 17-75 eV energy range show an additional resonance near 40 eV. Time-dependent density functional calculations confirm the collective nature of this feature, which is characterized as a dipole-excited volume plasmon made possible by the special fullerene geometry. C1 Univ Nevada, Dept Phys, MS 220, Reno, NV 89557 USA. Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. RP Queens Univ Belfast, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland. RI Schippers, Stefan/A-7786-2008; Muller, Alfred/A-3548-2009; Kilcoyne, David/I-1465-2013; OI Schippers, Stefan/0000-0002-6166-7138; Muller, Alfred/0000-0002-0030-6929; Rost, Jan M./0000-0002-8306-1743; Madjet, Mohamed El-Amine/0000-0002-8910-2278 NR 28 TC 104 Z9 105 U1 2 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 18 PY 2005 VL 94 IS 6 AR 065503 DI 10.1103/PhysRevLett.94.065503 PG 4 WC Physics, Multidisciplinary SC Physics GA 899JJ UT WOS:000227140400037 PM 15783744 ER PT J AU Seelig, G Matveev, KA Andreev, AV AF Seelig, G Matveev, KA Andreev, AV TI Phonon-induced resistivity of electron liquids in quantum wires SO PHYSICAL REVIEW LETTERS LA English DT Article ID ONE-DIMENSIONAL METALS; ANDERSON LOCALIZATION; ENERGY RELAXATION; CONDUCTANCE; RESISTANCE; SCATTERING; SYSTEM; ZERO AB We study the resistivity of a quantum wire caused by backscattering of electrons by acoustic phonons. In the presence of Coulomb interactions, backscattering is strongly enhanced at low temperatures due to Luttinger liquid effects. Information about the strength of the interactions can be obtained from a measurement of the temperature dependence of the resistivity. C1 Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. Argonne Natl Lab, Argonne, IL 60439 USA. Duke Univ, Dept Phys, Durham, NC 27708 USA. Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. RI Andreev, Anatoli/B-5882-2016 OI Andreev, Anatoli/0000-0002-3305-1205 NR 23 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 18 PY 2005 VL 94 IS 6 AR 066802 DI 10.1103/PhysRevLett.94.066802 PG 4 WC Physics, Multidisciplinary SC Physics GA 899JJ UT WOS:000227140400057 PM 15783764 ER PT J AU Liu, HZ Chen, J Hu, J Martin, CD Weidner, DJ Hausermann, D Mao, HK AF Liu, HZ Chen, J Hu, J Martin, CD Weidner, DJ Hausermann, D Mao, HK TI Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID X-RAY-DIFFRACTION; CRYSTAL-CHEMISTRY; SINGLE-CRYSTAL; D''-LAYER; MGSIO3; NEIGHBORITE; MANTLE AB [1] Rietveld refinement of monochromatic synchrotron x-ray powder diffraction data was used to study the evolution of octahedral tilting in the orthorhombic NaMgF3 perovskite under pressure. Hydrostatic pressure conditions were ensured up to 16 GPa using helium as a pressure medium. The tilting angles of MgF6 octahedral framework were observed to increase with increasing pressure. The compression mechanism was observed to be dominated by the shortening of the octahedral Mg-F bond below 6 GPa, and then controlled by the increase of the octahedral tilting above 12 GPa. The bulk modulus of NaMgF3 was estimated as 76.0 +/- 1.1 GPa. A phase transition was observed at about 19.4 GPa in a separate run when silicone oil was used as pressure medium, and this high-pressure phase could be rationalized in term of a post-perovskite structural model. C1 Argonne Natl Lab, High Pressure Collaborat Access Team, Adv Photon Source, Argonne, IL 60439 USA. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. SUNY Stony Brook, Mineral Phys inst, Stony Brook, NY 11794 USA. RP Liu, HZ (reprint author), Argonne Natl Lab, High Pressure Collaborat Access Team, Adv Photon Source, Argonne, IL 60439 USA. RI Liu, Haozhe/E-6169-2011 NR 26 TC 45 Z9 47 U1 2 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 17 PY 2005 VL 32 IS 4 AR L04304 DI 10.1029/2004GL022068 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 900KD UT WOS:000227212900004 ER PT J AU Liu, H Iglesia, E AF Liu, H Iglesia, E TI Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperaturest SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID DIMETHYL ETHER; METHYL FORMATE; O CATALYSTS; FORMALDEHYDE; RUO2 AB RuO(2) domains supported on SnO(2), ZrO(2), TiO(2), Al(2)O(3), and SiO(2) catalyze the oxidative conversion of methanol to formaldehyde, methylformate, and dimethoxymethane with unprecedented rates and high combined selectivity (>99%) and yield at low temperatures (300-400 K). Supports influence turnover rates and the ability of RuO(2) domains to undergo redox cycles required for oxidation turnovers. Oxidative dehydrogenation turnover rates and rates of stoichiometric reduction of RuO(2) in H(2) increased in parallel when RuO(2) domains were dispersed on more reducible supports. These support effects, the kinetic effects of CH(3)OH and O(2) on reaction rates, and the observed kinetic isotope effects with CH(3)OD and CD(3)OD reactants are consistent with a sequence of elementary steps involving kinetically relevant H-abstraction from adsorbed methoxide species using lattice oxygen atoms and with methoxide formation in quasi-equilibrated CH(3)OH dissociation on nearly stoichiometric RuO(2) surfaces. Anaerobic transient experiments confirmed that CH(3)OH oxidation to HCHO requires lattice oxygen atoms and that selectivities are not influenced by the presence of 0, Residence time effects on selectivity indicate that secondary HCHO-CH(3)OH acetalization reactions lead to hemiacetal or methoxy-methanol intermediates that convert to dimethoxy methane in reactions with CH(3)OH on support acid sites or dehydrogenate to form methylformate on RuO(2) and support redox sites. These conclusions are consistent with the tendency of Al(2)O(3) and SiO(2) supports to favor dimethoxymethane formation, while SnO(2), ZrO(2), and TiO(2) preferentially form methylformate. These support effects on secondary reactions were confirmed by measured CH(3)OH oxidation rates and selectivities on physical mixtures of supported RuO(2) catalysts and pure supports. Ethanol also reacts on supported RuO(2) domains to form predominately acetaldehyde and diethoxyethane at 300-400 K. The bifunctional nature of these reaction pathways and the remarkable ability of RuO(2)-based catalysts to oxidize CH(3)OH to HCHO at unprecedented low temperatures introduce significant opportunities for new routes to complex oxygenates, including some containing C-C bonds, using methanol or ethanol as intermediates derived from natural gas or biomass. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EO Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA USA. RP Iglesia, E (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM iglesia@cchem.berkeley.edu RI Iglesia, Enrique/D-9551-2017; OI Iglesia, Enrique/0000-0003-4109-1001; Liu, Hongwei/0000-0001-7500-9649 NR 25 TC 112 Z9 124 U1 12 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 17 PY 2005 VL 109 IS 6 BP 2155 EP 2163 DI 10.1021/jp0401980 PG 9 WC Chemistry, Physical SC Chemistry GA 896TK UT WOS:000226956300015 PM 16851207 ER PT J AU Rioux, RM Song, H Hoefelmeyer, JD Yang, P Somorjai, GA AF Rioux, RM Song, H Hoefelmeyer, JD Yang, P Somorjai, GA TI High-surface-area catalyst design: Synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SINGLE-CRYSTAL SURFACES; ETHANE HYDROGENOLYSIS; ETHYLENE HYDROGENATION; SUPPORTED PLATINUM; METAL FILMS; KINETICS; SITES; CLUSTERS; PT(111); SIZE AB Platinum nanoparticles in the size range of 1.7-7.1 nm were produced by alcohol reduction methods. A polymer (poly (vinylpyrrolidone), PVP) was used to stabilize the particles by capping them in aqueous solution. The particles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM investigations demonstrate that the particles have a narrow size distribution. Mesoporous SBA-15 silica with 9-nm pores was synthesized by a hydrothermal process and used as a catalyst support. After incorporation into mesoporous SBA-15 silica using low-power sonication, the catalysts were calcined to remove the stabilizing polymer from the nanoparticle surface and reduced by H-2. Pt particle sizes determined from selective gas adsorption measurements are larger than those determined by bulk techniques such as XRD and TEM. Roomtemperature ethylene hydrogenation was chosen as a model reaction to probe the activity of the Pt/SBA-15 materials. The reaction was shown to be structure insensitive over a series of Pt/SBA-15 materials with particle sizes between 1.7 and 3.6 nm. The hydrogenolysis of ethane on Pt particles from 1.7 to 7.1 nm was weakly structure sensitive with smaller particles demonstrating higher specific activity. Turnover rates for ethane hydrogenolysis increased monotonically with increasing metal dispersion, suggesting that coordinatively unsaturated metal atoms present in small particles are more active for C2H6 hydrogenolysis than the low index planes that dominate in large particles. An explanation for the structure sensitivity is suggested, and the potential applications of these novel supported nanocatalysts for further studies of structure-activity and structure-selectivity relationships are discussed. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@cchem.berkeley.edu; somorjai@cchem.berkeley.edu RI Hoefelmeyer, James/B-5278-2011; Song, Hyunjoon/C-1638-2011 OI Song, Hyunjoon/0000-0002-1565-5697 NR 65 TC 315 Z9 321 U1 29 U2 259 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 17 PY 2005 VL 109 IS 6 BP 2192 EP 2202 DI 10.1021/jp048867x PG 11 WC Chemistry, Physical SC Chemistry GA 896TK UT WOS:000226956300019 PM 16851211 ER PT J AU Argyle, MD Chen, KD Iglesia, E Bell, AT AF Argyle, MD Chen, KD Iglesia, E Bell, AT TI In situ UV-visible spectroscopic measurements of kinetic parameters and active sites for catalytic oxidation of alkanes on vanadium oxides SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID DIFFUSE-REFLECTANCE SPECTROSCOPY; DEHYDROGENATION PATHWAYS; PROPANE; REDUCTION; ETHANE; MOLYBDENUM; DESIGN; STATE AB In situ diffuse reflectance UV-visible spectroscopy was used to measure the dynamics of catalyst reduction and oxidation during propane oxidative dehydrogenation (ODH) on VOx/gamma-Al2O3. Transients in UV-visible intensity in the near-edge region were analyzed using a mechanistic model of ODH reactions. Rate constants per site for the kinetically relevant reduction step (C-H bond activation) measured using this analysis are slightly larger than those obtained from steady-state ODH rates normalized by surface V. The ratio of these values provides a measure of the fraction of the V surface sites that are active for ODH (0.6-0.7, for V surface densities of 2.3-34 V nm(-2)). This suggests that some of the V atoms are either inaccessible or inactive. Reoxidation rate constants, which cannot be obtained from steady-state analysis, are 10(3)-10(5) times larger than those for the C-H bond activation reduction step. C1 Univ Calif Berkeley, Chem Sci Div, EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Chem Sci Div, Dept Chem Engn, Berkeley, CA 94720 USA. RP Iglesia, E (reprint author), Univ Calif Berkeley, Chem Sci Div, EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM iglesia@cchem.berkeley.edu; bell@cchem.berkeley.edu RI Argyle, Morris/A-8702-2009; Argyle, Morris/D-4952-2013; Iglesia, Enrique/D-9551-2017; OI Argyle, Morris/0000-0001-9430-9145; Iglesia, Enrique/0000-0003-4109-1001; Bell, Alexis/0000-0002-5738-4645 NR 32 TC 31 Z9 31 U1 3 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 17 PY 2005 VL 109 IS 6 BP 2414 EP 2420 DI 10.1021/jp040166c PG 7 WC Chemistry, Physical SC Chemistry GA 896TK UT WOS:000226956300044 PM 16851236 ER PT J AU Cwiok, S Heenen, PH Nazarewicz, W AF Cwiok, S Heenen, PH Nazarewicz, W TI Shape coexistence and triaxiality in the superheavy nuclei SO NATURE LA English DT Review ID HEAVY ELEMENT RESEARCH; FISSION-BARRIERS; SELF-CONSISTENT; DEFORMATIONS; STABILITY; ISOTOPES AB Superheavy nuclei represent the limit of nuclear mass and charge; they inhabit the remote corner of the nuclear landscape, whose extent is unknown. The discovery of new elements with atomic numbers Z greater than or equal to 110 has brought much excitement to the atomic and nuclear physics communities. The existence of such heavy nuclei hangs on a subtle balance between the attractive nuclear force and the disruptive Coulomb repulsion between protons that favours fission. Here we model the interplay between these forces using self-consistent energy density functional theory; our approach accounts for spontaneous breaking of spherical symmetry through the nuclear Jahn - Teller effect. We predict that the long-lived superheavy elements can exist in a variety of shapes, including spherical, axial and triaxial configurations. In some cases, we anticipate the existence of metastable states and shape isomers that can affect decay properties and hence nuclear half-lives. C1 Free Univ Brussels, Serv Phys Nucl Theor, B-1050 Brussels, Belgium. Warsaw Univ Technol, Inst Phys, PL-00662 Warsaw, Poland. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. RP Heenen, PH (reprint author), Free Univ Brussels, Serv Phys Nucl Theor, CP 229, B-1050 Brussels, Belgium. EM phheenen@ulb.ac.be NR 37 TC 142 Z9 145 U1 2 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD FEB 17 PY 2005 VL 433 IS 7027 BP 705 EP 709 DI 10.1038/nature03336 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 897XH UT WOS:000227039200029 PM 15716943 ER PT J AU Crary, FJ Clarke, JT Dougherty, MK Hanlon, PG Hansen, KC Steinberg, JT Barraclough, BL Coates, AJ Gerard, JC Grodent, D Kurth, WS Mitchell, DG Rymer, AM Young, DT AF Crary, FJ Clarke, JT Dougherty, MK Hanlon, PG Hansen, KC Steinberg, JT Barraclough, BL Coates, AJ Gerard, JC Grodent, D Kurth, WS Mitchell, DG Rymer, AM Young, DT TI Solar wind dynamic pressure and electric field as the main factors controlling Saturn's aurorae SO NATURE LA English DT Article ID RADIO-EMISSION; MAGNETIC-FIELD; MAGNETOSPHERE; OVAL AB The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms(1), but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system(2), whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging(3) we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere. C1 SW Res Inst, San Antonio, TX 78228 USA. Boston Univ, Boston, MA 02215 USA. Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. Univ Michigan, Ann Arbor, MI 48109 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. UCL, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. Univ Liege, B-4000 Liege, Belgium. Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Crary, FJ (reprint author), SW Res Inst, Culebra Rd, San Antonio, TX 78228 USA. EM fcrary@swri.edu RI Hansen, Kenneth/F-3693-2011; Coates, Andrew/C-2396-2008; Clarke, John/C-8644-2013; OI Hansen, Kenneth/0000-0002-8502-1980; Coates, Andrew/0000-0002-6185-3125; Kurth, William/0000-0002-5471-6202; GERARD, Jean-Claude/0000-0002-8565-8746 NR 16 TC 99 Z9 100 U1 0 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD FEB 17 PY 2005 VL 433 IS 7027 BP 720 EP 722 DI 10.1038/nature03333 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 897XH UT WOS:000227039200032 PM 15716946 ER PT J AU Hartley, DJ Djongolov, MK Riedinger, LL Hagemann, GB Janssens, RVF Kondev, FG Moore, EF Riley, MA Aguilar, A Bingham, CR Campbell, DB Carpenter, MP Chowdhury, P Cromaz, M Cullen, DM Danchev, M Dracoulis, GD Fallon, P Goon, J Kaye, RA Khoo, TL Laird, RW Lauritsen, T Macchiavelli, AO McClain, B Mukherjee, G Ngijoi-Yogo, E Park, HI Sletten, G Tandel, SK Walker, PM Zhang, JY AF Hartley, DJ Djongolov, MK Riedinger, LL Hagemann, GB Janssens, RVF Kondev, FG Moore, EF Riley, MA Aguilar, A Bingham, CR Campbell, DB Carpenter, MP Chowdhury, P Cromaz, M Cullen, DM Danchev, M Dracoulis, GD Fallon, P Goon, J Kaye, RA Khoo, TL Laird, RW Lauritsen, T Macchiavelli, AO McClain, B Mukherjee, G Ngijoi-Yogo, E Park, HI Sletten, G Tandel, SK Walker, PM Zhang, JY TI Wobbling excitations in strongly deformed Hf nuclei? SO PHYSICS LETTERS B LA English DT Article ID TRIAXIAL SUPERDEFORMATION; LIFETIME MEASUREMENTS; COINCIDENCE DATA; HIGH-SPIN; STATES; BANDS; PHONON; MODE AB Two Gammasphere experiments have been performed in order to establish the possible triaxial nature of strongly deformed (SD) bands in Hf-174. A lifetime measurement. using the Doppler-shift attenuation method. confirmed the large deformation of the four previously observed bands in this nucleus with transition quadrupole moments ranging from 12.6 to 13.8 b. These values are significantly larger than those predicted for triaxial minima by ultimate cranker (UC) calculations. A thin-target, high-statistics experiment was also carried out to search for linking transitions between the SD bands. No such transitions, which represent an experimental signature for wobbling modes, were observed. Four additional SD bands were found in Hf-174 together with a single SD band in Hf-173. These results indicate that the strongly deformed sequences of N approximate to 102 Hf isotopes behave differently than the triaxial strongly deformed (TSD) bands found in Lu nuclei near N = 92. The interpretation of these bands in terms of possible stable triaxial deformation is confronted with the experimental findings and UC predictions. (C) 2005 Elsevier B.V. All rights reserved. C1 USN Acad, Dept Phys, Annapolis, MD 21402 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Niels Bohr Inst, DK-2100 Copenhagen, Denmark. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. Australian Natl Univ, Dept Nucl Phys, Canberra, ACT 0200, Australia. Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. Trinity Univ, Dept Phys, San Antonio, TX 78212 USA. Univ Surrey, Dept Phys, Guildford GU2 5XH, Surrey, England. RP USN Acad, Dept Phys, Annapolis, MD 21402 USA. EM hartley@usna.edu RI Dracoulis, George/A-8123-2008; Carpenter, Michael/E-4287-2015; OI Carpenter, Michael/0000-0002-3237-5734; Tandel, Sujit/0000-0003-4784-3139 NR 29 TC 29 Z9 30 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 17 PY 2005 VL 608 IS 1-2 BP 31 EP 38 DI 10.1016/j.physletb.2005.01.007 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 895VR UT WOS:000226892400005 ER PT J AU Zhang, GX Zheng, ZP Wan, JM AF Zhang, GX Zheng, ZP Wan, JM TI Modeling reactive geochemical transport of concentrated aqueous solutions SO WATER RESOURCES RESEARCH LA English DT Article ID CHEMICAL-EQUILIBRIUM MODEL; SATURATED POROUS-MEDIA; ION-INTERACTION-MODEL; TANK WASTE PLUMES; NATURAL-WATERS; MINERAL SOLUBILITIES; ACTIVITY-COEFFICIENTS; ELECTROLYTE-SOLUTIONS; OSMOTIC COEFFICIENTS; HIGH-TEMPERATURES AB Aqueous solutions with ionic strength larger than 1 M are usually considered concentrated aqueous solutions. These solutions can be found in some natural systems and are also industrially produced and released into accessible natural environments, and as such, they pose a big environmental problem. Concentrated aqueous solutions have unique thermodynamic and physical properties. They are usually strongly acidic or strongly alkaline, with the ionic strength possibly reaching 30 M or higher. Chemical components in such solutions are incompletely dissociated. The thermodynamic activities of both ionic and molecular species in these solutions are determined by the ionic interactions. In geological media the problem is further complicated by the interactions between the solutions and sediments and rocks. The chemical composition of concentrated aqueous solutions when migrating through the geological media may be drastically altered by these strong fluid-rock interactions. To effectively model reactive transport of concentrated aqueous solutions, we must take into account the ionic interactions. For this purpose we substantially extended an existing reactive transport code, BIO-CORE2D(C), by incorporating a Pitzer ion interaction model to calculate the ionic activity. In the present paper, the model and two test cases of the model are briefly introduced. We also simulate a laboratory column experiment in which the leakage of highly alkaline waste fluid stored at Hanford (a U. S. Department of Energy site, located in Washington State) was studied. Our simulation captures the measured pH evolution and indicates that all the reactions controlling the pH evolution, including cation exchanges and mineral dissolution/precipitation, are coupled. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhang, GX (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM gxzhang@lbl.gov RI Wan, Jiamin/H-6656-2014 NR 57 TC 14 Z9 14 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB 17 PY 2005 VL 41 IS 2 AR W02018 DI 10.1029/2004WR003097 PG 14 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 900LJ UT WOS:000227216100001 ER PT J AU Gu, XH Dong, JH Nenoff, TM AF Gu, XH Dong, JH Nenoff, TM TI Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist CO2/N-2 mixtures SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID GAS PERMEATION PROPERTIES; ALPHA-ALUMINA TUBE; HYDROTHERMAL SYNTHESIS; SILICALITE MEMBRANES; HYDROCARBON MIXTURES; FAUJASITE MEMBRANES; CRYSTALLIZATION; MFI; SUPPORTS AB In this paper, the effects of synthesis conditions, including the seeding approach, gel composition, and hydrothermal treatment process, on the quality of porous (X-alumina-supported Y-type FAU membranes were studied. Defect-free, pure NaY-type zeolite membranes have been synthesized and investigated for separation of equimolar CO2/N-2 mixtures under dry and moist conditions at atmospheric pressure. At room temperature, the CO2 selectivity was about 31.2 for the CO2/N-2 dry gas mixture with a CO2 permeance of 2.1 x (.)Pa(.)s. The addition of water vapor to the feed stream decreased the permeance for both CO2 and N2 in a temperature range of 23-200 degreesC. The existence of water vapor significantly enhanced the CO2 selectivity at 110200 degreesC but drastically lowered the CO2 selectivity below 80 degreesC. At 200 degreesC, with increasing water partial pressure, the CO2 selectivity increased and then decreased after reaching a maximum of 4.6 at a water partial pressure of 12.3 kPa. C1 New Mexico Inst Min & Technol, Petr & Chem Engn Dept, Petr Recovery Res Ctr, Socorro, NM 87801 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Dong, JH (reprint author), New Mexico Inst Min & Technol, Petr & Chem Engn Dept, Petr Recovery Res Ctr, Socorro, NM 87801 USA. EM jhdong@nmt.edu NR 37 TC 83 Z9 89 U1 7 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD FEB 16 PY 2005 VL 44 IS 4 BP 937 EP 944 DI 10.1021/ie049263i PG 8 WC Engineering, Chemical SC Engineering GA 898DE UT WOS:000227055500036 ER PT J AU Smith, R Bacorisen, D Uberuaga, BP Sickafus, KE Ball, JA Grimes, RW AF Smith, R Bacorisen, D Uberuaga, BP Sickafus, KE Ball, JA Grimes, RW TI Dynamical simulations of radiation damage in magnesium aluminate spinel, MgAl2O4 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID DISORDER; OXIDES AB Collision cascades in MgAl2O4 are investigated using molecular dynamics simulations in order to determine the threshold displacement energies, E-d, and the damage imparted to the lattice at energies of up to 5 keV The value of Ed is determined for MgAl2O4 on each of the Mg, Al and O sublattices for different orientations of the primary knock-on atom (PKA). The lowest Ed required to create permanent defects was for an 0 PKA along the (100) direction with a value of 27.5 eV, while the highest was 277.5 eV along (13 1) for an Mg PKA. Higher energy cascades show that a much wider variety of defects remain after the collisional phase than for similar cascades in MgO but the number of Frenkel pairs produced is smaller. The predominant defects that form are antisite defects on the cation sublattice only and O and Mg split interstitials orientated along the (110) direction. Some Mg-Al split interstitials centred on an Mg site were also observed. However, some more extended defect complexes can also arise which have no well defined structure. C1 Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England. RP Smith, R (reprint author), Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England. RI Smith, Roger/C-2550-2013 NR 18 TC 45 Z9 46 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 16 PY 2005 VL 17 IS 6 BP 875 EP 891 DI 10.1088/0953-8984/17/6/008 PG 17 WC Physics, Condensed Matter SC Physics GA 901VV UT WOS:000227311200011 ER PT J AU McDonald, RD Singleton, J Goddard, PA Drymiotis, F Harrison, N Harima, H Suzuki, MT Saxena, A Darling, T Migliori, A Smith, JL Lashley, JC AF McDonald, RD Singleton, J Goddard, PA Drymiotis, F Harrison, N Harima, H Suzuki, MT Saxena, A Darling, T Migliori, A Smith, JL Lashley, JC TI Fermi surface as a driver for the shape-memory effect in AuZn SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID ALLOYS; TRANSFORMATIONS; CRYSTAL AB Martensites are materials that undergo diffusionless, solid-state transitions. The martensitic transition yields properties that depend on the history of the material and may allow it to recover its previous shape after plastic deformation. This is known as the shape-memory effect (SME). We have succeeded in identifying the primary electronic mechanism responsible for the martensitic transition in the shape-memory alloy AuZn by using Fermi-surface measurements (de Haas-van Alphen oscillations) and band-structure calculations. This strongly suggests that electronic band structure is an important consideration in the design of future SME alloys. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Osaka Univ, ISIR, Osaka 5670047, Japan. Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. RP Lashley, JC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rmcd@lanl.gov; j.lash@lanl.gov RI Suzuki, Michi-To/G-6298-2013; McDonald, Ross/H-3783-2013; Goddard, Paul/A-8638-2015 OI McDonald, Ross/0000-0002-0188-1087; Goddard, Paul/0000-0002-0666-5236 NR 18 TC 18 Z9 18 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 16 PY 2005 VL 17 IS 6 BP L69 EP L75 DI 10.1088/0953-8984/17/6/L01 PG 7 WC Physics, Condensed Matter SC Physics GA 901VV UT WOS:000227311200001 ER PT J AU Lin, WY Frei, H AF Lin, WY Frei, H TI Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(I)-MCM-41 silicate sieve SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CARBON-DIOXIDE; VISIBLE-LIGHT; REDUCTION; PHOTOREDUCTION; SURFACE; H2O; PHOTOCATALYSIS; CATALYSTS; NANOCRYSTALLITES; COMPLEXES C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Frei, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Mailstop Calvin Lab, Berkeley, CA 94720 USA. EM HMFrei@lbl.gov NR 27 TC 132 Z9 132 U1 6 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 16 PY 2005 VL 127 IS 6 BP 1610 EP 1611 DI 10.1021/ja040162l PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 896RS UT WOS:000226951800010 PM 15700974 ER PT J AU Hay, BP Firman, TK Moyer, BA AF Hay, BP Firman, TK Moyer, BA TI Structural design criteria for anion hosts: Strategies for achieving anion shape recognition through the complementary placement of urea donor groups SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SPHEROIDAL MACROTRICYCLIC LIGAND; QUATERNARY AMMONIUM-SALTS; HYDROGEN-BONDS; INCLUSION COMPLEXES; BASIS-SETS; CONFORMATIONAL PREORGANIZATION; COORDINATION CHEMISTRY; MACROBICYCLIC LIGANDS; MOLECULAR RECOGNITION; SYNTHETIC RECEPTORS AB The arrangement of urea ligands about different shaped anions has been evaluated with electronic structure calculations. Geometries and binding energies are reported for urea complexes with Cl(-), NO(3)(-), and ClO(4)(-). The results yield new insight into the nature of urea-anion interactions and provide structural criteria for the deliberate design of anion selective receptors containing two or more urea donor groups. C1 Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Hay, BP (reprint author), Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. EM ben.hay@pnl.gov RI Solominow, Sonia/A-4021-2008; Moyer, Bruce/L-2744-2016 OI Moyer, Bruce/0000-0001-7484-6277 NR 91 TC 174 Z9 174 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 16 PY 2005 VL 127 IS 6 BP 1810 EP 1819 DI 10.1021/ja043995k PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 896RS UT WOS:000226951800052 PM 15701016 ER PT J AU Abnet, CC Lai, B Qiao, YL Vogt, S Luo, XM Taylor, PR Dong, ZW Mark, SD Dawsey, SM AF Abnet, CC Lai, B Qiao, YL Vogt, S Luo, XM Taylor, PR Dong, ZW Mark, SD Dawsey, SM TI Zinc concentration in esophageal biopsy specimens measured by x-ray fluorescence and esophageal cancer risk SO JOURNAL OF THE NATIONAL CANCER INSTITUTE LA English DT Article ID CELL-PROLIFERATION; GASTRIC CANCERS; DEFICIENT RATS; DIETARY ZINC; INDUCTION AB Background. In rodents, zinc deficiency potentiates the effects of certain nitrosamines that act as esophageal carcinogens. Studies of the association between zinc and esophageal squamous cell carcinoma in humans have been hampered by plasmazinchomeostasis, which obscures individual differences in total zinc stores, and by the uncertainty regarding zinc bioavailability when estimating dietary zinc intake because phytate from whole grains effectively prohibits zinc absorption. By using baseline tissue biopsy specimens collected in a prospective observational study, we determined the association between incident esophageal squamous cell carcinoma and baseline element concentrations in tissue sections from residents of Linzhou, China, participating in a nutrition intervention trial. Methods: We used x-ray fluorescence spectroscopy to measure zinc, copper, iron, nickel, and sulfur concentrations in single 5-mum-thick sections from formalin-fixed, paraffin-embedded esophageal biopsy specimens collected in 1985 from 60 eventual case and 72 control subjects. Subjects were matched on baseline histology and followed for 16 years. We used Cox proportional hazards models to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between each element and risk of incident esophageal cancer. All statistical tests were two-sided. Results: The risk of developing esophageal cancer was much lower for subjects in the highest quartile of esophageal tissue zinc concentration compared with those in the lowest quartile (HR = 0.21, 95% CI = 0.065 to 0.68). The association was statistically significant across quartiles (P-trend =.015). Individuals in the highest quartile of sulfur concentration had a lower risk of esophageal cancer than individuals in the lowest quartile (HR = 0.29, 95% CI = 0.095 to 0.85), but the association across quartiles was not statistically significant (P-trend = .081). There was no association between copper, iron, or nickel concentrations and risk of esophageal cancer. Conclusion: High tissue zinc concentration was strongly associated with a reduced risk of developing esophageal squamous cell carcinoma. X-ray fluorescence spectroscopy can be used to assess relationships among concentrations of both nutritional and toxic elements and disease risk in banked tissue specimens. C1 NCI, NIH, Canc Prevent Studies Branch, Canc Res Ctr, Bethesda, MD 20892 USA. Argonne Natl Lab, Expt Facil Div, Argonne, IL 60439 USA. Chinese Acad Med Sci, Dept Canc Epidemiol, Beijing 100037, Peoples R China. NCI, Biostat Branch, Div Canc Epidemiol & Genet, Bethesda, MD 20892 USA. RP Abnet, CC (reprint author), NCI, NIH, Canc Prevent Studies Branch, Canc Res Ctr, 6116 Execut Blvd,Rm 705, Bethesda, MD 20892 USA. EM qiaoy@public.bta.net.cn RI Abnet, Christian/C-4111-2015; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; Qiao, You-Lin/B-4139-2012 OI Abnet, Christian/0000-0002-3008-7843; Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Qiao, You-Lin/0000-0001-6380-0871 FU NCI NIH HHS [N01-CP-40540, N01-SC-91030]; PHS HHS [263-MQ-822420, 263-MQ-731789] NR 26 TC 80 Z9 82 U1 1 U2 9 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0027-8874 J9 J NATL CANCER I JI J. Natl. Cancer Inst. PD FEB 16 PY 2005 VL 97 IS 4 BP 301 EP 306 DI 10.1093/jnci/dji042 PG 6 WC Oncology SC Oncology GA 898WW UT WOS:000227107900013 PM 15713965 ER PT J AU Ferris, MM Yoshida, TM Marrone, BL Keller, RA AF Ferris, MM Yoshida, TM Marrone, BL Keller, RA TI Fingerprinting of single viral genomes SO ANALYTICAL BIOCHEMISTRY LA English DT Article DE single genome; virus; DNA; fingerprint; fluorescence microscopy; imaging ID FIELD GEL-ELECTROPHORESIS; DNA-SEQUENCING FRAGMENTS; SHOTGUN OPTICAL MAP; CAPILLARY-ELECTROPHORESIS; MICROFLUIDIC DEVICES; MASS-SPECTROMETRY; FLOW-CYTOMETRY; ENTROPIC TRAP; SEPARATIONS; MOLECULES AB We demonstrate the use of technology developed for optical mapping to acquire DNA fingerprints from single genomes for the purpose of discrimination and identification of bacteria and viruses. Single genome fingerprinting (SGF) provides not only the size but also the order of the restriction fragments, which adds another dimension to the information that can be used for discrimination. Analysis of single organisms may eliminate the need to culture cells and thereby significantly reduce analysis time. In addition, samples containing mixtures of several organisms can be analyzed. For analysis, cells are embedded in an agarose matrix, lysed, and processed to yield intact DNA. The DNA is then deposited on a derivatized glass substrate. The elongated genome is digested with a restriction enzyme and stained with the intercalating dye YOYO-1. DNA is then quantitatively imaged with a fluorescence microscope and the fragments are sized to an accuracy greater than or equal to90% by their fluorescence intensity and contour length. Single genome fingerprints were obtained from pure samples of adenovirus, from bacteriophages lambda and T4 GT7, and from a mixture of the three viral genomes. SGF will enable the fingerprinting of uncultured and unamplified samples and allow rapid identification of microorganisms with applications in forensics, medicine, public health, and environmental microbiology. Published by Elsevier Inc. C1 Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Keller, RA (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. EM keller@lanl.gov FU NCRR NIH HHS [1R21 RR018337-01] NR 46 TC 1 Z9 1 U1 3 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-2697 J9 ANAL BIOCHEM JI Anal. Biochem. PD FEB 15 PY 2005 VL 337 IS 2 BP 278 EP 288 DI 10.1016/j.ab.2004.10.050 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 896NS UT WOS:000226941400011 PM 15691508 ER PT J AU Gritti, F Guiochon, G AF Gritti, F Guiochon, G TI Effect of the surface heterogeneity of the stationary phase on the range of concentrations for linear chromatography SO ANALYTICAL CHEMISTRY LA English DT Article ID OVERLOADED BAND PROFILES; ELUTION ADSORPTION CHROMATOGRAPHY; LIQUID-CHROMATOGRAPHY; IONIC-STRENGTH; IONIZABLE COMPOUNDS; EQUILIBRIUM ISOTHERMS; C-18-BONDED SILICA; INSULIN VARIANTS; MOBILE-PHASE; RETENTION AB The range of sample sizes within which linear chromatographic behavior is achieved in a column depends on the surface heterogeneity of the RPLC adsorbents. Two widely different commercial adsorbents were tested, the end-capped XTerra-C-18 and the non-end-capped Resolve-C-18. Adsorption isotherm data of caffeine were acquired by frontal analysis. These data were modeled and used to calculate the adsorption energy distribution (AED). This double analysis informs on the degree of surface heterogeneity. The best adsorption isotherm models are the bi-Langmuir and the tetra-Langmuir isotherms for XTerra and Resolve, respectively. Their respective AEDs are bimodal and quadrimodal distributions. This interpretation of the results and the actual presence of a low density of high-energy adsorption sites on Resolve-C18 were validated by measuring the dependence of the peak retention times on the size of caffeine samples (20-muL volume, concentrations 10, 1, 0.1, 1 x 10(-2), 1 x 10(-3), 1 x 10(-4), and 1 x 10(-5) g/L). The experimental chromatograms agree closely with the band profiles calculated from the best isotherms. On Resolve-C-18, the retention time decreases by 40% when the sample concentration is increased from 1 x 10(-5) to 10 g/L. The decrease is only 10% for Xterra-C-18 under the same conditions. The upper limit for linear behavior is 1 x 10(-4) g/L for the former adsorbent and 0.01 g/L for the latter. The presence of a few high-energy adsorption sites on Resolve-C-18, with an adsorption energy 20 kJ/mol larger than that of the low-energy sites while the same difference on Xterra is only 5 kJ/mol, explains this difference. The existence of adsorption sites with a very high energy for certain compounds affects the reproducibility of their retention times and a rapid loss of efficiency in a sample size range within which linear behavior is incorrectly anticipated. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@utk.edu NR 29 TC 39 Z9 40 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 15 PY 2005 VL 77 IS 4 BP 1020 EP 1030 DI 10.1021/ac040163w PG 11 WC Chemistry, Analytical SC Chemistry GA 898YD UT WOS:000227111200009 PM 15858981 ER PT J AU Czerwieniec, GA Russell, SC Tobias, HJ Pitesky, ME Fergenson, DP Steele, P Srivastava, A Horn, JM Frank, M Gard, EE Lebrilla, CB AF Czerwieniec, GA Russell, SC Tobias, HJ Pitesky, ME Fergenson, DP Steele, P Srivastava, A Horn, JM Frank, M Gard, EE Lebrilla, CB TI Stable isotope labeling of entire Bacillus atrophaeus spores and vegetative cells using bioaerosol mass spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID ASSISTED LASER-DESORPTION/IONIZATION; GRAM-NEGATIVE BACTERIA; LIPID-A; WHOLE BACTERIA; IONIZATION; IDENTIFICATION; DESORPTION; BIOMARKERS; MICROORGANISMS; PARTICLES AB Single vegetative cells and spores of Bacillus atrophaeus, formerly Bacillus subtilis var. niger, were analyzed using bioaerosol mass spectrometry. Key biomarkers were identified from organisms grown in C-13 and N-15 isotopically enriched media. Spore spectra contain peaks from dicipolinate and amino acids. The results indicate that compounds observed in the spectra correspond to material from the spore's core and not the exosporium. Standard compounds and mixtures were analyzed for comparison. The biomarkers for vegetative cells were clearly different from those of the spores, consisting mainly of phosphate clusters and amino acid fragments. C1 Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Calif Davis, Sch Vet Med, Davis, CA 95616 USA. RP Lebrilla, CB (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. EM cblebrilla@ucdavis.edu RI Frank, Matthias/O-9055-2014 NR 38 TC 29 Z9 29 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 15 PY 2005 VL 77 IS 4 BP 1081 EP 1087 DI 10.1021/ac0488098 PG 7 WC Chemistry, Analytical SC Chemistry GA 898YD UT WOS:000227111200017 PM 15858989 ER PT J AU Wood, EC Bertram, TH Wooldridge, PJ Cohen, RC AF Wood, EC Bertram, TH Wooldridge, PJ Cohen, RC TI Measurements of N2O5, NO2, and O-3 east of the San Francisco Bay SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID IN-SITU DETECTION; LASER-INDUCED FLUORESCENCE; SULFURIC-ACID-SOLUTIONS; RING-DOWN SPECTROSCOPY; LONG-TERM OBSERVATION; STRATOSPHERIC N2O5; NITRATE RADICALS; DINITROGEN PENTOXIDE; ATMOSPHERIC NO3; BOUNDARY-LAYER AB Contra Costa County, California during January 2004. Mixing ratios of N2O5, an intermediate compound in the atmosphere's nocturnal cleansing process, ranged up to 200 pmol/mol at night. The highest N2O5 concentrations were correlated with low O-3 and high NO2 concentrations. The calculated steady state lifetime for N2O5 ranged from 5 to 30 min. The total HNO3 produced by N2O5 hydrolysis over a 14 h night was comparable to ambient NO2 concentrations, and is estimated to be a factor of nine bigger than the HNO3 produced during the day. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Energy & Environm Technol Div, Berkeley, CA 94720 USA. RP Cohen, RC (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM cohen@cchem.berkeley.edu RI Cohen, Ronald/A-8842-2011 OI Cohen, Ronald/0000-0001-6617-7691 NR 30 TC 32 Z9 32 U1 4 U2 13 PU EUROPEAN GEOSCIENCES UNION PI KATLENBURG-LINDAU PA MAX-PLANCK-STR 13, 37191 KATLENBURG-LINDAU, GERMANY SN 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD FEB 15 PY 2005 VL 5 BP 483 EP 491 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 897HR UT WOS:000226995100002 ER PT J AU Sabra, KG Gerstoft, P Roux, P Kuperman, WA Fehler, MC AF Sabra, KG Gerstoft, P Roux, P Kuperman, WA Fehler, MC TI Extracting time-domain Green's function estimates from ambient seismic noise SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CROSS-CORRELATION; DIFFUSE; EMERGENCE; FIELDS AB It has been demonstrated experimentally and theoretically that an estimate of the Green's function between two seismic stations can be obtained from the time-derivative of the long-time average cross correlation of ambient noise between these two stations. This TDGF estimate from just the noise field includes all tensor components of the Green's function and these Green's function estimates can be used to infer Earth structure. We have computed cross correlations using 1 to 30 continuous days of ambient noise recorded by over 150 broadband seismic stations located in Southern California. The data processing yielded thousands of cross-correlation pairs, for receiver separations from 4-500 km, which clearly exhibit coherent broadband propagating dispersive wavetrains across frequency band 0.1-2 Hz. C1 Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, La Jolla, CA 92093 USA. Los Alamos Natl Lab, Los Alamos, NM USA. RP Sabra, KG (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, La Jolla, CA 92093 USA. EM gerstoft@ucsd.edu RI Gerstoft, Peter/B-2842-2009; roux, philippe/B-8538-2014; OI Gerstoft, Peter/0000-0002-0471-062X NR 15 TC 239 Z9 251 U1 2 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 15 PY 2005 VL 32 IS 3 AR L03310 DI 10.1029/2004GL021862 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 900KA UT WOS:000227212600004 ER PT J AU Appelhans, AD Delmore, JE Olson, JE AF Appelhans, AD Delmore, JE Olson, JE TI Wide dispersion multiple collector isotope ratio mass spectrometer SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE isotope ratio; mass dispersion; multiple collector; magnetic sector mass spectrometer; thermal ionization ID PERFORMANCE AB A new design for an enhanced dispersion thermal ionization multi-collector isotope ratio mass spectrometer is proposed and the results of tests with a small-scale prototype instrument are presented. The measured performance of the small-scale sized for Li-6 and Li-7 is compared with the predictions of an ion optical model. The ion optical model is shown to accurately predict the measured mass dispersion. mass resolution, and general ion beam profile, providing confidence that the ion optical modeling can be applied to design of a full-scale instrument. The design concept includes a single magnetic sector and an electrostatic dispersion lens to magnify the mass dispersion so that full sized discrete dynode electron multipliers can be used to simultaneously monitor each isotope. A conceptual model is presented for a thermal ionization instrument capable of simultaneous measurement of seven isotopes in the 240 Da mass range with full size discrete dynode electron multipliers. (C) 2004 Elsevier B.V. All rights reserved. C1 Idaho Natl Engn & Environm Lab, Idaho Falls, ID 83415 USA. RP Appelhans, AD (reprint author), Idaho Natl Engn & Environm Lab, POB 1625, Idaho Falls, ID 83415 USA. EM ada2@inel.gov NR 13 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD FEB 15 PY 2005 VL 241 IS 1 BP 1 EP 9 DI 10.1016/j.ijms.2004.10.020 PG 9 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 892XA UT WOS:000226682100001 ER PT J AU Dareing, DW Thundat, T AF Dareing, DW Thundat, T TI Simulation of adsorption-induced stress of a microcantilever sensor SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SURFACE STRESS; FILMS AB Molecular adsorption on a microcantilever surface causes the cantilever to bend as a result of adsorption-induced stresses. A model for adsorption-induced surface stress based on atomic or molecular interaction is proposed. The model was tested with mercury adsorption on gold-coated cantilevers. Calculated deflections based on the proposed simulation model agree well with measured deflection data. This model gives insight into the interatomic forces that play a significant role in creating adsorption-induced surface stresses and resultant mechanical bending of microcantilevers. (C) 2005 American Institute of Physics. C1 Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Dareing, DW (reprint author), Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. EM ddareing@utk.edu NR 17 TC 59 Z9 63 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2005 VL 97 IS 4 AR 043526 DI 10.1063/1.1853496 PG 5 WC Physics, Applied SC Physics GA 895DU UT WOS:000226841900037 ER PT J AU Droubay, T Heald, SM Shutthanandan, V Thevuthasan, S Chambers, SA Osterwalder, J AF Droubay, T Heald, SM Shutthanandan, V Thevuthasan, S Chambers, SA Osterwalder, J TI Cr-doped TiO2 anatase: A ferromagnetic insulator SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DILUTED MAGNETIC SEMICONDUCTORS; ROOM-TEMPERATURE FERROMAGNETISM; DIOXIDE THIN-FILMS; TITANIUM-DIOXIDE; ELECTRONIC-STRUCTURES; SPINTRONICS; GROWTH; ION AB Epitaxial ferromagnetic films of Cr-doped TiO2 anatase (CrxTi1-xO2-x/2) were grown on LaAlO3(001) using oxygen-plasma-assisted molecular-beam epitaxy. Cr K-shell x-ray absorption near-edge spectroscopy shows that the formal oxidation state of Cr is +3 throughout the films, with no evidence for either elemental Cr or half-metallic CrO2. Cr is found to substitute for Ti in the lattice, with uniform distribution throughout the doped region of the film. The Cr-doped anatase films exhibit room-temperature ferromagnetism aligned in-plane, with a saturation magnetization of similar to0.6 mu(B)/Cr atom. (C) 2005 American Institute of Physics. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland. RP Pacific NW Natl Lab, Richland, WA 99352 USA. EM tim.droubay@pnl.gov RI Droubay, Tim/D-5395-2016 OI Droubay, Tim/0000-0002-8821-0322 NR 20 TC 55 Z9 55 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2005 VL 97 IS 4 AR 046103 DI 10.1063/1.1846158 PG 3 WC Physics, Applied SC Physics GA 895DU UT WOS:000226841900104 ER PT J AU Howell, SW Janes, DB AF Howell, SW Janes, DB TI Time evolution studies of the electrostatic surface potential of low-temperature-grown GaAs using electrostatic force microscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; OXIDATION; CONTACTS; DEFECTS; LAYERS; FILMS AB An electrostatic force microscope was used to measure the electrostatic surface potential of low-temperature-grown GaAs (LTG:GaAs) before and after the removal of the native oxide layer. The surface potential of oxidized LTG:GaAs was found to be 450+/-50 mV with respect to a bare Au reference. This was consistent with the known work function of Au and energy bands of LTG:GaAs. After removal of the oxide layer using a chemical etch, the surface potential of the LTG:GaAs was found to evolve as time passed. The observed transient behavior depended both on the environment and the particular chemical etchant used to remove the native surface oxide, with time constants ranging from approximately 1 to 10 h. The behavior can be explained in terms of the decay of a charge sheet or dipole at the surface. The experiments provide insights into the surface electrical properties of LTG:GaAs and, indirectly, stoichiometric at critical stages of typical device fabrication processes. (C) 2005 American Institute of Physics. C1 Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. RP Howell, SW (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM janes@purdue.edu NR 23 TC 2 Z9 2 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2005 VL 97 IS 4 AR 043703 DI 10.1063/1.1844615 PG 7 WC Physics, Applied SC Physics GA 895DU UT WOS:000226841900045 ER PT J AU Melechko, AV Merkulov, VI McKnight, TE Guillorn, MA Klein, KL Lowndes, DH Simpson, ML AF Melechko, AV Merkulov, VI McKnight, TE Guillorn, MA Klein, KL Lowndes, DH Simpson, ML TI Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly SO JOURNAL OF APPLIED PHYSICS LA English DT Review ID CHEMICAL-VAPOR-DEPOSITION; LOW-TEMPERATURE SYNTHESIS; NANOTUBE FIELD-EMISSION; LARGE-SCALE SYNTHESIS; MULTILAYERED METAL-CATALYSTS; SCANNING PROBE MICROSCOPY; SINGLE-WALLED NANOTUBES; ATOMIC-FORCE MICROSCOPE; BEAM ARRAY LITHOGRAPHY; MECHANICAL-PROPERTIES AB The controlled synthesis of materials by methods that permit their assembly into functional nanoscale structures lies at the crux of the emerging field of nanotechnology. Although only one of several materials families is of interest, carbon-based nanostructured materials continue to attract a disproportionate share of research effort, in part because of their wide-ranging properties. Additionally, developments of the past decade in the controlled synthesis of carbon nanotubes and nanofibers have opened additional possibilities for their use as functional elements in numerous applications. Vertically aligned carbon nanofibers (VACNFs) are a subclass of carbon nanostructured materials that can be produced with a high degree of control using catalytic plasma-enhanced chemical-vapor deposition (C-PECVD). Using C-PECVD the location, diameter, length, shape, chemical composition, and orientation can be controlled during VACNF synthesis. Here we review the CVD and PECVD systems, growth control mechanisms, catalyst preparation, resultant carbon nanostructures, and VACNF properties. This is followed by a review of many of the application areas for carbon nanotubes and nanofibers including electron field-emission sources, electrochemical probes, functionalized sensor elements, scanning probe microscopy tips, nanoelectromechanical systems (NEMS), hydrogen and charge storage, and catalyst support. We end by noting gaps in the understanding of VACNF growth mechanisms and the challenges remaining in the development of methods for an even more comprehensive control of the carbon nanofiber synthesis process. (C) 2005 American Institute of Physics. C1 Oak Ridge Natl Lab, Mol Scale Engn & Nanoscale Technol Res Grp, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Cornell Univ, Cornell Nanoscale Sci & Technol Facil, Ithaca, NY 14853 USA. Oak Ridge Natl Lab, Thin Film & Nanostruct Mat Phys Grp, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Oak Ridge Natl Lab, Mol Scale Engn & Nanoscale Technol Res Grp, POB 2008,MS 6006, Oak Ridge, TN 37831 USA. EM simpsonml1@ornl.gov RI Melechko, Anatoli/B-8820-2008; Simpson, Michael/A-8410-2011; McKnight, Tim/H-3087-2011 OI Simpson, Michael/0000-0002-3933-3457; McKnight, Tim/0000-0003-4326-9117 NR 259 TC 416 Z9 419 U1 24 U2 215 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2005 VL 97 IS 4 AR 041301 DI 10.1063/1.1857591 PG 39 WC Physics, Applied SC Physics GA 895DU UT WOS:000226841900001 ER PT J AU Nwe, KH Langford, SC Dickinson, JT Hess, WP AF Nwe, KH Langford, SC Dickinson, JT Hess, WP TI Interaction of wide-band-gap single crystals with 248-nm excimer laser irradiation. X. Laser-induced near-surface absorption in single-crystal NaCl SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB Ultraviolet laser-induced desorption of neutral atoms and molecules from nominally transparent, ionic materials can yield particle velocities consistent with surface temperatures of a few thousand kelvin even in the absence of visible surface damage. The origin of the laser absorption required for this surface heating has been often overlooked. In this work, we report simultaneous neutral emission and laser transmission measurements on single-crystal NaCl exposed to 248-nm excimer laser radiation. As much as 20% of the incident radiation at 248 nm must be absorbed in the near-surface region to account for the observed particle velocities. We show that the laser absorption grows from low values over several pulses and saturates at values sufficient to account for the surface temperatures required to explain the observed particle velocity distributions. The growth of absorption in these early pulses is accompanied by a corresponding increase in the emission intensities. The diffuse reflectance spectra acquired after exposure suggest that near-surface V-type centers are responsible for most of the absorption at 248 nm in single-crystal NaCl. (C) 2005 American Institute of Physics. C1 Washington State Univ, Dept Phys, Pullman, WA 99164 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Nwe, KH (reprint author), Washington State Univ, Dept Phys, Pullman, WA 99164 USA. EM jtd@wsu.edu NR 0 TC 6 Z9 6 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2005 VL 97 IS 4 AR 043501 DI 10.1063/1.1847696 PG 5 WC Physics, Applied SC Physics GA 895DU UT WOS:000226841900012 ER PT J AU Nwe, KH Langford, SC Dickinson, JT Hess, WP AF Nwe, KH Langford, SC Dickinson, JT Hess, WP TI Interaction of wide-band-gap single crystals with 248-nm excimer laser radiation. XI. The effect of water vapor and temperature on laser desorption of neutral atoms from sodium chloride SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB We show that low partial pressures of water vapor (10(-5) Pa) dramatically increase the intensity of neutral Na and Cl emissions from cleaved, single-crystal NaCl during pulsed laser irradiation at 248 nm (KrF excimer). The time-of-flight distributions of these emissions are consistent with thermal desorption from laser-heated surfaces. Significantly, introducing water vapor lowers the particle velocities and thus the effective surface temperature during emission. Transmission measurements confirm that laser absorption is reduced in the presence of water vapor. The Arrhenius analysis of the emission intensities and effective temperatures show reduced activation energies in the presence of water vapor, which more than compensate for the vapor-induced reduction in laser absorption and surface temperature. Atomic force and scanning electron microscopy of the irradiated surfaces show evidence for accelerated monolayer-scale erosion in the presence of water vapor. A mechanism for the effect of water on these emission and erosion processes is proposed and discussed. (C) 2005 American Institute of Physics. C1 Washington State Univ, Dept Phys, Pullman, WA 99164 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Nwe, KH (reprint author), Washington State Univ, Dept Phys, Pullman, WA 99164 USA. EM jtd@wsu.edu NR 0 TC 4 Z9 4 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2005 VL 97 IS 4 AR 043502 DI 10.1063/1.1847697 PG 10 WC Physics, Applied SC Physics GA 895DU UT WOS:000226841900013 ER PT J AU Partouche-Sebban, D Pelissier, JL Abeyta, FG Anderson, WW Byers, ME Dennis-Koller, D Esparza, JS Hixson, RS Holtkamp, DB Jensen, BJ King, JC Rigg, PA Rodriguez, P Shampine, DL Stone, JB Westley, DT Borror, SD Kruschwitz, CA AF Partouche-Sebban, D Pelissier, JL Abeyta, FG Anderson, WW Byers, ME Dennis-Koller, D Esparza, JS Hixson, RS Holtkamp, DB Jensen, BJ King, JC Rigg, PA Rodriguez, P Shampine, DL Stone, JB Westley, DT Borror, SD Kruschwitz, CA TI Measurement of the shock-heated melt curve of lead using pyrometry and reflectometry SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID BISMUTH AB Data on the high-pressure melting temperatures of metals is of great interest in several fields of physics including geophysics. Measuring melt curves is difficult but can be performed in static experiments (with laser-heated diamond-anvil cells, for instance) or dynamically (i.e., using shock experiments). However, at the present time, both experimental and theoretical results for the melt curve of lead are at too much variance to be considered definitive. As a result, we decided to perform a series of shock experiments designed to provide a measurement of the melt curve of lead up to about 50 GPa in pressure. At the same time, we developed and fielded a reflectivity diagnostic, and conducted measurements on tin as well. The results show that the melt curve of lead is somewhat higher than the one previously obtained with static compression and heating techniques. (C) 2005 American Institute of Physics. C1 CEA, F-91680 Bruyeres Le Chatel, France. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Bechtel Nevada, Los Alamos Operat, Los Alamos, NM 87544 USA. RP CEA, F-91680 Bruyeres Le Chatel, France. EM david.partouche@cea.fr NR 26 TC 20 Z9 25 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2005 VL 97 IS 4 AR 043521 DI 10.1063/1.1849436 PG 11 WC Physics, Applied SC Physics GA 895DU UT WOS:000226841900032 ER PT J AU Paulsen, JA Ring, AP Lo, CCH Snyder, JE Jiles, DC AF Paulsen, JA Ring, AP Lo, CCH Snyder, JE Jiles, DC TI Manganese-substituted cobalt ferrite magnetostrictive materials for magnetic stress sensor applications SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THIN-FILMS AB Metal bonded cobalt ferrite composites have been shown to be promising candidate materials for use in magnetoelastic stress sensors, due to their large magnetostriction and high sensitivity of magnetization to stress. However previous results have shown that below 60 degreesC the cobalt ferrite material exhibits substantial magnetomechanical hysteresis. In the current study, measurements indicate that substituting Mn for some of the Fe in the cobalt ferrite can lower the Curie temperature of the material while maintaining a suitable magnetostriction for stress sensing applications. These results demonstrate the possibility of optimizing the magnetomechanical hysteresis of cobalt ferrite-based composites for stress sensor applications, through control of the Curie temperature. (C) 2005 American Institute of Physics. C1 US DOE, Ctr Nondestruct Evaluat, Ames, IA 50011 USA. US DOE, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. RP Paulsen, JA (reprint author), US DOE, Ctr Nondestruct Evaluat, Ames, IA 50011 USA. RI Ring, Andrew/E-1893-2012; Jiles, David/H-9548-2012 OI Ring, Andrew/0000-0003-1013-737X; NR 10 TC 113 Z9 115 U1 3 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2005 VL 97 IS 4 AR 044502 DI 10.1063/1.1839633 PG 3 WC Physics, Applied SC Physics GA 895DU UT WOS:000226841900086 ER PT J AU Xiong, G Ucer, KB Williams, RT Lee, J Bhattacharyya, D Metson, J Evans, P AF Xiong, G Ucer, KB Williams, RT Lee, J Bhattacharyya, D Metson, J Evans, P TI Donor-acceptor pair luminescence of nitrogen-implanted ZnO single crystal SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID P-TYPE ZNO; MOLECULAR-BEAM EPITAXY; SLOW POSITRON BEAM; ION-IMPLANTATION; OPTICAL-PROPERTIES; INDUCED DEFECTS; THIN-FILMS; N-TYPE; DEPOSITION; PHOTOLUMINESCENCE AB Donor-acceptor-pair (DAP) luminescence is a direct probe of the acceptors in ZnO. We report the near-surface doping of a ZnO single crystal by ion implantation with nitrogen and titanium. Secondary-ion-mass spectroscopy shows that the doping depth is approximately 80 nm (N) and 50 nm (Ti). The DAP photoluminescence centered at 3.232 eV is observed from both the undoped and doped ZnO single-crystal samples. The luminescence spectrum of the nitrogen-doped sample shows enhancement of the DAP transition compared to the "pure" ZnO sample. The acceptor energy is calculated to be 177 meV, consistent with nitrogen as the acceptor in DAP luminescence. The DAP recombination lifetime is found to be similar to5.5 ns. The temperature evolution of spectra shows the gradual transition from DAP luminescence to electron+acceptor recombination luminescence at temperatures above 37 K. Our experimental results suggest that ion implantation is an effective way of doping nitrogen into ZnO. (C) 2005 American Institute of Physics. C1 Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. Univ Auckland, Dept Mech Engn, Auckland 1, New Zealand. Univ Auckland, Dept Chem, Auckland 1, New Zealand. Australian Nucl Sci & Technol Org, Menai, NSW 2234, Australia. RP Xiong, G (reprint author), Pacific NW Natl Lab, POB 999,K8-88, Richland, WA 99352 USA. EM gang.xiong@pnl.gov RI LEE, Jim/B-4561-2010 NR 33 TC 66 Z9 68 U1 3 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2005 VL 97 IS 4 AR 043528 DI 10.1063/1.1854208 PG 4 WC Physics, Applied SC Physics GA 895DU UT WOS:000226841900039 ER PT J AU Deville, S Gremillard, L Chevalier, J Fantozzi, G AF Deville, S Gremillard, L Chevalier, J Fantozzi, G TI A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS LA English DT Article DE aging; hip replacement prosthesis; yttria-stabilized zirconia ID ATOMIC-FORCE MICROSCOPY; Y-TZP CERAMICS; DEGRADATION; ALUMINA AB Since the recent failure events of two particular series of zirconia femoral heads for total hip replacement prosthesis, a large decrease in the use of zirconia ceramics for orthopaedic implants has been observed. In spite of the biomedical success of this material during the last 10 years, this decrease in use was required for safety reasons, until the cause of the failures is known. It has been shown that these failures were related to the low temperature hydrothermal degradation (also known as aging). Thus, it is crucial to better understand the aging behavior, in order to be able to assess its importance and then control it if required. In this study, various techniques relevant to assess the hydrothermal degradation sensitivity of biomedical grade yttria-stabilized zirconia are discussed and compared. The expected outputs of conventional methods, that is, X-ray diffraction and scanning electron microscopy are examined. More recent methods like optical interferometry and atomic force microscopy are presented, with their respective benefits and drawbacks. An up-to-date comparison of these different techniques is provided, and their use for ensuring the long-term reliability of a particular batch of zirconia in terms of aging degradation is demonstrated. (C) 2004 Wiley Periodicals, Inc. C1 Inst Natl Sci Appl, Etud Met Phys & Phys Mat Grp, Dept Mat Sci, Associate Res Unit 5510, F-69621 Villeurbanne, France. LBNL, Div Sci Mat, Berkeley, CA 94720 USA. RP Chevalier, J (reprint author), Inst Natl Sci Appl, Etud Met Phys & Phys Mat Grp, Dept Mat Sci, Associate Res Unit 5510, 20 Av A Einstein, F-69621 Villeurbanne, France. EM jerome.chevalier@insa-lyon.fr OI Deville, Sylvain/0000-0002-3363-3184; Gremillard, Laurent/0000-0001-7258-6483 NR 21 TC 80 Z9 80 U1 1 U2 13 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1552-4973 J9 J BIOMED MATER RES B JI J. Biomed. Mater. Res. Part B PD FEB 15 PY 2005 VL 72B IS 2 BP 239 EP 245 DI 10.1002/jbm.b.30123 PG 7 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 892GS UT WOS:000226638700003 PM 15654702 ER PT J AU Drake, IJ Fujdala, KL Bell, AT Tilley, TD AF Drake, IJ Fujdala, KL Bell, AT Tilley, TD TI Dimethyl carbonate production via the oxidative carbonylation of methanol over Cu/SiO2 catalysts prepared via molecular precursor grafting and chemical vapor deposition approaches SO JOURNAL OF CATALYSIS LA English DT Article DE DMC synthesis; oxidative carbonylation; Cu EXAFS; CuK-edge XANES; ClK-edge XANES; molecular precursor ID X-RAY-ABSORPTION; MESOPOROUS SILICA; FINE-STRUCTURE; SPECTROSCOPY; COPPER; ZIRCONIA; DIOXIDE; EDGE; TRANSESTERIFICATION; TETRACHLOROCUPRATE AB The influence of catalyst synthesis method and Cu source on the activity and selectivity Of Cu/SiO2 catalysts for the gas-phase oxidative carbonylation of methanol to dimethyl carbonate (DMC) is reported. [CuOSi((OBu)-Bu-t)(3)](4), [CuO Bu-t](4), and CuCl were used as precursors to produce highly dispersed silica-supported copper. XANES and EXAFS characterization prior to reaction (but after thermal treatment under He) showed that Cu in the catalysts prepared with CuCl and [CuOSi((OBu)-Bu-t)(3)](4) was present primarily as isolated Cu(I) species, whereas [(CuOBu)-Bu-t](4) produced 1-nm Cu particles. During the catalytic reaction, the Cu in catalysts prepared from CuCl and [CuOSi((OBu)-Bu-t)(3)](4) formed highly dispersed CuO moieties, whereas the Cu in catalysts prepared from [(CuOBu)-Bu-t](4) formed a cuprous oxide layer over a Cu(O) core. For comparison, poorly dispersed Cu on silica was prepared via traditional incipient wetness impregnation with Cu(NO3)(2). It was found that activity for DNIC formation increased with increasing Cu dispersion. The selectivity for DMC formation (relative to CO) decreased with decreasing Cu dispersion when the original state of the Cu was Cu(O) directly preceding reaction conditions. (C) 2004 Elsevier Inc. All rights reserved. