FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Mastorides, T Rivetta, C Fox, JD Van Winkle, D Teytelman, D AF Mastorides, T. Rivetta, C. Fox, J. D. Van Winkle, D. Teytelman, D. TI Analysis of longitudinal beam dynamics behavior and rf system operative limits at high-beam currents in storage rings SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB A dynamics simulation model is used to estimate limits of performance of the positron-electron project (PEP-II). The simulation captures the dynamics and technical limitations of the low level radio frequency (LLRF) system, the high-power rf components, and the low-order mode coupled-bunch longitudinal beam dynamics. Simulation results showing the effect of nonlinearities on the LLRF loops, and studies of the effectiveness of technical component upgrades are reported, as well as a comparison of these results with PEP-II measurements. These studies have led to the estimation of limits and determining factors in the maximum stored current that the low energy ring/high energy ring (LER/HER) can achieve, based on system stability for different rf station configurations and upgrades. In particular, the feasibility of the PEP-II plans to achieve the final goal in luminosity, which required an increase of the beam currents to 4 A for LER and 2.2 A for HER, is studied. These currents are challenging in part because they would push the longitudinal low-order beam mode stability to the limit, and the klystron forward power past a level of satisfactory margin. An acceptable margin is defined in this paper, which in turn determines the corresponding klystron forward power limitation. C1 [Mastorides, T.; Rivetta, C.; Fox, J. D.; Van Winkle, D.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Teytelman, D.] Dimtel Inc, San Jose, CA 95124 USA. RP Mastorides, T (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM themis@slac.stanford.edu; rivetta@slac.stanford.edu NR 20 TC 2 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2008 VL 11 IS 6 AR 062802 DI 10.1103/PhysRevSTAB.11.062802 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 327WX UT WOS:000257760300009 ER PT J AU Rose, DV Welch, DR Hughes, TP Clark, RE Stygar, WA AF Rose, D. V. Welch, D. R. Hughes, T. P. Clark, R. E. Stygar, W. A. TI Plasma evolution and dynamics in high-power vacuum-transmission-line post-hole convolutes SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID IN-CELL SIMULATIONS; 2-STREAM STABILITY; ANODE PLASMA; ION DIODES; ELECTRON; FIELD; BEAM; FLOW; PERFORMANCE; SYSTEM AB Vacuum-post-hole convolutes are used in pulsed high-power generators to join several magnetically insulated transmission lines (MITL) in parallel. Such convolutes add the output currents of the MITLs, and deliver the combined current to a single MITL that, in turn, delivers the current to a load. Magnetic insulation of electron flow, established upstream of the convolute region, is lost at the convolute due to symmetry breaking and the formation of magnetic nulls, resulting in some current losses. At very high-power operating levels and long pulse durations, the expansion of electrode plasmas into the MITL of such devices is considered likely. This work examines the evolution and dynamics of cathode plasmas in the double-post-hole convolutes used on the Z accelerator [ R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)]. Three-dimensional particle-in-cell (PIC) simulations that model the entire radial extent of the Z accelerator convolute-from the parallel-plate transmission-line power feeds to the z-pinch load region are used to determine electron losses in the convolute. The results of the simulations demonstrate that significant current losses (1.5 MA out of a total system current of 18.5 MA), which are comparable to the losses observed experimentally, could be caused by the expansion of cathode plasmas in the convolute regions. C1 [Rose, D. V.; Welch, D. R.; Hughes, T. P.; Clark, R. E.] Voss Sci LLC, Albuquerque, NM 87108 USA. [Stygar, W. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rose, DV (reprint author), Voss Sci LLC, Albuquerque, NM 87108 USA. EM David.Rose@vosssci.com NR 45 TC 24 Z9 28 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2008 VL 11 IS 6 AR 060401 DI 10.1103/PhysRevSTAB.11.060401 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 327WX UT WOS:000257760300001 ER PT J AU Sears, CMS Colby, E Ischebeck, R McGuinness, C Nelson, J Noble, R Siemann, RH Spencer, J Walz, D Plettner, T Byer, RL AF Sears, Christopher M. S. Colby, Eric Ischebeck, Rasmus McGuinness, Christopher Nelson, Janice Noble, Robert Siemann, Robert H. Spencer, James Walz, Dieter Plettner, Tomas Byer, Robert L. TI Production and characterization of attosecond electron bunch trains SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID RELATIVISTIC ELECTRONS; LASER; BEAMS; GENERATION AB We report the production of optically spaced attosecond electron microbunches produced by the inverse free-electron-laser (IFEL) process. The IFEL is driven by a Ti:sapphire laser synchronized with the electron beam. The IFEL is followed by a magnetic chicane that converts the energy modulation into the longitudinal microbunch structure. The microbunch train is characterized by observing coherent optical transition radiation (COTR) at multiple harmonics of the bunching. Experimental results are compared with 1D analytic theory showing good agreement. Estimates of the bunching factors are given and correspond to a microbunch length of 410 attosec FWHM. The formation of stable attosecond electron pulse trains marks an important step towards direct laser acceleration. C1 [Sears, Christopher M. S.; Colby, Eric; Ischebeck, Rasmus; McGuinness, Christopher; Nelson, Janice; Noble, Robert; Siemann, Robert H.; Spencer, James; Walz, Dieter] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Plettner, Tomas; Byer, Robert L.] Stanford Univ, Stanford, CA 94305 USA. RP Sears, CMS (reprint author), Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. EM cmsears@slac.stanford.edu NR 25 TC 21 Z9 21 U1 3 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2008 VL 11 IS 6 AR 061301 DI 10.1103/PhysRevSTAB.11.061301 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 327WX UT WOS:000257760300006 ER PT J AU Sun, YP Gao, J Guo, ZY Wan, WS AF Sun, Y. P. Gao, J. Guo, Z. Y. Wan, W. S. TI International Linear Collider damping ring lattice design based on modified FODO arc cells SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB In this paper, we present a new lattice design for the International Linear Collider (ILC) positron damping ring. The same lattice could be used also for the electron damping ring. This lattice is based on modified FODO arc cells, and has a freely tunable momentum compaction factor from 2 x 10(-4) to 6 x 10(-4). In comparison with the baseline design which uses the theoretical minimum emittance arc cells, the advantages of this design are: freely tunable momentum compaction factor; smaller number of quadrupole and sextupole magnets; larger dynamic aperture; simplified layout and lower cost. The design principles and analysis techniques used in this paper to change the momentum compaction factor by a large amount while keeping a very low emittance and large dynamic aperture are very important for the ILC damping ring; at the same time it could be very useful for any high bunch density storage ring. C1 [Sun, Y. P.; Guo, Z. Y.] Peking Univ, Minist Educ, Key Lab Heavy Ion Phys, Beijing 100871, Peoples R China. [Sun, Y. P.; Guo, Z. Y.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Sun, Y. P.; Gao, J.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Wan, W. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Sun, YP (reprint author), Peking Univ, Minist Educ, Key Lab Heavy Ion Phys, Beijing 100871, Peoples R China. EM ypsun@ihep.ac.cn NR 19 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2008 VL 11 IS 6 AR 061001 DI 10.1103/PhysRevSTAB.11.061001 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 327WX UT WOS:000257760300005 ER PT J AU Welch, DR Coleman, JE Seidl, PA Roy, PK Henestroza, E Lee, EP Sefkow, AB Gilson, EP Genoni, TC Rose, DV AF Welch, D. R. Coleman, J. E. Seidl, P. A. Roy, P. K. Henestroza, E. Lee, E. P. Sefkow, A. B. Gilson, E. P. Genoni, T. C. Rose, D. V. TI Source-to-target simulation of simultaneous longitudinal and transverse focusing of heavy ion beams SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID CHARGED-PARTICLE BEAMS; LARGE TEMPERATURE ANISOTROPY; FUSION CHAMBER TRANSPORT; DELTA-F SIMULATION; MAGNETIC-FIELD; 2-STREAM STABILITY; NEUTRALIZATION AB Longitudinal bunching factors in excess of 70 of a 300-keV, 27-mA K+ ion beam have been demonstrated in the neutralized drift compression experiment [P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005)] in rough agreement with particle-in-cell source-to-target simulations. A key aspect of these experiments is that a preformed plasma provides charge neutralization of the ion beam in the last one meter drift region where the beam perveance becomes large. The simulations utilize the measured ion source temperature, diode voltage, and induction-bunching-module voltage waveforms in order to determine the initial beam longitudinal phase space which is critical to accurate modeling of the longitudinal compression. To enable simultaneous longitudinal and transverse compression, numerical simulations were used in the design of the solenoidal focusing system that compensated for the impact of the applied velocity tilt on the transverse phase space of the beam. Complete source-to-target simulations, that include detailed modeling of the diode, magnetic transport, induction bunching module, and plasma neutralized transport, were critical to understanding the interplay between the various accelerator components in the experiment. Here, we compare simulation results with the experiment and discuss the contributions to longitudinal and transverse emittance that limit the final compression. C1 [Welch, D. R.; Genoni, T. C.; Rose, D. V.] Voss Sci, Albuquerque, NM 87108 USA. [Coleman, J. E.; Seidl, P. A.; Roy, P. K.; Henestroza, E.; Lee, E. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sefkow, A. B.; Gilson, E. P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Welch, DR (reprint author), Voss Sci, Albuquerque, NM 87108 USA. NR 36 TC 10 Z9 10 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2008 VL 11 IS 6 AR 064701 DI 10.1103/PhysRevSTAB.11.064701 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 327WX UT WOS:000257760300012 ER PT J AU Templeton, JA Wang, M Moin, P AF Templeton, Jeremy A. Wang, Meng Moin, Parviz TI A predictive wall model for large-eddy simulation based on optimal control techniques SO PHYSICS OF FLUIDS LA English DT Article ID APPROXIMATE BOUNDARY-CONDITIONS; TURBULENT CHANNEL FLOW AB Wall models for large-eddy simulation (LES) based on optimal control theory have so far been nonpredictive due to the need to prescribe a known mean velocity profile to the controller. In this study, LES is coupled with a near-wall Reynolds-averaged Navier-Stokes (RANS) model that provides a target velocity for the cost function. For the wall model to be accurate and robust, the LES and RANS must not only be tied together via the controller but directly coupled to each other through boundary conditions. The method proves to be accurate and robust over a wide range of Reynolds numbers in a plane channel flow. It is shown that the control reacts only locally in all spatial directions, justifying the current control formulation and suggesting directions for future model development. Further, instantaneous velocity fields of the coarse LES indicate that the dynamics of the near-wall flow are very dependent on the computational grid, demonstrating that a control strategy is required in addition to physical reasoning for wall modeling. (C) 2008 American Institute of Physics. C1 [Templeton, Jeremy A.; Wang, Meng; Moin, Parviz] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. RP Templeton, JA (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM jatempl@sandia.gov RI Wang, Meng/C-1622-2012 NR 22 TC 11 Z9 11 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD JUN PY 2008 VL 20 IS 6 AR 065104 DI 10.1063/1.2930673 PG 10 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 321DB UT WOS:000257283800028 ER PT J AU Halpern, FD Kritz, AH Bateman, G Pankin, AY Budny, RV McCune, DC AF Halpern, Federico D. Kritz, Arnold H. Bateman, Glenn Pankin, Alexei Y. Budny, Robert V. McCune, Douglas C. TI Predictive simulations of ITER including neutral beam driven toroidal rotation SO PHYSICS OF PLASMAS LA English DT Article ID BURNING PLASMA; TRANSPORT MODEL; MOMENTUM TRANSPORT; STEADY-STATE; CONFINEMENT; JET; TEMPERATURE; PROJECTIONS; DISCHARGES; PEDESTAL AB Predictive simulations of ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 (2002)], discharges are carried out for the 15 MA high confinement mode (H-mode) scenario using PTRANSP, the predictive version of the TRANSP code. The thermal and toroidal momentum transport equations are evolved using turbulent and neoclassical transport models. A predictive model is used to compute the temperature and width of the H- mode pedestal. The ITER simulations are carried out for neutral beam injection (NBI) heated plasmas, for ion cyclotron resonant frequency (ICRF) heated plasmas, and for plasmas heated with a mix of NBI and ICRF. It is shown that neutral beam injection drives toroidal rotation that improves the confinement and fusion power production in ITER. The scaling of fusion power with respect to the input power and to the pedestal temperature is studied. It is observed that, in simulations carried out using the momentum transport diffusivity computed using the GLF23 model [R. Waltz et al., Phys. Plasmas 4, 2482 (1997)], the fusion power increases with increasing injected beam power and central rotation frequency. It is found that the ITER target fusion power of 500 MW is produced with 20 MW of NBI power when the pedestal temperature is 3.5 keV. (c) 2008 American Institute of Physics. C1 [Halpern, Federico D.; Kritz, Arnold H.; Bateman, Glenn; Pankin, Alexei Y.] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. [Budny, Robert V.; McCune, Douglas C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Halpern, FD (reprint author), Lehigh Univ, Dept Phys, 16 Mem Dr E, Bethlehem, PA 18015 USA. NR 34 TC 24 Z9 24 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2008 VL 15 IS 6 AR 062505 DI 10.1063/1.2931037 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 321DC UT WOS:000257283900027 ER PT J AU Park, JK Boozer, AH Menard, JE AF Park, Jong-Kyu Boozer, Allen H. Menard, Jonathan E. TI Spectral asymmetry due to magnetic coordinates SO PHYSICS OF PLASMAS LA English DT Article ID ERROR-FIELD; HYDROMAGNETIC EQUILIBRIA; DIII-D; PLASMA; TOKAMAK; MODE AB The use of magnetic coordinates is ubiquitous in toroidal plasma physics but the distortion in Fourier spectra produced by these coordinates is not well known. A spatial symmetry of the field is not always represented by a symmetry in the Fourier spectrum when magnetic coordinates are used because of the distortion of the toroidal angle. The practical importance of spectral distortion is illustrated with a tokamak example. (C) 2008 American Institute of Physics. C1 [Park, Jong-Kyu; Menard, Jonathan E.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Boozer, Allen H.] Columbia Univ, Dept Appl Math & Phys, New York, NY 10027 USA. RP Park, JK (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM jpark@pppl.gov OI Menard, Jonathan/0000-0003-1292-3286 NR 24 TC 8 Z9 8 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2008 VL 15 IS 6 AR 064501 DI 10.1063/1.2932110 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 321DC UT WOS:000257283900060 ER PT J AU Phuoc, KT Esarey, E Leurent, V Cormier-Michel, E Geddes, CGR Schroeder, CB Rousse, A Leemans, WP AF Phuoc, K. Ta Esarey, E. Leurent, V. Cormier-Michel, E. Geddes, C. G. R. Schroeder, C. B. Rousse, A. Leemans, W. P. TI Betatron radiation from density tailored plasmas SO PHYSICS OF PLASMAS LA English DT Article ID ELECTRON-BEAMS; WAKEFIELD ACCELERATOR; GENERATION; CHANNEL; REGIME AB In laser wakefield accelerators, electron motion is driven by intense forces that depend on the plasma density. Transverse oscillations in the accelerated electron orbits produce betatron radiation. The electron motion and the resulting betatron radiation spectrum can therefore be controlled by shaping the plasma density along the orbit of the electrons. Here, a method based on the use of a plasma with a longitudinal density variation (density depression or step) is proposed to increase the transverse oscillation amplitude and the energy of the electrons accelerated in a wakefield cavity. For fixed laser parameters, by appropriately tailoring the plasma profile, the betatron radiation emitted by these electrons is significantly increased in both flux and energy. (c) 2008 American Institute of Physics. C1 [Phuoc, K. Ta; Rousse, A.] Ecole Polytechn Chemin Huniere, CNRS, ENSTA, UMR7639,Lab Opt Appl, F-91761 Palaiseau, France. [Esarey, E.; Leurent, V.; Cormier-Michel, E.; Geddes, C. G. R.; Schroeder, C. B.; Leemans, W. P.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Esarey, E.; Cormier-Michel, E.; Leemans, W. P.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. RP Phuoc, KT (reprint author), Ecole Polytechn Chemin Huniere, CNRS, ENSTA, UMR7639,Lab Opt Appl, F-91761 Palaiseau, France. RI ROUSSE, Antoine/D-2712-2009; OI Schroeder, Carl/0000-0002-9610-0166 NR 32 TC 20 Z9 20 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2008 VL 15 IS 6 AR 063102 DI 10.1063/1.2918657 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 321DC UT WOS:000257283900044 ER PT J AU Qin, H Davidson, RC Startsev, EA AF Qin, Hong Davidson, Ronald C. Startsev, Edward A. TI Weight growth due to resonant simulation particles and a modified delta f algorithm with smooth switching between delta f and total-f methods SO PHYSICS OF PLASMAS LA English DT Article ID GYROKINETIC THEORY; BEAMS AB When applying the standard delta f particle-in-cell simulation method to simulate linear and nonlinear collective instabilities with coherent structures, wave-particle interaction may result in large weight growth for resonant or nearly resonant simulation particles. In this paper, we demonstrate that the large noise associated with the large weight of nearly resonant simulation particles can produce significant error fields at the nonlinear stage of the instability. To overcome this deleterious effect, we have developed a modified delta f method that contains a smooth switching algorithm between the delta f and total-f methods. Before the switch, the simulation effectively makes use of the desirable low-noise feature of the delta f method for small weight to accurately follow unstable mode structures. When the weight function becomes large during the nonlinear phase, the low-noise advantage of the delta f method ceases to be significant and the simulation is switched to the total-f method to avoid the large noise induced by nearly resonant simulation particles. This algorithm has been successfully applied to simulation studies of the electrostatic Harris instability driven by large temperature anisotropy in high-intensity charged particle beams typical of applications in high current accelerators, including high-energy density physics and heavy ion fusion. (c) 2008 American Institute of Physics. C1 [Qin, Hong; Davidson, Ronald C.; Startsev, Edward A.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 23 TC 3 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2008 VL 15 IS 6 AR 063101 DI 10.1063/1.2920201 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 321DC UT WOS:000257283900043 ER PT J AU Ravasio, A Koenig, M Le Pape, S Benuzzi-Mounaix, A Park, HS Cecchetti, C Patel, P Schiavi, A Ozaki, N Mackinnon, A Loupias, B Batani, D Boehly, T Borghesi, M Dezulian, R Henry, E Notley, M Bandyopadhyay, S Clarke, R Vinci, T AF Ravasio, A. Koenig, M. Le Pape, S. Benuzzi-Mounaix, A. Park, H. S. Cecchetti, C. Patel, P. Schiavi, A. Ozaki, N. Mackinnon, A. Loupias, B. Batani, D. Boehly, T. Borghesi, M. Dezulian, R. Henry, E. Notley, M. Bandyopadhyay, S. Clarke, R. Vinci, T. TI Hard x-ray radiography for density measurement in shock compressed matter SO PHYSICS OF PLASMAS LA English DT Article ID EQUATION-OF-STATE; DRIVEN SHOCK; ABSOLUTE EQUATION; EARTHS CORE; WAVES; RADIATION AB In this letter we report on the direct density measurement in a shock compressed aluminum target using hard x-ray radiography. Experimental data employing a molybdenum K alpha source at 17.5 keV, generated with a short pulse laser are presented. High spatial resolution was obtained thanks to a new design for the backlighter geometry. Density values deduced from radiography are compared to predictions from hydrodynamic simulations, which have been calibrated in order to reproduce shock velocities measured from a rear-side self-emission diagnostic. Our results reveal the great potential of this technique as a diagnostic tool for direct density measurements in dense high-Z opaque materials. (c) 2008 American Institute of Physics. C1 [Ravasio, A.; Koenig, M.; Benuzzi-Mounaix, A.; Ozaki, N.; Loupias, B.; Vinci, T.] Univ Paris 06, UMR 7605, Ecole Polytech, CNRS CEA,Lab Utilisat Lasers Intenses, F-91128 Palaiseau, France. [Le Pape, S.; Park, H. S.; Patel, P.; Mackinnon, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cecchetti, C.; Borghesi, M.] Queens Univ Belfast, Sch Phys & Mat, Belfast BT7 1NN, Antrim, North Ireland. [Schiavi, A.] Univ Roma La Sapienza, Dept Energet, I-00161 Rome, Italy. [Batani, D.; Dezulian, R.] Univ Milano Bicocca, Dipartimento Fis G Occhialini, I-20126 Milan, Italy. [Boehly, T.] Univ Rochester, Laser Energet Lab, Rochester, NY 14627 USA. [Henry, E.] CEA DIF, Dept Concept & Realisat Experiences, F-91680 Bruyeres Le Chatel, France. [Notley, M.; Bandyopadhyay, S.; Clarke, R.] Rutherford Appleton Lab, CCLRC, Didcot OX11 0QX, Oxon, England. RP Ravasio, A (reprint author), Univ Paris 06, UMR 7605, Ecole Polytech, CNRS CEA,Lab Utilisat Lasers Intenses, F-91128 Palaiseau, France. RI Patel, Pravesh/E-1400-2011; Koenig, Michel/A-2167-2012; Borghesi, Marco/K-2974-2012; MacKinnon, Andrew/P-7239-2014; Schiavi, Angelo/D-2924-2017 OI MacKinnon, Andrew/0000-0002-4380-2906; Schiavi, Angelo/0000-0002-7081-2747 NR 21 TC 15 Z9 15 U1 2 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2008 VL 15 IS 6 AR 060701 DI 10.1063/1.2928156 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 321DC UT WOS:000257283900001 ER PT J AU Renneke, RM Intrator, TP Hsu, SC Wurden, GA Waganaar, WJ Ruden, EL Grabowski, TC AF Renneke, R. M. Intrator, T. P. Hsu, S. C. Wurden, G. A. Waganaar, W. J. Ruden, E. L. Grabowski, T. C. TI Power balance in a high-density field reversed configuration plasma SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIZED TARGET FUSION; FRX; TRANSPORT; MODEL; FLUX AB A global power balance analysis has been performed for the Field Reversed Experiment with Liner high density (>5 x 10(22) m(-3)) field reversed configuration (FRC) plasma. The analysis was based on a zero-dimensional power balance model [D. J. Rey and M. Tuszewski, Phys. Fluids 27, 1514 (1984)]. The key findings are as follows. First, the percentage of radiative losses relative to total loss is an order of magnitude lower than previous lower density FRC experiments. Second, Ohmic heating was found to correlate with the poloidal flux trapping at FRC formation, suggesting that poloidal flux dissipation is primarily responsible for plasma heating. Third, high density FRCs analyzed in this work reinforce the low-density adiabatic scaling, which shows that particle confinement time and flux confinement time are approximately equal. (c) 2008 American Institute of Physics. C1 [Renneke, R. M.; Intrator, T. P.; Hsu, S. C.; Wurden, G. A.; Waganaar, W. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ruden, E. L.; Grabowski, T. C.] Kirtland AF Base, AF Res Lab, Albuquerque, NM 87117 USA. RP Renneke, RM (reprint author), Los Alamos Natl Lab, MS E526, Los Alamos, NM 87545 USA. EM renneke@lanl.gov RI Wurden, Glen/A-1921-2017; OI Wurden, Glen/0000-0003-2991-1484; Hsu, Scott/0000-0002-6737-4934 NR 21 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2008 VL 15 IS 6 AR 062502 DI 10.1063/1.2934588 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 321DC UT WOS:000257283900024 ER PT J AU Reynolds, JM Sovinec, CR Prager, SC AF Reynolds, J. M. Sovinec, C. R. Prager, S. C. TI Nonlinear magnetohydrodynamics of pulsed parallel current drive in reversed-field pinches SO PHYSICS OF PLASMAS LA English DT Article ID POLOIDAL CURRENT DRIVE; CURRENT PROFILE CONTROL; IMPROVED CONFINEMENT; HELICITY INJECTION; TEARING MODES; CONFIGURATIONS; FLUCTUATION; SIMULATION; PLASMA; TORUS AB Nonlinear simulation with a simple resistive magnetohydrodynamics model is used to investigate the stabilization of magnetic fluctuations in reversed-field pinch plasmas subject to pulsed-parallel current drive. Numerical results are diagnosed with computations of nonlinear power transfer and by evaluating sequences of profiles for linear stability. Results show that poloidal electric field pulsing promptly affects the exchange of energy between the mean profiles and both core-resonant m=1 fluctuations and high-axial-wavenumber fluctuations. Linear computations show that slight changes in edge profiles are sufficient to alter the stability of the marginal state. There is a slight delay in the response of energy exchanged among fluctuations, which reduces the m=0 fluctuations. Loss of dynamo effect as fluctuation amplitudes decrease leads to nonlocal pulse penetration that enhances pinching when toroidal drive is maintained. Reducing toroidal drive together with the application of poloidal electric field avoids pinching and maintains the stabilizing effect for a greater period of time. (c) 2008 American Institute of Physics. C1 [Reynolds, J. M.; Sovinec, C. R.; Prager, S. C.] Univ Wisconsin, Madison, WI 53706 USA. RP Reynolds, JM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 34 TC 6 Z9 6 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2008 VL 15 IS 6 AR 062512 DI 10.1063/1.2937770 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 321DC UT WOS:000257283900034 ER PT J AU Ryutov, DD AF Ryutov, D. D. TI Geometrical properties of a 'snowflake' divertor (vol 14, art no 064502, 2007) SO PHYSICS OF PLASMAS LA English DT Correction C1 Lawrence Livermore Natl Lab, US DOE, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, US DOE, Livermore, CA 94551 USA. EM ryutov1@llnl.gov NR 1 TC 1 Z9 1 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2008 VL 15 IS 6 AR 069901 DI 10.1063/1.2936921 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 321DC UT WOS:000257283900065 ER PT J AU Startsev, EA Davidson, RC Dorf, M AF Startsev, Edward A. Davidson, Ronald C. Dorf, Mikhail TI Streaming instabilities of intense charged particle beams propagating along a solenoidal magnetic field in a background plasma SO PHYSICS OF PLASMAS LA English DT Article ID RELATIVISTIC ELECTRON-BEAMS; ION-BEAM; ELECTROMAGNETIC INSTABILITIES; FILAMENTATION; TRANSVERSE AB Streaming instabilities of intense charged particle beams propagating along a solenoidal magnetic field in a background plasma are studied analytically and numerically. It is shown that the growth rate of the electromagnetic Weibel instability is modified by a relatively weak solenoidal magnetic field such that omega(ce)>beta(b)omega(pe), where omega(ce) is the electron gyrofrequency, omega(pe) is the electron plasma frequency, and beta(b) is the ion-beam velocity relative to the speed of light. Moreover, the Weibel instability is limited to very small propagation angles and long longitudinal wavelengths satisfying k(parallel to)(2)<< k(perpendicular to)(2) and c(2)k(parallel to)(2)<1, if the surface currents, excited by the kink mode, can flow through the conducting structure. The present theory suggests an explanation of the so-called sideway forces on the tokamak in-vessel components during the disruption event. For the general case of such wall touching kink modes, the energy principle is derived, which includes the current sharing effect. (c) 2008 American Institute of Physics. C1 Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Zakharov, LE (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 15 TC 35 Z9 35 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2008 VL 15 IS 6 AR 062507 DI 10.1063/1.2926630 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 321DC UT WOS:000257283900029 ER PT J AU David, G Frawley, AD Rapp, R Ullrich, T Vogt, R Xu, Z AF David, G. Frawley, A. D. Rapp, R. Ullrich, T. Vogt, R. Xu, Z. TI High luminosity heavy quark and electromagnetic probes at RHIC SO PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS LA English DT Article AB Here we give a brief introduction to the reviews of heavy flavor and electromagnetic probes at RHIC presented in this journal issue. (c) 2008 Elsevier B.V. All rights reserved. C1 [Vogt, R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [David, G.; Ullrich, T.; Xu, Z.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Frawley, A. D.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Rapp, R.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Rapp, R.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Vogt, R.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA USA. RP Vogt, R (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM vogt2@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-1573 J9 PHYS REP JI Phys. Rep.-Rev. Sec. Phys. Lett. PD JUN PY 2008 VL 462 IS 4-6 BP 123 EP 124 DI 10.1016/j.physrep.2008.04.001 PG 2 WC Physics, Multidisciplinary SC Physics GA 331NR UT WOS:000258019400001 ER PT J AU Frawley, AD Ullrich, T Vogt, R AF Frawley, A. D. Ullrich, T. Vogt, R. TI Heavy flavor in heavy-ion collisions at RHIC and RHIC II SO PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS LA English DT Review DE heavy flavor; quarkonium; quark gluon plasma; relativistic heavy-ion collisions ID QUARK-GLUON PLASMA; PB-PB COLLISIONS; HOT HADRONIC MATTER; NUCLEUS-NUCLEUS COLLISIONS; CHARM CROSS-SECTION; J-PSI-SUPPRESSION; J/PSI-SUPPRESSION; ENERGY-LOSS; PARTON DISTRIBUTIONS; QCD MATTER AB In the initial years of operation, experiments at the Relativistic Heavy Ion Collider (RHIC) have identified a new form of matter formed in nucleus-nucleus collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time, has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about twice the critical temperature predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties - a "perfect liquid" that appears to flow with a near-zero viscosity to entropy ratio - lower than any previously observed fluid and perhaps close to a universal lower bound. However, a fundamental understanding of the medium seen in heavy-ion collisions at RHIC does not yet exist. The most important scientific challenge for the field in the next decade is the quantitative exploration of the new state of nuclear matter. That will require new data that will, in turn, require enhanced capabilities of the RHIC detectors and accelerator. In this report we discuss the scientific opportunities for an upgraded RHIC facility-RHIC II-in conjunction with improved capabilities of the two large RHIC detectors, PHENIX and STAR. We focus solely on heavy flavor probes. Their production rates are calculable using the well-established techniques of perturbative QCD and their sizable interactions with the hot QCD medium provide unique and sensitive measurements of its crucial properties making them one of the key diagnostic tools available to us. (c) 2008 Elsevier B.V. All rights reserved. C1 [Vogt, R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Frawley, A. D.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Ullrich, T.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Vogt, R.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA USA. RP Vogt, R (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM vogt2@llnl.gov NR 198 TC 103 Z9 106 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-1573 EI 1873-6270 J9 PHYS REP JI Phys. Rep.-Rev. Sec. Phys. Lett. PD JUN PY 2008 VL 462 IS 4-6 BP 125 EP 175 DI 10.1016/j.physrep.2008.04.002 PG 51 WC Physics, Multidisciplinary SC Physics GA 331NR UT WOS:000258019400002 ER PT J AU David, G Rapp, R Xu, Z AF David, G. Rapp, R. Xu, Z. TI Electromagnetic probes at RHIC-II SO PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS LA English DT Review DE direct photon; isolated photon; Quark-Gluon Plasma; relativistic heavy ion collision ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; PROMPT PHOTON PRODUCTION; NUCLEUS-NUCLEUS COLLISIONS; RHO-SPECTRAL-FUNCTION; QCD SUM-RULES; CHIRAL-SYMMETRY RESTORATION; COLOR GLASS CONDENSATE; PHI-MESON PRODUCTION; VECTOR-MESONS AB We summarize how future measurements of electromagnetic (EM) probes at the Relativistic Heavy Ion Collider (RHIC), in connection with theoretical analysis, can advance our understanding of strongly interacting matter at high energy densities and temperatures. After a brief survey of the important role that EM probes data have played at the Super Proton Synchrotron (SPS, CERN) and RHIC to date, we identify key physics objectives and observables that remain to be addressed to characterize the (strongly interacting) Quark-Gluon Plasma (sQGP) and associated transition properties at RHIC. These include medium modifications of vector mesons via low-mass dileptons, a temperature measurement of the hot phases via continuum radiation, as well as gamma-gamma correlations to characterize early source sizes. We outline strategies to establish microscopic matter and transition properties such as the number of degrees of freedom in the sQGP, the origin of hadron masses and manifestations of chiral symmetry restoration, which will require accompanying but rather well-defined advances in theory. Increased experimental precision, an order of magnitude higher statistics than currently achievable, as well as a detailed scan of colliding species and energies are mandatory to discriminate between theoretical interpretations. This increased precision can be achieved through hardware upgrades to the large RHIC detectors (PHENIX and STAR) along with at least a factor of ten increase in luminosity over the next few years, as envisioned for RHIC-II. (c) 2008 Elsevier B.V. All rights reserved. C1 [Rapp, R.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Rapp, R.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [David, G.; Xu, Z.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Rapp, R (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. EM rapp@comp.tamu.edu NR 197 TC 26 Z9 26 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-1573 EI 1873-6270 J9 PHYS REP JI Phys. Rep.-Rev. Sec. Phys. Lett. PD JUN PY 2008 VL 462 IS 4-6 BP 176 EP 217 DI 10.1016/j.physrep.2008.04.003 PG 42 WC Physics, Multidisciplinary SC Physics GA 331NR UT WOS:000258019400003 ER PT J AU Morrison, PJ Johnson, JL Chan, V AF Morrison, Philip J. Johnson, John L. Chan, Vincent TI John Morgan Greene SO PHYSICS TODAY LA English DT Biographical-Item C1 [Morrison, Philip J.] Univ Texas Austin, Austin, TX 78712 USA. [Johnson, John L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Chan, Vincent] Gen Atom Co, San Diego, CA USA. RP Morrison, PJ (reprint author), Univ Texas Austin, Austin, TX 78712 USA. NR 1 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD JUN PY 2008 VL 61 IS 6 BP 68 EP 68 DI 10.1063/1.2947657 PG 1 WC Physics, Multidisciplinary SC Physics GA 310HH UT WOS:000256519000025 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point - A passion for boats SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD JUN PY 2008 VL 21 IS 6 BP 18 EP 18 PG 1 WC Physics, Multidisciplinary SC Physics GA 309MH UT WOS:000256464000018 ER PT J AU Chen, J Xie, G Han, S Civerolo, E AF Chen, J. Xie, G. Han, S. Civerolo, E. TI Variations of whole genome sequences of Xylella fastidiosa strains within the same pathotype SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT 100th Annual Meeting of the American-Phytopathological-Society CY JUL 26-30, 2008 CL Minneapolis, MN SP Amer Phytopathol Soc C1 [Xie, G.; Han, S.] Los Alamos Natl Lab, Los Alamos, NM USA. [Chen, J.; Civerolo, E.] USDA ARS, Parlier, CA USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2008 VL 98 IS 6 SU S BP S35 EP S35 PG 1 WC Plant Sciences SC Plant Sciences GA 304RC UT WOS:000256125600176 ER PT J AU Nunes, CC Gowda, M Chen, F Meng, S Brown, D Mitchell, TK Dean, RA AF Nunes, C. C. Gowda, M. Chen, F. Meng, S. Brown, D. Mitchell, T. K. Dean, R. A. TI Massively parallel sequencing of small RNAs from the rice blast fungus, Magnaporthe grisea SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT 100th Annual Meeting of the American-Phytopathological-Society CY JUL 26-30, 2008 CL Minneapolis, MN SP Amer Phytopathol Soc C1 [Chen, F.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Nunes, C. C.; Gowda, M.; Meng, S.; Brown, D.; Dean, R. A.] N Carolina State Univ, Raleigh, NC 27695 USA. [Mitchell, T. K.] Ohio State Univ, Columbus, OH 43210 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2008 VL 98 IS 6 SU S BP S114 EP S115 PG 2 WC Plant Sciences SC Plant Sciences GA 304RC UT WOS:000256125600620 ER PT J AU Schuenzel, EL Sechler, A Brettin, T Detter, C Wolinsky, M Gupta, G Schaad, NW AF Schuenzel, E. L. Sechler, A. Brettin, T. Detter, C. Wolinsky, M. Gupta, G. Schaad, N. W. TI Preliminary report on the genome project of Candidatus Liberibacter asiaticus SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT 100th Annual Meeting of the American-Phytopathological-Society CY JUL 26-30, 2008 CL Minneapolis, MN SP Amer Phytopathol Soc C1 [Brettin, T.; Detter, C.; Wolinsky, M.; Gupta, G.] Los Alamos Natl Lab, Los Alamos, NM USA. [Schuenzel, E. L.; Sechler, A.; Schaad, N. W.] USDA, Ft Detrick, MD USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2008 VL 98 IS 6 SU S BP S142 EP S142 PG 1 WC Plant Sciences SC Plant Sciences GA 304RC UT WOS:000256125600774 ER PT J AU Wang, XQ Yang, PF Gao, Q Liu, XL Kuang, TY Shen, SH He, YK AF Wang, Xiaoqin Yang, Pingfang Gao, Qian Liu, Xianglin Kuang, Tingyun Shen, Shihua He, Yikun TI Proteomic analysis of the response to high-salinity stress in Physcomitrella patens SO PLANTA LA English DT Article DE 2-DE; LC-MS; MS; high-salinity stress; Physcomitrella; proteome ID SALT TOLERANCE; ARABIDOPSIS-THALIANA; OSMOTIC-STRESS; ABSCISIC-ACID; PLANT-GROWTH; BLUE-LIGHT; PROTEINS; MOSS; PROLINE; DROUGHT AB Physcomitrella patens is well known because of its importance in the study of plant systematics and evolution. The tolerance of P. patens for high-salinity environments also makes it an ideal candidate for studying the molecular mechanisms by which plants respond to salinity stresses. We measured changes in the proteome of P. patens gametophores that were exposed to high-salinity (250, 300, and 350 mM NaCl) using two-dimensional gel electrophoresis (2-DE) via liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sixty-five protein spots were significantly altered by exposure to the high-salinity environment. Among them, 16 protein spots were down-regulated and 49 protein spots were up-regulated. These proteins were associated with a variety of functions, including energy and material metabolism, protein synthesis and degradation, cell defense, cell growth/division, transport, signal transduction, and transposons. Specifically, the up-regulated proteins were primarily involved in defense, protein folding, and ionic homeostasis. In summary, we outline several novel insights into the response of P. patens to high-salinity; (1) HSP70 is likely to play a significant role in protecting proteins from denaturation and degradation during salinity stress, (2) signaling proteins, such as 14-3-3 and phototropin, may work cooperatively to regulate plasma membrane H(+)-ATPase and maintain ion homeostasis, (3) an increase in photosynthetic activity may contribute to salinity tolerance, and (4) ROS scavengers were up-regulated suggesting that the antioxidative system may play a crucial role in protecting cells from oxidative damage following exposure to salinity stress in P. patens. C1 [Wang, Xiaoqin; Kuang, Tingyun; Shen, Shihua] Chinese Acad Sci, Inst Bot, Beijing 100093, Peoples R China. [Wang, Xiaoqin; Gao, Qian; Liu, Xianglin; Kuang, Tingyun; He, Yikun] Capital Normal Univ, Coll Life Sci, Beijing 100037, Peoples R China. [Yang, Pingfang] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. RP Shen, SH (reprint author), Chinese Acad Sci, Inst Bot, Beijing 100093, Peoples R China. EM wangxiaoqin@xmu.edu.cn; shshen@ibcas.ac.cn; yhe@mail.cnu.edu.cn NR 43 TC 62 Z9 72 U1 5 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0032-0935 J9 PLANTA JI Planta PD JUN PY 2008 VL 228 IS 1 BP 167 EP 177 DI 10.1007/s00425-008-0727-z PG 11 WC Plant Sciences SC Plant Sciences GA 304AU UT WOS:000256083200014 PM 18351383 ER PT J AU Hare, EE Peterson, BK Iyer, VN Meier, R Eisen, MB AF Hare, Emily E. Peterson, Brant K. Iyer, Venky N. Meier, Rudolf Eisen, Michael B. TI Sepsid even-skipped Enhancers Are Functionally Conserved in Drosophila Despite Lack of Sequence Conservation SO PLOS GENETICS LA English DT Article ID FACTOR-BINDING SITES; CIS-REGULATORY MODULES; TRANSGENIC DROSOPHILA; REPRESSOR GRADIENTS; GENOME SEQUENCE; GENE-EXPRESSION; EMBRYO; EVOLUTION; STRIPE; MELANOGASTER AB The gene expression pattern specified by an animal regulatory sequence is generally viewed as arising from the particular arrangement of transcription factor binding sites it contains. However, we demonstrate here that regulatory sequences whose binding sites have been almost completely rearranged can still produce identical outputs. We sequenced the evenskipped locus from six species of scavenger flies (Sepsidae) that are highly diverged from the model species Drosophila melanogaster, but share its basic patterns of developmental gene expression. Although there is little sequence similarity between the sepsid eve enhancers and their well-characterized D. melanogaster counterparts, the sepsid and Drosophila enhancers drive nearly identical expression patterns in transgenic D. melanogaster embryos. We conclude that the molecular machinery that connects regulatory sequences to the transcription apparatus is more flexible than previously appreciated. In exploring this diverse collection of sequences to identify the shared features that account for their similar functions, we found a small number of short (20-30 bp) sequences nearly perfectly conserved among the species. These highly conserved sequences are strongly enriched for pairs of overlapping or adjacent binding sites. Together, these observations suggest that the local arrangement of binding sites relative to each other is more important than their overall arrangement into larger units of cis-regulatory function. C1 [Hare, Emily E.; Peterson, Brant K.; Iyer, Venky N.; Eisen, Michael B.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Peterson, Brant K.; Eisen, Michael B.] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. [Meier, Rudolf] Natl Univ Singapore, Dept Biol Sci, Singapore 117548, Singapore. [Eisen, Michael B.] Ernest Orlando Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA USA. [Eisen, Michael B.] Calif Inst Quantitat Biosci, Berkeley, CA USA. RP Hare, EE (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM mbeisen@lbl.gov RI Meier, Rudolf/A-7099-2011; OI Meier, Rudolf/0000-0002-4452-2885; Eisen, Michael/0000-0002-7528-738X FU NIH [HG002779]; U. S. Department of Energy [DE-AC02-05CH11231]; NSF [0334948] FX This work was supported by NIH grant HG002779 to MBE by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, and by NSF Grant No. 0334948 to RM. EEH was supported by an NSF Graduate Research Fellowship. Sequencing was conducted under a Community Sequencing Grant from the Department of Energy's Joint Genome Institute. NR 65 TC 151 Z9 153 U1 0 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7390 EI 1553-7404 J9 PLOS GENET JI PLoS Genet. PD JUN PY 2008 VL 4 IS 6 AR e1000106 DI 10.1371/journal.pgen.1000106 PG 13 WC Genetics & Heredity SC Genetics & Heredity GA 365MI UT WOS:000260410300006 PM 18584029 ER PT J AU Liu, QA Shio, H AF Liu, Qiong A. Shio, Helen TI Mitochondrial Morphogenesis, Dendrite Development, and Synapse Formation in Cerebellum Require both Bcl-w and the Glutamate Receptor delta 2 SO PLOS GENETICS LA English DT Article ID PURKINJE-CELLS; MUTANT MICE; NERVOUS-SYSTEM; FAMILY-MEMBERS; LURCHER MICE; RHO-GTPASES; APOPTOSIS; NEURODEGENERATION; AUTOPHAGY; FISSION AB Bcl-w belongs to the prosurvival group of the Bcl-2 family, while the glutamate receptor delta 2 (Grid2) is an excitatory receptor that is specifically expressed in Purkinje cells, and required for Purkinje cell synapse formation. A recently published result as well as our own findings have shown that Bcl-w can physically interact with an autophagy protein, Beclin1, which in turn has been shown previously to form a protein complex with the intracellular domain of Grid2 and an adaptor protein, nPIST. This suggests that Bcl-w and Grid2 might interact genetically to regulate mitochondria, autophagy, and neuronal function. In this study, we investigated this genetic interaction of Bcl-w and Grid2 through analysis of single and double mutant mice of these two proteins using a combination of histological and behavior tests. It was found that Bcl-w does not control the cell number in mouse brain, but promotes what is likely to be the mitochondrial fission in Purkinje cell dendrites, and is required for synapse formation and motor learning in cerebellum, and that Grid2 has similar phenotypes. Mice carrying the double mutations of these two genes had synergistic effects including extremely long mitochondria in Purkinje cell dendrites, and strongly aberrant Purkinje cell dendrites, spines, and synapses, and severely ataxic behavior. Bcl-w and Grid2 mutations were not found to influence the basal autophagy that is required for Purkinje cell survival, thus resulting in these phenotypes. Our results demonstrate that Bcl-w and Grid2 are two critical proteins acting in distinct pathways to regulate mitochondrial morphogenesis and control Purkinje cell dendrite development and synapse formation. We propose that the mitochondrial fission occurring during neuronal growth might be critically important for dendrite development and synapse formation, and that it can be regulated coordinately by multiple pathways including Bcl-2 and glutamate receptor family members. C1 [Liu, Qiong A.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Shio, Helen] Rockefeller Univ, Bioimaging Resource Ctr, New York, NY 10021 USA. RP Liu, QA (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM qliu@bnl.gov FU Rockefeller University; Brookhaven National Laboratory FX Dr. Qiong A. Liu and this work has been mostly supported by a Rockefeller University fund to Dr. Nathaniel Heintz's lab at Rockefeller University and the Brookhaven National Laboratory directorate fund to Dr. Qiong A. Liu. NR 56 TC 34 Z9 34 U1 0 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD JUN PY 2008 VL 4 IS 6 AR e1000097 DI 10.1371/journal.pgen.1000097 PG 13 WC Genetics & Heredity SC Genetics & Heredity GA 365MI UT WOS:000260410300023 PM 18551174 ER PT J AU Pessey, D Bahlouli, N Ahzi, S Khaleel, MA AF Pessey, D. Bahlouli, N. Ahzi, S. Khaleel, M. A. TI Strain rate effects on the mechanical response of polypropylene-based composites deformed at small strains SO POLYMER SCIENCE SERIES A LA English DT Article ID TALC-FILLED POLYPROPYLENE; CALCIUM-CARBONATE; TENSILE BEHAVIOR; PHASE-STRUCTURE; PART II; DEFORMATION; TEMPERATURE; MORPHOLOGY; CRYSTALLIZATION AB The mechanical properties and response of two polypropylene (PP)-based composites have been determined for small strains and for a range of strain rates in the quasi-static domain. These two materials are talc-filled and unfilled high-impact PP. Uniaxial tensile tests were performed at different strain rates in order to characterize the mechanical response and the strain rate effect. The experimental results showed that both unfilled and talc-filled high-impact PP were sensitive to strain rate and exhibited nonlinear behavior even at relatively low strains. SEM analysis was conducted to obtain a better comprehension of deformation mechanisms involved during loading by observations of the microstructure evolution. For each of these two materials, two existing modeling approaches are proposed. The first one is a three-parameter nonlinear constitutive model based on the experimental results. The second is a micromechanically based approach for the elastic-viscoplastic behavior of the composite materials. The stress-strain curves predicted by these models are in fairly good agreement with our experimental results. C1 [Pessey, D.; Bahlouli, N.; Ahzi, S.; Khaleel, M. A.] Univ Strasbourg 1, IMFS, UMR 7507, F-67000 Strasbourg, France. [Ahzi, S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Pessey, D (reprint author), Univ Strasbourg 1, IMFS, UMR 7507, 2 Rue Boussingault, F-67000 Strasbourg, France. EM ahzi@imfs.u-strasbg.fr OI khaleel, mohammad/0000-0001-7048-0749 NR 27 TC 6 Z9 6 U1 0 U2 4 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0965-545X J9 POLYM SCI SER A+ JI Polym. Sci. Ser. A PD JUN PY 2008 VL 50 IS 6 BP 690 EP 697 DI 10.1134/S0965545X08060126 PG 8 WC Polymer Science SC Polymer Science GA 322RV UT WOS:000257393900010 ER PT J AU Dong, L Makradi, A Ahzi, S Remond, Y Sun, X AF Dong, L. Makradi, A. Ahzi, S. Remond, Y. Sun, X. TI Simulation of the densification of semicrystalline polymer powders during the selective laser sintering process: Application to Nylon 12 SO POLYMER SCIENCE SERIES A LA English DT Article ID CRYSTALLINE POLYMER; SLS PROCESS; TEMPERATURE; PREDICTION AB The processes of heating and densification of semicrystalline polymer powders during the selective laser sintering process are simulated using the finite element method. Based on a previously developed three-dimensional approach for the sintering of amorphous polymer powders, the modeling methodology is extended to semicrystalline polymers by taking into account the effects of latent heat during melting. In these simulations, the temperature-dependent thermal conductivity, the specific heat, the density, and the effect of latent heat are computed and then used as material constants for the integration of the heat equation. Results for the temperature and density distribution using Nylon-12 powder are presented and discussed. The effects of processing parameters on the density distribution are also presented. C1 [Dong, L.; Makradi, A.; Ahzi, S.; Remond, Y.] Univ Strasbourg 1, IMFS, UMR 7507, F-67000 Strasbourg, France. [Sun, X.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Dong, L (reprint author), Univ Strasbourg 1, IMFS, UMR 7507, 2 Rue Boussingault, F-67000 Strasbourg, France. EM ahzi@imfs.u-strasbg.fr RI Remond, Yves/G-8954-2011 OI Remond, Yves/0000-0003-3312-8361 NR 17 TC 4 Z9 4 U1 0 U2 21 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0965-545X J9 POLYM SCI SER A+ JI Polym. Sci. Ser. A PD JUN PY 2008 VL 50 IS 6 BP 704 EP 709 DI 10.1134/S0965545X0806014X PG 6 WC Polymer Science SC Polymer Science GA 322RV UT WOS:000257393900012 ER PT J AU Brennan, S Luening, K Ignatyev, K Pianetta, P Ishii, HA Bradley, JP AF Brennan, Sean Luening, Katharina Ignatyev, Konstantin Pianetta, Piero Ishii, Hope A. Bradley, John P. TI Analytical methods for discriminating stardust in aerogel capture media SO POWDER DIFFRACTION LA English DT Article; Proceedings Paper CT 56th Annual Conference on Applications of X-Ray Analysis CY JUL 30-AUG 03, 2007 CL Colorado Springs, CO DE X-ray fluorescence; aerogel; Stardust; Comet 81P/Wild2; elemental analysis; astromaterials ID COMET 81P/WILD-2; SAMPLES AB Methods using X-ray fluorescence have been developed to identify cometary material captured in aerogel during the NASA Stardust mission to Comet 81P/Wild 2. These analytical methods are necessitated by the levels of trace contaminants present in the aerogel. The cometary material disaggregates during deceleration in the aerogel, so fluorescence mapping of the entire track (which can be several millimeters long) is necessary. Distinguishing those pixels which have cometary material and aerogel from those which have only cometary material can be very challenging. We have chosen a "dual threshold" method, with some pixels clearly having only aerogel (plus contaminants) and other pixels clearly having cometary and aerogel material. Between these two threshold levels is a set of pixels which cannot be easily ascribed to one or the other. By leaving these pixels out of the analysis, the estimate of cometary material is improved. (c) 2008 International Centre for Diffraction Data. C1 [Brennan, Sean; Luening, Katharina; Ignatyev, Konstantin; Pianetta, Piero] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Ishii, Hope A.; Bradley, John P.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. RP Brennan, S (reprint author), Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. EM sean.brennan@stanford.edu OI Ignatyev, Konstantin/0000-0002-8937-5655 NR 13 TC 1 Z9 1 U1 1 U2 4 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2008 VL 23 IS 2 BP 81 EP 86 DI 10.1154/1.2912328 PG 6 WC Materials Science, Characterization & Testing SC Materials Science GA 313MW UT WOS:000256745700003 ER PT J AU Rizzie, AC Watkins, TR Payzant, EA AF Rizzie, Anthony C. Watkins, Thomas R. Payzant, E. Andrew TI Elaboration on the hexagonal grid and spiral trace schemes for pole figure data collection SO POWDER DIFFRACTION LA English DT Article; Proceedings Paper CT 56th Annual Conference on Applications of X-Ray Analysis CY JUL 30-AUG 03, 2007 CL Colorado Springs, CO DE pole figure; mathematics; hexagonal grid; spiral trace; crystallographic texture ID OPTIMIZATION AB A practical description of the mathematics required to implement the hexagonal grid and spiral trace pole figure data collection schemes is presented. Applying the concepts of stereographic and equal area projections with geometry, spreadsheets were created to calculate the angular settings of the goniometer. Using the generated settings, the hexagonal grid and spiral trace schemes were programmed into the existing X-ray software and employed to collect data for a sample of aluminum foil. The resulting (111) pole figures were similar to those collected with the conventional 5 degrees chi x 5 degrees phi grid. The hexagonal grid has been shown by others to reduce the number of data points and time needed to complete a pole figure, while providing equal area sampling. Although not optimized, the spiral method was also investigated as another alternative to the 5 degrees chi x 5 degrees phi grid. (c) 2008 Intemational Centre for Diffraction Data. C1 [Rizzie, Anthony C.] Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA. [Watkins, Thomas R.; Payzant, E. Andrew] Mat Sci & Technol Div, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Rizzie, AC (reprint author), Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA. RI Payzant, Edward/B-5449-2009; Watkins, Thomas/D-8750-2016 OI Payzant, Edward/0000-0002-3447-2060; Watkins, Thomas/0000-0002-2646-1329 NR 6 TC 1 Z9 1 U1 0 U2 1 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2008 VL 23 IS 2 BP 87 EP 91 DI 10.1154/1.2919049 PG 5 WC Materials Science, Characterization & Testing SC Materials Science GA 313MW UT WOS:000256745700004 ER PT J AU Wada, M Nishiyama, Y Chanzy, H Forsyth, T Langan, P AF Wada, Masahisa Nishiyama, Yoshiharu Chanzy, Henri Forsyth, Trevor Langan, Paul TI The structure of celluloses SO POWDER DIFFRACTION LA English DT Article; Proceedings Paper CT 56th Annual Conference on Applications of X-Ray Analysis CY JUL 30-AUG 03, 2007 CL Colorado Springs, CO DE cellulose; hydrogen bond; neutron crystallography; X-ray crystallography; fiber ID NEUTRON FIBER DIFFRACTION; SYNCHROTRON X-RAY; HYDROGEN-BONDING SYSTEM; CRYSTAL-STRUCTURE; I-BETA; AMMONIA AB X-ray and neutron fiber diffraction has been used to study cellulose as it is converted from its naturally occurring crystal phase, cellulose I, to an activated crystal phase, cellulose III(I), by ammonia treatment. The detailed crystal structures determined for cellulose I(beta), an intermediate ammonia-cellulose I complex, and cellulose III(I), reveal a structural transition pathway: hydrogen bonded sheets of chains in cellulose I(beta) slip with respect to each other to accommodate the penetrating ammonia guest molecules in the intermediate complex. On evaporation of ammonia from the intermediate complex, there is a relative small change in chain packing as an inter-sheet ammonia bridge is replaced by an inter-sheet hydrogen bond in cellulose III(I). When cellulose III(I) is heated it converts back to cellulose I(beta)-Both ammonia-cellulose I and cellulose III(I) have extended chains of cooperative hydrogen bonds in relatively open crystal structures that may add to their susceptibility to rapid change. (c) 2008 International Centre for Diffraction Data. C1 [Wada, Masahisa] Univ Tokyo, Grad Sch Agr & Life Sci, Dept Biomat Sci, Tokyo 1138657, Japan. [Nishiyama, Yoshiharu; Chanzy, Henri] Univ Grenoble 1, CNRS, Ctr Rech Macromol Vegetales, F-38041 Grenoble 9, France. [Forsyth, Trevor] Inst Laue Langevin, F-38042 Grenoble 9, France. [Forsyth, Trevor] Univ Keele, Lennard Jones Lab, Sch Chem & Phys, Keele ST5 5BG, Staffs, England. [Langan, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Langan, Paul] Univ Toledo, Dept Chem, Toledo, OH 43606 USA. RP Wada, M (reprint author), Univ Tokyo, Grad Sch Agr & Life Sci, Dept Biomat Sci, Tokyo 1138657, Japan. RI Forsyth, V. Trevor/A-9129-2010; Nishiyama, Yoshiharu/A-3492-2012; Chanzy, Henri/A-3526-2012; Langan, Paul/N-5237-2015 OI Forsyth, V. Trevor/0000-0003-0380-3477; Nishiyama, Yoshiharu/0000-0003-4069-2307; Langan, Paul/0000-0002-0247-3122 NR 15 TC 13 Z9 13 U1 10 U2 47 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2008 VL 23 IS 2 BP 92 EP 95 DI 10.1154/1.2912442 PG 4 WC Materials Science, Characterization & Testing SC Materials Science GA 313MW UT WOS:000256745700005 ER PT J AU Murray, CE Polvino, SM Noyan, IC Lai, B Cai, Z AF Murray, Conal E. Polvino, S. M. Noyan, I. C. Lai, B. Cai, Z. TI Real-space strain mapping of SOI features using microbeam X-ray diffraction SO POWDER DIFFRACTION LA English DT Article; Proceedings Paper CT 56th Annual Conference on Applications of X-Ray Analysis CY JUL 30-AUG 03, 2007 CL Colorado Springs, CO DE stress; strain; silicon-on-insulator; X-ray diffraction; synchrotron microbeam ID SILICON AB Synchrotron-based X-ray microbeam measurements were performed on silicon-on-insulator (Sol) features strained by adjacent shallow-trench isolation (STI). Strain engineering in microelectronic technology represents an important aspect of the enhancement in complementary metal-oxide semiconductor device performance. Because of the complexity of the composite geometry associated with microelectronic circuitry, characterization of the strained Si devices at a submicron resolution is necessary to verify the expected strain distributions. The interaction region of the Sol strain extended the Sol film thickness from the STI edge at least 25 times. Regions of 65-nm-thick Sol less than 3 mu m wide exhibited an overlap in the strain fields because of the surrounding STI. Microbeam mapping of arrays containing submicron Sol features and embedded STI structures revealed the largest out-of-plane strains because of the close proximity of superimposed strain distributions induced by the STI. (c) 2008 International Centre for Diffraction Data. C1 [Murray, Conal E.] IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Polvino, S. M.; Noyan, I. C.] Columbia Univ, Dept Appl Phys & Math, New York, NY 10027 USA. [Lai, B.; Cai, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Murray, CE (reprint author), IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. EM conal@us.ibm.com NR 9 TC 0 Z9 0 U1 1 U2 2 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2008 VL 23 IS 2 BP 106 EP 108 DI 10.1154/1.2912329 PG 3 WC Materials Science, Characterization & Testing SC Materials Science GA 313MW UT WOS:000256745700008 ER PT J AU Rodriguez, MA Boyle, TJ Yang, P Harris, DL AF Rodriguez, Mark A. Boyle, Timothy J. Yang, Pin Harris, Damon L. TI A beryllium dome specimen holder for XRD analysis of air sensitive materials SO POWDER DIFFRACTION LA English DT Article; Proceedings Paper CT 56th Annual Conference on Applications of X-Ray Analysis CY JUL 30-AUG 03, 2007 CL Colorado Springs, CO DE beryllium; reactive; air-sensitive; BeD; XRD ID X-RAY-DIFFRACTION; BROMIDES AB A specially designed specimen holder employing a beryllium dome has been fabricated for collection of X-ray diffraction (XRD) data from highly reactive materials. The specimen holder has a robust O-ring type seal (< 10(-9) Torr) and no observed intensity artifacts in the 1 degrees to 150 degrees 2 theta range. The design also minimizes specimen displacement errors and allows for analysis of both powders and bulk specimens (i.e., pellets). The simple design makes for straightforward assembly of the holder within the confines of a glove box. XRD analysis of hygroscopic LaBr3 powders collected with this holder are suitable for Rietveld structure refinement, yielding unit cell lattice parameters of a=7.9703(6) angstrom and c=4.5122(6) angstrom; cell volume= 248.44(6) angstrom(3); R-P=7.70%. (c) 2008 International Centre for Diffraction Data. C1 [Rodriguez, Mark A.; Boyle, Timothy J.; Yang, Pin] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Harris, Damon L.] Brush Wellman Electrofus Prod, Fremont, CA 94538 USA. RP Rodriguez, MA (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM marodri@sandia.gov NR 14 TC 5 Z9 5 U1 0 U2 1 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2008 VL 23 IS 2 BP 121 EP 124 DI 10.1154/1.2912452 PG 4 WC Materials Science, Characterization & Testing SC Materials Science GA 313MW UT WOS:000256745700012 ER PT J AU Gao, HY He, YH Shen, PZ Xu, NP Zou, J Jiang, Y Huang, BY Liu, CT AF Gao, H. Y. He, Y. H. Shen, P. Z. Xu, N. P. Zou, J. Jiang, Y. Huang, B. Y. Liu, C. T. TI Effect of heating rate on pore structure of porous FeAl material SO POWDER METALLURGY LA English DT Article DE FeAl intermetallics; porous material; heating rate; Kirkendall effect ID IRON ALUMINIDES; FE-40AL SHEET; BEHAVIOR; AL; ALLOYS; INTERMETALLICS; MIXTURES AB The sintering behaviour of elemental powders of Fe and Al was investigated at various heating rates (0.5-10 degrees C min(-1)). It was found that the formation of porous FeAl material was accompanied by the volume expansion during the formation of the intermediate phase Fe2Al5. The final pore structure of porous FeAl material depends strongly on the heating rate; the higher the heating rate, the higher the volume expansion and the larger the porosity and the maximum pore size. It has been found that the pore structures produced with different heating rates experienced different formation routes. C1 [Gao, H. Y.; He, Y. H.; Shen, P. Z.; Jiang, Y.; Huang, B. Y.] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China. [Xu, N. P.] Nanjing Univ Technol, Membrane Sci & Technol Res Ctr, Nanjing 210009, Peoples R China. [Zou, J.] Univ Queensland, Sch Engn, Brisbane, Qld 4072, Australia. [Zou, J.] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia. [Liu, C. T.] Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP He, YH (reprint author), Cent S Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China. EM yuehui@mail.csu.edu.cn RI Zou, Jin/B-3183-2009 OI Zou, Jin/0000-0001-9435-8043 NR 27 TC 14 Z9 17 U1 0 U2 5 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 0032-5899 EI 1743-2901 J9 POWDER METALL JI Powder Metall. PD JUN PY 2008 VL 51 IS 2 BP 171 EP 175 DI 10.1179/174329008X271673 PG 5 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 319CX UT WOS:000257142800026 ER PT J AU Salazar, MR Kress, JD Lightfoot, JM Russel, BG Rodin, WA Woods, L AF Salazar, Michael R. Kress, Joel D. Lightfoot, J. Michael Russel, Bobby G. Rodin, Wayne A. Woods, Lorelei TI Experimental study of the oxidative degradation of PBX 9501 and its components SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE aging; degradation; explosives; oxidation; polyurethanes ID POLY(ESTER URETHANE) ELASTOMER; CONDENSED-PHASE DECOMPOSITION; BEAM MASS-SPECTROMETRY; THERMAL-DECOMPOSITION; ENERGETIC MATERIALS; OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE HMX; PYROLYSIS PRODUCTS; DIFFUSION; THERMOLYSIS; HYDROLYSIS AB The results of the constituent aging study (CAS) are given, where low-temperature (T < 64 degrees C) aging experiments were performed on over 1100 closed-container samples of various combinations of the components of the plastic-bonded explosive PBX 9501. Experiments were performed on the various combinations both in the absence and presence of free-radical stabilizers. The product gases were identified and quantified as a function of aging time. The gas data show diverse chemistry between CAS samples and initial linear increases in product gas formation. Temperature analysis of the initial production rates of gas products shows straight Arrhenius plots. The extracted activation energies and frequency factors for the formation of the individual gas products yield a single linear kinetic compensation plot suggesting a common degradation pathway for PBX 9501 and combinations of constituents that contained nitroplasticizer (a eutectic mixture of bis-2,2-dintropropyl acetal and bis-2,2-dintropropyl formal). C1 [Salazar, Michael R.] Union Univ, Dept Chem, Jackson, TN 38305 USA. [Kress, Joel D.] Los Alamos Natl Lab, Theoret Div T12 MS B268, Los Alamos, NM 87545 USA. [Lightfoot, J. Michael; Russel, Bobby G.; Rodin, Wayne A.; Woods, Lorelei] Babcock & Wilcox Tech Serv Pantex LLC, Amarillo, TX USA. RP Salazar, MR (reprint author), Union Univ, Dept Chem, 1050 Union Univ Dr, Jackson, TN 38305 USA. EM msalazar@uu.edu NR 25 TC 4 Z9 6 U1 4 U2 14 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD JUN PY 2008 VL 33 IS 3 BP 182 EP 202 DI 10.1002/prep.200700272 PG 21 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 317SP UT WOS:000257040500003 ER PT J AU Seurynck-Servoss, SL Baird, CL Miller, KD Pefaur, NB Gonzalez, RM Apiyo, DO Engelmann, HE Srivastava, S Kagan, J Rodland, KD Zangar, RC AF Seurynck-Servoss, Shannon L. Baird, Cheryl L. Miller, Keith D. Pefaur, Noah B. Gonzalez, Rachel M. Apiyo, David O. Engelmann, Heather E. Srivastava, Sudhir Kagan, Jacob Rodland, Karin D. Zangar, Richard C. TI Immobilization strategies for single-chain antibody microarrays SO PROTEOMICS LA English DT Article DE antibody microarray; ELISA; single-chain antibodies ID YEAST SURFACE DISPLAY; ESCHERICHIA-COLI; OVARIAN-CANCER; FV ANTIBODIES; SACCHAROMYCES-CEREVISIAE; FRAGMENTS; AFFINITY; CYTOPLASM; THIOREDOXIN; BIOMARKERS AB Sandwich ELISA microarrays have great potential for validating disease biomarkers. Each ELISA relies on robust-affinity reagents that retain activity when immobilized on a solid surface or when labeled for detection. Single-chain antibodies (scFv) are affinity reagents that have greater potential for high-throughput production than traditional IgG. Unfortunately, scFv are typically less active than IgG following immobilization on a solid surface and not always suitable for use in sandwich ELISAs. We therefore investigated different immobilization strategies and scFv constructs to determine a more robust strategy for using scFv as ELISA reagents. Two promising strategies emerged from these studies: (i) the precapture of epitope-tagged scFv using an antiepitope antibody and (ii) the direct printing of a thioredoxin (TRX)/scFv fusion protein on glass slides. Both strategies improved the stability of immobilized scFv and increased the sensitivity of the scFv ELISA microarray assays, although the antiepitope precapture method introduced a risk of reagent transfer. Using the direct printing method, we show that scFv against prostate-specific antigen (PSA) are highly specific when tested against 21 different IgG-based assays. In addition, the scFv microarray PSA assay gave comparable quantitative results (R-2 = 0.95) to a commercial 96-well ELISA when tested using human serum samples. In addition, we find that TRX-scFv fusions against epidermal growth factor and toxin X have good LOD. Overall, these results suggest that minor modifications of the scFv construct are sufficient to produce reagents that are suitable for use in multiplex assay systems. C1 [Seurynck-Servoss, Shannon L.; Baird, Cheryl L.; Gonzalez, Rachel M.; Apiyo, David O.; Engelmann, Heather E.; Rodland, Karin D.; Zangar, Richard C.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. [Miller, Keith D.; Pefaur, Noah B.] Pacific NW Natl Lab, Biotechnol Grp, Richland, WA 99354 USA. [Srivastava, Sudhir; Kagan, Jacob] NCI, Canc Biomarkers Res Grp, Div Canc Prevent, NIH, Bethesda, MD 20892 USA. RP Zangar, RC (reprint author), Pacific NW Natl Lab, Div Biol Sci, 790 6th St, Richland, WA 99354 USA. EM richard.zangar@pnl.gov RI Baird, Cheryl/F-6569-2011 FU NCI NIH HHS [U01 CA117378, Y1-CN-5014] NR 23 TC 18 Z9 18 U1 1 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-9853 J9 PROTEOMICS JI Proteomics PD JUN PY 2008 VL 8 IS 11 BP 2199 EP 2210 DI 10.1002/pmic.200701036 PG 12 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 316PG UT WOS:000256961600008 PM 18452230 ER PT J AU Nickles, RJ Avila-Rodriguez, MA Nye, JA Houser, EN Selwyn, RG Schueller, MJ Christian, BT Jensen, M AF Nickles, R. J. Avila-Rodriguez, M. A. Nye, J. A. Houser, E. N. Selwyn, R. G. Schueller, M. J. Christian, B. T. Jensen, M. TI Sustainable production of orphan radionuclides at Wisconsin SO QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING LA English DT Article; Proceedings Paper CT 17th International Symposium on Radiopharmaceutical Sciences CY APR 30-MAY 04, 2007 CL Aachen, GERMANY DE radionuclides; radiopharmaceuticals; tomography, emission computed ID CYCLOTRON; TARGET; I-124; Y-90 AB Over a hundred proton-induced reactions have been studied at the University of Wisconsin Medical Physics department since the installation of the first CTI RDS 112 in 1985. The focus has been to measure thick target yields at 11 MeV, in an effort to concentrate on the practical production of positron emitting radionuclides that have favorable decay characteristics, high yields and the potential for labeling pivotal biological tracers. This review covers our recent advances to scale-up the production of the heavy halogens and transition metals as feed-stock for non-conventional PET tracers that are currently attracting increased attention in oncology. C1 [Nickles, R. J.] Univ Wisconsin, Dept Med Phys, Sch Med & Publ Hlth, Madison, WI 53706 USA. [Nye, J. A.] Emory Univ, Atlanta, GA 30322 USA. [Schueller, M. J.] Brookhaven Natl Lab, Upton, NY 11973 USA. Tech Univ Denmark, Hevesy Lab, Risoe Natat Lab, Roskilde, Denmark. RP Nickles, RJ (reprint author), Univ Wisconsin, Dept Med Phys, Sch Med & Publ Hlth, 1530 Med Sci Ctr,1300 Univ Ave, Madison, WI 53706 USA. EM rnickles@wisc.edu RI Jensen, Mikael/I-8358-2012 OI Jensen, Mikael/0000-0002-9109-2187 FU NCI NIH HHS [5 T32 CA09206] NR 21 TC 0 Z9 0 U1 1 U2 3 PU EDIZIONI MINERVA MEDICA PI TURIN PA CORSO BRAMANTE 83-85 INT JOURNALS DEPT., 10126 TURIN, ITALY SN 1824-4785 J9 Q J NUCL MED MOL IM JI Q. J. Nucl. Med. Mol. Imag. PD JUN PY 2008 VL 52 IS 2 BP 134 EP 139 PG 6 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 302KB UT WOS:000255966100005 PM 18043541 ER PT J AU Hodell, DA Anselmetti, FS Ariztegui, D Brenner, M Curtis, JH Gilli, A Grzesik, DA Guilderson, TJ Muller, AD Bush, MB Correa-Metrio, A Escobar, J Kutterolf, S AF Hodell, David A. Anselmetti, Flavio S. Ariztegui, Daniel Brenner, Mark Curtis, Jason H. Gilli, Adrian Grzesik, Dustin A. Guilderson, Thomas J. Mueller, Andreas D. Bush, Mark B. Correa-Metrio, Alexander Escobar, Jaime Kutterolf, Steffen TI An 85-ka record of climate change in lowland Central America SO QUATERNARY SCIENCE REVIEWS LA English DT Article ID ATLANTIC THERMOHALINE CIRCULATION; INTERTROPICAL CONVERGENCE ZONE; HEMISPHERE WARM POOL; LAST GLACIAL MAXIMUM; TROPICAL ATLANTIC; INTERANNUAL VARIABILITY; WESTERN-HEMISPHERE; LATE PLEISTOCENE; RADIOCARBON CALIBRATION; NORTHEASTERN BRAZIL AB Drill cores obtained from Lake Peten ltza, Peten, Guatemala, contain a similar to 85-kyr record of terrestrial climate from lowland Central America that was used to reconstruct hydrologic changes in the northern Neotropics during the last glaciation. Sediments are composed of alternating clay and gypsum reflecting relatively wet and dry climate conditions, respectively. From similar to 85 to 48 ka, sediments were dominated by carbonate clay indicating moist conditions during Marine Isotope Stages (MIS) 5a, 4, and early 3. The first gypsum layer was deposited at similar to 48 ka, signifying a shift toward drier hydrologic conditions and the onset of wet-dry oscillations. During the latter part of MIS 3, Peten climate varied between wetter conditions during interstadials and drier states during stadials. The pattern of clay-gypsum (wet-dry) oscillations during the latter part of MIS 3 (similar to 48-23 ka) closely resembles the temperature records from Greenland ice cores and North Atlantic marine sediment cores and precipitation proxies from the Cariaco Basin. The most and periods coincided with Heinrich Events when cold sea surface temperatures prevailed in the North Atlantic, meridional overturning circulation was reduced, and the Intertropical Convergence Zone (ITCZ) was displaced southward. A thick clay unit was deposited from 23 to 18 ka suggesting deposition in a deep lake, and pollen accumulated during the same period indicates vegetation consisted of a temperate pine-oak forest. This finding contradicts previous inferences that climate was and during the Last Glacial Maximum (LGM) chronozone (21 +/- 2 ka). At similar to 18 ka, Peten climate switched from moist to and conditions and remained dry from 18 to 14.7 ka during the early deglaciation. Moister conditions prevailed during the warmer Bolling-Allerod (14.7-12.8 ka) with the exception of a brief return to dry conditions at similar to 13.8 ka that coincides with the Older Dryas and meltwater pulse 1A. The onset of the Younger Dryas at 12.8 ka marked the return of gypsum and hence dry conditions. The lake continued to precipitate gypsum until similar to 10.3 ka when rainfall increased markedly in the early Holocene. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Hodell, David A.; Brenner, Mark; Curtis, Jason H.; Gilli, Adrian; Grzesik, Dustin A.; Escobar, Jaime] Univ Florida, Dept Geol Sci, Gainesville, FL 32611 USA. [Hodell, David A.; Brenner, Mark; Curtis, Jason H.; Gilli, Adrian; Grzesik, Dustin A.; Escobar, Jaime] Univ Florida, LUECI, Gainesville, FL 32611 USA. [Anselmetti, Flavio S.; Mueller, Andreas D.] Eawag, CH-8600 Dubendorf, Switzerland. [Ariztegui, Daniel] Univ Geneva, Sect Earth Sci, CH-1205 Geneva, Switzerland. [Guilderson, Thomas J.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Bush, Mark B.; Correa-Metrio, Alexander] Florida Inst Technol, Dept Biol Sci, Melbourne, FL 32901 USA. [Kutterolf, Steffen] IfM Geomar, Leibniz Inst Marine Sci, D-24148 Kiel, Germany. RP Hodell, DA (reprint author), Univ Florida, Dept Geol Sci, Gainesville, FL 32611 USA. EM hodell@ufl.edu OI Bush, Mark/0000-0001-6894-8613; Gilli, Adrian/0000-0003-4193-2157; Kutterolf, Steffen/0000-0002-0645-3399 NR 91 TC 99 Z9 104 U1 3 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD JUN PY 2008 VL 27 IS 11-12 BP 1152 EP 1165 DI 10.1016/j.quascirev.2008.02.008 PG 14 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 321IK UT WOS:000257297800005 ER PT J AU Owens, M AF Owens, Mig TI Winning an R&D 100 Award - Innovation meets entry submission SO R&D MAGAZINE LA English DT Article C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Owens, M (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0746-9179 J9 R&D MAG JI R D Mag. PD JUN PY 2008 VL 50 IS 3 BP 24 EP 25 PG 2 WC Engineering, Industrial; Multidisciplinary Sciences SC Engineering; Science & Technology - Other Topics GA 312NE UT WOS:000256677300007 ER PT J AU Sharma, VK Yngard, RA Cabelli, DE Baum, JC AF Sharma, Virender K. Yngard, Ria A. Cabelli, Diane E. Baum, J. Clayton TI Ferrate(VI) and ferrate(V) oxidation of cyanide, thiocyanate, and copper(I) cyanide SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article DE Ferrate(VI); Ferrate(V); premix pulse radiolysis; cyanides; oxidation; removal ID HETEROGENEOUS PHOTOCATALYTIC REDUCTION; IRRADIATED TITANIA SUSPENSIONS; WASTE-WATER TREATMENT; AQUEOUS CYANIDE; POTASSIUM FERRATE(VI); IRON(V) OXIDATION; ALKALINE-MEDIUM; WASTEWATERS; OZONATION; PEROXIDE AB Cyanide (CN-), thiocyanate (SCN-), and copper(I) cyanide (Cu(CN)(4)(3-)) are common constituents in the wastes of many industrial processes such as metal finishing and gold mining, and their treatment is required before the safe discharge of effluent. The oxidation of CN-, SCN-, and Cu(CN)(4)(3-) by ferrate(VI) ((FeO42-)-O-VI; Fe(VI)) and ferrate(V) ((FeO43-)-O-V; Fe(V)) has been studied using stopped-flow and premix pulse radiolysis techniques. The rate laws for the oxidation of cyanides were found to be first-order with respect to each reactant. The second-order rate constants decreased with increasing pH because the deprotonated species, FeO42-, is less reactive than the protonated Fe(VI) species, HFeO4-. Cyanides react 10(3)-10(5) times faster with Fe(V) than with Fe(VI). The Fe(V) reaction with CN- proceeds by sequential one-electron reductions from Fe(V) to Fe(IV) to Fe(III). However, a two-electron transfer process from Fe(V) to Fe(III) occurs in the reaction of Fe(V) with SCN- and Cu(CN)(4)(3-). The toxic CN- species of cyanide wastes is converted into relatively non-toxic cyanate (NCO-). Results indicate that Fe(VI) is highly efficient in removing cyanides from electroplating rinse water and gold mill effluent. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Sharma, Virender K.; Yngard, Ria A.; Baum, J. Clayton] Florida Inst Technol, Dept Chem, Melbourne, FL 32901 USA. [Cabelli, Diane E.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Sharma, VK (reprint author), Florida Inst Technol, Dept Chem, 150 W Univ Blvd, Melbourne, FL 32901 USA. EM vsharma@fit.edu OI Sharma, Virender/0000-0002-5980-8675; Baum, J. Clayton/0000-0003-0331-9730 NR 36 TC 35 Z9 38 U1 2 U2 50 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD JUN PY 2008 VL 77 IS 6 BP 761 EP 767 DI 10.1016/j.r,idphyscliezii.2007.11.004 PG 7 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 300GW UT WOS:000255813300012 ER PT J AU Bandstra, ER Pecaut, MJ Anderson, ER Willey, JS De Carlo, F Stock, SR Gridley, DS Nelson, GA Levine, HG Bateman, TA AF Bandstra, Eric R. Pecaut, Michael J. Anderson, Erica R. Willey, Jeffrey S. De Carlo, Francesco Stock, Stuart R. Gridley, Daila S. Nelson, Gregory A. Levine, Howard G. Bateman, Ted A. TI Long-term dose response of trabecular bone in mice to proton radiation SO RADIATION RESEARCH LA English DT Article ID MICROCOMPUTED TOMOGRAPHY; SYNCHROTRON-RADIATION; DURATION SPACEFLIGHT; GAMMA-IRRADIATION; CARBON ION; CANCER; MOUSE; CELLS; MODEL; ARCHITECTURE AB Astronauts on exploratory missions will experience a complex environment, including microgravity and radiation. While the deleterious effects of unloading on bone are well established, fewer studies have focused on the effects of radiation. We previously demonstrated that 2 Gy of ionizing radiation has deleterious effects on trabecular bone in mice 4 months after exposure. The present study investigated the skeletal response after total doses of proton radiation that astronauts may be exposed to during a solar particle event. We exposed mice to 0.5, 1 or 2 Gy of whole-body proton radiation and killed them humanely 117 days later. Tibiae and femora were analyzed using microcomputed tomography, mechanical testing, mineral composition and quantitative histomorphometry. Relative to control mice, mice exposed to 2 Gy had significant differences in trabecular bone volume fraction (-20%), trabecular separation (+11%), and trabecular volumetric bone mineral density (-19%). Exposure to 1 Gy radiation induced a nonsignificant trend in trabecular bone volume fraction (-13%), while exposure to 0.5 Gy resulted in no differences. No response was detected in cortical bone. Further analysis of the 1-Gy mice using synchrotron microCT revealed a significantly lower trabecular bone volume fraction (-13%) than in control mice. Trabecular bone loss 4 months after exposure to 1 Gy highlights the importance of further examination of how space radiation affects bone. (C) 2008 by Radiation Research Society C1 [Bandstra, Eric R.; Anderson, Erica R.; Willey, Jeffrey S.; Bateman, Ted A.] Clemson Univ, Rhodes Res Ctr 501, Dept Bioengn, Clemson, SC 29631 USA. [Pecaut, Michael J.; Gridley, Daila S.; Nelson, Gregory A.] Loma Linda Univ, Radiat Dept, Loma Linda, CA 92350 USA. [Pecaut, Michael J.; Gridley, Daila S.; Nelson, Gregory A.] Loma Linda Univ, Med Ctr, Loma Linda, CA USA. [De Carlo, Francesco] Argonne Natl Lab, Adv Photon Source, XOR, Argonne, IL 60439 USA. [Stock, Stuart R.] Northwestern Univ, Feinberg Sch Med, Dept Biol Chem & Mol Pharmacol, Chicago, IL 60611 USA. [Levine, Howard G.] NASA, Sustainable Syst Div, Kennedy Space Ctr, FL USA. RP Bateman, TA (reprint author), Clemson Univ, Rhodes Res Ctr 501, Dept Bioengn, Clemson, SC 29631 USA. EM bateman@clemson.edu RI Pecaut, Michael/P-6481-2015; Gridley, Daila/P-7711-2015 OI Pecaut, Michael/0000-0002-2915-9686; FU NIAMS NIH HHS [R21 AR054889] NR 40 TC 24 Z9 25 U1 0 U2 1 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUN PY 2008 VL 169 IS 6 BP 607 EP 614 DI 10.1667/RR1310.1 PG 8 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 305LJ UT WOS:000256179600001 PM 18494551 ER PT J AU Miller, JH Jin, S Morgan, WF Yang, A Wan, Y Aypar, U Peters, JS Springer, DL AF Miller, J. H. Jin, S. Morgan, W. F. Yang, A. Wan, Y. Aypar, U. Peters, J. S. Springer, D. L. TI Profiling mitochondrial proteins in radiation-induced genome-unstable cell lines with persistent oxidative stress by mass spectrometry SO RADIATION RESEARCH LA English DT Article ID CHROMOSOMAL INSTABILITY; IONIZING-RADIATION; SHOTGUN PROTEOMICS; IN-VIVO; INDUCTION; EXPOSURE; RESPONSES; CANCER; ATTENUATION; DYSFUNCTION AB Previous work by Morgan and coworkers on radiation-induced genome instability in Chinese hamster ovary (CHO) cell lines showed that unstable LS-12 cells had persistently elevated levels of reactive oxygen species (ROS) that were likely due to dysfunctional mitochondria. To further investigate the correlation between radiation-induced genome instability and dysfunctional mitochondria, we performed quantitative high-throughput mass spectrometry on samples enriched in mitochondrial proteins from three chromosomally unstable CHO cell lines and their stable unirradiated GM10115 parental cell line. Out of several hundred identified proteins, sufficient data were collected on 74 mitochondrial proteins to test for statistically significant differences in their abundance between unstable and stable cell lines. The LS-12 cell line, which exhibited the highest level of ROS among the three unstable cell lines, was characterized by eight significantly down-regulated mitochondrial proteins, all associated with the TCA (tricarboxylic acid). Elevated levels of ROS relative to the unirradiated parental control were also statistically significant for the CS-9 cell line. The protein profile of CS-9 revealed five significantly up-regulated mitochondrial proteins, three of which are involved in oxidative phosphorylation. Elevation of ROS in the unstable 115 cell line was nearly as large as that seen in CS-9 cells but was not statistically significant. The mitochondrial protein profile of 115 cells showed significant down-regulation of acetyl-CoA-acetyltransferase, which was also down-regulated in LS-12, and two other proteins with abundances that were significantly different from control levels but were not directly related to either the TCA or oxidative phosphorylation. These results provide further evidence that elevated ROS and mitochondrial dysfunction are associated with radiation-induced genome instability; however, additional work is required to establish a firm mechanistic relationship between these end points. 0 2008 by Radiation Research Society C1 [Peters, J. S.; Springer, D. L.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Miller, J. H.; Jin, S.] Washington State Univ Tri Cities, Richland, WA USA. [Morgan, W. F.; Yang, A.; Wan, Y.; Aypar, U.] Univ Maryland, Sch Med, Baltimore, MD 21201 USA. RP Springer, DL (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM david.springer@pnl.gov RI Wan, Yunhu/A-8068-2009 NR 42 TC 16 Z9 17 U1 0 U2 3 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUN PY 2008 VL 169 IS 6 BP 700 EP 706 DI 10.1667/RR1186.1 PG 7 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 305LJ UT WOS:000256179600010 PM 18494543 ER PT J AU Kaiser, NK Skulason, GE Weisbrod, CR Wu, S Zhang, K Prior, DC Buschbach, MA Anderson, GA Bruce, JE AF Kaiser, Nathan K. Skulason, Gunnar E. Weisbrod, Chad R. Wu, Si Zhang, Kai Prior, David C. Buschbach, Michael A. Anderson, Gordon A. Bruce, James E. TI Restrained ion population transfer: a novel ion transfer method for mass spectrometry SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID MOLECULAR-WEIGHT DISTRIBUTIONS; QUADRUPOLE COLLISION CELL; MULTIPLY-CHARGED IONS; SPACE-CHARGE; POSTTRANSLATIONAL MODIFICATION; SIMION ANALYSIS; AXIAL-FIELD; ACCUMULATION; PERFORMANCE; RESOLUTION AB Fourier transform ion cyclotron resonance (FTICR) mass spectrometers function such that the ion accumulation event takes place in a region of higher pressure outside the magnetic field which allows ions to be thermally cooled before being accelerated toward the ICR cell where they are decelerated and re-trapped. This transfer process suffers from mass discrimination due to time-of-flight effects. Also, trapping ions with substantial axial kinetic energy can decrease the performance of the FTICR instrument compared with the analysis of thermally cooled ions located at the trap center. Therefore, it is desirable to limit the energy imparted to the ions which results in lower applied trap plate potentials and reduces the spread in axial kinetic energy. The approach presented here for ion transfer, called restrained ion population transfer or RIPT, is designed to provide complete axial and radial containment of an ion population throughout the entire transfer process from the accumulation region to the ICR cell, eliminating mass discrimination associated with time-of-flight separation. This was accomplished by use of a number of quadrupole segments arranged in series with independent control of the direct current (DC) bias voltage applied to each segment of the quadrupole ion guide. The DC bias voltage is applied in such a way as to minimize the energy imparted to the ions allowing transfer of ions with low kinetic energy from the ion accumulation region to the ICR cell. Initial FTICR mass spectral data are presented that illustrate the feasibility of RIPT. A larger m/z range for a mixture of peptides is demonstrated compared with gated trapping. The increase in ion transfer time (3 ms to 130 ms) resulted in an similar to 11% decrease in the duty cycle; however this can be improved by simultaneously transferring multiple ion populations with RIPT. The technique was also modeled with SIMION 7.0 and simulation results that support our feasibility studies of the ion transfer process are presented. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Kaiser, Nathan K.; Skulason, Gunnar E.; Weisbrod, Chad R.; Wu, Si; Zhang, Kai; Bruce, James E.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Prior, David C.; Buschbach, Michael A.; Anderson, Gordon A.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Prior, David C.; Buschbach, Michael A.; Anderson, Gordon A.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Bruce, JE (reprint author), Washington State Univ, Dept Chem, POB 644630, Pullman, WA 99164 USA. EM james_bruce@wsu.edu FU NIGMS NIH HHS [T32 GM008336-19, T32 GM008336-17, T32 GM008336-18] NR 60 TC 5 Z9 5 U1 0 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD JUN PY 2008 VL 22 IS 12 BP 1955 EP 1964 DI 10.1002/rcm.3574 PG 10 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 316YF UT WOS:000256985100022 PM 18489013 ER PT J AU Das, S Tonn, BE Peretz, JH AF Das, Sujit Tonn, Bruce E. Peretz, Jean H. TI Application of economic evaluation techniques to automotive lightweighting materials research and development projects SO RESEARCH EVALUATION LA English DT Article ID INVESTMENTS; BENEFITS AB This paper presents the results of a program evaluation, using two economic analysis techniques (benefit-cost ratios and person-years/cost savings), conducted on nine research and development projects funded in four lightweight materials areas by the Phase II Automotive Lightweighting Materials effort of the US Department of Energy (DOE). The results suggest that a collaborative effort between DOE and the private-sector automotive industry has potential for introduction and market penetration of lightweight vehicles. C1 [Tonn, Bruce E.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Peretz, Jean H.] Univ Tennessee, Inst Secure & Sustainable Environm, Knoxville, TN 37996 USA. EM dass@ornl.gov NR 54 TC 1 Z9 1 U1 2 U2 4 PU BEECH TREE PUBLISHING PI GUILDFORD PA 10 WATFORD CLOSE,, GUILDFORD GU1 2EP, SURREY, ENGLAND SN 0958-2029 J9 RES EVALUAT JI Res. Evaluat. PD JUN PY 2008 VL 17 IS 2 BP 133 EP 148 DI 10.3152/095820208X287153 PG 16 WC Information Science & Library Science SC Information Science & Library Science GA 319NH UT WOS:000257170200005 ER PT J AU Breitbart, M Haynes, M Kelley, S Angly, F Edwards, RA Felts, B Mahaffy, JM Mueller, J Nulton, J Rayhawk, S Rodriguez-Brito, B Salamon, P Rohwer, F AF Breitbart, Mya Haynes, Matthew Kelley, Scott Angly, Florent Edwards, Robert A. Felts, Ben Mahaffy, Joseph M. Mueller, Jennifer Nulton, James Rayhawk, Steve Rodriguez-Brito, Beltran Salamon, Peter Rohwer, Forest TI Viral diversity and dynamics in an infant gut SO RESEARCH IN MICROBIOLOGY LA English DT Article DE infant; feces; virus; phage; metagenomics; microarray; gut ID REAL-TIME PCR; HUMAN FECES; FECAL MICROBIOTA; GASTROINTESTINAL-TRACT; INTESTINAL MICROBIOTA; ACUTE GASTROENTERITIS; HEALTHY-SUBJECTS; NEWBORN-INFANTS; PRETERM INFANTS; HUMAN-MILK AB Metagenomic sequencing of DNA viruses from the feces of a healthy week-old infant revealed a viral community with extremely low diversity. The identifiable sequences were dominated by phages, which likely influence the diversity and abundance of co-occurring microbes. The most abundant fecal viral sequences did not originate from breast milk or formula, suggesting a non-dietary initial source of viruses. Certain sequences were stable in the infant's gut over the first 3 months of life, but microarray experiments demonstrated that the overall viral community composition changed dramatically between I and 2 weeks of age. (C) 2008 Elsevier Masson SAS. All rights reserved. C1 [Breitbart, Mya] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA. [Haynes, Matthew; Kelley, Scott; Angly, Florent; Mueller, Jennifer; Rayhawk, Steve; Rodriguez-Brito, Beltran; Rohwer, Forest] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Angly, Florent; Felts, Ben; Mahaffy, Joseph M.; Mueller, Jennifer; Nulton, James; Rayhawk, Steve; Rodriguez-Brito, Beltran; Salamon, Peter] San Diego State Univ, Dept Math Sci, San Diego, CA 92182 USA. [Edwards, Robert A.] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Edwards, Robert A.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Breitbart, M (reprint author), Univ S Florida, Coll Marine Sci, 140 7th Ave S, St Petersburg, FL 33701 USA. EM mya@marine.usf.edu RI Breitbart, Mya/B-1366-2009; Angly, Florent/A-7717-2011 OI Breitbart, Mya/0000-0003-3210-2899; Angly, Florent/0000-0002-8999-0738 FU NSF [DBI-0308029] FX The authors thank Linda Wegley and Anca Segall for insightful discussions and Steve Barlow at the SDSU Microscopy Facility for help with microscopy. This project was supported by the Gordon and Betty Moore Foundation (grant to FR). The electron microscope was supported by NSF instrumentation grant DBI-0308029. NR 53 TC 116 Z9 122 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0923-2508 EI 1769-7123 J9 RES MICROBIOL JI Res. Microbiol. PD JUN PY 2008 VL 159 IS 5 SI SI BP 367 EP 373 DI 10.1016/j.resmic.2008.04.006 PG 7 WC Microbiology SC Microbiology GA 351GX UT WOS:000259413800009 PM 18541415 ER PT J AU Pynn, R Lee, WT Stonaha, P Shah, VR Washington, AL Kirby, BJ Majkrzak, CF Maranville, BB AF Pynn, Roger Lee, W. T. Stonaha, P. Shah, V. R. Washington, A. L. Kirby, B. J. Majkrzak, C. F. Maranville, B. B. TI The use of symmetry to correct Larmor phase aberrations in spin echo scattering angle measurement SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB Spin echo scattering angle measurement (SESAME) is a sensitive interference technique for measuring neutron diffraction. The method uses waveplates or birefringent prisms to produce a phase separation (the Larmor phase) between the "up" and "down" spin components of a neutron wavefunction that is initially prepared in a state that is a linear combination of in-phase up and down components. For neutrons, uniformly birefringent optical elements can be constructed from closed solenoids with appropriately shaped cross sections. Such elements are inconvenient in practice, however, both because of the precision they demand in the control of magnetic fields outside the elements and because of the amount of material required in the neutron beam. In this paper, we explore a different option in which triangular-cross-section solenoids used to create magnetic fields for SESAME have gaps in one face, allowing the lines of magnetic flux to "leak out" of the solenoid. Although the resulting field inhomogeneity produces aberrations in the Larmor phase, the symmetry of the solenoid gaps causes the aberrations produced by neighboring pairs of triangular solenoids to cancel to a significant extent. The overall symmetry of the SESAME apparatus leads to further cancellations of aberrations, providing an architecture that is easy to construct and robust in performance. (C) 2008 American Institute of Physics. C1 [Pynn, Roger; Stonaha, P.; Shah, V. R.; Washington, A. L.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Pynn, Roger; Lee, W. T.] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Kirby, B. J.; Majkrzak, C. F.; Maranville, B. B.] NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Pynn, R (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. OI Stonaha, Paul/0000-0002-6846-2442; Washington, Adam/0000-0002-3243-1556 NR 11 TC 8 Z9 8 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2008 VL 79 IS 6 AR 063901 DI 10.1063/1.2927251 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 321DA UT WOS:000257283700022 PM 18601411 ER PT J AU Solis, SE Cuellar, G Wang, RL Tomasi, D Rodriguez, AO AF Solis, S. E. Cuellar, G. Wang, R. L. Tomasi, D. Rodriguez, A. O. TI Transceiver 4-leg birdcage for high field MRI: knee imaging SO REVISTA MEXICANA DE FISICA LA English DT Article DE knee MRI; birdcage coil; electromagnetic simulation; high field ID MAGNETIC-RESONANCE; RESONATORS; COILS; DESIGN; PASS; FABRICATION; GEOMETRY AB The radiofrequency coil is a crucial component of the magnetic resonance imaging scanners, so that a solid knowledge on the design and physical characteristics is important for those interested in its development. A birdcage coil with a 10 cm radius and 4 legs (length = 12cm), and a separation between the copper strips of 4 cm, was developed for magnetic resonance imaging (MRI) of the human knee and tuned at the resonance frequency of protons at 4 Testa (170.3 MHz). MR images were acquired with this coil in phantoms and in the knee of a healthy volunteer using a standard spin echo sequence, The phantom images demonstrated the high uniformity of the radiofrequency field with high signal-to-noise ratio, a characteristic of all birdcage RF coils. The in vivo knee images demonstrated that this birdcage geometry is ideal for knee imaging, promising MR images of the knee with higher spatial resolution at 4 Testa. This work also demonstrates that volume coils are a good choice for high-field MRI applications. C1 [Solis, S. E.; Cuellar, G.; Tomasi, D.; Rodriguez, A. O.] Univ Autonoma Metropolitana Iztapalapa, Ctr Invest Instrumentat & Imagenol Med, Mexico City 09340, DF, Mexico. [Solis, S. E.; Wang, R. L.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Rodriguez, AO (reprint author), Univ Autonoma Metropolitana Iztapalapa, Ctr Invest Instrumentat & Imagenol Med, Mexico City 09340, DF, Mexico. EM arog@xanum.uam.mx RI Tomasi, Dardo/J-2127-2015 NR 19 TC 0 Z9 1 U1 1 U2 3 PU SOC MEXICANA FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 0035-001X J9 REV MEX FIS JI Rev. Mex. Fis. PD JUN PY 2008 VL 54 IS 3 BP 215 EP 221 PG 7 WC Physics, Multidisciplinary SC Physics GA 320RR UT WOS:000257253200007 ER PT J AU Cooke, RM MacDonell, M AF Cooke, Roger M. MacDonell, Margaret TI Regulating under uncertainty: Newsboy for exposure limits SO RISK ANALYSIS LA English DT Article DE action levels; dose-response uncertainty; expert judgment; health risk; performance weights; probabilistic inversion AB Setting action levels or limits for health protection is complicated by uncertainty in the dose-response relation across a range of hazards and exposures. To address this issue, we consider the classic newsboy problem. The principles used to manage uncertainty for that case are applied to two stylized exposure examples, one for high dose and high dose rate radiation and the other for ammonia. Both incorporate expert judgment on uncertainty quantification in the dose-response relationship. The mathematical technique of probabilistic inversion also plays a key role. We propose a coupled approach, whereby scientists quantify the dose-response uncertainty using techniques such as structured expert judgment with performance weights and probabilistic inversion, and stakeholders quantify associated loss rates. C1 [Cooke, Roger M.] Delft Univ Technol, Resources Future & Dept Math, NL-2600 AA Delft, Netherlands. [MacDonell, Margaret] Argonne Natl Lab, Chicago, IL USA. RP Cooke, RM (reprint author), Delft Univ Technol, Resources Future & Dept Math, NL-2600 AA Delft, Netherlands. EM cooke@rff.org NR 32 TC 3 Z9 3 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0272-4332 J9 RISK ANAL JI Risk Anal. PD JUN PY 2008 VL 28 IS 3 BP 577 EP 587 DI 10.1111/j.1539-6924.2008.01042.x PG 11 WC Public, Environmental & Occupational Health; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods SC Public, Environmental & Occupational Health; Mathematics; Mathematical Methods In Social Sciences GA 315DT UT WOS:000256858800001 PM 18643816 ER PT J AU Atchison, WL Zocher, MA Kaul, AM AF Atchison, W. L. Zocher, M. A. Kaul, A. M. TI Studies of material constitutive behavior using perturbation growth in explosive and magnetically driven liner systems SO RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MODEL AB This paper discusses a collaborative research program aimed at the development of improved constitutive modeling capability, in particular, the development of a model validated over a wide range of strain rates (from quasistatic to 10(6) s(-1)). This program includes experimental, theoretical, and numerical components. The experimental part of the program includes both planar and cylindrical manifestations of the perturbation growth method. The theoretical part of the program is focused on the development of a model that considers all the necessary physical aspects and, at the same time, is compatible with standard numerical methods for solving the governing field equations. The numerical part of the program is focused on model implementation (in an appropriate continuum mechanics code) and validation. All three parts of the program are coupled. This paper will discuss the experimental program, the development of a new model, and show some results comparing various model predictions to experimental data. C1 [Atchison, W. L.; Zocher, M. A.; Kaul, A. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Atchison, WL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 23 TC 0 Z9 3 U1 0 U2 1 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1990-7931 J9 RUSS J PHYS CHEM B+ JI Russ. J. Phys. Chem. B PD JUN PY 2008 VL 2 IS 3 BP 387 EP 401 DI 10.1134/S199079310803010X PG 15 WC Physics, Atomic, Molecular & Chemical SC Physics GA 337AU UT WOS:000258408700010 ER PT J AU Knox, AS Brimon, RL Kaplan, DI Paller, MH AF Knox, Anna Sophia Brimon, R. L. Kaplan, D. I. Paller, M. H. TI Interactions among phosphate amendments, microbes and uranium mobility in contaminated sediments SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE apatite uranium; microbial activity; Alcaligenes piechaudii; Pseudomonas putida ID HEAVY-METALS; IMMOBILIZATION; SOIL; HYDROXYAPATITE; SORPTION; CD; PB; BIOAVAILABILITY; SPECIATION; BACTERIA AB The use of sequestering agents for the transformation of radionuclides in low concentrations in contaminated soils/sediments offers considerable potential for environmental cleanup. This study evaluated the influence of three types of phosphate (rock phosphate, biological phosphate, and calcium phytate) and two microbial amendments (Alcaligenes piechaudii and Pseudomonas putida) on U mobility. All tested phosphate amendments reduced aqueous U concentrations more than 90%, likely due to formation of insoluble phosphate precipitates. The addition of A. piechaudii and P. putida alone were found to reduce U concentrations 63% and 31%, respectively. Uranium removal in phosphate treatments was significantly reduced in the presence of the two microbes. Two sediments were evaluated in experiments on the effects of phosphate amendments on U mobility, one from a stream on the Department of Energy's Savannah River Site near Aiken, SC and the other from the Hanford Site, a Department of Energy facility in Washington state. Increased microbial activity in the treated sediment led to a reduction in phosphate effectiveness. The average U concentration in 1M MgCl2 extract from U contaminated sediment was 437 mu g/kg, but in the same sediment without microbes (autoclaved), the extractable U concentration was only 103 mu g/kg. The U concentration in the 1 M MgCl2 extract was similar to 0 mu g/kg in autoclaved amended sediment treated with autoclaved biological apatite. These results suggest that microbes may reduce phosphate amendment remedial effectiveness. (c) 2008 Elsevier B.V. All rights reserved. C1 [Knox, Anna Sophia; Brimon, R. L.; Kaplan, D. I.; Paller, M. H.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Knox, AS (reprint author), Bldg 773-42A,Savannah River Site, Aiken, SC 29808 USA. EM anna.knox@srnl.doe.gov NR 41 TC 17 Z9 20 U1 2 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JUN 1 PY 2008 VL 395 IS 2-3 BP 63 EP 71 DI 10.1016/j.scitotenv.2008.01.061 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA 300JJ UT WOS:000255819800002 PM 18374392 ER PT J AU Bettencourt, LMA Kaiser, DI Kaur, J Castillo-Chavez, C Wojick, DE AF Bettencourt, Luis M. A. Kaiser, David I. Kaur, Jasleen Castillo-Chavez, Carlos Wojick, David E. TI Population modeling of the emergence and development of scientific fields SO SCIENTOMETRICS LA English DT Article ID INFLATIONARY UNIVERSE; MATHEMATICAL APPROACH; SPREAD; IDEAS; COSMOLOGY; COMPUTERS; DYNAMICS; FLATNESS; HORIZON; GROWTH AB We analyze the temporal evolution of emerging fields within several scientific disciplines in terms of numbers of authors and publications. From bibliographic searches we construct databases of authors, papers, and their dates of publication. We show that the temporal development of each field, while different in detail, is well described by population contagion models, suitably adapted from epidemiology to reflect the dynamics of scientific interaction. Dynamical parameters are estimated and discussed to reflect fundamental characteristics of the field, such as time of apprenticeship and recruitment rate. We also show that fields tire characterized by simple scaling laws relating numbers of new publications to new authors, with exponents that reflect increasing or decreasing returns in scientific productivity. C1 [Bettencourt, Luis M. A.; Kaur, Jasleen] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Kaiser, David I.] MIT, Ctr Theoret Phys, Nucl Sci Lab, Dept Phys, Cambridge, MA 02139 USA. [Kaur, Jasleen] Indiana Univ, Sch Informat, Bloomington, IN 47405 USA. [Castillo-Chavez, Carlos] Arizona State Univ, Dept Math & Stat, Tempe, AZ USA. [Wojick, David E.] US DOE, Off Sci & Tech Informat, Oak Ridge, TN USA. [Kaiser, David I.] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Bettencourt, LMA (reprint author), Los Alamos Natl Lab, Div Theoret, T-7 MS B284, Los Alamos, NM USA. EM lmbett@lanl.gov RI Castillo-Chavez, Carlos/E-1412-2014; OI Castillo-Chavez, Carlos/0000-0002-1046-3901; Kaur, Jasleen/0000-0002-1243-1452; Kaiser, David/0000-0002-5054-6744 NR 40 TC 53 Z9 53 U1 3 U2 37 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 J9 SCIENTOMETRICS JI Scientometrics PD JUN PY 2008 VL 75 IS 3 BP 495 EP 518 DI 10.1007/s11192-007-1888-4 PG 24 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science SC Computer Science; Information Science & Library Science GA 314WJ UT WOS:000256839600006 ER PT J AU Bhattacharyya, D Mara, NA Hoagland, RG Misra, A AF Bhattacharyya, D. Mara, N. A. Hoagland, R. G. Misra, A. TI Nanoindentation and microstructural studies of Al/TiN multilayers with unequal volume fractions SO SCRIPTA MATERIALIA LA English DT Article DE multilayers; Al-TiN; nanoindentation ID MECHANICAL-PROPERTIES; DEFORMATION MECHANISMS; DIFFUSION BARRIER; CU METALLIZATION; AL INTERLAYER; THIN-FILMS; COMPOSITES; TIN; INDENTATION; THICKNESS AB The mechanical behavior of nanoscale Al/TiN multilayers with a thickness ratio of 9:1 deposited by reactive sputter deposition, with TiN layer thicknesses of 1-50 nm, has been evaluated. Hardness values measured by nanoindentation methods showed considerably higher hardness than a rule of mixtures estimate, and increasing hardness with decreasing layer thickness. Microstructural analysis has been performed using transmission electron microscopy (TEM) and high-resolution TEM. A dislocation image force model is used to understand the strengthening mechanisms. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Bhattacharyya, D.; Mara, N. A.; Hoagland, R. G.; Misra, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bhattacharyya, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dhriti@lanl.gov RI Hoagland, Richard/G-9821-2012; Misra, Amit/H-1087-2012; Mara, Nathan/J-4509-2014; OI Mara, Nathan/0000-0002-9135-4693 NR 23 TC 22 Z9 22 U1 1 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUN PY 2008 VL 58 IS 11 BP 981 EP 984 DI 10.1016/j.scriptamat.2008.01.054 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 297FD UT WOS:000255601600012 ER PT J AU Xie, S Russell, AM Becker, AT Gschneidner, KA AF Xie, S. Russell, A. M. Becker, A. T. Gschneidner, K. A., Jr. TI Dislocation core structures in YAg, a ductile B2CsCl-type intermetallic compound SO SCRIPTA MATERIALIA LA English DT Article DE intermetallic compound; HRTEM; dislocation structure; stacking fault; antiphase boundary ID MECHANICAL-PROPERTIES; ALLOYS AB Dislocations are thought to be the primary mechanism for plastic deformation in the ductile B2 YAg compound, but no reports have been made on whether partial dislocations are operating. Here, direct observations made by high-resolution transmission electron microscopy show that in YAg superlattice dislocations dissociate into two superpartials bound to either a stacking fault or an antiphase boundary. A better understanding of dislocation core structures in YAg should improve the understanding of deformation mechanisms in the family of ductile rare-earth B2 intermetallics. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Xie, S.; Russell, A. M.; Becker, A. T.; Gschneidner, K. A., Jr.] Iowa State Univ, Mat & Engn Phys Program, Ames Lab US DOE, Ames, IA 50011 USA. [Russell, A. M.; Becker, A. T.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Xie, S (reprint author), Iowa State Univ, Mat & Engn Phys Program, Ames Lab US DOE, Ames, IA 50011 USA. EM sxie@ameslab.gov OI Russell, Alan/0000-0001-5264-0104 NR 22 TC 21 Z9 22 U1 3 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUN PY 2008 VL 58 IS 12 BP 1066 EP 1069 DI 10.1016/j.scriptamat.2008.01.055 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 301ML UT WOS:000255900200008 ER PT J AU Pereloma, EV Russell, KF Miller, MK Timokhina, IB AF Pereloma, E. V. Russell, K. F. Miller, M. K. Timokhina, I. B. TI Effect of pre-straining and bake hardening on the microstructure of thermomechanically processed CMnSi TRIP steels with and without Nb and Mo additions SO SCRIPTA MATERIALIA LA English DT Article DE transformation-induced plasticity steels; three-dimensional atom probe; bake hardening; Cottrell atmospheres; precipitation ID TRANSFORMATION-INDUCED-PLASTICITY; ATOM-PROBE ANALYSIS; MECHANICAL-PROPERTIES; RETAINED AUSTENITE; MULTIPHASE STEELS; ALPHA-FE; BAINITE; DISLOCATIONS; SI; PRECIPITATION AB Transmission electron microscopy and atom probe tomography revealed a significant increase in the number density of Nb-Mo-Fe-C clusters and fine particles after 4% pre-straining and bake hardening of transformation-induced plasticity steel alloyed with Nb and Mo. Cottrell atmospheres were detected in the non-alloyed CMnSi steel both before and after pre-straining and bake hardening. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Pereloma, E. V.] Univ Wollongong, Sch Mech Mat & Mechatron Engn, Wollongong, NSW 2522, Australia. [Russell, K. F.; Miller, M. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Timokhina, I. B.] Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia. RP Pereloma, EV (reprint author), Univ Wollongong, Sch Mech Mat & Mechatron Engn, Wollongong, NSW 2522, Australia. EM elenap@uow.edu.au NR 24 TC 24 Z9 33 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUN PY 2008 VL 58 IS 12 BP 1078 EP 1081 DI 10.1016/j.scriptamat.2008.02.002 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 301ML UT WOS:000255900200011 ER PT J AU Bou-Rabee, NM Marsden, JE Romero, LA AF Bou-Rabee, Nawaf M. Marsden, Jerrold E. Romero, Louis A. TI Dissipation-induced heteroclinic orbits in tippe tops (Reprinted from SIAM Journal on Applied Dynamical Systems, vol 3, pg 352-377, 2004) SO SIAM REVIEW LA English DT Reprint DE tippe top inversion; dissipation-induced instability; gyroscopic stabilization; heteroclinic orbits; relative equilibria ID NONCONSERVATIVE FORCES; INDUCED INSTABILITIES; STABILITY; EGG; LEVITATION AB This paper demonstrates that the conditions for the existence of a dissipation-induced heteroclinic orbit between the inverted and noninverted states of a tippe top are determined by a complex version of the equations for a simple harmonic oscillator: the modified Maxwell-Bloch equations. A standard linear analysis reveals that the modified Maxwell-Bloch equations describe the spectral instability of the noninverted state and Lyapunov stability of the inverted state. Standard nonlinear analysis based on the energy momentum method gives necessary and sufficient conditions for the existence of a dissipation-induced connecting orbit between these relative equilibria. C1 [Bou-Rabee, Nawaf M.] CALTECH, Appl & Computat Math, Pasadena, CA 91125 USA. [Marsden, Jerrold E.] CALTECH, Control & Dynam Syst, Pasadena, CA 91125 USA. [Romero, Louis A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bou-Rabee, NM (reprint author), CALTECH, Appl & Computat Math, Pasadena, CA 91125 USA. EM nawaf@acm.caltech.edu; marsden@cds.caltech.edu; lromero@sandia.gov NR 38 TC 12 Z9 12 U1 0 U2 3 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0036-1445 J9 SIAM REV JI SIAM Rev. PD JUN PY 2008 VL 50 IS 2 BP 325 EP 344 DI 10.1137/080716177 PG 20 WC Mathematics, Applied SC Mathematics GA 303MC UT WOS:000256043600008 ER PT J AU Siever, WM Tauritz, DR Miller, A Crow, M McMillin, BM Atcitty, S AF Siever, William M. Tauritz, Daniel R. Miller, Ann Crow, Mariesa McMillin, Bruce M. Atcitty, Stanley TI Symbolic reduction for high-speed power system simulation SO SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL LA English DT Article DE code generation; power system simulation; real-time systems; sparse systems; symbolic and algebraic manipulation ID ALGORITHM AB High-speed simulations of power transmission systems, which often rely on solving nonlinear systems of equations, are an increasingly important tool for training, testing equipment, on-line control and situational awareness. Such simulations, however, suffer from two major problems: (1) they can be too computationally demanding to simulate large, complex systems within appropriate time constraints; and (2) they are difficult to develop and debug. Prior work has shown how symbolic computation can be used to help reduce both problems. In this paper, we: (1) review common concepts in power system simulations; (2) summarize prior use of symbolic computation in power system simulation; (3) explore the advantages and disadvantages achieved via symbolic techniques; (4) extend the techniques to solve linear systems via a priori symbolic LU decomposition; and (5) demonstrate the advantages of symbolic techniques on a transient event simulation of the IEEE 118-bus test power system, which runs in one-tenth the time of an equivalent traditional (sparse matrix) approach. C1 [Siever, William M.] Michigan Technol Univ, Houghton, MI 49931 USA. [Tauritz, Daniel R.; Miller, Ann; Crow, Mariesa; McMillin, Bruce M.] Missouri Univ Sci & Technol, Rolla, MO USA. [Atcitty, Stanley] Sandia Natl Labs, Sandia, NM USA. RP Siever, WM (reprint author), Michigan Technol Univ, Houghton, MI 49931 USA. OI Crow, Mariesa/0000-0002-2087-9599; Tauritz, Daniel/0000-0002-8233-7701; McMillin, Bruce/0000-0002-2158-0337 FU NSFMRI [CNS-0420869]; NSF CSR [CCF-0614633]; Missouri S&T Intelligent Systems Center; DOE/Sandia [291871, 558107]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by NSFMRI award CNS-0420869, NSF CSR award CCF-0614633, Missouri S&T Intelligent Systems Center and DOE/Sandia under contract numbers 291871 and 558107. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-heed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 18 TC 2 Z9 2 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0037-5497 J9 SIMUL-T SOC MOD SIM JI Simul.-Trans. Soc. Model. Simul. Int. PD JUN PY 2008 VL 84 IS 6 BP 297 EP 309 DI 10.1177/0037549708094046 PG 13 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering SC Computer Science GA 349IN UT WOS:000259274600004 ER PT J AU Stoica, T Sutter, E Meijers, RJ Debnath, RK Calarco, R Luth, H Grutzmacher, D AF Stoica, Toma Sutter, Eli Meijers, Ralph J. Debnath, Ratan K. Calarco, Raffaella Lueth, Hans Gruetzmacher, Detlev TI Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires SO SMALL LA English DT Article DE molecular beam epitaxy; nanostructures; nanowires; nitrides; nucleation ID MOLECULAR-BEAM EPITAXY; NANOCOLUMNS C1 [Stoica, Toma] Forschungszentrum Julich, Inst Bio & Nanosyst, D-52425 Julich, Germany. Forschungszentrum Julich, Ctr Nanoelect Syst Informat Technol, D-52425 Julich, Germany. [Sutter, Eli] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Stoica, T (reprint author), Forschungszentrum Julich, Inst Bio & Nanosyst, Postfach 1913, D-52425 Julich, Germany. EM t.stoica@fz-juelich.de RI Calarco, Raffaella/B-8218-2011; Debnath, Ratan/D-3629-2012; Debnath, Ratan/B-4678-2016; OI Debnath, Ratan/0000-0003-1343-7888; Grutzmacher, Detlev/0000-0001-6290-9672 NR 15 TC 85 Z9 85 U1 8 U2 33 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1613-6810 J9 SMALL JI Small PD JUN PY 2008 VL 4 IS 6 BP 751 EP 754 DI 10.1002/smll.200700936 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 324WC UT WOS:000257549100010 PM 18535990 ER PT J AU Grant, CD Crowhurst, JC Hamel, S Williamson, AJ Zaitseva, N AF Grant, Christian D. Crowhurst, Jonathan C. Hamel, Sebastien Williamson, Andrew J. Zaitseva, Natalia TI Anomalous photoluminescence in CdSe quantum-dot solids at high pressure due to nonuniform stress SO SMALL LA English DT Article DE cadmium selenide; nanocrystalline materials; photoluminescence; pressure; quantum dots ID SEMICONDUCTOR NANOCRYSTALS; HYDROSTATIC-PRESSURE; ENERGY; CDTE; TRANSFORMATIONS; ZNS AB The application of static high pressure provides a means to precisely control and investigate many fundamental and unique properties of nanoparticles. CdSe is a model quantum-dot system, the behavior of which under high pressure has been extensively studied; however, the effect of nonuniform stresses on this system has not been fully appreciated. Photoluminescence data obtained from CdSe quantum-dot solids in different stress environments varying from purely uniform to highly nonuniform are presented. Small deviations from a uniform stress distribution profoundly affect the electronic Properties of this system. In nonuniform stress environments, a pronounced flattening of the photoluminescence energy is observed above 3 GPa. The observations are validated with theoretical calculations obtained using an all-atom semiempirical pseudopotential technique. This effect must be considered when investigating other potentially pressure-mediated phenomena. C1 [Grant, Christian D.; Crowhurst, Jonathan C.] Lawrence Livermore Natl Lab, Div Chem Sci, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94551 USA. [Hamel, Sebastien; Williamson, Andrew J.; Zaitseva, Natalia] Lawrence Livermore Natl Lab, H Div, Phys & Adv Technol Directorate, Livermore, CA 94551 USA. RP Grant, CD (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, Chem Mat Earth & Life Sci Directorate, 7000 East Ave, Livermore, CA 94551 USA. EM grant29@llnt.gov NR 31 TC 13 Z9 13 U1 3 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD JUN PY 2008 VL 4 IS 6 BP 788 EP 794 DI 10.1002/smll.200701097 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 324WC UT WOS:000257549100017 PM 18481798 ER PT J AU Chasteen, SV Sholin, V Carter, SA Rumbles, G AF Chasteen, Stephanie V. Sholin, Veronica Carter, Sue A. Rumbles, Garry TI Towards optimization of device performance in conjugated polymer photovoltaics: Charge generation, transfer and transport in poly(p-phenylene-vinylene) polymer heterojunctions SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE organic photovoltaic; photoluminescence; time-resolved; heterojunction; fullerene ID ORGANIC SOLAR-CELLS; PHENYLENE VINYLENE POLYMER; BULK-HETEROJUNCTION; HOLE TRANSPORT; MDMO-PPV; MORPHOLOGY; BLENDS; ELECTRON; DEGRADATION; DERIVATIVES AB We fabricate photovoltaics comprised layers and blends of a hole-transporting derivative of poly(p-phenylene-vinylene) with a variety of electron-transporters: titanium dioxide, a cyano-substituted PPV, and a fullerene derivative (PCBM) to enhance device performance. Photovoltaic device characterization is combined with time-resolved and steady-state photoluminescence to understand the nature of the excited state and its effect upon device performance. We find that morphological differences, such as chain conformation or domain size, often overshadow the effect of charge transfer, so that device performance is not necessarily correlated with rapid decay times. Exciton generation is found to be a similarly important factor in most devices. These results provide insight into non-optimized device morphologies. (c) 2008 Elsevier B.V. All rights reserved. C1 [Chasteen, Stephanie V.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Sholin, Veronica; Carter, Sue A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Rumbles, Garry] Natl Renewable Energy Lab, Ctr Bas Sci, Golden, CO 80401 USA. RP Chasteen, SV (reprint author), Univ Colorado, Dept Phys, 390 UCB, Boulder, CO 80309 USA. EM Stephanie.chasteen@colorado.edu OI Rumbles, Garry/0000-0003-0776-1462 NR 56 TC 22 Z9 22 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD JUN PY 2008 VL 92 IS 6 BP 651 EP 659 DI 10.1016/j.solmat.2008.01.014 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 295IU UT WOS:000255469000008 ER PT J AU Ball, JA Murphy, ST Grimes, RW Bacorisen, D Smith, R Uberuaga, BP Sickafus, KE AF Ball, J. A. Murphy, S. T. Grimes, R. W. Bacorisen, D. Smith, R. Uberuaga, B. P. Sickafus, K. E. TI Defect processes in MgAl2O4 spinel SO SOLID STATE SCIENCES LA English DT Article; Proceedings Paper CT 99th Bunsen Colloquium on Solid State Reactivity from Macro to Nano CY JUN 07-JUL 09, 2007 CL Kloster Eberbach, GERMANY DE spinel; point defect; defect equilibrium; oxide ID MAGNESIUM ALUMINATE SPINEL; MICROSTRUCTURAL EVOLUTION; CATION DISTRIBUTIONS; SOLID-SOLUTIONS; SINGLE-CRYSTAL; AMORPHIZATION; REFRACTORIES; PARAMETER; ENERGIES; DISORDER AB In perfect normal MgAl2O4 spinel the Mg2+ ions occupy tetrahedral 8a sites and Al3+ ions occupy octahedral 16d sites. In reality some cations are exchanged between the cation sublattices forming pairs of antisite defects and thus a degree of "inversion". Here atomic simulation is used to investigate the influence that antisite defects have on the population's of other intrinsic defects, those associated with Schottky and Frenkel reactions. One consequence is that the total magnesium interstitial concentration is increased substantially over the aluminium interstitial concentration and the magnesium vacancy concentration is increased over the aluminium vacancy concentration but to a much smaller extent. The split structures of isolated interstitial defects and the stability of various defect clusters are also discussed. (c) 2007 Elsevier Masson SAS. All rights reserved. C1 [Ball, J. A.; Murphy, S. T.; Grimes, R. W.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [Bacorisen, D.; Smith, R.] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England. [Uberuaga, B. P.; Sickafus, K. E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Grimes, RW (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, S Kensington Campus, London SW7 2AZ, England. EM r.grimes@ic.ac.uk RI Murphy, Samuel/E-9574-2011; Smith, Roger/C-2550-2013 NR 36 TC 30 Z9 30 U1 1 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1293-2558 J9 SOLID STATE SCI JI Solid State Sci. PD JUN PY 2008 VL 10 IS 6 BP 717 EP 724 DI 10.1016/j.solidstatesciences.2007.04.005 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 333XQ UT WOS:000258187300006 ER PT J AU Roussel-Dupre, R Colman, JJ Symbalisty, E Sentman, D Pasko, VP AF Roussel-Dupre, R. Colman, J. J. Symbalisty, E. Sentman, D. Pasko, V. P. TI Physical processes related to discharges in planetary atmospheres SO SPACE SCIENCE REVIEWS LA English DT Review DE planetary atmospheres; electrical discharges; electrical breakdown; lightning; kinetic theory; swarm; electron transport; atmospheric electricity; Boltzmann equation; Fokker-Planck equation; relativistic breakdown; ionization; drift velocity; characteristic energy; electron impact cross-sections; electron attachment ID SPRITES94 AIRCRAFT CAMPAIGN; TRANSIENT LUMINOUS EVENTS; RUNAWAY AIR-BREAKDOWN; GAMMA-RAY FLASHES; CROSS-SECTIONS; PHOTOMETRIC MEASUREMENTS; ELECTRON-SCATTERING; KINETIC-EQUATION; LOWER IONOSPHERE; IONIZED GAS AB This paper focuses on the rudimentary principles of discharge physics. The kinetic theory of electron transport in gases relevant to planetary atmospheres is examined and results of detailed Boltzmann kinetic calculations are presented for a range of applied electric fields. Comparisons against experimental swarm data are made. Both conventional breakdown and runaway breakdown are covered in detail. The phenomena of transient luminous events (TLEs), particularly sprites, and terrestrial gamma-ray flashes (TGFs) are discussed briefly as examples of discharges that occur in the terrestrial environment. The observations of terrestrial lightning that exist across the electromagnetic spectrum and presented throughout this volume fit well with the broader understanding of discharge physics that we present in this paper. We hope that this material provides the foundation on which explorations in search of discharge processes on other planets can be based and previous evidence confirmed or refuted. C1 [Roussel-Dupre, R.; Colman, J. J.; Symbalisty, E.] Los Alamos Natl Lab, Earth & Environm Sci Devis, Atmospher Climate & Environm Dynam Grp, Nat Sci Facil 108, Los Alamos, NM 87545 USA. [Sentman, D.] Univ Alaska Fairbanks, Dept Phys, Fairbanks, AK 99775 USA. [Pasko, V. P.] Penn State Univ, Dept Elect Engn, Communicat & Space Sci Lab, University Pk, PA 16802 USA. RP Roussel-Dupre, R (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Devis, Atmospher Climate & Environm Dynam Grp, Nat Sci Facil 108, MS F665, Los Alamos, NM 87545 USA. EM bobrdnm@comcast.net; jonah@lanl.gov; esymbalisty@lanl.gov; dsentman@gi.alaska.edu; vpasko@psu.edu RI Pasko, Victor/S-6024-2016 FU NSF [ATM-0741589]; Penn State University FX The participation of V. P. Pasko has been supported by the United States National Science Foundation under the NSF ATM-0741589 grant to Penn State University. NR 125 TC 46 Z9 46 U1 1 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2008 VL 137 IS 1-4 BP 51 EP 82 DI 10.1007/s11214-008-9385-5 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 338ZD UT WOS:000258547000005 ER PT J AU Lefeuvre, F Blanc, E Pincon, JL Roussel-Dupre, R Lawrence, D Sauvaud, JA Rauch, JL de Feraudy, H Lagoutte, D AF Lefeuvre, Francois Blanc, Elisabeth Pincon, Jean-Louis Roussel-Dupre, Robert Lawrence, David Sauvaud, Jean-Andre Rauch, Jean-Louis de Feraudy, Herve Lagoutte, Dominique TI TARANIS - A satellite project dedicated to the physics of TLEs and TGFs SO SPACE SCIENCE REVIEWS LA English DT Review DE earth environment; lightning; Transient Luminous Events (TLEs); Terrestrial Gamma ray Flashes (TGFs); Lightning induced Electron Precipitation (LEPs); Runaway electron Beams (RBs) ID GAMMA-RAY FLASHES; ELECTRICAL DISCHARGES; RUNAWAY ELECTRONS; SPRITES; THUNDERSTORM; FREQUENCY; DEMETER; BURSTS; ENERGY; SPACE AB TARANIS "Tool for the Analysis of RAdiations from lightNIngs and Sprites" is a CNES satellite project dedicated to the study of impulsive transfers of energy between the Earth atmosphere and the space environment. Such impulsive transfers of energy, identified by the observation at ground and in space (rocket, balloons, FORMOSAT 2 satellite) of Transient Luminous Events (TLEs) and the detection on satellites (CGRO, RHESSI) of Terrestrial Gamma ray Flashes (TGFs), are likely to occur in other astrophysical environments as well. The TARANIS mission and instrumentation is presented. The way the TARANIS programme (associated ground-based and balloon-based measurements included) may answer questions about the physics of TLEs and TGFs is examined. The questions addressed include: TLEs and TGFs source regions, associated phenomena, transfers of energy between the radiation belts and the atmosphere, TLEs and TGFs generation mechanisms, input parameters to the modelling of the variation of the atmosphere and the electric circuit. C1 [Lefeuvre, Francois; Pincon, Jean-Louis; Rauch, Jean-Louis; Lagoutte, Dominique] Univ Orleans, CNRS, Lab Phys & Chim Environm, F-45071 Orleans 2, France. [Blanc, Elisabeth] DASE LDG, Commissariat Energie Atom, Bruyeres Le Chatel, France. [Roussel-Dupre, Robert] Los Alamos Natl Lab, Atmospher & Climate Sci Grp, Los Alamos, NM USA. [Lawrence, David] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Sauvaud, Jean-Andre] CNRS, Ctr Etud Spatiale Rayonnements, Toulouse, France. [de Feraudy, Herve] Univ Versailles, Ctr Etud Environm Terrestre & Planetaires, F-78140 Velizy Villacoublay, France. RP Lefeuvre, F (reprint author), Univ Orleans, CNRS, Lab Phys & Chim Environm, F-45071 Orleans 2, France. EM lefeuvre@cnrs-orleans.fr RI Blanc, Elisabeth/D-3890-2009 OI Blanc, Elisabeth/0000-0002-1599-4736 NR 59 TC 18 Z9 18 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2008 VL 137 IS 1-4 BP 301 EP 315 DI 10.1007/s11214-008-9414-4 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 338ZD UT WOS:000258547000020 ER PT J AU Chen, MJ Lu, ZM Zyvoloski, GA AF Chen, Mingjie Lu, Zhiming Zyvoloski, George A. TI Conditional simulations of water-oil flow in heterogeneous porous media SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT LA English DT Article DE Karhunen-Loeve decomposition; conditional simulation; water-oil flow; uncertainty; NAPL ID STEADY-STATE FLOW; LOCALIZED ANALYSES; EQUATION AB This study is an extension of the stochastic analysis of transient two-phase flow in randomly heterogeneous porous media (Chen et al. in Water Resour Res 42:W03425, 2006), by incorporating direct measurements of the random soil properties. The log-transformed intrinsic permeability, soil pore size distribution parameter, and van Genuchten fitting parameter are treated as stochastic variables that are normally distributed with a separable exponential covariance model. These three random variables conditioned on given measurements are decomposed via Karhunen-Loeve decomposition. Combined with the conditional eigenvalues and eigenfunctions of random variables, we conduct a series of numerical simulations using stochastic transient water-oil flow model (Chen et al. in Water Resour Res 42:W03425, 2006) based on the KLME approach to investigate how the number and location of measurement points, different random soil properties, as well as the correlation length of the random soil properties, affect the stochastic behavior of water and oil flow in heterogeneous porous media. C1 [Chen, Mingjie; Lu, Zhiming; Zyvoloski, George A.] Hydrol & Geochem Grp, Los Alamos Natl Lab, Los Alamos, NM USA. RP Chen, MJ (reprint author), Hydrol & Geochem Grp, Los Alamos Natl Lab, EES-6, Los Alamos, NM USA. EM mchen@lanl.gov OI Lu, Zhiming/0000-0001-5800-3368 NR 20 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1436-3240 J9 STOCH ENV RES RISK A JI Stoch. Environ. Res. Risk Assess. PD JUN PY 2008 VL 22 IS 4 BP 587 EP 596 DI 10.1007/s00477-007-0178-2 PG 10 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences; Statistics & Probability; Water Resources SC Engineering; Environmental Sciences & Ecology; Mathematics; Water Resources GA 290AP UT WOS:000255095300015 ER PT J AU Worden, K Farrar, CR Haywood, J Todd, M AF Worden, Keith Farrar, Charles R. Haywood, Jonathan Todd, Michael TI A review of nonlinear dynamics applications to structural health monitoring SO STRUCTURAL CONTROL & HEALTH MONITORING LA English DT Article DE nonlinear dynamics; structural health monitoring; nonlinearity detection; system identification; damage detection ID NON-LINEAR SYSTEMS; IDENTIFICATION; OSCILLATOR; VIBRATIONS; ELEMENTS; BEAM AB The process of implementing it damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). In many cases damage causes a structure that initially behaves in a predominantly linear manner to exhibit nonlinear response when subject to its operating environment. The formation of cracks that Subsequently open and close under operating loads is an example of such damage. The damage detection process can be significantly enhanced if one takes advantage of these nonlinear effects when extracting damage-sensitive features from measured data. This paper will provide a review of examples from nonlinear dynamical systems theory and from nonlinear system identification techniques that are used for the feature-extraction portion of the damage detection process. This paper is not intended as a comprehensive review of all damage detection methods rooted in nonlinear dynamics, but rather to provide it number of illustrations of complimentary approaches where damage-sensitive data features are based on nonlinear system response. These features, in turn, can either be used as a direct diagnosis of damage or as Input to statistical damage classifier. Copyright (C) 2007 John Wiley & Sons, Ltd. C1 [Worden, Keith; Haywood, Jonathan] Univ Sheffield, Dynam Res Grp, Dept Mech Engn, Sheffield S1 3JD, S Yorkshire, England. [Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. [Todd, Michael] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA. RP Worden, K (reprint author), Univ Sheffield, Dynam Res Grp, Dept Mech Engn, Sheffield S1 3JD, S Yorkshire, England. EM k.worden@sheffield.ac.uk RI Farrar, Charles/C-6954-2012; OI Farrar, Charles/0000-0001-6533-6996 NR 40 TC 55 Z9 57 U1 5 U2 34 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1545-2255 J9 STRUCT CONTROL HLTH JI Struct. Control. Health Monit. PD JUN PY 2008 VL 15 IS 4 BP 540 EP 567 DI 10.1002/stc.215 PG 28 WC Construction & Building Technology; Engineering, Civil; Instruments & Instrumentation SC Construction & Building Technology; Engineering; Instruments & Instrumentation GA 339IE UT WOS:000258570500004 ER PT J AU Kirikera, GR Shinde, V Schulz, MJ Sundaresan, MJ Hughes, S van Dam, J Nkrumah, F Grandhi, G Ghoshal, A AF Kirikera, Goutham R. Shinde, Vishal Schulz, Mark J. Sundaresan, Mannur J. Hughes, Scott van Dam, Jeroen Nkrumah, Francis Grandhi, Gangadhar Ghoshal, Anindya TI Monitoring multi-site damage growth during quasi-static testing of a wind turbine blade using a Structural Neural System SO STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL LA English DT Article DE structural neural system (SNS); continuous sensors; acoustic emission (AE); wind turbine blade; structural health monitoring (SHM); passive health monitoring ID COMPOSITE-MATERIALS AB Structural Health Monitoring (SHM) of a wind turbine blade using a Structural Neural System (SNS) is described in this paper. Wind turbine blades are composite structures with complex geometry and sections that are built of different materials. The 3D structure, large size, anisotropic material properties, and the potential for damage to occur anywhere on the blade makes damage detection a significant challenge. A SNS based on acoustic emission (AE) monitoring (passive listening) was developed for practical low cost SHM of large composite structures such as wind turbine blades. The SNS was tested to detect damage initiation and propagation on a 9m long wind turbine blade during a quasi-static proof test to failure at the National Renewable Energy Laboratory test facility in Golden, Colorado. Twelve piezoelectric sensors were bonded on the surface of the wind turbine blade and connected to form four continuous sensors which were used in the SNS to determine damage locations. Although 12 sensors monitored the wind turbine blade, the SNS produces only two analog output signals; one time signal to determine and locate damage, and a second time signal containing combined AE waveforms. Testing of the wind turbine blade produced some interesting results. After initial emissions due to settling of the blade diminished, damage initiated at one location on the blade. As the load was increased, damage occurred in a sequence at three other locations until there was a catastrophic buckling failure of the blade. The buckling occurred above the design load for the blade, and was due to the carbon spar cap disbonding from the fiberglass shear web under compressive bending stress. The SNS indicated the general area where the damage started and how the damage progressed, which is valuable information for verifying and improving the blade design and the manufacturing procedure. Strain gages on the blade did not provide a clear indication of damage until buckling occurred. A major outcome of this testing was to provide confidence that SHM of large composite structures that have complex geometry and multiple materials is practical using a simple, low cost SNS. C1 [Kirikera, Goutham R.] Ctr Qual Engn & Failure Prevent, Dept Mech Engn, Evanston, IL 60208 USA. [Shinde, Vishal] Phys Acoust Corp, Princeton Jn, NJ 08550 USA. [Schulz, Mark J.] Univ Cincinnati, Dept Mech Engn, SSBNL, Cincinnati, OH 45221 USA. [Sundaresan, Mannur J.; Nkrumah, Francis; Grandhi, Gangadhar] N Carolina Agr & Tech State Univ, Dept Mech Engn, Intelligent Struct & Mech Lab, Greensboro, NC 27411 USA. [van Dam, Jeroen] Natl Wind Technol Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ghoshal, Anindya] United Technol Res Ctr, E Hartford, CT 06108 USA. RP Kirikera, GR (reprint author), Ctr Qual Engn & Failure Prevent, Dept Mech Engn, CAT Bldg,RM 327,2137 N Sheridan Rd, Evanston, IL 60208 USA. EM Goutham.Kirikera@northwestern.edu NR 20 TC 7 Z9 8 U1 1 U2 15 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1475-9217 EI 1741-3168 J9 STRUCT HEALTH MONIT JI Struct. Health Monit. PD JUN PY 2008 VL 7 IS 2 BP 157 EP 173 DI 10.1177/1475921708089746 PG 17 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 314GS UT WOS:000256798500005 ER PT J AU Coureux, PD Fan, ZP Stojanoff, V Genick, UK AF Coureux, Pierre-Damien Fan, Zi Peng Stojanoff, Vivian Genick, Ulrich K. TI Picometer-scale conformational heterogeneity separates functional from nonfunctional states of a photoreceptor protein SO STRUCTURE LA English DT Article ID PHOTOACTIVE YELLOW PROTEIN; ECTOTHIORHODOSPIRA-HALOPHILA; PHOTOCYCLE INTERMEDIATE; PHOTOTROPHIC BACTERIUM; ANGSTROM RESOLUTION; STRUCTURAL DYNAMICS; ACTIVE-SITE; SPECTROSCOPY; TEMPERATURE; CHROMOPHORE AB Protein structural fluctuations occur over a wide spatial scale, ranging from minute, picometer-scale displacements, to large, interdomain motions and partial unfolding. While large-scale protein structural changes and their effects on protein function have been the focus of much recent attention, small-scale fluctuations have been less well studied, and are generally assumed to have proportionally smaller effects. Here we use the bacterial photoreceptor photoactive yellow protein (PYP) to test if subtle structural changes do, indeed, imply equally subtle functional effects. We flash froze crystals of PYP to trap the protein's conformational ensemble, and probed the molecules in this ensemble for their ability to facilitate PYP's biological function (i.e., light-driven isomerization of its chromophore). Our results indicate that the apparently homogeneous structural state observed in a 0.82 angstrom crystal structure in fact comprises an ensemble of conformational states, in which subpopulations with nearly identical structures display dramatically different functional properties. C1 [Coureux, Pierre-Damien; Fan, Zi Peng; Genick, Ulrich K.] Brandeis Univ, Dept Biochem, Waltham, MA 02453 USA. [Stojanoff, Vivian] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Genick, UK (reprint author), Nestle Res Ctr, CH-1000 Lausanne 26, Switzerland. EM ulrich.genick@rdls.nestle.com RI stojanoff, vivian /I-7290-2012; OI stojanoff, vivian /0000-0002-6650-512X; Genick, Ulrich/0000-0002-6526-3552 NR 43 TC 12 Z9 12 U1 0 U2 4 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD JUN PY 2008 VL 16 IS 6 BP 863 EP 872 DI 10.1016/j.str.2008.02.022 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 314NN UT WOS:000256816200007 PM 18547519 ER PT J AU Roy, SB Myneni, GR Sahni, VC AF Roy, S. B. Myneni, G. R. Sahni, V. C. TI On the reliable determination of the magnetic field for first flux-line penetration in technical niobium material SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID SUPERCONDUCTING CAVITIES; ACCELERATORS AB We present a way to reliably determine the field for first penetration H(P) in various kinds of bulk samples of niobium material used in technical applications like the fabrication of superconducting RF cavities. Special attention is given to the role of flux-line pinning in the determination of H(P). It is observed that the pinning properties and H(P) can be altered significantly with the chemical treatment of bulk niobium. A correlation is proposed between H(P) of the niobium materials and the anomalous high-field Q drop observed in the superconducting RF cavities fabricated using such niobium material. C1 [Roy, S. B.; Sahni, V. C.] Raja Raman Ctr Adv Technol, Magnet & Superconducting Mat Sect, Indore 452013, India. [Myneni, G. R.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Roy, SB (reprint author), Raja Raman Ctr Adv Technol, Magnet & Superconducting Mat Sect, Indore 452013, India. NR 22 TC 14 Z9 14 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUN PY 2008 VL 21 IS 6 AR 065002 DI 10.1088/0953-2048/21/6/065002 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 298CA UT WOS:000255662800003 ER PT J AU Beck, KM Joly, AG Diwald, O Stankic, S Trevisanutto, PE Sushko, PV Shluger, AL Hess, WP AF Beck, Kenneth M. Joly, Alan G. Diwald, Oliver Stankic, Slavica Trevisanutto, Paolo E. Sushko, Peter V. Shluger, Alexander L. Hess, Wayne P. TI Energy and site selectivity in O-atom photodesorption from nanostructured MgO SO SURFACE SCIENCE LA English DT Article DE density functional calculations; desorption induced by electronic transitions (DIET); photon stimulated desorption (PSD); atom emission; magnesium oxides; surface defects; excitons; laser control ID ELECTRON-STIMULATED DESORPTION; SELF-TRAPPED EXCITONS; ALKALI-HALIDES; LASER-DESORPTION; SURFACE EXCITATION; OPTICAL-PROPERTIES; MAGNESIUM-OXIDE; SINGLE-CRYSTALS; IONIC SURFACES; RADIATION AB We excite low-coordinated surface sites of nanostructured MgO samples using 4.7 eV UV laser pulses and observe dominant hyperthermal O-atom emission. Excitation of the same samples with 7.9 eV photons results in thermal O-atom desorption. These results are analyzed in the context of laser desorption models developed previously for alkali halide crystals and MgO. We detail two multi-step mechanisms for hyperthermal O-atom, desorption, under surface selective excitation, based on exciton and hole trapping at three-coordinated (corner) O-atom sites, and evaluate the validity of each based on available experimental data and calculated results. The proposed models are significantly different from and more complex than the surface exciton desorption model established for alkali halides. Nonetheless, the principles of site-specific photo-excitation and exciton and hole localization induced atomic desorption are clearly extendable to a prototypical metal oxide. (c) 2008 Elsevier B.V. All rights reserved. C1 [Diwald, Oliver] Vienna Univ Technol, Inst Mat Chem, A-1210 Vienna, Austria. [Trevisanutto, Paolo E.; Sushko, Peter V.; Shluger, Alexander L.] UCL, Dept Phys & Astron, London Ctr Nanotechnol, Mat Simulat Lab, London WC1E 6BT, England. [Beck, Kenneth M.; Joly, Alan G.; Hess, Wayne P.