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu OI Bell, Alexis/0000-0002-5738-4645 NR 61 TC 48 Z9 56 U1 2 U2 32 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD FEB 15 PY 2005 VL 230 IS 1 BP 14 EP 27 DI 10.1016/j.jcat.2004.10.001 PG 14 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 900MU UT WOS:000227219800002 ER PT J AU de Koning, M Cai, W Sadigh, B Oppelstrup, T Kalos, MH Bulatov, VV AF de Koning, M Cai, W Sadigh, B Oppelstrup, T Kalos, MH Bulatov, VV TI Adaptive importance sampling Monte Carlo simulation of rare transition events SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS; INFREQUENT EVENTS AB We develop a general theoretical framework for the recently proposed importance sampling method for enhancing the efficiency of rare-event simulations [W. Cai, M. H. Kalos, M. de Koning, and V. V. Bulatov, Phys. Rev. E 66, 046703 (2002)], and discuss practical aspects of its application. We define the success/fail ensemble of all possible successful and failed transition paths of any duration and demonstrate that in this formulation the rare-event problem can be interpreted as a "hit-or-miss" Monte Carlo quadrature calculation of a path integral. The fact that the integrand contributes significantly only for a very tiny fraction of all possible paths then naturally leads to a "standard" importance sampling approach to Monte Carlo (MC) quadrature and the existence of an optimal importance function. In addition to showing that the approach is general and expected to be applicable beyond the realm of Markovian path simulations, for which the method was originally proposed, the formulation reveals a conceptual analogy with the variational MC (VMC) method. The search for the optimal importance function in the former is analogous to finding the ground-state wave function in the latter. In two model problems we discuss practical aspects of finding a suitable approximation for the optimal importance function. For this purpose we follow the strategy that is typically adopted in VMC calculations: the selection of a trial functional form for the optimal importance function, followed by the optimization of its adjustable parameters. The latter is accomplished by means of an adaptive optimization procedure based on a combination of steepest-descent and genetic algorithms. (C) 2005 American Institute of Physics. C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP de Koning, M (reprint author), Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970 Sao Paulo, Brazil. RI de Koning, Maurice/E-1115-2012 OI de Koning, Maurice/0000-0002-0035-4170 NR 22 TC 4 Z9 4 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 15 PY 2005 VL 122 IS 7 AR 074103 DI 10.1063/1.1844352 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 899JF UT WOS:000227140000006 PM 15743217 ER PT J AU Havlin, RH Walls, JD Pines, A AF Havlin, RH Walls, JD Pines, A TI Isotropic proton-detected local-field nuclear magnetic resonance in solids SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID STATE NMR; DIPOLAR COUPLINGS; ROTATING SOLIDS; MAGIC-ANGLE; SECONDARY STRUCTURE; QUADRUPOLAR NUCLEI; PULSE SEQUENCES; CHEMICAL-SHIFT; SPECTROSCOPY; SPECTRA AB A nuclear magnetic resonance method is presented which produces linear, isotropic proton-detected local-field spectra for INS spin systems in powdered samples. The method, heteronuclear isotropic evolution (HETIE), refocuses the anisotropic portion of the heteronuclear dipolar coupling frequencies by evolving the system under a series of specially designed Hamiltonians and evolution pathways. The theory behind HETIE is presented along with experimental studies conducted on a powdered sample of ferrocene, demonstrating the methodology outlined in this paper. Applications of HETIE for use in structure determination in the solid state are discussed. (C) 2005 American Institute of Physics. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02138 USA. NIDDKD, Phys Chem Lab, NIH, Bethesda, MD 20892 USA. RP Pines, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM pines@cchem.berkeley.edu NR 31 TC 1 Z9 1 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 15 PY 2005 VL 122 IS 7 AR 074507 DI 10.1063/1.1844296 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 899JF UT WOS:000227140000043 PM 15743254 ER PT J AU Kowalski, K Piecuch, P AF Kowalski, K Piecuch, P TI Extensive generalization of renormalized coupled-cluster methods SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SINGLE-REFERENCE FORMALISM; MOLECULAR ELECTRONIC-STRUCTURE; FULL CCSDT MODEL; TRIPLES CORRECTION T; EXCITED CLUSTERS; WAVE-FUNCTIONS; PERTURBATIVE CORRECTIONS; QUANTUM-CHEMISTRY; DOUBLES METHOD; BOND-BREAKING AB The recently developed completely renormalized (CR) coupled-cluster (CC) methods with singles, doubles, and noniterative triples or triples and quadruples [CR-CCSD(T) or CR-CCSD(TQ), respectively], which are based on the method of moments of CC equations (MMCC) [K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18 (2000)], eliminate the failures of the standard CCSD(T) and CCSD(TQ) methods at larger internuclear separations, but they are not rigorously size extensive. Although the departure from strict size extensivity of the CR-CCSD(T) and CR-CCSD(TQ) methods is small, it is important to examine the possibility of formulating the improved CR-CC methods, which are as effective in breaking chemical bonds as the existing CR-CCSD(T) and CR-CCSD(TQ) approaches, which are as easy to use as the CR-CCSD(T) and CR-CCSD(TQ) methods, and which can be made rigorously size extensive. This may be particularly useful for the applications of CR-CC methods and other MMCC approaches in calculations of potential energy surfaces of large many-electron systems and van der Waals molecules, where the additive separability of energies in the noninteracting limit is very important. In this paper, we propose different types of CR-CC approximations, termed the locally renormalized (LR) CCSD(T) and CCSD(TQ) methods, which become rigorously size extensive if the orbitals are localized on nointeracting fragments. The LR-CCSD(T) and LR-CCSD(TQ) methods rely on the form of the energy expression in terms of the generalized moments of CC equations, derived in this work, termed the numerator-denominator-connected MMCC expansion. The size extensivity and excellent performance of the LR-CCSD(T) and LR-CCSD(TQ) methods are illustrated numerically by showing the results for the dimers of stretched HF and LiH molecules and bond breaking in HF and H2O. (C) 2005 American Institute of Physics. C1 Battelle Mem Inst, Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Kowalski, K (reprint author), Battelle Mem Inst, Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. EM karol.kowalski@pnl.gov RI Piecuch, Piotr/C-4435-2011 NR 68 TC 83 Z9 83 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 15 PY 2005 VL 122 IS 7 AR 074107 DI 10.1063/1.1848093 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 899JF UT WOS:000227140000010 PM 15743221 ER PT J AU Meloni, G Sheehan, SM Neumark, DM AF Meloni, G Sheehan, SM Neumark, DM TI Gallium oxide and dioxide: Investigation of the ground and low-lying electronic states via anion photoelectron spectroscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CORRELATED MOLECULAR CALCULATIONS; MATRIX INFRARED-SPECTRA; GAUSSIAN-BASIS SETS; ROTATIONAL ANALYSIS; ATOMS; GAO; OXYGEN; BETA-GA2O3; BANDS; NANOWIRES AB The GaO and GaO2 molecules were investigated using negative ion photoelectron spectroscopy. All the photoelectron spectra showed vibrationally resolved progressions. With the aid of electronic structure calculations and Franck-Condon spectral simulations, different molecular parameters and energetics of GaO-/GaO and GaO2-/GaO2 were determined, including the electron affinity of GaO, the vibrational frequency of GaO-, and the term energy, spin-orbit splitting, and vibrational frequency for the first excited A (2)Pi(Omega) state of GaO. The GaO2- photoelectron spectra comprised three bands assigned as transitions from the linear X (1)Sigma(g)(+) ground state of GaO2- to three linear neutral states: the A (2)Pi(g), B (2)Pi(u), and C (2)Sigma(u)(+) states. The symmetric stretch frequencies of the anion and three neutral states as well as the spin-orbit splitting of the neutral (2)Pi states were determined. Electronic structure calculations found the neutral lowest energy linear structure to be only 63 meV higher than the neutral bent geometry. (C) 2005 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Meloni, G (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 NR 31 TC 11 Z9 11 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 15 PY 2005 VL 122 IS 7 AR 074317 DI 10.1063/1.1850470 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 899JF UT WOS:000227140000031 PM 15743242 ER PT J AU Carlson, BC AF Carlson, BC TI Jacobian elliptic functions as inverses of an integral SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS LA English DT Article DE Jacobian elliptic function; symmetric elliptic integral; elliptic-integral inversion AB The 12 Jacobian elliptic functions are traditionally shown as inverses of 12 elliptic integrals, all of them being special cases of integral(y)(x)[(a(1) + b(1)t(2)) (a(2) + b(2)t(2))](-1/2)dt in which all quantities are real and either y = 0 or x = infinity or a(1) + b(1)y(2) = 0 or a(1) + b(1)x(2) = 0. A new unified treatment shows that for each of these four cases the other limit of integration is determined as the inverse function of the integral by the two products a(1)b(2) and a(2)b(1). Inequalities and equalities between these two and 0 distinguish the 12 Jacobian functions, the six circular functions, and the six hyperbolic functions. The proof comes from a corollary of a reduction theorem for the symmetric elliptic integral of the first kind. (C) 2004 Elsevier B.V. All rights reserved. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Math, Ames, IA 50011 USA. RP Carlson, BC (reprint author), Iowa State Univ, Ames Lab, 136 Wilhelm Hall, Ames, IA 50011 USA. EM bcarlson@ameslab.gov NR 2 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0427 J9 J COMPUT APPL MATH JI J. Comput. Appl. Math. PD FEB 15 PY 2005 VL 174 IS 2 BP 355 EP 359 DI 10.1016/j.cam.2004.05.001 PG 5 WC Mathematics, Applied SC Mathematics GA 876WV UT WOS:000225530300009 ER PT J AU Surek, T AF Surek, T TI Crystal growth and materials research in photovoltaics: progress and challenges SO JOURNAL OF CRYSTAL GROWTH LA English DT Article; Proceedings Paper CT 12th International Summer School of Crystal Growth held in Conjunction with the 14th International Conference on Crystal Growth CY AUG 09-13, 2004 CL Grenoble, FRANCE SP French Assoc Crystal Growth DE semiconducting materials; photovoltaics; solar cells AB Photovoltaics (PV) is solar electric power-a semiconductor-based technology that converts sunlight to electricity. Three decades of research has led to the discovery of new materials and devices and new processing techniques for low-cost manufacturing. This has resulted in improved sunlight-to-electricity conversion efficiencies, improved outdoor reliability, and lower module and system costs. The manufacture and sale of PV has grown into a $5 billion industry worldwide, with more than 740 megawatts of PV modules shipped in 2003. This paper reviews the significant progress that has occurred in PV materials and devices research over the past 30 years, focusing on the advances in crystal growth and materials research, and examines the challenges to reaching the ultimate potential of current-generation (crystalline silicon), next-generation (thin films and concentrators), and future-generation PV technologies. The latter includes innovative materials and device concepts that hold the promise of significantly higher conversion efficiencies and/or much lower costs. (c) 2004 Elsevier B.V. All rights reserved. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Surek, T (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM tom_surek@nrel.gov NR 14 TC 83 Z9 85 U1 5 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD FEB 15 PY 2005 VL 275 IS 1-2 BP 292 EP 304 DI 10.1016/j.jcrysgro.2004.10.093 PG 13 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 913JU UT WOS:000228148600035 ER PT J AU Abrosimov, NV Ludge, A Riemann, H Kurlov, VN Borissova, D Klemm, V Halloin, H von Ballmoos, P Bastie, P Hamelin, B Smither, RK AF Abrosimov, N. V. Luedge, A. Riemann, H. Kurlov, V. N. Borissova, D. Klemm, V. Halloin, H. von Ballmoos, P. Bastie, P. Hamelin, B. Smither, R. K. TI Growth and properties of Ge1-xSix mosaic single crystals for gamma-ray lens application SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Crystal structure; Interfaces; Solid solutions; Czochralski method; Germanium silicon alloys; Mosaicc rystals AB Bulk crystals of Ge1-xSix solid solutions grown by modified Czochralski (CZ) technique were used for the production of the diffraction optics elements of the high-energy gamma-ray telescope. The mosaic crystals were grown to improve the diffraction efficiency of the crystal lens. For developing growth methods for such crystals, the shape of the growth interface, the striation pattern of the distribution of the components and the mosaic structure must be known. Applying the lateral photovoltage scanning (LPS) method and optical microscopy their mosaic structure and shapes of the growth interface have been determined. In this paper, the first attempt was made to find the correlation between crystal structure, mosaicity and diffraction efficiency of Ge1-xSix-based gamma-ray optical elements. (C) 2004 Elsevier B.V. All rights reserved. C1 [Abrosimov, N. V.; Luedge, A.; Riemann, H.] Inst Crystal Growth, D-12489 Berlin, Germany. [Kurlov, V. N.] Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Russia. [Borissova, D.; Klemm, V.] Freiberg Univ Min & Technol, Inst Mat Sci, D-09599 Freiberg, Germany. [Halloin, H.; von Ballmoos, P.] Ctr Etud Spatiale Rayonnements, F-31029 Toulouse, France. [Bastie, P.; Hamelin, B.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Smither, R. K.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Abrosimov, NV (reprint author), Inst Crystal Growth, Max Born Str 2, D-12489 Berlin, Germany. EM abrosimov@ikz-berlin.de FU Deutsche Forschungsgemeinschaft (DFG) [05010171] FX The authors would like to thank M. Renner for the LPS measurements. Part of the work was supported by Deutsche Forschungsgemeinschaft (DFG) under project No. 05010171. NR 10 TC 12 Z9 12 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD FEB 15 PY 2005 VL 275 IS 1-2 BP E495 EP E500 DI 10.1016/j.jcrysgro.2004.11.110 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA V23DX UT WOS:000208324600078 ER PT J AU Lavraud, B Fedorov, A Budnik, E Thomsen, MF Grigoriev, A Cargill, PJ Dunlop, MW Reme, H Dandouras, I Balogh, A AF Lavraud, B Fedorov, A Budnik, E Thomsen, MF Grigoriev, A Cargill, PJ Dunlop, MW Reme, H Dandouras, I Balogh, A TI High-altitude cusp flow dependence on IMF orientation: A 3-year Cluster statistical study SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; HIGH-LATITUDE MAGNETOPAUSE; SOLAR-WIND PLASMA; DAYSIDE MAGNETOPAUSE; RECONNECTION RATE; EXTERIOR CUSP; NORTHWARD IMF; POLAR CUSP; BOUNDARY; MAGNETOSPHERE AB We report on the statistical properties of the plasma flows measured by the Cluster spacecraft in the high-altitude cusp region of the Northern Hemisphere as a function of the interplanetary magnetic field ( IMF) orientation, with selected clock angle intervals. The technique uses a magnetic field model, taking into account the actual solar wind conditions and level of geomagnetic activity, in order to model the magnetopause and cusp displacements as a function of these conditions. The distributions of the magnetic field vector show a clear consistency with the IMF clock angle intervals chosen and demonstrate that the technique used here fixes the positions of the cusp boundaries adequately. The antisunward convection observed in the exterior cusp suggests that this region is statistically quite convective under southward IMF, while for northward IMF the region appears more stagnant. The presence of large parallel (downward) flows at the equatorward edge of the cusp shows that plasma penetration occurs preferentially at the dayside low-latitude magnetopause for southward IMF conditions; in contrast, under northward IMF the results are suggestive of plasma penetration from the poleward edge of the cusp, combined with a substantial sunward convection, but no flows are observed at all at the dayside boundary with the plasma sheet. The comparison of the measured flow speed with the Alfven speed suggests that the magnetosheath adjacent to the external boundary is more sub-Alfvenic, even for high magnetic latitudes, under northward IMF than under southward IMF. This result is consistent with the preference for the plasma depletion layer to develop under such conditions. The transverse plasma convection in the exterior cusp appears to be controlled by the IMF B-Y component as well; for dawnward (duskward) IMF orientations the convection is preferentially directed toward dusk (dawn). These results are interpreted as strong arguments in favor of the cusp being structured, at large scales, by the occurrence of magnetic reconnection at the high-latitude magnetopause for northward IMF and at the low-latitude magnetopause for southward IMF. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. Swedish Inst Space Phys, SE-98128 Kiruna, Sweden. RP Lavraud, B (reprint author), Los Alamos Natl Lab, POB 1663,MS D466, Los Alamos, NM 87545 USA. EM lavraud@lanl.gov NR 39 TC 43 Z9 43 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB 15 PY 2005 VL 110 IS A2 AR A02209 DI 10.1029/2004JA010804 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 900LC UT WOS:000227215400001 ER PT J AU Li, LY Salido, E Zhou, YG Bhattacharyya, S Yannone, SM Dunn, E Meneses, J Feeney, AJ Cowan, MJ AF Li, LY Salido, E Zhou, YG Bhattacharyya, S Yannone, SM Dunn, E Meneses, J Feeney, AJ Cowan, MJ TI Targeted disruption of the artemis murine counterpart results in SCID and defective V(D)J recombination that is partially corrected with bone marrow transplantation SO JOURNAL OF IMMUNOLOGY LA English DT Article ID SEVERE COMBINED IMMUNODEFICIENCY; SPEAKING NATIVE-AMERICANS; STRAND BREAK REPAIR; DNA-REPAIR; GENE REARRANGEMENT; IN-VIVO; MICE; PROTEIN; ENGRAFTMENT; PHENOTYPE AB Artemis is a mammalian protein, the absence of which results in SCID in Athabascan-speaking Native Americans (SCIDA). This novel protein has been implicated in DNA double-strand break repair and V(D)J recombination. We have cloned the Artemis murine counterpart, mArt, and generated a mouse with a targeted disruption of mArt. Artemis-deficient mice show a similar T-B-NK+ immunodeficiency phenotype, and carry a profound impairment in coding joint rearrangement, while retaining intact signal ends and close to normal signal joint formation. mArt(-/-) embryonic fibroblasts show increased sensitivity to ionizing radiation. Hemopoietic stem cell (HSC) transplantation using 500-5000 enriched congenic, but not allogeneic mismatched HSC corrected the T cell and partially corrected the B cell defect. Large numbers (40,000) of allogeneic mismatched HSC or pretreatment with 300 cGy of radiation overcame graft resistance, resulting in limited B cell engraftment. Our results suggest that the V(D)J and DNA repair defects seen in this mArt(-/-) mouse model are comparable to those in humans with Artemis deficiency, and that the recovery of immunity following HSC transplantation favors T rather than B cell reconstitution, consistent with what is seen in children with this form of SCID. C1 Univ Calif San Francisco, Dept Pediat, San Francisco, CA 94143 USA. Univ Calif San Francisco, Dept Obstet Gynecol & Reprod Sci, San Francisco, CA 94143 USA. Scripps Res Inst, Dept Immunol, La Jolla, CA 92037 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol Biol, Berkeley, CA 94720 USA. RP Cowan, MJ (reprint author), Univ Calif San Francisco, Dept Pediat, 505 Parnassus Ave, San Francisco, CA 94143 USA. EM mcowan@peds.ucsf.edu RI Yannone, Steven/G-1927-2011; Salido, Eduardo/I-2232-2015 OI Salido, Eduardo/0000-0001-9599-9854 FU NIAID NIH HHS [AI 28339] NR 26 TC 27 Z9 28 U1 0 U2 0 PU AMER ASSOC IMMUNOLOGISTS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-1767 J9 J IMMUNOL JI J. Immunol. PD FEB 15 PY 2005 VL 174 IS 4 BP 2420 EP 2428 PG 9 WC Immunology SC Immunology GA 897EL UT WOS:000226986700078 PM 15699179 ER PT J AU Schuh, CA Kumar, M King, WE AF Schuh, CA Kumar, M King, WE TI Universal features of grain boundary networks in FCC materials SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID TRIPLE JUNCTIONS; CSL-BOUNDARIES; POLYCRYSTALS; DISTRIBUTIONS; GROWTH; ENERGY; CONNECTIVITY; COINCIDENCE; PERCOLATION; EVOLUTION AB Grain boundary character distributions and triple junction distributions have been determined for 70 experimental microstructures, comprising aluminum-, copper-, austenitic iron- and nickel-based alloys in a wide variety of processed states. In these FCC metals, the fraction of coincidence site lattice (CSL) boundaries ranges from about 12% (as for a random Mackenzie distribution) to values as high as 75%. Despite wide variations in composition, processing, and grain size, we find that the grain boundary character distribution and triple junction distributions of these materials have striking similarities, and can be described by just a few parameters. This universality arises due to the highly non-random laws that govern the assembly of the grain boundary network, and due to the kinematic limitation that CSL boundaries arise primarily through twinning. (C) 2005 Springer Science + Business Media, Inc. C1 MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. Lawrence Livermore Natl Lab, Div Mat Sci & Technol, Livermore, CA 94550 USA. RP MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Schuh, Christopher/C-7947-2009 NR 33 TC 41 Z9 41 U1 0 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD FEB 15 PY 2005 VL 40 IS 4 BP 847 EP 852 DI 10.1007/s10853-005-6500-9 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 901KU UT WOS:000227282200004 ER PT J AU Szoke, A Brooks, ED AF Szoke, A Brooks, ED TI The transport equation in optically thick media SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE difference formulation; radiation transport ID IMPLICIT MONTE-CARLO AB The photon transport equation is transformed into a new form by considering the deviation of the specific intensity from the local equilibrium field. We call the new form of the equations the difference formulation. It is rigorously equivalent to the original transport equation. The difference formulation is particularly suited for thick media, where the radiation field approaches local equilibrium and the deviations from the Planck distribution are small. The difference formulation for photon transport also clarifies the diffusion limit. Preliminary results confirm our expectations of a substantial advantage for accurate numerical calculations in optically thick media. (C) 2004 Elsevier Ltd. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Szoke, A (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM szoke1@llnl.gov NR 10 TC 8 Z9 8 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD FEB 15 PY 2005 VL 91 IS 1 BP 95 EP 110 DI 10.1016/j.jqsrt.2004.06.001 PG 16 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 867LC UT WOS:000224843100006 ER PT J AU Boiadjiev, VI Brown, GM Pinnaduwage, LA Goretzki, G Bonnesen, PV Thundat, T AF Boiadjiev, VI Brown, GM Pinnaduwage, LA Goretzki, G Bonnesen, PV Thundat, T TI Photochemical hydrosilylation of 11-undecenyltriethylammonium bromide with hydrogen-terminated Si surfaces for the development of robust microcantilever sensors for Cr(VI) SO LANGMUIR LA English DT Article ID SILICON AB We report a novel approach to the design and development of microcantilever sensors in which photochemical hydrosilylation is used to modify the microcantilever surface. This process enables individual micro cantilevers in multicantilever array chips to be modified separately by focusing the activating UV light sequentially on each particular cantilever. Photochemical hydrosilylation of 11-undecenyltriethyl-ammonium bromide with hydrogen-terminated silicon microcantilever surfaces was carried out to yield a robust quaternary ammonium terminated organic monolayer suitable for chromate detection. The surface functionalities retain their affinity toward Cr(VI), and the organic monolayer is dense enough to generate significant surface stress upon subsequent adsorption of chromate ions from aqueous solutions. C1 Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. RP Boiadjiev, VI (reprint author), Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. EM vboiadji@utk.edu; thundattg@ornl.gov RI Bonnesen, Peter/A-1889-2016 OI Bonnesen, Peter/0000-0002-1397-8281 NR 14 TC 17 Z9 17 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 15 PY 2005 VL 21 IS 4 BP 1139 EP 1142 DI 10.1021/la047852n PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 896VL UT WOS:000226962100001 PM 15697249 ER PT J AU Jung, GY Li, ZY Wu, W Chen, Y Olynick, DL Wang, SY Tong, WM Williams, RS AF Jung, GY Li, ZY Wu, W Chen, Y Olynick, DL Wang, SY Tong, WM Williams, RS TI Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography SO LANGMUIR LA English DT Article ID IMPRINT LITHOGRAPHY; CONTACT-ANGLE; THIN-FILMS; SURFACE; DEPOSITION; RESOLUTION; STABILITY; GLASS AB Resist adhesion to the mold is one of the challenges for nanoimprint lithography. The main approach to overcoming it is to apply a self-assembled monolayer of an organosilane release agent to the mold surface, either in the solution phase or vapor phase. We compared the atomic force microscopy, ellipsometry, reflection-absorption infrared spectroscopy, and contact angle results collected from substrates treated by two different application processes and found that the vapor-phase process was superior. The vapor-treated substrates had fewer aggregates of the silane molecules on the surface, because the lower density of the agent in the vapor phase was not conducive to aggregation formation, and received a superior coating of the releasing agent, because the vapor was more effective than the solution in penetrating into the nanoscale gaps of the mold. A pattern transfer of 20 parallel nanowires with a line width of 40 nm at 100 nm pitch-size was performed faithfully with the vapor-treated mold without any resist adhesion. C1 Hewlett Packard Labs, Palo Alto, CA 94304 USA. Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90024 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Hewlett Packard Corp, Technol Dev Operat, Corvallis, OR 97330 USA. RP Williams, RS (reprint author), Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304 USA. EM stan.williams@hp.com RI Tong, William/D-2564-2010; Wu, Wei/D-1908-2011; Williams, R. Stanley/A-8281-2009; OI Williams, R. Stanley/0000-0003-0213-4259; Wang, Shih-Yuan/0000-0002-1212-3484 NR 13 TC 207 Z9 210 U1 4 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 15 PY 2005 VL 21 IS 4 BP 1158 EP 1161 DI 10.1021/la0476938 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 896VL UT WOS:000226962100005 PM 15697253 ER PT J AU Gao, Y Tang, ZX Watkins, E Majewski, J Wang, HL AF Gao, Y Tang, ZX Watkins, E Majewski, J Wang, HL TI Synthesis and characterization of amphiphilic fullerenes and their Langmuir-Blodgett films SO LANGMUIR LA English DT Article ID AIR-WATER-INTERFACE; MATERIALS SCIENCE APPLICATIONS; X-RAY REFLECTIVITY; THIN-FILMS; C-60; DERIVATIVES; CHEMISTRY; FULLEROPYRROLIDINES; MONOLAYERS; ELECTROCHEMISTRY AB We report here the synthesis and characterization of three amphiphilic fullerene derivatives and their Langmuir-Blodgett thin films. Two of the C-60 amphiphiles are mono-derivatives with a long alkyl chain terminated with either -COOH (2) or NH2 (3) as the hydrophilic headgroup, and the third one (5) is designed to bear the same NH2 group as 3 but with 10 additional hydrophobic alkyl chains grafted on the C-60 sphere (Scheme 1). These amphiphiles form stable, ordered monolayers at the air-water interface. The molecular packing at the air-water interface and the mean area per molecule are determined by pressure isotherms at room temperature. Hysteresis of pressure isotherms of side chain C-60 (5) shows complete reversibility upon compression and decompression, which suggests that side chains on the C-60 sphere inhibit formation of aggregates at the air-water interface. Comparative studies of all three amphiphiles allow us to better determine the interaction between C-60's and their self-assembly kinetics at the air-water interface. Monolayers of monoderivatized amphiphiles (2 and 3) were transferred successfully onto quartz substrates as Z-type multilayered Langmuir-Blodgett films, and monolayers of 5 were transferred as Y-type films. Detailed characterization of the multilayer films (Z-type deposition) prepared from amine-terminated C-60 (3) using X-ray and neutron reflectometry reveals staggering Of C-60 spheres and a head-to-head (Y-type) structure presumably due to flipping and reattaching of C-60 amphiphiles to the previous underlying C-60 layer. C1 Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Wang, HL (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RI Lujan Center, LANL/G-4896-2012 NR 44 TC 23 Z9 24 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 15 PY 2005 VL 21 IS 4 BP 1416 EP 1423 DI 10.1021/la047835y PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 896VL UT WOS:000226962100041 PM 15697289 ER PT J AU Dudney, NJ AF Dudney, NJ TI Solid-state thin-film rechargeable batteries SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY LA English DT Article; Proceedings Paper CT 3rd Conference on Thin Films and Nanomaterials for Energy Conversion and Storage CY SEP, 2003 CL Ohio Aerosp Inst, Cleveland, OH HO Ohio Aerosp Inst DE battery; lithium; thin films; intercalation of lithium; lipon electrolyte; LiCoO2 ID LITHIUM BATTERIES; LICOO2 CATHODES AB Thin-film solid-state rechargeable lithium batteries are ideal micropower sources for many applications requiring high energy and power densities, good capacity retention for thousands of discharge/charge cycles, and an extremely low self-discharge rate. Batteries fabricated using the crystalline LiCoO2 cathode consistently provide the maximum power levels up to 30 mW/cm(2), long cycle life, negligible self-discharge and rapid charge rates. Similarly promising results have also been obtained with crystalline LiMn2O4 cathodes, although good reproducibility has not been achieved. These fully lithiated cathodes can be used with Li-free or Li-ion thin-film anodes to produce batteries that can withstand high temperature solder bonding processes. Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Dudney, NJ (reprint author), Oak Ridge Natl Lab, Condensed Matter Sci Div, POB 2008, Oak Ridge, TN 37831 USA. EM njd@ornl.gov RI Dudney, Nancy/I-6361-2016 OI Dudney, Nancy/0000-0001-7729-6178 NR 13 TC 108 Z9 111 U1 25 U2 123 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5107 J9 MAT SCI ENG B-SOLID JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. PD FEB 15 PY 2005 VL 116 IS 3 BP 245 EP 249 DI 10.1016/j.mseb.2004.05.045 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 898DO UT WOS:000227056500003 ER PT J AU Landi, BJ Raffaelle, RP Heben, MJ Alleman, JL VanDerveer, W Gennett, T AF Landi, BJ Raffaelle, RP Heben, MJ Alleman, JL VanDerveer, W Gennett, T TI Development and characterization of single wall carbon nanotube-Nafion composite actuators SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY LA English DT Article; Proceedings Paper CT 3rd Conference on Thin Films and Nanomaterials for Energy Conversion and Storage CY SEP, 2003 CL Ohio Aerosp Inst, Cleveland, OH HO Ohio Aerosp Inst DE SWNT; Nafion; actuator ID POLYMER ELECTROLYTE ACTUATOR; ARTIFICIAL MUSCLES; BIOMIMETIC SENSORS AB The development and characterization of thin film polymeric actuators has been performed for single wall carbon nanotube (SWNT)-Nafion composite systems. Previous work in our laboratory illustrated that incorporation of highly conductive SWNTs into an ionomeric matrix promoted an actuation response by enhancing the electro-osmotic effect at relatively low doping levels, similar to0.1% (w/w). Further investigation has shown the effects of frequency and applied voltage on the composite bimorph actuator systems. The results indicate a displacement response that is linearly dependent on voltage and inverse to frequency. (C) 2004 Elsevier B.V. All rights reserved. C1 Rochester Inst Technol, Nanopower Res Labs, Rochester, NY 14623 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Raffaelle, RP (reprint author), Rochester Inst Technol, Nanopower Res Labs, Rochester, NY 14623 USA. EM rprsps@rit.edu NR 17 TC 30 Z9 32 U1 1 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5107 J9 MAT SCI ENG B-SOLID JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. PD FEB 15 PY 2005 VL 116 IS 3 BP 359 EP 362 DI 10.1016/j.mseb.2004.05.047 PG 4 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 898DO UT WOS:000227056500019 ER PT J AU Caparelli, EC Tomasi, D Ernst, T AF Caparelli, EC Tomasi, D Ernst, T TI The effect of small rotations on R-2* measured with echo planar imaging SO NEUROIMAGE LA English DT Article DE effective transverse relaxation rate; brain rotation; susceptibility effects ID SUSCEPTIBILITY ARTIFACTS; FUNCTIONAL MRI; TIME-SERIES; BOLD FMRI; DISTORTION; REDUCTION; CONTRAST; IMAGES; CORTEX; BRAIN AB Several modern MRI techniques, such as functional MRI (fMRI), rely on the detection of microscopic changes in magnetic susceptibility. However, differences in magnetic susceptibility between brain tissue, bone, and air also produce local magnetic field gradients that may interfere with the contrast of interest, particularly at high field strengths. Since the magnetic field distribution depends on the orientation of the human head in the MRI scanner, head rotations can change the effective transverse relaxation rate (R-2*) and confound fMRI studies. The size of the R-2* changes produced by small head rotations was estimated from a brain-shaped gel-phantom at 4 T, by measuring the signal decay at 96 different echo times. Similar measurements were carried out in a human study. Rotations larger than 2degrees changed R-2* more than 1.5 Hz in the phantom, and indicate that even small rotations may compromise fMRI results. (C) 2004 Elsevier Inc. All rights reserved. C1 Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. Univ Hawaii, Honolulu, HI 96813 USA. RP Caparelli, EC (reprint author), Brookhaven Natl Lab, Dept Med, Bldg 490, Upton, NY 11973 USA. EM caparelli@bnl.gov RI Tomasi, Dardo/J-2127-2015 FU NIMH NIH HHS [R01 MH61427] NR 31 TC 6 Z9 6 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 J9 NEUROIMAGE JI Neuroimage PD FEB 15 PY 2005 VL 24 IS 4 BP 1164 EP 1169 DI 10.1016/j.neuroimage.2004.11.011 PG 6 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA 894JT UT WOS:000226788100025 PM 15670694 ER PT J AU Trombettoni, A Smerzi, A Sodano, P AF Trombettoni, A Smerzi, A Sodano, P TI Observable signature of the Berezinskii-Kosterlitz-Thouless transition in a planar lattice of Bose-Einstein condensates SO NEW JOURNAL OF PHYSICS LA English DT Article ID JOSEPHSON-JUNCTION ARRAYS; PHASE-TRANSITION; INSULATOR TRANSITION; ULTRACOLD ATOMS; MOTT-INSULATOR; XY-MODEL; SUPERFLUID; SUPERCONDUCTORS; FILMS; GAS AB We investigate the possibility that Bose-Einstein condensates, loaded on a 2D optical lattice, undergo - at finite temperature - a Berezinskii - Kosterlitz - Thouless transition. We show that - in an experimentally attainable range of parameters - a planar lattice of Bose - Einstein condensates is described by the XY model at finite temperature. We demonstrate that the interference pattern of the expanding condensates provides the experimental signature of the Berezinskii Kosterlitz - Thouless transition by showing that, near the critical temperature, the (k) over right arrow = 0 component of the momentum distribution and the central peak of the atomic density profile sharply decrease. The finite-temperature transition for a 3D optical lattice is also discussed in this paper, and analogies with superconducting Josephson junction networks are stressed throughout the text. C1 Univ Parma, Ist Nazl Fis Mat, I-43100 Parma, Italy. Univ Parma, Dipartimento Fis, I-43100 Parma, Italy. Univ Trent, Ist Nazl Fis Mat, BEC CR, I-38050 Trento, Italy. Univ Trent, Dipartimento Fis, I-38050 Trento, Italy. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. Univ Perugia, Sez INFN, I-06123 Perugia, Italy. RP Trombettoni, A (reprint author), Univ Parma, Ist Nazl Fis Mat, Parco Area Sci 7A, I-43100 Parma, Italy. EM Andrea.Trombettoni@pg.infn.it NR 39 TC 34 Z9 35 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 15 PY 2005 VL 7 AR 57 DI 10.1088/1367-2630/7/1/057 PG 16 WC Physics, Multidisciplinary SC Physics GA 917LD UT WOS:000228462200003 ER PT J AU Wieczorek, S Chow, WW AF Wieczorek, S Chow, WW TI Global view of nonlinear dynamics in coupled-cavity lasers - a bifurcation study SO OPTICS COMMUNICATIONS LA English DT Article DE coupled lasers; composite-cavity mode theory; multimode lasers; semiconductor lasers; bifurcations ID SEMICONDUCTOR-LASERS; FREQUENCY LOCKING; CHAOTIC LASERS; SYNCHRONIZATION; INJECTION; ARRAYS; DIODE AB This paper investigates nonlinear behavior of coupled lasers. Composite-cavity-mode approach and a class-B description of the active medium are used to describe nonlinearities associated with population dynamics and optical coupling. The multimode equations are studied using bifurcation analysis to identify regions of stable locking, periodic oscillations, and complicated dynamics in the parameter space of coupling-mirror transmission T and normalized cavity-length mismatch dL/lambda. We further investigate the evolution of the key bifurcations with the linewidth enhancement factor alpha. In particular, our analysis reveals the formation of a gap in the lockband that is gradually occupied by instabilities. We also investigate effects of the cavity-length on chaotic dynamics. (C) 2004 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Semicond Mat & Device Sci, Albuquerque, NM 87185 USA. RP Sandia Natl Labs, Semicond Mat & Device Sci, POB 5800,MS 0601, Albuquerque, NM 87185 USA. EM smwiecz@sandia.gov NR 55 TC 14 Z9 15 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 EI 1873-0310 J9 OPT COMMUN JI Opt. Commun. PD FEB 15 PY 2005 VL 246 IS 4-6 BP 471 EP 493 DI 10.1016/j.optcom.2004.11.007 PG 23 WC Optics SC Optics GA 901WC UT WOS:000227311900026 ER PT J AU Goldman, N Leforestier, C Saykally, RJ AF Goldman, N Leforestier, C Saykally, RJ TI A 'first principles' potential energy surface for liquid water from VRT spectroscopy of water clusters SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE liquid water simulation; water clusters; water potential energy surface; first principles water; diffusion quantum Monte Carlo; vibration-rotation-tunnelling spectroscopy ID TRANSFERABLE INTERACTION MODELS; DIFFUSION MONTE-CARLO; AB-INITIO CALCULATIONS; DIMER INTERMOLECULAR VIBRATIONS; TERAHERTZ LASER SPECTROSCOPY; QUASI-ADIABATIC CHANNELS; MANY-BODY FORCES; DIPOLE-MOMENT; 3-BODY INTERACTIONS; TUNNELING DYNAMICS AB We present results of gas phase cluster and liquid water simulations from the recently determined VRT(ASP-W)III water dimer potential energy surface (the third fitting of the Anisotropic Site Potential with Woermer dispersion to vibration-rotation-tunnelling data). VRT(ASP-W)III is shown to not only be a model of high 'spectroscopic' accuracy for the water dimer, but also makes accurate predictions of vibrational ground-state properties for clusters up through the hexamer. Results of ambient liquid water simulations from VRT(ASP-W)III are compared with those from ab initio molecular dynamics, other potentials of 'spectroscopic' accuracy and with experiment. The results herein represent the first time to the authors" knowledge that a 'spectroscopic potential surface is able to correctly model condensed phase properties of water. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94551 USA. Univ Montpellier 2, LSDMS, UMR 5636, CC 014, F-34095 Montpellier, France. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Goldman, N (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, L-268, Livermore, CA 94551 USA. EM saykally@uclink4.berkeley.edu NR 62 TC 36 Z9 36 U1 1 U2 10 PU ROYAL SOC LONDON PI LONDON PA 6 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T ROY SOC A JI Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. PD FEB 15 PY 2005 VL 363 IS 1827 BP 493 EP 508 DI 10.1098/rspa.2004.1504 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 895CW UT WOS:000226839500019 PM 15664895 ER PT J AU Lake, B Tennant, DA Nagler, SE AF Lake, B Tennant, DA Nagler, SE TI Polarized inelastic neutron scattering in the quasi-one-dimensional antiferromagnet KCuF3 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Polarized Neutrons for Condensed Matter Investigation CY JUN 01-04, 2004 CL Washington, DC SP Natl Sci Fdn Div Mat Res, Oak Ridge Associated Univ, US DOE Off Basic Energy Sci, Oak Ridge Natl Lab Spallat Neutron Source DE quantum magnets; longitudinal modes; low dimensional ID CHAIN COMPOUND KCUF3; MAGNETIC EXCITATIONS; SPIN DYNAMICS; FIELD; DIFFRACTION; CONTINUUM; SPECTRUM AB The material KCuF3 is a prototypical example of a weakly coupled S = 1/2 Heisenberg antiferromagnetic chain system. The inter-chain coupling leads to anti ferromagnetic order at low temperatures. In the ordered state theory predicts that the low-energy spin dynamics exhibits an unusual gapped longitudinal mode. Here we report polarized inelastic scattering measurements of the excitations in KCuF3. A weak magnetic field is utilized to prepare a single domain state with the spins aligned in the scattering plane but perpendicular to the chain direction. This configuration enables a clean measurement of the longitudinal magnetic response as spin-flip scattering. (C) 2004 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Ctr Neutron Scattering, Oak Ridge, TN 37831 USA. Clarendon Lab, Oxford OX1 3PU, England. Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. RP Nagler, SE (reprint author), Oak Ridge Natl Lab, Condensed Matter Sci Div, POB 2008, Oak Ridge, TN 37831 USA. EM naglerse@ornl.gov RI Nagler, Stephen/B-9403-2010; Nagler, Stephen/E-4908-2010; Tennant, David/Q-2497-2015; OI Nagler, Stephen/0000-0002-7234-2339; Tennant, David/0000-0002-9575-3368; Lake, Bella/0000-0003-0034-0964 NR 20 TC 3 Z9 3 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 15 PY 2005 VL 356 IS 1-4 BP 56 EP 59 DI 10.1016/j.physb.2004.10.046 PG 4 WC Physics, Condensed Matter SC Physics GA 900RB UT WOS:000227230900012 ER PT J AU Mezei, F AF Mezei, F TI Polarized neutron scattering research: the beginning SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Polarized Neutrons for Condensed Matter Investigation CY JUN 01-04, 2004 CL Washington, DC SP Natl Sci Fdn Div Mat Res, Oak Ridge Associated Univ, US DOE Off Basic Energy Sci, Oak Ridge Natl Lab Spallat Neutron Source DE neutron scattering; neutron magnetic moment; nature of magnetic interaction; neutron polarization ID MAGNETIC SCATTERING AB The visionary idea of using neutron scattering for the study of magnetic phenomena in condensed matter was proposed by Bloch in 1936, mere 4 years after the neutron was discovered. It was based on one of the surprises the neutron presented the scientific community with: it is neutral, yet it has a magnetic moment, which latter was then not yet directly observed though. Although the first results proved to be mathematically wrong, due to a non-trivial ambiguity of classical electromagnetism theory, which could only be settled by neutron beam experiments 15 years later, the recognition lead to the advent of a most productive area of modern research, which culminated in the development of the powerful and sophisticated techniques of polarized neutron scattering. This recollection traces the early milestones of the development of the field in strong interaction between theory and experiment. (C) 2004 Elsevier B.V. All rights reserved. C1 Hahn Meitner Inst Berlin GmbH, Berlin Neutron Scattering Ctr, D-14109 Berlin, Germany. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mezei, F (reprint author), Hahn Meitner Inst Berlin GmbH, Berlin Neutron Scattering Ctr, Postfach 390128,Glienicker Str 100, D-14109 Berlin, Germany. EM mezei@hmi.de NR 24 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 15 PY 2005 VL 356 IS 1-4 BP 64 EP 70 DI 10.1016/j.physb.2004.10.048 PG 7 WC Physics, Condensed Matter SC Physics GA 900RB UT WOS:000227230900014 ER PT J AU Jones, GL Baker, J Chen, WC Collett, B Cowan, JA Dias, MF Gentile, TR Hoffmann, C Koetzle, T Lee, WT Littrell, K Miller, M Schultz, A Snow, WM Tong, X Yan, H Yue, A AF Jones, GL Baker, J Chen, WC Collett, B Cowan, JA Dias, MF Gentile, TR Hoffmann, C Koetzle, T Lee, WT Littrell, K Miller, M Schultz, A Snow, WM Tong, X Yan, H Yue, A TI Continuously operating compact He-3-based neutron spin filter SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Polarized Neutrons for Condensed Matter Investigation CY JUN 01-04, 2004 CL Washington, DC SP Natl Sci Fdn Div Mat Res, Oak Ridge Associated Univ, US DOE Off Basic Energy Sci, Oak Ridge Natl Lab Spallat Neutron Source DE helium; neutron; optical pumping; polarization diffraction; spin filter ID POLARIZATION; EXCHANGE AB Polarized 3 He can be used as a spin filter to polarize a broad energy spectrum of neutrons. As a prototype for use on the single-crystal diffractometer (SCD) at the spallation neutron source (SNS), we have built a compact system to continuously polarize a He-3 spin filter by spin-exchange optical pumping. Polarizing in the neutron beam provides a constant neutron polarization and reduces the sensitivity to relaxation mechanisms. The capability to operate in the presence of non-optimal magnetic field homogeneity allowed us to employ a highly compact solenoid only 9.5 cm in diameter and 20cm long. Using only 7W of laser light we maintained 44% (3)Hc polarization in an 11cm(3) cell, despite an overall cell relaxation time of approximate to 10h. Results from a test on the SCD at IPNS are discussed. Published by Elsevier B.V. C1 Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. Spallat Neutron Source, Oak Ridge, TN 37831 USA. Indiana Univ, Bloomington, IN 47408 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Jones, GL (reprint author), Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. EM gjones@hamilton.gov RI tong, Xin/C-4853-2012; hoffmann, christina/D-2292-2016; Littrell, Kenneth/D-2106-2013; OI tong, Xin/0000-0001-6105-5345; hoffmann, christina/0000-0002-7222-5845; Littrell, Kenneth/0000-0003-2308-8618; Yue, Andrew/0000-0001-5340-8470 NR 11 TC 11 Z9 11 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 15 PY 2005 VL 356 IS 1-4 BP 86 EP 90 DI 10.1016/j.physb.2004.10.054 PG 5 WC Physics, Condensed Matter SC Physics GA 900RB UT WOS:000227230900017 ER PT J AU Gentile, TR Babcock, E Borchers, JA Chen, WC Hussey, D Jones, GL Lee, WT Majkzrak, CF O'Donovan, KV Snow, WM Tong, X Velthuis, SGET Walker, TG Yan, H AF Gentile, TR Babcock, E Borchers, JA Chen, WC Hussey, D Jones, GL Lee, WT Majkzrak, CF O'Donovan, KV Snow, WM Tong, X Velthuis, SGET Walker, TG Yan, H TI Polarized He-3 spin filters in neutron scattering SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Polarized Neutrons for Condensed Matter Investigation CY JUN 01-04, 2004 CL Washington, DC SP Natl Sci Fdn Div Mat Res, Oak Ridge Associated Univ, US DOE Off Basic Energy Sci, Oak Ridge Natl Lab Spallat Neutron Source DE helium; neutron; optical pumping; polarization; spin filter ID NUCLEAR-POLARIZATION; GAS; REFLECTOMETRY; EXCHANGE AB We report progress in the development and application of neutron spin filters based on transmission through polarized He-3 gas. Tests and application of these devices are underway at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) and the Intense Pulsed Neutron Source (IPNS). The results of application to polarization analysis for diffuse reflectometry is discussed, along with an example of the issues in choosing the flipping ratio for such applications. The status of our development of polarized gas production using both spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping will be presented. For SEOP, we currently obtain 70-75% He-3 polarization in cells up to 500cm(3) in volume. (C) 2004 Elsevier B.V. All rights reserved. C1 Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. Univ Wisconsin, Madison, WI 53706 USA. Indiana Univ, Bloomington, IN 47408 USA. Hamilton Coll, Clinton, NY 13323 USA. Spallat Neutron Source, Oak Ridge, TN USA. Univ Maryland, College Pk, MD 20742 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Natl Inst Stand & Technol, 100 Bur Dr,MS 8461, Gaithersburg, MD 20899 USA. EM thomas.gentile@nist.gov RI Babcock, Earl/E-6700-2011; tong, Xin/C-4853-2012; te Velthuis, Suzanne/I-6735-2013 OI Babcock, Earl/0000-0002-4215-2075; tong, Xin/0000-0001-6105-5345; te Velthuis, Suzanne/0000-0002-1023-8384 NR 34 TC 35 Z9 35 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 EI 1873-2135 J9 PHYSICA B JI Physica B PD FEB 15 PY 2005 VL 356 IS 1-4 BP 96 EP 102 DI 10.1016/j.physb.2004.10.056 PG 7 WC Physics, Condensed Matter SC Physics GA 900RB UT WOS:000227230900019 ER PT J AU Wallidge, GW Charlton, TR Dalgliesh, RM Parnell, SR Schofield, JR AF Wallidge, GW Charlton, TR Dalgliesh, RM Parnell, SR Schofield, JR TI Progress toward polarised 3-He neutron spin filters using spin exchange optical pumping at the ISIS pulsed neutron source SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Polarized Neutrons for Condensed Matter Investigation CY JUN 01-04, 2004 CL Washington, DC SP Natl Sci Fdn Div Mat Res, Oak Ridge Associated Univ, US DOE Off Basic Energy Sci, Oak Ridge Natl Lab Spallat Neutron Source DE polarised He-3; neutron; spin filter ID GAS AB We report the first results in the development of spin exchange optical pumping for use as a polarised 3 He spin filter at the ISIS pulsed neutron source Helium polarisation of 35% in a cell of 0.8 bar has been measured with neutrons and 23% in a 1.6 bar cell with NNIR. Also reported is the progress in developing magnetic environments. The characteristics of a few designs have been investigated by modelling, measurement of the magnetic field and relaxation of the 3 He polarisation. (C) 2004 Elsevier B.V. All rights reserved. C1 Rutherford Appleton Labs, ISIS, Neutron & Muon Facil, Didcot, Oxon, England. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Wallidge, GW (reprint author), Rutherford Appleton Labs, ISIS, Neutron & Muon Facil, Didcot, Oxon, England. EM G.W.Wallidge@rl.ac.uk RI Parnell, Steven/J-4574-2013 NR 11 TC 4 Z9 4 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 15 PY 2005 VL 356 IS 1-4 BP 118 EP 120 DI 10.1016/j.physb.2004.10.060 PG 3 WC Physics, Condensed Matter SC Physics GA 900RB UT WOS:000227230900023 ER PT J AU Zaliznyak, I Ghosh, V Shapiro, SM Passell, L AF Zaliznyak, I Ghosh, V Shapiro, SM Passell, L TI Polarized beam operation of the hybrid spectrometer at the pulsed spallation neutron source SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Polarized Neutrons for Condensed Matter Investigation CY JUN 01-04, 2004 CL Washington, DC SP Natl Sci Fdn Div Mat Res, Oak Ridge Associated Univ, US DOE Off Basic Energy Sci, Oak Ridge Natl Lab Spallat Neutron Source DE polarization analysis; time-of-flight spectroscopy; Monte-Carlo simulations ID SCATTERING AB The concept of a neutron hybrid spectrometer (HYSPEC) combines the time-of-flight spectroscopy with the focusing Bragg optics and incorporates a polarized beam option. Here, we describe the polarization analysis scheme proposed for HYSPEC and quantify its performance via the Monte-Carlo simulations. We find that the broadband supermirrorbender transmission polarizers provide reasonably good polarization analysis capability within a similar to8-10 meV energy window for scattered neutron energies in the thermal range, up to similar to25 meV. (C) 2004 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Brookhaven Natl Lab, Ctr Neutron Sci, Upton, NY 11973 USA. RP Zaliznyak, I (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM zaliznyak@bnl.gov RI Zaliznyak, Igor/E-8532-2014 OI Zaliznyak, Igor/0000-0002-9886-3255 NR 15 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 15 PY 2005 VL 356 IS 1-4 BP 150 EP 155 DI 10.1016/j.physb.2004.10.067 PG 6 WC Physics, Condensed Matter SC Physics GA 900RB UT WOS:000227230900030 ER PT J AU Parizzi, AD Klose, F Christoph, V AF Parizzi, AD Klose, F Christoph, V TI Neutron polarization evolution calculations along the SNS magnetism reflectometer beam line SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Polarized Neutrons for Condensed Matter Investigation CY JUN 01-04, 2004 CL Washington, DC SP Natl Sci Fdn Div Mat Res, Oak Ridge Associated Univ, US DOE Off Basic Energy Sci, Oak Ridge Natl Lab Spallat Neutron Source DE polarized neutron scattering; polarized neutron instrumentation; neutron spin; neutron reflectometry ID SPIN-RESONANCE; COLD NEUTRONS; FLIPPER; FILTER AB In polarized neutron scattering instruments, most polarization devices apply magnetic fields of different space and time profiles for achieving the desired conditioning of the beam. Magnetic fields created at each device impose fringe/stray fields onto other devices in the beam line, which may affect their functionalities as well as the evolution of the neutron polarization. For the SNS magnetism reflectometer, it is desirable that different sample environment magnets and beam conditioning devices can be used in variable experimental conditions. Spin polarizers and analyzers, broad-band spin flippers and other polarized neutron devices must be capable of working reliably in the vicinity of small magnetic fields generated by an iron-yoke electromagnet and of much larger magnetic fields created, for example, by a high-field superconducting magnet. The latter may not only impose relatively large stray fields along the beam path, but also produce relatively large field gradients. In this paper, we present calculations treating the magnetic field interference between devices, the effect of sample environment magnets and the resultant neutron polarization evolution along the beam line. Calculations are presented for polarized instrumentation configurations that will typically be applied in standard experimental conditions at the SNS magnetism reflectometer. (C) 2004 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, SNS, Oak Ridge, TN 37831 USA. Univ Appl Sci, HTW, Dresden, Germany. RP Parizzi, AD (reprint author), Oak Ridge Natl Lab, SNS, Bldg 8600,Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM parizziad@ornl.gov NR 17 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 15 PY 2005 VL 356 IS 1-4 BP 156 EP 162 DI 10.1016/j.physb.2004.10.068 PG 7 WC Physics, Condensed Matter SC Physics GA 900RB UT WOS:000227230900031 ER PT J AU Zhao, JK Garamus, VM Mueller, W Willumeit, R AF Zhao, JK Garamus, VM Mueller, W Willumeit, R TI Dynamically polarized hydrogen target as a broadband, wavelength-independent thermal neutron spin polarizer SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Polarized Neutrons for Condensed Matter Investigation CY JUN 01-04, 2004 CL Washington, DC SP Natl Sci Fdn Div Mat Res, Oak Ridge Associated Univ, US DOE Off Basic Energy Sci, Oak Ridge Natl Lab Spallat Neutron Source DE dynamic nuclear polarization; DNP; neutron spin filter; neutron polarizer ID FILTER AB A hydrogen-rich sample with dynamically polarized hydrogen nuclei was tested as a wavelength-independent neutron transmission spin polarizer. The experiment used a modified setup of the dynamic nuclear polarization target station at the GKSS research center. The standard solvent sample at the GKSS DNP station was used. It is 2.8 turn thick and consists of 43.4wt% water, 54.6wt% glycerol, and 2wt% of EHBA-Ci-(v) complex. The wavelength of the incident neutrons for the transmission experiment was lambda= 8.1 Angstrom with Deltalambda/lambda = 10%. The polarization of neutron beam after the target sample was analyzed with a supermirror analyzer. A neutron polarization of -52% was achieved at the hydrogen polarization of -69%. Further experiments will test the feasibility of other hydrogen-rich materials, such as methane, as the polarizer. A theoretical calculation shows that a polarized methane target would allow over 95% neutron polarizations with more than 30% transmission. (C) 2004 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. GKSS Forschungszentrum Geesthacht GmbH, Geesthacht, Germany. RP Zhao, JK (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM zhaoj@ornl.gov RI Zhao, Jinkui/B-7872-2013 OI Zhao, Jinkui/0000-0002-7756-1952 NR 10 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 15 PY 2005 VL 356 IS 1-4 BP 163 EP 167 DI 10.1016/j.physb.2004.10.069 PG 5 WC Physics, Condensed Matter SC Physics GA 900RB UT WOS:000227230900032 ER PT J AU Zhao, JK AF Zhao, JK TI Dynamically polarized hydrogenous materials for neutron scattering SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Polarized Neutrons for Condensed Matter Investigation CY JUN 01-04, 2004 CL Washington, DC SP Natl Sci Fdn Div Mat Res, Oak Ridge Associated Univ, US DOE Off Basic Energy Sci, Oak Ridge Natl Lab Spallat Neutron Source DE dynamic nuclear polarization; spin-dependent scattering; polarized neutron scattering ID ESCHERICHIA-COLI RIBOSOMES; LARGE SUBUNIT; PROTEINS AB Neutron scattering from dynamically polarized protons provides an effective way to study the structure of hydrogenous materials. Hydrogen makes up about half of all the atoms in biological molecules. Its content in many other soft condensed matters is very high as well. Neutron's interaction with hydrogen depends strongly on their spin states. Polarized neutron scattering from polarized hydrogens can both increase the coherent scattering signal and reduce the incoherent background. Many of its past applications were focused on solution scatterings from large biological complexes such as the ribosome. Those studies were recently confirmed by the crystal structures of the ribosome. A promising future application for polarized neutron scattering from dynamically polarized hydrogens is neutron protein crystallography. Currently, neutron protein crystallography is severely flux limited, even at the world's most powerful neutron sources. It can benefit greatly from the increased diffraction signal and reduced incoherent background enabled by polarized neutron diffraction. (C) 2004 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Expt Facil Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Zhao, JK (reprint author), Oak Ridge Natl Lab, Expt Facil Div, Spallat Neutron Source, Bldg 8600, Oak Ridge, TN 37831 USA. EM zhaoj@ornl.gov RI Zhao, Jinkui/B-7872-2013 OI Zhao, Jinkui/0000-0002-7756-1952 NR 11 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 15 PY 2005 VL 356 IS 1-4 BP 168 EP 173 DI 10.1016/j.physb.2004.10.070 PG 6 WC Physics, Condensed Matter SC Physics GA 900RB UT WOS:000227230900033 ER PT J AU Pynn, R AF Pynn, R TI Broadband spin flippers constructed from thin magnetic films SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Polarized Neutrons for Condensed Matter Investigation CY JUN 01-04, 2004 CL Washington, DC SP Natl Sci Fdn Div Mat Res, Oak Ridge Associated Univ, US DOE Off Basic Energy Sci, Oak Ridge Natl Lab Spallat Neutron Source DE spin flipper; neutron spin echo; magnetic films ID NEUTRON-SCATTERING; ECHO AB I describe an optimized design for neutron spin flippers constructed from stacks of permanently magnetized thin films. These devices should provide high flipping efficiency over a broad range of neutron wavelengths, occupy little space in the neutron beam and consume no power. Because they are flat, they are well suited for experiments that use the neutron spin echo technique to code neutron scattering angles. Importantly for this use, pi/2 and pi flippers have the same orientation with respect to the neutron beam. (C) 2004 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Pynn, R (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM pynn@lanl.gov NR 8 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 15 PY 2005 VL 356 IS 1-4 BP 178 EP 181 DI 10.1016/j.physb.2004.10.072 PG 4 WC Physics, Condensed Matter SC Physics GA 900RB UT WOS:000227230900035 ER PT J AU Bleuel, M Littrell, K Gahler, R Lal, J AF Bleuel, M Littrell, K Gahler, R Lal, J TI MISANS, a method for quasi-elastic small angle neutron scattering experiments SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Polarized Neutrons for Condensed Matter Investigation CY JUN 01-04, 2004 CL Washington, DC SP Natl Sci Fdn Div Mat Res, Oak Ridge Associated Univ, US DOE Off Basic Energy Sci, Oak Ridge Natl Lab Spallat Neutron Source DE neutron spin echo; small angle neutron scattering; pulsed neutron source ID SPIN-ECHO; RESONANCE AB The use of a pulsed neutron source is convenient for spin-echo techniques not only because of the gain in neutron economy (Nuc. Inst. and Meth. 164 (1979) 153), but also because the number of parameters varied during a scan is reduced. The recently proposed modulated-intensity small angle neutron scattering (MISANS) instrument uses the MIEZE technique, a variant of the neutron resonance spin-echo (NRSE). The adaptation of this method to a small angle neutron scattering (SANS) spectrometer provides the possibility to study slow dynamics with energy changes in the neV-range. The advantage of MIEZE compared to other spin-echo techniques is that all polarizing neutron optics can be installed upstream of the sample, so that the signal is indifferent to depolarization at the sample position and an area detector can be operated very easily. This paper discusses the changes to the SASI spectrometer at the 1PNS in Argonne required to insert the MIEZE components on the existing beamline. Published by Elsevier B.V. C1 Argonne Natl Lab, IPNS, Argonne, IL 60439 USA. Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. RP Bleuel, M (reprint author), Argonne Natl Lab, IPNS, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mbleuel@anl.gov RI Littrell, Kenneth/D-2106-2013 OI Littrell, Kenneth/0000-0003-2308-8618 NR 9 TC 7 Z9 7 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 15 PY 2005 VL 356 IS 1-4 BP 213 EP 217 DI 10.1016/j.physb.2004.10.079 PG 5 WC Physics, Condensed Matter SC Physics GA 900RB UT WOS:000227230900042 ER PT J AU Bleuel, M Lurio, LB Littrell, K Gaehler, R Lal, J AF Bleuel, M Lurio, LB Littrell, K Gaehler, R Lal, J TI Complementarity of MIEZE-SANS and X-ray photon correlation spectroscopy (XPCS) SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Polarized Neutrons for Condensed Matter Investigation CY JUN 01-04, 2004 CL Washington, DC SP Natl Sci Fdn Div Mat Res, Oak Ridge Associated Univ, US DOE Off Basic Energy Sci, Oak Ridge Natl Lab Spallat Neutron Source DE coherence; XPCS; MIEZE; SANS; neutron spin echo; dynamics ID NEUTRON SPIN-ECHO; DYNAMICS; SCATTERING; SYSTEMS AB The hybrid instrument modulation of intensity and small angle neutron scattering (MISANS), combining the MIEZE spectroscopy technique with conventional SANS, and X-ray photon correlation spectroscopy (XPCS) are similar techniques both in the information they measure and the way in which that information is obtained. However, the length and time scales that they observe are substantially different but overlapping, allowing information measured by one technique to be continuously extended by the other. As recently demonstrated the combination of XPCS and classical neutron spin echo (NSE) can be used to explore new science (Phys. Rev. Lett. 91(16) (2003) 165504-1/4). We compare and contrast these two techniques in terms of their time scale and applicability to soft matter, biology, and magnetic systems. Published by Elsevier B.V. C1 Argonne Natl Lab, Argonne, IL 60439 USA. No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. RP Lal, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jlal@anl.gov RI Littrell, Kenneth/D-2106-2013 OI Littrell, Kenneth/0000-0003-2308-8618 NR 14 TC 0 Z9 0 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 EI 1873-2135 J9 PHYSICA B JI Physica B PD FEB 15 PY 2005 VL 356 IS 1-4 BP 223 EP 228 DI 10.1016/j.physb.2004.10.081 PG 6 WC Physics, Condensed Matter SC Physics GA 900RB UT WOS:000227230900044 ER PT J AU Sinha, SK AF Sinha, SK TI Future science at next generation neutron sources SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Polarized Neutrons for Condensed Matter Investigation CY JUN 01-04, 2004 CL Washington, DC SP Natl Sci Fdn Div Mat Res, Oak Ridge Associated Univ, US DOE Off Basic Energy Sci, Oak Ridge Natl Lab Spallat Neutron Source DE future science; synchrotron X-rays; spin echo; emergent phenomena ID RESONANCE EXCHANGE SCATTERING; X-RAY-SCATTERING; ARRAY AB We review some of the scientific opportunities which will become available with the advent of increased fluxes of polarized neutrons and corresponding advances in neutron instrumentation. These range from the study of magnetism in thin films and novel nanostructures with application in magnetic information storage and retrieval, to the study of spin-dependent inelastic scattering from highly correlated magnetic systems, frustrated magnetic systems, etc. Extensions of neutron spin echo techniques offer further opportunities for advances in our knowledge of the dynamics of soft condensed matter systems. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sinha, SK (reprint author), Univ Calif San Diego, Dept Phys, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM ssinha@physics.ucsd.edu NR 22 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD FEB 15 PY 2005 VL 356 IS 1-4 BP 269 EP 275 DI 10.1016/j.physb.2004.10.089 PG 7 WC Physics, Condensed Matter SC Physics GA 900RB UT WOS:000227230900052 ER PT J AU Samoilov, M Plyasunov, S Arkin, AP AF Samoilov, M Plyasunov, S Arkin, AP TI Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE network motif; signal transduction; chemical reaction; synthetic biology; systems biology ID GENE-EXPRESSION; CELL; SENSITIVITY; TRANSITION; FREQUENCY; NETWORKS; SYSTEMS; PROTEIN AB Stochastic effects in biomolecular systems have now been recognized as a major physiologically and evolutionarily important factor in the development and function of many living organisms. Nevertheless, they are often thought of as providing only moderate refinements to the behaviors otherwise predicted by the classical deterministic system description. in this work we show by using both analytical and numerical investigation that at least in one ubiquitous class of (bio)chemical-reaction mechanisms, enzymatic futile cycles, the external noise may induce a bistable oscillatory (dynamic switching) behavior that is both quantitatively and qualitatively different from what is predicted or possible deterministically. We further demonstrate that the noise required to produce these distinct properties can itself be caused by a set of auxiliary chemical reactions, making it feasible for biological systems of sufficient complexity to generate such behavior internally. This new stochastic dynamics then serves to confer additional functional modalities on the enzymatic futile cycle mechanism that include stochastic amplification and signaling, the characteristics of which could be controlled by both the type and parameters of the driving noise. Hence, such noise-induced phenomena may, among other roles, potentially offer a novel type of control mechanism in pathways that contain these cycles and the like units. In particular, observations of endogenous or externally driven noise-induced dynamics in regulatory networks may thus provide additional insight into their topology, structure, and kinetics. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Melvin Calvin Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Samoilov, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Melvin Calvin Lab, Phys Biosci Div, 5320, Berkeley, CA 94720 USA. EM mssamoilov@lbl.gov; aparkin@lbl.gov RI Arkin, Adam/A-6751-2008; OI Arkin, Adam/0000-0002-4999-2931; Samoilov, Michael/0000-0003-3559-5326 NR 33 TC 196 Z9 196 U1 2 U2 16 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 15 PY 2005 VL 102 IS 7 BP 2310 EP 2315 DI 10.1073/pnas.0406841102 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 898JM UT WOS:000227073100013 PM 15701703 ER PT J AU Cuff, ME Miller, DJ Korolev, S Xu, X Anderson, WF Edwards, A Joachimiak, A Savchenko, A AF Cuff, ME Miller, DJ Korolev, S Xu, X Anderson, WF Edwards, A Joachimiak, A Savchenko, A TI Crystal structure of a predicted precorrin-8x methylmutase from Thermoplasma acidophilum SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID BIOSYNTHESIS; DATABASE C1 Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. Univ Toronto, CH Best Inst, Toronto, ON, Canada. Northwestern Univ, Feinberg Sch Med, Dept Mol Pharmacol & Biol Chem, Chicago, IL 60611 USA. RP Joachimiak, A (reprint author), Argonne Natl Lab, Struct Biol Ctr, Biosci Div, 9700 S Cass Ave,Bldg 202, Argonne, IL 60439 USA. EM andrzejj@anl.gov FU NIGMS NIH HHS [P50 GM062414-02, GM62414, P50 GM062414] NR 15 TC 1 Z9 1 U1 0 U2 0 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD FEB 15 PY 2005 VL 58 IS 3 BP 751 EP 754 DI 10.1002/prot.20022 PG 4 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 893CC UT WOS:000226695900024 PM 15609338 ER PT J AU Arndt, JW Schwarzenbacher, R Page, R Abdubek, P Ambing, E Biorac, T Canaves, JM Chiu, HJ Dai, XP Deacon, AM DiDonato, M Elsliger, MA Godzik, A Grittini, C Grzechnik, SK Hale, J Hampton, E Han, GW Haugen, J Hornsby, M Klock, HE Koesema, E Kreusch, A Kuhn, P Jaroszewski, L Lesley, SA Levin, I McMullan, D McPhillips, TM Miller, MD Morse, A Moy, K Nigoghossian, E Ouyang, J Peti, WS Quijano, K Reyes, R Sims, E Spraggon, G Stevens, RC van den Bedem, H Velasquez, J Vincent, J von Delft, F Wang, XH West, B White, A Wolf, G Xu, QP Zagnitko, O Hodgson, KO Wooley, J Wilson, IA AF Arndt, JW Schwarzenbacher, R Page, R Abdubek, P Ambing, E Biorac, T Canaves, JM Chiu, HJ Dai, XP Deacon, AM DiDonato, M Elsliger, MA Godzik, A Grittini, C Grzechnik, SK Hale, J Hampton, E Han, GW Haugen, J Hornsby, M Klock, HE Koesema, E Kreusch, A Kuhn, P Jaroszewski, L Lesley, SA Levin, I McMullan, D McPhillips, TM Miller, MD Morse, A Moy, K Nigoghossian, E Ouyang, J Peti, WS Quijano, K Reyes, R Sims, E Spraggon, G Stevens, RC van den Bedem, H Velasquez, J Vincent, J von Delft, F Wang, XH West, B White, A Wolf, G Xu, QP Zagnitko, O Hodgson, KO Wooley, J Wilson, IA TI Crystal structure of an alpha/beta serine hydrolase (YDR428C) from Saccharomyces cerevisiae at 1.85 angstrom Resolution SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID ELECTRON-DENSITY; GEOMETRY; PROGRAM C1 Scripps Res Inst, JCSG, La Jolla, CA 92037 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. San Diego Supercomp Ctr, La Jolla, CA USA. Novartis Res Fdn, Genom Inst, San Diego, CA USA. Univ Calif San Diego, San Diego, CA 92103 USA. RP Wilson, IA (reprint author), Scripps Res Inst, JCSG, BCC206,10550 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM wilson@scripps.edu RI Godzik, Adam/A-7279-2009; Peti, Wolfgang/L-3492-2014 OI Godzik, Adam/0000-0002-2425-852X; FU NCRR NIH HHS [RR-15301]; NIGMS NIH HHS [P50 GM62411] NR 20 TC 7 Z9 8 U1 0 U2 6 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD FEB 15 PY 2005 VL 58 IS 3 BP 755 EP 758 DI 10.1002/prot.20336 PG 4 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 893CC UT WOS:000226695900025 PM 15624212 ER PT J AU Petersen, G Viviani, D Magrini-Bair, K Kelley, S Moens, L Shepherd, P DuBois, D AF Petersen, G Viviani, D Magrini-Bair, K Kelley, S Moens, L Shepherd, P DuBois, D TI Nongovernmental valorization of carbon dioxide SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Review DE carbon dioxide; managing carbon; storage of carbon; carbon storage in biomass and soils; fuels; chemicals and minerals ID RUSSIAN TERRESTRIAL ECOSYSTEMS; ELEVATED ATMOSPHERIC CO2; UNITED-STATES; SOIL CARBON; LATITUDINAL DISTRIBUTION; INTERANNUAL VARIABILITY; AGRICULTURAL ECOSYSTEMS; BIOLOGICAL PRODUCTION; AGGREGATED ESTIMATION; NORTHERN-HEMISPHERE AB Carbon dioxide (CO2) is considered the largest contributor to the greenhouse gas effect. Most attempts to manage the flow of CO2 or carbon into our environment involve reducing net emissions or sequestering the gas into long-lived sinks. Using CO2 as a chemical feedstock has a long history, but using it on scales that might impact the net emissions of CO2 into the atmosphere has not generally been considered seriously. There is also a growing interest in employing our natural biomes of carbon such as trees, vegetation, and soils as storage media. Some amelioration of the net carbon emissions into the atmosphere could be achieved by concomitant large withdrawals of carbon. This report surveys the potential and limitations in employing carbon as a resource for organic chemicals, fuels, inorganic materials, and in using the biome to manage carbon. The outlook for each of these opportunities is also described. (C) 2004 Elsevier B.V All rights reserved. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. US EPA, Natl Ctr Environm Econ, Washington, DC 20460 USA. RP Petersen, G (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM gene_petersen@nrel.gov NR 134 TC 8 Z9 8 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD FEB 15 PY 2005 VL 338 IS 3 BP 159 EP 182 DI 10.1016/j.scitotenv.2004.06.025 PG 24 WC Environmental Sciences SC Environmental Sciences & Ecology GA 902HZ UT WOS:000227346900001 PM 15713326 ER PT J AU Liu, G Richardson, TJ AF Liu, G Richardson, TJ TI Sb-Cu-Li electrochromic mirrors SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE electrochromism; switchable mirrors; thin films; polymer electrolytes AB Switchable mirrors offer significant advantages over traditional electrochromic devices for control of incident light in architectural and aerospace applications due to their large dynamic ranges in both transmission and reflection in the visible and near infrared regimes. Here we describe construction and spectroscopic characterization of a complete electrochromic mirror device consisting of an antimony-copper alloy (40 at% Cu) active electrode coupled with an optically passive vanadium oxide counter electrode and a crosslinked polymer gel electrolyte. Transmittance and reflectance spectra in the visible-near IR (300-2500 nm) in both mirror and transparent states are reported. The photopic transmittance of the complete device varied from less than 3% to more than 20% during cycling, requiring about 40 min for complete switching in each direction. At the same time, the photopic reflectance varied from 40% to 25%. The crosslinked polymer improves the stability of the mirror electrode relative to that in a liquid electrolyte. Published by Elsevier B.V. C1 Lawrence Berkeley Natl Lab, Bldg Technol Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Richardson, TJ (reprint author), Lawrence Berkeley Natl Lab, Bldg Technol Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM tjrichardson@lbl.gov NR 4 TC 15 Z9 16 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD FEB 15 PY 2005 VL 86 IS 1 BP 113 EP 121 DI 10.1016/j.solmat.2004.07.001 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 889YF UT WOS:000226478100009 ER PT J AU Deo, RP Wang, J Block, I Mulchandani, A Joshi, KA Trojanowicz, M Scholz, F Chen, W Lin, YH AF Deo, RP Wang, J Block, I Mulchandani, A Joshi, KA Trojanowicz, M Scholz, F Chen, W Lin, YH TI Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor SO ANALYTICA CHIMICA ACTA LA English DT Article DE OPH; CNT; biosensors; oganophosphorus compounds; nitrophenol ID NERVE AGENTS; AMPEROMETRIC DETECTION; ENZYME BIOSENSOR; ELECTRODES; NANOTUBES AB An amperometric biosensor for oganophosphorus (OP) pesticides based on a carbon nanotube (CNT)-modified transducer and an organophosphorus hydrolase (OPH) biocatalyst is described. A bilayer approach with the OPH layer atop of the CNT film was used for preparing the CNT/OPH biosensor. The CNT layer leads to a greatly improved anodic detection of the enzymatically generated p-nitrophenol product, including higher sensitivity and stability. The sensor performance was optimized with respect to the surface modification and operating conditions. Under the optimal conditions the biosensor was used to measure as low as 0.15 muM paraoxon and 0.8 muM methyl parathion with sensitivities of 25 and 6 nA/muLM, respectively. (C) 2004 Elsevier B.V. All rights reserved. C1 New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. Ernst Moritz Arndt Univ Greifswald, Inst Chem & Biochem, D-17489 Greifswald, Germany. Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. Warsaw Univ, Dept Chem, PL-02093 Warsaw, Poland. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, J (reprint author), Arizona State Univ, Dept Chem & Mat Engn, Tempe, AZ 85287 USA. EM joeseph.wang@asu.edu; adani@mail.engr.ucr.edu RI Wang, Joseph/C-6175-2011; Lin, Yuehe/D-9762-2011; Chen, Wilfred/H-4335-2013; Mulchandani, Ashok/B-9692-2016; Block, Ines/Q-5507-2016 OI Lin, Yuehe/0000-0003-3791-7587; Mulchandani, Ashok/0000-0002-2831-4154; Block, Ines/0000-0003-1964-6031 NR 24 TC 143 Z9 148 U1 2 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD FEB 14 PY 2005 VL 530 IS 2 BP 185 EP 189 DI 10.1016/j.aca.2004.09.072 PG 5 WC Chemistry, Analytical SC Chemistry GA 900CK UT WOS:000227192800003 ER PT J AU Chiu, PT Wessels, BW Keavney, DJ Freeland, JW AF Chiu, PT Wessels, BW Keavney, DJ Freeland, JW TI Local environment of ferromagnetically ordered Mn in epitaxial InMnAs SO APPLIED PHYSICS LETTERS LA English DT Article ID DILUTED MAGNETIC SEMICONDUCTOR; 2P ABSORPTION-SPECTRA; THIN-FILMS AB The magnetic properties of the ferromagnetic semiconductor In0.98Mn0.02As were characterized by x-ray absorption spectroscopy and x-ray magnetic circular dichroism. The Mn exhibits an atomic-like L-2,L-3 absorption spectrum that indicates that the 3d states are highly localized. In addition, a large dichroism at the Mn L-2,L-3 edge was observed from 5 to 300K at an applied field of 2T. A calculated spectrum assuming atomic Mn2+ yields the best agreement with the experimental InMnAs spectrum. A comparison of the dichroism spectra of MnAs and InMnAs shows clear differences suggesting that the ferromagnetism observed in InMnAs is not due to hexagonal MnAs clusters. The temperature dependence of the dichroism indicates the presence of two ferromagnetic species, one with a transition temperature of 30 K and another with a transition temperature in excess of 300 K. The dichroism spectra are consistent with the assignment of the low temperature species to random substitutional Mn and the high temperature species to Mn near-neighbor pairs. (C) 2005 American Institute of Physics. C1 Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. Northwestern Univ, Ctr Mat Res, Evanston, IL 60208 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Chiu, PT (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM b-wessels@northwestern.edu RI Wessels, Bruce/B-7541-2009 NR 19 TC 15 Z9 15 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 14 PY 2005 VL 86 IS 7 AR 072505 DI 10.1063/1.1855427 PG 3 WC Physics, Applied SC Physics GA 903PZ UT WOS:000227439400060 ER PT J AU Habermehl, S Apodaca, RT AF Habermehl, S Apodaca, RT TI Dielectric breakdown and Poole-Frenkel field saturation in silicon oxynitride thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID CHARGE-TRANSPORT; IMPACT IONIZATION; NITRIDE; DIOXIDE; STRAIN AB Dielectric breakdown is studied in silicon oxynitride thin films varying in composition from SiN1.33 to SiO0.60N0.93, The films are observed to exhibit Poole-Frenkel emission as the dominant charge transport mechanism, with a compositionally dependent ionization potential ranging from 1.22 to 1.51 eV The barrier lowering energy at the point of dielectric breakdown is independently determined to be likewise compositionally dependent, with the energies correlated to within similar to 2 kT of the ionization potential. Field saturation-induced trap ionization is discussed as a means to negate carrier scattering from bulk traps as an impediment to impact ionization and dielectric breakdown. (C) 2005 American Institute of Physics. C1 Sandia Natl Labs, Microelect Dev Lab, Albuquerque, NM 87185 USA. RP Habermehl, S (reprint author), Sandia Natl Labs, Microelect Dev Lab, POB 5800, Albuquerque, NM 87185 USA. EM sdhaber@sandia.gov NR 18 TC 12 Z9 12 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 14 PY 2005 VL 86 IS 7 AR 072103 DI 10.1063/1.1865338 PG 3 WC Physics, Applied SC Physics GA 903PZ UT WOS:000227439400049 ER PT J AU Johnston, SW Kurtz, SR Friedman, DJ Ptak, AJ Ahrenkiel, RK Crandall, RS AF Johnston, SW Kurtz, SR Friedman, DJ Ptak, AJ Ahrenkiel, RK Crandall, RS TI Observed trapping of minority-carrier electrons in p-type GaAsN during deep-level transient spectroscopy measurement SO APPLIED PHYSICS LETTERS LA English DT Article ID SOLAR-CELLS; DEFECTS; INGAASN; HETEROSTRUCTURES; GAINNAS; DIODES AB Deep-level transient spectroscopy measurements on a reverse-biased p-type GaAsN Schottky diode grown by metalorganic chemical vapor deposition show a minority-carrier trap signal corresponding to an electron trap having an activation energy of about 0.2 eV. The proportion of trapped electrons agrees with that of modeled defect states near the Schottky-barrier metal interface whose occupation is affected by changing reverse-bias conditions. Estimates of thermionic emission provide adequate filling of the traps with electrons from the metal. The inclusion of a GaAs layer between the metal and GaAsN layer reduces the electron-trapping signal. (C) 2005 American Institute of Physics. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Johnston, SW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM steve_johnston@nrel.gov NR 18 TC 17 Z9 17 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 14 PY 2005 VL 86 IS 7 AR 072109 DI 10.1063/1.1865328 PG 3 WC Physics, Applied SC Physics GA 903PZ UT WOS:000227439400055 ER PT J AU Kang, BS Lee, JS Stan, L Civale, L DePaula, RF Arendt, PN Jia, QX AF Kang, BS Lee, JS Stan, L Civale, L DePaula, RF Arendt, PN Jia, QX TI Ferromagnetic properties of epitaxial SrRuO3 films on SiO2/Si using biaxially oriented MgO as templates SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILMS; MAGNETIC-ANISOTROPY; SINGLE-CRYSTAL; STRAIN; SRTIO3 AB We have deposited epitaxial SrRuO3 (SRO) thin films on SiO2/Si substrates using biaxially oriented MgO templates produced by ion-beam-assisted deposition. The strain states of the SRO films are strongly affected by the crystallinity of the templates: the better the in-plane texture of the template is, the more in-plane tensile stress the films are subjected to. On the other hand, SRO films are relatively loosely strained with lattice parameters closer to bulk property if the templates have a broad in-plane alignment. The magnetization of the SRO films is well described by Bloch's T-3/2 law at low temperatures, which is well known as the result of spin wave excitation: M(T) / M(0) =1 -AT(3/2). The strained films show larger spin wave parameter A values, reflecting larger magnetization suppression. The suppression of magnetization in the strained films is attributed to the change in the magnetic coupling since this coupling is very sensitive to the interatomic distance. (C) 2005 American Institute of Physics. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Kang, BS (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. EM bskang@lanl.gov; qxjia@lanl.gov RI Lee, Jang-Sik/A-6629-2008; Jia, Q. X./C-5194-2008 OI Lee, Jang-Sik/0000-0002-1096-1783; NR 14 TC 3 Z9 3 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 14 PY 2005 VL 86 IS 7 AR 072511 DI 10.1063/1.1865335 PG 3 WC Physics, Applied SC Physics GA 903PZ UT WOS:000227439400066 ER PT J AU Kirby, BJ Borchers, JA Rhyne, JJ O'Donovan, KV Wojtowicz, T Liu, X Ge, Z Shen, S Furdyna, JK AF Kirby, BJ Borchers, JA Rhyne, JJ O'Donovan, KV Wojtowicz, T Liu, X Ge, Z Shen, S Furdyna, JK TI Effects of capping on the Ga1-xMnxAs magnetic depth profile SO APPLIED PHYSICS LETTERS LA English DT Article ID TEMPERATURE; FERROMAGNETISM; EPILAYERS AB Annealing can increase the Curie temperature and net magnetization in uncapped Ga1-xMnxAs films, effects that are suppressed when the films are capped with GaA.s. Previous polarized neutron reflectometry (PNR) studies of uncapped Ga1-xMnxAs revealed a pronounced magnetization gradient that was reduced after annealing. We have extended this study to Ga1-xMnxAs capped with GaAs. We observe no increase in Curie temperature or net magnetization upon annealing. Furthermore, PNR measurements indicate that annealing produces minimal differences in the depth-dependent magnetization, as both as-grown and annealed films feature a significant magnetization gradient. These results suggest that the GaAs cap inhibits redistribution of interstitial Mn impurities during annealing. (C) 2005 American Institute of Physics. C1 Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. RP Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. EM bkirby@lanl.gov RI Wojtowicz, Tomasz/A-2887-2017 NR 16 TC 9 Z9 9 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 14 PY 2005 VL 86 IS 7 AR 072506 DI 10.1063/1.1867292 PG 3 WC Physics, Applied SC Physics GA 903PZ UT WOS:000227439400061 ER PT J AU Lee, YJ Kang, SW AF Lee, YJ Kang, SW TI Antioxidation properties of Ti0.83Al0.17N prepared using plasma-enhanced atomic layer deposition SO APPLIED PHYSICS LETTERS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; THIN-FILMS; OXIDATION; TIN; KINETICS; AL AB The high-temperature antioxidation behavior of Ti0.83Al0.17N prepared using plasma-enhanced atomic layer deposition (PEALD) with TiCl4, AICl(3), N-2/H-2/Ar, and NH3/H-2/Ar radicals were studied. One cycle for depositing Ti0.83Al0.17N consisted of eight TiN cycles followed by two AlN cycles. After forming a 30-nm-thick Ti0.83Al0.17N film, the film was oxidized in ambient O-2 at 650degreesC for 30 min. The Ti0.83Al0.17N thin film showed good oxidation-resistance properties as compared with the pure TiN film prepared by PEALD. This is attributed to the Al2O3 layer formed on the surface of the Ti0.83Al0.17N. The Al2O3 layer serves as a barrier to oxygen diffusion, and protects the remaining nitride layer from being oxidized further. (C) 2005 American Institute of Physics. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. RP Lee, YJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 20 TC 5 Z9 5 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 14 PY 2005 VL 86 IS 7 AR 071919 DI 10.1063/1.1861119 PG 3 WC Physics, Applied SC Physics GA 903PZ UT WOS:000227439400043 ER PT J AU Lin, Y Hudait, MK Johnston, SW Ahrenkiel, RK Ringel, SA AF Lin, Y Hudait, MK Johnston, SW Ahrenkiel, RK Ringel, SA TI Photoconductivity decay in metamorphic InAsP/InGaAs double heterostructures grown on InAsyP1-y compositionally step-graded buffers SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-BEAM EPITAXY; THREADING DISLOCATION DENSITIES; INP; LAYERS; GAAS; SI AB Lattice-mismatched InAs0.32P0.68/In0.68Ga0.32As/InAS(0.32)P(0.68) double heterostructures (DH) were grown on compositionally graded InAsyP1-y/In substrates by solid-source molecular-beam epitaxy (MBE) out to a misfit of similar to 1%. The kinetics of carrier recombination were investigated in the nearly totally relaxed MBE-grown DH structures using photoconductivity decay (PCD) measurements. High minority carrier lifetimes of 4-5 mus. close to the radiation limit were measured, indicating the ability of MBE-grown InAsyP1-y buffers in achieving high-electronic-quality, low-band-gap mismatched InGaAs layers. Analysis suggests that very low interface recombination velocities are achieved. A photogenerated carrier diffusion model is presented to explain the initial nonlinear decays observed in PCD data for these heterostructures. (C) 2005 American Institute of Physics. C1 Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ringel, SA (reprint author), Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA. EM ringel.5@osu.edu NR 15 TC 4 Z9 4 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 14 PY 2005 VL 86 IS 7 AR 071908 DI 10.1063/1.1866645 PG 3 WC Physics, Applied SC Physics GA 903PZ UT WOS:000227439400032 ER PT J AU Qi, XD Wei, M Lin, Y Jia, QX Zhi, D Dho, J Blamire, MG MacManus-Driscoll, JL AF Qi, XD Wei, M Lin, Y Jia, QX Zhi, D Dho, J Blamire, MG MacManus-Driscoll, JL TI High-resolution x-ray diffraction and transmission electron microscopy of multiferroic BiFeO3 films SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILMS; TEMPERATURE AB High-resolution x-ray diffraction and transmission electron microscopy (TEM) have been used to study BiFeO3 thin films grown on the bare and SrRuO3 buffered (001) SrTiO3 substrates. Reciprocal space mapping (RSM) around (002) and (103) reflections revealed that BFO films with a thickness of about 200 nm were almost fully relaxed and had a rhombohedral structure. Cross-sectional, high-resolution TEM showed that the films started to relax at a very early stage of growth, which was consistent with the RSM results. A thin intermediate layer of about 2 nm was observed at the interface, which had a smaller lattice than the overgrown film. Twist distortions about the c axis to release the shear strain introduced by the growth of rhombic (001) BiFeO3 on cubic (001) SrTiO3 were also observed. The results indicate that a strained, coherent BiFeO3 film on (001) SrTiO3 is very difficult to maintain and (111) STO substrates are preferable. (C) 2005 American Institute of Physics. C1 Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. RP Qi, XD (reprint author), Univ Cambridge, Dept Mat Sci & Met, Pembroke St, Cambridge CB2 3QZ, England. EM xq204@cam.ac.uk RI Jia, Q. X./C-5194-2008; lin, yuan/B-9955-2013; Qi, Xiaoding/O-9091-2015; Herman, Peter/A-6464-2008 OI Qi, Xiaoding/0000-0002-7105-1193; Herman, Peter/0000-0002-9157-8259 NR 17 TC 133 Z9 136 U1 8 U2 90 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 14 PY 2005 VL 86 IS 7 AR 071913 DI 10.1063/1.1866214 PG 3 WC Physics, Applied SC Physics GA 903PZ UT WOS:000227439400037 ER PT J AU Tang, XP Loffler, JF Schwarz, RB Johnson, WL Wu, Y AF Tang, XP Loffler, JF Schwarz, RB Johnson, WL Wu, Y TI Structural influence on atomic hopping and electronic states of Pd-based bulk metallic glasses SO APPLIED PHYSICS LETTERS LA English DT Article ID SUPERCOOLED LIQUID REGION; ALLOYS; NI; RELAXATION; DIFFUSION; VOLUME; NMR AB Atomic motion and electronic structures of Pd-Ni-Cu-P bulk metallic glasses were investigated using P-31 nuclear magnetic resonance. The hopping rate of P atoms was determined by the stimulated echo technique. Significant hopping was observed in all alloys well below the glass transition temperature. Increasing the Cu content to above 25 at. % increases P hopping significantly, consistent with the previous finding that the openness of the structure increases with Cu content. In contrast, P hopping is not influenced by changes of local electronic states at P sites, induced by the substitution of Ni by Cu. (C) 2005 American Institute of Physics. C1 Univ Nevada, Dept Phys, Reno, NV 89557 USA. ETH, Dept Mat, Lab Met Phys & Technol, CH-8093 Zurich, Switzerland. Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. CALTECH, WM Keck Lab, Pasadena, CA 91125 USA. Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. Univ N Carolina, Curriculum Appl & Mat Sci, Chapel Hill, NC 27599 USA. RP Wu, Y (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. EM yuewu@physics.unc.edu NR 20 TC 9 Z9 9 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 14 PY 2005 VL 86 IS 7 AR 072104 DI 10.1063/1.1866217 PG 3 WC Physics, Applied SC Physics GA 903PZ UT WOS:000227439400050 ER PT J AU Vavassori, P Grimsditch, M Metlushko, V Zaluzec, N Ilic, B AF Vavassori, P Grimsditch, M Metlushko, V Zaluzec, N Ilic, B TI Magnetoresistance of single magnetic vortices SO APPLIED PHYSICS LETTERS LA English DT Article ID FERROMAGNETIC RING STRUCTURES; ANNIHILATION; NUCLEATION; NANODISKS; DOTS AB The magnetoresistance in a 1 mum Permalloy disk, that develops a vortex state during reversal, has been experimentally measured and modeled. The agreement between measurements and numerical simulations shows that the conventional anisotropic magnetoresistance effect is the main source of magnetoresistance. The results demonstrate that magnetoresistance can be used to determine the chirality of the vortex thereby improving the chances that patterned dot arrays could be used in data storage technology. (C) 2005 American Institute of Physics. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Univ Ferrara, INFM, Natl Ctr S3, I-44100 Ferrara, Italy. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA. Cornell Univ, Sch Appl & Engn Phys, Cornell Nanofabricat Facil, Ithaca, NY 14853 USA. RP Grimsditch, M (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM grimsditch@anl.gov RI Ilic, Rob/N-1359-2014; Vavassori, Paolo/B-4299-2014 OI Vavassori, Paolo/0000-0002-4735-6640 NR 22 TC 38 Z9 38 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 14 PY 2005 VL 86 IS 7 AR 072507 DI 10.1063/1.1866212 PG 3 WC Physics, Applied SC Physics GA 903PZ UT WOS:000227439400062 ER PT J AU Yu, KM Liliental-Weber, Z Walukiewicz, W Shan, W Ager, JW Li, SX Jones, RE Haller, EE Lu, H Schaff, WJ AF Yu, KM Liliental-Weber, Z Walukiewicz, W Shan, W Ager, JW Li, SX Jones, RE Haller, EE Lu, H Schaff, WJ TI On the crystalline structure, stoichiometry and band gap of InN thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID ABSORPTION-EDGE; INDIUM NITRIDE; EPITAXY; ALLOYS; GROWTH AB `Detailed transmission electron microscopy, x-ray diffraction (XRD), and optical characterization of a variety of InN thin films grown by molecular-beam epitaxy under both optimized and nonoptimized conditions is reported. Optical characterization by absorption and photoluminescence confirms that the bandgap of single-crystalline and polycrystalline wurtzite InN is 0.70 +/- 0.05 eV. Films grown under optimized conditions with an AlN nucleation layer and a GaN buffer layer are stoichiometric, single-crystalline wurtzite structure with dislocation densities not exceeding mid 10(10) cm (-2). Nonoptimal films can be polycrystalline and display an XRD diffraction feature at 20 approximate to 33; this feature has been attributed by others to the presence of metallic In clusters. Careful indexing of wide-angle XRD scans and selected area diffraction patterns shows that this peak is in fact due to the presence of polycrystalline InN grains; no evidence of metallic In clusters was found in any of the studied samples. (C) 2005 American Institute of Physics. C1 Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY 14853 USA. RP Yu, KM (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Liliental-Weber, Zuzanna/H-8006-2012; Yu, Kin Man/J-1399-2012; OI Yu, Kin Man/0000-0003-1350-9642; Ager, Joel/0000-0001-9334-9751 NR 16 TC 78 Z9 81 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 14 PY 2005 VL 86 IS 7 AR 071910 DI 10.1063/1.1861513 PG 3 WC Physics, Applied SC Physics GA 903PZ UT WOS:000227439400034 ER PT J AU Kalosakas, G Bezel, I AF Kalosakas, G Bezel, I TI Electron dynamics in two-dimensions: a hunt for the ground-state polarons SO CHEMICAL PHYSICS LETTERS LA English DT Article ID FEMTOSECOND DYNAMICS; PHONON SYSTEMS; INTERFACES; SOLVATION; MODEL; DNA AB The semi-classical Holstein model is used to account for experimental observations of electron dynamics in two-dimensional systems and assign transient spectral features formerly attributed to formation of small polarons. Our results show that the intraband relaxation of initial Bloch states is not directly followed by formation of the ground-state small polarons, but proceeds through transient long-lived intermediate states with energies near the bottom of the Bloch band. The calculations are in agreement with pump-probe experiments on ultrafast electron dynamics at metal-organics interfaces and suggest a novel interpretation of the dispersionless structures always observed near the bottom of the Bloch band. (C) 2004 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. RP Kalosakas, G (reprint author), Max Planck Inst Phys Complex Syst, Nothnitzer Str 38, D-01187 Dresden, Germany. EM georgek@mpipks-dresden.mpg.de RI Kalosakas, George/L-6211-2013 OI Kalosakas, George/0000-0001-7763-718X NR 21 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD FEB 14 PY 2005 VL 403 IS 1-3 BP 89 EP 94 DI 10.1016/j.cplett.2004.12.059 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 896KZ UT WOS:000226934300015 ER PT J AU Johnson, TJ Valentine, NB Sharpe, SW AF Johnson, TJ Valentine, NB Sharpe, SW TI Mid-infrared versus far-infrared (THz) relative intensities of room-temperature Bacillus spores SO CHEMICAL PHYSICS LETTERS LA English DT Article ID TIME-DOMAIN SPECTROSCOPY; TERAHERTZ SPECTROSCOPY; STATISTICAL-ANALYSIS; FT-IR; IDENTIFICATION; COMPONENTS; SPECTROMETRY; SPECTRA; DNA AB We have simultaneously recorded the mid-IR and far-IR (a.k.a. terahertz, THz) spectra of the sporulated form of five Bacillus bacteria: Bacillus subtilis ATCC 49760, B. subtilis ATCC 6051, Bacillus thuringiensis subsp. kurstaki ATCC 35866, Bacillus globigii 01, and Bacillus atrophaeus 49337. The 295 K spectra were recorded from similar to8 to 6000 cm(-1) using spore counts on the order of 10(9) deposited onto windows transparent in both the mid- and far-infrared. The results indicate that any room-temperature THz absorption features due to the spores are at least 28 times weaker (based on p-p noise) than the corresponding mid-IR amide I band. (C) 2004 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Johnson, TJ (reprint author), Pacific NW Natl Lab, POB 999,Mailstop K8-88, Richland, WA 99352 USA. EM timothy.johnson@pnl.gov NR 32 TC 25 Z9 25 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD FEB 14 PY 2005 VL 403 IS 1-3 BP 152 EP 157 DI 10.1016/j.cplett.2004.12.095 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 896KZ UT WOS:000226934300026 ER PT J AU Chand, KK AF Chand, KK TI Component-based hybrid mesh generation SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE overlapping grids; unstructured mesh generation; mesh optimization ID JACOBIAN MATRIX; GRID GENERATION; SURFACE; QUALITY; OPTIMIZATION; QUANTITIES; FRAMEWORK; ALGORITHM; SCHEME; NORM AB This paper presents a method for generating computational meshes by building structured component grids and then connecting them with an unstructured mesh. The approach uses technologies from the overset grid community, specifically the Ogen overlapping grid generator from the Overture framework, to build a collection of overlapping structured grids for a given geometry. Overlapping regions between the component grids are automatically removed and replaced with an unstructured mesh that conforms to the boundaries of the holes in the structured grids. Large regions of high-quality structured grids comprise most of the domain and are connected by a comparatively small amount of unstructured mesh. A method for generating hybrid surface meshes from overlapping and intersecting surface grids is also described. These surface meshes preserve the geometry used to generate the structured grids by querying the original geometry database. An implementation of advancing front mesh generation creates the interstitial surface and volume unstructured meshes. Mesh spacing information is automatically computed from the original overlapping grid. The mesh is optimized by regeneration in areas of poor quality as well as vertex repositioning by non-linear optimization of a quality metric. Quality assessment is accomplished by incorporating the mesh spacing information into algebraic mesh quality metrics. A description of the approach and algorithms is presented followed by two- and three-dimensional demonstrations. Published in 2004 by John Wiley Sons, Ltd. C1 Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. RP Chand, KK (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. EM chand1@llnl.gov NR 33 TC 3 Z9 4 U1 0 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD FEB 14 PY 2005 VL 62 IS 6 BP 747 EP 773 DI 10.1002/nme.1191 PG 27 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 894MJ UT WOS:000226795600002 ER PT J AU Ibrahim, A Oldham, PB Stokes, DL Vo-Dinh, T Loo, BH AF Ibrahim, A Oldham, PB Stokes, DL Vo-Dinh, T Loo, BH TI A comparison of enhancement factors for surface-enhanced Raman scattering using visible and near-infrared excitations SO JOURNAL OF MOLECULAR STRUCTURE LA English DT Article ID P-AMINOBENZOIC ACID; ADSORBED MOLECULES; SILVER ELECTRODE; ROUGH SURFACES; ISLAND FILMS; METAL-FILMS; SPECTROSCOPY; SERS; SPECTROMETRY; SENSOR AB We investigated enhancement factors for surface-enhanced Raman scattering from p-aminobenzoic acid (PABA) on different silver and gold substrates using visible (632.8 nm) and near-infrared.(NIR) (1064 nm) excitations. The results indicated that the use of NIR excitation provided larger enhancements (about 10-100 times) than those obtained using the visible excitation. The enhancement factors for the PABA on the silver coated alumina, silver island, gold-coated alumina, and gold island are 2.7 x 10(6), 4.3 x 10(5), 3.0 x 10(4), and 6.0 x 10(3). respectively, with the NIR excitation, and are 4.6 x 10(4), 4.7 x 10(3), 1.2 x 10(3), and 6.0 x 10(2), respectively, with the visible excitation. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Texas Pan Amer, Dept Chem, Edinburg, TX 78541 USA. Mississippi State Univ, Dept Chem, Mississippi State, MS 39762 USA. Oak Ridge Natl Lab, Hlth Sci Res Div, Adv Monitoring Dev Grp, Oak Ridge, TN 37381 USA. Towson Univ, Dept Chem, Towson, MD 21252 USA. RP Univ Texas Pan Amer, Dept Chem, 1201 W Univ Dr, Edinburg, TX 78541 USA. EM amin@panam.edu NR 46 TC 2 Z9 2 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2860 EI 1872-8014 J9 J MOL STRUCT JI J. Mol. Struct. PD FEB 14 PY 2005 VL 735 SI SI BP 69 EP 73 DI 10.1016/j.molstruc.2004.09.033 PG 5 WC Chemistry, Physical SC Chemistry GA 894AF UT WOS:000226761500009 ER PT J AU Govindaswamy, P Carroll, PJ Mozharivskyj, YA Kollipara, MR AF Govindaswamy, P Carroll, PJ Mozharivskyj, YA Kollipara, MR TI Syntheses and characterization of [(eta(6)-C6Me6)Ru(mu-N-3)(X)](2) (X=N3 and Cl) complexes and their reactions towards mono- and bidentate ligands SO JOURNAL OF ORGANOMETALLIC CHEMISTRY LA English DT Article DE hexamethylbenzene; azide; phosphines; pyrazoles and ruthenium ID ARENE-RUTHENIUM COMPLEXES; 1,3-DIPOLAR CYCLOADDITIONS; CRYSTAL-STRUCTURE; DONOR LIGANDS; X-RAY; DERIVATIVES; RHODIUM; RING; COORDINATION; REACTIVITY AB The reaction of the complex [{{eta(6)-C6Me6)Ru(mu-Cl)Cl}(2)] 1 with sodium azide ligand gave two new dimers of the composition) ({{(eta(6)-C6Me6)Ru(mu-N-3)(N-3)}(2)] 2and [{{(eta(6)-C6Me6)Ru(mu-N-3)Cl}(2)] 3, depending upon the reaction conditions. Complex 3 with excess of sodium azide it) ethanol yielded complex 2. These complexes undergo substitution reactions with monodentate ligands to yield monomeric complexes of the type [(eta(6)-C6Me6)Ru(X)(N-3)(L)] X = N-3, Cl, L = PPh3 (4a, 9a); PMe2Ph (4b, 9b); AsPh3 (4c, 9c); X = N-3 L = pyrazole (Hpz) (5a); 3-methylpyrazole (3-Hmpz) (5b) and 3,5-dimethyl-pyrazole (3,5-Hdmpz) (5c)}. Complexes 2 and 3 also react with bidentate ligands to give bridging complexes of the type [{(eta(6)-C6Me6)Ru(N-3)(X)](2)(mu-L)} {X = N-3- Cl, L = 1.2-bis(diphenylphosphino)methane (dppm) (6, 10); 1,2-bis(diphenylphosphino)ethane (dppe) (7, 11); 1,2-bis(diphenylphosphino)propane (dppp) (8 12): X = Cl, L = 4,4-bipyridine (4,4'-bipy) (13). These complexes were characterized by FT-IR and FT-NMR spectroscopy as well as by analytical data. The molecular structures of the representative complexes [{(eta(6)- C6Me6)Ru(mu-N-3)(2)] 2, [{(eta(6)-C6Me6)Ru(mu-N-3)Cl}(2)] 3, [(eta(6)-C6Me6)Ru(N-3)(2)(PPh3)] 4a and [{(eta(6) -C6Me6)Ru(N-3)(2)}(2) ( mu-dppm)] 6 were established by single crystal X-ray diffraction studies. (C) 2004 Elsevier B.V. All rights reserved. C1 NE Hill Univ, Dept Chem, Shillong 793022, Meghalaya, India. Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. RP Kollipara, MR (reprint author), NE Hill Univ, Dept Chem, Shillong 793022, Meghalaya, India. EM kmrao@nehu.ac.in NR 43 TC 31 Z9 31 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0022-328X J9 J ORGANOMET CHEM JI J. Organomet. Chem. PD FEB 14 PY 2005 VL 690 IS 4 BP 885 EP 894 DI 10.1016/j.jorganchem.2004.10.039 PG 10 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 898WS UT WOS:000227107500007 ER PT J AU Gaididei, YB Christiansen, PL Kevrekidis, PG Buttner, H Bishop, AR AF Gaididei, Yu B. Christiansen, P. L. Kevrekidis, P. G. Buettner, H. Bishop, A. R. TI Localization of nonlinear excitations in curved waveguides SO NEW JOURNAL OF PHYSICS LA English DT Article AB Motivated by the examples of a curved waveguide embedded in a photonic crystal and cold atoms moving in a waveguide created by a spatially inhomogeneous electromagnetic field, we examine the effects of geometry in a 'quantum channel' of parabolic form. Starting with the linear case we derive exact as well as approximate expressions for the eigenvalues and eigenfunctions of the linear problem. We then proceed to the nonlinear setting and its stationary states in a number of limiting cases that allow for analytical treatment. The results of our analysis are used as initial conditions in direct numerical simulations of the nonlinear problem and in this case localized excitations are found to persist. We found also interesting relaxational dynamics. Analogies of the present problem in context related to atomic physics and particularly to Bose-Einstein condensation are discussed. C1 [Gaididei, Yu B.] Bogolyubov Inst Theoret Phys, UA-01413 Kiev, Ukraine. [Christiansen, P. L.] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark. [Kevrekidis, P. G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Buettner, H.] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany. [Bishop, A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Bishop, A. R.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Gaididei, YB (reprint author), Bogolyubov Inst Theoret Phys, Metrologichna Str 14 B, UA-01413 Kiev, Ukraine. EM kevrekid@math.umass.edu RI Christiansen, Peter /A-7978-2011 OI Christiansen, Peter /0000-0002-1465-9987 FU Deutsche Zentrum fur Luft- und Raumfart; Internationales Buro des Bundesministeriums fur Forschung und Technologie, Bonn [UKR-02/011]; NSF-CAREER [NSF-DMS-0204585]; Eppley Foundation for Research FX Yu B G thanks the Informatics and Mathematical Modelling, Technical University of Denmark for a Guest Professorship. Yu B G acknowledges support from Deutsche Zentrum fur Luft- und Raumfart e. V., Internationales Buro des Bundesministeriums fur Forschung und Technologie, Bonn, in the frame of a bilateral scientific cooperation between Ukraine and Germany, project No. UKR-02/011. This work was supported by NSF-DMS-0204585, NSF-CAREER and the Eppley Foundation for Research (PGK). NR 56 TC 8 Z9 8 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 14 PY 2005 VL 7 AR 52 DI 10.1088/1367-2630/7/1/052 PG 18 WC Physics, Multidisciplinary SC Physics GA V10UP UT WOS:000207489200001 ER PT J AU Boyle, TJ Alam, TM Bunge, SD Segall, JM Avilucea, GR Tissot, RG Rodriguez, MA AF Boyle, TJ Alam, TM Bunge, SD Segall, JM Avilucea, GR Tissot, RG Rodriguez, MA TI Tetrahydrofurfuryloxide derivatives of alkyl aluminum species SO ORGANOMETALLICS LA English DT Article ID COMPLEXES; YTTRIUM; REACTIVITY; COMPOUND; CENTERS; NMR AB Tetrahydrofurfuryl alcohol (H-OTHF) was successfully reacted with a series of aluminum alkyls (AlR3) to yield compounds of the general formula [R2Al(mu-OTHF)](2) where R = CH3 (1), CH2CH3 (2), and CH2CH(CH3)2 (3). Further, reactivity studies showed that the alkyls for 1 were easily exchanged, forming compounds of the general formula [Me(OR)Al(mu-OTHF)](2) where OR = OC6H3(Me)(2)-2,6 (4), OC6H3(CMe3)(2)-2,6 (5a), and OSi(C6H5)(3) (6). For 5a, reflux temperatures were required to get the full exchange; otherwise the asymmetric derivative [Me(OR)Al(mu-OTHF)(2)AlMe2] (5b) was isolated. The bulk powders of 1-6 were found to be in agreement with the crystal structures on the basis of elemental analyses and multinuclear solid state NMR studies. Multinuclear solution state NMR studies indicate that the alkyl OTHF derivatives have cis/trans isomers due to the chiral proton on the OTHF ligand. C1 Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Boyle, TJ (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd,SE, Albuquerque, NM 87106 USA. EM tjboyle@Sandia.gov NR 23 TC 8 Z9 8 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD FEB 14 PY 2005 VL 24 IS 4 BP 731 EP 737 DI 10.1021/om0493199 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 896HI UT WOS:000226924800036 ER PT J AU Chen, X Hou, PY Jacobson, CP Visco, SJ De Jonghe, LC AF Chen, X Hou, PY Jacobson, CP Visco, SJ De Jonghe, LC TI Protective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties SO SOLID STATE IONICS LA English DT Article DE interconnect; stainless steel; Cr2O3; SOFC; ASR ID OXIDE FUEL-CELLS; FINITE-ELEMENT CALCULATIONS; CONDUCTIVITY MEASUREMENTS; ELECTRODE CONTACTS; POINT CONTACTS; TEMPERATURE; IMPEDANCE; CATHODE; LAYERS; ALLOY AB An effective, dense and well adherent coating was produced on 430SS that has the result of significantly reducing the oxidation rate of this alloy at elevated temperatures. The coating is essentially a Mn-Co-O spinel, applied in powder form, and compacted to improve its green density. A simplified model is presented that allows an assessment of the effects of the contact and scale geometries. For 850degreesC, an area specific resistance (ASR) can be predicted of approximately 0.5 Omega cm(2), after 50,000 It in air, taking into account a factor of 10 penalty for unfavorable contact geometries. The effect of the densified Mn-Co spinel coating is to reduce significantly Cr2O3 sub-scale formation, lower the thermal expansion mismatch, and increase the electronic conductivity of the scale. The findings point to several potential remedies for achieving coatings on 430SS that allow for metal interconnects with a service life of 50,000 It or more. When additionally taking the possibly unfavorable effects of electrodes contact geometries into account, such service life is unlikely to be possible above operating temperatures of about 700degreesC, unless highly specialized alloys are used, with potential processing and cost penalties. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP De Jonghe, LC (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM dejonghe@lbl.gov RI chen, xuan/E-7171-2012 NR 30 TC 218 Z9 225 U1 4 U2 58 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD FEB 14 PY 2005 VL 176 IS 5-6 BP 425 EP 433 DI 10.1016/j.ssi.2004.10.004 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 897FT UT WOS:000226990100001 ER PT J AU Matus, YB De Jonghe, LC Jacobson, CP Visco, SJ AF Matus, YB De Jonghe, LC Jacobson, CP Visco, SJ TI Metal-supported solid oxide fuel cell membranes for rapid thermal cycling SO SOLID STATE IONICS LA English DT Article DE thin film SOFC; metal support electrodes; thermal cycling; fast response ID ALUMINUM TITANATE; PERFORMANCE; TEMPERATURE; SOFC AB Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a porous composite metal/ceramic current collector and were subjected to rapid thermal cycling between 475 and 1075 K (200 and 800 degreesC). The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350 mW/cm(2) at 1175 K (900 degreesC) in laboratory-sized SOFCs, while rapid thermal cycling had only a marginal effect on cell performance. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the porous cermet supporting current collector (PCC) with that of the zirconia electrolyte. Published by Elsevier B.V. C1 Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP De Jonghe, LC (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd Build 62-245, Berkeley, CA 94720 USA. EM LCDejonghe@lbl.gov NR 20 TC 105 Z9 106 U1 3 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD FEB 14 PY 2005 VL 176 IS 5-6 BP 443 EP 449 DI 10.1016/j.ssi.2004.09.056 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 897FT UT WOS:000226990100003 ER PT J AU Yamahara, K Jacobson, CP Visco, SJ De Jonghe, LC AF Yamahara, K Jacobson, CP Visco, SJ De Jonghe, LC TI Catalyst-infiltrated supporting cathode for thin-film SOFCs SO SOLID STATE IONICS LA English DT Article DE solid oxide fuel cells; co-fired cathode-supported SOFC; reduced temperature SOFCs; scandia-stabilized zirconia; colloidal deposition; cobalt doping ID PERFORMANCE; CELL AB The fabrication and electrochemical performance of co-fired, LSM-SYSZ [i.e. La0.65Sr0.30MnO3 (LSM)-(SC2O3)(0.1)(Y2O3)(0.01) (ZrO2)(0.89)] supported thin-film cells were examined using humidified hydrogen as a fuel. Co-firing of bilayers and trilayers was successful at 1250 degreesC by optimizing the amount of carbon pore formers. A power density of a factor of 2.5 higher than that recently reported for the same type of cell at 800 degreesC [H. Ohrui, K. Watanabe, M. Arakawa, J. Power Sources, H 2, 90 (2002)] was obtained for a cell with cobalt infiltration into the supporting cathode: the peak power densities were 455, 389, 285, 202, 141 mW/cm(2) at 800, 750, 700, 650, 600 degreesC, respectively, and in most cases power densities at 0.7 V exceeded more than 90% of the peak output. Increasing the cathode porosity from 43% to 53% improved peak power densities by as much as 1.3, shifting the diffusion limitation to high current densities. Cobalt infiltration into the support improved those by as much as a factor of 2 due to a significant reduction in nonohmic resistance. These results demonstrate that cobalt catalyst-infiltrated LSM can be effective and low-cost supporting electrodes for reduced temperature thin film solid oxide fuel cells (SOFCs). (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Div Mat Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP De Jonghe, LC (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM dejonghe@lbl.gov NR 10 TC 86 Z9 87 U1 3 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD FEB 14 PY 2005 VL 176 IS 5-6 BP 451 EP 456 DI 10.1016/j.ssi.2004.09.023 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 897FT UT WOS:000226990100004 ER PT J AU Whitfield, PS Davidson, IJ Cranswick, LMD Swainson, IP Stephens, PW AF Whitfield, PS Davidson, IJ Cranswick, LMD Swainson, IP Stephens, PW TI Investigation of possible superstructure and cation disorder in the lithium battery cathode material LiMn1/3N1/3Co1/3O2 using neutron and anomalous dispersion powder diffraction SO SOLID STATE IONICS LA English DT Article DE Rietveld analysis; lithium batteries; cation disorders; supercells ID ION BATTERIES; ELECTRONIC-STRUCTURES; INSERTION MATERIAL; LICO1/3NI1/3MN1/3O2; SUCROSE AB A study has been conducted to discover whether the recently reported high-capacity lithium battery material LiMn1/3Ni1/3CO1/3O2 possesses a superstructure due to ordering of the transition metal cations. A recent paper in the literature concluded from ab initio calculations that, if a superstructure exists, it would likely take the form of a [root3 x root3]R30degrees type superlattice rather than an ordered stacking of CO-O-2, Ni-O-2, and Mn-O-2 slabs. A suitable technique to detect the presence or otherwise of a superstructure in this material is neutron diffraction due to the contrast between Mn, Ni, and Co neutron scattering lengths. An alternative method to enhance the contrast between elements close in the periodic table is to use resonant diffraction techniques. The beneficial contrasts afforded by each method may be retained by conducting a simultaneous refinement using both neutron and X-ray data. It was found that LiMn13Ni1/3Co1/3O2 did not appear to possess either of the proposed types of supercell and that the data were consistent with a random distribution of Mn, Ni, and Co over the R-3m 3a sites. Simultaneous Rietveld analysis showed that some nickel displaced lithium from the 3b site, whilst the manganese and cobalt remained solely on the transition metal 3a site. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved. C1 Natl Res Council Canada, Inst Chem Proc & Environm Technol, Ottawa, ON K1A 0R6, Canada. Chalk River Labs, Neutron Program Mat Res, Chalk River, ON K0J 1J0, Canada. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Whitfield, PS (reprint author), Natl Res Council Canada, Inst Chem Proc & Environm Technol, Bldg M12,1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada. EM parnela.whitfield@nrc-cnrc.gc.ca RI Whitfield, Pamela/P-1885-2015 OI Whitfield, Pamela/0000-0002-6569-1143 NR 14 TC 63 Z9 74 U1 4 U2 54 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD FEB 14 PY 2005 VL 176 IS 5-6 BP 463 EP 471 DI 10.1016/j.ssi.2004.07.066 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 897FT UT WOS:000226990100006 ER PT J AU Shin, DW Wang, SX Marshall, AF Kimura, W Dong, CL Augustsson, A Guo, JH AF Shin, DW Wang, SX Marshall, AF Kimura, W Dong, CL Augustsson, A Guo, JH TI Growth and characterization of copper nanoclusters embedded in SiC matrix SO THIN SOLID FILMS LA English DT Article DE nanostructures; sputtering; transmission electron microscopy; X-ray photoelectron spectroscopy ID OXIDATION; ALLOYS; GOLD; CU AB Nanocrystalline copper clusters embedded in silicon carbide were made by island growth during sputter deposition. The distribution and morphology of metal clusters were observed by high-resolution transmission electron microscopy. To investigate chemical bonding at the copper-silicon carbide interface, we studied the electronic states of copper and silicon using X-ray photoelectron spectroscopy (XPS). It was found that the formation of copper silicide was suppressed in this system and that small shifts in binding energy were observed for different sizes of clusters, which was different from the chemical shift for copper silicide formation. (C) 2004 Elsevier B.V. All rights reserved. C1 Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Shin, DW (reprint author), Stanford Univ, Dept Mat Sci & Engn, 476 Lomita Mall, Stanford, CA 94305 USA. EM dwshin@stanford.edu NR 17 TC 4 Z9 4 U1 2 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD FEB 14 PY 2005 VL 473 IS 2 BP 267 EP 271 DI 10.1016/j.tsf.2004.07.079 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 885PQ UT WOS:000226169800016 ER PT J AU Ryan, BJ Lowney, DP Henry, MO McNally, PJ McGlynn, E Jacobs, K Considine, L AF Ryan, BJ Lowney, DP Henry, MO McNally, PJ McGlynn, E Jacobs, K Considine, L TI Evaluation of the optical properties of epitaxial lateral overgrown gallium nitride on sapphire and the role of optically active metastable defects using cathodoluminescence and photoluminescence spectroscopy SO THIN SOLID FILMS LA English DT Article DE cathodoluminescence; photoluminescence; metastable defects; depth profiling; luminescence; optical properties; semiconductors ID UNDOPED GAN EPILAYERS; BAND LUMINESCENCE; III-NITRIDES; GROWTH; FILMS; MICROSCOPY; DECAY AB Photoluminescence (PL) and cathodoluminescence (CL) measurements on a variety of GaN samples confirm earlier reports that epitaxial lateral over-growth (ELOG) results in improved material quality. Depth profiling of epitaxial lateral over-growth samples, reported here for the first time using variable energy electron beam excitation, shows that there is a substantial reduction in defect density away from the interface, and that the barriers to defect propagation are very effective. In addition to the normal yellow emission generally observed for GaN, we find intense blue emission, already assigned to a metastable defect, in some materials. Using a rapid scanning interferometer, we study the changes in the luminescence spectrum as a function of time and at a range of temperatures. We suggest possible explanations for the complex nature of the metastability displayed by the defect responsible for the blue band. (C) 2004 Elsevier B.V. All rights reserved. C1 Dublin City Univ, Sch Phys Sci, NCPST, Dublin 9, Ireland. Dublin City Univ, Microelect Grp, RINCE, Dublin 9, Ireland. Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94702 USA. State Univ Ghent, Dept Informat Technol, INTEC, B-9000 Ghent, Belgium. Thomas Swan & Co Ltd, Cambridge CB2 5NX, England. RP Ryan, BJ (reprint author), Dublin City Univ, Sch Phys Sci, NCPST, Dublin 9, Ireland. EM bry@physics.dcu.ie RI McGlynn, Enda /O-6098-2015; OI McGlynn, Enda /0000-0002-3412-9035; McNally, Patrick/0000-0003-2798-5121 NR 23 TC 7 Z9 7 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD FEB 14 PY 2005 VL 473 IS 2 BP 308 EP 314 DI 10.1016/j.tsf.2004.08.065 PG 7 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 885PQ UT WOS:000226169800021 ER PT J AU Ebihara, Y Fok, MC Wolf, RA Thomsen, MF Moore, TE AF Ebihara, Y Fok, MC Wolf, RA Thomsen, MF Moore, TE TI Nonlinear impact of plasma sheet density on the storm-time ring current SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY ELECTRIC-FIELD; SOLAR-WIND DENSITY; MAGNETIC-FIELD; IONOSPHERIC CONDUCTIVITY; GEOMAGNETIC STORMS; POLAR IONOSPHERE; LARGE VALUES; MAGNETOSPHERE; MODEL; PARTICLES AB 1] We investigated the nonlinear impact of the plasma sheet density on the total energy of the storm-time ring current by means of a numerical simulation that self-consistently solves the kinetic equation of ring current protons and the closure of the electric current between the magnetosphere and ionosphere. Results of the simulation indicate that when the convection electric field is self-consistently coupled with the ring current, the total energy of the ring current ions trapped by the Earth's magnetic field is roughly proportional to similar toN(ps)(1/2), where N-ps is the plasma sheet density. This nonlinear response results from the strengthened shielding electric field with increasing N-ps. The total energy is almost proportional to N-ps when using an empirical convection electric field, which is independent of the condition of the simulated ring current. An empirical relationship between Nps and the solar wind density was used to estimate time-dependent N-ps. The result shows that the calculated Dst* tends to overshoot the observed one when the non-self-consistent electric field is employed. A better agreement was obtained with the self- consistent electric field. We suggest that the nonlinear response of the ring current to N-ps is one of the mechanisms that impedes the growth of the storm-time ring current. Another mechanism is probably the saturation of the polar cap potential drop for high solar wind electric field. C1 Natl Inst Polar Res, Itabashi Ku, Tokyo 1738515, Japan. NASA, Goddard Space Flight Ctr, Univ Space Res Assoc, Greenbelt, MD 20771 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. RP Natl Inst Polar Res, Itabashi Ku, 1-9-10 Kaga, Tokyo 1738515, Japan. EM ebihara@nipr.ac.jp RI Fok, Mei-Ching/D-1626-2012; Sazykin, Stanislav/C-3775-2008; Ebihara, Yusuke/D-1638-2013; Moore, Thomas/D-4675-2012 OI Sazykin, Stanislav/0000-0002-9401-4248; Ebihara, Yusuke/0000-0002-2293-1557; Moore, Thomas/0000-0002-3150-1137 NR 59 TC 68 Z9 69 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB 11 PY 2005 VL 110 IS A2 AR A02208 DI 10.1029/2004JA010435 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 898HJ UT WOS:000227067200002 ER PT J AU Ramsay, G Hakala, P Wu, K Cropper, M Mason, KO Cordova, FA Priedhorsky, W AF Ramsay, G Hakala, P Wu, K Cropper, M Mason, KO Cordova, FA Priedhorsky, W TI XMM-Newton observations of the ultra-compact binary RX J1914+24 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries : general; stars : individual : RX J1914+24; novae, cataclysmic variables; X-rays : stars ID SHORTEST PERIOD BINARY; GP COMAE; SPIN-UP; CHANDRA; RX-J0806.3+1527; EMISSION; POLARS; STAR AB We present XMM-Newton observations of the 569-s-period system RX J1914 + 24 (V407 Vul). This period is believed to represent the binary orbital period making it an ultracompact binary system. By comparing the phase of the rise to maximum X-ray flux at various epochs (this includes observations made using ROSAT, ASCA and Chandra) we find that the system is spinning up at a rate of 3.17 +/- 0.07 x 10(-12) s s(-1). We find that the spectra soften as the X-ray flux declines towards the off-phase of the 569-s period. Further, the spectra are best fitted by an absorbed blackbody component together with a broad emission feature around 0.59 keV. This emission feature is most prominent at the peak of the on-phase. We speculate on its origin. C1 UCL, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. Univ Helsinki, Observ, FIN-00014 Helsinki, Finland. Univ Calif Riverside, Riverside, CA 92521 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ramsay, G (reprint author), UCL, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM gtbr@mssl.ucl.ac.uk RI Cropper, Mark/C-1574-2008; OI Priedhorsky, William/0000-0003-0295-9138 NR 32 TC 22 Z9 22 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 11 PY 2005 VL 357 IS 1 BP 49 EP 55 DI 10.1111/j.1365-2966.2005.08574.x PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 894KI UT WOS:000226790100006 ER PT J AU Robin, D Krupnick, J Schlueter, R Steier, C Marks, S Wang, B Zbasnik, J Benjegerdes, R Blocca, A Bish, P Henderson, T Hinkson, J Hoyer, E Hull, D Jacobson, S McDonald, J Molinari, P Mueller, R Nadolski, L Nishimura, H Nishimura, K Ottens, F Paterson, JA Pipersky, JA Portmann, G Ritchie, A Rossi, S Salvant, B Scarvie, T Schmidt, A Spring, J Taylor, C Thur, W Timossi, C Wandesforde, A AF Robin, D Krupnick, J Schlueter, R Steier, C Marks, S Wang, B Zbasnik, J Benjegerdes, R Blocca, A Bish, P Henderson, T Hinkson, J Hoyer, E Hull, D Jacobson, S McDonald, J Molinari, P Mueller, R Nadolski, L Nishimura, H Nishimura, K Ottens, F Paterson, JA Pipersky, JA Portmann, G Ritchie, A Rossi, S Salvant, B Scarvie, T Schmidt, A Spring, J Taylor, C Thur, W Timossi, C Wandesforde, A TI Superbend upgrade on the Advanced Light Source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE storage rings; superconducting; magnets; X-rays; beam dynamics ID BEND MAGNET AB The Advanced Light Source (ALS) is a third generation synchrotron light source at Lawrence Berkeley National Laboratory (LBNL). There was an increasing demand for additional high brightness hard X-ray beamlines in the 7-40 keV range, so in August 200 1, three 1.3 T normal conducting bending magnets were removed from the storage ring and replaced with 5 T superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV, making them excellent sources of hard X-rays for protein crystallography and other hard X-ray applications. The Superbends did not compromise the performance of the facility in the VUV and soft X-ray regions of the spectrum. The Superbends will eventually feed 12 new beam lines, greatly enhancing the facility's capability and capacity in the hard X-ray region. The Superbend project is the biggest upgrade since the ALS storage ring was commissioned in 1993. In this paper we present an overview of the Superbend project, its challenges and the resulting impact on the ALS. (C) 2005 Elsevier B.V. All tights reserved. C1 Lawrence Berkeley Lab, Berkeley, CA 94720 USA. WANG, NMR, Livermore, CA 94550 USA. DESY, Hamburg, Germany. RP Robin, D (reprint author), Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM dsrobin@lbl.gov OI Nadolski, Laurent/0000-0003-1174-5940 NR 26 TC 11 Z9 11 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2005 VL 538 IS 1-3 BP 65 EP 92 DI 10.1016/j.nima.2004.08.137 PG 28 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 898MJ UT WOS:000227080600006 ER PT J AU Keil, E Sessler, AM AF Keil, E Sessler, AM TI Muon acceleration in FFAG rings SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE FFAG accelerator; muons AB Muon acceleration from 6 or 10 to 20 GeV in fixed-field alternating gradient (FFAG) rings is considered. The novel physics issues associated with non-scaling FFAG machines, namely the very acceleration process and the crossing of transverse imperfection resonances are addressed. These FFAG machines are essentially strong-focusing rings with a dispersion small enough to keep muons over the full momentum range inside the same magnet aperture. We consider two cases: (i) A Modified FODO Ring with about a metre long straight sections, enough to house normal-conducting RF cavities at about 200MHz and (ii) A Doublet Ring with a few metres long straight sections, enough for superconducting RF cavities also at about 200 MHz. Parameters are derived for the lattice and RF system of an electron model. It accelerates electrons from about 10-20 MeV and allows one to study the critical issues of non-scaling FFAGs. For both a full machine and a model, lattice parameters such as magnet type and dimension, spacing, and number of cells are presented. The consequences of misaligned magnets are studied by simulation. Practical RF system design issues, e.g. RF power, and the limit on the bunch population due to beam loading are estimated. (C) 2004 Elsevier B.V. All rights reserved. C1 CERN, CH-1211 Geneva 23, Switzerland. Lawrence Berkeley Lab, Berkeley, CA USA. RP Keil, E (reprint author), CERN, CH-1211 Geneva 23, Switzerland. EM Eberhard.Keil@t-online.de NR 29 TC 13 Z9 13 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2005 VL 538 IS 1-3 BP 159 EP 177 DI 10.1016/j.nima.2004.08.139 PG 19 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 898MJ UT WOS:000227080600014 ER PT J AU Moromisato, J Reucroft, S Terry, R von Goeler, E Eartly, D Maeshima, K AF Moromisato, J Reucroft, S Terry, R von Goeler, E Eartly, D Maeshima, K TI The development of totally transparent position sensors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE alignment; cross-hair; laser; CCD; linear-array; sensor ID SEMITRANSPARENT; DETECTORS AB We describe an improved version of COPS, a CCD based Optical Position Sensor, which can measure or monitor positions of attached elements with accuracies better than 0.05 mm at distances of tens of meters. The main application of this device is in the precision alignment and monitoring of radiation detectors in experimental high-energy physics. The improved sensor, named NUCOPS, has a set of four linear CCD arrays attached to the inside walls of a rigid square tube, and can be illuminated by a cross-hair laser coming from either direction. Like the old device, a NUCOPS can measure changes in its position to the laser lines with reproducibility better than 2 pm. It has been designed specifically for use in the alignment system of the Endcap Muon detectors for the CMS experiment at LHC. (C) 2004 Elsevier B.V. All rights reserved. C1 Northeastern Univ, Dept Phys, Boston, MA 02115 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Reucroft, S (reprint author), Northeastern Univ, Dept Phys, 111 Dana Res Ctr, Boston, MA 02115 USA. EM reucroft@neu.edu NR 4 TC 3 Z9 3 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2005 VL 538 IS 1-3 BP 234 EP 242 DI 10.1016/j.nima.2004.08.103 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 898MJ UT WOS:000227080600020 ER PT J AU Wu, J Bonner, B Chen, HF Dong, X Eppley, G Geurts, F Huang, SL Li, C Llope, WJ Nussbaum, T Platner, E Roberts, J Ruan, LJ Shao, M Wang, XL Xu, Z Xua, ZZ AF Wu, J Bonner, B Chen, HF Dong, X Eppley, G Geurts, F Huang, SL Li, C Llope, WJ Nussbaum, T Platner, E Roberts, J Ruan, LJ Shao, M Wang, XL Xu, Z Xua, ZZ TI The performance of the TOFr tray in STAR SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE TOE; MRPC; STAR; time resolution; efficiency ID RESISTIVE PLATE CHAMBERS; SYSTEM AB A tray of the STAR Time-Of-Flight detector (TOFr) based on the Multi-gap Resistive Plate Chamber technology was constructed and then operated in STAR during the RHIC 2003 spring physics run after beam-tested at AGS of BNL. The calibration procedure of the tray is introduced. The main properties of the chambers in the tray fulfill the requirements of the STAR experiment. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. Rice Univ, Bonner Nucl Lab, Houston, TX USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Wu, J (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. EM wujian@ustc.edu.cn RI Dong, Xin/G-1799-2014 OI Dong, Xin/0000-0001-9083-5906 NR 10 TC 33 Z9 36 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2005 VL 538 IS 1-3 BP 243 EP 248 DI 10.1016/j.nima.2004.08.105 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 898MJ UT WOS:000227080600021 ER PT J AU Hays, C Huang, YM Kotwal, AV Gerberich, HK Menzemer, S Rinnert, K Lecci, C Herndon, M Snider, FD AF Hays, C Huang, YM Kotwal, AV Gerberich, HK Menzemer, S Rinnert, K Lecci, C Herndon, M Snider, FD TI Inside-out tracking at CDF SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE tracking; drift chamber; silicon detector AB The Central Outer Tracker (COT) at the Collider Detector at Fermilab (CDF) is used to reconstruct charged particles in the central rapidity region. The silicon tracker is used to improve the central track measurement and to reconstruct charged particles in the forward rapidity region. We describe the inside-out tracking algorithm, which improves the track measurement in the intermediate rapidity region by attaching COT hits to reconstructed silicon tracks. (C) 2004 Elsevier B.V. All rights reserved. C1 Duke Univ, Durham, NC 27708 USA. MIT, Cambridge, MA 02139 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. Johns Hopkins Univ, Baltimore, MD 21218 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Hays, C (reprint author), Duke Univ, Durham, NC 27708 USA. EM hays@fnal.gov OI Hays, Chris/0000-0003-2371-9723 NR 8 TC 7 Z9 7 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2005 VL 538 IS 1-3 BP 249 EP 254 DI 10.1016/j.nima.2004.08.104 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 898MJ UT WOS:000227080600022 ER PT J AU Adam, I Aleksan, R Amerman, L Antokhin, E Aston, D Bailly, P Beigbeder, C Benkebil, M Besson, P Bonneaud, G Bourgeois, P Breton, D Briand, H Brochard, F Brown, DN Buzykaev, A Chauveau, J Cizeron, R Cohen-Tanugi, J Convery, M Dardin, S David, P De Domenico, G de la Vaissiere, C de Lesquen, A Dohou, F Doser, M Emery, S Ferrag, S Fouque, G Gaidot, A Ganzhur, S Gastaldi, F Geld, T Genat, JF Giraud, PF Gosset, L Grenier, P Haas, T Hadig, T Hale, D de Monchenault, GH Hamon, O Hartfiel, B Hast, C Hoecker, A John, M Kadel, RW Kadyk, J Karolak, M Kawahara, H Krishnamurthy, M Lacker, H Lebbolo, H Le Diberder, F Legendre, M Leruste, P Libby, J London, GW Long, M Lory, J Lu, A Lutz, AM Lynch, G Malchow, R Malcles, J Mancinelli, G McCulloch, M McShurley, D Martinez-Vidal, F Matricon, P Mayer, B Meadows, BT Mikhailov, S Mir, LL Muller, D Noppe, JM Ocariz, J Ofte, I Onuchin, A Oshatz, D Oxoby, G Petersen, T Pivk, M Plaszczynski, S Pope, W Pripstein, M Rasson, J Ratcliff, BN Reif, R Renard, C Roos, L Roussot, E Salnikov, A Sarazin, X Schrenk, S Schune, MH Schwiening, J Sen, S Shelkov, V Sokoloff, MD Spanier, S Staengle, H Stark, J Stiles, P Stone, R Taylor, JD Telnov, AV Therin, G Thiebaux, C Tocut, V Truong, K Turluer, ML Vallereau, A Vasileiadis, G Vasseur, G Va'vra, J Verderi, M Warner, D Weber, TB Weber, TF Wenzel, WA Wilson, RJ Wormser, G Yarritu, A Yeche, C Yellin, S Zeng, Q Zhang, B Zito, M AF Adam, I Aleksan, R Amerman, L Antokhin, E Aston, D Bailly, P Beigbeder, C Benkebil, M Besson, P Bonneaud, G Bourgeois, P Breton, D Briand, H Brochard, F Brown, DN Buzykaev, A Chauveau, J Cizeron, R Cohen-Tanugi, J Convery, M Dardin, S David, P De Domenico, G de la Vaissiere, C de Lesquen, A Dohou, F Doser, M Emery, S Ferrag, S Fouque, G Gaidot, A Ganzhur, S Gastaldi, F Geld, T Genat, JF Giraud, PF Gosset, L Grenier, P Haas, T Hadig, T Hale, D de Monchenault, GH Hamon, O Hartfiel, B Hast, C Hoecker, A John, M Kadel, RW Kadyk, J Karolak, M Kawahara, H Krishnamurthy, M Lacker, H Lebbolo, H Le Diberder, F Legendre, M Leruste, P Libby, J London, GW Long, M Lory, J Lu, A Lutz, AM Lynch, G Malchow, R Malcles, J Mancinelli, G McCulloch, M McShurley, D Martinez-Vidal, F Matricon, P Mayer, B Meadows, BT Mikhailov, S Mir, LL Muller, D Noppe, JM Ocariz, J Ofte, I Onuchin, A Oshatz, D Oxoby, G Petersen, T Pivk, M Plaszczynski, S Pope, W Pripstein, M Rasson, J Ratcliff, BN Reif, R Renard, C Roos, L Roussot, E Salnikov, A Sarazin, X Schrenk, S Schune, MH Schwiening, J Sen, S Shelkov, V Sokoloff, MD Spanier, S Staengle, H Stark, J Stiles, P Stone, R Taylor, JD Telnov, AV Therin, G Thiebaux, C Tocut, V Truong, K Turluer, ML Vallereau, A Vasileiadis, G Vasseur, G Va'vra, J Verderi, M Warner, D Weber, TB Weber, TF Wenzel, WA Wilson, RJ Wormser, G Yarritu, A Yeche, C Yellin, S Zeng, Q Zhang, B Zito, M TI The DIRC particle identification system for the BABAR experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE RICH; DIRC; PID; Cherenkov; ring imaging; particle identification ID END ELECTRONICS CHAIN; HIGH-ENERGY-PHYSICS; CHERENKOV DETECTOR; ASYMMETRIES; SIMULATION; DECAYS AB A new type of ring-imaging Cherenkov detector is being used for hadronic particle identification in the BABAR experiment at the SLAC B Factory (PEP-II). This detector is called DIRC, an acronym for Detection of Internally Reflected Cherenkov (Light). This paper will discuss the construction, operation and performance of the BABAR DIRC in detail. (C) 2004 Elsevier B.V. All rights reserved. C1 Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. CEA Saclay, DAPNIA, F-91191 Gif Sur Yvette, France. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Paris 06, Lab Phys Nucl HE, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl HE, F-75252 Paris, France. Accelerateur Lineaire Lab, F-91898 Orsay, France. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Tennessee, Knoxville, TN 37996 USA. Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. RP Wilson, RJ (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM wilson@lamar.colostate.edu RI Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; OI Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Wilson, Robert/0000-0002-8184-4103 NR 53 TC 86 Z9 86 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2005 VL 538 IS 1-3 BP 281 EP 357 DI 10.1016/j.nima.2004.08.129 PG 77 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 898MJ UT WOS:000227080600025 ER PT J AU Artikov, A Budagov, J Chirikov-Zorin, I Chokheli, D Kolomoets, V Lyablin, M Pukhov, O Sissakian, A Bellettini, G Cervelli, F Incagli, M Menzione, A Palmonari, F Scribano, A Stefanini, A Cauz, D Grassmann, H Pauletta, G Santi, L Introzzi, G Penzo, A Iori, M Grinyov, B Lagutin, V Lebedev, V Lyubynskiy, V Senchyshyn, V Kovtun, V Zaljubovsky, I Fedorko, I Tokar, S Giakoumopoulou, V Giokaris, N Manousakis-Katsikakis, A AF Artikov, A Budagov, J Chirikov-Zorin, I Chokheli, D Kolomoets, V Lyablin, M Pukhov, O Sissakian, A Bellettini, G Cervelli, F Incagli, M Menzione, A Palmonari, F Scribano, A Stefanini, A Cauz, D Grassmann, H Pauletta, G Santi, L Introzzi, G Penzo, A Iori, M Grinyov, B Lagutin, V Lebedev, V Lyubynskiy, V Senchyshyn, V Kovtun, V Zaljubovsky, I Fedorko, I Tokar, S Giakoumopoulou, V Giokaris, N Manousakis-Katsikakis, A TI Design and construction of new central and forward muon counters for CDF II SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE scintillation counter; photoelectron; amplifier; optical; magnetic field; CDF; photomultiplier ID SCINTILLATION-COUNTERS; PHOTOMULTIPLIER AB New scintillation counters have been designed and constructed for the upgradation of the CDF detector at the Fermilab Tevatron in order to complete the muon coverage of the central detector and to extend it to a larger pseudorapidity interval. A novel light collection technique using wavelength shifting fibers, together with high-quality polystyrene-based scintillator resulted in compact counters with good and stable light collection efficiency over lengths extending up to 320 cm. Their design and construction is described and results of their initial performance are reported. (C) 2004 Elsevier B.V. All rights reserved. C1 JINR, Dubna, Russia. Univ Pisa, Ist Nazl Fis Nucl, I-56100 Pisa, Italy. Univ Udine, Ist Nazl Fis Nucl, I-33100 Udine, Italy. Univ Pavia, Ist Nazl Fis Nucl, Pavia, Italy. Univ Trieste, Ist Nazl Fis Nucl, Trieste, Italy. Univ Rome, Ist Nazl Fis Nucl, Rome, Italy. Inst Scintillating Mat, Kharkov, Ukraine. Kharkov Karazin Natl Univ, Kharkov, Ukraine. Comenius Univ, Dept Phys Nucl, Bratislava, Slovakia. Univ Athens, Athens, Greece. RP Pukhov, O (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM akram@nu.jinr.ru; julian.boudagov@cern.ch; chirikov@nu.jinr.ru; chokheli@nu.jinr.ru; lyablin@nu.jinr.ru; oleg@fnal.gov; sisakian@jinr.ru; bellettini@fnal.gov; cervelli@pi.infn.it; incagli@pi.infn.it; menzione@pi.infn.it; palmonari@bo.infn.it; scribano@pi.infn.it; stefanini@pi.infn.it; giovanni.pauletta@fisica.uniud.it; gianluca.introzzi@pv.infn.it; maurizio.iori@romal.infn.it; lebedev@kharkov.com; lubinsky@isc.kharkov.com; sench@isc.kharkov.com; kovtun@pht.univer.kharkov.ua; ivan.fedorko@pi.infn.it; stanislav.tokar@fmph.uniba.sk; ngiokar@cc.uoa.gr; amanous@cc.uoa.gr RI Introzzi, Gianluca/K-2497-2015; OI Introzzi, Gianluca/0000-0002-1314-2580; iori, maurizio/0000-0002-6349-0380 NR 15 TC 21 Z9 22 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2005 VL 538 IS 1-3 BP 358 EP 371 DI 10.1016/j.nima.2004.09.009 PG 14 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 898MJ UT WOS:000227080600026 ER PT J AU Campabadal, F Fleta, C Key, M Lozano, M Martinez, C Pellegrini, G Rafi, JM Ullan, M Johansen, L Pommeresche, B Stugu, B Ciocio, A Fadeyev, V Gilchriese, M Haber, C Siegrist, J Spieler, H Vu, C Bell, PJ Charlton, DG Dowell, JD Gallop, BJ Homer , RJ Jovanovic, P Mahout, G McMahon, TJ Wilson, JA Barr, AJ Carter, JR Fromant, BP Goodrick, MJ Hill, JC Lester, CG Palmer, MJ Parker, MA Robinson, D Sabetfakhri, A Shaw, RJ Anghinolfi, F Chesi, E Chouridou, S Fortin, R Grosse-Knetter, J Gruwe, M Ferrari, P Jarron, P Kaplon, J Macpherson, A Niinikoski, T Pernegger, H Roe, S Rudge, A Ruggiero, G Wallny, R Weilhammer, P Bialas, W Dabrowski, W Grybos, P Koperny, S Blocki, J Bruckman, P Gadomski, S Godlewski, J Gornicki, E Malecki, P Moszczynski, A Stanecka, E Stodulski, M Szczygiel, R Turala, M Wolter, M Ahmad, A Benes, J Carpentieri, C Feld, L Ketterer, C Ludwig, J Meinhardt, J Runge, K Mikulec, B Mangin-Brinet, M D'Onofrio, M Donega, M Moed, S Sfyrla, A Ferrere, D Clark, AG Perrin, E Weber, M Bates, RL Cheplakov, A Saxon, DH O'Shea, V Smith, KM Iwata, Y Ohsugi, T Kohriki, T Kondo, T Terada, S Ujiie, N Ikegami, Y Unno, Y Takashima, R Brodbeck, T Chilingarov, A Hughes, G Ratoff, P Sloan, T Allport, PP Casse, GL Greenall, A Jacksonp, JN Jones, TJ King, BT Maxfield, SJ Smith, NA Sutcliffe, P Vossebeld, J Beck, GA Carter, AA Lloyd, SL Martin, AJ Morris, J Morin, J Nagai, K Pritchard, TW Anderson, BE Butterworth, JM Fraser, TJ Jones, TW Lane, JB Postranecky, M Warren, MRM Cindro, V Kramberger, G Mandic, I Mikuz, M Duerdoth, IP Freestone, J Foster, JM Ibbotson, M Loebinger, FK Pater, J Snow, SW Thompson, RJ Atkinson, TM Bright, G Kazi, S Lindsay, S Moorhead, GF Taylor, GN Bachindgagyan, G Baranova, N Karmanov, D Merkinev, M Andricek, L Bethke, S Kudlaty, J Lutz, G Moser, HG Nisius, R Richter, R Schieck, J Cornelissen, T Gorfine, GW Hartjes, FG Hessey, NP de Jong, P Muijs, AJM Peeters, SJM Tomeda, Y Tanaka, R Nakano, I Dorholt, O Danielsen, KM Huse, T Sandaker, H Stapnes, S Bargassaa, P Reichold, A Huffman, T Nickerson, R Weidberg, A Doucas, G Hawes, B Lau, W Howell, D Kundu, N Wastie, R Bohm, J Mikestikova, M Stastny, J Broklova, Z Broz, J Dolezal, Z Kodys, P Kubik, P Reznicek, P Vorobel, V Wilhelm, I Chren, D Horazdovsky, T Linhart, V Pospisil, S Sinor, M Solar, M Sopko, B Stekl, I Ardashev, EN Golovnya, SN Gorokhov, SA Kholodenko, AG Rudenko, RE Ryadovikov, VN Vorobieve, AP Adkin, PJ Apsimon, RJ Batchelor, LE Bizzell, JP Booker, P Davis, VR Easton, JM Fowler, C Gibson, MD Haywood, SJ MacWaters, C Matheson, JP Matson, RM McMahon, SJ Morris, FS Morrissey, M Murray, WJ Phillips, PW Tyndel, M Villani, EG Dorfan, DE Grillo, AA Rosenbaum, F Sadrozinski, HFW Seiden, A Spencer, E Wilder, M Booth, P Buttar, CM Dawson, I Dervan, P Grigson, C Harper, R Moraes, A Peak, LS Varvell, KE Chu, ML Hou, LS Lee, SC Teng, PK Wan, CC Hara, K Kato, Y Kuwano, T Minagawa, M Sengoku, H Bingefors, N Brenner, R Ekelof, T Eklund, L Bernabeu, J Civera, JV Costa, MJ Fuster, J Garcia, C Garcia, JE Gonzalez-Sevilla, S Lacasta, C Llosa, G Marti-Garcia, S Modesto, P Sanchez, J Sospedra, L Vos, M Fasching, D Gonzalez, S Jared, RC Charles, E AF Campabadal, F Fleta, C Key, M Lozano, M Martinez, C Pellegrini, G Rafi, JM Ullan, M Johansen, L Pommeresche, B Stugu, B Ciocio, A Fadeyev, V Gilchriese, M Haber, C Siegrist, J Spieler, H Vu, C Bell, PJ Charlton, DG Dowell, JD Gallop, BJ Homer , RJ Jovanovic, P Mahout, G McMahon, TJ Wilson, JA Barr, AJ Carter, JR Fromant, BP Goodrick, MJ Hill, JC Lester, CG Palmer, MJ Parker, MA Robinson, D Sabetfakhri, A Shaw, RJ Anghinolfi, F Chesi, E Chouridou, S Fortin, R Grosse-Knetter, J Gruwe, M Ferrari, P Jarron, P Kaplon, J Macpherson, A Niinikoski, T Pernegger, H Roe, S Rudge, A Ruggiero, G Wallny, R Weilhammer, P Bialas, W Dabrowski, W Grybos, P Koperny, S Blocki, J Bruckman, P Gadomski, S Godlewski, J Gornicki, E Malecki, P Moszczynski, A Stanecka, E Stodulski, M Szczygiel, R Turala, M Wolter, M Ahmad, A Benes, J Carpentieri, C Feld, L Ketterer, C Ludwig, J Meinhardt, J Runge, K Mikulec, B Mangin-Brinet, M D'Onofrio, M Donega, M Moed, S Sfyrla, A Ferrere, D Clark, AG Perrin, E Weber, M Bates, RL Cheplakov, A Saxon, DH O'Shea, V Smith, KM Iwata, Y Ohsugi, T Kohriki, T Kondo, T Terada, S Ujiie, N Ikegami, Y Unno, Y Takashima, R Brodbeck, T Chilingarov, A Hughes, G Ratoff, P Sloan, T Allport, PP Casse, GL Greenall, A Jacksonp, JN Jones, TJ King, BT Maxfield, SJ Smith, NA Sutcliffe, P Vossebeld, J Beck, GA Carter, AA Lloyd, SL Martin, AJ Morris, J Morin, J Nagai, K Pritchard, TW Anderson, BE Butterworth, JM Fraser, TJ Jones, TW Lane, JB Postranecky, M Warren, MRM Cindro, V Kramberger, G Mandic, I Mikuz, M Duerdoth, IP Freestone, J Foster, JM Ibbotson, M Loebinger, FK Pater, J Snow, SW Thompson, RJ Atkinson, TM Bright, G Kazi, S Lindsay, S Moorhead, GF Taylor, GN Bachindgagyan, G Baranova, N Karmanov, D Merkinev, M Andricek, L Bethke, S Kudlaty, J Lutz, G Moser, HG Nisius, R Richter, R Schieck, J Cornelissen, T Gorfine, GW Hartjes, FG Hessey, NP de Jong, P Muijs, AJM Peeters, SJM Tomeda, Y Tanaka, R Nakano, I Dorholt, O Danielsen, KM Huse, T Sandaker, H Stapnes, S Bargassaa, P Reichold, A Huffman, T Nickerson, R Weidberg, A Doucas, G Hawes, B Lau, W Howell, D Kundu, N Wastie, R Bohm, J Mikestikova, M Stastny, J Broklova, Z Broz, J Dolezal, Z Kodys, P Kubik, P Reznicek, P Vorobel, V Wilhelm, I Chren, D Horazdovsky, T Linhart, V Pospisil, S Sinor, M Solar, M Sopko, B Stekl, I Ardashev, EN Golovnya, SN Gorokhov, SA Kholodenko, AG Rudenko, RE Ryadovikov, VN Vorobieve, AP Adkin, PJ Apsimon, RJ Batchelor, LE Bizzell, JP Booker, P Davis, VR Easton, JM Fowler, C Gibson, MD Haywood, SJ MacWaters, C Matheson, JP Matson, RM McMahon, SJ Morris, FS Morrissey, M Murray, WJ Phillips, PW Tyndel, M Villani, EG Dorfan, DE Grillo, AA Rosenbaum, F Sadrozinski, HFW Seiden, A Spencer, E Wilder, M Booth, P Buttar, CM Dawson, I Dervan, P Grigson, C Harper, R Moraes, A Peak, LS Varvell, KE Chu, ML Hou, LS Lee, SC Teng, PK Wan, CC Hara, K Kato, Y Kuwano, T Minagawa, M Sengoku, H Bingefors, N Brenner, R Ekelof, T Eklund, L Bernabeu, J Civera, JV Costa, MJ Fuster, J Garcia, C Garcia, JE Gonzalez-Sevilla, S Lacasta, C Llosa, G Marti-Garcia, S Modesto, P Sanchez, J Sospedra, L Vos, M Fasching, D Gonzalez, S Jared, RC Charles, E TI Beam tests of ATLAS SCT silicon strip detector modules SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE ATLAS; silicon; micro-strip; detector; beam; test ID MICROSTRIP DETECTORS; BINARY READOUT; PERFORMANCE AB The design and technology of the silicon strip detector modules for the Semiconductor Tracker (SCT) of the ATLAS experiment have been finalised in the last several years. Integral to this process has been the measurement and verification of the tracking performance of the different module types in test beams at the CERN SPS and the KEK PS. Tests have been performed to explore the module performance under various operating conditions including detector bias voltage, magnetic field, incidence angle, and state of irradiation up to 3 x 10(14) protons per square centimetre. A particular emphasis has been the understanding of the operational consequences of the binary readout scheme. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. CSIC, CNM, IMB, Barcelona, Spain. Univ Bergen, Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. CERN, European Lab Particle Phys, CH-1211 Geneva, Switzerland. AGH Univ Sci & Technol, Fac Phys & Nucl Tech, Krakow, Poland. Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. Hiroshima Univ, Dept Phys, Higashihiroshima 724, Japan. KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki, Japan. Kyoto Univ, Fukakusa, Japan. Univ Lancaster, Dept Phys, Lancaster, England. Univ Liverpool, Dept Phys, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. Queen Mary Univ London, Dept Phys, London E1 4NS, England. UCL, Dept Phys & Astron, London, England. Univ Ljubljana, Jozef Stefan Inst, Ljubljana, Slovenia. Univ Ljubljana, Dept Phys, Ljubljana, Slovenia. Univ Manchester, Dept Phys & Astron, Manchester, Lancs, England. Moscow MV Lomonosov State Univ, Moscow, Russia. Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. NIKHEF H, NL-1009 DB Amsterdam, Netherlands. Okayama Univ, Dept Phys, Okayama 700, Japan. Univ Oslo, Oslo, Norway. Univ Oxford, Dept Phys, Oxford, England. Acad Sci Czech Republic, Prague, Czech Republic. Charles Univ Prague, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Inst High Energy Phys, Protvino, Russia. Rutherford Appleton Lab, Chilton, Didcot, England. Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. Univ Sheffield, Dept Phys, Sheffield, S Yorkshire, England. Univ Sydney, Sydney, NSW 2006, Australia. Acad Sinica, Inst Phys, Taipei 115, Taiwan. Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. Uppsala Univ, Dept Radiat Sci, Uppsala, Sweden. Univ Valencia, CSIC, Inst Fis Corpuscular, IFIC, Valencia, Spain. Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Moorhead, GF (reprint author), Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. EM gareth.moorhead@cern.ch RI Mikestikova, Marcela/H-1996-2014; Stastny, jan/H-2973-2014; Llosa, Gabriela/F-7791-2014; CARPENTIERI, CARMELA/E-2137-2015; Bernabeu, Jose/H-6708-2015; Garcia, Jose /H-6339-2015; Ullan, Miguel/P-7392-2015; Lozano, Manuel/C-3445-2011; O'Shea, Val/G-1279-2010; Fleta, Celeste/D-7303-2014; Pellegrini, Giulio/F-4921-2011; Campabadal, Francesca/E-6651-2014; Moraes, Arthur/F-6478-2010; Szczygiel, Robert/B-5662-2011; Buttar, Craig/D-3706-2011; Marti-Garcia, Salvador/F-3085-2011; Wolter, Marcin/A-7412-2012; Eklund, Lars/C-7709-2012; Rafi, Joan Marc/D-5500-2012; Moorhead, Gareth/B-6634-2009; Dawson, Ian/K-6090-2013 OI Vos, Marcel/0000-0001-8474-5357; Lacasta, Carlos/0000-0002-2623-6252; Mikestikova, Marcela/0000-0003-1277-2596; Llosa, Gabriela/0000-0002-0364-8158; CARPENTIERI, CARMELA/0000-0002-2994-0317; Bernabeu, Jose/0000-0002-0296-9988; Lozano, Manuel/0000-0001-5826-5544; O'Shea, Val/0000-0001-7183-1205; Fleta, Celeste/0000-0002-6591-6744; Pellegrini, Giulio/0000-0002-1606-3546; Campabadal, Francesca/0000-0001-7758-4567; Moraes, Arthur/0000-0002-5157-5686; Rafi, Joan Marc/0000-0003-4581-9477; Moorhead, Gareth/0000-0002-9299-9549; NR 40 TC 31 Z9 31 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2005 VL 538 IS 1-3 BP 384 EP 407 DI 10.1016/J.NIMA.2004.08.133 PG 24 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 898MJ UT WOS:000227080600028 ER PT J AU Azhgirey, LS Arefiev, VA Atanasov, I Basilev, SN Bushuev, YP Glagolev, VV Jones, MK Kirillov, DA Korovin, PP Kumbartzki, GJ Manyakova, PK Musinsky, J Pentchev, L Perdrisat, CF Punjabi, V Piskunov, NM Sitnik, IM Slepnev, VM Slepnev, IV Tomasi-Gustafsson, E AF Azhgirey, LS Arefiev, VA Atanasov, I Basilev, SN Bushuev, YP Glagolev, VV Jones, MK Kirillov, DA Korovin, PP Kumbartzki, GJ Manyakova, PK Musinsky, J Pentchev, L Perdrisat, CF Punjabi, V Piskunov, NM Sitnik, IM Slepnev, VM Slepnev, IV Tomasi-Gustafsson, E TI Measurement of analyzing powers for the reaction (p)over-right-arrow+CH2 at p(p)=1.75-5.3 GeV/c SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE proton; deuteron; polarization; polarimeter; analyzing power ID TENSOR ANALYZING POWER; 6 GEV-C; POLARIZATION TRANSFER; ELASTIC-SCATTERING; MOMENTUM RANGE; POLARIMETER POMME; CROSS-SECTIONS; DEUTERON; CALIBRATION; ENERGIES AB We report a new measurement of analyzing powers for the reaction (p) over right arrow + CH2 --> one charged particle + X, at proton momenta of 1.75, 3.8, 4.5 and 5.3 GeV/c. These results extend the existing data basis, necessary for proton polarimetry at intermediate energy, and confirm the feasibility of a large acceptance polarimeter based on this process. Particular attention was devoted to the investigation of the optimal target thickness and of the useful angular range. The experiment is performed at the accelerator complex of the JINR-VBLHE (Dubna). (C) 2004 Elsevier B.V. All rights reserved. C1 Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Rutgers State Univ, Piscataway, NJ 08855 USA. Safarik Univ, SK-04154 Kosice, Slovakia. Coll William & Mary, Williamsburg, VA 23187 USA. Norfolk State Univ, Norfolk, VA 23504 USA. CEA Saclay, SPhN, DAPNIA, F-91191 Gif Sur Yvette, France. RP Sitnik, IM (reprint author), Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. EM sitnik@sunhe.jinr.ru NR 25 TC 6 Z9 6 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2005 VL 538 IS 1-3 BP 431 EP 441 DI 10.1016/j.nima.2004.08.111 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 898MJ UT WOS:000227080600032 ER PT J AU Esch, EI Bowles, TJ Hime, A Pichlmaier, A Reifarth, R Wollnik, H AF Esch, EI Bowles, TJ Hime, A Pichlmaier, A Reifarth, R Wollnik, H TI The cosmic ray muon flux at WIPP SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE muon flux; muon; scintillator; underground; atmospheric; cosmic AB In this work, a measurement of the muon intensity at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM, USA is presented. WIPP is a salt mine with a depth of 655 m. The vertical muon flux was measured with a two panel scintillator coincidence setup to Phi(vert) = (3.10(-0.07)(+0.05))10(-7) s(-1) cm(-2) sr(-1). (C) 2004 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, LANSCE 3, Los Alamos, NM 87545 USA. Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. RP Esch, EI (reprint author), Los Alamos Natl Lab, LANSCE 3, MS H855, Los Alamos, NM 87545 USA. EM ernst@lanl.gov NR 10 TC 23 Z9 24 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2005 VL 538 IS 1-3 BP 516 EP 525 DI 10.1016/j.nima.2004.09.005 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 898MJ UT WOS:000227080600038 ER PT J AU Ikagawa, T Kataoka, J Yatsu, Y Saita, T Kuramoto, Y Kawai, N Kokubun, M Kamae, T Ishikawa, Y Kawabata, N AF Ikagawa, T Kataoka, J Yatsu, Y Saita, T Kuramoto, Y Kawai, N Kokubun, M Kamae, T Ishikawa, Y Kawabata, N TI Study of large area Hamamatsu avalanche photodiode in a gamma-ray scintillation detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE avalanche photodiode; gamma-rays; scintillation detection ID HARD X-RAY; PERFORMANCE AB We have carried out study of a large area (10 x 10 mm(2)), reverse-type avalanche photodiode (APD) recently developed by Hamamatsu photonics. It has low dark current of 3 nA at room temperature, and the gain stability was almost the same as prototypical APDs reported in our previous paper. We studied the performance as a gamma-ray detector with four scintillators, CsI(Tl), BGO, GSO(Ce), and YAP(Ce) crystals. For example we obtained the best energy resolution of 4.9 +/- 0.2 % (FWHM) for 662 keV gamma-rays, as measured with a 10 x 10 x 10 mm 3 CsI(Tl) crystal. The minimum detectable energy was as low as 10 keV at 20degreesC and 3.1 keV at -20degreesC. Thanks to its large effective area, this APD can effectively read out photons from larger size scintillators. When coupling to a 300 x 48 mm(2) BGO plate of 3 mm thickness, an FWHM energy resolution of 20.9 +/- 0.2% was obtained for 662 keV gamma-rays, with the minimum detectable energy of about 60 keV at -15degreesC. These results suggest that our prototype APD can be a promising device for various applications replacing traditional PMTs such as use in space for Japan's future X-ray astronomy mission NeXT. (C) 2004 Elsevier B.V. All rights reserved. C1 Tokyo Inst Technol, Tokyo 1528551, Japan. Univ Tokyo, Tokyo, Japan. Stanford Linear Accelerator Ctr, Menlo Pk, CA USA. Hamamatsu Photon KK, Hamamatsu, Shizuoka, Japan. RP Ikagawa, T (reprint author), Tokyo Inst Technol, 2-12-1 Ohokayama, Tokyo 1528551, Japan. EM ikagawa@hp.phys.titech.ac.jp; kataoka@hp.phys.titech.ac.jp NR 12 TC 47 Z9 47 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2005 VL 538 IS 1-3 BP 640 EP 650 DI 10.1016/j.nima.2004.09.021 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 898MJ UT WOS:000227080600049 ER PT J AU Hull, EL Pehl, RH AF Hull, EL Pehl, RH TI Amorphous germanium contacts on germanium detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE germanium detector; amorphous germanium; heterojunction AB The rectification properties of sputtered amorphous germanium contacts made under a variety of conditions on germanium detectors have been measured as a function of temperature and electric field. The leakage current increased as a function of voltage above depletion voltage. The rectifying amorphous-crystalline heterojunction theory derived by Dohler and Brodsky describes the behavior well. Values of barrier height were measured to be similar to0.30-0.35 eV and the density of states was found to be N(F)similar to10(18) eV(-1) cm(-3). (C) 2004 Elsevier B.V. All rights reserved. C1 LLNL, Livermore, CA 94551 USA. LBNL, Berkeley, CA 94720 USA. RP Hull, EL (reprint author), Semicond Detector Syst, 302 Preston Ct, Livermore, CA 94551 USA. EM ethanhull@phdsco.com; hull6@llnl.gov NR 17 TC 18 Z9 18 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2005 VL 538 IS 1-3 BP 651 EP 656 DI 10.1016/j.nima.2004.09.033 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 898MJ UT WOS:000227080600050 ER PT J AU Hill, RE Liu, CY AF Hill, RE Liu, CY TI Temperature-dependent neutron scattering cross-sections for polyethylene SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article AB This note presents neutron scattering cross-sections for polyethylene at 296, 77 and 4 K derived from a new scattering kernel for neutron scattering off of hydrogen in polyethylene. The kernel was developed in ENDF-6 format as a set of S(alpha, beta) tables using the LEAPR module of the NJOY94 code package. The polyethylene density of states (from 0 to sub eV) adopted to derive the new kernel is presented. We compare our calculated room temperature total scattering cross-sections and double differential cross-sections at 232 meV at various angles with the available experimental data (at room temperature), and then extrapolate the calculations to lower temperatures (77 and 4 K). The new temperature-dependent scattering kernel gives a good quantitative fit to the available room temperature data and has a temperature dependence that is qualitatively consistent with thermodynamics. (C) 2004 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Hill, RE (reprint author), Los Alamos Natl Lab, Div Phys, P-23, Los Alamos, NM 87545 USA. EM rhill@lanl.gov NR 12 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2005 VL 538 IS 1-3 BP 686 EP 691 DI 10.1016/j.nima.2004.08.125 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 898MJ UT WOS:000227080600054 ER PT J AU Abbondanno, U Aerts, G Alvarez, F Alvarez, H Andriamonje, S Andrzejewski, J Badurek, G Baumann, P Becvar, F Benlliure, J Berthomieux, E Betev, B Calvino, F Cano-Ott, D Capote, R Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Cortina, D Couture, A Cox, J Dababneh, S David, S Dolfini, R Domingo-Pardo, C Duran, I Embid-Segura, M Ferrant, L Ferrari, A Ferreira-Marques, R Frais-Koelbl, H Furman, W Goncalves, I Gonzalez-Romero, E Goverdovski, A Gramegna, F Griesmayer, E Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Isaev, S Jericha, E Kadi, Y Kappeler, F Kerveno, M Ketlerov, V Koehler, PE Konovalov, V Krticka, M Leeb, H Lindote, A Lopes, MI Lozano, M Lukic, S Marganiec, J Marrone, S Martinez-Val, J Mastinu, P Mengoni, A Milazzo, PM Molina-Coballes, A Moreau, C Mosconi, M Neves, F Oberhummer, H O'Brien, S Pancin, J Papaevangelou, T Paradela, C Pavlik, A Pavlopoulos, P Perlado, JM Perrot, L Peskov, V Plag, R Plompen, A Plukis, A Poch, A Policarpo, A Pretel, C Quesada, JM Rapp, W Rauscher, T Reifarth, R Rosetti, M Rubbia, C Rudolf, G Rullhusen, P Salgado, J Schafer, E Soares, JC Stephan, C Tagliente, G Tain, JL Tassan-Got, L Tavora, LMN Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin-Fernandez, D Vincente-Vincente, M Vlachoudis, V Voss, F Wendler, H Wiescher, M Wisshak, K AF Abbondanno, U Aerts, G Alvarez, F Alvarez, H Andriamonje, S Andrzejewski, J Badurek, G Baumann, P Becvar, F Benlliure, J Berthomieux, E Betev, B Calvino, F Cano-Ott, D Capote, R Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Cortina, D Couture, A Cox, J Dababneh, S David, S Dolfini, R Domingo-Pardo, C Duran, I Embid-Segura, M Ferrant, L Ferrari, A Ferreira-Marques, R Frais-Koelbl, H Furman, W Goncalves, I Gonzalez-Romero, E Goverdovski, A Gramegna, F Griesmayer, E Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Isaev, S Jericha, E Kadi, Y Kappeler, F Kerveno, M Ketlerov, V Koehler, PE Konovalov, V Krticka, M Leeb, H Lindote, A Lopes, MI Lozano, M Lukic, S Marganiec, J Marrone, S Martinez-Val, J Mastinu, P Mengoni, A Milazzo, PM Molina-Coballes, A Moreau, C Mosconi, M Neves, F Oberhummer, H O'Brien, S Pancin, J Papaevangelou, T Paradela, C Pavlik, A Pavlopoulos, P Perlado, JM Perrot, L Peskov, V Plag, R Plompen, A Plukis, A Poch, A Policarpo, A Pretel, C Quesada, JM Rapp, W Rauscher, T Reifarth, R Rosetti, M Rubbia, C Rudolf, G Rullhusen, P Salgado, J Schafer, E Soares, JC Stephan, C Tagliente, G Tain, JL Tassan-Got, L Tavora, LMN Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin-Fernandez, D Vincente-Vincente, M Vlachoudis, V Voss, F Wendler, H Wiescher, M Wisshak, K TI The data acquisition system of the neutron time-of-flight facility n_TOF at CERN SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE flash-ADC; data acquisition; neutron time-of-flight spectroscopy; pulse shape analysis AB The n_TOF facility at CERN has been designed for the measurement of neutron capture, fission and (n, xn) cross-sections with high accuracy. This requires a flexible and-due to the high instantaneous neutron flux-almost dead time free data acquisition system. A scalable and versatile data solution has been designed based on 8-bit flash-ADCs with sampling rates up to 2 GHz and 8 Mbyte memory buffer. The software is written in C and C++ and is running on PCs equipped with RedHat Linux. (C) 2004 Elsevier B.V. All rights reserved. C1 Forschungszentrum Karlsruhe GmbH, Inst Kernphys, D-76344 Leopaldhafen, Germany. Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. CEA Saclay, DSM, DAPNIA, SPhN, Gif Sur Yvette, France. Ctr Invest Energet Medioambientales & Tecnol, Madrid, Spain. Univ Santiago de Compostela, Santiago De Compostela, Spain. Univ Lodz, PL-90131 Lodz, Poland. Vienna Tech Univ, Atominst Osterreich Univ, A-1040 Vienna, Austria. CNRS, IN2P3, IreS, Strasbourg, France. Charles Univ, CR-11636 Prague 1, Czech Republic. Bulgarian Acad Sci, Cent Lab Mechatron & Instrumentat, BU-1113 Sofia, Bulgaria. Univ Politecn Catalunya, Barcelona, Spain. Univ Seville, E-41009 Seville, Spain. CERN, Geneva, Switzerland. Lab Instrumentacao & Phis Expt Particulas, Coimbra, Portugal. Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. Univ Notre Dame, Notre Dame, IN 46556 USA. CNRS, IN2P3, F-91405 Orsay, France. Univ Pavia, I-27100 Pavia, Italy. Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. Fac Hsch Wiener Neustadt, Vienna, Austria. Joint Nucl Res Inst, Frank Lab Neutron Phys, Dubna, Russia. Inst Tecnol & Nucl, Lisbon, Portugal. Inst Phys & Power Engn, Obninsk, Russia. Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. CNRS, CENBG, IN2P3, Bordeaux, France. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Politecn Madrid, E-28040 Madrid, Spain. Univ Vienna, Inst Isotopenforsch & Kernphys, A-1010 Vienna, Austria. Pole Univ Leonard Vinci, Paris, France. Kungliga Tekniska Hogskolan, Dept Phys, Stockholm, Sweden. IRMM, JRC, CEC, Geel, Belgium. Univ Basel, CH-4003 Basel, Switzerland. ENEA, Bologna, Italy. Dipartimento Fis, Bologna, Italy. Ist Nazl Fis Nucl, I-40126 Bologna, Italy. RP Plag, R (reprint author), Forschungszentrum Karlsruhe GmbH, Inst Kernphys, Hermann Helmholtz Pl 1, D-76344 Leopaldhafen, Germany. EM ralf.plag@ik.fzk.de RI Pretel Sanchez, Carme/L-8287-2014; Capote Noy, Roberto/M-1245-2014; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Cortina-Gil, Dolores/H-9626-2015; Paradela, Carlos/J-1492-2012; Gramegna, Fabiana/B-1377-2012; Papaevangelou, Thomas/G-2482-2016; Calvino, Francisco/K-5743-2014; Benlliure, Jose/K-8407-2014; Dababneh, Saed/E-7281-2017; Mengoni, Alberto/I-1497-2012; Rauscher, Thomas/D-2086-2009; Quesada Molina, Jose Manuel/K-5267-2014; Gonzalez Romero, Enrique/L-7561-2014; Jericha, Erwin/A-4094-2011; Martinez-Val, Jose/D-3871-2013; Lindote, Alexandre/H-4437-2013; Neves, Francisco/H-4744-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Tain, Jose L./K-2492-2014; Cano Ott, Daniel/K-4945-2014 OI Pavlik, Andreas/0000-0001-7526-3372; Goncalves, Isabel/0000-0002-1997-955X; Paradela Dobarro, Carlos/0000-0003-0175-8334; Chepel, Vitaly/0000-0003-0675-4586; Lozano Leyva, Manuel Luis/0000-0003-2853-4103; Koehler, Paul/0000-0002-6717-0771; Domingo-Pardo, Cesar/0000-0002-2915-5466; Marques, Rui/0000-0003-3549-8198; Capote Noy, Roberto/0000-0002-1799-3438; Alvarez Pol, Hector/0000-0001-9643-6252; Cortina-Gil, Dolores/0000-0001-7672-9912; Gramegna, Fabiana/0000-0001-6112-0602; Papaevangelou, Thomas/0000-0003-2829-9158; Calvino, Francisco/0000-0002-7198-4639; Benlliure, Jose/0000-0002-5114-1298; Dababneh, Saed/0000-0002-7376-1084; Mengoni, Alberto/0000-0002-2537-0038; Rauscher, Thomas/0000-0002-1266-0642; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Gonzalez Romero, Enrique/0000-0003-2376-8920; Jericha, Erwin/0000-0002-8663-0526; Martinez-Val, Jose/0000-0002-6325-6981; Lindote, Alexandre/0000-0002-7965-807X; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Cano Ott, Daniel/0000-0002-9568-7508 NR 6 TC 77 Z9 78 U1 3 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2005 VL 538 IS 1-3 BP 692 EP 702 DI 10.1016/j.nima.2004.09.002 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 898MJ UT WOS:000227080600055 ER PT J AU Foulkes, S Gary, JW Shen, BC Wang, K Boyce, R Messner, R Stiles, P Sinev, N Band, HR AF Foulkes, S Gary, JW Shen, BC Wang, K Boyce, R Messner, R Stiles, P Sinev, N Band, HR TI Gas system upgrade for the BaBar IFR detector at SLAC SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE gas system; BABAR AB A new gas distribution and monitoring system was installed as part of an upgrade of the forward endcap muon detection system (IFR) of the BaBar detector at SLAC. Over 300 gas circuits are controlled and monitored. The return gas flow is monitored by digital bubblers which use photo-gate electronics to count the bubbling rate. The rates are monitored in real time and recorded in a history database allowing studies of flow rate versus chamber performance. (C) 2004 Elsevier B.V. All rights reserved. C1 Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Wisconsin, Madison, WI 53706 USA. RP Band, HR (reprint author), Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. EM hrb@slac.stanford.edu NR 3 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2005 VL 538 IS 1-3 BP 801 EP 809 DI 10.1016/j.nima.2004.09.017 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 898MJ UT WOS:000227080600068 ER PT J AU Batani, D Baton, SD Manclossi, M Santos, JJ Amiranoff, F Koenig, M Martinolli, E Antonicci, A Rousseaux, C Le Gloahec, MR Hall, T Malka, V Cowan, TE King, J Freeman, RR Key, M Stephens, R AF Batani, D Baton, SD Manclossi, M Santos, JJ Amiranoff, F Koenig, M Martinolli, E Antonicci, A Rousseaux, C Le Gloahec, MR Hall, T Malka, V Cowan, TE King, J Freeman, RR Key, M Stephens, R TI Ultraintense laser-produced fast-electron propagation in gas jets SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLASTIC TARGETS; SOLID TARGETS; HOT-ELECTRONS; FAST IGNITER; TRANSPORT; BEAMS; DENSITY AB We study the propagation of fast electrons in a gas at different densities. A large relativistic electron current is produced by focusing a short-pulse ultrahigh-intensity laser on a metallic target. It then propagates in a gas jet placed behind the foil. Shadowgraphy in the gas shows an electron cloud moving at sub-relativistic average velocities. The experiment shows (i) the essential role of the density of background material for allowing propagation of fast electrons, (ii) the importance of the ionization phase which produces free electrons available for the return current, and (iii) the effect of electrostatic fields on fast-electron propagation. C1 Univ Milan, Dipartimento Fis G Occhialini, I-20122 Milan, Italy. Univ Milan, INFM, I-20122 Milan, Italy. Ecole Polytech, CNRS, UMR 7605,CEA X Paris 6, Lab Utilisat Lasers Intenses, Palaiseau, France. Commissariat Energie Atom, Bruyeres Le Chatel, France. Univ Essex, Colchester CO4 3SQ, Essex, England. Ecole Polytech, CNRS, UMR ENSTA, Lab Opt Appl, Palaiseau, France. Univ Nevada, Reno, NV 89557 USA. Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. Lawrence Livermore Natl Lab, Livermore, CA USA. Gen Atom Co, Energy Grp, Inertial Fus Technol Div, San Diego, CA 92121 USA. RP Batani, D (reprint author), Univ Milan, Dipartimento Fis G Occhialini, I-20122 Milan, Italy. RI Malka, Victor/F-5260-2010; Koenig, Michel/A-2167-2012; Cowan, Thomas/A-8713-2011; OI Cowan, Thomas/0000-0002-5845-000X; Stephens, Richard/0000-0002-7034-6141 NR 31 TC 34 Z9 34 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 11 PY 2005 VL 94 IS 5 AR 055004 DI 10.1103/PhysRevLett.94.055004 PG 4 WC Physics, Multidisciplinary SC Physics GA 896NT UT WOS:000226941500043 PM 15783656 ER PT J AU Campbell, RB Kodama, R Mehlhorn, TA Tanaka, KA Welch, DR AF Campbell, RB Kodama, R Mehlhorn, TA Tanaka, KA Welch, DR TI Simulation of heating-compressed fast-ignition cores by Petawatt laser-generated electrons SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLASMA SIMULATION; FUSION AB We report on unique particle-in-cell simulations to understand the relativistic electron beam thermalization and subsequent heating of highly compressed plasmas. The simulations yield heated core parameters in good agreement with the GEKKO-PW experimental measurements, given reasonable assumptions of laser-to-electron coupling efficiency and the distribution function of laser-produced electrons. The classical range of the hot electrons exceeds the mass density-core diameter product rhoL by a factor of several. Anomalous stopping appears to be present and is created by the growth and saturation of an electromagnetic filamentation mode that generates a strong back-EMF impeding hot electrons on the injection side of the density maxima. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan. Mission Res Corp, Albuquerque, NM 87110 USA. RP Campbell, RB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Kodama, Ryosuke/G-2627-2016 NR 14 TC 56 Z9 56 U1 1 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 11 PY 2005 VL 94 IS 5 AR 055001 DI 10.1103/PhysRevLett.94.055001 PG 4 WC Physics, Multidisciplinary SC Physics GA 896NT UT WOS:000226941500040 PM 15783653 ER PT J AU Ethvignot, T Devlin, M Duarte, H Granier, T Haight, RC Morillon, B Nelson, RO O'Donnell, JM Rochman, D AF Ethvignot, T Devlin, M Duarte, H Granier, T Haight, RC Morillon, B Nelson, RO O'Donnell, JM Rochman, D TI Neutron multiplicity in the Fission of U-238 and U-235 with neutrons up to 200 MeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID INTRANUCLEAR-CASCADE CALCULATION; LOS-ALAMOS MODEL; HIGH-ENERGY; INCIDENT; SPECTRA; F) AB Prompt-fission-neutron multiplicities were measured for U-238(n, f) and U-235(n, f) from 0.4 to 200 MeV. The data are of great importance in connection with accelerator-coupled nuclear reactor systems incinerating actinides. We report that fission induced by 200 MeV neutrons produces approximate to10 more prompt neutrons than fission induced by reactor neutrons. Most neutrons are evaporated from the fission fragments and the prefission compound nucleus, as the preequilibrium emission of energetic neutrons accounts for a maximum of 15% of the prompt neutrons at 200 MeV. C1 DAM Ile France, Commissariat Energie Atom, DPTA Serv Phys Nucl, F-91680 Bruyeres Le Chatel, France. Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Ethvignot, T (reprint author), DAM Ile France, Commissariat Energie Atom, DPTA Serv Phys Nucl, BP 12, F-91680 Bruyeres Le Chatel, France. RI Devlin, Matthew/B-5089-2013 OI Devlin, Matthew/0000-0002-6948-2154 NR 27 TC 33 Z9 35 U1 1 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 11 PY 2005 VL 94 IS 5 AR 052701 DI 10.1103/PhysRevLett.94.052701 PG 4 WC Physics, Multidisciplinary SC Physics GA 896NT UT WOS:000226941500019 PM 15783632 ER PT J AU Grossman, JC Mitas, L AF Grossman, JC Mitas, L TI Efficient quantum monte carlo energies for molecular dynamics simulations SO PHYSICAL REVIEW LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; LIQUID WATER AB A method is presented to treat electrons within the many-body quantum Monte Carlo (QMC) approach "on-the-fly" throughout a molecular dynamics (MD) simulation. Our approach leverages the large (10-100) ratio of the QMC electron to MD ion motion to couple the stochastic, imaginary-time electronic and real-time ionic trajectories. This continuous evolution of the QMC electrons results in highly accurate total energies for the full dynamical trajectory at a fraction of the cost of conventional, discrete sampling. We show that this can be achieved efficiently for both ground and excited states with only a modest overhead to an ab initio MD method. The accuracy of this dynamical QMC approach is demonstrated for a variety of systems, phases, and properties, including optical gaps of hot silicon quantum dots, dissociation energy of a single water molecule, and heat of vaporization of liquid water. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. RP Lawrence Livermore Natl Lab, 7000 E Ave L-415, Livermore, CA 94550 USA. NR 12 TC 27 Z9 27 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 11 PY 2005 VL 94 IS 5 AR 056403 DI 10.1103/PhysRevLett.94.056403 PG 4 WC Physics, Multidisciplinary SC Physics GA 896NT UT WOS:000226941500055 PM 15783668 ER PT J AU Ishigami, M Sau, JD Aloni, S Cohen, ML Zettl, A AF Ishigami, M Sau, JD Aloni, S Cohen, ML Zettl, A TI Observation of the giant stark effect in boron-nitride nanotubes SO PHYSICAL REVIEW LETTERS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; CARBON NANOTUBES; SURFACES; FIELD AB Bias dependent scanning tunneling microscopy and scanning tunneling spectroscopy have been used to characterize the influence of transverse electric fields on the electronic properties of boron-nitride nanotubes (BNNTs). We find experimental evidence for the theoretically predicted giant Stark effect. The observed giant Stark effect significantly reduces the band gap of BNNTs and thus greatly enhances the utility of BNNTs for nanoscale electronic, electromechanical, and optoelectronic applications. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@socrates.berkeley.edu RI Zettl, Alex/O-4925-2016 OI Zettl, Alex/0000-0001-6330-136X NR 22 TC 101 Z9 103 U1 0 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 11 PY 2005 VL 94 IS 5 AR 056804 DI 10.1103/PhysRevLett.94.056804 PG 4 WC Physics, Multidisciplinary SC Physics GA 896NT UT WOS:000226941500063 PM 15783676 ER PT J AU Johnson, SL Heimann, PA MacPhee, AG Lindenberg, AM Monteiro, OR Chang, Z Lee, RW Falcone, RW AF Johnson, SL Heimann, PA MacPhee, AG Lindenberg, AM Monteiro, OR Chang, Z Lee, RW Falcone, RW TI Bonding in liquid carbon studied by time-resolved x-ray absorption spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRON-ENERGY-LOSS; FINE-STRUCTURE; PHASE; FILMS AB Even the most basic properties of liquid carbon have long been debated due to the challenge of studying the material at the required high temperature and pressure. Liquid carbon is volatile and thus inherently transient in an unconstrained environment. In this paper we use a new technique of picosecond time-resolved x-ray absorption spectroscopy to study the bonding of liquid carbon at densities near that of the solid. As the density of the liquid increases, we see a change from predominantly sp-bonded atomic sites to a mixture of sp, sp(2), and sp(3) sites and compare these observations with molecular dynamics simulations. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Paul Scherrer Inst, CH-5232 Villigen, Switzerland. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Johnson, SL (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Johnson, Steven/B-3252-2008; Chang, Zenghu/K-8143-2012 OI Johnson, Steven/0000-0001-6074-4894; Chang, Zenghu/0000-0001-9015-0747 NR 17 TC 37 Z9 37 U1 0 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 11 PY 2005 VL 94 IS 5 AR 057407 DI 10.1103/PhysRevLett.94.057407 PG 4 WC Physics, Multidisciplinary SC Physics GA 896NT UT WOS:000226941500085 PM 15783698 ER PT J AU Pena, V Sefrioui, Z Arias, D Leon, C Santamaria, J Martinez, JL te Velthuis, SGE Hoffmann, A AF Pena, V Sefrioui, Z Arias, D Leon, C Santamaria, J Martinez, JL te Velthuis, SGE Hoffmann, A TI Giant magnetoresistance in ferromagnet/superconductor superlattices SO PHYSICAL REVIEW LETTERS LA English DT Article ID TUNNEL-JUNCTIONS; SUPERCONDUCTOR; LAYERS AB We show magnetoresistance in excess of 1000% in trilayers containing highly spin-polarized La0.7Ca0.3MnO3 and high-T-c superconducting YBa2Cu3O7. This large magnetoresistance is reminiscent of the giant magnetoresistance (GMR) in metallic superlattices but with much larger values, and originates at spin imbalance due to the injection of spin-polarized carriers. Furthermore, in contrast to ordinary GMR, the magnetoresistance is intimately related to the superconductivity in the YBa2Cu3O7 layer and vanishes in the normal state. This result, aside from its fundamental importance, may be of interest for the design of novel spintronic devices based on ferromagnet/superconductor structures. C1 Univ Complutense Madrid, Dept Fis Aplicada 3, GFMC, E-28040 Madrid, Spain. CSIC, ICMM, E-28049 Madrid, Spain. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Pena, V (reprint author), Univ Complutense Madrid, Dept Fis Aplicada 3, GFMC, E-28040 Madrid, Spain. EM jacsan@fis.ucm.es RI Sefrioui, Zouhair/C-2728-2017; Leon, Carlos/A-5587-2008; Martinez, Jose/B-5371-2013; Hoffmann, Axel/A-8152-2009; te Velthuis, Suzanne/I-6735-2013; Santamaria, Jacobo/N-8783-2016 OI Sefrioui, Zouhair/0000-0002-6703-3339; Leon, Carlos/0000-0002-3262-1843; Martinez, Jose/0000-0001-9046-8237; Hoffmann, Axel/0000-0002-1808-2767; te Velthuis, Suzanne/0000-0002-1023-8384; Santamaria, Jacobo/0000-0003-4594-2686 NR 22 TC 152 Z9 155 U1 2 U2 21 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 11 PY 2005 VL 94 IS 5 AR 057002 DI 10.1103/PhysRevLett.94.057002 PG 4 WC Physics, Multidisciplinary SC Physics GA 896NT UT WOS:000226941500066 PM 15783679 ER PT J AU Raizen, MG Dudarev, AM Niu, Q Fisch, NJ AF Raizen, MG Dudarev, AM Niu, Q Fisch, NJ TI Compression of atomic phase space using an asymmetric one-way barrier SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHOTON RECOIL; MOLECULES; TRAP AB We show how to construct asymmetric optical barriers for atoms. These barriers can be used to compress phase-space of a sample by creating a confined region in space where atoms can accumulate with heating at the single photon recoil level. We illustrate our method with a simple two-level model and then show how it can be applied to more realistic multilevel atoms. C1 Univ Texas, Dept Phys, Austin, TX 78712 USA. Univ Texas, Ctr Nonlinear Dynam, Austin, TX 78712 USA. Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Raizen, MG (reprint author), Univ Texas, Dept Phys, Austin, TX 78712 USA. RI Niu, Qian/G-9908-2013 NR 15 TC 46 Z9 46 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 11 PY 2005 VL 94 IS 5 AR 053003 DI 10.1103/PhysRevLett.94.053003 PG 4 WC Physics, Multidisciplinary SC Physics GA 896NT UT WOS:000226941500022 PM 15783635 ER PT J AU Stevenson, RM Oades, K Thomas, BR Schneider, M Slark, GE Suter, LJ Kauffman, R Hinkel, D Miller, MC AF Stevenson, RM Oades, K Thomas, BR Schneider, M Slark, GE Suter, LJ Kauffman, R Hinkel, D Miller, MC TI Evidence for high-efficiency laser-heated hohlraum performance at 527 nm SO PHYSICAL REVIEW LETTERS LA English DT Article ID NATIONAL IGNITION FACILITY; STIMULATED RAMAN-SCATTERING; HOT-ELECTRON PRODUCTION; PHYSICS BASIS; PLASMAS; TARGETS; LIGHT; DRIVEN; GAIN AB A series of experiments conducted on the HELEN laser system [M.J. Norman et al., Appl. Opt. 41, 3497 ( 2002)], into thermal x-ray generation from hohlraum targets using 527 nm (2omega) wavelength laser light, has shown that it is possible to exceed radiation temperatures previously thought limited by high levels of superthermal or hot electron production or stimulated backscatter. This Letter questions whether the assumptions traditionally applied to hohlraum design with respect to hot plasma filling and the use of 2omega light are too conservative. C1 Atom Weapons Establishment, Reading RG7 4PR, Berks, England. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Stevenson, RM (reprint author), Atom Weapons Establishment, Reading RG7 4PR, Berks, England. NR 26 TC 8 Z9 10 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 11 PY 2005 VL 94 IS 5 AR 055006 DI 10.1103/PhysRevLett.94.055006 PG 4 WC Physics, Multidisciplinary SC Physics GA 896NT UT WOS:000226941500045 PM 15783658 ER PT J AU Wilson, SD Dai, PC Adroja, DT Lee, SH Chung, JH Lynn, JW Butch, NP Maple, MB AF Wilson, SD Dai, PC Adroja, DT Lee, SH Chung, JH Lynn, JW Butch, NP Maple, MB TI Quantum critical scaling and the origin of non-fermi-liquid behavior in Sc1-xUxPd3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEUTRON-SCATTERING; Y1-XUXPD3; ELECTRON; ALLOYS; METALS; TRANSITION; DISORDER; FIELD AB We used inelastic neutron scattering to study magnetic excitations of Sc1-xUxPd3 for U concentrations (x=0.25, 0.35) near the spin glass quantum critical point (QCP). The excitations are spatially incoherent, broad in energy (E=homega), and follow omega/T scaling at all wave vectors investigated. Since similar omega/T scaling has been observed for UCu5-xPdx and CeCu6-xAux near the antiferromagnetic QCP, we argue that the observed non-Fermi-liquid behavior in these f-electron materials arises from the critical phenomena near a T=0 K phase transition, irrespective of the nature of the transition. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. Univ Calif San Diego, Inst Pure & Appl Phys Sci, La Jolla, CA 92093 USA. RP Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM daip@ornl.gov RI Dai, Pengcheng /C-9171-2012 OI Dai, Pengcheng /0000-0002-6088-3170 NR 29 TC 20 Z9 20 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 11 PY 2005 VL 94 IS 5 AR 056402 DI 10.1103/PhysRevLett.94.056402 PG 4 WC Physics, Multidisciplinary SC Physics GA 896NT UT WOS:000226941500054 PM 15783667 ER PT J AU Rao, RB Krafcik, KL Morales, AM Lewis, JA AF Rao, RB Krafcik, KL Morales, AM Lewis, JA TI Microfabricated deposition nozzles for direct-write assembly of three-dimensional periodic structures SO ADVANCED MATERIALS LA English DT Article ID MULLITE-ALUMINUM COMPOSITES; PHOTONIC BANDGAP CRYSTALS; CERAMICS; MICROSTEREOLITHOGRAPHY; COMPONENTS; IMPLANTS; INKS AB Direct-write assembly of a three-dimensional periodic structure comprised of hexagonal filaments is demonstated. The structure is created by robotically depositing a concentrated colloidal gel-based ink through a cylindrical deposition nozzle modified by attaching a UV-LIGA (lithography, electroplating, and molding)-fabricated hexagonal micro (mu)-tip that controls filament geometry. C1 Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. Sandia Natl Labs, Livermore, CA 94550 USA. RP Lewis, JA (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM jalewis@staff.uiuc.edu NR 26 TC 35 Z9 37 U1 8 U2 40 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD FEB 10 PY 2005 VL 17 IS 3 BP 289 EP + DI 10.1002/adma.200400514 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 899PL UT WOS:000227156800007 ER PT J AU Kamae, T Abe, T Koi, T AF Kamae, T Abe, T Koi, T TI Diffractive interaction and scaling violation in pp ->pi(0) interaction and GeV excess in galactic diffuse gamma-ray spectrum of EGRET SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; diffuse radiation; gamma rays : observations; gamma rays : theory; ISM : general ID SOFT GLUON INTERFERENCE; TOTAL CROSS-SECTION; HIGH-ENERGY PROTONS; TOTAL CM ENERGIES; P-D INTERACTIONS; COSMIC-RAY; QCD JETS; MULTIPLICITY DISTRIBUTIONS; PRECISION-MEASUREMENT; SUPERNOVA-REMNANTS AB We present here a new calculation of the gamma-ray spectrum from pp --> pi(0) in the Galactic ridge environment. The calculation includes the diffractive p-p interaction and incorporates the Feynman scaling violation for the first time. Galactic diffuse gamma-rays come, predominantly, from pi(0) --> gammagamma in the sub- to multiple GeV range. Hunter et al. found, however, an excess in the GeV range ("GeV excess'') in the EGRET Galactic diffuse spectrum above the prediction based on experimental pp --> pi(0) cross sections and the Feynman scaling hypothesis. We show, in this work, that the diffractive process makes the gamma-ray spectrum harder than the incident proton spectrum by similar to0.05 in the power-law index and that the scaling violation produces 30%-80% more pi(0) than the scaling model for incident proton energies above 100 GeV. A combination of the two can explain about half of the GeV excess with the local cosmic proton (power-law index similar to2.7). The excess can be fully explained if the proton spectral index in the Galactic ridge is a little harder (similar to0.2 in power-law index) than the local spectrum. Given also in the paper is that the diffractive process enhances e(+) over e(-) and the scaling violation gives 50%-100% higher (p) over bar yield than without the violation, both in the multiple GeV range. C1 Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. RP Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. EM kamae@slac.stanford.edu NR 85 TC 47 Z9 48 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2005 VL 620 IS 1 BP 244 EP 256 DI 10.1086/426935 PN 1 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 895HI UT WOS:000226851300024 ER PT J AU Li, ST AF Li, ST TI An HLLC Riemann solver for magneto-hydrodynamics SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE approximate Riemann solver; HLL; HLLE; HLLC; magneto-hydrodynamics ID HYPERBOLIC CONSERVATION-LAWS; FINITE-DIFFERENCE SCHEME; IDEAL MAGNETOHYDRODYNAMICS; EQUATIONS; ALGORITHM AB This paper extends a class of approximate Riemann solvers devised by Harten, Lax and van Leer (HLL) for Euler equations of hydrodynamics to magneto-hydrodynamics (MHD) equations. In particular, we extend the two-state HLLC (HLL for contact wave) construction of Toro, Spruce and Speares to MHD equations. We derive a set of HLLC middle states that satisfies the conservation laws. Numerical examples are given to demonstrate that the new MHD-HLLC solver can achieve high numerical resolution, especially for resolving contact discontinuity. In addition, this new solver maintains a high computational efficiency when compared to Roe's approximate Riemann solver. (C) 2004 Elsevier Inc. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Los Alamos Natl Lab, Div Theoret, MS B284, Los Alamos, NM 87545 USA. EM sli@lanl.gov NR 24 TC 73 Z9 73 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 10 PY 2005 VL 203 IS 1 BP 344 EP 357 DI 10.1016/j.jcp.2004.08.020 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 881MA UT WOS:000225870400017 ER PT J AU Hadley, GR AF Hadley, GR TI A complex Jacobi iterative method for the indefinite Helmholtz equation SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Helmholtz; iterative methods; Jacobi AB An iterative procedure is described for the solution of the indefinite Helmholtz equation that is a two-step generalization of classic Jacobi iteration using complex iteration parameters. The method converges for well-posed problems at a rate dependent only upon the grid size, wavelength and the effective absorption seen by the field. The use of a simple Jacobi preconditioner allows the solution of 3D problems of interest in waveguide optics in reasonable runtimes on a personal computer with memory usage that scales linearly with the number of grid points. Both the iterative method and the preconditioner are fully parallelizable. (C) 2004 Elsevier Inc. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hadley, GR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM grhadle@sandia.gov NR 7 TC 7 Z9 7 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 10 PY 2005 VL 203 IS 1 BP 358 EP 370 DI 10.1016/j.jcp.2004.09.015 PG 13 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 881MA UT WOS:000225870400018 ER PT J AU Cooley, HS Riley, WJ Torn, MS He, Y AF Cooley, HS Riley, WJ Torn, MS He, Y TI Impact of agricultural practice on regional climate in a coupled land surface mesoscale model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID UNITED-STATES; POTENTIAL IMPACTS; HYDROLOGY MODEL; NORTH-AMERICA; SENSITIVITY; ECOSYSTEMS; ATMOSPHERE; LANDSCAPE; SYSTEM; FLUXES AB The land surface has been shown to form strong feedbacks with climate due to linkages between atmospheric conditions and terrestrial ecosystem exchanges of energy, momentum, water, and trace gases. Although often ignored in modeling studies, land management itself may form significant feedbacks. Because crops are harvested earlier under drier conditions, regional air temperature, precipitation, and soil moisture, for example, affect harvest timing, particularly of rain-fed crops. This removal of vegetation alters the land surface characteristics and may, in turn, affect regional climate. We applied a coupled climate model (MM5) and land surface model (LSM1) to examine the effects of early and late winter wheat harvest on regional climate in the Department of Energy Atmospheric Radiation Measurement ( ARM) Climate Research Facility in the Southern Great Plains, where winter wheat accounts for 20% of the land area. Within the harvested, winter wheat region, simulated 2 m air temperature was 1.3degreesC warmer in the early harvest scenario at midday averaged over the 2 weeks following harvest. Soils in the harvested area were drier and warmer in the top 10 cm and wetter in the 10-20 cm layer compared to those in the late harvest. Midday soils were 2.5degreesC warmer in the harvested area at midday averaged over the 2 weeks following harvest. Harvest also dramatically altered latent and sensible heat fluxes. Although differences between scenarios diminished once both scenarios were harvested, the short-term impacts of land management on climate were comparable to those from land cover change demonstrated in other studies. C1 Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Cooley, HS (reprint author), Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 70A-4418, Berkeley, CA 94720 USA. EM hscooley@lbl.gov RI Riley, William/D-3345-2015; Torn, Margaret/D-2305-2015 OI Riley, William/0000-0002-4615-2304; NR 30 TC 22 Z9 22 U1 3 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 10 PY 2005 VL 110 IS D3 AR D03113 DI 10.1029/2004JD005160 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 898GW UT WOS:000227065800002 ER PT J AU Lu, HS Chang, DJ Baratte, B Meijer, L Schulze-Gahmen, U AF Lu, HS Chang, DJ Baratte, B Meijer, L Schulze-Gahmen, U TI Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin SO JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article ID DESIGN; CANCER; ROSCOVITINE; ACTIVATION; RESOLUTION; GROWTH; MOTIF AB Cyclin-dependent kinases (CDKs) play a central role in cell cycle control, apoptosis, transcription, and neuronal functions. They are important targets for the design of drugs with antimitotic or antineurodegenerative effects. CDK4 and CDK6 form a subfamily among the CDKs in mammalian cells, as defined by sequence similarities. Compared to CDK2 and CDK5, structural information on CDK4 and CDK6 is sparse. We describe here the crystal structure of human CDK6 in complex with a viral cyclin and a flavonol inhibitor, fisetin. Fisetin binds to the active form of CDK6, forming hydrogen bonds with the side chains of residues in the binding pocket that undergo large conformational changes during CDK activation by cyclin binding. The 4-keto group and the 3-hydroxyl group of fisetin are hydrogen bonded with the backbone in the hinge region between the N-terminal and C-terminal kinase domain, as has been observed for many CDK inhibitors. However, CDK2 and HCK kinase in complex with other flavone inhibitors such as quercetin and flavopiridol showed a different binding mode with the inhibitor rotated by about 180degrees. The structural information of the CDK6-fisetin complex is correlated with the binding affinities of different flavone inhibitors for CDK6. This complex structure is the first description of an inhibitor complex with a kinase from the CDK4/6 subfamily and can provide a basis for selecting and designing inhibitor compounds with higher affinities and specificities. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. CNRS, Biol Stn, F-29682 Roscoff, France. RP Schulze-Gahmen, U (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, 1 Cyclotron Rd,MS 64R0121, Berkeley, CA 94720 USA. EM uschulze-gahmen@lbl.gov NR 31 TC 71 Z9 74 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-2623 J9 J MED CHEM JI J. Med. Chem. PD FEB 10 PY 2005 VL 48 IS 3 BP 737 EP 743 DI 10.1021/jm049353p PG 7 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 895RR UT WOS:000226881300010 PM 15689157 ER PT J AU Bryantsev, VS Firman, TK Hay, BP AF Bryantsev, VS Firman, TK Hay, BP TI Conformational analysis and rotational barriers of alkyl- and phenyl-substituted urea derivatives SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MOLECULAR MECHANICS CALCULATIONS; ANION-BINDING; FORCE-FIELD; INTERNAL-ROTATION; AB-INITIO; HYDROGEN-BONDS; BASIS-SETS; RECEPTORS; RECOGNITION; THIOUREA AB Potential energy surfaces (PES) for rotation about the N-C(sp(3)) or N-C(aryl) bond and energies of stationary points on PES for rotation about the C(sp(2))-N bond are reported for methylurea, ethylurea, isopropylurea, tert-butylurea, and phenylurea, using the B3LYP/DZVP2 and MP2/aug-cc-pVDZ methods. The analysis of alkylureas reveals cis and (less stable) trans isomers that adopt anti geometries, whereas syn geometries do not correspond to stationary points. In contrast, the analysis of phenylurea reveals that the lowest energy form at the MP2 level is a trans isomer in a syn geometry. The fully optimized geometries are in good agreement with crystal structure data, and PESs are consistent with the experimental dihedral angle distribution. Rotation about the C(Sp(2))-N bond in alkylureas and phenylurea is slightly more hindered (8.6-9.4 kcal/ mol) than the analogous motion in the unsubstituted molecule (8.2 kcal/mol). At the MP2 level of theory, the maximum barriers to rotation for the methyl, ethyl, isopropyl, tert-butyl, and phenyl groups are predicted to be 0.9, 6.2, 6.0, 4.6, and 2.4 kcal/mol, respectively. The results are used to benchmark the performance of the MMFF94 force field. Systematic discrepancies between MMFF94 and MP2 results were improved by modification of several torsional parameters. C1 Pacific NW Natl Lab, Chem Sci Div, Richland, WA 99354 USA. RP Hay, BP (reprint author), Pacific NW Natl Lab, Chem Sci Div, POB 999, Richland, WA 99354 USA. EM Ben.hay@pnl.gov RI Bryantsev, Vyacheslav/M-5111-2016 OI Bryantsev, Vyacheslav/0000-0002-6501-6594 NR 73 TC 32 Z9 32 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 10 PY 2005 VL 109 IS 5 BP 832 EP 842 DI 10.1021/jp0457287 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 894GV UT WOS:000226779800016 PM 16838954 ER PT J AU Nielsen, IMB Allendorf, MD AF Nielsen, IMB Allendorf, MD TI High-level ab initio thermochemical data for halides of chromium, manganese, and iron SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GAUSSIAN-BASIS SETS; CORRELATED MOLECULAR CALCULATIONS; DISSOCIATION-ENERGIES; PROJECTION OPERATORS; SUBLIMATION PRESSURE; ELECTRON-DIFFRACTION; HIGH TEMPERATURES; GROUND-STATE; ATOMS; CRF AB The thermochemistry of the transition-metal fluorides and chlorides MFn and MCln (M = Cr, Mn, Fe; n = 1, 2) has been characterized by high-level ab initio electronic structure methods. Geometries and harmonic vibrational frequencies were computed at the B3LYP level of theory using triple-zeta basis sets including diffuse and polarization functions. Heats of formation were computed from isogyric reaction energies at the CCSD(T) level using high-quality basis sets, including corrections for core-valence correlation and scalar relativistic effects. To investigate the possible linearity of the ground states of CrCl2 and CrF2, we performed geometry optimizations for these species at the CCSD(T) level using large basis sets. In both cases, a bent (B-5(2)) minimum structure was located, but the bent structure is only slightly below the linear form, which was found to be a transition state. For all of the investigated halides, polynomial fits were carried out for the heat capacity and the standard enthalpy and entropy in the 300-3000 K temperature range. C1 Sandia Natl Labs, Livermore, CA 94551 USA. RP Nielsen, IMB (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. EM ibniels@ca.sandia.gov NR 44 TC 19 Z9 19 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 10 PY 2005 VL 109 IS 5 BP 928 EP 933 DI 10.1021/jp045182o PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 894GV UT WOS:000226779800028 PM 16838966 ER PT J AU Wiench, JW Fontenot, CJ Woodworth, JF Schrader, GL Pruski, M Larsen, SC AF Wiench, JW Fontenot, CJ Woodworth, JF Schrader, GL Pruski, M Larsen, SC TI Magnetic resonance investigation of vanadia and vanadium-molybdenum gels synthesized with peroxovanadate precursors SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID V-51 NMR; CATALYSTS; V2O5; GELATION; OXIDE; VPO; SOL; EPR AB Vanadia gels and vanadium-molybdenum oxide gels were investigated using the magnetic resonance techniques, EPR spectroscopy and V-51 MAS NMR spectroscopy. The vanadium oxide gels were derived from the reaction of H2O2 and V2O5, and the vanadium-molybdenum oxide (VMoO) gels were derived from the reaction of peroxovanadates with an ammonium molybdate solution. EPR spectroscopy was utilized to determine quantitative information about the concentration of V4+ paramagnetic species present in the samples and additional structural information about the V4+ coordination environment. V-51 MAS NMR spectroscopy was used to elucidate the V5+ electronic environment and how it changes as a function of molybdenum content. The observed line broadening of the V-51 NMR signal with increasing molybdenum content was correlated with an increase in the concentration of paramagnetic species as monitored by EPR spectroscopy. The evolution of various vanadium sites during thermal treatment was also investigated. This work provides further support for the hypothesis that the selectivity of VMoO catalysts in the oxidation of 1,3-butadiene to maleic anhydride is due to the presence of paramagnetic V4+ sites. C1 Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. Iowa State Univ, Dept Chem Engn, Ames, IA 50011 USA. Univ Iowa, Dept Chem, Iowa City, IA 52242 USA. RP Pruski, M (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. EM mpruski@iastate.edu; Sarah-Larsen@uiowa.edu NR 21 TC 9 Z9 9 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 10 PY 2005 VL 109 IS 5 BP 1756 EP 1762 DI 10.1021/jp045848e PG 7 WC Chemistry, Physical SC Chemistry GA 894GW UT WOS:000226779900021 PM 16851155 ER PT J AU Tard, C Liu, XM Ibrahim, SK Bruschi, M De Gioia, L Davies, SC Yang, X Wang, LS Sawers, G Pickett, CJ AF Tard, C Liu, XM Ibrahim, SK Bruschi, M De Gioia, L Davies, SC Yang, X Wang, LS Sawers, G Pickett, CJ TI Synthesis of the H-cluster framework of iron-only hydrogenase SO NATURE LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ELECTRONIC-STRUCTURE; DIIRON SUBSITE; ACTIVE-SITE; STRUCTURAL ELEMENTS; MODEL COMPLEXES; APPROXIMATION; MECHANISM; EVOLUTION; LIGANDS AB The metal- sulphur active sites of hydrogenases catalyse hydrogen evolution or uptake at rapid rates. Understanding the structure and function of these active sites - through mechanistic studies of hydrogenases(1 - 4), synthetic assemblies(5 - 12) and in silico models(13 - 15) - will help guide the design of new materials for hydrogen production or uptake(16). Here we report the assembly of the iron- sulphur framework of the active site of iron- only hydrogenase ( the H- cluster), and show that it functions as an electrocatalyst for proton reduction. Through linking of a di- iron subsite to a {4Fe4S} cluster, we achieve the first synthesis of a metallosulphur cluster core involved in small- molecule catalysis. In addition to advancing our understanding of the natural biological system, the availability of an active, free- standing analogue of the H- cluster may enable us to develop useful electrocatalytic materials for application in, for example, reversible hydrogen fuel cells. ( Platinum is currently the preferred electrocatalyst for such applications, but is expensive, limited in availability and, in the long term, unsustainable(17).) C1 John Innes Ctr Plant Sci Res, Dept Biol Chem, Norwich NR4 7UH, Norfolk, England. John Innes Ctr Plant Sci Res, Dept Mol Microbiol, Norwich NR4 7UH, Norfolk, England. Univ Milano Bicocca, Dept Biosci & Biotechnol, I-20126 Milan, Italy. Washington State Univ, Dept Phys, Richland, WA USA. Pacific NW Natl Lab, WR Wiley Environm Sci Lab, Richland, WA 99352 USA. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Pickett, CJ (reprint author), John Innes Ctr Plant Sci Res, Dept Biol Chem, Norwich NR4 7UH, Norfolk, England. EM chris.pickett@bbsrc.ac.uk RI Liu, Xiaoming/C-4030-2008; Tard, Cedric/A-9318-2008; PICKETT, CHRISTOPHER/F-3896-2010; De Gioia, Luca/K-6439-2016; OI Tard, Cedric/0000-0002-1515-1915; PICKETT, CHRISTOPHER/0000-0003-3142-0780; BRUSCHI, MAURIZIO/0000-0002-5709-818X NR 30 TC 358 Z9 360 U1 10 U2 100 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD FEB 10 PY 2005 VL 433 IS 7026 BP 610 EP 613 DI 10.1038/nature03298 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 895KX UT WOS:000226862000038 PM 15703741 ER PT J AU Link, JM Yager, PM Anjos, JC Bediaga, I Gobel, C Machado, AA Magnin, J Massafferri, A de Miranda, JM Pepe, IM Polycarpo, E dos Reis, AC Carrillo, S Casimiro, E Cuautle, E Sanchez-Hernandez, A Uribe, C Vazquez, F Agostino, L Cinquini, L Cumalat, JP O'Reilly, B Segoni, I Stenson, K Butler, JN Cheung, HWK Chiodini, G Gaines, I Garbincius, PH Garren, LA Gottschalk, E Kasper, PH Kreymer, AE Kutschke, R Wang, M Benussi, L Bertani, M Bianco, S Fabbri, FL Zallo, A Reyes, M Cawlfield, C Kim, DY Rahimi, A Wiss, J Gardner, R Kryemadhi, A Chung, YS Kang, JS Ko, BR Kwak, JW Lee, KB Cho, K Park, H Alimonti, G Barberis, S Boschini, M Cerutti, A D'Angelo, P DiCorato, D Dini, P Edera, L Erba, S Inzani, P Leveraro, F Malvezzi, S Menasce, D Mezzadri, M Moroni, L Pedrini, D Pontoglio, C Prelz, F Rovere, M Sala, S Davenport, TF Arena, V Bocca, G Bonomi, G Gianini, G Liguori, G Pegna, DL Merlo, MM Pantea, D Ratti, SP Riccardi, C Vitulo, P Hernandez, H Lopez, AM Mendez, H Paris, A Quinones, J Ramirez, JE Zhang, Y Wilson, JR Handler, T Mitchell, R Engh, D Hosack, M Johns, WE Luiggi, E Moore, JE Nehring, M Sheldon, PD Vaandering, EW Webster, M Sheaff, M AF Link, JM Yager, PM Anjos, JC Bediaga, I Gobel, C Machado, AA Magnin, J Massafferri, A de Miranda, JM Pepe, IM Polycarpo, E dos Reis, AC Carrillo, S Casimiro, E Cuautle, E Sanchez-Hernandez, A Uribe, C Vazquez, F Agostino, L Cinquini, L Cumalat, JP O'Reilly, B Segoni, I Stenson, K Butler, JN Cheung, HWK Chiodini, G Gaines, I Garbincius, PH Garren, LA Gottschalk, E Kasper, PH Kreymer, AE Kutschke, R Wang, M Benussi, L Bertani, M Bianco, S Fabbri, FL Zallo, A Reyes, M Cawlfield, C Kim, DY Rahimi, A Wiss, J Gardner, R Kryemadhi, A Chung, YS Kang, JS Ko, BR Kwak, JW Lee, KB Cho, K Park, H Alimonti, G Barberis, S Boschini, M Cerutti, A D'Angelo, P DiCorato, D Dini, P Edera, L Erba, S Inzani, P Leveraro, F Malvezzi, S Menasce, D Mezzadri, M Moroni, L Pedrini, D Pontoglio, C Prelz, F Rovere, M Sala, S Davenport, TF Arena, V Bocca, G Bonomi, G Gianini, G Liguori, G Pegna, DL Merlo, MM Pantea, D Ratti, SP Riccardi, C Vitulo, P Hernandez, H Lopez, AM Mendez, H Paris, A Quinones, J Ramirez, JE Zhang, Y Wilson, JR Handler, T Mitchell, R Engh, D Hosack, M Johns, WE Luiggi, E Moore, JE Nehring, M Sheldon, PD Vaandering, EW Webster, M Sheaff, M CA FOCUS Collaboration TI Measurements of the q(2) dependence of the D-0 -> K-mu(+)nu and D-0 -> K-mu(+)nu and D-0 -> pi(-)mu(+)nu form factors SO PHYSICS LETTERS B LA English DT Article AB Using a large sample of D-0 --> K(-)mu(+)nu and D-0 --> pi(-)mu(+)nu decays collected by the FOCUS photoproduction experiment at Fermilab, we present new measurements of the q(2) dependence for the f(+)(q(2)) form factor. These measured f(+)(q(2)) form factors are fit to common parameterizations such as the pole dominance form and compared to recent unquenched Lattice QCD calculations. We find m(pole) = 1.93 +/- 0.05 +/- 0.03 GeV/c(2) for D-0 --> K(-)mu(+)nu and m(pole) = 1.91(-0.15)(+0.30) +/- 0.07 GeV/c(2) for D-0 --> pi(-)mu(+)nu and f(-)((K))/f(+)((K)) (0) = -1.7(-1.4)(+1.5) +/- 0.3. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif Davis, Davis, CA 95616 USA. Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. CINVESTAV, Mexico City 07000, DF, Mexico. Univ Colorado, Boulder, CO 80309 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Guanajuato, Guanajuato 37150, Mexico. Univ Illinois, Urbana, IL 61801 USA. Indiana Univ, Bloomington, IN 47405 USA. Korea Univ, Seoul 136701, South Korea. Kyungpook Natl Univ, Taegu 702701, South Korea. RP Link, JM (reprint author), Univ Calif Davis, Davis, CA 95616 USA. EM jew@hepux0.hep.uiuc.edu RI Bonomi, Germano/G-4236-2010; Kwak, Jungwon/K-8338-2012; Anjos, Joao/C-8335-2013; Link, Jonathan/L-2560-2013; Benussi, Luigi/O-9684-2014; Gobel Burlamaqui de Mello, Carla /H-4721-2016 OI Bonomi, Germano/0000-0003-1618-9648; Link, Jonathan/0000-0002-1514-0650; Benussi, Luigi/0000-0002-2363-8889; Gobel Burlamaqui de Mello, Carla /0000-0003-0523-495X NR 9 TC 46 Z9 46 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 10 PY 2005 VL 607 IS 3-4 BP 233 EP 242 DI 10.1016/j.physletb.2004.12.036 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 896JI UT WOS:000226930000005 ER PT J AU Beane, SR Malheiro, M McGovem, JA Phillips, DR van Kolck, U AF Beane, SR Malheiro, M McGovem, JA Phillips, DR van Kolck, U TI Nucleon polarizabilities from low-energy Compton scattering (vol 567, pg 200, 2003) SO PHYSICS LETTERS B LA English DT Correction ID DEUTERON AB The results given for the isoscalar combinations of nucleon electromagnetic polarizabilities in [Phys. Lett. B 567 (2003) 200] are incorrect. After correcting errors in our O(Q(4)) chiral perturbation theory calculation of elastic gammad scattering we obtain a fit to recent experimental data with chi(2)/d.o.f. = 26.6/20. For the isoscalar electric polarizability this fit yields alpha(N) = (13.0 +/- 1.9(stat))(-1.5)(+3.9) (theory), while beta(N) is Consistent with zero within sizable error bars. These mistakes in our gammad calculation do not affect the results quoted in [Phys. Lett. B 567 (2003) 200] for the proton polarizabilities. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Washington, Dept Phys, Seattle, WA 98195 USA. Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil. Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England. Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. Brookhaven Natl Lab, RIKEN, BNL, Res Ctr, Upton, NY 11973 USA. RP Beane, SR (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. EM phillips@helios.phy.ohiou.edu RI Malheiro, Manuel/C-4943-2013 NR 5 TC 23 Z9 23 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 10 PY 2005 VL 607 IS 3-4 BP 320 EP 322 DI 10.1016/j.physletb.2004.12.069 PG 3 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 896JI UT WOS:000226930000016 ER PT J AU Stamenkovic, V Arenz, M Blizanac, BB Mayrhofer, KJJ Ross, PN Markovic, NM AF Stamenkovic, V Arenz, M Blizanac, BB Mayrhofer, KJJ Ross, PN Markovic, NM TI In situ CO oxidation on well characterized Pt3Sn(hkl) surfaces: A selective review SO SURFACE SCIENCE LA English DT Article DE CO oxidation; PtSn alloy; surface composition/structure; in situ FTIR spectroscopy; metal-electrolyte interfaces ID SINGLE-CRYSTAL SURFACES; SCANNING-TUNNELING-MICROSCOPY; QUANTUM-CHEMICAL CALCULATIONS; ORDERED ALLOY PT3SN; INFRARED-SPECTROSCOPY; CARBON-MONOXIDE; ACID-SOLUTIONS; ELECTROCHEMICAL INTERFACES; UNDERPOTENTIAL DEPOSITION; ELECTRODE SURFACE AB Bimetallic single crystals Pt3Sn(110) and Pt3Sn(111) have been characterized for in situ CO oxidation. Surface composition and structure were established in ultra high vacuum (UHV) by Auger electron spectroscopy, low energy ion scattering spectroscopy (LEISS) and low energy electron diffraction (LEED). LEED patterns of Pt3Sn(hkl) are consistent with the surface composition, determined by LEISS, of similar to25 or 50 at.% Sn. Following UHV characterization crystals were transferred into the electrochemical environment where surface electrochemistry of adsorbed CO was studied in situ by infrared spectroscopy. Changes in band morphology and vibrational properties: splitting of the band and increase in the frequency mode, were found on Pt3Sn(hkl) and correlated to Pt(hkl) surfaces. Continuous oxidative removal of adsorbed CO starts as low as E < 0.1 V, which is an important property for CO-tolerant catalysts. In addition to electronic effects, other factors, such as surface structure and intermolecular repulsion between adsorbed species are responsible for high catalytic activity of Pt3Sn(hkl) alloys. (C) 2005 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Stamenkovic, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd,MS 2R 100, Berkeley, CA 94720 USA. EM vrstamenkovic@lbl.gov RI Mayrhofer, Karl/D-4166-2009; Arenz, Matthias/C-7385-2009; Arenz, Matthias/C-3195-2016 OI Arenz, Matthias/0000-0001-9765-4315; Arenz, Matthias/0000-0001-9765-4315 NR 43 TC 43 Z9 44 U1 3 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD FEB 10 PY 2005 VL 576 IS 1-3 BP 145 EP 157 DI 10.1016/j.susc.2004.12.018 PG 13 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 895OL UT WOS:000226872600019 ER PT J AU Willey, TM Vance, AL van Buuren, T Bostedt, C Terminello, LJ Fadley, CS AF Willey, TM Vance, AL van Buuren, T Bostedt, C Terminello, LJ Fadley, CS TI Rapid degradation of alkanethiol-based self-assembled monolayers on gold in ambient laboratory conditions SO SURFACE SCIENCE LA English DT Article DE photoelectron spectroscopy; soft X-ray photoelectron spectroscopy; near-edge X-ray absorption fine structure (NEXAFS); X-ray absorption spectroscopy; self-assembled monolayers; oxidation; alkanethiols; gold ID TRANSFORM MASS-SPECTROMETRY; PHOTOELECTRON-SPECTROSCOPY; XPS CHARACTERIZATION; OXIDATION; SURFACES; AU(111); OZONE; THIOL; FILMS; PHOTOOXIDATION AB Self-assembled monolayers (SAMs) consisting of alkanethiols and similar sulfur-containing molecules on noble metal substrates are extensively used and explored for various chemical and biological surface-functionalization in the scientific community. SAMs consisting of thiol- or disulfide-containing molecules adsorbed on gold are commonly used due to their ease of preparation and stability. However, the gold-thiolate bond is easily and rapidly oxidized under ambient conditions, adversely affecting SAM quality and structure. Here, the oxidation of dodecanethiol on gold is explored for various 12-h exposures to ambient laboratory air and light. SAM samples are freshly prepared, air-exposed, and stored in small, capped vials. X-ray photoelectron spectroscopy (XPS) reveals nearly complete oxidation of the thiolate in air-exposed samples, and a decrease in carbon signal on the surface. Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) at the carbon K-edge shows a loss of upright orientational order upon air exposure. Alternatively, the oxidation of the thiolate is minor when SAMs are stored in limited-air-containing small 15 ml vials. Thus, care must be taken to avoid SAM degradation by ensuring alkanethiolates on gold have sufficient durability for each intended environment and application. (C) 2005 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Willey, TM (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM willey1@llnl.gov RI Willey, Trevor/A-8778-2011 OI Willey, Trevor/0000-0002-9667-8830 NR 30 TC 113 Z9 114 U1 5 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD FEB 10 PY 2005 VL 576 IS 1-3 BP 188 EP 196 DI 10.1016/j.susc.2004.12.022 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 895OL UT WOS:000226872600023 ER PT J AU Pool, JA Scott, BL Kiplinger, JL AF Pool, JA Scott, BL Kiplinger, JL TI A new mode of reactivity for pyridine N-oxide: C-H activation with uranium(IV) and thorium(IV) bis(alkyl) complexes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ORGANOACTINIDE CHEMISTRY; BONDS; CRYSTAL C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017 OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396 NR 21 TC 86 Z9 87 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 9 PY 2005 VL 127 IS 5 BP 1338 EP 1339 DI 10.1021/ja044153o PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 895EO UT WOS:000226843900002 PM 15686342 ER PT J AU Dimitrijevic, NM Saponjic, ZV Rabatic, BM Rajh, T AF Dimitrijevic, NM Saponjic, ZV Rabatic, BM Rajh, T TI Assembly and charge transfer in hybrid TiO2 architectures using biotin-avidin as a connector SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHOTOSYSTEM-II; STREPTAVIDIN; NANOPARTICLES; TEMPERATURE; DERIVATIVES; RESONANCE; PROTEINS; BINDING C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Dimitrijevic, NM (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dimitrijevic@anl.gov NR 21 TC 101 Z9 101 U1 3 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 9 PY 2005 VL 127 IS 5 BP 1344 EP 1345 DI 10.1021/ja0458118 PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 895EO UT WOS:000226843900005 PM 15686345 ER PT J AU Barnard, AS Terranova, ML Rossi, M AF Barnard, AS Terranova, ML Rossi, M TI Density functional study of H-induced defects as nucleation sites in hybrid carbon nanomaterials SO CHEMISTRY OF MATERIALS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; NANOCRYSTALLINE DIAMOND; ULTRASOFT PSEUDOPOTENTIALS; MOLECULAR-DYNAMICS; BASIS-SET; NANOTUBES; TRANSFORMATION; ADSORPTION; GRAPHITE AB Recently We have reported on the growth of an exciting new class of hybrid nanostructured carbon materials, coupling nanosized diamond with single-walled carbon nanotubes. The inner structures were shown to be single-walled C nanotubes or bundles of single-walled nanotubes up to 15 mum long, and the outer deposit consisted of faceted diamond crystallites with diameters in the range of 20-100 nm. To aid in understanding the mechanisms responsible for the formation of such materials, the present study uses density functional theory to examine the role of atomic hydrogen in creating localized sp(3) hybridized defects on the outer wall of carbon nanotubes. The results illustrate that certain absorption configurations may produce defects containing dangling carbon bonds, and thus promote the formation of suitable sites for nanodiamond nucleation. C1 Ctr Nanoscale Mat, Argonne Natl Lab, Chicago, IL 60615 USA. Univ Roma Tor Vergata, Dip Sci & Tecnol Chim, I-00133 Rome, Italy. Univ Roma La Sapienza, Dipartimento Energet, I-00161 Rome, Italy. Univ Roma La Sapienza, INFM, I-00161 Rome, Italy. RP Ctr Nanoscale Mat, Argonne Natl Lab, 9700 S Cass Ave, Chicago, IL 60615 USA. EM amanda.barnard@anl.gov RI Barnard, Amanda/A-7340-2011; Rossi, Marco/G-1689-2012 OI Barnard, Amanda/0000-0002-4784-2382; Rossi, Marco/0000-0001-7603-1805 NR 42 TC 28 Z9 31 U1 2 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 8 PY 2005 VL 17 IS 3 BP 527 EP 535 DI 10.1021/cm04886862 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 894PL UT WOS:000226804000010 ER PT J AU Fritsch, V Bobev, S Thompson, JD Sarrao, JL AF Fritsch, V Bobev, S Thompson, JD Sarrao, JL TI Antiferromagnetic order in Ce3Ni2+xSi8-x(x approximate to 1) SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE magnetically ordered materials; crystal growth; crystal structure; susceptibility; heat capacity; resistivity ID MAGNETIC-PROPERTIES; CE3NI2SI8 AB The structural, magnetic, thermodynamic and electrical properties of Ce3Ni2+xSi8-x (x approximate to 1) were investigated by means of X-ray diffraction, magnetic susceptibility, specific heat and resistivity measurements. Structure determination by means of single-crystal X-ray diffraction, supported by elemental analysis revealed that Ce3Ni3.1(1)Si6,9(1) and its La-analogue La3Ni3.01(2)Si6.99(2) crystallize in the orthorhombic space group Cmmm (No. 65) with unit cell parameters of a = 4.0935(4) Angstrom, b = 25.984(2) Angstrom, c = 4.1746(4) Angstrom; and a = 4.1257(3) Angstrom, b = 26.167(2) Angstrom and c = 4.2186(3) Angstrom, respectively. The comprehensive property measurements performed on single crystals indicate the existence of an onset of antiferromagnetic order in Ce(3)Ni(2+)xSi(8-x) (X approximate to 1) at T-N = 4 K and a Kondo-like resistivity with a Kondo temperature of T* = 75 K. These results suggest a very light heavy-fermion behavior in the title compound with corresponding Sommerfeld-coefficient gamma = 51 mJ/mol Ce K. (C) 2004 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Fritsch, V (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM fritsch@lanl.gov RI Fritsch, Veronika/P-1352-2016 OI Fritsch, Veronika/0000-0002-6620-4554 NR 15 TC 3 Z9 3 U1 1 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD FEB 8 PY 2005 VL 388 IS 1 BP 28 EP 33 DI 10.1016/j.jallcom.2004.07.007 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 891CV UT WOS:000226559800008 ER PT J AU Minh, PTL McCallum, RW Lewis, LH Dennis, KW Kramer, MJ AF Minh, PTL McCallum, RW Lewis, LH Dennis, KW Kramer, MJ TI Formation and magnetic properties of the RE-based compounds of type RE6Fe13-xAl1+x (RE = Pr, Sm, Gd) SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE amorphous materials; magnetic measurement; X-ray diffraction; coercivity delta phase ID ND-AL SYSTEM; AMORPHOUS-ALLOYS; FE-AL; COERCIVITY; PHASE AB Selected rare-earth (RE)-based delta-phase compounds of the composition RE6Fe13-xAl1+x(1 less than or equal to x less than or equal to 4) have been prepared and studied to ascertain their role in conveying coercivity to the so-called ferromagnetic bulk metallic glass (BMG) alloys (RE)(60)Fe30Al10. It was found that delta-phase does not exist for RE = Sm or Gd. However, nearly single delta-phase Pr-based compounds of the composition Pr6Fe13-xAl1+x in a range of Al concentration 1.5 less than or equal to x less than or equal to 3.5 were successfully synthesized. The antiferromagnetic behavior of the Pr-based delta-phase compounds is clearly seen from temperature-dependent magnetization measurements and the Neel temperature shows a quasi-linear decrease from 320 K to 115 K as x in Pr6Fe13-xAl1+x is increased from 1 to 4. The observed Al-concentration dependence of the Pr6Fe13-xAl1-x Neel temperatures is expected to be reflected in the magnetic behavior of the BMG alloys of composition Pr(60)e(30)Al(10). (C) 2004 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Dept Mat Sci, Upton, NY 11973 USA. ITIMS, Hanoi, Vietnam. Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Lewis, LH (reprint author), Brookhaven Natl Lab, Dept Mat Sci, Bldg 480, Upton, NY 11973 USA. EM lhlewis@bnl.gov NR 19 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD FEB 8 PY 2005 VL 388 IS 1 BP 104 EP 108 DI 10.1016/j.jallcom.2004.07.008 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 891CV UT WOS:000226559800019 ER PT J AU Rathbone, GJ Poliakoff, ED Bozek, JD Lucchese, RR AF Rathbone, GJ Poliakoff, ED Bozek, JD Lucchese, RR TI Electronically forbidden (5 sigma(u)-> k sigma(u)) photoionization of CS(2): Mode-specific electronic-vibrational coupling SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SHAPE RESONANT PHOTOIONIZATION; RESOLVED PHOTOELECTRON-SPECTROSCOPY; MOLECULAR PHOTOIONIZATION; CROSS-SECTIONS; ASYMMETRY PARAMETER; SYNCHROTRON-RADIATION; IONIZATION SPECTRA; BRANCHING RATIOS; PHOTO-IONIZATION; CARBON-DISULFIDE AB Vibrationally resolved photoelectron spectroscopy of the CS(2)(+)(B(2)Sigma(u)(+)) state is used to show how nontotally symmetric vibrations "activate" a forbidden electronic transition in the photoionization continuum, specifically, a 5sigma(u) --> ksigma(u) shape resonance, that would be inaccessible in the absence of a symmetry breaking vibration. This electronic channel is forbidden owing to inversion symmetry selection rules, but it can be accessed when a nonsymmetric vibration is excited, such as bending or antisymmetric stretching. Photoelectron spectra are acquired for photon energies 17 less than or equal to hv less than or equal to 72 eV, and it is observed that the forbidden vibrational transitions are selectively enhanced in the region of a symmetry-forbidden continuum shape resonance centered at hv approximate to 42 eV. Schwinger variational calculations are performed to analyze the data, and the theoretical analysis demonstrates that the observed forbidden transitions are due to photoelectron-mediated vibronic coupling, rather than interchannel Herzberg-Teller mixing. We observe and explain the counterintuitive result that some vibrational branching ratios vary strongly with energy in the region of the resonance, even though the resonance position and width are not appreciably influenced by geometry changes that correspond to the affected vibrations. In addition, we find that another resonant channel, 5sigma(u) --> kpi(g), influences the symmetric stretch branching ratio. All of the observed effects can be understood within the framework of the Chase adiabatic approximation, i.e., the Born-Oppenheimer approximation applied to photoionization. (C) 2005 American Institute of Physics. C1 Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Advanced Light Source, Berkeley, CA 94720 USA. Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. RP Poliakoff, ED (reprint author), Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. EM epoliak@lsu.edu RI Bozek, John/E-4689-2010; Bozek, John/E-9260-2010 OI Bozek, John/0000-0001-7486-7238 NR 58 TC 11 Z9 11 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 8 PY 2005 VL 122 IS 6 AR 064308 DI 10.1063/1.1850474 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 896ET UT WOS:000226918100016 PM 15740373 ER PT J AU Romet-Lemonne, G Daillant, J Guenoun, P Yang, J Holley, DW Mays, JW AF Romet-Lemonne, G Daillant, J Guenoun, P Yang, J Holley, DW Mays, JW TI Oil-in-water microemulsions stabilized by charged diblock copolymers SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID HYDROPHOBICALLY-MODIFIED POLYELECTROLYTES; BLOCK-COPOLYMER; SELECTIVE SOLVENTS; MICELLAR-SOLUTIONS; POLYMER BRUSHES; BEHAVIOR; FILMS; SALT; NMR AB We present here oil-in-water microemulsions stabilized by charged diblock copolymers alone, along with their structural characterization by small-angle neutron scattering measurements. They consist of swollen spherical micelles containing small amounts of oil in their core, which is surrounded by a corona of stretched polyelectrolyte chains. Structural changes, including core size variations, are evidenced when using a cosurfactant, or upon addition of salt, through a contraction of the charged corona. Attempts to relate the micellar structure to the individual copolymer characteristics are also presented, and show that the size of the hydrophobic block mainly determines that of the micelles. (C) 2005 American Institute of Physics. C1 CEA Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France. CEA Saclay, LIONS, Serv Chim Mol, F-91191 Gif Sur Yvette, France. Univ Alabama, Dept Chem, Birmingham, AL 35294 USA. Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Romet-Lemonne, G (reprint author), FOM Amolf, Kruislaan 407, NL-1098 SJ Amsterdam, Netherlands. NR 33 TC 6 Z9 6 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 8 PY 2005 VL 122 IS 6 AR 064703 DI 10.1063/1.1845396 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 896ET UT WOS:000226918100035 PM 15740392 ER PT J AU Stavros, VG Harel, E Leone, SR AF Stavros, VG Harel, E Leone, SR TI The influence of intense control laser pulses on homodyne-detected rotational wave packet dynamics in O-2 by degenerate four-wave mixing SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID RAMAN-SCATTERING; PENDULAR STATES; MOLECULES; SPECTROSCOPY; ALIGNMENT; FIELD; POPULATION; EVOLUTION; REVIVALS; PHASE AB We illustrate how the preparation and probing of rotational Raman wave packets in O-2 detected by time-dependent degenerate four-wave mixing (TD-DFWM) can be manipulated by an additional time-delayed control pulse. By controlling the time delay of this field, we are able to induce varying amounts of additional Rabi cycling among multiple rotational states within the system. The additional Rabi cycling is manifested as a change in the signal detection from homodyne detected to heterodyne detected, depending on the degree of rotational alignment induced. At the highest laser intensities, Rabi cycling among multiple rotational states cannot account for the almost complete transformation to a heterodyne-detected signal, suggesting a second mechanism involving ionization. The analysis we present for these effects, involving the formation of static alignment by Rabi cycling at moderate laser intensities and possibly ion gratings at the highest intensities, appears to be consistent with the experimental findings and may offer viable explanations for the switching from homodyne to heterodyne detection observed in similar DFWM experiments at high laser field intensities (>10(13) W/cm(2)). (C) 2005 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Labs, Berkeley, CA 94720 USA. RP Stavros, VG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. NR 37 TC 21 Z9 22 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 8 PY 2005 VL 122 IS 6 AR 064301 DI 10.1063/1.1843817 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 896ET UT WOS:000226918100009 PM 15740366 ER PT J AU Yoonessi, M Toghiani, H Daulton, TL Lin, JS Pittman, CU AF Yoonessi, M Toghiani, H Daulton, TL Lin, JS Pittman, CU TI Clay delamination in clay/poly(dicyclopentadiene) nanocomposites quantified by small angle neutron scattering and high-resolution transmission electron microscopy SO MACROMOLECULES LA English DT Article ID X-RAY-SCATTERING; CARBON-FIBER SURFACES; NYLON 6-CLAY HYBRID; ORIENTATIONAL ORDER; BEHAVIOR; MONTMORILLONITE; DISPERSIONS; KAOLINITE; COLLOIDS; RESIN AB Highly delaminated clay/poly(dicyclopentadiene) nanocomposites were prepared by in-situ, ring-opening metathesis polymerization of presonicated mixtures of the liquid dicyclopentadiene (DCPD) and organically modified Montmorillonite clays. Three nanocomposite series (using Montmorillonites: I-28,I-44pa) of increasing clay loadings (0.5, 1.0, and 2.0 wt%) and modified Montmorillonite PGW (0.5 wt%) were synthesized. The dispersed microstructure of the clays in the nanocomposites was characterized by small-angle neutron scattering (SANS), ultra-small-angle neutron scattering (USANS), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy (HR-TEM). All clays were highly delaminated and well dispersed within their host matrixes. The mean number of individual clay platelets per tactoid was predicted by fitting SANS data to the stacked-disk model and measured directly from HR-TEM images of a large number of tactoids in each sample. SANS results were in good agreement with HR-TEM for composites with low clay concentrations (0.5 wt%); however, deviations were observed at higher clay loadings (2.0 wt%). These deviations are discussed in terms of several factors not taken into account by the stacked-disk model: (a) long-range interactions, which become more important at high loadings; (b) departure of tactoid geometries from parallel stacks of rigid disks; and (c) the polydispersity of tactoid thicknesses. SAXS peaks were not present for most of the synthesized nanocomposites, suggesting a high degree of clay delamination was achieved. However, a broad peak was observed for the 2.0 wt% I-44pa clay nanocomposite, indicating the presence of some larger tactoids than in the other nanocomposites having a range of d-spacings. The HR-TEM measured distributions of clay platelet d-spacings in tactoids dispersed within the nanocomposites which were in the range from 8 to 20 Angstrom (12-15 Angstrom average), indicating that the quaternary ammonium ion pillaring agents were no longer present. These quaternary salts either decomposed during the high-temperature (260 degreesC) stage of curing or were not fully exchanged with the interlayer cations present between all platelet interlayers during the original clay modification. Clay/polyDCPD composites were also prepared using PGW clay modified by poly(ethylene glycol). This clay dispersed more rapidly, needing less sonication than the other clays. The resistance to delamination of all nanocomposites studied increased with greater clay loading under equivalent synthesis conditions. C1 Mississippi State Univ, Dept Chem, Mississippi State, MS 39762 USA. Mississippi State Univ, Dave C Swalm Sch Chem Engn, Mississippi State, MS 39762 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. USN, Res Lab, Marine Geosci Div, Stennis Space Ctr, Stennis Space Ctr, MS 39529 USA. RP Pittman, CU (reprint author), Mississippi State Univ, Dept Chem, Mississippi State, MS 39762 USA. EM cpittman@ra.msstate.edu NR 62 TC 56 Z9 58 U1 3 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 8 PY 2005 VL 38 IS 3 BP 818 EP 831 DI 10.1021/ma048663e PG 14 WC Polymer Science SC Polymer Science GA 894BJ UT WOS:000226764500025 ER PT J AU Jung, Y Cho, TY Yoon, DY Frank, CW Luning, J AF Jung, Y Cho, TY Yoon, DY Frank, CW Luning, J TI Surface characteristics of polyfluorene films studied by polarization-dependent NEXAFS spectroscopy SO MACROMOLECULES LA English DT Article ID LIQUID-CRYSTALLINE POLYFLUORENE; CONJUGATED POLYMERS; ELECTROLUMINESCENCE; ORIENTATION; POLYIMIDE; LIGHT; ORDER AB The chemical composition and the preferential orientation of polymer segments at the surface of thin polyfluorene films have been investigated by carbon K-edge soft X-ray absorption spectroscopy, resolving the near-edge X-ray absorption fine structure (NEXAPS). The outermost surface layer of about 10 A thickness exhibits a slight enrichment of alkyl side chains and a corresponding depletion of bipbenyl groups. Moreover, at the film surface the plane of biphenyl rings comprising the polymer backbone is strongly oriented parallel to the film surface. This equilibrium surface characteristics of polyfluorene films are found to be caused mainly by the polymer/air interface rather than by the polymer/solid (silicon) interface. A significant reorientation of polymer segments occurs at the film surface upon rubbing with velour cloth, which results in a preferential orientation of polymer molecular axis (biphenyl ring axis) along the rubbing direction and a decrease in the in-plane orientation of biphenyl planes. Upon annealing a rubbed polyfluorene film in its nematic melt state, the rubbing-induced reorientation of polymer molecules disappears completely for a film of about 600 Angstrom thickness. indicating that, the rubbing-induced reorientation does not propagate much further beyond the surface region of poly-fluorene films. C1 Seoul Natl Univ, Sch Chem, Seoul 151747, South Korea. Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Yoon, DY (reprint author), Seoul Natl Univ, Sch Chem, Seoul 151747, South Korea. EM dyyoon@snu.ac.kr; j.luning@stanford.edu NR 23 TC 23 Z9 23 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 8 PY 2005 VL 38 IS 3 BP 867 EP 872 DI 10.1021/ma0483221 PG 6 WC Polymer Science SC Polymer Science GA 894BJ UT WOS:000226764500031 ER PT J AU Donley, JP Heine, DR Wu, DT AF Donley, JP Heine, DR Wu, DT TI Range-optimized theory of polyelectrolyte solutions: Basic theory and application to rod polymers SO MACROMOLECULES LA English DT Article ID INTEGRAL-EQUATION THEORY; DIRECTIONAL ATTRACTIVE FORCES; MODIFIED POISSON-BOLTZMANN; MEAN SPHERICAL APPROXIMATION; INTERACTION SITE FLUIDS; RESTRICTED PRIMITIVE MODEL; DEBYE-HUCKEL THEORY; SALT-FREE SOLUTION; COUNTERION CONDENSATION; RIGID POLYELECTROLYTES AB We present a theory for the equilibrium structure of polyelectrolyte solutions. The main. element is a simple and general optimization scheme that allows theories such as the random phase approximation to handle the strong repulsive forces present in such systems. Charged hydrophilic rods in salt-free solution at semidilute densities are examined. The effect of including condensed counterions is analyzed. Comparison with other theories is made. Results of experiments of hydrophilic polyelectrolytes with monovalent counterions in salt-free solution have shown that the structure factor peak position and height can become invariant at high charge fraction. We show that this invariance may be the result of polymer-polymer correlations rather than the conventional explanation involving counterion condensation. On the other hand, as determined by the osmotic pressure, it is found that the solution can become mechanically unstable to macrophase separation at high charge fraction. In this case, adding explicit condensed counterions acts to stabilize the liquid, that is. intrachain correlations between condensed counterions, not contained in the idealized Manning-Oosawa theory, must be included. C1 Boeing Co, Huntington Beach, CA 92647 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Colorado Sch Mines, Dept Chem & Chem Engn, Golden, CO 80401 USA. RP Donley, JP (reprint author), Boeing Co, Huntington Beach, CA 92647 USA. EM jdonley@mailaps.org NR 93 TC 7 Z9 7 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 8 PY 2005 VL 38 IS 3 BP 1007 EP 1020 DI 10.1021/ma049264m PG 14 WC Polymer Science SC Polymer Science GA 894BJ UT WOS:000226764500048 ER PT J AU Meriles, CA Sakellariou, D Trabesinger, AH Demas, V Pines, A AF Meriles, CA Sakellariou, D Trabesinger, AH Demas, V Pines, A TI Zero- to low-field MRI with averaging of concomitant gradient fields SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE low-field NMR; pulsed magnetic field; zero-field NMR ID MICROTESLA MAGNETIC-FIELDS; NMR; RESONANCE; MAGNETOENCEPHALOGRAPHY; SELECTION AB Magnetic resonance imaging (MRI) encounters fundamental limits in circumstances in which the static magnetic field is not sufficiently strong to truncate unwanted, so-called concomitant components of the gradient field. This limitation affects the attainable optimal image fidelity and resolution most prominently in low-field imaging. in this article, we introduce the use of pulsed magnetic-field averaging toward relaxing these constraints. It is found that the image of an object can be retrieved by pulsed low fields in the presence of the full spatial variation of the imaging encoding gradient field even in the absence of the typical uniform high-field time-independent contribution. In addition, error-compensation schemes can be introduced through the application of symmetrized pulse sequences. Such schemes substantially mitigate artifacts related to evolution in strong magnetic-field gradients, magnetic fields that vary in direction and orientation, and imperfections of the applied field pulses. C1 Ernest Orlando Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Meriles, CA (reprint author), CUNY City Coll, Dept Phys, New York, NY 10031 USA. EM cmeriles@sci.ccny.cuny.edu RI Sakellariou, Dimitrios/F-2846-2010; Trabesinger, Andreas/J-2008-2016 OI Sakellariou, Dimitrios/0000-0001-7424-5543; Trabesinger, Andreas/0000-0003-3078-8399 NR 22 TC 23 Z9 23 U1 1 U2 2 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 8 PY 2005 VL 102 IS 6 BP 1840 EP 1842 DI 10.1073/pnas.0409115102 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 898JK UT WOS:000227072900009 PM 15671161 ER PT J AU Kolker, E Picone, AF Galperin, MY Romine, MF Higdon, R Makarova, KS Kolker, N Anderson, GA Qiu, XY Auberry, KJ Babnigg, G Beliaev, AS Edlefsen, P Elias, DA Gorby, YA Holzman, T Klappenbach, JA Konstantinidis, KT Land, ML Lipton, MS McCue, LA Monroe, M Pasa-Tolic, L Pinchuk, G Purvine, S Serres, MH Tsapin, S Zakrajsek, BA Zhou, JH Larimer, FW Lawrence, CE Riley, M Collart, FR Yates, JR Smith, RD Giometti, CS Nealson, KH Fredrickson, JK Tiedje, JM AF Kolker, E Picone, AF Galperin, MY Romine, MF Higdon, R Makarova, KS Kolker, N Anderson, GA Qiu, XY Auberry, KJ Babnigg, G Beliaev, AS Edlefsen, P Elias, DA Gorby, YA Holzman, T Klappenbach, JA Konstantinidis, KT Land, ML Lipton, MS McCue, LA Monroe, M Pasa-Tolic, L Pinchuk, G Purvine, S Serres, MH Tsapin, S Zakrajsek, BA Zhou, JH Larimer, FW Lawrence, CE Riley, M Collart, FR Yates, JR Smith, RD Giometti, CS Nealson, KH Fredrickson, JK Tiedje, JM TI Global profiling of Shewanella oneidensis MR-1: Expression of hypothetical genes and improved functional annotations SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE computational biology; expression analysis; microarrays; proteomics; integrative microbiology ID TANDEM MASS-SPECTROMETRY; ACCURATE MASS; HAEMOPHILUS-INFLUENZAE; GENOMIC PERSPECTIVE; PROTEOME ANALYSIS; YEAST PROTEOME; IDENTIFICATION; DATABASE; PROTEINS; SEQUENCE AB The gamma-proteobacterium Shewanella oneidensis strain MR-1 is a metabolically versatile organism that can reduce a wide range of organic compounds, metal ions, and radionuclides. Similar to most other sequenced organisms, approximate to40% of the predicted ORFs in the S. oneidensis genome were annotated as uncharacterized "hypothetical" genes. We implemented an integrative approach by using experimental and computational analyses to provide more detailed insight into gene function. Global expression profiles were determined for cells after UV irradiation and under aerobic and suboxic growth conditions. Transcriptomic and proteomic analyses confidently identified 538 hypothetical genes as expressed in S. oneidensis cells both as mRNAs and proteins (33% of all predicted hypothetical proteins). Publicly available analysis tools and databases and the expression data were applied to improve the annotation of these genes. The annotation results were scored by using a seven-category schema that ranked both confidence and precision of the functional assignment. We were able to identify homologs for nearly all of these hypothetical proteins (97%), but could confidently assign exact biochemical functions for only 16 proteins (category 1; 3%). Altogether, computational and experimental evidence provided functional assignments or insights for 240 more genes (categories 2-5; 45%). These functional annotations advance our understanding of genes involved in vital cellular processes, including energy conversion, ion transport, secondary metabolism, and signal transduction. We propose that this integrative approach offers a valuable means to undertake the enormous challenge of characterizing the rapidly growing number of hypothetical proteins with each newly sequenced genome. C1 BIATECH, Bothell, WA 98011 USA. NIH, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA. Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. Oak Ridge Natl Lab, Genome Anal Grp, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. Wadsworth Ctr, Albany, NY 12201 USA. Marine Biol Lab, Ctr Comparat Mol Biol & Evolut, Woods Hole, MA 02543 USA. Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA. RP Kolker, E (reprint author), BIATECH, 19310 N Creek Pkwy,Suite 115, Bothell, WA 98011 USA. EM ekolker@biatech.org RI Land, Miriam/A-6200-2011; Elias, Dwayne/B-5190-2011; Smith, Richard/J-3664-2012; Kolker, Eugene/C-6711-2008; Galperin, Michael/B-5859-2013; Beliaev, Alexander/E-8798-2016; OI Collart, Frank/0000-0001-6942-4483; Land, Miriam/0000-0001-7102-0031; Elias, Dwayne/0000-0002-4469-6391; Smith, Richard/0000-0002-2381-2349; Galperin, Michael/0000-0002-2265-5572; Beliaev, Alexander/0000-0002-6766-4632; Romine, Margaret/0000-0002-0968-7641; McCue, Lee Ann/0000-0003-4456-517X FU Intramural NIH HHS [Z99 LM999999] NR 44 TC 88 Z9 91 U1 1 U2 24 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 8 PY 2005 VL 102 IS 6 BP 2099 EP 2104 DI 10.1073/pnas.0409111102 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 898JK UT WOS:000227072900054 PM 15684069 ER PT J AU Younis, BA Speziale, CG Clark, TT AF Younis, BA Speziale, CG Clark, TT TI A rational model for the turbulent scalar fluxes SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE turbulent scalar fluxes; mathematical modelling; turbulence closures; tenser representation ID ATMOSPHERIC BOUNDARY-LAYER; REYNOLDS-STRESS; SHEAR FLOWS; HEAT-FLUX; PASSIVE-SCALAR; DIFFUSION; TRANSPORT; CLOSURE; PREDICTION; EQUATIONS AB The paper reports on an alternative approach to modelling the turbulent scalar fluxes that arise from time averaging the transport equation for a scalar. In this approach, a functional relationship between these fluxes and various tensor quantities is constructed with guidance from the exact equations governing the transport of fluxes. Results from tensor representation theory are then used to obtain an explicit relationship between the fluxes and the terms in the assumed functional relationship. Where turbulence length- and time-scales are implied, these are determined from two scalar quantities: the turbulence kinetic energy and its rate of dissipation by viscous action. The general representation is then reduced by certain justifiable assumptions to yield a practical model for the turbulent scalar fluxes that is explicit and algebraic in these quantities and one that correctly reflects their dependence on the gradients of mean velocity and on the details of the turbulence. Examination of alternative algebraic models shows most to be subsets of the present proposal. The new model is calibrated using results from large-eddy simulations (LESs) of homogeneous turbulence with passive scalars and then assessed by reference to benchmark data from heated turbulent shear flows. The results obtained show the model to correctly predict the anisotropy of the turbulent diffusivity tensor. The asymmetric nature of this tensor is also recovered, but only qualitatively, there being significant quantitative differences between the model predictions and the LES results. Finally, comparisons with data from benchmark two-dimensional free shear flows show the new model to yield distinct improvements over other algebraic scalar-flux closures. C1 Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. Boston Univ, Dept Aerosp & Mech Engn, Boston, MA 02215 USA. Los Alamos Natl Lab, Div Theoret MSB216, Los Alamos, NM 87545 USA. RP Younis, BA (reprint author), Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. EM bayounis@ucdavis.edu NR 32 TC 36 Z9 36 U1 0 U2 5 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 EI 1471-2946 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD FEB 8 PY 2005 VL 461 IS 2054 BP 575 EP 594 DI 10.1098/rspa.2004.1380 PG 20 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 895CP UT WOS:000226838800013 ER PT J AU Opresko, DM AF Opresko, DM TI A new species of antipatharian coral (Cnidaria : Anthozoa : Antipatharia) from the southern California Bight SO ZOOTAXA LA English DT Article DE Coelenterata; Cnidaria; Anthozoa; Antipatharia; Antipathidae; Antipathes dendrochristos; new species; eastern Pacific; United States AB A new species of antipatharian coral (Anthozoa: Antipatharia) is described from the southern California Bight. The species, Antipathes dendrochristos new species, forms large, multi-branched, bushy colonies that can reach a height of 2 m or more. The species is characterized by having small branchlets arranged primarily bilaterally and alternately, but in varying degrees of regularity; by small conical spines less than 0.1 mm tall, and by small polyps usually less than 1.4 mm in transverse diameter. The species occurs in colors of white, orange/gold, pinkish-orange, pink, red, and red-brown. C1 Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37830 USA. RP Opresko, DM (reprint author), Oak Ridge Natl Lab, Div Life Sci, 1060 Commerce Pk, Oak Ridge, TN 37830 USA. EM opreskodm@ornl.gov NR 8 TC 12 Z9 12 U1 1 U2 3 PU MAGNOLIA PRESS PI AUCKLAND PA PO BOX 41383, AUCKLAND, 1030, NEW ZEALAND SN 1175-5334 J9 ZOOTAXA JI Zootaxa PD FEB 8 PY 2005 IS 852 BP 1 EP 10 PG 10 WC Zoology SC Zoology GA 895PX UT WOS:000226876500001 ER PT J AU Cao, Y Zhang, J Li, X Kosel, TH Fay, P Hall, DC Zhang, XB Dupuis, RD Jasinski, JB Liliental-Weber, Z AF Cao, Y Zhang, J Li, X Kosel, TH Fay, P Hall, DC Zhang, XB Dupuis, RD Jasinski, JB Liliental-Weber, Z TI Electrical properties of InAlP native oxides for metal-oxide-semiconductor device applications SO APPLIED PHYSICS LETTERS LA English DT Article ID FIELD-EFFECT TRANSISTOR; ATOMIC-LAYER DEPOSITION; GAAS MOSFET; GATE; HETEROSTRUCTURES; OXIDATION; PHOTOLUMINESCENCE; ALXGA1-XAS; INTERFACE; FILMS AB Data are presented on the insulating properties and capacitance-voltage characteristics of metaloxide-semiconductor (MOS) device-thickness (below similar to100 nm) native oxides formed by wet thermal oxidation of thin InAlP epilayers lattice matched to GaAs. Low leakage current densities of J= 1.4 X 10(-9) A/cm(2) and J=8.7 X 10(-11) A/cm(2) are observed at an applied field of 1 MV/cm for MOS capacitors fabricated with 17 and 48 nm oxides, respectively. Transmission electron microscopy images show that the In-rich interfacial particles which exist in I 10 nm oxides are absent in 17 nm oxide films. Quasistatic capacitance-voltage measurements of MOS capacitors fabricated on both n-type and p-type GaAs show that the InAlP oxide-GaAs interface is sufficiently free of traps to support inversion, indicating an unpinned Fermi level. These data suggest that InAlP native oxides may be a viable insulator for GaAs MOS device applications. (C) 2005 American Institute of Physics. C1 Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA. Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Cao, Y (reprint author), Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA. EM ycao@nd.edu; dhall@nd.edu RI Liliental-Weber, Zuzanna/H-8006-2012 NR 27 TC 19 Z9 19 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 7 PY 2005 VL 86 IS 6 AR 062105 DI 10.1063/1.1861981 PG 3 WC Physics, Applied SC Physics GA 902KQ UT WOS:000227355200036 ER PT J AU Martin, CD Antao, SM Chupas, PJ Lee, PL Shastri, SD Parise, JB AF Martin, CD Antao, SM Chupas, PJ Lee, PL Shastri, SD Parise, JB TI Quantitative high-pressure pair distribution function analysis of nanocrystalline gold SO APPLIED PHYSICS LETTERS LA English DT Article ID X-RAY-DIFFRACTION; PHASE-TRANSITION; NAMGF3 PEROVSKITE; DEPENDENCE AB Using a diamond anvil cell with high-energy monochromatic x rays, we have studied the total scattering of nanocrystalline gold to 20 Angstrom(-1) at pressures up to 10 GPa in a hydrostatic alcohol pressure-medium. Through direct Fourier transformation of the structure function [S(Q)], pair distribution functions (PDFs) [G(r)] are calculated without Kaplow-type iterative corrections. Quantitative high-pressure PDF (QHP-PDF) analysis is performed via full-profile least-squares modeling and confirmed through comparison of Rietveld analysis of Bragg diffraction. The quality of the high pressure PDFs obtained demonstrates the integrity of our technique and suggests the feasibility of future QHP-PDF studies of liquids, disordered solids, and materials at phase transition under pressure. (C) 2005 American Institute of Physics. C1 SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Argonne Natl Lab, XOR, Argonne, IL 60439 USA. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Martin, CD (reprint author), SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. EM chmartin@ic.sunysb.edu NR 28 TC 27 Z9 27 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 7 PY 2005 VL 86 IS 6 AR 061910 DI 10.1063/1.1856691 PG 3 WC Physics, Applied SC Physics GA 902KQ UT WOS:000227355200026 ER PT J AU Sharp, ID Yi, DO Xu, Q Liao, CY Beeman, JW Liliental-Weber, Z Yu, KM Zakharov, DN Ager, JW Chrzan, DC Haller, EE AF Sharp, ID Yi, DO Xu, Q Liao, CY Beeman, JW Liliental-Weber, Z Yu, KM Zakharov, DN Ager, JW Chrzan, DC Haller, EE TI Mechanism of stress relaxation in Ge nanocrystals embedded in SiO2 SO APPLIED PHYSICS LETTERS LA English DT Article ID GERMANIUM NANOCRYSTALS; SILICON-OXIDE; QUANTUM DOTS; RAMAN; DIFFUSIVITY; GROWTH AB Ion-beam-synthesized Ge-74 nanocrystals embedded in an amorphous silica matrix exhibit large compressive stresses in the as-grown state. The compressive stress is determined quantitatively by evaluating the Raman line shift referenced to the line position of free-standing nanocrystals. Postgrowth thermal treatments lead to stress reduction. The stress relief process is shown to be governed by the diffusive flux of matrix atoms away from the local nanocrystal growth region. A theoretical model that quantitatively describes this process is presented. (C) 2005 American Institute of Physics. C1 Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM eehaller@lbl.gov RI Liliental-Weber, Zuzanna/H-8006-2012; Yu, Kin Man/J-1399-2012; Sharp, Ian/I-6163-2015; Zakharov, Dmitri/F-4493-2014; OI Yu, Kin Man/0000-0003-1350-9642; Sharp, Ian/0000-0001-5238-7487; Ager, Joel/0000-0001-9334-9751 NR 25 TC 48 Z9 48 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 7 PY 2005 VL 86 IS 6 AR 063107 DI 10.1063/1.1856132 PG 3 WC Physics, Applied SC Physics GA 902KQ UT WOS:000227355200063 ER PT J AU Wu, T Mitchell, JF AF Wu, T Mitchell, JF TI Enhanced magnetoresistance in strain-free manganite network SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILMS; PHASE-SEPARATION; COLOSSAL MAGNETORESISTANCE; DOPED MANGANITES; BEHAVIOR AB A network structure of a ferromagnetic metallic (FMM)/charge-ordered insulator (COI) mixed phase manganite has been obtained by annealing a 150 Angstrom Pr-0.65(Ca0.75Sr0.25)(0.35)MnO3 film under tensile strain on a SrTiO3 substrate. Under the same deposition and annealing conditions, a film deposited on a LaAlO3 substrate, which provides compressive strain, remains continuous. The network structure also manifests a larger magnetoresistance than the continuous film. It is suggested that the lateral confinement in this filamentary structure may affect the percolative transport in this mixed FMM/COI system. (C) 2005 American Institute of Physics. C1 Argonne Natl Lab, Ctr Nanoscale Mat, Div Sci Mat, Argonne, IL 60439 USA. RP Argonne Natl Lab, Ctr Nanoscale Mat, Div Sci Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tomwu@anl.gov RI Wu, Tom/A-1158-2012 OI Wu, Tom/0000-0003-0845-4827 NR 25 TC 17 Z9 17 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 7 PY 2005 VL 86 IS 6 AR 062502 DI 10.1063/1.1861493 PG 3 WC Physics, Applied SC Physics GA 902KQ UT WOS:000227355200048 ER PT J AU Bowman, GD Goedken, ER Kazmirski, SL O'Donnell, M Kuriyan, J AF Bowman, GD Goedken, ER Kazmirski, SL O'Donnell, M Kuriyan, J TI DNA polymerase clamp loaders and DNA recognition SO FEBS LETTERS LA English DT Article; Proceedings Paper CT 130th Nobel Symposium on Molecular Mechanisms in Biological Processes CY SEP 10-15, 2004 CL Tallberg, SWEDEN DE DNA sliding clamp; clamp loader; AAA plus ATPase; primer-template junction; DNA replication ID CRYSTAL-STRUCTURE; SLIDING CLAMPS; DELTA-SUBUNIT; COMPLEX; MECHANISM; MACHINE; PROTEIN; HOLOENZYME; ATPASES; DOMAIN AB Clamp loaders are heteropentameric ATPase assemblies that load sliding clamps onto DNA and are critical for processive DNA replication. The DNA targets for clamp loading are double-stranded/single-stranded junctions with recessed 3' ends (primer-template junctions). Here, we briefly review the crystal structures of clamp loader complexes and the insights they have provided into the mechanism of the clamp loading process. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Rockefeller Univ, Howard Hughes Med Inst, Lab DNA Replicat, New York, NY 10021 USA. RP Kuriyan, J (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM kuriyan@berkeley.edu FU NIGMS NIH HHS [F32 GM066586-01, GM45547, F32 GM066586, GM38839, F32 GM066586-02] NR 23 TC 48 Z9 49 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0014-5793 J9 FEBS LETT JI FEBS Lett. PD FEB 7 PY 2005 VL 579 IS 4 SI SI BP 863 EP 867 DI 10.1016/j.febslet.2004.11.038 PG 5 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 895PB UT WOS:000226874300005 PM 15680964 ER PT J AU Cai, Y Espenson, JH AF Cai, Y Espenson, JH TI Catalysis by Methyltrioxorhenium(VII): Reduction of hydronium ions by Europium(II) and reduction of perchlorate ions by Europium(II) and Chromium(II) SO INORGANIC CHEMISTRY LA English DT Article ID ELECTRON-TRANSFER; HYDROGEN; MECHANISM; OXIDES; COMPLEXES; EVOLUTION; KINETICS AB The title reactions occur stepwise, the first and fastest being MeReO3 + Eu2+ --> Re(VI) + Eu3+ (k(298) = 2.7 x 10(4) L mol(-1) s(-1)), followed by rapid reduction of Re(VI) by Eu2+ to MeReO2. The latter species is reduced by a third Eu2+ to Re(IV), a metastable species characterized by an intense charge transfer band, is an element of(410) = 910 L mol(-1) cm(-1) at pH 1; the rate constant for its formation is 61.3 L mol(-1) s(-1), independent of [H+]. Yet another reduction step occurs, during which hydrogen is evolved at a rate v = K[Re(IV)][Eu2+][H+](-1), with k = 2.56 s(-1) at mu = 0.33 mol L-1. The 410 nm Re(IV) species bears no ionic charge on the basis of the kinetic salt effect. We attribute hydrogen evolution to a reaction between H-(ReO)-O-v and H3O+, where the hydrido complex arises from the unimolecular rearrangement of Re-III-OH in a reaction that cannot be detected directly. Chromium(II) ions do not evolve H-2, despite E-Cr(o) similar to E-Eu(o). We attribute this lack of reactivity to the Re(IV) intermediate being captured as [Re-IV-O-Cr-III](2+), with both metals having substitutionally inert d(3) electronic configurations. Hydrogen evolution occurs in chloride or triflate media; with perchlorate present, MeReO2 reduces perchlorate to chloride, as reported previously [Abu-Omar, M. M.; Espenson, J. H. Inorg. Chem. 1995, 34, 6239-6240]. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Espenson, JH (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM espenson@iastate.edu NR 23 TC 3 Z9 3 U1 2 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD FEB 7 PY 2005 VL 44 IS 3 BP 489 EP 495 DI 10.1021/ic048669k PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 893PP UT WOS:000226732000009 PM 15679376 ER PT J AU Lin, QS Corbett, JD AF Lin, QS Corbett, JD TI Mg35Cu24Ga53: A three-dimensional cubic network composed of interconnected Cu6Ga6 icosahedra, mg-centered Ga-16 icosioctahedra, and a magnesium lattice SO INORGANIC CHEMISTRY LA English DT Article ID INTERMETALLIC PHASE; CRYSTAL-STRUCTURE; ALKALI-METALS; CLUSTER PHASE; QUASI-CRYSTAL; GALLIUM; APPROXIMANTS; ZN AB Single-crystal X-ray structural determinations for the Mg35.12(4)Cu24Ga53.58(6) and Mg35.6(4)Cu24Ga52.66(6) refined compositions (Fd3m, Z = 4) reveal empty (Cu,Ga)(12) icosahedra and centered MgGa16 icosioctahedra that are interconnected at every vertex to a compact three-dimensional anion network. A small range of variable occupancy exists on one of three Ga and one of four Mg positions. The clusters are well-bonded and held in different sized cavities, in which they are also directly bonded to a Mg cation network. The two networks thus interpenetrate each other, and there are no spacers. The new phase is isostructural with K(39)ln(80), K(17)ln(41), and the electron-poorer Na35Cd24Ga56, all of which contain clathrated-II-type cation frameworks. Electron counting using the classic (MO-based) cluster assignments indicates that the refined structure is substantially ideal and closed-shell. The symmetry of the present structure does not suggest a ready conversion to an icosahedral quasicrystal or its approximants. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Corbett, JD (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM jcorbett@iastate.edu RI Lin, Qisheng/F-7677-2010 OI Lin, Qisheng/0000-0001-7244-7213 NR 39 TC 22 Z9 22 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD FEB 7 PY 2005 VL 44 IS 3 BP 512 EP 518 DI 10.1021/ic040075u PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 893PP UT WOS:000226732000012 PM 15679379 ER PT J AU Wilson, AN Dracoulis, GD Davidson, PM Byrne, AP Clark, RM Fallon, P Gorgen, A Lane, GJ Macchiavelli, AO Ward, D AF Wilson, AN Dracoulis, GD Davidson, PM Byrne, AP Clark, RM Fallon, P Gorgen, A Lane, GJ Macchiavelli, AO Ward, D TI Quadrupole moment of the yrast superdeformed band in Pb-192 SO NUCLEAR PHYSICS A LA English DT Article DE NUCLEAR REACTIONS Si-29(Er-168,5n), E=154 MeV; measured E gamma, I gamma, gamma gamma-coin, DSA; Pb-192 deduced superdeformed band levels T-1/2, quadrupole moment; gammasphere array, total Routhian surface calculation ID LIFETIME MEASUREMENTS; EXCITATION-ENERGIES; MASS REGION; NUCLEUS; PARITY; HG-194; STATES; SPINS AB The lifetimes of states with spins 26h greater than or equal to I greater than or equal to 18h in the yrast superdeformed band of Pb-192 have been measured using the Doppler shift attenuation method. The results are consistent with a constant quadrupole moment (Q(0)) = 19.6(-0.4)(+0.5)(stat) +/- 2.0(sys) eb. This result is comparable with the values obtained for SD bands in Pb isotopes with N greater than or equal to 112, but could also be onsistent with the smaller quadrupole moment measured in Pb-193. Reasons for the apparently lower deformation of SD Pb-193 (compared to its heavier neighbours) are considered in the light of total Routhian surface calculations, and the question of whether a similarly reduced deformation should be expected in Pb-192 is addressed. (C) 2004 Elsevier B.V. All rights reserved. C1 Australian Natl Univ, Res Sch Phys Sci & Engn, Dept Nucl Phys, Canberra, ACT 0200, Australia. Australian Natl Univ, Fac Sci, Dept Phys, Canberra, ACT 0200, Australia. Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA USA. RP Wilson, AN (reprint author), Australian Natl Univ, Res Sch Phys Sci & Engn, Dept Nucl Phys, Canberra, ACT 0200, Australia. EM anna.wilson@anu.edu.au RI Dracoulis, George/A-8123-2008; Lane, Gregory/A-7570-2011; OI Lane, Gregory/0000-0003-2244-182X; Byrne, Aidan/0000-0002-7096-6455; Gorgen, Andreas/0000-0003-1916-9941; Wilson, Anna/0000-0001-6928-1689 NR 26 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD FEB 7 PY 2005 VL 748 IS 1-2 BP 12 EP 26 DI 10.1016/j.nuclphysa.2004.10.017 PG 15 WC Physics, Nuclear SC Physics GA 891FK UT WOS:000226566500002 ER PT J AU Wang, P Leinweber, DB Thomas, AW Williams, AG AF Wang, P Leinweber, DB Thomas, AW Williams, AG TI Liquid-gas phase transition and Coulomb instability of asymmetric nuclear systems SO NUCLEAR PHYSICS A LA English DT Article DE liquid-gas phase transition; Coulomb instability; chiral symmetry; nuclear matter; quark mean field ID MESON COUPLING MODEL; MEAN-FIELD MODEL; STRANGE HADRONIC MATTER; HOT NUCLEI; CHIRAL-SYMMETRY; FINITE NUCLEI; BAG MODEL; THERMODYNAMICAL PROPERTIES; HYPERNUCLEI; STABILITY AB We use a chiral SU(3) quark mean field model to study the properties of nuclear systems at finite temperature. The liquid-gas phase transition of symmetric and asymmetric nuclear matter is discussed. For two formulations of the model the critical temperature, T-c, for symmetric nuclear matter is found to be 15.8 MeV and 17.9 MeV. These values are consistent with those derived from recent experiments. The limiting temperatures for finite nuclei are in good agreement with the experimental points. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Adelaide, Special Res Ctr Subatom Struct Matter, Adelaide, SA 5005, Australia. Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. Jefferson Lab, Newport News, VA 23606 USA. RP Wang, P (reprint author), Univ Adelaide, Special Res Ctr Subatom Struct Matter, Adelaide, SA 5005, Australia. EM pwang@physics.adelaide.edu.an RI Thomas, Anthony/G-4194-2012; Williams, Anthony/I-6698-2012; Leinweber, Derek/J-6705-2013; OI Thomas, Anthony/0000-0003-0026-499X; Leinweber, Derek/0000-0002-4745-6027; Williams, Anthony/0000-0002-1472-1592 NR 50 TC 18 Z9 18 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD FEB 7 PY 2005 VL 748 IS 1-2 BP 226 EP 240 DI 10.1016/j.nuclphysa.2004.10.012 PG 15 WC Physics, Nuclear SC Physics GA 891FK UT WOS:000226566500012 ER PT J AU Fitzgerald, R Abbotoy, E Bardayan, DW Blackmon, JC Champagne, AE Chen, AA Greife, U Hill, DW James, AN Kozub, RL Lewis, TA Livesay, R Ma, Z Mahan, SL McConnell, JW Milner, WT Moazen, BH Parker, PD Pierce, DE Roettger, ME Sahin, L Shapira, D Smith, MS Strieder, F Swartz, KB Thomas, JS Visser, DW AF Fitzgerald, R Abbotoy, E Bardayan, DW Blackmon, JC Champagne, AE Chen, AA Greife, U Hill, DW James, AN Kozub, RL Lewis, TA Livesay, R Ma, Z Mahan, SL McConnell, JW Milner, WT Moazen, BH Parker, PD Pierce, DE Roettger, ME Sahin, L Shapira, D Smith, MS Strieder, F Swartz, KB Thomas, JS Visser, DW TI Studies of (p, gamma) reactions with the Daresbury Recoil Separator at ORNL'S HRIBF SO NUCLEAR PHYSICS A LA English DT Article C1 Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Yale Univ, AW Wright Nucl Struct Lab, New Haven, CT 06511 USA. Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. Univ Liverpool, Liverpool L69 3BX, Merseyside, England. Univ Tennessee, Knoxville, TN 37996 USA. Ruhr Univ Bochum, D-44780 Bochum, Germany. Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ 08903 USA. RP Fitzgerald, R (reprint author), McMaster Univ, Hamilton, ON L8S 4L8, Canada. RI Visser, Dale/A-8117-2009; Fitzgerald, Ryan/H-6132-2016 OI Visser, Dale/0000-0002-2891-4731; NR 8 TC 23 Z9 23 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD FEB 7 PY 2005 VL 748 IS 1-2 BP 351 EP 354 DI 10.1016/j.nuclphysa.2004.09.095 PG 4 WC Physics, Nuclear SC Physics GA 891FK UT WOS:000226566500017 ER PT J AU Wang, CS Balasubramanian, K AF Wang, CS Balasubramanian, K TI Electronic states and vibrational frequencies of the triatomic Ga2N, GaN2, and their cations and anions SO CHEMICAL PHYSICS LETTERS LA English DT Article ID KINETIC-ENERGY SPECTROSCOPY; GALLIUM NITRIDE; PHOTOELECTRON-SPECTROSCOPY; POLYATOMIC CLUSTERS; 1ST PRINCIPLES; DECOMPOSITION; PRECURSOR; SPECTRA; CURVES; IONS AB The low-lying electronic states of Ga2N, GaN2 and the corresponding anions and cations have been investigated using B3LYP, MP2, CCD, complete active space multi-configuration self-consistent field technique (CASSCF) and multi-reference singles + doubles configuration interaction (MRSDCI) calculations. Potential energy surfaces, geometries, energy separations, adiabatic ionization energies, electron affinities, vibrational frequencies, and dissociation energies are computed. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif Davis, Inst Data Anal & Visualizat, Livermore, CA 94550 USA. Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Glenn T Seaborg Ctr, Berkeley, CA 94720 USA. RP Balasubramanian, K (reprint author), Univ Calif Davis, Inst Data Anal & Visualizat, POB 808,L-268, Livermore, CA 94550 USA. EM kbala@ucdavis.edu NR 31 TC 19 Z9 19 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD FEB 4 PY 2005 VL 402 IS 4-6 BP 294 EP 299 DI 10.1016/j.cplett.2004.11.136 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 893KY UT WOS:000226719100003 ER PT J AU Abbas, H Pickering, AL Long, DL Kogerler, P Cronin, L AF Abbas, H Pickering, AL Long, DL Kogerler, P Cronin, L TI Controllable growth of chains and grids from polyoxomolybdate building blocks linked by silver(I) dimers SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE density functional calculations; molybdenum; polyoxometalates; self-assembly; silver ID CHEMISTRY; KEPLERATE; EFFICIENT; TOPOLOGY; SYMMETRY; CLUSTERS AB Molecular growth processes utilizing a beta-octamolybdate synthon and {Ag-2} dimers are described and the directing influence of "encapsulating" cations and coordinating solvent is also demonstrated. The growth of two ID chains, (nBu(4)N)(2n)[Ag2Mo8O26], (1) and (nBu(4)N)(2n)[Ag2Mo8O26(CH3CN)(2)](n) (2), is achieved when nBu(4)N(+) ions are used, and the diameter of the chains can be expanded by the coordination of CH3CN solvent (2). The formation of a type of gridlike structure in which ID chains are crossed-over each other in alternatively packed layers is achieved in DMSO as the solvent; DMSO acts as a linking group to give (nBu(4)N)(2n)[Ag2Mo8O26(dmso)(2)](n) (3), which, similar to I and 2, still incorporates the BU4N+ ions that exert an "encapsulating" influence. However, in (HDMF)(n)[Ag-3(Mo8O26)(dmf)(4)](n) (4) the relatively bulky Bu4N+ ions are exchanged for protonated DMF cations, thereby allowing the chains to condense to a 2D array. The building block concept is further enforced by the isolation of a "monomeric" unit (Ph4P)(2)[Ag2Mo8O26(dmso)(4)] (5), which is isolated when the Ph4P+ ions are so "encapsulating" as to prevent aggregation of the {Ag-Mo-8-Ag} building blocks. The nature of the (AgAg)-Ag-... dimers in each of the compounds 1-4 is examined by DFT calculations and the interplay between these Ag-Ag interactions and the structure types is described. C1 Univ Glasgow, Dept Chem, Glasgow G12 8QQ, Lanark, Scotland. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Cronin, L (reprint author), Univ Glasgow, Dept Chem, Glasgow G12 8QQ, Lanark, Scotland. EM L.Cronin@chem.gla.ac.uk RI Cronin, Leroy/B-7752-2008; Long, Deliang/C-3500-2011; Kogerler, Paul/H-5866-2013 OI Cronin, Leroy/0000-0001-8035-5757; Kogerler, Paul/0000-0001-7831-3953 NR 30 TC 104 Z9 105 U1 0 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0947-6539 J9 CHEM-EUR J JI Chem.-Eur. J. PD FEB 4 PY 2005 VL 11 IS 4 BP 1071 EP 1078 DI 10.1002/chem.200401088 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 897IJ UT WOS:000226997000002 PM 15660354 ER PT J AU Dinnebier, RE Vensky, S Jansen, M Hanson, JC AF Dinnebier, RE Vensky, S Jansen, M Hanson, JC TI Crystal structures and topological aspects of the high-temperature phases and decomposition products of the alkali-metal oxalates M-2[C2O4] (M = K, Rb, Cs) SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE alkali metal carbonate; alkali metal oxalate; crystal structure; oxalates; phase transitions; solid-state structures; X-ray diffraction ID POWDER DIFFRACTION; THERMAL-DECOMPOSITION; POTASSIUM OXALATE; LITHIUM OXALATE; SOLID-STATE; UNIT-CELL; REFINEMENT; CARBONATES AB The high-temperature phases of the alkali-metal oxalates M-2[C2O4] (M=K, Rb, Cs), and their decomposition products M-2[CO3] (M=K, Rb, Cs), were investigated by fast, angle-dispersive X-ray powder diffraction with an image-plate detector, and also by simultaneous differential thermal analysis (DTA)/thermogravimetric analysis (TGA)/mass spectrometry (MS) and differential scanning calorimetry (DSC) techniques. The following phases, in order of decreasing temperature, were observed and crystallographically characterized (an asterisk denotes a previously unknown modification): *alpha-K-2[C2O4], *alpha-Rb-2[C2O4], *alpha-Cs-2[C2O4], alpha-K-2[CO3], *alpha-Rb-2[CO3], and *alpha-Cs-2[CO3] in space group P6(3)/mmc; *beta-Rb-2[C2O4], *beta-Cs-2[C2O4], *beta-Rb-2[CO3], and *beta-Cs-2[CO3] in Pnma; gamma-Rb-2[C2O4], gamma-Cs[C2O4], gamma-Rb-2[CO3], and gamma-Cs-2[CO3] in P2(1)/c; and delta-K-2[C2O4] and delta-Rb-2[C2O4] in Pbam. With respect to the centers of gravity of the oxalate and carbonate anions, respectively, the crystal structures of all known alkali-metal oxalates and carbonates belong to the AlB2 family, and adopt either the AlB2 or the Ni2In arrangement depending on the size of the cation and the temperature. Despite the different sizes and constitutions of the carbonate and oxalate anions, the high-temperature phases of the alkali-metal carbonates M-2[CO3] (M=K, Rb, Cs), exhibit the same sequence of basic structures as the corresponding alkali-metal oxalates. The topological aspects and order-disorder phenomena at elevated temperature are discussed. C1 Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Dinnebier, RE (reprint author), Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany. EM r.dinnebier@fkf.mpg.de; m.jansen@fkf.mpg.de RI Hanson, jonathan/E-3517-2010; Dinnebier, Robert/B-5642-2015 OI Dinnebier, Robert/0000-0003-2778-2113 NR 42 TC 17 Z9 18 U1 0 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0947-6539 J9 CHEM-EUR J JI Chem.-Eur. J. PD FEB 4 PY 2005 VL 11 IS 4 BP 1119 EP 1129 DI 10.1002/chem.200400616 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 897IJ UT WOS:000226997000007 PM 15624128 ER PT J AU Mayer, KM Shanklin, J AF Mayer, KM Shanklin, J TI A structural model of the plant acyl-acyl carrier protein thioesterase FatB comprises two helix/4-stranded sheet domains, the N-terminal domain containing residues that affect specificity and the C-terminal domain containing catalytic residues SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID 4-HYDROXYBENZOYL-COA THIOESTERASE; ACP THIOESTERASES; ESCHERICHIA-COLI; SUBSTRATE-SPECIFICITY; ACID BIOSYNTHESIS; CRYSTAL-STRUCTURE; ACTIVE-SITE; PURIFICATION; PREDICTIONS; EXPRESSION AB Plant acyl-acyl carrier protein thioesterases (TEs) terminate the acyl-acyl carrier protein track of fatty acid biosynthesis and play an essential role in determining the amount and composition of fatty acids entering the storage lipid pool. A combination of bioinformatics tools was used to predict a three-dimensional model for Arabidopsis FatB (AtFatB), which comprises a fold similar to that of Escherichia coli TEII, an enzyme that is functionally similar to plant TEs but lacks significant sequence similarity and displays different inhibitor sensitivity. The catalytic residues in AtFatB, Cys-264 and His-229, localize to the same region of the model as catalytic residues found in other enzymes with helix/multi-stranded sheet motifs (hot dog folds). Based on the model, we identified Asn-227 as a possible third member of the proposed papain-like catalytic triad. The conversion of Asn-227 to Ala resulted in a loss of detectable activity (>200-fold reduction), similar to the result seen for the equivalent mutation in papain. Mapping of plant TE specificity-affecting mutations onto the structural model showed that these mutations all cluster around the catalytic triad. Also, superposition of the crystallographically determined structures of the complexes of 4-hydroxybenzoyl-CoA TE with substrate and beta-hydroxydecanoyl thiol ester dehydrase with inhibitor onto the AtFatB model showed that the substrate and inhibitor localize to the same region as the AtFatB catalytic triad in their respective structures. Together these data corroborate the structural model and show that the hot dog fold is common to enzymes from both prokaryotes and eukaryotes and that this fold supports at least three different catalytic mechanisms. C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Shanklin, J (reprint author), Brookhaven Natl Lab, Dept Biol, Biol Bldg 463,50 Bell Ave, Upton, NY 11973 USA. EM shanklin@bnl.gov NR 38 TC 31 Z9 37 U1 0 U2 11 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 4 PY 2005 VL 280 IS 5 BP 3621 EP 3627 DI 10.1074/jbc.M411351200 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 897DJ UT WOS:000226983900061 PM 15531590 ER PT J AU Huang, DT Paydar, A Zhuang, M Waddell, MB Holton, JM Schulman, BA AF Huang, DT Paydar, A Zhuang, M Waddell, MB Holton, JM Schulman, BA TI Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1 SO MOLECULAR CELL LA English DT Article ID UBIQUITIN-LIKE PROTEIN; CONJUGATING ENZYME FAMILY; CRYSTAL-STRUCTURE; COMPLEX REVEALS; E3 LIGASE; SUMO; SPECIFICITY; MUTAGENESIS; RECOGNITION; INSIGHTS AB E2 conjugating enzymes play a central role in ubiquitin and ubiquitin-like protein (ublp) transfer cascades: the E2 accepts the ublp from the E1 enzyme and then the E2 often interacts with an E3 enzyme to promote ublp transfer to the target. We report here the crystal structure of a complex between the C-terminal domain from NEDD8's heterodimeric E1 (APPBP1-UBA3) and the catalytic core domain of NEDD8's E2 (Ubc12). The structure and associated mutational analyses reveal molecular details of Ubc12 recruitment by NEDD8's E1. Interestingly, the E1's Ubc12 binding domain resembles ubiquitin and recruits Ubc12 in a manner mimicking ubiquitin's interactions with ubiquitin binding domains. Structural comparison with E2-E3 complexes indicates that the El and E3 binding sites on Ubc12 may overlap and raises the possibility that cross-talk between E1 and E3 interacting with an E2 could influence the specificity and processivity of ublp transfer. C1 St Jude Childrens Res Hosp, Dept Biol Struct, Memphis, TN 38105 USA. St Jude Childrens Res Hosp, Dept Genet Tumor Cell Biol, Memphis, TN 38105 USA. Univ Tennessee, Ctr Hlth Sci, Interdisciplinary Program, Memphis, TN 38163 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Tennessee, Ctr Hlth Sci, Dept Mol Sci, Memphis, TN 38163 USA. RP Schulman, BA (reprint author), St Jude Childrens Res Hosp, Dept Biol Struct, 332 N Lauderdale St, Memphis, TN 38105 USA. EM brenda.schulman@stjude.org FU NCI NIH HHS [P30CA21765]; NIGMS NIH HHS [R01GM69530] NR 55 TC 104 Z9 107 U1 0 U2 3 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 J9 MOL CELL JI Mol. Cell PD FEB 4 PY 2005 VL 17 IS 3 BP 341 EP 350 DI 10.1016/j.molcel.2004.120.020 PG 10 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 895ZW UT WOS:000226905200004 PM 15694336 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, DL Adams, M Adams, T Agelou, M Agram, JL Ahmed, SN Ahn, SH Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Atramentov, O Autermann, C Avila, C Babukhadia, L Bacon, TC Baden, A Baffioni, S Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Beaudette, F Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Besson, A Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Bhattacharjee, M Binder, M Bischoff, A Black, KM Blackler, I Blazey, G Blekman, F Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Bonamy, P Borcherding, F Borissov, G Bos, K Bose, T Boswell, C Brandt, A Briskin, G Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burnett, TH Busato, E Butler, JM Bystricky, J Canelli, F Carvalho, W Casey, BCK Casey, D Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Chevalier, L Cho, DK Choi, S Chopra, S Christiansen, T Christofek, L Claes, D Clark, AR Clement, B Clement, C Coadou, Y Colling, DJ Coney, L Connolly, B Cooke, M Cooper, WE Coppage, D Corcoran, M Coss, J Cothenet, A Cousinou, MC Crepe-Renaudin, S Cristetiu, M Cummings, MAC Cutts, D da Motta, H Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Dean, S Del Signore, K Deliot, F Delsart, PA Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Eltzroth, JT Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, D Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Fein, D Feligioni, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleuret, F Fortner, M Fox, H Freeman, W Fu, S Fuess, S Galea, CF Gallas, E Galyaev, E Gao, M Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Geurkov, G Ginther, G Goldmann, K Golling, T Gomez, B Gounder, K Goussiou, A Graham, G Grannis, PD Greder, S Green, JA Greenlee, H Greenwood, ZD Gregores, EM Grinstein, S Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gu, W Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haggerty, H Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Hanlet, P Harder, K Harrington, R Hauptman, JM Hauser, R Hays, C Hays, J Hebbeker, T Hebert, C Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Hou, S Hu, Y Huang, J Huang, Y Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Jiang, Y Johns, K Johnson, M Johnson, P Jonckheere, A Jonsson, P Jostlein, H Juste, A Kado, MM Kafer, D Kahl, W Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Ke, Z Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, KH Klima, B Klute, M Kohli, JM Kopal, M Korablev, VM Kotcher, J Kothari, B Kotwal, AV Koubarovsky, A Kouchner, A Kouznetsov, O Kozelov, AV Kozminski, J Krane, J Krishnaswamy, MR Krzywdzinski, S Kubantsev, M Kuleshov, S Kulik, Y Kunori, S Kupco, A Kurca, T Kuznetsov, VE Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, SW Lee, WM Leflat, A Leggett, C Lehner, F Leonidopoulos, C Lewis, P Li, J Li, QZ Li, X Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Lu, J Lubatti, HJ Lucotte, A Lueking, L Luo, C Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magerkurth, A Magnan, AM Maity, M Mal, PK Malik, S Malyshev, VL Manankov, V Mao, HS Maravin, Y Marshall, T Martens, M Martin, MI Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R McMahon, T Meder, D Melanson, HL Melnitchouk, A Meng, X Merkin, M Merritt, KW Meyer, A Miao, C Miettinen, H Mihalcea, D Mishra, CS Mitrevski, J Mokhov, N Molina, J Mondal, NK Montgomery, HE Moore, RW Mostafa, M Muanza, GS Mulders, M Mutaf, YD Nagy, E Nang, F Narain, M Narasimham, VS Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Olivier, B Oshima, N Garzon, GJOY Padley, P Papageorgiou, K Parashar, N Park, J Park, SK Parsons, J Partridge, R Parua, N Patwa, A Perea, PM Perez, E Peters, O Petroff, P Petteni, M Phaf, L Piegaia, R Podesta-Lerma, PLM Podstavkov, VM Pope, BG Popkov, E da Silva, WLP Prosper, HB Protopopescu, S Przybycien, MB Qian, J Quadt, A Quinn, B Rani, KJ Rapidis, PA Ratoff, PN Reay, NW Renardy, JF Reucroft, S Rha, J Ridel, M Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Royon, C Rubinov, P Ruchti, R Sabirov, BM Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schukin, AA Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shary, V Shephard, WD Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skow, D Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Song, Y Sonnenschein, L Sopczak, A Sorin, V Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Steinbruck, G Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strovink, M Stutte, L Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tentindo-Repond, S Thomas, E Thooris, B Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Trippe, TG Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Anh, TV Wahl, HD Walker, R Wallace, N Wang, ZM Warchol, J Warsinsky, M Watts, G Wayne, M Weber, M Weerts, H Wegner, M Wermes, N White, A White, V Whiteson, D Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wlodek, T Wobisch, M Womersley, J Wood, DR Wu, Z Wyatt, TR Xu, Q Xuan, N Yamada, R Yasuda, T Yatsunenko, YA Yen, Y Yip, K Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, B Zhang, D Zhang, X Zhao, T Zhao, Z Zheng, H Zhou, B Zhou, Z Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG Zylberstejn, A AF Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, DL Adams, M Adams, T Agelou, M Agram, JL Ahmed, SN Ahn, SH Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Atramentov, O Autermann, C Avila, C Babukhadia, L Bacon, TC Baden, A Baffioni, S Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Beaudette, F Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Besson, A Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Bhattacharjee, M Binder, M Bischoff, A Black, KM Blackler, I Blazey, G Blekman, F Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Bonamy, P Borcherding, F Borissov, G Bos, K Bose, T Boswell, C Brandt, A Briskin, G Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burnett, TH Busato, E Butler, JM Bystricky, J Canelli, F Carvalho, W Casey, BCK Casey, D Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Chevalier, L Cho, DK Choi, S Chopra, S Christiansen, T Christofek, L Claes, D Clark, AR Clement, B Clement, C Coadou, Y Colling, DJ Coney, L Connolly, B Cooke, M Cooper, WE Coppage, D Corcoran, M Coss, J Cothenet, A Cousinou, MC Crepe-Renaudin, S Cristetiu, M Cummings, MAC Cutts, D da Motta, H Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Dean, S Del Signore, K Deliot, F Delsart, PA Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Eltzroth, JT Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, D Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Fein, D Feligioni, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleuret, F Fortner, M Fox, H Freeman, W Fu, S Fuess, S Galea, CF Gallas, E Galyaev, E Gao, M Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Geurkov, G Ginther, G Goldmann, K Golling, T Gomez, B Gounder, K Goussiou, A Graham, G Grannis, PD Greder, S Green, JA Greenlee, H Greenwood, ZD Gregores, EM Grinstein, S Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gu, W Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haggerty, H Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Hanlet, P Harder, K Harrington, R Hauptman, JM Hauser, R Hays, C Hays, J Hebbeker, T Hebert, C Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Hou, S Hu, Y Huang, J Huang, Y Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Jiang, Y Johns, K Johnson, M Johnson, P Jonckheere, A Jonsson, P Jostlein, H Juste, A Kado, MM Kafer, D Kahl, W Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Ke, Z Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, KH Klima, B Klute, M Kohli, JM Kopal, M Korablev, VM Kotcher, J Kothari, B Kotwal, AV Koubarovsky, A Kouchner, A Kouznetsov, O Kozelov, AV Kozminski, J Krane, J Krishnaswamy, MR Krzywdzinski, S Kubantsev, M Kuleshov, S Kulik, Y Kunori, S Kupco, A Kurca, T Kuznetsov, VE Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, SW Lee, WM Leflat, A Leggett, C Lehner, F Leonidopoulos, C Lewis, P Li, J Li, QZ Li, X Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Lu, J Lubatti, HJ Lucotte, A Lueking, L Luo, C Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magerkurth, A Magnan, AM Maity, M Mal, PK Malik, S Malyshev, VL Manankov, V Mao, HS Maravin, Y Marshall, T Martens, M Martin, MI Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R McMahon, T Meder, D Melanson, HL Melnitchouk, A Meng, X Merkin, M Merritt, KW Meyer, A Miao, C Miettinen, H Mihalcea, D Mishra, CS Mitrevski, J Mokhov, N Molina, J Mondal, NK Montgomery, HE Moore, RW Mostafa, M Muanza, GS Mulders, M Mutaf, YD Nagy, E Nang, F Narain, M Narasimham, VS Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Olivier, B Oshima, N Garzon, GJOY Padley, P Papageorgiou, K Parashar, N Park, J Park, SK Parsons, J Partridge, R Parua, N Patwa, A Perea, PM Perez, E Peters, O Petroff, P Petteni, M Phaf, L Piegaia, R Podesta-Lerma, PLM Podstavkov, VM Pope, BG Popkov, E da Silva, WLP Prosper, HB Protopopescu, S Przybycien, MB Qian, J Quadt, A Quinn, B Rani, KJ Rapidis, PA Ratoff, PN Reay, NW Renardy, JF Reucroft, S Rha, J Ridel, M Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Royon, C Rubinov, P Ruchti, R Sabirov, BM Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schukin, AA Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shary, V Shephard, WD Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skow, D Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Song, Y Sonnenschein, L Sopczak, A Sorin, V Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Steinbruck, G Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strovink, M Stutte, L Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tentindo-Repond, S Thomas, E Thooris, B Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Trippe, TG Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Anh, TV Wahl, HD Walker, R Wallace, N Wang, ZM Warchol, J Warsinsky, M Watts, G Wayne, M Weber, M Weerts, H Wegner, M Wermes, N White, A White, V Whiteson, D Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wlodek, T Wobisch, M Womersley, J Wood, DR Wu, Z Wyatt, TR Xu, Q Xuan, N Yamada, R Yasuda, T Yatsunenko, YA Yen, Y Yip, K Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, B Zhang, D Zhang, X Zhao, T Zhao, Z Zheng, H Zhou, B Zhou, Z Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG Zylberstejn, A CA D0 Collaboration TI Search for supersymmetry with gauge-mediated breaking in diphoton events at D0 SO PHYSICAL REVIEW LETTERS LA English DT Article ID LIGHT GRAVITINO; MODELS AB We report the results of a search for supersymmetry (SUSY) with gauge-mediated breaking in the missing transverse energy distribution of inclusive diphoton events using 263 pb(-1) of data collected by the D0 experiment at the Fermilab Tevatron Collider in 2002-2004. No excess is observed above the background expected from standard model processes, and lower limits on the masses of the lightest neutralino and chargino of about 108 and 195 GeV, respectively, are set at the 95% confidence level. These are the most stringent limits to date for models with gauge-mediated SUSY breaking with a short-lived neutralino as the next-to-lightest SUSY particle. C1 Joint Inst Nucl Res, Dubna, Russia. Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republ, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Mediterranee, CNRS, IN2P3, CPPM, Marseille, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. Univ Paris 06, LPNHE, Paris, France. Univ Paris 07, CNRS, IN2P3, Paris, France. CEA, DAPNIA, Serv Phys Particules, Saclay, France. Univ Strasbourg 1, CNRS, IN2P3, IReS, Strasbourg, France. Univ Haute Alsace, Alsace, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys 3 A, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. NIKHEF H, FOM Inst, NL-1009 DB Amsterdam, Netherlands. Univ Amsterdam, NIKHEF H, Amsterdam, Netherlands. Univ Nijmegen, NIKHEF H, Nijmegen, Netherlands. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Stockholm Univ, Royal Inst Technol, S-10691 Stockholm, Sweden. Lund Univ, Lund, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Yip, Kin/D-6860-2013; Kuleshov, Sergey/D-9940-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013; Sznajder, Andre/L-1621-2016; Canelli, Florencia/O-9693-2016 OI Sharyy, Viatcheslav/0000-0002-7161-2616; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; Kuleshov, Sergey/0000-0002-3065-326X; De, Kaushik/0000-0002-5647-4489; Sznajder, Andre/0000-0001-6998-1108; Canelli, Florencia/0000-0001-6361-2117 NR 24 TC 2 Z9 2 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2005 VL 94 IS 4 AR 041801 DI 10.1103/PhysRevLett.94.041801 PG 7 WC Physics, Multidisciplinary SC Physics GA 894GN UT WOS:000226779000015 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, DL Adams, M Adams, T Agelou, M Agram, JL Ahmed, SN Ahn, SH Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Atramentov, O Autermann, C Avila, C Babukhadia, L Bacon, TC Badaud, F Baden, A Baffioni, S Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Beaudette, F Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Besson, A Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Bhattacharjee, M Binder, M Bischoff, A Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Bonamy, P Borcherding, F Borissov, G Bos, K Bose, T Boswell, C Brandt, A Briskin, G Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burnett, TH Busato, E Butler, JM Bystricky, J Canelli, F Carvalho, W Casey, BCK Casey, D Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Chevalier, L Cho, DK Choi, S Chopra, S Christiansen, T Christofek, L Claes, D Clark, AR Clement, B Clement, C Coadou, Y Colling, DJ Coney, L Connolly, B Cooke, M Cooper, WE Coppage, D Corcoran, M Coss, J Cothenet, A Cousinou, MC Crepe-Renaudin, S Cristetiu, M Cummings, MAC Cutts, D da Motta, H Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CDO Dean, S Del Signore, K Deliot, F Delsart, PA Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Eltzroth, JT Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, D Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Fein, D Feligioni, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleuret, F Fortner, M Fox, H Freeman, W Fu, S Fuess, S Galea, CF Gallas, E Galyaev, E Gao, M Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Geurkov, G Ginther, G Goldmann, K Golling, T Gomez, B Gounder, K Goussiou, A Graham, G Grannis, PD Greder, S Green, JA Greenlee, H Greenwood, ZD Gregores, EM Grinstein, S Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gu, W Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haggerty, H Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Hanlet, P Harder, K Harrington, R Hauptman, JM Hauser, R Hays, C Hays, J Hebbeker, T Hebert, C Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Hou, S Houben, P Hu, Y Huang, J Huang, Y Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Jiang, Y Johns, K Johnson, M Johnson, P Jonckheere, A Jonsson, P Jostlein, H Juste, A Kado, MM Kafer, D Kahl, W Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Ke, Z Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, KH Klima, B Klute, M Kohli, JM Kopal, M Korablev, VM Kotcher, J Kothari, B Kotwal, AV Koubarovsky, A Kouznetsov, O Kozelov, AV Kozminski, J Krane, J Krishnaswamy, MR Krzywdzinski, S Kubantsev, M Kuleshov, S Kulik, Y Kunori, S Kupco, A Kurca, T Kuznetsov, VE Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, SW Lee, WM Leflat, A Leggett, C Lehner, F Leonidopoulos, C Lewis, P Li, J Li, QZ Li, X Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Lu, J Lubatti, HJ Lucotte, A Lueking, L Luo, C Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magerkurth, A Magnan, AM Maity, M Makovec, N Mal, PK Malik, S Malyshev, VL Manankov, V Mao, HS Maravin, Y Marshall, T Martens, M Martin, MI Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R McMahon, T Meder, D Melanson, HL Melnitchouk, A Meng, X Merkin, M Merritt, KW Meyer, A Miao, C Miettinen, H Mihalcea, D Mitrevski, J Mokhov, N Molina, J Mondal, NK Montgomery, HE Moore, RW Mostafa, M Muanza, GS Mulders, M Mutaf, YD Nagy, E Nang, F Narain, M Narasimham, VS Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Olivier, B Oshima, N Garzon, GJOY Padley, P Papageorgiou, K Parashar, N Park, J Park, SK Parsons, J Partridge, R Parua, N Patwa, A Perea, PM Perez, E Peters, O Petroff, P Petteni, M Phaf, L Piegaia, R Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pope, BG Popkov, E da Silva, WLP Prosper, HB Protopopescu, S Przybycien, MB Qian, J Quadt, A Quinn, B Rani, KJ Rapidis, PA Ratoff, PN Reay, NW Renardy, JF Reucroft, S Rha, J Ridel, M Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Royon, C Rubinov, P Ruchti, R Sabirov, BM Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schukin, AA Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shary, V Shephard, WD Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skow, D Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Song, Y Sonnenschein, L Sopczak, A Sorin, V Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Steinbruck, G Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tentindo-Repond, S Thomas, E Thooris, B Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Trippe, TG Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Toerne, EV Vreeswijk, M Anh, TV Wahl, HD Walker, R Wallace, N Wang, ZM Warchol, J Warsinsky, M Watts, G Wayne, M Weber, M Weerts, H Wegner, M Wermes, N White, A White, V Whiteson, D Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wlodek, T Wobisch, M Womersley, J Wood, DR Wu, Z Wyatt, TR Xu, Q Xuan, N Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, B Zhang, D Zhang, X Zhao, T Zhao, Z Zheng, H Zhou, B Zhou, Z Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG Zylberstejn, A AF Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, DL Adams, M Adams, T Agelou, M Agram, JL Ahmed, SN Ahn, SH Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Atramentov, O Autermann, C Avila, C Babukhadia, L Bacon, TC Badaud, F Baden, A Baffioni, S Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Beaudette, F Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Besson, A Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Bhattacharjee, M Binder, M Bischoff, A Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Bonamy, P Borcherding, F Borissov, G Bos, K Bose, T Boswell, C Brandt, A Briskin, G Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burnett, TH Busato, E Butler, JM Bystricky, J Canelli, F Carvalho, W Casey, BCK Casey, D Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Chevalier, L Cho, DK Choi, S Chopra, S Christiansen, T Christofek, L Claes, D Clark, AR Clement, B Clement, C Coadou, Y Colling, DJ Coney, L Connolly, B Cooke, M Cooper, WE Coppage, D Corcoran, M Coss, J Cothenet, A Cousinou, MC Crepe-Renaudin, S Cristetiu, M Cummings, MAC Cutts, D da Motta, H Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CDO Dean, S Del Signore, K Deliot, F Delsart, PA Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Eltzroth, JT Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, D Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Fein, D Feligioni, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleuret, F Fortner, M Fox, H Freeman, W Fu, S Fuess, S Galea, CF Gallas, E Galyaev, E Gao, M Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Geurkov, G Ginther, G Goldmann, K Golling, T Gomez, B Gounder, K Goussiou, A Graham, G Grannis, PD Greder, S Green, JA Greenlee, H Greenwood, ZD Gregores, EM Grinstein, S Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gu, W Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haggerty, H Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Hanlet, P Harder, K Harrington, R Hauptman, JM Hauser, R Hays, C Hays, J Hebbeker, T Hebert, C Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Hou, S Houben, P Hu, Y Huang, J Huang, Y Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Jiang, Y Johns, K Johnson, M Johnson, P Jonckheere, A Jonsson, P Jostlein, H Juste, A Kado, MM Kafer, D Kahl, W Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Ke, Z Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, KH Klima, B Klute, M Kohli, JM Kopal, M Korablev, VM Kotcher, J Kothari, B Kotwal, AV Koubarovsky, A Kouznetsov, O Kozelov, AV Kozminski, J Krane, J Krishnaswamy, MR Krzywdzinski, S Kubantsev, M Kuleshov, S Kulik, Y Kunori, S Kupco, A Kurca, T Kuznetsov, VE Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, SW Lee, WM Leflat, A Leggett, C Lehner, F Leonidopoulos, C Lewis, P Li, J Li, QZ Li, X Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Lu, J Lubatti, HJ Lucotte, A Lueking, L Luo, C Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magerkurth, A Magnan, AM Maity, M Makovec, N Mal, PK Malik, S Malyshev, VL Manankov, V Mao, HS Maravin, Y Marshall, T Martens, M Martin, MI Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R McMahon, T Meder, D Melanson, HL Melnitchouk, A Meng, X Merkin, M Merritt, KW Meyer, A Miao, C Miettinen, H Mihalcea, D Mitrevski, J Mokhov, N Molina, J Mondal, NK Montgomery, HE Moore, RW Mostafa, M Muanza, GS Mulders, M Mutaf, YD Nagy, E Nang, F Narain, M Narasimham, VS Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Olivier, B Oshima, N Garzon, GJOY Padley, P Papageorgiou, K Parashar, N Park, J Park, SK Parsons, J Partridge, R Parua, N Patwa, A Perea, PM Perez, E Peters, O Petroff, P Petteni, M Phaf, L Piegaia, R Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pope, BG Popkov, E da Silva, WLP Prosper, HB Protopopescu, S Przybycien, MB Qian, J Quadt, A Quinn, B Rani, KJ Rapidis, PA Ratoff, PN Reay, NW Renardy, JF Reucroft, S Rha, J Ridel, M Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Royon, C Rubinov, P Ruchti, R Sabirov, BM Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schukin, AA Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shary, V Shephard, WD Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skow, D Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Song, Y Sonnenschein, L Sopczak, A Sorin, V Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Steinbruck, G Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tentindo-Repond, S Thomas, E Thooris, B Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Trippe, TG Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Toerne, EV Vreeswijk, M Anh, TV Wahl, HD Walker, R Wallace, N Wang, ZM Warchol, J Warsinsky, M Watts, G Wayne, M Weber, M Weerts, H Wegner, M Wermes, N White, A White, V Whiteson, D Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wlodek, T Wobisch, M Womersley, J Wood, DR Wu, Z Wyatt, TR Xu, Q Xuan, N Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, B Zhang, D Zhang, X Zhao, T Zhao, Z Zheng, H Zhou, B Zhou, Z Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG Zylberstejn, A CA D0 Collaboration TI Measurement of the B-s(0) lifetime in the exclusive decay channel B-s(0)-> J/psi phi SO PHYSICAL REVIEW LETTERS LA English DT Article AB Using the exclusive decay B-s(0)-->J/psi(mu(+)mu(-))phi(K+K-), we report the most precise single measurement of the B-s(0) lifetime. The data sample corresponds to an integrated luminosity of approximately 220 pb(-1) collected with the D0 detector at the Fermilab Tevatron Collider in 2002-2004. We reconstruct 337 signal candidates, from which we extract the B-s(0) lifetime, tau(B-s(0))=1.444(-0.090)(+0.098)(stat)+/-0.020(sys) ps. We also report a measurement for the lifetime of the B-0 meson using the exclusive decay B-0-->J/psi(mu(+)mu(-))K-*0(892)(K(+)pi(-)). We reconstruct 1370 signal candidates, obtaining tau(B-0)=1.473(-0.050)(+0.052)(stat)+/-0.023(sys) ps, and the ratio of lifetimes, tau(B-s(0))/tau(B-0)=0.980(-0.071)(+0.076)(stat)+/-0.003(sys). C1 Joint Inst Nucl Res, Dubna, Russia. Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. Univ Paris 06, LPNHE, Paris, France. Univ Paris 07, CNRS, IN2P3, Paris, France. CEA, DAPNIA, Serv Phys Particules, Saclay, France. Univ Strasbourg, CNRS, IN2P3, IReS, Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys 3 A, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. NIKHEF H, FOM Inst, NL-1009 DB Amsterdam, Netherlands. Univ Amsterdam, NIKHEF H, Amsterdam, Netherlands. Univ Nijmegen, NIKHEF H, Nijmegen, Netherlands. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Joint Inst Nucl Res, Dubna, Russia. RI Kuleshov, Sergey/D-9940-2013; Canelli, Florencia/O-9693-2016; Bargassa, Pedrame/O-2417-2016; Juste, Aurelio/I-2531-2015; Merkin, Mikhail/D-6809-2012; De, Kaushik/N-1953-2013; Santoro, Alberto/E-7932-2014; Sznajder, Andre/L-1621-2016; Oguri, Vitor/B-5403-2013; Fisher, Wade/N-4491-2013; Sharyy, Viatcheslav/F-9057-2014; Yip, Kin/D-6860-2013; Novaes, Sergio/D-3532-2012; Telford, Paul/B-6253-2011; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Deliot, Frederic/F-3321-2014; Nomerotski, Andrei/A-5169-2010; Alves, Gilvan/C-4007-2013; Shivpuri, R K/A-5848-2010; Dudko, Lev/D-7127-2012 OI Fatakia, Sarosh/0000-0003-0430-3191; Bertram, Iain/0000-0003-4073-4941; Madaras, Ronald/0000-0001-7399-2993; Begel, Michael/0000-0002-1634-4399; Haas, Andrew/0000-0002-4832-0455; Weber, Michele/0000-0002-2770-9031; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Kuleshov, Sergey/0000-0002-3065-326X; Canelli, Florencia/0000-0001-6361-2117; Sawyer, Lee/0000-0001-8295-0605; Bargassa, Pedrame/0000-0001-8612-3332; Hedin, David/0000-0001-9984-215X; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Leonidopoulos, Christos/0000-0002-7241-2114; Blekman, Freya/0000-0002-7366-7098; Blazey, Gerald/0000-0002-7435-5758; Evans, Harold/0000-0003-2183-3127; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Bean, Alice/0000-0001-5967-8674; Strovink, Mark/0000-0001-7020-7769; De, Kaushik/0000-0002-5647-4489; Sznajder, Andre/0000-0001-6998-1108; Sharyy, Viatcheslav/0000-0002-7161-2616; Yip, Kin/0000-0002-8576-4311; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192 NR 11 TC 80 Z9 80 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2005 VL 94 IS 4 AR 042001 DI 10.1103/PhysRevLett.94.042001 PG 7 WC Physics, Multidisciplinary SC Physics GA 894GN UT WOS:000226779000018 PM 15904361 ER PT J AU Abo-Shaeer, JR Miller, DE Chin, JK Xu, K Mukaiyama, T Ketterle, W AF Abo-Shaeer, JR Miller, DE Chin, JK Xu, K Mukaiyama, T Ketterle, W TI Coherent molecular optics using ultracold sodium dimers SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATE; MATTER WAVES; PHASE; AMPLIFICATION; GAS; INTERFEROMETRY; SUPPRESSION; SCATTERING; FERMIONS; ATOMS AB Coherent molecular optics is performed using two-photon Bragg scattering. Molecules were produced by sweeping an atomic Bose-Einstein condensate through a Feshbach resonance. The spectral width of the molecular Bragg resonance corresponded to an instantaneous temperature of 20 nK, indicating that atomic coherence was transferred directly to the molecules. An autocorrelating interference technique was used to observe the quadratic spatial dependence of the phase of an expanding molecular cloud. Finally, atoms initially prepared in two momentum states were observed to cross pair with one another, forming molecules in a third momentum state. This process is analogous to sum-frequency generation in optics. C1 MIT, Harvard Ctr Ultracold Atoms, Dept Phys, Cambridge, MA 02139 USA. MIT, Elect Res Lab, Cambridge, MA 02139 USA. RP Abo-Shaeer, JR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, MS88R0192, Berkeley, CA 94720 USA. EM jrabo-shaeer@lbl.gov NR 34 TC 21 Z9 23 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2005 VL 94 IS 4 AR 040405 DI 10.1103/PhysRevLett.94.040405 PG 4 WC Physics, Multidisciplinary SC Physics GA 894GN UT WOS:000226779000005 PM 15783537 ER PT J AU Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Arguin, JF Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barker, GJ Barnes, VE Barnett, BA Baroiant, S Barone, M Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Ben-Haim, E Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bishai, M Blair, RE Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Bolla, G Bolshov, A Booth, PSL Bortoletto, D Boudreau, J Bourov, S Bromberg, C Brubaker, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canepa, A Casarsa, M Carlsmith, D Carron, S Carosi, R Cavalli-Sforza, M Castro, A Catastini, P Cauz, D Cerri, A Cerri, C Cerrito, L Chapman, J Chen, C Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chu, ML Chuang, S Chung, JY Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, AG Clark, D Coca, M Connolly, A Convery, M Conway, J Cooper, B Cordelli, M Cortiana, G Cranshaw, J Cuevas, J Culbertson, R Currat, C Cyr, D Dagenhart, D Da Ronco, S D'Auria, S de Barbaro, P De Cecco, S De Lentdecker, G Dell'Agnello, S Dell'Orso, M Demers, S Demortier, L Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR Doksus, P Dominguez, A Donati, S Donega, M Donini, J D'Onofrio, M Dorigo, T Drollinger, V Ebina, K Eddy, N Ely, R Erbacher, R Erdmann, M Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Feild, RG Feindt, M Fernandez, JP Ferretti, C Field, RD Fiori, I Flanagan, G Flaugher, B Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Frisch, H Fujii, Y Furic, I Gajjar, A Gallas, A Galyardt, J Gallinaro, M Garcia-Sciveres, M Garfinkel, AF Gay, C Gerberich, H Gerdes, DW Gerchtein, E Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giolo, K Giordani, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, D Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grosso-Pilcher, C Grundler, U Guenther, M da Costa, JG Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Handler, R Happacher, F Hara, K Hare, M Harr, RF Harris, RM Hartmann, F Hatakeyama, K Hauser, J Hays, C Hayward, H Heider, E Heinemann, B Heinrich, J Hennecke, M Herndon, M Hill, C Hirschbuehl, D Hocker, A Hoffman, KD Holloway, A Hou, S Houlden, MA Huffman, BT Huang, Y Hughes, RE Huston, J Ikado, K Incandela, J Introzzi, G Iori, M Ishizawa, Y Issever, C Ivanov, A Iwata, Y Iyutin, B James, E Jang, D Jarrell, J Jeans, D Jensen, H Jeon, EJ Jones, M Joo, KK Jun, S Junk, T Kamon, T Kang, J Unel, MK Karchin, PE Kartal, S Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, MS Kim, SB Kim, SH Kim, TH Kim, YK King, BT Kirby, M Kirsch, L Klimenko, S Knuteson, B Ko, BR Kobayashi, H Koehn, P Kong, DJ Kondo, K Konigsberg, J Kordas, K Korn, A Korytov, A Kotelnikov, K Kotwal, AV Kovalev, A Kraus, J Kravchenko, I Kreymer, A Kroll, J Kruse, M Krutelyov, V Kuhlmann, SE Kuznetsova, N Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, J Lancaster, M Lander, R Lannon, K Lath, A Latino, G Lauhakangas, R Lazzizzera, I Le, Y Lecci, C LeCompte, T Lee, J Lee, J Lee, SW Lefevre, R Leonardo, N Leone, S Lewis, JD Li, K Lin, C Lin, CS Lindgren, M Liss, TM Litvintsev, DO Liu, T Liu, Y Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Maksimovic, P Malferrari, L Manca, G Marginean, R Martin, M Martin, A Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, M Mazzanti, P McFarland, KS McGivern, D McIntyre, PM McNamara, P NcNulty, R Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miller, L Miller, R Miller, JS Miquel, R Miscetti, S Mitselmakher, G Miyamoto, A Miyazaki, Y Moggi, N Mohr, B Moore, R Morello, M Mukherjee, A Mulhearn, M Muller, T Mumford, R Munar, A Murat, P Nachtman, J Nahn, S Nakamura, I Nakano, I Napier, A Napora, R Naumov, D Necula, V Niell, F Nielsen, J Nelson, C Nelson, T Neu, C Neubauer, MS Newman-Holmes, C Nicollerat, AS Nigmanov, T Nodulman, L Norniella, O Oesterberg, K Ogawa, T Oh, SH Oh, YD Ohsugi, T Okusawa, T Oldeman, R Orava, R Orejudos, W Pagliarone, C Palmonari, F Paoletti, R Papadimitriou, V Pashapour, S Patrick, J Pauletta, G Paulini, M Pauly, T Paus, C Pellett, D Penzo, A Phillips, TJ Piacentino, G Piedra, J Pitts, KT Plager, C Pompos, A Pondrom, L Pope, G Poukhov, O Prakoshyn, F Pratt, T Pronko, A Proudfoot, J Ptohos, F Punzi, G Rademacker, J Rakitine, A Rappoccio, S Ratnikov, F Ray, H Reichold, A Reisert, B Rekovic, V Renton, P Rescigno, M Rimondi, F Rinnert, K Ristori, L Robertson, WJ Robson, A Rodrigo, T Rolli, S Rosenson, L Roser, R Rossin, R Rott, C Russ, J Ruiz, A Ryan, D Saarikko, H Sabik, S Safonov, A St Denis, R Sakumoto, WK Salamanna, G Saltzberg, D Sanchez, C Sansoni, A Santi, L Sarkar, S Sato, K Savard, P Savoy-Navarro, A Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semeria, F Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Siegrist, J Siket, M Sill, A Sinervo, P Sisakyan, A Skiba, A Slaughter, AJ Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Somalwar, SV Spalding, J Spezziga, M Spiegel, L Spinella, F Spiropulu, M Squillacioti, P Stadie, H Stefanini, A Stelzer, B Stelzer-Chilton, O Strologas, J Stuart, D Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Tafirout, R Takach, SF Takano, H Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tapprogge, S Tecchio, M Teng, PK Terashi, K Tesarek, RJ Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tseng, J Tsuchiya, R Tsuno, S Tsybychev, D Turini, N Turner, M Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vacavant, L Vaiciulis, A Varganov, A Vataga, E Vejcik, S Velev, G Veszpremi, V Veramendi, G Vickey, T Vidal, R Vila, I Vilar, R Vollrath, I Volobouev, I von der Mey, M Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Yamashita, T Yamamoto, K Wan, Z Wang, MJ Wang, SM Warburton, A Ward, B Waschke, S Waters, D Watts, T Weber, M Wester, WC Whitehouse, B Wicklund, AB Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolter, M Worcester, M Worm, S Wright, T Wu, X Wurthwein, F Wyatt, A Yagil, A Yang, UK Yao, W Yeh, GP Yi, K Yoh, J Yoon, P Yorita, K Yoshida, T Yu, I Yu, S Yu, Z Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhou, J Zsenei, A Zucchelli, S AF Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Arguin, JF Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barker, GJ Barnes, VE Barnett, BA Baroiant, S Barone, M Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Ben-Haim, E Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bishai, M Blair, RE Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Bolla, G Bolshov, A Booth, PSL Bortoletto, D Boudreau, J Bourov, S Bromberg, C Brubaker, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canepa, A Casarsa, M Carlsmith, D Carron, S Carosi, R Cavalli-Sforza, M Castro, A Catastini, P Cauz, D Cerri, A Cerri, C Cerrito, L Chapman, J Chen, C Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chu, ML Chuang, S Chung, JY Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, AG Clark, D Coca, M Connolly, A Convery, M Conway, J Cooper, B Cordelli, M Cortiana, G Cranshaw, J Cuevas, J Culbertson, R Currat, C Cyr, D Dagenhart, D Da Ronco, S D'Auria, S de Barbaro, P De Cecco, S De Lentdecker, G Dell'Agnello, S Dell'Orso, M Demers, S Demortier, L Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR Doksus, P Dominguez, A Donati, S Donega, M Donini, J D'Onofrio, M Dorigo, T Drollinger, V Ebina, K Eddy, N Ely, R Erbacher, R Erdmann, M Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Feild, RG Feindt, M Fernandez, JP Ferretti, C Field, RD Fiori, I Flanagan, G Flaugher, B Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Frisch, H Fujii, Y Furic, I Gajjar, A Gallas, A Galyardt, J Gallinaro, M Garcia-Sciveres, M Garfinkel, AF Gay, C Gerberich, H Gerdes, DW Gerchtein, E Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giolo, K Giordani, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, D Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grosso-Pilcher, C Grundler, U Guenther, M da Costa, JG Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Handler, R Happacher, F Hara, K Hare, M Harr, RF Harris, RM Hartmann, F Hatakeyama, K Hauser, J Hays, C Hayward, H Heider, E Heinemann, B Heinrich, J Hennecke, M Herndon, M Hill, C Hirschbuehl, D Hocker, A Hoffman, KD Holloway, A Hou, S Houlden, MA Huffman, BT Huang, Y Hughes, RE Huston, J Ikado, K Incandela, J Introzzi, G Iori, M Ishizawa, Y Issever, C Ivanov, A Iwata, Y Iyutin, B James, E Jang, D Jarrell, J Jeans, D Jensen, H Jeon, EJ Jones, M Joo, KK Jun, S Junk, T Kamon, T Kang, J Unel, MK Karchin, PE Kartal, S Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, MS Kim, SB Kim, SH Kim, TH Kim, YK King, BT Kirby, M Kirsch, L Klimenko, S Knuteson, B Ko, BR Kobayashi, H Koehn, P Kong, DJ Kondo, K Konigsberg, J Kordas, K Korn, A Korytov, A Kotelnikov, K Kotwal, AV Kovalev, A Kraus, J Kravchenko, I Kreymer, A Kroll, J Kruse, M Krutelyov, V Kuhlmann, SE Kuznetsova, N Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, J Lancaster, M Lander, R Lannon, K Lath, A Latino, G Lauhakangas, R Lazzizzera, I Le, Y Lecci, C LeCompte, T Lee, J Lee, J Lee, SW Lefevre, R Leonardo, N Leone, S Lewis, JD Li, K Lin, C Lin, CS Lindgren, M Liss, TM Litvintsev, DO Liu, T Liu, Y Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Maksimovic, P Malferrari, L Manca, G Marginean, R Martin, M Martin, A Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, M Mazzanti, P McFarland, KS McGivern, D McIntyre, PM McNamara, P NcNulty, R Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miller, L Miller, R Miller, JS Miquel, R Miscetti, S Mitselmakher, G Miyamoto, A Miyazaki, Y Moggi, N Mohr, B Moore, R Morello, M Mukherjee, A Mulhearn, M Muller, T Mumford, R Munar, A Murat, P Nachtman, J Nahn, S Nakamura, I Nakano, I Napier, A Napora, R Naumov, D Necula, V Niell, F Nielsen, J Nelson, C Nelson, T Neu, C Neubauer, MS Newman-Holmes, C Nicollerat, AS Nigmanov, T Nodulman, L Norniella, O Oesterberg, K Ogawa, T Oh, SH Oh, YD Ohsugi, T Okusawa, T Oldeman, R Orava, R Orejudos, W Pagliarone, C Palmonari, F Paoletti, R Papadimitriou, V Pashapour, S Patrick, J Pauletta, G Paulini, M Pauly, T Paus, C Pellett, D Penzo, A Phillips, TJ Piacentino, G Piedra, J Pitts, KT Plager, C Pompos, A Pondrom, L Pope, G Poukhov, O Prakoshyn, F Pratt, T Pronko, A Proudfoot, J Ptohos, F Punzi, G Rademacker, J Rakitine, A Rappoccio, S Ratnikov, F Ray, H Reichold, A Reisert, B Rekovic, V Renton, P Rescigno, M Rimondi, F Rinnert, K Ristori, L Robertson, WJ Robson, A Rodrigo, T Rolli, S Rosenson, L Roser, R Rossin, R Rott, C Russ, J Ruiz, A Ryan, D Saarikko, H Sabik, S Safonov, A St Denis, R Sakumoto, WK Salamanna, G Saltzberg, D Sanchez, C Sansoni, A Santi, L Sarkar, S Sato, K Savard, P Savoy-Navarro, A Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semeria, F Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Siegrist, J Siket, M Sill, A Sinervo, P Sisakyan, A Skiba, A Slaughter, AJ Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Somalwar, SV Spalding, J Spezziga, M Spiegel, L Spinella, F Spiropulu, M Squillacioti, P Stadie, H Stefanini, A Stelzer, B Stelzer-Chilton, O Strologas, J Stuart, D Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Tafirout, R Takach, SF Takano, H Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tapprogge, S Tecchio, M Teng, PK Terashi, K Tesarek, RJ Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tseng, J Tsuchiya, R Tsuno, S Tsybychev, D Turini, N Turner, M Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vacavant, L Vaiciulis, A Varganov, A Vataga, E Vejcik, S Velev, G Veszpremi, V Veramendi, G Vickey, T Vidal, R Vila, I Vilar, R Vollrath, I Volobouev, I von der Mey, M Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Yamashita, T Yamamoto, K Wan, Z Wang, MJ Wang, SM Warburton, A Ward, B Waschke, S Waters, D Watts, T Weber, M Wester, WC Whitehouse, B Wicklund, AB Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolter, M Worcester, M Worm, S Wright, T Wu, X Wurthwein, F Wyatt, A Yagil, A Yang, UK Yao, W Yeh, GP Yi, K Yoh, J Yoon, P Yorita, K Yoshida, T Yu, I Yu, S Yu, Z Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhou, J Zsenei, A Zucchelli, S CA CDF Collaboration TI Measurement of W gamma and Z gamma production in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID MEDIATED SUPERSYMMETRY-BREAKING; PHOTON COUPLINGS; HADRON COLLIDERS; QCD CORRECTIONS; ENERGY; LIMITS AB The standard model predictions for Wgamma and Zgamma production are tested using an integrated luminosity of 200 pb(-1) of p (p) over bar collision data collected at the Collider Detector at Fermilab. The cross sections are measured by selecting leptonic decays of the W and Z bosons, and photons with transverse energy E(T)>7 GeV that are well separated from leptons. The production cross sections and kinematic distributions for the Wgamma and Zgamma data are compared to SM predictions. C1 Univ Florida, Gainesville, FL 32611 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Helsinki Grp, Helsinki Inst Phys, FIN-00044 Helsinki, Finland. Univ Helsinki, Dept Phys Sci, Div High Energy Phys, FIN-00044 Helsinki, Finland. Hiroshima Univ, Higashihiroshima 724, Japan. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, I-56100 Pisa, Italy. Scuola Normale Super Pisa, I-56100 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Texas Tech Univ, Lubbock, TX 79409 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Acosta, D (reprint author), Univ Florida, Gainesville, FL 32611 USA. RI Lancaster, Mark/C-1693-2008; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Wolter, Marcin/A-7412-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Chiarelli, Giorgio/E-8953-2012; Ivanov, Andrew/A-7982-2013; Prokoshin, Fedor/E-2795-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Gallas Torreira, Abraham Antonio/K-6508-2014; Scodellaro, Luca/K-9091-2014; Connolly, Amy/J-3958-2013; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Cavalli-Sforza, Matteo/H-7102-2015; ciocci, maria agnese /I-2153-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015 OI Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Chiarelli, Giorgio/0000-0001-9851-4816; Ivanov, Andrew/0000-0002-9270-5643; Prokoshin, Fedor/0000-0001-6389-5399; Warburton, Andreas/0000-0002-2298-7315; Gallas Torreira, Abraham Antonio/0000-0002-2745-7954; Scodellaro, Luca/0000-0002-4974-8330; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133 NR 26 TC 33 Z9 33 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2005 VL 94 IS 4 AR 041803 DI 10.1103/PhysRevLett.94.041803 PG 7 WC Physics, Multidisciplinary SC Physics GA 894GN UT WOS:000226779000017 ER PT J AU Aubert, B Barate, R Boutigny, D Couderc, F Gaillard, JM Hicheur, A Karyotakis, Y Lees, JP Tisserand, V Zghiche, A Palano, A Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Borgland, AW Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Shelkov, VG Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Steinke, M Boyd, JT Chevalier, N Cottingham, WN Kelly, MP Latham, TE Wilson, FF Cuhadar-Donszelmann, T Hearty, C Knecht, NS Mattison, TS McKenna, JA Thiessen, D Khan, A Kyberd, P Teodorescu, L Blinov, VE Druzhinin, VP Golubev, VB Ivanchenko, VN Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bruinsma, M Chao, M Eschrich, I Kirkby, D Lankford, AJ Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Foulkes, SD Gary, JW Shen, BC Wang, K del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Dahmes, B Levy, SL Long, O Lu, A Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Heusch, CA Lockman, WS Schalk, T Schmitz, RE Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Yang, S Jayatilleke, S Mancinelli, G Meadows, BT Sokoloff, MD Abe, T Blanc, F Bloom, P Chen, S Ford, WT Nauenberg, U Olivas, A Rankin, P Smith, JG Zhang, J Zhang, L Chen, A Harton, JL Soffer, A Toki, WH Wilson, RJ Zeng, QL Altenburg, D Brandt, T Brose, J Dickopp, M Feltresi, E Hauke, A Lacker, HM Muller-Pfefferkorn, R Nogowski, R Otto, S Petzold, A Schubert, J Schubert, KR Schwierz, R Spaan, B Sundermann, JE Bernard, D Bonneaud, GR Brochard, F Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Lavin, D Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Sarti, A Treadwell, E Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Crosetti, G Lo Vetere, M Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Bailey, S Brandenburg, G Morii, M Won, E Dubitzky, RS Langenegger, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Gaillard, JR Morton, GW Nash, JA Taylor, GP Charles, MJ Grenier, GJ Mallik, U Cochran, J Crawley, HB Lamsa, J Meyer, WT Prell, S Rosenberg, EI Yi, J Davier, M Grosdidier, G Hocker, A Laplace, S Le Diberder, F Lepeltier, V Lutz, AM Petersen, TC Plaszczynski, S Schune, MH Tantot, L Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Coleman, JP Forster, IJ Fry, JR Gabathuler, E Gamet, R Parry, RJ Payne, DJ Sloane, RJ Touramanis, C Back, JJ Cormack, CM Harrison, PF Di Lodovico, F Mohanty, GB Brown, CL Cowan, G Flack, RL Flaecher, HU Green, MG Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Winter, MA Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Hart, PA Hodgkinson, MC Lafferty, GD Lyon, AJ Williams, JC Farbin, A Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Lillard, V Roberts, DA Blaylock, G Dallapiccola, C Flood, KT Hertzbach, SS Kofler, R Koptchev, VB Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Sciolla, G Taylor, F Yamamoto, RK Mangeol, DJJ Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Nicholson, H Cavallo, N Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Wilden, L Jessop, CP LoSecco, JM Gabriel, TA Allmendinger, T Brau, B Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Potter, CT Sinev, NB Strom, D Torrence, E Colecchia, F Dorigo, A Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Tiozzo, G Voci, C Benayoun, M Briand, H Chauveau, J David, P de la Vaissiere, C Del Buono, L Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Pivk, M Roos, L T'Jampens, S Therin, G Manfredi, PF Re, V Behera, PK Gladney, L Guo, QH Panetta, J Anulli, F Biasini, M Peruzzi, IM Pioppi, M Angelini, C Batignani, G Bettarini, S Bondioli, M Bucci, F Calderini, G Carpinelli, M Del Gamba, V Forti, F Giorgi, MA Lusiani, A Marchiori, G Martinez-Vidal, F Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Sandrelli, F Walsh, J Haire, M Judd, D Paick, K Wagoner, DE Danielson, N Elmer, P Lau, YP Lu, C Miftakov, V Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Li Gioi, L Mazzoni, MA Morganti, S Pierini, M Piredda, G Tehrani, FS Voena, C Christ, S Wagner, G Waldi, R Adye, T De Groot, N Franek, B Geddes, NI Gopal, GP Olaiya, EO Aleksan, R Emery, S Gaidot, A Ganzhur, SF Giraud, PF de Monchenault, GH Kozanecki, W Langer, M Legendre, M London, GW Mayer, B Schott, G Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Convery, MR Cristinziani, M De Nardo, G Dong, D Dorfan, J Dujmic, D Dunwoodie, W Elsen, EE Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Petrak, S Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Simi, G Snyder, A Soha, A Stelzer, J Su, D Sullivan, MK Va'vra, J Wagner, SR Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Young, CC Burchat, PR Edwards, AJ Meyer, TI Petersen, BA Roat, C Ahmed, S Alam, MS Ernst, JA Saeed, MA Saleem, M Wappler, FR Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Kim, H Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Borean, C Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Poropat, P Vitale, L Vuagnin, G Panvini, RS Banerjee, S Brown, CM Fortin, D Jackson, PD Kowalewski, R Roney, JM Band, HR Dasu, S Datta, M Eichenbaum, AM Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mihalyi, A Mohapatra, AK Pan, Y Prepost, R Rubin, AE Sekula, SJ Tan, P von Wimmersperg-Toeller, JH Wu, J Wu, SL Yu, Z Greene, MG Neal, H AF Aubert, B Barate, R Boutigny, D Couderc, F Gaillard, JM Hicheur, A Karyotakis, Y Lees, JP Tisserand, V Zghiche, A Palano, A Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Borgland, AW Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Shelkov, VG Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Steinke, M Boyd, JT Chevalier, N Cottingham, WN Kelly, MP Latham, TE Wilson, FF Cuhadar-Donszelmann, T Hearty, C Knecht, NS Mattison, TS McKenna, JA Thiessen, D Khan, A Kyberd, P Teodorescu, L Blinov, VE Druzhinin, VP Golubev, VB Ivanchenko, VN Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bruinsma, M Chao, M Eschrich, I Kirkby, D Lankford, AJ Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Foulkes, SD Gary, JW Shen, BC Wang, K del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Dahmes, B Levy, SL Long, O Lu, A Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Heusch, CA Lockman, WS Schalk, T Schmitz, RE Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Yang, S Jayatilleke, S Mancinelli, G Meadows, BT Sokoloff, MD Abe, T Blanc, F Bloom, P Chen, S Ford, WT Nauenberg, U Olivas, A Rankin, P Smith, JG Zhang, J Zhang, L Chen, A Harton, JL Soffer, A Toki, WH Wilson, RJ Zeng, QL Altenburg, D Brandt, T Brose, J Dickopp, M Feltresi, E Hauke, A Lacker, HM Muller-Pfefferkorn, R Nogowski, R Otto, S Petzold, A Schubert, J Schubert, KR Schwierz, R Spaan, B Sundermann, JE Bernard, D Bonneaud, GR Brochard, F Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Lavin, D Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Sarti, A Treadwell, E Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Crosetti, G Lo Vetere, M Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Bailey, S Brandenburg, G Morii, M Won, E Dubitzky, RS Langenegger, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Gaillard, JR Morton, GW Nash, JA Taylor, GP Charles, MJ Grenier, GJ Mallik, U Cochran, J Crawley, HB Lamsa, J Meyer, WT Prell, S Rosenberg, EI Yi, J Davier, M Grosdidier, G Hocker, A Laplace, S Le Diberder, F Lepeltier, V Lutz, AM Petersen, TC Plaszczynski, S Schune, MH Tantot, L Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Coleman, JP Forster, IJ Fry, JR Gabathuler, E Gamet, R Parry, RJ Payne, DJ Sloane, RJ Touramanis, C Back, JJ Cormack, CM Harrison, PF Di Lodovico, F Mohanty, GB Brown, CL Cowan, G Flack, RL Flaecher, HU Green, MG Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Winter, MA Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Hart, PA Hodgkinson, MC Lafferty, GD Lyon, AJ Williams, JC Farbin, A Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Lillard, V Roberts, DA Blaylock, G Dallapiccola, C Flood, KT Hertzbach, SS Kofler, R Koptchev, VB Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Sciolla, G Taylor, F Yamamoto, RK Mangeol, DJJ Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Nicholson, H Cavallo, N Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Wilden, L Jessop, CP LoSecco, JM Gabriel, TA Allmendinger, T Brau, B Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Potter, CT Sinev, NB Strom, D Torrence, E Colecchia, F Dorigo, A Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Tiozzo, G Voci, C Benayoun, M Briand, H Chauveau, J David, P de la Vaissiere, C Del Buono, L Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Pivk, M Roos, L T'Jampens, S Therin, G Manfredi, PF Re, V Behera, PK Gladney, L Guo, QH Panetta, J Anulli, F Biasini, M Peruzzi, IM Pioppi, M Angelini, C Batignani, G Bettarini, S Bondioli, M Bucci, F Calderini, G Carpinelli, M Del Gamba, V Forti, F Giorgi, MA Lusiani, A Marchiori, G Martinez-Vidal, F Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Sandrelli, F Walsh, J Haire, M Judd, D Paick, K Wagoner, DE Danielson, N Elmer, P Lau, YP Lu, C Miftakov, V Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Li Gioi, L Mazzoni, MA Morganti, S Pierini, M Piredda, G Tehrani, FS Voena, C Christ, S Wagner, G Waldi, R Adye, T De Groot, N Franek, B Geddes, NI Gopal, GP Olaiya, EO Aleksan, R Emery, S Gaidot, A Ganzhur, SF Giraud, PF de Monchenault, GH Kozanecki, W Langer, M Legendre, M London, GW Mayer, B Schott, G Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Convery, MR Cristinziani, M De Nardo, G Dong, D Dorfan, J Dujmic, D Dunwoodie, W Elsen, EE Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Petrak, S Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Simi, G Snyder, A Soha, A Stelzer, J Su, D Sullivan, MK Va'vra, J Wagner, SR Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Young, CC Burchat, PR Edwards, AJ Meyer, TI Petersen, BA Roat, C Ahmed, S Alam, MS Ernst, JA Saeed, MA Saleem, M Wappler, FR Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Kim, H Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Borean, C Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Poropat, P Vitale, L Vuagnin, G Panvini, RS Banerjee, S Brown, CM Fortin, D Jackson, PD Kowalewski, R Roney, JM Band, HR Dasu, S Datta, M Eichenbaum, AM Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mihalyi, A Mohapatra, AK Pan, Y Prepost, R Rubin, AE Sekula, SJ Tan, P von Wimmersperg-Toeller, JH Wu, J Wu, SL Yu, Z Greene, MG Neal, H CA BaBar Collaboration TI Measurements of the branching fraction and CP-violation asymmetries in B-0 -> f(0)(980)K-S(0) SO PHYSICAL REVIEW LETTERS LA English DT Article ID B-DECAYS; PHYSICS AB We present measurements of the branching fraction and CP-violating asymmetries in the decay B-0-->f(0)(980)K-S(0). The results are obtained from a data sample of 123x10(6) Y(4S)-->B (B) over bar decays. From a time-dependent maximum likelihood fit, we measure the branching fraction B(B-0-->f(0)(980)(-->pi(+)pi(-))K-0)=(6.0+/-0.9+/-0.6+/-1.2)x10(-6), the mixing-induced CP violation parameter S=-1.62(-0.51)(+0.56)+/-0.09+/-0.04, and the direct CP violation parameter C=0.27+/-0.36+/-0.10+/-0.07, where the first errors are statistical, the second systematic, and the third due to model uncertainties. We measure the f(0)(980) mass and width to be m(f0)(980)=(980.6+/-4.1+/-0.5+/-4.0) MeV/c(2) and Gamma(f0)(980)=(43(-9)(+12)+/-3+/-9) MeV/c(2), respectively. C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Univ Bari, Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Florida A&M Univ, Tallahassee, FL 32307 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Lab Accelerateur Lineaire, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 72E, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Univ Milan, Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Lab Rene JA Levesque, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Univ Naples Federico II, Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl Phys & High Energy Phys, NIKHEF H, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Univ Padua, Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Pavia, Dipartimento Elettron, I-27100 Pavia, Italy. Univ Pavia, Ist Nazl Fis Nucl, I-27100 Pavia, Italy. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Perugia, Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Neri, Nicola/G-3991-2012; Rotondo, Marcello/I-6043-2012; Sarti, Alessio/I-2833-2012; Patrignani, Claudia/C-5223-2009; de Groot, Nicolo/A-2675-2009; de Sangro, Riccardo/J-2901-2012; Forti, Francesco/H-3035-2011; Della Ricca, Giuseppe/B-6826-2013; Cavallo, Nicola/F-8913-2012; Peters, Klaus/C-2728-2008; Bellini, Fabio/D-1055-2009; Saeed, Mohammad Alam/J-7455-2012; Lista, Luca/C-5719-2008; crosetti, nanni/H-3040-2011; Roe, Natalie/A-8798-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Luppi, Eleonora/A-4902-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; M, Saleem/B-9137-2013; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016 OI Neri, Nicola/0000-0002-6106-3756; Rotondo, Marcello/0000-0001-5704-6163; Sarti, Alessio/0000-0001-5419-7951; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Forti, Francesco/0000-0001-6535-7965; Della Ricca, Giuseppe/0000-0003-2831-6982; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636 NR 19 TC 86 Z9 86 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2005 VL 94 IS 4 AR 041802 DI 10.1103/PhysRevLett.94.041802 PG 8 WC Physics, Multidisciplinary SC Physics GA 894GN UT WOS:000226779000016 PM 15904359 ER PT J AU Bauer, ED Capan, C Ronning, F Movshovich, R Thompson, JD Sarrao, JL AF Bauer, ED Capan, C Ronning, F Movshovich, R Thompson, JD Sarrao, JL TI Superconductivity in CeCoIn5-xSnx: Veil over an ordered state or novel quantum critical point? SO PHYSICAL REVIEW LETTERS LA English DT Article ID FERMI-LIQUID BEHAVIOR; ELECTRON; SYSTEMS; PHASE AB Measurements of specific heat and electrical resistivity in magnetic fields up to 9 T along [001] and temperatures down to 50 mK of Sn-substituted CeCoIn5 are reported. The maximal -ln(T) divergence of the specific heat at the upper critical field H-c2 down to the lowest temperature characteristic of non-Fermi-liquid systems at the quantum critical point (QCP), the universal scaling of the Sommerfeld coefficient, and agreement of the data with spin-fluctuation theory provide strong evidence for quantum criticality at H-c2 for all xless than or equal to0.12 in CeCoIn5-xSnx. These results indicate the "accidental" coincidence of the QCP located near H-c2 in pure CeCoIn5, in actuality, constitute a novel quantum critical point associated with unconventional superconductivity. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bauer, ED (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011 NR 25 TC 57 Z9 57 U1 0 U2 9 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2005 VL 94 IS 4 AR 047001 DI 10.1103/PhysRevLett.94.047001 PG 4 WC Physics, Multidisciplinary SC Physics GA 894GN UT WOS:000226779000051 PM 15783583 ER PT J AU Bauer, ED Zapf, VS Ho, PC Butch, NP Freeman, EJ Sirvent, C Maple, MB AF Bauer, ED Zapf, VS Ho, PC Butch, NP Freeman, EJ Sirvent, C Maple, MB TI Non-Fermi-liquid behavior within the ferromagnetic phase in URu2-xRexSi2 SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRON COMPOUND URU2SI2; KONDO DISORDER; CRITICAL-POINT; TRANSITION; TEMPERATURE; PRESSURE; SYSTEMS; ORDER; FIELD; NMR AB The URu2-xRexSi2 system exhibits ferromagnetic order for Re concentrations 0.3.del)E--> that depends on inhomogeneities in the incident field E-->, as proposed in recent models based on a locally noncentrosymmetric dipolar response averaged over the spherical NC interfaces. A two-beam SHG geometry is found to enhance this polarization greatly compared to single-beam SHG, yielding strong signals useful for scanning, spectroscopy, and real-time monitoring. This configuration provides a general strategy for enhancing the second-order nonlinear response of centrosymmetric samples, as demonstrated here for both Si nanocomposites and their glass substrates. C1 Univ Texas, Dept Phys, FOCUS Ctr, Austin, TX 78712 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62251, Morelos, Mexico. Ctr Invest Opt, Guanajuato, Mexico. RP Figliozzi, P (reprint author), Univ Texas, Dept Phys, FOCUS Ctr, Austin, TX 78712 USA. RI Mochan, Luis/A-2063-2008 NR 18 TC 57 Z9 58 U1 0 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2005 VL 94 IS 4 AR 047401 DI 10.1103/PhysRevLett.94.047401 PG 4 WC Physics, Multidisciplinary SC Physics GA 894GN UT WOS:000226779000061 PM 15783593 ER PT J AU Fuchs, J Sentoku, Y Karsch, S Cobble, J Audebert, P Kemp, A Nikroo, A Antici, P Brambrink, E Blazevic, A Campbell, EM Fernandez, JC Gauthier, JC Geissel, M Hegelich, M Pepin, H Popescu, H Renard-LeGalloudec, N Roth, M Schreiber, J Stephens, R Cowan, TE AF Fuchs, J Sentoku, Y Karsch, S Cobble, J Audebert, P Kemp, A Nikroo, A Antici, P Brambrink, E Blazevic, A Campbell, EM Fernandez, JC Gauthier, JC Geissel, M Hegelich, M Pepin, H Popescu, H Renard-LeGalloudec, N Roth, M Schreiber, J Stephens, R Cowan, TE TI Comparison of laser ion acceleration from the front and rear surfaces of thin foils SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLASMA INTERACTIONS; SIMULATIONS; SOLIDS; PULSE AB The comparative efficiency and beam characteristics of high-energy ions generated by high-intensity short-pulse lasers (similar to1-6x10(19) W/cm(2)) from both the front and rear surfaces of thin metal foils have been measured under identical conditions. Using direct beam measurements and nuclear activation techniques, we find that rear-surface acceleration produces higher energy particles with smaller divergence and a higher efficiency than front-surface acceleration. Our observations are well reproduced by realistic particle-in-cell simulations, and we predict optimal criteria for future applications. C1 Gen Atom Co, San Diego, CA 92121 USA. Univ Paris 06, Ecole Polytech, CEA, CNRS,UMR 7605,Lab Utilisat Lasers Intenses, Palaiseau, France. Max Planck Inst Quantum Opt, D-85748 Garching, Germany. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Tech Univ Darmstadt, D-64289 Darmstadt, Germany. Univ Nevada, Dept Phys, Reno, NV 89557 USA. RP Gen Atom Co, San Diego, CA 92121 USA. RI Popescu, Horia/G-4487-2011; Fernandez, Juan/H-3268-2011; Fuchs, Julien/D-3450-2016; Cowan, Thomas/A-8713-2011; Sentoku, Yasuhiko/P-5419-2014; OI Fernandez, Juan/0000-0002-1438-1815; Fuchs, Julien/0000-0001-9765-0787; Cowan, Thomas/0000-0002-5845-000X; Stephens, Richard/0000-0002-7034-6141 NR 24 TC 115 Z9 117 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2005 VL 94 IS 4 AR 045004 DI 10.1103/PhysRevLett.94.045004 PG 4 WC Physics, Multidisciplinary SC Physics GA 894GN UT WOS:000226779000034 PM 15783566 ER PT J AU Grenier, S Hill, JP Kiryukhin, V Ku, W Kim, YJ Thomas, KJ Cheong, SW Tokura, Y Tomioka, Y Casa, D Gog, T AF Grenier, S Hill, JP Kiryukhin, V Ku, W Kim, YJ Thomas, KJ Cheong, SW Tokura, Y Tomioka, Y Casa, D Gog, T TI d-d excitations in manganites probed by resonant inelastic x-ray scattering SO PHYSICAL REVIEW LETTERS LA English DT Article ID OPTICAL-CONDUCTIVITY; ELECTRONIC-STRUCTURE; MAGNETIC-FIELD; TEMPERATURE; TRANSPORT; VALENCE; LAMNO3; STATE AB We report a study of electronic excitations in manganites exhibiting a range of ground states, using resonant inelastic x-ray scattering (RIXS) at the Mn K edge. Excitations with temperature dependent changes correlated with the magnetism were observed as high as 10 eV. By calculating Wannier functions, and finite-q response functions, we associate this dependence with intersite d-d excitations. The calculated dynamical structure factor is found to be similar to the RIXS spectra. C1 Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. JRCAT, Tsukuba, Ibaraki 3050046, Japan. Argonne Natl Lab, CMC CAT, Argonne, IL 60439 USA. RP Grenier, S (reprint author), Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. RI Casa, Diego/F-9060-2016; Kim, Young-June /G-7196-2011; Tokura, Yoshinori/C-7352-2009; Grenier, Stephane/N-1986-2014 OI Kim, Young-June /0000-0002-1172-8895; Grenier, Stephane/0000-0001-8370-7375 NR 26 TC 45 Z9 46 U1 1 U2 17 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2005 VL 94 IS 4 AR 047203 DI 10.1103/PhysRevLett.94.047203 PG 4 WC Physics, Multidisciplinary SC Physics GA 894GN UT WOS:000226779000059 PM 15783591 ER PT J AU Hart, RT Benmore, CJ Neuefeind, J Kohara, S Tomberli, B Egelstaff, PA AF Hart, RT Benmore, CJ Neuefeind, J Kohara, S Tomberli, B Egelstaff, PA TI Temperature dependence of isotopic quantum effects in water SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENERGY PHOTON DIFFRACTION; HEAVY-WATER; LIQUID WATER; LIGHT AB The technique of high energy x-ray diffraction has been used to measure the temperature variation of hydrogen versus deuterium isotopic quantum effects on the structure of water. The magnitude of the effect is found to be inversely proportional to the temperature, varying by a factor of 2.5 over the range 6 to 45 degreesC. In addition, the (H2O)-O-16 versus (H2O)-O-18 effect has been measured at 26 degreesC and the structural difference shown to be restricted to the nearest neighbor molecular interactions. The results are compared to recent simulations and previously measured isochoric temperature differentials; additionally, implications for H/D substitution experiments are considered. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Japan Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan. Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. RP Hart, RT (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM benmore@anl.gov RI Neuefeind, Joerg/D-9990-2015; OI Neuefeind, Joerg/0000-0002-0563-1544; Benmore, Chris/0000-0001-7007-7749 NR 14 TC 56 Z9 57 U1 1 U2 16 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2005 VL 94 IS 4 AR 047801 DI 10.1103/PhysRevLett.94.047801 PG 4 WC Physics, Multidisciplinary SC Physics GA 894GN UT WOS:000226779000068 PM 15783600 ER PT J AU Nefkens, BMK Prakhov, S Gardestig, A Allgower, CE Bekrenev, V Briscoe, WJ Clajus, M Comfort, JR Craig, K Grosnick, D Isenhower, D Knecht, N Koetke, D Koulbardis, A Kozlenko, N Kruglov, S Lolos, G Lopatin, I Manley, DM Manweiler, R Marusic, A McDonald, S Olmsted, J Papandreou, Z Peaslee, D Phaisangittisakul, N Price, JW Ramirez, AF Sadler, M Shafi, A Spinka, H Stanislaus, TDS Starostin, A Staudenmaier, HM Supek, I Tippens, WB AF Nefkens, BMK Prakhov, S Gardestig, A Allgower, CE Bekrenev, V Briscoe, WJ Clajus, M Comfort, JR Craig, K Grosnick, D Isenhower, D Knecht, N Koetke, D Koulbardis, A Kozlenko, N Kruglov, S Lolos, G Lopatin, I Manley, DM Manweiler, R Marusic, A McDonald, S Olmsted, J Papandreou, Z Peaslee, D Phaisangittisakul, N Price, JW Ramirez, AF Sadler, M Shafi, A Spinka, H Stanislaus, TDS Starostin, A Staudenmaier, HM Supek, I Tippens, WB CA Crystal Ball Collaboration TI Test of charge conjugation invariance SO PHYSICAL REVIEW LETTERS LA English DT Article ID DECAY MODES AB We report on the first determination of upper limits on the branching ratio (BR) of eta decay to pi(0)pi(0)gamma and to pi(0)pi(0)pi(0)gamma. Both decay modes are strictly forbidden by charge conjugation (C) invariance. Using the Crystal Ball multiphoton detector, we obtained BR(eta-->pi(0)pi(0)gamma)<5x10(-4) at the 90% confidence level, in support of C invariance of isoscalar electromagnetic interactions of the light quarks. We have also measured BR(eta-->pi(0)pi(0)pi(0)gamma)<6x10(-5) at the 90% confidence level, in support of C invariance of isovector electromagnetic interactions. C1 Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Petersburg Nucl Phys Inst, Gatchina 188350, Russia. George Washington Univ, Washington, DC 20052 USA. Arizona State Univ, Tempe, AZ 85287 USA. Valparaiso Univ, Valparaiso, IN 46383 USA. Abilene Christian Univ, Abilene, TX 79699 USA. Univ Regina, Regina, SK S4S 0A2, Canada. Kent State Univ, Kent, OH 44242 USA. Univ Maryland, College Pk, MD 20742 USA. Univ Karlsruhe, D-76128 Karlsruhe, Germany. Rudjer Boskovic Inst, Zagreb 10002, Croatia. RP Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RI Marusic, Ana/E-7683-2013; OI Marusic, Ana/0000-0001-6272-0917; Papandreou, Zisis/0000-0002-5592-8135 NR 14 TC 9 Z9 9 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2005 VL 94 IS 4 AR 041601 DI 10.1103/PhysRevLett.94.041601 PG 5 WC Physics, Multidisciplinary SC Physics GA 894GN UT WOS:000226779000014 ER PT J AU Ostroverkhov, V Waychunas, GA Shen, YR AF Ostroverkhov, V Waychunas, GA Shen, YR TI New information on water interfacial structure revealed by phase-sensitive surface spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID VIBRATIONAL SPECTROSCOPY; MOLECULES; SILICA AB A phase-sensitive sum-frequency vibrational spectroscopic technique is developed to study interfacial water structure of water/quartz interfaces. Measurements allow deduction of both real and imaginary parts of the surface nonlinear spectral response, revealing an unprecedentedly detailed picture of the net polar orientations of the water species at the interface. The orientations of the icelike and liquidlike species appear to respond very differently to the bulk pH change indicating the existence of different surface sites on quartz with different deprotonation pK values. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Ostroverkhov, V (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. NR 32 TC 223 Z9 226 U1 10 U2 85 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2005 VL 94 IS 4 AR 046102 DI 10.1103/PhysRevLett.94.046102 PG 4 WC Physics, Multidisciplinary SC Physics GA 894GN UT WOS:000226779000043 PM 15783575 ER PT J AU Seletskaia, T Osetsky, Y Stoller, RE Stocks, GM AF Seletskaia, T Osetsky, Y Stoller, RE Stocks, GM TI Magnetic interactions influence the properties of helium defects in iron SO PHYSICAL REVIEW LETTERS LA English DT Article ID GENERALIZED-GRADIENT APPROXIMATION; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; MICROSTRUCTURAL EVOLUTION; BASIS-SET; METALS; MIGRATION; BEHAVIOR; BUBBLE; STEEL AB Density functional theory calculations of He defect properties in iron have shown an unexpected influence of magnetism arising from the defect's electronic structure. In contrast with previous work that neglected such effects, the results indicate that the tetrahedral position is energetically more favorable for the He interstitial than the octahedral site. This may have significant implications for He clustering and bubble nucleation, which will impact material performance in future fusion reactors. These results provide the basis for development of improved atomistic models. C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Seletskaia, T (reprint author), Oak Ridge Natl Lab, Div Met & Ceram, POB 2008, Oak Ridge, TN 37831 USA. RI Stoller, Roger/H-4454-2011; Stocks, George Malcollm/Q-1251-2016; OI Stocks, George Malcollm/0000-0002-9013-260X; Osetskiy, Yury/0000-0002-8109-0030 NR 25 TC 115 Z9 119 U1 0 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2005 VL 94 IS 4 AR 046403 DI 10.1103/PhysRevLett.94.046403 PG 4 WC Physics, Multidisciplinary SC Physics GA 894GN UT WOS:000226779000047 PM 15783579 ER PT J AU Stephens, FS Deleplanque, MA Lee, IY Macchiavelli, AO Ward, D Fallon, P Cromaz, M Clark, RM Descovich, M Diamond, RM Rodriguez-Vieitez, E AF Stephens, FS Deleplanque, MA Lee, IY Macchiavelli, AO Ward, D Fallon, P Cromaz, M Clark, RM Descovich, M Diamond, RM Rodriguez-Vieitez, E TI Order-to-chaos transition in rotational nuclei SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM CHAOS; SYSTEMS; SPECTRA; MOTION AB We have developed a new method to study the order-to-chaos transition in rotational nuclei. Correlations between successive gamma rays are used to determine the average complexity of the intermediate levels and thereby the ratio of the interaction potential between levels to the level spacing. The measured ratios, 0.15 to 1.5, span the range from nearly fully ordered to nearly fully chaotic. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Stephens, FS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. OI Rodriguez-Vieitez, Elena/0000-0002-6639-8141 NR 23 TC 14 Z9 14 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2005 VL 94 IS 4 AR 042501 DI 10.1103/PhysRevLett.94.042501 PG 4 WC Physics, Multidisciplinary SC Physics GA 894GN UT WOS:000226779000019 PM 15783551 ER PT J AU Chisholm, MF Kumar, S Hazzledine, P AF Chisholm, MF Kumar, S Hazzledine, P TI Dislocations in complex materials SO SCIENCE LA English DT Article ID BASAL SLIP; SAPPHIRE ALPHA-AL2O3; LAVES PHASES; ALLOY; DEFORMATION; LATTICE; DEFECT AB Deformation of metals and alloys by dislocations gliding between well-separated slip planes is a well-understood process, but most crystal structures do not possess such simple geometric arrangements. Examples are the Laves phases, the most common class of intermetallic compounds and exist with ordered cubic, hexagonal, and rhombohedral structures. These compounds are usually brittle at low temperatures, and transformation from one structure to another is slow. On the basis of geometric and energetic considerations, a dislocation-based mechanism consisting of two shears in different directions on adjacent atomic planes has been used to explain both deformation and phase transformations in this class of materials. We report direct observations made by Z-contrast atomic resolution microscopy of stacking faults and dislocation cores in the Laves phase Cr2Hf. These results show that this complex dislocation scheme does indeed operate in this material. Knowledge gained of the dislocation core structure will enable improved understanding of deformation mechanisms and,phase transformation kinetics in this and other complex structures. C1 Brown Univ, Div Engn, Providence, RI 02912 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Kumar, S (reprint author), Brown Univ, Div Engn, Providence, RI 02912 USA. EM Sharvan_Kumar@brown.edu NR 17 TC 69 Z9 72 U1 8 U2 45 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 4 PY 2005 VL 307 IS 5710 BP 701 EP 703 DI 10.1126/science.1105962 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 894TQ UT WOS:000226814900036 PM 15692046 ER PT J AU Grice, K Cao, CQ Love, GD Bottcher, ME Twitchett, RJ Grosjean, E Summons, RE Turgeon, SC Dunning, W Jin, YG AF Grice, K Cao, CQ Love, GD Bottcher, ME Twitchett, RJ Grosjean, E Summons, RE Turgeon, SC Dunning, W Jin, YG TI Photic zone euxinia during the Permian-Triassic superanoxic event SO SCIENCE LA English DT Article ID MOLECULAR INDICATORS; MASS EXTINCTION; ORGANIC GEOCHEMISTRY; BOUNDARY; SULFUR; ANOXIA; CARBON; ENRICHMENT; ISOTOPE; SULFATE AB Carbon and sulfur isotopic data, together with biomarker and iron speciation analyses of the Hovea-3 core that was drilled in the Perth Basin, Western Australia, indicate that euxinic conditions prevailed in the paleowater column during the Permian-Triassic superanoxic event. Biomarkers diagnostic for anoxygenic photosynthesis, by Chlorobiaceae are particularly abundant at the boundary and into the Early Triassic. Similar conditions prevailed in the contemporaneous seas off South China. Our evidence for widespread photic-zone euxinic conditions suggests that sulfide toxicity was a driver of the extinction and a factor in the protracted recovery. C1 Curtin Univ Technol, Perth, WA 6001, Australia. MIT, Cambridge, MA 02139 USA. Nanjing Inst Geol & Palaeontol, Nanjing, Peoples R China. Max Planck Inst Marine Microbiol, Bremen, Germany. Univ Plymouth, Plymouth PL4 8AA, Devon, England. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Grice, K (reprint author), Curtin Univ Technol, Perth, WA 6001, Australia. EM K.Grice@curtin.edu.au RI Bottcher, Michael /A-6746-2013 NR 28 TC 376 Z9 425 U1 10 U2 111 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 4 PY 2005 VL 307 IS 5710 BP 706 EP 709 DI 10.1126/science.1104323 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 894TQ UT WOS:000226814900038 PM 15661975 ER PT J AU Gopalswamy, N Barbieri, L Lu, G Plunkett, SP Skoug, RM AF Gopalswamy, N Barbieri, L Lu, G Plunkett, SP Skoug, RM TI Introduction to the special section: Violent Sun Earth connection events of October-November 2003 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article AB [1] During 2003 October and November, a series of solar eruptions occurred from three solar active regions. Some of these eruptions were extreme in terms of their origin ( source properties) and heliospheric consequences. This paper summarizes the first results of the analysis of these violent Sun-Earth connection events. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NCAR, High Altitude Observ, Boulder, CO USA. USN, Res Lab, Washington, DC 20375 USA. Los Alamos Natl Lab, Los Alamos, NM USA. RP NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM gopals@fugee.gsfc.nasa.gov; lbarbieri@mail.hst.nasa.gov; ganglu@ucar.edu; simon.plunkett@nrl.navy.mil; rskoug@lanl.gov RI Gopalswamy, Nat/D-3659-2012; Lu, Gang/A-6669-2011 NR 13 TC 27 Z9 27 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 3 PY 2005 VL 32 IS 3 AR L03S01 DI 10.1029/2005GL022348 PG 3 WC Geosciences, Multidisciplinary SC Geology GA 895YM UT WOS:000226901000003 ER PT J AU Maurer, EP Duffy, PB AF Maurer, EP Duffy, PB TI Uncertainty in projections of streamflow changes due to climate change in California SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID HYDROLOGY; RESPONSES; IMPACTS AB [1] Understanding the uncertainty in the projected impacts of climate change on hydrology will help decision-makers interpret the confidence in different projected future hydrologic impacts. We focus on California, which is vulnerable to hydrologic impacts of climate change. We statistically bias correct and downscale temperature and precipitation projections from 10 GCMs participating in the Coupled Model Intercomparison Project. These GCM simulations include a control period ( unchanging CO2 and other forcing) and perturbed period (1%/ year CO2 increase). We force a hydrologic model with the downscaled GCM data to generate streamflow at strategic points. While the different GCMs predict significantly different regional climate responses to increasing atmospheric CO2, hydrological responses are robust across models: decreases in summer low flows and increases in winter flows, and a shift of flow to earlier in the year. Summer flow decreases become consistent across models at lower levels of greenhouse gases than increases in winter flows do. C1 Santa Clara Univ, Dept Civil Engn, Santa Clara, CA 95053 USA. Lawrence Livermore Natl Lab, Div Atmospher Sci, Livermore, CA USA. RP Maurer, EP (reprint author), Santa Clara Univ, Dept Civil Engn, Santa Clara, CA 95053 USA. EM emaurer@scu.edu; pduffy@llnl.gov RI Maurer, Edwin/C-7190-2009 OI Maurer, Edwin/0000-0001-7134-487X NR 16 TC 32 Z9 32 U1 3 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 3 PY 2005 VL 32 IS 3 AR L03704 DI 10.1029/2004GL021462 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 895YM UT WOS:000226901000001 ER PT J AU Alexandrova, AN Boldyrev, AI Zhai, HJ Wang, LS AF Alexandrova, AN Boldyrev, AI Zhai, HJ Wang, LS TI Cu3C4-: A new sandwich molecule with two revolving C-2(2-) units SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID EFFECTIVE CORE POTENTIALS; ANION PHOTOELECTRON-SPECTROSCOPY; TRANSITION-METAL CLUSTERS; DENSITY-FUNCTIONAL THEORY; GAUSSIAN-BASIS SETS; ELECTRONIC-STRUCTURE; CARBIDE CLUSTERS; AB-INITIO; METALLOCARBOHEDRENES M8C12; GROWTH PATHWAYS AB A combined photoelectron spectroscopy (PES) and ab initio study was carried out on a novel copper carbide cluster in the gas phase: Cu3C4-. It was generated in a laser vaporization cluster source and appeared to exhibit enhanced stability among the Cu3Cn- series. Its PES spectra were obtained at several photon energies, showing numerous well-resolved bands. Extensive ab initio calculations were performed on Cu3C4-, and two isomers were identified: a C-2 structure ((1)A) with a Cu-3(3+) triangular group sandwiched by two C-2(2-) units and a linear CuCCCuCCCu structure (D-infinity/i, (1)Sigma(g)(+)). A comparison of ab initio PES spectra with experimental data showed that the sandwich Cu3C4- cluster was solely responsible for the observed spectra and the linear isomer was not present, suggesting that the C-2 structure is the global minimum in accordance with CCSD(T)/311+G* predictions. Interestingly, a relatively low barrier (0.4-0.6 kcal/mol) was found for the internal rotation of the C-2(2-) units in the sandwich Cu3C4-. To test different levels of theory in describing the CumCn- systems and lay foundations for the validity of the theoretical methods, extensive calculations at a variety of levels were also carried out on a simpler copper carbide species CuC2-, where two isomers were found to be close in energy: a linear one (C-infinityv, (1)Sigma(+)) and a triangular one (C-2v, (1)A(1)). The calculated electronic transitions for CuC2- were also compared with the PES data, in which both isomers were present. C1 Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA. Washington State Univ, Dept Phys, Richland, WA 99352 USA. Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Boldyrev, AI (reprint author), Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA. EM boldyrev@cc.usu.edu; ls.wang@pnl.gov RI Boldyrev, Alexander/C-5940-2009 OI Boldyrev, Alexander/0000-0002-8277-3669 NR 81 TC 23 Z9 24 U1 3 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 3 PY 2005 VL 109 IS 4 BP 562 EP 570 DI 10.1021/jp047384q PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 892CC UT WOS:000226626300004 PM 16833380 ER PT J AU Nachimuthu, P Thevuthasan, S Adams, EM Weber, WJ Begg, BD Mun, BS Shuh, DK Lindle, DW Gullikson, EM Perera, RCC AF Nachimuthu, P Thevuthasan, S Adams, EM Weber, WJ Begg, BD Mun, BS Shuh, DK Lindle, DW Gullikson, EM Perera, RCC TI Near-edge X-ray absorption fine structure study of disordering in Gd-2(Ti1-yZry)(2)O-7 pyrochlores SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Letter ID OXIDE-ION CONDUCTORS; HIGH-RESOLUTION; A(2)B(2)O(7); IMMOBILIZATION; PLUTONIUM; BEAMLINE; GD2TI2O7; SYSTEM AB Disorder in Gd-2(Ti1-yZry)(2)O-7 pyrochlores, for y = 0.0-1.0, is investigated by Ti 2p and 0 Is near-edge X-ray absorption fine structure spectroscopy. Ti4+ ions are found to occupy octahedral sites in Gd2Ti2O7 with a tetragonal distortion induced by vacant oxygen sites. As Zr substitutes for Ti, the tetragonal distortion decreases, and Zr coordination increases from 6 to 8. The migration of oxygen ions from 48f or 8b sites to vacant 8a sites compensate for the increased Zr coordination, thereby reducing the number of vacant 8a sites, which further reduces the tetragonal distortion and introduces more disorder around Ti. This is evidence for simultaneous cation disorder with anion migration. C1 Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Australian Nucl Sci & Technol Org, Menai, NSW 2234, Australia. RP Nachimuthu, P (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM PNachimuthu@lbl.gov RI Weber, William/A-4177-2008; Mun, Bongjin /G-1701-2013 OI Weber, William/0000-0002-9017-7365; NR 30 TC 25 Z9 25 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 3 PY 2005 VL 109 IS 4 BP 1337 EP 1339 DI 10.1021/jp0447789 PG 3 WC Chemistry, Physical SC Chemistry GA 892CE UT WOS:000226626500003 PM 16851100 ER PT J AU Sorescu, DC Boatz, JA Thompson, DL AF Sorescu, DC Boatz, JA Thompson, DL TI First-principles calculations of the adsorption of nitromethane and 1,1-diamino-2,2-dinitroethylene (FOX-7) molecules on the alpha-Al2O3(0001) surface SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID AB-INITIO; CRYSTAL-STRUCTURE; OXIDE SURFACES; METALS; ENERGY; DECOMPOSITION; TAUTOMERISM; DYNAMICS; SOLIDS AB First-principles calculations based on density functional theory (DFT) and the generalized gradient approximation (GGA) have been used to study the adsorption of nitromethane (NM) and 1,1-diamino-2,2-dinitroethylene (FOX-7) molecules on the basal plane of an (alpha-Al2O3 crystal. The calculations employ a (2 x 2) supercell slab model and 3D periodic boundary conditions. On the basis of these calculations, we have determined that both NM and FOX-7 molecules can adsorb nondissociatively on the surface with the most stable adsorption configurations parallel to the surface. The binding energies are in the range 25.3-26.0 kcal/mol for NM and 35.6-48.3 kcal/mol for FOX-7 depending on the relative molecular orientation and the surface sites. The minimum energy pathways for NM dissociation have been determined, and a low-energy pathway leading to H-atom elimination with formation of adsorbed CH2NO2 and hydroxyl species has been identified. Additional calculations have focused on adsorption properties of aci-nitromethane tautomers and on description of the energetic pathways connecting adsorbed nitromethane molecule with these tautomers. C1 Univ Missouri, Dept Chem, Columbia, MO 65211 USA. US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. USAF, Res Lab, PRSP, Edwards AFB, CA 93524 USA. RP Univ Missouri, Dept Chem, Columbia, MO 65211 USA. NR 38 TC 34 Z9 36 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 3 PY 2005 VL 109 IS 4 BP 1451 EP 1463 DI 10.1021/jp046193k PG 13 WC Chemistry, Physical SC Chemistry GA 892CE UT WOS:000226626500019 PM 16851116 ER PT J AU Szanyi, J Kwak, JH Peden, CHF AF Szanyi, J Kwak, JH Peden, CHF TI The catalytic chemistry of HCN+NO2 over na- and Ba-Y,FAU: An in situ FTIR and TPD/TPR study SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID NOX REDUCTION; HYDROGEN-CYANIDE; CU/ZSM-5 CATALYSTS; FAU ZEOLITES; ADSORPTION; HYDROCARBONS; NITROMETHANE; SILICA; SCR; HCN AB The adsorption of HCN and the reaction of HCN with NO2 over Na-, and Ba-Y,FAU zeolite catalysts were investigated using in situ FTIR and TPD/TPR spectroscopies. Both catalysts adsorb HCN molecularly at room temperature, and the strength of adsorption is higher over Ba-Y than Na-Y. Over Na-Y, the reaction between HCN and NO, is slow at 473 K. On Ba-Y, HCN reacts readily with NO2 at 473K, forming N-2, CO, CO2, HNCO, NO, N2O, and C2N2. The results of this investigation suggest that initial step in the HCN + NO2 reaction over these catalysts is the hydrogen abstraction from HCN, and the formation of ionic CN- and NC- species. The formation of N2 can proceed directly from these ionic species upon their interaction with NO+. Alternatively, these cyanide species can be oxidized to isocyanates which then can be further transformed to N-2, N2O and COx in their Subsequent reaction with NOx. C1 Pacific NW Natl Lab, Chem Sci Div, Richland, WA 99352 USA. RP Szanyi, J (reprint author), Pacific NW Natl Lab, Chem Sci Div, POB 999,MSIN K8-93, Richland, WA 99352 USA. EM janos.szanyi@pni.gov RI Kwak, Ja Hun/J-4894-2014; OI Peden, Charles/0000-0001-6754-9928 NR 27 TC 6 Z9 6 U1 2 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 3 PY 2005 VL 109 IS 4 BP 1481 EP 1490 DI 10.1021/jp045671o PG 10 WC Chemistry, Physical SC Chemistry GA 892CE UT WOS:000226626500022 PM 16851119 ER PT J AU Sykora, M Yang, JC Meyer, TJ AF Sykora, M Yang, JC Meyer, TJ TI Effect of surface immobilization on intramolecular and intermolecular electron transfer in a chromophore-donor-acceptor assembly SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID METAL-COMPLEXES; ARTIFICIAL PHOTOSYNTHESIS; OSMIUM COMPLEXES; CHARGE-TRANSFER; OXYGEN SENSOR; LUMINESCENCE; DEVICES; RUTHENIUM(II); MOLECULES; NAFION AB A chromophore-donor-acceptor assembly [Ru(bpyCOOH)(bpyCH(2)MV(2+)) (bpyCH(2)PTZ)](4+) (1) (where bpyCOOH = 4-carboxylic acid-4'-methyl-2,2'-bipyridine, bpyCH(2)MV(2+) = l-[(4'-methyl-2,2'-bipyridin-4-yl)methyl]-l'-methyl-4,4'-bipyridinediium, and bpyCH(2)PTZ = 10-[(4'-methyl-2,2'-bipyridin-4-yl)methyl]phenothiazine) has been adsorbed on the surface of nanocrystalline ZrO2 and its excited state properties studied by emission and transient absorption spectroscopy. In deaerated acetonitrile solution, the complex emits weakly with an emission quantum yield of phi(em) approximate to 0.01 With an excited-state lifetime of tau approximate to 20 ps. Emission from the surface-adsorbed complex is intense, with phi(em) approximate to 0.4 and tau approximate to 40 ns. The increase in emission on the surface is likely due to a significant inhibition to the electron-transfer quenching of the metal-to-ligand charge transfer (MLCT) excited state caused by surface adsorption-induced changes in the redox potentials. Transient (nanosecond time scale) absorption monitoring, following laser flash photolysis, reveals the presence of a transient or transients that are formed during the flash. Transient spectral changes that occur during and after the flash are consistent with the formation and decay of the intermediate ZrO2-[Ru(bpyCOOH)(bpyCH(2)-MV+.)(bpyCH(2)PTZ(+.))](4+). It returns to the ground state by both intramolecular and intermolecular processes. Intramolecular electron transfer occurs with k(BET) = 6.3 x 10(6) s(-1) (tau = 160 ns), which is comparable to the rate constant for back-electron transfer in solution. The back-electron transfer is a second-order process and is much slower, with kBET = 390 M-1 s(-1) (tau = 2.6 ms). C1 Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Meyer, TJ (reprint author), Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA. EM tjmeyer@lanl.gov NR 28 TC 3 Z9 3 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 3 PY 2005 VL 109 IS 4 BP 1499 EP 1504 DI 10.1021/jp040260t PG 6 WC Chemistry, Physical SC Chemistry GA 892CE UT WOS:000226626500024 PM 16851121 ER PT J AU Bearden, IG Beavis, D Besliu, C Budick, B Boggild, H Chasman, C Christensen, CH Christiansen, P Cibor, J Debbe, R Enger, E Gaardhoje, JJ Germinario, M Hagel, K Holm, A Holme, AK Ito, H Jakobsen, E Jipa, A Jundt, F Jordre, JI Jorgensen, CE Karabowicz, R Keutgen, T Kim, EJ Kozik, T Larsen, TM Lee, JH Lee, YK Lovhoiden, G Majka, Z Makeev, A Mikelsen, M Murray, MJ Natowitz, J Nielsen, BS Norris, J Olchanski, K Ouerdane, D Planeta, R Rami, F Ristea, C Rohrich, D Samset, BH Sandberg, D Sanders, SJ Scheetz, RA Staszel, P Tveter, TS Videbaek, F Wada, R Wieloch, A Yin, Z Zgura, IS AF Bearden, IG Beavis, D Besliu, C Budick, B Boggild, H Chasman, C Christensen, CH Christiansen, P Cibor, J Debbe, R Enger, E Gaardhoje, JJ Germinario, M Hagel, K Holm, A Holme, AK Ito, H Jakobsen, E Jipa, A Jundt, F Jordre, JI Jorgensen, CE Karabowicz, R Keutgen, T Kim, EJ Kozik, T Larsen, TM Lee, JH Lee, YK Lovhoiden, G Majka, Z Makeev, A Mikelsen, M Murray, MJ Natowitz, J Nielsen, BS Norris, J Olchanski, K Ouerdane, D Planeta, R Rami, F Ristea, C Rohrich, D Samset, BH Sandberg, D Sanders, SJ Scheetz, RA Staszel, P Tveter, TS Videbaek, F Wada, R Wieloch, A Yin, Z Zgura, IS CA BRAHMS Collaboration TI Forward and midrapidity like-particle ratios from p+p collisions at root s=200 GeV SO PHYSICS LETTERS B LA English DT Article DE proton collisions; particle ratios; forward rapidity; limiting fragmentation; Baryon junctions ID BARYON NUMBER; MODEL; PP AB We present a measurement of pi(-)/pi(+), K-/K+ and (p) over bar /p from p + p collisions at roots = 200 GeV over the rapidity range 0 < y < 3.4. For p(T) < 2.0 GeV/c we see no significant transverse momentum dependence of the ratios. All three ratios are independent of rapidity for y less than or similar to 1.5 and then steadily decline from y similar to 1.5 to y similar to 3. The pi(-)/pi(+) ratio is below unity for y > 2.0. The (p) over bar /p ratio is very similar for p + p and 20% central Au + Au collisions at all rapidities. In the fragmentation region the three ratios seem to be independent of beam energy when viewed from the rest frame of one of the protons. Theoretical models based on quark-diquark breaking mechanisms overestimate the (p) over bar /p ratio up to y less than or similar to 3. Including additional mechanisms for baryon number transport such as baryon junctions leads to a better description of the data. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Oslo, Dept Phys, N-0316 Oslo, Norway. Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Strasbourg, Strasbourg, France. Inst Rech Subatom, Strasbourg, France. Inst Nucl Phys, Krakow, Poland. Johns Hopkins Univ, Baltimore, MD 21218 USA. NYU, New York, NY 10003 USA. Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. Jagiellonian Univ, Smoluchowski Inst Phys, Krakow, Poland. Texas A&M Univ, College Stn, TX USA. Univ Bergen, Dept Phys, Bergen, Norway. Univ Bucharest, Bucharest, Romania. Univ Kansas, Lawrence, KS 66045 USA. RP Univ Oslo, Dept Phys, Pb 1048 Blindern, N-0316 Oslo, Norway. EM b.h.samset@fys.uio.no RI Christensen, Christian Holm/A-4901-2010; Christensen, Christian/D-6461-2012; Bearden, Ian/M-4504-2014; Samset, Bjorn H./B-9248-2012 OI Christensen, Christian Holm/0000-0002-1850-0121; Christensen, Christian/0000-0002-1850-0121; Bearden, Ian/0000-0003-2784-3094; Samset, Bjorn H./0000-0001-8013-1833 NR 36 TC 38 Z9 39 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 3 PY 2005 VL 607 IS 1-2 BP 42 EP 50 DI 10.1016/j.physletb.2004.12.064 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 894UQ UT WOS:000226817500006 ER PT J AU Link, JM Yager, PM Anjos, JC Bediaga, I Gobel, C Machado, AA Magnin, J Massafferri, A de Miranda, JM Pepe, IM Polycarpo, E dos Reis, AC Carrillo, S Casimiro, E Cuautle, E Sanchez-Hernandez, A Uribe, C Vazquez, F Agostino, L Cinquini, L Cumalat, JP O'Reilly, B Segoni, I Stenson, K Butler, JN Cheung, HWK Chiodini, G Gaines, I Garbincius, PH Garren, LA Gottschalk, E Kasper, PH Kreymer, AE Kutschke, R Wang, M Benussi, L Bertani, M Bianco, S Fabbri, FL Zallo, A Reyes, M Cawlfield, C Kim, DY Rahimi, A Wiss, J Gardner, R Kryemadhi, A Chung, YS Kang, JS Ko, BR Kwak, JW Lee, KB Cho, K Park, H Alimonti, G Barberis, S Boschini, M Cerutti, A D'Angelo, P DiCorato, M Dini, P Edera, L Erba, S Inzani, P Leveraro, F Malvezzi, S Menasce, D Mezzadri, M Moroni, L Pedrini, D Pontoglio, C Prelz, F Rovere, M Sala, S Davenport, TF Arena, V Boca, G Bonomi, G Gianini, G Liguori, G Pegna, DL Merlo, MM Pantea, D Ratti, SP Riccardi, C Vitulo, P Hernandez, H Lopez, AM Mendez, H Paris, A Quinones, J Ramirez, JE Zhang, Y Wilson, JR Handler, T Mitchell, R Engh, D Hosack, M Johns, WE Luiggi, E Moore, JE Nehring, M Sheldon, PD Vaandering, EW Webster, M Sheaff, M AF Link, JM Yager, PM Anjos, JC Bediaga, I Gobel, C Machado, AA Magnin, J Massafferri, A de Miranda, JM Pepe, IM Polycarpo, E dos Reis, AC Carrillo, S Casimiro, E Cuautle, E Sanchez-Hernandez, A Uribe, C Vazquez, F Agostino, L Cinquini, L Cumalat, JP O'Reilly, B Segoni, I Stenson, K Butler, JN Cheung, HWK Chiodini, G Gaines, I Garbincius, PH Garren, LA Gottschalk, E Kasper, PH Kreymer, AE Kutschke, R Wang, M Benussi, L Bertani, M Bianco, S Fabbri, FL Zallo, A Reyes, M Cawlfield, C Kim, DY Rahimi, A Wiss, J Gardner, R Kryemadhi, A Chung, YS Kang, JS Ko, BR Kwak, JW Lee, KB Cho, K Park, H Alimonti, G Barberis, S Boschini, M Cerutti, A D'Angelo, P DiCorato, M Dini, P Edera, L Erba, S Inzani, P Leveraro, F Malvezzi, S Menasce, D Mezzadri, M Moroni, L Pedrini, D Pontoglio, C Prelz, F Rovere, M Sala, S Davenport, TF Arena, V Boca, G Bonomi, G Gianini, G Liguori, G Pegna, DL Merlo, MM Pantea, D Ratti, SP Riccardi, C Vitulo, P Hernandez, H Lopez, AM Mendez, H Paris, A Quinones, J Ramirez, JE Zhang, Y Wilson, JR Handler, T Mitchell, R Engh, D Hosack, M Johns, WE Luiggi, E Moore, JE Nehring, M Sheldon, PD Vaandering, EW Webster, M Sheaff, M CA FOCUS Collaboration TI Measurement of the branching ratio of the decay D-0 ->pi(-)mu(+)nu relative to D-0 -> K-mu(+)nu SO PHYSICS LETTERS B LA English DT Article ID SPECTROMETER; FOCUS AB We present a new measurement of the branching ratio of the Cabibbo suppressed decay D-0 --> pi(-) mu(+) nu relative to the Cabibbo favored decay D-0 --> K- mu(+) nu and an improved measurement of the ratio \f(+)(pi)(0)/f(+)(K)(0)\ Our results are 0.074 +/- 0.008 +/- 0.007 for the branching ratio and 0.85 +/- 0.04 +/- 0.04 +/- 0.01 for the form factor ratio, respectively. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif Davis, Davis, CA 95616 USA. Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. CINVESTAV, Mexico City 07000, DF, Mexico. Univ Colorado, Boulder, CO 80309 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Guanajuato, Guanajuato 37150, Mexico. Univ Illinois, Urbana, IL 61801 USA. Indiana Univ, Bloomington, IN 47405 USA. Korea Univ, Seoul 136701, South Korea. Kyungpook Natl Univ, Taegu 702701, South Korea. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Milan, Milan, Italy. Univ N Carolina, Asheville, NC 28804 USA. Dipartimento Fis Teorica & Nucl, Pavia, Italy. Ist Nazl Fis Nucl, I-27100 Pavia, Italy. Univ Puerto Rico, Mayaguez, PR 00681 USA. Univ S Carolina, Columbia, SC 29208 USA. Univ Tennessee, Knoxville, TN 37996 USA. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Wisconsin, Madison, WI 53706 USA. RP Univ Calif Davis, Davis, CA 95616 USA. EM agostino@pizero.colorado.edu RI Link, Jonathan/L-2560-2013; Benussi, Luigi/O-9684-2014; Gobel Burlamaqui de Mello, Carla /H-4721-2016; Bonomi, Germano/G-4236-2010; Kwak, Jungwon/K-8338-2012 OI Link, Jonathan/0000-0002-1514-0650; Benussi, Luigi/0000-0002-2363-8889; Gobel Burlamaqui de Mello, Carla /0000-0003-0523-495X; Kutschke, Robert/0000-0001-9315-2879; Kryemadhi, Abaz/0000-0002-1240-2803; Bonomi, Germano/0000-0003-1618-9648; NR 15 TC 15 Z9 15 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 3 PY 2005 VL 607 IS 1-2 BP 51 EP 58 DI 10.1016/j.physletb.2004.12.062 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 894UQ UT WOS:000226817500007 ER PT J AU Link, JM Yager, PM Anjos, JC Bediaga, I Gobel, C Machado, AA Magnin, J Massafferri, A de Miranda, JM Pepe, IM Polycarpo, E dos Reis, AC Carrillo, S Casimiro, E Cuautle, E Sanchez-Hernandez, A Uribe, C Vazquez, F Agostino, L Cinquini, L Cumalat, JP O'Reilly, B Segoni, I Stenson, K Butler, JN Cheung, HWK Chiodini, G Gaines, I Garbincius, PH Garren, LA Gottschalk, E Kasper, PH Kreymer, AE Kutschke, R Wang, M Benussi, L Bertani, M Bianco, S Fabbri, FL Zallo, A Reyes, M Cawlfield, C Kim, DY Rahimi, A Wiss, J Gardner, R Kryemadhi, A Chung, YS Kang, JS Ko, BR Kwak, JW Lee, KB Cho, K Park, H Alimonti, G Barberis, S Boschini, M Cerutti, A D'Angelo, P DiCorato, M Dini, P Edera, L Erba, S Inzani, P Leveraro, F Malvezzi, S Menasce, D Mezzadri, M Moroni, L Pedrini, D Pontoglio, C Prelz, F Rovere, M Sala, S Davenport, TF Arena, V Boca, G Bonomi, G Gianini, G Liguori, G Pegna, DL Merlo, MM Pantea, D Ratti, SP Riccardi, C Vitulo, P Hernandez, H Lopez, AM Mendez, H Paris, A Quinones, J Ramirez, JE Zhang, Y Wilson, JR Handler, T Mitchell, R Engh, D Hosack, M Johns, WE Luiggi, E Moore, JE Nehring, M Sheldon, PD Vaandering, EW Webster, M Sheaff, M AF Link, JM Yager, PM Anjos, JC Bediaga, I Gobel, C Machado, AA Magnin, J Massafferri, A de Miranda, JM Pepe, IM Polycarpo, E dos Reis, AC Carrillo, S Casimiro, E Cuautle, E Sanchez-Hernandez, A Uribe, C Vazquez, F Agostino, L Cinquini, L Cumalat, JP O'Reilly, B Segoni, I Stenson, K Butler, JN Cheung, HWK Chiodini, G Gaines, I Garbincius, PH Garren, LA Gottschalk, E Kasper, PH Kreymer, AE Kutschke, R Wang, M Benussi, L Bertani, M Bianco, S Fabbri, FL Zallo, A Reyes, M Cawlfield, C Kim, DY Rahimi, A Wiss, J Gardner, R Kryemadhi, A Chung, YS Kang, JS Ko, BR Kwak, JW Lee, KB Cho, K Park, H Alimonti, G Barberis, S Boschini, M Cerutti, A D'Angelo, P DiCorato, M Dini, P Edera, L Erba, S Inzani, P Leveraro, F Malvezzi, S Menasce, D Mezzadri, M Moroni, L Pedrini, D Pontoglio, C Prelz, F Rovere, M Sala, S Davenport, TF Arena, V Boca, G Bonomi, G Gianini, G Liguori, G Pegna, DL Merlo, MM Pantea, D Ratti, SP Riccardi, C Vitulo, P Hernandez, H Lopez, AM Mendez, H Paris, A Quinones, J Ramirez, JE Zhang, Y Wilson, JR Handler, T Mitchell, R Engh, D Hosack, M Johns, WE Luiggi, E Moore, JE Nehring, M Sheldon, PD Vaandering, EW Webster, M Sheaff, M CA FOCUS Collaboration TI A study of D-0 ->(KsKsX)-K-0-X-0 decay channels SO PHYSICS LETTERS B LA English DT Article ID FOCUS SPECTROMETER AB Using data from the FOCUS experiment (FNAL-E831), we report on the decay of D-0 mesons into final states containing more than one K-S(0). We present evidence for two Cabibbo favored decay modes, D-0 --> K(S)(0)K(S)(0)K(-)pi(+) and D-0 --> K(S)(0)K(S)(0)K(+)pi(-), and measure their combined branching fraction relative to D-0 --> (K) over bar (0)pi(+)pi(-) to be Gamma(D-0-->K(S)(0)K(S)(0)K(+/-)pi(+/-))/Gamma(D-0-->K(0)pi(+)pi(-)) = 0.0106 +/- 0.0019 +/- 0.0010. Further, we report new measurements of Gamma(D-0-->(KSKSKS0)-K-0-K-0)/Gamma(D-0-->K(0)pi(+)pi(-)) = 0.0179+/-0.0027+/-0.0026, Gamma(D-0-->K-0(K) over bar (0))/Gamma(D-0-->(K) over bar (0)pi(+)pi(-)) = 0.0144+/-0.0032+/-0.0016, and Gamma(D-0-->(KSKSKS0)-K-0-K-0)Gamma(D-0-->(K) over bar (0)pi(+)pi(-)) = 0.0208+/-0.0035+/-0.0021 where the first error is statistical and the second is systematic. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif Davis, Davis, CA 95616 USA. Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. CINVESTAV, Mexico City 07000, DF, Mexico. Univ Colorado, Boulder, CO 80309 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Guanajuato, Guanajuato 37150, Mexico. Univ Illinois, Urbana, IL 61801 USA. Indiana Univ, Bloomington, IN 47405 USA. Korea Univ, Seoul 136701, South Korea. Kyungpook Natl Univ, Taegu 702701, South Korea. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Milan, Milan, Italy. Univ N Carolina, Asheville, NC 28804 USA. Dipartimento Fis Teorica & Nucl, Pavia, Italy. Ist Nazl Fis Nucl, I-27100 Pavia, Italy. Univ Puerto Rico, Mayaguez, PR 00681 USA. Univ S Carolina, Columbia, SC 29208 USA. Univ Tennessee, Knoxville, TN 37996 USA. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Wisconsin, Madison, WI 53706 USA. RP Univ Calif Davis, Davis, CA 95616 USA. EM david.lopes@pv.infn.it RI Bonomi, Germano/G-4236-2010; Kwak, Jungwon/K-8338-2012; Link, Jonathan/L-2560-2013; Benussi, Luigi/O-9684-2014; Gobel Burlamaqui de Mello, Carla /H-4721-2016; OI Bonomi, Germano/0000-0003-1618-9648; Link, Jonathan/0000-0002-1514-0650; Benussi, Luigi/0000-0002-2363-8889; Gobel Burlamaqui de Mello, Carla /0000-0003-0523-495X; Kutschke, Robert/0000-0001-9315-2879; Kryemadhi, Abaz/0000-0002-1240-2803 NR 16 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 3 PY 2005 VL 607 IS 1-2 BP 59 EP 66 DI 10.1016/j.physletb.2004.12.063 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 894UQ UT WOS:000226817500008 ER PT J AU Link, JM Yager, PM Anjos, JC Bediaga, I Gobel, C Machado, AA Magnin, J Massafferri, A de Miranda, JM Pepe, IM Polycarpo, E dos Reis, AC Carrillo, S Casimiro, E Cuautle, E Sanchez-Hernandez, A Uribe, C Vazquez, F Agostino, L Cinquini, L Cumalat, JP O'Reilly, B Segoni, I Stenson, K Butler, JN Cheung, HWK Chiodini, G Gaines, I Garbincius, PH Garren, LA Gottschalk, E Kasper, PH Kreymer, AE Kutschke, R Wang, M Benussi, L Bertani, M Bianco, S Fabbri, FL Zallo, A Reyes, M Cawlfield, C Kim, DY Rahimi, A Wiss, J Gardner, R Kryemadhi, A Chung, YS Kang, JS Ko, BR Kwak, JW Lee, KB Cho, K Park, H Alimonti, G Barberis, S Boschini, M Cerutti, A D'Angelo, P DiCorato, M Dini, P Edera, L Erba, S Inzani, P Leveraro, F Malvezzi, S Menasce, D Mezzadri, M Moroni, L Pedrini, D Pontoglio, C Prelz, F Rovere, M Sala, S Davenport, TF Arena, V Boca, G Gianini, G Liguori, G Pegna, DL Merlo, MM Pantea, D Ratti, SP Riccardi, C Vitulo, P Hernandez, H Lopez, AM Mendez, H Paris, A Quinones, J Ramirez, JE Zhang, Y Wilson, JR Handler, T Mitchell, R Engh, D Hosack, M Johns, WE Luiggi, E Moore, JE Nehring, M Sheldon, PD Vaandering, EW Webster, M Sheaff, M AF Link, JM Yager, PM Anjos, JC Bediaga, I Gobel, C Machado, AA Magnin, J Massafferri, A de Miranda, JM Pepe, IM Polycarpo, E dos Reis, AC Carrillo, S Casimiro, E Cuautle, E Sanchez-Hernandez, A Uribe, C Vazquez, F Agostino, L Cinquini, L Cumalat, JP O'Reilly, B Segoni, I Stenson, K Butler, JN Cheung, HWK Chiodini, G Gaines, I Garbincius, PH Garren, LA Gottschalk, E Kasper, PH Kreymer, AE Kutschke, R Wang, M Benussi, L Bertani, M Bianco, S Fabbri, FL Zallo, A Reyes, M Cawlfield, C Kim, DY Rahimi, A Wiss, J Gardner, R Kryemadhi, A Chung, YS Kang, JS Ko, BR Kwak, JW Lee, KB Cho, K Park, H Alimonti, G Barberis, S Boschini, M Cerutti, A D'Angelo, P DiCorato, M Dini, P Edera, L Erba, S Inzani, P Leveraro, F Malvezzi, S Menasce, D Mezzadri, M Moroni, L Pedrini, D Pontoglio, C Prelz, F Rovere, M Sala, S Davenport, TF Arena, V Boca, G Gianini, G Liguori, G Pegna, DL Merlo, MM Pantea, D Ratti, SP Riccardi, C Vitulo, P Hernandez, H Lopez, AM Mendez, H Paris, A Quinones, J Ramirez, JE Zhang, Y Wilson, JR Handler, T Mitchell, R Engh, D Hosack, M Johns, WE Luiggi, E Moore, JE Nehring, M Sheldon, PD Vaandering, EW Webster, M Sheaff, M CA FOCUS Collaboration TI Analysis of the semileptonic decay D-0 ->(K)over-bar(0)pi(-)mu(+)nu SO PHYSICS LETTERS B LA English DT Article ID FORM-FACTOR RATIOS; FOCUS SPECTROMETER AB Using data collected by the fixed target Fermilab experiment FOCUS, we present several first measurements for the semi-leptonic decay D-0 --> (K) over bar (0)pi(-)mu(+)nu. Using a model that includes a (K) over bar (0)pi(-) s-wave component, we measure the form factor ratios to be r(v) = 1.71+/-0.68+/-0.34 and r(2) = 0.91+/-0.37+/-0.10 and the s-wave amplitude to be A = 0.35+/-0.22+/-0.05 GeV-1. Finally, we measure the vector semileptonic branching ratio Gamma(D-0-->K*(892)(-)mu(+)nu)/Gamma(D-0-->(K) over bar (0)pi(-)pi(+))= 0.337+/-0.034+/-0.013. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif Davis, Davis, CA 95616 USA. Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. CINVESTAV, Mexico City 07000, DF, Mexico. Univ Colorado, Boulder, CO 80309 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Guanajuato, Guanajuato 37150, Mexico. Univ Illinois, Urbana, IL 61801 USA. Indiana Univ, Bloomington, IN 47405 USA. Korea Univ, Seoul 136701, South Korea. Kyungpook Natl Univ, Taegu 702701, South Korea. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Milan, Milan, Italy. Univ N Carolina, Asheville, NC 28804 USA. Dipartimento Fis Teorica & Nucl, Pavia, Italy. Ist Nazl Fis Nucl, I-27100 Pavia, Italy. Univ Puerto Rico, Mayaguez, PR 00681 USA. Univ S Carolina, Columbia, SC 29208 USA. Univ Tennessee, Knoxville, TN 37996 USA. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Wisconsin, Madison, WI 53706 USA. RP Univ Calif Davis, Davis, CA 95616 USA. EM segoni@pizero.colorado.edu RI Kwak, Jungwon/K-8338-2012; Link, Jonathan/L-2560-2013; Benussi, Luigi/O-9684-2014; Gobel Burlamaqui de Mello, Carla /H-4721-2016 OI Link, Jonathan/0000-0002-1514-0650; Benussi, Luigi/0000-0002-2363-8889; Gobel Burlamaqui de Mello, Carla /0000-0003-0523-495X NR 17 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 3 PY 2005 VL 607 IS 1-2 BP 67 EP 77 DI 10.1016/j.physletb.2004.12.037 PG 11 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 894UQ UT WOS:000226817500009 ER PT J AU Zhu, XL Zhuang, PF Xu, N AF Zhu, XL Zhuang, PF Xu, N TI J/psi transport in QGP and p(t) distribution at SPS and RHIC SO PHYSICS LETTERS B LA English DT Article ID HEAVY-ION COLLISIONS; NUCLEUS-NUCLEUS COLLISIONS; QUARK-GLUON PLASMA; TRANSVERSE-MOMENTUM DEPENDENCE; SHORT-DISTANCE ANALYSIS; PB-PB COLLISIONS; ELLIPTIC FLOW; ANOMALOUS J/PSI; PHASE-TRANSITION; RELATIVISTIC HYDRODYNAMICS AB Combining the hydrodynamic equations for the QGP evolution and the transport equation for the primordially produced J/psi in the QGP, we investigate the J/psi transverse momentum distribution as well as its suppression in the roots = 17.3 A GeV Pb-Pb collisions at SPS and roots = 200 A GeV Au-Au collisions at RHIC. The two sets of equations are connected by the J/psi anomalous suppression induced by its inelastic scattering with gluons in the QGP. The calculated centrality dependence of J/psi suppression and average transverse momentum square agree well with the SPS data. From the comparison with the coalescence model where charm quark is fully thermalized, our calculated elliptical flow of the primordially produced J/psi is much smaller. This may be helpful to differentiate the J/psi production mechanisms in relativistic heavy ion collisions. (C) 2004 Elsevier B.V. All rights reserved. C1 Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Zhu, XL (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM zhuangpf@mail.tsinghua.edu.cn NR 65 TC 52 Z9 54 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 3 PY 2005 VL 607 IS 1-2 BP 107 EP 114 DI 10.1016/j.physletb.2004.12.023 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 894UQ UT WOS:000226817500014 ER PT J AU Feldstein, B Hall, LJ Watari, T AF Feldstein, B Hall, LJ Watari, T TI Simultaneous solutions of the strong CP and mu problems SO PHYSICS LETTERS B LA English DT Article ID INVISIBLE AXIONS; GLOBAL STRINGS; EARLY-UNIVERSE; MASS; INFLATION; BARYOGENESIS; PARTICLES; SCALE; MODEL AB The mu parameter of the supersymmetric standard model is replaced by lambdaS, where S is a singlet chiral superfield, introducing a Peccei-Quinn symmetry into the theory. Dynamics at the electroweak scale naturally solves both the strong CP and P problems as long as lambda is of order rootM(Z)/M-pl or smaller, and yet this theory has the same number of relevant parameters as the supersymmetric standard model. The theory will be tested at colliders: the mu parameter is predicted and there are long-lived superpartners that decay to gravitinos or axinos at separated vertices. To avoid too much saxion cold dark matter, a large amount of entropy must be produced after the electroweak phase transition. If this is accomplished by decays of a massive particle, the reheat temperature should be no more than a GeV, strongly constraining baryogenesis. Cold dark matter may be composed of both axions, probed by direct detection, and saxions, probed by a soft X-ray background arising from decays to gammagamma. There are two known possibilities for avoiding problematic axion domain walls: the introduction of new colored fermions or the assumption that the Peccei-Quinn symmetry was already broken during inflation. In the first case, in our theory the colored particles are expected to be at the weak scale, while in the second case it implies a good chance of discovering isocurvature perturbations in the CMB radiation and a relatively low Hubble parameter during inflation. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Feldstein, B (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM twatari@lbl.gov OI Watari, Taizan/0000-0002-8879-1008 NR 37 TC 9 Z9 9 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 3 PY 2005 VL 607 IS 1-2 BP 155 EP 164 DI 10.1016/j.physletb.2004.12.051 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 894UQ UT WOS:000226817500020 ER PT J AU Zaharia, S Thomsen, MF Birn, J Denton, MH Jordanova, VK Cheng, CZ AF Zaharia, S Thomsen, MF Birn, J Denton, MH Jordanova, VK Cheng, CZ TI Effect of storm-time plasma pressure on the magnetic field in the inner magnetosphere SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CURRENT SHEETS; EQUILIBRIUM; MODEL; CURRENTS AB We investigate the effect of plasma pressure on the magnetic field in the near-Earth magnetosphere (2 to 6.5 R-E) during the major magnetic storm of October 21 - 25, 2001. For this we obtain a time series of "snapshots'', in each of which the magnetic forces are equilibrated by plasma pressure gradient forces. Each snapshot is computed using our 3-D equilibrium code, which is fed anisotropic pressure in the equatorial plane from a kinetic ring current model. As computational boundaries we use magnetic flux surfaces obtained from the T89 empirical model [Tsyganenko, 1989], parameterized by the appropriate K-p. We analyze the computed magnetic fields and electric currents at each stage of the storm. Our findings include significant (similar to10) plasma beta and large field depressions near Earth at the storm peak. The results clearly show the necessity of a magnetically self-consistent treatment of plasma transport in storm modeling. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Zaharia, S (reprint author), Los Alamos Natl Lab, POB 1663,MS D466, Los Alamos, NM 87545 USA. EM szaharia@lanl.gov RI Cheng, Chio/K-1005-2014; OI Denton, Michael/0000-0002-1748-3710; Jordanova, Vania/0000-0003-0475-8743 NR 18 TC 22 Z9 22 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 2 PY 2005 VL 32 IS 3 AR L03102 DI 10.1029/2004GL021491 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 895YL UT WOS:000226900900005 ER PT J AU Hier-Majumder, S Anderson, IM Kohlstedt, DL AF Hier-Majumder, S Anderson, IM Kohlstedt, DL TI Influence of protons on Fe-Mg interdiffusion in olivine SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID SAN CARLOS OLIVINE; NOMINALLY ANHYDROUS MINERALS; UPPER-MANTLE; ELECTRICAL-CONDUCTIVITY; SYNCHROTRON RADIATION; PLASTIC-DEFORMATION; POINT-DEFECTS; CREEP REGIME; HYDROGEN; WATER AB [1] We report the experimental measurement of Fe-Mg interdiffusivity in olivine along the [ 001] crystallographic direction in a water-saturated environment at pressures of 0.1 to 6 GPa and temperatures between 1373 and 1450 K. The concentration of water-derived protons in olivine was controlled by varying the water fugacity. The oxygen fugacity was set by the Ni-NiO solid state reaction, while the activity of silica was controlled by the presence of orthopyroxene. In this work, we report diffusivity as a function of temperature, pressure, and water fugacity following the relation (D) over tilde (Fe - Mg) = D-o(f(H2O)/f(H2O)(o) )(r) exp [-(Q + PV*)/RT] m(2)s(-1), where log(D-o) = (-14.8 +/- 2.7), r = 0.9 +/- 0.3, Q = 220 +/- 60 kJ/mol, and V* = ( 16 +/- 6) x 10(-6) m(3)/mol. The approximately linear increase in diffusivity with increasing water fugacity is consistent with incorporation of protons associated with octahedral cation vacancies to form defect complexes. Our results indicate that cation diffusion in water-saturated olivine is similar to50 times faster than under water-absent conditions at a pressure of 5 GPa and a temperature of 1373 K. C1 Univ Minnesota Twin Cities, Dept Geol & Geophys, Minneapolis, MN 55455 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Hier-Majumder, S (reprint author), Yale Univ, Dept Geol & Geophys, 210 Whitney Ave, New Haven, CT 06511 USA. EM hier-majumder@yale.edu; andersonim@ornl.gov; dlkohl@umn.edu RI Hier-Majumder, Saswata/C-3917-2009 OI Hier-Majumder, Saswata/0000-0002-2629-1729 NR 50 TC 57 Z9 62 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD FEB 2 PY 2005 VL 110 IS B2 AR B02202 DI 10.1029/2004JB003292 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 895ZE UT WOS:000226902900003 ER PT J AU Chou, YS Stevenson, JW AF Chou, YS Stevenson, JW TI Long-term thermal cycling of Phlogopite mica-based compressive seals for solid oxide fuel cells SO JOURNAL OF POWER SOURCES LA English DT Article DE open-circuit voltage; Phlogopite mica; solid oxide fuel cell; leak rates; thermal cycle ID GLASS; SEALANTS; SOFC AB Planar solid oxide fuel cells (SOFCs) require sealants to function properly in harsh environments at elevated temperatures. The SOFC stacks are expected to experience multiple thermal cycles (perhaps thousands of cycles for some applications) during their lifetime service in stationary or transportation applications. As a result, thermal cycle stability is considered a top priority for SOFC sealant development. In previous work, we have developed a hybrid mica-based compressive seal with very low leak rates of 2-4 x 10(-2) to 10(-3) sccm cm(-1) at 800degreesC, and showed stable leak rates over limited thermal cycles. In this paper we present results of long-term thermal cycle testing (>1000 thermal cycles) of Phlogopite mica-based compressive seals. Open-circuit voltage (OCV) was measured on a 2 in. x 2 in. 8-YSZ plate with the hybrid Phlogopite mica seals during thermal cycling in a dual environment (2.75% H-2/Ar versus air). During two long-term cycling tests, the measured OCVs were found to be consistent with the calculated Nernst voltages. The hybrid mica seal showed excellent thermal cycle stability over 1000 thermal cycles and can be considered a strong candidate for SOFC applications. (C) 2004 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Dept Mat, Richland, WA 99352 USA. RP Chou, YS (reprint author), Pacific NW Natl Lab, Dept Mat, K2-44,902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM yeong-shyung.chou@pnl.gov NR 12 TC 40 Z9 43 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD FEB 2 PY 2005 VL 140 IS 2 BP 340 EP 345 DI 10.1016/j.jpowsour.2004.08.030 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 893GO UT WOS:000226707500016 ER PT J AU Song, YJ Haddad, RE Jia, SL Hok, S Olmstead, MM Nurco, DJ Schore, NE Zhang, J Ma, JG Smith, KM Gazeau, S Pecaut, J Marchon, JC Medforth, CJ Shelnutt, JA AF Song, YJ Haddad, RE Jia, SL Hok, S Olmstead, MM Nurco, DJ Schore, NE Zhang, J Ma, JG Smith, KM Gazeau, S Pecaut, J Marchon, JC Medforth, CJ Shelnutt, JA TI Energetics and structural consequences of axial ligand coordination in nonplanar nickel porphyrins SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID RESONANCE RAMAN-SPECTROSCOPY; METHYL-COENZYME-M; SHIFTED ELECTRONIC-SPECTRA; METHANOBACTERIUM-THERMOAUTOTROPHICUM; REDUCTIVE ACTIVATION; METAL DEPENDENCE; CYTOCHROMES-C; FORCE-FIELD; COMPLEXES; DISTORTIONS AB The effects of ruffling on the axial ligation properties of a series of nickel(II) tetra(alkyl)porphyrins have been investigated with UV-visible absorption spectroscopy, resonance Raman spectroscopy, X-ray crystallography, classical molecular mechanics calculations, and normal-coordinate structural decomposition analysis. For the modestly nonplanar porphyrins, porphyrin ruffling is found to cause a decrease in binding affinity for pyrrolidine and piperidine, mainly caused by a decrease in the binding constant for addition of the first axial ligand; ligand binding is completely inhibited for the more nonplanar porphyrins. The lowered affinity, resulting from the large energies required to expand the core and flatten the porphyrin to accommodate the large high-spin nickel(II) ion, has implications for nickel porphyrin-based molecular devices and the function of heme proteins and methyl-coenzyme M reductase. C1 Sandia Natl Labs, Biomol Mat & Interfaces Dept, Albuquerque, NM 87185 USA. Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA. Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. Univ Calif Davis, Dept Chem, Davis, CA 95646 USA. Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. CEA, Lab Chim Inorgan & Biol, Dept Rech Fondamentale Matiere Condensee, F-38054 Grenoble, France. Univ Georgia, Dept Chem, Athens, GA 30602 USA. RP Shelnutt, JA (reprint author), Sandia Natl Labs, Biomol Mat & Interfaces Dept, POB 5800, Albuquerque, NM 87185 USA. EM jasheln@unm.edu RI Song, Yujiang/A-8700-2009; Shelnutt, John/A-9987-2009; Medforth, Craig/D-8210-2013; REQUIMTE, FMN/M-5611-2013; REQUIMTE, UCIBIO/N-9846-2013; Smith, Kevin/G-1453-2011 OI Shelnutt, John/0000-0001-7368-582X; Medforth, Craig/0000-0003-3046-4909; Smith, Kevin/0000-0002-6736-4779 NR 69 TC 62 Z9 62 U1 1 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 2 PY 2005 VL 127 IS 4 BP 1179 EP 1192 DI 10.1021/ja045309n PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA 892XR UT WOS:000226683800037 PM 15669857 ER PT J AU Snee, PT Shanoski, J Harris, CB AF Snee, PT Shanoski, J Harris, CB TI Mechanism of ligand exchange studied using transition path sampling SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR-ORBITAL METHODS; PHOTOGENERATED CR(CO)5(ROH); RATE CONSTANTS; SPECTROSCOPY; SOLVENT; WATER; W(CO)(5)(CYCLOHEXANE); PHOTOCHEMISTRY; REARRANGEMENT; FEMTOSECOND AB The mechanism of intermolecular ligand exchange has been studied using transition path sampling (TPS) based molecular dynamics (MD) simulations. Specifically, the exchange of solvent molecules bound to unsaturated Cr(CO)(5) in methanol solution has been investigated. The results of the TPS simulations have shown that there are multiple steps in the reaction mechanism. The first involves partial dissociation of the coordinated solvent from the Cr metal center followed by association with a new methanol molecule between the normally void first and second solvent layers. After diffusive motion of the exchanging ligands, the last step involves the originally bound methanol molecule moving into the bath continuum followed by solvation of the Cr metal fragment by the exchanging ligand. It has been found that the reaction center (defined as the organometallic fragment and two exchanging ligands only) and the solvent bath have favorable interactions. This is likely due to the adiabatic nature of the ligand exchange transition. The ability to understand the microscopic molecular dynamics of a chemical process based on a free energy analysis is also discussed. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Ernest Orlando Lawrence Berkeley, Nat Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Harris, CB (reprint author), MIT, Dept Chem, 77 Massachusetts Ave,Room 18-080, Cambridge, MA 02139 USA. EM harris@socrates.berkeley.edu NR 33 TC 16 Z9 16 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 2 PY 2005 VL 127 IS 4 BP 1286 EP 1290 DI 10.1021/ja044807t PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 892XR UT WOS:000226683800048 PM 15669868 ER PT J AU Rademacher, LK Clark, JF Clow, DW Hudson, GB AF Rademacher, LK Clark, JF Clow, DW Hudson, GB TI Old groundwater influence on stream hydrochemistry and catchment response times in a small Sierra Nevada catchment: Sagehen Creek, California SO WATER RESOURCES RESEARCH LA English DT Article ID SHALLOW GROUNDWATER; STORM RUNOFF; FLOW PATH; CHEMISTRY; CHLOROFLUOROCARBONS; WATER; AGE; ACIDIFICATION; EVOLUTION; HYDROLOGY AB The relationship between the chemical and isotopic composition of groundwater and residence times was used to understand the temporal variability in stream hydrochemistry in Sagehen basin, California. On the basis of the relationship between groundwater age and [Ca(2+)], the mean residence time of groundwater feeding Sagehen Creek during base flow is approximately 28 years. [Cl(-)]:[Ca(2+)] ratios in Sagehen Creek can be used to distinguish between two important processes: changes in the apparent age of groundwater discharging into the creek and dilution with snowmelt. The mean residence time of groundwater discharging into the creek is approximately 15 years during snowmelt periods. The results from this study have implications for hydrograph separation studies as groundwater is not a single, well-mixed chemical component but rather is a variable parameter that predictably depends on groundwater residence time. Most current models of catchment hydrochemistry do not account for chemical and isotopic variability found within the groundwater reservoir. In addition, this study provides valuable insight into the long-term hydrochemical response of a catchment to perturbations as catchment-lushing times are related to the mean residence time of water in a basin. C1 Univ Calif Santa Barbara, Dept Geol Sci, Santa Barbara, CA 93106 USA. US Geol Survey, WRD, Lakewood, CO 80225 USA. Lawrence Livermore Natl Lab, Analyt & Nucl Chem Div, Livermore, CA 94550 USA. Calif State Univ Los Angeles, Dept Geol Sci, Los Angeles, CA 90032 USA. RP Rademacher, LK (reprint author), Univ Calif Santa Barbara, Dept Geol Sci, Santa Barbara, CA 93106 USA. EM lradema@calstatela.edu; jfclark@geol.ucsb.edu; dwclow@usgs.gov; hudson5@llnl.gov NR 35 TC 11 Z9 11 U1 9 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB 2 PY 2005 VL 41 IS 2 AR W02004 DI 10.1029/2003WR002805 PG 10 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 895ZQ UT WOS:000226904400001 ER PT J AU Schwarz, RB Bach, HT Harms, U Tuggle, D AF Schwarz, RB Bach, HT Harms, U Tuggle, D TI Elastic properties of Pd-hydrogen, Pd-deuterium, and Pd-tritium single crystals SO ACTA MATERIALIA LA English DT Article DE acoustic methods; hydrides; resonant ultrasound spectroscope ID LATTICE-CONSTANTS; ALPHA-PHASE; PALLADIUM; TEMPERATURE; DEPENDENCE; DIFFUSION; SYSTEM; ALLOYS; MODULI; PD-D2 AB We used a resonant-ultrasound-spectroscopy technique to measure the three independent elastic constants of PdHx, PdDx, and PdTx single crystals at 300 K For 0.1 < x < 0.62 our PdHx crystals are two-phase mixtures of coherent alpha and beta hydride phases. For increasing x in this range, C-44 decreases monotonically whereas C' = 1/2(C-11 - C-12) has a concave parabolic dependence. This difference is because C' is softened by an anelastic relaxation resulting from acoustic-stress-induced changes, in the shape of the coherent lenticular-shape precipitates (beta-hydride precipitates in alpha-hydride matrix and alpha-hydride precipitates in beta-hydride matrix). In the beta-phase C' and C-44 decrease with increasing hydrogen (of deuterium or tritium) content. Furthermore, C' exhibits a strong isotope effect whereas C-44 does not. This effect is attributed to differences in the excitation of optical phonons in Pd-H. Pd-D and Pd-T (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, MST Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, ESA Div, Los Alamos, NM 87545 USA. RP Schwarz, RB (reprint author), Los Alamos Natl Lab, MST Div, Mail Stop G755, Los Alamos, NM 87545 USA. EM rxzs@lanl.gov NR 39 TC 21 Z9 21 U1 1 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2005 VL 53 IS 3 BP 569 EP 580 DI 10.1016/j.actamat.2004.10.009 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 893ID UT WOS:000226711600002 ER PT J AU Haouaoui, M Hartwig, KT Payzant, EA AF Haouaoui, M Hartwig, KT Payzant, EA TI Effect of strain path on texture and annealing, microstructure development in bulk pure copper processed by simple shear SO ACTA MATERIALIA LA English DT Article DE ECAE; texture; copper; recrystallization; microhardness ID KUBISCH FLACHENZENTRIERTER METALLE; CHANNEL ANGULAR EXTRUSION; EQUAL-CHANNEL; ALUMINUM; IRON AB The objective of this study was to determine the effect of strain path on the annealing behavior and texture development of severely plastically deformed oxygen free high conductivity copper. The material was deformed via equal channel angular extrusion (ECAE) to strains of 4.6 following three routes (A. B and C). Nucleation sites after recrysiallization heat treatment start in shear bands with subsequent growth in the direction of slip lines. Processing that causes intersection of shear planes creates, more sites for nucleation and leads to a shifting of the recrystallization curve to lower temperatures. The texture after multipass: processing via A route A is found to be similar to a rolling texture. An intermediate rotation of the billet of +/-90degrees during processing (route B) is found to produce a partial fiber texture. Route C processing leads to the formation of a sheet texture which is not eliminated when a reversal strain is applied. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Texas A&M Univ, Dept Engn Mech, College Stn, TX 77843 USA. Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Haouaoui, M (reprint author), Texas A&M Univ, Dept Engn Mech, College Stn, TX 77843 USA. EM mohammed@neo.tamu.edu RI Payzant, Edward/B-5449-2009 OI Payzant, Edward/0000-0002-3447-2060 NR 25 TC 46 Z9 47 U1 3 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2005 VL 53 IS 3 BP 801 EP 810 DI 10.1016/j.actamat.2004.10.032 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 893ID UT WOS:000226711600024 ER PT J AU Shyam, A Milligan, WW AF Shyam, A Milligan, WW TI A model for slip irreversibility, and its effect on the fatigue crack propagation threshold in a nickel-base superalloy SO ACTA MATERIALIA LA English DT Article DE nickel alloys; slip irreversibility; high cycle fatigue; deformation; modeling ID MINIMUM ENERGY FORMALISM; ATOMIC-FORCE MICROSCOPY; SILVER SINGLE-CRYSTALS; BAND MODEL; DEFORMATION; INITIATION; METALS; NUCLEATION; TITANIUM; BEHAVIOR AB A theoretical model for slip irreversibility in a polycrystalline nickel-base superalloy has been developed. This alloy deforms in a planar manner, and the slip irreversibility parameter was based on the fraction of dislocations which exit the free surface as a result of the loading. Defined in this manner, the slip irreversibility parameter can take values between zero. which corresponds to fully reversible slip and one, which denotes fully irreversible slip. It has been demonstrated that existing irreversibility, models. which take into account the irreversibility of surface strains, are actually special cases of our general model. The theoretical calculations were compared to experimental observations of slip offsets resulting from a single stroke compression test in this superalloy. It was found that slip irreversibility increased as temperature increased and it has been proposed that this variation causes the observed decrease in fatigue crack propagation threshold values with increasing temperature. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA. RP Oak Ridge Natl Lab, Dept Met & Ceram, 1 Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. EM shyama@ornl.gov OI Shyam, Amit/0000-0002-6722-4709 NR 26 TC 36 Z9 36 U1 2 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB PY 2005 VL 53 IS 3 BP 835 EP 844 DI 10.1016/j.actamat.2004.10.036 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 893ID UT WOS:000226711600027 ER PT J AU Kretzer, S AF Kretzer, S TI Fragmentation of partons SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 34th International Symposium on Multiparticle Dynamics CY JUL 26-AUG 01, 2004 CL Sonoma State Univ, Rohnert Pk, CA SP Univ Calif, Riverside, Brookhaven Natl Lab, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab HO Sonoma State Univ ID TO-LEADING ORDER; JETS AB The concept of parton fragmentation in QCD hard scattering phenomenology as well as NLO pQCD analysis of fragmentation functions are outlined. Hadroproduction of pions of a few GeV pperpendicular to is discussed through the example of recent measurements at rootS(RHIC) = 200 GeV. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Brookhaven Natl Lab, RIKEN, BNL, Res Ctr, Upton, NY 11973 USA. RP Kretzer, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM Kretzer@bnl.gov NR 20 TC 11 Z9 11 U1 0 U2 3 PU ACTA PHYSICA POLONICA B, JAGELLONIAN UNIV, INST PHYSICS PI KRAKOW PA REYMONTA 4, 30-059 KRAKOW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2005 VL 36 IS 2 BP 179 EP 186 PG 8 WC Physics, Multidisciplinary SC Physics GA 900SR UT WOS:000227235100003 ER PT J AU Hirano, T AF Hirano, T TI Hydrodynamic approaches to relativistic heavy ion collisions SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 34th International Symposium on Multiparticle Dynamics CY JUL 26-AUG 01, 2004 CL Sonoma State Univ, Rohnert Pk, CA SP Univ Calif, Riverside, Brookhaven Natl Lab, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab HO Sonoma State Univ ID QUARK-GLUON PLASMA; ELLIPTIC FLOW; NUCLEAR COLLISIONS; INTERFEROMETRY; ENERGY AB We give a short review about the hydrodynamic model and its application to the elliptic flow phenomena and the pion interferometry in relativistic heavy ion collisions. C1 Brookhaven Natl Lab, RIKEN, BNL, Res Ctr, Upton, NY 11973 USA. RP Hirano, T (reprint author), Columbia Univ, Dept Phys, Pupin 925,538 W 120th St, New York, NY 10027 USA. NR 37 TC 30 Z9 30 U1 0 U2 1 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2005 VL 36 IS 2 BP 187 EP 194 PG 8 WC Physics, Multidisciplinary SC Physics GA 900SR UT WOS:000227235100004 ER PT J AU Xu, ZB AF Xu, ZB TI Open charm production at RHIC SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 34th International Symposium on Multiparticle Dynamics CY JUL 26-AUG 01, 2004 CL Sonoma State Univ, Rohnert Pk, CA SP Univ Calif, Riverside, Brookhaven Natl Lab, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab HO Sonoma State Univ ID HEAVY-ION COLLISIONS; ROOT-S(NN)=200 GEV; D+AU COLLISIONS; PP COLLISIONS; ELECTRONS; QUARKS; PAIRS; P+P AB In this report, we present the measurements of open charm production at mid-rapidity in p + p, d + Au, and Au+Au collisions at RHIC energies. The techniques of direct reconstruction of open charm via its hadronic decay and indirect measurements via its semileptonic decay are discussed. The beam energy dependence of total charm cross section, electron PT spectra, and their comparisons to theoretical calculations, including NLO pQCD, are presented. The electron spectra in p + p, d + Au, and Au+Au collisions at rootS(NN)=200 GeV show significant variation. The open charm absolute cross section at midrapidity and its centrality dependence are compared to those of inclusive hadrons integrated over p(T) > 1.5 GeV/c. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Xu, ZB (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 38 TC 2 Z9 2 U1 2 U2 4 PU ACTA PHYSICA POLONICA B, JAGELLONIAN UNIV, INST PHYSICS PI KRAKOW PA REYMONTA 4, 30-059 KRAKOW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2005 VL 36 IS 2 BP 243 EP 250 PG 8 WC Physics, Multidisciplinary SC Physics GA 900SR UT WOS:000227235100011 ER PT J AU Zanderighi, G AF Zanderighi, G TI Resummed event shapes at hadron colliders SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 34th International Symposium on Multiparticle Dynamics CY JUL 26-AUG 01, 2004 CL Sonoma State Univ, Rohnert Pk, CA SP Univ Calif, Riverside, Brookhaven Natl Lab, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab HO Sonoma State Univ ID ELASTIC-SCATTERING; CROSS-SECTIONS; RESUMMATION; QCD; ANNIHILATION; OBSERVABLES AB We present recently defined jet-observables for hadron-hadron diet production, which are designed to reconcile the seemingly conflicting theoretical requirement of globalness, which makes it possible to resume them (automatically) at NLL accuracy and the limited experimental reach of detectors, so that they are measurable at the Tevatron and at the LHC. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Zanderighi, G (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 16 TC 1 Z9 1 U1 0 U2 1 PU ACTA PHYSICA POLONICA B, JAGELLONIAN UNIV, INST PHYSICS PI KRAKOW PA REYMONTA 4, 30-059 KRAKOW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2005 VL 36 IS 2 BP 381 EP 388 PG 8 WC Physics, Multidisciplinary SC Physics GA 900SR UT WOS:000227235100025 ER PT J AU Vitev, I AF Vitev, I TI Jets in nuclear collisions SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 34th International Symposium on Multiparticle Dynamics CY JUL 26-AUG 01, 2004 CL Sonoma State Univ, Rohnert Pk, CA SP Univ Calif, Riverside, Brookhaven Natl Lab, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab HO Sonoma State Univ ID TRANSVERSE-MOMENTUM; HADRON-PRODUCTION; ENERGY-LOSS; QUARK AB Ultra-relativistic heavy ion collisions at RHIC and the LHC open exciting new possibilities for jet physics studies in the presence of hot and dense nuclear matter. Recent theoretical advances in understanding the QCD multi-parton dynamics provide a good description of the quenching in the single and double inclusive high-p(T) hadron spectra. Measurement of the redistribution of the lost energy and the corresponding increase in the soft hadron multiplicities is the next critical step in elucidating the modification of the jet properties in the nuclear environment. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Vitev, I (reprint author), Los Alamos Natl Lab, Mail Stop H846, Los Alamos, NM 87545 USA. EM ivitev@lanl.gov NR 32 TC 1 Z9 1 U1 0 U2 1 PU ACTA PHYSICA POLONICA B, JAGELLONIAN UNIV, INST PHYSICS PI KRAKOW PA REYMONTA 4, 30-059 KRAKOW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2005 VL 36 IS 2 BP 461 EP 468 PG 8 WC Physics, Multidisciplinary SC Physics GA 900SR UT WOS:000227235100034 ER PT J AU Brodsky, SJ AF Brodsky, SJ TI Novel QCD aspects of hard diffraction, antishadowing, and single-spin asymmetries SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 34th International Symposium on Multiparticle Dynamics CY JUL 26-AUG 01, 2004 CL Sonoma State Univ, Rohnert Pk, CA SP Univ Calif, Riverside, Brookhaven Natl Lab, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab HO Sonoma State Univ ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; DEUTERON FORM-FACTOR; INTRINSIC CHARM; QUANTUM CHROMODYNAMICS; CROSS SECTIONS; PARTON DISTRIBUTIONS; NEUTRINO SCATTERING; EXCLUSIVE PROCESSES; PAIR PRODUCTION AB It is usually assumed - following the parton model - that the leading-twist structure functions measured in deep inelastic lepton-proton scattering are simply the probability distributions for finding quarks and gluons in the target nucleon. In fact, gluon exchange between the outgoing quarks and the target spectators effects the leading-twist structure functions in a profound way, leading to diffractive leptoproduction processes, shadowing and antishadowing of nuclear structure functions, and target spin asymmetries, physics not incorporated in the light-front wavefunctions of the target computed in isolation. In particular, final-state interactions from gluon exchange lead to single-spin asymmetries in semi-inclusive deep inelastic lepton-proton scattering which are not power-law suppressed in the Bjorken limit. The shadowing and antishadowing of nuclear structure functions in the Gribov-Glauber picture is due respectively to the destructive and constructive interference of amplitudes arising from the multiple-scattering of quarks in the nucleus. The effective quark-nucleon scattering amplitude includes Pomeron and Odderon contributions from multi-gluon exchange as well as Reggeon IT ark-exchange contributions. Part of the anomalous NuTeV result for sin(2) theta(W) could be due to the non-universality of nuclear antishadowing for charged and neutral currents. Detailed measurements of the nuclear dependence of individual quark structure functions are thus needed to establish the distinctive phenomenology of shadowing and antishadowing and to make the NuTeV results definitive. I also discuss diffraction dissociation as a tool for resolving hadron substructure Fock state by Fock state and for producing leading heavy quark systems. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Brodsky, SJ (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 78 TC 3 Z9 3 U1 0 U2 1 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2005 VL 36 IS 2 BP 635 EP 655 PG 21 WC Physics, Multidisciplinary SC Physics GA 900SR UT WOS:000227235100050 ER PT J AU White, AR AF White, AR TI The sextet Higgs mechanism and the Pomeron SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 34th International Symposium on Multiparticle Dynamics CY JUL 26-AUG 01, 2004 CL Sonoma State Univ, Rohnert Pk, CA SP Univ Calif, Riverside, Brookhaven Natl Lab, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab HO Sonoma State Univ AB If electroweak symmetry breaking is a consequence of color sextet quark chiral symmetry breaking, dramatic, large cross-section, effects are to be expected at the LHC - with the pomeron playing a prominent role. The symmetry breaking is tied to a special solution of QCD which can be constructed, at high-energy, via the chiral anomaly and reggeon diagrams. There is confinement and chiral symmetry breaking, but physical states contain both quarks and a universal, anomalous, wee gluon component. A variety of Cosmic Ray effects could be supporting evidence, including the knee in the spectrum and the ultra-high energy events. The sextet neutron should be stable and is a natural dark matter candidate. A large ET jet excess at Fermilab, and large x and Q(2) events at HERA, would be supporting accelerator evidence. Further evidence, including diffractive-related vector boson pair production and top quark related phenomena, could be seen at Fermilab as data is accumulated. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP White, AR (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 3 TC 1 Z9 1 U1 0 U2 1 PU ACTA PHYSICA POLONICA B, JAGELLONIAN UNIV, INST PHYSICS PI KRAKOW PA REYMONTA 4, 30-059 KRAKOW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2005 VL 36 IS 2 BP 699 EP 709 PG 11 WC Physics, Multidisciplinary SC Physics GA 900SR UT WOS:000227235100056 ER PT J AU Tuchin, K AF Tuchin, K TI Manifestation of the color glass condensate in particle production at RHIC SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 34th International Symposium on Multiparticle Dynamics CY JUL 26-AUG 01, 2004 CL Sonoma State Univ, Rohnert Pk, CA SP Univ Calif, Riverside, Brookhaven Natl Lab, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab HO Sonoma State Univ ID GLUON DISTRIBUTION-FUNCTIONS; WEIZSACKER-WILLIAMS FIELD; HEAVY-ION COLLISIONS; HIGH-DENSITY QCD; LARGE NUCLEUS; SEMIHARD PROCESSES; ELLIPTIC FLOW; SMALL-X; EVOLUTION; QUARK AB We discuss general properties of the Color Glass Condensate. We show that predictions for particle production in p(d)A and AA collisions derived from these properties are in agreement with data collected at RHIC. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Tuchin, K (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 41 TC 0 Z9 0 U1 0 U2 1 PU ACTA PHYSICA POLONICA B, JAGELLONIAN UNIV, INST PHYSICS PI KRAKOW PA REYMONTA 4, 30-059 KRAKOW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2005 VL 36 IS 2 BP 727 EP 733 PG 7 WC Physics, Multidisciplinary SC Physics GA 900SR UT WOS:000227235100059 ER PT J AU Lowry, T Li, SG AF Lowry, T Li, SG TI A finite analytic method for solving the 2-D time-dependent advection-diffusion equation with time-invariant coefficients SO ADVANCES IN WATER RESOURCES LA English DT Article DE contaminant transport; groundwater; advection-diffusion; laplace transform ID TRANSFORM GALERKIN TECHNIQUE; HETEROGENEOUS POROUS-MEDIA; LOCALIZED ADJOINT METHOD; SOLUTE TRANSPORT; LAPLACE TRANSFORMS; NUMERICAL INVERSION; DIFFERENCE METHOD; MASS-TRANSPORT; ELEMENT-METHOD; NAVIER-STOKES AB Difficulty in solving the transient advection-diffusion equation (ADE) stems from the relationship between the advection defivatives and the time derivative. For a solution method to be viable. it must account for this relationship by being accurate in both space and time. This research presents a unique method for solving the time-dependent ADE that does not discretize the derivative terms but rather solves the equation analytically in the space-time domain. The method is computationally efficient and numerically accurate and addresses the common limitations of numerical dispersion and spurious oscillations that can be prevalent in other solution methods. The method is based on the improved finite analytic (IFA) solution method [Lowry TS. Li S-G. A characteristic based finite analytic method for solving the two-dimensional steady-state advection-diffusion equation. Water Resour Res 38 (7)2 10.1029/ 2001WR000518] in space coupled with a Laplace transformation in time. In this way, the method has no Courant condition and maintains accuracy in space and time, performing well even at high Peclet numbers. The method is compared to a hybrid method of characteristics, a random walk particle tracking method, and an Eulerian-Lagrangrian Localized Adjoint Method using various degrees of flow-field heterogeneity across multiple Peclet numbers. Results show the IFALT method to be computationally more efficient while producing similar or better accuracy than the other methods. (C) 2004 Published by Elsevier Ltd. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA. RP Lowry, T (reprint author), Sandia Natl Labs, POB 5800,MS 0735, Albuquerque, NM 87185 USA. EM tslowry@sandia.gov; lishug@egr.msu.edu NR 52 TC 7 Z9 7 U1 1 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD FEB PY 2005 VL 28 IS 2 BP 117 EP 133 DI 10.1016/j.advwatres.2004.10.005 PG 17 WC Water Resources SC Water Resources GA 892BW UT WOS:000226625700002 ER PT J AU Sippola, MR Nazaroff, WW AF Sippola, MR Nazaroff, WW TI Particle deposition in ventilation ducts: Connectors, bends and developing turbulent flow SO AEROSOL SCIENCE AND TECHNOLOGY LA English DT Article ID TRANSPORT; SURFACES; GASES AB In ventilation ducts the turbulent flow profile is commonly disturbed or not fully developed, and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90 degrees duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both bare steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the bare-steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9, and 16mum were conducted at each of three nominal air speeds: 2.2, 5.3, and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8, and 13 mum was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to measure directly the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends, and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds, and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction, and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90 degrees bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight sections of bare steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall than in bare steel ducts. Trends that were observed in bare steel ducts were present, but weaker, in insulated ducts. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Indoor Environm, Div Environm Energy Technol, Berkeley, CA USA. RP Nazaroff, WW (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, 661 Davis Hall, Berkeley, CA 94720 USA. EM nazaroff@ce.berkelely.edu RI Nazaroff, William/C-4106-2008 OI Nazaroff, William/0000-0001-5645-3357 NR 11 TC 21 Z9 21 U1 2 U2 15 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0278-6826 J9 AEROSOL SCI TECH JI Aerosol Sci. Technol. PD FEB PY 2005 VL 39 IS 2 BP 139 EP 150 DI 10.1080/027868290908759 PG 12 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 881OT UT WOS:000225877500006 ER PT J AU Sippola, MR Nazaroff, WW AF Sippola, MR Nazaroff, WW TI Particle deposition in ventilation ducts: Connectors, bends and developing turbulent flow SO AEROSOL SCIENCE AND TECHNOLOGY LA English DT Article ID TRANSPORT; SURFACES; GASES AB In ventilation ducts the turbulent flow profile is commonly disturbed or not fully developed, and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90 degrees duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both bare steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the bare-steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9, and 16 mu m were conducted at each of three nominal air speeds: 2.2, 5.3, and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8, and 13 mu m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to measure directly the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends, and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds, and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction, and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90 degrees bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight sections of bare steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall than in bare steel ducts. Trends that were observed in bare steel ducts were present, but weaker, in insulated ducts. C1 Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. Ernest Orlando Lawrence Berkeley Natl Lab, Indoor Environm Dept, Environm Energy Technol Div, Berkeley, CA USA. RP Nazaroff, WW (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, 661 Davis Hall, Berkeley, CA 94720 USA. EM nazaroff@ce.berkeley.edu RI Nazaroff, William/C-4106-2008 OI Nazaroff, William/0000-0001-5645-3357 NR 12 TC 21 Z9 21 U1 2 U2 15 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0278-6826 J9 AEROSOL SCI TECH JI Aerosol Sci. Technol. PD FEB PY 2005 VL 39 IS 2 BP 139 EP 150 DI 10.1080/027868290908759 PG 12 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 984EZ UT WOS:000233286600002 ER PT J AU Beresh, SJ Henfling, JF Erven, RJ Spillers, RW AF Beresh, SJ Henfling, JF Erven, RJ Spillers, RW TI Penetration of a transverse supersonic jet into a subsonic compressible crossflow SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT AIAA 42nd Aerospace Sciences Meeting and Exhibit CY JAN 05-08, 2004 CL Reno, NV SP Amer Inst Aeronaut & Astronaut ID PARTICLE IMAGE VELOCIMETRY; TURBULENT JET; SPECKLE VELOCIMETRY; GASEOUS INJECTION; STEREOSCOPIC PIV; FREESTREAM; VELOCITY; BODIES; LAYER AB Particle image velocimetry data have been acquired in the far field of the interaction generated by an over-expanded axisymmetric supersonic jet exhausting transversely from a flat plate into a subsonic compressible crossflow. Mean velocity fields were found in the streamwise plane along the flowfield centerline for different values of the crossflow Mach number M-infinity and the jet-to-freestream dynamic pressure ratio J. The magnitude of the streamwise velocity deficit and the vertical velocity component both decay with downstream distance and were observed to be greater for larger J while M-infinity remained constant jet trajectories derived independently using the maxima of each of these two velocity components are not identical. but show increasing jet penetration for larger J. Similarity in the normalized velocity field was found for constant J at two different transonic M-infinity,M- but at two lower M-infinity the jet appeared to interact with the wall boundary layer and data did not collapse. The magnitude and width of the peak in the vertical velocity component both increase with J, suggesting that the strength and size of the counter-rotating vortex pair increase and, thus, may have a stronger influence on aerodynamic surfaces despite further jet penetration from the wall. C1 Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Beresh, SJ (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800,Mailstop 0834, Albuquerque, NM 87185 USA. EM sjberes@sandia.gov NR 47 TC 29 Z9 29 U1 2 U2 8 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD FEB PY 2005 VL 43 IS 2 BP 379 EP 389 DI 10.2514/1.9919 PG 11 WC Engineering, Aerospace SC Engineering GA 892CD UT WOS:000226626400014 ER PT J AU Phongikaroon, S Calabrese, RV AF Phongikaroon, S Calabrese, RV TI Effect of internal and external resistances on the swelling of droplets SO AICHE JOURNAL LA English DT Article ID GROWTH; DIFFUSION; NUCLEATION AB The diffusion equation is solved, subject to a quasi-steady approximation, to determine the swelling rate of a spherical drop in an infinite medium. External convective mass transfer to the growing drop surface is accounted for as a boundary condition. Three cases are considered: the general case of finite Biot number (Bi), and the limiting cases of infinite Bi (negligible external convective resistance), and low Bi (negligible internal diffusion resistance). Analytical approximations and numerical solutions are developed and detailed results are presented. The dimensionless swelling rate is governed by a dimensionless mass driving force ((p) over bar), a dimensionless time (X-D(0)), and the Biot number. The various models are compared over the range 0.001 < (p) over bar < 1.0; 10(-5) < X-D(0) < 500; and 0.01 < Bi < infinity to determine when the more easily applied analytical approximations are valid, and to determine the critical Bi for which internal diffusion resistance or external convective resistance can be ignored. In these limits the simpler low Bi or infinite Bi models can be applied, respectively, in place of the finite Bi model. The results show that the analytical approximations are valid for (p) over bar less than or equal to 0.05. Furthermore, the infinite Bi numerical solution is accurate for Bi > 100, whereas the low Bi solution is valid for Bi < 1. (C) 2005 American Institute of Chemical Engineers. C1 USN, Res Lab, Washington, DC 20375 USA. Univ Maryland, Dept Chem Engn, College Pk, MD 20742 USA. RP Phongikaroon, S (reprint author), Argonne Natl Lab, POB 2528, Idaho Falls, ID 83403 USA. EM supathorn.phongikaroon@anlw.anl.gov NR 15 TC 0 Z9 0 U1 1 U2 6 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0001-1541 J9 AICHE J JI AICHE J. PD FEB PY 2005 VL 51 IS 2 BP 379 EP 391 DI 10.1002/aic.10322 PG 13 WC Engineering, Chemical SC Engineering GA 893UC UT WOS:000226743800003 ER PT J AU McCune, W Padmanabhan, R Rose, M Veroff, R AF McCune, W Padmanabhan, R Rose, M Veroff, R TI Automated discovery of single axioms for ortholattices SO ALGEBRA UNIVERSALIS LA English DT Article DE ortholattice basis; ortholattice single identity ID BOOLEAN-ALGEBRA AB We present short single axioms for ortholattices, orthomodular lattices, and modular ortholattices, all in terms of the Sheffer stroke. The ortholattice axiom is the shortest possible. We also give multiequation bases in terms of the She. er stroke and in terms of join, meet, and complementation. Proofs are omitted but are available in an associated technical report and on the Web. We used computers extensively to find candidates, reject candidates, and search for proofs that candidates are single axioms. C1 Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada. Univ Wisconsin, Dept Math, Madison, WI 53706 USA. Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. RP McCune, W (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mccune@mcs.anl.gov; padman@cc.umanitoba.ca; rose@math.wisc.edu; veroff@cs.unm.edu NR 17 TC 2 Z9 2 U1 0 U2 0 PU BIRKHAUSER VERLAG AG PI BASEL PA VIADUKSTRASSE 40-44, PO BOX 133, CH-4010 BASEL, SWITZERLAND SN 0002-5240 J9 ALGEBRA UNIV JI Algebr. Universalis PD FEB PY 2005 VL 52 IS 4 BP 541 EP 549 DI 10.1007/s00012-004-1902-0 PG 9 WC Mathematics SC Mathematics GA 899RF UT WOS:000227161800012 ER PT J AU Majzlan, J Botez, C Stephens, PW AF Majzlan, J Botez, C Stephens, PW TI The crystal structures of synthetics Fe-2(SO4)(3)(H2O)(5) and the type specimen of lausenite SO AMERICAN MINERALOGIST LA English DT Article ID HYDRATED FERRIC SULFATES; MINERAL CHEMISTRY; PROGRAM AB An iron sulfate of nominal composition Fe-2(SO4)(3)(H2O)(5) has been synthesized and its structure determined and refined by high resolution powder diffraction using synchrotron radiation. The structure consists of corrugated slabs in which iron octahedra are linked by sulfate tetrahedra in the monoclinic space group P2(1)/m with lattice parameters a = 10.711(1), b = 11.085(1), and c = 5.5747(5) Angstrom, beta = 98.853(3)degrees. We compare these results with the type specimen of lausenite from Jerome, Arizona, which has monoclinic lattice parameters a = 10.679(2), b = 11.053(3), and c = 5.567(1) Angstrom, beta = 98.89(1)degrees. Weight loss experiments show that it is currently a pentahydrate, despite earlier reports that lausenite is a hexahydrate. We argue that our synthetic material provides a structure determination for the type specimen of lausenite. C1 Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. RP Majzlan, J (reprint author), Univ Freiburg, Inst Mineral Petr & Geochem, Albertstr 23B, D-79104 Freiburg, Germany. EM Juraj.Majzlan@minpet.uni-freiburg NR 17 TC 26 Z9 27 U1 1 U2 6 PU MINERALOGICAL SOC AMER PI WASHINGTON PA 1015 EIGHTEENTH ST, NW SUITE 601, WASHINGTON, DC 20036 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD FEB-MAR PY 2005 VL 90 IS 2-3 BP 411 EP 416 DI 10.2138/am.2005.1701 PG 6 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 899OZ UT WOS:000227155500013 ER PT J AU Kukkadapu, RK Zachara, JM Fredrickson, JK Kennedy, DW Dohnalkova, AC McCready, DE AF Kukkadapu, RK Zachara, JM Fredrickson, JK Kennedy, DW Dohnalkova, AC McCready, DE TI Ferrous hydroxy carbonate is a stable transformation product of biogenic magnetite SO AMERICAN MINERALOGIST LA English DT Article ID FE(III)-REDUCING BACTERIUM; MAGNETOTACTIC BACTERIUM; ELECTRON-ACCEPTORS; REDUCING BACTERIA; HUMIC SUBSTANCES; FERRIC-OXIDE; GREEN RUST; IRON; REDUCTION; SEDIMENTS AB An similar to1:1 mixture of ferrihydrite and nanocrystalline akaganeite (beta-FeOOH; 10-15 nm) was incubated with Shewanella putrefaciens (strain CN32) under anoxic conditions with lactate as an electron donor and anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle. The incubation was carried out in a 1,4-piperazinediethanesulfonic acid (PIPES)-buffered medium, without PO43- at circumneutral pH. Iron reduction was measured as a function of time (as determined by 0.5 N HCl extraction), and solids were characterized by X-ray diffraction (XRD), electron microscopy, and Mossbauer spectroscopy. The biogenic reduction of Fe3+ was rapid; with 60% of the total Fe (Fe-TOT) reduced in one day. Only an additional 10% of Fe-TOT was reduced over the next three years. A fine-grained (similar to10 nm), cation-excess (CE) magnetite with an Fe2+/Fe-TOT ratio of 0.5-0.6 was the sole biogenic product after one day of incubation. The CE magnetite was unstable and partially transformed to micrometer-sized ferrous hydroxy carbonate [FHC; Fe-2(OH)(2)CO3(s)], a rosasite-type mineral, with time. Ferrous hydroxy carbonate dominated the mineral composition of the three year incubated sample. The Fe2+/Fe-TOT ratio of the residual CE magnetite after three years of incubation was lower than the day I sample and was close to that of the stoichiometric magnetite (0.33). To the best of our knowledge, this is the first report of biogenic FHC, and was only reported twice in literature but in a very different context. Ferrous hydroxy carbonate appeared to form by slow reaction of microbially produced carbonate with Fe2+-excess magnetite. The FHC may be an overlooked mineral phase that explains the infrequent occurrence of fine-grained, biogenic magnetite in anoxic sediments. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kukkadapu, RK (reprint author), Pacific NW Natl Lab, MSIN K8-96,POB 999, Richland, WA 99352 USA. EM ravi.kukkadapu@pnl.gov OI Kennedy, David/0000-0003-0763-501X NR 36 TC 53 Z9 55 U1 1 U2 18 PU MINERALOGICAL SOC AMER PI WASHINGTON PA 1015 EIGHTEENTH ST, NW SUITE 601, WASHINGTON, DC 20036 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD FEB-MAR PY 2005 VL 90 IS 2-3 BP 510 EP 515 DI 10.2138/am.2005.1727 PG 6 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 899OZ UT WOS:000227155500026 ER EF