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Stankic, Slavica] CNRS, Inst Nanosci Paris, F-75015 Paris, France. [Trevisanutto, Paolo E.] CNRS, Inst Neel, Grenoble, France. [Sushko, Peter V.; Shluger, Alexander L.] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 980, Japan. RP Diwald, O (reprint author), Vienna Univ Technol, Inst Mat Chem, A-1210 Vienna, Austria. EM wayne.hess@pnl.gov RI Sushko, Peter/F-5171-2013; OI Sushko, Peter/0000-0001-7338-4146; Diwald, Oliver/0000-0002-2425-5281 NR 45 TC 18 Z9 18 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD JUN 1 PY 2008 VL 602 IS 11 BP 1968 EP 1973 DI 10.1016/j.susc.2008.03.046 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 316WK UT WOS:000256980200010 ER PT J AU Waluyo, I Nordlund, D Naslund, LA Ogasawara, H Pettersson, LGM Nilsson, A AF Waluyo, I. Nordlund, D. Naeslund, L. -A. Ogasawara, H. Pettersson, L. G. M. Nilsson, A. TI Spectroscopic evidence for the formation of 3-D crystallites during isothermal heating of amorphous ice on Pt(111) SO SURFACE SCIENCE LA English DT Article DE X-ray photoelectron spectroscopy; infrared absorption spectroscopy; water; crystallization; platinum; crystallites ID WATER AB The formation of crystalline ice through isothermal heating of 80 layers amorphous ice on Pt(1 11) at 150 K is studied using X-ray photoelectron spectroscopy and infrared reflection absorption spectroscopy. An early indicator for inhomogeneous crystallization is provided by the uncharacteristically high Pt 4f photoelectron peak for crystalline ice compared with the corresponding uniformly thick amorphous case. O 1s photoelectron spectra unambiguously show that the first monolayer is exposed after crystallization at multilayer total coverage. Using the relative intensities between the first monolayer and multilayer contributions to the O 1s photoelectron spectra, we estimated that similar to 46% and similar to 80% of the first monolayer is exposed to vacuum with an average crystallite height of similar to 41 and similar to 31 layers for an equivalent total coverage of similar to 23 and similar to 7 layers, respectively. (c) 2008 Elsevier B.V. All rights reserved. C1 [Waluyo, I.; Nordlund, D.; Naeslund, L. -A.; Ogasawara, H.; Nilsson, A.] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. [Pettersson, L. G. M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. RP Nilsson, A (reprint author), Stanford Synchrotron Radiat Lab, POB 20450, Stanford, CA 94309 USA. EM nilsson@slac.stanford.edu RI Nilsson, Anders/E-1943-2011; Pettersson, Lars/F-8428-2011; Nordlund, Dennis/A-8902-2008; Pettersson, Lars/J-4925-2013; Ogasawara, Hirohito/D-2105-2009 OI Nilsson, Anders/0000-0003-1968-8696; Nordlund, Dennis/0000-0001-9524-6908; Pettersson, Lars/0000-0003-1133-9934; Ogasawara, Hirohito/0000-0001-5338-1079 NR 32 TC 11 Z9 11 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUN 1 PY 2008 VL 602 IS 11 BP 2004 EP 2008 DI 10.1016/j.susc.2008.04.005 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 316WK UT WOS:000256980200016 ER PT J AU Tonn, BE AF Tonn, Bruce E. TI A methodology for organizing and quantifying the results of environmental scanning exercises SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE environmental scanning; quantitative assessment; imprecise probabilities; environmental protection ID DECISION-MAKING; FORESIGHT AB This paper presents a methodology for organizing and quantifying the results of environmental scanning exercises. The first step of the methodology is to develop a simple systems model whose components capture the essence of the problem context under study. Then, a scan identifies leads that affect one or more components. The impact a lead may have on a component is rated on a numerical scale for any number of time periods of interest. Lower and upper probabilities are estimated for each impact rating for each time period. Lower and upper expected impact scores are then calculated to provide a range of potential impacts over time. An exponential function is used to aggregate the lower and upper expected impact scores upon a component to produce lower and upper expected component changes. The methodology also allows changes in components to impact other components. The methodology was implemented to explore impacts of demographic and technological change upon the future of human and ecological health in the United States. (C) 2007 Elsevier Inc. All rights reserved. C1 [Tonn, Bruce E.] Univ Tennessee, Dept Polit Sci, Knoxville, TN 37996 USA. [Tonn, Bruce E.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Tonn, BE (reprint author), Univ Tennessee, Dept Polit Sci, McClung Tower,Room 1018, Knoxville, TN 37996 USA. EM btonn@utk.edu NR 22 TC 12 Z9 12 U1 1 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0040-1625 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD JUN PY 2008 VL 75 IS 5 BP 595 EP 609 DI 10.1016/j.techfore.2007.03.004 PG 15 WC Business; Planning & Development SC Business & Economics; Public Administration GA 322KG UT WOS:000257373200002 ER PT J AU Guan, SK Zhang, CX Wang, LG Wu, LH Chen, PL Tang, YL AF Guan Shao-kang Zhang Chun-xiang Wang Li-guo Wu Li-hong Chen Pei-lei Tang Ya-li TI Phase selection of ternary intermetallic compounds during solidification of high zinc magnesium alloy SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA LA English DT Article DE high-zinc magnesium alloy; Si; AlP; phase selection; kinetics ID MICROSTRUCTURE AB The phase selection of ternary intermetallic compound tau phase (Mg(32)(Al, Zn)49) and p phase (Al(2)Mg(5)Zn(2)) in high zinc magnesium alloys was studied by using scanning electron microscope, X-ray diffractometer and differential scanning calorimeter, etc. The results indicate that, when adding element Si in Mg-8Zn-4Al-0.3Mn (ZA84) alloy, phi phase is promoted, whereas tau phase is inhibited. The Chinese script-type Mg(2)Si and matrix microstructure are greatly refined, the formation of tau phase is facilitated and phi phase is restrained when modifier Al-AlP master alloy is added in ZA84 alloy containing Si. The kinetics study of phase selection indicates that there is a critical degree of undercooling of the melt. If the undercooling exceeds the critical value, tau phase preferentially forms while phi phase is restrained; otherwise, phi phase preferentially forms while tau phase is restrained. C1 [Guan Shao-kang; Zhang Chun-xiang; Wang Li-guo; Wu Li-hong; Chen Pei-lei] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450002, Peoples R China. [Tang Ya-li] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Guan, SK (reprint author), Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450002, Peoples R China. EM zhangcx@zzu.edu.cn NR 16 TC 2 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1003-6326 J9 T NONFERR METAL SOC JI Trans. Nonferrous Met. Soc. China PD JUN PY 2008 VL 18 IS 3 BP 593 EP 597 DI 10.1016/S1003-6326(08)60103-X PG 5 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 310DN UT WOS:000256509200017 ER PT J AU Goertz, MP Zhu, XY Houston, JE AF Goertz, M. P. Zhu, X. -Y. Houston, J. E. TI Friction, wear, and aging of an alkoxy-monolayer boundary lubricant on silicon SO TRIBOLOGY LETTERS LA English DT Article DE boundary lubrication friction; nanotribology; MEMS devices; silicon ID SELF-ASSEMBLED MONOLAYERS; ATOMIC-FORCE MICROSCOPY; LATERAL STIFFNESS; CHAIN-LENGTH; ADHESION; CONTACT; SURFACE; GOLD; ALKANETHIOLS; DEFORMATION AB We study the friction, wear, and aging of a model boundary lubricant, an alkoxy monolayer covalently bonded to a Si(111) surface, using an interfacial force microscope with a spherical diamond probe. The robust alkoxy bond creates a film that effectively lubricates and prevents wear of Si at stresses comparable to those found in microelectromechanical systems devices. Sliding on the monolayer over 50 nm produced friction approximately three times greater than that of sliding over molecular length scales (similar to 2 nm); this is attributed to deformation dynamics of the experiment. By repeated scanning over the same location, we observed wear on a level that reduces the friction by thinning and/or reordering the monolayer film. C1 [Goertz, M. P.; Zhu, X. -Y.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Houston, J. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zhu, XY (reprint author), Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. EM zhu@chem.umn.edu; jehoust@sandia.gov NR 42 TC 3 Z9 3 U1 2 U2 8 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1023-8883 J9 TRIBOL LETT JI Tribol. Lett. PD JUN PY 2008 VL 30 IS 3 BP 205 EP 213 DI 10.1007/s11249-008-9328-z PG 9 WC Engineering, Chemical; Engineering, Mechanical SC Engineering GA 304AY UT WOS:000256083600006 ER PT J AU Schofield, MA Beleggia, M Zhu, Y Pozzi, G AF Schofield, M. A. Beleggia, M. Zhu, Y. Pozzi, G. TI Characterization of JEOL 2100F Lorentz-TEM for low-magnification electron holography and magnetic imaging SO ULTRAMICROSCOPY LA English DT Article DE transmission electron microscopy; electron holography; magnetic imaging; Lorentz microscopy ID MICROSCOPY; BIPRISM; POTENTIALS; FRINGES AB We present results that characterize the performance and capabilities of the JEOL 2100F-LM electron microscope to carry out holography and quantitative magnetic imaging. We find the microscope is well-suited for studies of magnetic materials, or for semi-conductor dopant profiling, where a large hologram width (similar to 1 mu m) and fine fringe spacing (similar to 1.5 nm) are obtained with good contrast (similar to 20%). We present, as well, measurements of the spherical aberration coefficient C-s=(108.7 +/- 9.6)mm and minimum achievable focal step delta f=(87.6 +/- 1.4) nm for the specialty designed long-focal-length objective lens of this microscope. Further, we detail experiments to accurately measure the optical parameters of the imaging system typical of conventional holography setup in a transmission electron microscope. The role played by astigmatic illumination in the hologram formation is also assessed with a wave-optical model, which we present and discuss. The measurements obtained for our microscope are used to simulate realistic holograms, which we compare directly to experimental holograms finding good agreement. These results indicate the usefulness of measuring these optical parameters to guide the optimization of the experimental setup for a given microscope, and to provide an additional degree of practical experimental possibility. (C) 2007 Published by Elsevier B.V. C1 [Schofield, M. A.; Beleggia, M.; Zhu, Y.] Brookhaven Natl Lab, Phys & Mat Sci Dept, Upton, NY 11973 USA. [Pozzi, G.] Univ Bologna, Dipartmento Fis, I-40127 Bologna, Italy. RP Schofield, MA (reprint author), Brookhaven Natl Lab, Phys & Mat Sci Dept, Bldg 480, Upton, NY 11973 USA. EM schofield@bnl.gov OI Beleggia, Marco/0000-0002-2888-1888 NR 33 TC 15 Z9 15 U1 4 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUN PY 2008 VL 108 IS 7 BP 625 EP 634 DI 10.1016/j.ultramic.2007.10.015 PG 10 WC Microscopy SC Microscopy GA 319GI UT WOS:000257151700003 PM 18328628 ER PT J AU D'Alfonso, AJ Findlay, SD Oxley, MP Allen, LJ AF D'Alfonso, A. J. Findlay, S. D. Oxley, M. P. Allen, L. J. TI Volcano structure in atomic resolution core-loss images SO ULTRAMICROSCOPY LA English DT Article DE dipole approximation; nonlocality; STEM; electron energy loss spectroscopy; aberration correction ID ENERGY-LOSS SPECTROSCOPY; TRANSMISSION ELECTRON-MICROSCOPY; INNER-SHELL IONIZATION; INELASTIC-SCATTERING; SPATIAL-RESOLUTION; DELOCALIZATION; EXCITATIONS; CONTRAST AB A feature commonly present in simulations of atomic resolution electron energy loss spectroscopy images in the scanning transmission electron microscope is the volcano or donut structure. In the past this has been understood in terms of a geometrical perspective using a dipole approximation. It is shown that the dipole approximation for core-loss spectroscopy begins to break down as the probe forming aperture semi-angle increases, necessitating the inclusion of higher order terms for a quantitative understanding of volcano formation. Using such simulations we further investigate the mechanisms behind the formation of such structures in the single atom case and extend this to the case of crystals. The cubic SrTiO3 crystal is used as a test case to show the effects of nonlocality, probe channelling and absorption in producing the volcano structure in crystal images. (C) 2007 Elsevier B.V. All rights reserved. C1 [D'Alfonso, A. J.; Findlay, S. D.; Allen, L. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Oxley, M. P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Allen, LJ (reprint author), Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. EM lja@physics.unimelb.edu.au RI Findlay, Scott/C-9764-2013 OI Findlay, Scott/0000-0003-4862-4827 NR 27 TC 30 Z9 30 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUN PY 2008 VL 108 IS 7 BP 677 EP 687 DI 10.1016/j.ultramic.2007.10.011 PG 11 WC Microscopy SC Microscopy GA 319GI UT WOS:000257151700010 PM 18077094 ER PT J AU Sani, RK Peyton, BM Dohnalkova, A AF Sani, Rajesh K. Peyton, Brent M. Dohnalkova, Alice TI Comparison of uranium(VI) removal by Shewanella oneidensis MR-1 in flow and batch reactors SO WATER RESEARCH LA English DT Article DE hydrodynamics; biofilms; nutrient distribution; Shewanella oneidensis MR-1 ID CONTAMINATED SUBSURFACE SEDIMENTS; DESULFOVIBRIO-DESULFURICANS G20; SULFATE-REDUCING CONDITIONS; POROUS-MEDIA; DISSIMILATORY REDUCTION; MICROBIAL COMMUNITIES; CITROBACTER SP; GROUND-WATER; BIOFILMS; BACTERIA AB To better understand the interactions among metal contaminants, nutrients, and microorganisms in subsurface fracture-flow systems, biofilms of pure culture of Shewanella oneidensis MR-1 were grown in six fracture-flow reactors (FFRs) of different geometries. The spatial and temporal distribution of uranium and bacteria were examined using a tracer dye (brilliant blue FCF) and microscopy The results showed that plugging by bacterial cells was dependent on the geometry of the reactor and that biofilms grown in FFRs had a limited U(VI)-reduction capacity. To quantify the U(Vi)-reduction capacity of biofilms, batch experiments for U(VI) reduction were performed with repetitive U(VI) additions. U(VI)reduction rates of stationary phase cultures decreased after each U(VI) addition. After the fourth U(VI) addition, stationary phase cultures treated with U(VI) with and without spent medium yielded gray and black precipitates, respectively. These gray and black U precipitates were analyzed using high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Data for randomly selected areas of black precipitates showed that reduced U particles (3-6nm) were crystalline, whereas gray precipitates were a mixture of crystalline and amorphous solids. Results obtained in this study, including a dramatic limitation of S. oneidensis MR-1 and its biofilms to reduce U(VI) and plugging of FFRs, suggest that alternative organisms should be targeted for stimulation for metal immobilization in subsurface fracture-flow systems. Published by Elsevier Ltd. C1 [Sani, Rajesh K.] S Dakota Sch Mines & Technol, Dept Chem & Biol Engn, Rapid City, SD 57701 USA. [Peyton, Brent M.] Montana State Univ, Dept Chem & Biol Engn, Bozeman, MT 59717 USA. [Dohnalkova, Alice] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Sani, RK (reprint author), S Dakota Sch Mines & Technol, Dept Chem & Biol Engn, Rapid City, SD 57701 USA. EM Rajesh.Sani@sdsmt.edu RI Peyton, Brent/G-5247-2015 OI Peyton, Brent/0000-0003-0033-0651 NR 60 TC 14 Z9 16 U1 2 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0043-1354 J9 WATER RES JI Water Res. PD JUN PY 2008 VL 42 IS 12 BP 2993 EP 3002 DI 10.1016/j.watres.2008.04.003 PG 10 WC Engineering, Environmental; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA 326HL UT WOS:000257649100016 PM 18468655 ER PT J AU Elmer, JW AF Elmer, John W. TI A new path forward for understanding microstructural evolution during welding SO WELDING JOURNAL LA English DT Article DE HAZ formations; in-situ experiments; microstructure evolution; phase transformations; real time observations; synchrotron radiation; solidification mode; X-ray diffraction ID X-RAY-DIFFRACTION; IN-SITU OBSERVATIONS; HEAT-AFFECTED ZONE; STEEL ARC WELDS; TYPE-304 STAINLESS-STEEL; LOW-CARBON STEEL; PHASE-TRANSFORMATIONS; FLUID-FLOW; AUSTENITE TRANSFORMATION; SYNCHROTRON-RADIATION AB Over the past century, the principal method for estimating the sequence of microstructural events that produce the final weld microstructure has been postweld microstructure analysis, and it's the interpretation of these microstructures that sets welding metallurgy apart from other related endeavors. In conjunction with heat flow analysis and thermodynamic principles, the postweld microstructural interpretation of grain sizes and shapes, seeond-phase particles, interphase boundaries, and composition gradients provide the framework for interpreting the events that lead to the final microstructure. However, without direct and confirming evidence of the actual phases that exist during welding, multiple interpretations for microstructural evolution of welds often occur. For this reason, methods for the direct observation of the phases and phase transformations that occur during welding was developed. This paper summarizes the 2007 Adams Lecture titled "A New Path for Understanding Microstructural Evolution during Welding Using Synchrotron Radiation," where real-time X-ray diffraction methods were presented as a means for the direct observation of phase transformations during welding. C1 Lawrence Livermore Natl Lab, Mat Sci & Technol Div, Livermore, CA 94550 USA. RP Elmer, JW (reprint author), Lawrence Livermore Natl Lab, Mat Sci & Technol Div, Livermore, CA 94550 USA. NR 74 TC 2 Z9 2 U1 1 U2 6 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD JUN PY 2008 VL 87 IS 6 BP 149S EP 166S PG 18 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 309UN UT WOS:000256485800011 ER PT J AU Hustoft, J Catalli, K Shim, SH Kubo, A Prakapenka, VB Kunz, M AF Hustoft, Justin Catalli, Krystle Shim, Sang-Heon Kubo, Atsushi Prakapenka, Vitali B. Kunz, Martin TI Equation of state of NaMgF3 postperovskite: Implication for the seismic velocity changes in the D '' region SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID POST-PEROVSKITE PHASE; THERMOELASTIC PROPERTIES; MGSIO3 PEROVSKITE; MANTLE; TRANSITION; LAYER; GPA; NEIGHBORITE; REFINEMENT; ELASTICITY AB Recent first-principles calculations have proposed that bulk sound speed (V-Phi) decreases at the perovskite (Pv) -> postperovskite (PPv) transition. Yet some measurements suggest an increase in VF at the PPv transition in (Mg,Fe)SiO3 and NaMgF3. Our new measurements on NaMgF3 up to 50 GPa under quasi-hydrostatic stress conditions reveal that the VF of PPv remains lower than that of Pv near the PPv transition, consistent with a first-principles study on NaMgF3. Combined with similar observations in (Mg,Fe)SiO3, MgGeO3, and CaIrO3, our result on NaMgF3 suggests that the VF decrease is a robust trend in the PPv transition and is controlled more by crystal structure than by chemical composition. Our finding also strengthens the proposal that the elastic properties of PPv can explain the small P-wave increase across the D '' discontinuity and the anticorrelation between the VF and S-wave velocity anomalies in the D '' region. C1 [Kubo, Atsushi; Prakapenka, Vitali B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Kunz, Martin] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kubo, Atsushi; Prakapenka, Vitali B.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. [Catalli, Krystle; Shim, Sang-Heon] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Hustoft, J (reprint author), Yale Univ, Dept Geol & Geophys, POB 6666, New Haven, CT 06520 USA. EM sangshim@mit.edu RI Kunz, Martin/K-4491-2012; OI Kunz, Martin/0000-0001-9769-9900; Shim, Sang-Heon/0000-0001-5203-6038 NR 33 TC 16 Z9 16 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 31 PY 2008 VL 35 IS 10 AR L10309 DI 10.1029/2008GL034042 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 307ZK UT WOS:000256357900004 ER PT J AU Allen, TR Cole, JI Kenik, EA Was, GS AF Allen, T. R. Cole, J. I. Kenik, E. A. Was, G. S. TI Analyzing the effect of displacement rate on radiation-induced segregation in 304 and 316 stainless steels by examining irradiated EBR-II components and samples irradiated with protons SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ALLOYS; MICROSTRUCTURE; MICROCHEMISTRY AB Recent studies have indicated that, at temperatures relevant to fast reactors and light water reactors, void swelling in austenitic alloys progresses more rapidly when the radiation dose rate is lower. A similar dependency between radiation-induced segregation (RIS) and dose rate is theoretically predicted for pure materials and might also be true in complex engineering alloys. Radiation-induced segregation was measured on 304 and 316 stainless steel, irradiated in the EBR-II reactor at temperatures near 375 degrees C, to determine if the segregation is a strong function of damage rate. The data taken from samples irradiated in EBR-II is also compared to RIS data generated using proton radiation. Although the operational histories of the reactor irradiated samples are complex, making definitive conclusions difficult, the preponderance of the evidence indicates that radiation-induced segregation in 304 and 316 stainless steels is greater at lower displacement rate. (C) 2008 Elsevier B.V. All rights reserved. C1 [Allen, T. R.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Cole, J. I.] Idaho Natl Lab, Idaho Falls, ID USA. [Kenik, E. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Was, G. S.] Univ Michigan, Ann Arbor, MI 48109 USA. RP Allen, TR (reprint author), Univ Wisconsin, Dept Engn Phys, 1500 Engn Dr, Madison, WI 53706 USA. EM allen@engr.wisc.edu OI Allen, Todd/0000-0002-2372-7259; Cole, James/0000-0003-1178-5846 NR 14 TC 12 Z9 14 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 31 PY 2008 VL 376 IS 2 BP 169 EP 173 DI 10.1016/j.jnucmat.2008.01.025 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 314NR UT WOS:000256816600007 ER PT J AU Daw, JE Rempe, JL Knudson, DL Crepeau, JC AF Daw, J. E. Rempe, J. L. Knudson, D. L. Crepeau, J. C. TI Thermal expansion coefficient of steels used in LWR vessels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB Because of the impact that melt relocation and vessel failure have on subsequent progression and associated consequences of a light water reactor (LWR) accident, it is important to accurately predict the heat-up and relocation of materials within the reactor vessel and heat transfer to and from the reactor vessel. Accurate predictions of such heat transfer phenomena require high temperature thermal properties. However, a review of vessel and structural steel material properties in severe accident analysis codes reveals that the required high temperature material properties are extrapolated with little, if any, data above 700 degrees C. To reduce uncertainties in predictions relying upon this extrapolated high temperature data, new thermal expansion data were obtained using pushrod dilatometry techniques for two steels used in LWR vessels: SA 533 Grade B, Class 1 (SA533B1) low alloy steel, which is used to fabricate most US LWR reactor vessels; and Type 304 stainless steel (SS304), which is used in LWR vessel piping, penetration tubes, and internal structures. This paper summarizes the new data and compares it to existing, lower temperature data in the literature. (C) 2008 Elsevier B.V. All rights reserved. C1 [Rempe, J. L.; Knudson, D. L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Daw, J. E.; Crepeau, J. C.] Univ Idaho, Idaho Falls, ID 83402 USA. RP Rempe, JL (reprint author), Idaho Natl Lab, POB 1625,MS 3840, Idaho Falls, ID 83415 USA. EM Joy.Rempe@inl.gov OI Rempe, Joy/0000-0001-5527-3549 NR 7 TC 2 Z9 5 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 31 PY 2008 VL 376 IS 2 BP 211 EP 215 DI 10.1016/j.jnucmat.2008.02.088 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 314NR UT WOS:000256816600013 ER PT J AU Byun, TS Li, M Cockeram, BV Snead, LL AF Byun, T. S. Li, M. Cockeram, B. V. Snead, L. L. TI Deformation and fracture properties in neutron irradiated pure Mo and Mo alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID TENSILE PROPERTIES; MOLYBDENUM ALLOYS; ELECTRICAL-RESISTIVITY; TEMPERATURE-DEPENDENCE; PLASTIC INSTABILITY; DOSE DEPENDENCE; WROUGHT LCAC; RE ALLOYS; TZM ALLOY; METALS AB The effect of neutron irradiation on the mechanical properties of select molybdenum materials, unalloyed low carbon arc-cast (LCAC) Mo, Mo-0.5% Ti-0.1% Zr (TZM) alloy, and oxide dispersion-strengthened (ODS) Mo alloy, was characterized by analyzing the temperature dependence of mechanical properties. This study assembles the tensile test data obtained through multiple irradiation and post-irradiation experiments, in which tensile specimens were irradiated up to 13.1 dpa at 80-1000 degrees C and tested at -194 to 1000 degrees C. Irradiation at 80-609 degrees C increased yield stress significantly, up to 170%, while the increase of yield stress after irradiation at 784-936 degrees C was not significant. The plastic instability stress was strongly dependent on test temperature but was nearly independent of irradiation dose and temperature. The true fracture stress showed weak dependences on test temperature, irradiation dose and temperature when ductile failure occurred. Among the test materials the stress-relieved ODS material in the longitudinal direction (ODS-LSR) displayed the highest resistance to irradiation embrittlement due to its relatively high fracture stress. The critical temperature for shear failure (CTSF) was defined and evaluated for the test materials and the CTSF values were compared with the ductile-to-brittle transition temperatures (DBTr) based on ductility data. Published by Elsevier B.V. C1 [Byun, T. S.; Li, M.; Snead, L. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Cockeram, B. V.] Bechtel Bettis Inc, W Mifflin, PA 15122 USA. RP Byun, TS (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM byunts@ornl.gov NR 32 TC 19 Z9 19 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 31 PY 2008 VL 376 IS 2 BP 240 EP 246 DI 10.1016/j.jnucmat.2008.03.004 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 314NR UT WOS:000256816600017 ER PT J AU Tang, M Valdez, JA Sickafus, KE AF Tang, M. Valdez, J. A. Sickafus, K. E. TI Ion irradiation damage effects in delta-phase Y6W1O12 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RADIATION TOLERANCE; OXIDES AB Polycrystalline Y6W1O12 samples were irradiated with 280 keV Kr2+ ions to fluences up to 2 x 10(20) ions/m(2) at cryogenic temperature (100 K). [on irradiation damage effects in these samples were examined using grazing incidence X-ray diffraction (GIXRD) and cross-sectional transmission electron microscopy (TEM). The pristine Y6W1O12 possesses rhombohedral symmetry (structure known as the delta-phase), which is closely related to cubic fluorite structure. GIXRD and TEM observations revealed that the irradiated Y6W1O12 experiences an ordered rhombohedral to disordered cubic fluorite transformation by a displacement damage dose of similar to 12 displacements per atom (dpa). At the highest experimental dose of similar to 50 dpa, the uppermost irradiated region was found to be partially amorphous while the buried damage region was found to contain the same fluorite structure as observed at lower dose. (C) 2008 Elsevier B.V. All rights reserved. C1 [Tang, M.; Valdez, J. A.; Sickafus, K. E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Tang, M (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Mail Stop G755, Los Alamos, NM 87545 USA. EM mtang@lanl.gov NR 11 TC 6 Z9 6 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 31 PY 2008 VL 376 IS 2 BP 247 EP 250 DI 10.1016/j.jnucmat.2008.03.008 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 314NR UT WOS:000256816600018 ER PT J AU Sabau, AS Ohriner, EK AF Sabau, Adrian S. Ohriner, Evan K. TI Comments on americium volatilization during fuel fabrication for fast reactors SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID TARGETS AB The physical processes relevant to the fabrication of metallic nuclear fuels are analyzed, with attention to recycling of fuels containing U, Pu, and minor volatile actinides for use in fast reactors. This analysis is relevant to the development of a process model that can be used for the numerical simulation and prediction of the spatial distribution of composition in the fuel, an important factor in fuel performance. (C) 2008 Published by Elsevier B.V. C1 [Sabau, Adrian S.; Ohriner, Evan K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Sabau, AS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM sabaua@ornl.gov RI Sabau, Adrian/B-9571-2008 OI Sabau, Adrian/0000-0003-3088-6474 NR 18 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 31 PY 2008 VL 376 IS 2 BP 251 EP 253 DI 10.1016/j.jnucmat.2008.03.010 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 314NR UT WOS:000256816600019 ER PT J AU Fouquet-Parry, V Paumier, F Guittet, MJ Gautier-Soyer, M Satet, R Hoffmann, MJ Becher, PF Painter, GS AF Fouquet-Parry, V. Paumier, F. Guittet, M. J. Gautier-Soyer, M. Satet, R. Hoffmann, M. J. Becher, P. F. Painter, G. S. TI Composition and local bonding in RE-Si-M-O-N (M = Mg, Al; RE = La, Lu) glasses SO APPLIED SURFACE SCIENCE LA English DT Article DE XPS; binding energy; oxynitride glass; rare earths ID OXYNITRIDE GLASSES; SPECTROSCOPY; OXIDES; GD AB Two series of oxynitride glasses, RE-Si-Mg-O-N (M = Mg, Al; RE = La, Lu), have been studied by X-Ray photoelectron spectroscopy (XPS). The oxygen 1s photoelectron lineshape reveals a striking difference depending on the rare earth, both in the Mg series and in the Al series. Specifically, the oxygen 1s photoelectron lines of the La doped glasses are broader than the ones of the Lu doped glasses. This result is an experimental evidence that Lu has a larger affinity for oxygen versus nitrogen than La, as theoretically predicted by the first-principles calculations by Painter et al. (C) 2008 Elsevier B.V. All rights reserved. C1 [Fouquet-Parry, V.; Guittet, M. J.; Gautier-Soyer, M.] CEA Saclay, Serv Phys & Chim Surfaces & Interfaces, DSM DRECAM SPCSI, F-91191 Gif Sur Yvette, France. [Paumier, F.] Univ Poitiers, CNRS, Met Phys Lab, Dept Mat Sci,UMR 6630, Poitiers, France. [Satet, R.; Hoffmann, M. J.] Univ Karlsruhe TH, Inst Keram Maschinenbau, D-76131 Karlsruhe, Germany. [Becher, P. F.; Painter, G. S.] Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN USA. RP Gautier-Soyer, M (reprint author), CEA Saclay, Serv Phys & Chim Surfaces & Interfaces, DSM DRECAM SPCSI, F-91191 Gif Sur Yvette, France. EM mgautiersoyer@cea.fr NR 15 TC 3 Z9 3 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD MAY 30 PY 2008 VL 254 IS 15 BP 4665 EP 4670 DI 10.1016/j.apsusc.2008.01.071 PG 6 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 295YW UT WOS:000255511700039 ER PT J AU Fan, L Fuss, JO Cheng, QJ Arvai, AS Hammel, M Roberts, VA Cooper, PK Tainer, JA AF Fan, Li Fuss, Jill O. Cheng, Quen J. Arvai, Andrew S. Hammel, Michal Roberts, Victoria A. Cooper, Priscilla K. Tainer, John A. TI XPD helicase structures and activities: Insights into the cancer and aging phenotypes from XPD mutations SO CELL LA English DT Article ID NUCLEOTIDE EXCISION-REPAIR; DNA-REPAIR; XERODERMA-PIGMENTOSUM; COCKAYNE-SYNDROME; TRANSCRIPTION FACTOR; BASAL TRANSCRIPTION; FACTOR TFIIH; GENE; TRICHOTHIODYSTROPHY; PROTEIN AB Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ. C1 [Fan, Li; Arvai, Andrew S.; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Fuss, Jill O.; Cheng, Quen J.; Cooper, Priscilla K.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genom Stabil, Div Life Sci, Berkeley, CA 94720 USA. [Hammel, Michal] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biophys Div, Berkeley, CA 94720 USA. [Roberts, Victoria A.] Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92037 USA. RP Tainer, JA (reprint author), Scripps Res Inst, Dept Mol Biol, Skaggs Inst Chem Biol, 10666 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM jat@scripps.edu FU NCI NIH HHS [P01 CA092584-07, 1F32CA108393, F32 CA108393, F32 CA108393-03, P01 CA092584, P01 CA92584, R01 CA112093, R01 CA112093-02]; NIGMS NIH HHS [GM070996, R01 GM070996, R01 GM070996-01] NR 38 TC 198 Z9 206 U1 2 U2 13 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD MAY 30 PY 2008 VL 133 IS 5 BP 789 EP 800 DI 10.1016/j.cell.2008.04.030 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 306UY UT WOS:000256274500012 PM 18510924 ER PT J AU Ferrell, JR Kuo, MC Turner, JA Herring, AM AF Ferrell, Jack R., III Kuo, Mei-Chen Turner, John A. Herring, Andrew M. TI The use of the heteropoly acids, H3PMo12O40 and H3PW12O40, for the enhanced electrochemical oxidation of methanol for direct methanol fuel cells SO ELECTROCHIMICA ACTA LA English DT Article DE PEM fuel cell; heteropoly acid; direct methanol fuel cell; electrocatalysis ID ELECTROCATALYST MATERIALS; IMPEDANCE; ANODE; CO; POLYOXOMETALATE; ELECTRODE AB Polarization and electrochemical impedance spectroscopy experiments were performed oil a direct methanol fuel cell (DMFC) incorporating the heteropoly acids (HPAs) phosphomolybdic acid, H3PMo12O40, (HPMo) or phosphotungstic acid, H3PW12O40, (HPW) in the anode Pt/C catalyst layer. Both HPW-Pt and HPMo-Pt showed higher performance than the Pt control at 30 psig of backpressure and at ambient pressure. Anodic polarizations were also performed,and Tafel slopes were extracted from the data between 0.25 V and 0.5 V. At 30 psig, Tafel slopes of 133 mV/dec, 146 mV/dec, and 161 mV/dec were found for HPW-Pt, HPMo-Pt and the Pt control, respectively. At 0 psig, the Tafel slopes were 172 mV/dec, 178 mV/dec, and 188 mV/dec for HPW-Pt, HPMo-Pt and the Pt control. An equivalent circuit model, which incorporated constant phase elements (CPEs), was Used to model the impedance data. From the impedance model it was found that the incorporation of HPAs into the catalyst layer resulted in a reduction in the resistances to charge transfer. This shows that these two heteropoly acids do act as co-catalysts with platinum for methanol electrooxidation. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Ferrell, Jack R., III; Kuo, Mei-Chen; Herring, Andrew M.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Ferrell, Jack R., III; Turner, John A.] Natl Renewable Energy Lab, Hydrogen & Elect Syst & Infrastruct Grp, Golden, CO 80401 USA. RP Herring, AM (reprint author), Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. EM aherring@mines.edu RI Herring, Andy/E-7088-2010; OI Herring, Andrew/0000-0001-7318-5999 NR 30 TC 34 Z9 36 U1 7 U2 48 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD MAY 30 PY 2008 VL 53 IS 14 BP 4927 EP 4933 DI 10.1016/j.electacta.2008.01.102 PG 7 WC Electrochemistry SC Electrochemistry GA 297GK UT WOS:000255604900042 ER PT J AU Dupont, JC Haeffelin, M Long, CN AF Dupont, Jean-Charles Haeffelin, Martial Long, Charles N. TI Evaluation of cloudless-sky periods detected by shortwave and longwave algorithms using lidar measurements SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SURFACE AB Identifying cloud-free periods is important as they are used as common references in cloud and aerosol radiative forcing studies. Their identification requires precise methods to distinguish condensed water from other aerosols (e.g. mineral or moist hydrophilic aerosols). In this study we combine analyses of wide field of view shortwave (SW) and longwave (LW) irradiances and Lidar backscatter measurements to explore situations that are considered neither completely clear nor cloudy. We find that situations classified as cloud-free by analysis of SW (LW) measurements are also classified as cloud free by the Lidar in more than 60% (50%) of situations. The remaining 40% (50%) situations are classified as cloudy by the Lidar, and are hence considered as hazy. These hazy situations are predominantly composed of high-altitude cirrus clouds, partitioned equally between subvisible and semi-transparent optical thickness classes. We find that, in hazy situations, the average cloud radiative forcing on surface SW irradiances ranges between -5 and -15 Wm(-2). C1 [Dupont, Jean-Charles] Ecole Polytech, Inst Pierre Simon Laplace, Meteorol Dynam Lab, F-91128 Palaiseau, France. [Long, Charles N.] Pacific NW Natl Lab, Atmospher Radiat Measurement Program, Richland, WA 99352 USA. RP Dupont, JC (reprint author), Ecole Polytech, Inst Pierre Simon Laplace, Meteorol Dynam Lab, F-91128 Palaiseau, France. EM jean-charles.dupont@lmd.polytechnique.fr NR 18 TC 17 Z9 17 U1 2 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 30 PY 2008 VL 35 IS 10 AR L10815 DI 10.1029/2008GL033658 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 307ZJ UT WOS:000256357800002 ER PT J AU Harvey, SD Wenzel, TJ AF Harvey, Scott D. Wenzel, Thomas J. TI Selective gas-phase capture of explosives on metal beta-diketonate polymers SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE selective sorbent; explosives analysis; metal beta-diketonate polymer; TNT; TATP; nitrate ester; DMDNB taggant ID STATIONARY-PHASE; COMPLEXATION GAS; CHROMATOGRAPHY; SORBENTS; SPECTROMETRY; SEPARATION AB A variety of metal beta-diketonate polymers were assessed for gas-phase selective retention of nitro aromatic, nitrate ester, and peroxide explosives. The La(Ill) complex of p-di(4,4,5,5,6,6,6-heptafluoro-1,3-hexanedionyl)benzene [La(dihed)] showed 13-42 times the retention for the nitro aromatic compounds compared to a control column (identical column but lacking the 5% loading of the metal beta-diketonate polymer). Nitrate esters, the peroxide explosive triacetone triperoxide, and the taggant 1,4-dimethyl-1,4-dinitrobutane were too strongly retained to elute from the La(dihed) column; however, these compounds could be eluted from the less retentive Cu(dihed) or Zn(dihed) columns. A Kovats index of 2124 for 2,4,6-trinitrotoluene (TNT) on the La(dihed) column compared to 1662 on the control illustrates the excellent discrimination against nonpolar hydrocarbons, the principal matrix interference expected in air samples. A proof-of-principle experiment demonstrated analysis of an extrapolated 47 part-per-trillion (ppt) (v/v) of TNT in an air extract concentrate. (c) 2008 Elsevier B.V. All rights reserved. C1 [Harvey, Scott D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wenzel, Thomas J.] Bates Coll, Lewiston, ME 04240 USA. RP Harvey, SD (reprint author), Pacific NW Natl Lab, POB 999 MSIN P8-50, Richland, WA 99352 USA. EM scott.harvey@pnl.gov NR 17 TC 6 Z9 7 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD MAY 30 PY 2008 VL 1192 IS 2 BP 212 EP 217 DI 10.1016/j.chroma.2008.03.078 PG 6 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 310EK UT WOS:000256511500003 PM 18423655 ER PT J AU van Milligen, BP Calvo, I Sanchez, R AF van Milligen, B. Ph Calvo, I. Sanchez, R. TI Continuous time random walks in finite domains and general boundary conditions: some formal considerations SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID ANOMALOUS TRANSPORT; FRACTIONAL DYNAMICS; DIFFUSION; LATTICES; MODELS AB The present work studies continuous time random walks ( CTRWs) in a finite domain. A broad class of boundary conditions, of which absorbing and reflecting boundaries are particular cases, is considered. It is shown how any CTRW in this class can be mapped to a CTRW in an infinite domain. This may allow applying well-known techniques for infinite CTRWs to the problem of obtaining the fluid limit for finite domain CTRWs, where the fluid limit ( or hydrodynamic limit) refers to the partial differential equation describing the long time and large distance behaviour of the system. As an illustration, the fluid limit equation and its propagator are obtained explicitly in the case of purely reflecting boundaries. We also derive the modification of the Riemann-Liouville fractional differential operators implementing the reflecting boundary conditions. C1 [van Milligen, B. Ph; Calvo, I.] CIEMAT Fus, EURATOM Assoc, Madrid 28040, Spain. [Sanchez, R.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. RP van Milligen, BP (reprint author), CIEMAT Fus, EURATOM Assoc, Avda Complutense 22, Madrid 28040, Spain. EM boudewijn.vanmilligen@ciemat.es RI Sanchez, Raul/C-2328-2008; Calvo, Ivan/B-3444-2009; van Milligen, Boudewijn/H-5121-2015 OI Calvo, Ivan/0000-0003-3118-3463; van Milligen, Boudewijn/0000-0001-5344-6274 NR 22 TC 7 Z9 7 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 EI 1751-8121 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD MAY 30 PY 2008 VL 41 IS 21 AR 215004 DI 10.1088/1751-8113/41/21/215004 PG 11 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 308KF UT WOS:000256387800008 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Rott, C Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wuerthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Rott, C. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for the Higgs boson in events with missing transverse energy and b quark jets produced in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID STANDARD MODEL; DETECTOR AB We search for the standard model Higgs boson produced in association with an electroweak vector boson in events with no identified charged leptons, large imbalance in transverse momentum, and two jets where at least one contains a secondary vertex consistent with the decay of b hadrons. We use similar to 1 fb(-1) integrated luminosity of p (p) over bar collisions at root s = 1: 96 TeV recorded by the Collider Detector at Fermilab II experiment at the Tevatron. We find 268 (16) single (double) b-tagged candidate events, where 248 +/- 43 (14: 4 +/- 2: 7) are expected from standard model background processes. We observe no significant excess over the expected background and thus set 95% confidence level upper limits on the Higgs boson production cross section for several Higgs boson masses ranging from 110 to 140 GeV/c(2). For a mass of 115 GeV/c(2), the observed (expected) limit is 20.4 (14.2) times the standard model prediction. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Carrillo, S.; Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Vazquez, F.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Vet Med, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Konigsberg, J.; Korytov, A.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Lungu, G.; Madrak, R.; Maeshima, K.; Miao, T.; Mitselmakher, G.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Oksuzian, I.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pinera, L.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Sukhanov, A.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Vazquez, F.; Velev, G.; Vidal, R.; Wagner, R. L.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giordani, M.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyrla, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Aoki, M.; Bridgeman, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, S. B.; Kim, S. H.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmenstaedt, J.; Nielsen, J.; Shapiro, M. D.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cerrito, L.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, UMR7585,LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl, Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Rott, C.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, S.; Chung, Y. S.; de Barbaro, P.; De Lentdecker, G.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Weinberger, M.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Henderson, C.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013 OI Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Ruiz, Alberto/0000-0002-3639-0368; Warburton, Andreas/0000-0002-2298-7315; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643 NR 22 TC 12 Z9 12 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 30 PY 2008 VL 100 IS 21 AR 211801 DI 10.1103/PhysRevLett.100.211801 PG 8 WC Physics, Multidisciplinary SC Physics GA 311FG UT WOS:000256585500013 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalinin, AM Kalk, JM Kappler, S Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Korablev, VM Kozelov, AV Kraus, J Krop, D Kuhl, T Kumar, A Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Leveque, J Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Korablev, V. M. Kozelov, A. V. Kraus, J. Krop, D. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Leveque, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for W ' boson resonances decaying to a top quark and a bottom quark SO PHYSICAL REVIEW LETTERS LA English DT Article ID EVENTS AB We search for the production of a heavy W ' gauge boson that decays to third generation quarks in 0: 9 fb(-1) of p (p) over bar collisions at root s = 1: 96 TeV, collected with the D0 detector at the Fermilab Tevatron collider. We find no significant excess in the final-state invariant mass distribution and set upper limits on the production cross section times branching fraction. For a left-handed W ' boson with SM couplings, we set a lower mass limit of 731 GeV. For right-handed W ' bosons, we set lower mass limits of 739 GeV if the W ' boson decays to both leptons and quarks and 768 GeV if the W ' boson decays only to quarks. We also set limits on the coupling of the W ' boson to fermions as a function of its mass. C1 [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Luna, R.; Malbouisson, H. B.; Martin, B.; Molina, J.; Mundim, L.; Negret, J. P.; da Silva, W. L. Prado; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Grohsjean, A.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ct Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, LPSC, F-38041 Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Univ Mediterrane, CNRS, CPPM, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, IN2P3, CNRS, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, Serv Phys Particules, DAPNIA, Saclay, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, IPHC, Strasbourg, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kappler, S.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Ay, C.; Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Duggan, D.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Park, S. -J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHE, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, D.; Evdokimov, A.; Korablev, V. M.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Asman, B.; Belanger-Champagne, C.; Gollub, N.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Strandberg, S.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, J.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Madaras, R. J.; Tamburello, P.; Temple, J.; Varelas, N.] Univ Arizona, Tucson, AZ 85721 USA. [Hall, R. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Adams, M.; Anastasoaie, M.; Askew, A.; Blessing, S.; Buchholz, D.; Duggan, D.; Gershtein, Y.; Hagopian, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Aoki, M.; Bagby, L.; Baldin, B.] Florida State Univ, Tallahassee, FL 32306 USA. [Adams, M.; Aoki, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gregores, E. M.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K.; Hildreth, M. D.; Obrant, G.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Alton, A.; Bean, A.; Chandra, A.; Das, A.; Rakitine, A.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Bross, A.; Dyshkant, A.; Juste, A.; Khanov, A.; Leflat, A.] Iowa State Univ, Ames, IA 50011 USA. [Duperrin, A.; Dyshkant, A.] Univ Kansas, Lawrence, KS 66045 USA. [Goussiou, A.; Harel, A.; Jakobs, K.; Jonckheere, A.; Juste, A.; Khanov, A.; Kumar, A.] Kansas State Univ, Manhattan, KS 66506 USA. [Bellavance, A.; Dominguez, A.; Ferbel, T.; Khanov, A.; Khatidze, D.; Sznajder, A.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Bose, T.; Goussiou, A.; Jaffre, M.; Lacroix, F.; Magerkurth, A.; Santoro, A.; Torchiani, I.; Wenger, A.; White, A.] Univ Maryland, College Pk, MD 20742 USA. [Alkhazov, G.; Brooijmans, G.; Brown, D.; Harel, A.; Kharchilava, A.] Boston Univ, Boston, MA 02215 USA. [Baden, A.; Biscarat, C.; Evdokimov, A.; Heinson, A. P.; Heintz, U.; O'Neil, D. C.; Schwanenberger, C.; Sonnenschein, L.; Tanasijczuk, A.] Northeastern Univ, Boston, MA 02115 USA. [Duperrin, A.; Kirby, M. H.; Kirsch, M.; Schwanenberger, C.; Spurlock, B.; Tsybychev, D.] Univ Michigan, Ann Arbor, MI 48109 USA. [Chandra, A.; Kozelov, A. V.; Ochando, C.; Schaile, D.] Michigan State Univ, E Lansing, MI 48824 USA. [Alkhazov, G.; Asman, B.; Bellavance, A.; Casey, B. C. K.; Dominguez, A.; Gollub, N.; Kozelov, A. V.; Lobodenko, A.; Svoisky, P.; Varnes, E. W.; Vertogradov, L. S.] Univ Mississippi, University, MS 38677 USA. [Anastasoaie, M.; Avila, C.; Casey, B. C. K.; Choi, S.; Evans, H.; Grohsjean, A.; van den Berg, P. J.] Univ Nebraska, Lincoln, NE 68588 USA. [Bertram, I.; Christofek, L.; Fox, H.; Melnitchouk, A.; Stoyanova, D. A.] Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. [Ahn, S. H.; Bagby, L.; Dudko, L. V.; Gruenewald, M. W.; Khalatyan, N.; Mendoza, L.; Park, S. K.; Vachon, B.] Columbia Univ, New York, NY 10027 USA. [Xie, Y.; Yamada, R.; Zieminska, D.; Zieminski, A.; Zutshi, V.] Univ Rochester, Rochester, NY 14627 USA. [Alverson, G.; Avila, C.; Luna, R.; Vaupel, M.; Wahl, H. D.; Zverev, E. G.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Guo, F.; Yacoob, S.; Yip, K.; Yoo, H. D.; Zatserklyaniy, A.; Zhu, J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Vasilyev, I. A.; Vaupel, M.; Vokac, P.; Voutilainen, M.; Wagner, R.; Wyatt, T. R.; Yip, K.; Yoo, H. D.; Youn, S. W.; Zverev, E. G.] Langston Univ, Oklahoma City, OK 73050 USA. [Belanger-Champagne, C.; Dominguez, A.; Evdokimov, A.; Ferapontov, A. V.; Gerber, C. E.; Gillberg, D.; Gollub, N.; Magerkurth, A.] Univ Oklahoma, Norman, OK 73019 USA. [Baden, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dyshkant, A.; Jonckheere, A.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Alkhazov, G.; Mendoza, L.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Enari, Y.; Eno, S.; Evans, H.; Wermes, N.; Yoo, H. D.] Univ Texas Arlington, Arlington, TX 76019 USA. [Barfuss, A. -F.; Deliot, F.; Elvira, V. D.; Fox, H.; Fuess, S.] So Methodist Univ, Dallas, TX 75275 USA. [Barfuss, A. -F.; Gay, P.; Geist, W.; Gele, D.; Gerber, C. E.; Gillberg, D.; Ginther, G.; Magerkurth, A.] Rice Univ, Houston, TX 77005 USA. [Garcia-Bellido, A.] Univ Virginia, Charlottesville, VA 22901 USA. [Mackin, D.; Pawloski, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012 OI Belanger-Champagne, Camille/0000-0003-2368-2617; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; NR 23 TC 45 Z9 45 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 30 PY 2008 VL 100 IS 21 AR 211803 DI 10.1103/PhysRevLett.100.211803 PG 7 WC Physics, Multidisciplinary SC Physics GA 311FG UT WOS:000256585500015 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Holubyev, K Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalinin, AM Kalk, JM Kappler, S Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Korablev, VM Kozelov, AV Kraus, J Krop, D Kuhl, T Kumar, A Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Leveque, J Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, M Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Holubyev, K. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Korablev, V. M. Kozelov, A. V. Kraus, J. Krop, D. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Leveque, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Study of direct CP violation in B-+/--> J/psi K-+/-(pi(+/-)) decays SO PHYSICAL REVIEW LETTERS LA English DT Article ID DETECTOR AB We present a search for direct CP violation in B-+/- -> J/psi K-+/- (pi(+/-)) decays. The event sample is selected from 2: 8 fb(-1) of p (p) over bar collisions recorded by D0 experiment in run II of the Fermilab Tevatron Collider. The charge asymmetry A(CP)(B+ -> J/psi K+) = +0: 0075 +/- 0: 0061(stat) +/- 0: 0030 (syst) is obtained using a sample of approximately 40 000 B-+/- -> J/psi K-+/- decays. The achieved precision is of the same level as the expected deviation predicted by some extensions of the standard model. We also measured the charge asymmetry A(CP) (B+ -> J/psi pi(+)) = - 0: 09 +/- 0: 08(stat) +/- 0: 03(syst). C1 [Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Molina, J.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, LPC, IN2P3, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, IN2P3,LPSC, F-38041 Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Univ Med, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LAL, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LAL, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, Serv Phys Particules, DAPNIA, Saclay, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, IPHC, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, CNRS, IN2P3, IPNL, Lyon, France. [Hebbeker, T.; Kappler, S.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Ay, C.; Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, Freiburg, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, K.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Inst NIKHEF, FOM, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Korablev, V. M.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Fox, H.; Holubyev, K.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Mulders, M.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Heinmiller, J. M.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zatserklyaniy, A.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Hensel, C.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Harrington, R.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Park, S. -J.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013 OI Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; NR 20 TC 17 Z9 17 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 30 PY 2008 VL 100 IS 21 AR 211802 DI 10.1103/PhysRevLett.100.211802 PG 7 WC Physics, Multidisciplinary SC Physics GA 311FG UT WOS:000256585500014 ER PT J AU Abraham, J Abreu, P Aglietta, M Aguirre, C Allard, D Allekotte, I Allen, J Allison, P Alvarez-Muniz, J Ambrosio, M Anchordoqui, L Andringa, S Anzalone, A Aramo, C Argiro, S Arisaka, K Armengaud, E Arneodo, F Arqueros, F Asch, T Asorey, H Assis, P Atulugama, BS Aublin, J Ave, M Avila, G Backer, T Badagnani, D Barbosa, AF Barnhill, D Barroso, SLC Bauleo, P Beatty, JJ Beau, T Becker, BR Becker, KH Bellido, JA BenZvi, S Berat, C Bergmann, T Bernardini, P Bertou, X Biermann, PL Billoir, P Blanch-Bigas, O Blanco, F Blasi, P Bleve, C Bluemer, H Bohacova, M Bonifazi, C Bonino, R Boratav, M Brack, J Brogueira, P Brown, WC Buchholz, P Bueno, A Burton, RE Busca, NG Caballero-Mora, KS Cai, B Camin, DV Caramete, L Caruso, R Carvalho, W Castellina, A Catalano, O Cataldi, G Cazon, L Cester, R Chauvin, J Chiavassa, A Chinellato, JA Chou, A Chye, J Clark, PDJ Clay, RW Colombo, E Conceicao, R Connolly, B Contreras, F Coppens, J Cordier, A Cotti, U Coutu, S Covault, CE Creusot, A Criss, A Cronin, J Curutiu, A Dagoret-Campagne, S Daumiller, K Dawson, BR de Almeida, RM De Donato, C de Jong, SJ De La Vega, G de Mello, WJM de Mello, JRT DeMitri, I de Souza, V del Peral, L Deligny, O Della Selva, A Delle Fratte, C Dembinski, H Di Giulio, C Diaz, JC Dobrigkeit, C D'Olivo, JC Dornic, D Dorofeev, A dos Anjos, JC Dova, MT D'Urso, D Dutan, I DuVernois, MA Engel, R Epele, L Erdmann, M Escobar, CO Etchegoyen, A San Luis, PF Falcke, H Farrar, G Fauth, AC Fazzini, N Ferrer, F Ferry, S Fick, B Filevich, A Filipcic, A Fleck, I Fonte, R Fracchiolla, CE Fulgione, W Garcia, B Gamez, DG Garcia-Pinto, D Garrido, X Geenen, H Gelmini, G Gemmeke, H Ghia, PL Giller, M Glass, H Gold, MS Golup, G Albarracin, FG Berisso, MG Herrero, RG Goncalves, P do Amaral, MG Gonzalez, D Gonzalez, JG Gonzalez, M Gora, D Gorgi, A Gouffon, P Grassi, V Grillo, AF Grunfeld, C Guardincerri, Y Guarino, F Guedes, GP Gutierrez, J Hague, JD Hamilton, JC Hansen, P Harari, D Harmsma, S Harton, JL Haungs, A Hauschildt, T Healy, MD Hebbeker, T Hebrero, G Heck, D Hojvat, C Holmes, VC Homola, P Horandel, J Horneffer, A Horvat, M Hrabovsky, M Huege, T Hussain, M Iarlori, M Insolia, A Ionita, F Italiano, A Kaducak, M Kampert, KH Karova, T Kegl, B Keilhauer, B Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Knapik, R Knapp, J Koang, DH Krieger, A Kromer, O Kuempel, D Kunka, N Kusenko, A La Rosa, G Lachaud, C Lago, BL Lebrun, D LeBrun, P Lee, J de Oliveira, MAL Letessier-Selvon, A Leuthold, M Lhenry-Yvon, I Lopez, R Aguera, AL Bahilo, JL Garcia, RL Maccarone, MC Macolino, C Maldera, S Mancarella, G Mancenido, ME Mandat, D Mantsch, P Mariazzi, AG Maris, IC Falcon, HRM Martello, D Martinez, J Bravo, OM Mathes, HJ Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mazur, PO McCauley, T McEwen, M McNeil, RR Medina, MC Medina-Tanco, G Meli, A Melo, D Menichetti, E Menschikov, A Meurer, C Meyhandan, R Micheletti, MI Miele, G Miller, W Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morales, B Morello, C Moreno, JC Morris, C Mostafa, M Muller, MA Mussa, R Navarra, G Navarro, JL Navas, S Necesal, P Nellen, L Newman-Holmes, C Newton, D Thi, TN Nierstenhoefer, N Nitz, D Nosek, D Nozka, L Oehlschlager, J Ohnuki, T Olinto, A Olmos-Gilbaja, VM Ortiz, M Ortolani, F Ostapchenko, S Otero, L Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Parente, G Parizot, E Parlati, S Pastor, S Patel, M Paul, T Pavlidou, V Payet, K Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Petrera, S Petrinca, P Petrov, Y Ngoc, DP Ngoc, DP Thi, TNP Pichel, A Piegaia, R Pierog, T Pimenta, M Pinto, T Pirronello, V Pisanti, O Platino, M Pochon, J Privitera, P Prouza, M Quel, EJ Rautenberg, J Redondo, A Reucroft, S Revenu, B Rezende, FAS Ridky, J Riggi, S Risse, M Riviere, C Rizi, V Roberts, M Robledo, C Rodriguez, G Frias, DR Martino, JR Rojo, JR Rodriguez-Cabo, I Ros, G Rosado, J Roth, M Rouille-d'Orfeuil, B Roulet, E Rovero, AC Salamida, F Salazar, H Salina, G Sanchez, F Santander, M Santo, CE Santos, EM Sarazin, F Sarkar, S Sato, R Scherini, V Schieler, H Schmidt, A Schmidt, F Schmidt, T Scholten, O Schovanek, P Schussler, F Sciutto, SJ Scuderi, M Segreto, A Semikoz, D Settimo, M Shellard, RC Sidelnik, I Siffert, BB Sigl, G De Grande, NS Smialkowski, A Smida, R Smith, AGK Smith, BE Snow, GR Sokolsky, P Sommers, P Sorokin, J Spinka, H Squartini, R Strazzeri, E Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Takahashi, J Tamashiro, A Tamburro, A Tascau, O Tcaciuc, R Thomas, D Ticona, R Tiffenberg, J Timmermans, C Tkaczyk, W Peixoto, CJT Tome, B Tonachini, A Torres, I Torresi, D Travnicek, P Tripathi, A Tristram, G Tscherniakhovski, D Tueros, M Tunnicliffe, V Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van den Berg, AM van Elewyck, V Vazquez, RA Veberic, D Veiga, A Velarde, A Venters, T Verzi, V Videla, M Villasenor, L Vorobiov, S Voyvodic, L Wahlberg, H Wainberg, O Walker, P Warner, D Watson, AA Westerhoff, S Wieczorek, G Wiencke, L Wilczynska, B Wilczynski, H Wileman, C Winnick, MG Wu, H Wundheiler, B Yamamoto, T Younk, P Zas, E Zavrtanik, D Zavrtanik, M Zech, A Zepeda, A Ziolkowski, M AF Abraham, J. Abreu, P. Aglietta, M. Aguirre, C. Allard, D. Allekotte, I. Allen, J. Allison, P. Alvarez-Muniz, J. Ambrosio, M. Anchordoqui, L. Andringa, S. Anzalone, A. Aramo, C. Argiro, S. Arisaka, K. Armengaud, E. Arneodo, F. Arqueros, F. Asch, T. Asorey, H. Assis, P. Atulugama, B. S. Aublin, J. Ave, M. Avila, G. Baecker, T. Badagnani, D. Barbosa, A. F. Barnhill, D. Barroso, S. L. C. Bauleo, P. Beatty, J. J. Beau, T. Becker, B. R. Becker, K. H. Bellido, J. A. BenZvi, S. Berat, C. Bergmann, T. Bernardini, P. Bertou, X. Biermann, P. L. Billoir, P. Blanch-Bigas, O. Blanco, F. Blasi, P. Bleve, C. Bluemer, H. Bohacova, M. Bonifazi, C. Bonino, R. Boratav, M. Brack, J. Brogueira, P. Brown, W. C. Buchholz, P. Bueno, A. Burton, R. E. Busca, N. G. Caballero-Mora, K. S. Cai, B. Camin, D. V. Caramete, L. Caruso, R. Carvalho, W. Castellina, A. Catalano, O. Cataldi, G. Cazon, L. Cester, R. Chauvin, J. Chiavassa, A. Chinellato, J. A. Chou, A. Chye, J. Clark, P. D. J. Clay, R. W. Colombo, E. Conceicao, R. Connolly, B. Contreras, F. Coppens, J. Cordier, A. Cotti, U. Coutu, S. Covault, C. E. Creusot, A. Criss, A. Cronin, J. Curutiu, A. Dagoret-Campagne, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Donato, C. de Jong, S. J. De La Vega, G. de Mello, W. J. M., Jr. de Mello Neto, J. R. T. DeMitri, I. de Souza, V. del Peral, L. Deligny, O. Della Selva, A. Delle Fratte, C. Dembinski, H. Di Giulio, C. Diaz, J. C. Dobrigkeit, C. D'Olivo, J. C. Dornic, D. Dorofeev, A. dos Anjos, J. C. Dova, M. T. D'Urso, D. Dutan, I. DuVernois, M. A. Engel, R. Epele, L. Erdmann, M. Escobar, C. O. Etchegoyen, A. San Luis, P. Facal Falcke, H. Farrar, G. Fauth, A. C. Fazzini, N. Ferrer, F. Ferry, S. Fick, B. Filevich, A. Filipcic, A. Fleck, I. Fonte, R. Fracchiolla, C. E. Fulgione, W. Garcia, B. Gamez, D. Garcia Garcia-Pinto, D. Garrido, X. Geenen, H. Gelmini, G. Gemmeke, H. Ghia, P. L. Giller, M. Glass, H. Gold, M. S. Golup, G. Albarracin, F. Gomez Berisso, M. Gomez Herrero, R. Gomez Goncalves, P. do Amaral, M. Goncalves Gonzalez, D. Gonzalez, J. G. Gonzalez, M. Gora, D. Gorgi, A. Gouffon, P. Grassi, V. Grillo, A. F. Grunfeld, C. Guardincerri, Y. Guarino, F. Guedes, G. P. Gutierrez, J. Hague, J. D. Hamilton, J. C. Hansen, P. Harari, D. Harmsma, S. Harton, J. L. Haungs, A. Hauschildt, T. Healy, M. D. Hebbeker, T. Hebrero, G. Heck, D. Hojvat, C. Holmes, V. C. Homola, P. Hoerandel, J. Horneffer, A. Horvat, M. Hrabovsky, M. Huege, T. Hussain, M. Iarlori, M. Insolia, A. Ionita, F. Italiano, A. Kaducak, M. Kampert, K. H. Karova, T. Kegl, B. Keilhauer, B. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Knapik, R. Knapp, J. Koang, D. -H. Krieger, A. Kroemer, O. Kuempel, D. Kunka, N. Kusenko, A. La Rosa, G. Lachaud, C. Lago, B. L. Lebrun, D. LeBrun, P. Lee, J. de Oliveira, M. A. Leigui Letessier-Selvon, A. Leuthold, M. Lhenry-Yvon, I. Lopez, R. Agueera, A. Lopez Bahilo, J. Lozano Garcia, R. Luna Maccarone, M. C. Macolino, C. Maldera, S. Mancarella, G. Mancenido, M. E. Mandat, D. Mantsch, P. Mariazzi, A. G. Maris, I. C. Falcon, H. R. Marquez Martello, D. Martinez, J. Bravo, O. Martinez Mathes, H. J. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mazur, P. O. McCauley, T. McEwen, M. McNeil, R. R. Medina, M. C. Medina-Tanco, G. Meli, A. Melo, D. Menichetti, E. Menschikov, A. Meurer, Chr. Meyhandan, R. Micheletti, M. I. Miele, G. Miller, W. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morales, B. Morello, C. Moreno, J. C. Morris, C. Mostafa, M. Muller, M. A. Mussa, R. Navarra, G. Navarro, J. L. Navas, S. Necesal, P. Nellen, L. Newman-Holmes, C. Newton, D. Thi, T. Nguyen Nierstenhoefer, N. Nitz, D. Nosek, D. Nozka, L. Oehlschlaeger, J. Ohnuki, T. Olinto, A. Olmos-Gilbaja, V. M. Ortiz, M. Ortolani, F. Ostapchenko, S. Otero, L. Pacheco, N. Selmi-Dei, D. Pakk Palatka, M. Pallotta, J. Parente, G. Parizot, E. Parlati, S. Pastor, S. Patel, M. Paul, T. Pavlidou, V. Payet, K. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Petrera, S. Petrinca, P. Petrov, Y. Ngoc, Diep Pham Ngoc, Dong Pham Thi, T. N. Pham Pichel, A. Piegaia, R. Pierog, T. Pimenta, M. Pinto, T. Pirronello, V. Pisanti, O. Platino, M. Pochon, J. Privitera, P. Prouza, M. Quel, E. J. Rautenberg, J. Redondo, A. Reucroft, S. Revenu, B. Rezende, F. A. S. Ridky, J. Riggi, S. Risse, M. Riviere, C. Rizi, V. Roberts, M. Robledo, C. Rodriguez, G. Frias, D. Rodriguez Martino, J. Rodriguez Rojo, J. Rodriguez Rodriguez-Cabo, I. Ros, G. Rosado, J. Roth, M. Rouille-d'Orfeuil, B. Roulet, E. Rovero, A. C. Salamida, F. Salazar, H. Salina, G. Sanchez, F. Santander, M. Santo, C. E. Santos, E. M. Sarazin, F. Sarkar, S. Sato, R. Scherini, V. Schieler, H. Schmidt, A. Schmidt, F. Schmidt, T. Scholten, O. Schovanek, P. Schuessler, F. Sciutto, S. J. Scuderi, M. Segreto, A. Semikoz, D. Settimo, M. Shellard, R. C. Sidelnik, I. Siffert, B. B. Sigl, G. De Grande, N. Smetniansky Smialkowski, A. Smida, R. Smith, A. G. K. Smith, B. E. Snow, G. R. Sokolsky, P. Sommers, P. Sorokin, J. Spinka, H. Squartini, R. Strazzeri, E. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Takahashi, J. Tamashiro, A. Tamburro, A. Tascau, O. Tcaciuc, R. Thomas, D. Ticona, R. Tiffenberg, J. Timmermans, C. Tkaczyk, W. Peixoto, C. J. Todero Tome, B. Tonachini, A. Torres, I. Torresi, D. Travnicek, P. Tripathi, A. Tristram, G. Tscherniakhovski, D. Tueros, M. Tunnicliffe, V. Ulrich, R. Unger, M. Urban, M. Galicia, J. F. Valdes Valino, I. Valore, L. van den Berg, A. M. van Elewyck, V. Vazquez, R. A. Veberic, D. Veiga, A. Velarde, A. Venters, T. Verzi, V. Videla, M. Villasenor, L. Vorobiov, S. Voyvodic, L. Wahlberg, H. Wainberg, O. Walker, P. Warner, D. Watson, A. A. Westerhoff, S. Wieczorek, G. Wiencke, L. Wilczynska, B. Wilczynski, H. Wileman, C. Winnick, M. G. Wu, H. Wundheiler, B. Yamamoto, T. Younk, P. Zas, E. Zavrtanik, D. Zavrtanik, M. Zech, A. Zepeda, A. Ziolkowski, M. CA Pierre Auger Collaboration TI Upper limit on the diffuse flux of ultrahigh energy tau neutrinos from the Pierre Auger Observatory SO PHYSICAL REVIEW LETTERS LA English DT Article ID COSMIC-RAYS; FLUORESCENCE DETECTOR; AIR-SHOWERS; SEARCH; EARTH AB The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth's crust. Tau leptons from nu(tau) charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January 2004 and 31 August 2007 are used to place an upper limit on the diffuse flux of nu(tau) at EeV energies. Assuming an E-nu(-2) differential energy spectrum the limit set at 90% C. L. is E(nu)(2)dN(nu tau)/dE(nu) < 1: 3 x 10(-7) GeV cm(-2) s(-1) sr(-1) in the energy range 2 x 10(17) eV< E-nu < 2 x 10(19) eV. C1 [Etchegoyen, A.; Golup, G.; Berisso, M. Gomez; Medina, M. C.; Micheletti, M. I.; Mollerach, S.; Pallotta, J.; Quel, E. J.; Roulet, E.; Sidelnik, I.; De Grande, N. Smetniansky; Wundheiler, B.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Asorey, H.; Bertou, X.; Colombo, E.; Etchegoyen, A.; Filevich, A.; Krieger, A.; Medina, M. C.; Melo, D.; Micheletti, M. I.; Platino, M.; Pochon, J.; Sidelnik, I.] CNEA, Ctr Atom Constituyentes, Buenos Aires, DF, Argentina. [Golup, G.; Berisso, M. Gomez; Mollerach, S.; Roulet, E.] Comis Nacl Energia Atom, Ctr Atom Bariloche, Dept Fis, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.] CNEA UNC, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. [Guardincerri, Y.; Harari, D.; Piegaia, R.; Tiffenberg, J.] Univ Buenos Aires, FCEyN, Dept Fis, RA-1053 Buenos Aires, DF, Argentina. [Mancenido, M. E.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Tueros, M.; Veiga, A.; Wahlberg, H.] Univ Nacl Plata, IFLP, La Plata, Argentina. [Pichel, A.; Rovero, A. C.; Tamashiro, A.] Consejo Nacl Invest Cient & Tecn, Inst Astron & Fis Espacio, RA-1033 Buenos Aires, DF, Argentina. [Contreras, F.; Rojo, J. Rodriguez; Santander, M.; Sato, R.; Squartini, R.] Pierre Auger So Observ, Malargue, Argentina. [Clay, R. W.; Dawson, B. R.; Holmes, V. C.; Smith, A. G. K.; Sorokin, J.; Winnick, M. G.] Univ Adelaide, Adelaide, SA, Australia. [Aguirre, C.] Univ Catolica Bolivia, La Paz, Bolivia. [Barbosa, A. F.; Bonifazi, C.; dos Anjos, J. C.; Rezende, F. A. S.; Santos, E. M.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, RJ, Brazil. [Fracchiolla, C. E.; Shellard, R. C.] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, RJ, Brazil. [Carvalho, W.; Gouffon, P.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Chinellato, J. A.; de Almeida, R. M.; de Mello, W. J. M., Jr.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Selmi-Dei, D. Pakk; Takahashi, J.; Peixoto, C. J. Todero] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Barroso, S. L. C.] Univ Estadual Sudoeste da Bahia, Vitoria Da Conquista, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [de Oliveira, M. A. Leigui] Univ Fed ABC, Santo Andre, SP, Brazil. [de Mello Neto, J. R. T.; Lago, B. L.; Siffert, B. B.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, RJ, Brazil. [do Amaral, M. Goncalves] Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil. [Nosek, D.] Charles Univ Prague, Inst Particle & Nucl Phys, Prague, Czech Republic. [Bohacova, M.; Hrabovsky, M.; Karova, T.; Mandat, D.; Necesal, P.; Nozka, L.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovanek, P.; Smida, R.; Travnicek, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Deligny, O.; Dornic, D.; Ghia, P. L.; Harton, J. L.; Lhenry-Yvon, I.; Suomijaervi, T.; van Elewyck, V.] Univ Paris 11, Inst Phys Nucl, CNRS, IN2P3, Orsay, France. [Allard, D.; Armengaud, E.; Beau, T.; Busca, N. G.; Hamilton, J. C.; Lachaud, C.; Olinto, A.; Parizot, E.; Revenu, B.; Rouille-d'Orfeuil, B.; Semikoz, D.; Sigl, G.; Tristram, G.; Venters, T.] Univ Paris 07, CNRS, Inst Phys Nucl, IN2P3, Paris, France. [Cordier, A.; Dagoret-Campagne, S.; Garrido, X.; Kegl, B.; Ragaigne, D. Monnier; Urban, M.; Wu, H.] Univ Paris 11, CNRS, Lab AstroParticule & Cosmol, IN2P3, Orsay, France. [Aublin, J.; Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.; Boratav, M.; Letessier-Selvon, A.; Santos, E. M.; Zech, A.] Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, Paris 05, France. [Aublin, J.; Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.; Boratav, M.; Letessier-Selvon, A.; Santos, E. M.; Zech, A.] Univ Paris 07, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, Paris 05, France. [Berat, C.; Chauvin, J.; Koang, D. -H.; Lebrun, D.; Montanet, F.; Payet, K.; Riviere, C.; Stutz, A.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Berat, C.; Chauvin, J.; Koang, D. -H.; Lebrun, D.; Montanet, F.; Payet, K.; Riviere, C.; Stutz, A.] INPG, Grenoble, France. [Becker, K. H.; Geenen, H.; Kampert, K. H.; Kuempel, D.; Nierstenhoefer, N.; Rautenberg, J.; Risse, M.; Scherini, V.; Tascau, O.] Berg Univ Wuppertal, Wuppertal, Germany. [Bluemer, H.; Daumiller, K.; Engel, R.; Haungs, A.; Heck, D.; Huege, T.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Meurer, Chr.; Oehlschlaeger, J.; Pierog, T.; Roth, M.; Schieler, H.; Schuessler, F.; Ulrich, R.; Urban, M.] Inst Kernphys, Forschungszentrum Karlsruhe, Karlsruhe, Germany. [Asch, T.; Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menschikov, A.; Schmidt, A.; Tscherniakhovski, D.] Inst Prozessdatenverarbeitung & Elekt, Forschungszentrum Karlsruhe, Karlsruhe, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.; Dutan, I.; Meli, A.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Dembinski, H.; Erdmann, M.; Hebbeker, T.; Leuthold, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bergmann, T.; Bluemer, H.; Caballero-Mora, K. S.; de Souza, V.; Gonzalez, D.; Gora, D.; Keilhauer, B.; Maris, I. C.; Ostapchenko, S.; Schmidt, T.; Tamburro, A.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Baecker, T.; Buchholz, P.; Fleck, I.; Tcaciuc, R.; Ziolkowski, M.] Univ Siegen, Siegen, Germany. [Blasi, P.; Iarlori, M.; Macolino, C.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, Laquila, Italy. [Blasi, P.; Iarlori, M.; Macolino, C.; Petrera, S.; Rizi, V.; Salamida, F.] Sezione Ist Nazl Fis Nucl, Laquila, Italy. [Camin, D. V.; De Donato, C.; Grassi, V.] Univ Milan, Milan, Italy. [Camin, D. V.; De Donato, C.; Grassi, V.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Bernardini, P.; Cataldi, G.; DeMitri, I.; Mancarella, G.; Martello, D.; Perrone, L.; Settimo, M.] Univ Salento, Lecce, Italy. [Bernardini, P.; Cataldi, G.; DeMitri, I.; Mancarella, G.; Martello, D.; Perrone, L.; Settimo, M.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Della Selva, A.; D'Urso, D.; Guarino, F.; Miele, G.; Valore, L.] Univ Naples Federico II, Naples, Italy. [Ambrosio, M.; Aramo, C.; Della Selva, A.; D'Urso, D.; Guarino, F.; Miele, G.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Ortolani, F.; Petrinca, P.; Privitera, P.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Ortolani, F.; Petrinca, P.; Privitera, P.; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Caruso, R.; Fonte, R.; Insolia, A.; Italiano, A.; Pirronello, V.; Pisanti, O.; Riggi, S.; Martino, J. Rodriguez; Scuderi, M.] Univ Catania, Catania, Italy. [Caruso, R.; Fonte, R.; Insolia, A.; Italiano, A.; Pirronello, V.; Pisanti, O.; Riggi, S.; Martino, J. Rodriguez; Scuderi, M.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Aglietta, M.; Argiro, S.; Bonino, R.; Castellina, A.; Cester, R.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Hauschildt, T.; Maldera, S.; Maurizio, D.; Menichetti, E.; Morello, C.; Mussa, R.; Navarra, G.; Suarez, F.; Tonachini, A.] Univ Turin, Turin, Italy. [Argiro, S.; Cester, R.; Maurizio, D.; Menichetti, E.; Mussa, R.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Anzalone, A.; Catalano, O.; La Rosa, G.; Maccarone, M. C.; Segreto, A.; Torresi, D.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Hauschildt, T.; Maldera, S.; Morello, C.; Navarra, G.; Suarez, F.] Univ Turin, Ist Fis Spazio Interplanetario INAF, Turin, Italy. [Arneodo, F.; Grillo, A. F.; Parlati, S.] Ist Nazl Fis Nucl, Lab Naz Gran Sasso, Laquila, Italy. [Blasi, P.] Osserv Astrofis Arcetri, I-50125 Florence, Italy. [Lopez, R.; Bravo, O. Martinez; Robledo, C.; Salazar, H.; Torres, I.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Gonzalez, M.; Garcia, R. Luna; Martinez, J.; Pelayo, R.; Zepeda, A.] Ctr Invest & Estudios Avanzados IPN CINVESTAV, Mexico City, DF, Mexico. [Cotti, U.; Falcon, H. R. Marquez; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [D'Olivo, J. C.; Medina-Tanco, G.; Morales, B.; Nellen, L.; Sanchez, F.; Supanitsky, A. D.; Galicia, J. F. Valdes] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Coppens, J.; de Jong, S. J.; Falcke, H.; Horneffer, A.; Timmermans, C.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [Harmsma, S.; Meyhandan, R.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Kernfys Versneller Inst, Groningen, Netherlands. [Coppens, J.; Timmermans, C.] NIKHEF, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Gora, D.; Homola, P.; Pekala, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Smialkowski, A.; Szadkowski, Z.; Tkaczyk, W.; Wieczorek, G.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Tome, B.] LIP, P-1000 Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Tome, B.] Inst Super Tecn, Lisbon, Portugal. [Filipcic, A.; Zavrtanik, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Creusot, A.; Ferry, S.; Horvat, M.; Hussain, M.; Veberic, D.; Vorobiov, S.; Zavrtanik, D.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Pastor, S.; Pinto, T.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Monasor, M.; Ortiz, M.; Ros, G.; Rosado, J.] Univ Complutense Madrid, Madrid, Spain. [del Peral, L.; Herrero, R. Gomez; Gutierrez, J.; Hebrero, G.; McEwen, M.; Monasor, M.; Pacheco, N.; Redondo, A.; Frias, D. Rodriguez; Ros, G.] Univ Alcala de Henares, Madrid, Spain. [Bueno, A.; Gamez, D. Garcia; Bahilo, J. Lozano; Navarro, J. L.; Navas, S.] Univ Granada, Granada, Spain. [Bueno, A.; Gamez, D. Garcia; Bahilo, J. Lozano; Navarro, J. L.; Navas, S.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; San Luis, P. Facal; Hansen, P.; Agueera, A. Lopez; Newton, D.; Olmos-Gilbaja, V. M.; Parente, G.; Rodriguez, G.; Rodriguez-Cabo, I.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago de Compostela, Santiago, Spain. [Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Clark, P. D. J.; Tunnicliffe, V.; Walker, P.] Univ Leeds, Inst Integrated Informat Syst, Leeds LS2 9JT, W Yorkshire, England. [Bleve, C.; Knapp, J.; Newton, D.; Patel, M.; Smith, B. E.; Watson, A. A.; Wileman, C.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Burton, R. E.; Covault, C. E.; Ferrer, F.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Bauleo, P.; Brack, J.; Harton, J. L.; Knapik, R.; Petrov, Y.; Warner, D.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Blasi, P.; Chou, A.; Fazzini, N.; Glass, H.; Hojvat, C.; Kaducak, M.; LeBrun, P.; Mantsch, P.; Mazur, P. O.; Newman-Holmes, C.; Spinka, H.; Voyvodic, L.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Dorofeev, A.; Gonzalez, J. G.; Matthews, J.; McEwen, M.; McNeil, R. R.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Chye, J.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Chou, A.; Farrar, G.] NYU, New York, NY USA. [Anchordoqui, L.; McCauley, T.; Paul, T.; Reucroft, S.; Swain, J.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Beatty, J. J.; Morris, C.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Atulugama, B. S.; Bellido, J. A.; Coutu, S.; Criss, A.; Roberts, M.; Sommers, P.] Penn State Univ, University Pk, PA 16802 USA. [Matthews, J.] Southern Univ, Baton Rouge, LA USA. [Arisaka, K.; Barnhill, D.; Gelmini, G.; Healy, M. D.; Kusenko, A.; Lee, J.; Ohnuki, T.; Tripathi, A.] Univ Calif Los Angeles, Los Angeles, CA USA. [Ave, M.; Cazon, L.; Cronin, J.; de Mello Neto, J. R. T.; Ionita, F.; Olinto, A.; Pavlidou, V.; Schmidt, F.; Venters, T.; Yamamoto, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Brack, J.] Univ Colorado, Boulder, CO 80309 USA. [DuVernois, M. A.] Univ Hawaii, Honolulu, HI 96822 USA. [Cai, B.; DuVernois, M. A.] Univ Minnesota, Minneapolis, MN USA. [Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Becker, B. R.; Gold, M. S.; Matthews, J. A. J.; Miller, W.] Univ New Mexico, Albuquerque, NM 87131 USA. [Hague, J. D.; Mostafa, M.; Sokolsky, P.; Thomas, D.; Younk, P.] Univ Utah, Salt Lake City, UT USA. [BenZvi, S.; Westerhoff, S.] Univ Wisconsin, Madison, WI USA. [Anchordoqui, L.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Thi, T. Nguyen; Ngoc, Diep Pham; Ngoc, Dong Pham; Thi, T. N. Pham] Inst Nucl Sci & Technol, Hanoi, Vietnam. [Connolly, B.] Univ Penn, Philadelphia, PA 19104 USA. RI Shellard, Ronald/G-4825-2012; Miele, Gennaro/F-3628-2010; Muller, Marcio Aparecido/H-9112-2012; fulgione, walter/I-5232-2012; D'Urso, Domenico/I-5325-2012; Bleve, Carla/J-2521-2012; Brogueira, Pedro/K-3868-2012; Chinellato, Jose Augusto/I-7972-2012; Tamburro, Alessio/A-5703-2013; Falcke, Heino/H-5262-2012; Arneodo, Francesco/B-8076-2013; Anjos, Joao/C-8335-2013; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Pavlidou, Vasiliki/C-2944-2011; Arneodo, Francesco/E-5061-2015; Prouza, Michael/F-8514-2014; Bueno, Antonio/F-3875-2015; Parente, Gonzalo/G-8264-2015; Alvarez-Muniz, Jaime/H-1857-2015; Rosado, Jaime/K-9109-2014; Valino, Ines/J-8324-2012; Carvalho Jr., Washington/H-9855-2015; De Donato, Cinzia/J-9132-2015; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Travnicek, Petr/G-8814-2014; Smida, Radomir/G-6314-2014; Ridky, Jan/H-6184-2014; Pech, Miroslav/G-5760-2014; Todero Peixoto, Carlos Jose/G-3873-2012; Garcia Pinto, Diego/J-6724-2014; Pastor, Sergio/J-6902-2014; Tome, Bernardo/J-4410-2013; Di Giulio, Claudio/B-3319-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; Ros, German/L-4764-2014; Blasi, Pasquale/O-9345-2015; de Mello Neto, Joao/C-5822-2013; Fulgione, Walter/C-8255-2016; Lozano-Bahilo, Julio/F-4881-2016; ORTOLANI, FABRIZIO/F-7271-2016; scuderi, mario/O-7019-2014; zas, enrique/I-5556-2015; Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; Abreu, Pedro/L-2220-2014; Navas, Sergio/N-4649-2014; Assis, Pedro/D-9062-2013; Arqueros, Fernando/K-9460-2014; Blanco, Francisco/F-1131-2015; Conceicao, Ruben/L-2971-2014; Beatty, James/D-9310-2011; Guarino, Fausto/I-3166-2012; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; Rodriguez Fernandez, Gonzalo/C-1432-2014; Nosek, Dalibor/F-1129-2017; Takahashi, Jun/B-2946-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; Venters, Tonia/D-2936-2012; Dias, Sandra/F-8134-2010; Fauth, Anderson/F-9570-2012; Caramete, Laurentiu/C-2328-2011; Dutan, Ioana/C-2337-2011; Aramo, Carla/D-4317-2011; de souza, Vitor/D-1381-2012; Kemp, Ernesto/H-1502-2011; Chiavassa, Andrea/A-7597-2012; Verzi, Valerio/B-1149-2012; Gomez-Herrero, Raul/B-7346-2011; Schussler, Fabian/G-5313-2013; Nierstenhofer, Nils/H-3699-2013; Goncalves, Patricia /D-8229-2013; Mandat, Dusan/G-5580-2014; Bohacova, Martina/G-5898-2014; Nozka, Libor/G-5550-2014; OI Shellard, Ronald/0000-0002-2983-1815; Miele, Gennaro/0000-0002-2028-0578; D'Urso, Domenico/0000-0002-8215-4542; Brogueira, Pedro/0000-0001-6069-4073; Chinellato, Jose Augusto/0000-0002-3240-6270; Falcke, Heino/0000-0002-2526-6724; Arneodo, Francesco/0000-0002-1061-0510; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Pavlidou, Vasiliki/0000-0002-0870-1368; Arneodo, Francesco/0000-0002-1061-0510; Prouza, Michael/0000-0002-3238-9597; Bueno, Antonio/0000-0002-7439-4247; Parente, Gonzalo/0000-0003-2847-0461; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Rosado, Jaime/0000-0001-8208-9480; Valino, Ines/0000-0001-7823-0154; Carvalho Jr., Washington/0000-0002-2328-7628; De Donato, Cinzia/0000-0002-9725-1281; Cazon, Lorenzo/0000-0001-6748-8395; Ridky, Jan/0000-0001-6697-1393; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; Garcia Pinto, Diego/0000-0003-1348-6735; Tome, Bernardo/0000-0002-7564-8392; Di Giulio, Claudio/0000-0002-0597-4547; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; Ros, German/0000-0001-6623-1483; Blasi, Pasquale/0000-0003-2480-599X; de Mello Neto, Joao/0000-0002-3234-6634; Fulgione, Walter/0000-0002-2388-3809; Lozano-Bahilo, Julio/0000-0003-0613-140X; ORTOLANI, FABRIZIO/0000-0003-4527-1843; scuderi, mario/0000-0001-9026-5317; zas, enrique/0000-0002-4430-8117; Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; Abreu, Pedro/0000-0002-9973-7314; Navas, Sergio/0000-0003-1688-5758; Assis, Pedro/0000-0001-7765-3606; Arqueros, Fernando/0000-0002-4930-9282; Blanco, Francisco/0000-0003-4332-434X; Conceicao, Ruben/0000-0003-4945-5340; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Nosek, Dalibor/0000-0001-6219-200X; Asorey, Hernan/0000-0002-4559-8785; La Rosa, Giovanni/0000-0002-3931-2269; Gomez Berisso, Mariano/0000-0001-5530-0180; Salamida, Francesco/0000-0002-9306-8447; Takahashi, Jun/0000-0002-4091-1779; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Fauth, Anderson/0000-0001-7239-0288; Matthews, James/0000-0002-1832-4420; Andringa, Sofia/0000-0002-6397-9207; Catalano, Osvaldo/0000-0002-9554-4128; Aglietta, Marco/0000-0001-8354-5388; Maccarone, Maria Concetta/0000-0001-8722-0361; Kothandan, Divay/0000-0001-9048-7518; Castellina, Antonella/0000-0002-0045-2467; maldera, simone/0000-0002-0698-4421; Gomez-Herrero, Raul/0000-0002-5705-9236; Schussler, Fabian/0000-0003-1500-6571; Goncalves, Patricia /0000-0003-2042-3759; Aramo, Carla/0000-0002-8412-3846; Anzalone, Anna/0000-0003-1849-198X; Segreto, Alberto/0000-0001-7341-6603; Torresi, Domenico/0000-0002-6043-6178; Knapp, Johannes/0000-0003-1519-1383; Petrera, Sergio/0000-0002-6029-1255; Bonino, Raffaella/0000-0002-4264-1215; Rizi, Vincenzo/0000-0002-5277-6527; Santander, Juan Marcos/0000-0001-7297-8217; Horandel, Jorg/0000-0001-6604-547X; Mussa, Roberto/0000-0002-0294-9071; Garcia, Beatriz/0000-0003-0919-2734; Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246 NR 42 TC 93 Z9 93 U1 2 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 30 PY 2008 VL 100 IS 21 AR 211101 DI 10.1103/PhysRevLett.100.211101 PG 7 WC Physics, Multidisciplinary SC Physics GA 311FG UT WOS:000256585500010 PM 18518595 ER PT J AU Alexander, G Barley, J Batygin, Y Berridge, S Bharadwaj, V Bower, G Bugg, W Decker, FJ Dollan, R Efremenko, Y Gharibyan, V Hast, C Iverson, R Kolanoski, H Kovermann, J Laihem, K Lohse, T McDonald, KT Mikhailichenko, AA Moortgat-Pick, GA Pahl, P Pitthan, R Poschl, R Reinherz-Aronis, E Riemann, S Schalicke, A Schuler, KP Schweizer, T Scott, D Sheppard, JC Stahl, A Szalata, ZM Walz, D Weidemann, AW AF Alexander, G. Barley, J. Batygin, Y. Berridge, S. Bharadwaj, V. Bower, G. Bugg, W. Decker, F. -J. Dollan, R. Efremenko, Y. Gharibyan, V. Hast, C. Iverson, R. Kolanoski, H. Kovermann, J. Laihem, K. Lohse, T. McDonald, K. T. Mikhailichenko, A. A. Moortgat-Pick, G. A. Pahl, P. Pitthan, R. Poeschl, R. Reinherz-Aronis, E. Riemann, S. Schaelicke, A. Schueler, K. P. Schweizer, T. Scott, D. Sheppard, J. C. Stahl, A. Szalata, Z. M. Walz, D. Weidemann, A. W. TI Observation of polarized positrons from an undulator-based source SO PHYSICAL REVIEW LETTERS LA English DT Article ID LINEAR COLLIDER AB An experiment (E166) at the Stanford Linear Accelerator Center has demonstrated a scheme in which a multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with GEANT4 simulations that include the dominant polarization-dependent interactions of electrons, positrons, and photons in matter. C1 [Alexander, G.; Reinherz-Aronis, E.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Barley, J.; Mikhailichenko, A. A.] Cornell Univ, Ithaca, NY 14853 USA. [Batygin, Y.; Bharadwaj, V.; Hast, C.; Iverson, R.; Pitthan, R.; Sheppard, J. C.; Szalata, Z. M.; Walz, D.; Weidemann, A. W.] SLAC, Menlo Pk, CA 94025 USA. [Berridge, S.; Bugg, W.; Efremenko, Y.] Univ Tennessee, Knoxville, TN 37996 USA. [Dollan, R.; Kolanoski, H.; Lohse, T.; Schweizer, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Gharibyan, V.; Pahl, P.; Poeschl, R.; Schueler, K. P.] DESY, D-22607 Hamburg, Germany. [Gharibyan, V.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Kovermann, J.; Stahl, A.] Rhein Westfal TH Aachen, D-52056 Aachen, Germany. [Laihem, K.; Riemann, S.; Schaelicke, A.] DESY, D-15738 Zeuthen, Germany. [McDonald, K. T.] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [Moortgat-Pick, G. A.] Univ Durham, Durham DH1 3LE, England. [Scott, D.] STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England. RP Alexander, G (reprint author), Tel Aviv Univ, IL-69978 Tel Aviv, Israel. RI Stahl, Achim/E-8846-2011 OI Stahl, Achim/0000-0002-8369-7506 NR 16 TC 24 Z9 24 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 30 PY 2008 VL 100 IS 21 AR 210801 DI 10.1103/PhysRevLett.100.210801 PG 4 WC Physics, Multidisciplinary SC Physics GA 311FG UT WOS:000256585500009 PM 18518594 ER PT J AU Cuk, T Struzhkin, VV Devereaux, TP Goncharov, AF Kendziora, CA Eisaki, H Mao, HK Shen, ZX AF Cuk, T. Struzhkin, V. V. Devereaux, T. P. Goncharov, A. F. Kendziora, C. A. Eisaki, H. Mao, H. -K. Shen, Z. -X. TI Uncovering a pressure-tuned electronic transition in Bi(1.98)Sr(2.06)Y(0.68)Cu(2)O(8+delta) using Raman scattering and x-ray diffraction SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; NORMAL-STATE; CUPRATE SUPERCONDUCTORS; CHARGE-TRANSFER; LA2-XSRXCUO4; PHONON; TC; SPECTRA; PLANE; CUO2 AB We report pressure-tuned Raman and x-ray diffraction data of Bi(1.98)Sr(2.06)Y(0.68)Cu(2)O(8+delta) revealing a critical pressure at 21 GPa with anomalies in electronic Raman background, electron-phonon coupling lambda, spectral weight transfer, density dependent behavior of phonons and magnons, and a compressibility change in the c axis. For the first time in a cuprate, mobile charge carriers, lattice, and magnetism all show anomalies at a distinct critical pressure in the same experimental setting. Furthermore, the spectral changes suggest that the critical pressure at 21 GPa is related to the critical point at optimal doping. C1 [Cuk, T.; Shen, Z. -X.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Cuk, T.; Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Cuk, T.; Shen, Z. -X.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. [Struzhkin, V. V.; Goncharov, A. F.; Mao, H. -K.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Devereaux, T. P.] Univ Waterloo, Dept Phys, Waterloo, ON N2L 3G1, Canada. [Kendziora, C. A.] USN, Res Lab, Washington, DC 20375 USA. [Eisaki, H.] Natl Inst Adv Ind Sci & Technol, Nanoelect Res Inst, Tsukuba, Ibaraki 3058568, Japan. RP Cuk, T (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RI Struzhkin, Viktor/J-9847-2013 OI Struzhkin, Viktor/0000-0002-3468-0548 NR 39 TC 10 Z9 10 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 30 PY 2008 VL 100 IS 21 AR 217003 DI 10.1103/PhysRevLett.100.217003 PG 4 WC Physics, Multidisciplinary SC Physics GA 311FG UT WOS:000256585500042 PM 18518627 ER PT J AU Geddes, CGR Nakamura, K Plateau, GR Toth, C Cormier-Michel, E Esarey, E Schroeder, CB Cary, JR Leemans, WP AF Geddes, C. G. R. Nakamura, K. Plateau, G. R. Toth, Cs. Cormier-Michel, E. Esarey, E. Schroeder, C. B. Cary, J. R. Leemans, W. P. TI Plasma-density-gradient injection of low absolute-momentum-spread electron bunches SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLIDING LASER-PULSES; ACCELERATOR; BEAMS; RADIATION AB Plasma density gradients in a gas jet were used to control the wake phase velocity and trapping threshold in a laser wakefield accelerator, producing stable electron bunches with longitudinal and transverse momentum spreads more than 10 times lower than in previous experiments (0.17 and 0.02 MeV/c FWHM, respectively) and with central momenta of 0.76 +/- 0.02 MeV/c. Transition radiation measurements combined with simulations indicated that the bunches can be used as a wakefield accelerator injector to produce stable beams with 0.2 MeV/c-class momentum spread at high energies. C1 [Geddes, C. G. R.; Nakamura, K.; Plateau, G. R.; Toth, Cs.; Cormier-Michel, E.; Esarey, E.; Schroeder, C. B.; Leemans, W. P.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Cary, J. R.] Tech X Corp, Boulder, CO 80303 USA. [Plateau, G. R.] Ecole Polytech, F-91128 Palaiseau, France. [Cormier-Michel, E.; Esarey, E.; Leemans, W. P.] U Nevada, Reno, NV USA. [Cary, J. R.] U Colorado, Boulder, CO USA. [Leemans, W. P.] UC Berkeley, Berkeley, CA USA. RP Geddes, CGR (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cgrgeddes@lbl.gov OI Schroeder, Carl/0000-0002-9610-0166 NR 29 TC 207 Z9 208 U1 9 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 30 PY 2008 VL 100 IS 21 AR 215004 DI 10.1103/PhysRevLett.100.215004 PG 4 WC Physics, Multidisciplinary SC Physics GA 311FG UT WOS:000256585500029 PM 18518614 ER PT J AU Nandi, S Kreyssig, A Tan, L Kim, JW Yan, JQ Lang, JC Haskel, D McQueeney, RJ Goldman, AI AF Nandi, S. Kreyssig, A. Tan, L. Kim, J. W. Yan, J. Q. Lang, J. C. Haskel, D. McQueeney, R. J. Goldman, A. I. TI Nature of Ho magnetism in multiferroic HoMnO(3) SO PHYSICAL REVIEW LETTERS LA English DT Article ID RESONANT EXCHANGE SCATTERING; POLARIZATION; DIFFRACTION; FIELD AB Using x-ray resonant magnetic scattering and x-ray magnetic circular dichroism, techniques that are element specific, we have elucidated the role of Ho(3+) in multiferroic HoMnO(3). In zero field, Ho(3+) orders antiferromagnetically with moments aligned along the hexagonal c direction below 40 K, and undergoes a transition to another magnetic structure below 4.5 K. In applied electric fields of up to 1 x 10(7) V/m, the magnetic structure of Ho(3+) remains unchanged. C1 [Nandi, S.; Kreyssig, A.; Tan, L.; Kim, J. W.; Yan, J. Q.; McQueeney, R. J.; Goldman, A. I.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Nandi, S.; Kreyssig, A.; Tan, L.; Kim, J. W.; Yan, J. Q.; McQueeney, R. J.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lang, J. C.; Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Nandi, S (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RI McQueeney, Robert/A-2864-2016 OI McQueeney, Robert/0000-0003-0718-5602 NR 28 TC 34 Z9 35 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 30 PY 2008 VL 100 IS 21 AR 217201 DI 10.1103/PhysRevLett.100.217201 PG 4 WC Physics, Multidisciplinary SC Physics GA 311FG UT WOS:000256585500044 PM 18518629 ER PT J AU Thompson, MC Badakov, H Cook, AM Rosenzweig, JB Tikhoplav, R Travish, G Blumenfeld, I Hogan, MJ Ischebeck, R Kirby, N Siemann, R Walz, D Muggli, P Scott, A Yoder, RB AF Thompson, M. C. Badakov, H. Cook, A. M. Rosenzweig, J. B. Tikhoplav, R. Travish, G. Blumenfeld, I. Hogan, M. J. Ischebeck, R. Kirby, N. Siemann, R. Walz, D. Muggli, P. Scott, A. Yoder, R. B. TI Breakdown limits on gigavolt-per-meter electron-beam-driven wakefields in dielectric structures SO PHYSICAL REVIEW LETTERS LA English DT Article ID WAKE-FIELD; ACCELERATOR; IONIZATION; CHERENKOV; WAVE AB First measurements of the breakdown threshold in a dielectric subjected to GV/m wakefields produced by short (30 - 330 fs), 28.5 GeV electron bunches have been made. Fused silica tubes of 100 mu m inner diameter were exposed to a range of bunch lengths, allowing surface dielectric fields up to 27 GV/m to be generated. The onset of breakdown, detected through light emission from the tube ends, is observed to occur when the peak electric field at the dielectric surface reaches 13: 8 +/- 0: 7 GV/m. The correlation of structure damage to beam-induced breakdown is established using an array of postexposure inspection techniques. C1 [Thompson, M. C.; Badakov, H.; Cook, A. M.; Rosenzweig, J. B.; Tikhoplav, R.; Travish, G.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Thompson, M. C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Blumenfeld, I.; Hogan, M. J.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Muggli, P.] Univ So Calif, Los Angeles, CA 90089 USA. [Yoder, R. B.] Manhattan Coll, Bronx, NY 10471 USA. [Scott, A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. RP Thompson, MC (reprint author), Tri Alpha Energy Inc, Foothill Ranch, CA 92610 USA. EM dr.mcthompson@gmail.com RI Travish, Gil/H-4937-2011; Cook, Alan/D-2557-2013 OI Travish, Gil/0000-0002-4787-0949; NR 25 TC 74 Z9 75 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 30 PY 2008 VL 100 IS 21 AR 214801 DI 10.1103/PhysRevLett.100.214801 PG 4 WC Physics, Multidisciplinary SC Physics GA 311FG UT WOS:000256585500024 PM 18518609 ER PT J AU Xu, XQ Xiong, Z Gao, Z Nevins, WM Mckee, GR AF Xu, X. Q. Xiong, Z. Gao, Z. Nevins, W. M. McKee, G. R. TI TEMPEST simulations of collisionless damping of the geodesic-acoustic mode in edge-plasma pedestals SO PHYSICAL REVIEW LETTERS LA English DT Article ID ZONAL FLOWS; COHERENT AB The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio epsilon scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude. C1 [Xu, X. Q.; Xiong, Z.; Nevins, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Xiong, Z.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [McKee, G. R.] Univ Wisconsin, Madison, WI 53706 USA. RP Xu, XQ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 12 TC 39 Z9 40 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 30 PY 2008 VL 100 IS 21 AR 215001 DI 10.1103/PhysRevLett.100.215001 PG 4 WC Physics, Multidisciplinary SC Physics GA 311FG UT WOS:000256585500026 PM 18518611 ER PT J AU Ma, J Habenschuss, A Wunderlich, B AF Ma, J. Habenschuss, A. Wunderlich, B. TI Modulated calorimetry of poly(1,4-oxybenzoate), poly(2,6-oxynaphthoate), and their copolymers SO THERMOCHIMICA ACTA LA English DT Article DE poly( 1,4-oxybenzoate); poly(2,6-oxynaphthoate); copolymer; reversing transition; temperature-modulated DSC; condis crystal ID LIQUID-CRYSTALLINE COPOLYMERS; X-RAY-DIFFRACTION; POLY(4-HYDROXYBENZOIC ACID); THERMOTROPIC COPOLYESTERS; 3-DIMENSIONAL STRUCTURE; THERMODYNAMIC PROPERTIES; MESOPHASE TRANSITIONS; PHASE; MACROMOLECULES; POLYMERS AB Poly(1,4-oxybenzoate) (POB) and poly(2,6-oxynaphthoate) (PON) and their copolymers which have a well-established phase diagram have been studied with temperature-modulated differential scanning calorimetry (TMDSC). All the analyzed polymers have more than one disordering transition between the glass transition (from 400 to 430 K) and decomposition (starting at approximate to 700 K). Above the glass transition, the reversible heat capacity, C-p, increases beyond that calculated from the crystallinity and the known Cp of the solid and melt. This is likely due to an increase of mobility within the crystals and/or a possible rigid-amorphous fraction (mainly for the copolymers). The disordering transitions are largely irreversible, supporting the observation that semicrystalline, linear macromolecules show decreasing amounts of locally reversible melting with increasing rigidity and crystal perfection. Published by Elsevier B.V. C1 [Ma, J.; Wunderlich, B.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Ma, J.; Habenschuss, A.; Wunderlich, B.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Wunderlich, B (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM Wunderlich@CharterTN.net NR 38 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-6031 J9 THERMOCHIM ACTA JI Thermochim. Acta PD MAY 30 PY 2008 VL 471 IS 1-2 BP 90 EP 96 DI 10.1016/j.tca.2008.03.004 PG 7 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA 310VI UT WOS:000256558400015 ER PT J AU Fukuda, K Lim, SHN Anders, A AF Fukuda, Kentaro Lim, Sunnie H. N. Anders, Andre TI Coalescence of magnetron-sputtered silver islands affected by transition metal seeding (Ni, Cr, Nb, Zr, Mo, W, Ta) and other parameters SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 6th International Conference on Coatings on Glass and Plasics CY JUN 18-22, 2006 CL Dresden, GERMANY DE silver; coalescence; sputtering; transition metals ID FILMS AB Silver thin films were deposited on various base layers using magnetron sputtering. The onset of coalescence of silver islands was evaluated using in situ conductivity measurements. The substrates included glass and silicon, with base layers of ZnO:Al 4 at.% at various thickness and additional thin seed layers of transition metals. It is shown that certain conditions promote coalescence, and in particular the following seed conditions: tungsten (1.0 nm), molybdenum (0.1 nm), zirconium (0.5 nm), and nickel (0.1-0.2 nm). In the absence of transition metal seeding, earlier onset of coalescence occurred at the thinnest of the ZnO:Al 4 at.% base layers (5 nm) and the lowest sputtering power (50 W), indicating that the substrate-film system is not in thermodynamic equilibrium. (C) 2007 Elsevier B.V. All rights reserved. C1 [Fukuda, Kentaro; Lim, Sunnie H. N.; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Fukuda, K (reprint author), Nippon Sheet Glass Co Ltd, Ibaraki 3002635, Japan. EM KentaroFukuda@mail.nsg.co.jp RI Lim, Sunnie/A-2827-2012; Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 NR 11 TC 14 Z9 14 U1 0 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD MAY 30 PY 2008 VL 516 IS 14 BP 4546 EP 4552 DI 10.1016/j.tsf.2007.05.080 PG 7 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 304MV UT WOS:000256114500018 ER PT J AU Kamisaka, H Kilina, SV Yamashita, K Prezhdo, OV AF Kamisaka, Hideyuki Kilina, Svetlana V. Yamashita, Koichi Prezhdo, Oleg V. TI Ab initio study of temperature- and pressure dependence of energy and phonon-induced dephasing of electronic excitations in CdSe and PbSe quantum dots SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MULTIPLE EXCITON GENERATION; BAND-GAP; SEMICONDUCTOR MICROCRYSTALS; LEAD CHALCOGENIDES; NANOCRYSTALS; PBTE; DYNAMICS; SOLIDS; FIELD; PSEUDOPOTENTIALS AB The pressure and temperature dependence of the lowest excitation energy of PbSe (Pb68Se68, d = 2.0 nm) and CdSe (Cd33Se33, d = 1.6 nm) quantum dots (QDs) were investigated by ab initio density functional theory and molecular dynamics simulation. Additionally, pure-dephasing/decoherence induced by the electron-phonon interaction was studied using optical response theory for several pairs of electronic states, including ground, excitonic and biexcitonic states. Linear dependence on temperature was observed for all quantities under consideration. The results were consistent with other theoretical and experimental reports. The ab initio data was analyzed using the effective mass approximation and the hyperbolic band model. The analysis confirmed the temperature dependence of the effective mass in the PbSe QD, as suggested in a recent experimental report [Liptay, T. J.; Ram, R. J. Appl. Phys. Lett. 2006, 89, 223132]. C1 [Kamisaka, Hideyuki; Kilina, Svetlana V.; Prezhdo, Oleg V.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Kamisaka, Hideyuki; Yamashita, Koichi] Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, Tokyo 1138656, Japan. [Kilina, Svetlana V.] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Kamisaka, H (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM kami@tcl.t.u-tokyo.ac.jp NR 65 TC 50 Z9 50 U1 7 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 29 PY 2008 VL 112 IS 21 BP 7800 EP 7808 DI 10.1021/jp710435q PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 304HF UT WOS:000256099900002 ER PT J AU Sapochak, LS Padmaperuma, AB Cai, XY Male, JL Burrows, PE AF Sapochak, Linda S. Padmaperuma, Asanga B. Cai, Xuiyu Male, Jonathan L. Burrows, Paul E. TI Inductive effects of diphenylphosphoryl moieties on carbazole host materials: Design rules for blue electrophosphorescent organic light-emitting devices SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CONJUGATED POLYMERS; ENERGY-TRANSFER; TRIPLET ENERGY; EMISSION; EFFICIENT; DIODES; PHOSPHORESCENCE; DIBENZOFURAN; MOLECULES; LAYER AB We show that the inductive electron-withdrawing effect of diphenylphosphoryl (Ph2P=O) groups lowers both the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of a carbazole chromophore. This improves electron injection from a cathode without affecting the high triplet exciton energy (E-T approximate to 3.0 eV) of the host material. Three new carbazole derivatives, 3,6-bis(diphenylphosphoryl)-9-ethylcarbazole (PO 10), 3,6-bis(diphenylphosphoryl)-9-phenylcarbazole (PO9), and N-(4-diphenylphosphoryl phenyl) carbazole (MPO12), were investigated as host materials in blue phosphor-doped organic light-emitting devices (OLEDs). Photophysical characterization showed all three carbazole derivatives exhibit monomer UV fluorescence (367-385 nm) in solution and contributions from molecular aggregates or excimers in solid-state films (378-395 nm). The polar MPO12 derivative exhibited solvatochromism and had the highest propensity for aggregate formation in the solid state. Testing of OLEDs using PO9, PO10, and MPO12 as host materials for the sky blue organometallic phosphor iridium(III) bis(4,6-(difluorophenyl)-pyridinato-N,C-2') picolinate (FIrpic) gave external quantum efficiencies (EQE) and operating voltages at a similar current density (J = 13 mA/cm(2)) of 6-8% at <7 V. The best device performance was exhibited using MPO12 as the host when an appropriate hole-blocking layer was implemented. The higher performance of MPO12 was attributed to the ambipolar charge-transporting character of the polar carbazole derivative. However, exciton relaxation on nonradiative aggregate states of all host materials studied may limit further improvements in device efficiencies. C1 [Sapochak, Linda S.; Padmaperuma, Asanga B.; Cai, Xuiyu; Male, Jonathan L.; Burrows, Paul E.] Pacific NW Natl Lab, Energy & Environm Directorate, Energy & Efficiency Div, Richland, WA 99352 USA. RP Sapochak, LS (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Energy & Efficiency Div, 902 Battelle Blvd, Richland, WA 99352 USA. NR 28 TC 84 Z9 87 U1 0 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 29 PY 2008 VL 112 IS 21 BP 7989 EP 7996 DI 10.1021/jp800079z PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 304HF UT WOS:000256099900030 ER PT J AU Arenas, A Fernandez, A Gomez, S AF Arenas, A. Fernandez, A. Gomez, S. TI Analysis of the structure of complex networks at different resolution levels SO NEW JOURNAL OF PHYSICS LA English DT Article ID COMMUNITY STRUCTURE; MODULARITY; MODEL AB Modular structure is ubiquitous in real-world complex networks, and its detection is important because it gives insights into the structure-functionality relationship. The standard approach is based on the optimization of a quality function, modularity, which is a relative quality measure for the partition of a network into modules. Recently, some authors (Fortunato and Barthelemy 2007 Proc. Natl Acad. Sci. USA 104 36 and Kumpula et al 2007 Eur. Phys. J. B 56 41) have pointed out that the optimization of modularity has a fundamental drawback: the existence of a resolution limit beyond which no modular structure can be detected even though these modules might have their own entity. The reason is that several topological descriptions of the network coexist at different scales, which is, in general, a fingerprint of complex systems. Here, we propose a method that allows for multiple resolution screening of the modular structure. The method has been validated using synthetic networks, discovering the predefined structures at all scales. Its application to two real social networks allows us to find the exact splits reported in the literature, as well as the substructure beyond the actual split. C1 [Arenas, A.; Fernandez, A.; Gomez, S.] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Tarragona 43007, Spain. [Arenas, A.] Univ Zaragoza, Inst Biocomputat & Phys Complex Syst BIFI, E-50009 Zaragoza, Spain. [Arenas, A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Arenas, A (reprint author), Univ Rovira & Virgili, Dept Engn Informat & Matemat, Avinguda Dels Paisos Catalans 26, Tarragona 43007, Spain. EM alexandre.arenas@urv.cat; alberto.fernandez@urv.cat; sergio.gomez@urv.cat RI Arenas, Alex/A-5216-2009; Gomez, Sergio/B-2113-2010; Fernandez-Sabater, Alberto/G-1214-2011 OI Arenas, Alex/0000-0003-0937-0334; Gomez, Sergio/0000-0003-1820-0062; Fernandez-Sabater, Alberto/0000-0002-1241-1646 NR 33 TC 206 Z9 210 U1 0 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAY 29 PY 2008 VL 10 AR 053039 DI 10.1088/1367-2630/10/5/053039 PG 22 WC Physics, Multidisciplinary SC Physics GA 308YP UT WOS:000256427100005 ER PT J AU Myhrer, F Thomas, AW AF Myhrer, F. Thomas, A. W. TI A possible resolution of the proton spin problem SO PHYSICS LETTERS B LA English DT Article ID DEPENDENT PARTON DISTRIBUTIONS; BAG MODEL; BARYON MASSES; SUM-RULE; POLARIZED LEPTOPRODUCTION; CHIRAL-SYMMETRY; GLUON EXCHANGE; NUCLEON; QCD; G1 AB A number of lines of investigation into the structure of the nucleon have converged to the point where it seems possible to propose a consistent explanation of the well known proton spin problem. (c) 2008 Elsevier B.V. All rights reserved. C1 [Myhrer, F.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Thomas, A. W.] Jefferson Lab, Newport News, VA 23606 USA. [Thomas, A. W.] Coll William & Mary, Williamsburg, VA 23187 USA. RP Myhrer, F (reprint author), Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. EM myhrer@physics.sc.edu RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X NR 38 TC 54 Z9 54 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD MAY 29 PY 2008 VL 663 IS 4 BP 302 EP 305 DI 10.1016/j.physletb.2008.04.034 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 309MB UT WOS:000256463400003 ER PT J AU Leevy, WM Lambert, TN Johnson, JR Morris, J Smith, BD AF Leevy, W. Matthew Lambert, Timothy N. Johnson, James R. Morris, Joshua Smith, Bradley D. TI Quantum dot probes for bacteria distinguish Escherichia coli mutants and permit in vivo imaging SO CHEMICAL COMMUNICATIONS LA English DT Article ID COORDINATION-COMPLEXES; CELLS; IDENTIFICATION; ANTIBIOTICS; LIPOPOLYSACCHARIDE; PEPTIDOGLYCAN; INFECTION; PEPTIDES; AFFINITY; STRAINS AB Fluorescent quantum dots coated with zinc(II)-dipicolylamine coordination complexes can selectively stain a rough Escherichia coli mutant that lacks an O-antigen element and permit optical detection in a living mouse leg infection model. C1 [Leevy, W. Matthew; Johnson, James R.; Morris, Joshua; Smith, Bradley D.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. [Lambert, Timothy N.] Sandia Natl Labs, Dept Ceram Proc & Inorgan Mat, Albuquerque, NM 87106 USA. RP Smith, BD (reprint author), Univ Notre Dame, Dept Chem & Biochem, 251 Nieuwland Sci Hall, Notre Dame, IN 46556 USA. EM smith.115@nd.edu FU NIBIB NIH HHS [EB005365]; NIGMS NIH HHS [GM059078, R01 GM059078, R01 GM059078-10] NR 29 TC 33 Z9 34 U1 4 U2 21 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PD MAY 28 PY 2008 IS 20 BP 2331 EP 2333 DI 10.1039/b803590c PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 300CC UT WOS:000255800900011 PM 18473060 ER PT J AU Loh, ZH Leone, SR AF Loh, Zhi-Heng Leone, Stephen R. TI Ultrafast strong-field dissociative ionization dynamics of CH(2)Br(2) probed by femtosecond soft x-ray transient absorption spectroscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID INTENSE LASER FIELDS; NONADIABATIC MULTIELECTRON DYNAMICS; ABOVE-THRESHOLD IONIZATION; ORDER HARMONIC-GENERATION; PHOTOELECTRON-SPECTRA; MOLECULAR DISSOCIATION; PHOTO-DISSOCIATION; CHEMICAL-BOND; RARE-GASES; PHOTODISSOCIATION AB Femtosecond time-resolved soft x-ray transient absorption spectroscopy based on a high-order harmonic generation source is used to investigate the dissociative ionization of CH(2)Br(2) induced by 800 nm strong-field irradiation. At moderate laser peak intensities (2.0x10(14) W/cm(2)), strong-field ionization is accompanied by ultrafast C-Br bond dissociation, producing both neutral Br ((2)P(3/2)) and Br* ((2)P(1/2)) atoms together with the CH(2)Br(+) fragment ion. The measured rise times for Br and Br* are 130 +/- 22 fs and 74 +/- 10 fs, respectively. The atomic bromine quantum state distribution shows that the Br/Br* population ratio is 8.1 +/- 3.8 and that the Br (2)P(3/2) state is not aligned. The observed product distribution and the time scales of the photofragment appearances suggest that multiple field-dressed potential energy surfaces are involved in the dissociative ionization process. At higher laser peak intensities (6.2 x 10(14) W/cm(2)), CH(2)Br(2)(+) undergoes sequential ionization to form the metastable CH(2)Br(2)(2+) dication. These results demonstrate the potential of core-level probing with high-order harmonic transient absorption spectroscopy for studying ultrafast molecular dynamics. (C) 2008 American Institute of Physics. C1 [Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM srl@berkeley.edu RI Loh, Zhi-Heng/B-6952-2011 OI Loh, Zhi-Heng/0000-0001-9729-9632 NR 72 TC 37 Z9 37 U1 2 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 28 PY 2008 VL 128 IS 20 AR 204302 DI 10.1063/1.2925268 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 307FM UT WOS:000256304200015 PM 18513014 ER PT J AU Slepoy, A Thompson, AP Plimpton, SJ AF Slepoy, Alexander Thompson, Aidan P. Plimpton, Steven J. TI A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID EXACT STOCHASTIC SIMULATION; EUKARYOTIC GENE-EXPRESSION; COUPLED CHEMICAL-REACTIONS; SYSTEMS; NOISE AB The time evolution of species concentrations in biochemical reaction networks is often modeled using the stochastic simulation algorithm (SSA) [Gillespie, J. Phys. Chem. 81, 2340 (1977)]. The computational cost of the original SSA scaled linearly with the number of reactions in the network. Gibson and Bruck developed a logarithmic scaling version of the SSA which uses a priority queue or binary tree for more efficient reaction selection [Gibson and Bruck, J. Phys. Chem. A 104, 1876 (2000)]. More generally, this problem is one of dynamic discrete random variate generation which finds many uses in kinetic Monte Carlo and discrete event simulation. We present here a constant-time algorithm, whose cost is independent of the number of reactions, enabled by a slightly more complex underlying data structure. While applicable to kinetic Monte Carlo simulations in general, we describe the algorithm in the context of biochemical simulations and demonstrate its competitive performance on small- and medium-size networks, as well as its superior constant-time performance on very large networks, which are becoming necessary to represent the increasing complexity of biochemical data for pathways that mediate cell function. (C) 2008 American Institute of Physics. C1 [Slepoy, Alexander] US DOE, Natl Nucl Secur Adm, Washington, DC 20585 USA. [Thompson, Aidan P.; Plimpton, Steven J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Slepoy, A (reprint author), US DOE, Natl Nucl Secur Adm, Washington, DC 20585 USA. EM Alexander.Slepoy@nnsa.doe.gov; sjplimp@sandia.gov NR 36 TC 72 Z9 74 U1 3 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 28 PY 2008 VL 128 IS 20 AR 205101 DI 10.1063/1.2919546 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 307FM UT WOS:000256304200045 PM 18513044 ER PT J AU Yang, J Wang, XB Xing, XP Wang, LS AF Yang, Jie Wang, Xue-Bin Xing, Xiao-Peng Wang, Lai-Sheng TI Photoelectron spectroscopy of anions at 118.2 nm: Observation of high electron binding energies in superhalogens MCl4- (M=Sc, Y, La) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID VACUUM-ULTRAVIOLET PHOTOIONIZATION; SINGLE-PHOTON IONIZATION; TUNABLE VUV RADIATION; GAS-PHASE; AB-INITIO; 3RD-HARMONIC GENERATION; METAL HEXAFLUORIDES; CHARGED ANIONS; CLUSTERS; AFFINITY AB High energy photon is needed for photoelectron spectroscopy (PES) of anions with high electron binding energies, such as superhalogens and O-rich metal oxide clusters. The highest energy photon used for anion PES in the laboratory has been 157 nm (7.866 eV) from F2 eximer lasers. Here, we report an anion PES experiment using coherent vacuum ultraviolet radiation at 118.2 nm (10.488 eV) by tripling the third harmonic output (355 nm) of a Nd:YAG laser in a Xe/Ar cell. Our study focuses on a set of superhalogen species, MCl4- (M=Sc, Y, La), which were expected to possess very high electron binding energies. While the 157 nm photon can only access the ground state detachment features for these species, more transitions to the excited states at binding energies higher than 8 eV are observed at 118.2 nm. The adiabatic detachment energies are shown to be, 6.84, 7.02, and 7.03 eV for ScCl4-, YCl4-, and LaCl4- eV, respectively, whereas their corresponding vertical detachment energies are measured to be 7.14, 7.31, and 7.38 eV. (C) 2008 American Institute of Physics. C1 [Yang, Jie] Washington State Univ, Dept Phys, Richland, WA 99354 USA. Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Yang, J (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM ls.wang@pnl.gov NR 58 TC 42 Z9 42 U1 0 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 28 PY 2008 VL 128 IS 20 AR 201102 DI 10.1063/1.2938390 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 307FM UT WOS:000256304200002 ER PT J AU Kreidi, K Jahnke, T Weber, T Havermeier, T Grisenti, RE Liu, X Morisita, Y Schossler, S Schmidt, LPH Schoffler, M Odenweller, M Neumann, N Foucar, L Titze, J Ulrich, B Sturm, F Stuck, C Wallauer, R Voss, S Lauter, I Kim, HK Rudloff, M Fukuzawa, H Prumper, G Saito, N Ueda, K Czasch, A Jagutzki, O Schmidt-Bocking, H Semenov, SK Cherepkov, NA Dorner, R AF Kreidi, K. Jahnke, T. Weber, Th Havermeier, T. Grisenti, R. E. Liu, X. Morisita, Y. Schoessler, S. Schmidt, L. Ph H. Schoeffler, M. Odenweller, M. Neumann, N. Foucar, L. Titze, J. Ulrich, B. Sturm, F. Stuck, C. Wallauer, R. Voss, S. Lauter, I. Kim, H. K. Rudloff, M. Fukuzawa, H. Pruemper, G. Saito, N. Ueda, K. Czasch, A. Jagutzki, O. Schmidt-Boecking, H. Semenov, S. K. Cherepkov, N. A. Doerner, R. TI Localization of inner-shell photoelectron emission and interatomic Coulombic decay in Ne(2) SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID MOMENTUM SPECTROSCOPY; ANGULAR-DISTRIBUTION; HOLE LOCALIZATION; CO2 MOLECULES; OXYGEN; N-2; PHOTOIONIZATION; FRAGMENTATION; PROBE; ION AB We used cold target recoil ion momentum spectroscopy (COLTRIMS) to investigate the decay of Ne(2) after K-shell photoionization. The breakup into Ne(1+)/Ne(2+) shows interatomic Coulombic decay (ICD) occurring after a preceding atomic Auger decay. The molecular frame angular distributions of the photoelectron and the ICD electron show distinct, asymmetric features, which imply localization of the K-vacancy created at one of the two atomic sites of the Ne(2) and an emission of the ICD electron from a localized site. The experimental results are supported by calculations in the frozen core Hartree-Fock approach. C1 [Kreidi, K.; Jahnke, T.; Havermeier, T.; Grisenti, R. E.; Schoessler, S.; Schmidt, L. Ph H.; Schoeffler, M.; Odenweller, M.; Neumann, N.; Foucar, L.; Titze, J.; Ulrich, B.; Sturm, F.; Stuck, C.; Wallauer, R.; Voss, S.; Lauter, I.; Kim, H. K.; Rudloff, M.; Czasch, A.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.] Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany. [Kreidi, K.] DESY, D-22607 Hamburg, Germany. [Weber, Th] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Grisenti, R. E.] Gesell Schwerionenforsch mbH, D-64291 Darmstadt, Germany. [Liu, X.; Fukuzawa, H.; Pruemper, G.; Ueda, K.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Morisita, Y.; Saito, N.] AIST, Natl Metrol Inst Japan, Tsukuba, Ibaraki 3058568, Japan. [Semenov, S. K.; Cherepkov, N. A.] State Univ Aerosp Instrumentat, St Petersburg 190000, Russia. RP Kreidi, K (reprint author), Univ Frankfurt, Inst Kernphys, Max Laue Str 1, D-60438 Frankfurt, Germany. EM doerner@atom.uni-frankfurt.de RI Doerner, Reinhard/A-5340-2008; Weber, Thorsten/K-2586-2013; Schoeffler, Markus/B-6261-2008; Saito, Norio/E-2890-2014 OI Doerner, Reinhard/0000-0002-3728-4268; Weber, Thorsten/0000-0003-3756-2704; Schoeffler, Markus/0000-0001-9214-6848; NR 29 TC 39 Z9 39 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD MAY 28 PY 2008 VL 41 IS 10 AR 101002 DI 10.1088/0953-4075/41/10/101002 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 298BJ UT WOS:000255661000002 ER PT J AU Ho, PC Butch, NP Zapf, VS Yanagisawa, T Frederick, NA Kim, SK Yuhasz, WM Maple, MB Betts, JB Lacerda, AH AF Ho, P-C Butch, N. P. Zapf, V. S. Yanagisawa, T. Frederick, N. A. Kim, S. K. Yuhasz, W. M. Maple, M. B. Betts, J. B. Lacerda, A. H. TI The high field ordered phase and upper critical field of the filled skutterudite system Pr(Os(1-x)Ru(x))(4)Sb(12) SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID FERMION SUPERCONDUCTOR PROS4SB12; SINGLET-GROUND-STATE; COMPOUND PROS4SB12; SPLIT IMPURITIES; ENERGY-GAP; HEAT; PR; TRANSITION; PRRU4SB12; MGB2 AB To study the possible competition between unconventional and Bardeen-Cooper-Schrieffer superconductivity in the filled skutterudites Pr(Os(1-x)Ru(x))(4)Sb(12), the evolution of superconductivity and the high field ordered phase in single-crystal specimens has been investigated by means of electrical resistivity measurements in magnetic fields up to 18 T. Whereas the upper critical field H(c2)(T) curves have conventional shapes for x < 0.4, the H(c2)(T) curves are nearly linear for x greater than or similar to 0.4. For all x, H(c2)(0) matches the calculated value of the orbital critical field. Features in the electrical resistivity associated with the high field ordered phase, observed clearly for PrOs(4)Sb(12), weaken with increasing x and vanish for x greater than or similar to 0.1. C1 [Ho, P-C; Butch, N. P.; Zapf, V. S.; Yanagisawa, T.; Frederick, N. A.; Kim, S. K.; Yuhasz, W. M.; Maple, M. B.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Ho, P-C; Butch, N. P.; Zapf, V. S.; Yanagisawa, T.; Frederick, N. A.; Kim, S. K.; Yuhasz, W. M.; Maple, M. B.] Univ Calif San Diego, Inst Pure & Appl Phys Sci, La Jolla, CA 92093 USA. [Betts, J. B.; Lacerda, A. H.] LANL, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Ho, PC (reprint author), Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. EM pcho@csufresno.edu RI YANAGISAWA, Tatsuya/B-3199-2008; Yuhasz, William/C-9418-2009; Zapf, Vivien/K-5645-2013 OI YANAGISAWA, Tatsuya/0000-0003-4558-8824; Zapf, Vivien/0000-0002-8375-4515 NR 44 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 28 PY 2008 VL 20 IS 21 AR 215226 DI 10.1088/0953-8984/20/21/215226 PG 8 WC Physics, Condensed Matter SC Physics GA 298BQ UT WOS:000255661800026 ER PT J AU Brown, G Singer, A Proudfoot, M Skarina, T Kim, Y Chang, CS Dementieva, I Kuznetsova, E Gonzalez, CF Joachimiak, A Savchenko, A Yakunin, AF AF Brown, Greg Singer, Alex Proudfoot, Michael Skarina, Tatiana Kim, Youngchang Chang, Changsoo Dementieva, Irina Kuznetsova, Ekaterina Gonzalez, Claudio F. Joachimiak, Andrzej Savchenko, Alexei Yakunin, Alexander F. TI Functional and structural characterization of four glutaminases from Escherichia coli and Bacillus subtilis SO BIOCHEMISTRY LA English DT Article ID MICROCOCCUS-LUTEUS K-3; PENICILLIN-BINDING PROTEINS; SALT-TOLERANT GLUTAMINASE; THR-TYR-GLU; CRYSTAL-STRUCTURE; BETA-LACTAMASES; NITROGEN LIMITATION; PURIFICATION; ASPARAGINASE; RESISTANCE AB Glutaminases belong to the large superfamily of serine-dependent beta-lactamases and penicillin-binding proteins, and they catalyze the hydrolytic deamidation Of L-glutamine to L-glutarnate. In this work, we purified and biochemically characterized four predicted glutaminases from Escherichia coli (YbaS and YneH) and Bacillus subtilis (YlaM and YbgJ). The proteins demonstrated strict specificity to L-glutamine and did not hydrolyze D-glutamine or L-asparagine. In each organism, one glutaminase showed higher affinity to glutamine (E. coli YbaS and B. subtilis YlaM; K-m 7.3 and 7.6 mM, respectively) than the second glutaminase (E. coli YneH and B. subtilis YbgJ; K-m 27.6 and 30.6 mM, respectively). The crystal structures of the E. coli YbaS and the B. subtilis YbgJ revealed the presence of a classical beta-lactamase-like fold and conservation of several key catalytic residues of beta-lactamases (Ser74, Lys77, Asn126, Lys268, and Ser269 in YbgJ). Alanine replacement mutagenesis demonstrated that most of the conserved residues located in the putative glutaminase catalytic site are essential for activity. The crystal structure of the YbgJ complex with the glutaminase inhibitor 6-diazo-5-oxo-L-norleucine revealed the presence of a covalent bond between the inhibitor and the hydroxyl oxygen of Ser74, providing evidence that Ser74 is the primary catalytic nucleophile and that the glutaminase reaction proceeds through formation of an enzyme-glutamyl intermediate. Growth experiments with the E. coli glutaminase deletion strains revealed that YneH is involved in the assimilation Of L-glutamine as a sole source of carbon and nitrogen and suggested that both glutaminases (YbaS and YneH) also contribute to acid resistance in E. coli. C1 [Brown, Greg; Singer, Alex; Proudfoot, Michael; Skarina, Tatiana; Kuznetsova, Ekaterina; Savchenko, Alexei; Yakunin, Alexander F.] Univ Toronto, Banting & Best Dept Med Res, Ontario Ctr Struct Proteom, Toronto, ON M5G 1L6, Canada. [Kim, Youngchang; Chang, Changsoo; Dementieva, Irina; Joachimiak, Andrzej] Argonne Natl Lab, Biosci Div, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. [Kim, Youngchang; Chang, Changsoo; Dementieva, Irina; Joachimiak, Andrzej] Argonne Natl Lab, Biosci Div, Struct Biol Ctr, Argonne, IL 60439 USA. [Gonzalez, Claudio F.] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA. RP Yakunin, AF (reprint author), Univ Toronto, Banting & Best Dept Med Res, Ontario Ctr Struct Proteom, 112 Coll St, Toronto, ON M5G 1L6, Canada. EM a.iakounine@utoronto.ca RI Yakunin, Alexander/J-1519-2014; OI Yakunin, Alexander/0000-0003-0813-6490 FU NIGMS NIH HHS [U54 GM074942, GM074942, U54 GM074942-04S2] NR 64 TC 37 Z9 41 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD MAY 27 PY 2008 VL 47 IS 21 BP 5724 EP 5735 DI 10.1021/bi800097h PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 303LY UT WOS:000256043200006 PM 18459799 ER PT J AU Hatzios, SK Iavarone, AT Bertozzi, CR AF Hatzios, Stavroula K. Iavarone, Anthony T. Bertozzi, Carolyn R. TI Rv2131c from Mycobacterium tuberculosis is a CysQ 3 '-phosphoadenosine-5 '-phosphatase SO BIOCHEMISTRY LA English DT Article ID INOSITOL-POLYPHOSPHATE 1-PHOSPHATASE; SULFATE-ACTIVATING COMPLEX; ESCHERICHIA-COLI; MASS-SPECTROMETRY; 3'(2'),5'-BISPHOSPHATE NUCLEOTIDASE; GENE; PHOSPHATASE; LITHIUM; ENZYME; YEAST AB Mycobacterium tuberculosis (Mtb) produces a number of sulfur-containing metabolites that contribute to its pathogenesis and ability to survive in the host. These metabolites are products of the sulfate assimilation pathway. CysQ, a 3'-phosphoadenosine-5'-phosphatase, is considered an important regulator of this pathway in plants, yeast, and other bacteria. By controlling the pools of 3'-phosphoadenosine 5'-phosphate (PAP) and 3'-phosphoadenosine 5'-phosphosulfate (PAPS), CysQ has the potential to modulate flux in the biosynthesis of essential sulfur-containing metabolites. Bioinformatic analysis of the Mtb genome suggests the presence of a CysQ homologue encoded by the gene Rv2131c. However, a recent biochemical study assigned the protein's function as a class IV fructose-1,6-bisphosphatase. In the present study, we expressed Rv2131c heterologously and found that the protein dephosphorylates PAP in a magnesium-dependent manner, with optimal activity observed between pH 8.5 and pH 9.5 using 0.5 MM MgCl2. A sensitive electrospray ionization mass spectrometry-based assay was used to extract the kinetic parameters for PAP, revealing a K-m (8.1 +/- 3.1 mu M) and k(cat) (5.4 +/- 1.1 s(-1)) comparable to those reported for other CysQ enzymes. The second-order rate constant for PAP was determined to be over 3 orders of magnitude greater than those determined for myo-inositol 1-phosphate (IMP) and fructose 1,6-bisphosphate (FBP), previously considered to be the primary substrates of this enzyme. Moreover, the ability of the Rv2131c-encoded enzyme to dephosphorylate PAP and PAPS in vivo was confirmed by functional complementation of an Escherichia coli Delta cysQ mutant. Taken together, these studies indicate that Rv2131c encodes a CysQ enzyme that may play a role in mycobacterial sulfur metabolism. C1 [Hatzios, Stavroula K.; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Iavarone, Anthony T.] Univ Calif Berkeley, QB3 Chem Mass Spectrometry Facil, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bertozzi, CR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM crb@berkeley.edu FU NCRR NIH HHS [1S10RR022393-01]; NIAID NIH HHS [AI51622] NR 45 TC 25 Z9 30 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD MAY 27 PY 2008 VL 47 IS 21 BP 5823 EP 5831 DI 10.1021/bi702453s PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 303LY UT WOS:000256043200016 PM 18454554 ER PT J AU Pauleta, SR Lu, Y Goodhew, CF Moura, I Pettigrew, GW Shelnutt, JA AF Pauleta, Sofia R. Lu, Yi Goodhew, Celia F. Moura, Isabel Pettigrew, Graham W. Shelnutt, John A. TI Calcium-dependent heme structure in the reduced forms of the bacterial cytochrome c peroxidase from Paracoccus pantotrophus SO BIOCHEMISTRY LA English DT Article ID RESONANCE RAMAN-SPECTRA; RHODOBACTER-CAPSULATUS; SPIN-STATE; PORPHYRINS; DENITRIFICANS; PROTEINS; OCTAETHYLPORPHYRIN; CONFORMATION; SPECTROSCOPY; DISTORTIONS AB This work reports for the first time a resonance Raman study of the mixed-valence and fully reduced forms of Paracoccus pantotrophus bacterial cytochrome c peroxidase. The spectra of the active mixed-valence enzyme show changes in the structure of the ferric peroxidatic heme compared to the fully oxidized enzyme; these differences are observed upon reduction of the electron-transferring heme and upon full occupancy of the calcium site. For the mixed-valence form in the absence of Ca2+, the peroxidatic heme is six-coordinate and low-spin on the basis of the frequencies of the structure-sensitive Raman lines: the enzyme is inactive. With added Ca2+, the peroxidatic heme is five-coordinate high-spin and active. The calcium-dependent spectral differences indicate little change in the conformation of the ferrous electron-transferring heme, but substantial changes in the conformation of the ferric peroxidatic heme. Structural changes associated with Ca2+ binding are indicated by spectral differences in the structure-sensitive marker lines, the out-of-plane low-frequency macrocyclic modes, and the vibrations associated with the heme substituents of that heme. The Ca2+-dependent appearance of a strong gamma(15) saddling-symmetry mode for the mixed-valence form is consistent with a strong saddling deformation in the active peroxidatic heme, a feature seen in the Raman spectra of other peroxidases. For the fully reduced form in the presence of Ca2+, the resonance Raman spectra show that the peroxidatic heme remains high-spin. C1 [Pauleta, Sofia R.; Moura, Isabel] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Quim, REQUIMTE CQFB, P-2829516 Caparica, Portugal. [Lu, Yi; Shelnutt, John A.] Sandia Natl Labs, Nanomat Sci Dept, Albuquerque, NM 87185 USA. [Lu, Yi; Shelnutt, John A.] Univ Georgia, Dept Chem, Athens, GA 30602 USA. [Goodhew, Celia F.; Pettigrew, Graham W.] Univ Edinburgh, Royal Dick Sch Vet Studies, Edinburgh EH9 1QH, Midlothian, Scotland. RP Pauleta, SR (reprint author), Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Quim, REQUIMTE CQFB, P-2829516 Caparica, Portugal. EM jasheln@unm.edu RI Shelnutt, John/A-9987-2009; Pauleta, Sofia/F-3619-2011; Moura, Isabel/D-6339-2013; Caparica, cqfb_staff/H-2611-2013; REQUIMTE, AL/H-9106-2013; Chaves, Pedro/K-1288-2013; REQUIMTE, SMB/M-5694-2013; REQUIMTE, UCIBIO/N-9846-2013 OI Shelnutt, John/0000-0001-7368-582X; Pauleta, Sofia/0000-0002-2149-9416; Moura, Isabel/0000-0003-0971-4977; NR 34 TC 5 Z9 5 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD MAY 27 PY 2008 VL 47 IS 21 BP 5841 EP 5850 DI 10.1021/bi702486d PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 303LY UT WOS:000256043200018 PM 18442258 ER PT J AU Lee, JH Karamychev, VN Kozyavkin, SA Mills, D Pavlov, AR Pavlova, NV Polouchine, NN Richardson, PM Shakhova, VV Slesarev, AI Weimer, B O'Sullivan, DJ AF Lee, Ju-Hoon Karamychev, V. N. Kozyavkin, S. A. Mills, D. Pavlov, A. R. Pavlova, N. V. Polouchine, N. N. Richardson, P. M. Shakhova, V. V. Slesarev, A. I. Weimer, B. O'Sullivan, D. J. TI Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth SO BMC GENOMICS LA English DT Article ID LACTOBACILLUS-PLANTARUM; SEQUENCE; EVOLUTION; CONSUMPTION; PLASMIDS; REGION; FLORA; AGE AB Background: Bifidobacteria are frequently proposed to be associated with good intestinal health primarily because of their overriding dominance in the feces of breast fed infants. However, clinical feeding studies with exogenous bifidobacteria show they don't remain in the intestine, suggesting they may lose competitive fitness when grown outside the gut. Results: To further the understanding of genetic attenuation that may be occurring in bifidobacteria cultures, we obtained the complete genome sequence of an intestinal isolate, Bifidobacterium longum DJO10A that was minimally cultured in the laboratory, and compared it to that of a culture collection strain, B. longum NCC2705. This comparison revealed colinear genomes that exhibited high sequence identity, except for the presence of 17 unique DNA regions in strain DJO10A and six in strain NCC2705. While the majority of these unique regions encoded proteins of diverse function, eight from the DJO10A genome and one from NCC2705, encoded gene clusters predicted to be involved in diverse traits pertinent to the human intestinal environment, specifically oligosaccharide and polyol utilization, arsenic resistance and lantibiotic production. Seven of these unique regions were suggested by a base deviation index analysis to have been precisely deleted from strain NCC2705 and this is substantiated by a DNA remnant from within one of the regions still remaining in the genome of NCC2705 at the same locus. This targeted loss of genomic regions was experimentally validated when growth of the intestinal B. longum in the laboratory for 1,000 generations resulted in two large deletions, one in a lantibiotic encoding region, analogous to a predicted deletion event for NCC2705. A simulated fecal growth study showed a significant reduced competitive ability of this deletion strain against Clostridium difficile and E. coli. The deleted region was between two IS30 elements which were experimentally demonstrated to be hyperactive within the genome. The other deleted region bordered a novel class of mobile elements, termed mobile integrase cassettes (MIC) substantiating the likely role of these elements in genome deletion events. Conclusion: Deletion of genomic regions, often facilitated by mobile elements, allows bifidobacteria to adapt to fermentation environments in a very rapid manner (2 genome deletions per 1,000 generations) and the concomitant loss of possible competitive abilities in the gut. C1 [Lee, Ju-Hoon; O'Sullivan, D. J.] Univ Minnesota, Dept Food Sci & Nutr, Ctr Microbial & Plant Genom, St Paul, MN 55108 USA. [Karamychev, V. N.; Kozyavkin, S. A.; Pavlov, A. R.; Pavlova, N. V.; Polouchine, N. N.; Shakhova, V. V.; Slesarev, A. I.] Fidel Syst Inc, Gaithersburg, MD 20879 USA. [Mills, D.] Univ Calif Davis, Dept Viticulture & Enol, Davis, CA 95616 USA. [Richardson, P. M.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Weimer, B.] Utah State Univ, Dept Biol, Ctr Integrated BioSyst, Logan, UT 84322 USA. [Weimer, B.] Utah State Univ, Dept Nutr & Food Sci, Ctr Integrated BioSyst, Logan, UT 84322 USA. RP O'Sullivan, DJ (reprint author), Univ Minnesota, Dept Food Sci & Nutr, Ctr Microbial & Plant Genom, 1500 Gortner Ave, St Paul, MN 55108 USA. EM jlee@umn.edu; kvalera@fidelitysystems.com; serg@fidelitysystems.com; damills@ucdavis.edu; apavlov@fidelitysystems.com; npavlova@fidelitysystems.com; npolouchine@fidelitysystems.com; PMRichardson@lbl.gov; fsi1@fidelitysystems.com; alex@fidelitysystems.com; bcweimer@cc.usu.edu; dosulliv@umn.edu RI Mills, David/G-2282-2011; Weimer, Bart/G-6928-2012 OI Mills, David/0000-0003-1913-9865; Weimer, Bart/0000-0002-7471-1978 NR 40 TC 99 Z9 292 U1 3 U2 33 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD MAY 27 PY 2008 VL 9 AR 247 DI 10.1186/1471-2164-9-247 PG 16 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 315ZW UT WOS:000256919700001 PM 18505588 ER PT J AU Cang, H Xu, CS Yang, H AF Cang, Hu Xu, C. Shan Yang, Haw TI Progress in single-molecule tracking spectroscopy SO CHEMICAL PHYSICS LETTERS LA English DT Article ID FLUORESCENCE CORRELATION SPECTROSCOPY; 3-DIMENSIONAL PARTICLE TRACKING; OPTICAL SPECTROSCOPY; METAL NANOPARTICLES; 2-PHOTON MICROSCOPE; CONFOCAL MICROSCOPE; QUANTUM DOTS; FLUCTUATIONS; DYNAMICS; FEEDBACK AB A topic of much current interest is the chemical reactivity in complex environments, involving dynamical processes spanning multiple scales in both time and space. While challenging to study using standard ensemble-averaged methods, it is amenable to investigations using single-molecule approaches. Ultimately, one would like to monitor the dynamics of individual molecules as they undergo chemical transformations through time-dependent spectroscopic studies, and to correlate various molecular properties with their immediate physical and chemical environments. This article provides an overview of the recent advances toward this goal and describes future developments and potential applications. (c) 2008 Elsevier B. V. All rights reserved. C1 [Yang, Haw] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Yang, H (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM hawyang@berkeley.edu OI Yang, Haw/0000-0003-0268-6352 NR 68 TC 35 Z9 35 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD MAY 27 PY 2008 VL 457 IS 4-6 BP 285 EP 291 DI 10.1016/j.cplett.2008.03.098 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 302FI UT WOS:000255953800001 ER PT J AU Saint, JA Doeff, MM Wilcox, J AF Saint, Juliette A. Doeff, Marca M. Wilcox, James TI Electrode materials with the Na0.44MnO2 structure: Effect of titanium substitution on physical and electrochemical properties SO CHEMISTRY OF MATERIALS LA English DT Article ID LITHIUM-ION BATTERIES; CATHODE MATERIAL; MANGANESE OXIDE AB The physical and electrochemical properties of LixMnO2 and LixTi0.11Mn0.89O2 synthesized from precursors made by glycine-nitrate combustion (GNC) and solid-state synthesis methods (SS) are examined in this paper. The highest specific capacities in lithium cells are obtained for SS-LixMnO2 electrodes at low current densities, but GNC-LixTi0.11Mn0.89O2 electrodes show the best high-rate performance. These results can be explained by changes in the voltage characteristics and differences in the particle morphologies induced by the Ti-substitution and synthesis method. Ti-substitution also results in a decrease in the electronic conductivity but greatly improves the thermal properties and imparts dissolution resistance to the electrode. For these reasons, it is preferable to use LixTi0.11Mn0.89O2 in lithium battery configurations rather than LixMnO2. Suggestions for improving the electrochemical performance of the Ti-substituted variant are given based on the results described herein. C1 [Saint, Juliette A.; Doeff, Marca M.; Wilcox, James] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Doeff, MM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mmdoeff@lbl.gov RI Doeff, Marca/G-6722-2013 OI Doeff, Marca/0000-0002-2148-8047 NR 22 TC 27 Z9 27 U1 5 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 27 PY 2008 VL 20 IS 10 BP 3404 EP 3411 DI 10.1021/cm800247u PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 303QW UT WOS:000256056600023 ER PT J AU Wang, DH Choi, DW Yang, ZG Viswanathan, VV Nie, ZM Wang, CM Song, YJ Zhang, JG Liu, J AF Wang, Donghai Choi, Daiwon Yang, Zhenguo Viswanathan, Vilayanur V. Nie, Zimin Wang, Chongmin Song, Yujiang Zhang, Ji-Guang Liu, Jun TI Synthesis and Li-Ion insertion properties of highly crystalline mesoporous rutile TiO2 SO CHEMISTRY OF MATERIALS LA English DT Article ID LITHIUM STORAGE; TITANIUM-DIOXIDE; HYDROTHERMAL CONDITIONS; TEMPERATURE SYNTHESIS; NANOCRYSTALLINE TIO2; ORGANIC INTERFACES; ELECTRODE MATERIAL; LI4TI5O12 SPINEL; ROOM-TEMPERATURE; AQUEOUS-SOLUTION AB Mesoporous TiO2 has attracted great attention as a promising Li insertion electrode material with improved cycling life, rate capability, and high power density. Up to date, mesoporous anatase TiO2 has been investigated for Li insertion. Recent studies have shown that nanosized rutile could be an excellent candidate for anode materials for higher Li insertion capacity and improved stability. However, synthesis of highly crystalline mesoporous rutile has met with limited success so far. There has been no report on Li insertion of mesoporous rutile TiO2. In this paper, we report a new low-temperature solution growth of TiO2 nanocrystals within an anionic surfactant matrix to produce highly crystalline mesoporous rutile and investigate Li insertion properties of the mesoporous crystalline rutile. X-ray diffraction (XRD) patterns and N-2 sorption isotherms reveal that mesoporous structure in the highly crystalline mesoporous TiO2 directly results from the anionic surfactant templating effects with high surface area (245 - 300 m(2)/g) and tunable mesopore diameter ranging from 2.2 to 3.8 mn after calcination. Transmission electron microscopy (TEM) measurements show that framework of the highly crystalline mesoporous TiO2 are composed of aligned rutile nanorod building blocks grown along [001] direction. The new mesoporous crystalline rutile can accommodate more than 0.7 Li (Li0.7TiO2, 235 mA h g(-1)) during the first discharge at a C/5 rate between 1 and 3 V versus Li+/Li, with a reversible capacity of 0.55 Li (Li0.55TiO2, 185 mA h g(-1)). The mesoporous crystalline rutile shows-excellent capacity retention with less than 10% capacity loss after more than 100 cycles. XRD and TEM characterization on the electrochemically lithiated sample show that the rutile nanorods were transformed into cubic rocksalt LiTiO2 nanorods, but the mesostructures remained stable after the phase transformation and cycling. Furthermore, the crystalline mesoporous rutile may also have good potential for other applications such as stable catalyst supports. C1 [Wang, Donghai; Choi, Daiwon; Yang, Zhenguo; Viswanathan, Vilayanur V.; Nie, Zimin; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. [Song, Yujiang] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Liu, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jun.liu@pni.gov RI Song, Yujiang/A-8700-2009; Choi, Daiwon/B-6593-2008; Wang, Donghai/L-1150-2013 OI Wang, Donghai/0000-0001-7261-8510 NR 58 TC 180 Z9 181 U1 22 U2 191 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 27 PY 2008 VL 20 IS 10 BP 3435 EP 3442 DI 10.1021/cm8002589 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 303QW UT WOS:000256056600027 ER PT J AU Park, MJ Balsara, NP AF Park, Moon Jeong Balsara, Nitash P. TI Phase behavior of symmetric sulfonated block copolymers SO MACROMOLECULES LA English DT Article ID RANDOMLY GRAFTED COPOLYMERS; ORDER-DISORDER TRANSITION; OXIDE) DIBLOCK COPOLYMER; MICROPHASE SEPARATION; TRIBLOCK COPOLYMER; THERMODYNAMIC INTERACTIONS; TRANSPORT-PROPERTIES; STRONG-SEGREGATION; LITHIUM BATTERIES; SOLID-STATE AB Phase behavior of poly(styrenesulfonate-methylbutylene) (PSS-PMB) block copolymers was studied by varying molecular weight, sulfonation level, and temperature. Molecular weights of the copolymers range from 2.9 to 117 kg/mol. Ordered lamellar, gyroid, hexagonally perforated lamellae, and hexagonally packed cylinder phases were observed in spite of the fact that the copolymers are nearly symmetric with PSS volume fractions between 0.45 and 0.50. The wide variety of morphologies seen in our copolymers is inconsistent with current theories on block copolymer phase behavior such as self-consistent field theory. Low molecular weight PSS-PMB copolymers (<6.2 kg/mol) show order-order and order-disorder phase transitions as a function of temperature. In contrast, the phase behavior of high molecular weight PSS-PMB copolymers (>7.7 kg/mol) is independent of temperature. Due to the large value of Flory-Huggins interaction parameter, chi, between the sulfonated and non-sulfortated blocks, PSS-PMB copolymers with PSS and PMB molecular weights of 1.8 and 1.4 kg/mol, respectively, show the presence of an ordered gyroid phase with a 2.5 nm diameter PSS network. A variety of methods are used to estimate chi between PSS and PMB chains as a function of sulfonation level. Some aspects of the observed phase behavior of PSS-PMB copolymers can be rationalized using chi. C1 [Park, Moon Jeong; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Park, Moon Jeong; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technologies Div, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RI Park, Moon Jeong/F-5752-2013 NR 57 TC 101 Z9 101 U1 6 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD MAY 27 PY 2008 VL 41 IS 10 BP 3678 EP 3687 DI 10.1021/ma702733f PG 10 WC Polymer Science SC Polymer Science GA 303RK UT WOS:000256058000042 ER PT J AU Klein, RJ Schroeder, JL Cole, SM Belcher, ME Cole, PJ Lenhart, JL AF Klein, Robert J. Schroeder, John L. Cole, Shannon M. Belcher, Michael E. Cole, Phillip J. Lenhart, Joseph L. TI Reduction of radiation-induced conductivity in poly(ethylene terephthalate): Effect of dopant structure SO POLYMER LA English DT Article DE radiation-induced conductivity; polymer doping; electron traps ID POLYETHYLENE TEREPHTHALATE; TRANSPORT; POLYMERS; FILMS AB This paper focuses on developing radiation tolerant polymeric films by incorporating small molecule dopants into the material formulation. The radiation tolerance is imparted to the polymer by dopants capturing the mobile electrons generated upon radiation exposure. A wide range of conjugated small molecules was utilized for the reduction of radiation-induced conductivity (RIC) in semi-crystalline poly(ethylene terephthalate). Using these results, the process of electron and hole trapping by pi-conjugated molecules may be generalized to many organic systems. All conjugated ring cores examined, when substituted with an appropriate electron-withdrawing species, led to excellent RIC reduction. The nitro group is the strongest electron-withdrawing substituent, and therefore leads to the lowest RIC, but other substituents also reduce RIC, and the interactions may be quantified by the Hammett parameter. It was also found that the dopant must be present in a certain range of concentrations, between 10 and 200 mol/m(3) (6 x 10(18) and 1 x 10(20) molecules/cm(3)), for proper trapping of the photo-induced electron-hole pairs. This understanding of the interactions between conjugated dopants, photons, and electrons will benefit other applications, such as controlled conductivity in coatings and organic electronics. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Klein, Robert J.; Schroeder, John L.; Cole, Shannon M.; Belcher, Michael E.; Lenhart, Joseph L.] Sandia Natl Labs, Organ Mat Dept, Albuquerque, NM 87185 USA. [Cole, Phillip J.] Sandia Natl Labs, NNSA Satellite Programs, Albuquerque, NM 87185 USA. RP Lenhart, JL (reprint author), Sandia Natl Labs, Organ Mat Dept, POB 5800 MS 0888, Albuquerque, NM 87185 USA. EM pjcole@sandia.gov; jllenha@sandia.gov NR 12 TC 4 Z9 5 U1 0 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD MAY 27 PY 2008 VL 49 IS 11 BP 2632 EP 2635 DI 10.1016/j.polymer.2008.03.048 PG 4 WC Polymer Science SC Polymer Science GA 312UF UT WOS:000256695600002 ER PT J AU Shim, SH Catalli, K Hustoft, J Kubo, A Prakapenka, VB Caldwell, WA Kunz, M AF Shim, Sang-Heon Catalli, Krystle Hustoft, Justin Kubo, Atsushi Prakapenka, Vitali B. Caldwell, Wendel A. Kunz, Martin TI Crystal structure and thermoelastic properties of (Mg0.91Fe0.09)SiO3 postperovskite up to 135 GPa and 2,700 K SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE equation of state; mantle; phase transition; bulk sound speed; Gruneisen parameter ID POST-PEROVSKITE PHASE; EQUATION-OF-STATE; LOWER MANTLE; MGSIO3 PEROVSKITE; LOWERMOST-MANTLE; EARTHS MANTLE; D''-LAYER; PRESSURE; TRANSITION; VELOCITY AB Intriguing seismic observations have been made for the bottom 400 km of Earth's mantle(the D" region) over the past few decades, yet the origin of these seismic structures has not. been well understood. Recent theoretical calculations have predicted many unusual changes in physical properties across the postperovskite transition, perovskite (Pv) -> postperovskite (PPv), that may provide explanations for the seismic observations. Here, we report measurements of the crystal structure of (Mg0.91Fe0.09)SiO3-PPV under quasi-hydrostatic conditions up to the pressure (P)-temperature (T) conditions expected for the core-mantle boundary (CMB). The measured crystal structure is in excellent agreement with the first-principles calculations. We found that bulk sound speed (V-Phi) decreases by 2.4 +/- 1.4% across the PPv transition. Combined with the predicted shear-wave velocity (Vs) increase, our measurements indicate that lateral variations in mineralogy between Pv and PPv may result in the anticorrelation between the V(D and Vs anomalies at the W region. Also, density increases by 1.6 +/- 0.4% and Gruneisen parameter decreases by 21 +/- 15% across the PPv transition, which will dynamically stabilize the PPv lenses observed in recent seismic studies. C1 [Shim, Sang-Heon; Catalli, Krystle; Hustoft, Justin] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Kubo, Atsushi; Prakapenka, Vitali B.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. [Caldwell, Wendel A.; Kunz, Martin] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Shim, SH (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM sangshim@mit.edu RI Kunz, Martin/K-4491-2012; OI Kunz, Martin/0000-0001-9769-9900; Shim, Sang-Heon/0000-0001-5203-6038 NR 34 TC 33 Z9 33 U1 2 U2 13 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 27 PY 2008 VL 105 IS 21 BP 7382 EP 7386 DI 10.1073/pnas.0711174105 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 308HC UT WOS:000256378100010 PM 18495922 ER PT J AU Singh, AH Wolf, DM Wang, P Arkin, AP AF Singh, Amoolya H. Wolf, Denise M. Wang, Peggy Arkin, Adam P. TI Modularity of stress response evolution SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE chemotaxis; competence; module; regulatory; sporulation ID FUNCTIONAL MODULES; BACILLUS-SUBTILIS; BACTERIAL CHEMOTAXIS; METABOLIC NETWORKS; GENE-EXPRESSION; COMPETENCE; EUKARYOTES; IDENTIFICATION; ORGANIZATION; SPORULATION AB Responses to extracellular stress directly confer survival fitness by means of complex regulatory networks. Despite their complexity, the networks must be evolvable because of changing ecological and environmental pressures. Although the regulatory networks underlying stress responses are characterized, extensively, their mechanism of evolution remains poorly understood. Here, we examine the evolution of three candidate stress response networks (chemotaxis, competence for DNA uptake, and endospore formation) by analyzing their phylogenetic distribution across several hundred diverse bacterial and archaeal lineages. We report that genes in the chemotaxis and sporulation networks group into well defined evolutionary modules with distinct functions, phenotypes, and substitution rates as compared with control sets of randomly chosen genes. The evolutionary modules vary in both number and cohesiveness among the three pathways. Chemotaxis has five coherent modules whose distribution among species shows a clear pattern of interdependence and rewiring. Sporulation, by contrast, is nearly monolithic and seems to be inherited vertically, with three weak modules constituting early and late stages of the pathway. Competence does not seem to exhibit well defined modules either at or below the pathway level. Many of the detected modules are better understood in engineering terms than in protein functional terms, as we demonstrate using a control-based ontology that classifies gene function according to roles such as "sensor," "regulator," and "actuator." Moreover, we show that combinations of the modules predict phenotype, yet surprisingly do not necessarily correlate with phylogenetic inheritance. The architectures of these three pathways are therefore emblematic of different modes an constraints on evolution. C1 [Singh, Amoolya H.; Wolf, Denise M.; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Singh, Amoolya H.; Wang, Peggy; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Wolf, Denise M.; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA. RP Wolf, DM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, 1 Cyclotron Rd,MS 9-144, Berkeley, CA 94720 USA. EM dmwolf@lbi.gov; aparkin@lbl.gov RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 FU Howard Hughes Medical Institute NR 45 TC 35 Z9 36 U1 2 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 27 PY 2008 VL 105 IS 21 BP 7500 EP 7505 DI 10.1073/pnas.0709764105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 308HC UT WOS:000256378100031 PM 18495925 ER PT J AU Keele, BF Giorgi, EE Salazar-Gonzalez, JF Decker, JM Pham, KT Salazar, MG Sun, CX Grayson, T Wang, SY Li, H Wei, XP Jiang, CL Kirchherr, JL Gao, F Anderson, JA Ping, LH Swanstrom, R Tomaras, GD Blattner, WA Goepfert, PA Kilby, JM Saag, MS Delwart, EL Busch, MP Cohen, MS Montefiori, DC Haynes, BF Gaschen, B Athreya, GS Lee, HY Wood, N Seoighe, C Perelson, AS Bhattacharya, T Korber, BT Hahn, BH Shaw, GM AF Keele, Brandon F. Giorgi, Elena E. Salazar-Gonzalez, Jesus F. Decker, Julie M. Pham, Kimmy T. Salazar, Maria G. Sun, Chuanxi Grayson, Truman Wang, Shuyi Li, Hui Wei, Xiping Jiang, Chunlai Kirchherr, Jennifer L. Gao, Feng Anderson, Jeffery A. Ping, Li-Hua Swanstrom, Ronald Tomaras, Georgia D. Blattner, William A. Goepfert, Paul A. Kilby, J. Michael Saag, Michlael S. Delwart, Eric L. Busch, Michael P. Cohen, Myron S. Montefiori, David C. Haynes, Barton F. Gaschen, Brian Athreya, Gayathri S. Lee, Ha Y. Wood, Natasha Seoighe, Cathal Perelson, Alan S. Bhattacharya, Tanmoy Korber, Bette T. Hahn, Beatrice H. Shaw, George M. TI Identification and characterisation of transmitted and early founder virus envelopes in primary HIV-1 infection SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE HIV-1 vaccines; transmitted HIV-1 envelope; viral evolution; virus transmission ID TYPE-1 INFECTION; IN-VIVO; SELECTIVE TRANSMISSION; DIVERSITY; DYNAMICS; DIVERSIFICATION; NEUTRALIZATION; RECOMBINATION; POPULATIONS; VARIANTS AB The precise identification of the HIV-1 envelope glycoprotein (Env) responsible for productive clinical infection could be instrumental in elucidating the molecular basis of HIV-1 transmission and in designing effective vaccines. Here, we developed a mathematical model of random viral evolution and, together with phylogenetic tree construction, used it to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection. Viral env genes evolving from individual transmitted or founder viruses generally exhibited a Poisson distribution of mutations and star-like phylogeny, which coalesced to an inferred consensus sequence at or near the estimated time of virus transmission. Overall, 78 of 102 subjects had evidence of productive clinical infection by a single virus, and 24 others had evidence of productive clinical infection by a minimum of two to five viruses. Phenotypic analysis of transmitted or early founder Envs revealed a consistent pattern of CCR5 dependence, masking of coreceptor binding regions, and equivalent or modestly enhanced resistance to the fusion inhibitor T1249 and broadly neutralizing antibodies compared with Envs from chronically infected subjects. Low multiplicity infection and limited viral evolution preceding peak viremia suggest a finite window of potential vulnerability of HIV-1 to vaccine-elicited immune responses, although phenotypic properties of transmitted Envs pose a formidable defense. C1 [Keele, Brandon F.; Salazar-Gonzalez, Jesus F.; Decker, Julie M.; Pham, Kimmy T.; Salazar, Maria G.; Sun, Chuanxi; Grayson, Truman; Wang, Shuyi; Li, Hui; Wei, Xiping; Goepfert, Paul A.; Kilby, J. Michael; Saag, Michlael S.; Hahn, Beatrice H.; Shaw, George M.] Univ Alabama, Dept Med, Birmingham, AL 35223 USA. [Hahn, Beatrice H.; Shaw, George M.] Univ Alabama, Dept Microbiol, Birmingham, AL 35223 USA. [Giorgi, Elena E.; Gaschen, Brian; Athreya, Gayathri S.; Perelson, Alan S.; Bhattacharya, Tanmoy; Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Giorgi, Elena E.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01002 USA. [Jiang, Chunlai; Kirchherr, Jennifer L.; Gao, Feng; Haynes, Barton F.] Duke Univ, Med Ctr, Dept Med, Durham, NC 27710 USA. [Tomaras, Georgia D.; Montefiori, David C.] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA. [Anderson, Jeffery A.; Cohen, Myron S.] Univ N Carolina, Dept Med, Chapel Hill, NC 27599 USA. [Swanstrom, Ronald] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA. [Blattner, William A.] Univ Maryland, Dept Epidemiol, College Pk, MD 20742 USA. [Delwart, Eric L.; Busch, Michael P.] Univ Calif San Francisco, Blood Syst Res Inst, San Francisco, CA 94118 USA. [Delwart, Eric L.; Busch, Michael P.] Univ Calif San Francisco, Dept Lab Med, San Francisco, CA 94118 USA. [Lee, Ha Y.] Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY 14642 USA. [Wood, Natasha; Seoighe, Cathal] Univ Cape Town, Inst Infectious Dis & Mol Med, ZA-7701 Rondebosch, South Africa. [Bhattacharya, Tanmoy; Korber, Bette T.] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Shaw, GM (reprint author), Univ Alabama, Dept Med, Birmingham, AL 35223 USA. EM gshaw@uab.edu RI Bhattacharya, Tanmoy/J-8956-2013; Tomaras, Georgia/J-5041-2016; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Kilby, J. Michael/0000-0003-3222-1003; Delwart, Eric/0000-0002-6296-4484; Korber, Bette/0000-0002-2026-5757 FU NIAID NIH HHS [AI50410, AI27767, AI41530, AI61734, AI64518, AI67854, P01 AI061734, P30 AI027767, P30 AI050410, P30 AI064518, T32 AI007392, U01 AI041530, U01 AI067854, U19 AI067854] NR 32 TC 947 Z9 964 U1 15 U2 83 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 27 PY 2008 VL 105 IS 21 BP 7552 EP 7557 DI 10.1073/pnas.0802203105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 308HC UT WOS:000256378100040 PM 18490657 ER PT J AU Nazaretski, E Akhadov, EA Martin, I Pelekhov, DV Hammel, PC Movshovich, R AF Nazaretski, E. Akhadov, E. A. Martin, I. Pelekhov, D. V. Hammel, P. C. Movshovich, R. TI Spatial characterization of the magnetic field profile of a probe tip used in magnetic resonance force microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID RESOLUTION AB We have developed the experimental approach to characterize spatial distribution of the magnetic field produced by cantilever tips used in magnetic resonance force microscopy (MRFM). We performed MRFM measurements on a well characterized diphenylpicrylhydrazyl film and mapped the three-dimensional field profile produced by a Nd(2)Fe(14)B probe tip. Using our technique, field profiles of arbitrarily shaped probe magnets can be imaged. (C) 2008 American Institute of Physics. C1 [Nazaretski, E.; Akhadov, E. A.; Martin, I.; Movshovich, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pelekhov, D. V.; Hammel, P. C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. RP Nazaretski, E (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM evgnaz@lanl.gov RI Hammel, P Chris/O-4845-2014 OI Hammel, P Chris/0000-0002-4138-4798 NR 17 TC 6 Z9 6 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 26 PY 2008 VL 92 IS 21 AR 214104 DI 10.1063/1.2937401 PG 3 WC Physics, Applied SC Physics GA 307FI UT WOS:000256303500085 ER PT J AU Proslier, T Zasadzinski, JF Cooley, L Antoine, C Moore, J Norem, J Pellin, M Gray, KE AF Proslier, T. Zasadzinski, J. F. Cooley, L. Antoine, C. Moore, J. Norem, J. Pellin, M. Gray, K. E. TI Tunneling study of cavity grade Nb: Possible magnetic scattering at the surface SO APPLIED PHYSICS LETTERS LA English DT Article ID IMPURITIES; NIOBIUM AB Tunneling spectroscopy was performed on Nb pieces prepared by the same processes used to etch and clean superconducting radio frequency (SRF) cavities. Air exposed, electropolished Nb exhibited a surface superconducting gap Delta=1.55 meV, which is characteristic of a clean, bulk Nb. However, the tunneling density of states (DOS) was significantly broadened. The Nb pieces, which were treated with the same mild baking used to improve the Q slope in SRF cavities, reveal a sharper DOS. Good fits to the DOS were obtained by using the Shiba theory, suggesting that magnetic scattering of quasiparticles is the origin of the gapless surface superconductivity and a heretofore unrecognized contributor to the Q-slope problem of Nb SRF cavities.(c) 2008 American Institute of Physics. C1 [Proslier, T.; Zasadzinski, J. F.] IIT, Dept Phys, Chicago, IL 60616 USA. [Proslier, T.; Pellin, M.; Gray, K. E.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Cooley, L.] Fermilab Natl Accelerator Lab, Div Tech, Batavia, IL 60510 USA. [Antoine, C.] Ctr Etud Saclay, Commissariat Energie Atom, F-91191 Gif Sur Yvette, France. [Moore, J.; Norem, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Proslier, T (reprint author), IIT, Dept Phys, Chicago, IL 60616 USA. EM prolier@anl.gov RI Pellin, Michael/B-5897-2008; Cooley, Lance/E-7377-2015 OI Pellin, Michael/0000-0002-8149-9768; Cooley, Lance/0000-0003-3488-2980 NR 25 TC 23 Z9 23 U1 3 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 26 PY 2008 VL 92 IS 21 AR 212505 DI 10.1063/1.2913764 PG 3 WC Physics, Applied SC Physics GA 307FI UT WOS:000256303500047 ER PT J AU Luo, J Wu, WM Carley, J Fienen, MN Cheng, H Watson, D Criddle, CS Jardine, PM Kitanidis, PK AF Luo, J. Wu, W. -M. Carley, J. Fienen, M. N. Cheng, H. Watson, D. Criddle, C. S. Jardine, P. M. Kitanidis, P. K. TI Estimating first-order reaction rate coefficient for transport with nonequilibrium linear mass transfer in heterogeneous media SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE first-order reaction; mass transfer; travel-time distribution; memory function; temporal moment ID STOCHASTIC-CONVECTIVE TRANSPORT; HIGHLY CONTAMINATED AQUIFER; SOLUTE TRANSPORT; POROUS-MEDIA; TEMPORAL MOMENTS; REDUCTIVE DECHLORINATION; BREAKTHROUGH CURVES; ZERO-ORDER; TIME; DISPERSION AB A travel-time based approach is developed for estimating first-order reaction rate coefficients for transport with nonequilibrium linear mass transfer in heterogeneous media. Tracer transport in the mobile domain is characterized by a travel-time distribution, and mass transfer rates are described by a convolution product of concentrations in the mobile domain and a memory function rather than predefining the mass transfer model. A constant first-order reaction is assumed to occur only in the mobile domain. Analytical solutions in Laplace domain can be derived for both conservative and reactive breakthrough curves (BTCs). Temporal-moment analyses are presented by using the first and second moments of conservative and reactive BTCs and the mass consumption of the reactant for an inverse Gaussian travel-time distribution. In terms of moment matching, there is no need for one to specify the mass transfer model. With the same capacity ratio and the mean retention time, all mass transfer models will lead to the same moment-derived reaction rate coefficients. In addition, the consideration of mass transfer generally yields larger estimations of the reaction rate coefficient than models ignoring mass transfer. Furthermore, the capacity ratio and the mean retention time have opposite influences on the estimation of the reaction rate coefficient: the first-order reaction rate coefficient is positively linearly proportional to the capacity ratio, but negatively linearly proportional to the mean retention time. (c) 2008 Elsevier B.V. All rights reserved. C1 [Luo, J.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Wu, W. -M.; Cheng, H.; Criddle, C. S.; Kitanidis, P. K.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Carley, J.; Watson, D.; Jardine, P. M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Fienen, M. N.] US Geol Survey, Wisconsin Water Sci Ctr, Middleton, WI 53562 USA. RP Luo, J (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. EM jianluo@ce.gatech.edu RI Fienen, Michael/D-2479-2009; Cheng, Hefa/A-1193-2007 OI Fienen, Michael/0000-0002-7756-4651; Cheng, Hefa/0000-0003-4911-6971 NR 51 TC 5 Z9 5 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD MAY 26 PY 2008 VL 98 IS 1-2 BP 50 EP 60 DI 10.1016/j.jconhyd.2008.03.002 PG 11 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 315BG UT WOS:000256852300005 PM 18440665 ER PT J AU Chen, HT Lu, H Azad, AK Averitt, RD Gossard, AC Trugman, SA O'Hara, JF Taylor, AJ AF Chen, Hou-Tong Lu, Hong Azad, Abul K. Averitt, Richard D. Gossard, Arthur C. Trugman, Stuart A. O'Hara, John F. Taylor, Antoinette J. TI Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays SO OPTICS EXPRESS LA English DT Article ID OPTICAL-TRANSMISSION; PHOTONIC CRYSTALS; APERTURES; RADIATION; METAMATERIALS; MODULATION; RANGE; LASER; THIN AB We describe the electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays fabricated on doped semiconductor substrates. The hybrid metal-semiconductor forms a Schottky diode structure, where the active depletion region modifies the substrate conductivity in real-time by applying an external voltage bias. This enables effective control of the resonance enhanced terahertz transmission. Our proof of principle device achieves an intensity modulation depth of 52% by changing the voltage bias between 0 and 16 volts. Further optimization may result in improvement of device performance and practical applications. This approach can be also translated to the other optical frequency ranges. (C) 2008 Optical Society of America. C1 [Chen, Hou-Tong; Azad, Abul K.; Trugman, Stuart A.; O'Hara, John F.; Taylor, Antoinette J.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. [Lu, Hong; Gossard, Arthur C.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Averitt, Richard D.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Chen, HT (reprint author), Los Alamos Natl Lab, MPA CINT, MS K771, Los Alamos, NM 87545 USA. EM chenht@lanl.gov RI Chen, Hou-Tong/C-6860-2009; LU, Hong/D-3658-2013; Azad, Abul/B-1163-2011; OI Chen, Hou-Tong/0000-0003-2014-7571; LU, Hong/0000-0002-8340-2739; Trugman, Stuart/0000-0002-6688-7228; Azad, Abul/0000-0002-7784-7432 NR 33 TC 74 Z9 79 U1 2 U2 28 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD MAY 26 PY 2008 VL 16 IS 11 BP 7641 EP 7648 DI 10.1364/OE.16.007641 PG 8 WC Optics SC Optics GA 309OK UT WOS:000256469900007 PM 18545471 ER PT J AU Gribble, MW Ellman, JA Bergman, RG AF Gribble, Michael W., Jr. Ellman, Jonathan A. Bergman, Robert G. TI Synthesis of a benzodiazepine-derived rhodium NHC complex by C-H bond activation SO ORGANOMETALLICS LA English DT Article ID N-HETEROCYCLIC CARBENE; PLANAR METAL-COMPLEXES; IMIDAZOLIUM SALTS; RUTHENIUM; ALKENES; LIGAND; FUNCTIONALIZATION; REARRANGEMENT; REACTIVITY; QUINOLINES AB The synthesis and characterization of a Rh(I)-NHC complex generated by C-H activation of a 1,4-benzodiazepine heterocycle are reported. This complex constitutes a rare example of a carbene tautomer of a 1,4-benzodiazepine aldimine stabilized by transition metal coordination and demonstrates the ability of the catalytically relevant RhCl(PCy3)(2) fragment to induce NHC-forming tautomerization of heterocycles possessing a single carbene-stabilizing heteroatom. Implications for the synthesis of benzodiazepines and related pharmacophores via C-H functionalization are discussed. C1 [Gribble, Michael W., Jr.; Ellman, Jonathan A.; Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Gribble, Michael W., Jr.; Bergman, Robert G.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Ellman, JA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jellman@uclink.berkeley.edu; bergman@cchem.berkeley.edu RI Ellman, Jonathan/C-7732-2013 FU NIGMS NIH HHS [R01 GM069559, R01 GM069559-09] NR 39 TC 32 Z9 32 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 EI 1520-6041 J9 ORGANOMETALLICS JI Organometallics PD MAY 26 PY 2008 VL 27 IS 10 BP 2152 EP 2155 DI 10.1021/om8000839 PG 4 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 299QA UT WOS:000255768900002 PM 21191469 ER PT J AU Krishnan, VB Manjeri, RM Clausen, B Brown, DW Vaidyanathan, R AF Krishnan, V. B. Manjeri, R. M. Clausen, B. Brown, D. W. Vaidyanathan, R. TI Analysis of neutron diffraction spectra acquired in situ during mechanical loading of shape memory NiTiFe at low temperatures SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT 7th European Symposium on Martensitic Transformations CY SEP 10-15, 2006 CL Bochum, GERMANY DE NiTiFe shape memory alloy; phase transformation; neutron diffraction; Rietveld refinement; R-phase ID R-PHASE; SUPERELASTIC NITI; CRYSTAL-STRUCTURE; TIC COMPOSITES; ALLOYS; TRANSFORMATIONS; TI50NI47FE3; REFINEMENT AB The Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory was used to acquire neutron diffraction spectra in situ during mechanical loading at 216 and 237 K. The experiments were performed with the objective of following the texture, strain and phase fraction evolution in the trigonal R-phase in a Ni46.8Ti50Fe3.2 shape memory alloy. A methodology to quantify the textures, strains and phase fractions using the General Structure Analysis System (GSAS) for Rietveld refinement of neutron diffraction spectra, is implemented and described. Emphasis is placed on evaluating the choice of P3 and P (3) over bar space groups for the R-phase in the refinements and the impact of this choice on the quantitative analyses of spectra. (C) 2007 Elsevier B.V. All rights reserved. C1 [Krishnan, V. B.; Manjeri, R. M.; Vaidyanathan, R.] Univ Cent Florida, AMPAC, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. [Clausen, B.; Brown, D. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Vaidyanathan, R (reprint author), Univ Cent Florida, AMPAC, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. EM raj@mail.ucf.edu RI Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X NR 37 TC 12 Z9 12 U1 1 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAY 25 PY 2008 VL 481 SI SI BP 3 EP 10 DI 10.1016/j.msea.2006.11.176 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 298VV UT WOS:000255716100002 ER PT J AU Planes, A Manosa, L Romero, R Stipcich, M Lashley, JC Smith, JL AF Planes, Antoni Manosa, Lluis Romero, Ricardo Stipcich, Marcelo Lashley, J. C. Smith, J. L. TI The physics of the boson peak in Cu-based shape-memory alloys SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT 7th European Symposium on Martensitic Transformations CY SEP 10-15, 2006 CL Bochum, GERMANY DE boson peak; Cu-Zn-Al; specific heat; entropy change ID NEUTRON-SCATTERING; ENTROPY AB We report specific heat measurements from 2 to 300 K in two Cu-Zn-Al shape-memory alloys. One remains in the parent phase, while the other is in the martensitic phase over the full measurement range. Data confirm the existence of a boson peak in the parent L2(1)-phase of the studied material. A model is proposed that assumes that the boson peak is associated with the excess of vibrational entropy of the L2(1)-phase with respect to the martensitic phase. The computed excess of entropy is in agreement with data obtained from calorimetric measurements in Cu-Zn-Al samples of selected compositions that transform martensitically in the temperature range from 30 to 250 K. (C) 2007 Elsevier B.V. All rights reserved. C1 [Planes, Antoni; Manosa, Lluis; Romero, Ricardo] Univ Barcelona, Dept Estructura & Constituents Mat, Fac Fis, Barcelona 08028, Catalonia, Spain. [Romero, Ricardo; Stipcich, Marcelo] Univ Ctr Provincia Buenos Aires, IFIMAT, RA-7000 Tandil, Argentina. [Romero, Ricardo] Comis Invest Cient Prov Buenos Aires, Buenos Aires, DF, Argentina. [Stipcich, Marcelo] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina. [Lashley, J. C.; Smith, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Planes, A (reprint author), Univ Barcelona, Dept Estructura & Constituents Mat, Fac Fis, Diagonal 647, Barcelona 08028, Catalonia, Spain. EM toni@ecm.ub.es RI Manosa, Lluis/D-8579-2014; Planes, Antoni/O-1904-2015; OI Manosa, Lluis/0000-0002-1182-2670; Planes, Antoni/0000-0001-5213-5714; Stipcich, Marcelo/0000-0003-1514-0703 NR 11 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAY 25 PY 2008 VL 481 SI SI BP 194 EP 196 DI 10.1016/j.msea.2007.01.172 PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 298VV UT WOS:000255716100036 ER PT J AU Moya, X Manosa, L Planes, A Krenke, T Acet, A Wassermann, EF Morin, M Garlea, VO Lograsso, TA Zarestky, JL AF Moya, X. Manosa, Ll. Planes, A. Krenke, T. Acet, A. Wassermann, E. F. Morin, M. Garlea, V. O. Lograsso, T. A. Zarestky, J. L. TI Lattice dynamics of Ni-Mn-Al Heusler alloys SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT 7th European Symposium on Martensitic Transformations CY SEP 10-15, 2006 CL Bochum, GERMANY DE Ni-Mn-Al; Heusler alloy; neutron scattering; elastic constants; precursor phenomena; magnetoelastic coupling ID PREMARTENSITIC PHENOMENA; FERROMAGNETIC NI2MNGA; MARTENSITIC PHASE; TRANSITION AB We have studied the lattice dynamics of a Ni54Mn23Al23 (at.%) Heusler single-crystalline alloy by means of neutron scattering and ultrasonic techniques. Results show the existence of a number of precursor phenomena. We have found an anomaly (dip) in the low TA(2) phonon branch at the wave number xi(0) approximate to 0.33 (in reciprocal lattice units) that becomes more pronounced (phonon softening) with decreasing temperature. We have also observed softening of the associated shear elastic constant (C) with decreasing temperature. Ultrasonic measurements under applied magnetic field, both isothermally and varying the temperature show that the values of elastic constants depend on magnetic order thus evidencing magnetoelastic coupling. (C) 2007 Elsevier B.V. All rights reserved. C1 [Moya, X.; Manosa, Ll.; Planes, A.] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, Barcelona, Catalonia, Spain. [Krenke, T.; Acet, A.; Wassermann, E. F.] Univ Duisburg Essen, D-47048 Duisburg, Germany. [Morin, M.] INSA, Etud Met Phys & Phys Mat Grp, F-69621 Villeurbanne, France. [Garlea, V. O.; Lograsso, T. A.; Zarestky, J. L.] Iowa State Univ, Ames Lab, Dept Phys, Ames, IA 50011 USA. RP Manosa, L (reprint author), Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, Diagonal 647, Barcelona, Catalonia, Spain. EM lluis@ecm.ub.es RI Manosa, Lluis/D-8579-2014; Planes, Antoni/O-1904-2015; Garlea, Vasile/A-4994-2016; OI Manosa, Lluis/0000-0002-1182-2670; Planes, Antoni/0000-0001-5213-5714; Garlea, Vasile/0000-0002-5322-7271; Moya, Xavier/0000-0003-0276-1981 NR 22 TC 1 Z9 1 U1 2 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAY 25 PY 2008 VL 481 SI SI BP 227 EP 230 DI 10.1016/j.msea.2006.12.217 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 298VV UT WOS:000255716100044 ER PT J AU Khovaylo, V Koledov, V Shavrov, V Ohtsuka, M Miki, H Takagi, T Novosad, V AF Khovaylo, V. Koledov, V. Shavrov, V. Ohtsuka, M. Miki, H. Takagi, T. Novosad, V. TI Influence of cobalt on phase transitions in Ni50Mn37Sn13 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT 7th European Symposium on Martensitic Transformations CY SEP 10-15, 2006 CL Bochum, GERMANY DE ferromagnetic shape memory alloy; Heusler alloy; phase transitions ID HEUSLER ALLOYS; SHAPE; TRANSFORMATION; FE; CO AB The effect of cobalt addition to Ni50Mn37Sn13 (numbers indicate at.%) and the influence of Ni excess on phase transitions in Ni50+xMn37-xSn13 ferromagnetic shape memory alloys were studied by means of differential scanning calorimetry and magnetization measurements. The results obtained revealed that the martensitic and magnetic phase transition temperatures strongly depend on whether Co is substituted instead of Ni or Mn. Magnetic properties of Ni50+xMn37-xSn13 have complex character. The martensitic transition temperature in these alloys shows a tendency to increase with increasing Ni excess. (C) 2007 Elsevier B.V. All rights reserved. C1 [Khovaylo, V.; Koledov, V.; Shavrov, V.] RAS, Inst Radioengn & Elect, Moscow 125009, Russia. [Ohtsuka, M.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Miki, H.; Takagi, T.] Tohoku Univ, Inst Fluid Sci, Sendai, Miyagi 9808577, Japan. [Novosad, V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Khovaylo, V (reprint author), RAS, Inst Radioengn & Elect, Moscow 125009, Russia. EM v-khovaylo@cplire.ru RI Khovaylo, Vladimir/A-9706-2010; Novosad, Valentyn/C-2018-2014; Victor, Koledov/F-4259-2014; Shavrov, Vladimir/F-4247-2014; Novosad, V /J-4843-2015; OI Khovaylo, Vladimir/0000-0001-7815-100X; Takagi, Toshiyuki/0000-0003-1283-4320 NR 14 TC 11 Z9 11 U1 3 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAY 25 PY 2008 VL 481 SI SI BP 322 EP 325 DI 10.1016/j.msea.2006.12.235 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 298VV UT WOS:000255716100067 ER PT J AU Shabalovskaya, S Anderegg, J Van Humbeeck, J AF Shabalovskaya, S. Anderegg, J. Van Humbeeck, J. TI Recent observations of particulates in Nitinol SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT 7th European Symposium on Martensitic Transformations CY SEP 10-15, 2006 CL Bochum, GERMANY DE NiTi; inclusions; oxides; carbides; biocompatibility; corrosion ID SHAPE-MEMORY; ALLOYS AB In spite of 40 years of history of Nitinol, the issues regarding its inclusions have been poorly explored. In our brief studies, conducted within the projects on surface design using Auger, energy-dispersive X-ray spectroscopy and scanning electrons microscopy, we discovered that particulates in NiTi medical alloys were always based on Ti: either similar to Ti2NiO oxide, titanium dioxide, titanium carbide or oxidized titanium carbide. Nonmetallic particles were rather brittle, had various shapes and sizes, and revealed different solubility in chemical solutions. The matrix material surrounding inclusions showed a tendency to localized corrosion. It was hypothesized that release of inclusion debris in the human body due to corrosion might compromise biocompatibility of Nitinol. (C) 2007 Elsevier B.V. All rights reserved. C1 [Shabalovskaya, S.; Anderegg, J.] Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. [Shabalovskaya, S.; Van Humbeeck, J.] Katholieke Univ Leuven, MTM, B-3001 Louvain, Belgium. RP Shabalovskaya, S (reprint author), Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. EM Svetlana.Shabalovskaya@mtm.kuleuven.be NR 14 TC 15 Z9 16 U1 0 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAY 25 PY 2008 VL 481 SI SI BP 431 EP 436 DI 10.1016/j.msea.2007.01.177 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 298VV UT WOS:000255716100089 ER PT J AU Maikic, G Karajagi, S Balachandran, U Salama, K AF Maikic, G. Karajagi, S. Balachandran, U. Salama, K. TI The effect of hydrogen partial pressure on uniaxial creep of 3Y-TZP/50 vol.% Pd cermet membranes SO MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS LA English DT Article DE diffusion creep; zirconia; palladium; controlled atmosphere ID YTTRIA-STABILIZED ZIRCONIA; TEMPERATURE MECHANICAL CHARACTERISTICS; TETRAGONAL ZIRCONIA; SINGLE-CRYSTALS; DIFFUSION CREEP; SOLID-SOLUTIONS; CUBIC ZIRCONIA; DEFORMATION MECHANISMS; VACANCY INTERACTIONS; PLASTIC-DEFORMATION AB This study investigated the effect of hydrogen partial pressure (P-H2) on the creep behavior of (3 mol% Y-TZP)/50vol.% Pd cermet (YSZ/Pd), a hydrogen permeable material under development for separating hydrogen from mixed gases. Samples were subjected to uniaxial compression creep under both an inert (pure argon) atmosphere and p(H2) = 10(-2) to 0.5 atm (balance At), in the temperature and stress ranges of 1150-1250 degrees C and 10-30 MPa, respectively. The creep measurements in At atmosphere yielded stress exponent and activation energy of n approximate to 2 and E = 582 kJ/mol, respectively, which is in good agreement with superplastic deformation of pure YSZ. The composite exhibits a tendency of decreasing n values with increase ill p(H2), reaching n approximate to 1.5 at p(H2) = 0.5 atm. The effect of hydrogen partial pressure on creep can be described by an exponent of r approximate to 1/6, resulting in an increase in creep rate by a factor of 2.5 upon switching from Ar to p(H2) = 0.5 atm. (c) 2008 Elsevier B.V. All rights reserved. C1 [Maikic, G.; Karajagi, S.; Salama, K.] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA. [Balachandran, U.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Maikic, G (reprint author), Univ Houston, Dept Mech Engn, Houston, TX 77204 USA. EM gmajkic@uh.edu NR 43 TC 3 Z9 3 U1 4 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-5107 J9 MATER SCI ENG B-ADV JI Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. PD MAY 25 PY 2008 VL 150 IS 3 BP 145 EP 150 DI 10.1016/j.mseb.2008.04.001 PG 6 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 334QS UT WOS:000258236900001 ER PT J AU Nishimura, Y Wygant, J Ono, T Iizima, M Kumamoto, A Brautigam, D Friedel, R AF Nishimura, Y. Wygant, J. Ono, T. Iizima, M. Kumamoto, A. Brautigam, D. Friedel, R. TI SAPS measurements around the magnetic equator by CRRES SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SUBAURORAL ION DRIFTS; INSTRUMENT; MODEL AB Enhancements of convection electric fields during two substorms have been analyzed using CRRES satellite data measured in the premidnight inner magnetosphere. The electric field, related to subauroral polarization streams (SAPS), begins to increase within 30 sec after the substorm onset, indicating a quicker response of convection in the inner magnetosphere to substorms than has been reported (similar to 10 min) before. A prompt response of the ion pressure and the following decrease in the cold plasma density supports the fact that the electric field enhances just after the substorm onset and drives accelerations of energetic ions and plasmapause erosion. The SAPS electric field enhances between the earthward edges of the ring current and plasmasheet, and the plasmapause coincides with the earthward edge of the electron plasmasheet. The plasmapause location deviates from the stagnation point, and the SAPS electric field penetrates into the plasmasphere, driving a sunward plasma drift of the plasmaspheric plasma. C1 [Nishimura, Y.; Ono, T.; Iizima, M.; Kumamoto, A.] Tohoku Univ, Dept Geophys, Sendai, Miyagi 9808578, Japan. [Friedel, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Brautigam, D.] AF Res Lab, Hanscom AFB, MA 01731 USA. [Wygant, J.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Nishimura, Y (reprint author), Tohoku Univ, Dept Geophys, Sendai, Miyagi 9808578, Japan. EM yukitoshi@stpp1.geophys.tohoku.ac.jp RI Friedel, Reiner/D-1410-2012 OI Friedel, Reiner/0000-0002-5228-0281 NR 13 TC 14 Z9 14 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 24 PY 2008 VL 35 IS 10 AR L10104 DI 10.1029/2008GL033970 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 304VT UT WOS:000256137900008 ER PT J AU Yang, L Peng, HS Huang, K Mague, JT Li, HX Lu, YF AF Yang, Lu Peng, Huisheng Huang, Kun Mague, Joel T. Li, Hexing Lu, Yunfeng TI Hierarchical assembly of organic/inorganic building molecules with pi-pi interactions SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID CRYSTALLINE PERYLENE DIIMIDES; BRIDGED SILSESQUIOXANE; THIN-FILMS; BIS(PHENETHYLIMIDE) FILMS; SELF-ORGANIZATION; BLOCK-COPOLYMERS; ORGANIC GROUPS; SOLAR-CELLS; MORPHOLOGIES; CAPSULES AB Hierarchical assemblies of perylenetetracarboxylic diimide bridged silsesquioxane (PDBS) with controlled structure at multi-length scale are studied using both experimental and computational methods. The organization process spans multi-length scales and includes three continuous steps: 1) stacking of the preprogrammed molecules into small clusters, 2) growing of the small clusters into nanoscale building blocks with various sizes and shapes depending on the experimental conditions, and 3) aggregation of nanoscale building blocks into micro- or macro-scale assemblies. The main factors determining the assembly morphology are the second and third steps, which can be controlled by varying the experimental conditions, such as solution drying rate, solvent composition, and PDBS concentration. Despite the different morphologies, all of these assemblies possess highly ordered lamellar structure. It is found that incorporating perylenetetracarboxylic diimide (PD) moieties into the highly ordered silica network endows the PD components with high thermal and mechanical stability, as well as improved optical and electronic properties. C1 [Li, Hexing] Shanghai Normal Univ, Dept Chem, Shanghai 200234, Peoples R China. [Lu, Yunfeng] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. [Yang, Lu] Los Alamos Natl Lab, Theoret Chem & Mol Phys Grp T12, Los Alamos, NM 87545 USA. [Peng, Huisheng; Huang, Kun] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA. [Mague, Joel T.] Tulane Univ, Dept Chem, New Orleans, LA 70118 USA. RP Li, HX (reprint author), Shanghai Normal Univ, Dept Chem, Shanghai 200234, Peoples R China. EM hexing-li@shnu.edu.cn; luucla@ucla.edu RI Yang, Lu/A-5446-2010; Peng, Huisheng/G-8867-2011 NR 70 TC 27 Z9 27 U1 6 U2 40 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD MAY 23 PY 2008 VL 18 IS 10 BP 1526 EP 1535 DI 10.1002/adfm.200700673 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 314YZ UT WOS:000256846400005 ER PT J AU Piryatinski, A Tretiak, S Chernyak, VY AF Piryatinski, Andrei Tretiak, Sergei Chernyak, Vladimir Y. TI Dynamical variational approach to non-adiabatic electronic structure SO CHEMICAL PHYSICS LA English DT Article DE non-adiabatic dynamics; degenerate ground state; dynamical variational method; non-linear spectroscopy; unavoided level crossing; TDHF; TDDFT ID EXCITED-STATE DYNAMICS; INTERACTION WAVE-FUNCTIONS; CONICAL INTERSECTIONS; AB-INITIO; MOLECULAR-DYNAMICS; RADIATIONLESS DECAY; SINGLET-STATES; 9H-ADENINE; REPRESENTATION; FLUORESCENCE AB Studying non-adiabatic effects in molecular dynamics simulations and modeling their optical signatures in linear and non-linear spectroscopies calls for electronic structure calculations in a situation when the ground state is degenerate or almost degenerate. Such degeneracy causes serious problems in invoking single Slater determinant Hartree-Fock (HF) and density functional theory (DFT) methods. To resolve this problem, we develop a generalization of time-dependent (dynamical) variational approach which accounts for the degenerate or almost degenerate ground state structure. Specifically, we propose a ground state ansatz for the subspace of generalized electronic configurations spanned on the degenerate grounds state multi-electron wavefunctions. Further employing the invariant form of Hamilton dynamics we arrive with the classical equations of motion describing the time-evolution of this subspace in the vicinity of the stationary point. The developed approach can be used for accurate calculations of molecular excited states and electronic spectra in the degenerate case. (c) 2008 Elsevier B.V. All rights reserved. C1 [Chernyak, Vladimir Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Piryatinski, Andrei; Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Chernyak, VY (reprint author), Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA. EM chernyak@chem.wayne.edu RI Piryatinski, Andrei/B-5543-2009; Tretiak, Sergei/B-5556-2009; Chernyak, Vladimir/F-5842-2016 OI Tretiak, Sergei/0000-0001-5547-3647; Chernyak, Vladimir/0000-0003-4389-4238 NR 68 TC 2 Z9 2 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 EI 1873-4421 J9 CHEM PHYS JI Chem. Phys. PD MAY 23 PY 2008 VL 347 IS 1-3 BP 25 EP 38 DI 10.1016/j.chemphys.2008.01.010 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 315GP UT WOS:000256866700004 ER PT J AU Nahle, Z Hsieh, M Pietka, T Coburn, CT Grimaldi, PA Zhang, MQ Das, D Abumrad, NA AF Nahle, Zaher Hsieh, Michael Pietka, Terri Coburn, Chris T. Grimaldi, Paul A. Zhang, Michael Q. Das, Debopriya Abumrad, Nada A. TI CD36-dependent regulation of muscle FoxO1 and PDK4 in the PPAR delta/beta-mediated adaptation to metabolic stress SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID ACTIVATED-RECEPTOR-DELTA; FATTY-ACID UPTAKE; TRANSCRIPTION FACTOR FOXO1; HUMAN SKELETAL-MUSCLE; PYRUVATE-DEHYDROGENASE COMPLEX; OBESE ZUCKER RATS; INSULIN-RESISTANCE; GENE-EXPRESSION; CELL-CYCLE; LIPID-METABOLISM AB The transcription factor FoxO1 contributes to the metabolic adaptation to fasting by suppressing muscle oxidation of glucose, sparing it for glucose-dependent tissues. Previously, we reported that FoxO1 activation in C2C12 muscle cells recruits the fatty acid translocase CD36 to the plasma membrane and increases fatty acid uptake and oxidation. This, together with FoxO1 induction of lipoprotein lipase, would promote the reliance on fatty acid utilization characteristic of the fasted muscle. Here, we show that CD36-mediated fatty acid uptake, in turn, up-regulates protein levels and activity of FoxO1 as well as its target PDK4, the negative regulator of glucose oxidation. Increased fatty acid flux or enforced CD36 expression in C2C12 cells is sufficient to induce FoxO1 and PDK4, whereas CD36 knockdown has opposite effects. In vivo, CD36 loss blunts fasting induction of FoxO1 and PDK4 and the associated suppression of glucose oxidation. Importantly, CD36-dependent regulation of FoxO1 is mediated by the nuclear receptor PPAR delta/beta. Loss of PPAR delta/beta phenocopies CD36 deficiency in blunting fasting induction of muscle FoxO1 and PDK4 in vivo. Expression of PPAR delta/beta in C2C12 cells, like that of CD36, robustly induces FoxO1 and suppresses glucose oxidation, whereas co-expression of a dominant negative PPAR delta/beta compromises FoxO1 induction. Finally, several PPRE sites were identified in the FoxO1 promoter, which was responsive to PPAR delta/beta. Agonists of PPAR delta/beta were sufficient to confer responsiveness and transactivate the heterologous FoxO1 promoter but not in the presence of dominant negative PPAR delta/beta. Taken together, our findings suggest that CD36-dependent FA activation of PPAR delta/beta results in the transcriptional regulation of FoxO1 as well as PDK4, recently shown to be a direct PPAR delta/beta target. FoxO1 in turn can regulate CD36, lipoprotein lipase, and PDK4, reinforcing the action of PPAR delta/beta to increase muscle reliance on FA. The findings could have implications in the chronic abnormalities of fatty acid metabolism associated with obesity and diabetes. C1 [Nahle, Zaher; Hsieh, Michael; Pietka, Terri; Abumrad, Nada A.] Washington Univ, Sch Med, Dept Med, St Louis, MO 63110 USA. [Coburn, Chris T.] Western Carolina Univ, Dept Biol, Cullowhee, NC 28723 USA. [Grimaldi, Paul A.] Univ Nice Sophia Antipolis, INSERM, Ctr Biochim, U636,UFR Sci, F-06108 Nice, France. [Zhang, Michael Q.] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. [Das, Debopriya] Ernest O Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94270 USA. RP Nahle, Z (reprint author), Washington Univ, Sch Med, Dept Med, Campus Box 8031, St Louis, MO 63110 USA. EM znahle@im.wustl.edu FU NIDDK NIH HHS [DK 33301, DK 56351, P30 DK056341, P30 DK056341-07, P30 DK056341-08] NR 79 TC 46 Z9 48 U1 0 U2 6 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD MAY 23 PY 2008 VL 283 IS 21 BP 14317 EP 14326 DI 10.1074/jbc.M706478200 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 302BL UT WOS:000255941400018 PM 18308721 ER PT J AU Asnin, L Kaczmarski, K Guiochon, G AF Asnin, Leonid Kaczmarski, Krzysztof Guiochon, Georges TI Features of the adsorption of naproxen enantiomers on weak chiral anion-exchangers in nonlinear chromatography SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE enantiomer separation; chiral stationary phase; adsorption isotherm; frontal analysis; quinidine carbamate; naproxen ID PERFORMANCE LIQUID-CHROMATOGRAPHY; NONSTEROIDAL ANTIINFLAMMATORY DRUGS; EXPECTATION-MAXIMIZATION METHOD; MOLECULARLY IMPRINTED POLYMERS; AFFINITY ENERGY-DISTRIBUTION; SINGLE-COMPONENT ISOTHERMS; IONIZABLE COMPOUNDS; AMINO-ACIDS; CELLULOSE TRIBENZOATE; RETENTION MECHANISMS AB The retention mechanism of the enantiomers of naproxen on a Pirkle-type chiral stationary phase (CSP) was studied. This CSP is made of a porous silica grafted with quinidine carbamate. It can interact with the weak organic electrolyte naproxen either by adsorbing it or by ion-exchange. Using frontal chromatography, we explored the adsorption equilibrium under such experimental conditions that naproxen dissociates or cannot dissociate. Under conditions preventing ionic dissociation, the adsorption isotherms were measured, the adsorption energy distributions determined, and the chromatographic profiles calculated. Three different types of the adsorption sites were found for both enantiomers. The density and the binding energy of these sites depend on the nature of the organic modifier. Different solute species, anions, neutral molecules, solvent-ion associates, and solute dimers can coexist in solution, giving rise to different forms of adsorption. This study showed the unexpected occurrence of secondary steps in the breakthrough profiles of S-naproxen in the adsorption mode at high concentrations. Being enantioselective, this phenomenon was assumed to result from the association of solute molecules involving a chiral selector moiety. A multisite Langmuir adsorption model was used to calculate band profiles. Although this model accounts excellently for the experimental adsorption isotherms, it does not explain all the features of the breakthrough profiles. A comparison between the calculated and experimental profiles allowed useful conclusions concerning the effects of the adsorbate-adsorbate and adsorbate-solvent interactions on the adsorption mechanism. (C) 2008 Elsevier B.V. All rights reserved. C1 [Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Guiochon, Georges] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Asnin, Leonid] Russian Acad Sci, Inst Tech Chem, Ural Div, Perm 614013, Russia. [Kaczmarski, Krzysztof] Rzeszow Univ Technol, Fac Chem, PL-35959 Rzeszow, Poland. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, 414 Buehler Hall, Knoxville, TN 37996 USA. EM guiochon@ion.chem.utk.edu OI Asnin, Leonid/0000-0001-6309-6140 NR 51 TC 9 Z9 9 U1 4 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD MAY 23 PY 2008 VL 1192 IS 1 BP 62 EP 73 DI 10.1016/j.chroma.2008.03.023 PG 12 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 305TM UT WOS:000256200700008 PM 18377915 ER PT J AU Steiner, SA Fritz, JS AF Steiner, Steven A. Fritz, James S. TI Separation of organic cations using novel background electrolytes by capillary electrophoresis SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article; Proceedings Paper CT 19th Annual International Ion Chromatography Symposium CY SEP 24-27, 2006 CL Pittsburgh, PA DE capillary chromatography; capillary electrophoresis; cations; drug analysis; electroosmotic flow ID PERFORMANCE LIQUID-CHROMATOGRAPHY; HIGH-SALT CONCENTRATIONS; ELECTROOSMOTIC FLOW; ANIONS; SURFACTANTS AB A background electrolyte for capillary electrophoresis containing tris(-hydroxymethyl) aminomethane (THAM) and ethanesulfonic acid (ESA) gives excellent efficiency for separation of drug cations with actual theoretical plate numbers as high as 300,000. However, the analyte cations often elute too quickly and consequently offer only a narrow window for separation. The best way to correct this is to induce a reverse electroosmotic flow (EOF) that will spread out the peaks by slowing their migration rates, but this has always been difficult to accomplish in a controlled manner. A new method for producing a variable EOF is described in which a low variable concentration of tributylammonium- or triethylammonium ESA is added to the BGE. The additive equilibrates with the capillary wall to give it a positive charge and thereby produce a controlled opposing EOF Excellent separations of complex drug mixtures were obtained by this method. (C) 2008 Elsevier B.V. All rights reserved. C1 [Steiner, Steven A.] Univ Wisconsin, Dept Chem & Engn Phys, Platteville, WI 53818 USA. [Fritz, James S.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Fritz, James S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Steiner, SA (reprint author), Univ Wisconsin, Dept Chem & Engn Phys, Platteville, WI 53818 USA. EM steiners@uwplatt.edu NR 15 TC 2 Z9 3 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD MAY 23 PY 2008 VL 1192 IS 1 BP 152 EP 156 DI 10.1016/j.chroma.2008.02.022 PG 5 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 305TM UT WOS:000256200700019 PM 18405906 ER PT J AU Neumann, TA Conway, H Price, SF Waddington, ED Catania, GA Morse, DL AF Neumann, T. A. Conway, H. Price, S. F. Waddington, E. D. Catania, G. A. Morse, D. L. TI Holocene accumulation and ice sheet dynamics in central West Antarctica SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article ID PINE ISLAND GLACIER; SIPLE-DOME; GREENLAND; DIVIDE; CORE; FLOW; PRECIPITATION; TEMPERATURE; VARIABILITY; ISOCHRONES AB We derive depth-age relationships across the ice divide between the Ross and Amundsen Seas by tracking radar-detected layers from the Byrd ice core and a dated 105-m core near the divide. The depth-age relationships and an ice-flow model are used to establish histories of accumulation and ice sheet dynamics over the past 8000 years. Results show that accumulation was approximately 30% higher than today from 5000 to 3000 years ago. Antarctic climate variability today is dominated by periodic fluctuations in strength of the circumpolar vortex, which raises the possibility that the vortex was systematically weaker during the period of high accumulation. Accumulation today decreases almost linearly across the divide. It is unlikely that this pattern has changed through the Holocene. The radar-detected stratigraphy shows no evidence of the arched layers that are expected beneath a stable divide that is frozen to its bed, implying that the divide has also been migrating and/or the basal ice has been sliding through the Holocene. We cannot rule out the possibility of sliding because the basal ice is near its pressure melting point. Other evidence indicates that divide migration is likely. The Ross Sea sector is now near steady state, but it had a strong negative imbalance 200 years ago when Kamb Ice Stream was active. In contrast, recent speedups of Pine Island and Thwaites Glaciers have likely caused the mass balance of the Amundsen Sea sector to become negative. The divide is likely migrating toward the Ross Sea today. C1 [Neumann, T. A.] Univ Vermont, Dept Geol, Burlington, VT 05405 USA. [Conway, H.; Price, S. F.; Waddington, E. D.; Catania, G. A.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Price, S. F.] Los Alamos Natl Lab, Fluid Dynam Grp, Los Alamos, NM USA. [Morse, D. L.] Univ Texas Austin, Jackson Sch Geosci, Inst Geophys, Austin, TX 78758 USA. RP Neumann, TA (reprint author), Univ Vermont, Dept Geol, 180 Colchester Ave, Burlington, VT 05405 USA. EM thomas.neumann@uvm.edu RI Catania, Ginny/B-9787-2008; Neumann, Thomas/D-5264-2012; Price, Stephen /E-1568-2013 OI Price, Stephen /0000-0001-6878-2553 NR 43 TC 24 Z9 27 U1 3 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD MAY 23 PY 2008 VL 113 IS F2 AR F02018 DI 10.1029/2007JF000764 PG 9 WC Geosciences, Multidisciplinary SC Geology GA 304WL UT WOS:000256139700001 ER PT J AU Howes, GG Cowley, SC Dorland, W Hammett, GW Quataert, E Schekochihin, AA AF Howes, G. G. Cowley, S. C. Dorland, W. Hammett, G. W. Quataert, E. Schekochihin, A. A. TI A model of turbulence in magnetized plasmas: Implications for the dissipation range in the solar wind SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Review ID COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE; INTERPLANETARY ALFVENIC FLUCTUATIONS; PROTON TEMPERATURE ANISOTROPY; LINEAR GYROKINETIC EQUATIONS; MHD TURBULENCE; LOW-FREQUENCY; HYDROMAGNETIC TURBULENCE; INTERSTELLAR TURBULENCE; KINETIC DISSIPATION; HELIOS-OBSERVATIONS AB This paper studies the turbulent cascade of magnetic energy in weakly collisional magnetized plasmas. A cascade model is presented, based on the assumptions of local nonlinear energy transfer in wave number space, critical balance between linear propagation and nonlinear interaction times, and the applicability of linear dissipation rates for the nonlinearly turbulent plasma. The model follows the nonlinear cascade of energy from the driving scale in the MHD regime, through the transition at the ion Larmor radius into the kinetic Alfven wave regime, in which the turbulence is dissipated by kinetic processes. The turbulent fluctuations remain at frequencies below the ion cyclotron frequency due to the strong anisotropy of the turbulent fluctuations, k parallel to << k perpendicular to (implied by critical balance). In this limit, the turbulence is optimally described by gyrokinetics; it is shown that the gyrokinetic approximation is well satisfied for typical slow solar wind parameters. Wave phase velocity measurements are consistent with a kinetic Alfven wave cascade and not the onset of ion cyclotron damping. The conditions under which the gyrokinetic cascade reaches the ion cyclotron frequency are established. Cascade model solutions imply that collisionless damping provides a natural explanation for the observed range of spectral indices in the dissipation range of the solar wind. The dissipation range spectrum is predicted to be an exponential fall off; the power-law behavior apparent in observations may be an artifact of limited instrumental sensitivity. The cascade model is motivated by a program of gyrokinetic simulations of turbulence and particle heating in the solar wind. C1 [Howes, G. G.; Quataert, E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Cowley, S. C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Dorland, W.] Univ Maryland, Dept Phys, IREAP, College Pk, MD 20742 USA. [Dorland, W.] Univ Maryland, Ctr Sci Comp & Math Modeling, College Pk, MD 20742 USA. [Hammett, G. W.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Schekochihin, A. A.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Plasma Phys Grp, London SW7 2BW, England. RP Howes, GG (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM ghowes@astro.berkeley.edu; cowley@physics.ucla.edu; bdorland@umd.edu; hammett@pppl.gov; eliot@astro.berkeley.edu; as629@cam.ac.uk RI Schekochihin, Alexander/C-2399-2009; Hammett, Gregory/D-1365-2011; Dorland, William/B-4403-2009 OI Hammett, Gregory/0000-0003-1495-6647; Dorland, William/0000-0003-2915-724X NR 133 TC 159 Z9 160 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 23 PY 2008 VL 113 IS A5 AR A05103 DI 10.1029/2007JA012665 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 304XH UT WOS:000256141900002 ER PT J AU Bailey, DH Borwein, JM Broadhurst, D Glasser, ML AF Bailey, David H. Borwein, Jonathan M. Broadhurst, David Glasser, M. L. TI Elliptic integral evaluations of Bessel moments and applications SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID LATTICE GREEN-FUNCTION; CENTRED CUBIC LATTICE; FEYNMAN DIAGRAMS; MASSES; EXPANSIONS; IDENTITIES; RAMANUJAN; SPACE; ORDER AB We record and substantially extend what is known about the closed forms for various Bessel function moments arising in quantum field theory, condensed matter theory and other parts of mathematical physics. In particular, we develop formulae for integrals of products of six or fewer Bessel functions. In consequence, we are able to discover and prove closed forms for c(n,k) := integral(infinity)(0) t(k) K(0)(n) (t) dt with integers n = 1, 2, 3, 4 and k >= 0, obtaining new results for the even moments c(3),2k and c(4),2k. We also derive new closed forms for the odd moments s(n,2k+1) := integral(infinity)(0) t(2k+1) I(0)(t) K(0)(n-1) dt with n= 3,4 and for t(n,tk+1) := integral(infinity)(0) t(2k+1) I(0)(t) K(0)(n-1) (t)dt with n = 5, relating the latter to Green functions on hexagonal, diamond and cubic lattices. We conjecture the values of s(5,2k+1), make substantial progress on the evaluation of c(5,2k+1), s(6,2k+1) and t(6,2k+1) and report more limited progress regarding c(5,2k,) c(6,2k+1) and c(6,2k). In the process, we obtain eight conjectural evaluations, each of which has been checked to 1200 decimal places. One of these lies deep in four- dimensional quantum field theory and two are probably provable by delicate combinatorics. There remains a hard core of five conjectures whose proofs would be most instructive, to mathematicians and physicists alike. C1 [Bailey, David H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Borwein, Jonathan M.] Dalhousie Univ, Fac Comp Sci, Halifax, NS B3H 2W5, Canada. [Broadhurst, David] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Glasser, M. L.] Clarkson Univ, Dept Phys, Potsdam, NY 13699 USA. RP Bailey, DH (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM dhbailey@lbl.gov; jborwein@cs.dal.ca; D.Broadhurst@open.ac.uk; laryg@clarkson.edu RI Borwein, Jonathan/A-6082-2009; OI Borwein, Jonathan/0000-0002-1263-0646 NR 76 TC 38 Z9 38 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD MAY 23 PY 2008 VL 41 IS 20 AR 205203 DI 10.1088/1751-8113/41/20/205203 PG 46 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 298BF UT WOS:000255660500012 ER PT J AU Kaspar, TC Droubay, T Heald, SM Nachimuthu, P Wang, CM Shutthanandan, V Johnson, CA Gamelin, DR Chambers, SA AF Kaspar, T. C. Droubay, T. Heald, S. M. Nachimuthu, P. Wang, C. M. Shutthanandan, V. Johnson, C. A. Gamelin, D. R. Chambers, S. A. TI Lack of ferromagnetism in n-type cobalt-doped ZnO epitaxial thin films SO NEW JOURNAL OF PHYSICS LA English DT Article ID DILUTED MAGNETIC SEMICONDUCTOR; CHEMICAL-VAPOR-DEPOSITION; T-C FERROMAGNETISM; TEMPERATURE FERROMAGNETISM; ELECTRONIC-STRUCTURE; MATERIALS DESIGN; METAL; SPECTROSCOPY; NANOCRYSTALS; ACTIVATION AB Epitaxial thin films of cobalt-doped ZnO (Co : ZnO) were deposited by pulsed laser deposition (PLD) on both c-plane and r-plane sapphire (Al(2)O(3)). The films exhibited high structural quality with narrow x-ray diffraction (XRD) rocking curve peak widths. X-ray absorption spectroscopy (XANES and EXAFS) confirmed well-ordered Co substitution for Zn in ZnO without the formation of secondary phases. A wide range of n-type conductivities (10(-4)-10(5) Omega cm) was achieved by controlling the deposition conditions, post-annealing in vacuum, and or addition of Al during deposition. Despite the high structural quality of the Co : ZnO thin films, no significant room temperature ferromagnetism was observed under any processing or treatment conditions. The lack of ferromagnetism indicates that itinerant conduction band electrons alone are not sufficient to induce ferromagnetism in Co : ZnO, even when the carrier concentration is a significant fraction of the magnetic dopant concentration. The implications of this observation are discussed. C1 [Kaspar, T. C.; Droubay, T.; Nachimuthu, P.; Wang, C. M.; Shutthanandan, V.; Chambers, S. A.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Heald, S. M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Johnson, C. A.; Gamelin, D. R.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Kaspar, TC (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM Tiffany.Kaspar@pnl.gov RI Droubay, Tim/D-5395-2016 OI Droubay, Tim/0000-0002-8821-0322 NR 61 TC 106 Z9 107 U1 5 U2 31 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAY 23 PY 2008 VL 10 AR 055010 DI 10.1088/1367-2630/10/5/055010 PG 18 WC Physics, Multidisciplinary SC Physics GA 308YM UT WOS:000256426800006 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Strong evidence for ZZ production in pp collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID Z-GAMMA PRODUCTION; WEAK-BOSON SECTOR; HADRON COLLIDERS AB We report the first evidence of Z boson pair production at a hadron collider with a significance exceeding 4 standard deviations. This result is based on a data sample corresponding to 1.9 fb(-1) of integrated luminosity from pp collisions at root s=1.96 TeV collected with the Collider Detector at Fermilab II detector. In the lll'l' channel, we observe three ZZ candidates with an expected background of 0.096(-0.063)(+0.092) events. In the ll nu nu channel, we use a leading-order calculation of the relative ZZ and WW event probabilities to discriminate between signal and background. In the combination of lll'l' and ll nu nu channels, we observe an excess of events with a probability of 5.1 x 10(-6) to be due to the expected background. This corresponds to a significance of 4.4 standard deviations. The measured cross section is sigma(pp -> ZZ)=1.4(-0.6)(+0.7)(stat+syst) pb, consistent with the standard model expectation. C1 [Anastassov, A.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Sfyrla, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Choudalakis, G.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Aoki, M.; Bridgeman, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Behari, S.; Blumenfeld, B.; Burkett, K.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Norniella, O.; Shapiro, M. D.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cerrito, L.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, IN2P3 CNRS, UMR7585, LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl, Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; De Lentdecker, G.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. [Carrillo, S.; Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012 OI Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Turini, Nicola/0000-0002-9395-5230; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; NR 20 TC 28 Z9 28 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 23 PY 2008 VL 100 IS 20 AR 201801 DI 10.1103/PhysRevLett.100.201801 PG 7 WC Physics, Multidisciplinary SC Physics GA 305VR UT WOS:000256206400015 ER PT J AU Murillo, MS Dharma-wardana, MWC AF Murillo, Michael S. Dharma-wardana, M. W. C. TI Temperature relaxation in hot dense hydrogen SO PHYSICAL REVIEW LETTERS LA English DT Article ID STRONGLY COUPLED PLASMA; THERMAL EQUILIBRATION; CLASSICAL PLASMA; 2-TEMPERATURE AB Temperature equilibration of hydrogen is studied for conditions relevant to inertial confinement fusion. New molecular-dynamics simulations and results from quantum many-body theory are compared with Landau-Spitzer predictions for temperatures T with 50 < T < 4000 eV and densities with Wigner-Seitz radii r(s)=1.0 and 0.5. The relaxation is slower than the Landau-Spitzer result, even for T in the kilo-electron-volt range, but converge to agreement in the high-T limit. C1 [Murillo, Michael S.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Dharma-wardana, M. W. C.] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada. RP Murillo, MS (reprint author), Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. EM murillo@lanl.gov; chandre@argos.phy.nrc.ca NR 31 TC 26 Z9 26 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 23 PY 2008 VL 100 IS 20 AR 205005 DI 10.1103/PhysRevLett.100.205005 PG 4 WC Physics, Multidisciplinary SC Physics GA 305VR UT WOS:000256206400038 PM 18518546 ER PT J AU Pakhlov, P Adachi, I Aihara, H Arinstein, K Aushev, T Aziz, T Bakich, AM Balagura, V Barberio, E Bedny, I Belous, K Bhardwaj, V Bitenc, U Bondar, A Bozek, A Bracko, M Browder, TE Chao, Y Chen, A Chen, KF Chen, WT Cheon, BG Chistov, R Choi, Y Dalseno, J Danilov, M Dash, M Drutskoy, A Eidelman, S Golob, B Ha, H Hayasaka, K Hazumi, M Heffernan, D Hoshi, Y Hou, WS Hsiung, YB Hyun, HJ Iijima, T Ikado, K Inami, K Ishikawa, A Ishino, H Itoh, R Iwasaki, M Iwasaki, Y Kah, DH Kang, JH Kapusta, P Katayama, N Kawai, H Kawasaki, T Kichimi, H Kim, YJ Kinoshita, K Korpar, S Krizan, P Krokovny, P Kumar, R Kuo, CC Kwon, YJ Lange, JS Lee, MJ Lee, SE Lesiak, T Limosani, A Lin, SW Liu, Y Liventsev, D Mandl, F Matyja, A Medvedeva, T Miyake, H Miyata, H Miyazaki, Y Mizuk, R Moloney, GR Mori, T Nakano, E Nakao, M Natkaniec, Z Nishida, S Nitoh, O Noguchi, S Ogawa, S Ohshima, T Okuno, S Olsen, SL Ozaki, H Pakhlova, G Palka, H Park, CW Peak, LS Pestotnik, R Piilonen, LE Sahoo, H Sakai, Y Schneider, O Seidl, R Senyo, K Sevior, ME Shapkin, M Shen, CP Shibuya, H Shiu, JG Singh, JB Somov, A Stanic, S Staric, M Sumiyoshi, T Suzuki, S Takasaki, F Tamai, K Tamura, N Tanaka, M Taylor, GN Teramoto, Y Tikhomirov, I Uehara, S Ueno, K Uglov, T Unno, Y Uno, S Urquijo, P Usov, Y Varner, G Vervink, K Wang, CH Wang, P Wang, XL Watanabe, Y Won, E Yabsley, BD Yamashita, Y Yamauchi, M Yuan, CZ Zhang, CC Zhang, ZP Zhilich, V Zupanc, A Zyukova, O AF Pakhlov, P. Adachi, I. Aihara, H. Arinstein, K. Aushev, T. Aziz, T. Bakich, A. M. Balagura, V. Barberio, E. Bedny, I. Belous, K. Bhardwaj, V. Bitenc, U. Bondar, A. Bozek, A. Bracko, M. Browder, T. E. Chao, Y. Chen, A. Chen, K. -F. Chen, W. T. Cheon, B. G. Chistov, R. Choi, Y. Dalseno, J. Danilov, M. Dash, M. Drutskoy, A. Eidelman, S. Golob, B. Ha, H. Hayasaka, K. Hazumi, M. Heffernan, D. Hoshi, Y. Hou, W. -S. Hsiung, Y. B. Hyun, H. J. Iijima, T. Ikado, K. Inami, K. Ishikawa, A. Ishino, H. Itoh, R. Iwasaki, M. Iwasaki, Y. Kah, D. H. Kang, J. H. Kapusta, P. Katayama, N. Kawai, H. Kawasaki, T. Kichimi, H. Kim, Y. J. Kinoshita, K. Korpar, S. Krizan, P. Krokovny, P. Kumar, R. Kuo, C. C. Kwon, Y. -J. Lange, J. S. Lee, M. J. Lee, S. E. Lesiak, T. Limosani, A. Lin, S. -W. Liu, Y. Liventsev, D. Mandl, F. Matyja, A. Medvedeva, T. Miyake, H. Miyata, H. Miyazaki, Y. Mizuk, R. Moloney, G. R. Mori, T. Nakano, E. Nakao, M. Natkaniec, Z. Nishida, S. Nitoh, O. Noguchi, S. Ogawa, S. Ohshima, T. Okuno, S. Olsen, S. L. Ozaki, H. Pakhlova, G. Palka, H. Park, C. W. Peak, L. S. Pestotnik, R. Piilonen, L. E. Sahoo, H. Sakai, Y. Schneider, O. Seidl, R. Senyo, K. Sevior, M. E. Shapkin, M. Shen, C. P. Shibuya, H. Shiu, J. -G. Singh, J. B. Somov, A. Stanic, S. Staric, M. Sumiyoshi, T. Suzuki, S. Takasaki, F. Tamai, K. Tamura, N. Tanaka, M. Taylor, G. N. Teramoto, Y. Tikhomirov, I. Uehara, S. Ueno, K. Uglov, T. Unno, Y. Uno, S. Urquijo, P. Usov, Y. Varner, G. Vervink, K. Wang, C. H. Wang, P. Wang, X. L. Watanabe, Y. Won, E. Yabsley, B. D. Yamashita, Y. Yamauchi, M. Yuan, C. Z. Zhang, C. C. Zhang, Z. P. Zhilich, V. Zupanc, A. Zyukova, O. CA Belle Collaboration TI Production of new charmoniumlike states in e(+)e(-)-> J/psi D(()*())(D)over-bar(()*()) at root s approximate to 10.6 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID DETECTOR AB We report a study of the processes e(+)e(-)-> J/psi D(()*())(D) over bar (()*()). In J/psi D*(D) over bar (()*()) we observe a significant enhancement in the D*(D) over bar (()*()) invariant mass spectrum, which we interpret as a new charmoniumlike state and denote X(4160). The X(4160) parameters are M=(4156(-20)(+25)+/- 15) MeV/c(2) and Gamma=(139(-61)(+111)+/- 21) MeV. We also report a new measurement of the X(3940) mass and width: M=(3942(-6)(+7)+/- 6) MeV/c(2) and Gamma=(37(-15)(+26)+/- 8) MeV. The analysis is based on a 693 fb(-1) data sample recorded near the Upsilon(4S) resonance by the Belle detector at the KEKB asymmetric-energy collider. C1 [Pakhlov, P.; Balagura, V.; Chistov, R.; Danilov, M.; Liventsev, D.; Medvedeva, T.; Mizuk, R.; Pakhlova, G.; Tikhomirov, I.; Uglov, T.] Inst Theoret & Expt Phys, Moscow, Russia. [Arinstein, K.; Bedny, I.; Bondar, A.; Eidelman, S.; Usov, Y.; Zhilich, V.; Zyukova, O.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Kawai, H.] Chiba Univ, Chiba, Japan. [Drutskoy, A.; Kinoshita, K.; Somov, A.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Lange, J. S.] Univ Giessen, Giessen, Germany. [Cheon, B. G.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Olsen, S. L.; Sahoo, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Hazumi, M.; Itoh, R.; Iwasaki, Y.; Katayama, N.; Kichimi, H.; Krokovny, P.; Nakao, M.; Nishida, S.; Ozaki, H.; Sakai, Y.; Takasaki, F.; Tamai, K.; Tanaka, M.; Uehara, S.; Uno, S.; Yamauchi, M.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan. [Seidl, R.] Univ Illinois, Urbana, IL 61801 USA. [Olsen, S. L.; Shen, C. P.; Wang, P.; Wang, X. L.; Yuan, C. Z.; Zhang, C. C.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Mandl, F.] Inst High Energy Phys, Vienna, Austria. [Belous, K.; Shapkin, M.] Inst High Energy Phys, Protvino, Russia. [Bitenc, U.; Bracko, M.; Golob, B.; Korpar, S.; Krizan, P.; Pestotnik, R.; Staric, M.; Zupanc, A.] Jozef Stefan Inst, Ljubljana, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa, Japan. [Ha, H.; Won, E.] Korea Univ, Seoul, South Korea. [Hyun, H. J.; Kah, D. H.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Aushev, T.; Schneider, O.; Vervink, K.] Ecole Polytech Fed Lausanne, Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Ljubljana, Slovenia. [Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Barberio, E.; Dalseno, J.; Limosani, A.; Moloney, G. R.; Sevior, M. E.; Taylor, G. N.; Urquijo, P.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Hayasaka, K.; Iijima, T.; Ikado, K.; Inami, K.; Miyazaki, Y.; Mori, T.; Ohshima, T.; Senyo, K.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Noguchi, S.] Nara Womens Univ, Nara 630, Japan. [Chen, A.; Chen, W. T.; Kuo, C. C.] Natl Cent Univ, Chungli, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli, Taiwan. [Chao, Y.; Chen, K. -F.; Hou, W. -S.; Hsiung, Y. B.; Lin, S. -W.; Shiu, J. -G.; Ueno, K.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Bozek, A.; Kapusta, P.; Lesiak, T.; Matyja, A.; Natkaniec, Z.; Palka, H.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Kawasaki, T.; Miyata, H.; Tamura, N.] Niigata Univ, Niigata, Japan. [Stanic, S.] Univ Nova Gorica, Nova Gorica, Slovenia. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 558, Japan. [Heffernan, D.; Miyake, H.] Osaka Univ, Osaka, Japan. [Bhardwaj, V.; Kumar, R.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Seidl, R.] Brookhaven Natl Lab, Res Ctr, RIKEN, Upton, NY 11973 USA. [Ishikawa, A.; Suzuki, S.] Saga Univ, Saga 840, Japan. [Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Lee, M. J.; Lee, S. E.] Seoul Natl Univ, Seoul, South Korea. [Choi, Y.; Park, C. W.] Sungkyunkwan Univ, Suwon, South Korea. [Bakich, A. M.; Peak, L. S.; Yabsley, B. D.] Univ Sydney, Sydney, NSW 2006, Australia. [Aziz, T.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Ogawa, S.; Shibuya, H.] Toho Univ, Funabashi, Chiba 274, Japan. [Aihara, H.; Iwasaki, M.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Ishino, H.] Tokyo Inst Technol, Tokyo 152, Japan. [Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 158, Japan. [Dash, M.; Piilonen, L. E.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Kang, J. H.; Kwon, Y. -J.] Yonsei Univ, Seoul 120749, South Korea. [Nitoh, O.] Tokyo Univ Agr & Technol, Tokyo, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi, Japan. [Yamashita, Y.] Nippon Dent Univ, Niigata, Japan. RP Pakhlov, P (reprint author), Inst Theoret & Expt Phys, Moscow, Russia. RI Aihara, Hiroaki/F-3854-2010; Pakhlova, Galina/C-5378-2014; Nitoh, Osamu/C-3522-2013; Ishino, Hirokazu/C-1994-2015; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Chistov, Ruslan/B-4893-2014; Drutskoy, Alexey/C-8833-2016 OI Aihara, Hiroaki/0000-0002-1907-5964; Pakhlova, Galina/0000-0001-7518-3022; Ishino, Hirokazu/0000-0002-8623-4080; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164; Krokovny, Pavel/0000-0002-1236-4667; Chistov, Ruslan/0000-0003-1439-8390; Drutskoy, Alexey/0000-0003-4524-0422 NR 17 TC 97 Z9 98 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 23 PY 2008 VL 100 IS 20 AR 202001 DI 10.1103/PhysRevLett.100.202001 PG 5 WC Physics, Multidisciplinary SC Physics GA 305VR UT WOS:000256206400017 PM 18518525 ER PT J AU Sun, X Intrator, TP Dorf, L Furno, I Lapenta, G AF Sun, X. Intrator, T. P. Dorf, L. Furno, I. Lapenta, G. TI Transition of MHD kink-stability properties between line-tied and non-line-tied boundary conditions SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC-FIELD; INSTABILITY; CONVECTION; SHEATH AB Magnetic flux tubes or flux ropes in plasmas are important in nature and the laboratory. Axial boundary conditions strongly affect flux rope behavior, but this has never been systematically investigated. We experimentally demonstrate for the first time axial boundary conditions that are continuously varied between ideal magnetohydrodynamic (MHD) line-tied (fixed) and non-line-tied (free). In contrast with the usual interpretation that mechanical plasma motion is MHD line-tied to a conducting boundary, we constrain boundary plasma motion to cause the line-tied condition. C1 [Sun, X.; Intrator, T. P.; Dorf, L.; Furno, I.; Lapenta, G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lapenta, G.] Katholieke Univ Leuven, Cent Plasma Astrofys, Louvain, Belgium. RP Sun, X (reprint author), Los Alamos Natl Lab, Mail Stop E526, Los Alamos, NM 87545 USA. OI Lapenta, Giovanni/0000-0002-3123-4024 NR 23 TC 17 Z9 17 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 23 PY 2008 VL 100 IS 20 AR 205004 DI 10.1103/PhysRevLett.100.205004 PG 4 WC Physics, Multidisciplinary SC Physics GA 305VR UT WOS:000256206400037 PM 18518545 ER PT J AU Takahashi, H Fredrickson, ED Schaffer, MJ AF Takahashi, Hironori Fredrickson, E. D. Schaffer, M. J. TI Scrape-off-layer current model for filament structure observed during edge-localized modes in the DIII-D tokamak SO PHYSICAL REVIEW LETTERS LA English DT Article ID DISCHARGES; SOL AB The plasma in tokamaks often exhibits a relaxation oscillation called the edge-localized mode (ELM), which is generally attributed to MHD instability driven by strong gradients at the plasma boundary. It is shown here that field-aligned currents flowing just outside the boundary may also play a role in the ELM process. The poloidal perturbation magnetic field during ELMs in the DIII-D tokamak calculated from measured currents can reproduce prominent observed features, including a narrow magnetic structure at the outboard midplane similar to filaments observed earlier in DIII-D and NSTX. C1 [Takahashi, Hironori; Fredrickson, E. D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Schaffer, M. J.] Gen Atom Co, San Diego, CA USA. RP Takahashi, H (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 13 TC 17 Z9 17 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 23 PY 2008 VL 100 IS 20 AR 205001 DI 10.1103/PhysRevLett.100.205001 PG 4 WC Physics, Multidisciplinary SC Physics GA 305VR UT WOS:000256206400034 PM 18518542 ER PT J AU Tao, JM Vignale, G Tokatly, IV AF Tao, Jianmin Vignale, Giovanni Tokatly, I. V. TI Quantum stress focusing in descriptive chemistry SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRON LOCALIZATION; SYSTEMS AB We show that several important concepts of descriptive chemistry, such as atomic shells, bonding electron pairs, and lone electron pairs, may be described in terms of quantum stress focusing, i.e., the spontaneous formation of high-pressure regions in an electron gas. This description subsumes previous mathematical constructions, such as the Laplacian of the density and the electron localization function, and provides a new tool for visualizing chemical structure. We also show that the full stress tensor, defined as the derivative of the energy with respect to a local deformation, can be easily calculated from density functional theory. C1 [Tao, Jianmin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Tao, Jianmin] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. [Tao, Jianmin; Vignale, Giovanni] Univ Missouri, Dept Phys, Columbia, MO 65211 USA. [Tokatly, I. V.] Univ Basque Country, UPV EHU, Dept Fis Mat, ETSF, San Sebastian 20018, Spain. [Tokatly, I. V.] Moscow Inst Elect Technol, Zelenograd 124498, Russia. RP Tao, JM (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Tokatly, Ilya/D-9554-2011 OI Tokatly, Ilya/0000-0001-6288-0689 NR 19 TC 32 Z9 32 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 23 PY 2008 VL 100 IS 20 AR 206405 DI 10.1103/PhysRevLett.100.206405 PG 4 WC Physics, Multidisciplinary SC Physics GA 305VR UT WOS:000256206400054 PM 18518562 ER PT J AU Yoon, M Yang, SY Hicke, C Wang, E Geohegan, D Zhang, ZY AF Yoon, Mina Yang, Shenyuan Hicke, Christian Wang, Enge Geohegan, David Zhang, Zhenyu TI Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage SO PHYSICAL REVIEW LETTERS LA English DT Article ID AUGMENTED-WAVE METHOD; ELECTRON-GAS; NANOTUBES; ENERGY; C-60 AB We explore theoretically the feasibility of functionalizing carbon nanostructures for hydrogen storage, focusing on the coating of C(60) fullerenes with light alkaline-earth metals. Our first-principles density functional theory studies show that both Ca and Sr can bind strongly to the C(60) surface, and highly prefer monolayer coating, thereby explaining existing experimental observations. The strong binding is attributed to an intriguing charge transfer mechanism involving the empty d levels of the metal elements. The charge redistribution, in turn, gives rise to electric fields surrounding the coated fullerenes, which can now function as ideal molecular hydrogen attractors. With a hydrogen uptake of > 8.4 wt % on Ca(32)C(60), Ca is superior to all the recently suggested metal coating elements. C1 [Yoon, Mina; Geohegan, David; Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Yoon, Mina; Yang, Shenyuan; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Yang, Shenyuan; Wang, Enge] Chinese Acad Sci, Int Ctr Quantum Struct, Beijing 100080, Peoples R China. [Yang, Shenyuan; Wang, Enge] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. [Hicke, Christian] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48823 USA. RP Yoon, M (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Yoon, Mina/A-1965-2016; Geohegan, David/D-3599-2013 OI Yoon, Mina/0000-0002-1317-3301; Geohegan, David/0000-0003-0273-3139 NR 26 TC 250 Z9 259 U1 8 U2 52 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 23 PY 2008 VL 100 IS 20 AR 206806 DI 10.1103/PhysRevLett.100.206806 PG 4 WC Physics, Multidisciplinary SC Physics GA 305VR UT WOS:000256206400061 PM 18518569 ER PT J AU Tiedje, J Donohue, T AF Tiedje, James Donohue, Timothy TI Microbes in the energy grid SO SCIENCE LA English DT Editorial Material C1 [Tiedje, James] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Donohue, Timothy] Univ Wisconsin, Madison, WI USA. [Donohue, Timothy] Great Lakes Bioenergy Res Ctr, Madison, WI USA. RP Tiedje, J (reprint author), Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. OI Donohue, Timothy/0000-0001-8738-2467 FU NIGMS NIH HHS [R01 GM075273, R01 GM075273-03] NR 0 TC 6 Z9 6 U1 0 U2 5 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 23 PY 2008 VL 320 IS 5879 BP 985 EP 985 DI 10.1126/science.1159999 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 303RY UT WOS:000256059800001 PM 18497262 ER PT J AU De Silva, CR Li, J Zheng, ZP Corrales, LR AF De Silva, Channa R. Li, Jun Zheng, Zhiping Corrales, L. Rene TI Correlation of calculated excited-state energies and experimental quantum yields of luminescent Tb(III) beta-diketonates SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; LIGHT-EMITTING-DIODES; EU(III) COMPLEXES; LANTHANIDE COMPLEXES; ELECTROLUMINESCENCE; LIGAND; IONS; DEVICES; TERBIUM(III); FLUORESCENCE AB Theoretical calculations employing time-dependent density functional theory (TDDFT) are used to characterize the excited states of Tb(III) beta-diketonate complexes. Calculated results are compared directly with experimental results that together show a correlation between relative quantum yields and the excited-state energies that depend on the electronic properties of the p,p'-substituent group associated with the coordinating N-donor neutral ligand. It is found that changes in the electron donating nature of the neutral ligand structure lead to shifts in the lowest triplet energy level of the complex that consequently change the relative quantum yield. This work provides critical direction for the synthesis of high quantum yield terbium complexes. C1 [De Silva, Channa R.; Zheng, Zhiping; Corrales, L. Rene] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. [De Silva, Channa R.; Corrales, L. Rene] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA. [Li, Jun] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Corrales, LR (reprint author), Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. EM lrcorral@email.arizona.edu RI Li, Jun/E-5334-2011; Zheng, Zhiping/A-8123-2010 OI Li, Jun/0000-0002-8456-3980; NR 38 TC 26 Z9 26 U1 4 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAY 22 PY 2008 VL 112 IS 20 BP 4527 EP 4530 DI 10.1021/jp8002799 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 301OH UT WOS:000255905000001 PM 18407614 ER PT J AU Ma, Q Divan, R Mancini, DC Keanet, DT AF Ma, Qing Divan, Ralu Mancini, Derrick C. Keanet, Denis T. TI Elucidating chemical and morphological changes in tetrachloroauric solutions induced by X-ray photochemical reaction SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ABSORPTION FINE-STRUCTURE; GOLD; REDUCTION; NANOCRYSTALS; EXCITATION; CLUSTERS AB Chemical and morphological changes induced by an X-ray photochemical reaction in tetrachloroauric solutions leading to Au3+-to-Au-0 reduction are monitored in real time by X-ray absorption spectroscopy and X-ray small angle scattering. Prior to metal precipitation, the intermediate state, also observed by other techniques, is unambiguously determined for the first time to be the reduction of Au3+ to An(1+), whose kinetics is strictly of the zeroth order. The morphological changes occur simultaneously in the solutions, that is, the gold complexes rearrange and aggregate, as unequivocally observed by the correlated changes in the An L-3 emission and small angle scattering intensities. The experimental evidence indicates that the eventual metal precipitation is strongly influenced by the changing solution acidity under X-ray irradiation. Detailed local structure changes are also described. C1 [Ma, Qing; Keanet, Denis T.] Northwestern Univ, Synchrotron Res Ctr, DND CAT, Argonne, IL 60439 USA. [Divan, Ralu; Mancini, Derrick C.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Ma, Q (reprint author), Northwestern Univ, Synchrotron Res Ctr, DND CAT, 9700 S Cass Ave, Argonne, IL 60439 USA. EM q-ma@northwestern.edu NR 29 TC 5 Z9 5 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAY 22 PY 2008 VL 112 IS 20 BP 4568 EP 4572 DI 10.1021/jp7104852 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 301OH UT WOS:000255905000008 PM 18433112 ER PT J AU D'Auria, R Kuo, IFW Tobias, DJ AF D'Auria, Raffaella Kuo, I. -F. William Tobias, Douglas J. TI Ab initio molecular dynamics study of the solvated OHCl- complex: Implications for the atmospheric oxidation of chloride anion to molecular chlorine SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID WANNIER FUNCTIONS; DENSITY; HYDROXYL; WATER; PHOTODETACHMENT; INTERFACE; NACL; ION; AIR AB We have studied the OHCl- complex in a six-water cluster and in bulk liquid water by means of Born-Oppenheimer molecular dynamics based on generalized gradient-corrected BLYP density functional theory. Self-interaction-corrected results, which predict a hydrogen-bonded OH center dot center dot center dot Cl- complex, are compared to the uncorrected results, which predict a hemibonded (HO-Cl)(-). A second-order Moller-Plesset potential energy landscape of the gas-phase complex in its ground-state was computed to determine which of the two configurations represents the true nature of the complex. Because no evidence of a local minimum was found in the vicinity of the geometry corresponding to (HO-Cl)(-), we conclude that the self-interaction-corrected results are more accurate and, therefore, that the complex is held together by a hydrogen-bond-like interaction in both an asymmetric solvation environment, as represented by the cluster, and a symmetric solvation environment, as represented by the bulk system. We postulate that the mechanism that governs the atmospheric oxidation of Cl-(aq) to Cl-2(g) on the surface of marine aerosols is initiated by the formation of a H-bonded OH center dot center dot center dot Cl- complex. Furthermore, because no evidence of charge transfer from Cl- to OH was found, in either the liquid or the cluster environment, we propose that the second step of the oxidation of Cl- is the reaction of the complex with a second Cl-, resulting in the formation of the species Cl-2(-) and OH- Cl-2(g) could then be formed via an electron-transfer reaction with an impinging OH molecule. C1 [D'Auria, Raffaella; Tobias, Douglas J.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [D'Auria, Raffaella; Tobias, Douglas J.] Univ Calif Irvine, AirUCI, Irvine, CA 92697 USA. [Kuo, I. -F. William] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP D'Auria, R (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. EM rdauria@uci.edu RI Tobias, Douglas/B-6799-2015 NR 28 TC 15 Z9 15 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAY 22 PY 2008 VL 112 IS 20 BP 4644 EP 4650 DI 10.1021/jp077669d PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 301OH UT WOS:000255905000017 PM 18444631 ER PT J AU Wang, HF Bell, RC Iedema, MJ Schenter, GK Wu, K Cowin, JP AF Wang, Hanfu Bell, Richard C. Iedema, Martin J. Schenter, Gregory K. Wu, Kai Cowin, James P. TI Pyroelectricity of water ice SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SOFT-LANDED IONS; COMPUTER-SIMULATIONS; IH AB Water ice usually is thought to have zero pyroelectricity by symmetry. However, biasing it with ions breaks the symmetry because of the induced partial dipole alignment. This unmasks a large pyroelectricity. Ions were soft-landed upon 1 mu m films of water ice at temperatures greater than 160 K. When cooled below 140-150 K, the dipole alignment locks in. Work function measurements of these films then show high and reversible pyroelectric activity from 30 to 150 K. For an initial similar to 10 V induced by the deposited ions at 160 K, the observed bias below 150 K varies approximately as 10 V x (T/150 K)(2). This implies that water has pyroelectric coefficients as large as that of many commercial pyroelectrics, such as lead zirconate titanate (PZT). The pyroelectricity of water ice, not previously reported, is in reasonable agreement with that predicted using harmonic analysis of a model system of SPC ice. The pyroelectricity is observed in crystalline and compact amorphous ice, deuterated or not. This implies that for water ice between 0 and 150 K (such as astrophysical ices), temperature changes can induce strong electric fields (similar to 10 MV/m) that can influence their chemistry, ion trajectories, or binding. C1 [Wang, Hanfu; Iedema, Martin J.; Schenter, Gregory K.; Cowin, James P.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bell, Richard C.] Penn State Univ, Altoona Coll, Dept Chem, Altoona, PA 16601 USA. [Wu, Kai] Peking Univ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China. RP Bell, RC (reprint author), Penn State Univ, Altoona Coll, Dept Chem, Altoona, PA 16601 USA. EM rcb155@psu.edu; kaiwu@chem.pku.edu.cn; jp.cowin@pnl.gov RI Schenter, Gregory/I-7655-2014; Wu, Kai/A-4903-2011 OI Schenter, Gregory/0000-0001-5444-5484; Wu, Kai/0000-0002-5016-0251 NR 24 TC 14 Z9 14 U1 3 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAY 22 PY 2008 VL 112 IS 20 BP 6379 EP 6389 DI 10.1021/jp073870c PG 11 WC Chemistry, Physical SC Chemistry GA 301OJ UT WOS:000255905200017 PM 18426236 ER PT J AU Horvath, JD Baker, L Gellman, AJ AF Horvath, Joshua D. Baker, Layton Gellman, Andrew J. TI Enantiospecific orientation of R-3-Methylcyclohexanone on the chiral Cu(643)(R/S) surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PLATINUM SURFACES; METAL-SURFACES; CU SURFACES; ADSORPTION; CYCLOHEXANONE; MOLECULES; ELECTROOXIDATION; HYDROCARBONS; DESORPTION; MONOLAYER AB The high Miller index planes of metal single crystals are chiral, if they do not lie perpendicular to any of the mirror symmetry planes of the bulk lattice. Such chiral surfaces of face-centered cubic metals expose kinked step edges and have been shown to have enantiospecific interactions with chiral adsorbates. R-3-methylcyclohexanone (R-3MCHO) exhibits enantiospecific differences in its desorption energies from the R and S chiral kinks on the Cu(643)(R/S) surfaces. This enantiospecific interaction must also manifest itself in the orientations of R-3MCHO adsorbed at chiral kinks and has been probed by examining the intensities of infrared absorption by R-3MCHO adsorbed at the kinks on the Cu(643)(R/S) surfaces. Fourier transform infrared reflection-absorption spectra show that the interaction of the R-3MCHO occurs through the carbonyl group which exhibits a red-shift in its stretching mode as a result of adsorption on the surface. The absorption intensities also indicate that the molecule is oriented with the >C=O bond roughly parallel to the surface. More importantly, R-3MCHO adsorbed at the R and the S kinks on the Cu(643)(R/S) surfaces exhibits different relative absorption intensities of its vibrational modes, clearly indicating that the orientations of R-3MCHO are enantiospecific on the two enantiomorphic surfaces. C1 [Horvath, Joshua D.; Baker, Layton; Gellman, Andrew J.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Gellman, Andrew J.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA. RP Gellman, AJ (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM gellman@cmu.edu RI Gellman, Andrew/M-2487-2014 OI Gellman, Andrew/0000-0001-6618-7427 NR 31 TC 22 Z9 22 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 22 PY 2008 VL 112 IS 20 BP 7637 EP 7643 DI 10.1021/jp0753878 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 301OL UT WOS:000255905400023 ER PT J AU Kerisit, S Deskins, NA Rosso, KM Dupuis, M AF Kerisit, Sebastien Deskins, N. Aaron Rosso, Kevin M. Dupuis, Michel TI A shell model for atomistic simulation of charge transfer in titania SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELECTRON-TRANSFER; POLARON MOTION; ELASTIC-CONSTANTS; COMPUTER-SIMULATION; TIO2; CRYSTAL; RUTILE; DYNAMICS; PRESSURE; ANATASE AB The derivation of atomistic potential parameters, based on electronic structure calculations, for modeling electron and hole polarons in titania polymorphs is presented. The potential model is a polarizable version of the Matsui and Akaogi model (Matsui, M.; Akaogi, M. Mol. Simul. 1901, 6, 239) that makes use of a shell model to account for the polarizability of oxygen ions. The -1 and +1 formal charges of the electron and hole polarons, respectively, are modeled by delocalizing the polaron's charge over a titanium or oxygen ion, respectively, and its first nearest-neighbors. The charge distributions and the oxygen polarizability were fitted to the reorganization energies of a series of electron and hole polaron transfers in rutile and anatase obtained from electronic structure calculations at zero Kelvin and validated against lattice deformation due to both types of polaron. Good agreement was achieved for both properties. In addition, the potential model yields an accurate representation of a range of bulk properties of several TiO2 polymorphs as well as Ti2O3. The model thus derived enables us to consider systems large enough to investigate how the charge transfer properties at titania surfaces and interfaces differ from those in the bulk. For example, reorganization energies and free energies of charge transfer were computed as a function of depth below vacuum-terminated rutile (110) and anatase (001) surfaces using a mapping approach first introduced by Warshel (Warshel, A. J. Phys. Chem. 1982, 86, 2218). These calculations indicate that deviations from bulk values at the surface are substantial but limited to the first couple of surface atomic layers and that polarons are generally repelled from the surface. Moreover, attractive subsurface sites may be found as is predicted for hole polarons at the rutile (I 10) surface. Finally, several charge transfers from under-coordinated surface sites were found to be in the so-called Marcus inverted-region. C1 [Kerisit, Sebastien; Deskins, N. Aaron; Rosso, Kevin M.; Dupuis, Michel] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Kerisit, S (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM sebastien.kerisit@pnl.gov RI Deskins, Nathaniel/H-3954-2012 NR 69 TC 34 Z9 34 U1 1 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 22 PY 2008 VL 112 IS 20 BP 7678 EP 7688 DI 10.1021/jp8007865 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 301OL UT WOS:000255905400028 ER PT J AU Piris, J Ferguson, AJ Blackburn, JL Norman, AG Rumbles, G Selmarten, DC Kopidakis, N AF Piris, Jorge Ferguson, Andrew J. Blackburn, Jeff L. Norman, Andrew G. Rumbles, Garry Selmarten, Don C. Kopidakis, Nikos TI Efficient photoinduced charge injection from chemical bath deposited CdS into mesoporous TiO2 probed with time-resolved microwave conductivity SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SENSITIZED NANOCRYSTALLINE TIO2; MODULATED PHOTOCURRENT SPECTROSCOPY; SOLAR-CELLS; EXCITON DIFFUSION; MESO-TETRAPHENYLPORPHYRIN/TIO2 BILAYERS; CONTACTLESS DETERMINATION; CONVERSION EFFICIENCY; SEPARATION EFFICIENCY; ELECTRON-TRANSFER; NANOPOROUS TIO2 AB We use the contactless time-resolved microwave conductivity (TRMC) technique to investigate the photoconductance of CdS-coated mesoporous TiO2 and ZrO2. The CdS domains were grown directly on the surface of the oxide by a chemical bath deposition method. Mobile charge carriers are generated with a low yield following photoexcitation of US grown on ZrO2; there is no injection into the oxide and the short-lived photoconductance signal is attributed to the hole in CdS. In contrast, illumination of US domains grown on TiO2 results in very efficient electron injection into the TiO2 nanoparticles, producing long-lived charge carriers. We show that the quantum yield for electron injection into TiO2 per photon absorbed by the US sensitizer is close to unity. The photoconductance action spectrum follows the absorption of the CdS domains, which indicates that the charge injection efficiency does not depend on wavelength in the range where the US absorbs (425-550 nm). C1 [Piris, Jorge; Ferguson, Andrew J.; Blackburn, Jeff L.; Norman, Andrew G.; Rumbles, Garry; Selmarten, Don C.; Kopidakis, Nikos] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kopidakis, N (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM nikos_kopidakis@nrel.gov RI Norman, Andrew/F-1859-2010; Blackburn, Jeffrey/D-7344-2012; Kopidakis, Nikos/N-4777-2015; OI Norman, Andrew/0000-0001-6368-521X; Rumbles, Garry/0000-0003-0776-1462; Ferguson, Andrew/0000-0003-2544-1753 NR 32 TC 28 Z9 28 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 22 PY 2008 VL 112 IS 20 BP 7742 EP 7749 DI 10.1021/jp800527r PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 301OL UT WOS:000255905400038 ER PT J AU Tombola, F Ulbrich, MH Isacoff, EY AF Tombola, Francesco Ulbrich, Maximilian H. Isacoff, Ehud Y. TI The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor SO NEURON LA English DT Article ID SHAKER K+ CHANNEL; X-RAY-STRUCTURE; POTASSIUM CHANNEL; CHLORIDE CHANNEL; SODIUM-CHANNELS; MOLECULAR-BASIS; ION-PERMEATION; GATING PORE; DOMAIN; REVEALS AB In voltage-gated channels, ions flow through a single pore located at the interface between membrane-spanning pore domains from each of four subunits, and the gates of the pore are controlled by four peripheral voltage-sensing domains. In a striking exception, the newly discovered voltage-gated Hv1 proton channels lack a homologous pore domain, leaving the location of the pore unknown. Also unknown are the number of subunits and the mechanism of gating. We find that Hv1 is a dinner and that each subunit contains its own pore and gate, which is controlled by its own voltage sensor. Our experiments show that the cytosolic domain of the channel is necessary and sufficient for dimerization and that the transmembrane part of the channel is functional also when monomerized. The results suggest a mechanism of gating whereby the voltage sensor and gate are one and the same. C1 [Tombola, Francesco; Ulbrich, Maximilian H.; Isacoff, Ehud Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Isacoff, EY (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM ehud@berkeley.edu RI Tombola, Francesco/C-7311-2011 FU NINDS NIH HHS [R01 NS035549, R01 NS035549-11, R01NS035549] NR 39 TC 119 Z9 121 U1 2 U2 13 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0896-6273 J9 NEURON JI Neuron PD MAY 22 PY 2008 VL 58 IS 4 BP 546 EP 556 DI 10.1016/j.neuron.2008.03.026 PG 11 WC Neurosciences SC Neurosciences & Neurology GA 304PD UT WOS:000256120500009 PM 18498736 ER PT J AU Karsch, F Kharzeev, D Tuchin, K AF Karsch, Frithjof Kharzeev, Dmitri Tuchin, Kirill TI Universal properties of bulk viscosity near the QCD phase transition SO PHYSICS LETTERS B LA English DT Article ID BROKEN SCALE INVARIANCE; LATTICE GAUGE-THEORY; LOW-ENERGY THEOREMS; FINITE-TEMPERATURE; GLUODYNAMICS; ANOMALIES; DILATON; POINT; MODEL AB We extract the bulk viscosity of hot quark--gluon matter in the presence of light quarks from the recent lattice data on the QCD equation of state. For that purpose we extend the sum rule analysis by including the contribution of light quarks. We also discuss the universal properties of bulk viscosity in the vicinity of a second-order phase transition, as it might occur in the chiral limit of QCD at fixed strange quark mass and most likely does occur in two-flavor QCD. We point out that a chiral transition in the 0(4) universality class at zero baryon density as well as the transition at the chiral critical point which belongs to the Z(2) universality class both lead to the critical behavior of bulk viscosity. In particular, the latter universality class implies the divergence of the bulk viscosity, which may be used as a signature of the critical point. We discuss the physical picture behind the dramatic increase of bulk viscosity seen in our analysis, and devise possible experimental tests of related phenomena. (C) 2008 Elsevier B.V. All rights reserved. C1 [Karsch, Frithjof; Kharzeev, Dmitri] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Tuchin, Kirill] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Tuchin, Kirill] RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Kharzeev, D (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM kharzeev@bnl.gov NR 34 TC 197 Z9 198 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD MAY 22 PY 2008 VL 663 IS 3 BP 217 EP 221 DI 10.1016/j.physletb.2008.01.080 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 312UN UT WOS:000256696500014 ER PT J AU Scoccola, NN Goity, JL Matagne, N AF Scoccola, N. N. Goity, J. L. Matagne, N. TI Analysis of negative parity baryon photoproduction amplitudes in the 1/N-C expansion SO PHYSICS LETTERS B LA English DT Article ID LARGE N-C; QUARK-MODEL; MULTIPOLE ANALYSIS; QCD; ELECTROPRODUCTION; RESONANCES; DECAYS; MASSES AB We study the photoproduction helicity amplitudes of negative parity baryons in the context of the 1/N-C expansion of QCD. A complete analysis to next-to-leading order is carried out. The results show sub-leading effects to be within the magnitude expected from the 1/N-C power counting. They also show significant deviations from the quark model, in particular the need for 2-body effects. (C) 2008 Published by Elsevier B.V. C1 [Matagne, N.] Univ Liege, Inst Phys B5, B-4000 Liege, Belgium. [Scoccola, N. N.] Comis Nacl Energia Atom, Dept Phys, RA-1429 Buenos Aires, DF, Argentina. [Scoccola, N. N.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Scoccola, N. N.] Univ Favaloro, RA-1078 Buenos Aires, DF, Argentina. [Goity, J. L.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Goity, J. L.] Thomas Jefferson Natl Accelerator Fac, Newport News, VA 23606 USA. RP Matagne, N (reprint author), Univ Liege, Inst Phys B5, B-4000 Liege, Belgium. EM scoccola@tandar.cnea.gov.ar; goity@jlab.org; nicolas.matagne@theo.physik.uni-giessen.de NR 29 TC 20 Z9 20 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD MAY 22 PY 2008 VL 663 IS 3 BP 222 EP 227 DI 10.1016/j.physletb.2008.03.056 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 312UN UT WOS:000256696500015 ER PT J AU Ibe, M Kitano, R AF Ibe, Masahiro Kitano, Ryuichiro TI Sweet spot supersymmetry and composite messengers SO PHYSICS LETTERS B LA English DT Article ID GAUGE-THEORIES; BREAKING; DUALITY; MODEL; VACUA AB Sweet spot supersymmetry is a phenomenological effective Lagrangian of weak scale supersymmetry with a certain set of natural assumptions. This framework is designed to avoid problems in low-energy phenomenology and cosmology of supersymmetric models. We discuss a class of dynamical models of supersymmetry breaking and its mediation, whose low-energy effective description falls into this framework. Hadron fields in the dynamical models play a role of the messengers of the supersymmetry breaking. As is always true in the models of the sweet spot supersymmetry, the messenger scale is predicted to be 10(5) GeV less than or similar to M-mess less than or similar to 10(10) GeV. Various values of the effective number of messenger fields N-mess are possible depending on the choice of the gauge group. (C) 2008 Elsevier B.V. All rights reserved. C1 [Kitano, Ryuichiro] Los Alamos Natl Lab, Theoret Div T8, Los Alamos, NM 87545 USA. [Ibe, Masahiro] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Ibe, Masahiro] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Kitano, R (reprint author), Los Alamos Natl Lab, Theoret Div T8, POB 1663, Los Alamos, NM 87545 USA. EM kitano@lanl.gov NR 23 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD MAY 22 PY 2008 VL 663 IS 3 BP 242 EP 246 DI 10.1016/j.physletb.2008.04.023 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 312UN UT WOS:000256696500018 ER PT J AU Taboada-Serrano, P Vithayaveroj, V Hou, CH Yiacoumi, S Tsouris, C AF Taboada-Serrano, Patricia Vithayaveroj, Viriya Hou, Chia-Hung Yiacoumi, Sotira Tsouris, Costas TI Comparison between effective electrode/electrolyte interface potential and applied potential for gold electrodes SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID ATOMIC-FORCE MICROSCOPY; ELECTRICAL DOUBLE-LAYER; HIGH SURFACE-POTENTIALS; SPHERICAL COLLOIDAL PARTICLES; POISSON-BOLTZMANN THEORY; AQUEOUS-SOLUTION; ADSORPTION; CHARGE; WATER; ADHESION AB A nonlinear solution of the Poisson-Boltzmann equation between two interacting surfaces was used to model the interaction force between a gold electrode and a standard silicon-nitride cantilever tip employed in atomic force microscopy (AFM). AFM measurements were used to calculate the effective gold electrode/electrolyte solution interface potential via minimization of the error between predicted interaction force values and those measured via AFM. Analysis of the data reveals that an effective electrode/electrolyte potential, rather than the applied potential to the electrode, is responsible for the interaction forces observed in this work. Further examination of the gold electrode/electrolyte interface via cyclic voltammetry reveals that, despite the fact that the gold electrode is considered inert, some degree of association of ions present in the solution with the gold electrode occurs. Accumulation of different ions in the solution at the electrode/electrolyte interface determines the magnitude of the effective potentials at different conditions of pH and ionic strength. At extreme conditions of pH, electrosorption of ionic species could be detected. C1 [Taboada-Serrano, Patricia; Vithayaveroj, Viriya; Hou, Chia-Hung; Yiacoumi, Sotira; Tsouris, Costas] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Taboada-Serrano, Patricia; Tsouris, Costas] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tsouris, C (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. EM tsourisc@ornl.gov RI Taboada-Serrano, Patrica/F-4745-2012; Hou, Chia-Hung/J-4350-2013; Tsouris, Costas/C-2544-2016 OI Hou, Chia-Hung/0000-0001-5149-4096; Tsouris, Costas/0000-0002-0522-1027 NR 42 TC 3 Z9 3 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD MAY 21 PY 2008 VL 47 IS 10 BP 3525 EP 3531 DI 10.1021/ie070900p PG 7 WC Engineering, Chemical SC Engineering GA 301BM UT WOS:000255871400021 ER PT J AU Chhabra, M Prausnitz, JM Radke, CJ AF Chhabra, Mahendra Prausnitz, John M. Radke, Clayton J. TI Polarographic method for measuring oxygen diffusivity and solubility in water-saturated polymer films: Application to hypertransmissible soft contact lenses SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID CARBON-DIOXIDE; GAS-TRANSPORT; EXTENDED WEAR; DK HYDROGEL; PERMEABILITY; MEMBRANES; NITROGEN; CORNEA AB An electrochemical-polarographic method is described for measuring the diffusivity, D, and solubility, k, of oxygen in aqueous-saturated polymer films. While the apparatus and procedure are general for such films, it is here applied to determine D and k for oxygen in hypertransmissible soft contact lenses. Usually, only oxygen permeability, P, the product of D and k, is measured because P gauges the steady flux of oxygen through hydrogel membranes. However, we utilize the polarographic technique in the unsteady state and, hence, obtain D and k separately. Determination of each of these properties is critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. We have measured oxygen diffusivities and solubilities for nine commercial soft contact lenses. Our data indicate that oxygen diffusivity is primarily responsible for the range of oxygen permeability observed for hypertransmissible soft contact lenses. For 2-hydroxyethyl methacrylate (HEMA)-based lenses, measured solubilities suggest that over 90% of the dissolved oxygen partitions to the polymer phase. C1 [Chhabra, Mahendra; Prausnitz, John M.; Radke, Clayton J.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Prausnitz, John M.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Radke, Clayton J.] Univ Calif Berkeley, Vis Sci Grp, Berkeley, CA 94720 USA. RP Radke, CJ (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM radke@berkeley.edu NR 46 TC 15 Z9 15 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD MAY 21 PY 2008 VL 47 IS 10 BP 3540 EP 3550 DI 10.1021/ie071071a PG 11 WC Engineering, Chemical SC Engineering GA 301BM UT WOS:000255871400023 ER PT J AU Nedoma, AJ Robertson, ML Wanakule, NS Balsara, NP AF Nedoma, Alisyn J. Robertson, Megan L. Wanakule, Nisita S. Balsara, Nitash P. TI Measurements of the Flory-Huggins interaction parameter using a series of critical binary blends SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID NEUTRON-SCATTERING; POLYMER BLENDS; POLY(METHYL METHACRYLATE); CRITICAL FLUCTUATIONS; MOLECULAR-WEIGHT; THERMODYNAMICS; DEPENDENCE; MIXTURES AB The Flory-Huggins interaction parameter, chi, for a series of critical binary blends of polyisobutylene and deuterated polybutadiene was measured by small-angle neutron scattering. chi was determined by fitting the scattering intensity profiles single-phase blends to the well-established random-phase approximation. Our experiments, which covered a wide range of chain lengths, suggest that chi depends on both blend composition and the ratio of the homopolymer chain lengths. C1 [Nedoma, Alisyn J.; Robertson, Megan L.; Wanakule, Nisita S.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM nbalsara@berkeley.edu OI Nedoma, Alisyn/0000-0002-3537-2846 NR 16 TC 13 Z9 13 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD MAY 21 PY 2008 VL 47 IS 10 BP 3551 EP 3553 DI 10.1021/ie0710723 PG 3 WC Engineering, Chemical SC Engineering GA 301BM UT WOS:000255871400024 ER PT J AU Johnson, SM Williams, JR Cook, BK AF Johnson, Scott M. Williams, John R. Cook, Benjamin K. TI Quaternion-based rigid body rotation integration algorithms for use in particle methods SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE dynamics; integration; motion; rotation; rigid body; DEM; numerical methods ID DYNAMICS; EQUATIONS; SYSTEMS AB The resolution of translational motion in discrete element method and molecular dynamics applications is a straightforward task; however, resolving rotational motion is less obvious. Many applications update rotation using an explicit integration involving products of matrices, which has well-known drawbacks. Although rigid body rotation has received attention in large-angle rotation applications, relatively little attention has been dedicated to the unique requirements of particle methods using explicit time-stepping algorithms. This paper reviews existing explicit algorithms and shows the benefits of using a quaternion-based re-parameterization of both the central difference algorithm and the approach of Munjiza et al. (Int. J. Nunier Meth. Engng 2003; 56:36-55). The improvement not only provides guaranteed orthonormality of the resulting rotation but also allows the assumption of small-angle rotation to be relaxed and the use of a more accurate Taylor expansion instead. The current and quaternion-based algorithms are compared for accuracy and computational efficiency. Copyright (C) 2007 John Wiley & Sons, Ltd. C1 [Williams, John R.] MIT, Dept Civil & Environm Engn, AutoID Lab, Cambridge, MA 02139 USA. [Cook, Benjamin K.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Johnson, SM (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM johnson346@llnl.gov NR 12 TC 11 Z9 12 U1 0 U2 4 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD MAY 21 PY 2008 VL 74 IS 8 BP 1303 EP 1313 DI 10.1002/nme.2210 PG 11 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 300VC UT WOS:000255852300005 ER PT J AU Cao, X Pu, ZY Zhang, H Mishin, VM Ma, ZW Dunlop, MW Fu, SY Xie, L Xiao, CJ Wang, XG Zong, QG Liu, ZX Kubyshkina, MV Pulkkinen, TI Frey, HU Korth, A Fraenz, M Lucek, E Carr, CM Reme, H Dandouras, I Fazakerley, AN Reeves, GD Friedel, R Glassmeier, KH Escoubet, CP AF Cao, X. Pu, Z. Y. Zhang, H. Mishin, V. M. Ma, Z. W. Dunlop, M. W. Fu, S. Y. Xie, L. Xiao, C. J. Wang, X. G. Zong, Q. G. Liu, Z. X. Kubyshkina, M. V. Pulkkinen, T. I. Frey, H. U. Korth, A. Fraenz, M. Lucek, E. Carr, C. M. Reme, H. Dandouras, I. Fazakerley, A. N. Reeves, G. D. Friedel, R. Glassmeier, K. H. Escoubet, C. P. TI Multispacecraft and ground-based observations of substorm timing and activations: Two case studies SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MAGNETOGRAM INVERSION TECHNIQUE; NEAR-EARTH TAIL; MAGNETIC-FIELD; CURRENT DISRUPTION; EXPANSION ONSET; CURRENT SHEET; MAGNETOSPHERIC MODEL; GEOTAIL OBSERVATIONS; ION ENERGIZATION; PLASMA ELECTRON AB Two case studies are performed to investigate substorm timing and activations based on Double Star TC1, Cluster, Polar, IMAGE, LANL geostationary satellites and ground-based geomagnetic field measurements. In both events, an earthward flow associated with plasma sheet thinning is measured by Cluster 8-10 min ahead of the auroral breakup. A couple of minutes after the breakup, either TC1 at similar to X-10 R(E) first detects plasma sheet expansion and then the LANL satellites near the midnight measure energetic electron injections at geostationary orbit or the LANL satellites first measure the electron injections and then TC1 detects the plasma sheet expansion. More than about 20 min later, Cluster at X similar to 16 R(E) and Polar (at higher latitude) successively observe plasma sheet expansion. The open magnetic flux of the polar cap, Psi, is found to continually increase during the early substorm phase and then to rapidly fall when the IMF turns northward. When Psi reaches its minimum value, bright and broad auroral activities start to decrease. Tailward progression of the magnetic dipolarization and a poleward expansion of auroral bulges are shown to closely map to one another. These results suggest that substorm activations start in the midtail before ground onset and then move earthward, which leads to an expansion onset in the near- Earth tail around X similar to-(8-9) R(E). After onset, the activations progress both earthward and tailward. Substorm onset is possibly related to plasma sheet reconnection of close field lines, while tail lobe reconnection of open field lines release more energy to support the full expansion of the substorm. In a fully developed expansion phase, an initial dipolarization in the near- Earth may eventually evolve to enable disruption of the cross-tail current over a wide region of the magnetotail. C1 [Cao, X.; Pu, Z. Y.; Zhang, H.; Fu, S. Y.; Xie, L.] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China. [Lucek, E.; Carr, C. M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Reme, H.; Dandouras, I.] Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Dunlop, M. W.] Rutherford Appleton Lab, Space Sci & Technol Dept, Chilton OX11 0QX, England. [Escoubet, C. P.] European Space Agcy, Estec, NL-2200 AG Noordwijk, Netherlands. [Fazakerley, A. N.] UCL, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Korth, A.; Fraenz, M.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Reeves, G. D.; Friedel, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Frey, H. U.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Glassmeier, K. H.] Tech Univ Carolo Wilhelmina Braunschweig, IGM, D-38106 Braunschweig, Germany. [Kubyshkina, M. V.] St Petersburg State Univ, Inst Phys, St Petersburg 198504, Russia. [Liu, Z. X.] Chinese Acad Sci, CSSAR, State Key Lab Space Weather, Beijing 100080, Peoples R China. [Ma, Z. W.] Zhejiang Univ, Inst Fus Theory & Simulat, Sch Sci, Hangzhou 310027, Peoples R China. [Mishin, V. M.] Russian Acad Sci, Inst Solar Terr Phys, Irkusk 64033, Russia. [Pulkkinen, T. I.] Finnish Meteorol Inst, FI-0010 Helsinki, Finland. [Wang, X. G.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Xiao, C. J.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Zong, Q. G.] Univ Massachusetts, Ctr Atmospher Res, Lowell, MA 01854 USA. [Pu, Z. Y.] CAS, CSSAR, State Key Lab Space Weather, Beijing, Peoples R China. RP Cao, X (reprint author), Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China. EM zypu@pku.edu.cn RI Friedel, Reiner/D-1410-2012; dunlop, malcolm/F-1347-2010; Pulkkinen, Tuija/D-8403-2012; Fu, Suiyan/E-9178-2013; Ma, Zhiwei/F-6986-2013; Kubyshkina, Marina/G-9436-2013; Zhang, Hui/G-6600-2014; Reeves, Geoffrey/E-8101-2011 OI Dandouras, Iannis/0000-0002-7121-1118; Friedel, Reiner/0000-0002-5228-0281; Pulkkinen, Tuija/0000-0002-6317-381X; Kubyshkina, Marina/0000-0001-5897-9547; Frey, Harald/0000-0001-8955-3282; Reeves, Geoffrey/0000-0002-7985-8098 NR 77 TC 17 Z9 18 U1 0 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 21 PY 2008 VL 113 IS A7 AR A07S25 DI 10.1029/2007JA012761 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 304XJ UT WOS:000256142100001 ER PT J AU Lavraud, B Jordanova, VK Thomsen, MF AF Lavraud, Benoit Jordanova, Vania K. Thomsen, Michelle F. TI Modeling the effects of local time variation of plasma sheet properties on proton ring current energy and peak location SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID NEAR-EARTH MAGNETOTAIL; SOLAR-WIND ORIGIN; GEOSYNCHRONOUS ORBIT; INNER-MAGNETOSPHERE; ELECTRIC-FIELDS; MAGNETIC STORM; COLD; ASYMMETRY; DENSITY; IONS AB We have run kinetic ring current simulations with a large range of outer boundary plasma properties during a test time interval conducive to a storm. We varied the density, temperature and local time location of the source plasma sheet to investigate their influence on the proton ring current total energy and peak location. We found that: ( 1) the density is the main factor controlling the total ring current energy for the given field model; ( 2) the source local time location is also a major factor, with substantially larger total energies obtained for post-midnight source locations; ( 3) for any given density, enhanced source temperature leads to an enhanced total energy, but only if the source is post-midnight; ( 4) the density has essentially no effect on the ring current peak location; ( 5) a lower source temperature leads to a peak ring current closer to Earth, but it has little effect on the local time of the ring current peak. However, results ( 4) and ( 5) would differ if using an electro-magnetically self-consistent model. ( 6) The source location has a substantial impact on both the radial location and local time of the peak; in particular, the peak ring current is displaced post-midnight for post-midnight source locations when considering energy densities in the energy range [ 1, 40] keV. We also investigated the dependence of the ring current peak location on storm epoch, i.e., during the main phase. We found that the ring current peak moves inward during the first few hours of the storm, as expected from inward transport. For all storm epochs, the peak is found at a local time close to that of the source population for the energy range [ 1, 40] keV, but is found at dusk throughout the storm for the full energy range ([0.5, 400] keV). Finally, we show how the source location influences the energy spectrum of ring current protons. As a result of larger proton energization, by electrically drifting inward for a longer time, a post-midnight source location leads to substantially larger ( lower) ring current energy content for energies above ( below) 40 keV than for a source centered at midnight. Our main conclusions are that ( 1) a post-midnight source location leads to a substantially stronger total ring current energy; ( 2) it may only lead to a post-midnight peak at middle-to-lowenergies; but ( 3) in such cases the energies at which such displaced peaks occur only constitute a small fraction of the total ring current energy. C1 [Lavraud, Benoit; Jordanova, Vania K.; Thomsen, Michelle F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lavraud, B (reprint author), CNRS, Ctr Etud Spatiale Rayonnements, 9 Ave Colonel Roche, F-31028 Toulouse 4, France. EM lavraud@cesr.fr OI Jordanova, Vania/0000-0003-0475-8743 NR 53 TC 3 Z9 3 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 21 PY 2008 VL 113 IS A5 AR A05215 DI 10.1029/2007JA012883 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 304XG UT WOS:000256141800001 ER PT J AU Cappa, CD Smith, JD Wilson, KR Saykally, RJ AF Cappa, Christopher D. Smith, Jared D. Wilson, Kevin R. Saykally, Richard J. TI Revisiting the total ion yield x-ray absorption spectra of liquid water microjets SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 11th International Conference on Magnetic Fluids CY JUL 23-27, 2007 CL Kosice, SLOVAKIA ID HYDROGEN-BOND NETWORK; VAPOR INTERFACE; SPECTROSCOPY; METHANOL; EDGE; DESORPTION; EXCITATION; MOLECULES; ICE; H2O AB Measurements of the total ion yield (TIY) x-ray absorption spectrum (XAS) of liquid water by Wilson et al (2002 J. Phys.: Condens. Matter 14 L221 and 2001 J. Phys. Chem. B 105 3346) have been revisited in light of new experimental and theoretical efforts by our group. Previously, the TIY spectrum was interpreted as a distinct measure of the electronic structure of the liquid water surface. However, our new results indicate that the previously obtained spectrum may have suffered from as yet unidentified experimental artifacts. Although computational results indicate that the liquid water surface should exhibit a TIY-XAS that is fundamentally distinguishable from the bulk liquid XAS, the new experimental results suggest that the observable TIY-XAS is actually nearly identical in appearance to the total electron yield (TEY-)XAS, which is a bulk probe. This surprising similarity between the observed TIY-XAS and TEY-XAS likely results from large contributions from x-ray induced electron stimulated desorption of ions, and does not necessarily indicate that the electronic structure of the bulk liquid and liquid surface are identical. C1 [Cappa, Christopher D.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. [Smith, Jared D.; Wilson, Kevin R.; Saykally, Richard J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Cappa, CD (reprint author), Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. NR 25 TC 33 Z9 33 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 21 PY 2008 VL 20 IS 20 AR 205105 DI 10.1088/0953-8984/20/20/205105 PG 7 WC Physics, Condensed Matter SC Physics GA 298BO UT WOS:000255661500060 PM 21694286 ER PT J AU Wandersman, E Dubois, E Dupuis, V Duri, A Robert, A Perzynski, R AF Wandersman, E. Dubois, E. Dupuis, V. Duri, A. Robert, A. Perzynski, R. TI Heterogeneous dynamics and ageing in a dense ferro-glass SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 11th International Conference on Magnetic Fluids CY JUL 23-27, 2007 CL Kosice, SLOVAKIA ID PHASE AB Repulsive magnetic fluids show a dynamical freezing above a volume fraction Phi*, which depends on the physico-chemistry of the system. Phi* is here determined by a magneto-optical technique. The out-of-equilibrium dynamics of a glass-forming magnetic fluid (Phi = 1.2 Phi*) is studied by x-ray photon correlation spectroscopy and analyzed in terms of intensity auto-correlation functions. The relaxation is age dependent and follows a compressed exponential law with a characteristic time scaling as the inverse of the scattering vector Q. The dynamical susceptibility chi is then deduced from a time resolved correlation analysis at an intermediate Q and for ages larger than 10(4) s. C1 [Wandersman, E.; Dubois, E.; Dupuis, V.; Perzynski, R.] Univ Paris 06, ESPCI, CNRS UMR 7612, Lab Liquides Ion & Interfaces Chargees, F-75252 Paris 05, France. [Duri, A.] Deutsches Elektronen Synchrotron Hasylab, D-22607 Hamburg, Germany. [Robert, A.] European Synchrotron Radiat Facil, F-38043 Grenoble 9, France. [Robert, A.] Stanford Univ, Stanford Linear Accelerator Ctr, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. RP Wandersman, E (reprint author), Univ Paris 06, ESPCI, CNRS UMR 7612, Lab Liquides Ion & Interfaces Chargees, 4 Pl Jussieu,Case 51, F-75252 Paris 05, France. EM wanders@ccr.jussieu.fr RI Dupuis, Vincent/G-6923-2015 NR 17 TC 4 Z9 4 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 21 PY 2008 VL 20 IS 20 AR 204124 DI 10.1088/0953-8984/20/20/204124 PG 5 WC Physics, Condensed Matter SC Physics GA 298BO UT WOS:000255661500026 PM 21694253 ER PT J AU Lee, MH Kim, KB Han, JH Eckert, J Sordelet, DJ AF Lee, Min Ha Kim, Ki Buem Han, Jun Hee Eckert, Juergen Sordelet, Daniel J. TI High strength porous Ti-6Al-4V foams synthesized by solid state powder processing SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID TITANIUM; DEFORMATION; IMPLANTS; SURFACE; ALLOYS AB We demonstrate a powder metallurgy synthesis route for porous Ti-6Al-4V structures by consolidation of Ti-6Al-4V alloy powders and describe the influence of the processing conditions. Ti-6Al-4V foams with 50 vol% porosity having high strength were fabricated by low temperature solid state deformation at temperatures below 873 K. The open cellular structure consists of continuously connected Ti-6Al-4V struts and homogeneously distributed pores with nominal diameters between 10 and 50 mu m and 150-500 mu m length. C1 [Lee, Min Ha; Eckert, Juergen] IFW Dresden, Inst Complex Mat, D-01171 Dresden, Germany. [Kim, Ki Buem; Han, Jun Hee] Sejong Univ, Fac Nanotechnol & Adv Mat Engn, Seoul 143747, South Korea. [Eckert, Juergen] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany. [Sordelet, Daniel J.] Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. [Lee, Min Ha] Korea Inst Ind Technol, Adv Mat Div, Inchon 406840, South Korea. RP Lee, MH (reprint author), IFW Dresden, Inst Complex Mat, POB 27 01 16, D-01171 Dresden, Germany. EM mhlee1@kitech.re.kr NR 25 TC 7 Z9 7 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD MAY 21 PY 2008 VL 41 IS 10 AR 105404 DI 10.1088/0022-3727/41/10/105404 PG 5 WC Physics, Applied SC Physics GA 295ZP UT WOS:000255513600064 ER PT J AU Zhou, SQ Potzger, K Talut, G Reuther, H Kuepper, K Grenzer, J Xu, QY Mucklich, A Helm, M Fassbender, J Arenholz, E AF Zhou, Shengqiang Potzger, K. Talut, G. Reuther, H. Kuepper, K. Grenzer, J. Xu, Qingyu Muecklich, A. Helm, M. Fassbender, J. Arenholz, E. TI Ferromagnetism and suppression of metallic clusters in Fe implanted ZnO - a phenomenon related to defects? SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID DOPED ZNO; ROOM-TEMPERATURE; THIN-FILMS AB We investigated ZnO(0 0 0 1) single crystals annealed in high vacuum with respect to their magnetic properties and cluster formation tendency after implant-doping with Fe. While metallic Fe cluster formation is suppressed, no evidence for the relevance of the Fe magnetic moment to the observed ferromagnetism was found. The latter along with the cluster suppression is discussed with respect to defects in the ZnO host matrix, since the crystalline quality of the substrates was lowered due to the preparation as observed by x-ray diffraction. C1 [Zhou, Shengqiang; Potzger, K.; Talut, G.; Reuther, H.; Kuepper, K.; Grenzer, J.; Xu, Qingyu; Muecklich, A.; Helm, M.; Fassbender, J.] Forschungszentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany. [Arenholz, E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zhou, SQ (reprint author), Forschungszentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, POB 510119, D-01314 Dresden, Germany. RI Helm, Manfred/B-2284-2009; Fassbender, Juergen/A-8664-2008; Zhou, Shengqiang/C-1497-2009; Kupper, Karsten/G-1397-2016 OI Fassbender, Juergen/0000-0003-3893-9630; Zhou, Shengqiang/0000-0002-4885-799X; NR 30 TC 29 Z9 29 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD MAY 21 PY 2008 VL 41 IS 10 AR 105011 DI 10.1088/0022-3727/41/10/105011 PG 6 WC Physics, Applied SC Physics GA 295ZP UT WOS:000255513600021 ER PT J AU Chi, YG Scroggins, ST Frechet, JMJ AF Chi, Yonggui Scroggins, Steven T. Frechet, Jean M. J. TI One-pot multi-component asymmetric cascade reactions catalyzed by soluble star polymers with highly branched non-interpenetrating catalytic cores SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID IMINIUM CATALYSIS; SITE ISOLATION; ACTIVATION; ALDEHYDES; AMINES AB Non-interpenetrating star polymer catalysts designed to mimic the site isolation characteristics of enzymes enable the one-pot combination of multiple otherwise incompatible catalysts for asymmetric cascade reactions that involve iminium, enamine, and H-bonding catalysis. Control experiments replacing star polymer catalysts with the corresponding small molecule or linear polymer analogues lead to little or no cascade reaction. Our strategy also allows straightforward access to all possible stereoisomers of the cascade product individually by proper choice of catalyst chirality. To our knowledge, this work represents the most sophisticated study of soluble polymers for site isolation, enzyme-like catalysis that generates cascade products with multiple chiral centers. C1 [Chi, Yonggui; Scroggins, Steven T.; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chi, Yonggui; Scroggins, Steven T.; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Chi, Yonggui Robin/H-9607-2013; Chi, Yonggui Robin/B-7023-2011; OI Chi, Yonggui Robin/0000-0003-0573-257X; Frechet, Jean /0000-0001-6419-0163 NR 21 TC 173 Z9 174 U1 3 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 21 PY 2008 VL 130 IS 20 BP 6322 EP + DI 10.1021/ja8013456 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 300VU UT WOS:000255854100011 PM 18433122 ER PT J AU Pluth, MD Bergman, RG Raymond, KN AF Pluth, Michael D. Bergman, Robert G. Raymond, Kenneth N. TI Encapsulation of protonated diamines in a water-soluble, chiral, supramolecular assembly allows for measurement of hydrogen-bond breaking followed by nitrogen inversion/rotation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; SLOW CHEMICAL-EXCHANGE; AMINE INVERSION; PYRAMIDAL INVERSION; CROWDED PIPERIDINES; TERTIARY-AMINES; GUEST EXCHANGE; BASIC SOLUTION; NMR; HOST AB Amine nitrogen inversion, difficult to observe in aqueous solution, is followed in a chiral, supramolecular host molecule with purely rotational T-symmetry that reduces the local symmetry of encapsulated monoprotonated diamines and enables the observation and quantification of Delta G(double dagger) for the combined hydrogen-bond breaking and nitrogen inversion/rotation (NIR) process. Free energies of activation for the combined hydrogen-bond breaking and NIR process inside of the chiral assembly were determined by the NMR coalescence method. Activation parameters for ejection of the protonated amines from the assembly confirm that the NIR process responsible for the coalescence behavior occurs inside of the assembly rather than by a guest ejection/NIR/re-encapsulation mechanism. For one of the diamines, N,N,N',N'-tetramethylethylenediamine, the relative energy barriers for the hydrogen-bond breaking and NIR process were calculated at the G3(MP2)//B3LYP/6-31++G(d,p) level of theory, and these agreed well with the experimental data. C1 [Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; raymond@socrates.berkeley.edu RI Pluth, Michael/A-7222-2012 OI Pluth, Michael/0000-0003-3604-653X NR 45 TC 43 Z9 43 U1 6 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 21 PY 2008 VL 130 IS 20 BP 6362 EP 6366 DI 10.1021/ja076691h PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 300VU UT WOS:000255854100025 PM 18444618 ER PT J AU Chen, BL Zhao, X Putkham, A Hong, K Lobkovsky, EB Hurtado, EJ Fletcher, AJ Thomas, KM AF Chen, Banglin Zhao, Xuebo Putkham, Apipong Hong, Kunlun Lobkovsky, Emil B. Hurtado, Eric J. Fletcher, Ashleigh J. Thomas, K. Mark TI Surface interactions and quantum kinetic molecular sieving for H-2 and D-2 adsorption on a mixed metal-organic framework material SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Review ID HETEROGENEOUS ASYMMETRIC HYDROGENATION; POROUS COORDINATION POLYMER; GAS SORPTION PROPERTIES; PRUSSIAN BLUE ANALOGS; MICROPOROUS METAL; CARBON MATERIALS; AIR SEPARATION; HYDROTHERMAL SYNTHESIS; PERMANENT POROSITY; ACTIVATED CARBONS AB A rational strategy has been used to immobilize open metal sites in ultramicroporosity for stronger binding of multiple H-2 molecules per unsaturated metal site for H-2 storage applications. The synthesis and structure of a mixed zinc/copper metal-organic framework material Zn-3(BDC)(3)[CU(Pyen)] center dot(DMF)(5)(H2O)(5) (H2BDC = 1,4 benzenedicarboxylic acid and PyenH(2) = 5-methyl-4-oxo-1,4-dihydro-pyridine-3-carbaldehyde) is reported. Desolvation provides a bimodal porous structure Zn-3(BDC)(3)[Cu(Pyen)] (M'MOF 1) with narrow porosity (<0.56 nm) and an array of pores in the bc crystallographic plane where the adsorbate-adsorbent interactions are maximized by both the presence of open copper centers and overlap of the potential energy fields from pore walls. The H-2 and D-2 adsorption isotherms for M'MOF 1 at 77.3 and 87.3 K were reversible with virtually no hysteresis. Methods for determination of the isosteric enthalpies of H-2 and D-2 adsorption were compared. A virial model gave the best agreement (average deviation <1 standard deviation) with the isotherm data. This was used in conjunction with the van't Hoff isochore giving isosteric enthalpies at zero surface coverage of 12.29 +/- 0.53 and 12.44 +/- 0.50 kJ mol(-1) for H-2 and D-2 adsorption, respectively. This is the highest value so far observed for hydrogen adsorption on a porous material. The enthalpy of adsorption, decreases with increasing amount adsorbed to 9.5 kJ mol(-1) at similar to 1.9 mmol g(-1) (2 H-2 or D-2 molecules per Cu corresponding to adsorption on both sides of planar Cu open centers) and is virtually unchanged in the range 1.9-3.6 mmol g(-1). Virial analysis of isotherms at 87.3 K is also consistent with two H-2 or D-2 molecules being bound to each open Cu center. The adsorption kinetics follow a double exponential model, corresponding to diffusion along two types of pores, a slow component with high activation energy (13.35 +/- 0.59 kJ mol(-1)) for the narrow pores and a faster component with low activation energy (8.56 +/- 0.41 kJ mol(-1)). The D-2 adsorption kinetic constants for both components were significantly faster than the corresponding H-2 kinetics for specific pressure increments and had slightly lower activation energies than the corresponding values for H-2 adsorption. The kD(2)/kH(2) ratio for the slow component was 1.62 +/- 0.07, while the fast component was 1.38 +/- 0.04 at 77.3 K, and the corresponding ratios were smaller at 87.3 K. These observations of kinetic isotope quantum molecular sieving in porous materials are due to the larger zero-point energy for the lighter H-2, resulting in slower adsorption kinetics compared with the heavier D-2. The results show that a combination of open metal centers and confinement in ultramicroporosity leads to a high enthalpy for H-2 adsorption over a wide range of surface coverage and quantum effects influence diffusion of H-2 and D-2 in pores in M'MOF 1. C1 [Chen, Banglin; Hurtado, Eric J.] Univ Texas Pan Amer, Dept Chem, Edinburg, TX 78539 USA. [Zhao, Xuebo; Putkham, Apipong; Fletcher, Ashleigh J.; Thomas, K. Mark] Newcastle Univ, No Carbon Res Labs, Sir Joseph Swan Inst Energy Res, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Zhao, Xuebo; Putkham, Apipong; Fletcher, Ashleigh J.; Thomas, K. Mark] Newcastle Univ, Sch Chem Engn & Adv Mat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Lobkovsky, Emil B.] Cornell Univ, Baker Lab, Dept Biol & Chem, Ithaca, NY 14853 USA. [Hong, Kunlun] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Chen, BL (reprint author), Univ Texas Pan Amer, Dept Chem, Edinburg, TX 78539 USA. EM banglin@utpa.edu; mark.thomas@ncl.ac.uk RI Chen, Banglin/F-5461-2010; Thomas, Keith/E-7832-2011; Fletcher, Ashleigh/B-8636-2009; Hong, Kunlun/E-9787-2015 OI Chen, Banglin/0000-0001-8707-8115; Thomas, Keith/0000-0002-8661-3099; Fletcher, Ashleigh/0000-0003-3915-8887; Hong, Kunlun/0000-0002-2852-5111 NR 117 TC 300 Z9 300 U1 31 U2 265 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 21 PY 2008 VL 130 IS 20 BP 6411 EP 6423 DI 10.1021/ja710144k PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA 300VU UT WOS:000255854100032 PM 18435535 ER PT J AU Banerji, M Abdalla, FB Lahav, O Lin, H AF Banerji, Manda Abdalla, Filipe B. Lahav, Ofer Lin, Huan TI Photometric redshifts for the Dark Energy Survey and VISTA and implications for large-scale structure SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; galaxies : distances and redshifts; cosmology : observations; large-scale structure of Universe ID ARTIFICIAL NEURAL-NETWORKS; GALAXY LUMINOSITY FUNCTION; DEEP-FIELD-NORTH; POWER-SPECTRUM; STAR-FORMATION; RED GALAXIES; EVOLUTION; OSCILLATIONS; TOMOGRAPHY; COSMOLOGY AB We conduct a detailed analysis of the photometric redshift requirements for the proposed Dark Energy Survey (DES) using two sets of mock galaxy simulations and an artificial neural network code - ANNZ. In particular, we examine how optical photometry in the DES grizY bands can be complemented with near-infrared photometry from the planned VISTA Hemisphere Survey (VHS) in the JHK(s) bands. We find that the rms scatter on the photometric redshift estimate over 1 < z < 2 is sigma(z) = 0.2 from DES alone and sigma(z) = 0.15 from DES + VISTA, i.e. an improvement of more than 30 per cent. We draw attention to the effects of galaxy formation scenarios such as reddening on the photo-z estimate and using our neural network code, calculate the extinction, A(v) for these reddened galaxies. We also look at the impact of using different training sets when calculating photometric redshifts. In particular, we find that using the ongoing DEEP2 and VVDS-Deep spectroscopic surveys to calibrate photometric redshifts for DES, will prove effective. However, we need to be aware of uncertainties in the photometric redshift bias that arise when using different training sets as these will translate into errors in the dark energy equation of state parameter, w. Furthermore, we show that the neural network error estimate on the photometric redshift may be used to remove outliers from our samples before any kind of cosmological analysis, in particular for large-scale structure experiments. By removing all galaxies with a neural network photo-z error estimate of greater than 0.1 from our DES + VHS sample, we can constrain the galaxy power spectrum out to a redshift of 2 and reduce the fractional error on this power spectrum by similar to 15-20 per cent compared to using the entire catalogue. Output tables of spectroscopic redshift versus photometric redshift used to produce the results in this paper can be found at http://www.star.ucl.ac.uk/similar to mbanerji/DESdata. C1 [Banerji, Manda; Abdalla, Filipe B.; Lahav, Ofer] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Lin, Huan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Banerji, M (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM mbanerji@star.ucl.ac.uk OI Banerji, Manda/0000-0002-0639-5141; Abdalla, Filipe/0000-0003-2063-4345 NR 43 TC 41 Z9 41 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 21 PY 2008 VL 386 IS 3 BP 1219 EP 1233 DI 10.1111/j.1365-2966.2008.13095.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 295HF UT WOS:000255464900004 ER PT J AU Dreiner, HK Luhn, C Murayama, H Thormeier, M AF Dreiner, Herbi K. Luhn, Christoph Murayama, Hitoshi Thormeier, Marc TI Proton hexality from an anomalous flavor U(1) and neutrino masses: Linking to the string scale SO NUCLEAR PHYSICS B LA English DT Article ID GAUGE COUPLING UNIFICATION; FREE FERMIONIC FORMULATION; MU-PROBLEM; ABELIAN SYMMETRY; FAMILY SYMMETRY; MIXING MATRIX; CP VIOLATION; MODEL; OSCILLATIONS; SEARCH AB We devise minimalistic gauged U(1)(X) Froggatt-Nielsen models which at low-energy give rise to the recently suggested discrete gauge Z(6)-symmetry, proton hexality, thus stabilizing the proton. Assuming three generations of right-handed neutrinos, with the proper choice of X-charges, we obtain viable neutrino masses. Furthermore, we find scenarios such that no X-charged hidden sector superfields are needed, which from a bottom-up perspective allows the calculation Of g(string), g(X) and G(SM)'s Kac-Moody levels. The only mass scale apart from M-grav is m(soft). (c) 2007 Elsevier B.V. All rights reserved. C1 [Luhn, Christoph] Univ Florida, Inst Fundamental Theory, Dept Phys, Gainesville, FL 32611 USA. [Dreiner, Herbi K.] Univ Bonn, Physikal Inst, D-53115 Bonn, Germany. [Murayama, Hitoshi] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Murayama, Hitoshi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Thormeier, Marc] CEA Saclay, Serv Phys Theor, Orme Merisiers, F-91191 Gif Sur Yvette, France. RP Luhn, C (reprint author), Univ Florida, Inst Fundamental Theory, Dept Phys, Gainesville, FL 32611 USA. EM dreiner@th.physik.uni-bonn.de; luhn@phys.ufl.edu; murayama@hitoshi.berkeley.edu; thor@th.physik.uni-bonn.de RI Murayama, Hitoshi/A-4286-2011; OI Luhn, Christoph/0000-0002-3318-3128 NR 82 TC 21 Z9 21 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD MAY 21 PY 2008 VL 795 IS 1-2 BP 172 EP 200 DI 10.1016/j.nuclphysb.2007.11.014 PG 29 WC Physics, Particles & Fields SC Physics GA 270VJ UT WOS:000253748000007 ER PT J AU Kelly, ME Beavis, RC Fiorella, D Schultke, E Allen, LA Juurlink, BH Zhong, Z Chapman, LD AF Kelly, M. E. Beavis, R. C. Fiorella, David Schultke, E. Allen, L. A. Juurlink, B. H. Zhong, Z. Chapman, L. D. TI Analyzer-based imaging of spinal fusion in an animal model SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID BREAST-CANCER SPECIMENS; SURGICAL EXPLORATION; ARTICULAR-CARTILAGE; PLAIN RADIOGRAPHS; DIFFRACTION; BONE; RAT AB Analyzer-based imaging (ABI) utilizes synchrotron radiation sources to create collimated monochromatic x-rays. In addition to x-ray absorption, this technique uses refraction and scatter rejection to create images. ABI provides dramatically improved contrast over standard imaging techniques. Twentyone adult male Wistar rats were divided into four experimental groups to undergo the following interventions: (1) non-injured control, (2) decortication alone, (3) decortication with iliac crest bone grafting and (4) decortication with iliac crest bone grafting and interspinous wiring. Surgical procedures were performed at the L5-6 level. Animals were killed at 2, 4 and 6 weeks after the intervention and the spine muscle blocks were excised. Specimens were assessed for the presence of fusion by (1) manual testing, (2) conventional absorption radiography and (3) ABI. ABI showed no evidence of bone fusion in groups 1 and 2 and showed solid or possibly solid fusion in subjects from groups 3 and 4 at 6 weeks. Metal artifacts were not present in any of the ABI images. Conventional absorption radiographs did not provide diagnostic quality imaging of either the graft material or fusion masses in any of the specimens in any of the groups. Synchrotron-based ABI represents a novel imaging technique which can be used to assess spinal fusion in a small animal model. ABI produces superior image quality when compared to conventional radiographs. C1 [Beavis, R. C.; Allen, L. A.] Univ Saskatchewan, Royal Univ Hosp, Div Orthopaed Surg, Saskatoon, SK, Canada. [Fiorella, David] Cleveland Clin, Dept Neuroradiol, Cleveland, OH 44106 USA. [Fiorella, David; Juurlink, B. H.; Chapman, L. D.] Univ Saskatchewan, Dept Anat & Cell Biol, Saskatoon, SK, Canada. [Schultke, E.] Univ Saskatchewan, Dept Surg, Saskatoon, SK, Canada. [Zhong, Z.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Kelly, M. E.] Univ Saskatchewan, Royal Univ Hosp, Div Neurosurg, Saskatoon, SK, Canada. RP Kelly, ME (reprint author), Cleveland Clin Fdn, Dept Neurosurg, S80,9500 Euclid Ave, Cleveland, OH 44195 USA. EM kellym@ccf.org RI Schultke, Elisabeth/M-3959-2013; Chapman, Dean/I-6168-2013 OI Chapman, Dean/0000-0001-6590-4156 FU NCI NIH HHS [CA 111976]; NIAMS NIH HHS [R01 AR 48292] NR 23 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 J9 PHYS MED BIOL JI Phys. Med. Biol. PD MAY 21 PY 2008 VL 53 IS 10 BP 2607 EP 2616 DI 10.1088/0031-9155/53/10/011 PG 10 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 307UB UT WOS:000256342700011 PM 18441411 ER PT J AU Li, T Schultz, I Keys, DA Campbell, JL Fisher, JW AF Li, Ting Schultz, Irv Keys, Deborah A. Campbell, Jerry L. Fisher, Jeffrey W. TI Quantitative evaluation of dichloroacetic acid kinetics in human - A physiologically based pharmacokinetic modeling investigation (vol 245, pg 35, 2008) SO TOXICOLOGY LA English DT Correction C1 [Li, Ting] Univ Georgia, Dept Pharmaceut & Biomed Sci, Athens, GA 30602 USA. [Campbell, Jerry L.; Fisher, Jeffrey W.] Univ Georgia, Interdisciplinary Toxicol Program, N124 Paul D Coverdell Ctr, Athens, GA 30602 USA. [Schultz, Irv] Battelle Pacific NW Div, Sequim, WA 98382 USA. [Keys, Deborah A.] Stat & Modeling Supporting Informed Decis, Athens, GA 30606 USA. RP Fisher, JW (reprint author), Univ Georgia, Interdisciplinary Toxicol Program, N124 Paul D Coverdell Ctr, Athens, GA 30602 USA. EM jwfisher.uga@gmail.com NR 1 TC 0 Z9 0 U1 1 U2 3 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0300-483X J9 TOXICOLOGY JI Toxicology PD MAY 21 PY 2008 VL 247 IS 2-3 BP 166 EP 166 DI 10.1016/j.tox.2008.03.001 PG 1 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 305WL UT WOS:000256208400015 ER PT J AU Berk, DV Khare, P York, DG Richards, GT Lundgren, B Alsayyad, Y Kulkarni, VP SubbaRao, M Schneider, DP Heckman, T Anderson, S Crotts, APS Frieman, J Stoughton, C Lauroesch, JT Hall, PB Meiksin, A Steffing, M Vanlandingham, J AF Berk, Daniel Vanden Khare, Pushpa York, Donald G. Richards, Gordon T. Lundgren, Britt Alsayyad, Yusra Kulkarni, Varsha P. SubbaRao, Mark Schneider, Donald P. Heckman, Tim Anderson, Scott Crotts, Arlin P. S. Frieman, Josh Stoughton, C. Lauroesch, James T. Hall, Patrick B. Meiksin, Avery Steffing, Michael Vanlandingham, Johnny TI Average properties of a large sample of z(abs) similar to z(em) associated MgII absorption line systems SO ASTROPHYSICAL JOURNAL LA English DT Review DE dust, extinction; ISM : abundances; quasars : absorption lines ID DIGITAL-SKY-SURVEY; ACTIVE GALACTIC NUCLEI; C-IV-ABSORPTION; QUASI-STELLAR OBJECTS; INTEGRAL FIELD SPECTROSCOPY; 5TH DATA RELEASE; 3RD DATA RELEASE; ROSAT ALL-SKY; INTRINSIC ABSORPTION; CHEMICAL ABUNDANCES AB We studied a sample of 415 associated (z(abs) similar to z(em); relative velocity with respect to QSO in units of c, beta < 0.01) Mg II absorption systems with 1.0 <= zabs <= 1.86, in the spectra of SDSS DR3 QSOs, to determine the dust content and ionization state in the absorbers. We also compared these properties to those of a similarly selected sample of 809 intervening systems (beta > 0.01), so as to understand their origin. Normalized, composite spectra were derived for absorption line measurements, for the full sample and for several subsamples, chosen on the basis of the line strengths and other absorber and QSO properties. From these, and from the equivalent widths in individual spectra, we conclude that the associated Mg II absorbers have higher ionization (higher ratios of the strengths of C IV and Mg II lines), than the intervening absorbers. The ionization decreases with increasing beta. Average extinction curves were obtained for the subsamples by comparing their geometric mean QSO spectra with those of matching (in z(em) and i magnitude) samples of QSOs without absorption lines. There is clear evidence for SMC-like dust attenuation in these systems; the 2175 angstrom absorption feature is absent. The extinction is almost twice that observed in intervening systems. We reconfirm that QSOs with nonzero FIRST radio flux are intrinsically redder than the QSOs with no detection in the FIRST survey. The incidence of associated Mg II systems in radio-detected QSOs is 1.7 times that in radio-undetected QSOs. The associated absorbers in radio-detected QSOs cause 3 times more reddening than those in radio-undetected QSOs. This excess reddening is correlated with the strength of Mg II absorption, possibly suggesting an intrinsic nature for the associated absorbers in radio-detected QSOs. C1 [Berk, Daniel Vanden; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Khare, Pushpa] Utkal Univ, Dept Phys, Bhubaneswar 751004, Orissa, India. [York, Donald G.; Alsayyad, Yusra; SubbaRao, Mark; Steffing, Michael; Vanlandingham, Johnny] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Richards, Gordon T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Lundgren, Britt] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Kulkarni, Varsha P.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29207 USA. [Heckman, Tim] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Anderson, Scott] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Crotts, Arlin P. S.] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Frieman, Josh; Stoughton, C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Lauroesch, James T.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Hall, Patrick B.] York Univ, Dept Phys & Astron, N York, ON M3J 1P3, Canada. [Meiksin, Avery] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. RP Berk, DV (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. OI Meiksin, Avery/0000-0002-5451-9057 NR 116 TC 25 Z9 25 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2008 VL 679 IS 1 BP 239 EP 259 DI 10.1086/587122 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 300IX UT WOS:000255818600018 ER PT J AU Acciari, VA Beilicke, M Blaylock, G Bradbury, SM Buckley, JH Bugaev, V Butt, Y Celik, O Cesarini, A Ciupik, L Cogan, P Colin, P Cui, W Daniel, MK Duke, C Ergin, T Falcone, AD Fegan, SJ Finley, JP Finnegan, G Fortin, P Fortson, LF Gibbs, K Gillanders, GH Grube, J Guenette, R Gyuk, G Hanna, D Hays, E Holder, J Horan, D Hughes, SB Hui, MC Humensky, TB Imran, A Kaaret, P Kertzman, M Kieda, DB Kildea, J Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Lee, K Maier, G McCann, A McCutcheon, M Millis, J Moriarty, P Mukherjee, R Nagai, T Ong, RA Pandel, D Perkins, JS Pohl, M Quinn, J Ragan, K Reynolds, PT Rose, HJ Schroedter, M Sembroski, GH Smith, AW Steele, D Swordy, SP Syson, A Toner, JA Valcarcel, L Vassiliev, VV Wakely, SP Ward, JE Weekes, TC Weinstein, A White, RJ Williams, DA Wissel, SA Wood, MD Zitzer, B AF Acciari, V. A. Beilicke, M. Blaylock, G. Bradbury, S. M. Buckley, J. H. Bugaev, V. Butt, Y. Celik, O. Cesarini, A. Ciupik, L. Cogan, P. Colin, P. Cui, W. Daniel, M. K. Duke, C. Ergin, T. Falcone, A. D. Fegan, S. J. Finley, J. P. Finnegan, G. Fortin, P. Fortson, L. F. Gibbs, K. Gillanders, G. H. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Hays, E. Holder, J. Horan, D. Hughes, S. B. Hui, M. C. Humensky, T. B. Imran, A. Kaaret, P. Kertzman, M. Kieda, D. B. Kildea, J. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Lee, K. Maier, G. McCann, A. McCutcheon, M. Millis, J. Moriarty, P. Mukherjee, R. Nagai, T. Ong, R. A. Pandel, D. Perkins, J. S. Pohl, M. Quinn, J. Ragan, K. Reynolds, P. T. Rose, H. J. Schroedter, M. Sembroski, G. H. Smith, A. W. Steele, D. Swordy, S. P. Syson, A. Toner, J. A. Valcarcel, L. Vassiliev, V. V. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. White, R. J. Williams, D. A. Wissel, S. A. Wood, M. D. Zitzer, B. TI Observation of gamma-ray emission from the galaxy M87 above 250 GeV with VERITAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : individual (M87, NGC 4486, Virgo A); gamma rays : observations ID SUPERMASSIVE BLACK-HOLE; X-RAY; TELESCOPE OBSERVATIONS; UNIFIED SCHEMES; TEV EMISSION; LAC OBJECTS; CRAB-NEBULA; JET; MARKARIAN-421; VARIABILITY AB The multiwavelength observation of the nearby radio galaxy M87 provides a unique opportunity to study in detail processes occurring in active galactic nuclei from radio waves to TeV gamma-rays. Here we report the detection of gamma-ray emission above 250 GeV from M87 in spring 2007 with the VERITAS atmospheric Cerenkov telescope array and discuss its correlation with the X-ray emission. The gamma-ray emission is measured to be pointlike with an intrinsic source radius less than 4.5'. The differential energy spectrum is fitted well by a power-law function: d Phi/dE = (7.4 +/- 1.3(stat) +/- 1.5(sys))(E/TeV)((-2.31 +/- 0.17stat +/- 0.2sys)) 10(-9) m(-2) s(-1) TeV(-1). We show strong evidence for a year-scale correlation between the gamma-ray flux reported by TeV experiments and the X-ray emission measured by the ASM RXTE observatory, and discuss the possible short-timescale variability. These results imply that the gamma-ray emission from M87 is more likely associated with the core of the galaxy than with other bright X-ray features in the jet. C1 [Colin, P.; Finnegan, G.; Kieda, D. B.; LeBohec, S.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Acciari, V. A.; Hui, M. C.; Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Hughes, S. B.; Krawczynski, H.; Lee, K.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Blaylock, G.; Ergin, T.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Bradbury, S. M.; Daniel, M. K.; Grube, J.; Rose, H. J.; Smith, A. W.; Syson, A.; White, R. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Butt, Y.; Gibbs, K.; Kildea, J.; Perkins, J. S.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Celik, O.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M. D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland Univ Coll Galway, Dept Phys, Galway, Ireland. [Ciupik, L.; Fortson, L. F.; Gyuk, G.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cogan, P.; Guenette, R.; Hanna, D.; McCann, A.; McCutcheon, M.; Ragan, K.; Valcarcel, L.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Cui, W.; Finley, J. P.; Millis, J.; Sembroski, G. H.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Falcone, A. D.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Fortin, P.; Mukherjee, R.] Columbia Univ, Dept Phys & Astron, Barnard Coll, New York, NY 10027 USA. [Hays, E.; Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Wissel, S. A.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Hays, E.; Horan, D.] Argonne Natl Lab, Argonne, IL 60439 USA. [Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Imran, A.; Krennrich, F.; Nagai, T.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. RP Colin, P (reprint author), Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. EM colin@physics.utah.edu RI Hays, Elizabeth/D-3257-2012; Daniel, Michael/A-2903-2010; OI Cesarini, Andrea/0000-0002-8611-8610; Cui, Wei/0000-0002-6324-5772; Daniel, Michael/0000-0002-8053-7910; Ward, John E/0000-0003-1973-0794; Lang, Mark/0000-0003-4641-4201 NR 45 TC 54 Z9 54 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2008 VL 679 IS 1 BP 397 EP 403 DI 10.1086/587458 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 300IX UT WOS:000255818600028 ER PT J AU Sakamoto, T Hullinger, D Sato, G Yamazaki, R Barbier, L Barthelmy, SD Cummings, JR Fenimore, EE Gehrels, N Krimm, HA Lamb, DQ Markwardt, CB Osborne, JP Palmer, DM Parsons, AM Stamatikos, M Tueller, J AF Sakamoto, T. Hullinger, D. Sato, G. Yamazaki, R. Barbier, L. Barthelmy, S. D. Cummings, J. R. Fenimore, E. E. Gehrels, N. Krimm, H. A. Lamb, D. Q. Markwardt, C. B. Osborne, J. P. Palmer, D. M. Parsons, A. M. Stamatikos, M. Tueller, J. TI Global properties of X-ray flashes and X-ray-rich gamma-ray bursts observed by Swift SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays : bursts; X-rays : bursts ID AFTERGLOW LIGHT CURVES; SPECTRAL CHARACTERISTICS; THEORETICAL IMPLICATIONS; MODEL; FLARES; TELESCOPE; EMISSION; BEPPOSAX; CATALOG; LONG AB We describe and discuss the spectral and temporal characteristics of the prompt emission and X-ray afterglow emission of X-ray flashes (XRFs) and X-ray-rich gamma-ray bursts (XRRs) detected and observed by Swift between 2004 December and 2006 September. We compare these characteristics to a sample of conventional classical gamma-ray bursts (C-GRBs) observed during the same period. We confirm the correlation between E-peak(obs) and fluence noted by others and find further evidence that XRFs, XRRs, and C-GRBs form a continuum. We also confirm that our known redshift sample is consistent with the correlation between the peak energy in the GRB rest frame (E-peak(src)) and the isotropic radiated energy (E-iso), the so-called E-peak(src)-E-iso relation. The spectral properties of X-ray afterglows of XRFs and C-GRBs are similar, but the temporal properties of XRFs and C-GRBs are quite different. We found that the light curves of C-GRB afterglows show a break to steeper indices (shallow-to-steep break) at much earlier times than do XRF afterglows. Moreover, the overall luminosity of XRF X-ray afterglows is systematically smaller by a factor of 2 or more compared to that of C-GRBs. These distinct differences between the X-ray afterglows of XRFs and C-GRBs may be the key to understanding not only the mysterious shallow-to-steep break in X-ray afterglow light curves, but also the unique nature of XRFs. C1 [Sakamoto, T.; Sato, G.; Barbier, L.; Barthelmy, S. D.; Cummings, J. R.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Parsons, A. M.; Stamatikos, M.; Tueller, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sakamoto, T.; Stamatikos, M.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Hullinger, D.] Moxtek Inc, Orem, UT 84057 USA. [Sato, G.] JAXA, Inst Space & Astronaut Sci, Kanagawa 2298510, Japan. [Yamazaki, R.] Hiroshima Univ, Dept Phys, Higashihiroshima 7398526, Japan. [Cummings, J. R.] Univ Maryland, Joint Ctr Astrophys, Baltimore, MD 21250 USA. [Fenimore, E. E.; Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Lamb, D. Q.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Markwardt, C. B.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Osborne, J. P.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. RP Sakamoto, T (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; Tueller, Jack/D-5334-2012; Parsons, Ann/I-6604-2012 NR 76 TC 49 Z9 49 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2008 VL 679 IS 1 BP 570 EP 586 DI 10.1086/586884 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 300IX UT WOS:000255818600041 ER PT J AU Harrison, JJ Brown, JM Chen, J Steimle, TC Sears, TJ AF Harrison, Jeremy J. Brown, John M. Chen, Jinhai Steimle, Timothy C. Sears, Trevor J. TI The Zeeman effect on lines in the (1,0) band of the F-4 Delta-X-4 Delta transition of the FeH radical SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic fields; Sun : magnetic fields ID SOLAR IDENTIFICATION; SPECTRUM AB We report measurements of the magnetic tuning and broadening of single rotational lines in the (1,0) band of the F-4 Delta-X-4 Delta transition of FeH. Since the Zeeman effect of FeH in the lowest rotational levels of the ground X-4 Delta state has been measured previously, the present measurements provide information on g-factors for two upper state rotational levels. The Zeeman splitting in the Q(7/2) line of the (1,0) band of the F-4 Delta(7/2)-X-4 Delta(7/2) transition was successfully modeled using a phenomenological approach. The observation of Zeeman broadening in the corresponding R(7/2) line has also made it possible to extract an approximate g-factor for the J = 9/2 level of the F-4 Delta(7/2)(v = 1) vibronic state. The g-factors determined have been used to predict spectral patterns for numerous rotational lines in the F-4 Delta(7/2)-X-4 Delta(7/2) system; these are compared with observed features in the sunspot umbral spectrum. C1 [Harrison, Jeremy J.; Brown, John M.] Univ Oxford, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England. [Chen, Jinhai; Steimle, Timothy C.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Sears, Trevor J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Harrison, JJ (reprint author), Univ Oxford, Phys & Theoret Chem Lab, S Pk Rd, Oxford OX1 3QZ, England. EM Tsteimle@ASU.edu RI Sears, Trevor/B-5990-2013; Harrison, Jeremy/L-1073-2016 OI Sears, Trevor/0000-0002-5559-0154; Harrison, Jeremy/0000-0001-5530-7104 NR 17 TC 7 Z9 7 U1 0 U2 5 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2008 VL 679 IS 1 BP 854 EP 861 DI 10.1086/587169 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 300IX UT WOS:000255818600065 ER PT J AU Wang, JH Schwamb, ME Huang, KY Wen, CY Zhang, ZW Wang, SY Chen, WP Bianco, FB Dave, R Lehner, MJ Marshall, SL Porrata, R Alcock, C Byun, YI Cook, KH King, SK Lee, T Urata, Y AF Wang, J. H. Schwamb, M. E. Huang, K. Y. Wen, C. Y. Zhang, Z. W. Wang, S. Y. Chen, W. P. Bianco, F. B. Dave, R. Lehner, M. J. Marshall, S. L. Porrata, R. Alcock, C. Byun, Y. I. Cook, K. H. King, S. K. Lee, T. Urata, Y. TI Early optical brightening in GRB 071010B SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma rays : bursts; gamma rays : observations ID GAMMA-RAY-BURSTS; AFTERGLOW EMISSION; RELATIVISTIC JETS; MODELS; PROMPT AB We report the detection of early (60-230 s) optical emission of the gamma-ray burst afterglow of GRB 071010B. No significant correlation with the prompt gamma-ray emission was found. Our high time resolution data combining with other measurements within 2 days after the burst indicate that GRB 071010B is composed of a weak early brightening (alpha similar to 0.6), probably caused by the peak frequency passing through the optical wavelengths, followed by a decay (alpha similar to -0.51), attributed to continuous energy injection by patchy jets. C1 [Wang, J. H.; Huang, K. Y.; Wen, C. Y.; Wang, S. Y.; Lehner, M. J.; Lee, T.; Urata, Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Schwamb, M. E.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Zhang, Z. W.; Chen, W. P.] Natl Cent Univ, Inst Astron, Chungli 32054, Taiwan. [Bianco, F. B.; Lehner, M. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Dave, R.; Alcock, C.] Harvard Univ, Cambridge, MA 02138 USA. [Marshall, S. L.] Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Marshall, S. L.; Cook, K. H.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Porrata, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94270 USA. [Byun, Y. I.] Yonsei Univ, Dept Astron, Seoul 120749, South Korea. [Urata, Y.] Saitama Univ, Dept Phys, Saitama 3388570, Japan. RP Wang, JH (reprint author), Acad Sinica, Inst Astron & Astrophys, POB 23-141, Taipei 106, Taiwan. RI Lee, Typhoon/N-8347-2013; OI Lehner, Matthew/0000-0003-4077-0985 NR 48 TC 11 Z9 11 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 20 PY 2008 VL 679 IS 1 BP L5 EP L8 DI 10.1086/588814 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 313DR UT WOS:000256721800002 ER PT J AU Tyagi, R Eswaramoorthy, S Burley, SK Raushel, FA Swaminathan, S AF Tyagi, Rajiv Eswaramoorthy, Subramaniam Burley, Stephen K. Raushel, Frank A. Swaminathan, Subramanyam TI A common catalytic mechanism for proteins of the HutI family SO BIOCHEMISTRY LA English DT Article ID DIVALENT METAL-ION; CRYSTAL-STRUCTURE; AMIDOHYDROLASE SUPERFAMILY; AGROBACTERIUM-TUMEFACIENS; NAD(+)-INHIBITOR ADDUCT; BACILLUS-SUBTILIS; ESCHERICHIA-COLI; UROCANASE; HISTIDINE; DEAMINASE AB Imidazolonepropionase (HutI) (imidazolone-5-propanote hydrolase, EC 3.5.2.7) is a member of the amidohydrolase superfamily and catalyzes the conversion of imidazolone-5-propanoate to N-formimino-L-glutamate in the histidine degradation pathway. We have determined the three-dimensional crystal structures of Hull from Agrobacterium tumefaciens (At-HutI) and an environmental sample from the Sargasso Sea Ocean Going Survey (Es-HutI) bound to the product [N-formimino-L-glutamate (NIG)] and an inhibitor [3-(2,5-dioxoimidazolidin-4-yl)propionic acid (DIP)], respectively. In both structures, the active site is contained within each monomer, and its organization displays the landmark feature of the amidohydrolase superfamily, showing a metal ligand (iron), four histidines, and one aspartic acid. A catalytic mechanism involving His265 is proposed on the basis of the inhibitor-bound structure. This mechanism is applicable to all Hull forms. C1 [Tyagi, Rajiv; Eswaramoorthy, Subramaniam; Swaminathan, Subramanyam] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Burley, Stephen K.] SGX Pharmaceut Inc, San Diego, CA 92121 USA. [Raushel, Frank A.] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov RI Raushel, Frank/B-7125-2015 OI Raushel, Frank/0000-0002-5918-3089 FU NIGMS NIH HHS [GM074945, GM071790, P01 GM071790, U54 GM074945, U54 GM074945-03] NR 25 TC 6 Z9 8 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD MAY 20 PY 2008 VL 47 IS 20 BP 5608 EP 5615 DI 10.1021/bi800180g PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 299ZP UT WOS:000255794400014 PM 18442260 ER PT J AU Nozik, AJ AF Nozik, Arthur J. TI Multiple exciton generation in semiconductor quantum dots SO CHEMICAL PHYSICS LETTERS LA English DT Article ID EFFICIENCY CARRIER MULTIPLICATION; SOLAR-CELL EFFICIENCIES; IMPACT IONIZATION; ELECTROLYTE JUNCTIONS; NANOCRYSTAL SOLIDS; PBSE; CONVERSION; SILICON; ENERGY; FILMS AB A review is presented of recent work on (1) the origin of the concept of enhanced multiple electron-hole pair (i.e. exciton) production in semiconductor quantum dots (QDs), (2) various experiments based on time-resolved fs to ns spectroscopy (transient IR absorption, transient visible to near-IR bleaching due to state filling, terahertz spectroscopy, and time-resolved photoluminescence) that support the occurrence of highly efficient multiple exciton generation (MEG) in QDs, (3) thermodynamic analyses of the theoretical enhancement of the conversion efficiency in solar cells that are based on MEG in QDs, (4) MEG in QD arrays that can be used in QD solar cells, (5) theoretical models to explain MEG, and (6) some recent controversy about the evidence for MEG. (C) 2008 Elsevier B.V. All rights reserved. C1 [Nozik, Arthur J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Nozik, Arthur J.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP Nozik, AJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM arthur_nozik@nrel.gov RI Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016 NR 63 TC 355 Z9 364 U1 13 U2 157 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD MAY 20 PY 2008 VL 457 IS 1-3 BP 3 EP 11 DI 10.1016/j.cplett.2008.03.094 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 302FH UT WOS:000255953700002 ER PT J AU Huda, MN Ray, AK AF Huda, Muhammad N. Ray, Asok. K. TI Evolution of SiC nanocluster from carbon fullerene: A density functional theoretic study SO CHEMICAL PHYSICS LETTERS LA English DT Article ID SILICON; CLUSTERS; NANOSTRUCTURES AB Stability of SiC fullerene type structures is still an unsolved issue as no experimental confirmation has been reported so far regarding its existence. However, theoretical reports are available in the literature where carbon fullerenes were taken as base models for SiC fullerene structures. In this present Letter we show by a systematic study on the C(20) fullerene that this approach may not always produce the ground state structure in fullerene form. Instead, the energetically favorable structure could be highly distorted and open structure. However, we observed a very systematic linear trend in the evolution of binding energies of SiC clusters from the carbon fullerene. Published by Elsevier B. V. C1 [Huda, Muhammad N.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ray, Asok. K.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. RP Huda, MN (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Muhammad_Huda@nrel.gov RI Huda, Muhammad/C-1193-2008 OI Huda, Muhammad/0000-0002-2655-498X NR 22 TC 41 Z9 41 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD MAY 20 PY 2008 VL 457 IS 1-3 BP 124 EP 129 DI 10.1016/j.cplett.2008.03.057 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 302FH UT WOS:000255953700028 ER PT J AU Sine, CR Wilson, D Gao, W Grand, SP Aster, R Ni, J Baldridge, WS AF Sine, C. R. Wilson, D. Gao, W. Grand, S. P. Aster, R. Ni, J. Baldridge, W. S. TI Mantle structure beneath the western edge of the Colorado Plateau SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID FARALLON SLAB; UNITED-STATES; LITHOSPHERE; LATITUDE; VELOCITY; BASIN AB Teleseismic traveltime data are inverted for mantle Vp and Vs variations beneath a 1400 km long line of broadband seismometers extending from eastern New Mexico to western Utah. The model spans 600 km beneath the moho with resolution of similar to 50 km. Inversions show a sharp, large-magnitude velocity contrast across the Colorado Plateau-Great Basin transition extending similar to 200 km below the crust. Also imaged is a fast anomaly 300 to 600 km beneath the NW portion of the array. Very slow velocities beneath the Great Basin imply partial melting and/or anomalously wet mantle. We propose that the sharp contrast in mantle velocities across the western edge of the Plateau corresponds to differential lithospheric modification, during and following Farallon subduction, across a boundary defining the western extent of unmodified Proterozoic mantle lithosphere. The deep fast anomaly corresponds to thickened Farallon plate or detached continental lithosphere at transition zone depths. C1 [Aster, R.] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. [Sine, C. R.] Occidental Petr Corp Elk Hills, Tupman, CA 93276 USA. [Wilson, D.] US Geol Survey, Hawaiian Volcano Observ, Honolulu, HI 96718 USA. [Gao, W.] TGS NOPEC Geophys Co, Houston, TX 77042 USA. [Grand, S. P.] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA. [Baldridge, W. S.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Ni, J.] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. RP Sine, CR (reprint author), Occidental Petr Corp Elk Hills, POB 1001, Tupman, CA 93276 USA. EM christopher_sine@oxy.com; dwilson@usgs.gov; wxg@paralleldata.com; steveg@maestro.geo.utexas.edu; aster@ees.nmt.edu; jni@nmsu.edu; sbaldridge@lanl.gov RI Grand, Stephen/B-4238-2011; Aster, Richard/E-5067-2013 OI Aster, Richard/0000-0002-0821-4906 NR 27 TC 40 Z9 40 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 20 PY 2008 VL 35 IS 10 AR L10303 DI 10.1029/2008GL033391 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 304VN UT WOS:000256137300002 ER PT J AU Taylor, DP Choppin, GR Dodge, CJ Francis, AJ AF Taylor, Daphne P. Choppin, Gregory R. Dodge, Cleveland J. Francis, A. J. TI EXAFS studies and GAUSSIAN VIEW energy calculations of the complexation of europium with 1,3,5-trideoxy-1,3,5-tris((2-hydroxybenzyl)amino)-cis-inositol SO INORGANICA CHIMICA ACTA LA English DT Article ID STABILITY-CONSTANTS; IONIC-STRENGTH; LUMINESCENCE; HYDROLYSIS; THORIUM; EU(III) AB Complexation of 1,3,5-trideoxy-1,3,5-tris((2-hydroxybenzyl) amino)-cis-inositol (thci) in I = 1.00 M (NaClO(4)) with Eu(III) and La(III) was studied by EXAFS measurements and GAUSSIAN VIEW energy calculations. EXAFS studies indicated that two complexes Eu(thci)(2+) and Eu(thci)(2)(2+) are formed with thci and Eu(III). At lower pH, Eu(III) is bonded to thci via two hydroxyl groups (cyclohexanetriol or 2-hydroxybenzylamino moieties) and 7 H(2)O molecules, for a total of 9 Eu-O bonds. However, at higher pH there are two hydroxyl groups (cyclohexanetriol or 2-hydroxybenzylamino moieties), two amino groups, and five water molecules for a total Eu(III) coordination number of 9. GAUSSIAN VIEW energy calculations indicate that in the Eu( thci)(2+), thci bonds to Eu(III) in a similar manner and is in good correlation with the EXAFS data. Crown Copyright (c) 2007 Published by Elsevier B.V. All rights C1 [Taylor, Daphne P.; Choppin, Gregory R.] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. [Dodge, Cleveland J.; Francis, A. J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Choppin, GR (reprint author), Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. EM choppin@chem.fsu.edu NR 15 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD MAY 20 PY 2008 VL 361 IS 7 BP 1805 EP 1810 DI 10.1016/j.ica.2007.06.048 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 304ET UT WOS:000256093500002 ER PT J AU Zachos, CK AF Zachos, Cosmas K. TI Umbral deformations on discrete space-time SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE umbral deformations; Planck length ID DIFFERENCE-EQUATIONS; SYMMETRIES; DERIVATIVES; CALCULUS; LENGTH AB Given a minimum measurable length underlying space-time, the latter may be effectively regarded as discrete, at scales of order of the Planck length. A systematic discretization of continuum physics may be effected most efficiently through the umbral deformation. General functionals yielding such deformations at the level of solutions are furnished and illustrated, and broad features of discrete oscillations and wave propagation are outlined. C1 Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Zachos, CK (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM zachos@hep.anl.gov RI zachos, cosmas/C-4366-2014 OI zachos, cosmas/0000-0003-4379-3875 NR 17 TC 4 Z9 4 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD MAY 20 PY 2008 VL 23 IS 13 BP 2005 EP 2014 DI 10.1142/S0217751X08040548 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 321JE UT WOS:000257299900006 ER PT J AU Collisson, EA Das, D Mori, R Hoffmann, AC Kim, GE Hajnal, R Danenberg, PV Cooc, J Danenberg, KD Tempero, MA AF Collisson, E. A. Das, D. Mori, R. Hoffmann, A. C. Kim, G. E. Hajnal, R. Danenberg, P. V. Cooc, J. Danenberg, K. D. Tempero, M. A. TI Use of whole genome expression analysis of pancreatic adenocarcinoma to predict prognosis after OXi4503 surgery SO JOURNAL OF CLINICAL ONCOLOGY LA English DT Meeting Abstract C1 Lawrence Berkeley Labs, Berkeley, CA USA. Yokohama City Univ, Grad Sch Med, Yokohama, Kanagawa 232, Japan. Univ So Calif, Los Angeles, CA USA. Univ Calif San Francisco, San Francisco, CA 94143 USA. Pancreas Canc Res Program, San Francisco, CA USA. Response Genet Inc, Los Angeles, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC CLINICAL ONCOLOGY PI ALEXANDRIA PA 2318 MILL ROAD, STE 800, ALEXANDRIA, VA 22314 USA SN 0732-183X J9 J CLIN ONCOL JI J. Clin. Oncol. PD MAY 20 PY 2008 VL 26 IS 15 SU S MA 4503 PG 1 WC Oncology SC Oncology GA V25CZ UT WOS:000208457401678 ER PT J AU Gray, JW Das, D Wang, N Kuo, W Press, MF Di Leo, A Ellis, C Arbushites, M Williams, L Koehler, M AF Gray, J. W. Das, D. Wang, N. Kuo, W. Press, M. F. Di Leo, A. Ellis, C. Arbushites, M. Williams, L. Koehler, M. TI Identification of a 6 gene molecular predictor of lapatinib related benefit: From breast cancer cell lines to a phase III trial SO JOURNAL OF CLINICAL ONCOLOGY LA English DT Meeting Abstract C1 Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA USA. Univ So Calif, Los Angeles, CA USA. Hosp Prato, Ist Toscano Tumori, Prato, Italy. GlaxoSmithKline, Collegeville, PA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC CLINICAL ONCOLOGY PI ALEXANDRIA PA 2318 MILL ROAD, STE 800, ALEXANDRIA, VA 22314 USA SN 0732-183X J9 J CLIN ONCOL JI J. Clin. Oncol. PD MAY 20 PY 2008 VL 26 IS 15 SU S MA 1043 PG 1 WC Oncology SC Oncology GA V25CZ UT WOS:000208457400308 ER PT J AU Karipot, A Leclerc, MY Zhang, GS Lewin, KF Nagy, J Hendrey, GR Starr, G AF Karipot, Anandakumar Leclerc, Monique Y. Zhang, Gengsheng Lewin, Keith F. Nagy, John Hendrey, George R. Starr, Gregory TI Influence of nocturnal low-level jet on turbulence structure and CO2 flux measurements over a forest canopy SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STABLE BOUNDARY-LAYER; EDDY-COVARIANCE FLUXES; SOUTHERN GREAT-PLAINS; SURFACE-AIR EXCHANGE; MICROMETEOROLOGICAL OBSERVATIONS; CARBON SEQUESTRATION; TALL VEGETATION; WATER-VAPOR; CLIMATOLOGY; ADVECTION AB The present study analyzes features of nocturnal low-level jets observed at the Florida AmeriFlux site and their influence on CO2 flux measurements over a tall forest canopy. At that location, two categories of nocturnal flow are commonly observed, one with a strong low-level jet throughout the night and the other without. Jets of diverse speed and height are observed during nearly 70% of the nocturnal periods over a 3-month campaign, of which almost 50% are strong jets with speed higher than 10 m s(-1) and height in the range 200-400 m. Strong jet activity contributes to weak atmospheric stabilities with gradient Richardson numbers lower than 0.2 and higher friction velocities (0.2 to 0.6 m s(-1)) attributed to enhanced canopy turbulence. The canopy shear length scale exhibits a linear relationship with jet shear. Jet periods also show dominant downward transport of turbulent kinetic energy and turbulent CO2 fluxes in the range 2 to 8 mu mol m(-2) s(-1). The difference between the net ecosystem exchange (NEE) at two levels above the canopy adds on average, flux contribution of 1.25 mmol m(-2) s(-1) (18% of the average NEE at z = 1.4h, h is the canopy height) to CO2 exchange during periods characterized by strong jets. A comparison of CO2 and wind velocity Fourier spectra and cospectra between periods with dissimilar jet activity shows larger low-frequency spectral contributions in the strong jet case, supporting the possibility of variance and flux contributions at scales comparable to the jet height. C1 [Karipot, Anandakumar; Leclerc, Monique Y.; Zhang, Gengsheng] Univ Georgia, Lab Environm Phys, Griffin, GA 30223 USA. [Hendrey, George R.] CUNY Queens Coll, Sch Earth & Environm Sci, Flushing, NY 11367 USA. [Lewin, Keith F.; Nagy, John] Brookhaven Natl Lab, Environm Res & Technol Div, Upton, NY 11973 USA. [Starr, Gregory] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA. RP Karipot, A (reprint author), Univ Georgia, Lab Environm Phys, 1109 Expt St, Griffin, GA 30223 USA. EM mleclerc@uga.edu NR 47 TC 19 Z9 19 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 20 PY 2008 VL 113 IS D10 AR D10102 DI 10.1029/2007JD009149 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 304VV UT WOS:000256138100003 ER PT J AU Jones, C Sultan, M Yan, E Milewski, A Hussein, M Al-Dousari, A Al-Kaisy, S Becker, R AF Jones, C. Sultan, M. Yan, E. Milewski, A. Hussein, M. Al-Dousari, A. Al-Kaisy, S. Becker, R. TI Hydrologic impacts of engineering projects on the Tigris-Euphrates system and its marshlands SO JOURNAL OF HYDROLOGY LA English DT Article DE Tigris-Euphrates watershed; continuous rainfall-runoff model; SWAT; engineering projects ID PRECIPITATION; MODEL AB Rising demands for fresh water supplies are leading to water management practices that are altering natural flow systems world-wide. One of the most devastated of these natural systems is the Tigris-Euphrates watershed that over the past three decades has witnessed the construction of over 60 engineering projects that eliminated seasonal flooding, reduced natural flow and dramatically reduced the areal extent (1966: 8000 km(2); 2002: 750 km(2)) of the Mesopotamian Marshes downstream. We constructed a catchment-based continuous (1964-1998) rainfall runoff model for the watershed (area: 10(6) km(2)) using the Soil Water Assessment Tool (SWAT) model to understand the dynamics of the natural flow system, and to investigate the impacts of reduced overall flow and the related land cover and landuse change downstream in the marshes. The model was calibrated (1964-1970) and validated (1971-1998) against stream flow gauge data. Using the calibrated model we calculated the temporal variations in the average monthly flow rate (AMFR), the average monthly peak flow rate (AMPFR), and annual flow volume (AFV) of the Tigris and Euphrates into the marshes at a location near Al-Basrah city (31 degrees N, 47.5 degrees E) throughout the modeled period. Model results indicate that the AMPFR (6301 m(3)/s) and average annual flow volume (AAFV: 80 x 10(9) m(3)/yr) for period A (10/1/1965-09/30/1973), preceding the construction of the major dams is progressively diminished in periods B1 (10/1/1973-09/30/1989; AMPFR: 3073 m(3)/s; AAFV: 55 x 10(9) m(3)/yr) and B2 (10/1/1989-09/30/1998; AMPFR, 2319 m(3)/s; AAFV: 50 x 10(9) m(3)/yr) that witnessed the construction of the major dams (B1: Keban, Tabqa, Hamrin, Haditha, Mosul, Karakaya; B2: Ataturk) due to the combined effects of fitting artificial takes, evaporation and infiltration of impounded water and its utilization for irrigation purposes. To investigate the impacts of reduced flow on the areal extent of the marshes, we examined the variation in marsh size extracted from temporal satellite data (1966, 1975, 1976, 1977, 1984, 1985, 1986, 1987) acquired around the same approximate time period (July to September) of the year versus simulated AFV for the period preceding the onset (1987) of major local engineering projects (e.g., Crown of Battles River, Loyalty to the Leader Canal, Mother of Battles River) in and around the investigated marshes. Results indicate that the areal. extent of the Central and Al-Hammar marshes (e.g., 1966: 7970 km(2), 1977: 6680 km(2), 1984: 5270 km(2)) decreases with a decrease in AFV (e.g., 1966: 60.8 x 10(9) m(3), 1977: 56.9 x 10(9) m(3), 1984: 37.6 x 10(9) m(3)). Using a relationship that describes the impact of reduced AFV on the areal extent of the marshes, we evaluated the impact of additional reductions in flow that wilt result from the implementation of the planned engineering projects on the Tigris-Euphrates system over the next few years. Upon completion of the ongoing South Eastern Anatolia project, with projected reductions in AFV exceeding 5 x 109 m(3)/yr, the sustainable marshes in the Central and Al-Hammar area will be reduced by at least an additional 550 km(2). (C) 2008 Elsevier B.V. All rights reserved. C1 [Jones, C.; Sultan, M.; Milewski, A.; Becker, R.] Western Michigan Univ, Dept Geosci, Kalamazoo, MI 49008 USA. [Yan, E.] Argonne Natl Lab, Div Environm Sci, Chicago, IL USA. [Hussein, M.] US Embassy, Iraq Reconstruct Management Off, Baghdad, Iraq. [Al-Dousari, A.] Kuwait Inst Sci Res, Kuwait, Kuwait. [Al-Kaisy, S.] Univ Tikrit, Dept Appl Geol, Tikrit, Iraq. RP Sultan, M (reprint author), Western Michigan Univ, Dept Geosci, 1903 W Michigan Ave, Kalamazoo, MI 49008 USA. EM mohamed.sultan@wmich.edu RI Becker, Richard/A-9120-2010; Milewski, Adam/C-7824-2011 OI Becker, Richard/0000-0003-2514-2040; NR 50 TC 21 Z9 22 U1 3 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD MAY 20 PY 2008 VL 353 IS 1-2 BP 59 EP 75 DI 10.1016/j.jhydrol.2008.01.029 PG 17 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 300EA UT WOS:000255805900005 ER PT J AU Lane, JMD Chandross, M Stevens, MJ Grest, GS AF Lane, J. Matthew D. Chandross, Michael Stevens, Mark J. Grest, Gary S. TI Water in nanoconfinement between hydrophilic self-assembled monolayers SO LANGMUIR LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; PHASE-TRANSITIONS; THIN-LAYERS; SURFACES; FILMS; LIQUIDS; VISCOSITY; FLUIDITY; DEVICES; GOLD AB Molecular dynamics (MD) simulations of water confined to subnanometer thicknesses between carboxyl-terminated alkanethiol self-assembled monolayers (SAMs) on gold were performed to address conflicts in the literature on the structure and response of water in confinement. The amount of water was varied to yield submonolayer to bilayer structures. The orientation of the water is affected by the confinement, especially in the submonolayer case. We find that the diffusion coefficient decreases as the film becomes thinner and at higher pressures. However, in all cases studied, liquid diffusion is always found. At maximal suppression, the diffusion constant is 2 orders of magnitude smaller than the bulk value. C1 [Lane, J. Matthew D.; Chandross, Michael; Stevens, Mark J.; Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lane, JMD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jlane@samdia.gov NR 35 TC 33 Z9 34 U1 0 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAY 20 PY 2008 VL 24 IS 10 BP 5209 EP 5212 DI 10.1021/la704005v PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 300WN UT WOS:000255856100003 PM 18412381 ER PT J AU Hsu, JWP Clift, WM Brewers, LN AF Hsu, Julia W. P. Clift, W. Miles Brewers, Luke N. TI Zinc oxide growth morphology on self-assembled monolayer modified silver surfaces SO LANGMUIR LA English DT Article ID ATOMIC LAYER DEPOSITION; ORIENTED GROWTH; CARBOXYLIC-ACID; CALCIUM-PHOSPHATE; EPITAXIAL-GROWTH; FREE-ENERGY; X-RAY; ZNO; NUCLEATION; CRYSTALS AB Using organic molecules to direct inorganic crystal growth has opened up new avenues for controlled synthesis on surfaces. Combined with soft lithography to form patterned templates, self-assembled monolayers (SAMs) have been shown to be a powerful approach for the assembly of inorganic nanostructures. In this work, we show that the surface free energy of SAM-modified silver, which depends on end groups and deposition method of SAMs, has a dramatic effect on the nucleation and growth of crystalline ZnO,a technologically important material, from supersaturated solutions. For SAMs with inert methyl end groups, ZnO nucleation is inhibited. For SAMs with chemically active (carboxylic or thiol) end groups, the ZnO morphology is found to be three-dimensional nanorods on low-surface-energy surfaces and two-dimensional thin films on high-energy surfaces. C1 [Hsu, Julia W. P.; Brewers, Luke N.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Clift, W. Miles] Sandia Natl Labs, Livermore, CA USA. RP Hsu, JWP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jwhsu@sandia.gov NR 45 TC 14 Z9 15 U1 0 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAY 20 PY 2008 VL 24 IS 10 BP 5375 EP 5381 DI 10.1021/la703919w PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 300WN UT WOS:000255856100030 PM 18399664 ER PT J AU Lestone, JP AF Lestone, J. P. TI Black-body photon clustering by semiclassical means SO MODERN PHYSICS LETTERS A LA English DT Review DE black body; photon clustering; Hanbury Brown and Twiss ID STATISTICS AB If stimulated emission could be turned off, then only uncorrelated photons would be emitted from black bodies and the photon counting statistics would be Poissonian. Through the process of stimulated emission, some fraction of the photons emitted from a black body are correlated and thus emitted in clusters. This photon clustering can be calculated by semiclassical means. The corresponding results are in agreement with quantum theory. C1 Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. RP Lestone, JP (reprint author), Los Alamos Natl Lab, Div Appl Phys, POB 1663, Los Alamos, NM 87545 USA. EM lestone@lanl.gov NR 15 TC 1 Z9 1 U1 2 U2 4 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD MAY 20 PY 2008 VL 23 IS 15 BP 1067 EP 1077 DI 10.1142/S0217732308027199 PG 11 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 310AS UT WOS:000256501900001 ER PT J AU Eberling, JL Jagust, WJ Christine, CW Starr, P Larson, P Bankiewicz, KS Aminoff, MJ AF Eberling, J. L. Jagust, W. J. Christine, C. W. Starr, P. Larson, P. Bankiewicz, K. S. Aminoff, M. J. TI Results from a phase I safety trial of hAADC gene therapy for Parkinson disease SO NEUROLOGY LA English DT Article AB Background: In a primate model of Parkinson disease (PD), intrastriatal infusion of an adeno-associated viral (AAV) vector containing the human aromatic L-amino acid decarboxylase (hAADC) gene results in robust gene expression. After gene transfer, low doses of systemically administered L-dopa are converted to dopamine in the transduced striatal neurons, resulting in behavioral improvement without the side effects typically associated with higher doses of L-dopa. These studies led to the initiation of a phase I safety trial. Here we report the findings for the first cohort of five patients. Methods: Patients with moderate to advanced PD received bilateral infusion of a low dose of the AAV-hAADC vector into the putamen. PET scans using the AADC tracer, 6-[18F] fluoro-L-mtyrosine (FMT), were performed at baseline and at 1 and 6 months after infusion as an in vivo measure of gene expression. Results: PET results showed an average 30% increase in FMT uptake (K-i(c)) in the putamen after gene transfer. Preliminary analysis of clinical data indicates a modest improvement, but absence of a control and the nonblinded analyses make interpretation difficult. Conclusions: Thus far, this gene therapy approach has been well tolerated and shows PET evidence of sustained gene expression. These initial findings demonstrate the safety of the therapy; higher doses of adeno-associated viral vector containing the human aromatic L-amino acid decarboxylase gene in the next cohort of patients may further increase dopamine production in the putamen and provide more profound clinical benefit. C1 [Eberling, J. L.; Jagust, W. J.] Lawrence Berkeley Natl Lab, Dept Mol Imaging & Neurosci, Berkeley, CA 94720 USA. [Eberling, J. L.] Univ Calif Davis, Dept Neurol, Davis, CA 95616 USA. [Jagust, W. J.] Univ Calif Berkeley, Berkeley, CA USA. [Christine, C. W.; Aminoff, M. J.] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA. [Starr, P.; Larson, P.; Bankiewicz, K. S.] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94143 USA. RP Eberling, JL (reprint author), Lawrence Berkeley Natl Lab, Dept Mol Imaging & Neurosci, 1 Cyclotron Rd,Mail Stop 55-121, Berkeley, CA 94720 USA. EM jleberling@lbl.gov FU NINDS NIH HHS [U54 NS045309, U54 NS045309-010001] NR 9 TC 195 Z9 202 U1 1 U2 6 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0028-3878 J9 NEUROLOGY JI Neurology PD MAY 20 PY 2008 VL 70 IS 21 BP 1980 EP 1983 DI 10.1212/01.wnl.0000312381.29287.ff PG 4 WC Clinical Neurology SC Neurosciences & Neurology GA 312YE UT WOS:000256707500007 PM 18401019 ER PT J AU McMullan, GJ Rourke, PMC Norman, MR Huxley, AD Doiron-Leyraud, N Flouquet, J Lonzarich, GG McCollam, A Julian, SR AF McMullan, G. J. Rourke, P. M. C. Norman, M. R. Huxley, A. D. Doiron-Leyraud, N. Flouquet, J. Lonzarich, G. G. McCollam, A. Julian, S. R. TI The Fermi surface and f-valence electron count of UPt(3) SO NEW JOURNAL OF PHYSICS LA English DT Article ID ANOMALOUS PROPERTIES; SUPERCONDUCTOR UPT3; SPIN FLUCTUATIONS; HEAVY; MAGNETORESISTANCE; SYSTEMS; LATTICE AB Combining old and new de Haas-van Alphen (dHvA) and magnetoresistance data, we arrive at a detailed picture of the Fermi surface of the heavy fermion superconductor UPt(3). Our work was partially motivated by a new proposal that two 5f valence electrons per formula unit in UPt(3) are localized by correlation effects-agreement with previous dHvA measurements of the Fermi surface was invoked in its support. Comprehensive comparison with our new observations shows that this 'partially localized' model fails to predict the existence of a major sheet of the Fermi surface, and is therefore less compatible with experiment than the originally proposed 'fully itinerant' model of the electronic structure of UPt(3). In support of this conclusion, we offer a more complete analysis of the fully itinerant band structure calculation, where we find a number of previously unrecognized extremal orbits on the Fermi surface. C1 [Rourke, P. M. C.; McCollam, A.; Julian, S. R.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [McMullan, G. J.] MRC, Mol Biol Lab, Cambridge CB2 0QH, England. [Norman, M. R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Huxley, A. D.] Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland. [Doiron-Leyraud, N.] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada. [Flouquet, J.] CEA Grenoble, SPSMS, Dept Rech Fondamentale Mat Condensee, F-38054 Grenoble 9, France. [Lonzarich, G. G.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. RP Julian, SR (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM sjulian@physics.utoronto.ca RI Norman, Michael/C-3644-2013; McCollam, Alix/F-9697-2015; OI Rourke, Patrick/0000-0001-7875-9592 NR 33 TC 20 Z9 20 U1 3 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAY 20 PY 2008 VL 10 AR 053029 DI 10.1088/1367-2630/10/5/053029 PG 20 WC Physics, Multidisciplinary SC Physics GA 308YH UT WOS:000256426300005 ER PT J AU Anders, A AF Anders, Andre TI Self-sputtering runaway in high power impulse magnetron sputtering: The role of secondary electrons and multiply charged metal ions SO APPLIED PHYSICS LETTERS LA English DT Article ID EMISSION; DEPOSITION; SURFACES AB Self-sputtering runaway in high power impulse magnetron sputtering is closely related to the appearance of multiply charged ions. This conclusion is based on the properties of potential emission of secondary electrons and energy balance considerations. The effect is especially strong for materials whose sputtering yield is marginally greater than unity. The absolute deposition rate increases similar to Q(1/2), whereas the rate normalized to the average power decreases similar to Q(-1/2), with Q being the mean ion charge state number. (c) 2008 American Institute of Physics. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Anders, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aanders@lbl.gob RI Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 NR 17 TC 43 Z9 43 U1 3 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 19 PY 2008 VL 92 IS 20 AR 201501 DI 10.1063/1.2936307 PG 3 WC Physics, Applied SC Physics GA 305RX UT WOS:000256196600014 ER PT J AU Chen, P Di, ZF Nastasi, M Bruno, E Grimaldi, MG Theodore, ND Lau, SS AF Chen, Peng Di, Zengfeng Nastasi, M. Bruno, Elena Grimaldi, Maria Grazia Theodore, N. David Lau, S. S. TI Effects of hydrogen implantation temperature on InP surface blistering SO APPLIED PHYSICS LETTERS LA English DT Article ID SILICON; DAMAGE; SEMICONDUCTORS AB We have investigated the effects of hydrogen implantation temperature on the ion-cut process of InP by examining the correlation between surface blistering and the ion induced damage, hydrogen distribution, and strain. Using Rutherford backscattering spectrometry, elastic recoil detection, and x-ray diffraction, it was found that both the point defects induced by the hydrogen implantation and the in-plane compressive stress were necessary for hydrogen trapping and H-platelet nucleation and growth. The control of implantation temperature is crucial for creating sufficient defects and strain to induce surface blistering or layer exfoliation. (C) 2008 American Institute of Physics. C1 [Chen, Peng; Lau, S. S.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Di, Zengfeng; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bruno, Elena; Grimaldi, Maria Grazia] Catania Univ, MATIS, CNR, INFM, I-95123 Catania, Italy. [Bruno, Elena; Grimaldi, Maria Grazia] Catania Univ, Dipartimento Fis Astron, I-95123 Catania, Italy. [Theodore, N. David] Freescale Semicond Inc, Analog & Mixed Signal Technol, Tempe, AZ 85284 USA. RP Chen, P (reprint author), Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. EM pchen@ece.ucsd.edu RI Chen, Peng/H-3384-2012; di, zengfeng/B-1684-2010; grimaldi, maria /J-9433-2013; OI BRUNO, Elena/0000-0002-1935-586X NR 20 TC 12 Z9 12 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 19 PY 2008 VL 92 IS 20 AR 202107 DI 10.1063/1.2926682 PG 3 WC Physics, Applied SC Physics GA 305RX UT WOS:000256196600039 ER PT J AU Clavero, C Skuza, JR Choi, Y Haskel, D Garcia-Martin, JM Cebollada, A Lukaszew, RA AF Clavero, C. Skuza, J. R. Choi, Y. Haskel, D. Garcia-Martin, J. M. Cebollada, A. Lukaszew, R. A. TI Control of the perpendicular magnetic anisotropy of FePd films via Pd capping deposition (vol 92, art no 162502, 2008) SO APPLIED PHYSICS LETTERS LA English DT Correction C1 [Clavero, C.; Lukaszew, R. A.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. [Clavero, C.; Garcia-Martin, J. M.; Cebollada, A.] CNM CSIC, IMM, Madrid 28760, Spain. [Skuza, J. R.; Lukaszew, R. A.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Choi, Y.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Clavero, C (reprint author), Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. RI Clavero, Cesar/C-4391-2008; Skuza, Jonathan/E-9048-2010; Microelectronica de Madrid, Instituto de/D-5173-2013 OI Clavero, Cesar/0000-0001-6665-3141; Skuza, Jonathan/0000-0002-9252-2708; Microelectronica de Madrid, Instituto de/0000-0003-4211-9045 NR 1 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 19 PY 2008 VL 92 IS 20 AR 209902 DI 10.1063/1.2936179 PG 1 WC Physics, Applied SC Physics GA 305RX UT WOS:000256196600110 ER PT J AU Fujino, S Murakami, M Anbusathaiah, V Lim, SH Nagarajan, V Fennie, CJ Wuttig, M Salamanca-Riba, L Takeuchi, I AF Fujino, S. Murakami, M. Anbusathaiah, V. Lim, S. -H. Nagarajan, V. Fennie, C. J. Wuttig, M. Salamanca-Riba, L. Takeuchi, I. TI Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite SO APPLIED PHYSICS LETTERS LA English DT Article ID DIAGRAM AB We report on the discovery of a lead-free morphotropic phase boundary (MPB) in Sm doped BiFeO(3) with a simple perovskite structure using the combinatorial thin film strategy. The boundary is a rhombohedral to pseudo-orthorhombic structural transition which exhibits a ferroelectric to antiferroelectric transition at approximately Bi(0.86)Sm(0.14)FeO(3) with dielectric constant and out-of-plane piezoelectric coefficient comparable to those of epitaxial (001) oriented PbZr(0.52)Ti(0.48)O(3) (PZT) thin films at the MPB. The discovered composition may be a strong candidate of a Pb-free piezoelectric replacement of PZT. (C) 2008 American Institute of Physics. C1 [Fujino, S.; Murakami, M.; Lim, S. -H.; Wuttig, M.; Salamanca-Riba, L.; Takeuchi, I.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Anbusathaiah, V.; Nagarajan, V.] Univ New S Wales, Sch Mat Sci, Sydney, NSW 2052, Australia. [Fennie, C. J.] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. RP Fujino, S (reprint author), Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. EM sfujino@umd.edu; takeuchi@umd.edu RI Wuttig, Manfred/A-8763-2012; valanoor, nagarajan/B-4159-2012 NR 18 TC 151 Z9 152 U1 9 U2 61 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 19 PY 2008 VL 92 IS 20 AR 202904 DI 10.1063/1.2931706 PG 3 WC Physics, Applied SC Physics GA 305RX UT WOS:000256196600064 ER PT J AU Han, WQ Zhang, Y AF Han, Wei-Qiang Zhang, Yan TI Magneli phases Ti(n)O(2n-1) nanowires: Formation, optical, and transport properties SO APPLIED PHYSICS LETTERS LA English DT Article ID TRITITANATE NANOTUBES; TITANIUM-OXIDES; TIO2 ELECTRODES; VANADIUM-OXIDE; SYSTEM; WATER AB We have prepared triclinic Ti(8)O(15) nanowires and Ti(4)O(7) quasi-one-dimensional fibers by heat-treating thick H(2)Ti(3)O(7) nanowires under hydrogen atmospheres at 850 and 1050 degrees C, respectively. In contrast to wide-bandgap semiconducting tetragonal TiO(2), both Ti(8)O(15) and Ti(4)O(7) exhibit high electrical conducting behavior at room temperature. The electrical conductivities of Ti(8)O(15) and Ti(4)O(7) are, respectively, 0.24 and 10.4 S/cm at 300 K, and 2.4x10(-5) and 4x10(-3) S/cm at 77 K. In both materials, the light absorption band covers the full visible-light spectrum region and extends into the near-infrared region. (C) 2008 American Institute of Physics. C1 [Han, Wei-Qiang] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Zhang, Yan] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Han, WQ (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM whan@bnl.gov RI Han, WQ/E-2818-2013 NR 24 TC 30 Z9 31 U1 5 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 19 PY 2008 VL 92 IS 20 AR 203117 DI 10.1063/1.2937152 PG 3 WC Physics, Applied SC Physics GA 305RX UT WOS:000256196600085 ER PT J AU Scullin, ML Yu, C Huijben, M Mukerjee, S Seidel, J Zhan, Q Moore, J Majumdar, A Ramesh, R AF Scullin, Matthew L. Yu, Choongho Huijben, Mark Mukerjee, Subroto Seidel, Jan Zhan, Qian Moore, Joel Majumdar, Arun Ramesh, R. TI Anomalously large measured thermoelectric power factor in Sr(1-x)La(x)TiO(3) thin films due to SrTiO(3) substrate reduction SO APPLIED PHYSICS LETTERS LA English DT Article ID STRONTIUM-TITANATE; ELECTRON-GAS; INTERFACES; DIFFUSION; PROFILES; MOBILITY; BEHAVIOR; OXIDES AB We report the observation that thermoelectric thin films of La-doped SrTiO(3) grown on SrTiO(3) substrates yield anomalously high values of thermopower to give extraordinary values of power factor at 300 K. Thin films of Sr(0.98)La(0.02)TiO(3), grown via pulsed laser deposition at low temperature and low pressure (450 degrees C, 10(-7) Torr), do not yield similarly high values when grown on other substrates. The thin-film growth induces oxygen reduction in the SrTiO(3) crystals, doping the substrate n type. It is found that the backside resistance of the SrTiO(3) substrates is as low (similar to 12 Omega/square) as it is on the film side after film growth. (C) 2008 American Institute of Physics. C1 [Scullin, Matthew L.; Yu, Choongho; Zhan, Qian; Majumdar, Arun] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Scullin, Matthew L.; Huijben, Mark; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yu, Choongho] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Majumdar, Arun] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Huijben, Mark; Mukerjee, Subroto; Seidel, Jan; Moore, Joel; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Scullin, ML (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM scullin@berkeley.edu RI Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 NR 28 TC 29 Z9 29 U1 2 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 19 PY 2008 VL 92 IS 20 AR 202113 DI 10.1063/1.2916690 PG 3 WC Physics, Applied SC Physics GA 305RX UT WOS:000256196600045 ER PT J AU Singh, DJ AF Singh, D. J. TI Near optical isotropy in noncubic SrI(2): Density functional calculations SO APPLIED PHYSICS LETTERS LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; EXCHANGE; HALIDES; SOLIDS AB We report calculations of the electronic structure and optical properties of orthorhombic SrI(2). These were done using the Engel-Vosko generalized gradient approximation. We find that the dielectric function and refractive indices are almost isotropic in this noncubic material. This suggests that low cost nonconventional routes for producing SrI(2)-based scintillators may be practical and, in particular, that ceramic processing may be used. (c) 2008 American Institute of Physics. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Singh, D. J.] Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM singhdj@ornl.gov RI Singh, David/I-2416-2012 NR 18 TC 29 Z9 30 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 19 PY 2008 VL 92 IS 20 AR 201908 DI 10.1063/1.2936079 PG 3 WC Physics, Applied SC Physics GA 305RX UT WOS:000256196600022 ER PT J AU Polyansky, DE Cabelli, D Muckerman, JT Fukushima, T Tanaka, K Fujita, E AF Polyansky, Dmitry E. Cabelli, Diane Muckerman, James T. Fukushima, Takashi Tanaka, Koji Fujita, Etsuko TI Mechanism of hydride donor generation using a Ru(II) complex containing an NAD(+) model ligand: Pulse and steady-state radiolysis studies SO INORGANIC CHEMISTRY LA English DT Article ID PHOTOINDUCED ELECTRON-TRANSFER; BOND-DISSOCIATION ENERGIES; MOLECULAR-ORBITAL METHODS; EFFECTIVE CORE POTENTIALS; LASER FLASH-PHOTOLYSIS; FLAVIN BINDING-SITE; GAUSSIAN-TYPE BASIS; AQUEOUS-SOLUTION; EXCITED-STATES; RUTHENIUM(II) COMPLEXES AB The mechanistic pathways of formation of the NADH-like [Ru(bPY)(2)(pbnHH)](2+) species from [Ru(bPY)(2)(pbn)](2+) were studied in an aqueous medium. Formation of the one-electron-reduced species as a result of reduction by a solvated electron (k = 3.0 x 10(10) M-1 s(-1)) or CO2 center dot- (k = 4.6 x 10(9) M-1 s(-1)) or reductive quenching of an MLCT excited state by 1,4-diazabicyclo[2.2.2]octane (k = 1.1 x 10(9) M-1 s(-1)) is followed by protonation of the reduced species (pK(a) = 11). Dimerization (k(7a) = 2.2 x 10(8) M-1 s(-1)) of the singly reduced protonated species, [Ru(bPY)(2)(pbnH(center dot))](2+), followed by disproportionation of the dimer as well as the cross reaction between the singly reduced protonated and nonprotonated species (k(8) = 1.2 x 10(8) M-1 s(-1)) results in the formation of the final [Ru(bpy)(2)(pbnHH)](2+) product together with an equal amount of the starting complex, [Ru(bpy)(2)(pbn)](2+). At 0.2 degrees C, a dimeric intermediate, most likely a pi-stacking dimer, was observed that decomposes thermally to form an equimolar mixture of [Ru(bpy)(2)(pbnHH)](2+) and [Ru(bpy)(2)(pbn)](2+) (pH 9). The absence of a significant kinetic isotope effect in the disproportionation reaction of [Ru(bpy)(2)(pbnH)](2+) and its conjugate base (pH > 9) indicates that disproportionation occurs by a stepwise pathway of electron transfer followed by proton transfer. C1 [Polyansky, Dmitry E.; Cabelli, Diane; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Fukushima, Takashi; Tanaka, Koji] Inst Mol Sci, Aichi 4448787, Japan. RP Fujita, E (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM fujita@bnl.gov RI Polyansky, Dmitry/C-1993-2009; Fujita, Etsuko/D-8814-2013; Muckerman, James/D-8752-2013 OI Polyansky, Dmitry/0000-0002-0824-2296; NR 63 TC 49 Z9 49 U1 5 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 19 PY 2008 VL 47 IS 10 BP 3958 EP 3968 DI 10.1021/ic702139n PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 299QP UT WOS:000255770400013 PM 18345613 ER PT J AU Guo, YS Wang, HX Xiao, YM Vogt, S Thauer, RK Shima, S Volkers, PI Rauchfuss, TB Pelmenschikov, V Case, DA Alp, EE Sturhahn, W Yoda, Y Cramer, SP AF Guo, Yisong Wang, Hongxin Xiao, Yuming Vogt, Sonja Thauer, Rudolf K. Shima, Seigo Volkers, Phillip I. Rauchfuss, Thomas B. Pelmenschikov, Vladimir Case, David A. Alp, Ercan E. Sturhahn, Wolfgang Yoda, Yoshitaka Cramer, Stephen P. TI Characterization of the Fe site in iron-sulfur cluster-free hydrogenase (Hmd) and of a model compound via nuclear resonance vibrational spectroscopy (NRVS) SO INORGANIC CHEMISTRY LA English DT Article ID METAL-FREE HYDROGENASE; METHANOGENIC ARCHAEA; METHYLENETETRAHYDROMETHANOPTERIN DEHYDROGENASE; METHANOBACTERIUM-THERMOAUTOTROPHICUM; LIGHT-INACTIVATION; ACTIVE-SITE; SCATTERING; DYNAMICS; COFACTOR; RAMAN AB We have used Fe-57 nuclear resonance vibrational spectroscopy (NRVS) to study the iron site in the iron-sulfur cluster-free hydrogenase Hmd from the methanogenic archaeon Methanothermobacter marburgensis. The spectra have been interpreted by comparison with a cis-(CO)(2)-ligated Fe model compound, Fe(S2C2H4)(CO)(2)(PMe3)(2), as well as by normal mode simulations of plausible active site structures. For this model complex, normal mode analyses both from an optimized Urey-Bradley force field and from complementary density functional theory (DFT) calculations produced consistent results. For Hmd, previous IR spectroscopic studies found strong CO stretching modes at 1944 and 2011 cm(-1), interpreted as evidence for cis-Fe(CO)(2) ligation. The NRVS data provide further insight into the dynamics of the Fe site, revealing Fe-CO stretch and Fe-CO bend modes at 494, 562, 590, and 648 cm-1, consistent with the proposed cis-Fe(CO)2 ligation. The NRVS also reveals a band assigned to Fe-S stretching motion at similar to 311 cm(-1) and another reproducible feature at similar to 380 cm(-1). The Fe-57 partial vibrational densities of states (PVDOS) for Hmd can be reasonably well simulated by a normal mode analysis based on a Urey-Bradley force field for a five-coordinate cis-(CO)(2)-ligated Fe site with additional cysteine, water, and pyridone cofactor ligands. A "truncated" model without a water ligand can also be used to match the NRVS data. A final interpretation of the Hmd NRVS data, including DFT analysis, awaits a three-dimensional structure for the active site. C1 [Vogt, Sonja; Thauer, Rudolf K.; Shima, Seigo] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany. [Guo, Yisong; Wang, Hongxin; Xiao, Yuming; Cramer, Stephen P.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Wang, Hongxin; Cramer, Stephen P.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Volkers, Phillip I.; Rauchfuss, Thomas B.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Pelmenschikov, Vladimir; Case, David A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Alp, Ercan E.; Sturhahn, Wolfgang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Yoda, Yoshitaka] JASRI, Mikazuki, Hyogo 6795198, Japan. RP Thauer, RK (reprint author), Max Planck Inst Terr Microbiol, Karl von Frisch Str, D-35043 Marburg, Germany. EM thauer@mpi-marburg.mpg.de; rauchfuz@uiuc.edu; case@scripps.edu; spcramer@lbl.gov RI Guo, Yisong/C-7785-2009 OI Guo, Yisong/0000-0002-4132-3565 FU NIBIB NIH HHS [R01 EB001962-15, EB-001962, R01 EB001962]; NIGMS NIH HHS [GM-061153, GM-39914, GM-65440, R01 GM039914, R01 GM061153, R01 GM065440, R01 GM065440-06] NR 46 TC 59 Z9 60 U1 3 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD MAY 19 PY 2008 VL 47 IS 10 BP 3969 EP 3977 DI 10.1021/ic701251j PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 299QP UT WOS:000255770400014 PM 18407624 ER PT J AU Lochan, RC Khaliullin, RZ Head-Gordon, M AF Lochan, Rohini C. Khaliullin, Rustam Z. Head-Gordon, Martin TI Interaction of molecular hydrogen with open transition metal centers for enhanced binding in metal-organic frameworks: A computational study SO INORGANIC CHEMISTRY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; BENZENE CHROMIUM TRICARBONYL; SUBSTITUTED (ETA-6-ARENE)CR(CO)3 COMPLEXES; MICROPOROUS COORDINATION POLYMER; DIHYDROGEN COMPLEXES; BASIS-SETS; (BENZENE)CHROMIUM TRICARBONYL; ETA-6-ARENE COMPLEXES; CHEMICAL-SHIFTS; STORAGE METHODS AB Molecular hydrogen is known to form stable, "nonclassical" sigma complexes with transition metal centers that are stabilized by donor-acceptor interactions and electrostatics. In this computational study, we establish that strong H-2 sorption sites can be obtained in metal-organic frameworks by incorporating open transition metal sites on the organic linkers. Using density functional theory and energy decomposition analysis, we investigate the nature and characteristics of the. H-2 interaction with models of exposed open metal binding sites {half-sandwich piano-stool shaped complexes of the form (Arene)ML3-n(H-2)(n) [M = Cr, Mo, V-, Mn+; Arene = C6H5X (X = H, F, Cl, OCH3, NH2, CH3, CF3) or C6H3Y2X (Y = COOH, X = CF3, CI; L = CO; n = 1-3]}. The metal-H-2 bond dissociation energy of the studied complexes is calculated to be between 48 and 84 kJ/mol, based on the introduction of arene substituents, changes to the metal core, and of charge-balancing ligands. Thus, design of the binding site controls the H-2 binding affinity and could be potentially used to control the magnitude of the H-2 interaction energy to achieve reversible sorption characteristics at ambient conditions. Energy decomposition analysis illuminates both the possibilities and present challenges associated with rational materials design. C1 Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mhg@cchem.berkeley.edu RI Khaliullin, Rustam/B-2672-2009 OI Khaliullin, Rustam/0000-0002-9073-6753 NR 97 TC 36 Z9 37 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 19 PY 2008 VL 47 IS 10 BP 4032 EP 4044 DI 10.1021/ic701625g PG 13 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 299QP UT WOS:000255770400020 PM 18422312 ER PT J AU Frank, P Benfatto, M Hedman, B Hodgson, KO AF Frank, Patrick Benfatto, Maurizio Hedman, Brift Hodgson, Keith O. TI Solution [Cu(amm)](2+) is a strongly solvated square pyramid: A full account of the copper K-edge XAS spectrum within single-electron theory SO INORGANIC CHEMISTRY LA English DT Review ID X-RAY-ABSORPTION; AQUEOUS AMMONIA SOLUTION; PREFERENTIAL CU2+ SOLVATION; 2ND HYDRATION SHELL; MULTIPLE-SCATTERING; FINE-STRUCTURE; MOLECULAR-DYNAMICS; HYDROGEN-BOND; POPLAR PLASTOCYANIN; CRYSTAL-STRUCTURES AB The solution structure of Cu(II) in 4M aqueous ammonia, [Cu(amm)](2+), was assessed using copper K-edge extended X-ray absorption fine structure (EXAFS) and Minuit XANes (MXAN) analyses. Tested structures included trigonal planar, planar and D-2d-tetragonal, regular and distorted square pyramids, trigonal bipyramids, and Jahn-Teller distorted octahedra. Each approach converged to the same axially elongated square pyramid, 4 x Cu-N-eq = 2.00 +/- 0.02 angstrom and 1 x Cu-N-ax=2.16 +/- 0.02 angstrom (EXAFS) or 2.20 +/- 0.07 angstrom (MXAN), with strongly localized solvation shells. In the MXAN model, four equatorial ammonias averaged 13 degrees below the Cu(II) xy-plane, which was 0.45 +/- 0.1 angstrom above the mean N-4 plane. When the axial ligand equilibrium partial occupancies of about 0.65 ammonia and 0.35 water were included, EXAFS modeling found Cu-L-ax distances of 2.16 and 2.31 angstrom, respectively, reproducing the distances found in the crystal structures of [Cu(NH3)(5)](2+) and [Cu(NH3)4(H2O)](2+). angstrom transverse axially localized solvent molecule was found at 2.8 angstrom (EXAFS) or 3.1 angstrom (MXAN). Six second-shell solvent molecules were also found at about 3.4 +/- 0.01 (EXAFS) or 3.8 +/- 0.2 angstrom (MXAN). The structure of Cu(II) in 4 M pH 10 aqueous NH3 May be notationally described as {[Cu(NH3)(4.62)(H2O)(0.38)](Solv)}(2+) .6solv, solv = H2O, NH3. The prominent shoulder and duplexed maximum of the rising K-edge XAS of [Cu(amm)](2+) primarily reflect the durable and well-organized solvation shells, not found around [Cu(H2O)(5)](2+), rather than two-electron shakedown transitions. Not accounting for solvent scattering thus may confound XAS-based estimates of metal-ligand covalency. [Cu(am M)]2+ continues the dissymmetry previously found for the solution structure of [Cu(H2O)(5)](2+), again contradicting the rack-bonding theory of blue copper proteins. C1 [Frank, Patrick; Hodgson, Keith O.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Frank, Patrick; Hedman, Brift; Hodgson, Keith O.] Stanford Univ, Stanford Synchrotron Radiat Lab, SLAC, Stanford, CA 94309 USA. [Benfatto, Maurizio] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. RP Frank, P (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM frank@ssrl.slac.stanford.edu FU NCRR NIH HHS [RR-01209, RR001209, P41 RR001209] NR 107 TC 27 Z9 27 U1 3 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 19 PY 2008 VL 47 IS 10 BP 4126 EP 4139 DI 10.1021/ic7021243 PG 14 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 299QP UT WOS:000255770400029 PM 18426203 ER PT J AU Turner, JJ Thomas, KJ Hill, JP Pfeifer, MA Chesnel, K Tomioka, Y Tokura, Y Kevan, SD AF Turner, J. J. Thomas, K. J. Hill, J. P. Pfeifer, M. A. Chesnel, K. Tomioka, Y. Tokura, Y. Kevan, S. D. TI Orbital domain dynamics in a doped manganite SO NEW JOURNAL OF PHYSICS LA English DT Article ID COPPER-OXIDE SUPERCONDUCTORS; X-RAY-SCATTERING; CHARGE; DIFFRACTION; FILMS; SPIN AB We explore a number of novel effects near the orbital-order phase transition in a half-doped manganite, Pr0.5Ca0.5MnO3. To probe the unusual short-range orbital order in this system, we have performed coherent soft x-ray resonant scattering measurements in a Bragg geometry to measure dynamics. Near the transition temperature, we observe a small fluctuating component in the scattered signal that is correlated with three effects: a rapidly decreasing total signal and orbital domain size, as well as an abrupt onset of a broad background intensity that we attribute to the thermal production of correlated polarons. Our speckle results suggest that the transition is characterized by a competition between a pinned orbital domain topology that remains static and mobile domain boundaries that exhibit slow, temporal fluctuations. C1 [Turner, J. J.; Pfeifer, M. A.; Kevan, S. D.] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Turner, J. J.; Pfeifer, M. A.; Chesnel, K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Thomas, K. J.; Hill, J. P.] Brookhaven Natl Lab, Dept Condensed Matter Phys, Upton, NY 11973 USA. [Thomas, K. J.; Hill, J. P.] Brookhaven Natl Lab, Dept Mat Sci, Upton, NY 11973 USA. [Tokura, Y.] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan. [Tomioka, Y.; Tokura, Y.] Natl Inst Adv Ind Sci & Technol, Correlated Electron Res Ctr, Tsukuba, Ibaraki 3050033, Japan. RP Turner, JJ (reprint author), Univ Oregon, Dept Phys, Eugene, OR 97403 USA. EM jjturner@lbl.gov RI Hill, John/F-6549-2011; Kevan, Stephen/F-6415-2010; Tokura, Yoshinori/C-7352-2009 OI Kevan, Stephen/0000-0002-4621-9142; NR 38 TC 12 Z9 12 U1 3 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAY 19 PY 2008 VL 10 AR 053023 DI 10.1088/1367-2630/10/5/053023 PG 12 WC Physics, Multidisciplinary SC Physics GA 308YF UT WOS:000256426100001 ER PT J AU Henderson, PD Owen, CJ Lahiff, AD Alexeev, IV Fazakerley, AN Yin, L Walsh, AP Lucek, E Reme, H AF Henderson, P. D. Owen, C. J. Lahiff, A. D. Alexeev, I. V. Fazakerley, A. N. Yin, L. Walsh, A. P. Lucek, E. Reme, H. TI The relationship between j x B and del center dot P-e in the magnetotail plasma sheet: Cluster observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID COLLISIONLESS RECONNECTION; DISTANT MAGNETOTAIL; SUBSTORM; ELECTRON; MAGNETOPAUSE; SIMULATIONS; BALANCE; GEOTAIL; AVERAGE; HYBRID AB In this paper we report an extension to Henderson et al.'s (2006) case study, in which we investigate the generality of the anticorrelation between the del.P-e and j x B terms in Ohm's law observed in the plasma sheet. Further current sheet crossings are investigated which occurred on 17 August 2003 and 24 September 2003. Data from this period are particularly relevant as the interspacecraft separations are at their smallest for the Cluster mission. We confirm the generality of the observed anticorrelation and observe that the contributions to the electric field were mainly in the direction normal to the neutral sheet. A simple magnetohydrostatic treatment is used to explain the correlation and directional organization. The treatment is able to explain the anticorrelation and how the relative contributions to the electric field from the del.P-e and j x B terms in Ohm's law may be linked to the temperature ratio of the different plasma constituents as well as their spatial scales. In the examples reported here, the scale length over which the electron pressure changed le was smaller than the scale over which the ion pressure changed l(i), with l(e)/l(i) being between similar to 0.1 and similar to 0.4. C1 [Henderson, P. D.; Owen, C. J.; Lahiff, A. D.; Alexeev, I. V.; Fazakerley, A. N.; Walsh, A. P.] UCL, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Lucek, E.] Univ London Imperial Coll Sci Technol & Med, London SW7 2BZ, England. [Reme, H.] Ctr Natl Rech Sci, Ctr Etude Spatiale Rayonnements, F-31028 Toulouse, France. [Yin, L.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. RP Henderson, PD (reprint author), UCL, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM pdh@mssl.ucl.ac.uk RI Owen, Christopher/C-2999-2008; Walsh, Andrew/E-6701-2011 OI Owen, Christopher/0000-0002-5982-4667; NR 37 TC 9 Z9 9 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 17 PY 2008 VL 113 IS A7 AR A07S31 DI 10.1029/2007JA012697 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 303TJ UT WOS:000256063500001 ER PT J AU Xu, Z Kohli, E Devlin, KI Bold, M Nix, JC Misra, S AF Xu, Zhen Kohli, Ekta Devlin, Karl I. Bold, Michael Nix, Jay C. Misra, Saurav TI Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes SO BMC STRUCTURAL BIOLOGY LA English DT Article ID POLYUBIQUITIN CHAINS; E3 LIGASE; CRYSTAL-STRUCTURE; PROTEIN LIGASES; CHAPERONE; UBIQUITYLATION; MECHANISMS; COMPLEX; FAMILY; PURIFICATION AB Background: Ubiquitin (E3) ligases interact with specific ubiquitin conjugating (E2) enzymes to ubiquitinate particular substrate proteins. As the combination of E2 and E3 dictates the type and biological consequence of ubiquitination, it is important to understand the basis of specificity in E2: E3 interactions. The E3 ligase CHIP interacts with Hsp70 and Hsp90 and ubiquitinates client proteins that are chaperoned by these heat shock proteins. CHIP interacts with two types of E2 enzymes, UbcH5 and Ubc13-Uev1a. It is unclear, however, why CHIP binds these E2 enzymes rather than others, and whether CHIP interacts preferentially with UbcH5 or Ubc13-Uev1a, which form different types of polyubiquitin chains. Results: The 2.9 angstrom crystal structure of the CHIP U-box domain complexed with UbcH5a shows that CHIP binds to UbcH5 and Ubc13 through similar specificity determinants, including a key S-P-A motif on the E2 enzymes. The determinants make different relative contributions to the overall interactions between CHIP and the two E2 enzymes. CHIP undergoes auto-ubiquitination by UbcH5 but not by Ubc13-Uev1a. Instead, CHIP drives the formation of unanchored polyubiquitin by Ubc13-Uev1a. CHIP also interacts productively with the class III E2 enzyme Ube2e2, in which the UbcH5- and Ubc13-binding specificity determinants are highly conserved. Conclusion: The CHIP: UbcH5a structure emphasizes the importance of specificity determinants located on the long loops and central helix of the CHIP U-box, and on the N-terminal helix and loops L4 and L7 of its cognate E2 enzymes. The S-P-A motif and other specificity determinants define the set of cognate E2 enzymes for CHIP, which likely includes several Class III E2 enzymes. CHIP's interactions with UbcH5, Ube2e2 and Ubc13-Uev1a are consistent with the notion that Ubc13-Uev1a may work sequentially with other E2 enzymes to carry out K63-linked polyubiquitination of CHIP substrates. C1 [Xu, Zhen; Kohli, Ekta; Devlin, Karl I.; Bold, Michael; Misra, Saurav] Cleveland Clin, Lerner Res Inst, Dept Mol Cardiol, Cleveland, OH 44106 USA. [Nix, Jay C.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Misra, S (reprint author), Cleveland Clin, Lerner Res Inst, Dept Mol Cardiol, Cleveland, OH 44106 USA. EM xuz1@ccf.org; kohlie@ccf.org; devlin_karl@yahoo.com; mikebold2@yahoo.com; JCNix@lbl.gov; misras@ccf.org RI Wang, Nianshuang/C-1463-2010; OI Misra, Saurav/0000-0002-1385-8554 FU NIGMS NIH HHS [R01 GM080271, R01 GM080271-01A1] NR 51 TC 62 Z9 65 U1 0 U2 3 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2237 J9 BMC STRUCT BIOL JI BMC Struct. Biol. PD MAY 16 PY 2008 VL 8 AR 26 DI 10.1186/1472-6807-8-26 PG 13 WC Biophysics SC Biophysics GA 305YX UT WOS:000256214800001 PM 18485199 ER PT J AU Remaut, H Tang, C Henderson, NS Pinkner, JS Wang, T Hultgren, SJ Thanassi, DG Waksman, G Li, HL AF Remaut, Han Tang, Chunyan Henderson, Nadine S. Pinkner, Jerome S. Wang, Tao Hultgren, Scott J. Thanassi, David G. Waksman, Gabriel Li, Huilin TI Fiber formation across the bacterial outer membrane by the chaperone/usher pathway SO CELL LA English DT Article ID UROPATHOGENIC ESCHERICHIA-COLI; ASSEMBLY PLATFORM FIMD; PILUS BIOGENESIS; STRUCTURAL BASIS; TYPE-1 PILI; SUBUNIT COMPLEXES; CRYSTAL-STRUCTURE; ADHESIN COMPLEX; USHER PATHWAY; DIFFRACTION AB Gram-negative pathogens commonly exhibit adhesive pili on their surfaces that mediate specific attachment to the host. A major class of pili is assembled via the chaperone/usher pathway. Here, the structural basis for pilus fiber assembly and secretion performed by the outer membrane assembly platform the usher-is revealed by the crystal structure of the translocation domain of the P pilus usher PapC and single particle cryo-electron microscopy imaging of the FimD usher bound to a translocating type 1 pilus assembly intermediate. These structures provide molecular snapshots of a twinned-pore translocation machinery in action. Unexpectedly, only one pore is used for secretion, while both usher protomers are used for chaperone-subunit complex recruitment. The translocating pore itself comprises 24 beta strands and is occluded by a folded plug domain, likely gated by a conformationally constrained beta-hairpin. These structures capture the secretion of a virulence factor across the outer membrane of Gram-negative bacteria. C1 [Pinkner, Jerome S.; Hultgren, Scott J.] Washington Univ, Sch Med, Dept Mol Microbiol, St Louis, MO 63110 USA. [Remaut, Han; Waksman, Gabriel] UCL, Inst Struct Mol Sci, London WC1E 7HX, England. [Remaut, Han; Waksman, Gabriel] Birkbeck Coll, Inst Struct Mol Biol, London WC1E 7HX, England. [Tang, Chunyan; Wang, Tao; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Henderson, Nadine S.; Thanassi, David G.] SUNY Stony Brook, Dept Mol Genet & Microbiol, Ctr Infect Dis, Stony Brook, NY 11794 USA. [Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. RP Hultgren, SJ (reprint author), Washington Univ, Sch Med, Dept Mol Microbiol, St Louis, MO 63110 USA. EM hultgren@borcim.wustl.edu; david.thanassi@stonybrook.edu; g.waksman@mail.cryst.bbk.ac.uk; hli@bnl.gov RI Tang, Chunyan/E-8352-2010; li, lianbo/H-1152-2011 FU Medical Research Council [58149, G0800002]; NIAID NIH HHS [AI48689, AI029549, AI049950, R01 AI029549, R01 AI048689, R01 AI048689-08, R01 AI049950, R37 AI029549]; NIGMS NIH HHS [GM062987, GM074985, R01 GM062987, R01 GM074985] NR 45 TC 132 Z9 134 U1 5 U2 25 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD MAY 16 PY 2008 VL 133 IS 4 BP 640 EP 652 DI 10.1016/j.cell.2008.03.033 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 301NQ UT WOS:000255903300019 PM 18485872 ER PT J AU Dera, P Lavina, B Borkowski, LA Prakapenka, VB Sutton, SR Rivers, ML Downs, RT Boctor, NZ Prewitt, CT AF Dera, Przemyslaw Lavina, Barbara Borkowski, Lauren A. Prakapenka, Vitali B. Sutton, Stephen R. Rivers, Mark L. Downs, Robert T. Boctor, Nabil Z. Prewitt, Charles T. TI High-pressure polymorphism of Fe2P and its implications for meteorites and Earth's core SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID STATIC COMPRESSION; CRYSTAL-STRUCTURE; X-RAY; TEMPERATURE; IRON; MOSSBAUER; PHASE; TRANSFORMATION; PHOSPHIDE; SILICON AB Minerals with composition (Fe, Ni)(2)P, are rare, though important accessory phases in iron and chondritic meteorites. The occurrence of these minerals in meteorites is believed to originate either from the equilibrium condensation of protoplanetary materials in solar nebulae or from the later accretion and condensation processes in the cores of parent bodies. Fe-Ni phosphides are considered a possible candidate for a minor phase present in the Earth's core, and at least partially responsible for the observed density deficit with respect to pure iron. We report results of high-pressure high-temperature X-ray diffraction experiments with synthetic barringerite (Fe2P) up to 40 GPa and 1400 K. A new phase transition to the Co2Si-type structure has been found at 8.0 GPa, upon heating. The high-pressure phase can be metastably quenched to ambient conditions at room temperature, and then, if heated again, transforms back to barringerite, providing an important constraint on the thermodynamic history of meteorite. C1 [Dera, Przemyslaw; Lavina, Barbara; Prakapenka, Vitali B.; Sutton, Stephen R.; Rivers, Mark L.] Univ Chicago, Ctr Adv Radiat Sources, Argonne Natl Lab, Argonne, IL 60439 USA. [Borkowski, Lauren A.] UNLV High Pressure Sci & Engn Ctr, Argonne Natl Lab, Argonne, IL 60439 USA. [Downs, Robert T.; Prewitt, Charles T.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Boctor, Nabil Z.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. RP Dera, P (reprint author), Univ Chicago, Ctr Adv Radiat Sources, Argonne Natl Lab, Bldg 434A,9700 S Cass Ave, Argonne, IL 60439 USA. EM dera@cars.uchicago.edu RI Lavina, Barbara/A-1015-2010; Dera, Przemyslaw/F-6483-2013 OI Lavina, Barbara/0000-0002-8556-7916; NR 35 TC 23 Z9 23 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 16 PY 2008 VL 35 IS 10 AR L10301 DI 10.1029/2008GL033867 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 303SE UT WOS:000256060400001 ER PT J AU Lui, ATY Volwerk, M Dunlop, MW Alexeev, IV Fazakerley, AN Walsh, AP Lester, M Grocott, A Mouikis, C Henderson, MG Kistler, LM Shen, C Shi, JK Zhang, TL Reme, H AF Lui, A. T. Y. Volwerk, M. Dunlop, M. W. Alexeev, I. V. Fazakerley, A. N. Walsh, A. P. Lester, M. Grocott, A. Mouikis, C. Henderson, M. G. Kistler, L. M. Shen, C. Shi, J. K. Zhang, T. L. Reme, H. TI Near-Earth substorm features from multiple satellite observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID TAIL CURRENT DISRUPTION; FIELD LINE RESONANCES; PLASMA SHEET DYNAMICS; GEOTAIL SATELLITE; CURRENT WEDGE; EXPANSION; CLUSTER; EVENT; ONSET; MAGNETOTAIL AB We investigate a substorm on 3 October 2004 during which 11 satellites were located in near-Earth magnetotail (X-GSM > -10 R-E). Double Star 1 (TC-1), Cluster, and LANL-97 satellites were closely aligned in the dawn-dusk direction (<1 R-E apart) for this conjunction. After substorm expansion onset, TC-1 observed plasma sheet thinning at X approximate to -5.5 RE and later detected signature of plasma flow shear that may be associated with an auroral arc. Analysis of the dawn-dusk magnetic perturbations from GOES-10 and Polar suggests that these could be caused by a substorm current system consisting of not only the azimuthal closure of field-aligned currents (the substorm current wedge) but also the meridional closure of field-aligned currents. The temporal sequence of substorm activity (particle injection, current disruption, and dipolarization) revealed by these satellites indicates that the substorm expansion activity was initiated close to the Earth and spread later to further downstream distances. Furthermore, TC-1 and Cluster data show that there is no close relationship between some dipolarizations and Earthward plasma flows in the near-Earth region. The overall development of substorm activity is in agreement with the near-Earth initiation model for substorms. A temporal evolution of the magnetic field reconfiguration and plasma boundary motion during this substorm is constructed from these observations. C1 [Lui, A. T. Y.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Volwerk, M.; Zhang, T. L.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Volwerk, M.] Max Planck Inst Extraterr Phys, D-37075 Garching, Germany. [Dunlop, M. W.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Alexeev, I. V.; Fazakerley, A. N.; Walsh, A. P.] UCL, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Lester, M.; Grocott, A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Mouikis, C.; Kistler, L. M.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Henderson, M. G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Shen, C.; Shi, J. K.] Chinese Acad Sci, Ctr Space Sci & Appl Res, Beijing 10080, Peoples R China. [Reme, H.] CNRS, CESR, F-31028 Toulouse, France. RP Lui, ATY (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. RI Grocott, Adrian/A-9576-2011; Walsh, Andrew/E-6701-2011; dunlop, malcolm/F-1347-2010; Henderson, Michael/A-3948-2011; OI Henderson, Michael/0000-0003-4975-9029; Walsh, Andrew/0000-0002-1682-1212 NR 49 TC 22 Z9 23 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 16 PY 2008 VL 113 IS A7 AR A07S26 DI 10.1029/2007JA012738 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 303TI UT WOS:000256063400001 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalinin, AM Kalk, JM Kappler, S Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Korablev, VM Kozelov, AV Kraus, J Krop, D Kuhl, T Kumar, A Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Leveque, J Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Korablev, V. M. Kozelov, A. V. Kraus, J. Krop, D. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Leveque, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Measurement of the t(t)over-bar production cross section in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID EVENTS AB We measure the t (t) over bar production cross section in p (p) over bar collisions at root s = 1.96 TeV in the lepton + jets channel. Two complementary methods discriminate between signal and background: b tagging and a kinematic likelihood discriminant. Based on 0.9 fb(-1) of data collected by the D0 detector at the Fermilab Tevatron Collider, we measure sigma(t (t) over bar) = 7.62 +/- 0.85 pb, assuming the current world average m(t) = 172.6 GeV. We compare our cross section measurement with theory predictions to determine a value for the top-quark mass of 170 +/- 7 GeV. C1 [Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Luna, R.; Malbouisson, H. B.; Molina, J.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santro Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech, F-38041 Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Univ Aix Marseille 2, CPPM, IN2P3, CNRS, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, DAPNIA, Serv Phys Particules, Saclay, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, IPHC, Strasbourg, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kappler, S.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Ay, C.; Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Korablev, V. M.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Santoro, A.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Mulders, M.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Heinmiller, J. M.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Evdokimov, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zatserklyaniy, A.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Hensel, C.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Harrington, R.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Voutilainen, M.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Gadfort, T.; Garcia, C.; Ginther, G.; Harel, A.; Park, S. -J.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hoeneisen, B.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Fisher, Wade/N-4491-2013 OI Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Dudko, Lev/0000-0002-4462-3192; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Novaes, Sergio/0000-0003-0471-8549; NR 22 TC 32 Z9 32 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 16 PY 2008 VL 100 IS 19 AR 192004 DI 10.1103/PhysRevLett.100.192004 PG 7 WC Physics, Multidisciplinary SC Physics GA 302IR UT WOS:000255962500016 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, S Banerjee, P Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chan, K Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, J Guo, F Gutierrez, P Gutierrez, G Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalinin, AM Kalk, JR Kalk, JM Kappler, S Karmanov, D Kasper, PA Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Korablev, VM Kozelov, AV Krop, D Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Leveque, J Li, J Li, QZ Li, L Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, J Meyer, A Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, J Snow, GR Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strauss, E Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, S Uvarov, L Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weber, G Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Banerjee, P. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chan, K. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, J. Guo, F. Gutierrez, P. Gutierrez, G. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalinin, A. M. Kalk, J. R. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Korablev, V. M. Kozelov, A. V. Krop, D. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Leveque, J. Li, J. Li, Q. Z. Li, L. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, J. Meyer, A. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, J. Snow, G. R. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Strauss, E. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, S. Uvarov, L. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weber, G. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Simultaneous measurement of the ratio R = B(t -> Wb)/B(t -> Wq) and the top-quark pair production cross section with the D0 detector at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present the first simultaneous measurement of the ratio of branching fractions, R = B(t --> Wb)/B(t --> Wq), with q being a d, s, or b quark, and the top-quark pair production cross section sigma(t (t) over bar) in the lepton plus jets channel using 0.9 fb(-1) of p (p) over bar collision data at root s = 1.96 TeV collected with the D0 detector. We extract R and sigma(t (t) over bar) by analyzing samples of events with 0, 1, and >= 2 identified b jets. We measure R = 0.97(-0.08)(+0.09) (stat + syst) and sigma(t (t) over bar) = 8.18(-0.84)(+0.90) (stat + syst) +/- 0.50(lumi) pb, in agreement with the standard model prediction. C1 [Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Alves, G. A.; Barreto, J.; Chan, K.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Luna, R.; Malbouisson, H. B.; Molina, J.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Kermiche, S.; Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS IN2P3, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38041 Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Nagy, E.; Talby, M.] Univ Aix Marseille 2, CPPM, IN2P3, CNRS, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Andrieu, B.; Bernardi, G.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, Serv Phys Particules, DAPNIA, Saclay, France. [Biscarat, C.; Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, IPHC, Strasbourg, France. [Biscarat, C.; Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Grenier, G.; Ripp-Baudot, I.] Univ Haute Alsace, CNRS IN2P3, Strasbourg, France. [Kurca, T.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Kurca, T.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Autermann, C.; Kappler, S.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Fox, H.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Ay, C.; Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kaur, R.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Banerjee, P.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Podesta-Lerma, P. L. M.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Korablev, V. M.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, S.; Uvarov, L.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Lehner, F.; Wenger, A.] Univ Zurich, Inst Phys, Zurich, Switzerland. [Bertram, I.; Borissov, G.; Burdin, S.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Robinson, S.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Ford, M.; Harder, K.; Mommsen, R. K.; Peters, K.; Rich, P.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Burke, S.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Lobodenko, A.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Greenlee, H.; Gruenendahl, S.; Gutierrez, P.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Mulders, M.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Heinmiller, J. M.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Bagby, L.; Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Zatserklyaniy, A.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Cason, N. M.; Chan, K. M.; Galyaev, E.; Goussiou, A.; Hildreth, M. D.; Mal, P. K.; Osta, J.; Pogorelov, Y.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Hensel, C.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Kunori, S.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Harrington, R.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kalk, J. R.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Begel, M.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Park, S. -J.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Grannis, P. D.; Guo, J.; Guo, F.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Oklahoma City, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Lubatti, H. J.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Piegaia, R.] Univ Buenos Aires, Buenos Aires, DF, Argentina. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Yip, Kin/D-6860-2013; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Bargassa, Pedrame/O-2417-2016; Ancu, Lucian Stefan/F-1812-2010; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015 OI Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Bean, Alice/0000-0001-5967-8674; Bargassa, Pedrame/0000-0001-8612-3332; Christoudias, Theodoros/0000-0001-9050-3880; Belanger-Champagne, Camille/0000-0003-2368-2617; Ancu, Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107 NR 24 TC 30 Z9 30 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 16 PY 2008 VL 100 IS 19 AR 192003 DI 10.1103/PhysRevLett.100.192003 PG 7 WC Physics, Multidisciplinary SC Physics GA 302IR UT WOS:000255962500015 PM 18518440 ER PT J AU Caldwell, RR Stebbins, A AF Caldwell, R. R. Stebbins, A. TI A test of the Copernican principle SO PHYSICAL REVIEW LETTERS LA English DT Article ID HUBBLE-SPACE-TELESCOPE; MICROWAVE BACKGROUND SPECTRUM; IA SUPERNOVAE; DARK ENERGY; COSMOLOGICAL CONSTANT; ACCELERATING UNIVERSE; INTERGALACTIC MEDIUM; COBE; CONSTRAINTS; INSTRUMENT AB The blackbody nature of the cosmic microwave background (CMB) radiation spectrum is used in a modern test of the Copernican principle. The reionized universe serves as a mirror to reflect CMB photons, thereby permitting a view of ourselves and the local gravitational potential. By comparing with measurements of the CMB spectrum, a limit is placed on the possibility that we occupy a privileged location, residing at the center of a large void. The Hubble diagram inferred from lines of sight originating at the center of the void may be misinterpreted to indicate cosmic acceleration. Current limits on spectral distortions are shown to exclude the largest voids which mimic cosmic acceleration. More sensitive measurements of the CMB spectrum could prove the existence of such a void or confirm the validity of the Copernican principle. C1 [Caldwell, R. R.] Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA. [Stebbins, A.] Fermilab Natl Accelerator Lab, Theoret Astrophys Grp, Batavia, IL 60510 USA. RP Caldwell, RR (reprint author), Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA. NR 40 TC 107 Z9 108 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 16 PY 2008 VL 100 IS 19 AR 191302 DI 10.1103/PhysRevLett.100.191302 PG 4 WC Physics, Multidisciplinary SC Physics GA 302IR UT WOS:000255962500009 PM 18518434 ER PT J AU Chen, XQ Fu, CL Krcmar, M Painter, GS AF Chen, Xing-Qiu Fu, C. L. Krcmar, M. Painter, G. S. TI Electronic and structural origin of ultraincompressibility of 5d transition-metal diborides MB2 (M=W, re, os) SO PHYSICAL REVIEW LETTERS LA English DT Article ID OSMIUM DIBORIDE AB First-principles theory was used to investigate the roles of bond topology and covalency in the phase stability and elastic strength of 5d transition-metal diborides, focusing on elements (M=W, Re, Os) that have among the lowest compressibilities of all metals. Among the phases studied, the ReB2-type structure exhibits the largest incompressibility (c axis), comparable to that of diamond. This ReB2 structure is predicted to be the ground-state phase for WB2 and a pressure-induced phase (above 2.5 GPa) for OsB2. Both strong covalency and a zigzag topology of interconnected bonds underlie these ultraincompressibilities. Interestingly, the Vickers hardness of WB2 is estimated to be similar to that of superhard ReB2. C1 [Chen, Xing-Qiu; Fu, C. L.; Painter, G. S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Krcmar, M.] Grand Valley State Univ, Dept Phys, Allendale, MI 49401 USA. RP Chen, XQ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. NR 19 TC 111 Z9 115 U1 7 U2 43 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 16 PY 2008 VL 100 IS 19 AR 196403 DI 10.1103/PhysRevLett.100.196403 PG 4 WC Physics, Multidisciplinary SC Physics GA 302IR UT WOS:000255962500042 PM 18518467 ER PT J AU Garcia, R Subashi, E Fukuto, M AF Garcia, R. Subashi, E. Fukuto, M. TI Thin-thick coexistence behavior of 8CB liquid crystalline films on silicon SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEMATIC-ISOTROPIC TRANSITION; STRUCTURAL FORCE; LAYER GROWTH; MORPHOLOGY; SURFACE; ZIHERL,P.; STABILITY; ZUMER,S AB The wetting behavior of thin films of 4-n-octyl-4(')-cyanobiphenyl (8CB) on Si is investigated via optical and x-ray reflectivity measurement. An experimental phase diagram is obtained showing a broad thick-thin coexistence region spanning the bulk isotropic-to-nematic (T(IN)) and the nematic-to-smectic-A (T(NA)) temperatures. For Si surfaces with coverages between 47 and 72 +/- 3 nm, reentrant wetting behavior is observed twice as we increase the temperature, with separate coexistence behaviors near T(IN) and T(NA). For coverages less than 47 nm, however, the two coexistence behaviors merge into a single coexistence region. The observed thin-thick coexistence near the second-order NA transition is not anticipated by any previous theory or experiment. Nevertheless, the behavior of the thin and thick phases within the coexistence regions is consistent with this being an equilibrium phenomenon. C1 [Garcia, R.; Subashi, E.] Worcester Polytech Inst, Dept Phys, Worcester, MA 01609 USA. [Fukuto, M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Garcia, R (reprint author), Worcester Polytech Inst, Dept Phys, Worcester, MA 01609 USA. EM garcia@wpi.edu NR 29 TC 13 Z9 13 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 16 PY 2008 VL 100 IS 19 AR 197801 DI 10.1103/PhysRevLett.100.197801 PG 4 WC Physics, Multidisciplinary SC Physics GA 302IR UT WOS:000255962500062 PM 18518487 ER PT J AU Obukhov, Y Pelekhov, DV Kim, J Banerjee, P Martin, I Nazaretski, E Movshovich, R An, S Gramila, TJ Batra, S Hammel, PC AF Obukhov, Yu. Pelekhov, D. V. Kim, J. Banerjee, P. Martin, I. Nazaretski, E. Movshovich, R. An, S. Gramila, T. J. Batra, S. Hammel, P. C. TI Local ferromagnetic resonance imaging with magnetic resonance force microscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID SPECTRUM; WAVES; FILMS; DISK AB We report nanoscale scanned probe ferromagnetic resonance force microscopy (FMRFM) imaging of individual ferromagnetic microstructures. This reveals the mechanism for high spatial resolution in FMRFM imaging: the strongly inhomogeneous local magnetic field of the cantilever mounted micromagnetic probe magnet used in FMRFM enables selective, local excitation of ferromagnetic resonance (FMR). This approach, demonstrated here in individual permalloy disks, is straightforwardly extended to excitation of localized FMR modes, and hence imaging in extended films. C1 [Obukhov, Yu.; Pelekhov, D. V.; Kim, J.; Banerjee, P.; An, S.; Gramila, T. J.; Hammel, P. C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Martin, I.; Nazaretski, E.; Movshovich, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Batra, S.] Seagate Res, Pittsburgh, PA 15222 USA. RP Obukhov, Y (reprint author), Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. EM hammel@mps.ohio-state.edu RI Hammel, P Chris/O-4845-2014 OI Hammel, P Chris/0000-0002-4138-4798 NR 17 TC 29 Z9 29 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 16 PY 2008 VL 100 IS 19 AR 197601 DI 10.1103/PhysRevLett.100.197601 PG 4 WC Physics, Multidisciplinary SC Physics GA 302IR UT WOS:000255962500061 PM 18518486 ER PT J AU Reddish, TJ Colgan, J Bolognesi, P Avaldi, L Gisselbrecht, M Lavollee, M Pindzola, MS Huetz, A AF Reddish, T. J. Colgan, J. Bolognesi, P. Avaldi, L. Gisselbrecht, M. Lavollee, M. Pindzola, M. S. Huetz, A. TI Physical interpretation of the "Kinetic Energy Release" effect in the double photoionization of H(2) SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIFFERENTIAL CROSS-SECTIONS; FRAGMENTATION; MOLECULE; HE AB A physical interpretation is given for the variation with internuclear separation of the fully differential cross section for double photoionization of H(2). This effect is analyzed in a geometry where the fourbody interaction is completely probed. Excellent agreement is found between experiment and time-dependent close-coupling theory after convoluting the latter over the relevant solid angles. We show the observed variations are purely due to the epsilon(Sigma) component of the polarization vector epsilon along the molecular axis, a conclusion which is supported through calculations of the photoionization of H(2)(+). C1 [Reddish, T. J.] Univ Windsor, Dept Phys, Windsor, ON N9B 3P4, Canada. [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Bolognesi, P.; Avaldi, L.] CNR, IMIP, Area Ric Roma 1, I-00016 Monterotondo, Italy. [Gisselbrecht, M.; Lavollee, M.; Huetz, A.] Univ Paris 11, CNRS, LIXAM, UMR8624,Ctr Orsay, F-91405 Orsay, France. [Pindzola, M. S.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Reddish, TJ (reprint author), Univ Windsor, Dept Phys, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada. RI Gisselbrecht, Mathieu/K-6722-2015; OI Gisselbrecht, Mathieu/0000-0003-0257-7607; Colgan, James/0000-0003-1045-3858; Bolognesi, Paola/0000-0002-6543-6628 NR 16 TC 24 Z9 24 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 16 PY 2008 VL 100 IS 19 AR 193001 DI 10.1103/PhysRevLett.100.193001 PG 4 WC Physics, Multidisciplinary SC Physics GA 302IR UT WOS:000255962500023 PM 18518448 ER PT J AU Tanihata, I Alcorta, M Bandyopadhyay, D Bieri, R Buchmann, L Davids, B Galinski, N Howell, D Mills, W Mythili, S Openshaw, R Padilla-Rodal, E Ruprecht, G Sheffer, G Shotter, AC Trinczek, M Walden, P Savajols, H Roger, T Caamano, M Mittig, W Roussel-Chomaz, P Kanungo, R Gallant, A Notani, M Savard, G Thompson, IJ AF Tanihata, I. Alcorta, M. Bandyopadhyay, D. Bieri, R. Buchmann, L. Davids, B. Galinski, N. Howell, D. Mills, W. Mythili, S. Openshaw, R. Padilla-Rodal, E. Ruprecht, G. Sheffer, G. Shotter, A. C. Trinczek, M. Walden, P. Savajols, H. Roger, T. Caamano, M. Mittig, W. Roussel-Chomaz, P. Kanungo, R. Gallant, A. Notani, M. Savard, G. Thompson, I. J. TI Measurement of the two-halo neutron transfer reaction (1)H((11)Li,(9)Li)(3)H at 3A MeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID LI-11 AB The p((11)Li,(9)Li)t reaction has been studied for the first time at an incident energy of 3A MeV at the new ISAC-2 facility at TRIUMF. An active target detector MAYA, built at GANIL, was used for the measurement. The differential cross sections have been determined for transitions to the (9)Li ground and first excited states in a wide range of scattering angles. Multistep transfer calculations using different (11)Li model wave functions show that wave functions with strong correlations between the halo neutrons are the most successful in reproducing the observation. C1 [Tanihata, I.; Alcorta, M.; Bandyopadhyay, D.; Bieri, R.; Buchmann, L.; Davids, B.; Galinski, N.; Howell, D.; Mills, W.; Mythili, S.; Openshaw, R.; Padilla-Rodal, E.; Ruprecht, G.; Sheffer, G.; Shotter, A. C.; Trinczek, M.; Walden, P.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Savajols, H.; Roger, T.; Caamano, M.; Mittig, W.; Roussel-Chomaz, P.] GANIL, F-14076 Caen 05, France. [Kanungo, R.; Gallant, A.] St Marys Univ, Halifax, NS B3H 3C3, Canada. [Notani, M.; Savard, G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Thompson, I. J.] LLNL, Livermore, CA 94551 USA. RP Tanihata, I (reprint author), Osaka Univ, RCNP, Ibaraki 5670047, Japan. RI Alcorta, Martin/G-7107-2011; caamano, manuel/A-1832-2013 OI Alcorta, Martin/0000-0002-6217-5004; caamano, manuel/0000-0002-5045-003X NR 13 TC 69 Z9 69 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 16 PY 2008 VL 100 IS 19 AR 192502 DI 10.1103/PhysRevLett.100.192502 PG 5 WC Physics, Multidisciplinary SC Physics GA 302IR UT WOS:000255962500020 PM 18518445 ER PT J AU Schoffler, MS Titze, J Petridis, N Jahnke, T Cole, K Schmidt, LPH Czasch, A Akoury, D Jagutzki, O Williams, JB Cherepkov, NA Semenov, SK McCurdy, CW Rescigno, TN Cocke, CL Osipov, T Lee, S Prior, MH Belkacem, A Landers, AL Schmidt-Bocking, H Weber, T Dorner, R AF Schoeffler, M. S. Titze, J. Petridis, N. Jahnke, T. Cole, K. Schmidt, L. Ph. H. Czasch, A. Akoury, D. Jagutzki, O. Williams, J. B. Cherepkov, N. A. Semenov, S. K. McCurdy, C. W. Rescigno, T. N. Cocke, C. L. Osipov, T. Lee, S. Prior, M. H. Belkacem, A. Landers, A. L. Schmidt-Boecking, H. Weber, Th. Doerner, R. TI Ultrafast probing of core hole localization in N-2 SO SCIENCE LA English DT Article ID SYMMETRY-BREAKING; ANGULAR-DISTRIBUTIONS; MOMENTUM SPECTROSCOPY; PHOTOIONIZATION; SPECTRUM; SHELL; DECAY; MOLECULES; ION AB Although valence electrons are clearly delocalized in molecular bonding frameworks, chemists and physicists have long debated the question of whether the core vacancy created in a homonuclear diatomic molecule by absorption of a single x-ray photon is localized on one atom or delocalized over both. We have been able to clarify this question with an experiment that uses Auger electron angular emission patterns from molecular nitrogen after inner-shell ionization as an ultrafast probe of hole localization. The experiment, along with the accompanying theory, shows that observation of symmetry breaking (localization) or preservation (delocalization) depends on how the quantum entangled Bell state created by Auger decay is detected by the measurement. C1 [Schoeffler, M. S.; Titze, J.; Petridis, N.; Jahnke, T.; Cole, K.; Schmidt, L. Ph. H.; Czasch, A.; Akoury, D.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.] Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany. [Akoury, D.; McCurdy, C. W.; Rescigno, T. N.; Osipov, T.; Lee, S.; Prior, M. H.; Belkacem, A.; Weber, Th.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Williams, J. B.; Landers, A. L.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Cherepkov, N. A.; Semenov, S. K.] State Univ Aerosp Instrumentat, St Petersburg 190000, Russia. [Cocke, C. L.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. RP Schoffler, MS (reprint author), Univ Frankfurt, Inst Kernphys, Max von Laue Str 1, D-60438 Frankfurt, Germany. EM schoeffler@atom.uni-frankfurt.de RI Doerner, Reinhard/A-5340-2008; Landers, Allen/C-1213-2013; Weber, Thorsten/K-2586-2013; Schoeffler, Markus/B-6261-2008 OI Doerner, Reinhard/0000-0002-3728-4268; Weber, Thorsten/0000-0003-3756-2704; Schoeffler, Markus/0000-0001-9214-6848 NR 32 TC 98 Z9 98 U1 3 U2 34 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 16 PY 2008 VL 320 IS 5878 BP 920 EP 923 DI 10.1126/science.1154989 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 301AH UT WOS:000255868300039 PM 18487190 ER PT J AU Timpe, SJ Hook, DA Dugger, MT Komvopoulos, K AF Timpe, S. J. Hook, D. A. Dugger, M. T. Komvopoulos, K. TI Levitation compensation method for dynamic electrostatic comb-drive actuators SO SENSORS AND ACTUATORS A-PHYSICAL LA English DT Article DE comb-drive actuators; levitation; motion control method; oscillation ID SINGLE-CRYSTAL SILICON; MICROELECTROMECHANICAL SYSTEMS; MEMS; FATIGUE AB An analytical method was developed for maintaining a constant levitation height during dynamic operation of reciprocating comb-drive actuators. The dependence of the translational position and the levitation height on the applied voltage was used to design waveforms that maintain a given translational motion without altering the levitation height. An experimental protocol was established for determining the necessary geometric factors of a particular comb-drive design, which were then used to generate constant-velocity levitation waveforms. The analytical model was tested experimentally by examining the levitation and translation positions of a surface micromachine under both compensated and uncompensated signals. A significant reduction in the range of levitation was obtained over the entire amplitude of the oscillatory motion, while the translational motion remained relatively unchanged. Design and fabrication effects on the compensated levitation height of an oscillating surface micromachime are discussed in the context of analytical and experimental results. (c) 2007 Elsevier B.V. All rights reserved. C1 [Timpe, S. J.; Komvopoulos, K.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Hook, D. A.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Dugger, M. T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Komvopoulos, K (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM kyriakos@me.berkeley.edu NR 15 TC 10 Z9 10 U1 0 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-4247 J9 SENSOR ACTUAT A-PHYS JI Sens. Actuator A-Phys. PD MAY 16 PY 2008 VL 143 IS 2 BP 383 EP 389 DI 10.1016/j.sna.2007.11.025 PG 7 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 295CU UT WOS:000255453400027 ER PT J AU Kelly, RT Tang, KQ Irimia, D Toner, M Smith, RD AF Kelly, Ryan T. Tang, Keqi Irimia, Daniel Toner, Mehmet Smith, Richard D. TI Elastomeric microchip electrospray emitter for stable cone-jet mode operation in the nanoflow regime SO ANALYTICAL CHEMISTRY LA English DT Article ID IONIZATION-MASS-SPECTROMETRY; TOTAL ANALYSIS SYSTEMS; POLY(DIMETHYLSILOXANE) MICROFLUIDIC DEVICES; FUSED-SILICA CAPILLARIES; MICROFABRICATED DEVICES; PROTEIN IDENTIFICATION; SURFACE MODIFICATION; GENETIC-ANALYSIS; ELECTROPHORESIS; INTERFACE AB Despite widespread interest in combining laboratory-on-a-chip technologies with mass spectrometry (MS)-based analyses, the coupling of microfluidics to electrospray ionization (ESI)-MS remains challenging. We report a robust, integrated poly(dimethylsiloxane) microchip interface for ESI-MS using simple and widely accessible microfabrication procedures. The interface uses an auxiliary channel to provide electrical contact for the stable cone-jet electrospray without sample loss or dilution. The electric field at the channel terminus is enhanced by two vertical cuts that cause the interface to taper to a line rather than to a point, and the formation of a small Taylor cone at the channel exit ensures subnanoliter postcolumn dead volumes. Cone-jet mode electrospray was demonstrated for up to 90% aqueous solutions and for extended durations. Comparable ESI-MS sensitivities were achieved using both microchip and conventional fused silica capillary emitters, but stable cone-jet mode electrosprays could be established over a far broader range of flow rates (from 50-1000 nL/min) and applied potentials using the microchip emitters. This attribute of the microchip emitter should simplify electrospray optimization and make the stable electrospray more resistant to external perturbations. C1 [Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Irimia, Daniel; Toner, Mehmet] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Ctr Engn Med & Surg Serv,BioMEMS Resource Ctr, Boston, MA 02129 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnl.gov RI Kelly, Ryan/B-2999-2008; Smith, Richard/J-3664-2012; OI Kelly, Ryan/0000-0002-3339-4443; Smith, Richard/0000-0002-2381-2349; Irimia, Daniel/0000-0001-7347-2082 FU NCRR NIH HHS [P41 RR018522, P41 RR018522-06, RR018522]; NIAID NIH HHS [Y1-AI-4894-01NIH]; NIBIB NIH HHS [P41 EB002503] NR 68 TC 30 Z9 30 U1 2 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAY 15 PY 2008 VL 80 IS 10 BP 3824 EP 3831 DI 10.1021/ac8000786 PG 8 WC Chemistry, Analytical SC Chemistry GA 301BN UT WOS:000255871500041 PM 18419138 ER PT J AU Jacquot, BC Munoz, N Branch, DW Kan, EC AF Jacquot, Blake C. Munoz, Nini Branch, Darren W. Kan, Edwin C. TI Non-Faradaic electrochemical detection of protein interactions by integrated neuromorphic CMOS sensors SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE biosensor; MOSFET; FET; protein microarray ID IMPEDANCE SPECTROSCOPY; MOS-TRANSISTORS; DNA-SENSORS; NOISE; BIOSENSORS; ANTIBODY; FLUCTUATIONS; INTERFACES AB Electronic detection of the binding event between biotinylated bovine serum albumen (BSA) and streptavidin is demonstrated with the chemoreceptive neuron MOS (C nu MOS) device. Differing from the ion-sensitive field-effect transistors (ISFET), C nu MCS, with the potential of the extended floating gate determined by both the sensing and control gates in a neuromorphic style, can provide protein detection without requiring analyte reference electrodes. In comparison with the microelectrode arrays, measurements are gathered through purely capacitive, non-Faradaic interactions across insulating interfaces. By using a (3-glycidoxypropyl)trimethoxysilane (3-GPS) self-assembled monolayer (SAM) as a simple covalent link for attaching proteins to a silicon dioxide sensing surface, a fully integrated, electrochemical detection platform is realized for protein interactions through monotone large-signal measurements or small-signal impedance spectroscopy. Calibration curves were created to coordinate the sensor response with ellipsometric measurements taken on witness samples. By monitoring the film thickness of streptavidin capture, a sensitivity of 25 ng/cm(2) or 2 angstrom of film thickness was demonstrated. With an improved noise floor the sensor can detect down to 2 ng/(cm(2) mV) based on the calibration curve. AC measurements are shown to significantly reduce long-term sensor drift. Finally, a noise analysis of electrochemical data indicates 1/f(alpha) behavior with a noise floor beginning at approximately 1 Hz. (C) 2008 Elsevier B.V. All rights reserved. C1 [Jacquot, Blake C.; Munoz, Nini; Kan, Edwin C.] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA. [Branch, Darren W.] Sandia Natl Labs, Biosensors & Nanomat Dept, Albuquerque, NM 87185 USA. RP Jacquot, BC (reprint author), Cornell Univ, Sch Elect & Comp Engn, 323 Phillips Hall, Ithaca, NY 14853 USA. EM bcj7@cornell.edu; nlm9@cornell.edu; dwbranc@sandia.gov; kan@ece.cornell.edu NR 41 TC 11 Z9 11 U1 1 U2 41 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD MAY 15 PY 2008 VL 23 IS 10 BP 1503 EP 1511 DI 10.1016/j.bios.2008.01.006 PG 9 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA 299ZD UT WOS:000255793200013 PM 18281208 ER PT J AU Huber, T Maitre, D AF Huber, Tobias Maitre, Daniel TI HypExp 2, expanding hypergeometric functions about half-integer parameters SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article ID 3-LOOP FEYNMAN DIAGRAMS; INVERSE BINOMIAL SUMS; TRANSCENDENTAL FUNCTIONS; ONE-LOOP; DIMENSIONAL REGULARIZATION; HARMONIC POLYLOGARITHMS; DIFFERENTIAL-EQUATIONS; MATHEMATICA PACKAGE; EPSILON-EXPANSION; MASTER INTEGRALS AB In this article, we describe a new algorithm for the expansion of hypergeometric functions about half-integer parameters. The implementation of this algorithm for certain classes of hypergeometric functions in the already existing Mathernatica package HypExp is described. Examples of applications in Feynman diagrams with up to four loops are given. C1 [Maitre, Daniel] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Huber, Tobias] Rhein Westfal TH Aachen, Inst Theoret Phys E, D-52056 Aachen, Germany. [Maitre, Daniel] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Maitre, D (reprint author), Univ Zurich, Inst Theoret Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland. EM maitreda@physik.unizh.ch OI Huber, Tobias/0000-0002-3851-0116 NR 63 TC 88 Z9 89 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD MAY 15 PY 2008 VL 178 IS 10 BP 755 EP 776 DI 10.1016/j.cpc.2007.12.008 PG 22 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 313IC UT WOS:000256733300005 ER PT J AU Auzende, AL Badro, J Ryerson, FJ Weber, PK Fallon, SJ Addad, A Siebert, J Fiquet, G AF Auzende, Anne-Line Badro, James Ryerson, Frederick J. Weber, Peter K. Fallon, Stewart J. Addad, Ahmed Siebert, Julien Fiquet, Guillaume TI Element partitioning between magnesium silicate perovskite and ferropericlase: New insights into bulk lower-mantle geochemistry SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE high pressure; iron partitioning; perovskite; ferropericlase; post-perovskite; laser-heated diamond anvil cell; ATEM; nanoSIMS ID EARTHS LOWER MANTLE; DEEP LOWER MANTLE; POST-PEROVSKITE; HIGH-PRESSURE; (MG,FE)SIO3 PEROVSKITE; ELECTRON-MICROSCOPY; PHASE-TRANSITION; D''-LAYER; IRON; MAGNESIOWUSTITE AB In this study, we investigated iron-magnesium exchange and transition-metal trace-element partitioning between magnesium silicate perovskite (Mg,Fe)SiO3 and ferropericlase (Mg,Fe)O synthetised under lower-mantle conditions (up to 115 GPa and 2200 K) in a laser-heated diamond anvil cell. Recovered samples were thinned to electron transparency by focused ion beam and characterized by analytical transmission electron microscopy (ATEM) and nanometer-scale secondary ion mass spectroscopy (nanoSIMS). Iron concentrations in both phases were obtained from X-ray energy dispersive spectroscopy measurements and nanoSIMS. Our results are the first to show that recently reported spin-state and phase transitions in the lower mantle directly affect the evolution of Fe-Mg exchange between both phases. Mg-perovskite becomes increasingly iron-depleted above 70-80 GPa possibly due to the high spin-low spin transition of iron in ferropericlase. Conversely, the perovskite to post-perovskite transition is accompanied by a strong iron enrichment of the silicate phase, ferropericlase remaining in the Fe-rich phase though. Nanoparticles of metallic iron were observed in the perovskite-bearing runs, suggesting the disproportionation of ferrous iron oxide, but were not observed when the post-perovskite phase was present. Implications on the oxidation state of the Earth and core segregation will be discussed. Transition trace-element (Ni, Mn) concentrations (determined with the nanoSIMS) show similar trends and could thus be used to trace the origin of diamonds generated at depth. This study provides new results likely to improve the geochemical and geophysical models of the Earth's deep interiors. (C) 2008 Elsevier B.V. All rights reserved. C1 [Auzende, Anne-Line; Badro, James; Fiquet, Guillaume] Univ Paris 06, IMPMC, IPGP, F-75015 Paris, France. [Auzende, Anne-Line; Badro, James; Fiquet, Guillaume] Univ Paris 07, CNRS, Dept Mineral, F-75015 Paris, France. [Badro, James; Ryerson, Frederick J.; Weber, Peter K.; Fallon, Stewart J.; Siebert, Julien] Lawrence Livermore Natl Lab, LLNL, Livermore, CA 94550 USA. [Addad, Ahmed] Univ Sci & Technol Lille, CNRS, LSPES, F-59655 Villeneuve Dascq, France. RP Auzende, AL (reprint author), Univ Paris 06, IMPMC, IPGP, Campus Boucicaut,140 Rue Lourmel, F-75015 Paris, France. EM auzende@impmcjussieu.fr; badro@impmcjussieu.fr; ryerson1@llnl.gov; weber2l@llnl.gov; Fallon4@llnl.gov; ahmed.addad@univ-lillel.fr; siebert2@llnl.gov; fiquet@impmc.jussieu.fr RI siebert, julien/E-6998-2010; Fiquet, Guillaume/H-1219-2011; Fallon, Stewart/G-6645-2011; Siebert, Julien/A-8336-2014; Fiquet, Guillaume/M-6934-2014; Badro, James/A-6003-2011 OI Fallon, Stewart/0000-0002-8064-5903; Siebert, Julien/0000-0001-9972-6239; NR 55 TC 78 Z9 80 U1 3 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD MAY 15 PY 2008 VL 269 IS 1-2 BP 164 EP 174 DI 10.1016/j.epsl.2008.02.001 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 312XI UT WOS:000256705300015 ER PT J AU Jin, L Tonse, S Cohan, DS Mao, XL Harley, RA Brown, NJ AF Jin, Ling Tonse, Shaheen Cohan, Daniel S. Mao, Xiaoling Harley, Robert A. Brown, Nancy J. TI Sensitivity analysis of ozone formation and transport for a central california air pollution episode SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SAN-JOAQUIN VALLEY; MODELS; COEFFICIENTS; SYSTEM; ORDER AB We developed a first- and second-order sensitivity analysis approach with the decoupled direct method to examine spatial and temporal variations of ozone-limiting reagents and the importance of local vs upwind emission sources in the San Joaquin Valley of central California for a 5 day ozone episode (Jul 29th to Aug 3rd, 2000). Despite considerable spatial variations, nitrogen oxides (NOx) emission reductions are overall more effective than volatile organic compound (VOC) control for attaining the 8 h ozone standard in this region for this episode, in contrast to the VOC control that works better for attaining the prior I h ozone standard. Interbasin source contributions of NOx emissions are limited to the northern part of the SJV, while anthropogenic VOC (AVOC) emissions, especially those emitted at night, influence ozone formation in the SJV further downwind. Among model input parameters studied here, uncertainties in emissions of NOx and AVOC, and the rate coefficient of the OH + NO2 termination reaction, have the greatest effect on first-order ozone responses to changes in NOx emissions. Uncertainties in biogenic VOC emissions only have a modest effect because they are generally not collocated with anthropogenic sources in this region. C1 [Jin, Ling; Tonse, Shaheen; Mao, Xiaoling; Brown, Nancy J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Atmospher Sci, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Harley, Robert A.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Jin, Ling] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. [Cohan, Daniel S.] Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA. RP Brown, NJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Atmospher Sci, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM njbrown@lbl.gov RI Cohan, Daniel/E-6595-2010; Harley, Robert/C-9177-2016 OI Cohan, Daniel/0000-0003-0415-7980; Harley, Robert/0000-0002-0559-1917 NR 23 TC 19 Z9 19 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAY 15 PY 2008 VL 42 IS 10 BP 3683 EP 3689 DI 10.1021/es072069d PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 300KG UT WOS:000255822100039 PM 18546708 ER PT J AU Hubbard, SS Williams, K Conrad, ME Faybishenko, B Peterson, J Chen, JS Long, P Hazen, T AF Hubbard, Susan S. Williams, Ken Conrad, Mark E. Faybishenko, Boris Peterson, John Chen, Jinsong Long, Phil Hazen, Terry TI Geophysical monitoring of hydrological and biogeochemical transformations associated with Cr(VI) bioremediation SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SOIL-WATER CONTENT AB Understanding how hydrological and biogeochemical properties change over space and time in response to remedial treatments is hindered by our ability to monitor these processes with sufficient resolution and over field relevant scales. Here, we explored the use of geophysical approaches for monitoring the spatiotemporal distribution of hydrological and biogeochemical transformations associated with a Cr(VI) bioremediation experiment performed at Hanford, WA. We first integrated hydrological wellbore and geophysical tomographic data sets to estimate hydrological zonation at the study site. Using results from laboratory biogeophysical experiments and constraints provided by field geochemical data sets, we then interpreted time-lapse seismic and radar tomographic data sets, collected during thirteen acquisition campaigns over a three year experimental period, in terms of hydrological and biogeochemical transformations. The geophysical monitoring data sets were used to infer: the spatial distribution of injected electron donor; the evolution of gas bubbles; variations in total dissolved solids (nitrate and sulfate) as a function of pumping activity; the formation of precipitates and dissolution of calcites; and concomitant changes in porosity. Although qualitative in nature, the integrated interpretation illustrates how geophysical techniques have the potential to provide a wealth of information about coupled hydrobiogeochemical responses to remedial treatments in high spatial resolution and in a minimally invasive manner. Particularly novel aspects of our study include the use of multiple lines of evidence to constrain the interpretation of a long-term, field-scale geophysical monitoring data set and the interpretation of the transformations as a function of hydrological heterogeneity and pumping activity. C1 [Hubbard, Susan S.; Williams, Ken; Conrad, Mark E.; Faybishenko, Boris; Peterson, John; Chen, Jinsong; Hazen, Terry] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Long, Phil] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hubbard, SS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM sshubbard@lbl.gov RI Chen, Jinsong/A-1374-2009; Conrad, Mark/G-2767-2010; Hubbard, Susan/E-9508-2010; Williams, Kenneth/O-5181-2014; Hazen, Terry/C-1076-2012; Long, Philip/F-5728-2013; Faybishenko, Boris/G-3363-2015 OI Williams, Kenneth/0000-0002-3568-1155; Hazen, Terry/0000-0002-2536-9993; Long, Philip/0000-0003-4152-5682; Faybishenko, Boris/0000-0003-0085-8499 NR 24 TC 30 Z9 30 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAY 15 PY 2008 VL 42 IS 10 BP 3757 EP 3765 DI 10.1021/es071702s PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 300KG UT WOS:000255822100050 PM 18546719 ER PT J AU Spalding, BP Watson, DB AF Spalding, Brian P. Watson, David B. TI Passive sampling and analyses of common dissolved fixed gases in groundwater SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CONTAMINATED AQUIFER; HYDROGEN CONCENTRATIONS; WATER; SAMPLERS; H-2 AB An in situ passive sampling and gas chromatographic protocol was developed for analysis of the major and several minor fixed gases (He, Ne, H-2, N-2, O-2, CO, CH4, CO2, and N2O) in groundwater. Using argon carrier gas, a HayeSep DB porous polymer phase, and sequential thermal conductivity and reductive gas detectors, the protocol achieved sufficient separation and sensitivityto measure the mixing ratio of all these gases in a single 0.5 mL gas sample collected in situ, stored, transported, and injected using a gastight syringe. Within 4 days of immersion in groundwater, the simple passive in situ sampler, whether initially filled with He or air, attained an equivalent and constant mixing ratio for five of the seven detected gases. The abundant mixing ratio of N2O, averaging 2.6%, indicated that significant denitrification is likely ongoing within groundwater contaminated with uranium, acidity, nitrate, and organic carbon from a group of four closed radioactive wastewater seepage ponds at the Oak Ridge Field Research Center. Over 1000 passive gas samples from 12 monitoring wells averaged 56% CO2, 32.4% N-2, 2.6% 02, 2.6% N2O, 0.21% CH4, 0.093% H-2, and 0.025% CO with an average recovery of 95 +/- 14% of the injected gas volume. C1 [Spalding, Brian P.; Watson, David B.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Spalding, BP (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2006, Oak Ridge, TN 37831 USA. EM spaldingbp@oral.gov RI Watson, David/C-3256-2016 OI Watson, David/0000-0002-4972-4136 NR 18 TC 11 Z9 11 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAY 15 PY 2008 VL 42 IS 10 BP 3766 EP 3772 DI 10.1021/es7024005 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 300KG UT WOS:000255822100051 PM 18546720 ER PT J AU Lower, BH Lins, RD Oestreicher, Z Straatsma, TP Hochella, MF Shi, LA Lower, SK AF Lower, Brian H. Lins, Roberto D. Oestreicher, Zachery Straatsma, Tjerk P. Hochella, Michael F., Jr. Shi, Liang Lower, Steven K. TI In vitro evolution of a peptide with a hematite binding motif that may constitute a natural metal-oxide binding archetype SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SHEWANELLA-ONEIDENSIS MR-1; DIATOM CELL-WALLS; OUTER-MEMBRANE CYTOCHROMES; ELECTRON-TRANSFER; MOLECULAR-DYNAMICS; BIOFUEL CELLS; AMINO-ACID; ELECTRICITY PRODUCTION; SILICA MORPHOGENESIS; REDUCING BACTERIUM AB Phage-display technology was used to evolve peptides that selectively bind to the metal-oxide hematite (Fe2O3) from a library of approximately 3 billion different polypeptides. The sequences of these peptides contained the highly conserved amino acid motif, Ser/Thr-hydrophobic/aromatic-Ser/Thr-Pro-Ser/Thr. To better understand the nature of the peptide-metal oxide binding demonstrated by these experiments, molecular dynamics simulations were carried out for Ser-Pro-Ser at a hematite surface. These simulations show that hydrogen bonding occurs between the two serine amino acids and the hydroxylated hematite surface and that the presence of proline between the hydroxide residues restricts the peptide flexibility, thereby inducing a structural-binding motif. A search of published sequence data revealed that the binding motif (Ser/Thr-Pro-Ser/Thr) is adjacent to the terminal heme-binding domain of both OmcA and MtrC, which are outer membrane cytochromes from the metal-reducing bacterium Shewanella oneidensis MR-1. The entire five amino acid consensus sequence (Ser/Thr-hydrophobic/aromatic-Ser/Thr-Pro-Ser/Thr) was also found as multiple copies in the primary sequences of metal-oxide binding proteins Sil1 and Sil2 from Thalassiosira pseudonana. We suggest that this motif constitutes a natural metal-oxide binding archetype that could be exploited in enzyme-based biofuel cell design and approaches to synthesize tailored metal-oxide nanostructures. C1 [Lower, Brian H.; Lins, Roberto D.; Straatsma, Tjerk P.; Shi, Liang] Pacific NW Natl Lab, Richland, WA 99352 USA. [Oestreicher, Zachery; Lower, Steven K.] Ohio State Univ, Mendenhall Lab 275, Columbus, OH 43210 USA. [Hochella, Michael F., Jr.] Virginia Tech, Blacksburg, VA 24061 USA. RP Lower, SK (reprint author), Ohio State Univ, 210 Kottman Hall, Columbus, OH 43210 USA. EM lower.30@osu.edu RI Lower, Steven/A-2440-2008; Lins, Roberto/J-7511-2012 OI Lower, Steven/0000-0001-9796-0830; Lins, Roberto/0000-0002-3983-8025 NR 44 TC 39 Z9 41 U1 3 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAY 15 PY 2008 VL 42 IS 10 BP 3821 EP 3827 DI 10.1021/es702688c PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 300KG UT WOS:000255822100060 PM 18546729 ER PT J AU Benezeth, P Palmer, DA Wesolowski, DJ AF Benezeth, Pascale Palmer, Donald A. Wesolowski, David J. TI Dissolution/precipitation kinetics of boehmite and gibbsite: Application of a pH-relaxation technique to study near-equilibrium rates SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID HIGH-TEMPERATURE SOLUBILITY; SOLUTION SATURATION STATE; ALBITE DISSOLUTION KINETICS; SODIUM-CHLORIDE SOLUTIONS; MINERAL-WATER INTERFACE; IN-SITU MEASUREMENTS; ALUMINUM SPECIATION; PRECIPITATION KINETICS; CHEMICAL AFFINITY; AQUEOUS-SOLUTION AB The dissolution and precipitation rates of boehmite, AlOOH, at 100.3 degrees C and limited precipitation kinetics of gibbsite, Al(OH)(3), at 50.0 degrees C were measured in neutral to basic solutions at 0.1 molal ionic strength (NaCl + NaOH + NaAl(OH)(4)) near-equilibrium using a pH-jump technique with a hydrogen-electrode concentration cell. This approach allowed relatively rapid reactions to be studied from under- and over-saturation by continuous in situ pH monitoring after addition of basic or acidic titrant, respectively, to a pre-equilibrated, well-stirred suspension of the solid powder. The magnitude of each perturbation was kept small to maintain near-equilibrium conditions. For the case of boehmite, multiple pH-jumps at different starting pHs from over- and under-saturated solutions gave the same observed, first-order rate constant consistent with the simple or elementary reaction: Al(OOH)((cr)) + H2O(1) + OH- reversible arrow Al(OH)(-)(4). This relaxation technique allowed us to apply a steady-state approximation to the change in aluminum concentration within the overall principle of detailed balancing and gave a resulting mean rate constant, (2.2 +/- 0.3) x 10(-5) kg m(-2) s(-1), corresponding to a 1 sigma uncertainty of 15%, in good agreement with those obtained from the traditional approach of considering the rate of reaction as a function of saturation index. Using the more traditional treatment, all dissolution and precipitation data for boehmite at 100.3 degrees C were found to follow closely the simple rate expression: R-net,R-boehmite = 10(-5.485) {m(OH-)} {1-exp(Delta G(r)/RT)}, with R-net in units of mol m(-2) s(-1). This is consistent with Transition State Theory for a reversible elementary reaction that is first order in OH- concentration involving a single critical activated complex. The relationship applies over the experimental Delta G(r) range of 0.4-5.5 kJ mol(-1) for precipitation and -0.1 to - 1.9 kJ mol(-1) for dissolution, and the pH(m) = -log(mH(+)) range of 6-9.6. The gibbsite precipitation data at 50 degrees C could also be treated adequately with the same model:R-net,R-gibbsite = 10(-5.86) {m(OH)(-)}{1-exp(Delta G(r)/RT)}, over a more limited experimental range of Delta G(r) (0.7-3.7 kJ mol(-1)) and pH(m) (8.2-9.7). (C) 2008 Elsevier Ltd. All rights reserved. C1 [Benezeth, Pascale] Univ Toulouse 3, LMTG, CNRS IRD OMP, F-31400 Toulouse, France. [Palmer, Donald A.; Wesolowski, David J.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Benezeth, P (reprint author), Univ Toulouse 3, LMTG, CNRS IRD OMP, 14 Ave Edouard Belin, F-31400 Toulouse, France. EM benezeth@lmtg.obs-mip.fr RI BENEZETH, Pascale/H-7969-2014 OI BENEZETH, Pascale/0000-0002-1841-2383 NR 57 TC 18 Z9 18 U1 5 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 15 PY 2008 VL 72 IS 10 BP 2429 EP 2453 DI 10.1016/j.gca.2008.02.019 PG 25 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 305JN UT WOS:000256174500001 ER PT J AU Cervini-Silva, J Gilbert, B Fakra, S Friedrich, S Banfield, J AF Cervini-Silva, Javiera Gilbert, Benjamin Fakra, Sirine Friedrich, Stephan Banfield, Jillian TI Coupled redox transformations of catechol and cerium at the surface of a cerium(III) phosphate mineral SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID ADVANCED LIGHT-SOURCE; PLAGIOCLASE DISSOLUTION; LAKE OKEECHOBEE; SOIL FORMATION; SEA-WATER; PHOSPHORUS; OXIDATION; MODEL; MANGANESE(III); BIRNESSITE AB Highly insoluble Ce-bearing phosphate minerals form by weathering of apatite [Ca(5)(PO(4))(3)center dot(OH,F,Cl)], and are important phosphorous repositories in soils. Although these phases can be dissolved via biologically-mediated pathways, the dissolution mechanisms are poorly understood. In this paper we report spectroscopic evidence to support coupling of redox transformations of organic carbon and cerium during the reaction of rhabdophane (CePO(4)center dot H(2)O) and catechol, a ubiquitous biogenic compound, at pH 5. Results show that the oxic-anoxic conditions influence the mineral dissolution behavior. Under anoxic conditions, the release of P and Ce occurs stoichiometrically. In contrast, under oxic conditions, the mineral dissolution behavior is incongruent, with dissolving Ce(3+) ions oxidizing to CeO(2). Reaction product analysis shows the formation of CO(2), polymeric C, and oxalate and malate. The presence of more complex forms of organic carbon was also confirmed. Near edge X-ray absorption fine structure spectroscopy measurements at Ce-M(4.5) and C-K absorption edges on reacted CePO(4)center dot H(2)O samples in the absence or presence of catechol and dissolved oxygen confirm that (1) the mineral surface converts to the oxide during this reaction, while full oxidation is limited to the near-surface region only; (2) the Ce valence remains unchanged when the reaction between CePO(4)center dot H(2)O and O(2) but in the absence of catechol. Carbon K-edge spectra acquired from rhabdophane reacted with catechol under oxic conditions show spectral features before and after reaction that are considerably different from catechol, indicating the formation of more complex organic molecules. Decreases in intensity of characteristic catechol peaks are accompanied by the appearance of new pi* resonances due to carbon in carboxyl (ca. 288.5 eV) and carbonyl (ca. 289.3 eV) groups, and the development of broad structure in the sigma* region characteristic of aliphatic carbon. Evolution of the C K-edge spectra is consistent with aromatic-ring cleavage and polymerization. These results further substantiate that the presence of catechol, O(2) (aq) causes both the oxidation of structural Ce(3+) and the transformation of catechol to more complex organic molecules. Scanning Transmission X-Ray Microscopy measurements at the C K and Ce M(4.5) edges indicate three dominant organic species, varying in complexity and association with the inorganic phase. Untransformed catechol is loosely associated with CeO(2), whereas more complex organic molecules that exhibit lower aromaticity and stronger C=O pi* resonances of carboxyl-C and carbonyl-C groups are only found in association with the grains. These results further serve as basis to postulate that, in the presence of O(2), CeO(2) can mediate the oxidative polymerization of catechol to form higher molecular weight polymers. The present work provides evidence for a pathway of biologically-induced, non-enzymatic oxidation of cerium and formation of small CeO(2) particles at room temperature. These findings may have implications for carbon cycling in natural and cerium-contaminated soils and aqueous environments. (C) 2008 Published by Elsevier Ltd. C1 [Cervini-Silva, Javiera] Univ Nacl Autonoma Mexico, Inst Geog, Mexico City 04150, DF, Mexico. [Cervini-Silva, Javiera; Banfield, Jillian] Univ Calif Berkeley, NASA Astrobiol Inst, Berkeley, CA 94720 USA. [Gilbert, Benjamin; Fakra, Sirine; Banfield, Jillian] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Friedrich, Stephan] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Banfield, Jillian] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Cervini-Silva, J (reprint author), Univ Nacl Autonoma Mexico, Inst Geog, Ciudad Univ, Mexico City 04150, DF, Mexico. EM jcervini@igg.unam.mx RI Gilbert, Benjamin/E-3182-2010 NR 65 TC 5 Z9 5 U1 1 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 15 PY 2008 VL 72 IS 10 BP 2454 EP 2464 DI 10.1016/j.gca.2008.02.017 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 305JN UT WOS:000256174500002 ER PT J AU Lanson, B Marcus, MA Fakra, S Panfili, F Geoffroy, N Manceau, A AF Lanson, Bruno Marcus, Matthew A. Fakra, Sirine Panfili, Frederic Geoffroy, Nicolas Manceau, Alain TI Formation of Zn-Ca phyllomanganate nanoparticles in grass roots SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID X-RAY-FLUORESCENCE; BIOGENIC MANGANESE OXIDES; HIGH-TEMPERATURE DECOMPOSITION; CONTAMINATED DREDGED SEDIMENT; RANDOM-STACKED BIRNESSITE; METAL SORBED BIRNESSITE; CHUKHROV,F.V. ET-AL; NA-RICH BIRNESSITE; EXAFS SPECTROSCOPY; HEXAGONAL-BIRNESSITE AB It is now well established that a number of terrestrial and aquatic microorganisms have the capacity to oxidize and precipitate Mn as phyllomanganate. However, this biomineralization has never been shown to occur in plant tissues, nor has the structure of a natural Mn(IV) biooxide been characterized in detail. We show that the graminaceous plant Festuca rubra (red fescue) produces a Zn-rich phyllomanganate with constant Zn:Mn and Ca:Mn atomic ratios (0.46 and 0.38, respectively) when grown on a contaminated sediment. This new phase is so far the Zn-richest manganate known to form in nature (chalcophanite has a Zn:Mn ratio of 0.33) and has no synthetic equivalent. Visual examination of root fragments under a microscope shows black precipitates about ten to several tens of microns in size, and their imaging with backscattered and secondary electrons demonstrates that they are located in the root epidermis. In situ measurements by Mn and Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) with a micro-focused beam can be quantitatively described by a single-phase model consisting of Mn(IV) octahedral layers with 22% vacant sites capped with tetrahedral and octahedral Zn in proportions of 3:1. The layer charge deficit is also partly balanced by interlayer Mn and Ca. Diffracting crystallites have a domain radius of 33 angstrom in the ab plane and contain only 1.2 layers (similar to 8.6 angstrom) on average. Since this biogenic Mn oxide consists mostly of isolated layers, basal 00l reflections are essentially absent despite its lamellar structure. Individual Mn layers are probably held together in the Mn-Zn precipitates by stabilizing organic molecules. Zinc biomineralization by plants likely is a defense mechanism against toxicity induced by excess concentrations of this metal in the rhizosphere. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Lanson, Bruno; Panfili, Frederic; Geoffroy, Nicolas; Manceau, Alain] Univ Grenoble 1, Mineral & Environm Grp, CNRS, F-38041 Grenoble 9, France. [Marcus, Matthew A.; Fakra, Sirine] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Lanson, B (reprint author), Univ Grenoble 1, Mineral & Environm Grp, CNRS, F-38041 Grenoble 9, France. EM Bruno.Lanson@obs.ujf-grenoble.fr RI lanson, bruno/A-4207-2009 OI lanson, bruno/0000-0003-1187-3221 NR 84 TC 32 Z9 32 U1 1 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 15 PY 2008 VL 72 IS 10 BP 2478 EP 2490 DI 10.1016/j.gca.2008.02.022 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 305JN UT WOS:000256174500004 ER PT J AU Krot, AN Chaussidon, M Yurimoto, H Sakamoto, N Nagashima, K Hutcheon, ID MacPherson, GJ AF Krot, A. N. Chaussidon, M. Yurimoto, H. Sakamoto, N. Nagashima, K. Hutcheon, I. D. MacPherson, G. J. TI Oxygen isotopic compositions of Allende Type CCAIs: Evidence for isotopic exchange during nebular melting and asteroidal metamorphism SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID AL-RICH INCLUSIONS; EARLY SOLAR-SYSTEM; CV CHONDRITES; CARBONACEOUS CHONDRITES; REFRACTORY INCLUSIONS; CRYSTALLIZATION SEQUENCES; PARENT BODIES; CHONDRULES; OLIVINE; AL-26 AB In situ oxygen isotopic measurements of primary and secondary minerals in Type C CAIs from the Allende CV3 chondrite reveal that the pattern of relative enrichments and depletions of O-16 in the primary minerals within each individual CAI are similar to the patterns observed in Types A and B CAIs from the same meteorite. Spinet is consistently the most O-16-rich (Delta O-17 = -25 parts per thousand to -15 parts per thousand), followed by Al,Ti-dioside (Delta O-17 = -20 parts per thousand to -5 parts per thousand) and anorthite (Delta O-17 = - 15 parts per thousand to 0 parts per thousand). Melilite is the most O-16-depleted primary mineral (Delta O-17 = -5 parts per thousand to -3 parts per thousand). We conclude that the original melting event that formed Type C CAIs occurred in a O-16-rich (Delta O-17 <= 20 parts per thousand) nebular gas and they subsequently experienced oxygen isotopic exchange in a O-16-poor reservoir. At least three of these (ABC, TS26F1 and 93) experienced remelting at the time and place where chondrules were forming, trapping and partially assimilating O-16-poor chondrule fragments. The observation that the pyroxene is O-16-rich relative to the feldspar, even though the feldspar preceded it in the igneous crystallization sequence, disproves the class of CAI isotopic exchange models in which partial melting of a O-16-rich solid in a O-16-poor gas is followed by slow crystallization in that gas. For the typical (not associated with chondrule materials) Type C CAIs as well for as the Types A and B CAIs, the exchange that produced internal isotopic heterogeneity within each CAI must have occurred largely in the solid state. The secondary phases grossular, monticellite and forsterite commonly have similar oxygen isotopic compositions to the melilite and anorthite they replace, but in one case (CAI 160) grossular is O-16-enriched (Delta O-17 = -10 parts per thousand to -6 parts per thousand) relative to melilite (Delta O-17 = -5 parts per thousand to -3 parts per thousand), meaning that the melilite and anorthite must have exchanged its oxygen subsequent to secondary alteration. This isotopic exchange in melilite and anorthite likely occurred on the CV parent asteroid, possibly during fluid-assisted thermal metamorphism. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Krot, A. N.; Nagashima, K.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA. [Chaussidon, M.] Ctr Rech Petrog & Geochim, CNRS UPR 2300, F-54501 Vandoeuvre Les Nancy, France. [Yurimoto, H.; Sakamoto, N.] Hokkaido Univ, Div Earth & Planetary Sci, Sapporo, Hokkaido 0600810, Japan. [Hutcheon, I. D.] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Livermore, CA 94451 USA. [MacPherson, G. J.] Smithsonian Inst, Dept Mineral Sci, Washington, DC 20560 USA. RP Krot, AN (reprint author), Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA. EM sasha@higp.hawaii.edu RI Chaussidon, Marc/E-7067-2017 NR 69 TC 25 Z9 25 U1 2 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 15 PY 2008 VL 72 IS 10 BP 2534 EP 2555 DI 10.1016/j.gca.2008.02.011 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 305JN UT WOS:000256174500007 ER PT J AU Seong, YB Owen, LA Bishop, MP Bush, A Clendon, P Copland, L Finkel, RC Kamp, U Shroder, JF AF Seong, Yeong Bae Owen, Lewis A. Bishop, Michael P. Bush, Andrew Clendon, Penny Copland, Luke Finkel, Robert C. Kamp, Ulrich Shroder, John F., Jr. TI Rates of fluvial bedrock incision within an actively uplifting orogen: Central Karakoram Mountains, northern Pakistan SO GEOMORPHOLOGY LA English DT Article DE fluvial incision rates; terrestrial cosmogenic nuclide (TCN) surface exposure dating; strath terraces; topography ID RIVER PROFILES; GARHWAL HIMALAYA; NANGA PARBAT; ROCK-UPLIFT; EROSION; VALLEY; BE-10; AGE; DENUDATION; EXHUMATION AB Terrestrial cosmogenic nuclide (TCN) Be-10 surface exposure ages for strath terraces along the Braldu River in the Central Karakoram Mountains range from 0.8 to 11 ka. This indicates that strath terrace formation began to occur rapidly upon deglaciation of the Braldu valley at similar to 11 ka. Fluvial incision rates for the Braldu River based on the TCN ages for strath terraces range from 2 to 29 mm/a. The fluvial incision rates for the central gorged section of the Braldu River are an order of magnitude greater than those for the upper and lower reaches. This difference is reflected in the modem stream gradient and valley morphology. The higher incision rates in the gorged central reach of the Braldu River likely reflect differential uplift above the Main Karakoram Thrust that has resulted in the presence of a knickpoint and more rapid fluvial incision. The postglacial fluvial incision rate (2-3 mm/a) for the upper and lower reaches are of the same order of magnitude as the exhumation rates estimated from previously published thermochronological data for the Baltoro granite in the upper catchment region and for the adjacent Himalayan regions. (C) 2007 Published by Elsevier B.V. C1 [Seong, Yeong Bae; Owen, Lewis A.] Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. [Bishop, Michael P.] Univ Nebraska, Dept Geog & Geol, Omaha, NE 68182 USA. [Bush, Andrew] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada. [Clendon, Penny] Univ Canterbury, Dept Geog, Christchurch 1, New Zealand. [Copland, Luke] Univ Ottawa, Dept Geog, Ottawa, ON K1N 6N5, Canada. [Finkel, Robert C.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Kamp, Ulrich] Univ Montana, Dept Geog, Missoula, MT 59812 USA. RP Owen, LA (reprint author), Univ Cincinnati, Dept Geol, POB 0013, Cincinnati, OH 45221 USA. EM Lewis.Owen@uc.edu NR 41 TC 29 Z9 31 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-555X J9 GEOMORPHOLOGY JI Geomorphology PD MAY 15 PY 2008 VL 97 IS 3-4 BP 274 EP 286 DI 10.1016/j.geomorph.2007.08.011 PG 13 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 313CU UT WOS:000256719500003 ER PT J AU Ingole, S Aella, P Manandhar, P Chikkannanavar, SB Akhadov, EA Smith, DJ Picraux, ST AF Ingole, S. Aella, P. Manandhar, P. Chikkannanavar, S. B. Akhadov, E. A. Smith, D. J. Picraux, S. T. TI Ex situ doping of silicon nanowires with boron SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID RAPID THERMAL-DIFFUSION; GROWTH; FABRICATION; ARRAYS AB An ex situ proximity technique is demonstrated for the electrical doping of silicon nanowires with spin on dopant (SOD) used as the boron source. The technique is based on solid-state diffusion and is comprised of two stages: predeposition and drive in. During predeposition, a predetermined amount of boron is introduced into the near surface region of the nanowires by holding the SOD source in close proximity to the nanowires. The boron concentration in the nanowires is controlled by the appropriate selection of predeposition temperature and time, with 800 and 950 degrees C and 5-10 min used in the present studies. The boron is then diffused further into the nanowires during the drive-in stage. The doped nanowires were characterized using scanning electron microscopy, secondary ion mass spectrometry, transmission electron microscopy, and four-probe electrical transport measurements. The high temperatures employed in this doping process do not result in any observable damage to these 120-180 nm diameter nanowires and good control over the dopant concentration in the range from 10(18) to 10(20) cm(-3) is obtained. This ex situ doping technique provides a useful alternative to the methods currently available for electrical doping of nanowires, which are predominantly in situ techniques. (c) 2008 American Institute of Physics. C1 [Ingole, S.; Aella, P.; Picraux, S. T.] Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. [Manandhar, P.; Chikkannanavar, S. B.; Akhadov, E. A.; Picraux, S. T.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Smith, D. J.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. RP Picraux, ST (reprint author), Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. EM picraux@lanl.gov NR 26 TC 17 Z9 17 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2008 VL 103 IS 10 AR 104302 DI 10.1063/1.2924415 PG 8 WC Physics, Applied SC Physics GA 307FK UT WOS:000256303800105 ER PT J AU Jacobsohn, LG Bennett, BL Muenchausen, RE Tornga, SC Thompson, JD Ugurlu, O Cooke, DW Sharma, ALL AF Jacobsohn, L. G. Bennett, B. L. Muenchausen, R. E. Tornga, S. C. Thompson, J. D. Ugurlu, O. Cooke, D. W. Sharma, A. L. Lima TI Multifunction Gd2O3 : Eu nanocrystals produced by solution combustion synthesis: Structural, luminescent, and magnetic characterization SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MONOCLINIC GADOLINIUM SESQUIOXIDE; ENERGY-TRANSFER; RARE-EARTH; OXIDE NANOPARTICLES; LANTHANIDE IONS; QUANTUM DOTS; PARTICLES; PHOSPHORS; PHOTOLUMINESCENCE; NANOCOMPOSITES AB The synthesis, structural, luminescent, and magnetic properties of multifunction 8 at. % Eu-doped Gd2O3 nanocrystals were investigated. The material was synthesized by the solution combustion technique and characterized by x-ray diffraction (XRD), transmission electron microscopy, and photoluminescence and magnetization measurements. The as-prepared material presents predominant base-centered monoclinic structure with average crystallite size of 35 nm. Isothermal annealing at 1000 degrees C for up to 152 h induced gradual structural transition toward the body-centered cubic structure. Debye-Scherrer analysis of XRD results showed that annealing did not induce grain growth of monoclinic nanocrystals, while cubic nanocrystals reached 47 nm after annealing for 152 h. The luminescent behavior was monitored as a function of annealing time and related to the structural transformation. In particular, an inversion of the predominant photoluminescence emission line from 621.4 to 609.5 nm was observed and related to changes in the crystalline field resultant to phase transformation from cubic to monoclinic. Magnetic measurements revealed the paramagnetic nature of the material, much insensitive to the crystallographic structure. (c) 2008 American Institute of Physics. C1 [Jacobsohn, L. G.; Bennett, B. L.; Muenchausen, R. E.; Tornga, S. C.; Thompson, J. D.; Ugurlu, O.; Cooke, D. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sharma, A. L. Lima] RIKEN, Inst Phys & Chem Res, Magnet Mat Lab, Wako, Saitama 3510198, Japan. RP Jacobsohn, LG (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM lgjacob@lanl.gov OI Jacobsohn, Luiz/0000-0001-8991-3903 NR 48 TC 33 Z9 33 U1 4 U2 29 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2008 VL 103 IS 10 AR 104303 DI 10.1063/1.2931024 PG 6 WC Physics, Applied SC Physics GA 307FK UT WOS:000256303800106 ER PT J AU Simonetti, F Huang, L AF Simonetti, F. Huang, L. TI From beamforming to diffraction tomography SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LARGE-SCALE; ARRAYS; RECONSTRUCTION; PHASE; ULTRASOUND; PROTOTYPE; SYSTEM AB Recent progress in sensor array technology has boosted the use of beamforming (BF) in a number of applications. The same progress has generated interest in other imaging modalities such as diffraction tomography (DT). This paper demonstrates the existence of a linear mapping between BF and DT, which is represented by a linear filter in the spatial frequency domain. The filter is used to study and compare the information content of images obtained with the two imaging modalities. In particular, it is demonstrated that a BF image is a distorted version of the corresponding DT image. Moreover, the analytical expression of the filter is derived leading to an algorithm for DT which, in contrast to currently available algorithms, does not require the use of data interpolation techniques. (C) 2008 American Institute of Physics. C1 [Simonetti, F.] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England. [Simonetti, F.; Huang, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Simonetti, F (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England. EM f.simonetti@imperial.ac.uk OI Simonetti, Francesco/0000-0001-8772-0323 NR 27 TC 32 Z9 32 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2008 VL 103 IS 10 AR 103110 DI 10.1063/1.2927433 PG 7 WC Physics, Applied SC Physics GA 307FK UT WOS:000256303800011 ER PT J AU Vukmirovc, N Tomic, S AF Vukmirovc, Nenad Tomic, Stanko TI Plane wave methodology for single quantum dot electronic structure calculations SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID INFRARED PHOTODETECTORS; OPTICAL-PROPERTIES; NANOCRYSTALS; DEVICES; LASERS; 8-BAND; GAAS; HETEROSTRUCTURES; APPROXIMATIONS; AMPLIFIERS AB The development of the plane wave methodology for the calculation of the electronic structure of single quantum dots within the framework of multiband envelope function theory was presented. The methodology developed enables one to use a small embedding box, sufficient to eliminate electronic coupling, without introducing the artificial interaction with periodically replicated array of quantum dots caused by periodic boundary conditions. The appropriate formulas for Fourier transforms of strain tensor components on the embedding box that eliminate the strain field of the neighboring dots were derived. The expressions that enable the evaluation of Coulomb integrals in inverse space without the introduction of artificial electrostatic interactions with surrounding dots were presented. It was also shown how symmetry can be exploited to further reduce the computational effort in the case of quantum dots of symmetric shape. Numerical results illustrating the application of the methods to the calculation of single-particle states, as well as the configuration interaction calculation of exciton, biexciton, and negative trion states in InAs/GaAs quantum dots were given. (C) 2008 American Institute of Physics. C1 [Vukmirovc, Nenad] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England. [Tomic, Stanko] STFC, Daresbury Lab, Computat Sci & Engn Dept, Warrington WA4 4AD, Cheshire, England. RP Vukmirovc, N (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM s.tomic@dl.ac.uk RI Vukmirovic, Nenad/D-9489-2011; Tomic, Stanko/G-6149-2012 OI Vukmirovic, Nenad/0000-0002-4101-1713; NR 74 TC 28 Z9 28 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2008 VL 103 IS 10 AR 103718 DI 10.1063/1.2936318 PG 12 WC Physics, Applied SC Physics GA 307FK UT WOS:000256303800078 ER PT J AU Yunus, M Ruden, PP Smith, DL AF Yunus, M. Ruden, P. P. Smith, D. L. TI Ambipolar electrical spin injection and spin transport in organic semiconductors SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SPINTRONICS; POLYMERS; METAL AB We present a model to describe electrical injection of spin polarized electrons and holes from ferromagnetic contacts into a conjugated organic semiconductor. Transport in the semiconductor is treated by the spin dependent continuity equations coupled with Poisson's equation. The recombination of injected electrons and holes is modeled as a Langevin process. The boundary conditions used to solve the continuity equations are formulated in terms of spin polarized particle currents at the boundaries. Injected spin currents are related to the charge currents via the transport parameters of the ferromagnetic contacts. Spin injection strongly depends on the contact polarization and the conductivity of the contact material. No approximations that limit the model to small current polarizations are made. In the case of conventional ferromagnetic metal contacts, the relatively weak polarization and high conductivity hinder spin polarized injection. Spin injection can be greatly enhanced if (spin dependent) tunneling is the limiting process, which may be described by spin dependent contact resistances. The dependence of the current polarization on these contact resistances is explored. On the other hand, if the injecting contacts are made from half-metallic materials with low conductivity, spin injection is strong even for thermionic injection and the spin current approaches the charge current. (C) 2008 American Institute of Physics. C1 [Yunus, M.; Ruden, P. P.] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA. [Smith, D. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yunus, M (reprint author), Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA. EM yunus002@umn.edu RI Riminucci, Alberto/D-7525-2011 OI Riminucci, Alberto/0000-0003-0976-1810 NR 22 TC 24 Z9 26 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2008 VL 103 IS 10 AR 103714 DI 10.1063/1.2917215 PG 8 WC Physics, Applied SC Physics GA 307FK UT WOS:000256303800074 ER PT J AU Zellner, MB Grover, M Hammerberg, JE Hixson, RS Iverson, AJ Macrum, GS Morley, KB Obst, AW Olson, RT Payton, JR Rigg, PA Routley, N Stevens, GD Turley, WD Veeser, L Buttler, WT AF Zellner, M. B. Grover, M. Hammerberg, J. E. Hixson, R. S. Iverson, A. J. Macrum, G. S. Morley, K. B. Obst, A. W. Olson, R. T. Payton, J. R. Rigg, P. A. Routley, N. Stevens, G. D. Turley, W. D. Veeser, L. Buttler, W. T. TI Effects of shock breakout pressure on ejection of micron scale material from shocked tin surfaces (vol 102, art no 013522, 2007) SO JOURNAL OF APPLIED PHYSICS LA English DT Correction C1 [Zellner, M. B.; Morley, K. B.; Obst, A. W.; Payton, J. R.; Buttler, W. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Grover, M.; Macrum, G. S.; Stevens, G. D.; Turley, W. D.; Veeser, L.] Special Technol Lab, Goleta, CA 93117 USA. [Hammerberg, J. E.] Los Alamos Natl Lab, X 1 SMMP, Los Alamos, NM 87545 USA. [Hixson, R. S.] Los Alamos Natl Lab, DE DO, Los Alamos, NM 87545 USA. [Iverson, A. J.] Natl Secur Technol, Los Alamos, NM 87545 USA. [Routley, N.] Atom Weap Estab, Reading RG7 4PR, Berks, England. RP Zellner, MB (reprint author), Los Alamos Natl Lab, P-23,POB 1663, Los Alamos, NM 87545 USA. EM mzellner@lanl.gov NR 5 TC 6 Z9 6 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2008 VL 103 IS 10 AR 109901 DI 10.1063/1.2931035 PG 2 WC Physics, Applied SC Physics GA 307FK UT WOS:000256303800150 ER PT J AU Zhao, WC Pinnaduwage, LA Leis, JW Gehl, AC Allman, SL Shepp, A Mahmud, KK AF Zhao, Weichang Pinnaduwage, Lal A. Leis, John W. Gehl, Anthony C. Allman, Steve L. Shepp, Allan Mahmud, Ken K. TI Identification and quantification of components in ternary vapor mixtures using a microelectromechanical-system-based electronic nose SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CANTILEVER ARRAY; SENSOR; MICROCANTILEVERS; DISCRIMINATION; RECOGNITION; ODORS AB We report the experimental details on the successful application of the electronic nose approach to identify and quantify components in ternary vapor mixtures. Preliminary results have recently been presented [L. A. Pinnaduwage , Appl. Phys. Lett. 91, 044105 (2007)]. Our microelectromechanical-system-based electronic nose is composed of a microcantilever sensor array with seven individual sensors used for vapor detection and an artificial neural network for pattern recognition. A set of custom vapor generators generated reproducible vapor mixtures in different compositions for training and testing of the neural network. The sensor array was selected to be capable of generating different response patterns to mixtures with different component proportions. Therefore, once the electronic nose was trained by using the response patterns to various compositions of the mixture, it was able to predict the composition of "unknown" mixtures. We have studied two vapor systems: one included the nerve gas simulant dimethylmethyl phosphonate at ppb concentrations and water and ethanol at ppm concentrations; the other system included acetone, water, and ethanol all of which were at ppm concentrations. In both systems, individual, binary, and ternary mixtures were analyzed with good reproducibility. (C) 2008 American Institute of Physics. C1 [Zhao, Weichang; Shepp, Allan; Mahmud, Ken K.] Triton Syst Inc, Chelmsford, MA 01824 USA. [Zhao, Weichang; Pinnaduwage, Lal A.; Gehl, Anthony C.; Allman, Steve L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Pinnaduwage, Lal A.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Leis, John W.] Univ So Queensland, Dept Elect Elect & Comp Engn, Toowoomba, Qld 4350, Australia. RP Pinnaduwage, LA (reprint author), Triton Syst Inc, 200 Turnpike Rd, Chelmsford, MA 01824 USA. EM llp@ornl.gov RI Allman, Steve/A-9121-2011; OI Allman, Steve/0000-0001-6538-7048; Gehl, Anthony/0000-0002-4841-403X NR 27 TC 4 Z9 4 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2008 VL 103 IS 10 AR 104902 DI 10.1063/1.2921866 PG 11 WC Physics, Applied SC Physics GA 307FK UT WOS:000256303800134 ER PT J AU Lobell, DB Bonfils, C AF Lobell, David B. Bonfils, Celine TI The effect of irrigation on regional temperatures: A spatial and temporal analysis of trends in California, 1934-2002 SO JOURNAL OF CLIMATE LA English DT Article ID NORTHERN GREAT-PLAINS; LAND-USE CHANGES; CLIMATE-CHANGE; UNITED-STATES; GLOBAL CLIMATE; SOIL-MOISTURE; PRECIPITATION; IMPACTS; RANGE; COVER AB The response of air temperatures to widespread irrigation may represent an important component of past and/or future regional climate changes. The quantitative impact of irrigation on daily minimum and maximum temperatures (T-min and T-max) in California was estimated using historical time series of county irrigated areas from agricultural censuses and daily climate observations from the U.S. Historical Climatology Network. Regression analysis of temperature and irrigation changes for stations within irrigated areas revealed a highly significant (p < 0.01) effect of irrigation on June-August average T-max with no significant effects on T-min (P > 0.3). The mean estimate for T-max was a substantial 5.0 degrees C cooling for 100% irrigation cover, with a 95% confidence interval of 2.0 degrees-7.9 degrees C. As a result of small changes in T-min compared to T-max, the diurnal temperature range (DTR) decreased significantly in both spring and summer months. Effects on percentiles of T-max within summer months were not statistically distinguishable, suggesting that irrigation's impact is similar on warm and cool days in California. Finally, average trends for stations within irrigated areas were compared to those from nonirrigated stations to evaluate the robustness of conclusions from previous studies based on pairwise comparisons of irrigated and nonirrigated sites. Stronger negative T-max trends in irrigated sites were consistent with the inferred effects of irrigation on T-max However, T-min trends were significantly more positive for nonirrigated sites despite the apparent lack of effects of irrigation on T-min from the analysis within irrigated sites. Together with evidence of increases in urban areas near nonirrigated sites, this finding indicates an important effect of urbanization on T-min in California that had previously been attributed to irrigation. The results therefore demonstrate that simple pairwise comparisons between stations in a complex region such as California can lead to misinterpretation of historical climate trends and the effects of land use changes. C1 [Lobell, David B.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Bonfils, Celine] Univ Calif Merced, Merced, CA USA. RP Lobell, DB (reprint author), Stanford Univ, Program Food Secur & Environm, Stanford, CA 94305 USA. EM dlobell@stanford.edu RI Bonfils, Celine/H-2356-2012 OI Bonfils, Celine/0000-0002-4674-5708 NR 29 TC 56 Z9 58 U1 7 U2 34 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD MAY 15 PY 2008 VL 21 IS 10 BP 2063 EP 2071 DI 10.1175/2007JCLI1755.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 306QA UT WOS:000256261700005 ER PT J AU Ayturk, ME Payzant, EA Speakman, SA Ma, YH AF Ayturk, M. Engin Payzant, E. A. Speakman, S. A. Ma, Y. H. TI Isothermal nucleation and growth kinetics of Pd/Ag alloy phase via in situ time-resolved high-temperature X-ray diffraction (HTXRD) analysis SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE H-2 separation; composite Pd/Ag alloy membranes; electroless plating; isothermal annealing; in situ time-resolved high-temperature X-ray diffraction ID POROUS STAINLESS-STEEL; INTERMETALLIC DIFFUSION BARRIER; SILVER-PALLADIUM ALLOYS; COMPOSITE MEMBRANES; SELF-DIFFUSION; THIN-FILMS; HYDROGEN; PD; AG; MICROSTRUCTURE AB Among several different approaches to form Pd/Ag alloys for hydrogen separation applications, ex situ studies carried out by conventional X-ray point scanning detectors might fail to reveal the key aspects of the phase transformation between Pd and Ag metals. In this respect, in situ time-resolved high-temperature X-ray diffraction (HTXRD) was employed to study the Pd/Ag alloy phase nucleation and growth kinetics. By the use of linear position sensitive detectors, advanced optics and profile fitting with the use of JADE-6.5 software, isothermal phase evolution of the Pd/Ag alloy at 500 degrees C, 550 degrees C and 600 degrees C under hydrogen atmosphere were quantified to elucidate the mechanistic details of the Pd/Ag alloy phase nucleation and growth pattern. Analysis of the HTXRD data by the Avrami model indicated that the nucleation of the Pd/Ag alloy phase was instantaneous where the growth mechanism was through diffusion-controlled one-dimensional thickening of the Pd/Ag alloy layer. The value of the Avrami exponent, n, was found to increase with temperature with the values of 0.34, 0.39 and 0.67 at 500 degrees C, 550 degrees C and 600 degrees C, respectively. In addition, parabolic rate law analysis suggested that the nucleation of the Pd/Ag alloy phase was through a heterogeneous nucleation mode, in which the nucleation sites were defined as the non-equilibrium defects. Indeed, the cross-sectional SEI micrographs indicated that the Pd/Ag alloy phase growth was strongly dependent upon the deposition morphology of the as-synthesized Pd and Ag layers formed by the electroless plating. Based on the Avrami model and the parabolic rate law, the estimated activation energies for the phase transformation were 236.5 kJ/mol and 185.6 kJ/mol and in excellent agreement with the literature values (183-239.5 kJ/mol). Finally, the in situ annealing of the 15.6 mu m thick composite Pd/Ag/PSS membrane at 550 degrees C in hydrogen atmosphere indicated that the Pd/Ag alloy phase formation was not complete even after 500 h. According to the Avrami model, the increase in the hydrogen permeance from 7.1 m(3)/m(2) h atm(0.5) to 21.3 m(3)/m(2) h atm(0.5) at 550 degrees C over a period of 500 h corresponded to an similar to 83% Pd/Ag alloy phase formation. (C) 2007 Elsevier B.V. All rights reserved. C1 [Ayturk, M. Engin; Ma, Y. H.] Worcester Polytech Inst, Dept Chem Engn, Ctr Inorgan Membrane Studies, Worcester, MA 01609 USA. [Payzant, E. A.; Speakman, S. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Ma, YH (reprint author), Worcester Polytech Inst, Dept Chem Engn, Ctr Inorgan Membrane Studies, Worcester, MA 01609 USA. EM yhma@wpi.edu RI Payzant, Edward/B-5449-2009 OI Payzant, Edward/0000-0002-3447-2060 NR 50 TC 22 Z9 22 U1 2 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD MAY 15 PY 2008 VL 316 IS 1-2 BP 97 EP 111 DI 10.1016/j.memsci.2007.09.038 PG 15 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 315DR UT WOS:000256858600012 ER PT J AU Kalay, YE Chumbley, LS Anderson, IE AF Kalay, Y. E. Chumbley, L. S. Anderson, I. E. TI Crystallization behavior in a highly driven marginal glass forming alloy SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE amorphous metals, metallic glasses; alloys; crystallization; nanocrystals; synchrotron radiation; measurement techniques; STEM/TEM; TEM/STEM; nanoparticles, colloids and quantum structures; nanocrystals; time resolved measurements; rare earths in glasses; structure; long-range order; medium-range order; short-range order; thermal properties; calorimetry; X-rays; X-ray diffraction ID AMORPHOUS-ALLOYS; METALLIC GLASSES; TENSILE-STRENGTH; AL; SYSTEMS; CU; NANOCRYSTALLIZATION; DEVITRIFICATION; AMORPHIZATION; ALUMINUM AB Al90Sm10, a marginal glass former, was rapidly solidified using Cu-block single roller melt spinning at wheel speeds of 30 and 40 m/s. The product phases of rapid solidification were identified and analyzed using high energy synchrotron X-ray diffraction (HEXRD), high resolution transmission electron microscopy, and atom probe tomography. The as-quenched structure consists of a saturated amorphous phase and nanocrystalline Al with typical length scale of about 5 nm. The appearance of a pre-peak on HEXRD diffraction patterns and a low activation energy for first crystallization as determined using the Kissinger and Ozawa methods indicate some local ordering in the amorphous phase. The devitrification phase transformation path was determined using in situ high energy synchrotron radiation. Three phases, MS1, H1, and Al4Sm, were identified during decomposition of the amorphous phase. MS1, H1 and Al4Sm are cubic, hexagonal and orthorhombic metastable phases, respectively. Published by Elsevier B.V. C1 [Kalay, Y. E.; Chumbley, L. S.; Anderson, I. E.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Kalay, YE (reprint author), Iowa State Univ, Ames Lab, 206 Wilhelm, Ames, IA 50011 USA. EM yekalay@iastate.edu; chumbley@iastate.edu; andersoni@ameslab.gov NR 28 TC 16 Z9 16 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD MAY 15 PY 2008 VL 354 IS 26 BP 3040 EP 3048 DI 10.1016/j.jnoncrysol.2007.12.006 PG 9 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 315CJ UT WOS:000256855200010 ER PT J AU Li, MM Eldrup, M Byun, TS Hashimo, N Snead, LL Zinkle, SJ AF Li, Meimei Eldrup, M. Byun, T. S. Hashimo, N. Snead, L. L. Zinkle, S. J. TI Low temperature neutron irradiation effects on microstructure and tensile properties of molybdenum SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PRIMARY DAMAGE FORMATION; POSITRON-ANNIHILATION; DEFORMATION-BEHAVIOR; PLASTIC INSTABILITY; MOLECULAR-DYNAMICS; DISLOCATION LOOPS; DEFECT PRODUCTION; DOSE DEPENDENCE; WROUGHT LCAC; YIELD-STRESS AB Polycrystalline molybdenum was irradiated in the hydraulic tube facility at the High Flux Isotope Reactor to doses ranging from 7.2 x 10(-5) to 0.28 dpa at similar to 80 degrees C. As-irradiated microstructure was characterized by room-temperature electrical resistivity measurements, transmission electron microscopy (TEM) and positron annihilation spectroscopy (PAS). Tensile tests were carried out between -50 and 100 degrees C over the strain rate range 1 x 10(-5) to 1 x 10(-2) s(-1). Fractography was performed by scanning electron microscopy (SEM), and the deformation microstructure was examined by TEM after tensile testing. Irradiation-induced defects became visible by TEM at similar to 0.001 dpa. Both their density and mean size increased with increasing dose. Submicroscopic three-dimensional cavities were detected by PAS even at similar to 0.0001 dpa. The cavity density increased with increasing dose, while their mean size and size distribution was relatively insensitive to neutron dose. It is suggested that the formation of visible dislocation loops was predominantly a nucleation and growth process, while in-cascade vacancy clustering may be significant in Mo. Neutron irradiation reduced the temperature and strain rate dependence of the yield stress, leading to radiation softening in Mo at lower doses. Irradiation had practically no influence on the magnitude and the temperature and strain rate dependence of the plastic instability stress. (C) 2008 Published by Elsevier B.V. C1 [Li, Meimei; Byun, T. S.; Snead, L. L.; Zinkle, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Eldrup, M.] Tech Univ Denmark, Riso Natl Lab, Mat Res Dept, DK-4000 Roskilde, Denmark. [Hashimo, N.] Hokkaido Univ, Div Mat Sci, Sapporo, Hokkaido 0608628, Japan. RP Li, MM (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM mli@anl.gov OI Zinkle, Steven/0000-0003-2890-6915 NR 64 TC 20 Z9 20 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 15 PY 2008 VL 376 IS 1 BP 11 EP 28 DI 10.1016/j.jnucmat.2007.12.001 PG 18 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 304MC UT WOS:000256112600003 ER PT J AU Skinner, CH Hensley, R Roquemore, AL AF Skinner, C. H. Hensley, R. Roquemore, A. L. TI Large aperture electrostatic dust detector SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FUSION DEVICES; PLASMA; REMOVAL; REACTOR; TOKAMAK; CARBON AB Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 V has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5 x 5 cm) detector to microgram quantities of dust particles. (C) 2008 Elsevier B.V. All rights reserved. C1 [Skinner, C. H.; Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Hensley, R.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. RP Skinner, CH (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM cskinner@pppl.gov NR 16 TC 10 Z9 10 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 15 PY 2008 VL 376 IS 1 BP 29 EP 32 DI 10.1016/j.jnucmat.2008.02.001 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 304MC UT WOS:000256112600004 ER PT J AU Toterneier, TC Wachs, DM Porter, DL Kisohara, N AF Toterneier, T. C. Wachs, D. M. Porter, D. L. Kisohara, N. TI Fatigue testing of metallurgically-bonded EBR-II superheater tubes SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB Fatigue crack growth tests were performed on 21/4Cr-1Mo steel specimens machined from ex-service experimental breeder reactor-II (EBR-II) superheater duplex tubes. The tubes had been metallurgically-bonded with a 100 mu m thick Ni layer; the specimens incorporated this bond layer. Fatigue crack growth tests were performed at room temperature in air and at 400 degrees C in air and humid Ar; cracks were grown at varied levels of constant Delta K. In all conditions the presence of the Ni bond layer was found to result in a net retardation of growth as the crack passed through the layer. The mechanism of retardation was identified as a disruption of crack planarity and uniformity after passing through the porous bond layer. Full crack arrest was only observed in a single test performed at near-threshold Delta K level (12 MPa root m) at 400 degrees C. In this case the crack tip was blunted by oxidation of the base steel at the steel-nickel interface. Published by Elsevier B.V. C1 [Wachs, D. M.; Porter, D. L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Toterneier, T. C.] Alstom Power Inc, Windsor, CT 06095 USA. [Kisohara, N.] Japan Atom Energy Agcy, FBR Syst Design Grp, Oarai, Ibaraki 3111393, Japan. RP Porter, DL (reprint author), Idaho Natl Lab, POB 1625,MS 6188, Idaho Falls, ID 83415 USA. EM douglas.porter@inl.gov NR 12 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 15 PY 2008 VL 376 IS 1 BP 38 EP 46 DI 10.1016/j.jnucmat.2008.02.004 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 304MC UT WOS:000256112600006 ER PT J AU Bart, G Botta, FB Hoth, CW Ledergerber, G Mason, RE Stratton, RW AF Bart, G. Botta, F. B. Hoth, C. W. Ledergerber, G. Mason, R. E. Stratton, R. W. TI AC-3-irradiation test of sphere-pac and pellet (U,Pu)C fuel in the US Fast Flux Test Facility SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID NITRIDE; CARBIDE AB The objective of the AC-3 bundle experiment in the Fast Flux Test Facility (FFTF) was to evaluate a fuel fabrication method by 'direct conversion' of nitrate solutions into spherical uranium-plutonium carbide particles and to compare the irradiation performance of 'sphere-pac' fuel pins prepared at Paul Scherrer Institute (PSI) with standard pellet fuel pins fabricated at Los Alamos National Laboratory (LANL). The irradiation and post test examination results show that mixed carbide pellet fuel produced by powder methods and sphere-pac particle fuel developed by internal gelation techniques are both valuable advanced fuel candidates for liquid metal reactors. The PSI fabrication process with direct conversion of actinide nitrate solutions into various sizes of fuel spheres by internal gelation and direct filling of spheres into cladding tubes is seen as more easily transferable to remote operation, showing a significant reduction of process steps. The process is also adaptable for the fabrication of carbonitrides and nitrides (still based on a uranium matrix), as well as for actinides diluted in a (uranium-free) yttrium stabilized zirconium oxide matrix. The AC-3 fuel bundle was irradiated in the Fast Flux Test Facility (FFTF) during the years 1986-1988 for 630 full power days to a peak burn up of similar to 8 at.% fissile material. All of the pins, irradiated at linear powers of up to 84 kW/m, with cladding outer temperatures of 465 degrees C appeared to be in good condition when removed from the assembly. The rebirth of interest for fast reactor systems motivated the earlier teams to report about the excellent, still perfectly relevant results reached; this paper focusing on the sphere-pac fuel behaviour. (C) 2008 Elsevier B.V. All rights reserved. C1 [Bart, G.; Botta, F. B.; Stratton, R. W.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Botta, F. B.; Hoth, C. W.; Mason, R. E.; Stratton, R. W.] LANL, Los Alamos, NM USA. [Botta, F. B.; Ledergerber, G.; Stratton, R. W.] KKL, Leibstadt, Switzerland. RP Bart, G (reprint author), Paul Scherrer Inst, CH-5232 Villigen, Switzerland. EM gerhard.bart@psi.ch NR 11 TC 9 Z9 9 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 15 PY 2008 VL 376 IS 1 BP 47 EP 59 DI 10.1016/j.jnucmat.2008.01.022 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 304MC UT WOS:000256112600007 ER PT J AU Pint, BA More, KL AF Pint, B. A. More, K. L. TI Transformation of Al(2)O(3) to LiAlO(2) in Pb-17Li at 800 degrees C SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PERMEATION BARRIER DEVELOPMENT; DUAL COOLANT BLANKET; COMPATIBILITY ISSUES; ALUMINIDE COATINGS; CORROSION BEHAVIOR; OXIDATION BEHAVIOR; TRITIUM; ALLOYS; LITHIUM; SCALES AB A FeCrAl substrate was pre-oxidized for 2 h at 1000 degrees C to thermally grow an external Al(2)O(3) scale and then isothermally exposed to Pb-17 at.% Li for 1000 h at 800 degrees C to determine if this layer would protect the underlying alloy from dissolution. After exposure, a small mass gain was measured, indicating that the layer did inhibit dissolution. However, characterization of the external layer determined that it had transformed to LiAlO(2) with an increased thickness and a much larger grain size than the original layer. This observation has implications for the use of Al(2)O(3) as a permeation barrier in Pb-Li cooled fusion blanket systems. Published by Elsevier B.V. C1 [Pint, B. A.; More, K. L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008; More, Karren/A-8097-2016 OI Pint, Bruce/0000-0002-9165-3335; More, Karren/0000-0001-5223-9097 NR 35 TC 14 Z9 14 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 15 PY 2008 VL 376 IS 1 BP 108 EP 113 DI 10.1016/j.jnucmat.2007.12.010 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 304MC UT WOS:000256112600014 ER PT J AU Xu, CS Kim, H Hayden, CC Yang, H AF Xu, C. Shan Kim, Hahkjoon Hayden, Carl C. Yang, Haw TI Joint statistical analysis of multichannel time series from single quantum dot-(Cy5)(n) constructs SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID FLUORESCENCE INTERMITTENCY; SEMICONDUCTOR NANOCRYSTALS; MOLECULE FLUORESCENCE; DECISION RULES; BLINKING; DOTS; MICROSCOPY; FRET; IDENTIFICATION; LIFETIME AB One of the major challenges in single-molecule studies is how to extract reliable information from the inevitably noisy data. Here, we demonstrate the unique capabilities of multichannel joint statistical analysis of multispectral time series using Foster resonance energy transfer (FRET). in single quantum dot (QD)-organic dye hybrids as a model system. The multispectral photon-by-photon registration allows model-free determination of intensity change points of the donor and acceptor channels independently. The subsequent joint analysis of these change points gives high-confidence assignments of acceptor photobleaching events despite the interference from background noise and from intermittent blinking of the QD donors and acceptors themselves. Finally, the excited-state lifetimes of donors and acceptors are calculated using the joint maximum likelihood estimation (MLE) method on the donor and acceptor decay profiles, guided by a four-state kinetics model. C1 [Kim, Hahkjoon; Hayden, Carl C.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Xu, C. Shan; Yang, Haw] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yang, Haw] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Hayden, CC (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969, Livermore, CA 94551 USA. EM cchayde@sandia.gov; hawyang@berkeley.edu NR 46 TC 9 Z9 10 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAY 15 PY 2008 VL 112 IS 19 BP 5917 EP 5923 DI 10.1021/jp075642o PG 7 WC Chemistry, Physical SC Chemistry GA 297XB UT WOS:000255649600007 PM 18095665 ER PT J AU Shimizu, TK Mugarza, A Cerda, JI Heyde, M Qi, YB Schwarz, UD Ogletree, DF Salmeron, M AF Shimizu, Tomoko K. Mugarza, Aitor Cerda, Jorge I. Heyde, Markus Qi, Yabing Schwarz, Udo D. Ogletree, D. Frank Salmeron, Miquel TI Surface species formed by the adsorption and dissociation of water molecules on a Ru(0001) surface containing a small coverage of carbon atoms studied by scanning tunneling microscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID STM IMAGES; HYDROGEN; OXYGEN; TEMPERATURE; SIMULATION; DIFFUSION; PD(111); ICE AB The adsorption and dissociation of water on a Ru(0001) surface containing a small amount (<= 3%) of carbon impurities was studied by scanning tunneling microscopy (STM). Various surface species are formed depending on the temperature. These include molecular H2O, H2O-C complexes, H, O, CH, and CH. Clusters of either pure H2O or mixed H2O-OH species are also formed. Each of these species produces a characteristic contrast in the STM images and can be identified by experiment and by ab initio total energy calculations coupled with STM image simulations. Manipulation of individual species via excitation of vibrational modes with the tunneling electrons was used as supporting evidence. C1 [Shimizu, Tomoko K.; Mugarza, Aitor; Heyde, Markus; Qi, Yabing; Ogletree, D. Frank; Salmeron, Miquel] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Shimizu, Tomoko K.; Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Cerda, Jorge I.] CSIC, Inst Ciencia Mat Madrid, E-28006 Madrid, Spain. [Schwarz, Udo D.] Yale Univ, Dept Mech Engn, New Haven, CT 06520 USA. RP Salmeron, M (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM MBSalmeron@lbl.gov RI Shimizu, Tomoko/A-6780-2010; Cerda, Jorge/F-4043-2010; mugarza, aitor/B-6871-2012; Qi, Yabing/A-9243-2010; Heyde, Markus/F-9150-2013; Qi, Yabing/O-7807-2014; Ogletree, D Frank/D-9833-2016 OI Cerda, Jorge/0000-0001-6176-0191; mugarza, aitor/0000-0002-2698-885X; Heyde, Markus/0000-0002-7049-0485; Qi, Yabing/0000-0002-4876-8049; Ogletree, D Frank/0000-0002-8159-0182 NR 32 TC 34 Z9 34 U1 3 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 15 PY 2008 VL 112 IS 19 BP 7445 EP 7454 DI 10.1021/jp711097j PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 297XA UT WOS:000255649500019 ER PT J AU Ahluwalia, RK Wang, X AF Ahluwalia, R. K. Wang, X. TI Effect of CO and CO2 impurities on performance of direct hydrogen polymer-electrolyte fuel cells SO JOURNAL OF POWER SOURCES LA English DT Article DE polymer-electrolyte fuel cells; fuel impurities; hydrogen quality ID OXIDATION REACTION; DILUTION; STACKS AB Mechanisms by which trace amounts of CO and CO2 impurities in fuel may affect the performance of direct hydrogen polymer-electrolyte fuel cell stacks have been investigated. It is found that the available data on CO-related polarization losses for Pt electrodes could be explained on the basis of CO adsorption on bridge sites, if the CO concentration is less than about 100 ppm, together with electrochemical oxidation of adsorbed CO at high overpotentials. The literature data on voltage degradation due to CO2 is consistent with CO production by the reverse water-gas shift reaction between the gas phase CO2 and the H-2 adsorbed on active Pt sites. The effect of oxygen crossover and air bleed in "cleaning" of poisoned sites could be modeled by considering competitive oxidation of adsorbed CO and H by gas phase O-2. A model has been developed to determine the buildup of CO and CO2 impurities due to anode gas recycle. It indicates that depending on H-2 utilization, oxygen crossover and current density, anode gas recycle can enrich the recirculating gas with CO impurity but recycle always leads to buildup of CO2 in the anode channels. The buildup of CO and CO2 impurities can be controlled by purging a fraction of the spent anode gas. There is an optimum purge fraction at which the degra(d)ation in the stack efficiency is the smallest. At a purge rate higher than the optimum, the stack efficiency is reduced due to excessive loss of H-2 in purge gas. At a purge rate lower than the optimum, the stack efficiency is reduced due to the decrease in cell voltage caused by the excessive buildup of CO and CO2. It is shown that the poisoning model can be used to determine the limits of CO and CO2 impurities in fuel H2 for a specified maximum acceptable degradation in cell voltage and stack efficiency. The impurity limits are functions of operating conditions, such as pressure and temperature, and stack design parameters, such as catalyst loading and membrane thickness. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ahluwalia, R. K.; Wang, X.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Ahluwalia, RK (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM walia@anl.gov NR 10 TC 24 Z9 26 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAY 15 PY 2008 VL 180 IS 1 BP 122 EP 131 DI 10.1016/j.jpowsour.2008.01.087 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 303VV UT WOS:000256069900014 ER PT J AU McCarthy, BP Pederson, LR Chou, Y Zhou, XD Surdoval, WA Wilson, LC AF McCarthy, B. P. Pederson, L. R. Chou, Y. S. Zhou, X.-D. Surdoval, W. A. Wilson, L. C. TI Low-temperature sintering of lanthanum strontium manganite-based contact pastes for SOFCs SO JOURNAL OF POWER SOURCES LA English DT Article DE lanthanum strontium manganite; contact paste; oxygen partial pressure cycling; enhanced shrinkage; sintering; solid oxide fuel cell ID OXIDE FUEL-CELLS; OXIDATION-REDUCTION BEHAVIOR; SILICATE SEALING GLASS; SR-DOPED LAMNO3; ELECTRICAL-CONDUCTIVITY; METALLIC INTERCONNECTS; MECHANICAL-PROPERTIES; THERMOELECTRIC-POWER; FUNCTIONAL LAYERS; DEFECT STRUCTURE AB Electrical contact pastes of composition (La(0.90)Sr(0.10))(0.98)Mn(03+delta) (LSM-10) formed strong bonds (similar to 3 MPa) to (Co,Mn)(3)O(4) spinel-coated Crofer 22 APU ferritic steel coupons when exposed to alternating flows of air and nitrogen (10 ppm O(2)) at 900 degrees C for 2 h or longer. When held at 900 degrees C in air only, bond strengths were negligible. Substantial bonds could also be created between LSM-10 contact paste and (La(0.80)Sr(0.20))(0.98)MnO(3+delta) (LSM-20) porous cathodes by processing in alternating air and nitrogen, without simultaneous densification of the cathode. Enhanced sintering of LSM-10 is attributed to transients in the defect structure induced by oxygen partial pressure changes. (C) 2008 Elsevier B.V. All rights reserved. C1 [McCarthy, B. P.; Pederson, L. R.; Chou, Y. S.; Zhou, X.-D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Surdoval, W. A.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Wilson, L. C.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Pederson, LR (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM larry.pederson@pnl.gov NR 36 TC 23 Z9 24 U1 3 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAY 15 PY 2008 VL 180 IS 1 BP 294 EP 300 DI 10.1016/j.jpowsour.2008.01.097 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 303VV UT WOS:000256069900039 ER PT J AU Weil, KS Koeppel, BJ AF Weil, K. S. Koeppel, B. J. TI Comparative finite element analysis of the stress-strain states in three different bonded solid oxide fuel cell seal designs SO JOURNAL OF POWER SOURCES LA English DT Article DE solid oxide fuel cell; finite element analysis; glass-ceramic seal; brazed seal; bonded compliant seal (BCS) ID PLANAR SOFC; THERMOFLUID; STACKS AB One of the critical issues in designing and fabricating a high performance planar solid oxide fuel cell (pSOFC) stack is the development of the appropriate materials and techniques for hermetically sealing the metal and ceramic components. A second critical issue is ensuring that the brittle ceramic cell constituents, i.e. the electrodes and electrolyte, exhibit high mechanical reliability by mitigating potential sources of thermal-mechanically induced stresses that can lead to fracture during operation and/or shutdown. A foil-based sealing approach is currently being developed that appears to offer good hermeticity and mechanical integrity, while minimizing the generation of high stresses in either of the joint's substrate materials. Based on the concept's viability, demonstrated in prior experimental work, numerical analyses were conducted to evaluate the behavior and benefits of the seat in a configuration prototypic of current pSOFC stack designs. This paper presents recent results from finite element (FE) simulations of a planar cell using the foil-based seal, along with companion analyses of the more conventionally employed glass-ceramic and brazed joints. The stresses and deformations of the components were evaluated at isothermal operating and shutdown temperatures. The results indicate that the foil seal is able to accommodate a significant degree of thermal mismatch strain between the metallic support structure and the ceramic cell via elastic deformations of the foil and plasticity in the foil-to-cell braze layer. Consequently the cell stresses in this type of seal are predicted to be much lower than those in the glass-ceramic and brazed designs, which is expected to lead to improved stack reliability. This ability to accommodate large thermal strain mismatches allows the design requirement of thermal expansion matching between ceramic and metal stack components to be relaxed and expands the list of candidate materials that can be considered for the metal frames and interconnects. (C) 2008 Elsevier B.V. All rights reserved. C1 [Weil, K. S.; Koeppel, B. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Weil, KS (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Scott.Weil@pnl.gov NR 26 TC 31 Z9 34 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAY 15 PY 2008 VL 180 IS 1 BP 343 EP 353 DI 10.1016/j.jpowsour.2008.01.093 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 303VV UT WOS:000256069900044 ER PT J AU Jablonski, PD Alman, DE AF Jablonski, Paul D. Alman, David E. TI Oxidation resistance of novel ferritic stainless steels alloyed with titanium for SOFC interconnect applications SO JOURNAL OF POWER SOURCES LA English DT Article DE SOFC; interconnect; oxidation; ferritic steel; Cr poisoning; surface treatment ID OXIDE FUEL-CELLS; FE-CR ALLOY; METALLIC INTERCONNECTS; ELECTRICAL-PROPERTIES; CHROMIUM DEPOSITION; DOPED LAGAO3; TEMPERATURE; CONDUCTIVITY; ATMOSPHERE; MAGNESIUM AB Chromia (Cr2O3) forming ferritic stainless steels are being developed for interconnect application in Solid Oxide Fuel Cells (SOFC). A problem with these alloys is that in the SOFC environment chrome in the surface oxide can evaporate and deposit on the electrochemically active sites within the fuel cell. This poisons and degrades the performance of the fuel cell. The development of steels that can form conductive outer protective oxide layers other than Cr2O3 or (CrMn)(3)O-4 such as TiO2 may be attractive for SOFC application. This study was undertaken to assess the oxidation behavior of ferritic stainless steel containing 1 weight percent (wt.%) Ti, in an effort to develop alloys that form protective outer TiO2 scales. The effect of Cr content (6-22 wt.%) and the application of a Ce-based surface treatment on the oxidation behavior (at 800 degrees C in air + 3% H2O) of the alloys was investigated. The alloys themselves failed to form an outer TiO2 scale even though the large negative Delta G of this compound favors its formation over other species. It was found that in conjunction with the Ce-surface treatment, a continuous outer TiO2 oxide layer could be formed on the alloys, and in fact the alloy with 12 wt.% Cr behaved in an identical manner as the alloy with 22 wt.% Cr. Published by Elsevier B.V. C1 [Jablonski, Paul D.; Alman, David E.] Natl Energy Technol Lab, Albany, OR 97321 USA. RP Jablonski, PD (reprint author), Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA. EM paul.jablonski@netl.doe.gov NR 37 TC 38 Z9 38 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAY 15 PY 2008 VL 180 IS 1 BP 433 EP 439 DI 10.1016/j.jpowsour.2008.02.010 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 303VV UT WOS:000256069900053 ER PT J AU Abraham, DP Furczon, MM Kang, SH Dees, DW Jansen, AN AF Abraham, D. P. Furczon, M. M. Kang, S. -H. Dees, D. W. Jansen, A. N. TI Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells SO JOURNAL OF POWER SOURCES LA English DT Article DE LiPF6; LiBF4; LiBOB; LiF2OB; SEI; EIS ID LIBOB-BASED ELECTROLYTES; SURFACE-FILM FORMATION; LI-ION; SOLID-ELECTROLYTE; PHOTOELECTRON-SPECTROSCOPY; GRAPHITE ELECTRODE; CATHODE MATERIALS; LOW-TEMPERATURE; BATTERIES; PERFORMANCE AB Hybrid-electric vehicles require lithium-battery electrolytes that form stable, low impedance passivation layers to protect the electrodes, while allowing rapid lithium-ion transport under high current charge/discharge pulses. In this article, we describe data acquired on cells containing LiNi0.8Co0.15Al0.05O2-based positive electrodes, graphite-based negative electrodes, and electrolytes with lithium hexafluorophosphate (LiPF6), lithium tetrafluoroborate (LiBF4), lithium bis(oxalato)borate (LiBOB) and lithium difluoro(oxalato) borate (LiF2OB) salts. The impedance data were collected in cells containing a Li-Sn reference electrode to determine effect of electrolyte composition and testing temperature on individual electrode impedance. The full cell impedance data showed the following trend: LiBOB > LiBF4 > LiF2OB > LiPF6. The negative electrode impedance showed a trend similar to that of the full cell; this electrode was the main contributor to impedance in the LiBOB and LiBF4 cells. The positive electrode impedance values for the LiBF4, LiF2OB, and LiPF6 cells were comparable; the values were somewhat higher for the LiBOB cell. Cycling and impedance data were also obtained for cells containing additions of LiBF4, LiBOB, LiF2OB, and vinylene carbonate (VC) to the EC: EMC (3:7 by wt.) + 1.2 M LiPF6 electrolyte. Our data indicate that the composition and morphology of the graphite SEI formed during the first lithiation cycle is an important determinant of the negative electrode impedance, and hence full cell impedance. (C) 2008 Elsevier B.V. All rights reserved. C1 [Abraham, D. P.; Furczon, M. M.; Kang, S. -H.; Dees, D. W.; Jansen, A. N.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Abraham, DP (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM abraham@cmt.anl.gov RI Kang, Sun-Ho/E-7570-2010; Jansen, Andrew/Q-5912-2016 OI Jansen, Andrew/0000-0003-3244-7790 NR 32 TC 63 Z9 73 U1 8 U2 93 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAY 15 PY 2008 VL 180 IS 1 BP 612 EP 620 DI 10.1016/j.jpowsour.2008.02.047 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 303VV UT WOS:000256069900078 ER PT J AU Whalen, SA Apblett, CA Aselage, TL AF Whalen, Scott A. Apblett, Christopher A. Aselage, Terrence L. TI Improving power density and efficiency of miniature radioisotopic thermoelectric generators SO JOURNAL OF POWER SOURCES LA English DT Article DE RTG; thermopile; thermoelectric; miniature; power density; efficiency AB We have built and tested a prototype miniaturized thermoelectric power source that generates 450 mu W of electrical power in a system volume of 4.3 cm(3). The measured power density of 104 mu W cm(-3) exceeds that of any previously reported thermoelectric power system of equivalent size. This improvement was achieved by implementing a novel thermopile design in which wagon wheel-shaped thermoelectric elements contact the entire circumference of the heat source whereas traditional approaches utilize only one heat source surface. The thermopile consists of 22 wagon wheel-shaped elements (11 P-N thermocouples) fabricated from 215-mu m thick bismuth-telluride wafers having ZT = 0.97 at 30 degrees C. The power source operates on a 150 mW thermal input provided by an electrical resistance heater that simulates a capsule containing 0.4 g of (238)PuO(2) located at the center of the device. Our primary research objective was to develop and demonstrate a prototype thermopile and radioisotopic thermoelectric generator (RTG) architecture with improved power density at small scales. Output power from this device, while optimized for efficiency, was not optimized for output voltage, and the maximum power was delivered at 41 mV. We also discuss modifications to our prototype design that result in significantly improved voltage and power. Numerical predictions show that a power output of 1.4 mW, power density of 329 mu W cm(-3), and voltage of 362 mu W cm(-3), is possible in the same package size. (C) 2008 Elsevier B.V. All rights reserved. C1 [Whalen, Scott A.; Apblett, Christopher A.; Aselage, Terrence L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Whalen, SA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sturgeonguy@hotmail.com NR 18 TC 17 Z9 21 U1 3 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAY 15 PY 2008 VL 180 IS 1 BP 657 EP 663 DI 10.1016/j.jpowsour.2008.01.080 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 303VV UT WOS:000256069900085 ER PT J AU Shaw, LL Villegas, J Huang, JY Chen, S AF Shaw, Leon L. Villegas, Juan Huang, Jian-Yu Chen, Shuo TI Strengthening via deformation twinning in a nickel alloy SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE nanomaterials; twins; nickel alloys; strengthening ID MECHANICAL ATTRITION TREATMENT; SURFACE NANOCRYSTALLIZATION; PLASTIC-DEFORMATION; ULTRAHIGH-STRENGTH; SINGLE-CRYSTALS; COPPER; TWINS; SLIP; BOUNDARY; CU AB Nanograins and nanotwins are produced in specimens using one processing technique to allow direct comparison in their nanohardnesses. It is shown that the hardness of nanotwins can be close to the lower end of the hardness of nanograins. The resistance of nanotwins to dislocation movement is explained based on elastic interactions between the incident 60 degrees dislocation and the product dislocations. The latter includes one Shockley partial at the twin boundary and one 60 degrees dislocation in the twinned region. The analysis indicates that a resolved shear stress of at least 1.24 GPa is required for a 60 degrees dislocation to pass across a twin boundary in the nickel alloy investigated. It is this high level of the required shear stress coupled with a limited number of dislocations that can be present between two adjacent twin boundaries that provides nanotwins with high resistance to dislocation movement. The model proposed is corroborated by the detailed analysis of high-resolution transmission electron microscopy. (c) 2007 Elsevier B.V. All rights reserved. C1 [Shaw, Leon L.; Villegas, Juan] Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA. [Huang, Jian-Yu] Sandia Natl Labs, CINT, Albuquerque, NM 87123 USA. [Chen, Shuo] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA. RP Shaw, LL (reprint author), Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA. EM leon.shaw@uconn.edu RI Huang, Jianyu/C-5183-2008; Chen, Shuo/H-2491-2011 OI Chen, Shuo/0000-0002-7145-1269 NR 31 TC 13 Z9 15 U1 5 U2 21 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAY 15 PY 2008 VL 480 IS 1-2 BP 75 EP 83 DI 10.1016/j.msea.2007.06.072 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 301FH UT WOS:000255881300010 ER PT J AU Mavrich, TN Jiang, CZ Ioshikhes, IP Li, XY Venters, BJ Zanton, SJ Tomsho, LP Qi, J Glaser, RL Schuster, SC Gilmour, DS Albert, I Pugh, BF AF Mavrich, Travis N. Jiang, Cizhong Ioshikhes, Ilya P. Li, Xiaoyong Venters, Bryan J. Zanton, Sara J. Tomsho, Lynn P. Qi, Ji Glaser, Robert L. Schuster, Stephan C. Gilmour, David S. Albert, Istvan Pugh, B. Franklin TI Nucleosome organization in the Drosophila genome SO NATURE LA English DT Article ID RNA-POLYMERASE-II; HIGH-RESOLUTION MAP; SACCHAROMYCES-CEREVISIAE; TRANSCRIPTION FACTORS; PROMOTER ELEMENT; HISTONE H2A.Z; IN-VIVO; CHROMATIN; GENES; REPLACEMENT AB Comparative genomics of nucleosome positions provides a powerful means for understanding how the organization of chromatin and the transcription machinery co-evolve. Here we produce a high-resolution reference map of H2A.Z and bulk nucleosome locations across the genome of the fly Drosophila melanogaster and compare it to that from the yeast Saccharomyces cerevisiae. Like Saccharomyces, Drosophila nucleosomes are organized around active transcription start sites in a canonical -1, nucleosome-free region, +1 arrangement. However, Drosophila does not incorporate H2A.Z into the -1 nucleosome and does not bury its transcriptional start site in the +1 nucleosome. At thousands of genes, RNA polymerase II engages the +1 nucleosome and pauses. How the transcription initiation machinery contends with the +1 nucleosome seems to be fundamentally different across major eukaryotic lines. C1 [Mavrich, Travis N.; Jiang, Cizhong; Venters, Bryan J.; Zanton, Sara J.; Gilmour, David S.; Pugh, B. Franklin] Penn State Univ, Ctr Gene Regulat, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. [Mavrich, Travis N.; Jiang, Cizhong; Venters, Bryan J.; Zanton, Sara J.; Tomsho, Lynn P.; Qi, Ji; Schuster, Stephan C.; Albert, Istvan; Pugh, B. Franklin] Penn State Univ, Ctr Comparat Genom & Bioinformat, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. [Ioshikhes, Ilya P.] Ohio State Univ, Dept Biomed Informat, Davis Heart & Lung Res Inst, Columbus, OH 43210 USA. [Ioshikhes, Ilya P.] Ohio State Univ, Dept Mol & Cellular Biochem, Davis Heart & Lung Res Inst, Columbus, OH 43210 USA. [Li, Xiaoyong] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Drosophila Transcript Network Project, Genom Div, Berkeley, CA 94720 USA. [Glaser, Robert L.] New York State Dept Hlth, Wadsworth Ctr, Albany, NY 12201 USA. [Glaser, Robert L.] SUNY Albany, Dept Biomed Sci, Albany, NY 12201 USA. RP Pugh, BF (reprint author), Penn State Univ, Ctr Gene Regulat, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. EM bfp2@psu.edu RI QI, JI/E-2797-2016 FU NHGRI NIH HHS [R01 HG004160-01A1, HG004160, R01 HG004160]; NIGMS NIH HHS [GM47477, R01 GM047477] NR 54 TC 433 Z9 444 U1 4 U2 16 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAY 15 PY 2008 VL 453 IS 7193 BP 358 EP U27 DI 10.1038/nature06929 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 301AI UT WOS:000255868400044 PM 18408708 ER PT J AU Mocko, M Muhrer, G Tovesson, F AF Mocko, M. Muhrer, G. Tovesson, F. TI Advantages and limitations of nuclear physics experiments at an ISIS-class spallation neutron source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE spallation reactions; neutron moderator; neutron emission spectrum; Monte Carlo simulation ID SCIENCE AB Nuclear physics experiments have a long history of being conducted on spallation neutron sources. Like other experiments, these measurements take advantage of the identification of the incident neutron energy by the time-of-flight (ToF) technique. However, in some ways these experiments are often in direct conflict with other experiments. Especially in large (ISIS or SNS class) facilities, the design of the source often reflects a compromise between different experimental needs and requirements. It has been a long standing question for nuclear physics experiments how limiting these compromises are and how they can be dealt with. We have therefore calculated the incident neutron energy spectrum, along with the gamma background spectrum, for flight path (FP) 5 at the Los Alamos Neutron Science Center (LANSCE) Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) including a detailed evaluation of the signal shape. We will discuss the advantages and limitations of the nuclear physics experiments at FP-5 in the light of our results. (c) 2008 Elsevier B.V. All rights reserved. C1 [Mocko, M.; Muhrer, G.; Tovesson, F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mocko, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mmocko@lanl.gov RI Mocko, Michal/B-1794-2010; Lujan Center, LANL/G-4896-2012; OI Mocko, Michael/0000-0003-0447-4687 NR 18 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 15 PY 2008 VL 589 IS 3 BP 455 EP 464 DI 10.1016/j.nima.2008.02.100 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 314XP UT WOS:000256842800012 ER PT J AU Millener, DJ AF Millener, D. J. TI Shell-model interpretation of gamma-ray transitions in p-shell hypernuclei SO NUCLEAR PHYSICS A LA English DT Article DE hypernuclei; shell-model ID LAMBDA-BINDING-ENERGIES; HYPER-NUCLEI; MATRIX ELEMENTS; SPECTROSCOPY; LI-7(LAMBDA); B-11(LAMBDA); PREDICTIONS; SIZE; B-10 AB Information on Li-7(Lambda), Be-9(Lambda), B-10(Lambda), B-11(Lambda), C-12(Lambda), N-15(Lambda), and O-16(Lambda) from the Ge detector array Hyperball is interpreted in terms of shell-model calculations that include both A and X configurations with p-shell cores. It is shown that the data puts strong constraints on the spin dependence of the AN effective interaction. (c) 2008 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Millener, DJ (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM millener@bnl.gov NR 47 TC 64 Z9 64 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD MAY 15 PY 2008 VL 804 BP 84 EP 98 DI 10.1016/j.nuclphysa.2008.02.252 PG 15 WC Physics, Nuclear SC Physics GA 304ON UT WOS:000256118900008 ER PT J AU Motoba, T Lanskoy, DE Millener, DJ Yamamoto, Y AF Motoba, T. Lanskoy, D. E. Millener, D. J. Yamamoto, Y. TI Lambda spin-orbit splitting in heavy hypernuclei as deduced from DWIA analyses of the (89)Y(pi(+), K(+))(89)(Lambda)Y reaction SO NUCLEAR PHYSICS A LA English DT Article DE hypernuclei; hyperon-nucleon interactions; shell-model calculations; distorted-wave calculations ID GAMMA-RAY SPECTROSCOPY; PI(+),K+ REACTION; K+ REACTION; STATES; LI-7(LAMBDA); C-12(LAMBDA); PI+ AB By taking nuclear core excitations into account, detailed structure calculations of (89)(Lambda)Y have been performed as a function of the A spin-orbit splitting. The obtained wave functions have been used to estimate the (pi(+), K(+)) reaction cross sections within the distorted-wave impulse approximation (DWIA). A theoretical explanation is given quantitatively for the first time of how to understand the doublet substructure of each major peak observed in medium-heavy hypernuclear production. A small Lambda spin-orbit splitting of around delta(0 f(Lambda)) = 0.2 MeV is deduced, a value consistent with the small Lambda N two-body spin-orbit interactions deduced from gamma-ray measurements in three light hypennuclei. (D 2008 Elsevier B.V. All rights reserved. C1 [Motoba, T.] Osaka Electrocommun Univ, Phys Lab, Neyagawa, Osaka 5728530, Japan. [Lanskoy, D. E.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow 119991, Russia. [Millener, D. J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Yamamoto, Y.] Tsuru Univ, Phys Sect, Yamanashi 4028555, Japan. RP Motoba, T (reprint author), Osaka Electrocommun Univ, Phys Lab, Neyagawa, Osaka 5728530, Japan. EM motoba@isc.osakac.ac.jp RI Lanskoy, Dmitry/D-4033-2012 NR 34 TC 20 Z9 20 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD MAY 15 PY 2008 VL 804 BP 99 EP 115 DI 10.1016/j.nuclphysa.2008.01.026 PG 17 WC Physics, Nuclear SC Physics GA 304ON UT WOS:000256118900009 ER PT J AU Hashimoto, O Nakamura, SN Acha, A Ahmidouch, A Androic, D Asaturyan, A Asaturyan, R Baker, OK Baturin, P Benmokhtar, F Bosted, P Carlini, R Chen, X Christy, M Cole, L Danagoulian, S Daniel, A Dharmawardane, V Egiyan, K Elaasar, M Ent, R Fenker, H Fujii, Y Furic, M Gan, L Gaskell, D Gasparian, A Gibson, EF Gueye, P Halkyard, R Honda, D Horn, T Hu, B Hu, S Hungerford, EV Ispiryan, M Johnston, K Jones, M Kalantarians, N Kaneta, M Kato, F Kato, S Kawama, D Keppel, C Li, Y Luo, W Mack, D Margaryan, A Marikyan, G Maruyama, N Matsumura, A Miyoshi, T Mkrtchyan, A Mkrtchyan, H Navasardyan, T Niculescu, G Niculescu, MI Nomura, H Nonaka, K Ohtani, A Okayasu, Y Pamela, P Perez, N Petkovic, T Randeniya, S Reinhold, J Rivera, R Roche, J Rodriguez, VM Sato, Y Seva, T Tang, L Simicevic, N Smith, G Sumihama, M Song, Y Tadevosyan, V Takahashi, T Tamura, H Tvaskis, V Vulcan, W Wang, B Wells, S Wood, S Yan, C Yuan, L Zamkochian, S AF Hashimoto, O. Nakamura, S. N. Acha, A. Ahmidouch, A. Androic, D. Asaturyan, A. Asaturyan, R. Baker, O. K. Baturin, P. Benmokhtar, F. Bosted, P. Carlini, R. Chen, X. Christy, M. Cole, L. Danagoulian, S. Daniel, A. Dharmawardane, V. Egiyan, K. Elaasar, M. Ent, R. Fenker, H. Fujii, Y. Furic, M. Gan, L. Gaskell, D. Gasparian, A. Gibson, E. F. Gueye, P. Halkyard, R. Honda, D. Horn, T. Hu, B. Hu, S. Hungerford, Ed V. Ispiryan, M. Johnston, K. Jones, M. Kalantarians, N. Kaneta, M. Kato, F. Kato, S. Kawama, D. Keppel, C. Li, Y. Luo, W. Mack, D. Margaryan, A. Marikyan, G. Maruyama, N. Matsumura, A. Miyoshi, T. Mkrtchyan, A. Mkrtchyan, H. Navasardyan, T. Niculescu, G. Niculescu, M. -I. Nomura, H. Nonaka, K. Ohtani, A. Okayasu, Y. Pamela, P. Perez, N. Petkovic, T. Randeniya, S. Reinhold, J. Rivera, R. Roche, J. Rodriguez, V. M. Sato, Y. Seva, T. Tang, L. Simicevic, N. Smith, G. Sumihama, M. Song, Y. Tadevosyan, V. Takahashi, T. Tamura, H. Tvaskis, V. Vulcan, W. Wang, B. Wells, S. Wood, S. Yan, C. Yuan, L. Zamkochian, S. TI Hypernuclear spectroscopy program at JLab Hall C SO NUCLEAR PHYSICS A LA English DT Article AB Hypernuclear production by the (e, e'K(+)) reaction has unique advantages in hypernuclear spectroscopy of the S = -1 regime. The second-generation spectroscopy experiment on (12)C, (7)Li and (21)Si targets has been recently carried out at JLab Hall C with a new experimental configuration (Tilt method) and also using a new high-resolution kaon spectrometer (HKS). The experiment is described and preliminary results are presented together with the empasis of significance of the (e, e' K(+)) reaction for A hypernuclear spectroscopy and its future prospects. (c) 2008 Elsevier B.V. All rights reserved. C1 [Hashimoto, O.; Nakamura, S. N.; Fujii, Y.; Honda, D.; Kaneta, M.; Kato, F.; Kawama, D.; Maruyama, N.; Matsumura, A.; Nomura, H.; Nonaka, K.; Ohtani, A.; Okayasu, Y.; Sumihama, M.; Tamura, H.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Baker, O. K.; Christy, M.; Cole, L.; Gueye, P.; Keppel, C.; Tang, L.; Yuan, L.] Hampton Univ, Hampton, VA 23668 USA. [Acha, A.; Baturin, P.; Pamela, P.; Perez, N.; Reinhold, J.; Rivera, R.] Florida Int Univ, Miami, FL 33199 USA. [Daniel, A.; Hungerford, Ed V.; Ispiryan, M.; Kalantarians, N.; Li, Y.; Miyoshi, T.; Randeniya, S.; Rodriguez, V. M.] Univ Houston, Houston, TX 77204 USA. [Bosted, P.; Carlini, R.; Dharmawardane, V.; Ent, R.; Fenker, H.; Gaskell, D.; Jones, M.; Mack, D.; Roche, J.; Smith, G.; Tvaskis, V.; Vulcan, W.; Wood, S.; Yan, C.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Androic, D.; Furic, M.; Petkovic, T.; Seva, T.] Univ Zagreb, Zagreb 41000, Croatia. [Ahmidouch, A.; Danagoulian, S.; Gasparian, A.] N Carolina Agr & Tech State Univ, Greensboro, NC 27411 USA. [Asaturyan, A.; Asaturyan, R.; Egiyan, K.; Margaryan, A.; Marikyan, G.; Mkrtchyan, A.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.; Zamkochian, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Halkyard, R.; Johnston, K.; Simicevic, N.; Wells, S.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Niculescu, G.; Niculescu, M. -I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Benmokhtar, F.; Horn, T.] Univ Maryland, College Pk, MD 20742 USA. [Chen, X.; Hu, B.; Hu, S.; Luo, W.; Song, Y.; Wang, B.] Lanzhou Univ, Inst Nucl Phys, Lanzhou 730000, Peoples R China. [Elaasar, M.] So Univ New Orleans, New Orleans, LA 70126 USA. [Gan, L.] Univ N Carolina, Wilmington, NC 28403 USA. [Gibson, E. F.] Calif State Univ Sacramento, Sacramento, CA 95819 USA. [Kato, S.] Yamagata Univ, Yamagata 9908560, Japan. [Sato, Y.; Takahashi, T.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan. RP Hashimoto, O (reprint author), Tohoku Univ, Sendai, Miyagi 9808578, Japan. EM hashimot@lambda.phys.tohoku.ac.jp RI Androic, Darko/A-7482-2008; Fujii, Yu/D-3413-2015 OI Fujii, Yu/0000-0001-6625-2241 NR 16 TC 12 Z9 12 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD MAY 15 PY 2008 VL 804 BP 125 EP 138 DI 10.1016/j.nuclphysa.2008.01.029 PG 14 WC Physics, Nuclear SC Physics GA 304ON UT WOS:000256118900011 ER PT J AU Luo, ZC Wang, ZG Yuan, ZJ Dua, CW Pan, YT AF Luo, Zhongchi Wang, Zhenguo Yuan, Zhijia Dua, Congwu Pan, Yingtian TI Optical coherence Doppler tomography quantifies laser speckle contrast imaging for blood flow imaging in the rat cerebral cortex SO OPTICS LETTERS LA English DT Article ID FUNCTIONAL ACTIVATION AB A dual-imaging modality is demonstrated for high-resolution quantitative imaging of local cerebral blood flow in the rat cortex by combining simultaneous spectral-domain Doppler optical coherence tomography (SDOCT) and full-field laser speckle contrast imaging (LSCI). Preliminary studies in tissue flow phantom and cocaine-induced cerebral blood flow changes indicated that by correlating coregistered cortical arterial blood flow, the relative measurement of flow changes by LSCI could be accurately calibrated by the absolute flow imaging provided by SDOCT (least square fit, r(2) approximate to 0.96). Quantitative LSCI of cerebral blood flow is crucial to the quantitative analyses of the spatiotemporal hemodynamics of functional brain activations and thus improved understanding of neural process. (C) 2008 Optical Society of America. C1 [Luo, Zhongchi; Wang, Zhenguo; Yuan, Zhijia; Pan, Yingtian] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Dua, Congwu] SUNY Stony Brook, Dept Anesthesiol, Stony Brook, NY 11794 USA. [Luo, Zhongchi; Dua, Congwu] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Luo, ZC (reprint author), SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. EM congwu@bnl.gov; yingtian.pan@sunysb.edu RI yuan, zhijia/F-4314-2011 FU NIDA NIH HHS [K25-DA021200]; NIDDK NIH HHS [2R01-DK059265, R01-DK068401] NR 9 TC 15 Z9 16 U1 1 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD MAY 15 PY 2008 VL 33 IS 10 BP 1156 EP 1158 DI 10.1364/OL.33.001156 PG 3 WC Optics SC Optics GA 310HW UT WOS:000256520500041 PM 18483544 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Benerjee, S Benerjee, P Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Basslerr, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calfayan, S Calvet, S Cammin, J Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chan, K Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elmsheuser, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD GregoreS, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunendahl, MW Guo, J Guo, F Gutierrez, P Gutierrez, G Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jebeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kajfasz, E Kalinin, AM Kalk, JR Kalk, JM Kappler, S Karmanov, D Kasper, P Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kirri, H Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kozelov, AV Krop, D Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Leveque, J Lewis, P Li, J Li, QZ Li, L Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobo, L Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendes, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, J Meyer, A Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, J Snow, GR Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strauss, E Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, E Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, S Uvarov, L Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weber, G Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zierninska, D Zierninski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Benerjee, S. Benerjee, P. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Basslerr, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calfayan, S. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chan, K. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elmsheuser, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. GregoreS, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenendahl, M. W. Guo, J. Guo, F. Gutierrez, P. Gutierrez, G. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jebeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kajfasz, E. Kalinin, A. M. Kalk, J. R. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kirri, H. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kozelov, A. V. Krop, D. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Li, L. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendes, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, J. Meyer, A. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, J. Snow, G. R. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Strauss, E. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, E. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, S. Uvarov, L. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weber, G. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zierninska, D. Zierninski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI A combined search for the standard model Higgs boson at root S=1.96 TeV SO PHYSICS LETTERS B LA English DT Article ID HIGH-ENERGY-PHYSICS AB We present new results of the search for WH --> lvb (b) over bar production in p (p) over bar collisions at a center-of-mass energy of root S = 1.96 TeV, based on a dataset with integrated luminosity of 0.44 fb(-1). We combine these new results with previously published searches by the DO collaboration, for WH and ZH production analyzed in the E(T)b (b) over bar final state, for ZH (--> l(+)l(-)b (b) over bar) production, for WH (-->. WWW) production, and for H (--> W W) direct production. No signal-like excess is observed either in the W H analysis or in the combination of all D0 Higgs boson analyses. We set 95% C.L. (expected) upper limits on sigma(p (p) over bar --> WH) x B(H --> b (b) over bar) ranging from 1.6 (2.2) ph to 1.9 (3.3) pb for Higgs boson masses between 105 and 145 GeV, to be compared to the theoretical prediction of 0.13 pb for a Standard Model (SM) Higgs boson with mass in m(H) = 115 GeV. After combination with the other DO Higgs boson searches, we obtain for in H = 115 GeV an observed (expected) limit 8.5 (12.1) times higher than the SM predicted Higgs boson production cross section. For m(H) = 160 GeV, the corresponding observed (expected) ratio is 10.2 (9.0). (C) 2008 Elsevier B.V. All rights reserved. C1 Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. Univ Buenos Aires, Buenos Aires, DF, Argentina. Centro Brasileiro Pesquisas Fis, LAFEX, Rio de Janeiro, Brazil. Univ Estado Rio De Janeiro, Rio de Janeiro, Brazil. Univ Fed ABC, Santo Andre, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Univ Sci & Technol China, Hefei, Peoples R China. Univ Ios Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Miditerranee, CNRS, IN2P3, CPPM, Grenoble, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. CEA, DAPNIA, Serv Phys Particules, Saclay, France. Univ Louis Pasteur, IPHC, Strasbourg, France. Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. Univ Lyon, Lyon, France. Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul, South Korea. SungKyunKwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. FOM Inst NIKHEF, Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. Joint Inst Nucl Res, Dubna, Russia. Inst Theoret & Expt Phys, Moscow, Russia. Moscow State Moscow, Moscow, Russia. Inst High Energy Phys, Prorvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Uppsala Univ, Uppsala, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Royal Inst Technol, Stockholm, Sweden. Lund Univ, Lund, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Bernardi, G (reprint author), Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. EM gregorio@in2p3.fr RI Fisher, Wade/N-4491-2013; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012 OI Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; NR 25 TC 14 Z9 14 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD MAY 15 PY 2008 VL 663 IS 1-2 BP 26 EP 36 DI 10.1016/j.physletb.2008.02.069 PG 11 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 313MI UT WOS:000256744300006 ER PT J AU Cardia, JP Eldo, J Xia, J O'Day, EM Tsuruta, H Gryncel, KR Kantrowitz, ER AF Cardia, James P. Eldo, Joby Xia, Jiarong O'Day, Elizabeth M. Tsuruta, Hiro Gryncel, Kimberly R. Kantrowitz, Evan R. TI Use of L-asparagine and N-phosphonacetyl-L-asparagine to investigate the linkage of catalysis and homotropic cooperativity in E. coli aspartate transcarbomoylase SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE catalysis; domain closure; allostery; bisubstrate analog; small-angle X-ray scattering ID BISUBSTRATE ANALOG N-(PHOSPHONACETYL)-L-ASPARTATE; ALLOSTERIC TRANSITION; DISC ELECTROPHORESIS; DOMAIN CLOSURE; TRANSCARBAMYLASE; CARBAMOYLTRANSFERASE; SUBSTRATE; BINDING; ENZYME; CRYSTALLOGRAPHY AB The mechanism of domain closure and the allosteric transition of Escherichia coli aspartate transcarbamoylase (ATCase) are investigated using L-Asn, in the presence of carbamoyl phosphate (CP), and N-phosphonacetyl-L-asparagine (PASN). ATCase was found to catalyze the carbamoylation of L-Asn with a K-m of 122 mM and a maximal velocity 10-fold lower than observed with the natural substrate, L-Asp. As opposed to L-Asp, no cooperativity was observed with respect to L-Asn. Time-resolved small-angle X-ray scattering (SAXS) and fluorescence experiments revealed that the combination of CP and L-Asn did not convert the enzyme from the T to the R state. PASN was found to be a potent inhibitor of ATCase exhibiting a K-D of 8.8 mu M. SAXS experiments showed that PASN was able to convert the entire population of molecules to the R state. Analysis of the crystal structure of the enzyme in the presence of PASN revealed that the binding of PASN was similar to that of the R-state complex of ATCase with N-phosphonaceyl-L-aspartate, another potent inhibitor of the enzyme. The linking of CP and L-Asn into one molecule, PASN, correctly orients the asparagine moiety in the active site to induce domain closure and the allosteric transition. This entropic effect allows for the high affinity binding of PASN. However, the binding of L-Asn, in the presence of a saturating concentration of CP, does not induce the closure of the two domains of the catalytic chain, nor does the enzyme undergo the transition to the high-activity high-affinity R structure. These results imply that Arg229, which interacts with the beta-carboxylate of L-Asp, plays a critical role in the orientation of L-Asp in the active site and demonstrates the requirement of the beta-carboxylate of L-Asp in the mechanism of domain closure and the allosteric transition in E. coli ATCase. C1 [Cardia, James P.; Eldo, Joby; Xia, Jiarong; O'Day, Elizabeth M.; Gryncel, Kimberly R.; Kantrowitz, Evan R.] Boston Coll, Merkert Chem Ctr, Dept Chem, Chestnut Hill, MA 02467 USA. [Tsuruta, Hiro] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Kantrowitz, ER (reprint author), Boston Coll, Merkert Chem Ctr, Dept Chem, Chestnut Hill, MA 02467 USA. EM evan.kantrowitz@bc.edu FU NCRR NIH HHS [P41RR01209]; NIGMS NIH HHS [GM26237] NR 30 TC 1 Z9 1 U1 1 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 EI 1097-0134 J9 PROTEINS JI Proteins PD MAY 15 PY 2008 VL 71 IS 3 BP 1088 EP 1096 DI 10.1002/prot.21760 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 292MC UT WOS:000255269200004 PM 18004787 ER PT J AU Xu, QP Kozbial, P McMullan, D Krishna, SS Brittain, SM Ficarro, SB DiDonato, M Miller, MD Abdubek, P Axelrod, HL Chiu, HJ Clayton, T Duan, LA Elsliger, MA Feuerhelm, J Grzechnik, SK Hale, J Han, GW Jaroszewski, L Klock, HE Morse, AT Nigoghossian, E Paulsen, J Reyes, R Rife, CL van den Bedem, H White, A Hodgson, KO Wooley, J Deacon, AM Godzik, A Lesley, SA Wilson, IA AF Xu, Qingping Kozbial, Piotr McMullan, Daniel Krishna, S. Sri Brittain, Scott M. Ficarro, Scott B. DiDonato, Michael Miller, Mitchell D. Abdubek, Polat Axelrod, Herbert L. Chiu, Hsiu-Ju Clayton, Thomas Duan, Lian Elsliger, Marc-Andre Feuerhelm, Julie Grzechnik, Slawomir K. Hale, Joanna Han, Gye Won Jaroszewski, Lukasz Klock, Heath E. Morse, Andrew T. Nigoghossian, Edward Paulsen, Jessica Reyes, Ron Rife, Christopher L. van den Bedem, Henry White, Aprilfawn Hodgson, Keith O. Wooley, John Deacon, Ashley M. Godzik, Adam Lesley, Scott A. Wilson, Ian A. TI Crystal structure of an ADP-ribosylated protein with a cytidine deaminase-like fold, but unknown function (TM1506), from Thermotoga maritima at 2.70 angstrom resolution SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE post-translational modification; structural genomics; nucleotide binding; thermophile ID STRUCTURE VALIDATION; QUATERNARY STRUCTURE; NUCLEIC-ACIDS; REFINEMENT; INFERENCE; BEAMLINE; GENOMICS; GEOMETRY; PROGRAM; SYSTEM C1 [Xu, Qingping; Kozbial, Piotr; McMullan, Daniel; Krishna, S. Sri; DiDonato, Michael; Miller, Mitchell D.; Abdubek, Polat; Axelrod, Herbert L.; Chiu, Hsiu-Ju; Clayton, Thomas; Duan, Lian; Elsliger, Marc-Andre; Feuerhelm, Julie; Grzechnik, Slawomir K.; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Klock, Heath E.; Morse, Andrew T.; Nigoghossian, Edward; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; van den Bedem, Henry; White, Aprilfawn; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.] Scripps Res Inst, JCSG, La Jolla, CA 92037 USA. [Xu, Qingping; Miller, Mitchell D.; Axelrod, Herbert L.; Chiu, Hsiu-Ju; Reyes, Ron; Rife, Christopher L.; van den Bedem, Henry; Hodgson, Keith O.; Deacon, Ashley M.] Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. [Kozbial, Piotr; Krishna, S. Sri; Jaroszewski, Lukasz; Godzik, Adam] Burnham Inst Med Res, La Jolla, CA USA. [McMullan, Daniel; Brittain, Scott M.; DiDonato, Michael; Abdubek, Polat; Feuerhelm, Julie; Hale, Joanna; Klock, Heath E.; Nigoghossian, Edward; Paulsen, Jessica; White, Aprilfawn; Lesley, Scott A.] Novartis Res Fdn, Genom Inst, San Diego, CA USA. [Krishna, S. Sri; Duan, Lian; Grzechnik, Slawomir K.; Jaroszewski, Lukasz; Morse, Andrew T.; Wooley, John; Godzik, Adam] Univ Calif San Diego, Ctr Res Biol Syst, La Jolla, CA 92093 USA. [Ficarro, Scott B.] Dana Farber Canc Inst, Boston, MA 02115 USA. RP Wilson, IA (reprint author), Scripps Res Inst, JCSG, BCC206,10550 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM wilson@scripps.edu RI subramanian, srikrishna/D-5004-2009; Godzik, Adam/A-7279-2009 OI subramanian, srikrishna/0000-0002-3263-1048; Godzik, Adam/0000-0002-2425-852X FU NIGMS NIH HHS [P50 GM062411, P50 GM62411, U54 GM074898] NR 33 TC 4 Z9 4 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 EI 1097-0134 J9 PROTEINS JI Proteins PD MAY 15 PY 2008 VL 71 IS 3 BP 1546 EP 1552 DI 10.1002/prot.21992 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 292MC UT WOS:000255269200041 PM 18275082 ER PT J AU Kozbial, P Xu, QP Chiu, HJ McMullan, D Krishna, SS Miller, MD Abdubek, P Acosta, C Astakhova, T Axelrod, HL Carlton, D Clayton, T Deller, M Duan, L Elias, Y Elsliger, MA Feuerhelm, J Grzechnik, SK Hale, J Han, GW Jaroszewski, L Jin, KK Klock, HE Knuth, MW Koesema, E Kumar, A Marciano, D Morse, AT Murphy, KD Nigoghossian, E Okach, L Oommachen, S Reyes, R Rife, CL Spraggon, G Trout, CV van den Bedem, H Weekes, D White, A Wolf, G Zubieta, C Hodgson, KO Wooley, J Deacon, AM Godzik, A Lesley, SA WilSon, IA AF Kozbial, Piotr Xu, Qingping Chiu, Hsiu-Ju McMullan, Daniel Krishna, S. Sri Miller, Mitchell D. Abdubek, Polat Acosta, Claire Astakhova, Tamara Axelrod, Herbert L. Carlton, Dennis Clayton, Thomas Deller, Marc Duan, Lian Elias, Ylva Elsliger, Marc-Andre Feuerhelm, Julie Grzechnik, Slawomir K. Hale, Joanna Han, Gye Won Jaroszewski, Lukasz Jin, Kevin K. Klock, Heath E. Knuth, Mark W. Koesema, Eric Kumar, Abhinav Marciano, David Morse, Andrew T. Murphy, Kevin D. Nigoghossian, Edward Okach, Linda Oommachen, Silvya Reyes, Ron Rife, Christopher L. Spraggon, Glen Trout, Christina V. van den Bedem, Henry Weekes, Dana White, Aprilfawn Wolf, Guenter Zubieta, Chloe Hodgson, Keith O. Wooley, John Deacon, Ashley M. Godzik, Adam Lesley, Scott A. WilSon, Ian A. TI Crystal structures of MW1337R and lin2004: Representatives of a novel protein family that adopt a four-helical bundle fold SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE domains of unknown function; structural Genomics; DNA processing; RecU; Pfam ID BACILLUS-SUBTILIS; CHROMOSOME SEGREGATION; STRUCTURE VALIDATION; NUCLEIC-ACIDS; REFINEMENT; SPORULATION; GEOMETRY; DIVIVA; SYSTEM; TOOLS C1 [Kozbial, Piotr; Xu, Qingping; Chiu, Hsiu-Ju; McMullan, Daniel; Krishna, S. Sri; Miller, Mitchell D.; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Clayton, Thomas; Deller, Marc; Duan, Lian; Elias, Ylva; Elsliger, Marc-Andre; Feuerhelm, Julie; Grzechnik, Slawomir K.; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Koesema, Eric; Kumar, Abhinav; Marciano, David; Morse, Andrew T.; Murphy, Kevin D.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Reyes, Ron; Rife, Christopher L.; Spraggon, Glen; Trout, Christina V.; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Wolf, Guenter; Zubieta, Chloe; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; WilSon, Ian A.] Scripps Res Inst, JCSG, La Jolla, CA 92037 USA. [Kozbial, Piotr; Krishna, S. Sri; Jaroszewski, Lukasz; Weekes, Dana; Godzik, Adam] Burnham Inst Med Res, La Jolla, CA USA. [Xu, Qingping; Chiu, Hsiu-Ju; Miller, Mitchell D.; Axelrod, Herbert L.; Jin, Kevin K.; Kumar, Abhinav; Oommachen, Silvya; Reyes, Ron; Rife, Christopher L.; van den Bedem, Henry; Wolf, Guenter; Zubieta, Chloe; Hodgson, Keith O.; Deacon, Ashley M.] Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. [McMullan, Daniel; Abdubek, Polat; Acosta, Claire; Feuerhelm, Julie; Hale, Joanna; Klock, Heath E.; Knuth, Mark W.; Koesema, Eric; Nigoghossian, Edward; Okach, Linda; White, Aprilfawn; Lesley, Scott A.] Novartis Res Fdn, Genom Inst, San Diego, CA USA. [Krishna, S. Sri; Duan, Lian; Grzechnik, Slawomir K.; Jaroszewski, Lukasz; Morse, Andrew T.; Wooley, John; Godzik, Adam] Univ Calif San Diego, Ctr Res Biol Syst, La Jolla, CA 92093 USA. RP WilSon, IA (reprint author), Scripps Res Inst, JCSG, BCC206,10550 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM wilson@scripps.edu RI subramanian, srikrishna/D-5004-2009; Godzik, Adam/A-7279-2009; OI subramanian, srikrishna/0000-0002-3263-1048; Godzik, Adam/0000-0002-2425-852X; Zubieta, Chloe/0000-0003-4558-9333; van den Bedem, Henry/0000-0003-2358-841X FU NIGMS NIH HHS [U54 GM074898, P50 GM062411, P50 GM62411] NR 32 TC 3 Z9 3 U1 0 U2 4 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD MAY 15 PY 2008 VL 71 IS 3 BP 1589 EP 1596 DI 10.1002/prot.22020 PG 8 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 292MC UT WOS:000255269200047 PM 18324683 ER PT J AU Brown, HE Diuk-Wasser, MA Guan, Y Caskey, S Fish, D AF Brown, Heidi E. Diuk-Wasser, Maria A. Guan, Yongtao Caskey, Susan Fish, Durland TI Comparison of three satellite sensors at three spatial scales to predict larval mosquito presence in Connecticut wetlands SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE hyperion; ASTER; Disease Water Stress Index; mosquito habitat ID LYME-DISEASE; MALARIA TRANSMISSION; VEGETATION INDEXES; WATER INDEX; REFLECTANCE; HYPERION; RISK; SPACE; DISCRIMINATION; EPIDEMIOLOGY AB Satellite imagery can be used to identify suitable habitat for mosquitoes in areas inaccessible or lacking sufficient ground-based information about the environment but current applications are limited by the spatial and spectral resolution of the sensors. Here, models used to compare prediction of the presence of Anopheles punctipennis larvae in Connecticut wetlands were built using stepwise logistic regression and compared by Akaike's Information Criterion (AIC). Vegetation indices were extracted from three satellite sensor scenes (Hyperion, ASTER and Landsat-TM) at three scales (pixel, wetland perimeter, and wetland area). The best models were developed using ASTER (ROC=0.80, p=0.01, AIC 65.37) and Hyperion (ROC=0.81,p<0.01, AIC 66.40) at the wetland area level. The Disease Water Stress Index (DWSI), a measure of leaf water content, and Normalized Difference Vegetation Index (NDVI) were significant in many of the models. This comparison of satellite based models demonstrates higher spatial and spectral resolution of ASTER and Hyperion resulted in more parsimonious models than Landsat-TM models. The need for continued research and development into sensors with increased spatial and spectral resolution and the development of mosquito specific indices is discussed. (C) 2007 Elsevier Inc. All rights reserved. C1 [Brown, Heidi E.; Diuk-Wasser, Maria A.; Guan, Yongtao; Fish, Durland] Yale Univ, Sch Publ Hlth, New Haven, CT 06520 USA. [Caskey, Susan] Sandia Natl Labs, Livermore, CA 94550 USA. RP Fish, D (reprint author), LEPH 600,60 Coll St, New Haven, CT 06511 USA. EM durland.fish@yale.edu OI Brown, Heidi/0000-0001-8578-5510 NR 52 TC 12 Z9 12 U1 1 U2 16 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAY 15 PY 2008 VL 112 IS 5 BP 2301 EP 2308 DI 10.1016/j.rse.2007.10.005 PG 8 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 293YG UT WOS:000255370700030 ER PT J AU Zhang, Y Pint, BA Cooley, KM Haynes, JA AF Zhang, Y. Pint, B. A. Cooley, K. M. Haynes, J. A. TI Formation of aluminide coatings on Fe-based alloys by chemical vapor deposition SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE chemical vapor deposition; aluminide coatings; ferritic steel; austenitic steel; water vapor ID AUSTENITIC STAINLESS-STEELS; STEAM-TURBINE COMPONENTS; OXIDATION BEHAVIOR; DIFFUSION COATINGS; WATER-VAPOR; IRON ALUMINIDES; CVD; INTERDIFFUSION; PERFORMANCE; TECHNOLOGY AB Aluminide and Al-containing coatings were synthesized on commercial ferritic (P91) and austenitic (304L) alloys via a laboratory chemical vapor deposition (CVD) procedure for rigorous control over coating composition, purity and microstructure. The effect of the CVD aluminizing parameters such as temperature, Al activity, and post-aluminizing anneal on coating growth was investigated. Two procedures involving different Al activities were employed with and without including Cr-Al pellets in the CVD reactor to produce coatings with suitable thickness and composition for coating performance evaluation. The phase constitution of the as-synthesized coatings was assessed with the aid of a combination of X-ray diffraction, electron probe microanalysis, and existing phase diagrams. The mechanisms of formation of these CVD coatings on the Fe-based alloys are discussed, and compared with nickel aluminide coatings on Ni-base superalloys. In addition, Cr-Al pellets were replaced with Fe-Al metals in some aluminizing process runs and similar coatings were achieved. (C) 2008 Elsevier B.V. All rights reserved. C1 [Zhang, Y.] Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN 38505 USA. [Pint, B. A.; Cooley, K. M.; Haynes, J. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Zhang, Y (reprint author), Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN 38505 USA. EM yzhang@tntech.edu RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 47 TC 29 Z9 31 U1 1 U2 21 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD MAY 15 PY 2008 VL 202 IS 16 BP 3839 EP 3849 DI 10.1016/j.surfcoat.2008.01.023 PG 11 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 300KB UT WOS:000255821600011 ER PT J AU Miller, JB Morreale, BD Gellman, AJ AF Miller, James B. Morreale, Bryan D. Gellman, Andrew J. TI The effect of adsorbed sulfur on surface segregation in a polycrystalline Pd70Cu30 alloy SO SURFACE SCIENCE LA English DT Article DE surface segregation; palladium-copper alloy; X-ray photoelectron spectroscopy; low energy ion; scattering spectroscopy ID ENERGY ION-SCATTERING; ELEVATED-TEMPERATURES; HYDROGEN PERMEANCE; PALLADIUM; COSEGREGATION; PREDICTION; PRESSURES; MEMBRANES; PDCU(110); PD AB Surface segregation in alloys can be influenced by the presence of adsorbed species. In this work, the effect of adsorbed sulfur on surface segregation in a Pd70Cu30 alloy was studied for sulfur coverages from zero through saturation and for temperatures from 400 to 1000 K. X-ray photoemission spectroscopy (XPS) was used to determine the alloy composition in the near-surface region (similar to 7 atomic layers) and low energy ion scattering spectroscopy (LEISS) was used to probe the composition of the topmost atomic layer of the alloy. Surface segregation was observed to depend on both the presence of adsorbed sulfur and heat-treatment history. The near-surface region of the clean alloy was enriched in Pd relative to the bulk, but the topmost atomic layer was enriched in Cu. Adsorbed sulfur caused a reversal of the Cu enrichment of the topmost surface, resulting in a top layer that contained only Pd and S atoms. Segregation reversal may be driven by the formation of thermodynamically favored Pd-S bonds at the terminating surface of the alloy. (C) 2008 Elsevier B.V. All rights reserved. C1 [Miller, James B.; Morreale, Bryan D.; Gellman, Andrew J.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Miller, James B.; Gellman, Andrew J.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Miller, JB (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM jbmiller@andrew.cmu.edu RI Gellman, Andrew/M-2487-2014 OI Gellman, Andrew/0000-0001-6618-7427 NR 35 TC 19 Z9 19 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAY 15 PY 2008 VL 602 IS 10 BP 1819 EP 1825 DI 10.1016/j.susc.2008.03.018 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 314NK UT WOS:000256815900015 ER PT J AU Rankin, RB Hao, SQ Sholl, DS Johnson, JK AF Rankin, Rees B. Hao, Shiqiang Sholl, David S. Johnson, J. Karl TI DFT characterization of adsorption and diffusion mechanisms of H, As, S, and Se on the zinc orthotitanate(010) surface SO SURFACE SCIENCE LA English DT Article DE density functional calculations; oxides; adsorption; zinc orthotitanate ID HOT GAS DESULFURIZATION; AUGMENTED-WAVE METHOD; METAL-OXIDE SORBENTS; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; ULTRASOFT PSEUDOPOTENTIALS; COAL-GASIFICATION; SADDLE-POINTS; REDUCTION; ADLAYERS AB Zinc orthotitanate (ZTO) is a promising material for removal of multiple contaminant species from fuel gas streams. The ZTO(010) surface, which consists of both oxygen rich and metal rich sides, was previously predicted to be the lowest energy ZTO surface. We present density functional theory calculations examining adsorption and diffusion of atomic S, Se, As, and H on the oxygen rich and metal rich ZTO(010) surfaces. S and Se share similar bonding and diffusion mechanisms on the metal rich ZTO(010) surface, whereas As and H bind in similar ways to the oxygen rich surface. S and Se have adsorption sites involving Zn:Zn bridges whereas As and H prefer to bind at sites involving 0:0 bridges on the surface. H forms a hydroxyl-like bond with length of 1.0 angstrom. Se and S have small activation energy barriers for atomic diffusion from the lowest energy adsorption site to the nearest low energy site. At temperatures around 800 K we predict from our results that Se and S are approximately equal in diffusivity while being far more mobile on the surface than either H or As. (C) 2008 Elsevier B.V. All rights reserved. C1 [Rankin, Rees B.; Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Rankin, Rees B.; Sholl, David S.; Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Hao, Shiqiang; Sholl, David S.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Johnson, JK (reprint author), Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. EM karlj@pitt.edu RI Johnson, Karl/E-9733-2013 OI Johnson, Karl/0000-0002-3608-8003 NR 27 TC 1 Z9 3 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAY 15 PY 2008 VL 602 IS 10 BP 1877 EP 1882 DI 10.1016/j.susc.2008.03.037 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 314NK UT WOS:000256815900024 ER PT J AU Anderson, JA Lorenz, CD Travesset, A AF Anderson, J. A. Lorenz, C. D. Travesset, A. TI Micellar crystals in solution from molecular dynamics simulations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TRIBLOCK COPOLYMER MICELLES; ANGLE NEUTRON-SCATTERING; AQUEOUS-SOLUTION; PHASE-BEHAVIOR; POLYMER-SOLUTIONS; BLOCK-COPOLYMERS; TRANSITION; ORDER; BCC; SURFACTANTS AB Polymers with both soluble and insoluble blocks typically self-assemble into micelles, which are aggregates of a finite number of polymers where the soluble blocks shield the insoluble ones from contact with the solvent. Upon increasing concentration, these micelles often form gels that exhibit crystalline order in many systems. In this paper, we present a study of both the dynamics and the equilibrium properties of micellar crystals of triblock polymers using molecular dynamics simulations. Our results show that equilibration of single micelle degrees of freedom and crystal formation occur by polymer transfer between micelles, a process that is described by transition state theory. Near the disordered (or melting) transition, bcc lattices are favored for all triblocks studied. Lattices with fcc ordering are also found but only at lower kinetic temperatures and for triblocks with short hydrophilic blocks. Our results lead to a number of theoretical considerations and suggest a range of implications to experimental systems with a particular emphasis on Pluronic polymers. (C) 2008 American Institute of Physics. C1 [Anderson, J. A.; Travesset, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Anderson, J. A.; Travesset, A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Lorenz, C. D.] Kings Coll London, Mat Res Grp, Div Engn, London WC2R 2LS, England. RP Anderson, JA (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM joaander@iastate.edu RI Anderson, Joshua/H-4262-2011; Lorenz, Christian/A-6996-2017 OI Lorenz, Christian/0000-0003-1028-4804 NR 44 TC 20 Z9 20 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 14 PY 2008 VL 128 IS 18 AR 184906 DI 10.1063/1.2913522 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 302QJ UT WOS:000255983500062 PM 18532847 ER PT J AU Dotson, TC Heffernan, JV Budzien, J Dotson, KT Avila, F Limmer, DT Mccoy, DT Mccoy, JD Adolf, DB AF Dotson, Taylor C. Heffernan, Julieanne V. Budzien, Joanne Dotson, Keenan T. Avila, Francisco Limmer, David T. McCoy, Daniel T. McCoy, John D. Adolf, Douglas B. TI Rheological complexity in simple chain models SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; GLASS-FORMING SUBSTANCES; ALPHA-RELAXATION PROCESS; DIELECTRIC-RELAXATION; COUPLING MODEL; POLYMER MELTS; SUPERCOOLED LIQUIDS; LIGHT-SCATTERING; NONEXPONENTIAL RELAXATIONS; TRANSITION TEMPERATURE AB Dynamical properties of short freely jointed and freely rotating chains are studied using molecular dynamics simulations. These results are combined with those of previous studies, and the degree of rheological complexity of the two models is assessed. New results are based on an improved analysis procedure of the rotational relaxation of the second Legendre polynomials of the end-to-end vector in terms of the Kohlrausch-Williams-Watts (KWW) function. Increased accuracy permits the variation of the KWW stretching exponent beta to be tracked over a wide range of state points. The smoothness of beta as a function of packing fraction eta is a testimony both to the accuracy of the analytical methods and the appropriateness of (eta(0)-eta) as a measure of the distance to the ideal glass transition at eta(0). Relatively direct comparison is made with experiment by viewing beta as a function of the KWW relaxation time tau(KWW). The simulation results are found to be typical of small molecular glass formers. Several manifestations of rheological complexity are considered. First, the proportionality of alpha-relaxation times is explored by the comparison of translational to rotational motion (i.e., the Debye-Stokes-Einstein relation), of motion on different length scales (i.e., the Stokes-Einstein relation), and of rotational motion at intermediate times to that at long time. Second, the range of time-temperature superposition master curve behavior is assessed. Third, the variation of beta across state points is tracked. Although no particulate model of a liquid is rigorously rheologically simple, we find freely jointed chains closely approximated this idealization, while freely rotating chains display distinctly complex dynamical features. (C) 2008 American Institute of Physics. C1 [Dotson, Taylor C.; Heffernan, Julieanne V.; Dotson, Keenan T.; Avila, Francisco; Limmer, David T.; McCoy, Daniel T.; McCoy, John D.] New Mexico Inst Min & Technol, Dept Mat & Met Engn, Socorro, NM 87801 USA. [Budzien, Joanne; Adolf, Douglas B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Mccoy, JD (reprint author), New Mexico Inst Min & Technol, Dept Mat & Met Engn, Socorro, NM 87801 USA. EM mccoy@nmt.edu RI McCoy, John/B-3846-2010; Budzien, Joanne/E-8315-2011; OI McCoy, John/0000-0001-5404-1404; McCoy, Daniel/0000-0003-1148-6475 NR 85 TC 5 Z9 5 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 14 PY 2008 VL 128 IS 18 AR 184905 DI 10.1063/1.2912054 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 302QJ UT WOS:000255983500061 PM 18532846 ER PT J AU Greeff, CW AF Greeff, C. W. TI Tests of Monte Carlo perturbation theory for the free energy of liquid copper SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID THERMODYNAMIC PROPERTIES; FLUID; DISTRIBUTIONS; SODIUM AB Monte Carlo perturbation theory, in which terms in the thermodynamic perturbation series are evaluated by Monte Carlo averaging, has potentially large advantages in efficiency for calculating free energies of liquids from ab initio potential surfaces. In order to test the accuracy of perturbation theory for liquid metals, a series of calculations has been done on liquid copper, modeled by an embedded atom potential. A simple 1/r(12) pair potential is used as the reference system. The free energy is calculated to third order in perturbation theory, and the results are compared to an exact formula. It is found that for optimal reference potential parameters, second order perturbation theory is essentially exact. Second and third order theories give accurate results for significantly nonoptimal reference parameters. The relation between perturbation theory and reweighting is discussed, and an approximate formula is derived that shows an exponential dependence of the efficiency of reweighting on the second order free energy correction. Finally, techniques for application to ab initio potentials are discussed. It is shown that with samples of 100 configurations, it is possible to obtain accuracy and precision at the level of similar to 1 meV/atom. (C) 2008 American Institute of Physics. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Greeff, CW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM greeff@lanl.gov RI Greeff, Carl/N-3267-2013; OI Greeff, Carl/0000-0003-0529-0441 NR 23 TC 9 Z9 9 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 14 PY 2008 VL 128 IS 18 AR 184104 DI 10.1063/1.2917355 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 302QJ UT WOS:000255983500011 PM 18532796 ER PT J AU Khaliullin, RZ Bell, AT Head-Gordon, M AF Khaliullin, Rustam Z. Bell, Alexis T. Head-Gordon, Martin TI Analysis of charge transfer effects in molecular complexes based on absolutely localized molecular orbitals SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ENERGY DECOMPOSITION ANALYSIS; DONOR-ACCEPTOR INTERACTIONS; ELECTRONIC POPULATION ANALYSIS; NONCLASSICAL METAL-CARBONYLS; CHEMICAL VALENCE CONCEPTS; WAVE-FUNCTIONS; BASIS-SET; QUANTUM-THEORY; WATER DIMER; HYDROGEN AB A new method based on absolutely localized molecular orbitals (ALMOs) is proposed to measure the degree of intermolecular electron density delocalization (charge transfer) in molecular complexes. ALMO charge transfer analysis (CTA) enables separation of the forward and backward charge transfer components for each pair of molecules in the system. The key feature of ALMO CTA is that all charge transfer terms have corresponding well defined energetic effects that measure the contribution of the given term to the overall energetic stabilization of the system. To simplify analysis of charge transfer effects, the concept of chemically significant complementary occupied-virtual orbital pairs (COVPs) is introduced. COVPs provide a simple description of intermolecular electron transfer effects in terms of just a few localized orbitals. ALMO CTA is applied to understand fundamental aspects of donor-acceptor interactions in borane adducts, synergic bonding in classical and nonclassical metal carbonyls, and multiple intermolecular hydrogen bonds in a complex of isocyanuric acid and melamine. These examples show that the ALMO CTA results are generally consistent with the existing conceptual description of intermolecular bonding. The results also show that charge transfer and the energy lowering due to charge transfer are not proportional to each other, and some interesting differences emerge which are discussed. Additionally, according to ALMO CTA, the amount of electron density transferred between molecules is significantly smaller than charge transfer estimated from various population analysis methods. (C) 2008 American Institute of Physics. C1 [Khaliullin, Rustam Z.; Bell, Alexis T.; Head-Gordon, Martin] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Khaliullin, Rustam Z.; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bell, Alexis T.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Khaliullin, RZ (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM rustam@khaliullin.com RI Khaliullin, Rustam/B-2672-2009; OI Khaliullin, Rustam/0000-0002-9073-6753; Bell, Alexis/0000-0002-5738-4645 NR 78 TC 84 Z9 84 U1 3 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 14 PY 2008 VL 128 IS 18 AR 184112 DI 10.1063/1.2912041 PG 16 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 302QJ UT WOS:000255983500019 PM 18532804 ER PT J AU Mundy, CJ Curioni, A Goldman, N Kuo, IFW Reed, EJ Fried, LE Ianuzzi, M AF Mundy, Christopher J. Curioni, Alessandro Goldman, Nir Kuo, I. -F. Will Reed, Evan J. Fried, Laurence E. Ianuzzi, Marcella TI Ultrafast transformation of graphite to diamond: An ab initio study of graphite under shock compression SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS; AMORPHOUS-CARBON; PHASE; DIAGRAM AB We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 km/s (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond. (C) 2008 American Institute of Physics. C1 [Mundy, Christopher J.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Curioni, Alessandro] IBM Res Corp, Zurich Res Lab, CH-8803 Ruschlikon, Switzerland. [Goldman, Nir; Kuo, I. -F. Will; Reed, Evan J.; Fried, Laurence E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ianuzzi, Marcella] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP Mundy, CJ (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM chris.mundy@pnl.gov RI Fried, Laurence/L-8714-2014 OI Fried, Laurence/0000-0002-9437-7700 NR 34 TC 46 Z9 47 U1 2 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 14 PY 2008 VL 128 IS 18 AR 184701 DI 10.1063/1.2913201 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 302QJ UT WOS:000255983500045 PM 18532830 ER PT J AU Somorjai, GA Park, JY AF Somorjai, Gabor A. Park, Jeong Y. TI Evolution of the surface science of catalysis from single crystals to metal nanoparticles under pressure SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SUM-FREQUENCY GENERATION; SCANNING-TUNNELING-MICROSCOPY; BLODGETT MONOLAYER FORMATION; ENERGY-ELECTRON DIFFRACTION; CARBON-MONOXIDE; GAS-PHASE; PLATINUM NANOCRYSTALS; SUPPORT INTERACTIONS; MESOPOROUS SILICA; MODEL CATALYSTS AB Vacuum studies of metal single crystal surfaces using electron and molecular beam scattering revealed that the surface atoms relocate when the surface is clean (reconstruction) and when it is covered by adsorbates (adsorbate-induced restructuring). It was also discovered that atomic steps and other low coordination surface sites are active for breaking chemical bonds (H-H, O = O, C-H, C = O, and C-C) with high reaction probability. Investigations at high reactant pressures using sum frequency generation-vibrational spectroscopy and high pressure scanning tunneling microscopy revealed bond breaking at low reaction probability sites on the adsorbate-covered metal surface and the need for adsorbate mobility for continued turnover. Since most catalysts (heterogeneous, enzyme, and homogeneous) are nanoparticles, colloid synthesis methods were developed to produce monodispersed metal nanoparticles in the 1-10 nm range and controlled shapes to use them as new model catalyst systems in two-dimensional monolayer film or deposited in mesoporous three-dimensional oxides. Studies of reaction selectivity in multipath reactions (hydrogenation of benzene, cyclohexene, and crotonaldehyde) showed that the reaction selectivity depends on both nanoparticle size and shape. The oxide-metal nanoparticle interface was found to be an important catalytic site that is associated with the hot electron flow induced by exothermic reactions such as carbon monoxide oxidation. (C) 2008 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Park, Jeong Young/A-2999-2008 NR 65 TC 32 Z9 33 U1 5 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 14 PY 2008 VL 128 IS 18 AR 182504 DI 10.1063/1.2888970 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 302QJ UT WOS:000255983500004 PM 18532789 ER PT J AU Stair, PC AF Stair, Peter C. TI Advanced synthesis for advancing heterogeneous catalysis SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ATOMIC LAYER DEPOSITION; SUPPORTED METAL-CLUSTERS; IN-SITU GISAXS; TETRAIRIDIUM CLUSTERS; IRIDIUM CLUSTERS; MAGNESIUM-OXIDE; SURFACE SCIENCE; CARBON-MONOXIDE; NAX ZEOLITE; SIZE AB There are tremendous needs and opportunities for the understanding and application of heterogeneous catalysis in the solution of vexing technological problems. Nanoscale, catalytically active phases, particularly metal nanoparticles and metal oxide clusters, supported on high surface area oxides (supported catalysts) are one of the most important classes of heterogeneous catalysts. The problem of inhomogeneity and the limits it places on the understanding of catalytic chemistry has led to substantial efforts to produce more uniform catalyst systems via more synthetic control. This article highlights an approach adopted at Argonne National Laboratory for the synthesis of uniform supported metal and oxide particles. (C) 2008 American Institute of Physics. C1 Northwestern Univ, Ctr Catalysis & Surface Sci, Dept Chem, Evanston, IL 60208 USA. Argonne Natl Lab, Div Chem Sci & Engn, Argonne, IL 60439 USA. RP Stair, PC (reprint author), Northwestern Univ, Ctr Catalysis & Surface Sci, Dept Chem, Evanston, IL 60208 USA. EM pstair@northwestern.edu NR 53 TC 21 Z9 22 U1 1 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 14 PY 2008 VL 128 IS 18 AR 182507 DI 10.1063/1.2824939 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 302QJ UT WOS:000255983500007 PM 18532792 ER PT J AU Gu, MF Holcomb, CT Jayakuma, RJ Allen, SL AF Gu, M. F. Holcomb, C. T. Jayakuma, R. J. Allen, S. L. TI Atomic models for the motional Stark effect diagnostic SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID METASTABLE HYDROGEN-ATOMS; CROSS-SECTIONS; EXCITATION; COLLISION; PLASMA; STATES; AR; HE AB We present detailed atomic physics models for the motional Stark effect (MSE) diagnostic on magnetic fusion devices. Excitation and ionization cross sections of the hydrogen or deuterium beam travelling in a magnetic field in collisions with electrons, ions and neutral gas are calculated in the first Born approximation. The density matrices and polarization states of individual Stark-Zeeman components of the Balmer a line are obtained for both beam into plasma and beam into gas models. A detailed comparison of the model calculations and the MSE polarimetry and spectral intensity measurements obtained at the DIII-D tokamak is carried out. Although our beam into gas models provide a qualitative explanation for the larger pi/sigma intensity ratios and represent significant improvements over the statistical population models, empirical adjustment factors ranging from 1.0 to 2.0 must still be applied to individual line intensities to bring the calculations into full agreement with the observations. The analyses of the filter-scan polarization spectra from the DIII-D MSE polarimetry system indicate unknown channel and time-dependent light contaminations in the beam into gas measurements. Such contaminations may be the main reason for the failure of beam into gas calibration on MSE polarimetry systems. C1 [Gu, M. F.; Holcomb, C. T.; Jayakuma, R. J.; Allen, S. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Gu, MF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 15 TC 24 Z9 24 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD MAY 14 PY 2008 VL 41 IS 9 AR 095701 DI 10.1088/0953-4075/41/9/095701 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 298BI UT WOS:000255660800016 ER PT J AU Osipov, T Rescigno, TN Weber, T Miyabe, S Jahnke, T Alnaser, AS Hertlein, MP Jagutzki, O Schmidt, LPH Schoffler, M Foucar, L Schossler, S Havermeier, T Odenweller, M Voss, S Feinberg, B Landers, AL Prior, MH Dorner, R Cocke, CL Belkacem, A AF Osipov, T. Rescigno, T. N. Weber, T. Miyabe, S. Jahnke, T. Alnaser, A. S. Hertlein, M. P. Jagutzki, O. Schmidt, L. Ph H. Schoeffler, M. Foucar, L. Schoessler, S. Havermeier, T. Odenweller, M. Voss, S. Feinberg, B. Landers, A. L. Prior, M. H. Doerner, R. Cocke, C. L. Belkacem, A. TI Fragmentation pathways for selected electronic states of the acetylene dication SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID MOMENTUM SPECTROSCOPY; ETHYNE DICATION; AUGER-SPECTRA; C2H2; ION; ISOMERIZATION; DISSOCIATION; VINYLIDENE AB Coincident measurement of the Auger electron and fragment ion momenta emitted after carbon core-level photoionization of acetylene has yielded new understanding of how the dication fragments. Ab initio calculations and experimental data, including body-frame Auger angular distributions, are used to identify the parent electronic states and together yield a comprehensive map of the dissociation pathways which include surface crossings and barriers to direct dissociation. The Auger angular distributions for certain breakup channels show evidence of core-hole localization. C1 [Osipov, T.; Rescigno, T. N.; Weber, T.; Hertlein, M. P.; Feinberg, B.; Prior, M. H.; Belkacem, A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Miyabe, S.] Univ Calif Davis, Dept Chem, Davis, CA USA. [Jahnke, T.; Jagutzki, O.; Schmidt, L. Ph H.; Schoeffler, M.; Foucar, L.; Schoessler, S.; Havermeier, T.; Odenweller, M.; Voss, S.; Doerner, R.] Goethe Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany. [Alnaser, A. S.; Cocke, C. L.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. [Alnaser, A. S.] Amer Univ Sharjah, Dept Phys, Sharjah, U Arab Emirates. [Landers, A. L.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Osipov, T (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM TYOsipov@lbl.gov RI Doerner, Reinhard/A-5340-2008; Landers, Allen/C-1213-2013; Weber, Thorsten/K-2586-2013; Schoeffler, Markus/B-6261-2008 OI Doerner, Reinhard/0000-0002-3728-4268; Weber, Thorsten/0000-0003-3756-2704; Schoeffler, Markus/0000-0001-9214-6848 NR 19 TC 22 Z9 22 U1 2 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD MAY 14 PY 2008 VL 41 IS 9 AR 091001 DI 10.1088/0953-4075/41/9/091001 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 298BI UT WOS:000255660800001 ER PT J AU Grigorenko, I Zhu, JX Balatsky, A AF Grigorenko, Ilya Zhu, Jian-Xin Balatsky, Alexander TI Optimization of the design of superconducting inhomogeneous nanowires SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID ELECTRONIC-STRUCTURE AB We study the optimization of the superconducting properties of inhomogeneous nanowires. The main goal of this research is to find an optimized geometry that allows one to maximize the desired property of superconductors, such as the maximum value of the local superconducting gap or total condensation energy. We consider the axially symmetric design of multilayered nanowires with the possibility of adjusting and changing the layer thickness. We use numerical solution of the Bogoliubov-de Gennes equations to obtain the local superconducting gap for different arrangements of inhomogeneous structures. The values of the optimized properties can be up to 300% greater than for a non-optimized geometry. The optimized configuration of multilayers strongly depends on the desired property one wants to optimize and on the number of layers in the nanowire. C1 [Grigorenko, Ilya; Zhu, Jian-Xin; Balatsky, Alexander] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Ctr Nonlinear Studies, Theoret Div T 11, Los Alamos, NM 87545 USA. RP Grigorenko, I (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Ctr Nonlinear Studies, Theoret Div T 11, POB 1663, Los Alamos, NM 87545 USA. RI Grigorenko, Ilya/B-5616-2009; OI Zhu, Jianxin/0000-0001-7991-3918 NR 23 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 14 PY 2008 VL 20 IS 19 AR 195204 DI 10.1088/0953-8984/20/19/195204 PG 7 WC Physics, Condensed Matter SC Physics GA 298BN UT WOS:000255661400009 ER PT J AU Sattint, BD Zhao, W Travers, K Chut, S Herschlag, D AF Sattint, Bernie D. Zhao, Wei Travers, Kevin Chut, Steven Herschlag, Daniel TI Direct measurement of tertiary contact cooperativity in RNA folding SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID GROUP-I RIBOZYME; TETRAHYMENA RIBOZYME; MULTIDOMAIN PROTEIN; SINGLE-MOLECULE; DOMAIN; PRINCIPLES; MONOVALENT; TETRALOOP; INSIGHTS; ORIGINS AB All structured biological macromolecules must overcome the thermodynamic folding problem to populate a unique functional state among a vast ensemble of unfolded and alternate conformations. The exploration of cooperativity in protein folding has helped reveal and distinguish the underlying mechanistic solutions to this folding problem. Analogous dissections of RNA tertiary stability remain elusive, however, despite the central biological importance of folded RNA molecules and the potential to reveal fundamental properties of structured macromolecules via comparisons of protein and RNA folding. We report a direct quantitative measure of tertiary contact cooperativity in a folded RNA. We precisely measured the stability of an independently folding P4-P6 domain from the Tetrahymena thermophila group I intron by single molecule fluorescence resonance energy transfer (smFRET). Using wild-type and mutant RNAs, we found that cooperativity between the two tertiary contacts enhances P4-P6 stability by 3.2 +/- 0.2 kcal/mol. C1 [Sattint, Bernie D.; Travers, Kevin; Herschlag, Daniel] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA. [Sattint, Bernie D.; Zhao, Wei; Chut, Steven] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Chut, Steven] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Herschlag, D (reprint author), Stanford Univ, Dept Biochem, Stanford, CA 94305 USA. EM herschla@stanford.edu FU NIDDK NIH HHS [R90 DK071499, DK071499]; NIGMS NIH HHS [P01-GM-066275, P01 GM066275, P01 GM066275-05] NR 25 TC 42 Z9 42 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 14 PY 2008 VL 130 IS 19 BP 6085 EP + DI 10.1021/ja800919q PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 297MG UT WOS:000255620200014 PM 18429611 ER PT J AU Fawzi, NL Phillips, AH Ruscio, JZ Doucleff, M Wemmer, DE Head-Gordon, T AF Fawzi, Nicolas L. Phillips, Aaron H. Ruscio, Jory Z. Doucleff, Michaeleen Wemmer, David E. Head-Gordon, Teresa TI Structure and dynamics of the A ss(21-30) peptide from the interplay of NMR experiments and molecular simulations SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID AMYLOID-BETA-PROTEIN; NUCLEAR-MAGNETIC-RESONANCE; SOLID-STATE NMR; MODEL-FREE APPROACH; ALZHEIMERS-DISEASE; CHEMICAL-SHIFTS; DISTANCE RESTRAINTS; SECONDARY STRUCTURE; UNFOLDED STATE; SH3 DOMAIN AB We combine molecular dynamics simulations and new high-field NMR experiments to describe the solution structure of the A ss(21-30) peptide fragment that may be relevant for understanding structural mechanisms related to Alzheimer's disease. By using two different empirical force-field combinations, we provide predictions of the three-bond scalar coupling constants ((3)J(HNH alpha)), chemical-shift values, (13)C relaxation parameters, and rotating-frame nuclear Overhauser effect spectroscopy (ROESY) crosspeaks that can then be compared directly to the same observables measured in the corresponding NMR experiment of A ss(21-30) We find robust prediction of the (13)C relaxation parameters and medium-range ROESY crosspeaks by using new generation TIP4P-Ew water and Amber ff99SB protein force fields, in which the NMR validates that the simulation yields both a structurally and dynamically correct ensemble over the entire A ss(21-30) peptide. Analysis of the simulated ensemble shows that all medium-range ROE restraints are not satisfied simultaneously and demonstrates the structural diversity of the A ss(21-30) conformations more completely than when determined from the experimental medium-range ROE restraints alone. We find that the structural ensemble of the A ss(21-30) peptide involves a majority population (similar to 60%) of unstructured conformers, lacking any secondary structure or persistent hydrogen-bonding networks. However, the remaining minority population contains a substantial percentage of conformers with a ss-turn centered at Val24 and Gly25, as well as evidence of the Asp23 to Lys28 salt bridge important to the fibril structure. This study sets the stage for robust theoretical work on A ss(1-40) and A ss(1-42), for which collection of detailed NMR data on the monomer will be more challenging because of aggregation and fibril formation on experimental timescales at physiological conditions. In addition, we believe that the interplay of modern molecular simulation and high-quality NMR experiments has reached a fruitful stage for characterizing structural ensembles of disordered peptides and proteins in general. C1 [Fawzi, Nicolas L.; Head-Gordon, Teresa] UCSF UC, Berkeley Joint Grad Grp Bioengn, Berkeley, CA 94720 USA. [Phillips, Aaron H.; Doucleff, Michaeleen; Wemmer, David E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Wemmer, David E.; Head-Gordon, Teresa] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ruscio, Jory Z.; Head-Gordon, Teresa] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Head-Gordon, T (reprint author), UCSF UC, Berkeley Joint Grad Grp Bioengn, Berkeley, CA 94720 USA. EM tlhead-gordon@lbl.gov RI Head-Gordon, Teresa/E-5818-2011; Fawzi, Nicolas/E-2555-2013 OI Fawzi, Nicolas/0000-0001-5483-0577 FU NIGMS NIH HHS [GM68933, P41 GM068933, R01 GM070919] NR 88 TC 94 Z9 94 U1 0 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 14 PY 2008 VL 130 IS 19 BP 6145 EP 6158 DI 10.1021/ja710366c PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA 297MG UT WOS:000255620200021 PM 18412346 ER PT J AU Lipton, AS Heck, RW Staeheli, GR Valiev, M De Jong, WA Ellis, PD AF Lipton, Andrew S. Heck, Robert W. Staeheli, Greg R. Valiev, Marat De Jong, Wibe A. Ellis, Paul D. TI A QM/MM approach to interpreting Zn-67 solid-state NMR data in zinc proteins SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID INTEGER QUADRUPOLAR NUCLEI; GAUSSIAN-BASIS SETS; DNA-BINDING DOMAIN; PYROCOCCUS-FURIOSUS; ESCHERICHIA-COLI; METHIONINE SYNTHASE; CARBONIC-ANHYDRASE; FORCE-FIELDS; ATOMS LI; SPECTROSCOPY AB We present here a Zn-67 solid-state NMR investigation of Zn2+ substituted rubredoxin. The sample has been prepared as both a dry powder and a frozen solution to determine the effects of static disorder on the NMR line shape. Low-temperature experiments have been performed at multiple fields to determine the relative contributions to the NMR line shape from the electric field gradient and the anisotropic shielding tensors. Finally we present the theoretical interpretation of the experimental results utilizing a combined quantum mechanical molecular mechanics (QM/MM) approach. Theory predicts a sizable contribution from anisotropic shielding as compared with previously examined model systems. This is in good agreement with the experimental data. C1 [Lipton, Andrew S.; Heck, Robert W.; Staeheli, Greg R.; Ellis, Paul D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Biol Sci, Richland, WA 99352 USA. [Valiev, Marat; De Jong, Wibe A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Ellis, PD (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Biol Sci, Richland, WA 99352 USA. EM paul.ellis@pnl.gov RI DE JONG, WIBE/A-5443-2008 OI DE JONG, WIBE/0000-0002-7114-8315 FU NIBIB NIH HHS [EB-002050, EB-003893] NR 41 TC 18 Z9 18 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 14 PY 2008 VL 130 IS 19 BP 6224 EP 6230 DI 10.1021/ja711240t PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 297MG UT WOS:000255620200028 PM 18410102 ER PT J AU Zhao, X Krstic, PS AF Zhao, Xiongce Krstic, Predrag S. TI A molecular dynamics simulation study on trapping ions in a nanoscale Paul trap SO NANOTECHNOLOGY LA English DT Article ID NANOPORE SEQUENCING TECHNOLOGY; DNA TRANSLOCATION; MASS-SPECTROMETRY; CHARGE DYNAMICS; FIELD; SYSTEM; POLYNUCLEOTIDES; SPECTROSCOPY; ENVIRONMENT; OSCILLATOR AB We found by molecular dynamics simulations that a low energy ion can be trapped effectively in a nanoscale Paul trap in both vacuum and aqueous environments when appropriate AC/DC electric fields are applied to the system. Using the negatively charged chlorine ion as an example, we show that the trapped ion oscillates around the center of the nanotrap with an amplitude dependent on the parameters of the system and applied voltages. Successful trapping of the ion within nanoseconds requires an electric bias of GHz frequency, in the range of hundreds of mV. The oscillations are damped in the aqueous environment, but polarization of water molecules requires the application of a higher voltage bias to reach improved stability of the trapping. Application of a supplemental DC driving field along the trap axis can effectively drive the ion off the trap center and out of the trap, opening up the possibility of studying DNA and other charged molecules using embedded probes while achieving a full control of their translocation and localization in the trap. C1 [Zhao, Xiongce] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Krstic, Predrag S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Zhao, X (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. EM zhaox@ornl.gov FU NHGRI NIH HHS [R21 HG003578, R21 HG004764-01] NR 61 TC 13 Z9 13 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD MAY 14 PY 2008 VL 19 IS 19 AR 195702 DI 10.1088/0957-4484/19/19/195702 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 290BO UT WOS:000255097900013 PM 21825720 ER PT J AU Bettencourt, LMA Ribeiro, RM AF Bettencourt, Luis M. A. Ribeiro, Ruy M. TI Real Time Bayesian Estimation of the Epidemic Potential of Emerging Infectious Diseases SO PLOS ONE LA English DT Article AB Background: Fast changes in human demographics worldwide, coupled with increased mobility, and modified land uses make the threat of emerging infectious diseases increasingly important. Currently there is worldwide alert for H5N1 avian influenza becoming as transmissible in humans as seasonal influenza, and potentially causing a pandemic of unprecedented proportions. Here we show how epidemiological surveillance data for emerging infectious diseases can be interpreted in real time to assess changes in transmissibility with quantified uncertainty, and to perform running time predictions of new cases and guide logistics allocations. Methodology/Principal Findings: We develop an extension of standard epidemiological models, appropriate for emerging infectious diseases, that describes the probabilistic progression of case numbers due to the concurrent effects of (incipient) human transmission and multiple introductions from a reservoir. The model is cast in terms of surveillance observables and immediately suggests a simple graphical estimation procedure for the effective reproductive number R (mean number of cases generated by an infectious individual) of standard epidemics. For emerging infectious diseases, which typically show large relative case number fluctuations over time, we develop a Bayesian scheme for real time estimation of the probability distribution of the effective reproduction number and show how to use such inferences to formulate significance tests on future epidemiological observations. Conclusions/Significance: Violations of these significance tests define statistical anomalies that may signal changes in the epidemiology of emerging diseases and should trigger further field investigation. We apply the methodology to case data from World Health Organization reports to place bounds on the current transmissibility of H5N1 influenza in humans and establish a statistical basis for monitoring its evolution in real time. C1 [Bettencourt, Luis M. A.; Ribeiro, Ruy M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Bettencourt, Luis M. A.] Santa Fe Inst, Santa Fe, NM USA. RP Bettencourt, LMA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM lmbett@lanl.gov OI Ribeiro, Ruy/0000-0002-3988-8241 FU U.S. Department of Energy FX We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program for this work. NR 44 TC 35 Z9 35 U1 1 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAY 14 PY 2008 VL 3 IS 5 AR e2185 DI 10.1371/journal.pone.0002185 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 390OE UT WOS:000262172800050 PM 18478118 ER PT J AU Jaing, C Gardner, S McLoughlin, K Mulakken, N Alegria-Hartman, M Banda, P Williams, P Gu, P Wagner, M Manohar, C Slezak, T AF Jaing, Crystal Gardner, Shea McLoughlin, Kevin Mulakken, Nisha Alegria-Hartman, Michelle Banda, Phillip Williams, Peter Gu, Pauline Wagner, Mark Manohar, Chitra Slezak, Tom TI A Functional Gene Array for Detection of Bacterial Virulence Elements SO PLOS ONE LA English DT Article AB Emerging known and unknown pathogens create profound threats to public health. Platforms for rapid detection and characterization of microbial agents are critically needed to prevent and respond to disease outbreaks. Available detection technologies cannot provide broad functional information about known or novel organisms. As a step toward developing such a system, we have produced and tested a series of high-density functional gene arrays to detect elements of virulence and antibiotic resistance mechanisms. Our first generation array targets genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for gene family detection and discrimination. When tested with organisms at varying phylogenetic distances from the four target strains, the array detected orthologs for the majority of targeted gene families present in bacteria belonging to the same taxonomic family. In combination with whole-genome amplification, the array detects femtogram concentrations of purified DNA, either spiked in to an aerosol sample background, or in combinations from one or more of the four target organisms. This is the first report of a high density NimbleGen microarray system targeting microbial antibiotic resistance and virulence mechanisms. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. C1 [Jaing, Crystal; Alegria-Hartman, Michelle; Banda, Phillip; Manohar, Chitra] Lawrence Livermore Natl Lab, Chem, Mat, Earth & Life Sci, Livermore, CA 94550 USA. [Gardner, Shea; McLoughlin, Kevin; Mulakken, Nisha; Williams, Peter; Gu, Pauline; Wagner, Mark; Slezak, Tom] Lawrence Livermore Natl Lab, Comp, Livermore, CA USA. RP Jaing, C (reprint author), Lawrence Livermore Natl Lab, Chem, Mat, Earth & Life Sci, Livermore, CA 94550 USA. EM jaing2@llnl.gov OI McLoughlin, Kevin/0000-0001-9651-4951 FU Department of Homeland Security; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The funding was provided by the Department of Homeland Security. The funding agency was not involved in the design and conduct of the study, in the collection, analysis, and interpretation of the data, or in the preparation, review, or approval of the manuscript. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 19 TC 27 Z9 28 U1 0 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAY 14 PY 2008 VL 3 IS 5 AR e2163 DI 10.1371/journal.pone.0002163 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 390OE UT WOS:000262172800028 PM 18478124 ER PT J AU Xing, JH Chen, J AF Xing, Jianhua Chen, Jing TI The Goldbeter-Koshland Switch in the First-Order Region and Its Response to Dynamic Disorder SO PLOS ONE LA English DT Article AB In their classical work (Proc. Natl. Acad. Sci. USA, 1981, 78: 6840-6844), Goldbeter and Koshland mathematically analyzed a reversible covalent modification system which is highly sensitive to the concentration of effectors. Its signal-response curve appears sigmoidal, constituting a biochemical switch. However, the switch behavior only emerges in the 'zero-order region', i.e. when the signal molecule concentration is much lower than that of the substrate it modifies. In this work we showed that the switching behavior can also occur under comparable concentrations of signals and substrates, provided that the signal molecules catalyze the modification reaction in cooperation. We also studied the effect of dynamic disorders on the proposed biochemical switch, in which the enzymatic reaction rates, instead of constant, appear as stochastic functions of time. We showed that the system is robust to dynamic disorder at bulk concentration. But if the dynamic disorder is quasi-static, large fluctuations of the switch response behavior may be observed at low concentrations. Such fluctuation is relevant to many biological functions. It can be reduced by either increasing the conformation interconversion rate of the protein, or correlating the enzymatic reaction rates in the network. C1 [Xing, Jianhua] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Lawrence Livermore Natl Lab, Livermore, CA USA. [Xing, Jianhua] Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA USA. [Chen, Jing] Univ Calif, Biophys Grad Program, Berkeley, CA USA. RP Xing, JH (reprint author), Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Lawrence Livermore Natl Lab, Livermore, CA USA. EM jxing@vt.edu RI Xing, Jianhua/A-8101-2012; Chen, Jing/D-4845-2016 OI Xing, Jianhua/0000-0002-3700-8765; Chen, Jing/0000-0001-6321-0505 FU Lawrence Livermore National Laboratory; U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48] FX JX is partly supported by a Lawrence Livermore National Laboratory Directed Research and Development grant. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. NR 49 TC 12 Z9 12 U1 0 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAY 14 PY 2008 VL 3 IS 5 AR e2140 DI 10.1371/journal.pone.0002140 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 390OE UT WOS:000262172800005 PM 18478088 ER PT J AU Yang, JC Spirig, JV Karweik, D Routbort, JL Singh, D Dutta, PK AF Yang, Jiun-Chan Spirig, John V. Karweik, Dale Routbort, Jules L. Singh, Dileep Dutta, Prabir K. TI Compact electrochemical bifunctional NOx/O-2 sensor with metal/metal oxide internal reference electrode for high temperature applications SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE NOx sensor; oxygen; zirconia; zeolite; electrochemistry ID EXHAUST-GASES; PRETREATMENT AB Simultaneous measurement of total NO, and 02 Using two electrochemical methods are demonstrated using metal/metal oxide internal oxygen reference electrode-based sensors at high temperatures. The Pd/PdO-containing reference chamber was sealed within a stabilized zirconia superstructure by a high pressure/temperature plastic deformation bonding method exploiting grain boundary sliding between the ceramic components. Amperometric and potentiometric NOx sensing devices were assembled on the outside of the sensor. Pt-loaded zeolite Y was used to obtain total NOx capability. Both the amperometric and potentiometric type sensors showed total No, response, with the potentiometric device showing better NOx/O-2 signal stability and lower NOx-O-2 cross-interference. Since these sensors do not require plumbing for reference air, there is more flexibility in the placement of such sensors in a combustion stream. (C) 2007 Elsevier B.V. All rights reserved. C1 [Yang, Jiun-Chan; Spirig, John V.; Karweik, Dale; Dutta, Prabir K.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Routbort, Jules L.; Singh, Dileep] Argonne Natl Lab, Argonne, IL 60439 USA. RP Dutta, PK (reprint author), Ohio State Univ, Dept Chem, 100W 18th Ave, Columbus, OH 43210 USA. EM dutta.1@osu.edu NR 15 TC 8 Z9 9 U1 4 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD MAY 14 PY 2008 VL 131 IS 2 BP 448 EP 454 DI 10.1016/j.snb.2007.12.001 PG 7 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 304NL UT WOS:000256116100014 ER PT J AU Greenhagen, BT Shi, K Robinson, H Gamage, S Bera, AK Ladner, JE Parsons, JF AF Greenhagen, Bryan T. Shi, Katherine Robinson, Howard Gamage, Swarna Bera, Asim K. Ladner, Jane E. Parsons, James F. TI Crystal structure of the pyocyanin biosynthetic protein PhzS SO BIOCHEMISTRY LA English DT Article ID PSEUDOMONAS-AERUGINOSA PYOCYANIN; AIRWAY EPITHELIAL-CELLS; PHENAZINE-1-CARBOXYLIC ACID; FUNCTIONAL-ANALYSIS; HYDROXYLASE; INFECTION; ENZYME; CRYSTALLOGRAPHY; MECHANISM; CATALYSIS AB The human pathogen Pseudomonas aeruginosa produces pyocyanin, a blue-pigmented phenazine derivative, which is known to play a role in virulence. Pyocyanin is produced from chorismic acid via the phenazine pathway, nine proteins encoded by a gene cluster. Phenazine-l-carboxylic acid, the initial phenazine formed, is converted to pyocyanin in two steps that are catalyzed by the enzymes PhzM and PhzS. PhzM is an adenosylmethionine dependent methyltransferase, and PhzS is a flavin dependent hydroxylase. It has been shown that PhzM is only active in the physical presence of PhzS, suggesting that a protein-protein interaction is involved in pyocyanin formation. Such a complex would prevent the release of 5-methyl-phenazine-1-carboxylate, the putative intermediate, and an apparently unstable compound. Here, we describe the three-dimensional structure of PhzS, solved by single anomalous dispersion, at a resolution of 2.4 angstrom. The structure reveals that PhzS is a member of the family of aromatic hydroxylases characterized by p-hydroxybenzoate hydroxylase. The flavin cofactor of PhzS is in the solvent exposed out orientation typically seen in unliganded aromatic hydroxylases. The PhzS flavin, however, appears to be held in a strained conformation by a combination of stacking interactions and hydrogen bonds. The structure suggests that access to the active site is gained via a tunnel on the opposite side of the protein from where the flavin is exposed. The C-terminal 23 residues are disordered as no electron density is present for these atoms. The probable location of the C-terminus, near the substrate access tunnel, suggests that it may be involved in substrate binding as has been shown for another structural homologue, RebC. This region also may be an element of a PhzM-PhzS interface. Aromatic hydroxylases have been shown to catalyze electrophilic substitution reactions on activated substrates. The putative PhzS substrate, however, is electron deficient and unlikely to act as a nucleophile, suggesting that PhzS may use a different mechanism than its structural relatives. C1 [Greenhagen, Bryan T.; Shi, Katherine; Bera, Asim K.; Ladner, Jane E.; Parsons, James F.] Univ Maryland, Inst Biotechnol, Ctr Adv Res Biotechnol, Natl Inst Stand & Technol, Rockville, MD 20850 USA. [Gamage, Swarna] Univ Auckland, Sch Med, Auckland Canc Society Res Ctr, Fac Med & Hlth Sci, Auckland, New Zealand. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Ladner, JE (reprint author), Univ Maryland, Inst Biotechnol, Ctr Adv Res Biotechnol, Natl Inst Stand & Technol, 9600 Gudelsky Dr, Rockville, MD 20850 USA. EM parsonsj@umbi.umd.edu; jane.ladner@nist.gov FU NIAID NIH HHS [AI067530] NR 37 TC 32 Z9 32 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD MAY 13 PY 2008 VL 47 IS 19 BP 5281 EP 5289 DI 10.1021/bi702480t PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 296MB UT WOS:000255547600004 PM 18416536 ER PT J AU Boday, DJ DeFriend, KA Wilson, KV Coder, D Loy, DA AF Boday, Dylan J. DeFriend, Kimberly A. Wilson, Kennard V., Jr. Coder, David Loy, Douglas A. TI Formation of polycyanoacrylate - Silica nanocomposites by chemical vapor deposition of cyanoacrylates on aerogels SO CHEMISTRY OF MATERIALS LA English DT Article C1 [Boday, Dylan J.; Coder, David; Loy, Douglas A.] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA. [DeFriend, Kimberly A.; Wilson, Kennard V., Jr.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Loy, DA (reprint author), Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA. RI Loy, Douglas/D-4847-2009 OI Loy, Douglas/0000-0001-7635-9958 NR 17 TC 26 Z9 27 U1 3 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 13 PY 2008 VL 20 IS 9 BP 2845 EP 2847 DI 10.1021/cm703381e PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 297NM UT WOS:000255623400001 ER PT J AU Silva, GWC Yeamans, CB Ma, LZ Cerefice, GS Czerwinski, KR Sattelberger, AP AF Silva, G. W. Chinthaka Yeamans, Charles B. Ma, Longzhou Cerefice, Gary S. Czerwinski, Kenneth R. Sattelberger, Alfred P. TI Microscopic characterization of uranium nitrides synthesized by oxidative ammonolysis of uranium tetrafluoride SO CHEMISTRY OF MATERIALS LA English DT Article ID CARBOTHERMIC SYNTHESIS; ELECTRON-MICROSCOPY; MONONITRIDE; FABRICATION AB The oxidative ammonolysis route was used to synthesize three uranium nitrides, UN2, U2N3, and UN, using UF4 as the starting material. Powder XRD analysis showed the UN2 and U2N3 products to contain less khan 1.0 wt % uranium oxides. UO2 level was identified to be 5.0 (0) wt % in the UN product as it is made, but this level increases upon exposure to air. The morphology of these nitrides was studied with SEM, while the microstructures of UN2 and U2N3 were investigated by TEM techniques for the first time. An explicit microstructural characterization of UN is also presented. These characterizations showed that UN has a long-range order in its structure and bulk of the UO2 impurities present on the UN microparticle surface, likely originating from minute oxygen impurities in the inert atmosphere cover gas and/or diffusion through the quartz reactor tube at high temperatures. Surface area measurements demonstrated a 10-fold increase in surface area during the ammonolysis step, from 0.03 to 0.26 m(2)/g, and minimal change during the denitriding step. C1 [Silva, G. W. Chinthaka; Ma, Longzhou; Cerefice, Gary S.; Czerwinski, Kenneth R.; Sattelberger, Alfred P.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Yeamans, Charles B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Energy Sci & Engn Directorate, Argonne, IL 60439 USA. RP Czerwinski, KR (reprint author), Univ Nevada, Harry Reid Ctr Environm Studies, Box 454009,4505 Maryland Pkwy, Las Vegas, NV 89154 USA. EM czerwin2@unlv.nevada.edu RI Silva, Chinthaka/E-1416-2017 OI Silva, Chinthaka/0000-0003-4637-6030 NR 30 TC 15 Z9 15 U1 3 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 13 PY 2008 VL 20 IS 9 BP 3076 EP 3084 DI 10.1021/cm7033646 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 297NM UT WOS:000255623400041 ER PT J AU Ubic, R Subodh, G Sebastian, MT Gout, D Proffen, T AF Ubic, Rick Subodh, Ganesanpotti Sebastian, Mailadil T. Gout, Delphine Proffen, Thomas TI Structure of compounds in the Sr1-3x/2CexTiO3 homologous series SO CHEMISTRY OF MATERIALS LA English DT Article ID MICROWAVE DIELECTRIC-PROPERTIES; NEUTRON POWDER DIFFRACTION; COMPLEX PEROVSKITES; TEMPERATURE-COEFFICIENT; RELATIVE PERMITTIVITY; PHASE-TRANSITION; MANGANITES; CERAMICS AB Four compositions in the Sr1 - 3x/2CexTiO3 homologous series, corresponding to x = 0.1333, 0.1667, 0.25, and 0.4, have been produced by conventional solid-state processing. The structure of these compounds was analyzed by X-ray, electron, and neutron diffraction. While no superlattice can be observed via X-ray diffraction, both electron and neutron diffraction show evidence of a noncubic supercell caused by antiphase tilting of oxygen octahedra. The most likely space group is R (3) over barc, corresponding to an a(-)a(-)a(-) system, except for the composition x = 0.4, for which an even more complex superstructure is observed. The degree of tilt increases with increasing x. C1 [Ubic, Rick] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [Subodh, Ganesanpotti; Sebastian, Mailadil T.] Natl Inst Interdisciplinary Sci & Technol, Mat & Minerals Div, Trivandrum 695019, Kerala, India. [Gout, Delphine; Proffen, Thomas] Los Alamos Neutron Sci Ctr, Los Alamos, NM USA. RP Ubic, R (reprint author), Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. EM RickUbic@BoiseState.edu RI SEBASTIAN, Mailadil/C-2818-2009; Lujan Center, LANL/G-4896-2012; TVM, NIIST/E-5132-2012; ganesanpotti, Subodh/N-9831-2013; Proffen, Thomas/B-3585-2009 OI SEBASTIAN, Mailadil/0000-0003-4039-8685; TVM, NIIST/0000-0002-5814-466X; ganesanpotti, Subodh/0000-0002-6784-094X; Proffen, Thomas/0000-0002-1408-6031 NR 25 TC 12 Z9 12 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 13 PY 2008 VL 20 IS 9 BP 3127 EP 3133 DI 10.1021/cm703659f PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 297NM UT WOS:000255623400048 ER PT J AU Vigier, N Den Auwer, C Fillaux, C Maslennikov, A Noel, H Roques, J Shuh, DK Simoni, E Tyliszczak, T Moisy, P AF Vigier, N. Den Auwer, C. Fillaux, C. Maslennikov, A. Noel, H. Roques, J. Shuh, D. K. Simoni, E. Tyliszczak, T. Moisy, P. TI New data on the structure of uranium monocarbide SO CHEMISTRY OF MATERIALS LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; BRILLOUIN-ZONE INTEGRATIONS; METALS; ENERGY AB Uranium monocarbide (UC) or ternary alloys are considered to be possible candidates for future nuclear fuels. Although the crystallographic and electronic structure of UC has been addressed in past investigations, discrepancies in the literature data have fostered a new investigation of the UC phase. We report here a reinvestigation of the UC phase by complementary X-ray spectroscopy and quantum chemical calculations. A combination of X-ray powder diffraction and extended X-ray absorption fine structure analysis at the uranium L-III edge led to the crystallographic determination of the UC phase of the NaCl type. For electronic structure investigation, a combination of uranium X-ray absorption near-edge spectroscopy at the L-III edge and at the N-IV,N-V edges with quantum chemical calculations allowed us to define the evolution of the metal charge in comparison with metallic uranium on the one hand and uranium dioxide on the other hand. C1 [Vigier, N.; Den Auwer, C.; Fillaux, C.; Moisy, P.] CEA Marcoule, DEN DRCP SCPS, F-30207 Bagnols Sur Ceze, France. [Maslennikov, A.] Russian Acad Sci, Inst Phys Chem & Electrochem, Moscow 119991, Russia. [Noel, H.] Univ Rennes 1, CNRS, UMR 6226, Lab Chim Solide & Mat, F-35042 Rennes, France. [Roques, J.; Simoni, E.] Univ Paris 11, IPN Orsay, F-91405 Orsay, France. [Shuh, D. K.; Tyliszczak, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Den Auwer, C (reprint author), CEA Marcoule, DEN DRCP SCPS, F-30207 Bagnols Sur Ceze, France. EM christophe.denauwer@cea.fr RI The Rossendorf Beamline at ESRF, ROBL/A-2586-2011; Scheinost, Andreas/D-2275-2010; Moisy, Philippe/H-2477-2015 OI Moisy, Philippe/0000-0002-9331-0846 NR 29 TC 12 Z9 12 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD MAY 13 PY 2008 VL 20 IS 9 BP 3199 EP 3204 DI 10.1021/cm8001783 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 297NM UT WOS:000255623400058 ER PT J AU Chen, ZQ Cvelbar, U Mozetic, M He, JQ Sunkara, MK AF Chen, Zhiqiang Cvelbar, Uros Mozetic, Miran He, Jiaqing Sunkara, Mahendra K. TI Long-range ordering of oxygen-vacancy planes in alpha-Fe2O3 nanowires and nanobelts SO CHEMISTRY OF MATERIALS LA English DT Article ID FABRICATION; ARRAYS; IRON; NANOFABRICATION; TEMPERATURES; STRESS; SYSTEM; OXIDES; FE3O4; FILMS AB We observed two long-range-ordering structures of oxygen vacancies, one in every tenth plane of (330) and another in every fourth plane of (1 (1) over bar2) in alpha-Fe2O3 nanowires and nanobelts synthesized under the same conditions. Interestingly, both types of oxygen-vacancy structures found in different nanowires have an equivalent ordering distance of 1.45 or 1.47 nm and were parallel to the growth direction of the nanowires and nanobelts. Lattice mismatch induced strain at the growth temperatures seems to justify the observed vacancy-ordering distance and may explain the reason for occurrence of such oxygen-vacancy ordering in various metal oxide nanowires grown from using both foils and catalyst clusters. C1 [Chen, Zhiqiang; Sunkara, Mahendra K.] Univ Louisville, Inst Adv Mat & Renewable Energy, Louisville, KY 40292 USA. [Sunkara, Mahendra K.] Univ Louisville, Dept Chem Engn, Louisville, KY 40292 USA. [Cvelbar, Uros; Mozetic, Miran] Jozef Stefan Inst, Plasma Lab F4, SI-1000 Ljubljana, Slovenia. [He, Jiaqing] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Chen, ZQ (reprint author), Univ Louisville, Inst Adv Mat & Renewable Energy, Louisville, KY 40292 USA. EM zhiqiang.chen@monsanto.com; Mahendra@louisville.edu RI He, Jiaqing/A-2245-2010; Mozetic, Miran/K-8784-2014 NR 26 TC 83 Z9 83 U1 0 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 13 PY 2008 VL 20 IS 9 BP 3224 EP 3228 DI 10.1021/cm800288y PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 297NM UT WOS:000255623400062 ER PT J AU Gillett, NP Stott, PA Santer, BD AF Gillett, N. P. Stott, P. A. Santer, B. D. TI Attribution of cyclogenesis region sea surface temperature change to anthropogenic influence SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ATLANTIC HURRICANE ACTIVITY; POWER DISSIPATION; RECENT INCREASE; VARIABILITY; INTENSITY AB Previous research has identified links between tropical cyclone activity and sea surface temperatures in the tropical cyclogenesis regions of the North Atlantic and Western North Pacific. Other work has demonstrated that warming in these regions is inconsistent with simulated internal variability. After evaluating the variability of a suite of climate models on a range of timescales, we use detection and attribution methods and a suite of 20th century simulations including anthropogenic and natural forcing to identify a significant response to external forcing in both regions during the June-November hurricane season over the 20th century. We then use separate simulations of the response to natural and anthropogenic forcing to identify anthropogenic influence independently of natural influence in both the Atlantic and Pacific Cyclogenesis Regions. C1 [Gillett, N. P.] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England. [Santer, B. D.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. [Stott, P. A.] Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England. RP Gillett, NP (reprint author), Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England. EM n.gillett@uea.ac.uk RI Santer, Benjamin/F-9781-2011; Stott, Peter/N-1228-2016 OI Stott, Peter/0000-0003-4853-7686 NR 24 TC 21 Z9 22 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 13 PY 2008 VL 35 IS 9 AR L09707 DI 10.1029/2008GL033670 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 303SB UT WOS:000256060100002 ER PT J AU Kamath, SY Arlen, MJ Hamilton, WA Dadmun, MD AF Kamath, Sudesh Y. Arlen, Michael J. Hamilton, William A. Dadmun, Mark D. TI The importance of thermodynamic interactions on the dynamics of multicomponent polymer systems revealed by examination of the dynamics of copolymer/homopolymer blends SO MACROMOLECULES LA English DT Article ID ISOPRENE TETRABLOCK COPOLYMERS; SEQUENCE DISTRIBUTION; SEGMENTAL DYNAMICS; POLY(STYRENE-CO-METHYL METHACRYLATE); SPINODAL DECOMPOSITION; NEUTRON REFLECTIVITY; METHYL-METHACRYLATE; HOMOPOLYMER MATRIX; FLUCTUATION MODEL; MONOMER SEQUENCE AB The effect of copolymer composition oil their dynamics in a homopolymer matrix has been studied using specular neutron reflectivity (NR). We have monitored the segregation process of random copolymers, containing styrene (S) and methyl niethacrylate (MMA), to the d-PS/d-PMMA interface from a polymer matrix. Four random copolymers containing 50, 54, 67, and 80% MMA were studied at 10 wt % loading in d-PMMA, where the interfacial excess, Z*, growth scaled as t(1/2) as predicted by theory. These results are correlated to the diffusion-limited growth of a copolymer wetting layer at the d-PS/d-PMMA interface. The mutual and tracer diffusion coefficients and the effective friction coefficients for these copolymers were then determined. The results demonstrate that the copolymer composition has a significant impact on its dynamics. Copolymer dynamics are significantly faster than those for a diblock copolymer at the same composition, which indicates that the impact of the change in composition is more than that due to an increase in the MMA content in the copolymer. Analysis of the friction factor using the Lodge-McLeish model indicates that the local composition around a copolymer is richer in styrene than the model predicts. We attribute this to the fact that the model uses only chain connectivity to calculate the self-concentration and does not include contributions due to thermodynamic interactions between the two blend components. The observation that the local environment around a copolymer is richer in styrene is in agreement with our simulation results and indicates that the styrene monomers in the copolymer aggregate together to minimize contact with the PMMA matrix. These results exemplify the importance of thermodynamic interactions on the dynamics of multicomponent polymer systems, particularly miscible homopolymer/copolymer blends. C1 [Kamath, Sudesh Y.; Arlen, Michael J.; Dadmun, Mark D.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Hamilton, William A.] Oak Ridge Natl Lab, Condensed Matter Div, Oak Ridge, TN 37831 USA. [Dadmun, Mark D.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dadmun, MD (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. NR 33 TC 3 Z9 3 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD MAY 13 PY 2008 VL 41 IS 9 BP 3339 EP 3348 DI 10.1021/ma0704212 PG 10 WC Polymer Science SC Polymer Science GA 297YU UT WOS:000255654100052 ER PT J AU Kis, A Zettl, A AF Kis, Andras Zettl, Alex TI Nanomechanics of carbon nanotubes SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE nanotubes; nanomechanics; mechanical properties ID HIGH YOUNGS MODULUS; ELASTIC-MODULUS; MECHANICAL-PROPERTIES; SINGLE; ROPES; COMPRESSION; GRAPHITE; TUBULES; MICROSCOPE; ACTUATORS AB Some of the most important potential applications of carbon nanotubes are related to their mechanical properties. Stiff sp(2) bonds result in a Young's modulus close to that of diamond, while the relatively weak van der Waals interaction between the graphitic shells acts as a form of lubrication. Previous characterization of the mechanical properties of nanotubes includes a rich variety of experiments involving mechanical deformation of nanotubes using scanning probe microscopes. These results have led to promising prototypes of nanoelectromechanical devices such as high-performance nanomotors, switches and oscillators based on carbon nanotubes. C1 [Kis, Andras] Ecole Polytech Fed Lausanne, Sch Engn, CH-1015 Lausanne, Switzerland. [Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zettl, Alex] Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kis, A (reprint author), Ecole Polytech Fed Lausanne, Sch Engn, CH-1015 Lausanne, Switzerland. EM andras.kis@epfl.ch; azettl@physics.berkeley.edu RI Kis, Andras/A-4631-2011; Zettl, Alex/O-4925-2016 OI Kis, Andras/0000-0002-3426-7702; Zettl, Alex/0000-0001-6330-136X NR 61 TC 50 Z9 53 U1 3 U2 23 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD MAY 13 PY 2008 VL 366 IS 1870 BP 1591 EP 1611 DI 10.1098/rsta.2007.2174 PG 21 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 278AL UT WOS:000254255700005 PM 18192169 ER PT J AU Kilina, S Tretiak, S Doorn, SK Luo, ZT Papadimitrakopoulos, F Piryatinski, A Saxena, A Bishop, AR AF Kilina, Svetlana Tretiak, Sergei Doorn, Stephen K. Luo, Zhengtang Papadimitrakopoulos, Fotios Piryatinski, Andrei Saxena, Avadh Bishop, Alan R. TI Cross-polarized excitons in carbon nanotubes SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE helical nanotube coordinates; transverse absorption; exciton localization; collective electronic oscillator method AB Polarization of low-lying excitonic bands in finite-size semiconducting single-walled carbon nanotubes (SWNTs) is studied by using quantum-chemical methodologies. Our calculations elucidate properties of cross-polarized excitons, which lead to the transverse optical absorption of nanotubes and presumably couple to intermediate-frequency modes recently observed in resonance Raman excitation spectroscopy. We identify up to 12 distinct excitonic transitions below the second fundamental band associated with the E-22 van Hove singularity. Calculations for several chiral SWNTs distinguish the optically active "bright" excitonic band polarized parallel to the tube axis and several optically "weak" cross-polarized excitons. The rest are optically (near) forbidden "dark" transitions. An analysis of the transition density matrices related to excitonic bands provides detailed information about delocalization of excitonic wavefunction along the tube. Utilization of the natural helical coordinate system accounting for the tube chirality allows one to disentangle longitudinal and circumferential components. The distribution of the transition density matrix along a tube axis is similar for all excitons. However, four parallel-polarized excitons associated with the Ell transition are more localized along the circumference of a tube, compared with others related to the E-12 and E-21 cross-polarized transitions. Calculated splitting between optically active parallel- and cross-polarized transitions increases with tube diameter, which compares well with experimental spectroscopic data. C1 [Kilina, Svetlana; Tretiak, Sergei; Doorn, Stephen K.; Piryatinski, Andrei; Saxena, Avadh; Bishop, Alan R.] Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Luo, Zhengtang; Papadimitrakopoulos, Fotios] Univ Connecticut, Nanomat Optoelect Lab, Dept Chem, Polymer Program,Inst Mat Sci, Storrs, CT 06269 USA. RP Tretiak, S (reprint author), Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, POB 1663, Los Alamos, NM 87545 USA. EM serg@lanl.gov RI Piryatinski, Andrei/B-5543-2009; luo, Zhengtang/C-4270-2008; Tretiak, Sergei/B-5556-2009 OI luo, Zhengtang/0000-0002-5134-9240; Tretiak, Sergei/0000-0001-5547-3647 NR 47 TC 31 Z9 31 U1 0 U2 16 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 13 PY 2008 VL 105 IS 19 BP 6797 EP 6802 DI 10.1073/pnas.0711646105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 301UN UT WOS:000255921200004 PM 18463293 ER PT J AU Uejio, JS Schwartz, CP Duffin, AM Drisdell, WS Cohen, RC Saykally, RJ AF Uejio, Janel S. Schwartz, Craig P. Duffin, Andrew M. Drisdell, Walter S. Cohen, Ronald C. Saykally, Richard J. TI Characterization of selective binding of alkali cations with carboxylate by x-ray absorption spectroscopy of liquid microjets SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Hofmeister effects; ion interactions; aqueous systems ID HYDROGEN-BOND NETWORK; ELECTRONIC-STRUCTURE; FINE-STRUCTURE; SPECTRA; WATER; TRANSITION; MOLECULES; HYDRATION; SURFACES; SALTS AB We describe an approach for characterizing selective binding between oppositely charged ionic functional groups under biologically relevant conditions. Relative shifts in K-shell x-ray absorption spectra of aqueous cations and carboxylate anions indicate the corresponding binding strengths via perturbations of carbonyl antibonding orbitals. XAS spectra measured for aqueous formate and acetate solutions containing lithium, sodium, and potassium cations reveal monotonically stronger binding of the lighter metals, supporting recent results from simulations and other experiments. The carbon K-edge spectra of the acetate carbonyl feature centered near 290 eV clearly indicate a preferential interaction of sodium versus potassium, which was less apparent with formate. These results are in accord with the Law of Matching Water Affinities, relating relative hydration strengths of ions to their respective tendencies to form contact ion pairs. Density functional theory calculations of K-shell spectra support the experimental findings. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94618 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM saykally@berkeley.edu RI Cohen, Ronald/A-8842-2011 OI Cohen, Ronald/0000-0001-6617-7691 NR 29 TC 83 Z9 83 U1 2 U2 52 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 13 PY 2008 VL 105 IS 19 BP 6809 EP 6812 DI 10.1073/pnas.0800181105 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 301UN UT WOS:000255921200006 PM 18463292 ER PT J AU Park, T Graf, MJ Boulaevskii, L Sarrao, JL Thompson, JD AF Park, T. Graf, M. J. Boulaevskii, L. Sarrao, J. L. Thompson, J. D. TI Electronic duality in strongly correlated matter SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE 4f electrons; local moment magnetism; strongly correlated systems; superconductivity ID UNCONVENTIONAL SUPERCONDUCTIVITY; DELTA-PLUTONIUM; FERMI-SURFACE; HEAVY; PRESSURE; CERHIN5; ANTIFERROMAGNETISM; CEIRIN5; METALS; FIELD AB Superconductivity develops from an attractive interaction between itinerant electrons that creates electron pairs, which condense into a macroscopic quantum state-the superconducting state. On the other hand, magnetic order in a metal arises from electrons localized close to the ionic core and whose interaction is mediated by itinerant electrons. The dichotomy between local moment magnetic order and superconductivity raises the question of whether these two states can coexist and involve the same electrons. Here, we show that the single 4f electron of cerium in CeRhIn5 simultaneously produces magnetism, characteristic of localization, and superconductivity that requires itinerancy. The dual nature of the 4f-electron allows microscopic coexistence of anti-ferromagnetic order and superconductivity whose competition is tuned by small changes in pressure and magnetic field. Electronic duality contrasts with conventional interpretations of coexisting spin-density magnetism and superconductivity and offers a new avenue for understanding complex states in classes of materials. C1 [Park, T.; Graf, M. J.; Boulaevskii, L.; Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Park, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM tuson@lanl.gov RI Park, Tuson/A-1520-2012 NR 36 TC 31 Z9 31 U1 1 U2 11 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 13 PY 2008 VL 105 IS 19 BP 6825 EP 6828 DI 10.1073/pnas.0801873105 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 301UN UT WOS:000255921200009 PM 18463288 ER PT J AU Choi, YS Zhang, HJ Brunzelle, JS Nair, SK Zhao, HM AF Choi, Yoo Seong Zhang, Houjin Brunzelle, Joseph S. Nair, Satish K. Zhao, Huimin TI In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE di-iron enzymes; metalloenzymes; N-oxygenation; reaction mechanism ID RIBONUCLEOTIDE REDUCTASE; ESCHERICHIA-COLI; AMINOPYRROLNITRIN OXYGENASE; STREPTOMYCES-THIOLUTEUS; METHANE MONOOXYGENASE; IRON; PROTEIN; DIIRON; HYDROXYLASE; CATALYZES AB p-aminobenzoate N-oxygenase (AurF) from Streptomyces thioluteus catalyzes the formation of unusual polyketide synthase starter unit p-nitrobenzoic acid (pNBA) from p-aminobenzoic acid (pABA) in the biosynthesis of antibiotic aureothin. AurF is a metalloenzyme, but its native enzymatic activity has not been demonstrated in vitro, and its catalytic mechanism is unclear. In addition, the nature of the cofactor remains a controversy. Here, we report the in vitro reconstitution of the AurF enzyme activity, the crystal structure of AurF in the oxidized state, and the cocrystal structure of AurF with its product pNBA. Our combined biochemical and structural analysis unequivocally indicates that AurF is a non-heme di-iron monooxygenase that catalyzes sequential oxidation of aminoarenes to nitroarenes via hydroxylamine and nitroso intermediates. C1 [Choi, Yoo Seong; Zhao, Huimin] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA. [Zhang, Houjin; Nair, Satish K.; Zhao, Huimin] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA. [Nair, Satish K.; Zhao, Huimin] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Zhao, Huimin] Univ Illinois, Ctr Biophys & Comp Biol, Urbana, IL 61801 USA. [Zhang, Houjin; Nair, Satish K.; Zhao, Huimin] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA. [Brunzelle, Joseph S.] Argonne Natl Lab, Life Sci Collaborat Access Team, Argonne, IL 60439 USA. RP Nair, SK (reprint author), Univ Illinois, Dept Chem & Biomol Engn, 600 S Mathews Ave, Urbana, IL 61801 USA. EM snair@uiuc.edu FU NIGMS NIH HHS [R01 GM079038] NR 33 TC 53 Z9 53 U1 0 U2 21 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 13 PY 2008 VL 105 IS 19 BP 6858 EP 6863 DI 10.1073/pnas.0712073105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 301UN UT WOS:000255921200015 PM 18458342 ER PT J AU Berry, JJ Ginley, DS Burrows, PE AF Berry, J. J. Ginley, D. S. Burrows, P. E. TI Organic light emitting diodes using a Ga : ZnO anode SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILMS; DOPED ZNO; DEVICES AB We report the application of gallium doped zinc oxide (GZO) films as anodes in organic light emitting diodes (OLEDs). Pulsed laser deposited GZO films of differing Ga composition are examined. Bilayer OLEDs using GZO and indium tin oxide (ITO) anodes are compared. Relative to ITO, the GZO anodes have a slightly better sheet resistance and transparency in the visible spectral region. Device data suggest that GZO effectively injects holes into an aromatic triamine hole transporting layer. Indium-free anodes such as GZO are expected to improve OLED stability while lowering the cost per unit area, which is crucial for OLED based lighting applications. (C) 2008 American Institute of Physics. C1 [Berry, J. J.; Ginley, D. S.] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. [Burrows, P. E.] Pacific NW Natl Lab, Energy Sci & Technol Directorate, Richland, WA 99352 USA. RP Berry, JJ (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. EM joseph_berry@nrel.gov NR 17 TC 75 Z9 78 U1 3 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 12 PY 2008 VL 92 IS 19 AR 193304 DI 10.1063/1.2917565 PG 3 WC Physics, Applied SC Physics GA 310XN UT WOS:000256564200087 ER PT J AU Rose, V Freeland, JW Gray, KE Streiffer, SK AF Rose, V. Freeland, J. W. Gray, K. E. Streiffer, S. K. TI X-ray-excited photoelectron detection using a scanning tunneling microscope SO APPLIED PHYSICS LETTERS LA English DT Article ID SPECTRA AB Detection of x-ray-enhanced electrons emitted by synchrotron radiation with the tip of a scanning tunneling microscope has the potential to open a path to high-resolution microscopy with chemical sensitivity. Nonresonant photoejected electrons typically yield a current background of a few hundred picoamperes at a bare tip. Coating the tip with an insulating boron nitride film can effectively reduce this background. In this configuration, we have quantitatively studied the bias dependent photoelectron collection for tip/sample separations of 400-1600 nm, where quantum mechanical tunneling does not contribute. (c) 2008 American Institute of Physics. C1 [Rose, V.; Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Gray, K. E.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Streiffer, S. K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Rose, V (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vrose@anl.gov RI Rose, Volker/B-1103-2008; Streiffer, Stephen/A-1756-2009 OI Rose, Volker/0000-0002-9027-1052; NR 6 TC 23 Z9 23 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 12 PY 2008 VL 92 IS 19 AR 193510 DI 10.1063/1.2936083 PG 3 WC Physics, Applied SC Physics GA 310XN UT WOS:000256564200107 ER PT J AU Telling, ND Keatley, PS Shelford, LR Arenholz, E van der Laan, G Hicken, RJ Sakuraba, Y Tsunegi, S Oogane, M Ando, Y Takanashi, K Miyazaki, T AF Telling, N. D. Keatley, P. S. Shelford, L. R. Arenholz, E. van der Laan, G. Hicken, R. J. Sakuraba, Y. Tsunegi, S. Oogane, M. Ando, Y. Takanashi, K. Miyazaki, T. TI Temperature dependence of the interface moments in Co2MnSi thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID MAGNETIC TUNNEL-JUNCTIONS; SPIN-POLARIZATION; MAGNETORESISTANCE; SPECTROSCOPY AB X-ray magnetic circular dichroism (XMCD) is utilized to explore the temperature dependence of the interface moments in Co2MnSi (CMS) thin films capped with aluminum. By increasing the thickness of the capping layer, we demonstrate enhanced interface sensitivity of the measurements. L2(1)-ordered CMS films show no significant temperature dependence of either the Co or Mn interface moments. However, disordered CMS films show a decreased moment at low temperature possibly caused by increased Mn-Mn antiferromagnetic coupling. It is suggested that for ordered L2(1) CMS films the temperature dependence of the tunneling magnetoresistance is not related to changes in the interface moments. (c) 2008 American Institute of Physics. C1 [Telling, N. D.; van der Laan, G.] STFC Daresbury Lab, Magnet Spect Grp, Warrington WA4 4AD, Cheshire, England. [Keatley, P. S.; Shelford, L. R.; Hicken, R. J.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Arenholz, E.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Tsunegi, S.; Oogane, M.; Ando, Y.] Tohoku Univ, Grad Sch Engn, Dept Appl Phys, Sendai, Miyagi 9808579, Japan. [Takanashi, K.] Tohoku Univ, Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan. [Miyazaki, T.] Tohoku Univ, New Ind Creat Hatchery Ctr, Sendai, Miyagi 9808579, Japan. RP Telling, ND (reprint author), STFC Daresbury Lab, Magnet Spect Grp, Warrington WA4 4AD, Cheshire, England. EM n.d.telling@dl.ac.uk RI Sakuraba, Yuya/C-1902-2009; Miyazaki, Terunobu/E-5068-2010; Takanashi, Koki/A-9488-2011; van der Laan, Gerrit/Q-1662-2015; OI van der Laan, Gerrit/0000-0001-6852-2495; Keatley, Paul/0000-0002-7679-6418 NR 15 TC 9 Z9 9 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 12 PY 2008 VL 92 IS 19 AR 192503 DI 10.1063/1.2927482 PG 3 WC Physics, Applied SC Physics GA 310XN UT WOS:000256564200054 ER PT J AU Yu, C Scullin, ML Huijben, M Ramesh, R Majumdar, A AF Yu, Choongho Scullin, Matthew L. Huijben, Mark Ramesh, Ramamoorthy Majumdar, Arun TI Thermal conductivity reduction in oxygen-deficient strontium titanates SO APPLIED PHYSICS LETTERS LA English DT Article ID THERMOELECTRIC-MATERIALS; 3-OMEGA METHOD; THIN-FILMS; SRTIO3; DEVICES; MERIT AB We report significant thermal conductivity reduction in oxygen-deficient lanthanum-doped strontium titanate (Sr(1-x)La(x)TiO(3-delta)) films as compared to unreduced strontium titanates. Our experimental results suggest that the oxygen vacancies could have played an important role in the reduction. This could be due to the nature of randomly distributed and clustered vacancies, which would be very effective to scatter phonons. Our results could provide a pathway for tailoring the thermal conductivity of complex oxides, which is very beneficial to various applications including thermoelectrics. (C) 2008 American Institute of Physics. C1 [Yu, Choongho] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Yu, Choongho; Ramesh, Ramamoorthy; Majumdar, Arun] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Scullin, Matthew L.; Huijben, Mark; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Majumdar, Arun] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Yu, C (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM chyu@tamu.edu NR 21 TC 54 Z9 54 U1 5 U2 53 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 12 PY 2008 VL 92 IS 19 AR 191911 DI 10.1063/1.2930679 PG 3 WC Physics, Applied SC Physics GA 310XN UT WOS:000256564200029 ER PT J AU Zhang, JM Wei, QM Lian, J Jiang, WL Weber, WJ Ewing, RC AF Zhang, Jiaming Wei, Qiangmin Lian, Jie Jiang, Weilin Weber, William J. Ewing, Rodney C. TI Self-assembly of well-aligned 3C-SiC ripples by focused ion beam SO APPLIED PHYSICS LETTERS LA English DT Article ID ROUGHENING INSTABILITY; BOMBARDED SI(001); PATTERN-FORMATION; SURFACE; EVOLUTION; EMISSION; EROSION; GE; SI AB Well-aligned ripple structures on the surface of a single crystal of 3C-SiC were created by focused ion beam bombardment, and the resulting morphology and topography were characterized using in situ focused ion beam/scanning electron microscopy, as well as ex situ atomic force microscopy. The ripple structure formed as a result of ion sputtering beyond a critical incident angle (similar to 50 degrees), and its characteristic wavelength varied from 158 to 296 nm with changes in the incident angle and ion beam flux. The geometry, ordering, and homogeneity of the ripples can be well controlled by varying the ion beam incident angle and beam current, as required for the fabrication of nanostructures that use SiC for optical and electronic applications. (C) 2008 American Institute of Physics. C1 [Zhang, Jiaming; Wei, Qiangmin; Lian, Jie; Ewing, Rodney C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. [Zhang, Jiaming; Wei, Qiangmin; Lian, Jie; Ewing, Rodney C.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Lian, Jie] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Jiang, Weilin; Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Ewing, RC (reprint author), Univ Michigan, Dept Geol Sci, 1006 CC Little Bldg, Ann Arbor, MI 48109 USA. EM rodewing@umich.edu RI Lian, Jie/A-7839-2010; Weber, William/A-4177-2008; Wei, Qiangmin/D-3931-2011; Zhang, Jiaming/H-5591-2012; OI Weber, William/0000-0002-9017-7365; Jiang, Weilin/0000-0001-8302-8313 NR 30 TC 10 Z9 10 U1 3 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 12 PY 2008 VL 92 IS 19 AR 193107 DI 10.1063/1.2927473 PG 3 WC Physics, Applied SC Physics GA 310XN UT WOS:000256564200078 ER PT J AU Bordner, AJ Gorin, AA AF Bordner, Andrew J. Gorin, Andrey A. TI Comprehensive inventory of protein complexes in the Protein Data Bank from consistent classification of interfaces SO BMC BIOINFORMATICS LA English DT Article ID QUATERNARY STRUCTURE; CRYSTALLINE STATE; DOMAIN; PREDICTION; INFERENCE; CONTACTS; BIOLOGY AB Background: Protein-protein interactions are ubiquitous and essential for all cellular processes. High-resolution X-ray crystallographic structures of protein complexes can reveal the details of their function and provide a basis for many computational and experimental approaches. Differentiation between biological and non-biological contacts and reconstruction of the intact complex is a challenging computational problem. A successful solution can provide additional insights into the fundamental principles of biological recognition and reduce errors in many algorithms and databases utilizing interaction information extracted from the Protein Data Bank (PDB). Results: We have developed a method for identifying protein complexes in the PDB X-ray structures by a four step procedure: (1) comprehensively collecting all protein-protein interfaces; (2) clustering similar protein-protein interfaces together; (3) estimating the probability that each cluster is relevant based on a diverse set of properties; and (4) combining these scores for each PDB entry in order to predict the complex structure. The resulting clusters of biologically relevant interfaces provide a reliable catalog of evolutionary conserved protein-protein interactions. These interfaces, as well as the predicted protein complexes, are available from the Protein Interface Server (PInS) website (see Availability and requirements section). Conclusion: Our method demonstrates an almost two-fold reduction of the annotation error rate as evaluated on a large benchmark set of complexes validated from the literature. We also estimate relative contributions of each interface property to the accurate discrimination of biologically relevant interfaces and discuss possible directions for further improving the prediction method. C1 [Bordner, Andrew J.; Gorin, Andrey A.] Oak Ridge Natl Lab, Computat Sci & Math Div, Oak Ridge, TN 37831 USA. [Bordner, Andrew J.; Gorin, Andrey A.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Bordner, Andrew J.] Mayo Clin, Scottsdale, AZ 85259 USA. RP Bordner, AJ (reprint author), Oak Ridge Natl Lab, Computat Sci & Math Div, POB 2008,MS 6173, Oak Ridge, TN 37831 USA. EM bordner.andrew@mayo.edu; agor@ornl.gov RI Gorin, Andrey/B-1545-2014 NR 42 TC 22 Z9 22 U1 0 U2 3 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD MAY 12 PY 2008 VL 9 AR 234 DI 10.1186/1471-2105-9-234 PG 11 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 308XA UT WOS:000256422800001 PM 18474114 ER PT J AU Khodadadi, S Pawlus, S Roh, JH Sakai, VG Mamontov, E Sokolov, AP AF Khodadadi, S. Pawlus, S. Roh, J. H. Sakai, V. Garcia Mamontov, E. Sokolov, A. P. TI The origin of the dynamic transition in proteins SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID INELASTIC NEUTRON-SCATTERING; GLASS-TRANSITION; BACKSCATTERING SPECTROMETER; HYDRATION WATER; TRANSFER-RNA; SOLVENT; FLUCTUATIONS; CROSSOVER; MOTIONS AB Despite extensive efforts in experimental and computational studies, the microscopic understanding of dynamics of biological macromolecules remains a great challenge. It is known that hydrated proteins, DNA and RNA, exhibit a so-called "dynamic transition." It appears as a sharp rise of their mean-squared atomic displacements < r(2)> at temperatures above 200-230 K. Even after a long history of studies, this sudden activation of biomolecular dynamics remains a puzzle and many contradicting models have been proposed. By combining neutron and dielectric spectroscopy data, we were able to follow protein dynamics over an extremely broad frequency range. Our results show that there is no sudden change in the dynamics of the protein at temperatures around similar to 200-230 K. The protein's relaxation time exhibits a smooth temperature variation over the temperature range of 180-300 K. Thus the experimentally observed sharp rise in < r(2)> is just a result of the protein's structural relaxation reaching the limit of the experimental frequency window. The microscopic mechanism of the protein's structural relaxation remains unclear. (c) 2008 American Institute of Physics. C1 [Khodadadi, S.; Pawlus, S.; Sokolov, A. P.] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. [Pawlus, S.] Silesian Univ, Inst Phys, PL-40007 Katowice, Poland. [Roh, J. H.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Roh, J. H.] Johns Hopkins Univ, Dept Biophys, Baltimore, MD 21218 USA. [Sakai, V. Garcia; Mamontov, E.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Sokolov, AP (reprint author), Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. EM alexei@uakron.edu RI Mamontov, Eugene/Q-1003-2015; OI Mamontov, Eugene/0000-0002-5684-2675; Garcia Sakai, Victoria/0000-0001-6570-4218 NR 33 TC 98 Z9 98 U1 2 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 12 PY 2008 VL 128 IS 19 AR 195106 DI 10.1063/1.2927871 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 305VF UT WOS:000256205200059 PM 18500904 ER PT J AU Kornilov, O Toennies, JP AF Kornilov, Oleg Toennies, J. Peter TI Electron impact ionization of size selected hydrogen clusters (H(2))(N): Ion fragment and neutral size distributions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CROSS-SECTIONS; IM HOCHVAKUUM; MONTE-CARLO; GAS TARGET; AB-INITIO; EV ENERGY; ENERGETICS; COLLISIONS; BEAMS; STABILITIES AB Clusters consisting of normal H(2) molecules, produced in a free jet expansion, are size selected by diffraction from a transmission nanograting prior to electron impact ionization. For each neutral cluster (H(2))(N) (N=2-40), the relative intensities of the ion fragments H(n)(+) are measured with a mass spectrometer. H(3)(+) is found to be the most abundant fragment up to N=17. With a further increase in N, the abundances of H(3)(+), H(5)(+), H(7)(+), and H(9)(+) first increase and, after passing through a maximum, approach each other. At N=40, they are about the same and more than a factor of 2 and 3 larger than for H(11)(+) and H(13)(+), respectively. For a given neutral cluster size, the intensities of the ion fragments follow a Poisson distribution. The fragmentation probabilities are used to determine the neutral cluster size distribution produced in the expansion at a source temperature of 30.1 K and a source pressure of 1.50 bar. The distribution shows no clear evidence of a magic number N=13 as predicted by theory and found in experiments with pure para-H(2) clusters. The ion fragment distributions are also used to extract information on the internal energy distribution of the H(3)(+) ions produced in the reaction H(2)(+)+H(2)-> H(3)(+)+H, which is initiated upon ionization of the cluster. The internal energy is assumed to be rapidly equilibrated and to determine the number of molecules subsequently evaporated. The internal energy distribution found in this way is in good agreement with data obtained in an earlier independent merged beam scattering experiment. (c) 2008 American Institute of Physics. C1 [Kornilov, Oleg; Toennies, J. Peter] Max Planck Inst Dynam & Selbstorg, D-37073 Gottingen, Germany. RP Kornilov, O (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM jtoenni@gwdg.de NR 63 TC 8 Z9 9 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 12 PY 2008 VL 128 IS 19 AR 194306 DI 10.1063/1.2903451 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 305VF UT WOS:000256205200019 PM 18500864 ER PT J AU Yu, HG AF Yu, Hua-Gen TI A spherical electron cloud hopping model for studying product branching ratios of dissociative recombination SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID AB-INITIO DYNAMICS; TEMPERATURE-DEPENDENCE; NONADIABATIC TRANSITIONS; H3O&.(H2O)N-SERIES IONS; MOLECULAR-DYNAMICS; H3O+; SIMULATION; EXCITATION; COLLISIONS; COMPLEX AB A spherical electron cloud hopping (SECH) model is proposed to study the product branching ratios of dissociative recombination (DR) of polyatomic systems. In this model, the fast electron-captured process is treated as an instantaneous hopping of a cloud of uniform spherical fractional point charges onto a target M(+q) ion (or molecule). The sum of point charges (-1) simulates the incident electron. The sphere radius is determined by a critical distance (R(eM)(c)) between the incoming electron (e(-)) and the target, at which the potential energy of the e(-)-M(+q) system is equal to that of the electron-captured molecule M(+q-1) in a symmetry-allowed electronic state with the same structure as M(+q). During the hopping procedure, the excess energies of electron association reaction are dispersed in the kinetic energies of M(+q-1) atoms to conserve total energy. The kinetic energies are adjusted by linearly adding atomic momenta in the direction of driving forces induced by the scattering electron. The nuclear dynamics of the resultant M(+q-1) molecule are studied by using a direct ab initio dynamics method on the adiabatic potential energy surface of M(+q-1), or together with extra adiabatic surface(s) of M(+q-1). For the latter case, the "fewest switches" surface hopping algorithm of Tully was adapted to deal with the nonadiabaticity in trajectory propagations. The SECH model has been applied to study the DR of both CH(+) and H(3)O(+)(H(2)O)(2). The theoretical results are consistent with the experiment. It was found that water molecules play an important role in determining the product branching ratios of the molecular cluster ion. (c) 2008 American Institute of Physics. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Yu, HG (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM hgy@bnl.gov RI Yu, Hua-Gen/N-7339-2015 NR 62 TC 5 Z9 5 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 12 PY 2008 VL 128 IS 19 AR 194106 DI 10.1063/1.2921803 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 305VF UT WOS:000256205200010 PM 18500855 ER PT J AU Goepfert, PA Lumm, W Farmer, P Matthews, P Prendergast, A Carlson, JM Derdeyn, CA Tang, JM Kaslow, RA Bansal, A Yusim, K Heckerman, D Mulenga, J Allen, S Goulder, PJR Hunter, E AF Goepfert, Paul A. Lumm, Wendy Farmer, Paul Matthews, Philippa Prendergast, Andrew Carlson, Jonathan M. Derdeyn, Cynthia A. Tang, Jianming Kaslow, Richard A. Bansal, Anju Yusim, Karina Heckerman, David Mulenga, Joseph Allen, Susan Goulder, Philip J. R. Hunter, Eric TI Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients SO JOURNAL OF EXPERIMENTAL MEDICINE LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; T-CELL RESPONSES; LYMPHOCYTE RESPONSE; HLA; INFECTION; CD8(+); REPLICATION; POLYMORPHISMS; PROGRESSION; EXPRESSION AB In a study of 114 epidemiologically linked Zambian transmission pairs, we evaluated the impact of human leukocyte antigen class I (HLA-I)-associated amino acid polymorphisms, presumed to reflect cytotoxic T lymphocyte (CTL) escape in Gag and Nef of the virus transmitted from the chronically infected donor, on the plasma viral load (VL) in matched recipients 6 mo after infection. CTL escape mutations in Gag and Nef were seen in the donors, which were subsequently transmitted to recipients, largely unchanged soon after infection. We observed a significant correlation between the number of Gag escape mutations targeted by specific HLA-B allele-restricted CTLs and reduced VLs in the recipients. This negative correlation was most evident in newly infected individuals, whose HLA alleles were unable to effectively target Gag and select for CTL escape mutations in this gene. Nef mutations in the donor had no impact on VL in the recipient. Thus, broad Gag-specific CTL responses capable of driving virus escape in the donor may be of clinical benefit to both the donor and recipient. In addition to their direct implications for HIV-1 vaccine design, these data suggest that CTL-induced viral polymorphisms and their associated in vivo viral fitness costs could have a significant impact on HIV-1 pathogenesis. C1 [Goepfert, Paul A.; Tang, Jianming] Univ Alabama, Dept Med, Birmingham, AL 35294 USA. [Goepfert, Paul A.; Tang, Jianming] Univ Alabama, Dept Microbiol, Birmingham, AL 35294 USA. [Kaslow, Richard A.] Univ Alabama, Dept Epidemiol, Birmingham, AL 35294 USA. [Lumm, Wendy; Farmer, Paul; Derdeyn, Cynthia A.; Hunter, Eric] Yerkes Natl Primate Res Ctr, Emory Vaccine Ctr, Atlanta, GA 30322 USA. [Matthews, Philippa; Prendergast, Andrew; Goulder, Philip J. R.] Univ Oxford, Dept Pediat, Oxford OX1 3SY, England. [Carlson, Jonathan M.; Heckerman, David] Microsoft Res, Redmond, WA 98052 USA. [Carlson, Jonathan M.] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA. [Derdeyn, Cynthia A.; Hunter, Eric] Emory Univ, Dept Pathol & Lab Med, Atlanta, GA 30322 USA. [Allen, Susan] Emory Univ, Dept Global Hlth, Atlanta, GA 30322 USA. [Yusim, Karina] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mulenga, Joseph] Zambia Emory HIV Res Grp, Lusaka, Zambia. [Goulder, Philip J. R.] Univ KwaZulu Natal, Doris Duke Med Res Inst, HIV Pathogenesis Program, ZA-4013 Durban, South Africa. [Goulder, Philip J. R.] Massachusetts Gen Hosp East, Partners AIDS Res Ctr, Boston, MA 02129 USA. RP Goepfert, PA (reprint author), Univ Alabama, Dept Med, Birmingham, AL 35294 USA. EM paulg@uab.edu OI Tang, Jianming/0000-0003-0137-7486; Matthews, Philippa/0000-0002-4036-4269 FU Medical Research Council [G0501777, G0500384]; NIAID NIH HHS [AI-46995, AI-64060, P30 AI050409, R01 AI040951, R01 AI041951, R01 AI046995, R01 AI064060] NR 34 TC 153 Z9 156 U1 1 U2 5 PU ROCKEFELLER UNIV PRESS PI NEW YORK PA 1114 FIRST AVE, 4TH FL, NEW YORK, NY 10021 USA SN 0022-1007 J9 J EXP MED JI J. Exp. Med. PD MAY 12 PY 2008 VL 205 IS 5 BP 1009 EP 1017 DI 10.1084/jem.20072457 PG 9 WC Immunology; Medicine, Research & Experimental SC Immunology; Research & Experimental Medicine GA 317EE UT WOS:000257001800004 PM 18426987 ER PT J AU Kilby, JM Lee, HY Hazelwood, JD Bansal, A Bucy, RP Saag, MS Shaw, GM Acosta, EP Johnson, VA Perelson, AS Goepfert, PA AF Kilby, J. Michael Lee, Ha Youn Hazelwood, J. Darren Bansal, Anju Bucy, R. Patterson Saag, Michael S. Shaw, George M. Acosta, Edward P. Johnson, Victoria A. Perelson, Alan S. Goepfert, Paul A. TI Treatment response in acute/early infection versus advanced AIDS: equivalent first and second phases of HIV RNA decline SO AIDS LA English DT Article DE acute HIV infection; mathematical modeling; viral clearance; viral dynamics ID VIRUS TYPE-1 INFECTION; DYNAMICS IN-VIVO; ANTIRETROVIRAL THERAPY; IMMUNE-RESPONSES; VIRAL DYNAMICS; PLASMA; CELL; CLEARANCE; INDIVIDUALS; REPLICATION AB Objective: Compare the initial phases of virologic decay when acute/early and advanced HIV-infected adults are administered the same treatment regimen. Design: Mathematical modeling of a previously completed prospective treatment pilot study involving treatment-naive patients with early and advanced immunosuppression. Methods: We analyzed data from a treatment protocol in which 18 individuals with acute or recent HIV-1 seroconversion and six patients with advanced AIDS were administered the same four-drug antiretroviral regimen. Initial treatment responses were compared by fitting a mathematical model to frequent viral load measurements in order to calculate the first and second phase kinetics of viral clearance, and also by comparing viral load suppression over 24 weeks. Patients were also comprehensively compared in terms of protease inhibitor drug levels, HIV-specific immune responses at baseline, and the presence of drug resistance-conferring mutations. Results: There was no statistically meaningful difference in first phase clearance of comparable high-level viremia in the two groups, whether protease inhibitor levels were inserted into the model or 100% antiviral drug effectiveness was assumed. In contrast, acute/early patients had inferior sustained responses than advanced patients, reflecting erratic adherence. Conclusions: Despite many years of intervening immune destruction, the initial virologic decay on therapy appears to be the same at the extremes of the HIV disease spectrum. (C) 2008 Wolters Kluwer Health Lippincott Williams & Wilkins. C1 [Kilby, J. Michael; Hazelwood, J. Darren; Bansal, Anju; Saag, Michael S.; Shaw, George M.; Johnson, Victoria A.; Goepfert, Paul A.] Div Infect Dis, Birmingham, AL USA. [Kilby, J. Michael; Hazelwood, J. Darren; Bansal, Anju; Saag, Michael S.; Shaw, George M.; Johnson, Victoria A.; Goepfert, Paul A.] Univ Alabama, Dept Med, HIV Res Clin, Birmingham, AL 35294 USA. [Bucy, R. Patterson] Univ Alabama, Dept Pathol, Birmingham, AL 35294 USA. [Acosta, Edward P.] Univ Alabama, Dept Pharmacol, Birmingham, AL 35294 USA. [Johnson, Victoria A.] Birmingham Vet Affairs Med Ctr, Birmingham, AL USA. [Johnson, Victoria A.] Univ Alabama, Sch Med, Birmingham, AL USA. [Lee, Ha Youn; Perelson, Alan S.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM USA. [Lee, Ha Youn] Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY USA. RP Kilby, JM (reprint author), Univ Alabama, Pittman Gen Clin Res Ctr, 142 Community Care Bldg,908 20th St S, Birmingham, AL 35294 USA. EM mkilby@uab.edu OI Kilby, J. Michael/0000-0003-3222-1003 FU NCRR NIH HHS [MO1 RR00032, R01 RR006555, RR06555, M01 RR000032]; NIAID NIH HHS [U01AI38858, U01 AI041530, R21 AI049126, R01 AI049126, R01 AI028433, AI41530, AI28433, AI32775, AI49126, P30 AI027767, P30 AI27767, R37 AI028433, U01 AI032775, U01 AI038858]; NIH HHS [R01 OD011095] NR 28 TC 18 Z9 19 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0269-9370 J9 AIDS JI Aids PD MAY 11 PY 2008 VL 22 IS 8 BP 957 EP 962 DI 10.1097/QAD.0b013e3282fbd1da PG 6 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 307ZO UT WOS:000256358300006 PM 18453855 ER PT J AU Bramich, DM Vidrih, S Wyrzykowski, L Munn, JA Lin, H Evans, NW Smith, MC Belokurov, V Gilmore, G Zucker, DB Hewett, PC Watkins, LL Faria, DC Fellhauer, M Miknaitis, G Bizyaev, D Ivezic, Z Schneider, DP Snedden, SA Malanushenko, E Malanushenko, V Pan, K AF Bramich, D. M. Vidrih, S. Wyrzykowski, L. Munn, J. A. Lin, H. Evans, N. W. Smith, M. C. Belokurov, V. Gilmore, G. Zucker, D. B. Hewett, P. C. Watkins, L. L. Faria, D. C. Fellhauer, M. Miknaitis, G. Bizyaev, D. Ivezic, Z. Schneider, D. P. Snedden, S. A. Malanushenko, E. Malanushenko, V. Pan, K. TI Light and motion in SDSS Stripe 82: the catalogues SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE catalogues; astrometry; stars : variables; others; galaxy : stellar content; galaxies : photometry ID DIGITAL-SKY-SURVEY; USNO-B; DATA RELEASE; SYSTEM; VARIABILITY; TELESCOPE; MONITOR; FITS AB We present a new public archive of light-motion curves in Sloan Digital Sky Survey (SDSS) Stripe 82, covering 99 degrees. in right ascension from alpha = 20(h).7 to 3(h).3 and spanning 2 degrees.52 in declination from delta = - 1.2 degrees to 1 degrees.26, for a total sky area of similar to 249 deg(2). Stripe 82 has been repeatedly monitored in the u, g, r, i and z bands over a seven-year baseline. Objects are cross-matched between runs, taking into account the effects of any proper motion. The resulting catalogue contains almost 4 million light-motion curves of stellar objects and galaxies. The photometry are recalibrated to correct for varying photometric zero-points, achieving similar to 20 and 30 mmag rms accuracy down to 18 mag in the g, r, i and z bands for point sources and extended sources, respectively. The astrometry are recalibrated to correct for inherent systematic errors in the SDSS astrometric solutions, achieving similar to 32 and 35 mas rms accuracy down to 18 mag for point sources and extended sources, respectively. For each light- motion curve, 229 photometric and astrometric quantities are derived and stored in a higher level catalogue. On the photometric side, these include mean exponential and point spread function (PSF) magnitudes along with uncertainties, rms scatter, chi(2) per degree of freedom, various magnitude distribution percentiles, object type (stellar or galaxy), and eclipse, Stetson and Vidrih variability indices. On the astrometric side, these quantities include mean positions, proper motions as well as their uncertainties and chi(2) per degree of freedom. The light- motion curve catalogue presented here is complete down to r similar to 21.5 and is at present the deepest large-area photometric and astrometric variability catalogue available. C1 [Bramich, D. M.; Vidrih, S.; Wyrzykowski, L.; Evans, N. W.; Smith, M. C.; Belokurov, V.; Gilmore, G.; Zucker, D. B.; Hewett, P. C.; Watkins, L. L.; Faria, D. C.; Fellhauer, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Bramich, D. M.] Isaac Newton Grp Telescopes, E-38700 Canary Islands, Spain. [Vidrih, S.] Heidelberg Univ, Astron Rech Inst, Zentrum Astron, D-69120 Heidelberg, Germany. [Munn, J. A.] US Naval observ, Flagstaff Stn, Flagstaff, AZ 86001 USA. [Miknaitis, G.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bizyaev, D.; Snedden, S. A.; Malanushenko, E.; Malanushenko, V.; Pan, K.] Apache Point Observ, Sunspot, NM 88349 USA. [Ivezic, Z.] Univ Washington, Dept Astron, Seattle, WA 98155 USA. [Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP Bramich, DM (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. EM dmb@ing.iac.es OI Watkins, Laura/0000-0002-1343-134X NR 33 TC 75 Z9 76 U1 1 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 11 PY 2008 VL 386 IS 2 BP 887 EP 902 DI 10.1111/j.1365-2966.2008.13053.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 292ST UT WOS:000255287100021 ER PT J AU Wood, M Blaylock, G Bradbury, SM Buckley, JH Byrum, KL Chow, YCK Cui, W Perez, ID Falcone, AD Fegan, SJ Finley, JP Grube, J Hall, J Hanna, D Holder, J Horan, D Humensky, TB Kieda, DB Kildea, J Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Nagai, T Ong, RA Perkins, JS Pohl, M Quinn, J Rose, HJ Sembroski, GH Vassiliev, VV Wagner, RG Wakely, SP Weekes, TC Weinstein, A AF Wood, M. Blaylock, G. Bradbury, S. M. Buckley, J. H. Byrum, K. L. Chow, Y. C. K. Cui, W. Perez, I. de la Calle Falcone, A. D. Fegan, S. J. Finley, J. P. Grube, J. Hall, J. Hanna, D. Holder, J. Horan, D. Humensky, T. B. Kieda, D. B. Kildea, J. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Nagai, T. Ong, R. A. Perkins, J. S. Pohl, M. Quinn, J. Rose, H. J. Sembroski, G. H. Vassiliev, V. V. Wagner, R. G. Wakely, S. P. Weekes, T. C. Weinstein, A. TI A search for dark matter annihilation with the whipple 10 m telescope SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; gamma rays : observations ID DWARF SPHEROIDAL GALAXY; SUPERMASSIVE BLACK-HOLE; GAMMA-RAY ASTRONOMY; MILKY-WAY HALO; GALACTIC-CENTER; GLOBULAR-CLUSTERS; URSA-MINOR; DENSITY PROFILES; DRACO; M32 AB We present observations of the dwarf galaxies Draco and Ursa Minor, the Local Group galaxies M32 and M33, and the globular cluster M15 conducted with the Whipple 10 m gamma-ray telescope to search for the gamma-ray signature of self-annihilating weakly interacting massive particles (WIMPs), which may constitute astrophysical dark matter (DM). We review the motivations for selecting these sources based on their unique astrophysical environments and report the results of the data analysis that produced upper limits on the excess rate of gamma rays for each source. We consider models for the DM distribution in each source based on the available observational constraints and discuss possible scenarios for the enhancement of the gamma-ray luminosity. Limits on the thermally averaged product of the total self-annihilation cross section and velocity of the WIMP, , are derived using conservative estimates for the magnitude of the astrophysical contribution to the gamma-ray flux. Although these limits do not constrain predictions from the currently favored theoretical models of supersymmetry (SUSY), future observations with VERITAS will probe a larger region of the WIMP parameter phase space, , and WIMP particle mass (m(chi)). C1 [Wood, M.; Chow, Y. C. K.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Blaylock, G.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Bradbury, S. M.; Grube, J.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Buckley, J. H.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Byrum, K. L.; Horan, D.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cui, W.; Finley, J. P.; Konopelko, A.; Sembroski, G. H.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Perez, I. de la Calle] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Falcone, A. D.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Hall, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Hanna, D.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Holder, J.] Univ Delaware, Dept Phys & Astron, Sharp Lab, Newark, DE 19716 USA. [Humensky, T. B.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Kieda, D. B.; LeBohec, S.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Kildea, J.; Perkins, J. S.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Krennrich, F.; Nagai, T.; Pohl, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lang, M. J.] Natl Univ Ireland Univ Coll Galway, Dept Phys, Galway, Ireland. [Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. RP Wood, M (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RI Hall, Jeter/F-6108-2013; Hall, Jeter/E-9294-2015; OI Cui, Wei/0000-0002-6324-5772; Lang, Mark/0000-0003-4641-4201 NR 87 TC 29 Z9 29 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2008 VL 678 IS 2 BP 594 EP 605 DI 10.1086/529421 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 294XE UT WOS:000255438800004 ER PT J AU Strigari, LE Koushiappas, SM Bullock, JS Kaplinghat, M Simon, JD Geha, M Willman, B AF Strigari, Louis E. Koushiappas, Savvas M. Bullock, James S. Kaplinghat, Manoj Simon, Joshua D. Geha, Marla Willman, Beth TI The most dark-matter-dominated galaxies: Predicted gamma-ray signals from the faintest milky way dwarfs SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology : theory; dark matter ID VELOCITY DISPERSION PROFILES; EXPLORING HALO SUBSTRUCTURE; TO-LIGHT RATIOS; SPHEROIDAL GALAXIES; GALACTIC SATELLITES; MASS FUNCTION; GIANT STARS; LOCAL GROUP; URSA-MAJOR; TELESCOPE AB We use kinematic data from three new nearby, extremely low luminosity MilkyWay dwarf galaxies (UrsaMajor II, Willman 1, and Coma Berenices) to constrain the properties of their dark matter halos, and from these we make predictions for the gamma-ray flux from annihilation of dark matter particles in these halos. We show that these similar to 10(3)L(circle dot) dwarfs are the most dark-matter-dominated galaxies known, with total masses within 100 pc that are in excess of 10(6) M-circle dot. Coupled with their relative proximity, their large masses imply that they should have mean gamma-ray fluxes that are comparable to or greater than those of any other known satellite galaxy of the Milky Way. Our results are robust to both variations of the inner slope of the density profile and the effect of tidal interactions. The fluxes could be boosted by up to 2 orders of magnitude if we include the density enhancements caused by surviving dark matter substructure. C1 [Strigari, Louis E.; Bullock, James S.; Kaplinghat, Manoj] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. [Koushiappas, Savvas M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Koushiappas, Savvas M.] Los Alamos Natl Lab, ISR Div, Los Alamos, NM 87545 USA. [Simon, Joshua D.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Geha, Marla] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Willman, Beth] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Strigari, LE (reprint author), Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. RI Bullock, James/K-1928-2015; OI Bullock, James/0000-0003-4298-5082; Strigari, Louis/0000-0001-5672-6079 NR 65 TC 107 Z9 108 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2008 VL 678 IS 2 BP 614 EP 620 DI 10.1086/529488 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 294XE UT WOS:000255438800006 ER PT J AU Tilak, A Greenhill, LJ Done, C Madejski, G AF Tilak, Avanti Greenhill, Lincoln J. Done, Chris Madejski, Grzegorz TI A deep 0.3-10 keV spectrum of the H(2)O maser galaxy IC 2560 SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; galaxies : active; galaxies : individual (IC 2560); galaxies : nuclei; galaxies : Seyfert; masers ID ACTIVE GALACTIC NUCLEI; X-RAY-SPECTRA; CIRCINUS GALAXY; WATER MASER; XMM-NEWTON; ACCRETION DISKS; STAR-FORMATION; BLACK-HOLE; CHANDRA OBSERVATION; SEYFERT-GALAXIES AB We present a new XMM-Newton spectrum of the Seyfert 2 nucleus of IC 2560, which hosts H(2)O maser emission from an inclined Keplerian accretion disk. The X-ray spectrum shows soft excess due to multitemperature ionized plasma, a hard continuum, and strong emission features, from Mg, Si, S, Ca, Fe, and Ni, mainly due to fluorescence. It is consistent with reflection of the continuum from a mostly neutral medium and obscuration due to a high column density, > 10(24) cm(-2). The amplitude of the reflected component may exceed 10% of the central unobscured luminosity. This is higher than the reflected fraction of a few percent observed in other Seyfert 2 sources such as NGC 4945. We observe an emission line at 6.7 keV, possibly due to Fe xxv, undetected in previous Chandra observations. The absorption column density associated with this line is less than 10(23) cm(-2), which is lower than the obscuration of the central source. We hypothesize that this highly ionized Fe line emission originates in warm gas, which is also responsible for a scattered component of continuum emission that may dominate the spectrum between 1 and 3 keV. We compare X-ray and maser emission characteristics of IC 2560 and other AGNs that exhibit water maser emission originating in disk structures around central engines. The temperature for the region of the disk associated with maser action is consistent with the expected 400-1000 K range. The clumpiness of disk structures (inferred from the maser distribution) may depend on the unobscured luminosities of the central engines. C1 [Tilak, Avanti; Greenhill, Lincoln J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Done, Chris] Univ Durham, Dept Phys, Durham, England. [Madejski, Grzegorz] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Tilak, A (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM atilak@cfa.harvard.edu RI done, chris/D-4605-2016 OI done, chris/0000-0002-1065-7239 NR 75 TC 15 Z9 15 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2008 VL 678 IS 2 BP 701 EP 711 DI 10.1086/529537 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 294XE UT WOS:000255438800016 ER PT J AU Miceli, A Rest, A Stubbs, CW Hawley, SL Cook, KH Magnier, EA Krisciunas, K Bowell, E Koehn, B AF Miceli, Antonino Rest, Armin Stubbs, Christopher W. Hawley, Suzanne L. Cook, Kem H. Magnier, Eugene A. Krisciunas, Kevin Bowell, Edward Koehn, Bruce TI Evidence for distinct components of the galactic stellar halo from 838 RR Lyrae stars discovered in the LONEOS-I survey SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : halos; galaxies : individual (Milky Way); galaxies : structure ID RR-LYRAE STARS; DIGITAL SKY SURVEY; HORIZONTAL-BRANCH STARS; MILKY-WAY; GLOBULAR-CLUSTERS; OOSTERHOFF DICHOTOMY; METALLICITY RELATION; VARIABLE-STARS; 1ST CATALOG; KINEMATICS AB We present 838 ab-type RR Lyrae stars from the Lowell Observatory Near Earth Objects Survey Phase I (LONEOS-I). These objects cover 1430 deg(2) and span distances ranging from 3 to 30 kpc from the Galactic center. Object selection is based on phased, photometric data with 28-50 epochs. We use this large sample to explore the bulk properties of the stellar halo, including the spatial distribution. The period-amplitude distribution of this sample shows that the majority of these RR Lyrae stars resemble Oosterhoff type I, but there is a significant fraction (26%) which have longer periods and appear to be Oosterhoff type II. We find that the radial distributions of these two populations have significantly different profiles (rho(OoI) similar to R(-2.26 +/- 0.07) and rho(OoII) similar to R(-2.88 +/- 0.11)). This suggests that the stellar halo was formed by at least two distinct accretion processes and supports dual-halo models. C1 [Miceli, Antonino; Hawley, Suzanne L.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Miceli, Antonino] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Rest, Armin] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Stubbs, Christopher W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Stubbs, Christopher W.] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Cook, Kem H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Magnier, Eugene A.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Krisciunas, Kevin] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Bowell, Edward; Koehn, Bruce] Lowell Observ, Flagstaff, AZ 86001 USA. RP Miceli, A (reprint author), Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. EM amiceli@astro.washington.edu; arest@ctio.noao.edu RI Stubbs, Christopher/C-2829-2012 OI Stubbs, Christopher/0000-0003-0347-1724 NR 60 TC 66 Z9 66 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2008 VL 678 IS 2 BP 865 EP 887 DI 10.1086/533484 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 294XE UT WOS:000255438800027 ER PT J AU Schultz, DR Krstic, PS Lee, TG Raymond, JC AF Schultz, D. R. Krstic, P. S. Lee, T. G. Raymond, J. C. TI Momentum transfer and viscosity from proton-hydrogen collisions relevant to shocks and other astrophysical environments SO ASTROPHYSICAL JOURNAL LA English DT Article DE atomic data; atomic processes; diffusion; ISM : atoms; ISM : clouds; supernova remnants; Sun : corona ID BALMER-DOMINATED SHOCKS; CLOSE-COUPLING METHOD; ELASTIC-SCATTERING; SUPERNOVA REMNANT; CHARGE-TRANSFER; CROSS-SECTIONS; NEUTRAL HYDROGEN; CYGNUS LOOP; SOLAR-WIND; IONIZATION AB The momentum transfer and viscosity cross sections for proton-hydrogen collisions are computed in the velocity range of similar to 200-20,000 km s(-1) relevant to a wide range of astrophysical environments such as supernova remnant shocks, solar wind, winds within young stellar objects or accretion disks, and interstellar protons interacting with the heliosphere. A variety of theoretical approaches are used to arrive at a best estimate of these cross sections in this velocity range that smoothly connect with very accurate results previously computed for lower velocities. Contributions to the momentum transfer and viscosity cross sections from both elastic scattering and charge transfer are included. C1 [Schultz, D. R.; Krstic, P. S.; Lee, T. G.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Raymond, J. C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Schultz, DR (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RI Lee, Teck Ghee/D-5037-2012 OI Lee, Teck Ghee/0000-0001-9472-3194 NR 30 TC 20 Z9 20 U1 0 U2 7 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2008 VL 678 IS 2 BP 950 EP 960 DI 10.1086/533579 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 294XE UT WOS:000255438800032 ER PT J AU Ciardi, A Ampleford, DJ Lebedev, SV Stehle, C AF Ciardi, A. Ampleford, D. J. Lebedev, S. V. Stehle, C. TI Curved Herbig-Haro jets: Simulations and experiments SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM : Herbig-Haro objects; ISM : jets and outflows ID SUPERSONIC SIDE WIND; ARRAY Z-PINCHES; NUMERICAL SIMULATIONS; PROPER MOTIONS; ORION-NEBULA; STELLAR JETS; DEFLECTION; MODEL; SHOCKS; STARS AB Herbig-Haro jets often show some degree of curvature along their path, in many cases produced by the ram pressure of a side wind. We present simulations of both laboratory and astrophysical curved jets and results from laboratory experiments. We discuss the properties and similarities of the laboratory and astrophysical flows, which show the formation of internal shocks and working surfaces. In particular, the results illustrate how the breakup of the bow shock and clumps in the flow are produced without invoking jet variability; we also discuss how jet rotation reduces the growth of the Rayleigh-Taylor instability in curved jets. C1 [Ciardi, A.; Stehle, C.] Observ Paris, LERMA, F-92195 Meudon, France. [Ampleford, D. J.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Lebedev, S. V.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. RP Ciardi, A (reprint author), Observ Paris, LERMA, F-92195 Meudon, France. EM andrea.ciardi@obspm.fr; damplef@sandia.gov; s.lebedev@imperial.ac.uk; chantal.stehle@obspm.fr NR 30 TC 21 Z9 21 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2008 VL 678 IS 2 BP 968 EP 973 DI 10.1086/528679 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 294XE UT WOS:000255438800034 ER PT J AU Cushing, MC Marley, MS Saumon, D Kelly, BC Vacca, WD Rayner, JT Freedman, RS Lodders, K Roellig, TL AF Cushing, Michael C. Marley, Mark S. Saumon, D. Kelly, Brandon C. Vacca, William D. Rayner, John T. Freedman, Richard S. Lodders, Katharina Roellig, Thomas L. TI Atmospheric parameters of field L and T dwarfs SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared : stars; radiative transfer; stars : fundamental parameters; stars : low-mass; brown dwarfs ID ALL-SKY SURVEY; EXTRASOLAR GIANT PLANETS; SPITZER-SPACE-TELESCOPE; NEAR-INFRARED SPECTRA; STAR ADAPTIVE OPTICS; DIRTY DUST GRAINS; BROWN DWARFS; ULTRACOOL DWARFS; L/T TRANSITION; MODEL ATMOSPHERES AB We present an analysis of the 0.95-14.5 mu m spectral energy distributions of nine field ultracool dwarfs with spectral types ranging from L1 to T4.5. Effective temperatures, gravities, and condensate cloud sedimentation efficiencies are derived by comparing the data to synthetic spectra computed from atmospheric models that self-consistently include the formation of condensate clouds. Overall, the model spectra fit the data well, although the agreement at some wavelengths remains poor due to remaining inadequacies in the models. Derived effective temperatures decrease steadily through the L1-T4.5 spectral types, and we confirm that the effective temperatures of ultracool dwarfs at the L/T transition are nearly constant, decreasing by only similar to 200 K from spectral types L7.5 to T4.5. The condensate cloud properties vary significantly among the L dwarfs in our sample, ranging from very thick clouds to relatively thin clouds with no particular trend with spectral type. The two objects in our sample with very red J - K(s) colors are, however, best fitted with synthetic spectra that have thick clouds, which hints at a possible correlation between the near-infrared colors of L dwarfs and the condensate cloud properties. The fits to the two T dwarfs in our sample (T2 and T4.5) also suggest that the clouds become thinner in this spectral class, in agreement with previous studies. Restricting the fits to narrower wavelength ranges (i.e., individual photometric bands) almost always yields excellent agreement between the data and models. Limitations in our knowledge of the opacities of key absorbers such as FeH, VO, and CH(4) at certain wavelengths remain obvious, however. The effective temperatures obtained by fitting the narrower wavelength ranges can show a large scatter compared to the values derived by fitting the full spectral energy distributions; deviations are typically similar to 200 K and, in the worst cases, up to 700 K. C1 [Cushing, Michael C.; Rayner, John T.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Cushing, Michael C.; Kelly, Brandon C.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Saumon, D.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. [Vacca, William D.] NASA, Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA. [Freedman, Richard S.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Lodders, Katharina] Washington Univ, Dept Earth & Planetary Sci, Planetary Chem Lab, St Louis, MO 63130 USA. RP Cushing, MC (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM mcushing@ifa.hawaii.edu; mark.s.marley@nasa.gov; dsaumon@lanl.gov; bkelly@as.arizona.edu; wvacca@mail.arc.nasa.gov; rayner@ifa.hawaii.edu; freedman@darkstar.arc.nasa.gov; lodders@levee.wustl.edu; thomas.l.roellig@nasa.gov RI Marley, Mark/I-4704-2013 NR 100 TC 156 Z9 156 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2008 VL 678 IS 2 BP 1372 EP 1395 DI 10.1086/526489 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 294XE UT WOS:000255438800069 ER PT J AU Blake, CH Charbonneau, D White, RJ Torres, G Marley, MS Saumon, D AF Blake, Cullen H. Charbonneau, David White, Russel J. Torres, Guillermo Marley, Mark S. Saumon, Didier TI A spectroscopic binary at the M/L transition SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars : low-mass; brown dwarfs; techniques : radial velocities ID LOW-MASS STARS; BROWN DWARFS; ULTRACOOL DWARFS; VELOCITIES; ALGORITHM; DISCOVERY; ELEMENTS; PLANETS; CLOUDS; SYSTEM AB We report the discovery of a single-lined spectroscopic binary with an ultracool dwarf (UCD) primary with a spectral type between M8 and L0.5. This system was discovered during the course of an ongoing survey to monitor L dwarfs for radial velocity variations and is the first known small-separation (a < 1 AU) spectroscopic binary among dwarfs at the M/L transition. Based on radial velocity measurements with a typical precision of 300 m s(-1), we estimate the orbital parameters of this system to be P = 246.73 +/- 0.49 days, a(1) sin i = 0.159 +/- 0.003 AU, and M-2 sin i = 0.2062(M-1 + M-2)(2/3) +/- 0.0034 M-circle dot. Assuming a primary mass of M-1 = 0.08M(circle dot) (based on spectral type), we estimate the secondary minimum mass to be M-2 sin i = 0.054 M-circle dot. With future photometric, spectroscopic, and interferometric observations it may be possible to determine the dynamical masses of both components directly, making this system one of the best-characterized UCD binaries known. C1 [Blake, Cullen H.; Charbonneau, David; Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [White, Russel J.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Saumon, Didier] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Blake, CH (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM cblake@cfa.harvard.edu RI Marley, Mark/I-4704-2013; OI Charbonneau, David/0000-0002-9003-484X NR 33 TC 31 Z9 31 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 10 PY 2008 VL 678 IS 2 BP L125 EP L128 DI 10.1086/588754 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 292AP UT WOS:000255239100013 ER PT J AU Dyadechko, V Shashkov, M AF Dyadechko, Vadim Shashkov, Mikhail TI Reconstruction of multi-material interfaces from moment data SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE multi-material interface reconstruction; volume-of-fluid method; VoF; moment-of-fluid method; MoF; cell-wise material centroids ID VOLUME-TRACKING; FLOW AB The moment-of-fluid (MoF) method is an extension of popular volume-of-fluid (VoF) technique for tracking material interface in multi-material fluid flows. VoF methods track the cell-wise material volumes and use these data for reconstructing the interfaces in mixed cell. The MoF method goes one step further and, in additional to the volumes, keeps track of the cell-wise material centroids; this approach provides sufficiently more information for the interface reconstruction algorithm. The MoF algorithm reconstructs interfaces in volume-conservative manner, by minimizing the defect of the 1st moment in each mixed cell. In case of two materials, this strategy allows to construct the linear interface in a mixed cell using no material volume data from the neighboring cells. Compared to the VoF interface reconstruction techniques, the MoF algorithm shows higher accuracy and better resolution, allows uniform processing of internal and boundary cells. In this paper we show how the same governing principle (minimization of the 1st-moment defect) can be used to reconstruct the interfaces in case of multiple materials. (c) Published by Elsevier Inc. C1 [Dyadechko, Vadim; Shashkov, Mikhail] Los Alamos Natl Lab, Math Modeling & Anal Grp, Los Alamos, NM 87545 USA. RP Dyadechko, V (reprint author), Los Alamos Natl Lab, Math Modeling & Anal Grp, MS B284, Los Alamos, NM 87545 USA. EM vdyadechko@gmail.com NR 24 TC 60 Z9 65 U1 0 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAY 10 PY 2008 VL 227 IS 11 BP 5361 EP 5384 DI 10.1016/j.jcp.2007.12.029 PG 24 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 310AR UT WOS:000256501800001 ER PT J AU Hecht, MW Holm, DD Petersen, MR Wingate, BA AF Hecht, Matthew W. Holm, Darryl D. Petersen, Mark R. Wingate, Beth A. TI Implementation of the LANS-alpha turbulence model in a primitive equation ocean model SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Lagrangian-averaged Navier-Stokes-alpha model; primitive equation ocean model; geophysical turbulence ID CAMASSA-HOLM EQUATIONS; CLIMATE SYSTEM MODEL; CIRCULATION MODELS; EDDY TRANSFER; TRANSPORT; STRATIFICATION; CONVERGENCE; SIMULATIONS; CHANNEL; FLOW AB This paper presents the first numerical implementation and tests of the Lagrangian-averaged Navier-Stokes-alpha (LANS-alpha) turbulence model in a primitive equation ocean model. The ocean model with which we work is the Los Alamos Parallel Ocean Program (POP); we refer to POP and our implementation of LANS-alpha as POP-alpha. Two versions of POP-alpha are presented: the full POP-alpha algorithm is derived from the LANS-a primitive equations, but requires a nested iteration that makes it too slow for practical simulations; a reduced POP-alpha algorithm is proposed, which lacks the nested iteration and is two to three times faster than the full algorithm. The reduced algorithm does not follow from a formal derivation of the LANS-alpha model equations. Despite this, simulations of the reduced algorithm are nearly identical to the full algorithm, as judged by globally averaged temperature and kinetic energy, snapshots of temperature and velocity fields, and temperature variance. Both POP-alpha algorithms can run stably with longer timesteps than standard POP. Comparison of implementations of full and reduced POP-alpha algorithms are made within an idealized test problem that captures some aspects of the Antarctic Circumpolar Current, a problem in which baroclinic instability is prominent. Both POP-alpha algorithms produce statistics that resemble higher-resolution simulations of standard POP. A linear stability analysis shows that both the full and reduced POP-a algorithms benefit from the way the LANS-alpha equations take into account the effects of the small scales on the large. Both algorithms (1) are stable; (2) have an effective Rossby deformation radius that is larger than the deformation radius of the unmodeled equations; and (3) reduce the propagation speeds of the modeled Rossby and gravity waves relative to the unmodeled waves at high wave numbers. (c) Published by Elsevier Inc. C1 [Hecht, Matthew W.; Holm, Darryl D.; Petersen, Mark R.; Wingate, Beth A.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM USA. [Petersen, Mark R.; Wingate, Beth A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Holm, Darryl D.] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. RP Petersen, MR (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM USA. EM mpetersen@lanl.gov OI Hecht, Matthew/0000-0003-0946-4007 NR 42 TC 17 Z9 17 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAY 10 PY 2008 VL 227 IS 11 BP 5691 EP 5716 DI 10.1016/j.jcp.2008.02.018 PG 26 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 310AR UT WOS:000256501800015 ER PT J AU Petersen, MR Hecht, MW Wingate, BA AF Petersen, Mark R. Hecht, Matthew W. Wingate, Beth A. TI Efficient form of the LANS-alpha turbulence model in a primitive-equation ocean model SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Lagrangian-averaged Navier-Stokes alpha model; primitive equation ocean model; geophysical turbulence AB The Lagrangian-averaged Navier-Stokes alpha (LANS-alpha) model is a turbulence parameterization that has been shown to capture some of the most important features of high resolution ocean modeling at lower resolution. The LANS-alpha model improves turbulence statistics with an additional nonlinear term and a smoothed advecting velocity. In this work we investigate two smoothing techniques-Helmholtz inversions and filters-and their effect on the LANS-alpha model's results and efficiency. We show that convolution filters are an effective smoothing method; that filters and Helmholtz inversions produce similar trends-statistics like higher-resolution non-LANS-alpha simulations-as the smoothing parameter is increased; and that the filter is computationally more efficient. Filters must be constructed such that a pressure-velocity numerical instability is not excited. We show analytically that certain ranges of filter weights are unstable, and confirm this with numerical experiments. Our stability criterion also guarantees that the kinetic energy is well defined, and that the filtered velocity is smoother that the original velocity. Simulations of LANS-alpha using the largest filter (width nine) in the POP primitive-equation ocean model resemble doubled-resolution simulations of standard POP in statistics such as kinetic energy, eddy kinetic energy, and potential temperature fields. The computational cost of adding LANS-alpha with this filter is only 27%, as compared to a factor of 8-10 for a doubling of resolution. (c) Published by Elsevier Inc. C1 [Petersen, Mark R.; Hecht, Matthew W.; Wingate, Beth A.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM USA. [Petersen, Mark R.; Wingate, Beth A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Petersen, MR (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM USA. EM mpetersen@lanl.gov OI Petersen, Mark/0000-0001-7170-7511 NR 17 TC 10 Z9 10 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAY 10 PY 2008 VL 227 IS 11 BP 5717 EP 5735 DI 10.1016/j.jcp.2008.02.017 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 310AR UT WOS:000256501800016 ER PT J AU Zubrow, A Chen, L Kotamarthi, VR AF Zubrow, Alexis Chen, Li Kotamarthi, V. R. TI EAKF-CMAQ: Introduction and evaluation of a data assimilation for CMAQ based on the ensemble adjustment Kalman filter SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MODEL; ALGORITHMS; MESOSCALE; SYSTEM; OZONE; TESTS AB A new approach is presented for data assimilation using the ensemble adjustment Kalman filter (EAKF) technique for surface measurements of carbon monoxide in a single tracer version of the community air quality model. An implementation of the EAKF known as the Data Assimilation Research Testbed at the National Center for Atmospheric Research was used for developing the model. Three different sets of numerical experiments were performed to test the effectiveness of the procedure and the range of key parameters used in implementing the procedure. The model domain includes much of the northeastern United States. The first two numerical experiments use idealized measurements derived from defined model runs, and the last test uses measurements of carbon monoxide from approximately 220 Air Quality System monitoring sites over the northeastern United States, maintained by the U. S. Environmental Protection Agency. In each case, the proposed method provided better results than the method without data assimilation. C1 [Zubrow, Alexis] Univ N Carolina, Inst Environm, Chapel Hill, NC 27514 USA. [Chen, Li] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England. [Kotamarthi, V. R.] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. RP Zubrow, A (reprint author), Univ N Carolina, Inst Environm, 137 E Franklin St,Room 647, Chapel Hill, NC 27514 USA. EM vrkotamarthi@anl.gov NR 36 TC 6 Z9 6 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 10 PY 2008 VL 113 IS D9 AR D09302 DI 10.1029/2007JD009267 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 300MH UT WOS:000255827400005 ER PT J AU Personna, YR Ntarlagiannis, D Slater, L Yee, N O'Brien, M Hubbard, S AF Personna, Yves Robert Ntarlagiannis, Dimitrios Slater, Lee Yee, Nathan O'Brien, Michael Hubbard, Susan TI Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID FREQUENCY ELECTRICAL-PROPERTIES; DOMAIN-INDUCED POLARIZATION; HYDROCARBON-CONTAMINATED SITE; TIME-DOMAIN; DESULFOVIBRIO-DESULFURICANS; REDOX CONDITIONS; POROUS-MEDIA; CONDUCTIVITY; GROUNDWATER; COLUMNS AB Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface. We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfovibrio vulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS-) sensitive silver-silver chloride (Ag-AgCl) electrodes (similar to-630 mV) were diagnostic of induced transitions between anaerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed similar to 10 mrad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (S-p), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field. C1 [Personna, Yves Robert; Ntarlagiannis, Dimitrios; Slater, Lee; O'Brien, Michael] Rutgers State Univ, Dept Earth & Environm Sci, Newark, NJ 07102 USA. [Ntarlagiannis, Dimitrios] Queens Univ Belfast, Sch Planning Architecture & Civil Engn, Belfast BT7 1NN, Antrim, North Ireland. [Yee, Nathan] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA. [Hubbard, Susan] Lawrence Berkeley Natl Lab, E Sci Div, Berkeley, CA 94720 USA. RP Personna, YR (reprint author), Rutgers State Univ, Dept Earth & Environm Sci, 101 Warren St, Newark, NJ 07102 USA. RI Hubbard, Susan/E-9508-2010 NR 69 TC 34 Z9 37 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD MAY 10 PY 2008 VL 113 IS G2 AR G02020 DI 10.1029/2007JG000614 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 300MO UT WOS:000255828100002 ER PT J AU Asnes, A Taylor, MGGT Borg, AL Lavraud, B Friedel, RWH Escoubet, CP Laakso, H Daly, P Fazakerley, AN AF Asnes, A. Taylor, M. G. G. T. Borg, A. L. Lavraud, B. Friedel, R. W. H. Escoubet, C. P. Laakso, H. Daly, P. Fazakerley, A. N. TI Multispacecraft observation of electron beam in reconnection region SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MAGNETIC RECONNECTION; PARTICLE-ACCELERATION; CLUSTER; MAGNETOPAUSE; SUBSTORM; MODEL AB On the 18th of August 2002, during a crossing of the near-Earth plasma sheet Cluster observed an ion flow burst, caused by a near-Earth reconnection event. Cluster observed a tailward bulk flow which reverse to earthward flow, indicating a close passage of the diffusion region. We show that reversals in B(Z) and B(Y) are consistent with reconnection. During the event, a short duration burst of electrons in the range of a few keV up to more than 100 keV are observed streaming away from the reconnection region. The accelerated electrons were aligned with the magnetic field, streaming tailward, and were observed simultaneously by all four spacecraft located on both the northern and southern side of the current sheet. The four Cluster spacecraft, separated by similar to 3700 km, observe the electrons for a time period of similar to 60 s, indicating the burst to be a temporal rather than localized feature. A second burst of tailward accelerated electrons observed for similar to 40 s was observed by Cluster 1 and 2 upon entering the earthward outflow region. The second beam thus appear to be directed toward the X-line. The flux levels of the energetic electron bursts exceed those of the ambient plasma sheet by a factor 2 - 4. In general, the highest energetic electron fluxes during this event were observed in the earthward outflow region. Observations indicate that reconnection operates on closed plasma sheet field lines in this event and does not reach lobe field lines. C1 [Asnes, A.; Taylor, M. G. G. T.; Escoubet, C. P.; Laakso, H.] European Space Agcy, ESTEC, NL-2200 AG Noordwijk, Netherlands. [Borg, A. L.] Norwegian Def Res Estab, N-2007 Kjeller, Norway. [Lavraud, B.; Friedel, R. W. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Daly, P.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Fazakerley, A. N.] UCL, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. RP Asnes, A (reprint author), European Space Agcy, ESTEC, Postbus 299, NL-2200 AG Noordwijk, Netherlands. EM aasnes@rssd.esa.int; mtaylor@rssd.esa.int; lavraud@lanl.gov; friedel@lanl.gov; philippe.escoubet@rssd.esa.int; harri.laakso@rssd.esa.int; daly@mps.mpg.de; anf@mssl.ucl.ac.uk RI Friedel, Reiner/D-1410-2012 OI Friedel, Reiner/0000-0002-5228-0281 NR 27 TC 19 Z9 19 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 10 PY 2008 VL 113 IS A7 AR A07S30 DI 10.1029/2007JA012770 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 300NM UT WOS:000255830700001 ER PT J AU Irani, S Leung, V AF Irani, Sandy Leung, Vitus TI Probabilistic analysis for scheduling with conflicts SO THEORETICAL COMPUTER SCIENCE LA English DT Article DE online algorithms; scheduling; probabilistic analysis; queueing theory; conflict graph AB In this paper, we consider scheduling jobs that may be competing for mutually exclusive resources. We model the conflicts between jobs with a conflict graph, so that all concurrently running jobs must form an independent set in the graph. Our goal is to bound the maximum response time of any job in the system. We adopt a discrete model of time and assume that each job requires one time unit to be completed once it is started. It has been previously shown [S. Irani, V. Leung, Scheduling with conflicts, and applications to traffic signal control, in: Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 1996] that the best competitive ratio achievable by any online algorithm is Omega(n), where n is the number of nodes in the graph. As a result, we study scheduling with conflicts under probabilistic assumptions about the input. Each node i has a value p(i) such that a job arrives at node i in any given time unit with probability p(i). Arrivals at different nodes and during different time periods are independent. Under reasonable assumptions on the value for the p(i)'s, we are able to obtain a bounded competitive ratio for an arbitrary conflict graph. In addition, if the conflict graph is a perfect graph, we give an algorithm whose competitive ratio converges to 1. (C) 2008 Elsevier B.V. All rights reserved. C1 [Irani, Sandy] Univ Calif Irvine, Irvine, CA 92697 USA. [Leung, Vitus] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Irani, S (reprint author), Univ Calif Irvine, 444 Comp Sci Bldg, Irvine, CA 92697 USA. EM irani@ics.uci.edu; vjleung@cs.sandia.gov NR 11 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3975 J9 THEOR COMPUT SCI JI Theor. Comput. Sci. PD MAY 10 PY 2008 VL 396 IS 1-3 BP 158 EP 179 DI 10.1016/j.tcs.2008.01.027 PG 22 WC Computer Science, Theory & Methods SC Computer Science GA 305SW UT WOS:000256199100013 ER PT J AU Kim, DH Lee, HS Yang, HC Yang, L Cho, K AF Kim, Do Hwan Lee, Hwa Sung Yang, Hoichang Yang, Lin Cho, Kilwon TI Tunable crystal nanostructures of pentacene thin films on gate dielectrics possessing surface-order control SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID FIELD-EFFECT TRANSISTORS; SELF-ASSEMBLED MONOLAYERS; EFFECT MOBILITY; PHASE STATE; PERFORMANCE; MORPHOLOGY; TRANSPORT; GROWTH; ALKYLTRICHLOROSILANES; ENHANCEMENT AB To enhance the electrical performance of pentacene-based field-effect transistors (FETs) by tuning the surface-induced ordering of pentacene crystals, we controlled the physical interactions at the semiconductor/gate dielectric (SiO2) interface by inserting a hydrophobic self-assembled monolayer (SAM, CH3-terminal) of organoalkyl-silanes with an alkyl chain length of C8, C12, C16, or C18, as a complementary interlayer. We found that, depending on the physical structure of the dielectric surfaces, which was found to depend on the alkyl chain length of the SAM (ordered for C18 and disordered for C8), the pentacene nano-layers in contact with the SAM could adopt two competing crystalline phases - a "thin-film phase" and "bulk phase" - which affected the pi-conjugated nanostructures in the ultrathin and subsequently thick films. The field-effect mobilities of the FET devices varied by more than a factor of 3 depending on the alkyl chain length of the SAM, reaching values as high as 0.6 cm(2)V(-1)s(-1) for the disordered SAM-treated SiO2 gate-dielectric. This remarkable change in device performance can be explained by the production of well pi-conjugated and large crystal grains in the pentacene nanolayers formed on a disordered SAM surface. The enhanced electrical properties observed for systems with disordered SAMs can be attributed to the surfaces of these SAMs having fewer nucleation sites and a higher lateral diffusion rate of the first seeding pentacene molecules on the dielectric surfaces, due to the disordered and more mobile surface state of the short alkyl SAM. C1 [Kim, Do Hwan; Lee, Hwa Sung; Cho, Kilwon] Pohang Univ Sci & Technol, Dept Chem Engn, Pohang 790784, South Korea. [Yang, Lin] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Yang, Hoichang] Rensselaer Polytech Inst, Rensselaer Nanotechnol Ctr, Troy, NY 12180 USA. RP Kim, DH (reprint author), Samsung Adv Inst Technol, Display Device & Proc Lab, Yongin 449712, Gyeonggi Do, South Korea. EM yangh3@rpi.edu; kwcho@postech.ac.kr RI Kim, Do Hwan/B-4990-2012; Yang, Lin/D-5872-2013 OI Yang, Lin/0000-0003-1057-9194 NR 44 TC 88 Z9 88 U1 3 U2 30 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD MAY 9 PY 2008 VL 18 IS 9 BP 1363 EP 1370 DI 10.1002/adfm.200701019 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 306ET UT WOS:000256231800001 ER PT J AU Chung, PW Kumar, R Pruski, M Lin, VSY AF Chung, Po-Wen Kumar, Rajeev Pruski, Marek Lin, Victor S. -Y. TI Temperature responsive solution partition of organic-inorganic hybrid poly(N-isopropylacrylamide)-coated mesoporous silica nanospheres SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID SUPRAMOLECULAR NANOVALVE; CROSS-POLARIZATION; CONTROLLED-RELEASE; GUEST MOLECULES; STAR POLYMERS; NMR; COPOLYMER; SOLIDS; MCM-41; DRUG AB A series of poly (N-isopropylacrylamide)-coated mesoporous silica nanoparticle materials (PNiPAm-MSNs) has been synthesized by a surf ace-initiated living radical polymerization with a reversible addition-fragmentation chain transfer (RAFT) reaction. The structure and the degree of polymerization of the PNiPAm-MSNs has been characterized by a variety of techniques, including nitrogen sorption analysis, Si-29 and C-13 solid-state NMR spectroscopy, transmission electron microscopy (TEM), and powder X-ray diffraction (XRD). The thermally induced changes of the surface properties of these polymer-coated core-shell nanoparticles have been determined by examining their partition activities in a biphasic solution (water/toluene) at different temperatures. C1 [Chung, Po-Wen] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RP Chung, PW (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM vsylin@iastate.edu RI Chung, Po-Wen/J-7476-2015 NR 53 TC 83 Z9 86 U1 10 U2 96 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD MAY 9 PY 2008 VL 18 IS 9 BP 1390 EP 1398 DI 10.1002/adfm.200701116 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 306ET UT WOS:000256231800004 ER PT J AU Faddy, HM Smart, CE Xu, R Lee, GY Kenny, PA Feng, M Rao, R Brown, MA Bissell, MJ Roberts-Thomson, SJ Monteith, GR AF Faddy, Helen M. Smart, Chanel E. Xu, Ren Lee, Genee Y. Kenny, Paraic A. Feng, Mingye Rao, Rajini Brown, Melissa A. Bissell, Mina J. Roberts-Thomson, Sarah J. Monteith, Gregory R. TI Localization of plasma membrane and secretory calcium pumps in the mammary gland SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE calcium; PMCA1; SPCA1; PMCA2; SPCA2; mouse; mammary gland; 3D mammary culture; milk ID BASEMENT-MEMBRANE; EPITHELIAL-CELLS; NULL MUTATION; PATHWAY CA2+; GENE; DIFFERENTIATION; EXPRESSION; MILK; TRANSPORT; TISSUE AB Until recently the mechanism for the enrichment of milk with calcium was thought to be almost entirely via the secretory pathway. However, recent studies suggest that a plasma membrane calcium ATPase, PMCA2, is the primary mechanism for calcium transport into milk, highlighting a major role for apical calcium transport. We compared the expression of the recently identified secretory calcium ATPase, SPCA2, and SPCA1, in the mouse mammary gland during development. SPCA2 levels increased over 35-fold during lactation with expression localized to luminal secretory cells, while SPCA1 increased only a modest 2-fold and was expressed throughout the cells of the mammary gland. We also observed major differences in the localization of PMCA2 and PMCA1. Our studies highlight the likely specific roles of PMCA2 and SPCA2 in lactation and indicate that calcium transport into milk is a complex interplay between apical and secretory pathways. (c) 2008 Elsevier Inc. All rights reserved. C1 [Faddy, Helen M.; Roberts-Thomson, Sarah J.; Monteith, Gregory R.] Univ Queensland, Sch Pharm, Brisbane, Qld 4072, Australia. [Smart, Chanel E.; Brown, Melissa A.] Univ Queensland, Sch Mol & Microbial Sci, Brisbane, Qld 4072, Australia. [Xu, Ren; Lee, Genee Y.; Kenny, Paraic A.; Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Feng, Mingye; Rao, Rajini] Johns Hopkins Univ, Sch Med, Dept Physiol, Baltimore, MD USA. RP Monteith, GR (reprint author), Univ Queensland, Sch Pharm, Steele Bldg, Brisbane, Qld 4072, Australia. EM G.Monteith@pharmacy.uq.edu.au RI Monteith, Gregory/B-1626-2008; Smart, Chanel/C-9583-2011; Roberts-Thomson, Sarah/B-4282-2011; Feng, Mingye/E-2302-2013; Faddy, Helen/A-6541-2015; Brown, Melissa/F-1451-2010; OI Monteith, Gregory/0000-0002-4345-530X; Roberts-Thomson, Sarah/0000-0001-8202-5786; Brown, Melissa/0000-0002-2830-9259 FU NCI NIH HHS [CA57621, R01 CA057621]; NIGMS NIH HHS [R01 GM052414, R01 GM052414-04, R01 GM062142, R01 GM062142-07] NR 26 TC 40 Z9 40 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD MAY 9 PY 2008 VL 369 IS 3 BP 977 EP 981 DI 10.1016/j.bbrc.2008.03.003 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 286LD UT WOS:000254846500037 PM 18334228 ER PT J AU Zhang, Y Yuan, F Wang, D Gu, L Li, GM AF Zhang, Yanbin Yuan, Fenghua Wang, Daojing Gu, Liya Li, Guo-Min TI Identification of regulatory factor X as a novel mismatch repair stimulatory factor SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID BARE LYMPHOCYTE SYNDROME; HUMAN EXONUCLEASE-I; SYSTEM; DEFICIENCY; COMPLEX; RECONSTITUTION; RECOMBINATION; EXPRESSION; EXCISION; CELLS AB This report describes the identification and purification of a novel mismatch repair stimulatory factor from HeLa cell extracts. This activity copurifies with a proliferating cell nuclear antigen-dependent 5' --> 33' DNA excision activity during several purification steps but is resolved from the excision activity during gel filtration chromatography using Sephacryl S-300. After purification to near homogeneity, the stimulatory factor is associated with three polypeptides with apparent molecular masses of 68, 36, and 30 kDa. Peptide sequencing analysis by tandem mass spectrometry identified the stimulatory factor as the heterotrimeric regulatory factor X (RFX) complex, which regulates transcription of the class II major histocompatibility complex by facilitating histone acetylation and is defective in the human hereditary immunodeficiency syndrome called bare lymphocyte syndrome. This conclusion was confirmed by the facts that purified recombinant RFX stimulates mismatch repair in an in vitro reconstituted mismatch repair system and that depletion of RFX from nuclear extracts or RFX knockdown in cells reduces mismatch repair activity. As expected, RFX knockdown cells display instability in microsatellite sequences. The possible role of RFX in human MMR repair is discussed. C1 [Zhang, Yanbin; Yuan, Fenghua; Gu, Liya; Li, Guo-Min] Univ Kentucky, Coll Med, Dept Toxicol, Lexington, KY 40536 USA. [Wang, Daojing] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Li, GM (reprint author), Univ Kentucky, Coll Med, Dept Toxicol, 1095 VA Dr, Lexington, KY 40536 USA. EM gmli@uky.edu RI Zhang, Yanbin/F-2998-2011; Yuan, Fenghua/F-8736-2011; Li, Guo-Min/I-5016-2014; OI Zhang, Yanbin/0000-0002-7263-5510; Li, Guo-Min/0000-0002-9842-4578 FU NCI NIH HHS [CA104333, CA115942]; NIGMS NIH HHS [GM072756] NR 27 TC 7 Z9 7 U1 0 U2 1 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD MAY 9 PY 2008 VL 283 IS 19 BP 12730 EP 12735 DI 10.1074/jbc.M800460200 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 295UQ UT WOS:000255499800008 PM 18319249 ER PT J AU Iyer, RR Pohlhaus, TJ Chen, S Hura, GL Dzantiev, L Beese, LS Modrich, P AF Iyer, Ravi R. Pohlhaus, Timothy J. Chen, Sihong Hura, Gregory L. Dzantiev, Leonid Beese, Lorena S. Modrich, Paul TI The MutS alpha-proliferating cell nuclear antigen interaction in human DNA mismatch repair SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID SMALL-ANGLE SCATTERING; RAY SOLUTION SCATTERING; BIOLOGICAL MACROMOLECULES; RECOGNITION COMPLEX; PCNA; PROTEINS; SYSTEM; ASSOCIATION; EXPRESSION; RESOLUTION AB We have examined the interaction parameters, conformation, and functional significance of the human MutS alpha center dot proliferating cell nuclear antigen ( PCNA) complex in mismatch repair. The two proteins associate with a 1: 1 stoichiometry and a K-D of 0.7 mu M in the absence or presence of heteroduplex DNA. PCNA does not influence the affinity of MutS alpha for a mismatch, and mismatch-bound MutS alpha binds PCNA. Small angle x-ray scattering studies have established the molecular parameters of the complex, which are consistent with an elongated conformation in which the two proteins associate in an end-to-end fashion in a manner that does not involve an extended unstructured tether, as has been proposed for yeast MutS alpha and PCNA ( Shell, S. S., Putnam, C. D., and Kolodner, R. D. (2007) Mol. Cell 26, 565 578). MutS alpha variants lacking the PCNA interaction motif are functional in 3 '- or 5 '- directed mismatch- provoked excision, but display a partial defect in 5 '- directed mismatch repair. This finding is consistent with the modest mutability conferred by inactivation of the MutS alpha PCNA interaction motif and suggests that interaction of the replication clamp with other repair protein(s) accounts for the essential role of PCNA in MutS alpha-dependent mismatch repair. C1 [Iyer, Ravi R.; Pohlhaus, Timothy J.; Chen, Sihong; Dzantiev, Leonid; Beese, Lorena S.; Modrich, Paul] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA. [Iyer, Ravi R.; Chen, Sihong; Dzantiev, Leonid; Modrich, Paul] Duke Univ, Med Ctr, Howard Hughes Med Inst, Durham, NC 27710 USA. [Hura, Gregory L.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Modrich, P (reprint author), Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA. EM modrich@biochem.duke.edu RI beese, lorena/G-4993-2010 FU Howard Hughes Medical Institute; NCI NIH HHS [P01 CA092584, P01 CA092584-070005, P01 CA92584]; NIGMS NIH HHS [R01 GM045190, R01 GM045190-18, R01 GM45190] NR 44 TC 29 Z9 30 U1 0 U2 4 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD MAY 9 PY 2008 VL 283 IS 19 BP 13310 EP 13319 DI 10.1074/jbc.M800606200 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 295UQ UT WOS:000255499800071 PM 18326858 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyria, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyria, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Observation of the decay B(c)(+/-) -> J/psi pi(+/-) and measurement of the B(c)(+/-) mass SO PHYSICAL REVIEW LETTERS LA English DT Article ID B-C MESON; SEARCH AB The B(c)(+/-) meson is observed through the decay B(c)(+/-) -> J/psi pi(+/-), in data corresponding to an integrated luminosity of 2.4 fb(-1) recorded by the Collider Detector at Fermilab II detector at the Fermilab Tevatron. A signal of 108 +/- 15 candidates is observed, with a significance that exceeds 8 sigma. The mass of the B(c)(+/-) meson is measured to be 6275.6 +/- 2.9(stat) +/- 2.5(syst) MeV/c(2). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wurthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyria, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aoki, M.; Bridgeman, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Mulmenstadt, J.; Nielsen, J.; Shapiro, M. D.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cerrito, L.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl Pisa, Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; De Lentdecker, G.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste Udine, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Muelmenstaedt, Johannes/K-2432-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016 OI Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Muelmenstaedt, Johannes/0000-0003-1105-6678; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117 NR 19 TC 76 Z9 76 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 9 PY 2008 VL 100 IS 18 AR 182002 DI 10.1103/PhysRevLett.100.182002 PG 7 WC Physics, Multidisciplinary SC Physics GA 299QZ UT WOS:000255771400015 PM 18518365 ER PT J AU Abouzaid, E Arenton, M Barker, AR Bellantoni, L Blucher, E Bock, GJ Cheu, E Coleman, R Corcoran, MD Cox, B Erwin, AR Escobar, CO Glazov, A Golossanov, A Gomes, RA Gouffon, P Hsiung, YB Jensen, DA Kessler, R Kotera, K Ledovskoy, A McBride, PL Monnier, E Nguyen, H Niclasen, R Phillips, DG Ramberg, EJ Ray, RE Ronquest, M Santos, E Slater, W Smith, D Solomey, N Swallow, EC Toale, PA Tschirhart, R Wah, YW Wang, J White, HB Whitmore, J Wilking, MJ Winstein, B Winston, R Worcester, ET Yamanaka, T Zimmerman, ED Zukanovich, RF AF Abouzaid, E. Arenton, M. Barker, A. R. Bellantoni, L. Blucher, E. Bock, G. J. Cheu, E. Coleman, R. Corcoran, M. D. Cox, B. Erwin, A. R. Escobar, C. O. Glazov, A. Golossanov, A. Gomes, R. A. Gouffon, P. Hsiung, Y. B. Jensen, D. A. Kessler, R. Kotera, K. Ledovskoy, A. McBride, P. L. Monnier, E. Nguyen, H. Niclasen, R. Phillips, D. G., II Ramberg, E. J. Ray, R. E. Ronquest, M. Santos, E. Slater, W. Smith, D. Solomey, N. Swallow, E. C. Toale, P. A. Tschirhart, R. Wah, Y. W. Wang, J. White, H. B. Whitmore, J. Wilking, M. J. Winstein, B. Winston, R. Worcester, E. T. Yamanaka, T. Zimmerman, E. D. Zukanovich, R. F. CA KTeV Collaboration TI Determination of the parity of the neutral pion via its four-electron decay SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSITION FORM-FACTOR; DALITZ-DECAY; PI-0 AB We present a new determination of the parity of the neutral pion via the double Dalitz decay pi(0) -> e(+)e(-)e(+)e(-). Our sample, which consists of 30511 candidate decays, was collected from K(L) -> pi(0)pi(0)pi(0) decays in flight at the KTeV-E799 experiment at Fermi National Accelerator Laboratory. We confirm the negative pi(0) parity and place a limit on scalar contributions to the pi(0) -> e(+)e(-)e(+)e(-) decay amplitude of less than 3.3% assuming CPT conservation. The pi(0)gamma(*)gamma(*) form factor is well described by a momentum-dependent model with a slope parameter fit to the final state phase-space distribution. Additionally, we have measured the branching ratio of this mode to be B(pi(0) -> e(+)e(-)e(+)e(-)) = (3.26 +/- 0.18) x 10(-5). C1 [Cheu, E.; Wang, J.] Univ Arizona, Tucson, AZ 85721 USA. [Slater, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Escobar, C. O.; Gomes, R. A.] Univ Estadual Campinas, BR-13083970 Campinas, SP, Brazil. [Abouzaid, E.; Blucher, E.; Glazov, A.; Kessler, R.; Monnier, E.; Solomey, N.; Swallow, E. C.; Wah, Y. W.; Winstein, B.; Winston, R.; Worcester, E. T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Barker, A. R.; Niclasen, R.; Toale, P. A.; Wilking, M. J.; Zimmerman, E. D.] Univ Colorado, Boulder, CO 80309 USA. [Swallow, E. C.] Elmhurst Coll, Elmhurst, IL 60126 USA. [Bellantoni, L.; Bock, G. J.; Coleman, R.; Hsiung, Y. B.; Jensen, D. A.; McBride, P. L.; Nguyen, H.; Ramberg, E. J.; Ray, R. E.; Tschirhart, R.; White, H. B.; Whitmore, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Kotera, K.; Yamanaka, T.] Osaka Univ, Osaka 5600043, Japan. [Corcoran, M. D.] Rice Univ, Houston, TX 77005 USA. [Gouffon, P.; Santos, E.; Zukanovich, R. F.] Univ Sao Paulo, BR-05315970 Sao Paulo, Brazil. [Abouzaid, E.; Cox, B.; Golossanov, A.; Ledovskoy, A.; Phillips, D. G., II; Ronquest, M.; Smith, D.] Univ Virginia, Dept Phys, Charlottesville, VA 22901 USA. [Arenton, M.; Cox, B.; Golossanov, A.; Ledovskoy, A.; Phillips, D. G., II; Ronquest, M.; Smith, D.] Univ Virginia, Inst Nucl & Particle Phys, Charlottesville, VA 22901 USA. [Erwin, A. R.] Univ Wisconsin, Madison, WI 53706 USA. [Monnier, E.] CNRS, CPP Marseille, F-75700 Paris, France. RP Toale, PA (reprint author), Penn State Univ, University Pk, PA 16802 USA. EM toale@phys.psu.edu; edz@colorado.edu RI Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; Inst. of Physics, Gleb Wataghin/A-9780-2017; Gomes, Ricardo/B-6899-2008; Zukanovich Funchal, Renata/C-5829-2013 OI Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; Gomes, Ricardo/0000-0003-0278-4876; Zukanovich Funchal, Renata/0000-0001-6749-0022 NR 17 TC 17 Z9 17 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 9 PY 2008 VL 100 IS 18 AR 182001 DI 10.1103/PhysRevLett.100.182001 PG 5 WC Physics, Multidisciplinary SC Physics GA 299QZ UT WOS:000255771400014 PM 18518364 ER PT J AU Beck, MJ Schrimpf, RD Fleetwood, DM Pantelides, ST AF Beck, M. J. Schrimpf, R. D. Fleetwood, D. M. Pantelides, S. T. TI Disorder-recrystallization effects in low-energy beam-solid interactions SO PHYSICAL REVIEW LETTERS LA English DT Article ID SILICON; DAMAGE; ATOMS AB It is widely believed that high-kinetic-energy (> 1 keV) recoils in crystalline Si result in the formation of amorphous regions, whereas low-kinetic-energy recoils lead directly to isolated point defects. Here we study the response of a Si crystal using dynamical density-functional calculations and show that recoils of much less than 1 keV result in highly disordered regions that persist for hundreds of femtoseconds. Therefore, beam-induced defect formation is controlled by recrystallization processes during dynamic annealing even following low-energy ion implantation. C1 [Beck, M. J.; Fleetwood, D. M.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Schrimpf, R. D.; Fleetwood, D. M.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Pantelides, S. T.] Oak Ridge Natl Lab, Div Solid State, Oak Ridge, TN 37831 USA. RP Beck, MJ (reprint author), Vanderbilt Univ, Dept Phys & Astron, 221 Kirkland Hall, Nashville, TN 37235 USA. EM m.beck@vanderbilt.edu RI Schrimpf, Ronald/L-5549-2013 OI Schrimpf, Ronald/0000-0001-7419-2701 NR 33 TC 16 Z9 16 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 9 PY 2008 VL 100 IS 18 AR 185502 DI 10.1103/PhysRevLett.100.185502 PG 4 WC Physics, Multidisciplinary SC Physics GA 299QZ UT WOS:000255771400039 PM 18518389 ER PT J AU Bhongale, SG Timmermans, E AF Bhongale, S. G. Timmermans, Eddy TI Phase separated BEC for high-sensitivity force measurement SO PHYSICAL REVIEW LETTERS LA English DT Article ID FERMI GAS; MIXTURE; ATOMS AB A trapped, phase separated, two component Bose-Einstein condensate (BEC) can be configured to give a single BEC bubble that floats freely in the surrounding BEC. We point out that this system gives a unique template to carry out mesoscopic quantum studies and to detect weak forces. We demonstrate the detection capabilities by proposing and studying a "quantum level" for fundamental quantum fluctuation studies and for mapping the potential energy landscape near a surface with exquisite accuracy. C1 [Bhongale, S. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Timmermans, Eddy] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Bhongale, SG (reprint author), Rice Univ, Dept Phys & Astron, MS 61, Houston, TX 77005 USA. NR 25 TC 11 Z9 11 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 9 PY 2008 VL 100 IS 18 AR 185301 DI 10.1103/PhysRevLett.100.185301 PG 4 WC Physics, Multidisciplinary SC Physics GA 299QZ UT WOS:000255771400037 PM 18518387 ER PT J AU Cherng, RW Gritsev, V Stamper-Kurn, DM Demler, E AF Cherng, R. W. Gritsev, V. Stamper-Kurn, D. M. Demler, E. TI Dynamical instability of the XY spiral state of ferromagnetic condensates SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATION; SPIN-1; GASES AB We calculate the spectrum of collective excitations of the XY spiral state prepared adiabatically or suddenly from a uniform ferromagnetic F=1 condensate. For spiral wave vectors past a critical value, spin wave excitation energies become imaginary indicating a dynamical instability. We construct phase diagrams as functions of spiral wave vector and quadratic Zeeman energy. C1 [Cherng, R. W.; Gritsev, V.; Demler, E.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Stamper-Kurn, D. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Stamper-Kurn, D. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Cherng, RW (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RI Stamper-Kurn, Dan/B-5442-2015 OI Stamper-Kurn, Dan/0000-0002-4845-5835 NR 30 TC 31 Z9 31 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 9 PY 2008 VL 100 IS 18 AR 180404 DI 10.1103/PhysRevLett.100.180404 PG 4 WC Physics, Multidisciplinary SC Physics GA 299QZ UT WOS:000255771400004 PM 18518354 ER PT J AU de la Figuera, J Leonard, F Bartelt, NC Stumpf, R McCarty, KF AF de la Figuera, J. Leonard, F. Bartelt, N. C. Stumpf, R. McCarty, K. F. TI Nanoscale periodicity in stripe-forming systems at high temperature: Au/W(110) SO PHYSICAL REVIEW LETTERS LA English DT Article ID FREE-ENERGY AB We observe using low-energy electron microscopy the self-assembly of monolayer-thick stripes of Au on W(110) near the transition temperature between stripes and the nonpatterned (homogeneous) phase. We demonstrate that the amplitude of this Au-stripe phase decreases with increasing temperature and vanishes at the order-disorder transition (ODT). The wavelength varies much more slowly with temperature and coverage than theories of stress-domain patterns with sharp boundaries would predict, and maintains a finite value of about 100 nm at the ODT. We argue that such nanometer-scale stripes should often appear near the ODT. C1 [de la Figuera, J.] CSIC, Inst Quim Fis Rocasolano, E-28006 Madrid, Spain. [de la Figuera, J.] Univ Autonoma Madrid, Ctr Microanal Mat, E-28049 Madrid, Spain. [Leonard, F.; Bartelt, N. C.; Stumpf, R.; McCarty, K. F.] Sandia Natl Labs, Livermore, CA 94550 USA. RP de la Figuera, J (reprint author), CSIC, Inst Quim Fis Rocasolano, Plaza Murillo 2, E-28006 Madrid, Spain. RI de la Figuera, Juan/E-7046-2010; McCarty, Kevin/F-9368-2012; Bartelt, Norman/G-2927-2012 OI de la Figuera, Juan/0000-0002-7014-4777; McCarty, Kevin/0000-0002-8601-079X; NR 17 TC 11 Z9 11 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 9 PY 2008 VL 100 IS 18 AR 186102 DI 10.1103/PhysRevLett.100.186102 PG 4 WC Physics, Multidisciplinary SC Physics GA 299QZ UT WOS:000255771400043 PM 18518393 ER PT J AU Mangan, N Reichhardt, C Reichhardt, CJO AF Mangan, N. Reichhardt, C. Reichhardt, C. J. Olson TI Reversible to irreversible flow transition in periodically driven vortices SO PHYSICAL REVIEW LETTERS LA English DT Article ID RANDOM-MEDIA; FLUX-FLOW; NOISE; LATTICE; DEFECTS; CHAOS AB We show that periodically driven superconducting vortices in the presence of quenched disorder exhibit a transition from reversible to irreversible flow under increasing vortex density or cycle period. This type of behavior has recently been observed for periodically sheared colloidal suspensions and we demonstrate that driven vortex systems exhibit remarkably similar behavior. We also provide evidence that the onset of irreversible behavior is a dynamical phase transition. C1 [Mangan, N.; Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Mangan, N.] Clarkson Univ, Dept Phys, Potsdam, NY 13699 USA. RP Mangan, N (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 NR 25 TC 43 Z9 43 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 9 PY 2008 VL 100 IS 18 AR 187002 DI 10.1103/PhysRevLett.100.187002 PG 4 WC Physics, Multidisciplinary SC Physics GA 299QZ UT WOS:000255771400059 PM 18518409 ER PT J AU Muller, H Chiow, SW Long, Q Herrmann, S Chu, S AF Mueller, Holger Chiow, Sheng-wey Long, Quan Herrmann, Sven Chu, Steven TI Atom interferometry with up to 24-photon-momentum-transfer beam splitters SO PHYSICAL REVIEW LETTERS LA English DT Article ID FINE-STRUCTURE CONSTANT; BRAGG SCATTERING; PHOTON RECOIL; LASER; GRAVITY AB We present up to 24-photon Bragg diffraction as a beam splitter in light-pulse atom interferometers to achieve the largest splitting in momentum space so far. Relative to the 2-photon processes used in the most sensitive present interferometers, these large momentum transfer beam splitters increase the phase shift 12-fold for Mach-Zehnder (MZ) and 144-fold for Ramsey-Borde (RB) geometries. We achieve a high visibility of the interference fringes (up to 52% for MZ or 36% for RB) and long pulse separation times that are possible only in atomic fountain setups. As the atom's internal state is not changed, important systematic effects can cancel. C1 [Mueller, Holger; Chiow, Sheng-wey; Long, Quan; Herrmann, Sven; Chu, Steven] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Chu, Steven] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chu, Steven] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Muller, H (reprint author), Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. EM holgerm@stanford.edu RI Mueller, Holger/E-3194-2015 NR 30 TC 102 Z9 103 U1 5 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 9 PY 2008 VL 100 IS 18 AR 180405 DI 10.1103/PhysRevLett.100.180405 PG 4 WC Physics, Multidisciplinary SC Physics GA 299QZ UT WOS:000255771400005 PM 18518355 ER PT J AU Neusius, T Daidone, I Sokolov, IM Smith, JC AF Neusius, Thomas Daidone, Isabella Sokolov, Igor M. Smith, Jeremy C. TI Subdiffusion in peptides originates from the fractal-like structure of configuration space SO PHYSICAL REVIEW LETTERS LA English DT Article ID FOKKER-PLANCK EQUATIONS; RANDOM-WALKS; DYNAMICS; PROTEINS; DIFFUSION; NETWORKS; SYSTEMS; MODELS; CTRW AB Molecular dynamics simulation of oligopeptide chains reveals configurational subdiffusion at equilibrium extending from 10(-12) to 10(-8) s. Trap models, involving a random walk with a distribution of waiting times, cannot account for the subdiffusion, which is found rather to arise from the fractal-like structure of the accessible configuration space. C1 [Neusius, Thomas; Daidone, Isabella] Univ Heidelberg, Interdisziplinares Zentrum Wissenschaftliches Rec, Commputat Mol Biophys, D-69120 Heidelberg, Germany. [Sokolov, Igor M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. RP Neusius, T (reprint author), Univ Heidelberg, Interdisziplinares Zentrum Wissenschaftliches Rec, Commputat Mol Biophys, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany. EM thomas.neusius@iwr.uni-heidelberg.de RI smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 NR 29 TC 38 Z9 40 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 9 PY 2008 VL 100 IS 18 AR 188103 DI 10.1103/PhysRevLett.100.188103 PG 4 WC Physics, Multidisciplinary SC Physics GA 299QZ UT WOS:000255771400068 PM 18518418 ER PT J AU Piquini, P Graf, PA Zunger, A AF Piquini, Paulo Graf, Peter A. Zunger, Alex TI Band-gap design of quaternary (In,Ga)(As,Sb) semiconductors via the inverse-band-structure approach SO PHYSICAL REVIEW LETTERS LA English DT Article ID GENETIC ALGORITHM; ALLOYS; ENERGY AB Quaternary systems illustrated by (Ga,In)(As,Sb) manifest a huge configurational space, offering in principle the possibility of designing structures that are lattice matched to a given substrate and have given electronic properties (e.g., band gap) at more than one composition. Such specific configurations were however, hitherto, unidentified. We show here that using a genetic-algorithm search with a pseudopotential "Inverse-band-structure (IBS) approach it is possible to identify those configurations that are naturally lattice matching (to GaSb) and have a specific band gap (310 meV) at more than one composition. This is done by deviating from randomness, allowing the IBS to find a partial atomic ordering. This illustrates multitarget design of the electronic structure of multinary systems. C1 [Piquini, Paulo; Graf, Peter A.; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Piquini, Paulo] Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil. RP Piquini, P (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Piquini, Paulo/A-3672-2009; Piquini, Paulo/G-3534-2012; Zunger, Alex/A-6733-2013 OI Piquini, Paulo/0000-0003-4340-2723; NR 25 TC 28 Z9 28 U1 0 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 9 PY 2008 VL 100 IS 18 AR 186403 DI 10.1103/PhysRevLett.100.186403 PG 4 WC Physics, Multidisciplinary SC Physics GA 299QZ UT WOS:000255771400048 PM 18518398 ER PT J AU Rosa, FSS Dalvit, DAR Milonni, PW AF Rosa, F. S. S. Dalvit, D. A. R. Milonni, P. W. TI Casimir-Lifshitz theory and metamaterials SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEGATIVE REFRACTIVE-INDEX; FORCES; PHYSICS AB Based on a generalization of the Lifshiftz theory, we calculate Casimir forces involving magnetodielectric and possibly anisotropic metamaterials, focusing on the possibility of repulsive forces. It is found that Casimir repulsion decreases with magnetic dissipation, and even a small Drude background in metallic-based metamaterials acts to make attractive a Casimir force that would otherwise be predicted to be repulsive. The sign of the force also depends sensitively on the degree of optical anisotropy of the metamaterial and on the form of the frequency dependency of the magnetic response. C1 [Rosa, F. S. S.; Dalvit, D. A. R.; Milonni, P. W.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Rosa, FSS (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 26 TC 109 Z9 112 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 9 PY 2008 VL 100 IS 18 AR 183602 DI 10.1103/PhysRevLett.100.183602 PG 4 WC Physics, Multidisciplinary SC Physics GA 299QZ UT WOS:000255771400021 PM 18518371 ER PT J AU Thurmer, K Bartelt, NC AF Thurmer, Konrad Bartelt, Norman C. TI Nucleation-limited dewetting of ice films on pt(111) SO PHYSICAL REVIEW LETTERS LA English DT Article ID THIN-FILMS; CRYSTALS; DYNAMICS; SURFACE; WATER AB Quantifying dewetting phenomena at the microscopic level is the key to deciphering how a balance between kinetic and equilibrium effects determines ice-film morphology on Pt(111). Overcoming the difficulty of imaging nominally insulating ice multilayers with scanning tunneling microscopy allowed us to track the dewetting process. The results show that the rate at which new layers nucleate, and not surface diffusion, determines how fast individual crystallite shapes equilibrate. Applying nucleation theory to measured growth rates versus crystallite size, we obtain new bounds on the energetics both of step formation on ice and of the Pt-ice interface. C1 [Thurmer, Konrad; Bartelt, Norman C.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Thurmer, K (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. RI Bartelt, Norman/G-2927-2012; Thurmer, Konrad/L-4699-2013 OI Thurmer, Konrad/0000-0002-3078-7372 NR 22 TC 50 Z9 51 U1 4 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 9 PY 2008 VL 100 IS 18 AR 186101 DI 10.1103/PhysRevLett.100.186101 PG 4 WC Physics, Multidisciplinary SC Physics GA 299QZ UT WOS:000255771400042 PM 18518392 ER PT J AU Ahn, TK Avenson, TJ Ballottari, M Cheng, YC Niyogi, KK Bassi, R Fleming, GR AF Ahn, Tae Kyu Avenson, Thomas J. Ballottari, Matteo Cheng, Yuan-Chung Niyogi, Krishna K. Bassi, Roberto Fleming, Graham R. TI Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein SO SCIENCE LA English DT Article ID PHOTOSYSTEM-II; ENERGY-DISSIPATION; GREEN PLANTS; OXYGENIC PHOTOSYNTHESIS; TRANSIENT ABSORPTION; CATION FORMATION; COMPLEX; MECHANISM; PSBS; IDENTIFICATION AB Energy- dependent quenching of excess absorbed light energy ( qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge transfer between coupled chlorophyll and zeaxanthin molecules in the light- harvesting antenna of photosystem II ( PSII). We found evidence for charge- transfer quenching in all three of the individual minor antenna complexes of PSII ( CP29, CP26, and CP24), and we conclude that charge- transfer quenching in CP29 involves a delocalized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can "tune" the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophyll-zeaxanthin charge- transfer state and switching on and off the charge- transfer quenching during qE. C1 [Ballottari, Matteo; Bassi, Roberto] Univ Verona, Dept Sci & Technol, I-37134 Verona, Italy. [Ahn, Tae Kyu; Niyogi, Krishna K.; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ahn, Tae Kyu; Avenson, Thomas J.; Cheng, Yuan-Chung; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ahn, Tae Kyu; Avenson, Thomas J.; Cheng, Yuan-Chung; Fleming, Graham R.] Univ Calif Berkeley, QB3 Inst, Berkeley, CA 94720 USA. [Avenson, Thomas J.; Niyogi, Krishna K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Bassi, R (reprint author), Univ Verona, Dept Sci & Technol, I-37134 Verona, Italy. EM bassi@sci.univr.it; grfleming@lbl.gov RI Cheng, Yuan-Chung/A-6566-2008; Ahn, Tae/A-5838-2013; OI Cheng, Yuan-Chung/0000-0003-0125-4267; Ballottari, Matteo/0000-0001-8410-3397; bassi, roberto/0000-0002-4140-8446 NR 27 TC 282 Z9 287 U1 5 U2 73 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 9 PY 2008 VL 320 IS 5877 BP 794 EP 797 DI 10.1126/science.1154800 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 297VB UT WOS:000255644400041 PM 18467588 ER PT J AU Huang, M Chang, YA AF Huang, Mianliang Chang, Y. Austin TI Disorder-order phase transformation in sputter deposited Pd-3 in thin films SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Pd3In; thin films; disorder-order; phase transformation ID ALLOYS; PDIN AB Phase transformation in Pd3In thin films has been investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). Pd3In films were sputtered onto room temperature substrates and characterized by TEM and XRD as disordered face centered cubic (fcc) structure. Ordered tetragonal structure was observed in the samples annealed up to 550 degrees C. DSC measurements gave a heat of transformation of 3.25 kJ/mol. (c) 2007 Elsevier B.V. All rights reserved. C1 [Huang, Mianliang] Iowa State Univ, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. [Huang, Mianliang; Chang, Y. Austin] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. RP Huang, M (reprint author), Iowa State Univ, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. EM mhuang@ameslab.gov NR 19 TC 1 Z9 1 U1 1 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD MAY 8 PY 2008 VL 455 IS 1-2 BP 174 EP 177 DI 10.1016/j.jallcom.2007.01.022 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 295AO UT WOS:000255447600035 ER PT J AU Cheng, YC Fleming, GR AF Cheng, Yuan-Chung Fleming, Graham R. TI Coherence quantum beats in two-dimensional electronic spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID FEMTOSECOND CORRELATION SPECTROSCOPIES; DYNAMICS; SPECTRA; EVOLUTION; DENSITY; SHAPES AB We study the coherence quantum beats in two-dimensional (21)) electronic spectroscopy of a coupled dimer system using a theoretical method based on a time-nonlocal quantum master equation and a recently proposed scheme for the evaluation of the third-order photon echo polarization [Gelin, M. F.; Egorova, D.; Domeek, W. J. Chem. Phys. 2005, 123, 164112]. The simulations show that the amplitude and peak shape beating in the 2D spectra is a result of the interplay between the rephasing and non-rephasing contributions to the 2D signals and can be used to elucidate the coherence dynamics in a multichromophoric system. In addition, the results suggest that the rephasing and non-rephasing 2D spectra contain complementary information, and a study of both of them could provide more dynamical information from 2D electronic spectroscopy. C1 [Cheng, Yuan-Chung; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cheng, Yuan-Chung; Fleming, Graham R.] Univ Calif Berkeley, QB3 Inst, Berkeley, CA 94720 USA. [Cheng, Yuan-Chung; Fleming, Graham R.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM GRFleming@lbl.gov RI Cheng, Yuan-Chung/A-6566-2008 OI Cheng, Yuan-Chung/0000-0003-0125-4267 NR 30 TC 109 Z9 109 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAY 8 PY 2008 VL 112 IS 18 BP 4254 EP 4260 DI 10.1021/jp7107889 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 295PM UT WOS:000255486400013 PM 18376878 ER PT J AU Cho, H Shaw, WJ Parvanov, V Schenter, GK Karkamkar, A Hess, NJ Mundy, C Kathmann, S Sears, J Lipton, AS Ellis, PD Autrey, ST AF Cho, Herman Shaw, Wendy J. Parvanov, Vencislav Schenter, Gregory K. Karkamkar, Abhijeet Hess, Nancy J. Mundy, Chris Kathmann, Shawn Sears, Jesse Lipton, Andrew S. Ellis, Paul D. Autrey, S. Thomas TI Molecular structure and dynamics in the low temperature (orthorhombic) phase of NH3BH3 SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SPACE GAUSSIAN PSEUDOPOTENTIALS; CHEMICAL HYDROGEN STORAGE; AMMONIA-BORANE; THERMAL-DECOMPOSITION; MAGNETIC-RESONANCE; MAS-NMR; BH3NH3; SPECTRUM; CRYSTAL; RELEASE AB Variable temperature. H-2 NMR experiments on the orthorhombic phase of selectively deuterated NH3BH3 spanning the static to fast exchange limits of the borane and amine motions are reported. New values of the electric field gradient (EFG) tensor parameters have been obtained from the static H-2 spectra of V-zz = 1.652 (+/- 0.082) x 10(21) V/m(2) and eta = 0.00 +/- 0.05 for the borane hydrogens and V-zz = 2.883 ( +/- 0.144) x 10(21) V/m(2) and q = 0.00 0.05 for the amine hydrogens. The molecular symmetry inferred from the observation of equal EFG tensors for the three borane hydrogens and likewise for the three amine hydrogens is in sharp contrast with the C-s symmetry derived from diffraction studies. The origin of the apparent discrepancy has been investigated using molecular dynamics methods in combination with electronic structure calculations of NMR parameters, bond lengths, and bond angles. The computation of parameters from a statistical ensemble rather than from a single set of atomic Cartesian coordinates gives values that are in close quantitative agreement with the H-2 NMR electric field gradient tensor measurements and are more consistent with the molecular symmetry revealed by the NMR spectra. C1 [Cho, Herman; Shaw, Wendy J.; Parvanov, Vencislav; Schenter, Gregory K.; Karkamkar, Abhijeet; Hess, Nancy J.; Mundy, Chris; Kathmann, Shawn; Sears, Jesse; Lipton, Andrew S.; Ellis, Paul D.; Autrey, S. Thomas] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Cho, H (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999, Richland, WA 99352 USA. EM tom.autrey@pnl.gov RI Schenter, Gregory/I-7655-2014; OI Schenter, Gregory/0000-0001-5444-5484; Hess, Nancy/0000-0002-8930-9500 NR 41 TC 26 Z9 26 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAY 8 PY 2008 VL 112 IS 18 BP 4277 EP 4283 DI 10.1021/jp7117696 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 295PM UT WOS:000255486400016 PM 18407708 ER PT J AU Wang, H Sun, J Lu, WC Li, ZS Sun, CC Wang, CZ Ho, KM AF Wang, H. Sun, J. Lu, W. C. Li, Z. S. Sun, C. C. Wang, C. Z. Ho, K. M. TI New motif of silicon segregation in silicon monoxide clusters SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID OXIDE CLUSTERS; OXIDATION PATTERN; LASER-ABLATION; NANOWIRES; NANOPARTICLES; STABILITY; GROWTH AB Structures Of Si(n)O(n) clusters are of great interest because of the observed growth of oxide-coated Si nanowires from gas-phase SiO. We studied the geometries of Si(n)O(n) clusters with n ranging from 12 to 18 using first-principles density functional calculations. We found a new structural motif which produces structures that are energetically more favorable than those proposed in recent literature. These structures consist of polygonal bipyramidal Si clusters of sizes between 5 and 7 attached to low-energy Si(8)O(12) or Si(12)O(18) wheel structures previously discovered. The segregation of silicon to the side of the cluster is intriguing and contradicts previous models that assumed silicon segregation nucleates in the center of the monoxide clusters. Electronic structure analysis shows that the HOMO and LUMO states of the monoxide clusters are localized on the segregated silicon cluster, indicating that the segregated Si may act as a nucleation site for further nanostructure growth. C1 [Wang, H.; Lu, W. C.] Qingdao Univ, Dept Phys, Qingdao 266071, Shandong, Peoples R China. [Wang, H.; Sun, J.; Lu, W. C.; Li, Z. S.; Sun, C. C.] Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130021, Peoples R China. [Wang, C. Z.; Ho, K. M.] US DOE, Ames Lab, Ames, IA 50011 USA. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Lu, WC (reprint author), Qingdao Univ, Dept Phys, Qingdao 266071, Shandong, Peoples R China. EM wencailu@jlu.edu.cn OI Wang, Chong/0000-0003-4489-4344 NR 20 TC 16 Z9 16 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 8 PY 2008 VL 112 IS 18 BP 7097 EP 7101 DI 10.1021/jp077159j PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 295PQ UT WOS:000255486800002 ER PT J AU Uzun, SS Sen, S Benmore, CJ Aitken, BG AF Uzun, S. Soyer Sen, S. Benmore, C. J. Aitken, B. G. TI Compositional variation of short- and intermediate-range structure and chemical order in ge-as sulfide glasses: A neutron diffraction study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ABSORPTION FINE-STRUCTURE; SOLID-STATE NMR; SELENIUM GLASSES; SPECTROSCOPY; SCATTERING; GESE2; EXAFS AB The structures of chalcogenide glasses in the Ge-As-S system with Ge:As = 1: 1 and with S concentration varying between 33.3 and 70.0 atom% have been studied using neutron diffraction. Ge and As atoms are primarily heteropolar bonded to S atoms in stoichiometric and S-excess glasses. Formation of homopolar As-As bonds at low and intermediate levels of S-deficiency results in violation of chemical order and in the formation of As-rich structural moieties. Ge takes part in metal-metal bonding, predominantly via the formation of Ge-As bonds, only in the highly S-deficient glasses once all the As atoms are used up in homopolar bonding. Incorporation of tetrahedrally coordinated Ge into the structure disrupts the topological continuity of the low-dimensional As-rich clusters and the GeS2 network. These intermediate-range order structural orderings are manifested in the compositional dependence of the intensity, position, and width of the first sharp diffraction peak in the structure factor. C1 [Uzun, S. Soyer; Sen, S.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Benmore, C. J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Aitken, B. G.] Corning Inc, Glass Res Div, Corning, NY 14831 USA. RP Sen, S (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM sbsen@ucdavis.edu OI Benmore, Chris/0000-0001-7007-7749 NR 31 TC 7 Z9 7 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 8 PY 2008 VL 112 IS 18 BP 7263 EP 7269 DI 10.1021/jp7115388 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 295PQ UT WOS:000255486800023 ER PT J AU Przybylak, SW Tuna, F Teat, SJ Winpenny, REP AF Przybylak, Szymon W. Tuna, Floriana Teat, Simon J. Winpenny, Richard E. P. TI A homospin iron(II) single chain magnet SO CHEMICAL COMMUNICATIONS LA English DT Article ID MOLECULE MAGNETS; GROUND-STATE; ANISOTROPY; NANOWIRES; LIGANDS; MAGNETIZATION; CRYSTAL; IONS AB Synthetic, structural and magnetic studies of a new Fe(II) single chain magnet are reported. C1 [Przybylak, Szymon W.; Tuna, Floriana; Winpenny, Richard E. P.] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England. [Teat, Simon J.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Tuna, F (reprint author), Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England. EM richard.winpenny@manchester.ac.uk NR 34 TC 40 Z9 40 U1 0 U2 12 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PD MAY 7 PY 2008 IS 17 BP 1983 EP 1985 DI 10.1039/b717277j PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 296OE UT WOS:000255554900007 PM 18536795 ER PT J AU Lobell, DB Bonfils, CJ Kueppers, LM Snyder, MA AF Lobell, David B. Bonfils, Celine J. Kueppers, Lara M. Snyder, Mark A. TI Irrigation cooling effect on temperature and heat index extremes SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID UNITED-STATES; SURFACE FLUXES; GREAT-PLAINS; PRECIPITATION; SUMMER; IMPACT; AREAS; WATER; MODEL AB Previous studies of the long-term climate effects of irrigation have focused on average monthly temperatures. Given the importance of temperature (T) extremes to agriculture and human health, we evaluated irrigation induced changes in various metrics of T extremes using daily observations in California and Nebraska. In addition, simulations from a regional climate model were used to evaluate irrigation effects on T and heat index (HI; also known as the discomfort index) extremes in California, with the latter representing a combined measure of T and humidity. Contrary to our expectation that irrigation would have larger effects on hot days when sensible heat fluxes are higher, both observations and a regional climate model indicate that irrigation cools T on the hottest days of the year by a similar magnitude as on an average summer day. The HI is also reduced by irrigation, but by a much smaller magnitude than T because of the higher humidity above irrigated surfaces. Interestingly, HI is influenced less on the most extreme days than on average days, because of the nonlinear effect of humidity on HI at high T. C1 [Lobell, David B.] Stanford Univ, Program Food Secur & Environm, Stanford, CA 94305 USA. [Bonfils, Celine J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Kueppers, Lara M.] Univ Calif, Sch Nat Sci, Merced, CA USA. [Snyder, Mark A.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Climate Change & Impacts Lab, Santa Cruz, CA 95064 USA. RP Lobell, DB (reprint author), Stanford Univ, Program Food Secur & Environm, Environm & Energy Bldg,MC4205,473 Via Ortega, Stanford, CA 94305 USA. EM dlobell@stanford.edu RI Snyder, Mark/B-6835-2008; Bonfils, Celine/H-2356-2012; Kueppers, Lara/M-8323-2013 OI Snyder, Mark/0000-0001-8242-7697; Bonfils, Celine/0000-0002-4674-5708; Kueppers, Lara/0000-0002-8134-3579 NR 21 TC 31 Z9 32 U1 5 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 7 PY 2008 VL 35 IS 9 AR L09705 DI 10.1029/2008GL034145 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 300LI UT WOS:000255824900004 ER PT J AU Lapenis, AG Lawrence, GB Bailey, SW Aparin, BF Shiklomanov, AI Speranskaya, NA Torn, MS Calef, M AF Lapenis, A. G. Lawrence, G. B. Bailey, S. W. Aparin, B. F. Shiklomanov, A. I. Speranskaya, N. A. Torn, M. S. Calef, M. TI Climatically driven loss of calcium in steppe soil as a sink for atmospheric carbon SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID RUSSIAN FORESTS; EVAPORATION; CLIMATE; CALICHE; RIVER; CO2 AB During the last several thousand years the semi-arid, cold climate of the Russian steppe formed highly fertile soils rich in organic carbon and calcium (classified as Chernozems in the Russian system). Analysis of archived soil samples collected in Kemannaya Steppe Preserve in 1920, 1947, 1970, and fresh samples collected in 1998 indicated that the native steppe Chernozems, however, lost 17-28 kg m(-2) of calcium in the form of carbonates in 1970-1998. Here we demonstrate that the loss of calcium was caused by fundamental shift in the steppe hydrologic balance. Previously unleached soils where precipitation was less than potential evapotranspiration are now being leached due to increased precipitation and, possibly, due to decreased actual evapotranspiration. Because this region receives low levels of acidic deposition, the dissolution of carbonates involves the consumption of atmospheric CO(2). Our estimates indicate that this climatically driven terrestrial sink of atmospheric CO(2) is similar to 2.1-7.4 g C m(-2) a(-1). In addition to the net sink of atmospheric carbon, leaching of pedogenic carbonates significantly amplified seasonal amplitude of CO(2) exchange between atmosphere and steppe soil. C1 [Lapenis, A. G.; Calef, M.] SUNY Albany, Dept Geog & Planning, Albany, NY 12222 USA. [Lawrence, G. B.] USGS, Troy, NY 12180 USA. [Bailey, S. W.] US Forest Serv, USDA, NE Forest Expt Stn, Durham, NH USA. [Aparin, B. F.] Cent Dokuchaevs Soil Museum, St Petersburg 199034, Russia. [Shiklomanov, A. I.] Univ New Hampshire, Complex Syst Res Ctr, Durham, NH 03824 USA. [Speranskaya, N. A.] State Hydrol Inst, St Petersburg 199053, Russia. [Torn, M. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Lapenis, AG (reprint author), SUNY Albany, Dept Geog & Planning, Albany, NY 12222 USA. EM andreil@albany.edu RI Torn, Margaret/D-2305-2015; OI Bailey, Scott/0000-0002-9160-156X NR 48 TC 8 Z9 8 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD MAY 7 PY 2008 VL 22 IS 2 AR GB2010 DI 10.1029/2007GB003077 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 300LV UT WOS:000255826200004 ER PT J AU Bastea, S Fried, LE AF Bastea, Sorin Fried, Laurence E. TI Exp6-polar thermodynamics of dense supercritical water SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POLYATOMIC FLUID MIXTURES; EQUATION-OF-STATE; PERTURBATION-THEORY; DIELECTRIC-CONSTANT; LIQUID WATER; TEMPERATURE; PRESSURES; POLAR; H2O; POTENTIALS AB We introduce a simple polar fluid model for the thermodynamics of dense supercritical water based on a Buckingham (exp-6) core and point dipole representation of the water molecule. The proposed exp6-polar thermodynamics, which is based on ideas originally applied to dipolar hard spheres, performs very well when tested against molecular dynamics simulations. Comparisons of the model predictions with experimental data available for supercritical water yield excellent agreement for the shock Hugoniot, isotherms, and sound speeds, and are also quite good for the self-diffusion constant and relative dielectric constant. (c) 2008 American Institute of Physics. C1 [Bastea, Sorin; Fried, Laurence E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bastea, S (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM sbastea@llnl.gov RI Fried, Laurence/L-8714-2014 OI Fried, Laurence/0000-0002-9437-7700 NR 44 TC 11 Z9 11 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 7 PY 2008 VL 128 IS 17 AR 174502 DI 10.1063/1.2913055 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 306EZ UT WOS:000256232400024 PM 18465925 ER PT J AU Sabo, D Meuwly, M Freeman, DL Doll, JD AF Sabo, Dubravko Meuwly, Markus Freeman, David L. Doll, J. D. TI A constant entropy increase model for the selection of parallel tempering ensembles SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MONTE-CARLO; EXCHANGE; SIMULATIONS; ALGORITHM AB The present paper explores a simple approach to the question of parallel tempering temperature selection. We argue that to optimize the performance of parallel tempering it is reasonable to require that the increase in entropy between successive temperatures be uniform over the entire ensemble. An estimate of the system's heat capacity, obtained either from experiment, a preliminary simulation, or a suitable physical model, thus provides a means for generating the desired tempering ensemble. Applications to the two-dimensional Ising problem indicate that the resulting method is effective, simple to implement, and robust with respect to its sensitivity to the quality of the underlying heat capacity model. (C) 2008 American Institute of Physics. C1 [Sabo, Dubravko; Doll, J. D.] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Sabo, Dubravko; Freeman, David L.] Univ Rhode Isl, Dept Chem, Kingston, RI 02881 USA. [Sabo, Dubravko] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Meuwly, Markus] Univ Basel, Dept Chem, CH-4056 Basel, Switzerland. RP Sabo, D (reprint author), Brown Univ, Dept Chem, Providence, RI 02912 USA. EM jimmie-doll@brown.edu NR 23 TC 22 Z9 22 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 7 PY 2008 VL 128 IS 17 AR 174109 DI 10.1063/1.29078461 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 306EZ UT WOS:000256232400011 PM 18465912 ER PT J AU Sheehan, SM Parsons, BF Yen, TA Furlanetto, MR Neumark, DM AF Sheehan, Sean M. Parsons, Bradley F. Yen, Terry A. Furlanetto, Michael R. Neumark, Daniel M. TI Anion photoelectron spectroscopy of C(5)H(-) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID LABORATORY DETECTION; ASTRONOMICAL DETECTION; MICROWAVE-SPECTRUM; ELECTRONIC-SPECTRA; MOLECULAR CLOUDS; ATOMIC CARBON; LINEAR C3H; AB-INITIO; RADICALS; STATE AB Anion photoelectron spectroscopy is performed on the C(5)H(-) species. Analogous to C(3)H(-) and C(3)D(-), photodetachment transitions are observed from multiple, energetically close-lying isomers of the anion. A linear and a cyclic structure are found to have electron binding energies of 2.421 +/- 0.019 eV and 2.857 +/- 0.028 eV, respectively. A cyclic excited state is also found to be 1.136 eV above the linear (2)Pi C(5)H ground state. Based on our assignments of the observed transitions and previous calculations on the energetics of neutral C(5)H isomers, the cyclic (1)A(1) anion state is found to lie 0.163 eV below the (3)A linear anion. (C) 2008 American Institute of Physics. C1 [Sheehan, Sean M.; Parsons, Bradley F.; Yen, Terry A.; Furlanetto, Michael R.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Parsons, Bradley F.] Creighton Univ, Dept Chem, Omaha, NE 68178 USA. [Furlanetto, Michael R.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 NR 50 TC 5 Z9 5 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 7 PY 2008 VL 128 IS 17 AR 174301 DI 10.1063/1.9120561 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 306EZ UT WOS:000256232400015 ER PT J AU Zhou, X Jiang, Y Rasmussen, S Ziock, H AF Zhou, Xin Jiang, Yi Rasmussen, Steen Ziock, Hans TI Bridging coarse-grained models by jump-in-sample simulations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID FREE-ENERGY; ATOMISTIC SIMULATION; ALGORITHM; EFFICIENT; DYNAMICS; SURFACE; STATES AB We present an efficient method to construct coarse-grained (CG) models from models of, finer resolution. The method estimates the free energies in a generated sample of the CG conformational space and then fits the entire effective potential surface in the high-dimensional CG conformational space. A jump-in-sample algorithm that uses a random jumping walk in the CG sample is used to iteratively estimate the free energies. We test the method in a tetrahedral molecular fluid where we construct the intermolecular effective potential and evaluate the CG molecular model. Our algorithm for calculating the free energy involves an improved Wang-Landau (WL) algorithm, which not only works more efficiently than the standard WL algorithm, but also can work in high-dimensional spaces. (C) 2008 American Institute of Physics. C1 [Zhou, Xin; Jiang, Yi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Rasmussen, Steen; Ziock, Hans] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Zhou, X (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM xzhou@lanl.gov NR 35 TC 3 Z9 3 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 7 PY 2008 VL 128 IS 17 AR 174107 DI 10.1063/1.2912561 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 306EZ UT WOS:000256232400009 PM 18465910 ER PT J AU McComiskey, A Schwartz, SE Schmid, B Guan, H Lewis, ER Ricchiazzi, P Ogren, JA AF McComiskey, Allison Schwartz, Stephen E. Schmid, Beat Guan, Hong Lewis, Ernie R. Ricchiazzi, Paul Ogren, John A. TI Direct aerosol forcing: Calculation from observables and sensitivities to inputs SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GLOBAL RADIATION BUDGET; ANTHROPOGENIC AEROSOLS; OPTICAL-PROPERTIES; SULFATE AEROSOLS; CLIMATE; SATELLITE; SURFACE; UNCERTAINTIES; INSTRUMENT; IRRADIANCE AB Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF owing to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface is calculated at three locations representing distinct aerosol types and radiative environments. Sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are also calculated for these conditions. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Absolute total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 3.1 W m(-2) for the ranges of properties examined here. Relative total uncertainties range from similar to 20 to 80% with larger values at higher latitudes, where fluxes are low. The largest contributor to total uncertainty in DRF is single scattering albedo; however, decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties. C1 [McComiskey, Allison] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80305 USA. [Schwartz, Stephen E.; Lewis, Ernie R.] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. [Schmid, Beat] Pacific NW Natl Lab, Richland, WA 99352 USA. [Guan, Hong] Bay Area Environm Res Inst, Sonoma, CA USA. [Ricchiazzi, Paul] Univ Calif Santa Barbara, Inst Computat Earth Syst Sci, Santa Barbara, CA 93106 USA. [Ogren, John A.] NOAA, Earth Syst Res Lab, Boulder, CO USA. RP McComiskey, A (reprint author), Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, R GMD-1,325 Broadway, Boulder, CO 80305 USA. EM allison.mccomiskey@noaa.gov; beat.schmid@pnl.gov; guan@clio.arc.nasa.gov; elewis@bnl.gov; paul@icess.ucsb.edu; john.a.ogren@noaa.gov RI Schwartz, Stephen/C-2729-2008; McComiskey, Allison/I-3933-2013; Ogren, John/M-8255-2015; Manager, CSD Publications/B-2789-2015 OI Schwartz, Stephen/0000-0001-6288-310X; McComiskey, Allison/0000-0002-6125-742X; Ogren, John/0000-0002-7895-9583; NR 44 TC 78 Z9 79 U1 2 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 7 PY 2008 VL 113 IS D9 AR D09202 DI 10.1029/2007JD009170 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 300MD UT WOS:000255827000002 ER PT J AU Nassar, R Logan, JA Worden, HM Megretskaia, IA Bowman, KW Osterman, GB Thompson, AM Tarasick, DW Austin, S Claude, H Dubey, MK Hocking, WK Johnson, BJ Joseph, E Merrill, J Morris, GA Newchurch, M Oltmans, SJ Posny, F Schmidlin, FJ Vomel, H Whiteman, DN Witte, JC AF Nassar, Ray Logan, Jennifer A. Worden, Helen M. Megretskaia, Inna A. Bowman, Kevin W. Osterman, Gregory B. Thompson, Anne M. Tarasick, David W. Austin, Shermane Claude, Hans Dubey, Manvendra K. Hocking, Wayne K. Johnson, Bryan J. Joseph, Everette Merrill, John Morris, Gary A. Newchurch, Mike Oltmans, Samuel J. Posny, Francoise Schmidlin, F. J. Voemel, Holger Whiteman, David N. Witte, Jacquelyn C. TI Validation of Tropospheric Emission Spectrometer (TES) nadir ozone profiles using ozonesonde measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MAPPING SPECTROMETER; CLIMATOLOGY; VARIABILITY; SATELLITE; MODEL; TOMS AB We compare Tropospheric Emission Spectrometer (TES) version 2 (V002) nadir ozone profiles with ozonesonde profiles from the Intercontinental Chemical Transport Experiment Ozonesonde Network Study, the World Ozone and Ultraviolet Data Center, the Global Monitoring Division of the Earth System Research Laboratory, and the Southern Hemisphere Additional Ozonesonde archives. Approximately 1600 coincidences spanning 72.5 degrees S - 80.3 degrees N from October 2004 to October 2006 are found. The TES averaging kernel and constraint are applied to the ozonesonde data to account for the TES measurement sensitivity and vertical resolution. TES sonde differences are examined in six latitude zones after excluding profiles with thick high clouds. Values for the bias and standard deviation are determined using correlations of mean values of TES ozone and sonde ozone in the upper troposphere (UT) and lower troposphere (LT). The UT biases range from 2.9 to 10.6 ppbv, and the LT biases range from 3.7 to 9.2 ppbv, excluding the Arctic and Antarctic LT where TES sensitivity is low. A similar approach is used to assess seasonal differences in the northern midlatitudes where the density and frequency of sonde measurements are greatest. These results are briefly compared to TES V001 ozone validation work which also used ozonesondes but was carried out prior to improvements in the radiometric calibration and ozone retrieval in V002. Overall, the large number of TES and sonde comparisons indicate a positive bias of approximately 3 - 10 ppbv for the TES V002 nadir ozone data set and have helped to identify areas of potential improvement for future retrieval versions. C1 [Nassar, Ray; Logan, Jennifer A.; Megretskaia, Inna A.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Austin, Shermane] CUNY Medgar Evers Coll, Brooklyn, NY 11225 USA. [Bowman, Kevin W.; Osterman, Gregory B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Claude, Hans] Deutsch Wetterdienst Meteorol Observ, D-82383 Hohenpeissenberg, Germany. [Dubey, Manvendra K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hocking, Wayne K.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Johnson, Bryan J.; Oltmans, Samuel J.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Tarasick, David W.] Environm Canada, Expt Studies, Air Qual Res Div, Downsview, ON, Canada. [Thompson, Anne M.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Worden, Helen M.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80305 USA. RP Nassar, R (reprint author), Harvard Univ, Sch Engn & Appl Sci, Pierce Hall,29 Oxford St, Cambridge, MA 02138 USA. EM ray@io.as.harvard.edu; jal@io.harvard.edu; hmw@ucar.edu; iam@io.harvard.edu; kevin.bowman@jpl.nasa.gov; gregory.b.osterman@jpl.nasa.gov; anne@met.psu.edu; david.n.whiteman@nasa.gov; saustin@mec.cuny.edu; hans.claude@dwd.de; dubey@lanl.gov; whocking@uwo.ca; bryan.johnson@noaa.gov; ejoseph@howard.edu; jmerrill@gso.uri.edu; gary.morris@valpo.edu; mike@nsstc.uah.edu; samuel.j.oltmans@noaa.gov; francoise.posny@univ-reunion.fr; fjs@osb1.wff.nasa.gov; holger.voemel@colorado.edu; david.tarasick@ec.gc.ca; witte@gavial.gsfc.nasa.gov RI Dubey, Manvendra/E-3949-2010; Thompson, Anne /C-3649-2014; OI Dubey, Manvendra/0000-0002-3492-790X; Thompson, Anne /0000-0002-7829-0920; Nassar, Ray/0000-0001-6282-1611; Tarasick, David/0000-0001-9869-0692 NR 37 TC 107 Z9 108 U1 3 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 7 PY 2008 VL 113 IS D15 AR D15S17 DI 10.1029/2007JD008819 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 300MI UT WOS:000255827500002 ER PT J AU Alia-Klein, N Goldstein, RZ Kriplani, A Logan, J Tomasi, D Williams, B Telang, F Shumay, E Biegon, A Craig, IW Henn, F Wang, GJ Volkow, ND Fowler, JS AF Alia-Klein, Nelly Goldstein, Rita Z. Kriplani, Aarti Logan, Jean Tomasi, Dardo Williams, Benjamin Telang, Frank Shumay, Elena Biegon, Anat Craig, Ian W. Henn, Fritz Wang, Gene-Jack Volkow, Nora D. Fowler, Joanna S. TI Brain monoamine oxidase a activity predicts trait aggression SO JOURNAL OF NEUROSCIENCE LA English DT Article DE MAOA; aggression; violence; personality; clorgyline; human ID MAO-A; NEURAL MECHANISMS; MAJOR DEPRESSION; GENE PROMOTER; FOLLOW-UP; BEHAVIOR; SEROTONIN; VIOLENCE; MICE; PET AB The genetic deletion of monoamine oxidaseA(MAOA), an enzyme that breaks down the monoamine neurotransmitters norepinephrine, serotonin, and dopamine, produces aggressive phenotypes across species. Therefore, a common polymorphism in the MAO A gene (MAOA, Mendelian Inheritance in Men database number 309850, referred to as high or low based on transcription in non-neuronal cells) has been investigated in a number of externalizing behavioral and clinical phenotypes. These studies provide evidence linking the low MAOA genotype and violent behavior but only through interaction with severe environmental stressors during childhood. Here, we hypothesized that in healthy adult males the gene product of MAO A in the brain, rather than the gene per se, would be associated with regulating the concentration of brain amines involved in trait aggression. Brain MAO A activity was measured in vivo in healthy nonsmoking men with positron emission tomography using a radioligand specific for MAO A (clorgyline labeled with carbon 11). Trait aggression was measured with the multidimensional personality questionnaire (MPQ). Here we report for the first time that brain MAO A correlates inversely with the MPQ trait measure of aggression ( but not with other personality traits) such that the lower the MAO A activity in cortical and subcortical brain regions, the higher the self-reported aggression ( in both MAOA genotype groups) contributing to more than one-third of the variability. Because trait aggression is a measure used to predict antisocial behavior, these results underscore the relevance of MAO A as a neurochemical substrate of aberrant aggression. C1 [Alia-Klein, Nelly; Goldstein, Rita Z.; Kriplani, Aarti; Logan, Jean; Tomasi, Dardo; Shumay, Elena; Biegon, Anat; Henn, Fritz; Wang, Gene-Jack; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Williams, Benjamin; Craig, Ian W.] Kings Coll London, London WC2R 2LS, England. [Wang, Gene-Jack; Fowler, Joanna S.] Mt Sinai Sch Med, New York, NY 10029 USA. [Telang, Frank] NIAAA, Bethesda, MD 20892 USA. RP Alia-Klein, N (reprint author), Brookhaven Natl Lab, Dept Med, Bldg 490, Upton, NY 11973 USA. EM nellyklein@bnl.gov; fowler@bnl.gov RI Tomasi, Dardo/J-2127-2015; OI Craig, Ian/0000-0002-4063-1005; Logan, Jean/0000-0002-6993-9994 FU NCRR NIH HHS [M01 RR010710, MO1RR10710]; NIDA NIH HHS [L30 DA018402-01, K05 DA020001, K05DA020001, L30 DA018402-02] NR 40 TC 111 Z9 115 U1 4 U2 35 PU SOC NEUROSCIENCE PI WASHINGTON PA 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA SN 0270-6474 J9 J NEUROSCI JI J. Neurosci. PD MAY 7 PY 2008 VL 28 IS 19 BP 5099 EP 5104 DI 10.1523/JNEUROSCI.0925-08.2008 PG 6 WC Neurosciences SC Neurosciences & Neurology GA 298IN UT WOS:000255681500029 PM 18463263 ER PT J AU Ketteler, G Ashby, P Mun, BS Ratera, I Bluhm, H Kasemo, B Salmeron, M AF Ketteler, G. Ashby, P. Mun, B. S. Ratera, I. Bluhm, H. Kasemo, B. Salmeron, M. TI In situ photoelectron spectroscopy study of water adsorption on model biomaterial surfaces SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; RAY-INDUCED DAMAGE; ALKANETHIOLATE MONOLAYERS; ORGANIC-SURFACES; PHOTOEMISSION; MEMBRANE; GOLD; IRRADIATION; ELECTRON; POLYMER AB Using in situ photoelectron spectroscopy at near ambient conditions, we compare the interaction of water with four different model biomaterial surfaces: self-assembled thiol monolayers on Au(111) that are functionalized with methyl, hydroxyl, and carboxyl groups, and phosphatidylcholine (POPC) lipid films on silicon. We show that the interaction of water with biomaterial surfaces is mediated by polar functional groups that interact strongly with water molecules through hydrogen bonding, resulting in adsorption of 0.2-0.3 ML water on the polar thiol films in 700 mTorr water pressure and resulting in characteristic N 1s and P 2p shifts for the POPC films. Provided that beam damage is carefully controlled, in situ electron spectroscopy can give valuable information about water adsorption which is not accessible under ultrahigh vacuum conditions. C1 [Ketteler, G.; Kasemo, B.] Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden. [Mun, B. S.] Lawrence Berkeley Natl Labs, Adv Light Source, Berkeley, CA 94720 USA. [Mun, B. S.] Hanyang Univ, Dept Appl Phys, Ansan 426791, Kyunggi Do, South Korea. [Ratera, I.; Salmeron, M.] Lawrence Berkeley Natl Labs, Div Mat Sci, Berkeley, CA 94720 USA. [Bluhm, H.] Lawrence Berkeley Natl Labs, Div Chem Sci, Berkeley, CA 94720 USA. RP Ketteler, G (reprint author), Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden. RI Mun, Bongjin /G-1701-2013; Ratera, Imma/E-2353-2014 OI Ratera, Imma/0000-0002-1464-9789 NR 33 TC 16 Z9 16 U1 1 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 7 PY 2008 VL 20 IS 18 AR 184024 DI 10.1088/0953-8984/20/18/184024 PG 7 WC Physics, Condensed Matter SC Physics GA 298BL UT WOS:000255661200026 ER PT J AU Yamamoto, S Bluhm, H Andersson, K Ketteler, G Ogasawara, H Salmeron, M Nilsson, A AF Yamamoto, S. Bluhm, H. Andersson, K. Ketteler, G. Ogasawara, H. Salmeron, M. Nilsson, A. TI In situ x-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Review ID GAS SHIFT REACTION; ADVANCED LIGHT-SOURCE; SURFACE SCIENCE; DISSOCIATIVE ADSORPTION; CU(110) SURFACE; ELECTRON-SPECTROSCOPY; MOLECULAR ADSORPTION; TIO2(110) SURFACES; AQUEOUS-SOLUTIONS; TITANIUM-DIOXIDE AB X-ray photoelectron spectroscopy (XPS) is a powerful tool for surface and interface analysis, providing the elemental composition of surfaces and the local chemical environment of adsorbed species. Conventional XPS experiments have been limited to ultrahigh vacuum (UHV) conditions due to a short mean free path of electrons in a gas phase. The recent advances in instrumentation coupled with third-generation synchrotron radiation sources enables in situ XPS measurements at pressures above 5 Torr. In this paper, we describe the basic design of the ambient pressure XPS setup that combines differential pumping with an electrostatic focusing. We present examples of the application of in situ XPS to studies of water adsorption on the surface of metals and oxides including Cu(110), Cu(111), TiO(2)(110) under environmental conditions of water vapor pressure. On all these surfaces we observe a general trend where hydroxyl groups form first, followed by molecular water adsorption. The importance of surface OH groups and their hydrogen bonding to water molecules in water adsorption on surfaces is discussed in detail. C1 [Yamamoto, S.; Andersson, K.; Ogasawara, H.; Nilsson, A.] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. [Bluhm, H.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Andersson, K.; Nilsson, A.] Stockholm Univ, AlbaNova Univ Ctr, FYSIKUM, SE-10691 Stockholm, Sweden. [Ketteler, G.; Salmeron, M.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Salmeron, M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Yamamoto, S (reprint author), Stanford Synchrotron Radiat Lab, POB 20450, Stanford, CA 94309 USA. EM nilsson@slac.stanford.edu RI Yamamoto, Susumu/C-1584-2008; Nilsson, Anders/E-1943-2011; Ogasawara, Hirohito/D-2105-2009; OI Yamamoto, Susumu/0000-0002-6116-7993; Nilsson, Anders/0000-0003-1968-8696; Ogasawara, Hirohito/0000-0001-5338-1079; Andersson, Klas J./0000-0002-6064-5658 NR 125 TC 69 Z9 69 U1 15 U2 129 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 7 PY 2008 VL 20 IS 18 AR 184025 DI 10.1088/0953-8984/20/18/184025 PG 14 WC Physics, Condensed Matter SC Physics GA 298BL UT WOS:000255661200027 ER PT J AU Hall, WP Anker, JN Lin, Y Modica, J Mrksich, M Van Duyne, RP AF Hall, W. Paige Anker, Jeffrey N. Lin, Yao Modica, Justin Mrksich, Milan Van Duyne, Richard P. TI A calcium-modulated plasmonic switch SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NANOSCALE OPTICAL BIOSENSOR; RESONANCE SPECTROSCOPY; SILVER NANOPARTICLES; SENSORS; BINDING; GOLD AB A plasmonic switch based on the calcium-induced conformational changes of calmodulin is shown to exhibit reversible wavelength modulations in response to changing calcium concentration. The extinction maximum (lambda(max)) of a localized surface plasmon resonance (LSPR) sensor functionalized with a novel calmodulin construct, cutinase-calmodulin-cutinase (CutCaMCut), reversibly shifts by 2-3 nm. A high-resolution (HR) LSPR spectrometer with a wavelength resolution (3 sigma) of 1.5 x 10(-2) nm was developed to detect these wavelength modulations in real-time, providing information about the dynamics and structure of the protein. The rate of conversion from open (Ca2+-bound) to closed (Ca2+-free) calmodulin is shown to be similar to 4-fold faster than the reverse process, with a closing rate of 0.127 s(-1) and opening rate of 0.034 s(-1). As far as we are aware, this plasmonic switch marks the first use of LSPR spectroscopy to detect reversible conformational changes in an unlabeled protein. C1 [Hall, W. Paige; Anker, Jeffrey N.; Van Duyne, Richard P.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Lin, Yao; Modica, Justin; Mrksich, Milan] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Lin, Yao] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Van Duyne, RP (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM vanduyne@northwestern.edu RI Lin, Yao/E-5527-2011; Mrksich, Milan/G-2469-2011; OI Lin, Yao/0000-0001-5227-2663; Anker, Jeffrey/0000-0002-9544-2367 FU NCI NIH HHS [1 U54 CA119341-01, U54 CA119341]; NIGMS NIH HHS [5 F32 GM077020, F32 GM077020, F32 GM077020-01] NR 17 TC 52 Z9 52 U1 2 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 7 PY 2008 VL 130 IS 18 BP 5836 EP + DI 10.1021/ja7109037 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 297PU UT WOS:000255629400003 PM 18402443 ER PT J AU Shiju, NR Liang, XH Weimer, AW Liang, CD Dai, S Guliants, VV AF Shiju, N. Raveendran Liang, Xinhua Weimer, Alan W. Liang, Chengdu Dai, Sheng Guliants, Vadim V. TI The role of surface basal planes of layered mixed metal oxides in selective transformation of lower alkanes: Propane ammoxidation over surface ab planes of Mo-V-Te-Nb-O M1 phase SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID (AMM)OXIDATION CATALYSTS; ACTIVE-CENTERS; OXIDATION; ACRYLONITRILE; DEPOSITION; CHEMISTRY AB The surface ab planes of the M1 phase exposed selectively after atomic layer deposition (ALD) of alumina followed by crushing showed significantly improved selectivity to acrylonitrile during propane ammoxiclation. The results demonstrated the importance of surface ab planes for the activity and selectivity of the M1 phase in propane ammoxiclation and general utility of surface modification by ALD in studies of catalytic behavior of surface planes in layered mixed metal oxides. C1 Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Shiju, NR (reprint author), Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. EM shiju_nr@yahoo.co.uk; vguliant@alpha.che.uc.edu RI liang, xinhua/G-4553-2010; Liang, Chengdu/G-5685-2013; Dai, Sheng/K-8411-2015; OI Dai, Sheng/0000-0002-8046-3931; Raveendran, Shiju/0000-0001-7943-5864 NR 21 TC 35 Z9 35 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 7 PY 2008 VL 130 IS 18 BP 5850 EP + DI 10.1021/ja800575v PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 297PU UT WOS:000255629400010 PM 18410105 ER PT J AU Zhang, YW Grass, ME Kuhn, JN Tao, F Habas, SE Huang, WY Yang, PD Somorjai, GA AF Zhang, Yawen Grass, Michael E. Kuhn, John N. Tao, Feng Habas, Susan E. Huang, Wenyu Yang, Peidong Somorjai, Gabor A. TI Highly selective synthesis of cataytically active monodisperse rhodium nanocubes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID BLODGETT MONOLAYER FORMATION; POLYOL SYNTHESIS; PLATINUM NANOCRYSTALS; CATALYTIC-ACTIVITY; GOLD NANOCRYSTALS; SHAPE CONTROL; NANOPARTICLES; SIZE; HYDROGENATION; SCATTERING AB Monodisperse sub-10 nm Rh nanocubes were synthesized with high selectivity (>85%) by a seedless polyol method. The (100) faces of the Rh NCs were effectively stabilized by chemically adsorbed Br ions from trimethyl(tetradecyl)ammonium bromide (TTAB). This simple one-step polyol route can be readily applied to the preparation of Pt and Pd nanocubes. Moreover, the organic molecules of PVP and TTAB that encapsulated the Rh nanocubes did not prevent catalytic activity for pyrrole hydrogenation and CO oxidation. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem & Mat Sci, Berkeley, CA 94720 USA. Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somoraji@berkeley.edu RI Huang, Wenyu/L-3784-2014 OI Huang, Wenyu/0000-0003-2327-7259 NR 28 TC 153 Z9 154 U1 16 U2 133 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 7 PY 2008 VL 130 IS 18 BP 5868 EP + DI 10.1021/ja801210s PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 297PU UT WOS:000255629400019 PM 18399628 ER PT J AU Rabuka, D Forstner, MB Groves, JT Bertozzi, CR AF Rabuka, David Forstner, Martin B. Groves, Jay T. Bertozzi, Carolyn R. TI Noncovalent cell surface engineering: Incorporation of bioactive synthetic glycopolymers into cellular membranes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FLUORESCENCE CORRELATION SPECTROSCOPY; SUPPORTED LIPID-BILAYERS; ANCHORED PROTEINS; ESCHERICHIA-COLI; INSERTION; MUCIN; RECEPTORS; SYSTEMS; ACID; GLYCOSYLATION AB The controlled addition of structurally defined components to live cell membranes can facilitate the molecular level analysis of cell surface phenomena. Here we demonstrate that cell surfaces can be engineered to display synthetic bioactive polymers at defined densities by exogenous membrane insertion. The polymers were designed to mimic native cell-surface mucin glycoproteins, which are defined by their dense glycosylation patterns and rod-like structures. End-functionalization with a hydrophobic anchor permitted incorporation into the membranes of live cultured cells. We probed the dynamic behavior of cell-bound glycopolymers bearing various hydrophobic anchors and glycan structures using fluorescence correlation spectroscopy (FCS). Their diffusion properties mirrored those of many natural membrane-associated biomolecules. Furthermore, the membrane-bound glycopolymers were internalized into early endosomes similarly to endogenous membrane components and were capable of specific interactions with protein receptors. This system provides a platform to study cell-surface phenomena with a degree of chemical control that cannot be achieved using conventional biological tools. C1 [Rabuka, David; Forstner, Martin B.; Groves, Jay T.; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Groves, Jay T.; Bertozzi, Carolyn R.] Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. RP Bertozzi, CR (reprint author), Univ Calif Berkeley, Dept Chem, Howard Hughes Med Inst, Berkeley, CA 94720 USA. EM crb@berkeley.edu RI Forstner, Martin/A-8903-2008 OI Forstner, Martin/0000-0003-0413-8659 FU Howard Hughes Medical Institute; NIGMS NIH HHS [GM59907, R01 GM059907, R01 GM059907-08] NR 42 TC 88 Z9 89 U1 4 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 7 PY 2008 VL 130 IS 18 BP 5947 EP 5953 DI 10.1021/ja710644g PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 297PU UT WOS:000255629400034 PM 18402449 ER PT J AU Law, M Luther, JM Song, O Hughes, BK Perkins, CL Nozik, AJ AF Law, Matt Luther, Joseph M. Song, Oing Hughes, Barbara K. Perkins, Craig L. Nozik, Arthur J. TI Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MULTIPLE EXCITON GENERATION; BINARY NANOPARTICLE SUPERLATTICES; FIELD-EFFECT TRANSISTORS; SELF-ASSEMBLED FILMS; QUANTUM DOTS; SOLAR-CELLS; THIN-FILMS; ETHANOL; SURFACE; ELECTROLUMINESCENCE AB We describe the structural, optical, and electrical properties of films of spin-cast, oleate-capped PbSe nanocrystals that are treated thermally or chemically in solutions of hydrazine, methylamine, or pyridine to produce electronically coupled nanocrystal solids. Postdeposition heat treatments trigger nanocrystal sintering at similar to 200 degrees C, before a substantial fraction of the oleate capping group evaporates or pyrolyzes. The sintered nanocrystal films have a large hole density and are highly conductive. Most of the amine treatments preserve the size of the nanocrystals and remove much of the oleate, decreasing the separation between nanocrystals and yielding conductive films. X-ray scattering, X-ray photoelectron and optical spectroscopy, electron microscopy, and field-effect transistor electrical measurements are used to compare the impact of these chemical treatments. We find that the concentration of amines adsorbed to the NC films is very low in all cases. Treatments in hydrazine in acetonitrile remove only 2-7% of the oleate yet result in high-mobility n-type transistors. In contrast, ethanol-based hydrazine treatments remove 85-90% of the original oleate load. Treatments in pure ethanol strip 20% of the oleate and create conductive p-type transistors. Methylamine- and pyridine-treated films are also p-type. These chemically treated films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type nanocrystal solids. Our results aid in the rational development of solar cells based on colloidal nanocrystal films. C1 [Law, Matt; Luther, Joseph M.; Song, Oing; Hughes, Barbara K.; Perkins, Craig L.; Nozik, Arthur J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Law, M (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM matt_law@nrel.gov; arthur_nozik@nrel.gov RI Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016 NR 53 TC 284 Z9 286 U1 2 U2 134 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 7 PY 2008 VL 130 IS 18 BP 5974 EP 5985 DI 10.1021/ja800040c PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 297PU UT WOS:000255629400037 PM 18396872 ER PT J AU Reluga, TC Medlock, J Perelson, AS AF Reluga, Timothy C. Medlock, Jan Perelson, Alan S. TI Backward bifurcations and multiple equilibria in epidemic models with structured immunity SO JOURNAL OF THEORETICAL BIOLOGY LA English DT Article DE immunity; epidemiology; backward bifurcation; measles; immuno-epidemiology ID INFLUENZA VACCINATION; HPV TYPES; ACQUISITION; IMMUNIZATION; TUBERCULOSIS; PERSISTENCE AB Many disease pathogens stimulate immunity in their hosts, which then wanes over time. To better understand the impact of this immunity on epidemiological dynamics, we propose an epidemic model structured according to immunity level that can be applied in many different settings. Under biologically realistic hypotheses, we find that immunity alone never creates a backward bifurcation of the disease-free steady state. This does not rule out the possibility of multiple stable equilibria, but we provide two sufficient conditions for the uniqueness of the endemic equilibrium, and show that these conditions ensure uniqueness in several common special cases. Our results indicate that the within-host dynamics of immunity can, in principle, have important consequences for population-level dynamics, but also suggest that this would require strong non-monotone effects in the immune response to infection. Neutralizing antibody titer data for measles are used to demonstrate the biological application of our theory. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Reluga, Timothy C.; Perelson, Alan S.] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Medlock, Jan] Yale Univ, Sch Med, Dept Epidemiol & Publ Hlth, New Haven, CT 06520 USA. RP Reluga, TC (reprint author), Penn State Univ, Dept Math, University Pk, PA 16802 USA. EM timothy@reluga.org; jan.medlock@yale.edu; asp@lanl.gov FU NCRR NIH HHS [R01 RR006555, R01 RR006555-16, RR06555]; NIAID NIH HHS [AI28433, R01 AI028433, R37 AI028433, R37 AI028433-16]; NIH HHS [R01 OD011095]; NIMH NIH HHS [2 T32 MH020031-07, T32 MH020031, T32 MH020031-07]; PHS HHS [RPG0010/2004] NR 26 TC 26 Z9 27 U1 1 U2 6 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-5193 J9 J THEOR BIOL JI J. Theor. Biol. PD MAY 7 PY 2008 VL 252 IS 1 BP 155 EP 165 DI 10.1016/j.jtbi.2008.01.014 PG 11 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 305YA UT WOS:000256212500015 PM 18325538 ER PT J AU Hwang, AB Franc, BL Gullberg, GT Hasegawa, BH AF Hwang, Andrew B. Franc, Benjamin L. Gullberg, Grant T. Hasegawa, Bruce H. TI Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID CONE-BEAM TOMOGRAPHY; ATTENUATION CORRECTION; SIMULATION PLATFORM; PINHOLE SPECT; EMISSION; ALGORITHMS; SYSTEM; GATE AB Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50% when imaging with iodine-125, and up to 25% when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30%, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (> 50%) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the use of resolution recovery techniques (i.e. modeling the finite collimator spatial resolution in iterative reconstruction algorithms) can significantly reduce the partial volume errors. C1 [Hwang, Andrew B.; Franc, Benjamin L.; Hasegawa, Bruce H.] Univ Calif San Francisco, Joint Grad Grp Bioengn, San Francisco, CA 94158 USA. [Hwang, Andrew B.; Franc, Benjamin L.; Hasegawa, Bruce H.] Univ Calif Berkeley, San Francisco, CA 94158 USA. [Hwang, Andrew B.; Franc, Benjamin L.; Hasegawa, Bruce H.] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94143 USA. [Gullberg, Grant T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Hwang, AB (reprint author), Univ Calif San Francisco, Joint Grad Grp Bioengn, 1700 4th St,MC0775, San Francisco, CA 94158 USA. FU NCI NIH HHS [5 R44 CA 095936, R44 CA095936]; NIBIB NIH HHS [5 R01 EB 000348, R01 EB000121-20, R01 EB000348, R01 EB007219-01A2, R44 EB001686, R01 EB007219, R01 EB000121, 1 R44 EB 01686, R01 EB 00121] NR 25 TC 36 Z9 36 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 J9 PHYS MED BIOL JI Phys. Med. Biol. PD MAY 7 PY 2008 VL 53 IS 9 BP 2233 EP 2252 DI 10.1088/0031-9155/53/9/002 PG 20 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 290JW UT WOS:000255120100003 PM 18401059 ER PT J AU Riley, M Staley, JT Danchin, A Wang, TZ Brettin, TS Hauser, LJ Land, ML Thompson, LS AF Riley, Monica Staley, James T. Danchin, Antoine Wang, Ting Zhang Brettin, Thomas S. Hauser, Loren J. Land, Miriam L. Thompson, Linda S. TI Genomics of an extreme psychrophile, Psychromonas ingrahamii SO BMC GENOMICS LA English DT Article ID SHEWANELLA-ONEIDENSIS MR-1; COLD-ADAPTED ENZYMES; VIBRIO-CHOLERAE; CODON USAGE; SEA-ICE; BACTERIA; SEQUENCE; NOV.; MICROORGANISMS; ANTARCTICA AB Background: The genome sequence of the sea-ice bacterium Psychromonas ingrahamii 37, which grows exponentially at -12C, may reveal features that help to explain how this extreme psychrophile is able to grow at such low temperatures. Determination of the whole genome sequence allows comparison with genes of other psychrophiles and mesophiles. Results: Correspondence analysis of the composition of all P. ingrahamii proteins showed that (1) there are 6 classes of proteins, at least one more than other bacteria, (2) integral inner membrane proteins are not sharply separated from bulk proteins suggesting that, overall, they may have a lower hydrophobic character, and (3) there is strong opposition between asparagine and the oxygen-sensitive amino acids methionine, arginine, cysteine and histidine and (4) one of the previously unseen clusters of proteins has a high proportion of "orphan" hypothetical proteins, raising the possibility these are cold-specific proteins. Based on annotation of proteins by sequence similarity, (1) P. ingrahamii has a large number (61) of regulators of cyclic GDP, suggesting that this bacterium produces an extracellular polysaccharide that may help sequester water or lower the freezing point in the vicinity of the cell. (2) P. ingrahamii has genes for production of the osmolyte, betaine choline, which may balance the osmotic pressure as sea ice freezes. (3) P. ingrahamii has a large number (11) of three-subunit TRAP systems that may play an important role in the transport of nutrients into the cell at low temperatures. (4) Chaperones and stress proteins may play a critical role in transforming nascent polypeptides into 3-dimensional configurations that permit low temperature growth. (5) Metabolic properties of P. ingrahamii were deduced. Finally, a few small sets of proteins of unknown function which may play a role in psychrophily have been singled out as worthy of future study. Conclusion: The results of this genomic analysis provide a springboard for further investigations into mechanisms of psychrophily. Focus on the role of asparagine excess in proteins, targeted phenotypic characterizations and gene expression investigations are needed to ascertain if and how the organism regulates various proteins in response to growth at lower temperatures. C1 [Riley, Monica] Bay Paul Ctr, Marine Biol Lab, Woods Hole, MA 02543 USA. [Staley, James T.] Univ Washington, Seattle, WA 98195 USA. [Danchin, Antoine; Wang, Ting Zhang] Inst Pasteur, CNRS, URA2171, F-75015 Paris, France. [Brettin, Thomas S.; Thompson, Linda S.] Los Alamos Natl Lab, DOE Joint Genome Inst, Biosci Div, Los Alamos, NM 87545 USA. [Hauser, Loren J.; Land, Miriam L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Riley, M (reprint author), Bay Paul Ctr, Marine Biol Lab, Woods Hole, MA 02543 USA. EM mriley@mbl.edu; jtstaley@u.washington.edu; adanchin@pasteur.fr; wangtz@pasteur.fr; brettin@lanl.gov; hauserlj@ornl.gov; landml@ornl.gov; lthompsonnm@comcast.net RI Land, Miriam/A-6200-2011; Hauser, Loren/H-3881-2012; OI Land, Miriam/0000-0001-7102-0031; Danchin, Antoine/0000-0002-6350-5001 NR 38 TC 43 Z9 44 U1 3 U2 27 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD MAY 6 PY 2008 VL 9 AR 210 DI 10.1186/1471-2164-9-210 PG 19 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 308OH UT WOS:000256399400001 PM 18460197 ER PT J AU Jaworski, JW Raorane, D Huh, JH Majumdar, A Lee, SW AF Jaworski, Justyn W. Raorane, Digvijay Huh, Jin H. Majumdar, Arunava Lee, Seung-Wuk TI Evolutionary screening of biomimetic coatings for selective detection of explosives SO LANGMUIR LA English DT Article ID PENTAERYTHRITOL TETRANITRATE REDUCTASE; VAPOR-PRESSURE; SENSORS; BINDING; PHAGE; TNT; NANOPARTICLES; ANTIBODIES; BIOSENSORS; PEPTIDES AB Susceptibility of chemical sensors to false positive signals remains a common drawback due to insufficient sensor coating selectivity. By mimicking biology, we have demonstrated the use of sequence-specific biopolymers to generate highly selective receptors for trinitrotoluene and 2,4-dinitrotoluene. Using mutational analysis, we show that the identified binding peptides recognize the target substrate through multivalent binding with key side chain amino acid elements. Additionally, our peptide-based receptors embedded in a hydrogel show selective binding to target molecules in the gas phase. These experiments demonstrate the technique of receptor screening in liquid to be translated to selective gas-phase target binding, potentially impacting the design of a new class of sensor coatings. C1 [Raorane, Digvijay; Majumdar, Arunava] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Jaworski, Justyn W.; Huh, Jin H.; Lee, Seung-Wuk] Univ Calif Berkeley, Jont Grad Grp Bioengn, Berkeley, CA 94720 USA. [Majumdar, Arunava] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Lee, Seung-Wuk] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Majumdar, Arunava] Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lee, Seung-Wuk] Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Lee, Seung-Wuk] Berkeley Nanosci & Nanoengn Inst, Berkeley, CA 94720 USA. RP Majumdar, A (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM majumdar@me.berkeley.edu; leesw@berkeley.edu NR 41 TC 77 Z9 78 U1 3 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAY 6 PY 2008 VL 24 IS 9 BP 4938 EP 4943 DI 10.1021/la7035289 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 294UP UT WOS:000255432000077 PM 18363413 ER PT J AU Owen, T Webb, SM Butler, A AF Owen, Tate Webb, Samuel M. Butler, Alison TI XAS study of a metal-induced phase transition by a microbial surfactant SO LANGMUIR LA English DT Article ID CHELATING SURFACTANTS; DIVALENT-CATIONS; CARDIOLIPIN; COMPLEXES; VESICLES; IONS; ORGANIZATION; MICELLES AB The metal-induced micelle-to-vesicle phase change that the ferric complex of the microbially produced amphiphile, marinobactin E (M(E)), undergoes has been investigated by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Marinobactin E is one member of the suite of siderophores, marinobactins A-E, that are used by the source bacterium to facilitate iron acquisition. Fe(III)-M(E) undergoes a micelle-to-multilamellar vesicle transition in the presence of Cd(II) and Zn(II). XRD measurements indicate the interlamellar repeat distance of the Cd(II)- and Zn(II)-induced multilamellar vesicles is similar to 5.3 nm. XAS spectra of the sedimented Cd(II)- and Zn(II)-induced multilamellar vesicles suggests hexadentate coordination of Cd(II) and Zn(II) consisting of two monodentate carboxylate ligands and four water ligands. This coordination environment supports the hypothesis that Cd(II) and Zn(II) bridge the terminal carboxylate moiety of two Fe(III)-ME headgroups, pulling the headgroups together in an arrangement that favors vesicle formation over the formation of micelles. XAS spectra of the Fe(III) center in the sedimented Cd(II)and Zn(II)-induced vesicles confirm the anticipated six-coordinate geometry of Fe(III) by the ME headgroup via the two hydroxamate groups and the alpha-hydroxy amide moiety. C1 [Owen, Tate; Butler, Alison] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [Webb, Samuel M.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Butler, A (reprint author), Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. EM butler@chem.ucsb.edu RI Webb, Samuel/D-4778-2009; Butler, Alison/D-5094-2015 OI Webb, Samuel/0000-0003-1188-0464; FU NIGMS NIH HHS [GM38130, R01 GM038130, R01 GM038130-15, R01 GM038130-16] NR 31 TC 11 Z9 11 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAY 6 PY 2008 VL 24 IS 9 BP 4999 EP 5002 DI 10.1021/la703833v PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 294UP UT WOS:000255432000085 PM 18442226 ER PT J AU Bearinger, JP Stone, G Christian, AT Dugan, L Hiddessen, AL Wu, KJJ Wu, L Hamilton, J Stockton, C Hubbell, JA AF Bearinger, Jane P. Stone, Gary Christian, Allen T. Dugan, Lawrence Hiddessen, Amy L. Wu, Kuang Jeri J. Wu, Ligang Hamilton, Julie Stockton, Cheryl Hubbell, Jeffrey A. TI Porphyrin-based photocatalytic lithography SO LANGMUIR LA English DT Article ID SURFACES; COPOLYMERS; CELLS; SHAPE; MICROPATTERNS; RESOLUTION; MICROLENS; OXYGEN AB Photocatalytic lithography couples light with photoreactive coated mask materials to pattern surface chemistry. We excite porphyrins to create radical species that photocatalytically oxidize, and thereby pattern, chemistries in the local vicinity. The technique advantageously is suited for use with a wide variety of substrates. It is fast and robust, and the wavelength of light does not limit the resolution of patterned features. We have patterned proteins and cells to demonstrate the utility of photocatalytic lithography in life science applications. C1 [Bearinger, Jane P.; Stone, Gary; Dugan, Lawrence; Hiddessen, Amy L.; Wu, Kuang Jeri J.; Wu, Ligang; Hamilton, Julie; Stockton, Cheryl] Lawrence Livermore Natl Lab, Phys Sci Directorate, AP Div, Livermore, CA 94550 USA. [Christian, Allen T.] Monsanto Co, St Louis, MO 63167 USA. [Hubbell, Jeffrey A.] Ecole Polytech Fed Lausanne, Swiss Fed Inst Technol, Inst Bioengn AAB039, Lab Regenerat Med & Pharmacobiol,Stn 15, CH-1015 Lausanne, Switzerland. RP Bearinger, JP (reprint author), Lawrence Livermore Natl Lab, Phys Sci Directorate, AP Div, L-211,7000 E Ave, Livermore, CA 94550 USA. EM bearinger1@llnl.gov RI Hubbell, Jeffrey/A-9266-2008; yu, yu/C-7781-2009; Wu, Ligang/C-7770-2009 OI Hubbell, Jeffrey/0000-0003-0276-5456; FU NIBIB NIH HHS [R01 EB000462-06, R21 EB003991, R21 EB003991-01, R01 EB000462]; PHS HHS [03-ERD-068] NR 31 TC 13 Z9 13 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAY 6 PY 2008 VL 24 IS 9 BP 5179 EP 5184 DI 10.1021/la703992r PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 294UP UT WOS:000255432000111 PM 18380510 ER PT J AU Im, MY Fischer, P Kim, DH Lee, KD Lee, SH Shin, SC AF Im, Mi-Young Fischer, Peter Kim, Dong-Hyun Lee, Kyeong-Dong Lee, Sung-Hyun Shin, Sung-Chul TI Direct real-space observation of stochastic behavior in domain nucleation process on a nanoscale SO ADVANCED MATERIALS LA English DT Article ID X-RAY MICROSCOPY; ALLOY THIN-FILMS; HYSTERESIS; ANISOTROPY; DYNAMICS; MEDIA; WALL; TA; CO AB Stochastic behavior of nucleation process during magnetization reversal on a nanoscale in a nanogranular CoCrPt alloy film is directly observed utilizing magnetic soft X-ray transmission microscopy, which provides a spatial resolution of 15 nm. Thermal fluctuations in the orientation of the magnetic moments of the grains play a dominant role for the stochastic nature of domain nucleation in this system. C1 [Kim, Dong-Hyun] Chungbuk Natl Univ, Dept Phys, Cheongju 361763, South Korea. [Lee, Kyeong-Dong; Lee, Sung-Hyun; Shin, Sung-Chul] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. [Lee, Kyeong-Dong; Lee, Sung-Hyun; Shin, Sung-Chul] Korea Adv Inst Sci & Technol, Ctr Nanospin Spintron Mat, Taejon 305701, South Korea. [Im, Mi-Young; Fischer, Peter] Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Kim, DH (reprint author), Chungbuk Natl Univ, Dept Phys, Cheongju 361763, South Korea. EM donghyun@chungbuk.ac.kr RI Fischer, Peter/A-3020-2010; Shin, Sung-Chul/C-1992-2011; Kim, Dong-Hyun/F-7195-2012; MSD, Nanomag/F-6438-2012 OI Fischer, Peter/0000-0002-9824-9343; NR 24 TC 14 Z9 14 U1 0 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD MAY 5 PY 2008 VL 20 IS 9 BP 1750 EP + DI 10.1002/adma.200702034 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 306QN UT WOS:000256263000027 ER PT J AU Bdikin, IK Kholkin, AL Morozovska, AN Svechnikov, SV Kim, SH Kalinin, SV AF Bdikin, Igor K. Kholkin, Andrei L. Morozovska, Anna N. Svechnikov, Sergei V. Kim, Seung-Hyun Kalinin, Sergei V. TI Domain dynamics in piezoresponse force spectroscopy: Quantitative deconvolution and hysteresis loop fine structure SO APPLIED PHYSICS LETTERS LA English DT Article AB Domain dynamics in the piezoresponse force spectroscopy (PFS) experiment is studied using the combination of local hysteresis loop acquisition with simultaneous domain imaging. The analytical theory for PFS signal from domain of arbitrary cross section and length is developed for the analysis of experimental data on Pb(Zr,Ti)O-3 films. The results suggest formation of oblate domain at early stage of the nucleation and growth, consistent with efficient screening of depolarization field. The fine structure of the hysteresis loop is shown to be related to the observed jumps in domain geometry during domain wall propagation (nanoscale Barkhausen jumps), indicative of strong domain-defect interactions. (C) 2008 American Institute of Physics. C1 [Bdikin, Igor K.; Kholkin, Andrei L.] Univ Aveiro, Dept Ceram & Glass Engn, CICECO, P-3810193 Aveiro, Portugal. [Morozovska, Anna N.; Svechnikov, Sergei V.] Natl Acad Sci Ukraine, V Lashkaryov Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Kim, Seung-Hyun] INOSTEK Inc, Gyeonggi Technopk, Ansan 426901, Gyeonggi, South Korea. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanomat Sci & Mat Sci, Oak Ridge, TN 37831 USA. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Div Technol, Oak Ridge, TN 37831 USA. RP Kholkin, AL (reprint author), Univ Aveiro, Dept Ceram & Glass Engn, CICECO, P-3810193 Aveiro, Portugal. EM kholkin@ua.pt; sergei2@ornl.gov RI Kholkin, Andrei/G-5834-2010; Kalinin, Sergei/I-9096-2012; Bdikin, Igor/J-4898-2013; Division, Nanotechnology/O-2342-2013 OI Kholkin, Andrei/0000-0003-3432-7610; Kalinin, Sergei/0000-0001-5354-6152; Bdikin, Igor/0000-0001-6318-1425; NR 24 TC 15 Z9 16 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 5 PY 2008 VL 92 IS 18 AR 182909 DI 10.1063/1.2919792 PG 3 WC Physics, Applied SC Physics GA 309UM UT WOS:000256485700052 ER PT J AU Du, MH AF Du, Mao-Hua TI DX centers in CdTe: A density functional study SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-BEAM EPITAXY; ALXGA1-XAS ALLOYS; MICROSCOPIC STRUCTURE; LATTICE-RELAXATION; DONORS; CD0.8ZN0.2TE-CL; SEMICONDUCTORS; GAAS AB DX centers induced by both group-III and group-VII donors in CdTe are studied using density functional calculations. The results show that, for group-VII donors, the DX centers with a cation-cation bond (alpha- and beta-CCB-DX centers) are more stable than the previously proposed broken-bond DX (BB-DX) center and the beta-CCB-DX center is the most stable. The stability trend found for the CCB-DX centers for different donors in CdTe is consistent with that for GaAs and GaSb, which suggests a general rule that the CCB-DX centers are favored for small donor atoms on anion site especially for semiconductors with large anion size. (C) 2008 American Institute of Physics. C1 [Du, Mao-Hua] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Du, Mao-Hua] Oak Ridge Natl Lab, Div Mat Sci & Technol, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. RP Du, MH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM maohua76@yahoo.com RI Du, Mao-Hua/B-2108-2010 OI Du, Mao-Hua/0000-0001-8796-167X NR 26 TC 9 Z9 9 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 5 PY 2008 VL 92 IS 18 AR 181908 DI 10.1063/1.2920203 PG 3 WC Physics, Applied SC Physics GA 309UM UT WOS:000256485700023 ER PT J AU Hu, RW Mitrovic, VF Petrovic, C AF Hu, Rongwei Mitrovic, V. F. Petrovic, C. TI Giant carrier mobility in single crystals of FeSb(2) SO APPLIED PHYSICS LETTERS LA English DT Article ID TRANSPORT; TRANSITION AB We report the giant carrier mobility in single crystals of FeSb(2). Nonlinear field dependence of Hall resistivity is well described with the two-carrier model. Maximum mobility values in high mobility band reach similar to 10(5) cm(2)/V s at 8 K and are similar to 10(2) cm(2)/V s at the room temperature. Our results point to a class of materials with promising potential for applications in solid state electronics. (c) 2008 American Institute of Physics. C1 [Hu, Rongwei; Petrovic, C.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Hu, Rongwei; Mitrovic, V. F.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Hu, RW (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Petrovic, Cedomir/A-8789-2009; Hu, Rongwei/E-7128-2012 OI Petrovic, Cedomir/0000-0001-6063-1881; NR 18 TC 30 Z9 30 U1 6 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 5 PY 2008 VL 92 IS 18 AR 182108 DI 10.1063/1.2926662 PG 3 WC Physics, Applied SC Physics GA 309UM UT WOS:000256485700032 ER PT J AU Rini, M Hao, Z Schoenlein, RW Giannetti, C Parmigiani, F Fourmaux, S Kieffer, JC Fujimori, A Onoda, M Wall, S Cavalleri, A AF Rini, M. Hao, Z. Schoenlein, R. W. Giannetti, C. Parmigiani, F. Fourmaux, S. Kieffer, J. C. Fujimori, A. Onoda, M. Wall, S. Cavalleri, A. TI Optical switching in VO2 films by below-gap excitation SO APPLIED PHYSICS LETTERS LA English DT Article ID TRANSITION AB We study the photoinduced insulator-metal transition in VO2, correlating its threshold and dynamics with excitation wavelength. In single crystals, switching can only be induced with photon energies above the 670 meV gap. This contrasts,with the case of polycrystalline films, where formation of the metallic state can be initiated also with photon energies as low as 180 meV, which are well below the bandgap. Perfection of this process may become conducive to schemes for optical switches, limiters, and detectors operating at room temperature in the mid-infrared. (C) 2008 American Institute of Physics. C1 [Wall, S.; Cavalleri, A.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Onoda, M.] Univ Tsukuba, Inst Phys, Ibaraki, Japan. [Fujimori, A.] Univ Tokyo, Dept Phys, Tokyo 1138654, Japan. [Fourmaux, S.; Kieffer, J. C.] Univ Quebec, INRS Energie & Mat, Varennes, PQ, Canada. [Giannetti, C.; Parmigiani, F.] Univ Cattolica Sacro Cuore, Dipartimento Fis, Brescia, Italy. [Rini, M.; Hao, Z.; Schoenlein, R. W.] Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA USA. RP Cavalleri, A (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. EM a.cavalleri1@physics.ox.ac.uk RI Schoenlein, Robert/D-1301-2014; Hao, Zhao/G-2391-2015; Wall, Simon/E-3771-2012; Giannetti, Claudio/E-6694-2012 OI Schoenlein, Robert/0000-0002-6066-7566; Hao, Zhao/0000-0003-0677-8529; Wall, Simon/0000-0002-6136-0224; Parmigiani, Fulvio/0000-0001-9529-7406; Giannetti, Claudio/0000-0003-2664-9492 NR 16 TC 71 Z9 73 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 5 PY 2008 VL 92 IS 18 AR 181904 DI 10.1063/1.2921784 PG 3 WC Physics, Applied SC Physics GA 309UM UT WOS:000256485700019 ER PT J AU Shi, X Kong, H Li, CP Uher, C Yang, J Salvador, JR Wang, H Chen, L Zhang, W AF Shi, X. Kong, H. Li, C. -P. Uher, C. Yang, J. Salvador, J. R. Wang, H. Chen, L. Zhang, W. TI Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo(4)Sb(12) double-filled skutterudites SO APPLIED PHYSICS LETTERS LA English DT Article ID TEMPERATURE TRANSPORT-PROPERTIES AB Filled skutterudites are one of the most promising thermoelectric materials for power generation applications. The choice and concentration of filler atoms are key aspects for achieving high thermoelectric figure of merit values. We report on the high temperature thermoelectric properties in the double-filled skutterudites Ba(x)Yb(y)Co(4)Sb(12). The combination of Ba and Yb fillers inside the voids of the skutterudite structure provides a broad range of resonant phonon scattering and consequently a strong suppression in the lattice thermal conductivity is observed. A dimensionless thermoelectric figure of merit of 1.36 at 800 K is achievable for n-type Ba(x)Yb(y)Co(4)Sb(12). (C) 2008 American Institute of Physics. C1 [Shi, X.; Kong, H.; Li, C. -P.; Uher, C.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yang, J.] Gen Motors R&D Ctr, Mat & Proc Lab, Warren, MI 48090 USA. [Salvador, J. R.] Optimal Inc, Plymouth, MI 48170 USA. [Wang, H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Chen, L.; Zhang, W.] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China. RP Shi, X (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. EM xunshi@umich.edu; jihui.yang@gm.com; wqzhang@mail.sic.ac.cn RI Yang, Jihui/A-3109-2009; shi, xun/B-4499-2009; Chen, Lidong/F-2705-2010; Zhang, Wenqing/K-1236-2012; Wang, Hsin/A-1942-2013 OI shi, xun/0000-0002-3806-0303; Wang, Hsin/0000-0003-2426-9867 NR 25 TC 241 Z9 247 U1 19 U2 111 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 5 PY 2008 VL 92 IS 18 AR 182101 DI 10.1063/1.2920210 PG 3 WC Physics, Applied SC Physics GA 309UM UT WOS:000256485700025 ER PT J AU Sun, YG Yan, HF Wu, XH AF Sun, Yugang Yan, Hanfei Wu, Xiaohua TI Effects of visible and synchrotron x-ray radiation on the growth of silver nanoplates on n-GaAs wafers: A comparative study SO APPLIED PHYSICS LETTERS LA English DT Article ID NANOPARTICLES; GOLD; NANORODS AB A simple and effective approach has been developed to grow silver (Ag) nanoplates on n-type gallium arsenide (GaAs) wafers through a reaction between the wafers themselves and aqueous solutions of silver nitrate at room temperature [Sun and Wiederrecht, Small 3, 1964 (2007)]. In this letter, the effect of green laser irradiation, which can efficiently excite the valence band of a GaAs substrate to form electron-hole pairs in the shallow surface region (<3 mu m), on the growth of Ag nanoplates is studied. Illumination with the laser significantly depresses the growth of Ag nanoplates. In comparison, the influence of synchrotron x-rays, which can excite the deep core levels of elements and deeply penetrate (>50 mu m) into GaAs lattices, on the growth of Ag nanoplates is also studied. The results indicate that the excited deep core levels can relax into electron-hole pairs in the band edges to induce similar effects to that of the green laser except that the larger area around the x-ray beam is affected to inhibit the growth of Ag nanoplates. (C) 2008 American Institute of Physics. C1 [Sun, Yugang; Wu, Xiaohua] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Yan, Hanfei] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov; hyan@bnl.gov RI Sun, Yugang /A-3683-2010; Yan, Hanfei/F-7993-2011 OI Sun, Yugang /0000-0001-6351-6977; Yan, Hanfei/0000-0001-6824-0367 NR 17 TC 8 Z9 8 U1 0 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 5 PY 2008 VL 92 IS 18 AR 183109 DI 10.1063/1.2924766 PG 3 WC Physics, Applied SC Physics GA 309UM UT WOS:000256485700063 ER PT J AU Wang, ZG Zu, XT Xiao, HY Gao, F Weber, WJ AF Wang, Zhiguo Zu, Xiaotao Xiao, Haiyan Gao, Fei Weber, William J. TI Tuning the band structures of single walled silicon carbide nanotubes with uniaxial strain: A first principles study SO APPLIED PHYSICS LETTERS LA English DT Article ID TUNABLE LASER-DIODES; CARBON; FABRICATION; REGION AB Electronic band structures of single-walled silicon carbide nanotubes are studied under uniaxial strain using first principles calculations. The band structure can be tuned by mechanical strain in a wide energy range. The band gap decreases with uniaxial tensile strain, but initially increases with uniaxial compressive strain and then decreases with further increases in compressive strain. These results may provide a way to tune the electronic structures of silicon carbide nanotubes, which may have promising applications in building nanodevices. (C) 2008 American Institute of Physics. C1 [Wang, Zhiguo; Zu, Xiaotao; Xiao, Haiyan] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, Fei; Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, ZG (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM zgwang@uestc.edu.cn RI Weber, William/A-4177-2008; Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009 OI Weber, William/0000-0002-9017-7365; NR 32 TC 23 Z9 23 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 5 PY 2008 VL 92 IS 18 AR 183116 DI 10.1063/1.2924307 PG 3 WC Physics, Applied SC Physics GA 309UM UT WOS:000256485700070 ER PT J AU Gurvits, L AF Gurvits, Leonid TI Van der Waerden/Schrijver-Valiant like conjectures and stable (aka hyperbolic) homogeneous polynomials: One theorem for all SO ELECTRONIC JOURNAL OF COMBINATORICS LA English DT Article ID MULTIVARIATE POLYNOMIALS; INEQUALITY; MATRICES AB Let p be a homogeneous polynomial of degree n in n variables, p(z(1),..., z(n)) = p(Z), p(Z), Z is an element of C-n. We call such a polynomial p H-Stable if p(z(1),..., z(n)) not equal 0 provided the real parts Rc(z(i)) > 0, 1 <= i <= n. This notion from Control Theory is closely related to the notion of Hyperbolicity used intensively in the PDE theory. The main theorem in this paper states that if p(x(1),...,x(n)) is a homogeneous H-Stable polynomial of degree n with nonnegative coefficients; deg(p)(i) is the maximum degree of the variable x(i), C-i = min (deg(p) (i), i) and Cap(p) = inf xi>0,1 <= i <= n p(x(1),...,x(n))/x(1)...x(n) then the following inequality holds partial derivative(n)/partial derivative x(1)...x(n) p(0,...,0) >= Cap(p) Pi(2 <= i <= n) (C-i - 1/C-i)(Ci - 1) . This inequality is a vast (and unifying) generalization of the Van der Waerden conjecture on the permanents of doubly stochastic matrices as well as the Schrijver-Valiant conjecture on the number of perfect matchings in k-regular bipartite graphs. These two famous results correspond to the H-Stable polynomials which are products of linear forms. Our proof is relatively simple and "noncomputational"; it uses just very basic properties of complex numbers and the AM/GM inequality. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gurvits, L (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM gurvits@lanl.gov NR 32 TC 6 Z9 6 U1 0 U2 0 PU ELECTRONIC JOURNAL OF COMBINATORICS PI NEWARK PA C/O FELIX LAZEBNIK, RM 507, EWING HALL, UNIV DELAWARE, DEPT MATHEMATICAL SCIENCES, NEWARK, DE 19716 USA SN 1077-8926 J9 ELECTRON J COMB JI Electron. J. Comb. PD MAY 5 PY 2008 VL 15 IS 1 AR R66 PG 25 WC Mathematics, Applied; Mathematics SC Mathematics GA 295NN UT WOS:000255481300003 ER PT J AU Creutz, C Chou, MH AF Creutz, Carol Chou, Mei H. TI Binding of catechols to mononuclear titanium(IV) and to 1-and 5-nm TiO2 nanoparticles SO INORGANIC CHEMISTRY LA English DT Article ID INTERFACIAL ELECTRON-TRANSFER; CHARGE-TRANSFER; SURFACE COMPLEXATION; AQUEOUS-SOLUTION; TRANSFER RATES; DIOXIDE; DYNAMICS; SEMICONDUCTORS; SPECTROSCOPY; ABSORPTION AB The binding of catechol derivatives (LH2 = catechol, 4-methyl catechol, 4-t-butyl catechol, and dopamine) to 1- and 4.7-nm TiO2 nanoparticles in aqueous, pH 3.5 suspensions has been characterized by UV-vis spectroscopy. The binding constants derived from Benesi-Hildebrand plots are (2-4) x 10(3) M-1 for the 1-nm nanoparticles and (0.4-1) x 10(4) M-1 for the 4.7-nm particles. (TiL3)-L-IV complexes were prepared from the same catechols. The L = methyl catechol, and dopamine complexes are reported for the first time. The TiL3 reduction potentials are not very sensitive to the nature of the catechol nor evidently are the binding constants to TiO2 nanoparticles. The intense (epsilon >= 10(3) M-1 cm(-1)), about 400-nm, ligand-to-metal charge-transfer (LMCT) absorptions of the nanoparticle complexes are compared with those of the TiL3 complexes (epsilon 10(4) M-1 cm(-1)) which lie in the same spectral region. The nanoparticle colors are attributed (as are the colors of the (TiL3)-L-IV complexes) to the tails of the about 400-nm LMCT bands. C1 [Creutz, Carol; Chou, Mei H.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Creutz, C (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM ccreutz@bnl.gov NR 38 TC 48 Z9 48 U1 6 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 5 PY 2008 VL 47 IS 9 BP 3509 EP 3514 DI 10.1021/ic701687k PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 294CA UT WOS:000255380500014 PM 18366179 ER PT J AU Li, B Corbett, JD AF Li, Bin Corbett, John D. TI Similar K@Au10Sn10 polyhedra in the markedly different structures of KAu4Sn6 and KAu3Sn3. Syntheses and characterization SO INORGANIC CHEMISTRY LA English DT Article ID INTERMETALLIC COMPOUNDS; GOLD SUBSTITUTION; SOLID-STATE; CLUSTERS; STABILIZATION; RB; AU; NETWORKS; PHASES; TIN AB These compounds were synthesized by high-temperature reactions of the elements in welded Ta tubes and characterized by X-ray diffraction methods and linear muffin-tin orbital (LMTO) calculations. AAu(4)Sn(6) (A = K, Rb) have a new structural type (Fddd, Z = 8), and KAu3Sn3 (Pmmn, Z = 2) is isostructural with SrAu3In3. Both orthorhombic structures contain similar condensed K@Au10Sn10 polyhedral building blocks, which can be described as overall 6-8-6 arrangements of planar rings or, alternatively, as hexagonal prisms centered by K and augmented about the waists by 8-rings of Au and Sn. However, the 3D Au-Sn networks differ appreciably in both composition and the modes of condensation. In KAu3Sn3, the prisms stack by sharing both hexagonal faces with like neighbors along a, whereas those in KAu4Sn6 condense in a complex zigzag network. Compared with related indium systems,, the structure change from KAu4In6 (P6m2, Z = 1) to KAu4Sn6 apparently illustrates the effect of complex factors such as atom size and valence electron counts on structure, whereas the SrAu3In3 and KAu3Sn3 pair are isotypic. Both compounds are Pauli-paramagnetic and inert to water at room temperature for several days. Tight-binding electronic structure (LMTO) calculations emphasize the dominance and strength of the heteroatomic Au-Sn bonding. C1 [Li, Bin; Corbett, John D.] Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA. [Corbett, John D.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Corbett, JD (reprint author), Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA. EM jcorbett@iastate.edu NR 36 TC 8 Z9 8 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 5 PY 2008 VL 47 IS 9 BP 3610 EP 3616 DI 10.1021/ic701997x PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 294CA UT WOS:000255380500026 PM 18345621 ER PT J AU Kim, SH Davalos, AR Heo, SJ Rodier, F Zou, Y Beausejour, C Kaminker, P Yannone, SM Campisi, J AF Kim, Sahn-ho Davalos, Albert R. Heo, Seok-Jin Rodier, Francis Zou, Ying Beausejour, Christian Kaminker, Patrick Yannone, Steven M. Campisi, Judith TI Telomere dysfunction and cell survival: roles for distinct TIN2-containing complexes SO JOURNAL OF CELL BIOLOGY LA English DT Article ID LENGTH REGULATOR; DAMAGE RESPONSE; PROTEIN TIN2; POT1; TRF1; END; P53; APOPTOSIS; INHIBITION; SENESCENCE AB Telomeres are maintained by three DNA-binding proteins (telomeric repeat binding factor 1 [TRF1], TRF2, and protector of telomeres 1 [POT1]) and several associated factors. One factor, TRF1-interacting protein 2 (TIN2), binds TRF1 and TRF2 directly and POT1 indirectly. Along with two other proteins, TPP1 and hRap1, these form a soluble complex that may be the core telomere maintenance complex. It is not clear whether subcomplexes also exist in vivo. We provide evidence for two TIN2 subcomplexes with distinct functions in human cells. We isolated these two TIN2 subcomplexes from nuclear lysates of unperturbed cells and cells expressing TIN2 mutants TIN2-13 and TIN2-15C, which cannot bind TRF2 or TRF1, respectively. In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere dysfunction and cell death. Our findings suggest that distinct TIN2 complexes exist and that TIN2-15C-sensitive subcomplexes are particularly important for cell survival in the absence of functional p53. C1 [Kim, Sahn-ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Zou, Ying; Beausejour, Christian; Yannone, Steven M.; Campisi, Judith] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Kaminker, Patrick; Campisi, Judith] Buck Inst Age Res, Novato, CA 94945 USA. RP Kim, SH (reprint author), Henry Ford Hlth Syst, Vattikuti Urol Inst, Detroit, MI 48202 USA. EM skim3@hfhs.org RI Yannone, Steven/G-1927-2011 FU NCI NIH HHS [CA107798A, R03 CA107798]; NIA NIH HHS [AG024399-02, AG011658-12, R01 AG011658, R01 AG024399] NR 51 TC 30 Z9 30 U1 0 U2 3 PU ROCKEFELLER UNIV PRESS PI NEW YORK PA 1114 FIRST AVE, 4TH FL, NEW YORK, NY 10021 USA SN 0021-9525 J9 J CELL BIOL JI J. Cell Biol. PD MAY 5 PY 2008 VL 181 IS 3 BP 447 EP 460 DI 10.1083/jcb.200710028 PG 14 WC Cell Biology SC Cell Biology GA 299XW UT WOS:000255789900008 PM 18443218 ER PT J AU Wu, J Cho, HP Rhee, DB Johnson, DK Dunlap, J Liu, Y Wang, YS AF Wu, Jun Cho, Hyekyung P. Rhee, David B. Johnson, Dabney K. Dunlap, John Liu, Yie Wang, Yisong TI Cdc14B depletion leads to centriole amplification, and its overexpression prevents unscheduled centriole duplication SO JOURNAL OF CELL BIOLOGY LA English DT Article ID REGULATES CENTROSOME DUPLICATION; XENOPUS EGG EXTRACTS; CELL-CYCLE; CHROMOSOME SEGREGATION; MAMMALIAN-CELLS; C-ELEGANS; PHOSPHATASE; KINASE; MITOSIS; CANCER AB Centrosome duplication is tightly controlled in coordination with DNA replication. The molecular mechanism of centrosome duplication remains unclear. Previous studies found that a fraction of human proline-directed phosphatase Cdc14B associates with centrosomes. However, Cdc14B's involvement in centrosome cycle control has never been explored. Here, we show that depletion of Cdc14B by RNA interference leads to centriole amplification in both HeLa and normal human fibroblast BJ and MRC-5 cells. Induction of Cdc14B expression through a regulatable promoter significantly attenuates centriole amplification in prolonged S phase arrested cells and proteasome inhibitor Z-L3VS-treated cells. This inhibitory function requires centriole-associated Cdc14B catalytic activity. Together, these results suggest a potential function for Cdc14B phosphatase in maintaining the fidelity of centrosome duplication cycle. C1 [Wu, Jun; Cho, Hyekyung P.; Rhee, David B.; Johnson, Dabney K.; Wang, Yisong] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Dunlap, John] Univ Tennessee, Div Biol, Microscopy Facil, Knoxville, TN 37996 USA. [Rhee, David B.; Liu, Yie] NIA, Gerontol Res Ctr, Lab Mol Gerontol, Baltimore, MD 21224 USA. RP Wang, YS (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM liuyie@grc.nia.nih.gov; ywa@ornl.gov FU Intramural NIH HHS NR 46 TC 31 Z9 31 U1 0 U2 0 PU ROCKEFELLER UNIV PRESS PI NEW YORK PA 1114 FIRST AVE, 4TH FL, NEW YORK, NY 10021 USA SN 0021-9525 J9 J CELL BIOL JI J. Cell Biol. PD MAY 5 PY 2008 VL 181 IS 3 BP 475 EP 483 DI 10.1083/jcb.200710127 PG 9 WC Cell Biology SC Cell Biology GA 299XW UT WOS:000255789900010 PM 18458157 ER PT J AU Hur, MS Wurtele, JS Penn, G AF Hur, Min Sup Wurtele, Jonathan S. Penn, Gregory TI Guiding of an electromagnetic pulse in a plasma immersed in combined wiggler and axial magnetic fields SO PHYSICS LETTERS A LA English DT Article DE wave guiding; magnetized plasma; particle-in-cell simulation ID LASER-PULSES; ACCELERATOR AB We present a new plasma-based method of guiding an electromagnetic pulse. The scheme consists of an inhomogeneous magnetic field and a uniform density plasma, in contrast to existing schemes that rely on transverse plasma density gradients but need not be magnetized. The refractive index of a magnetized plasma depends on the strength and direction of the magnetic field as well as the plasma density. A guiding channel is formed by using field inhomogeneity to generate the desired transverse profile of the index of refraction. The concept is analyzed with an envelope equation and, for the specific example of a wiggler magnetic field, with a two-dimension particle-in-cell simulation. A simplified model of this scheme as producing a magnetic wall in analogy to metallic waveguides is presented, for which corresponding approximate relations for the guided mode axial wavelength and radius are derived as functions of the plasma and magnetic field parameter. These are seen to be in good agreement with particle-in-cell simulation results. Since the desired inhomogeneity of the refractive index can be made easily when the electromagnetic wave frequency is close to the cyclotron frequency, this guiding scheme is most readily applied in the microwave regime. (c) 2008 Elsevier B.V. All rights reserved. C1 [Hur, Min Sup] Korea Electrotechnol Res Inst, Chang Won 641120, Kyongnam, South Korea. [Wurtele, Jonathan S.] UC Berkeley, Berkeley, CA 94720 USA. [Wurtele, Jonathan S.; Penn, Gregory] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Hur, MS (reprint author), Korea Electrotechnol Res Inst, Chang Won 641120, Kyongnam, South Korea. EM benjhur@gmail.com; wurtele@berkeley.edu; gepenn@lbl.gov RI wurtele, Jonathan/J-6278-2016 OI wurtele, Jonathan/0000-0001-8401-0297 NR 7 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD MAY 5 PY 2008 VL 372 IS 19 BP 3452 EP 3455 DI 10.1016/j.physleta.2007.12.024 PG 4 WC Physics, Multidisciplinary SC Physics GA 302MD UT WOS:000255971500018 ER PT J AU Aguilera-Iparraguirre, J Boese, AD Klopper, W Ruscic, B AF Aguilera-Iparraguirre, Jorge Boese, A. Daniel Klopper, Wim Ruscic, Branko TI Accurate ab initio computation of thermochemical data for C3Hx (x=0,...,4) species SO CHEMICAL PHYSICS LA English DT Review DE thermochemistry; hydrocarbons; radicals; carbenes; coupled-cluster theory ID COUPLED-CLUSTER CALCULATIONS; ANHARMONIC-FORCE FIELDS; CORRELATED MOLECULAR CALCULATIONS; EXCHANGE-CORRELATION FUNCTIONALS; CHEMICAL-VAPOR-DEPOSITION; POTENTIAL-ENERGY SURFACE; BASIS-SET CONVERGENCE; GAUSSIAN-BASIS SETS; GAS-PHASE; 2ND DERIVATIVES AB We have computed the atomization energies of nineteen C3Hx molecules and radicals using explicitly-correlated coupled-cluster theory including corrections for core-core and core-valence correlation, scalar and spin-orbit relativistic effects, and anharmonic vibrational zero-point energies. Equilibrium geometries were obtained at the coupled-cluster level [CCSD(T) model] in a correlation-consistent polarized core-valence quadruple-zeta basis set, using a spin-restricted Hartree-Fock reference wave function, and including all electrons in the correlation treatment. Applied to a set of selected CH, and C2Hx systems, our approach yields highly accurate atomization energies with a mean absolute deviation of 1.4 kJ/mol and a maximum deviation of 4.2 kJ/mol (for dicarbon) from the Active Thermochemical Tables (ATcT) values. The explicitly-correlated coupled-cluster approach provides energies near the basis-set limit of the CCSD(T) model, which is the coupled-cluster model with single and double excitations (CCSD) augmented with a perturbative correction for triple excitations (T). To obtain even more accurate atomization energies than those presented here, it would be required to include full triple excitations (CCSDT) and corrections for excitations beyond triples, as for instance done in the CCSDT(Q) model, which includes a perturbative correction for quadruple excitations (Q). (C) 2008 Elsevier B.V. All rights reserved. C1 [Aguilera-Iparraguirre, Jorge; Klopper, Wim] Univ Karlsruhe TH, Lehrstuhl Theoret Chem, Inst Phys Chem, D-76128 Karlsruhe, Germany. [Boese, A. Daniel; Klopper, Wim] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany. [Ruscic, Branko] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Klopper, W (reprint author), Univ Karlsruhe TH, Lehrstuhl Theoret Chem, Inst Phys Chem, Kaiserstr 12, D-76128 Karlsruhe, Germany. EM klopper@chem-bio.uni-karlsruhe.de RI Ruscic, Branko/A-8716-2008; Klopper, Wim/I-3163-2014 OI Ruscic, Branko/0000-0002-4372-6990; Klopper, Wim/0000-0002-5219-9328 NR 121 TC 29 Z9 29 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 J9 CHEM PHYS JI Chem. Phys. PD MAY 4 PY 2008 VL 346 IS 1-3 BP 56 EP 68 DI 10.1016/j.chemphys.2008.01.057 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 304XI UT WOS:000256142000009 ER PT J AU Qiu, DL Xiang, JL Li, ZX Krishnamoorthy, A Chen, LH Wang, R AF Qiu, Dengli Xiang, Jialing Li, Zhaoxia Krishnamoorthy, Aparna Chen, Liaohai Wang, Rong TI Profiling TRA-1-81 antigen distribution on a human embryonic stem cell SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE human embryonic stem cell; TRA-1-81; affinity mapping; protein distribution ID ATOMIC-FORCE MICROSCOPY; SPECTROSCOPY; THERAPY; AFM AB Human embryonic stem (hES) cells hold great promise in regenerative medicine. Although hES cells have unlimited self-renewal potential, they tend to differentiate spontaneously in culture. TRA-1-81 is a biomarker of undifferentiated hES cells. Quantitative characterization of TRA-1-81 expression level in a single cell helps capture the "turn-on" signal and understand the mechanism of early differentiation. Here, we report on our examination of TRA-1-81 distribution and association on a hES cell membrane using an atomic force microscope (AFM). Our results suggest that aggregated distribution of TRA-1-81 antigen is characteristic for undifferentiated hES cells. We also evaluated the TRA-1-81 expression level at similar to 17,800 epitopes and similar to 700 epitopes per cell on an undifferentiated cell and a spontaneously differentiated cell, respectively. The method in this study can be adapted in examining other surface proteins on various cell types, thus providing a general tool for investigating protein distribution and association at the single cell level. (c) 2008 Elsevier Inc. All rights reserved. C1 [Qiu, Dengli; Xiang, Jialing; Li, Zhaoxia; Krishnamoorthy, Aparna; Wang, Rong] IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. [Chen, Liaohai] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Wang, R (reprint author), IIT, Dept Biol Chem & Phys Sci, 3101 S Dearborn St,Life Sci Bldg, Chicago, IL 60616 USA. EM wangr@iit.edu FU NINDS NIH HHS [R01 NS047719-01A1, R01 NS047719] NR 23 TC 11 Z9 11 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD MAY 2 PY 2008 VL 369 IS 2 BP 735 EP 740 DI 10.1016/j.bbrc.2008.02.102 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 284AF UT WOS:000254676900075 PM 18313397 ER PT J AU Guiochon, G Marchetti, N Mriziq, K Shalliker, RA AF Guiochon, Georges Marchetti, Nicola Mriziq, Khaled Shalliker, R. Andrew TI Implementations of two-dimensional liquid chromatography SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article; Proceedings Paper CT 31st International Symposium on High Performance Liquid Phase Separations and Related Techniques CY JUN 17-21, 2007 CL Ghent, BELGIUM DE band interference; peak capacity; separation efficiency; separations in space; separations in time; three-dimensional chromatography; two-dimensional chromatography; two-dimensional thin-layer chromatography; thin layer chromatography; one-dimensional chromatography ID THIN-LAYER-CHROMATOGRAPHY; REVERSED-PHASE SEPARATIONS; PROTEIN IDENTIFICATION TECHNOLOGY; CAPILLARY-ZONE-ELECTROPHORESIS; MOLECULAR-WEIGHT POLYSTYRENES; SINGLE COMPLEX CHROMATOGRAMS; MASS-SPECTROMETRIC DETECTION; GAS-CHROMATOGRAPHY; PEAK-CAPACITY; MULTICOMPONENT CHROMATOGRAMS AB Today scientists must deal with complex samples that either cannot be adequately separated using one-dimensional chromatography or that require an inordinate amount of time for separation. For these cases we need two-dimensional chromatography because it takes far less time to generate a peak capacity n(c) twice in a row than to generate a peak capacity n(c)(2) once. Liquid chromatography has been carried out successfully on thin layers of adsorbents and along tubes filled with various adsorbents. The first type of separation sorts out the sample components in a physical separation space that is the layer of packing material. The analysis time is the same for all the components of the sample while their migration distance increases with decreasing retention. The resolution between two components having a certain separation factor (alpha) increases with increasing migration distance, i.e., from the strongly to the weakly retained compounds. In the second type of separation, the sample components are eluted from the column and separated in the time space, their migration distances are all the same while their retention times increase from the unretained to the strongly retained compounds. Separation efficiency varies little with retention, as long as the components are eluted from the column. We call these two types of separation the chromatographic separations in space (LCx) and the chromatographic separations in time (LC'), respectively. In principle, there are four ways to combine these two modes and do two-dimensional chromatographic separations, LC' x LC', LC' x LC', LC' x LC', and LC' x LC'. We review, discuss and compare the potential performance of these combinations, their advantages, drawbacks, problems, perspectives and results. Currently, column-based combinations (LC' x LC') are the most actively pursued. We suggest that the combination LC' x LC' shows exceptional promise because it permits the simultaneous second-dimension separations of all the fractions separated in the first-dimension, thus providing remarkable time saving. (C) 2008 Elsevier B.V. All rights reserved. C1 [Guiochon, Georges; Marchetti, Nicola; Mriziq, Khaled] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Guiochon, Georges; Marchetti, Nicola; Mriziq, Khaled] Oak Ridge Natl Lab, Div Chem & Analyt Sci, Oak Ridge, TN 37831 USA. [Shalliker, R. Andrew] Univ Western Sydney, Penrith, NSW 1797, Australia. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, 414 Buehler Hall, Knoxville, TN 37996 USA. EM guiochon@utk.edu RI Marchetti, Nicola/G-4933-2010; OI Marchetti, Nicola/0000-0001-5595-570X NR 201 TC 167 Z9 173 U1 5 U2 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 EI 1873-3778 J9 J CHROMATOGR A JI J. Chromatogr. A PD MAY 2 PY 2008 VL 1189 IS 1-2 BP 109 EP 168 DI 10.1016/j.chroma.2008.01.086 PG 60 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 298OW UT WOS:000255698000014 PM 18336826 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Ronan, MT Tackmann, K Wenzel, WA Sanchez, PDA Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Schroeder, T Steinke, M Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Williams, DC Wilson, MG Winstrom, LO Chen, E Cheng, CH Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Brandt, T Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Nikolich, MB Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J Davier, M Grosdidier, G Cker, AH Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Zheng, Y Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Re, CDLV Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G D'Orazio, A Del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Der, HS Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Ricciardi, S Roethel, W Wilson, FF Aleksan, R Emery, S Escalier, M Gaidot, A Ganzhur, SF De Monchenault, GH Kozanecki, W Vasseur, G Che, CY Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Hryn'ova, T Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Van Bakel, N Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Bianchi, SYF Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Ronan, M. T. Tackmann, K. Wenzel, W. A. Sanchez, P. Del Amo Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Schroeder, T. Steinke, M. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Williams, D. C. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Brandt, T. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. Davier, M. Grosdidier, G. Cker, A. Ho Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Zheng, Y. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Re, Ch. De la Vaissie Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. D'Orazio, A. Del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Der, H. Schro Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Ricciardi, S. Roethel, W. Wilson, F. F. Aleksan, R. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. De Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Che, Ch. Ye Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Hryn'ova, T. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Van Bakel, N. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Bianchi, S. Ye F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. TI Observation of tree-level B decays with s(s)over-bar production from gluon radiation SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report on our search for decays proceeding via a tree-level b -> c quark transition in which a gluon radiates into an s (s) over bar pair. We present observations of the decays B(-)-> D(s)(*)(+)K(-) pi(-) and (B) over bar (0) -> D(s)(+)K(S)(0)pi(-) and evidence for B(-)-> D(s)(+) K(-) K(-) and set upper limits on the branching fractions for (B) over bar (0) -> D(s)(*+)K(S)(0) pi(-) and B(-) -> D(s)(*+)K(-) K(-) using 383 x 10(6) gamma(4S)-> B (B) over bar events collected by the BABAR detector at SLAC. We present evidence that the invariant mass distributions of D(s)((*)+)K(-) pairs from B(-) -> D(s)(*)(+)K(-)pi(-) decays are inconsistent with the phase-space model, suggesting the presence of charm resonances lying below the D(s)(*)(+) K(-) threshold. C1 [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Lopez, L.; Palano, A.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Ronan, M. T.; Tackmann, K.; Wenzel, W. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sanchez, P. Del Amo; Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Held, T.; Koch, H.; Lewandowski, B.; Pelizaeus, M.; Schroeder, T.; Steinke, M.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Foulkes, S. D.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; Eisner, A. M.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Brandt, T.; Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, IN2P3, CNRS, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Nikolich, M. B.; Vazquez, W. Panduro; Tibbetts, M.] Univ Iowa, Iowa City, IA 52242 USA. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Meyer, N. T.; Ziegler, V.] Iowa State Univ, Ames, IA 50011 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; Davier, M.; Grosdidier, G.; Cker, A. Ho; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Chavez, C. A.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Menges, W.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Egham TW20 0EX, Surrey, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Allison, J.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Cowan, R.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Sekula, S. J.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Zheng, Y.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] NIKHEF H, Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Jessop, C. P.; LoSecco, J. M.; Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Lu, C.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Re, Ch. De la Vaissie; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Haire, M.] Praire View A&M Univ, Prairie View, TX 77446 USA. [Biesiada, J.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Buzzo, A.; Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Der, H. Schro; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Aleksan, R.; Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; De Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Che, Ch. Ye; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Berger, N.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Hryn'ova, T.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Van Bakel, N.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Bugg, W.; Krishnamurthy, M.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, S. Ye F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bianchi, S. Ye F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Back, J. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Pappagallo, M.; Band, H. R.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Pan, B.; Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Patrignani, Claudia/C-5223-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; van Bakel, Niels/B-6233-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016 OI Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Patrignani, Claudia/0000-0002-5882-1747; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Cavoto, Gianluca/0000-0003-2161-918X; Barlow, Roger/0000-0002-8295-8612; Raven, Gerhard/0000-0002-2897-5323; Luppi, Eleonora/0000-0002-1072-5633; van Bakel, Niels/0000-0002-4053-7588; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602 NR 11 TC 7 Z9 7 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 2 PY 2008 VL 100 IS 17 AR 171803 DI 10.1103/PhysRevLett.100.171803 PG 7 WC Physics, Multidisciplinary SC Physics GA 296DS UT WOS:000255524300024 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PDA Hawkes, CM Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Clarke, C George, KA Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Bailey, D Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Zheng, Y Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. Del Amo Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Clarke, C. George, K. A. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Bailey, D. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Zheng, Y. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. TI Measurements of partial branching fractions for (B)over-bar -> X(u)l(nu)over-bar and determination of vertical bar V(ub)vertical bar SO PHYSICAL REVIEW LETTERS LA English DT Article ID MESON DECAYS; PHYSICS; MODEL AB We present partial branching fractions for inclusive charmless semileptonic B decays (B) over bar -> X(u)l (nu) over bar, and the determination of the Cabibbo-Kobayashi-Maskawa matrix element vertical bar V(ub)vertical bar. The analysis is based on a sample of 383 x 10(6) gamma(4S) decays into B (B) over bar pairs collected with the BABAR detector at the SLAC PEP-II e(+)e(-) storage rings. We select events using the invariant mass M(X) of the hadronic system, the invariant mass squared, q(2), of the lepton and neutrino pair, the kinematic variable P(+), or one of their combinations. We then determine partial branching fractions in limited regions of phase space: Delta B = (1.18 +/- 0.09(stat) +/- 0.07(syst) +/- 0.01(theor)) x 10(-3) (M(X) < 1.55 GeV/c(2)), Delta B = (0.95 +/- 0.10(stat) +/- 0.08(syst) +/- 0.01(theor)) x 10(-3) (P(+) < 0.66 GeV/c), and Delta B = (0.81 +/- 0.08(stat) +/- 0.07(syst) +/- 0.02(theor)) x 10(-3) (M(X) < 1.7 GeV/c(2), q(2) > 8 GeV(2)/c(4)). Corresponding values of vertical bar V(ub)vertical bar are extracted using several theoretical calculations. C1 [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Dept Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sanchez, P. Del Amo; Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Foulkes, S. D.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Verderi, M.; Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Denig, A. G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C.; George, K. A.; Di Lodovico, F.; Menges, W.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Egham TW20 0EX, Surrey, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Allison, J.; Bailey, D.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Zheng, Y.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Krishnamurthy, M.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Khan, A.; Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Politecn Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Patrignani, Claudia/C-5223-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015 OI Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Patrignani, Claudia/0000-0002-5882-1747; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633 NR 20 TC 17 Z9 17 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 2 PY 2008 VL 100 IS 17 AR 171802 DI 10.1103/PhysRevLett.100.171802 PG 7 WC Physics, Multidisciplinary SC Physics GA 296DS UT WOS:000255524300023 ER PT J AU Bolte, M Meier, G Kruger, B Drews, A Eiselt, R Bocklage, L Bohlens, S Tyliszczak, T Vansteenkiste, A Van Waeyenberge, B Chou, KW Puzic, A Stoll, H AF Bolte, Markus Meier, Guido Krueger, Benjamin Drews, Andre Eiselt, Rene Bocklage, Lars Bohlens, Stellan Tyliszczak, Tolek Vansteenkiste, Arne Van Waeyenberge, Bartel Chou, Kang Wei Puzic, Aleksandar Stoll, Hermann TI Time-resolved x-ray microscopy of spin-torque-induced magnetic vortex gyration SO PHYSICAL REVIEW LETTERS LA English DT Article ID EXCITATION; DYNAMICS AB Time-resolved x-ray microscopy is used to image the influence of alternating high-density currents on the magnetization dynamics of ferromagnetic vortices. Spin-torque-induced vortex gyration is observed in micrometer-sized permalloy squares. The phases of the gyration in structures with different chirality are compared to an analytical model and micromagnetic simulations, considering both alternating spin-polarized currents and the current's Oersted field. In our case the driving force due to spin-transfer torque is about 70% of the total excitation while the remainder originates from the current's Oersted field. This finding has implications to magnetic storage devices using spin-torque driven magnetization switching and domain-wall motion. C1 [Bolte, Markus; Meier, Guido; Drews, Andre; Eiselt, Rene; Bocklage, Lars] Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany. [Bolte, Markus; Meier, Guido; Drews, Andre; Eiselt, Rene; Bocklage, Lars] Univ Hamburg, Zentrum Mikrostrukturforsch, D-20355 Hamburg, Germany. [Tyliszczak, Tolek] LBNL, Adv Light Source, Berkeley, CA 94720 USA. [Krueger, Benjamin; Bohlens, Stellan] Univ Hamburg, Inst Theoret Phys 1, D-20355 Hamburg, Germany. [Vansteenkiste, Arne; Van Waeyenberge, Bartel] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Van Waeyenberge, Bartel; Chou, Kang Wei; Puzic, Aleksandar; Stoll, Hermann] Max Planck Inst Metallforsch, D-70569 Stuttgart, Germany. RP Bolte, M (reprint author), Univ Hamburg, Inst Angew Phys, Jungiusstr 11, D-20355 Hamburg, Germany. EM mbolte@physik.uni-hamburg.de RI Bolte, Markus/A-6083-2009; Krueger, Benjamin/B-7466-2009; OI Krueger, Benjamin/0000-0001-8502-368X; Bocklage, Lars/0000-0001-9769-4173 NR 32 TC 100 Z9 102 U1 0 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 2 PY 2008 VL 100 IS 17 AR 176601 DI 10.1103/PhysRevLett.100.176601 PG 4 WC Physics, Multidisciplinary SC Physics GA 296DS UT WOS:000255524300060 PM 18518316 ER PT J AU Cao, J Vergara, LI Musfeldt, JL Litvinchuk, AP Wang, YJ Park, S Cheong, SW AF Cao, J. Vergara, L. I. Musfeldt, J. L. Litvinchuk, A. P. Wang, Y. J. Park, S. Cheong, S. -W. TI Spin-lattice interactions mediated by magnetic field SO PHYSICAL REVIEW LETTERS LA English DT Article ID CRYSTAL; MANGANITE; STRICTION AB Application of a magnetic field offers an incisive opportunity to tune competing interactions in complex materials. Here we probe field-induced changes in the local structure of DyMn(2)O(5) by using magnetoinfrared spectroscopy. The high tunability of the dielectric constant and ferroelectric polarization with field is well documented in the literature, but the lattice response on the microscopic level remains unknown. In this work, we reveal the dynamic nature of the local structural response to field and analyze it in terms of calculated mode displacements and local lattice distortions. C1 [Cao, J.; Vergara, L. I.; Musfeldt, J. L.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Litvinchuk, A. P.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Litvinchuk, A. P.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Wang, Y. J.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [Park, S.; Cheong, S. -W.] Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Park, S.; Cheong, S. -W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Cao, J (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Cao, Jinbo/C-7537-2009; Litvinchuk, Alexander/K-6991-2012; Cao, Jun/G-8701-2012 OI Litvinchuk, Alexander/0000-0002-5128-5232; Cao, Jun/0000-0002-3586-2319 NR 28 TC 18 Z9 18 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 2 PY 2008 VL 100 IS 17 AR 177205 DI 10.1103/PhysRevLett.100.177205 PG 4 WC Physics, Multidisciplinary SC Physics GA 296DS UT WOS:000255524300076 PM 18518332 ER PT J AU Park, WK Sarrao, JL Thompson, JD Greene, LH AF Park, W. K. Sarrao, J. L. Thompson, J. D. Greene, L. H. TI Andreev reflection in heavy-fermion superconductors and order parameter symmetry in CeCoIn5 SO PHYSICAL REVIEW LETTERS LA English DT Article ID POINT-CONTACT SPECTROSCOPY; TUNNELING SPECTROSCOPY; CONDUCTANCE; JUNCTIONS; SURFACE; TRANSITION; STATES; FIELD AB Differential conductance spectra are obtained from nanoscale junctions on the heavy-fermion superconductor CeCoIn5 along three major crystallographic orientations. Consistency and reproducibility of characteristic features among the junctions ensure their spectroscopic nature. All junctions show a similar conductance asymmetry and Andreev reflectionlike conductance with a reduced signal (similar to 10%-13%), both commonly observed in heavy-fermion superconductor junctions. Analysis using the extended Blonder-Tinkham-Klapwijk model indicates that our data provide the first spectroscopic evidence for d(x)(2)-y(2) symmetry. To quantify our conductance spectra, we propose a model by considering the general phenomenology in heavy fermions, the two-fluid behavior, and an energy-dependent density of states. Our model fits to the experimental data remarkably well and should invigorate further investigations. C1 [Park, W. K.; Greene, L. H.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Park, W. K.; Greene, L. H.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Park, WK (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. NR 31 TC 80 Z9 81 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 2 PY 2008 VL 100 IS 17 AR 177001 DI 10.1103/PhysRevLett.100.177001 PG 4 WC Physics, Multidisciplinary SC Physics GA 296DS UT WOS:000255524300067 PM 18518323 ER PT J AU Vengalattore, M Leslie, SR Guzman, J Stamper-Kurn, DM AF Vengalattore, M. Leslie, S. R. Guzman, J. Stamper-Kurn, D. M. TI Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOLECULES; SYSTEMS AB Helical spin textures in a (87)Rb F=1 spinor Bose-Einstein condensate are found to decay spontaneously toward a spatially modulated structure of spin domains. The formation of this modulated phase is ascribed to magnetic dipolar interactions that energetically favor the short-wavelength domains over the long-wavelength spin helix. The reduction of dipolar interactions by a sequence of rf pulses results in a suppression of the modulated phase, thereby confirming the role of dipolar interactions in this process. This study demonstrates the significance of magnetic dipole interactions in degenerate (87)Rb F=1 spinor gases. C1 [Vengalattore, M.; Leslie, S. R.; Guzman, J.; Stamper-Kurn, D. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Stamper-Kurn, D. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Vengalattore, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Vengalattore, Mukund/B-2781-2015; Stamper-Kurn, Dan/B-5442-2015; Leslie, Sabrina/M-3626-2016 OI Stamper-Kurn, Dan/0000-0002-4845-5835; NR 28 TC 185 Z9 185 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 2 PY 2008 VL 100 IS 17 AR 170403 DI 10.1103/PhysRevLett.100.170403 PG 4 WC Physics, Multidisciplinary SC Physics GA 296DS UT WOS:000255524300004 PM 18518260 ER PT J AU Yamazaki, T Aoki, Y Blum, T Lin, HW Lin, MF Ohta, S Sasaki, S Tweedie, RJ Zanotti, JM AF Yamazaki, T. Aoki, Y. Blum, T. Lin, H. W. Lin, M. F. Ohta, S. Sasaki, S. Tweedie, R. J. Zanotti, J. M. CA RBC UKQCD Collaborat TI Nucleon axial charge in (2+1)-flavor dynamical-lattice QCD with domain-wall fermions SO PHYSICAL REVIEW LETTERS LA English DT Article ID VECTOR COUPLING CONSTANT; CHIRAL FERMIONS; RENORMALIZATION; DECAY AB We present results for the nucleon axial charge g(A) at a fixed lattice spacing of 1/a=1.73(3) GeV using 2 + 1 flavors of domain wall fermions on size 16(3) x 32 and 24(3) x 64 lattices (L = 1.8 and 2.7 fm) with length 16 in the fifth dimension. The length of the Monte Carlo trajectory at the lightest m(pi) is 7360 units, including 900 for thermalization. We find finite volume effects are larger than the pion mass dependence at m(pi) = 330 MeV. We also find a scaling with the single variable m(pi)L which can also be seen in previous two-flavor domain wall and Wilson fermion calculations. Using this scaling to eliminate the finite-volume effect, we obtain g(A)=1.20(6)(4) at the physical pion mass, m(pi)=135 MeV, where the first and second errors are statistical and systematic. The observed finite-volume scaling also appears in similar quenched simulations, but disappear when V >= (2.4 fm)(3). We argue this is a dynamical quark effect. C1 [Yamazaki, T.; Blum, T.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Aoki, Y.; Blum, T.; Ohta, S.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Lin, H. W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Lin, M. F.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Ohta, S.] Natl Lab High Energy Phys, KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan. [Ohta, S.] Sokendai Grad U Adv Studies, Kanagawa 2400193, Japan. [Sasaki, S.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 113, Japan. [Tweedie, R. J.; Zanotti, J. M.] Univ Edinburgh, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland. RP Yamazaki, T (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. RI Zanotti, James/H-8128-2012 OI Zanotti, James/0000-0002-3936-1597 NR 32 TC 68 Z9 68 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 2 PY 2008 VL 100 IS 17 AR 171602 DI 10.1103/PhysRevLett.100.171602 PG 4 WC Physics, Multidisciplinary SC Physics GA 296DS UT WOS:000255524300016 PM 18518272 ER PT J AU Aranson, IS Snezhko, A Olafsen, JS Urbach, JS AF Aranson, I. S. Snezhko, A. Olafsen, J. S. Urbach, J. S. TI Comment on "long-lived giant number fluctuations in a swarming granular nematic" SO SCIENCE LA English DT Editorial Material C1 [Aranson, I. S.; Snezhko, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Olafsen, J. S.] Baylor Univ, Dept Phys, Waco, TX 76798 USA. [Urbach, J. S.] Georgetown Univ, Dept Phys, Washington, DC 20057 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM aronson@msd.anl.gov RI Aranson, Igor/I-4060-2013; OI Urbach, Jeffrey/0000-0002-1593-520X NR 6 TC 33 Z9 33 U1 0 U2 8 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD MAY 2 PY 2008 VL 320 IS 5876 BP 612 EP 612 DI 10.1126/science.1153456 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 295DD UT WOS:000255454300023 PM 18451285 ER PT J AU Sperber, KR Slingo, JM Waliser, DE Inness, PM AF Sperber, Kenneth R. Slingo, Julia M. Waliser, Duane E. Inness, Peter M. TI Coarse-resolution models only partly cloudy SO SCIENCE LA English DT Letter ID MADDEN-JULIAN OSCILLATION; GENERAL-CIRCULATION MODEL; INTRASEASONAL OSCILLATIONS; SIMULATION C1 [Sperber, Kenneth R.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94551 USA. [Slingo, Julia M.; Inness, Peter M.] Univ Reading, Natl Ctr Atmospher Res, Reading RG6 6BB, Berks, England. [Slingo, Julia M.; Inness, Peter M.] Univ Reading, Walker Inst, Reading RG6 6BB, Berks, England. [Waliser, Duane E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sperber, KR (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, POB 808,L-103, Livermore, CA 94551 USA. EM sperber1@llnl.gov RI Sperber, Kenneth/H-2333-2012 NR 9 TC 8 Z9 8 U1 0 U2 2 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 2 PY 2008 VL 320 IS 5876 BP 612 EP 612 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 295DD UT WOS:000255454300018 PM 18451284 ER PT J AU Diaz, J Ingall, E Benitez-Nelson, C Paterson, D de Jonge, MD McNulty, I Brandes, JA AF Diaz, Julia Ingall, Ellery Benitez-Nelson, Claudia Paterson, David de Jonge, Martin D. McNulty, Ian Brandes, Jay A. TI Marine polyphosphate: A key player in geologic phosphorus sequestration SO SCIENCE LA English DT Article ID ORGANIC PHOSPHORUS; SEDIMENTS; SEAWATER; MINERALS; FLUXES; WATERS; CARBON; MATTER AB The in situ or authigenic formation of calcium phosphate minerals in marine sediments is a major sink for the vital nutrient phosphorus. However, because typical sediment chemistry is not kinetically conducive to the precipitation of these minerals, the mechanism behind their formation has remained a fundamental mystery. Here, we present evidence from high- sensitivity x- ray and electrodialysis techniques to describe a mechanism by which abundant diatom- derived polyphosphates play a critical role in the formation of calcium phosphate minerals in marine sediments. This mechanism can explain the puzzlingly dispersed distribution of calcium phosphate minerals observed in marine sediments worldwide. C1 [Diaz, Julia; Ingall, Ellery] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Benitez-Nelson, Claudia] Univ S Carolina, Marine Sci Program, Columbia, SC 29208 USA. [Benitez-Nelson, Claudia] Univ S Carolina, Dept Geol Sci, Columbia, SC 29208 USA. [Paterson, David; de Jonge, Martin D.; McNulty, Ian] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Brandes, Jay A.] Skidaway Inst Oceanog, Savannah, GA 31411 USA. RP Ingall, E (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM ingall@eas.gatech.edu RI Ingall, Ellery/A-5447-2008; de Jonge, Martin/C-3400-2011; OI Ingall, Ellery/0000-0003-1954-0317; Benitez-Nelson, Claudia/0000-0002-1004-5048 NR 25 TC 106 Z9 108 U1 4 U2 73 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 2 PY 2008 VL 320 IS 5876 BP 652 EP 655 DI 10.1126/science.1151751 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 295DD UT WOS:000255454300042 PM 18451299 ER PT J AU Laughlin, ST Baskin, JM Amacher, SL Bertozzi, CR AF Laughlin, Scott T. Baskin, Jeremy M. Amacher, Sharon L. Bertozzi, Carolyn R. TI In vivo imaging of membrane-associated glycans in developing zebrafish SO SCIENCE LA English DT Article ID O-LINKED GLYCOSYLATION; LIVING ANIMALS; CELL; VISUALIZATION; MECHANISMS; PROTEINS; DISEASE AB Glycans are attractive targets for molecular imaging but have been inaccessible because of their incompatibility with genetically encoded reporters. We demonstrated the noninvasive imaging of glycans in live developing zebrafish, using a chemical reporter strategy. Zebrafish embryos were treated with an unnatural sugar to metabolically label their cell- surface glycans with azides. Subsequently, the embryos were reacted with fluorophore conjugates by means of copper- free click chemistry, enabling the visualization of glycans in vivo at subcellular resolution during development. At 60 hours after fertilization, we observed an increase in de novo glycan biosynthesis in the jaw region, pectoral fins, and olfactory organs. Using a multicolor detection strategy, we performed a spatiotemporal analysis of glycan expression and trafficking and identified patterns that would be undetectable with conventional molecular imaging approaches. C1 [Laughlin, Scott T.; Baskin, Jeremy M.; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Amacher, Sharon L.; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. RP Bertozzi, CR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM crb@berkeley.edu OI Baskin, Jeremy/0000-0003-2939-3138 FU Howard Hughes Medical Institute; NIGMS NIH HHS [GM058867, GM061952, R01 GM058867, R01 GM058867-11, R01 GM061952, R01 GM061952-06A2S1, R37 GM058867] NR 19 TC 511 Z9 514 U1 12 U2 176 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 2 PY 2008 VL 320 IS 5876 BP 664 EP 667 DI 10.1126/science.1155106 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 295DD UT WOS:000255454300046 PM 18451302 ER PT J AU Insepov, Z Norem, J Swenson, DR Hassanein, A AF Insepov, Z. Norem, J. Swenson, D. R. Hassanein, A. TI Surface erosion and modification by energetic ions SO VACUUM LA English DT Article; Proceedings Paper CT 18th International Conference on Ion-Surface Interactions CY AUG 24-28, 2007 CL Zvenigorod, RUSSIA SP Russian Acad Sci, Moscow Aviat Inst, Moscow State Univ, Moscow Engn Phys Inst, St Petersburg State Polytech Univ, Russian Acad Sci, Inst Technol Problems Microelect & Ultrapure Mat, Russian State Technol Univ DE molecular dynamics; gas cluster ion beam; highly charged ion; coulomb explosion; sputtering; shock wave; tungsten ID MOLECULAR-DYNAMICS SIMULATION; HIGHLY-CHARGED IONS; COMPUTER-SIMULATION; CLUSTER-IMPACT; ELECTRONIC EXCITATION; INSULATOR SURFACES; TRANSITION-METALS; CYLINDRICAL TRACK; LIQUID-LITHIUM; SPIKE MODELS AB Surface erosion and modification by energetic highly charged and cluster ions are important in the development of semiconductor devices, TeV accelerators, fission and fusion reactors, and in the development of extreme ultra-violet lithography devices. Gas cluster ion beam (GCIB) surface treatment can significantly mitigate the high-gradient electric vacuum breakdown of rf-cavities. GCIB can also mitigate Q-slope drop in superconducting Nb-cavities. Various mechanisms of the highly charged ion (HCI) energy transfer into the solid target, such as hollow atom formation, charge screening and neutralization.. shock wave generation, and sputtering were analyzed. Surface erosions caused by GCIB, HCI bombardments, and by low energy He+ and H+ ions typical for fission and fusion devices were studied by using molecular dynamics simulation. A He bubble splashing mechanism of liquid Li containing was developed, and surface erosion was simulated. The mechanism of bubble explosion could significantly contribute to the surface erosion at high ion fluxes and explain the existing experimental results. Published by Elsevier Ltd. C1 [Insepov, Z.; Norem, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Swenson, D. R.] Epion Corp, Billerica, MA 01821 USA. [Hassanein, A.] Purdue Univ, W Lafayette, IN 47907 USA. RP Insepov, Z (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM insepov@anl.gov RI Insepov, Zinetula/L-2095-2013 OI Insepov, Zinetula/0000-0002-8079-6293 NR 71 TC 4 Z9 4 U1 2 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0042-207X J9 VACUUM JI Vacuum PD MAY 2 PY 2008 VL 82 IS 9 BP 872 EP 879 DI 10.1016/j.vacuum.2007.12.012 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 300KV UT WOS:000255823600002 ER PT J AU Meyer, FW Zhang, H Lance, MJ Krause, HF AF Meyer, F. W. Zhang, H. Lance, M. J. Krause, H. F. TI Chemical sputtering and surface damage of graphite by low-energy atomic and molecular hydrogen and deuterium projectiles SO VACUUM LA English DT Article; Proceedings Paper CT 18th International Conference on Ion-Surface Interactions CY AUG 24-28, 2007 CL Zvenigorod, RUSSIA SP Russian Acad Sci, Moscow Aviat Inst, Moscow State Univ, Moscow Engn Phys Inst, St Petersburg State Polytech Univ, Russian Acad Sci, Inst Technol Problems Microelect & Ultrapure Mat, Russian State Technol Univ DE graphite; chemical sputtering; surface modification; surface damage ID ATJ GRAPHITE; D-IONS; CARBON; BOMBARDMENT; EROSION; PLASMA; IMPACT; YIELDS; FILMS AB We present experimental methane production yields for H+, H-2(+), H-3(+), and D-2(+) ions incident on ATJ graphite in the energy range 10 - 250 eV/H. Below about 60 eV/H, the molecular H species give higher methane yields/H when compared with isovelocity H+, similar to our earlier measurements for incident deuterium atomic and molecular ions. For both D and H atomic and molecular projectiles, the yields/atom coalesce onto a single curve below projectile energies of similar to 60eV/atom, when plotted as a function of maximum energy transfer, under the assumption that, below this energy, the incident molecular species are largely undissociated when undergoing C - C bond breaking collisions during their collision cascade and thus produce more damage. Raman spectroscopy of a graphite sample exposed to high fluences of D+ and D-3(+) beams at high and low energies qualitatively confirmed the assumption that more surface damage is produced by the low-energy incident molecular species than by isovelocity atomic ions. While the two high-energy beam-exposed spots showed similar damage, the low-energy molecular-beam-exposed spot showed slightly more damage than the corresponding D+-beam-exposed spot. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Meyer, F. W.; Zhang, H.; Krause, H. F.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Lance, M. J.] Oak Ridge Natl Lab, MSTD Div, Oak Ridge, TN 37831 USA. RP Meyer, FW (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM meyerfw@ornl.gov RI Lance, Michael/I-8417-2016 OI Lance, Michael/0000-0001-5167-5452 NR 25 TC 7 Z9 7 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0042-207X J9 VACUUM JI Vacuum PD MAY 2 PY 2008 VL 82 IS 9 BP 880 EP 887 DI 10.1016/j.vacuum.2007.12.010 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 300KV UT WOS:000255823600003 ER PT J AU Huang, W Ji, M Dong, CD Gu, X Wang, LM Gong, XG Wang, LS AF Huang, Wei Ji, Min Dong, Chuan-Ding Gu, Xiao Wang, Lei-Ming Gong, Xin Gao Wang, Lai-Sheng TI Relativistic effects and the unique low-symmetry structures of gold nanoclusters SO ACS NANO LA English DT Article DE photoelectron spectroscopy; gold clusters; density functional theory; structure-function relationship; electronic structure ID TRANSITION-METAL CLUSTERS; AU; FULLERENE; OXIDATION; NANOPARTICLE; CATALYSTS; AU-34(-); CAGES; AU-32; AG AB The atomic structures of bare gold clusters provide the foundation to understand the enhanced catalytic properties of supported gold nanoparticles. However, the richness of diverse structures and the strong relativistic effects have posed considerable challenges for a systematic understanding of gold clusters with more than 20 atoms. We use photoelectron spectroscopy of size-selected anions, in combination with first principles calculations, to elucidate the structures of gold nanoclusters; in a critical size regime from 55 to 64 atoms (1.1-1.3 nm in diameter). Au-55(-) is found to be a nonicosahedral disordered cluster as a result of relativistic effects that induce strong surface contractions analogous to bulk surface reconstructions, whereas low-symmetry core-shell-type structures are found for Au-56(-) to Au-64(-). Au-58 exhibits a major electron-shell closing and is shown to possess a low-symmetry, but nearly spherical structure with a large energy gap. Clear spectroscopic and computational evidence has been observed, showing that Au-58(-) is a highly robust cluster and additional atoms are simply added to its surface from Au-59(-) to Au-64(-) without inducing significant structural changes. The unique low-symmetry structures characteristic of gold nanoclusters due to the strong relativistic effects allow abundant surface defects sites, providing a key structure-function relationship to understand the catalytic capabilities of gold nanoparticles. C1 [Huang, Wei; Ji, Min; Dong, Chuan-Ding; Gu, Xiao; Gong, Xin Gao] Fudan Univ, Surface Phys Lab, Shanghai 200433, Peoples R China. [Huang, Wei; Ji, Min; Dong, Chuan-Ding; Gu, Xiao; Gong, Xin Gao] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Huang, Wei; Wang, Lei-Ming; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Wang, Lai-Sheng] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA USA. RP Gong, XG (reprint author), Fudan Univ, Surface Phys Lab, Shanghai 200433, Peoples R China. EM xggong@fudan.edu.cn; ls.wang@pnl.gov RI gong, xingao /B-1337-2010; Wang, Leiming/A-3937-2011; gong, xingao/D-6532-2011 NR 39 TC 83 Z9 83 U1 3 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAY PY 2008 VL 2 IS 5 BP 897 EP 904 DI 10.1021/nn800074b PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 306FP UT WOS:000256234000015 PM 19206486 ER PT J AU Zhou, HJ Wong, SS AF Zhou, Hongjun Wong, Stanislaus S. TI A facile and mild synthesis of 1-D ZnO, CuO, and alpha-Fe2O3 nanostructures and nanostructured arrays SO ACS NANO LA English DT Article DE nanowire; nanotube; template; array; zinc oxide; copper oxide; hematite ID SENSITIZED SOLAR-CELLS; OXIDE NANOTUBE ARRAYS; NANOWIRE ARRAYS; ZINC-OXIDE; PIEZOELECTRIC NANOGENERATORS; ELECTROCHEMICAL PROPERTIES; ELECTRICAL-PROPERTIES; NANOCRYSTALLINE ZNO; MAGNETIC-PROPERTIES; OPTICAL-PROPERTIES AB ZnO nanowires, CuO nanowires, and alpha-Fe2O3 nanotubes as well as their corresponding arrays have been successfully synthesized via a low cost, generalizable, and simplistic template method. Diameters of one-dimensional (1-D) metal oxide nanostructures (similar to 60-260 nm), measuring micrometers in length, can be reliably and reproducibly controlled by the template pore channel dimensions. Associated vertically aligned arrays have been attached to the surfaces of a number of geometrically significant substrates, such as curved plastic and glass rod motifs. The methodology reported herein relies on the initial formation of an insoluble metal hydroxide precursor, initially resulting from the reaction of the corresponding metal solution and sodium hydroxide, and its subsequent transformation under mild conditions into the desired metal oxide nanostructures. Size- and shape-dependent optical, magnetic, and catalytic properties of as-prepared 1-D metal oxides were investigated and noted to be mainly comparable to or better than the associated properties of the corresponding bulk oxides. A plausible mechanism for as-observed wire and tube-like motifs is also discussed. C1 [Zhou, Hongjun; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM sswong@notes.cc.sunysb.edu RI Zhou, Hongjun/A-1304-2011 NR 88 TC 108 Z9 110 U1 14 U2 152 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAY PY 2008 VL 2 IS 5 BP 944 EP 958 DI 10.1021/nn700428x PG 15 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 306FP UT WOS:000256234000021 PM 19206492 ER PT J AU Shabalovskaya, S Anderegg, J Van Humbeeck, J AF Shabalovskaya, S. Anderegg, J. Van Humbeeck, J. TI Critical overview of Nitinol surfaces and their modifications for medical applications SO ACTA BIOMATERIALIA LA English DT Review DE Nitinol; surface modifications; biocompatibility; corrosion; Ni release ID SHAPE-MEMORY ALLOYS; IMMERSION ION-IMPLANTATION; NICKEL-TITANIUM ALLOY; PALMAZ-SCHATZ STENTS; CORROSION-RESISTANCE; ORTHODONTIC ARCHWIRES; MECHANICAL-PROPERTIES; CORONARY-ARTERIES; BIOCOMPATIBILITY; BEHAVIOR AB Nitinol, a group of nearly equiatomic shape memory and superelastic NiTi alloys, is being extensively explored for medical applications. Release of Ni in the human body, a potential problem with Nitinol implant devices, has stimulated a great deal of research on its surface modifications and coatings. In order to use any of the developed surfaces in implant designs, it is important to understand whether they really have advantages over bare Nitinol. This paper overviews the current situation, discusses the advantages and disadvantages of new surfaces as well as the limitations of the studies performed. It presents a comprehensive analysis of surface topography, chemistry, corrosion behavior, nickel release and biological responses to Nitinol surfaces modified mechanically or using such methods as etching in acids and alkaline solutions, electropolishing, heat and ion beam treatments, boiling in water and autoclaving, conventional and ion plasma implantations, laser melting and bioactive coating deposition. The analysis demonstrates that the presently developed surfaces vary in thickness from a few nanometers to micrometers, and that they can effectively prevent Ni release if the surface integrity is maintained under strain and if no Ni-enriched sub-layers are present. Whether it is appropriate to use various low temperature pretreatment protocols (<= 160 degrees C) developed originally for pure titanium for Nitinol surface modifications and coatings is also discussed. The importance of selection of original Nitinol surfaces with regard to the performance of coatings and comparative performance of controls in the studies is emphasized. Considering the obvious advantages of bare Nitinol surfaces for superelastic implants, details of their preparation are also outlined. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Shabalovskaya, S.; Anderegg, J.] US DOE, Ames Lab, Ames, IA 50011 USA. [Shabalovskaya, S.; Van Humbeeck, J.] Katholieke Univ Leuven, B-3001 Louvain, Belgium. RP Shabalovskaya, S (reprint author), US DOE, Ames Lab, Room 324,Wiehelm Hall, Ames, IA 50011 USA. EM svetinol@yahoo.com NR 108 TC 229 Z9 237 U1 13 U2 111 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 J9 ACTA BIOMATER JI Acta Biomater. PD MAY PY 2008 VL 4 IS 3 BP 447 EP 467 DI 10.1016/j.actbio.2008.01.013 PG 21 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 299YC UT WOS:000255790500001 PM 18328796 ER PT J AU Terwilliger, TC Grosse-Kunstleve, RW Afonine, PV Moriarty, NW Adams, PD Read, RJ Zwart, PH Hung, LW AF Terwilliger, Thomas C. Grosse-Kunstleve, Ralf W. Afonine, Pavel V. Moriarty, Nigel W. Adams, Paul D. Read, Randy J. Zwart, Peter H. Hung, Li-Wei TI Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID II FRUCTOSE-1,6-BISPHOSPHATE ALDOLASE; STATISTICAL DENSITY MODIFICATION; MAXIMUM-LIKELIHOOD; CRYSTAL-STRUCTURE; MOLECULAR REPLACEMENT; VALIDATION; RESOLUTION; PROTEASE; SOFTWARE; COMPLEX AB A procedure for carrying out iterative model building, density modification and refinement is presented in which the density in an OMIT region is essentially unbiased by an atomic model. Density from a set of overlapping OMIT regions can be combined to create a composite 'iterative-build' OMIT map that is everywhere unbiased by an atomic model but also everywhere benefiting from the model-based information present elsewhere in the unit cell. The procedure may have applications in the validation of specific features in atomic models as well as in overall model validation. The procedure is demonstrated with a molecular-replacement structure and with an experimentally phased structure and a variation on the method is demonstrated by removing model bias from a structure from the Protein Data Bank. C1 [Terwilliger, Thomas C.; Hung, Li-Wei] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Moriarty, Nigel W.; Adams, Paul D.; Zwart, Peter H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Read, Randy J.] Univ Cambridge, Dept Haematol, Cambridge CB2 0XY, England. RP Terwilliger, TC (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM terwilliger@lanl.gov RI Read, Randy/L-1418-2013; Terwilliger, Thomas/K-4109-2012; Adams, Paul/A-1977-2013; OI Read, Randy/0000-0001-8273-0047; Terwilliger, Thomas/0000-0001-6384-0320; Adams, Paul/0000-0001-9333-8219; Hung, Li-Wei/0000-0001-6690-8458 FU NIGMS NIH HHS [P01 GM063210-070002, 1P01 GM063210, P01 GM063210, P01 GM063210-010002, P01 GM063210-020002, P01 GM063210-060002]; Wellcome Trust NR 37 TC 57 Z9 57 U1 0 U2 5 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD MAY PY 2008 VL 64 BP 515 EP 524 DI 10.1107/S0907444908004319 PN 5 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 289TX UT WOS:000255077900006 PM 18453687 ER PT J AU DeFouw, JD Quintana, JP Dunand, DC AF DeFouw, John D. Quintana, John P. Dunand, David C. TI In situ X-ray synchrotron diffraction study of MgB2 synthesis from elemental powders SO ACTA MATERIALIA LA English DT Article DE powder processing; chemical synthesis; X-ray diffraction; superconductor; magnesium diboride ID CRITICAL-CURRENT DENSITY; PHASE-TRANSFORMATIONS; KINETICS; WIRES; SUPERCONDUCTIVITY; RADIATION; GROWTH; TAPE AB The kinetics of MgB2 synthesis is studied in situ by synchrotron X-ray diffraction, using pressed compacts of 200-400 Pin magnesium powders mixed with three types of submicrometer, amorphous, high-purity boron powders. Reaction times for commercially available and plasma-synthesized boron powders decreases from 100 to 2 min as temperature increases from 670 to 900 degrees C. They can be described by diffusion-controlled models of a reacting sphere with kinetics characterized by diffusion coefficients increasing with temperature from 2 x 10(-17) to 3 x 10(-16) m(2) s(-1), with activation energies of 123-143 U mol(-1). Plasma-synthesized boron powders doped with 7.4 at.% carbon show no significant differences in reaction kinetics as compared to undoped powders. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [DeFouw, John D.; Quintana, John P.; Dunand, David C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Quintana, John P.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Dunand, DC (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM dunand@northwestern.edu RI Dunand, David/B-7515-2009; OI Dunand, David/0000-0001-5476-7379 NR 32 TC 13 Z9 13 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAY PY 2008 VL 56 IS 8 BP 1680 EP 1688 DI 10.1016/j.actamat.2007.12.014 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 302TY UT WOS:000255993800003 ER PT J AU Woo, W Choo, H Prime, MB Feng, Z Clausen, B AF Woo, W. Choo, H. Prime, M. B. Feng, Z. Clausen, B. TI Microstructure, texture and residual stress in a friction-stir-processed AZ31B magnesium alloy SO ACTA MATERIALIA LA English DT Article DE magnesium alloys; friction-stir welding; residual stress; neutron diffraction; contour method ID 6061-T6 ALUMINUM-ALLOY; NEUTRON-DIFFRACTION; CONTOUR METHOD; MECHANICAL-PROPERTIES; GRAIN-SIZE; WELD; REFINEMENT; PARAMETER; PLATE; TOOL AB Spatial variations of microstructure, hardness, chemical composition, tensile behavior, texture and residual stresses were investigated in a friction-stir-processed (FSP) AZ31B magnesium alloy. The residual stresses were measured using two different methods: neutron diffraction and the contour method. No significant variations in the hardness and chemical compositions were found in the FSP zones, including the severely deformed stir zone (SZ), which showed a finer grain size compared to the heat-affected zone and base material. On the other hand, significant changes in the tensile yield strength, texture, and residual stresses were observed in the FSP zones. The relationship between the texture variations and yield strength reduction; and its influence on the decrease in the residual stress near the SZ is discussed. Finally, the residual stresses measured by neutron diffraction and the contour method are compared and the effect of the texture on neutron diffraction residual stress measurements is discussed. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Woo, W.; Choo, H.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Woo, W.; Choo, H.; Feng, Z.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Prime, M. B.] Los Alamos Natl Lab, Anal & Predict Grp, Los Alamos, NM 87545 USA. [Clausen, B.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Choo, H (reprint author), Univ Tennessee, Dept Mat Sci & Engn, 319 Dougherty Engn Bldg, Knoxville, TN 37996 USA. EM hchoo@utk.edu RI Choo, Hahn/A-5494-2009; Feng, Zhili/H-9382-2012; Clausen, Bjorn/B-3618-2015; OI Choo, Hahn/0000-0002-8006-8907; Feng, Zhili/0000-0001-6573-7933; Clausen, Bjorn/0000-0003-3906-846X; WOO, Wanchuck/0000-0003-0350-5357; Prime, Michael/0000-0002-4098-5620 NR 50 TC 85 Z9 88 U1 7 U2 52 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAY PY 2008 VL 56 IS 8 BP 1701 EP 1711 DI 10.1016/j.actamat.2007.12.020 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 302TY UT WOS:000255993800005 ER PT J AU Webb, EB Hoyt, JJ AF Webb, E. B., III Hoyt, J. J. TI Molecular dynamics study of liquid metal infiltration during brazing SO ACTA MATERIALIA LA English DT Article DE liquid infiltration; brazing; metals; wetting; MD simulations; molecular dynamics ID EMBEDDED-ATOM METHOD; BI-SN SYSTEM; ATOMISTIC SIMULATIONS; EQUILIBRIUM; CU; ADSORPTION; IMBIBITION; KINETICS; FLOW; AG AB Molecular dynamics (MD) simulations are presented to investigate the rate of infiltration of liquid Cu through a channel in crystalline Ni. Two temperatures, T= 1750 K and 1500 K, are studied using two types of simulations: non-dissolutive (ND), where Ni atoms are held fixed, and dissolutive (D), where Ni atoms relax according to M D equations of motion. At T = 1500 K the penetration rate agrees well with theoretical models based on capillary forces, regardless of Ni dissolution behavior. At T= 1750 K data cannot be explained based solely on capillarity; however, this discrepancy is remedied by including an additional driving force for infiltration that is directly proportional to dissolution rate. A model for dissolution rate as a function of liquid composition and temperature is presented. For Ni dissolving into pure Cu(l) the dissolution rate exhibits Arrhenius temperature dependence and this is used to explain differences in infiltration behavior at the two temperatures studied. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Webb, E. B., III] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hoyt, J. J.] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L7, Canada. RP Webb, EB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ebwebb@sandia.gov NR 35 TC 6 Z9 6 U1 2 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAY PY 2008 VL 56 IS 8 BP 1802 EP 1812 DI 10.1016/j.actamat.2007.12.060 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 302TY UT WOS:000255993800015 ER PT J AU Jungk, JM Michael, JR Prasad, SV AF Jungk, J. M. Michael, J. R. Prasad, S. V. TI The role of substrate plasticity on the tribological behavior of diamond-like nanocomposite coatings SO ACTA MATERIALIA LA English DT Article DE coatings; EBSD; wear ID FINITE-ELEMENT ANALYSIS; MECHANICAL-PROPERTIES; TUNGSTEN DISULFIDE; LIGA NICKEL; STRESSES; COMPOSITES; FRICTION; CONTACT; CARBIDE; SILICON AB Finite-element modeling (FEM) was used to predict the contact stress at which the transition from elastic to plastic deformation occurs in a metallic substrate underneath a hard tribological coating. Using model systems of diamond-like nanocomposite (DLN) coatings on electroformed Ni, NiMn alloy and Inconel 718, friction measurements were made at contact stresses ranging from 540 to 1720 MPa. Cross-sections of wear scars suitable for visualization of friction-induced plastic deformation in the substrate were prepared by focused ion beam microscopy and analyzed by electron backscatter diffraction. At contact stresses below the FEM-predicted elasticplastic limit, the coefficient of friction decreased linearly with increase in contact stress, suggesting that interfacial shear is the major mechanism of friction in DLN. Contact stresses above the FEM-predicted elastic-plastic limit resulted in plastic deformation of the metallic substrate, and in extreme cases fracture and removal of the coating resulting in a sudden increase in friction. Published by Elsevier Ltd on behalf of Acta Materialia. Inc. C1 [Jungk, J. M.; Michael, J. R.; Prasad, S. V.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Prasad, SV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM svprasa@sandia.gov NR 28 TC 22 Z9 24 U1 5 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD MAY PY 2008 VL 56 IS 9 BP 1956 EP 1966 DI 10.1016/j.actamat.2007.12.048 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 304WW UT WOS:000256140800005 ER PT J AU Santala, MK Glaeser, AM AF Santala, Melissa K. Glaeser, Andreas M. TI Rayleigh instabilities in crystalline solids: Evolution of finite-aspect-ratio pore channels in sapphire SO ACTA MATERIALIA LA English DT Article DE Rayleigh instabilities; capillary phenomena; surface energy (anisotropy); crystalline oxides; lithography ID SURFACE-ENERGY-ANISOTROPY; ION-IMPLANTED SAPPHIRE; CRACK-LIKE FLAWS; MORPHOLOGICAL EVOLUTION; THERMAL-STABILITY; POLYCRYSTALLINE NANOWIRES; WULFF SHAPE; MICRODESIGNED INTERFACES; ELEVATED-TEMPERATURES; INTERNAL CAVITIES AB The morphological evolution of lithographically introduced high-aspect-ratio pore channels in sapphire during anneals at 1700 degrees C was examined. The pore-channel aspect ratio and the crystallographic orientation of the channel axis within the m{1 0 1 0} plane were systematically varied over wide limits. Of the 12 crystallographically distinct channel orientations sampled, all exhibited evolution characteristics inconsistent with expectations for a material with isotropic surface energy. Those oriented such that the channel could be either fully or partially bounded by low-index surfaces that are part of the Wulff shape of sapphire were most strongly stabilized against breakup into multiple pores. Relative to prior work, in which channels were introduced into the stable c(0 0 0 1) plane of sapphire, pore channels introduced into the unstable m{1 0 1 0} plane were generally less resistant to breakup, and the transition from formation of a single void to the formation of two or more pores occurred at significantly smaller length-to-radius ratios. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Glaeser, Andreas M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Ceram Sci Program, Berkeley, CA 94720 USA. RP Glaeser, AM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM agiaeser@sapphire.berkeley.edu RI Santala, Melissa/K-6871-2013; OI Santala, Melissa/0000-0002-5189-5153 NR 64 TC 11 Z9 11 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAY PY 2008 VL 56 IS 9 BP 1967 EP 1980 DI 10.1016/j.actamat.2007.12.054 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 304WW UT WOS:000256140800006 ER PT J AU Mishra, S Lienert, TJ Johnson, MQ DebRoy, T AF Mishra, S. Lienert, T. J. Johnson, M. Q. DebRoy, T. TI An experimental and theoretical study of gas tungsten arc welding of stainless steel plates with different sulfur concentrations SO ACTA MATERIALIA LA English DT Article DE stainless steel; dissimilar sulfur concentrations; welding ID HEAT-TRANSFER; SURFACE-TENSION; FLUID-FLOW; FIELD; METAL; POOL AB During fusion welding, the presence of sulfur in steel often affects heat and fluid flow in the weld pool and its geometry. While the role of sulfur during welding of stainless steel plates with the same sulfur content is well understood, welding of stainless steel plates containing different concentrations of sulfur has not yet received proper attention. Here we report an experimental and modeling investigation of gas tungsten arc butt welding of stainless steel plates containing different sulfur concentrations. The main variables studied were sulfur concentrations in the two plates, welding current and welding speed. The results show significant shift of the fusion zone toward the low sulfur steel. The asymmetric fusion zone profile with respect to the original joint interface could be quantitatively explained through numerical modeling of heat transfer and fluid flow considering a bead shift observed experimentally. (c) 2008 Published by Elsevier Ltd on behalf of Acta Materialia Inc. C1 [DebRoy, T.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Lienert, T. J.; Johnson, M. Q.] Los Alamos Natl Lab, Met Sci & Technol Met Grp, Los Alamos, NM USA. [Mishra, S.] Indian Inst Technol, Dept Met Engn & Mat Sci, Bombay 400076, Maharashtra, India. RP DebRoy, T (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM debroy@psu.edu RI DebRoy, Tarasankar/A-2106-2010 NR 31 TC 32 Z9 34 U1 4 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAY PY 2008 VL 56 IS 9 BP 2133 EP 2146 DI 10.1016/j.actamat.2008.01.028 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 304WW UT WOS:000256140800021 ER PT J AU Jacobs, M AF Jacobs, Mike TI United States, China announce joint coal mine methane project SO ADVANCED MATERIALS & PROCESSES LA English DT News Item C1 US DOE, Washington, DC USA. RP Jacobs, M (reprint author), US DOE, Washington, DC USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU ASM INT PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 0882-7958 J9 ADV MATER PROCESS JI Adv. Mater. Process. PD MAY PY 2008 VL 166 IS 5 BP 25 EP 25 PG 1 WC Materials Science, Multidisciplinary SC Materials Science GA 300CP UT WOS:000255802200028 ER PT J AU Routbort, J AF Routbort, Jules TI Superplastic deformation joins ceramics invisibly SO ADVANCED MATERIALS & PROCESSES LA English DT News Item C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Routbort, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM routbort@anl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU ASM INT PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 0882-7958 J9 ADV MATER PROCESS JI Adv. Mater. Process. PD MAY PY 2008 VL 166 IS 5 BP 29 EP 29 PG 1 WC Materials Science, Multidisciplinary SC Materials Science GA 300CP UT WOS:000255802200038 ER PT J AU Fowler, KR Reese, JP Kees, CE Dennis, JE Kelley, CT Miller, CT Audet, C Booker, AJ Couture, G Darwin, RW Farthing, MW Finkel, DE Gablonsky, JM Gray, G Kolda, TG AF Fowler, K. R. Reese, J. P. Kees, C. E. Dennis, J. E., Jr. Kelley, C. T. Miller, C. T. Audet, C. Booker, A. J. Couture, G. Darwin, R. W. Farthing, M. W. Finkel, D. E. Gablonsky, J. M. Gray, G. Kolda, T. G. TI Comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems SO ADVANCES IN WATER RESOURCES LA English DT Article DE sampling methods; genetic algorithm; local minima; nondifferentiable objective function ID PARALLEL PATTERN SEARCH; INTERIOR-POINT METHOD; GENETIC ALGORITHM; CONSTRAINED OPTIMIZATION; NONLINEAR OPTIMIZATION; OPTIMAL-DESIGN; CONVERGENCE; MANAGEMENT; SYSTEMS AB Management decisions involving groundwater supply and remediation often rely on optimization techniques to determine an effective strategy. We introduce several derivative-free sampling methods for solving constrained optimization problems that have not yet been considered in this field, and we include a genetic algorithm for completeness. Two well-documented community problems are used for illustration purposes: a groundwater supply problem and a hydraulic capture problem. The community problems were found to be challenging applications due to the objective functions being nonsmooth, nonlinear, and having many local minima. Because the results were found to be sensitive to initial iterates for some methods, guidance is provided in selecting initial iterates for these problems that improve the likelihood of achieving significant reductions in the objective function to be minimized. In addition, we suggest some potentially fruitful areas for future research. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Fowler, K. R.] Clarkson Univ, Dept Math & Comp Sci, Potsdam, NY 13699 USA. [Reese, J. P.] Florida State Univ, Sch Computat Sci, Dirac Sci Lab, Tallahassee, FL 32306 USA. [Kees, C. E.; Farthing, M. W.] USA, Engn Res & Dev Stn, ATTN CEERD HF HG, Vicksburg, MS 39180 USA. [Dennis, J. E., Jr.; Booker, A. J.; Gablonsky, J. M.] Boeing Co, Seattle, WA 98124 USA. [Kelley, C. T.; Darwin, R. W.] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA. [Miller, C. T.] Univ N Carolina, Dept Environm Sci & Engn, Chapel Hill, NC 27599 USA. [Audet, C.; Couture, G.] Ecole Polytech, GERAD, Montreal, PQ H3C 3A7, Canada. [Finkel, D. E.] MIT, Lincoln Lab, Lexington, MA 02420 USA. [Gray, G.; Kolda, T. G.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Fowler, KR (reprint author), Clarkson Univ, Dept Math & Comp Sci, Potsdam, NY 13699 USA. EM kfowler@clarkson.edu; jreese@scs.fsu.edu; christopher.e.kees@erdc.usace.army.mil; dennis@rice.edu; tim_kelley@ncsu.edu; casey_miller@unc.edu; charlesa@gerad.ca; andrewj.booker@boeing.com; gilles.couture@gerad.ca; rwdarwin@unity.ncsu.edu; farthing@erdc.usace.army.mil; dfinkel@ll.mit.edu; joerg.m.gablonsky@boeing.com; gagray@sandia.gov; tgkolda@sandia.gov RI Dennis, John/A-6910-2008; Kolda, Tamara/B-1628-2009; Miller, Cass T./I-6613-2012; Audet, Charles/A-7278-2010 OI Kolda, Tamara/0000-0003-4176-2493; Miller, Cass T./0000-0001-6082-9273; Audet, Charles/0000-0002-3043-5393 NR 72 TC 48 Z9 48 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD MAY PY 2008 VL 31 IS 5 BP 743 EP 757 DI 10.1016/j.advwatres.2008.01.010 PG 15 WC Water Resources SC Water Resources GA 302UP UT WOS:000255995600002 ER PT J AU Maxwell, RM Kollet, SJ AF Maxwell, Reed M. Kollet, Stefan J. TI Quantifying the effects of three-dimensional subsurface heterogeneity on Hortonian runoff processes using a coupled numerical, stochastic approach SO ADVANCES IN WATER RESOURCES LA English DT Article DE runoff; runon; subsurface heterogeneity; stochastic processes; ergodic behavior; coupled systems; numerical simulation ID OVERLAND-FLOW; SPATIAL VARIABILITY; VIC-2L MODEL; SURFACE; INFILTRATION; TRANSPORT AB The impact of three-dimensional subsurface heterogeneity in the saturated hydraulic conductivity on hillslope runoff generated by excess infiltration (so-called Hortonian runoff) is examined. A fully coupled, parallel subsurface-overland flow model is used to simulate runoff from an idealized hillslope. Ensembles of correlated, Gaussian random fields of saturated hydraulic conductivity are used to create uncertainty in spatial structure. A large number of cases are simulated in a parametric manner with the variance of the hydraulic conductivity varied over orders of magnitude. These cases include rainfall rates above, equal and below the geometric mean of the hydraulic conductivity distribution. These cases are also compared to theoretical representations of runoff production based on simple assumptions regarding (1) the rainfall rate and the value of hydraulic conductivity in the surface cell using a spatially-indiscriminant approach; and (2) a percolation-theory type approach to incorporate so-called runon. Simulations to test the ergodicity of hydraulic conductivity on hillslope runoff are also performed. Results show that three-dimensional stochastic representations of the subsurface hydraulic conductivity can create shallow perching, which has an important effect on runoff behavior that is different than previous two-dimensional analyses. The simple theories are shown to be very poor predictors of the fraction of saturated area that might runoff due to excess infiltration. It is also shown that ergodicity is reached only for a large number of integral scales (similar to 30) and not achieved for cases where the rainfall rate is less than the geometric mean of the saturated hydraulic conductivity. Published by Elsevier Ltd. C1 [Maxwell, Reed M.; Kollet, Stefan J.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Sci Dept, Livermore, CA 94550 USA. RP Maxwell, RM (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Sci Dept, L-208,7000 E Ave, Livermore, CA 94550 USA. EM maxwell5@llnl.gov RI Maxwell, Reed/D-7980-2013 OI Maxwell, Reed/0000-0002-1364-4441 NR 21 TC 56 Z9 56 U1 0 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD MAY PY 2008 VL 31 IS 5 BP 807 EP 817 DI 10.1016/j.advwatres.2008.01.020 PG 11 WC Water Resources SC Water Resources GA 302UP UT WOS:000255995600006 ER PT J AU Stringfellow, WT Hanlon, JS Borglin, SE Quinn, NWT AF Stringfellow, William T. Hanlon, Jeremy S. Borglin, Sharon E. Quinn, Nigel W. T. TI Comparison of wetland and agriculture drainage as sources of biochemical oxygen demand to the San Joaquin River, California SO AGRICULTURAL WATER MANAGEMENT LA English DT Article DE BOD; algae; TMDL; agricultural drainage; wetland; water quality ID WATER-QUALITY AB For many years, the San Joaquin River (SJR) has had low dissolved oxygen conditions intermittently during the late summer and early fall. The low dissolved oxygen conditions are impacting critical fish habitat and the SJR is being regulated under a state of California remediation plan that includes the development of a total maximum daily load (TMDL) allocation for oxygen demanding substances. In support of the development of a scientific TMDL allocation, studies are being conducted to characterize water quality in the many tributaries of the SJR. This study identified the sources of biochemical oxygen demand (BOD) in two western tributaries of the SJR, Mud Slough and Salt Slough, and measured the loads of BOD, algae, and ammonia entering the SJR from wetland and agricultural sources. Mud and Salt Sloughs drain the Grassland Watershed. The watershed contains seasonal wetlands, irrigated farmland, and other agricultural lands. This drainage is under close regulatory scrutiny, because it produces a majority of the selenium and boron entering the SJR. In this study, wetland and irrigated agricultural drainage were sampled separately and a comparison was made to determine differences in water quality. In addition, water entering the study area was compared to water exiting the study area to determine the effect of water use in the region on water quality. This study demonstrated that BOD loads from the Grassland Watershed to the SJR were proportional to flow during June-October, the most critical time for dissolved oxygen deficits in the lower SJR. This indicates that Mud and Salt Sloughs are not producing more BOD than other tributaries in the region that are not under close regulatory scrutiny. The BOD concentration of wetland drainage is higher than that of agricultural drainage, but the higher agricultural drainage flows result in a higher mass loading of BOD. Wetland flooding and irrigation of crops both had a negative impact on water quality. Algal growth was identified as the major source of BOD in agricultural drainage and locations where BOD control could potentially be implemented were identified. (C) 2007 Elsevier B.V. All rights reserved. C1 [Stringfellow, William T.; Borglin, Sharon E.; Quinn, Nigel W. T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. [Stringfellow, William T.; Hanlon, Jeremy S.; Borglin, Sharon E.] Univ Pacific, Environm Engn Res Program, Sch Engn & Comp Sci, Stockton, CA 95211 USA. RP Stringfellow, WT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, 1 Cyclotron Rd,MS 70A-3317, Berkeley, CA 94720 USA. EM wstringfellow@lbl.gov RI Stringfellow, William/O-4389-2015; Borglin, Sharon/I-1013-2016; Quinn, Nigel/G-2407-2015 OI Stringfellow, William/0000-0003-3189-5604; Quinn, Nigel/0000-0003-3333-4763 NR 17 TC 6 Z9 6 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3774 J9 AGR WATER MANAGE JI Agric. Water Manage. PD MAY PY 2008 VL 95 IS 5 BP 527 EP 538 DI 10.1016/j.agwat.2007.12.007 PG 12 WC Agronomy; Water Resources SC Agriculture; Water Resources GA 304WE UT WOS:000256139000003 ER PT J AU McFarland, J Mahadevan, S Romero, V Swiler, L AF McFarland, John Mahadevan, Sankaran Romero, Vicente Swiler, Laura TI Calibration and uncertainty analysis for computer simulations with multivariate output SO AIAA JOURNAL LA English DT Article ID KRIGING MODELS; DESIGN; OPTIMIZATION; PREDICTION; APPROXIMATIONS AB Model calibration analysis is concerned with the estimation of unobservable modeling parameters using observations of system response. When the model being calibrated is an expensive computer simulation, special techniques such as surrogate modeling and Bayesian inference are often fruitful. In this paper, we show how the flexibility of the Bayesian calibration approach can be exploited to account for a wide variety of uncertainty sources in the calibration process. We propose a straightforward approach for simultaneously handling Gaussian and non-Gaussian errors, as well as a framework for studying the effects of prescribed uncertainty distributions for model inputs that are not treated as calibration parameters. Further, we discuss how Gaussian process surrogate models can be used effectively when simulator response may be a function of time and/or space (multivariate output). The proposed methods are illustrated through the calibration of a simulation of thermally decomposing foam. C1 [McFarland, John] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA. [Mahadevan, Sankaran] Vanderbilt Univ, Dept Civil & Environm Engn & Mech Engn, Nashville, TN 37235 USA. [Romero, Vicente] Sandia Natl Labs, Model Validat & Uncertainty Quantificat Dept, Albuquerque, NM 87185 USA. [Swiler, Laura] Sandia Natl Labs, Optimizat & Uncertainty Estimat Dept, Albuquerque, NM 87185 USA. RP McFarland, J (reprint author), Vanderbilt Univ, Dept Mech Engn, 221 Kirkland Hall, Nashville, TN 37235 USA. NR 41 TC 20 Z9 20 U1 2 U2 8 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD MAY PY 2008 VL 46 IS 5 BP 1253 EP 1265 DI 10.2514/1.35288 PG 13 WC Engineering, Aerospace SC Engineering GA 295SJ UT WOS:000255493900022 ER PT J AU Williams, PT AF Williams, Paul T. TI Effects of diet, physical activity and performance, and body weight on incident gout in ostensibly healthy, vigorously active men SO AMERICAN JOURNAL OF CLINICAL NUTRITION LA English DT Article ID SERUM URIC-ACID; RISK-FACTORS; NATIONAL-HEALTH; CONSUMPTION; URATE; HYPERURICEMIA; METABOLISM; EXERCISE; RUNNERS; HYPERTENSION AB Background: Physical activity and cardiorespiratory fitness are not currently recognized as factors related to preventing gout, nor are risk factors for gout in physically active men well understood. Objective: The objective was to identify risk factors for gout in ostensibly healthy, vigorously active men. Design: Incident self-reported gout was compared with baseline diet, body mass index (BMI; in kg/m(2)), physical activity (in km/d run), and cardiorespiratory fitness (in m/s during 10-km footrace) prospectively in 28 990 male runners. Results: Men (n = 228; 0.79%) self-reported incident gout during 7.74 y of follow-up. The risk of gout increased with higher alcohol intake [per 10 g/d; relative risk (RR): 1.19; 95% CI: 1.12. 1.26; P < 0.0001], meat consumption (per servings/d; RR: 1.45; 95% CI: 1.06, 1.92; P = 0.002), and BMI (RR: 1.19; 95% CI: 1.15, 1.23; P < 0.0001) and declined with greater fruit intake (per pieces/d; RR: 0.73; 95% CI: 0.62, 0.84; P < 0.0001), running distance (per km/d; RR: 0.92; 95% CI: 0.88, 0.97; P < 0.001), and fitness (per m/s; RR: 0.55; 95% CI: 0.41, 0.75; P < 0.0001). The RR per 10 g alcohol/d consumed as wine (1.27; P = 0.002), beer (1.19; P < 0.0001), and mixed drinks (1.13; P = 0.18) was not significantly different from each other. Men who consumed >15 g alcohol/d had 93% greater risk than abstainers, and men who averaged >2 pieces fruit/d had 50% less risk than those who ate <0.5 fruit/d. Risk of gout was 16-fold greater for BMI > 27.5 than < 20. Compared with the least active or fit men, those who ran >= 8 km/d or >4.0 m/s had 50% and 65% lower risk of gout, respectively. Lower BMI contributed to the risk reductions associated with distance run and fitness. Conclusion: These findings, based on male runners, suggest that the risk of gout is lower in men who are more physically active, maintain ideal body weight, and consume diets enriched in fruit and limited in meat and alcohol. C1 Ernest Orlando Lawrence Berkeley, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Ernest Orlando Lawrence Berkeley, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU NHLBI NIH HHS [R01 HL072110, HL-072110, HL-45652]; NIDDK NIH HHS [DK-066738, R01 DK066738] NR 43 TC 38 Z9 40 U1 4 U2 15 PU AMER SOC CLINICAL NUTRITION PI BETHESDA PA 9650 ROCKVILLE PIKE, SUBSCRIPTIONS, RM L-3300, BETHESDA, MD 20814-3998 USA SN 0002-9165 J9 AM J CLIN NUTR JI Am. J. Clin. Nutr. PD MAY PY 2008 VL 87 IS 5 BP 1480 EP 1487 PG 8 WC Nutrition & Dietetics SC Nutrition & Dietetics GA 301EZ UT WOS:000255880500049 PM 18469274 ER PT J AU Moses, ME Hou, C Woodruff, WH West, GB Nekola, JC Zuo, WY Brown, JH AF Moses, Melanie E. Hou, Chen Woodruff, William H. West, Geoffrey B. Nekola, Jeffery C. Zuo, Wenyun Brown, James H. TI Revisiting a model of ontogenetic growth: Estimating model parameters from theory and data SO AMERICAN NATURALIST LA English DT Article DE metabolism; allometry; scaling; bioenergetics; ontogeny ID ALLOMETRIC SCALING LAWS; METABOLIC-RATE; ENERGY-REQUIREMENTS; GENERAL-MODEL; BEEF-CATTLE; BODY SIZE; TEMPERATURE; BIOLOGY; EMBRYOS; LIFE AB The ontogenetic growth model (OGM) of West et al. provides a general description of how metabolic energy is allocated between production of new biomass and maintenance of existing biomass during ontogeny. Here, we reexamine the OGM, make some minor modifications and corrections, and further evaluate its ability to account for empirical variation on rates of metabolism and biomass in vertebrates both during ontogeny and across species of varying adult body size. We show that the updated version of the model is internally consistent and is consistent with other predictions of metabolic scaling theory and empirical data. The OGM predicts not only the near universal sigmoidal form of growth curves but also the scaling of the characteristic times of ontogenetic stages in 1/4 M addition to the curvilinear decline in growth efficiency described by Brody. Additionally, the OGM relates the scaling across adults 3/4 M of different species to the scaling of metabolic rate across ontogeny within species. In providing a simple, quantitative description of how energy is allocated to growth, the OGM calls attention to unexplained variation, unanswered questions, and opportunities for future research. C1 [Moses, Melanie E.] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [Moses, Melanie E.; Nekola, Jeffery C.; Zuo, Wenyun; Brown, James H.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Hou, Chen; Woodruff, William H.; West, Geoffrey B.; Brown, James H.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Woodruff, William H.; West, Geoffrey B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Moses, ME (reprint author), Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. EM melaniem@unm.edu; houc@santafe.edu; woody@lanl.gov; gbw@santafe.edu; jnekola@unm.edu; wyzuo@unm.edu; jhbrown@unm.edu OI Hou, Chen/0000-0002-3665-225X FU NIDDK NIH HHS [DK36263] NR 60 TC 62 Z9 64 U1 2 U2 33 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0003-0147 EI 1537-5323 J9 AM NAT JI Am. Nat. PD MAY PY 2008 VL 171 IS 5 BP 632 EP 645 DI 10.1086/587073 PG 14 WC Ecology; Evolutionary Biology SC Environmental Sciences & Ecology; Evolutionary Biology GA 291QW UT WOS:000255212900009 PM 18419571 ER PT J AU Pasilis, SP Kertesz, V Van Berkel, GJ Schulz, M Schorcht, S AF Pasilis, Sofie P. Kertesz, Vilmos Van Berkel, Gary J. Schulz, Michael Schorcht, Susanne TI Using HPTLC/DESI-MS for peptide identification in 1D separations of tryptic protein digests SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE HPTLC; DESI-MS; peptides; mass spectrometry ID DESORPTION ELECTROSPRAY-IONIZATION; THIN-LAYER-CHROMATOGRAPHY; AMBIENT MASS-SPECTROMETRY; INSTRUMENTATION; FORENSICS; CHEMISTRY; BIOLOGY; PLATES AB Desorption electrospray ionization mass spectrometry (DESI-MS) was investigated as a method to detect and identify peptides from tryptic digests of cytochrome c and myoglobin separated on ProteoChrom(R) HPTLC Silica gel 60 F-254s plates and ProteoChrom(R) HPTLC Cellulose sheets. Full-scan mass spectra and data-dependent tandem mass spectra were acquired in separate plate scans and used to identify peptide ions. Peptide distributions along the development lane were mapped for each separated protein digest. Signal levels ranged over several orders of magnitude. In general, highest signal levels were obtained for the peptides with the highest R-f values on a plate, while peptides with very low R-f values were often not detected. Sequence coverages for cytochrome c were 58% for the digest separated on the silica gel plate and 72% for the separation on the cellulose sheet; myoglobin sequence coverages were 62% and 68% on silica gel and cellulose, respectively. Weak correlations between peptide hydrophilicity and R-f values on the silica gel and cellulose plates were found, with the more hydrophilic peptides having lower R-f values. C1 [Pasilis, Sofie P.; Kertesz, Vilmos; Van Berkel, Gary J.] Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. [Schulz, Michael; Schorcht, Susanne] Merck KGaA, Thin Layer Chromatog Lab Performance & Life Sci C, D-64293 Darmstadt, Germany. RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. EM vanberkelgj@ornl.gov RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 NR 19 TC 36 Z9 37 U1 2 U2 13 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD MAY PY 2008 VL 391 IS 1 BP 317 EP 324 DI 10.1007/s00216-008-1874-6 PG 8 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 291HJ UT WOS:000255185300029 PM 18264700 ER PT J AU Baidoo, EEK Benket, PI Neususs, C Pelzing, M Kruppa, G Leary, JA Keasling, JD AF Baidoo, Edward E. K. Benket, Peter I. Neususs, Christian Pelzing, Matthias Kruppa, Gary Leary, Julie A. Keasling, Jay D. TI Capillary electrophoresis-Fourier transform ion cyclotron resonance mass Spectrometry for the identification of cationic metabolites via a pH-mediated stacking-transient isotachophoretic method SO ANALYTICAL CHEMISTRY LA English DT Article ID DESULFOVIBRIO-VULGARIS HILDENBOROUGH; METABOLOMICS APPROACH; QUANTITATIVE-ANALYSIS; ZONE ELECTROPHORESIS; FUNCTIONAL GENOMICS; REDUCING BACTERIUM; SULFATE REDUCTION; ACID; PATHWAY; MS AB Capillary electrophoresis-mass spectrometry (CE-MS) is still widely regarded as an emerging tool in the field of metabolomics and metabolite profiling. A major reason for this is a reported lack of sensitivity of CE-MS when compared to gas chromatography-mass spectrometry GC/MS and liquid chromatography-mass spectrometry. The problems caused by the lack of sensitivity are exacerbated when CE is coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), due to the relatively low data acquisition rate of FT-ICR MS. Here, we demonstrate the use of an online CE sample preconcentration method that uses a combination of pH-mediated stacking and transient isotachophoresis, coupled with FT-ICR MS to improve the overall detection of cationic metabolites in the bacterium Desulfovibrio vulgaris Hildenborough. This method showed a significant increase in signal-to-noise ratio when compared to CE normal sample stacking, while providing good separation efficiency, reproducibility, and linearity. Detection limits for selected amino acids were between 0.1 and 2 mu M. Furthermore, FT-ICR MS detection consistently demonstrated good mass resolution and sub-ppm mass accuracy. C1 [Baidoo, Edward E. K.; Benket, Peter I.; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Baidoo, Edward E. K.; Benket, Peter I.; Keasling, Jay D.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Leary, Julie A.] Univ Calif Davis, Genome Ctr, Davis, CA 92740 USA. [Pelzing, Matthias] Bruker Biosci, Melbourne, Vic, Australia. [Neususs, Christian] Aalen Univ, Aalen, Germany. [Kruppa, Gary] Bruker Daltonics Inc, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 NR 57 TC 45 Z9 53 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAY 1 PY 2008 VL 80 IS 9 BP 3112 EP 3122 DI 10.1021/ac800007q PG 11 WC Chemistry, Analytical SC Chemistry GA 295JX UT WOS:000255471900012 PM 18384203 ER PT J AU McClintock, C Kertesz, V Hettich, RL AF McClintock, Carlee Kertesz, Vilmos Hettich, Robert L. TI Development of an electrochemical oxidation method for probing higher order protein structure with mass spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID DOPED DIAMOND ELECTRODE; GRAPHITE-ELECTRODES; RADICAL PROBE; POSTTRANSLATIONAL MODIFICATIONS; PHOTOCHEMICAL OXIDATION; AMINO-ACIDS; SURFACE; IDENTIFICATION; BEHAVIOR; PEPTIDE AB We report here the novel use of electrochemistry to generate covalent oxidative labels on intact proteins in both non-native and physiologically relevant solutions as a surface mapping probe of higher order protein structure. Two different working electrode types were tested across a range of experimental parameters including voltage, flow rate, and solution electrolyte composition to affect the extent of oxidation on intact proteins, as measured both on-line and off-line with mass spectrometry. Oxidized proteins were collected off-line for proteolytic digestion followed by LC-MS/MS analysis. Peptide MS/MS data were searched with the InsPecT scoring algorithm for 46 oxidative mass shifts previously reported in the literature. Preliminary data showed reasonable agreement between amino acid solvent accessibility and the resulting oxidation status of these residues in aqueous buffer, while more buried residues were found to be oxidized in non-native solution. Our results indicate that electrochemical oxidation using a boron-doped diamond electrode has the potential to become a useful and easily accessible tool for conducting oxidative surface mapping experiments. C1 [McClintock, Carlee; Hettich, Robert L.] Univ Tennessee, Oak Ridge Natl Lab, Grad Sch Genome Sci & Technol, Oak Ridge, TN 37830 USA. [McClintock, Carlee; Kertesz, Vilmos; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Hettich, RL (reprint author), Univ Tennessee, Oak Ridge Natl Lab, Grad Sch Genome Sci & Technol, 160 Commerce Pk, Oak Ridge, TN 37830 USA. EM hettichrl@ornl.gov RI Kertesz, Vilmos/M-8357-2016; Hettich, Robert/N-1458-2016 OI Kertesz, Vilmos/0000-0003-0186-5797; Hettich, Robert/0000-0001-7708-786X FU NIGMS NIH HHS [R01-GM070754] NR 62 TC 37 Z9 37 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAY 1 PY 2008 VL 80 IS 9 BP 3304 EP 3317 DI 10.1021/ac702493a PG 14 WC Chemistry, Analytical SC Chemistry GA 295JX UT WOS:000255471900033 PM 18351783 ER PT J AU Sommer, GJ Singh, AK Hatch, AV AF Sommer, Greg J. Singh, Anup K. Hatch, Anson V. TI On-chip isoelectric focusing using photopolymerized immobilized pH gradients SO ANALYTICAL CHEMISTRY LA English DT Article ID LINKED POLYACRYLAMIDE-GELS; 2-DIMENSIONAL ELECTROPHORESIS; MICROFLUIDIC DEVICE; PROTEIN SEPARATIONS; INTEGRATION; RESOLUTION; IEF AB We present the first successful adaptation of immobilized pH gradients (IPGs) to the microscale (mu IPGs) using a new method for generating precisely defined polymer gradients on-chip. Gradients of monomer were established via diffusion along 6 mm flow-restricted channel segments. Precise control over boundary conditions and the resulting gradient is achieved by continuous flow of stock solutions through side channels flanking the gradient segment. Once the desired gradient is established, it is immobilized via photopolymerization. Precise gradient formation was verified with spatial and temporal detection of a fluorescent dye added to one of the flanking streams. Rapid (<20 min) isoelectric focusing of several fluorescent pI markers and proteins is demonstrated across pH 3.8-7.0 mu IPGs using both denaturing and nondenaturing conditions, without the addition of carrier ampholytes. The mu IPG format yields improved stability and comparable resolution to prominent on-chip IEF techniques. In addition to rapid, high-resolution separations, the reported mu IPG format is amenable to multiplexed and multidimensional analysis via custom gradients as well as integration with other on-chip separation methods. C1 [Sommer, Greg J.; Singh, Anup K.; Hatch, Anson V.] Sandia Natl Labs, Biosyst Res Dept, Livermore, CA 94551 USA. [Sommer, Greg J.] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. RP Hatch, AV (reprint author), Sandia Natl Labs, Biosyst Res Dept, POB 969,MS 9292, Livermore, CA 94550 USA. EM ahatch@sandia.gov FU NIDCR NIH HHS [U01DE014961] NR 36 TC 19 Z9 19 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD MAY 1 PY 2008 VL 80 IS 9 BP 3327 EP 3333 DI 10.1021/ac702523g PG 7 WC Chemistry, Analytical SC Chemistry GA 295JX UT WOS:000255471900035 PM 18341355 ER PT J AU Pisarski, RD AF Pisarski, Robert D. TI Principles of phase structures in particle physics SO ANNALEN DER PHYSIK LA English DT Book Review DE non-Abelian gauge theories; phase transitions C1 [Pisarski, Robert D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Pisarski, RD (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM pisarski@bnl.gov NR 1 TC 0 Z9 0 U1 0 U2 0 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0003-3804 J9 ANN PHYS-BERLIN JI Ann. Phys.-Berlin PD MAY PY 2008 VL 17 IS 5 BP 350 EP 351 DI 10.1002/andp.200810291 PG 2 WC Physics, Multidisciplinary SC Physics GA 306CO UT WOS:000256226100007 ER PT J AU Zakova, J Talamo, A AF Zakova, Jitka Talamo, Alberto TI Criticality assessment for prismatic high temperature reactors by fuel stochastic Monte Carlo modeling SO ANNALS OF NUCLEAR ENERGY LA English DT Article AB Modeling of prismatic high temperature reactors requires a high precision description due to the triple heterogeneity of the core and also to the random distribution of fuel particles inside the fuel pins. On the latter issue, even with the most advanced Monte Carlo techniques, some approximation often arises while assessing the criticality level: first, a regular lattice of TRISO particles inside the fuel pins and, second, the cutting of TRISO particles by the fuel boundaries. We utilized two of the most accurate Monte Codes: MONK and MCNP, which are both used for licensing nuclear power plants in United Kingdom and in the USA, respectively, to evaluate the influence of the two previous approximations on estimating the criticality level of the Gas Turbine Modular Helium Reactor. The two codes exactly shared the same geometry and nuclear data library, ENDF/B, and only modeled different lattices of TRISO particles inside the fuel pins. More precisely, we investigated the difference between a regular lattice that cuts TRISO particles and a random lattice that axially repeats a region containing over 3000 non-cut particles. We have found that both Monte Carlo codes provide similar excesses of reactivity, provided that they share the same approximations. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Talamo, Alberto] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Zakova, Jitka] Royal Inst Technol, Dept Nucl & Reactor Phys, S-10691 Stockholm, Sweden. RP Talamo, A (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jitka.zakova@neutron.kth.se; alby@anl.gov OI talamo, alberto/0000-0001-5685-0483 NR 17 TC 7 Z9 7 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD MAY PY 2008 VL 35 IS 5 BP 856 EP 860 DI 10.1016/j.anucene.2007.09.007 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 299YM UT WOS:000255791500010 ER PT J AU Zakova, J Talamo, A AF Zakova, Jitka Talamo, Alberto TI Analysis of the reactivity coefficients of the advanced high-temperature reactor for plutonium and uranium fuels SO ANNALS OF NUCLEAR ENERGY LA English DT Article ID MONTE-CARLO AB The conceptual design of the advanced high-temperature reactor (AHTR) has recently been proposed by the Oak Ridge National Laboratory, with the intention to provide and alternative energy source for very high temperature applications. In the present study, we focused on the analyses of the reactivity coefficients of the AHTR core fueled with two types of fuel: enriched uranium and plutonium from the reprocessing of light water reactors irradiated fuel. More precisely, we investigated the influence of the outer graphite reflectors on the multiplication factor of the core, the fuel and moderator temperature reactivity coefficients and the void reactivity coefficient for five different molten salts: NaF, BeF2, LiF, ZrF4 and Li2BeF4 eutectic. In order to better illustrate the behavior of the previous parameters for different core configurations, we evaluated the moderating ratio of the molten salts and the absorption rate of the key fuel nuclides, which, of course, are driven by the neutron spectrum. The results show that the fuel and moderator temperature reactivity coefficients are always negative, whereas the void reactivity coefficient can be set negative provided that the fuel to moderator ratio is optimized (the core is undermoderated) and the moderating ratio of the coolant is large. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Zakova, Jitka] KTH, Royal Inst Technol, Dept Nucl & Reactor Phys, S-10691 Stockholm, Sweden. [Talamo, Alberto] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Talamo, A (reprint author), KTH, Royal Inst Technol, Dept Nucl & Reactor Phys, Roslagstullsbacken 21, S-10691 Stockholm, Sweden. EM jitka.zakova@neutron.kth.se; alby@anl.gov OI talamo, alberto/0000-0001-5685-0483 NR 25 TC 5 Z9 5 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD MAY PY 2008 VL 35 IS 5 BP 904 EP 916 DI 10.1016/j.anucene.2007.09.003 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 299YM UT WOS:000255791500015 ER PT J AU Mangel, W AF Mangel, Walter TI One-third of the surface of the adenovirus proteinase contains potential drug targets via a new paradigm for virion maturation SO ANTIVIRAL RESEARCH LA English DT Meeting Abstract CT 21st International Conference on Antiviral Research CY APR 13-17, 2008 CL Montreal, CANADA SP Int Soc Antiviral Res C1 Brookhaven Natl Lab, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-3542 J9 ANTIVIR RES JI Antiviral Res. PD MAY PY 2008 VL 78 IS 2 MA 45 BP A33 EP A34 DI 10.1016/j.antiviral.2008.01.059 PG 2 WC Pharmacology & Pharmacy; Virology SC Pharmacology & Pharmacy; Virology GA 295PN UT WOS:000255486500037 ER PT J AU Pereira, PM He, Q Valente, FMA Xavier, AV Zhou, JZ Pereira, IAC Louro, RO AF Pereira, Patricia M. He, Qiang Valente, Filipa M. A. Xavier, Antonio V. Zhou, Jizhong Pereira, Ines A. C. Louro, Ricardo O. TI Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis SO ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY LA English DT Article DE bioenergetic metabolism; hydrogen metabolism; microarrays; respiratory complexes; sulphate-reducing bacteria ID SULFATE-REDUCING BACTERIUM; GENE-EXPRESSION ANALYSIS; HMC OPERON; DESULFURICANS ATCC-27774; HYDROGEN METABOLISM; MASS-SPECTROMETRY; ELECTRON-TRANSFER; CYTOCHROME C(3); GROWTH YIELDS; COMPLEX AB Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressed genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe] hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energy metabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered. C1 [Pereira, Patricia M.; Valente, Filipa M. A.; Xavier, Antonio V.; Pereira, Ines A. C.; Louro, Ricardo O.] Univ Nova Lisboa, Inst Tecnol Quim & Biol, P-2781901 Oeiras, Portugal. [He, Qiang; Zhou, Jizhong] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [He, Qiang] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [He, Qiang] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. [Zhou, Jizhong] Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA. [Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Dept Bot & Microbiol, Norman, OK 73019 USA. RP Louro, RO (reprint author), Univ Nova Lisboa, Inst Tecnol Quim & Biol, Av Republ EAN, P-2781901 Oeiras, Portugal. EM louro@itqb.unl.pt RI He, Qiang/G-9061-2011; Pereira, Ines/C-2748-2009; OI He, Qiang/0000-0002-7155-6474; Pereira, Ines/0000-0003-3283-4520; Pereira, Patricia/0000-0002-4828-7632; Louro, Ricardo/0000-0002-2392-6450 NR 51 TC 38 Z9 38 U1 2 U2 23 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0003-6072 EI 1572-9699 J9 ANTON LEEUW INT J G JI Antonie Van Leeuwenhoek PD MAY PY 2008 VL 93 IS 4 BP 347 EP 362 DI 10.1007/s10482-007-9212-0 PG 16 WC Microbiology SC Microbiology GA 275QK UT WOS:000254086500003 PM 18060515 ER PT J AU Lee, PKH Macbeth, TW Sorenson, KS Deeb, RA Alvarez-Cohen, L AF Lee, Patrick K. H. Macbeth, Tarmzen W. Sorenson, Kent S., Jr. Deeb, Rula A. Alvarez-Cohen, Lisa TI Quantifying genes and transcripts to assess the in situ physiology of "Dehalococcoides" spp. in a trichloroethene-contaminated groundwater site SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID REDUCTIVE DEHALOGENASE GENES; VINYL-CHLORIDE REDUCTASE; SP STRAIN; ENVIRONMENTAL DISTRIBUTION; HOMOLOGOUS GENES; GENOME SEQUENCE; TETRACHLOROETHENE; ETHENOGENES; ETHENE; DECHLORINATION AB Quantitative PCR (qPCR) was coupled with reverse transcription (RT) to analyze both gene copy numbers and transcripts of the 16S rRNA gene and three reductive dehalogenase (RDase) genes (tceA, vcrA, and bvcA) as biomarkers of "Dehalococcoides" spp. in the groundwater of a trichloroethene-dense nonaqueous-phase liquid site at Fort Lewis, WA, that was sequentially subjected to biostimulation and bioaugmentation. Dehalococcoides cells carrying the tceA, vcrA, and bvcA genes were indigenous to the site. The sum of the three identified RDase gene copy numbers closely correlated to 16S rRNA gene copy numbers throughout the biostimulation and bioaugmentation activity, suggesting that these RDase genes represented the major Dehalococcoides metabolic functions at this site. Biomarker quantification revealed an overall increase of more than 3 orders of magnitude in the total Dehalococcoides population through the 1-year monitoring period (spanning biostimulation and bioaugmentation), and measurement of the respective RDase gene concentrations indicated different growth dynamics among Dehalococcoides cells. The Dehalococcoides cells containing the tceA gene consistently lagged behind other Dehalococcoides cells in population numbers and made up less than 5% of the total Dehalococcoides population, whereas the vcrA- and bvcA-containing cells represented the dominant fractions. Quantification of transcripts in groundwater samples verified that the 16S rRNA gene and the bvcA and vcrA genes were consistently highly expressed in all samples examined, while the tceA transcripts were detected inconsistently, suggesting a less active physiological state of the cells with this gene. The production of vinyl chloride and ethene toward the end of treatment supported the physiological activity of the bvcA- and vcrA-carrying cells. A clone library of the expressed RDase genes in field samples produced with degenerate primers revealed the expression of two putative RDase genes that were not previously monitored with RT-qPCR. The level of abundance of one of the putative RDase genes (FtL-RDase-1638) identified in the cDNA clone library tracked closely in field samples with abundance of the bvcA gene, suggesting that the FtL-RDase-1638 gene was likely colocated in genomes containing the bvcA gene. Overall, results from this study demonstrate that quantification of biomarker dynamics at field sites can provide useful information about the in situ physiology of Dehalococcoides strains and their associated activity. C1 [Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Macbeth, Tarmzen W.] N Wind Inc, Idaho Falls, ID 83402 USA. [Sorenson, Kent S., Jr.] CDM, Denver, CO 80202 USA. [Deeb, Rula A.] Malcolm Pirnie Inc, Emeryville, CA 94608 USA. [Alvarez-Cohen, Lisa] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, 726 Davis Hall, Berkeley, CA 94720 USA. EM alvarez@ce.berkeley.edu RI Lee, Patrick K H/L-1844-2016 OI Lee, Patrick K H/0000-0003-0911-5317 FU NIEHS NIH HHS [P42 ES004705, ES04705-19] NR 37 TC 84 Z9 85 U1 7 U2 41 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAY PY 2008 VL 74 IS 9 BP 2728 EP 2739 DI 10.1128/AEM.02199-07 PG 12 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 296TE UT WOS:000255567900020 PM 18326677 ER PT J AU Starkenburg, SR Larimer, FW Stein, LY Klotz, MG Chain, PSG Sayavedra-Soto, LA Poret-Peterson, AT Gentry, ME Arp, DJ Ward, B Bottomley, PJ AF Starkenburg, Shawn R. Larimer, Frank W. Stein, Lisa Y. Klotz, Martin G. Chain, Patrick S. G. Sayavedra-Soto, Luis A. Poret-Peterson, Amisha T. Gentry, Mira E. Arp, Daniel J. Ward, Bess Bottomley, Peter J. TI Complete genome sequence of Nitrobacter hamburgensis X14 and comparative genomic analysis of species within the genus Nitrobactei SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID BACTERIUM CHROMOHALOBACTER-SALEXIGENS; RESTRICTION-MODIFICATION SYSTEMS; CARBON-MONOXIDE DEHYDROGENASE; NITRITE-OXIDIZING BACTERIUM; MIXED CONTINUOUS CULTURES; NITROSOMONAS-EUROPAEA; RHODOPSEUDOMONAS-PALUSTRIS; SULFUR-OXIDATION; ORGANIC-MATTER; NITROUS-OXIDE AB The alphaproteobacterium Nitrobacter hamburgensis X14 is a gram-negative facultative chemolithoautotroph that conserves energy from the oxidation of nitrite to nitrate. Sequencing and analysis of the Nitrobacter hamburgensis X14 genome revealed four replicons comprised of one chromosome (4.4 Mbp) and three plasmids (294, 188, and 121 kbp). Over 20% of the genome is composed of pseudogenes and paralogs. Whole-genome comparisons were conducted between N. hamburgensis and the finished and draft genome sequences of Nitrobacter winogradskyi and Nitrobacter sp. strain Nb-311A, respectively. Most of the plasmid-borne genes were unique to N. hamburgensis and encode a variety of functions (central metabolism, energy conservation, conjugation, and heavy metal resistance), yet similar to 21 kb of a similar to 28-kb "autotrophic" island on the largest plasmid was conserved in the chromosomes of Nitrobacter winogradskyi Nb-255 and Nitrobacter sp. strain Nb-311A. The N. hamburgensis chromosome also harbors many unique genes, including those for heme-copper oxidases, cytochrome b(561), and putative pathways for the catabolism of aromatic, organic, and one-carbon compounds, which help verify and extend its mixotrophic potential. A Nitrobacter "subcore" genome was also constructed by removing homologs found in strains of the closest evolutionary relatives, Bradyrhizobium japonicum and Rhodapseudomonas palustris. Among the Nitrobacter subcore inventory (116 genes), copies of genes or gene clusters for nitrite oxidoreductase (NXR), cytochromes associated with a dissimilatory nitrite reductase (NirK), PII-like regulators, and polysaccharide formation were identified. Many of the subcore genes have diverged significantly from, or have origins outside, the alphaproteobacterial lineage and may indicate some of the unique genetic requirements for nitrite oxidation in Nitrobacter. C1 [Starkenburg, Shawn R.; Sayavedra-Soto, Luis A.; Arp, Daniel J.; Bottomley, Peter J.] Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA. [Larimer, Frank W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Stein, Lisa Y.] Univ Calif Riverside, Riverside, CA 92521 USA. [Klotz, Martin G.; Poret-Peterson, Amisha T.; Gentry, Mira E.] Univ Louisville, Dept Biol, Louisville, KY 40292 USA. [Klotz, Martin G.] Univ Louisville, Dept Microbiol & Immunol, Louisville, KY 40292 USA. [Chain, Patrick S. G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chain, Patrick S. G.] Joint Genome Inst, Walnut Creek, CA 94598 USA. [Chain, Patrick S. G.] Michigan State Univ, E Lansing, MI 48824 USA. [Ward, Bess] Princeton Univ, Princeton, NJ 08544 USA. RP Starkenburg, SR (reprint author), Oregon State Univ, Dept Microbiol, 220 Nash Hall, Corvallis, OR 97331 USA. EM starkens@onid.orst.edu RI Klotz, Martin/D-2091-2009; chain, patrick/B-9777-2013; Stein, Lisa/E-6374-2016; Stein, Lisa/A-3760-2014 OI Klotz, Martin/0000-0002-1783-375X; Stein, Lisa/0000-0001-5095-5022; NR 61 TC 58 Z9 59 U1 5 U2 24 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAY PY 2008 VL 74 IS 9 BP 2852 EP 2863 DI 10.1128/AEM.02311-07 PG 12 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 296TE UT WOS:000255567900033 PM 18326675 ER PT J AU Johnson, DR Brodie, EL Hubbard, AE Andersen, GL Zinder, SH Alvarez-Cohen, L AF Johnson, David R. Brodie, Eoin L. Hubbard, Alan E. Andersen, Gary L. Zinder, Stephen H. Alvarez-Cohen, Lisa TI Temporal transcriptomic microarray analysis of "Dehalococcoides ethenogenes" strain 195 during the transition into stationary phase SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID REDUCTIVE DEHALOGENASE GENES; GENOME SEQUENCE; SIGMA FACTORS; TETR FAMILY; EXPRESSION; DECHLORINATION; TETRACHLOROETHENE; BACTERIUM; GROWTH; BIOAUGMENTATION AB "Dehalococcoides" bacteria can reductively dehalogenate a wide range of halogenated organic pollutants. In this study, DNA microarrays were used to monitor dynamic changes in the transcriptome as "Dehalococcoides ethenogenes" strain 195 transitioned from exponential growth into stationary phase. In total, 415 nonredundant genes were identified as differentially expressed. As expected, genes involved with translation and energy metabolism were down-regulated while genes involved with general stress response, transcription, and signal transduction were up-regulated. Unexpected, however, was the 8- to 10-fold up-regulation of four putative reductive dehalogenases (RDases) (DET0173, DET0180, DET1535, and DET1545). Another unexpected finding was the up-regulation of a large number of genes located within integrated elements, including a putative prophage and a multicopy transposon. Finally, genes encoding the dominant hydrogenase-RDase respiratory chain of this strain (Hup and TceA) were expressed at stable levels throughout the experiment, providing molecular evidence that strain 195 can uncouple dechlorination from net growth. C1 [Johnson, David R.; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Brodie, Eoin L.; Andersen, Gary L.; Alvarez-Cohen, Lisa] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Hubbard, Alan E.] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. [Zinder, Stephen H.] Cornell Univ, Dept Microbiol, Ithaca, NY 14853 USA. RP Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, 726 Davis Hall, Berkeley, CA 94720 USA. EM alvarez@ce.berkeley.edu RI Andersen, Gary/G-2792-2015; Brodie, Eoin/A-7853-2008 OI Andersen, Gary/0000-0002-1618-9827; Brodie, Eoin/0000-0002-8453-8435 FU NIEHS NIH HHS [ES04705, P42 ES004705] NR 53 TC 53 Z9 53 U1 2 U2 13 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAY PY 2008 VL 74 IS 9 BP 2864 EP 2872 DI 10.1128/AEM.02208-07 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 296TE UT WOS:000255567900034 PM 18310438 ER PT J AU Behrens, S Losekann, T Pett-Ridge, J Weber, PK Ng, WO Stevenson, BS Hutcheon, ID Relman, DA Spormann, AM AF Behrens, Sebastian Loesekann, Tina Pett-Ridge, Jennifer Weber, Peter K. Ng, Wing-On Stevenson, Bradley S. Hutcheon, Ian D. Relman, David A. Spormann, Alfred M. TI Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID TARGETED OLIGONUCLEOTIDE PROBES; 16S RIBOSOMAL-RNA; ION MASS-SPECTROMETRY; ANABAENA-OSCILLARIOIDES; COMMUNITY STRUCTURE; SUBGINGIVAL PLAQUE; ACTIVATED-SLUDGE; BACTERIA; CARBON; MICROAUTORADIOGRAPHY AB To examine phylogenetic identity and metabolic activity of individual cells in complex microbial communities, we developed a method which combines rRNA-based in situ hybridization with stable isotope imaging based on nanometer-scale secondary-ion mass spectrometry (NanoSIMS). Fluorine or bromine atoms were introduced into cells via 16S rRNA-targeted probes, which enabled phylogenetic identification of individual cells by NanoSIMS imaging. To overcome the natural fluorine and bromine backgrounds, we modified the current catalyzed reporter deposition fluorescence in situ hybridization (FISH) technique by using halogen-containing fluorescently labeled tyramides as substrates for the enzymatic tyramide deposition. Thereby, we obtained an enhanced element labeling of microbial cells by FISH (EL-FISH). The relative cellular abundance of fluorine or bromine after EL-FISH exceeded natural background concentrations by up to 180-fold and allowed us to distinguish target from non-target cells in NanoSIMS fluorine or bromine images. The method was optimized on single cells of axenic Escherichia coli and Vibrio cholerae cultures. EL-FISH/NanoSIMS was then applied to study interrelationships in a dual-species consortium consisting of a filamentous cyanobacterium and a heterotrophic alphaproteobacterium. We also evaluated the method on complex microbial aggregates obtained from human oral biofilms. In both samples, we found evidence for metabolic interactions by visualizing the fate of substrates labeled with C-13-carbon and N-15-nitrogen, while individual cells were identified simultaneously by halogen labeling via EL-FISH. Our novel approach will facilitate further studies of the ecophysiology of known and uncultured microorganisms in complex environments and communities. C1 [Spormann, Alfred M.] Stanford Univ, Dept Civil & Environm Engn, James H Clark Ctr, Stanford, CA 94305 USA. [Loesekann, Tina; Relman, David A.] Stanford Univ, Dept Microbiol & Immunol, Stanford, CA 94305 USA. [Loesekann, Tina; Relman, David A.] Stanford Univ, Dept Med, Stanford, CA 94305 USA. [Pett-Ridge, Jennifer; Weber, Peter K.; Hutcheon, Ian D.] Lawrence Livermore Natl Lab, Earth & Life Sci Directorate, Glenn T Seaborg Inst, Livermore, CA 94551 USA. [Stevenson, Bradley S.] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. [Relman, David A.] VA Palo Alto Hlth Care Syst, Palo Alto, CA 94304 USA. RP Spormann, AM (reprint author), Stanford Univ, Dept Civil & Environm Engn, James H Clark Ctr, 318 Campus Dr,E250, Stanford, CA 94305 USA. EM spormann@stanford.edu RI Stevenson, Bradley/A-2786-2011; Losekann, Tina/J-6358-2014 OI Stevenson, Bradley/0000-0001-9432-9744; FU NIH HHS [DP1 OD000964, DP1OD000964] NR 50 TC 129 Z9 138 U1 10 U2 54 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAY PY 2008 VL 74 IS 10 BP 3143 EP 3150 DI 10.1128/AEM.00191-08 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 303XR UT WOS:000256074900028 PM 18359832 ER PT J AU Akob, DM Mills, HJ Gihring, TM Kerkhof, L Stucki, JW Anastacio, AS Chin, KJ Kusel, K Palumbo, AV Watson, DB Kostka, JE AF Akob, Denise M. Mills, Heath J. Gihring, Thomas M. Kerkhof, Lee Stucki, Joseph W. Anastacio, Alexandre S. Chin, Kuk-Jeong Kuesel, Kirsten Palumbo, Anthony V. Watson, David B. Kostka, Joel E. TI Functional diversity and electron donor dependence of microbial populations capable of U(VI) reduction in radionuclide-contaminated subsurface sediments SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID DISSIMILATORY METAL REDUCTION; IN-SITU BIOSTIMULATION; SP-NOV; BACTERIAL COMMUNITIES; URANIUM REDUCTION; U(IV) OXIDATION; GEN-NOV; NITRATE; AQUIFER; IRON AB In order to elucidate the potential mechanisms of U(VI) reduction for the optimization of bioremediation strategies, the structure-function relationships of microbial communities were investigated in microcosms of subsurface materials cocontaminated with radionuclides and nitrate. A polyphasic approach was used to assess the functional diversity of microbial populations likely to catalyze electron flow under conditions proposed for in situ uranium bioremediation. The addition of ethanol and glucose as supplemental electron donors stimulated microbial nitrate and Fe(III) reduction as the predominant terminal electron-accepting processes (TEAPs). U(VI), Fe(III), and sulfate reduction overlapped in the glucose treatment, whereas U(VI) reduction was concurrent with sulfate reduction but preceded Fe(III) reduction in the ethanol treatments. Phyllosilicate clays were shown to be the major source of Fe(III) for microbial respiration by using variable-temperature Mossbauer spectroscopy. Nitrate- and Fe (III)-reducing bacteria (FeRB) were abundant throughout the shifts in TEAPs observed in biostimulated microcosms and were affiliated with the genera Geobacter, Tolumonas, Clostridium, Arthrobacter, Dechloromonas, and Pseudomonas. Up to two orders of magnitude higher counts of FeRB and enhanced U(VI) removal were observed in ethanol-amended treatments compared to the results in glucose-amended treatments. Quantification of citrate synthase (gltA) levels demonstrated a stimulation of Geobacteraceae activity during metal reduction in carbon-amended microcosms, with the highest expression observed in the glucose treatment. Phylogenetic analysis indicated that the active FeRB share high sequence identity with Geobacteraceae members cultivated from contaminated subsurface environments. Our results show that the functional diversity of populations capable of U(VI) reduction is dependent upon the choice of electron donor. C1 [Kostka, Joel E.] Florida State Univ, Collins Res Lab, Dept Oceanog, Tallahassee, FL 32306 USA. [Kerkhof, Lee] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA. [Stucki, Joseph W.; Anastacio, Alexandre S.] Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA. [Chin, Kuk-Jeong] Georgia State Univ, Dept Biol, Atlanta, GA 30303 USA. [Kuesel, Kirsten] Univ Jena, Inst Ecol, D-07743 Jena, Germany. [Palumbo, Anthony V.; Watson, David B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kostka, JE (reprint author), Florida State Univ, Collins Res Lab, Dept Oceanog, 255 Atom Way,Bldg 42, Tallahassee, FL 32306 USA. EM jkostka@ocean.fsu.edu RI Palumbo, Anthony/A-4764-2011; Akob, Denise/D-9478-2013; Watson, David/C-3256-2016; OI Palumbo, Anthony/0000-0002-1102-3975; Watson, David/0000-0002-4972-4136; Akob, Denise/0000-0003-1534-3025 NR 70 TC 66 Z9 66 U1 3 U2 25 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAY PY 2008 VL 74 IS 10 BP 3159 EP 3170 DI 10.1128/AEM.02881-07 PG 12 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 303XR UT WOS:000256074900030 PM 18378664 ER PT J AU Kizer, L Pitera, DJ Pfleger, BF Keasling, JD AF Kizer, Lance Pitera, Douglas J. Pfleger, Brian F. Keasling, Jay D. TI Application of functional genomics to pathway optimization for increased isoprenoid production SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ACYL CARRIER PROTEIN; FATTY-ACID SYNTHESIS; RECOMBINANT ESCHERICHIA-COLI; FIBROBLAST-GROWTH-FACTOR; HEAT-SHOCK REGULON; P-BAD PROMOTER; GENE-EXPRESSION; MEVALONATE PATHWAY; ABNORMAL PROTEINS; MALONYL-COENZYME AB Producing complex chemicals using synthetic metabolic pathways in microbial hosts can have many advantages over chemical synthesis but is often complicated by deleterious interactions between pathway intermediates and the host cell metabolism. With the maturation of functional genomic analysis, it is now technically feasible to identify modes of toxicity associated with the accumulation of foreign molecules in the engineered bacterium. Previously, Escherichia coli was engineered to produce large quantities of isoprenoids by creating a mevalonate-based isopentenyl pyrophosphate biosynthetic pathway (V. J. J. Martin et al., Nat. Biotechnol. 21:796-802, 2003). The engineered E. coli strain produced high levels of isoprenoids, but further optimization led to an imbalance in carbon flux and the accumulation of the pathway intermediate 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), which proved to be cytotoxic to E. coli. Using both DNA microarray analysis and targeted metabolite profiling, we have studied E. coli strains inhibited by the intracellular accumulation of HMG-CoA. Our results indicate that HMG-CoA inhibits fatty acid biosynthesis in the microbial host, leading to generalized membrane stress. The cytotoxic effects of HMG-CoA accumulation can be counteracted by the addition of palmitic acid (16:0) and, to a lesser extent, oleic acid (cis-Delta(9)-18:1) in the growth medium. This work demonstrates the utility of using transcriptomic and metabolomic methods to optimize synthetic biological systems. C1 [Kizer, Lance; Pitera, Douglas J.; Pfleger, Brian F.; Keasling, Jay D.] Univ Calif Berkeley, Berkeley Ctr Synthet Biol, Dept Chem Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys Biosci Div, Synthet Biol Dept, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Berkeley Ctr Synthet Biol, Dept Chem Engn, 717 Potter St,Bldg 977,Mail Code 3224, Berkeley, CA 94720 USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 NR 63 TC 82 Z9 84 U1 1 U2 26 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAY PY 2008 VL 74 IS 10 BP 3229 EP 3241 DI 10.1128/AEM.02750-07 PG 13 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 303XR UT WOS:000256074900036 PM 18344344 ER PT J AU Romine, MF Carlson, TS Norbeck, AD Mccue, LA Lipton, MS AF Romine, Margaret F. Carlson, Timothy S. Norbeck, Angela D. McCue, Lee Ann Lipton, Mary S. TI Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID INSERTION SEQUENCES; MASS-SPECTROMETRY; PROTEOME ANALYSIS; REDUCTION; ALIGNMENT; INTEGRON; GROWTH; OXIDE AB Shewanella oneidensis MR-1 is the first of 22 different Shewanella spp. whose genomes have been or are being sequenced and thus serves as the model organism for studying the functional repertoire of the Shewanella genus. The original MR-1 genome annotation revealed a large number of transposase genes and pseudogenes, indicating that many of the genome's functions may be decaying. Comparative analyses of the sequenced Shewanella strains suggest that 209 genes in MR-1 have in-frame stop codons, frameshifts, or interruptions and/or are truncated and that 65 of the original pseudogene predictions were erroneous. Among the decaying functions are that of one of three chemotaxis clusters, type I pilus production, starch utilization, and nitrite respiration. Many of the mutations could be attributed to members of 41 different types of insertion sequence (IS) elements and three types of miniature inverted-repeat transposable elements identified here for the first time. The high copy numbers of individual mobile elements (up to 71) are expected to promote large-scale genome recombination events, as evidenced by the displacement of the algA promoter. The ability of MR-1 to acquire foreign genes via reactions catalyzed by both the integron integrase and the ISSod25-encoded integrases is suggested by the presence of attC sites and genes whose sequences are characteristic of other species downstream of each site. This large number of mobile elements and multiple potential sites for integrasemediated acquisition of foreign DNA indicate that the MR-1 genome is exceptionally dynamic, with many functions and regulatory control points in the process of decay or reinvention. C1 [Romine, Margaret F.; Carlson, Timothy S.; Norbeck, Angela D.; McCue, Lee Ann; Lipton, Mary S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Romine, MF (reprint author), Pacific NW Natl Lab, MS P7-86,POB 999, Richland, WA 99352 USA. EM Margie.romine@pnl.gov OI Romine, Margaret/0000-0002-0968-7641; McCue, Lee Ann/0000-0003-4456-517X NR 27 TC 42 Z9 42 U1 0 U2 6 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAY PY 2008 VL 74 IS 10 BP 3257 EP 3265 DI 10.1128/AEM.02720-07 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 303XR UT WOS:000256074900039 PM 18378659 ER PT J AU Oxford, SM Henao, JD Yang, JH Kung, MC Kung, HH AF Oxford, S. M. Henao, J. D. Yang, J. H. Kung, M. C. Kung, H. H. TI Understanding the effect of halide poisoning in CO oxidation over Au/TiO2 SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE gold; nanoparticle halide; poisoning; perimeter sites; CO oxidation ID LOW-TEMPERATURE OXIDATION; SUPPORTED AU CATALYSTS; CARBON-MONOXIDE; GOLD NANOPARTICLES; ELECTRON-MICROSCOPY; ADSORPTION; EXAFS; AU/GAMMA-AL2O3; CHEMISORPTION; PARTICLES AB The effect of halide poisoning of Au/TiO2 catalysts in low temperature CO oxidation was investigated using bromide as the poison and a combination of X-ray absorption spectroscopy (XANES and EXAFS), quantitative CO adsorption, and catalytic measurements. It was found that halide prevented full reduction of cationic Au by displacing oxyhydroxy ligands and remaining bound to An during low temperature reduction, causing a reduction in catalytic activity. On reduced Au samples, bromide (likely as NaBr molecule) was preferentially adsorbed on An and not on TiO2 and suppressed both the adsorption of CO and the catalytic activity. At low Br contents, each adsorbed Br suppressed adsorption of three CO, suggesting that Br was adsorbed on three-fold sites but the effect decreased with increasing Br content possibly due to crowding of adsorbed Br, When 5-10% of the Au was bound to Br, the catalytic activity was completely blocked, although similar to 35% of the original CO adsorption capacity remained. The data suggest that not all CO adsorption sites are catalytic active sites, and are consistent with the perimeter An atoms at/near the particle-support interface (perimeter) being active sites. (c) 2008 Elsevier B.V. All rights reserved. C1 [Oxford, S. M.; Henao, J. D.; Yang, J. H.; Kung, M. C.; Kung, H. H.] Northwestern Univ, Chem & Biol Engn Dept, Evanston, IL 60208 USA. [Oxford, S. M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kung, HH (reprint author), Northwestern Univ, Chem & Biol Engn Dept, Evanston, IL 60208 USA. EM hkung@northwestern.edu RI Kung, Mayfair/B-7648-2009; Kung, Harold/B-7647-2009 NR 33 TC 30 Z9 31 U1 3 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD MAY 1 PY 2008 VL 339 IS 2 BP 180 EP 186 DI 10.1016/j.apcata.2008.01.025 PG 7 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 294QQ UT WOS:000255421000010 ER PT J AU Lam, PS Sokhansanj, S Bi, X Lim, CJ Naimi, LJ Hoque, M Mani, S Womac, AR Ye, XP Narayan, S AF Lam, P. S. Sokhansanj, S. Bi, X. Lim, C. J. Naimi, L. J. Hoque, M. Mani, S. Womac, A. R. Ye, X. P. Narayan, S. TI Bulk density of wet and dry wheat straw and switchgrass particles SO APPLIED ENGINEERING IN AGRICULTURE LA English DT Article DE bulk density; particle density; straw; switchgrass; packing; porosity; fibrous biomass ID CYLINDRICAL PARTICLES; PHYSICAL-PROPERTIES; PACKING; POROSITY; BIOMASS; PERFORMANCE; PREDICTION; MIXTURES AB Bulk density is a major physical property in designing the logistic system for biomass handling. The size, shape, moisture content, individual particle density, and surface characteristics are few factors affecting the bulk density. This research investigates the effects of true particle lengths ranging from 6 to 50 mm and moisture contents ranging from 8% to 60% wet basis (wb) on the bulk density of wheat straw and switchgrass. Three types of particle densities of straw and switchgrass measured were: a hollow particle density assuming a hollow cylindrical geometry, a solid particle density assuming a solid cylindrical geometry, and a particle density measured using a gas pycnometer at a gas pressure of 40 kPa. The bulk density of both loose fill and packed fill biomass samples was examined. The calculated wet and dry bulk density ranged from 24 to 111 kg m(-3) for straw and from 49 to 266 kg m(-3) for switchgrass. The corresponding tapped bulk density ranged from 34 to 130 kg m(-3) for straw and 68 to 323 kg m(-3) for switchgrass. The increase in bulk density due to tapping the container was from 10% for short 6-mm particles to more than 50% for long 50-mm particles. An equation relating the bulk density of stems as a function of moisture content, dry bulk density, and particle size was developed. After the validation of this bulk density equation, the relationship would be highly useful in designing the logistics system for large-scale transport of biomass to a biorefinery. The bulk density and particle density data of uniform particles would be important, if straw and switchgrass is used for pulping and paper making. C1 [Lam, P. S.; Sokhansanj, S.; Bi, X.; Lim, C. J.; Naimi, L. J.; Hoque, M.] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. [Mani, S.] Univ Georgia, Driftmier Engn Ctr, Fac Engn, Athens, GA 30602 USA. [Ye, X. P.] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN USA. [Narayan, S.] Lambton Coll, Sarnia, ON, Canada. RP Lam, PS (reprint author), Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. EM plam@chml.ubc.ca RI Mani, Sudhagar/A-4315-2010 NR 20 TC 57 Z9 58 U1 1 U2 15 PU AMER SOC AGRICULTURAL & BIOLOGICAL ENGINEERS PI ST JOSEPH PA 2950 NILES RD, ST JOSEPH, MI 49085-9659 USA SN 0883-8542 J9 APPL ENG AGRIC JI Appl. Eng. Agric. PD MAY PY 2008 VL 24 IS 3 BP 351 EP 358 PG 8 WC Agricultural Engineering SC Agriculture GA 310TL UT WOS:000256553200010 ER PT J AU Archibald, R Gelb, A Yoon, J AF Archibald, Rick Gelb, Anne Yoon, Jungho TI Determining the locations and discontinuities in the derivatives of functions SO APPLIED NUMERICAL MATHEMATICS LA English DT Article DE edge detection; derivative discontinuities; piecewise smooth functions; polynomial annihilation ID PIECEWISE-SMOOTH DATA; GIBBS PHENOMENON; CONSERVATION-LAWS; FOURIER-SERIES; EDGE-DETECTION; ENO SCHEMES; RESOLUTION AB We introduce a method for detecting discontinuities in piecewise smooth functions and in their derivatives. The method is constructed from a local stencil of grid point values and is based on a polynomial annihilation technique. By varying the order of the method and the arrangement of the corresponding stencils, the jump discontinuities of a function and its derivatives can be identified with high order accuracy. The method is efficient and robust and can be applied to non-uniform distributions in one dimension. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved. C1 [Yoon, Jungho] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea. [Archibald, Rick] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Gelb, Anne] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA. RP Yoon, J (reprint author), Ewha Womans Univ, Dept Math, Seoul 120750, South Korea. EM archibaldrk@ornl.gov; ag@math.la.asu.edu; yoon@ewha.ac.kr RI Archibald, Rick/I-6238-2016 OI Archibald, Rick/0000-0002-4538-9780 NR 24 TC 20 Z9 20 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9274 J9 APPL NUMER MATH JI Appl. Numer. Math. PD MAY PY 2008 VL 58 IS 5 BP 577 EP 592 DI 10.1016/j.apnum.2007.01.018 PG 16 WC Mathematics, Applied SC Mathematics GA 292TY UT WOS:000255290200004 ER PT J AU Stolz, CJ Hafeman, S Pistor, TV AF Stolz, Christopher J. Hafeman, Scott Pistor, Thomas V. TI Light intensification modeling of coating inclusions irradiated at 351 and 1053 nm SO APPLIED OPTICS LA English DT Article ID OPTICAL COATINGS; DAMAGE AB Electric-field modeling provides insight into the laser damage resistance potential of nodular defects. The laser-induced damage threshold for high-reflector coatings is 13X lower at the third harmonic (351 nm) than at the first harmonic (1053 nm) wavelength. Linear and multiphoton absorption increases with decreasing wavelength, leading to a lower-third harmonic laser resistance. Electric-field effects can also be a contributing mechanism to the lower laser resistance with decreasing wavelength. For suitably large inclusions, the nodule behaves as a microlens. The diffraction-limited spot size decreases with wavelength, resulting in an increase in intensity. Comparison of electric-field finite-element simulations illustrates a 3X to 16X greater light intensification at the shorter wavelength. (c) 2008 Optical Society of America. C1 [Stolz, Christopher J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hafeman, Scott; Pistor, Thomas V.] Panoram Technol Inc, Berkeley, CA 94704 USA. RP Stolz, CJ (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM stolz1@llnl.gov NR 15 TC 29 Z9 32 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAY 1 PY 2008 VL 47 IS 13 BP C162 EP C166 DI 10.1364/AO.47.00C162 PG 5 WC Optics SC Optics GA 308CD UT WOS:000256365000026 PM 18449240 ER PT J AU Kaiser, N Stolz, CJ AF Kaiser, Norbert Stolz, Christopher J. TI Optical Society of America's 2007 Topical Meeting on Optical Interference Coatings: overview SO APPLIED OPTICS LA English DT Article AB The Optical Society of America's Topical Meeting on Optical Interference Coatings convenes every three years to survey and capture advancements in the broad area of optical coatings. This meeting serves as a focal point for global technical interchange in the field of optical interference coatings. It includes papers on research, development, and applications of optical coatings, such as fundamental and theoretical contributions in the field as well as practical techniques and applications. (C) 2008 Optical Society of America. C1 [Kaiser, Norbert] Fraunhofer Inst Appl Opt & Precis Engn IOF, D-07745 Jena, Germany. [Stolz, Christopher J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Kaiser, N (reprint author), Fraunhofer Inst Appl Opt & Precis Engn IOF, Albert Einstein Str 7, D-07745 Jena, Germany. EM norbert.kaiser@iof.fraunhofer.de NR 0 TC 0 Z9 3 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAY 1 PY 2008 VL 47 IS 13 BP OIC1 EP OIC7 DI 10.1364/AO.47.00OIC1 PG 7 WC Optics SC Optics GA 308CD UT WOS:000256365000001 PM 18449280 ER PT J AU Hwang, DJ Misra, N Grigoropoulos, CP Minor, AM Mao, SS AF Hwang, D. J. Misra, N. Grigoropoulos, C. P. Minor, A. M. Mao, S. S. TI In situ monitoring of laser cleaning by coupling a pulsed laser beam with a scanning electron microscope SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID ABLATION; FABRICATION; REMOVAL; SURFACE AB Lasers have proved to be effective tools for material processing at the micron and nanometer scales. In particular, laser interaction with nanostructures offers the unique advantage of highly localized excitation and heating. In this study, a short-pulsed laser beam is coupled to a scanning electron microscope, without disturbing the microscopy function, in order to study in situ laser cleaning of individual submicron particles from a silicon substrate. The substrate conditions before and after particle removal were inspected by electron microscopy. The mechanisms of particle removal and the underlying dynamic coupling of the laser radiation associated with particle cleaning are investigated. C1 [Hwang, D. J.; Misra, N.; Grigoropoulos, C. P.] Univ Calif Berkeley, Dept Mech Engn, Laser Thermal Lab, Berkeley, CA 94720 USA. [Minor, A. M.] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Div Mat Sci, Berkeley, CA 94720 USA. [Mao, S. S.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Grigoropoulos, CP (reprint author), Univ Calif Berkeley, Dept Mech Engn, Laser Thermal Lab, Berkeley, CA 94720 USA. EM cgrigoro@me.berkeley.edu RI Han, Kyuhee/B-6201-2009 NR 17 TC 5 Z9 5 U1 1 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD MAY PY 2008 VL 91 IS 2 BP 219 EP 222 DI 10.1007/s00339-008-4428-z PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 275QM UT WOS:000254086700003 ER PT J AU Naito, M Ishimaru, M Hirotsu, Y Valdez, JA Sickafus, KE AF Naito, M. Ishimaru, M. Hirotsu, Y. Valdez, J. A. Sickafus, K. E. TI Low temperature thermal annealing-induced alpha-FeSi2 derived phase in an amorphous Si matrix SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID EPITAXIAL-GROWTH; STRUCTURAL-CHARACTERIZATION; SI(111); FESI2; MICROSCOPY; SILICIDES; FILMS AB Thermal annealing-induced recrystallisation in Fe ion-implanted Si was investigated by transmission electron microscopy. Single crystals of Si(111) were implanted with 120 keV Fe ions to a fluence of 1.0x10(17) cm(-2) at cryogenic temperature. A buried amorphous Fe-Si layer in an amorphous Si matrix was formed in the as-implanted sample. Nanobeam electron diffraction revealed that metastable alpha-FeSi2 precipitates embedded in the amorphous Si matrix were formed after annealing at 350 C for 8 h. The formation of this alpha-FeSi2-derived phase was unusual, because it has been observed only in epitaxially grown thin films. Based on the Fe1-xSi (0 < x < 0.5) phase with the CsCl structure, which is another metastable phase in the Fe-Si binary system, we discuss the formation process of the metastable alpha-FeSi2 in the amorphous matrix. C1 [Naito, M.; Ishimaru, M.; Hirotsu, Y.] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. [Valdez, J. A.; Sickafus, K. E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Naito, M (reprint author), Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. EM naito22@sanken.osaka-u.ac.jp NR 19 TC 3 Z9 3 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD MAY PY 2008 VL 91 IS 2 BP 353 EP 356 DI 10.1007/s00339-008-4414-5 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 275QM UT WOS:000254086700027 ER PT J AU Talamo, A Gohar, Y AF Talamo, Alberto Gohar, Yousry TI Production of medical radioactive isotopes using KIPT electron driven subcritical facility SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE radionuclide production; radionuclide therapy; radiopharmaceuticals ID CROSS-SECTIONS; RADIONUCLIDE PRODUCTION; PHOTONUCLEAR PHYSICS; RADIATION TRANSPORT; SPECTRA AB Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron nux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, gamma), (n, 2n), (n, p), and (gamma, n). In tile second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Talamo, Alberto; Gohar, Yousry] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Talamo, A (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM alby@anl.gov OI talamo, alberto/0000-0001-5685-0483 NR 17 TC 1 Z9 1 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD MAY PY 2008 VL 66 IS 5 BP 577 EP 586 DI 10.1016/j.apradiso.2008.01.003 PG 10 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 299NL UT WOS:000255762200004 PM 18280745 ER PT J AU Mukherjee, D Cheng, MD AF Mukherjee, Dibyendu Cheng, Meng-Dawn TI Characterization of carbon-containing aerosolized drugs using laser-induced breakdown spectroscopy SO APPLIED SPECTROSCOPY LA English DT Article DE laser-induced breakdown spectroscopy; LIBS; aerosol; drugs; elements ID INDUCED PLASMA SPECTROSCOPY; QUANTITATIVE-ANALYSIS; MAGNESIUM STEARATE; PARTICLES; SIZE; LIPS AB Aerosolized drug delivery methods have increasingly become popular for pharmaceutical applications. This is mainly due to their case of application and the more recent advancements incorporating nano-sized generation of particles that find deeper penetration routes and more efficient administration of the drug to specific target organs. Their effectiveness heavily relies on the uniformity of the chemical composition of these aerosolized drugs. Thus, it calls for a real-time on-line analytical toot that can accurately characterize the chemical constituents of the drug powder particles generated to ensure a stringent quality control. We present laser-induced breakdown spectroscopy (LIBS) for the first time as an efficient analytical tool to carry out on-line quantitative chemical characterization of aerosolized drugs. We used three different carbon based aerosolized drugs, namely L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (C6H9Mg1.5O9P.xH(2)O), Irom(II) L-ascorbate (C12H14FeO12), and DL-pantothenic acid hemicalcium salt (C9H16NO5.0.5Ca) for our quantitative LIBS studies here. Our results show that LIBS can effectively estimate the quantitative ratios (of carbon to various trace elements for each of these drugs, thereby enabling on-line unique characterization of individual aerosolized drugs. The quantitative LIBS technique predicted the I C]/[Mg], [C]/[Fe], and [C]/[Ca] ratios as 4.02 +/- 0.76, 12.42 +/- 2.36, and 18.47 +/- 4.39 for each of the above aerosolized drugs, respectively. Within error limits, we find these ratios in good agreement with the respective stoichiometric values of 4, 12, and 18 corresponding to the drugs above. Thus, the work demonstrated the utility and validity of LIBS in accurate on-line identification of drug powders during real-time manufacturing processes. C1 [Mukherjee, Dibyendu; Cheng, Meng-Dawn] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Cheng, MD (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM chengmd@ornl.gov RI Mukherjee, Dibyendu/A-9787-2010; Cheng, Meng-Dawn/C-1098-2012 OI Cheng, Meng-Dawn/0000-0003-1407-9576; Mukherjee, Dibyendu/0000-0002-9232-6774; FU NHLBI NIH HHS [1R43HL084831-01] NR 30 TC 11 Z9 12 U1 0 U2 10 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 201B BROADWAY ST, FREDERICK, MD 21701 USA SN 0003-7028 J9 APPL SPECTROSC JI Appl. Spectrosc. PD MAY PY 2008 VL 62 IS 5 BP 554 EP 562 DI 10.1366/000370208784344451 PG 9 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 298NC UT WOS:000255693400013 PM 18498697 ER PT J AU Pereira, PM He, Q Xavier, AV Zhou, JZ Pereira, IAC Louro, RO AF Pereira, Patricia M. He, Qiang Xavier, Antonio V. Zhou, Jizhong Pereira, Ines A. C. Louro, Ricardo O. TI Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions SO ARCHIVES OF MICROBIOLOGY LA English DT Article DE oxidative stress; Desulfovibrio; genomics; metalloproteins; fur; PerR; thioredoxin; Hmc ID SULFATE-REDUCING BACTERIUM; HEAT-SHOCK RESPONSE; DESULFURICANS ATCC-27774; BACILLUS-SUBTILIS; ESCHERICHIA-COLI; VULGATIS HILDENBOROUGH; SUPEROXIDE-DISMUTASE; GENE-EXPRESSION; HMC OPERON; OXYGEN AB Sulfate-reducing bacteria (SRB) are anaerobes readily found in oxic-anoxic interfaces. Multiple defense pathways against oxidative conditions were identified in these organisms and proposed to be differentially expressed under different concentrations of oxygen, contributing to their ability to survive oxic conditions. In this study, Desulfovibrio vulgaris Hildenborough cells were exposed to the highest concentration of oxygen that SRB are likely to encounter in natural habitats, and the global transcriptomic response was determined. Three hundred and seven genes were responsive, with cellular roles in energy metabolism, protein fate, cell envelope and regulatory functions, including multiple genes encoding heat shock proteins, peptidases and proteins with heat shock promoters. Of the oxygen reducing mechanisms of D. vulgaris only the periplasmic hydrogen-dependent mechanism was up-regulated, involving the [NiFeSe] hydrogenase, formate dehydrogenase(s) and the Hmc membrane complex. The oxidative defense response concentrated on damage repair by metal-free enzymes. These data, together with the down-regulation of the ferric uptake regulator operon, which restricts the availability of iron, and the lack of response of the peroxide-sensing regulator operon, suggest that a major effect of this oxygen stress is the inactivation and/or degradation of multiple metalloproteins present in D. vulgaris as a consequence of oxidative damage to their metal clusters. C1 [Pereira, Patricia M.; Xavier, Antonio V.; Pereira, Ines A. C.; Louro, Ricardo O.] Univ Nova Lisboa, Inst Tecnol Quim & Biol, P-1200 Lisbon, Portugal. [He, Qiang; Zhou, Jizhong] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [He, Qiang; Zhou, Jizhong] Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA. RP Louro, RO (reprint author), Univ Nova Lisboa, Inst Tecnol Quim & Biol, P-1200 Lisbon, Portugal. EM louro@itqb.unl.pt RI He, Qiang/G-9061-2011; Pereira, Ines/C-2748-2009; OI He, Qiang/0000-0002-7155-6474; Pereira, Ines/0000-0003-3283-4520; Louro, Ricardo/0000-0002-2392-6450; Pereira, Patricia/0000-0002-4828-7632 NR 64 TC 19 Z9 19 U1 0 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0302-8933 J9 ARCH MICROBIOL JI Arch. Microbiol. PD MAY PY 2008 VL 189 IS 5 BP 451 EP 461 DI 10.1007/s00203-007-0335-5 PG 11 WC Microbiology SC Microbiology GA 289YL UT WOS:000255089700003 PM 18060664 ER PT J AU Kuczynski, B Reed, B Mungas, D Weiner, M Chui, HC Jagust, W AF Kuczynski, Beth Reed, Bruce Mungas, Dan Weiner, Michael Chui, Helena C. Jagust, William TI Cognitive and anatomic contributions of metabolic decline in Alzheimer disease and cerebrovascular disease SO ARCHIVES OF NEUROLOGY LA English DT Article ID VASCULAR DEMENTIA; CORTEX; HIPPOCAMPUS; DIAGNOSIS; BRAIN AB Background: Alzheimer disease and cerebrovascular disease affect elderly persons through alterations in brain structure and metabolism that produce cognitive decline. Understanding how each disease contributes to dementia is essential from both a pathophysiologic and diagnostic perspective. Objective: To elucidate how baseline cognitive function (episodic memory and executive function) and brain anatomy (white matter hyperintensities and hippocampal volume) are associated with baseline (positron emission tomography-1 [PET1]) and longitudinal (PET2) glucose metabolism in 38 subjects older than 55 years ranging from normal cognition, cognitive impairment without dementia, and dementia. Design: Cross-sectional regression analyses across subjects. Setting: Multicenter, university-based study of subcortical vascular dementia. Main Outcome Measures: Regional cerebral glucose metabolism was the primary outcome, with the major hypotheses that memory and hippocampal volume are related to temporoparietal hypometabolism while executive function and white matter hyperintensities correlate with frontal lobe hypometabolism. Results: Low baseline hippocampal volume predicted longitudinal development (PET2) of medial temporal hypometabolism. Lower memory was associated with parietal and cingulate hypometabolism at PET1, which increased at the 2-year-follow-up (PET2). Executive function was associated with frontal and temporoparietal hypometabolism at PET1 but only with frontal hypometabolism at follow-up. White matter hyperintensities predicted hypometabolism over time in the frontoparietal regions, predicting a rate of metabolic change (PET1-PET2/time). Conclusions: Low baseline episodic memory and hippocampal volume predict the metabolic alterations associated with Alzheimer disease, whereas elevated baseline white matter hyperintensities predict a different pattern of metabolic decline that is plausibly associated with cerebrovascular disease. C1 [Kuczynski, Beth; Jagust, William] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Kuczynski, Beth; Jagust, William] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kuczynski, Beth; Jagust, William] Univ Calif Davis, Alzheimers Dis Res Ctr, Davis, CA 95616 USA. [Reed, Bruce; Mungas, Dan] No California Vet Affairs Hlth Care Syst, Sacramento, CA USA. [Weiner, Michael] Univ Calif San Francisco, Med Ctr, Dept Vet Affairs, San Francisco, CA 94143 USA. [Chui, Helena C.] Univ So Calif, Sch Med, Dept Neurol, Los Angeles, CA 90033 USA. RP Kuczynski, B (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, 118 Berker Hall,MC 3190, Berkeley, CA 94720 USA. EM beth.kuczynski@gmail.com RI Mungas, Dan/E-6810-2011 FU NIA NIH HHS [P01 AG012435-139001, AG12435, P01 AG012435, P01 AG012435-130002, P01 AG012435-130005, P30 AG010129, P30 AG010129-129001] NR 16 TC 25 Z9 28 U1 0 U2 0 PU AMER MEDICAL ASSOC PI CHICAGO PA 515 N STATE ST, CHICAGO, IL 60610-0946 USA SN 0003-9942 J9 ARCH NEUROL-CHICAGO JI Arch. Neurol. PD MAY PY 2008 VL 65 IS 5 BP 650 EP 655 DI 10.1001/archneur.65.5.650 PG 6 WC Clinical Neurology SC Neurosciences & Neurology GA 299WJ UT WOS:000255785600014 PM 18474742 ER PT J AU Roth, K Brodrick, J AF Roth, Kurt Brodrick, James TI Energy harvesting for wireless sensors SO ASHRAE JOURNAL LA English DT Article C1 [Roth, Kurt] TIAX LLC, Cambridge, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Roth, K (reprint author), TIAX LLC, Cambridge, MA USA. NR 9 TC 3 Z9 3 U1 0 U2 2 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD MAY PY 2008 VL 50 IS 5 BP 84 EP + PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 303IU UT WOS:000256035000014 ER PT J AU Giveon, U Becker, RH White, RL AF Giveon, U. Becker, R. H. White, R. L. TI The radio content of GLIMPSE SO ASTRONOMICAL JOURNAL LA English DT Article DE catalogs; Galaxy : disk; HII regions; infrared : general; radio continuum : general ID GALACTIC PLANE; GALAXY; STARS; VIEW AB We present results from matching a Very Large Array Galactic plane catalog at 6 cm covering the first Galactic quadrant (350 degrees <= l <= 42 degrees, vertical bar b vertical bar <= 0.4 degrees), the MSX6C Galactic plane catalog, and the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire v1.0 (GLIMPSE I) catalog. The much higher angular resolution and better sensitivity provided by GLIMPSE should improve the identification of embedded Galactic star-forming regions, and enable the study of the relationships between the central stellar sources, the ionized gas, and the surrounding dust. The GLIMPSE catalog is so crowded compared to our 6 cm catalog that it actually leads to confusion in identifying chance alignments, but this is resolved when separating GLIMPSE into red (M-3.6 mu m - M-8 mu m > 2.5) and blue (M3.6 mu m - M8 mu m < 2.5) sub-catalogs. In spite of the improved properties of GLIMPSE, we find a very small number of GLIMPSE-6cm high-reliability matches in the overlapping area of the two samples (10 degrees <= l <= 42 degrees, vertical bar b vertical bar <= 0.4 degrees)-132, only 55 of them have a Midcourse Space Experiment (MSX) counterpart. Even though the matching results are less successful than expected, there are still some general outcomes to them. First, we discover an obscuration effect around our candidates: the average local source density of blue sources, dominated by stars, is decreasing toward the radio positions; their average brightness increases, and their color reddens significantly, supporting the picture in which background sources disappear behind the opaque nebulae associated with the radio source. Second, the selected sources define near and mid-infrared color criteria, which are used to detect a total of 849 GLIMPSE sources in the entire GLIMPSE survey that have MSX matches and that show the same collective behavior. Only 15% of these sources are previously classified, mainly as H II regions, masers, young stellar objects, and molecular clouds. C1 [Giveon, U.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Becker, R. H.] Lawrence Livermore Natl Lab, Livermore, CA USA. [White, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Giveon, U (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM giveon@physics.ucdavis.edu; bob@igpp.ucllnl.org; rlw@stsci.edu RI White, Richard/A-8143-2012 NR 10 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD MAY PY 2008 VL 135 IS 5 BP 1697 EP 1707 DI 10.1088/0004-6256/135/5/1697 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 294LO UT WOS:000255407700005 ER PT J AU Zheng, C Romani, RW Sako, M Marriner, J Bassett, B Becker, A Choi, C Cinabro, D DeJongh, F Depoy, DL Dilday, B Doi, M Frieman, JA Garnavich, PM Hogan, CJ Holtzman, J Im, M Jha, S Kessler, R Konishi, K Lampeitl, H Marshall, JL McGinnis, D Miknaitis, G Nichol, RC Prieto, JL Riess, AG Richmond, MW Schneider, DP Smith, M Takanashi, N Tokita, K Van der Heyden, K Yasuda, N Assef, RJ Barentine, J Bender, R Blandford, RD Bremer, M Brewington, H Collins, CA Crotts, A Dembicky, J Eastman, J Edge, A Elson, E Eyler, ME Filippenko, AV Foley, RJ Frank, S Goobar, A Harvanek, M Hopp, U Ihara, Y Kahn, S Ketzeback, W Kleinman, SJ Kollatschny, W Krzesinski, J Leloudas, G Long, DC Lucey, J Malanushenko, E Malanushenko, V McMillan, RJ Morgan, CW Morokuma, T Nitta, A Ostman, L Pan, K Romer, AK Saurage, G Schlesinger, K Snedden, SA Sollerman, J Stritzinger, M Watson, LC Watters, S Wheeler, JC York, D AF Zheng, Chen Romani, Roger W. Sako, Masao Marriner, John Bassett, Bruce Becker, Andrew Choi, Changsu Cinabro, David DeJongh, Fritz Depoy, Darren L. Dilday, Ben Doi, Mamoru Frieman, Joshua A. Garnavich, Peter M. Hogan, Craig J. Holtzman, Jon Im, Myungshin Jha, Saurabh Kessler, Richard Konishi, Kohki Lampeitl, Hubert Marshall, Jennifer L. McGinnis, David Miknaitis, Gajus Nichol, Robert C. Prieto, Jose Luis Riess, Adam G. Richmond, Michael W. Schneider, Donald P. Smith, Mathew Takanashi, Naohiro Tokita, Kouichi van der Heyden, Kurt Yasuda, Naoki Assef, Roberto J. Barentine, John Bender, Ralf Blandford, Roger D. Bremer, Malcolm Brewington, Howard Collins, Chris A. Crotts, Arlin Dembicky, Jack Eastman, Jason Edge, Alastair Elson, Ed Eyler, Michael E. Filippenko, Alexei V. Foley, Ryan J. Frank, Stephan Goobar, Ariel Harvanek, Michael Hopp, Ulrich Ihara, Yutaka Kahn, Steven Ketzeback, William Kleinman, Scott J. Kollatschny, Wolfram Krzesinski, Jurek Leloudas, Giorgos Long, Daniel C. Lucey, John Malanushenko, Elena Malanushenko, Viktor McMillan, Russet J. Morgan, Christopher W. Morokuma, Tomoki Nitta, Atsuko Ostman, Linda Pan, Kaike Romer, A. Kathy Saurage, Gabrelle Schlesinger, Katie Snedden, Stephanie A. Sollerman, Jesper Stritzinger, Maximilian Watson, Linda C. Watters, Shannon Wheeler, J. Craig York, Donald TI First-year spectroscopy for the Sloan Digital Sky Survey-II supernova survey SO ASTRONOMICAL JOURNAL LA English DT Article DE cosmology : observations; methods : data analysis; supernovae : general; surveys; techniques : spectroscopic ID HIGH-REDSHIFT SUPERNOVAE; HUBBLE-SPACE-TELESCOPE; HOBBY-EBERLY TELESCOPE; LIGHT-CURVE SHAPES; IA SUPERNOVAE; OPTICAL PHOTOMETRY; LEGACY SURVEY; K-CORRECTIONS; DARK ENERGY; SPECTRA AB This paper presents spectroscopy of supernovae (SNe) discovered in the first season of the Sloan Digital Sky Survey-II SN Survey. This program searches for and measures multi-band light curves of SNe in the redshift range z = 0.05-0.4, complementing existing surveys at lower and higher redshifts. Our goal is to better characterize the SN population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our SN spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the SN and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host-galaxy contamination existing in the majority of our SN spectra. C1 [Zheng, Chen; Romani, Roger W.; Jha, Saurabh; Blandford, Roger D.; Kahn, Steven] Stanford Univ, Kavli Int Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Sako, Masao] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Marriner, John; DeJongh, Fritz; Frieman, Joshua A.; McGinnis, David; Miknaitis, Gajus] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Bassett, Bruce; Elson, Ed] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa. [Bassett, Bruce; van der Heyden, Kurt; Elson, Ed] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Becker, Andrew; Hogan, Craig J.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Choi, Changsu; Im, Myungshin] Seoul Natl Univ, Dept Phys & Astron, FPRD, Seoul, South Korea. [Cinabro, David] Wayne State Univ, Dept Phys, Detroit, MI 48202 USA. [Depoy, Darren L.; Marshall, Jennifer L.; Prieto, Jose Luis; Assef, Roberto J.; Eastman, Jason; Frank, Stephan; Morgan, Christopher W.; Schlesinger, Katie; Watson, Linda C.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Dilday, Ben] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Dilday, Ben; Frieman, Joshua A.; Kessler, Richard] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Doi, Mamoru; Takanashi, Naohiro; Tokita, Kouichi; Ihara, Yutaka; Morokuma, Tomoki] Univ Tokyo, Inst Astron, Grad Sch Sci, Tokyo 1810015, Japan. [Frieman, Joshua A.; York, Donald] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Garnavich, Peter M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Holtzman, Jon] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Kessler, Richard; York, Donald] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Konishi, Kohki; Yasuda, Naoki] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan. [Lampeitl, Hubert; Riess, Adam G.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Nichol, Robert C.; Smith, Mathew] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England. [Riess, Adam G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Richmond, Michael W.] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Barentine, John; Wheeler, J. Craig] Univ Texas Austin, Dept Astron, McDonald Observ, Austin, TX 78712 USA. [Barentine, John; Brewington, Howard; Dembicky, Jack; Harvanek, Michael; Ketzeback, William; Kleinman, Scott J.; Krzesinski, Jurek; Long, Daniel C.; Malanushenko, Elena; Malanushenko, Viktor; McMillan, Russet J.; Nitta, Atsuko; Pan, Kaike; Saurage, Gabrelle; Snedden, Stephanie A.; Watters, Shannon] Apache Point Observ, Sunspot, NM 88349 USA. [Bender, Ralf; Hopp, Ulrich] Univ Sternwarte Munich, D-81679 Munich, Germany. [Bender, Ralf; Hopp, Ulrich] Max Planck Inst Extraterr Phys, D-85748 Munich, Germany. [Bremer, Malcolm] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Collins, Chris A.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Crotts, Arlin] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Edge, Alastair; Lucey, John] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Eyler, Michael E.; Morgan, Christopher W.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Filippenko, Alexei V.; Foley, Ryan J.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Goobar, Ariel; Ostman, Linda] Stockholm Univ, Dept Phys, AlbaNova Univ Ctr, S-10691 Stockholm, Sweden. [Harvanek, Michael] Lowell Observ, Flagstaff, AZ 86001 USA. [Kleinman, Scott J.] Subaru Telescope, Hilo, HI 96720 USA. [Kollatschny, Wolfram] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. Akad Pedagogicazna Krakowie, Obserwatorium Astron Suhorze, PL-30084 Krakow, Poland. [Leloudas, Giorgos; Sollerman, Jesper; Stritzinger, Maximilian] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Morokuma, Tomoki] Natl Astron Observ, Tokyo 1818588, Japan. [Nitta, Atsuko] Gemini Observ, Hilo, HI 96720 USA. [Romer, A. Kathy] Univ Sussex, Ctr Astron, Brighton BN1 9QJ, E Sussex, England. [Sollerman, Jesper] Stockholm Univ, Dept Astron, AlbaNova Univ Ctr, S-10691 Stockholm, Sweden. RP Zheng, C (reprint author), Stanford Univ, Kavli Int Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RI Yasuda, Naoki/A-4355-2011; Im, Myungshin/B-3436-2013; OI Im, Myungshin/0000-0002-8537-6714; Eastman, Jason/0000-0003-3773-5142; Edge, Alastair/0000-0002-3398-6916; Sollerman, Jesper/0000-0003-1546-6615; Leloudas, Giorgos/0000-0002-8597-0756; stritzinger, maximilian/0000-0002-5571-1833 NR 82 TC 44 Z9 45 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD MAY PY 2008 VL 135 IS 5 BP 1766 EP 1784 DI 10.1088/0004-6256/135/5/1766 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 294LO UT WOS:000255407700012 ER PT J AU Croft, S Van Breugel, W Brown, MJI de Vries, W Dey, A Eisenhardt, P Jannuzi, B Rottgering, HR Stanford, SA Stern, D Willner, SP AF Croft, Steve Van Breugel, Wil Brown, Michael J. I. de Vries, Wim Dey, Arjun Eisenhardt, Peter Jannuzi, Buell Rottgering, Huub R. Stanford, S. A. Stern, Daniel Willner, S. P. TI Radio-loud high-redshift protogalaxy candidates in Bootes SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies : active; galaxies : high-redshift; galaxies : starburst; infrared : galaxies ID IRAC SHALLOW SURVEY; RAY SOURCE CATALOG; ARRAY CAMERA IRAC; WIDE-FIELD SURVEY; PHOTOMETRIC REDSHIFTS; ELLIPTIC GALAXIES; 1.4 GHZ; LUMINOSITY; TELESCOPE; XBOOTES AB We used the Near Infrared Camera on Keck I to obtain K-s-band images of four candidate high-redshift radio lgalaxies selected using optical and radio data in the NOAO Deep Wide-Field Survey in Bootes. Our targets have 1.4 GHz radio flux densities greater than 1 mJy, but are undetected in the optical to greater than or similar to 24 Vega mag. Spectral energy distribution fitting suggests that three of these objects are at z > 3, with radio luminosities near the FR-I/FR-II break. The other has photometric redshift z(phot) = 1.2, but may in fact be at higher redshift. Two of the four objects exhibit diffuse morphologies in K-s-band, suggesting that they are still in the process of forming. C1 [Croft, Steve; Van Breugel, Wil; de Vries, Wim; Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Croft, Steve; Van Breugel, Wil] Univ Calif Merced, Merced, CA 95344 USA. [Croft, Steve; de Vries, Wim; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Croft, Steve] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Brown, Michael J. I.] Monash Univ, Sch Phys, Clayton, Vic 3168, Australia. [Dey, Arjun; Jannuzi, Buell] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Eisenhardt, Peter; Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rottgering, Huub R.] Leiden Observ, NL-2333 CA Leiden, Netherlands. [Willner, S. P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Croft, S (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, L-413,7000 East Ave, Livermore, CA 94550 USA. RI Brown, Michael/B-1181-2015; OI Brown, Michael/0000-0002-1207-9137; Croft, Steve/0000-0003-4823-129X NR 39 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD MAY PY 2008 VL 135 IS 5 BP 1793 EP 1802 DI 10.1088/0004-6256/135/5/1793 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 294LO UT WOS:000255407700014 ER PT J AU Kubas, D Cassan, A Dominik, M Bennett, DP Wambsganss, J Brillant, S Beaulieu, JP Albrow, MD Batista, V Bode, M Bramich, DM Burgdorf, M Caldwell, JAR Calitz, H Cook, KH Coutures, C Dieters, S Prester, DD Donatowicz, J Fouque, P Greenhill, J Hill, K Hoffman, M Horne, K Jorgensen, UG Kains, N Kane, S Marquette, JB Martin, R Meintjes, P Menzies, J Pollard, KR Sahu, KC Snodgrass, C Steele, I Tsapras, Y Vinter, C Williams, A Woller, K Zub, M AF Kubas, D. Cassan, A. Dominik, M. Bennett, D. P. Wambsganss, J. Brillant, S. Beaulieu, J. P. Albrow, M. D. Batista, V. Bode, M. Bramich, D. M. Burgdorf, M. Caldwell, J. A. R. Calitz, H. Cook, K. H. Coutures, Ch. Dieters, S. Prester, D. Dominis Donatowicz, J. Fouque, P. Greenhill, J. Hill, K. Hoffman, M. Horne, K. Jorgensen, U. G. Kains, N. Kane, S. Marquette, J. B. Martin, R. Meintjes, P. Menzies, J. Pollard, K. R. Sahu, K. C. Snodgrass, C. Steele, I. Tsapras, Y. Vinter, C. Williams, A. Woller, K. Zub, M. CA PLANET RoboNet Collaboration TI Limits on additional planetary companions to OGLE 2005-BLG-390L SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars : planetary systems; gravitational lensing ID NEPTUNE-MASS PLANETS; MICROLENSING EVENT; GALACTIC PLANETS; SUPER-EARTHS; DETERMINISTIC MODEL; EXTRASOLAR PLANETS; HIGH-MAGNIFICATION; STARS; STELLAR; SYSTEM AB Aims. We investigate constraints on additional planets orbiting the distant M-dwarf star OGLE 2005-BLG-390L, around which photometric microlensing data has revealed the existence of the sub-Neptune-mass planet OGLE 2005-BLG-390Lb. We specifically aim to study potential Jovian companions and compare our findings with predictions from core-accretion and disc-instability models of planet formation. We also obtain an estimate of the detection probability for sub-Neptune mass planets similar to OGLE 2005-BLG 390Lb using a simplified simulation of a microlensing experiment. Methods. We compute the efficiency of our photometric data for detecting additional planets around OGLE 2005-BLG-390L, as a function of the microlensing model parameters and convert it into a function of the orbital axis and planet mass by means of an adopted model of the Milky Way. Results. We find that more than 50% of potential planets with a mass in excess of 1 M(J) between 1.1 and 2.3 AU around OGLE 2005-BLG-390L would have revealed their existence, whereas for gas giants above 3 MJ in orbits between 1.5 and 2.2 AU, the detection efficiency reaches 70%; however, no such companion was observed. Our photometric microlensing data therefore do not contradict the existence of gas giant planets at any separation orbiting OGLE 2005-BLG-390L. Furthermore we find a detection probability for an OGLE 2005-BLG-390Lb-like planet of around 2-5%. In agreement with current planet formation theories, this quantitatively supports the prediction that sub-Neptune mass planets are common around low-mass stars. C1 [Kubas, D.; Brillant, S.; Snodgrass, C.] European So Observ, Santiago 19, Chile. [Cassan, A.; Wambsganss, J.; Zub, M.] Univ Heidelberg, Zentrum Astron, Astron Rech Inst, D-69120 Heidelberg, Germany. [Dominik, M.; Horne, K.; Kains, N.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Bennett, D. P.; Marquette, J. B.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Beaulieu, J. P.; Batista, V.] Inst Astrophys, F-75014 Paris, France. [Fouque, P.] Observ Midi Pyrenees, UMR 5572, F-31400 Toulouse, France. [Prester, D. Dominis] Univ Rijeka, Fac Arts & Sci, Dept Phys, Rijeka, Croatia. [Coutures, Ch.] CEA Saclay, DSM, DAPNIA, F-91191 Gif Sur Yvette, France. [Dieters, S.; Greenhill, J.; Hill, K.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Menzies, J.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Martin, R.; Pollard, K. R.; Williams, A.] Perth Observ, Perth, WA 6076, Australia. [Albrow, M. D.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Jorgensen, U. G.; Vinter, C.; Woller, K.] Astron Observ, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Bramich, D. M.] Isaac Newton Grp, Santa Cruz de La Palma 38700, Spain. [Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Calitz, H.; Hoffman, M.; Meintjes, P.] Univ Orange Free State, Dept Phys, Boyden Observ, ZA-9300 Bloemfontein, South Africa. [Donatowicz, J.] Vienna Univ Technol, Dept Comp, Vienna, Austria. [Caldwell, J. A. R.] McDonald Observ, Ft Davis, TX 79734 USA. [Bode, M.; Burgdorf, M.; Steele, I.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Kane, S.] Univ Florida, Dept Astron, Bryant Space Sci Ctr 211, Gainesville, FL 32611 USA. [Cook, K. H.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94551 USA. [Tsapras, Y.] Univ London, Sch Math Sci, Astron Unit, London E1 4NS, England. RP Kubas, D (reprint author), European So Observ, Casilla 19001, Santiago 19, Chile. EM dkubas@eso.org RI Kane, Stephen/B-4798-2013; Greenhill, John/C-8367-2013; Williams, Andrew/K-2931-2013; OI Williams, Andrew/0000-0001-9080-0105; Dominik, Martin/0000-0002-3202-0343; Snodgrass, Colin/0000-0001-9328-2905 NR 44 TC 21 Z9 21 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2008 VL 483 IS 1 BP 317 EP 324 DI 10.1051/0004-6361:20077449 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 294NR UT WOS:000255413300036 ER PT J AU Aharonian, F Akhperjanian, AG de Almeida, UB Bazer-Bachi, AR Behera, B Beilicke, M Benbow, W Bernlohr, K Boisson, C Bolz, O Borrel, V Braun, I Brion, E Brown, AM Buhler, R Bulik, T Busching, I Boutelier, T Carrigan, S Chadwick, PM Chounet, LM Clapson, AC Coignet, G Cornils, R Costamante, L Dalton, M Degrange, B Dickinson, HJ Djannati-Atai, A Domainko, W Drury, LO Dubois, F Dubus, G Dyks, J Egberts, K Emmanoulopoulos, D Espigat, P Farnier, C Feinstein, F Fiasson, A Forster, A Fontaine, G Funk, S Fussling, M Gallant, YA Giebels, B Glicenstein, JF Gluck, B Goret, P Hadjichristidis, C Hauser, D Hauser, M Heinzelmann, G Henri, G Hermann, G Hinton, JA Hoffmann, A Hofmann, W Holleran, M Hoppe, S Horns, D Jacholkowska, A De Jager, OC Jung, I Katarzynski, K Kendziorra, E Kerschhaggl, M Khelifi, B Keogh, D Komin, N Kosack, K Lamanna, G Latham, IJ Lemoine-Goumard, M Lenain, JP Lohse, T Martin, JM Martineau-Huynh, O Marcowith, A Masterson, C Maurin, D McComb, TJL Moderski, R Moulin, E Naumann-Godo, M De Naurois, M Nedbal, D Nekrassov, D Nolan, SJ Ohm, S Olive, JP Wilhelmi, ED Orford, KJ Osborne, JL Ostrowski, M Panter, M Pedaletti, G Pelletier, G Petrucci, PO Pita, S Puhlhofer, G Punch, M Raubenheimer, BC Raue, M Rayner, SM Renaud, M Ripken, J Rob, L Rosier-Lees, S Rowell, G Rudak, B Ruppel, J Sahakian, V Santangelo, A Schlickeiser, R Schock, FM Schroder, R Schwanke, U Schwarzburg, S Schwemmer, S Shalchi, A Sol, H Spangler, D Stawarz, L Steenkamp, R Stegmann, C Superina, G Tam, PH Tavernet, JP Terrier, R van Eldik, C Vasileiadis, G Venter, C Vialle, JP Vincent, P Vivier, M Voelk, HJ Volpe, F Wagner, SJ Ward, M Zdziarski, AA Zech, A AF Aharonian, F. Akhperjanian, A. G. de Almeida, U. Barres Bazer-Bachi, A. R. Behera, B. Beilicke, M. Benbow, W. Bernloehr, K. Boisson, C. Bolz, O. Borrel, V. Braun, I. Brion, E. Brown, A. M. Buehler, R. Bulik, T. Buesching, I. Boutelier, T. Carrigan, S. Chadwick, P. M. Chounet, L. -M. Clapson, A. C. Coignet, G. Cornils, R. Costamante, L. Dalton, M. Degrange, B. Dickinson, H. J. Djannati-Atai, A. Domainko, W. Drury, L. O'C. Dubois, F. Dubus, G. Dyks, J. Egberts, K. Emmanoulopoulos, D. Espigat, P. Farnier, C. Feinstein, F. Fiasson, A. Foerster, A. Fontaine, G. Funk, S. Fuessling, M. Gallant, Y. A. Giebels, B. Glicenstein, J. F. Glueck, B. Goret, P. Hadjichristidis, C. Hauser, D. Hauser, M. Heinzelmann, G. Henri, G. Hermann, G. Hinton, J. A. Hoffmann, A. Hofmann, W. Holleran, M. Hoppe, S. Horns, D. Jacholkowska, A. De Jager, O. C. Jung, I. Katarzynski, K. Kendziorra, E. Kerschhaggl, M. Khelifi, B. Keogh, D. Komin, Nu. Kosack, K. Lamanna, G. Latham, I. J. Lemoine-Goumard, M. Lenain, J. -P. Lohse, T. Martin, J. M. Martineau-Huynh, O. Marcowith, A. Masterson, C. Maurin, D. McComb, T. J. L. Moderski, R. Moulin, E. Naumann-Godo, M. De Naurois, M. Nedbal, D. Nekrassov, D. Nolan, S. J. Ohm, S. Olive, J. -P. Wilhelmi, E. de Ona Orford, K. J. Osborne, J. L. Ostrowski, M. Panter, M. Pedaletti, G. Pelletier, G. Petrucci, P. -O. Pita, S. Puehlhofer, G. Punch, M. Raubenheimer, B. C. Raue, M. Rayner, S. M. Renaud, M. Ripken, J. Rob, L. Rosier-Lees, S. Rowell, G. Rudak, B. Ruppel, J. Sahakian, V. Santangelo, A. Schlickeiser, R. Schoeck, F. M. Schroeder, R. Schwanke, U. Schwarzburg, S. Schwemmer, S. Shalchi, A. Sol, H. Spangler, D. Stawarz, L. Steenkamp, R. Stegmann, C. Superina, G. Tam, P. H. Tavernet, J. -P. Terrier, R. van Eldik, C. Vasileiadis, G. Venter, C. Vialle, J. P. Vincent, P. Vivier, M. Voelk, H. J. Volpe, F. Wagner, S. J. Ward, M. Zdziarski, A. A. Zech, A. TI Exploring a SNR/molecular cloud association within HESS J1745-303 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma rays : observations; X-rays : general; galaxy : general; ISM : cosmic rays; ISM : clouds ID ENERGY GAMMA-RAYS; GALACTIC-CENTER REGION; PULSAR WIND NEBULA; SUPERNOVA-REMNANTS; CO SURVEY; HESS; DISCOVERY; EMISSION; ASTRONOMY; CATALOG AB Aims. HESS J1745-303 is an extended, unidentified VHE (very high energy) gamma-ray source discovered using HESS in the Galactic Plane Survey. Since no obvious counterpart has previously been found in longer-wavelength data, the processes that power the VHE emission are not well understood. Methods. Combining the latest VHE data with recent XMM-Newton observations and a variety of source catalogs and lower-energy survey data, we attempt to match (from an energetic and positional standpoint) the various parts of the emission of HESS J1745-303 with possible candidates. Results. Though no single counterpart is found to fully explain the VHE emission, we postulate that at least a fraction of the VHE source may be explained by a supernova-remnant/molecular-cloud association and/or a high-spin-down-flux pulsar. C1 [Aharonian, F.; Benbow, W.; Bernloehr, K.; Bolz, O.; Braun, I.; Buehler, R.; Carrigan, S.; Clapson, A. C.; Costamante, L.; Domainko, W.; Egberts, K.; Foerster, A.; Hauser, D.; Hermann, G.; Hofmann, W.; Hoppe, S.; Nekrassov, D.; Ohm, S.; Panter, M.; Renaud, M.; van Eldik, C.; Voelk, H. J.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Akhperjanian, A. G.; Sahakian, V.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Borrel, V.; Olive, J. -P.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31029 Toulouse 4, France. [Beilicke, M.; Cornils, R.; Heinzelmann, G.; Ripken, J.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. [Bernloehr, K.; Dalton, M.; Fuessling, M.; Kerschhaggl, M.; Lohse, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Boisson, C.; Lenain, J. -P.; Martin, J. M.; Sol, H.; Zech, A.] Univ Paris 05, CNRS, Observ Paris, LUTH, F-92190 Meudon, France. [Brion, E.; Glicenstein, J. F.; Goret, P.; Moulin, E.; Vivier, M.] CE Saclay, CEA, DSM, DAPNIA, F-91191 Gif Sur Yvette, France. [de Almeida, U. Barres; Brown, A. M.; Chadwick, P. M.; Dickinson, H. J.; Hadjichristidis, C.; Keogh, D.; Latham, I. J.; McComb, T. J. L.; Nolan, S. J.; Orford, K. J.; Osborne, J. L.; Rayner, S. M.; Spangler, D.; Ward, M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Buesching, I.; Holleran, M.; De Jager, O. C.; Raubenheimer, B. C.; Venter, C.] North West Univ, Unit Space Phys, ZA-2520 Potchefstroom, South Africa. [Chounet, L. -M.; Degrange, B.; Fontaine, G.; Giebels, B.; Khelifi, B.; Lemoine-Goumard, M.; Naumann-Godo, M.; Superina, G.; Volpe, F.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Dubois, F.; Lamanna, G.; Rosier-Lees, S.; Vialle, J. P.] CNRS IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Djannati-Atai, A.; Espigat, P.; Wilhelmi, E. de Ona; Punch, M.; Terrier, R.] Univ Paris 07, CNRS, F-75205 Paris 13, France. [Djannati-Atai, A.; Espigat, P.; Wilhelmi, E. de Ona; Punch, M.; Terrier, R.] Univ Paris 07, CNRS, Observ Paris, CEA,UMR 7164, F-75221 Paris 05, France. [Aharonian, F.; Drury, L. O'C.] Dublin Inst Adv Studies, Dublin 2, Ireland. [Behera, B.; Emmanoulopoulos, D.; Hauser, M.; Pedaletti, G.; Puehlhofer, G.; Schwemmer, S.; Tam, P. H.; Wagner, S. J.] Heidelberg Univ, D-69117 Heidelberg, Germany. [Farnier, C.; Feinstein, F.; Fiasson, A.; Gallant, Y. A.; Jacholkowska, A.; Kerschhaggl, M.; Komin, Nu.; Vasileiadis, G.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, F-34095 Montpellier, France. [Glueck, B.; Jung, I.; Schoeck, F. M.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Boutelier, T.; Henri, G.; Pelletier, G.; Petrucci, P. -O.] Univ Grenoble 1, CNRS, INSU, Lab Astrophys Grenoble, F-38041 Grenoble, France. [Hoffmann, A.; Horns, D.; Kendziorra, E.; Santangelo, A.; Schwarzburg, S.] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Martineau-Huynh, O.; De Naurois, M.; Tavernet, J. -P.] Univ Paris 07, Univ Paris 06, LPNHE, CNRS,IN2P3, F-75252 Paris 5, France. [Nedbal, D.; Rob, L.] Charles Univ Prague, Inst Particle & Nucl Phys, CR-18000 Prague 8, Czech Republic. [Ruppel, J.; Schlickeiser, R.; Schroeder, R.; Shalchi, A.] Ruhr Univ Bochum, Inst Theoret Phys, Lehrstuhl Weltraum & Astrophys 4, D-44780 Bochum, Germany. [Steenkamp, R.] Univ Namibia, Windhoek, Namibia. [Ostrowski, M.] Jagiellonian Univ, Obserwatorium Astron, Krakow, Poland. [Bulik, T.; Rudak, B.; Zdziarski, A. A.] Nicholas Copernicus Astron Ctr, Warsaw, Poland. [Hinton, J. A.; Schwanke, U.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Rowell, G.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Katarzynski, K.] Nicholas Copernicus Univ, Torun Ctr Astron, Torun, Poland. [Funk, S.] SLAC, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. RP Aharonian, F (reprint author), Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany. EM Karl.Kosack@mpi-hd.mpg.de RI Horns, Dieter/C-9727-2011; Venter, Christo/E-6884-2011; Braun, Isabel/C-9373-2012; Hadjichristidis, Christos/G-7284-2012; van Eldik, Christopher/C-3901-2013; Fontaine, Gerard/D-6420-2014; Funk, Stefan/B-7629-2015; Katarzynski, Krzysztof/G-4528-2014; Drury, Luke/B-1916-2017; Moulin, Emmanuel/B-5959-2017; Komin, Nukri/J-6781-2015; OI Chadwick, Paula/0000-0002-1468-2685; Venter, Christo/0000-0002-2666-4812; Braun, Isabel/0000-0002-9389-0502; Hadjichristidis, Christos/0000-0002-5933-0755; van Eldik, Christopher/0000-0001-9669-645X; Funk, Stefan/0000-0002-2012-0080; Drury, Luke/0000-0002-9257-2270; Moulin, Emmanuel/0000-0003-4007-0145; Komin, Nukri/0000-0003-3280-0582; Punch, Michael/0000-0002-4710-2165; de Ona Wilhelmi, Emma/0000-0002-5401-0744; Rowell, Gavin/0000-0002-9516-1581; Lenain, Jean-Philippe/0000-0001-7284-9220 NR 55 TC 48 Z9 48 U1 1 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2008 VL 483 IS 2 BP 509 EP 517 DI 10.1051/0004-6361:20079230 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 299EB UT WOS:000255737500016 ER PT J AU Abraham, J Abreu, P Aglietta, M Aguirre, C Allard, D Allekotte, I Allen, J Allison, P Alvarez-Muniz, J Ambrosio, M Anchordoqui, L Andringa, S Anzalone, A Aramo, C Argiro, S Arisaka, K Armengaud, E Arneodo, F Arqueros, F Asch, T Asorey, H Assis, P Atulugama, BS Aublin, J Ave, M Avila, G Backer, T Badagnani, D Barbosa, AF Barnhill, D Barroso, SLC Bauleo, P Beatty, JJ Beau, T Becker, BR Becker, KH Bellido, JA BenZvi, S Berat, C Bergmann, T Bernardini, P Bertou, X Biermann, PL Billoir, P Blanch-Bigas, O Blanco, F Blasi, P Bleve, C Biumer, H Bohacova, M Bonifazi, C Bonino, R BorataV, M Brack, J Brogueira, P Brown, WC Buchholz, P Bueno, A Burton, RE Busca, NG Caballero-Mora, KS Cai, B Camin, DV Caramete, L Caruso, R Carvalho, W Castellina, A Catalano, O Cataldi, G Cazon, L Cester, R Chauvin, J Chiavassa, A Chinellato, JA Chou, A Chye, J Clark, PDJ Clay, RW Colombo, E Conceicao, R Connolly, B Contreras, F Coppens, J Cordier, A Cotti, U Coutu, S Covault, CE Creusot, A Criss, A Cronin, J Curutiu, A Dagoret-Campagne, S Daumiller, K Dawson, BR de Almeida, RM De Donato, C de Jong, SJ De La Vega, G de Mello, WJM Neto, JRTDM De Mitri, I de Souza, V del Peral, L Deligny, O Della Selva, A Delle Fratte, C Dembinski, H Di Giulio, C Diaz, JC Dobrgkeit, C D'Olivo, JC Dornic, D Dorofeev, A dos Anjos, JC Dova, MT D'Urso, D Dutan, I DuVernois, MA Engel, R Epele, L Erdmann, M Escobar, CO Etchegoyen, A Luis, PFS Falcke, H Farrar, G Fauth, AC Fazzini, N Ferrer, F Ferry, S Fick, B Filevich, A Fllipicic, A Fleck, I Fonte, R Fracchiolla, CE Fulgione, W Garcia, B Gamez, DG Garcia-Pinto, D Garrido, X Geenen, H Gelmini, G Gemmeke, H Ghia, PL Giller, M Glass, H Gold, MS Golup, G Albarracin, FG Berisso, MG Herrero, RG Gonqalves, P do Amaral, MG Gonzalez, D Gonzalez, JG Gonzalez, M Gora, D Gorgi, A Gouffon, P Grassi, V Grillo, AF Grunfeld, C Guardincerri, Y Guarino, F Guedes, GP Gutierrez, J Hague, JD Hamilton, JC Hansen, P Harari, D Harmsma, S Harton, JL Haungs, A Hauschildt, T Healy, MD Hebbeker, T Hebrero, G Heck, D Hojvat, C Holmes, VC Homola, P Horandel, J Horneffer, A Horvat, M Hrabovsky, M Huege, T Hussain, M Iarlori, M Insolia, A Ionita, F Italiano, A Kaducak, M Kampert, KH Karova, T Kegl, B Keilhauer, B Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Knapik, R Knapp, J Koang, DH Krieger, A Kromer, O Kuempel, D Kunka, N Kusenko, A La Rosa, G Lachaud, C Lago, BL Lebrun, D Lebrun, P Lee, J de Oliveira, MAL Letessier-Selvon, A Leuthold, M Lhenry-Yvon, I Lopez, R Aguera, AL Bahilo, JL Garcia, RL Maccarone, MC Macolino, C Maldera, S Mancarella, G Mancenido, ME Mandat, D Mantsch, P Mariazzi, AG Maris, IC Falcon, HRM Martello, D Martinez, J Bravo, OM Mathes, HJ Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mazur, PO McCauley, T McEwen, M McNeil, RR Medina, MC Medina-Tanco, G Meli, A Melo, D Menichetti, E Menschikov, A Meurer, C Meyhandan, R Micheletti, MI Miele, G Miller, W Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morales, B Morello, C Moreno, JC Morris, C Mostafa, M Muller, MA Mussa, R Navarra, G Navarro, JL Navas, S Necesal, P Nellen, L Newman-Holmes, C Newton, D Thao, NT Nierstenhoefer, N Nitz, D Nosek, D Nozka, L Oehlschlager, J Ohnuki, T Olinto, A Olmos-Gilbaja, VM Ortiz, M Ortolani, F Ostapchenko, S Otero, L Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Parente, G Parizot, E Parlati, S Pastor, S Patel, M Paul, T Pavlidou, V Payet, K Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Petrera, S Petrinca, P Petrov, Y Diep, PN Dong, PN Nhung, PT Pichel, A Piegaia, R Pierog, T Pimenta, M Pinto, T Pirronello, V Pisanti, O Platino, M Pochon, J Privitera, P Prouza, M Quel, EJ Rautenberg, J Redondo, A Reucroft, S Revenu, B Rezende, FAS Ridky, J Riggi, S Risse, M Riviere, C Rizi, V Roberts, M Robledo, C Rodriguez, G Rodriguez-Frias, MD Martino, IR Rojo, JR Rodriguez-Cabo, I Ros, G Rosado, I Roth, M Roucelle, C Rouille-d'Orfeuil, B Roulet, E Rovero, AC Salamida, F Salazar, H Salina, G Sanchez, F Santander, M Santo, CE Santos, EM Sarazin, F Sarkar, S Sato, R Scherini, V Schieler, H Schmidt, A Schmidt, F Schmidt, T Scholten, O Schovanek, P Schussler, F Sciutto, SJ Scudeni, M Segreto, A Semikoz, D Settimo, M Shellard, RC Sidelnik, I Siffert, BB Sigl, G De Grande, NS Smialkowski, A Smida, R Smith, AGK Smith, BE Snow, GR Sokolsky, P Sommers, P Sorokin, J Spinka, H Squartini, R Strazzeri, E Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Takahashi, J Tamashiro, A Tamburro, A Tascau, O Tcaciuc, R Thomas, D Ticona, R Tiffenberg, J Timmermans, C Tkaczyk, W Peixoto, CJT Tome, B Tonachini, A Torres, I Torresi, D Travnicek, P Tripathi, A Tristram, G Tscherniakhovski, D Tueros, M Tunnicliffe, V Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van den Berg, AM van Elewyck, V Vazquez, RA Veberic, D Veiga, A Velarde, A Venters, T Verzi, V Videla, M Villasenor, L Vorobiov, S Voyvodic, L Wahlberg, H Wainberg, O Walker, P Warner, D Watson, AA Westerhoff, S Wieczorek, G Wiencke, L Wilczynska, B Wilczynski, H Wileman, C Winnick, MG Wu, H Wundheiler, B Yamamoto, T Younk, P Zas, E Zavrtanik, D Zavrtanik, M Zech, A Zepeda, A Holkowski, M AF Abraham, J. Abreu, P. Aglietta, M. Aguirre, C. Allard, D. Allekotte, I. Allen, J. Allison, P. Alvarez-Muniz, J. Ambrosio, M. Anchordoqui, L. Andringa, S. Anzalone, A. Aramo, C. Argiro, S. Arisaka, K. Armengaud, E. Arneodo, F. Arqueros, F. Asch, T. Asorey, H. Assis, P. Atulugama, B. S. Aublin, J. Ave, M. Avila, G. Baecker, T. Badagnani, D. Barbosa, A. F. Barnhill, D. Barroso, S. L. C. Bauleo, P. Beatty, J. J. Beau, T. Becker, B. R. Becker, K. H. Bellido, J. A. BenZvi, S. Berat, C. Bergmann, T. Bernardini, P. Bertou, X. Biermann, P. L. Billoir, P. Blanch-Bigas, O. Blanco, F. Blasi, P. Bleve, C. Biuemer, H. Bohacova, M. Bonifazi, C. Bonino, R. Boratav, M. Brack, J. Brogueira, P. Brown, W. C. Buchholz, P. Bueno, A. Burton, R. E. Busca, N. G. Caballero-Mora, K. S. Cai, B. Camin, D. V. Caramete, L. Caruso, R. Carvalho, W. Castellina, A. Catalano, O. Cataldi, G. Cazon, L. Cester, R. Chauvin, J. Chiavassa, A. Chinellato, J. A. Chou, A. Chye, J. Clark, P. D. J. Clay, R. W. Colombo, E. Conceicao, R. Connolly, B. Contreras, F. Coppens, J. Cordier, A. Cotti, U. Coutu, S. Covault, C. E. Creusot, A. Criss, A. Cronin, J. Curutiu, A. Dagoret-Campagne, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Donato, C. de Jong, S. J. De La Vega, G. de Mello, W. J. M., Jr. Neto, J. R. T. de Mello De Mitri, I. de Souza, V. del Peral, L. Deligny, O. Della Selva, A. Delle Fratte, C. Dembinski, H. Di Giulio, C. Diaz, J. C. Dobrgkeit, C. D'Olivo, J. C. Dornic, D. Dorofeev, A. dos Anjos, J. C. Dova, M. T. D'Urso, D. Dutan, I. DuVernois, M. A. Engel, R. Epele, L. Erdmann, M. Escobar, C. O. Etchegoyen, A. Luis, P. Facal San Falcke, H. Farrar, G. Fauth, A. C. Fazzini, N. Ferrer, F. Ferry, S. Fick, B. Filevich, A. Fllipicic, A. Fleck, I. Fonte, R. Fracchiolla, C. E. Fulgione, W. Garcia, B. Gamez, D. Garcia Garcia-Pinto, D. Garrido, X. Geenen, H. Gelmini, G. Gemmeke, H. Ghia, P. L. Giller, M. Glass, H. Gold, M. S. Golup, G. Albarracin, F. Gomez Berisso, M. Gomez Herrero, R. Gomez Gonqalves, P. do Amaral, M. Goncalves Gonzalez, D. Gonzalez, J. G. Gonzalez, M. Gora, D. Gorgi, A. Gouffon, P. Grassi, V. Grillo, A. F. Grunfeld, C. Guardincerri, Y. Guarino, F. Guedes, G. P. Gutierrez, J. Hague, J. D. Hamilton, J. C. Hansen, P. Harari, D. Harmsma, S. Harton, J. L. Haungs, A. Hauschildt, T. Healy, M. D. Hebbeker, T. Hebrero, G. Heck, D. Hojvat, C. Holmes, V. C. Homola, P. Hoerandel, J. Horneffer, A. Horvat, M. Hrabovsky, M. Huege, T. Hussain, M. Iarlori, M. Insolia, A. Ionita, F. Italiano, A. Kaducak, M. Kampert, K. H. Karova, T. Kegl, B. Keilhauer, B. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Knapik, R. Knapp, J. Koang, D. -H. Krieger, A. Kroemer, O. Kuempel, D. Kunka, N. Kusenko, A. La Rosa, G. Lachaud, C. Lago, B. L. Lebrun, D. Lebrun, P. Lee, J. de Oliveira, M. A. Leigui Letessier-Selvon, A. Leuthold, M. Lhenry-Yvon, I. Lopez, R. Agueera, A. Lopez Bahilo, J. Lozano Garcia, R. Luna Maccarone, M. C. Macolino, C. Maldera, S. Mancarella, G. Mancenido, M. E. Mandat, D. Mantsch, P. Mariazzi, A. G. Maris, I. C. Falcon, H. R. Marquez Martello, D. Martinez, J. Bravo, O. Martinez Mathes, H. J. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mazur, P. O. McCauley, T. McEwen, M. McNeil, R. R. Medina, M. C. Medina-Tanco, G. Meli, A. Melo, D. Menichetti, E. Menschikov, A. Meurer, Chr. Meyhandan, R. Micheletti, M. I. Miele, G. Miller, W. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morales, B. Morello, C. Moreno, J. C. Morris, C. Mostafa, M. Muller, M. A. Mussa, R. Navarra, G. Navarro, J. L. Navas, S. Necesal, P. Nellen, L. Newman-Holmes, C. Newton, D. Thao, N. T. Nierstenhoefer, N. Nitz, D. Nosek, D. Nozka, L. Oehlschlaeger, J. Ohnuki, T. Olinto, A. Olmos-Gilbaja, V. M. Ortiz, M. Ortolani, F. Ostapchenko, S. Otero, L. Pacheco, N. Selmi-Dei, D. Pakk Palatka, M. Pallotta, J. Parente, G. Parizot, E. Parlati, S. Pastor, S. Patel, M. Paul, T. Pavlidou, V. Payet, K. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Petrera, S. Petrinca, P. Petrov, Y. Diep, P. N. Dong, P. N. Nhung, P. T. Pichel, A. Piegaia, R. Pierog, T. Pimenta, M. Pinto, T. Pirronello, V. Pisanti, O. Platino, M. Pochon, J. Privitera, P. Prouza, M. Quel, E. J. Rautenberg, J. Redondo, A. Reucroft, S. Revenu, B. Rezende, F. A. S. Ridky, J. Riggi, S. Risse, M. Riviere, C. Rizi, V. Roberts, M. Robledo, C. Rodriguez, G. Rodriguez-Frias, M. D. Martino, I. Rodriguez Rojo, J. Rodriguez Rodriguez-Cabo, I. Ros, G. Rosado, I. Roth, M. Roucelle, C. Rouille-d'Orfeuil, B. Roulet, E. Rovero, A. C. Salamida, F. Salazar, H. Salina, G. Sanchez, F. Santander, M. Santo, C. E. Santos, E. M. Sarazin, F. Sarkar, S. Sato, R. Scherini, V. Schieler, H. Schmidt, A. Schmidt, F. Schmidt, T. Scholten, O. Schovanek, P. Schuessler, F. Sciutto, S. J. Scudeni, M. Segreto, A. Semikoz, D. Settimo, M. Shellard, R. C. Sidelnik, I. Siffert, B. B. Sigl, G. De Grande, N. Smetmansky Smialkowski, A. Smida, R. Smith, A. G. K. Smith, B. E. Snow, G. R. Sokolsky, P. Sommers, P. Sorokin, J. Spinka, H. Squartini, R. Strazzeri, E. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Takahashi, J. Tamashiro, A. Tamburro, A. Tascau, O. Tcaciuc, R. Thomas, D. Ticona, R. Tiffenberg, J. Timmermans, C. Tkaczyk, W. Peixoto, C. J. Todero Tome, B. Tonachini, A. Torres, I. Torresi, D. Travnicek, P. Tripathi, A. Tristram, G. Tscherniakhovski, D. Tueros, M. Tunnicliffe, V. Ulrich, R. Unger, M. Urban, M. Galicia, J. F. Valdes Valino, I. Valore, L. van den Berg, A. M. van Elewyck, V. Vazquez, R. A. Veberic, D. Veiga, A. Velarde, A. Venters, T. Verzi, V. Videla, M. Villasenor, L. Vorobiov, S. Voyvodic, L. Wahlberg, H. Wainberg, O. Walker, P. Warner, D. Watson, A. A. Westerhoff, S. Wieczorek, G. Wiencke, L. Wilczynska, B. Wilczynski, H. Wileman, C. Winnick, M. G. Wu, H. Wundheiler, B. Yamamoto, T. Younk, P. Zas, E. Zavrtanik, D. Zavrtanik, M. Zech, A. Zepeda, A. Holkowski, M. TI Upper limit on the cosmic-ray photon flux above 10(19) eV using the surface detector of the Pierre Auger Observatory SO ASTROPARTICLE PHYSICS LA English DT Article ID ULTRA-HIGH-ENERGY; ZATSEPIN-KUZMIN CUTOFF; GIANT AIR-SHOWER; PAIR PRODUCTION; GEOMAGNETIC-FIELD; MAGNETIC-FIELD; SPECTRUM; PARTICLE; SIMULATION; NEUTRINOS AB A method is developed to search for air showers initiated by photons using data recorded by the surface detector of the Auger Observatory. The approach is based on observables sensitive to the longitudinal shower development, the signal risetime and the curvature of the shower front. Applying this method to the data, tipper limits on the flux of photons of 3.8 x 10(-3), 2.5 x 10(-3), and 2.2 x 10(-3) km(-2) sr(-1) yr(-1) above 10(19) eV, 2 x 10(19) eV, and 4 x 10(19) eV are derived, with corresponding limits on the fraction of photons being 2.0%, 5.1%, and 31% (all limits at 95% c.l.). These photon limits disfavor certain exotic models of sources of cosmic rays. The results also show that the approach adopted by the Auger Observatory to calibrate the shower energy is not strongly biased by a contamination from photons. (C) 2008 Elsevier B.V. All rights reserved. C1 [Abraham, J.; De La Vega, G.; Garcia, B.; Otero, L.; Videla, M.] Univ Tecnol Nacl, FR Mendoza, Argentina. [Pallotta, J.; Quel, E. J.] CITEFA, Ctr Invest Laseres & Aplicac, Buenos Aires, DF, Argentina. [Etchegoyen, A.; Golup, G.; Berisso, M. Gomez; Guardincerri, Y.; Harari, D.; Medina, M. C.; Micheletti, M. I.; Mollerach, S.; Pallotta, J.; Piegaia, R.; Quel, E. J.; Roulet, E.; Sidelnik, I.; Tiffenberg, J.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Colombo, E.; Etchegoyen, A.; Filevich, A.; Krieger, A.; Medina, M. C.; Melo, D.; Micheletti, M. I.; Platino, M.; Sidelnik, I.; Wainberg, O.; Wundheiler, B.] CNEA, Ctr Atomico Constituyentes, Buenos Aires, DF, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Pochon, J.] Comis Nacl Energia Atom, Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Golup, G.; Berisso, M. Gomez; Harari, D.; Mollerach, S.; Roulet, E.] Comis Nacl Energia Atom, Ctr Atom Bariloche, Dept Fis, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.] CNEA UNC, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. [Guardincerri, Y.; Piegaia, R.; Tiffenberg, J.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1053 Buenos Aires, DF, Argentina. [Tueros, M.] Univ Nacl La Plata, Dept Fis, La Plata, Argentina. [Badagnani, D.; Dova, M. T.; Epele, L.; Albarracin, F. Gomez; Grunfeld, C.; Mancenido, M. E.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Veiga, A.; Wahlberg, H.] Univ Nacl La Plata, IFLP, La Plata, Argentina. [Badagnani, D.; Dova, M. T.; Epele, L.; Albarracin, F. Gomez; Grunfeld, C.; Mancenido, M. E.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Veiga, A.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Pichel, A.; Rovero, A. C.; Tamashiro, A.] Consejo Nacl Invest Cient & Tecn, Inst Astron & Fis Espacio, RA-1033 Buenos Aires, DF, Argentina. [Avila, G.; Contreras, F.; Rojo, J. Rodriguez; Santander, M.; Sato, R.; Squartini, R.] Pierre Auger So Observ, Malargue, Argentina. [Avila, G.] Comis Nacl Energia Atom, Malargue, Argentina. [Clay, R. W.; Dawson, B. R.; Holmes, V. C.; Smith, A. G. K.; Sorokin, J.; Winnick, M. G.] Univ Adelaide, Adelaide, SA, Australia. [Aguirre, C.] Univ Catolica Bolivia, La Paz, Bolivia. [Barbosa, A. F.; Bonifazi, C.; dos Anjos, J. C.; Rezende, F. A. S.; Santos, E. M.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Fracchiolla, C. E.] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil. [Carvalho, W.; Gouffon, P.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Chinellato, J. A.; de Almeida, R. M.; de Mello, W. J. M., Jr.; Dobrgkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Selmi-Dei, D. Pakk; Takahashi, J.; Peixoto, C. J. Todero] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Barroso, S. L. C.] Univ Estadual Sudoeste Bahia, Vitoria Da Conquista, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [de Oliveira, M. A. Leigui] Univ Fed ABC, Santo Andre, SP, Brazil. [Neto, J. R. T. de Mello; Lago, B. L.; Siffert, B. B.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil. [do Amaral, M. Goncalves] Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil. [Nosek, D.] Charles Univ Prague, Inst Nucl & Particle Phys, Prague, Czech Republic. [Bohacova, M.; Hrabovsky, M.; Karova, T.; Mandat, D.; Necesal, P.; Nozka, L.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovanek, P.; Smida, R.; Travnicek, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Deligny, O.; Dornic, D.; Ghia, P. L.; Harton, J. L.; Lhenry-Yvon, I.; Suomijaervi, T.; van Elewyck, V.] Univ Paris 11, Inst Phys Nucl, IN2P3 CNRS, F-91406 Orsay, France. [Allard, D.; Armengaud, E.; Beau, T.; Busca, N. G.; Hamilton, J. C.; Lachaud, C.; Olinto, A.; Parizot, E.; Revenu, B.; Rouille-d'Orfeuil, B.; Semikoz, D.; Sigl, G.; Tristram, G.; Venters, T.] Univ Paris 07, Lab Astroparticule & Cosmol, IN2P3 CNRS, Paris, France. [Cordier, A.; Dagoret-Campagne, S.; Garrido, X.; Kegl, B.; Ragaigne, D. Monnier; Urban, M.; Wu, H.] Univ Paris 11, Lab Accelerateur Lineaire, IN2P3 CNRS, Orsay, France. [Aublin, J.; Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.; Boratav, M.; Letessier-Selvon, A.; Roucelle, C.; Santos, E. M.; Zech, A.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, IN2P3 CNRS, Paris 05, France. [Aublin, J.; Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.; Boratav, M.; Letessier-Selvon, A.; Roucelle, C.; Santos, E. M.; Zech, A.] Univ Paris 07, Lab Phys Nucl & Hautes Energies, IN2P3 CNRS, Paris 05, France. [Berat, C.; Chauvin, J.; Koang, D. -H.; Lebrun, D.; Montanet, F.; Payet, K.; Riviere, C.; Stutz, A.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, IN2P3 CNRS, Grenoble, France. [Berat, C.; Chauvin, J.; Koang, D. -H.; Lebrun, D.; Montanet, F.; Payet, K.; Riviere, C.; Stutz, A.] INPG, Grenoble, France. [Becker, K. H.; Geenen, H.; Kampert, K. H.; Kuempel, D.; Nierstenhoefer, N.; Rautenberg, J.; Risse, M.; Scherini, V.; Tascau, O.] Berg Univ Wuppertal, D-42119 Wuppertal, Germany. [Biuemer, H.; Daumiller, K.; Engel, R.; Haungs, A.; Heck, D.; Huege, T.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Meurer, Chr.; Oehlschlaeger, J.; Pierog, T.; Roth, M.; Schieler, H.; Schuessler, F.; Ulrich, R.; Unger, M.] Forschungszentrum Karlsruhe, Inst Kernphys, D-76021 Karlsruhe, Germany. [Asch, T.; Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menschikov, A.; Schmidt, A.; Tscherniakhovski, D.] Forschungszentrum Karlsruhe, Inst Prozessdatenverarbeitung & Elek, Karlsruhe, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.; Dutan, I.; Meli, A.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Dembinski, H.; Erdmann, M.; Hebbeker, T.; Leuthold, M.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. [Bergmann, T.; Biuemer, H.; Caballero-Mora, K. S.; de Souza, V.; Gonzalez, D.; Gora, D.; Keilhauer, B.; Maris, I. C.; Ostapchenko, S.; Schmidt, T.; Tamburro, A.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Baecker, T.; Buchholz, P.; Fleck, I.; Tcaciuc, R.; Holkowski, M.] Univ Siegen, Siegen, Germany. [Blasi, P.; Iarlori, M.; Macolino, C.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, I-67100 Laquila, Italy. [Blasi, P.; Iarlori, M.; Macolino, C.; Petrera, S.; Rizi, V.; Salamida, F.] Sezione Ist Nazl Fis Nucl, Laquila, Italy. [Camin, D. V.; De Donato, C.; Grassi, V.] Univ Milan, Milan, Italy. [Camin, D. V.; De Donato, C.; Grassi, V.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Bernardini, P.; Cataldi, G.; De Mitri, I.; Mancarella, G.; Martello, D.; Perrone, L.; Settimo, M.] Univ Salento, Lecce, Italy. [Bernardini, P.; Cataldi, G.; De Mitri, I.; Mancarella, G.; Martello, D.; Perrone, L.; Settimo, M.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Della Selva, A.; D'Urso, D.; Guarino, F.; Miele, G.; Pisanti, O.; Valore, L.] Univ Naples Federico II, Naples, Italy. [Della Selva, A.; D'Urso, D.; Guarino, F.; Miele, G.; Pisanti, O.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Ortolani, F.; Petrinca, P.; Privitera, P.; Salina, G.; Strazzeri, E.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Ortolani, F.; Petrinca, P.; Privitera, P.; Salina, G.; Strazzeri, E.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Caruso, R.; Fonte, R.; Insolia, A.; Italiano, A.; Pirronello, V.; Riggi, S.; Martino, I. Rodriguez; Scudeni, M.] Univ Catania, Catania, Italy. [Caruso, R.; Fonte, R.; Insolia, A.; Italiano, A.; Pirronello, V.; Riggi, S.; Martino, I. Rodriguez; Scudeni, M.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Argiro, S.; Cester, R.; Maurizio, D.; Menichetti, E.; Mussa, R.; Tonachini, A.] Univ Turin, Turin, Italy. [Argiro, S.; Cester, R.; Maurizio, D.; Menichetti, E.; Mussa, R.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Anzalone, A.; Catalano, O.; La Rosa, G.; Maccarone, M. C.; Segreto, A.; Torresi, D.] Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Hauschildt, T.; Maldera, S.; Morello, C.; Navarra, G.; Suarez, F.] Univ Turin, Ist Fis Spazio Interplanetario, Turin, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Hauschildt, T.; Maldera, S.; Morello, C.; Navarra, G.; Suarez, F.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Arneodo, F.; Grillo, A. F.; Parlati, S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Laquila, Italy. [Blasi, P.] Osserv Astrofis Arcetri, I-50125 Florence, Italy. [Ambrosio, M.; Aramo, C.] Sezione INFN Napoli, Naples, Italy. [Lopez, R.; Bravo, O. Martinez; Robledo, C.; Salazar, H.; Torres, I.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Gonzalez, M.; Garcia, R. Luna; Martinez, J.; Pelayo, R.; Zepeda, A.] CINVESTAV, Ctr Invest & Estud Avanzados, IPN, Mexico City 14000, DF, Mexico. [Cotti, U.; Falcon, H. R. Marquez; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [D'Olivo, J. C.; Medina-Tanco, G.; Morales, B.; Nellen, L.; Sanchez, F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Coppens, J.; de Jong, S. J.; Falcke, H.; Hoerandel, J.; Horneffer, A.; Timmermans, C.] Univ Nijmegen St Radboud Hosp, IMAPP, NL-6500 HB Nijmegen, Netherlands. [Harmsma, S.; Meyhandan, R.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Kernfys Versneller Inst, Groningen, Netherlands. [Coppens, J.; Timmermans, C.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Gora, D.; Homola, P.; Pekala, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Smialkowski, A.; Szadkowski, Z.; Tkaczyk, W.; Wieczorek, G.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Conceicao, R.; Gonqalves, P.; Pimenta, M.; Santo, C. E.; Tome, B.] LIP, P-1000 Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Conceicao, R.; Gonqalves, P.; Pimenta, M.; Santo, C. E.; Tome, B.] Inst Super Tecn, Lisbon, Portugal. [Fllipicic, A.; Zavrtanik, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Creusot, A.; Ferry, S.; Horvat, M.; Hussain, M.; Veberic, D.; Vorobiov, S.; Zavrtanik, D.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Pastor, S.; Pinto, T.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Monasor, M.; Ortiz, M.; Ros, G.; Rosado, I.] Univ Complutense Madrid, Madrid, Spain. [del Peral, L.; Herrero, R. Gomez; Gutierrez, J.; Hebrero, G.; McEwen, M.; Monasor, M.; Pacheco, N.; Redondo, A.; Rodriguez-Frias, M. D.; Ros, G.] Univ Alcala de Henares, Madrid, Spain. [Bueno, A.; Gamez, D. Garcia; Bahilo, J. Lozano; Navarro, J. L.; Navas, S.] Univ Granada, Granada, Spain. [Bueno, A.; Gamez, D. Garcia; Bahilo, J. Lozano; Navarro, J. L.; Navas, S.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; Luis, P. Facal San; Hansen, P.; Agueera, A. Lopez; Newton, D.; Olmos-Gilbaja, V. M.; Parente, G.; Rodriguez, G.; Rodriguez-Cabo, I.; Vazquez, R. A.; Zas, E.] Univ Santiago Compostela, Santiago, Spain. [Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Clark, P. D. J.; Tunnicliffe, V.; Walker, P.] Univ Leeds, Inst Integrated Informat Syst, Leeds LS2 9JT, W Yorkshire, England. [Bleve, C.; Knapp, J.; Newton, D.; Patel, M.; Smith, B. E.; Watson, A. A.; Wileman, C.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Spinka, H.] Argonne Natl Lab, Argonne, IL USA. [Burton, R. E.; Covault, C. E.; Ferrer, F.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Bauleo, P.; Brack, J.; Harton, J. L.; Knapik, R.; Petrov, Y.; Warner, D.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Blasi, P.; Chou, A.; Fazzini, N.; Glass, H.; Hojvat, C.; Kaducak, M.; Lebrun, P.; Mantsch, P.; Mazur, P. O.; Newman-Holmes, C.; Spinka, H.; Voyvodic, L.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Dorofeev, A.; Gonzalez, J. G.; Matthews, J.; McEwen, M.; McNeil, R. R.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Chye, J.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Chou, A.; Farrar, G.] NYU, New York, NY USA. [McCauley, T.; Paul, T.; Reucroft, S.; Swain, J.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Beatty, J. J.; Morris, C.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Atulugama, B. S.; Bellido, J. A.; Coutu, S.; Criss, A.; Roberts, M.; Sommers, P.] Penn State Univ, University Pk, PA 16802 USA. [Matthews, J.] Southern Univ, Baton Rouge, LA USA. [Arisaka, K.; Barnhill, D.; Gelmini, G.; Healy, M. D.; Kusenko, A.; Lee, J.; Ohnuki, T.; Tripathi, A.] Univ Calif Los Angeles, Los Angeles, CA USA. [Ave, M.; Cazon, L.; Cronin, J.; Neto, J. R. T. de Mello; Ionita, F.; Olinto, A.; Pavlidou, V.; Schmidt, F.; Venters, T.; Yamamoto, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Brack, J.] Univ Colorado, Boulder, CO 80309 USA. [DuVernois, M. A.] Univ Hawaii, Honolulu, HI 96822 USA. [Cai, B.] Univ Minnesota, Minneapolis, MN USA. [Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Becker, B. R.; Gold, M. S.; Hague, J. D.; Matthews, J. A. J.; Miller, W.] Univ New Mexico, Albuquerque, NM 87131 USA. [Connolly, B.] Univ Penn, Philadelphia, PA 19104 USA. [Mostafa, M.; Sokolsky, P.; Thomas, D.; Younk, P.] Univ Utah, Salt Lake City, UT USA. [BenZvi, S.; Westerhoff, S.] Univ Wisconsin, Madison, WI USA. [Anchordoqui, L.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Thao, N. T.; Diep, P. N.; Dong, P. N.; Nhung, P. T.] Inst Nucl Sci & Technol, Hanoi, Vietnam. RP Abraham, J (reprint author), Univ Tecnol Nacl, FR Mendoza, Argentina. RI Alvarez-Muniz, Jaime/H-1857-2015; Rosado, Jaime/K-9109-2014; Valino, Ines/J-8324-2012; Carvalho Jr., Washington/H-9855-2015; De Donato, Cinzia/J-9132-2015; Di Giulio, Claudio/B-3319-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; Ros, German/L-4764-2014; Blasi, Pasquale/O-9345-2015; de Mello Neto, Joao/C-5822-2013; Fulgione, Walter/C-8255-2016; Todero Peixoto, Carlos Jose/G-3873-2012; Garcia Pinto, Diego/J-6724-2014; Pastor, Sergio/J-6902-2014; Tome, Bernardo/J-4410-2013; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Pavlidou, Vasiliki/C-2944-2011; Arneodo, Francesco/E-5061-2015; Prouza, Michael/F-8514-2014; Bueno, Antonio/F-3875-2015; Parente, Gonzalo/G-8264-2015; Conceicao, Ruben/L-2971-2014; Beatty, James/D-9310-2011; Guarino, Fausto/I-3166-2012; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Nosek, Dalibor/F-1129-2017; Lozano-Bahilo, Julio/F-4881-2016; ORTOLANI, FABRIZIO/F-7271-2016; scuderi, mario/O-7019-2014; zas, enrique/I-5556-2015; Sarkar, Subir/G-5978-2011; Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; Abreu, Pedro/L-2220-2014; Navas, Sergio/N-4649-2014; Arqueros, Fernando/K-9460-2014; Blanco, Francisco/F-1131-2015; Schussler, Fabian/G-5313-2013; Nierstenhofer, Nils/H-3699-2013; Assis, Pedro/D-9062-2013; Mandat, Dusan/G-5580-2014; Bohacova, Martina/G-5898-2014; Nozka, Libor/G-5550-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Travnicek, Petr/G-8814-2014; Smida, Radomir/G-6314-2014; Ridky, Jan/H-6184-2014; Pech, Miroslav/G-5760-2014; Miele, Gennaro/F-3628-2010; Muller, Marcio Aparecido/H-9112-2012; fulgione, walter/I-5232-2012; D'Urso, Domenico/I-5325-2012; Bleve, Carla/J-2521-2012; Brogueira, Pedro/K-3868-2012; Chinellato, Jose Augusto/I-7972-2012; Tamburro, Alessio/A-5703-2013; Falcke, Heino/H-5262-2012; Arneodo, Francesco/B-8076-2013; Anjos, Joao/C-8335-2013; Gomez-Herrero, Raul/B-7346-2011; Dias, Sandra/F-8134-2010; Dutan, Ioana/C-2337-2011; Caramete, Laurentiu/C-2328-2011; Aramo, Carla/D-4317-2011; Kemp, Ernesto/H-1502-2011; Chiavassa, Andrea/A-7597-2012; Verzi, Valerio/B-1149-2012; Takahashi, Jun/B-2946-2012; de souza, Vitor/D-1381-2012; Shellard, Ronald/G-4825-2012; Venters, Tonia/D-2936-2012; Fauth, Anderson/F-9570-2012; OI Alvarez-Muniz, Jaime/0000-0002-2367-0803; Rosado, Jaime/0000-0001-8208-9480; Valino, Ines/0000-0001-7823-0154; Carvalho Jr., Washington/0000-0002-2328-7628; De Donato, Cinzia/0000-0002-9725-1281; Di Giulio, Claudio/0000-0002-0597-4547; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; Ros, German/0000-0001-6623-1483; Blasi, Pasquale/0000-0003-2480-599X; de Mello Neto, Joao/0000-0002-3234-6634; Fulgione, Walter/0000-0002-2388-3809; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; Garcia Pinto, Diego/0000-0003-1348-6735; Tome, Bernardo/0000-0002-7564-8392; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Pavlidou, Vasiliki/0000-0002-0870-1368; Arneodo, Francesco/0000-0002-1061-0510; Prouza, Michael/0000-0002-3238-9597; Bueno, Antonio/0000-0002-7439-4247; Parente, Gonzalo/0000-0003-2847-0461; Conceicao, Ruben/0000-0003-4945-5340; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; De Mitri, Ivan/0000-0002-8665-1730; Nosek, Dalibor/0000-0001-6219-200X; Asorey, Hernan/0000-0002-4559-8785; Sigl, Guenter/0000-0002-4396-645X; Lozano-Bahilo, Julio/0000-0003-0613-140X; ORTOLANI, FABRIZIO/0000-0003-4527-1843; scuderi, mario/0000-0001-9026-5317; zas, enrique/0000-0002-4430-8117; Sarkar, Subir/0000-0002-3542-858X; Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; Abreu, Pedro/0000-0002-9973-7314; Navas, Sergio/0000-0003-1688-5758; Arqueros, Fernando/0000-0002-4930-9282; Blanco, Francisco/0000-0003-4332-434X; Schussler, Fabian/0000-0003-1500-6571; Assis, Pedro/0000-0001-7765-3606; Cazon, Lorenzo/0000-0001-6748-8395; Ridky, Jan/0000-0001-6697-1393; Miele, Gennaro/0000-0002-2028-0578; D'Urso, Domenico/0000-0002-8215-4542; Brogueira, Pedro/0000-0001-6069-4073; Chinellato, Jose Augusto/0000-0002-3240-6270; Falcke, Heino/0000-0002-2526-6724; Arneodo, Francesco/0000-0002-1061-0510; Gomez-Herrero, Raul/0000-0002-5705-9236; Takahashi, Jun/0000-0002-4091-1779; Shellard, Ronald/0000-0002-2983-1815; Fauth, Anderson/0000-0001-7239-0288; Del Peral, Luis/0000-0003-2580-5668; Mussa, Roberto/0000-0002-0294-9071; Ulrich, Ralf/0000-0002-2535-402X; Dembinski, Hans/0000-0003-3337-3850; Petrera, Sergio/0000-0002-6029-1255; Bonino, Raffaella/0000-0002-4264-1215; Rizi, Vincenzo/0000-0002-5277-6527; Santander, Juan Marcos/0000-0001-7297-8217; Horandel, Jorg/0000-0001-6604-547X; Cataldi, Gabriella/0000-0001-8066-7718; Segreto, Alberto/0000-0001-7341-6603; Torresi, Domenico/0000-0002-6043-6178; Knapp, Johannes/0000-0003-1519-1383; Goncalves, Patricia /0000-0003-2042-3759; La Rosa, Giovanni/0000-0002-3931-2269; Andringa, Sofia/0000-0002-6397-9207; Mantsch, Paul/0000-0002-8382-7745; Aramo, Carla/0000-0002-8412-3846; Anzalone, Anna/0000-0003-1849-198X; Kothandan, Divay/0000-0001-9048-7518; Castellina, Antonella/0000-0002-0045-2467; maldera, simone/0000-0002-0698-4421; Matthews, James/0000-0002-1832-4420; de Jong, Sijbrand/0000-0002-3120-3367; Gomez Berisso, Mariano/0000-0001-5530-0180; Salamida, Francesco/0000-0002-9306-8447; Catalano, Osvaldo/0000-0002-9554-4128; Navarro Quirante, Jose Luis/0000-0002-9915-1735; Aglietta, Marco/0000-0001-8354-5388; Maccarone, Maria Concetta/0000-0001-8722-0361 NR 71 TC 130 Z9 131 U1 3 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAY PY 2008 VL 29 IS 4 BP 243 EP 256 DI 10.1016/j.astropartphys.2008.01.003 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 310WD UT WOS:000256560600002 ER PT J AU Catanesi, MG Radicioni, E Edgecock, R Ellis, M Robbins, S Soler, FJP Gossling, C Bunyatov, S Krasnoperov, A Popov, B Tereshchenko, V Di Capua, E Vidal-Sitjes, G Artamonov, A Giani, S Gilardoni, S Gorbunov, P Grant, A Grossheim, A Gruber, P Ivanchenko, V Kayis-Topaksu, A Panman, J Papadopoulos, I Tcherniaev, E Tsukerman, I Veenhof, R Wiebusch, C Zucchelli, P Blondel, A Borghi, S Campanelli, M Morone, MC Prior, G Schroeter, R Engel, R Meurer, C Kato, I Gastaldii, U Mills, GB Graulich, JS Gregoire, G Bonesini, M Ferri, F Kirsanov, M Bagulya, A Grichine, V Polukhina, N Palladino, V Coney, L Schmitz, D Barr, G De Santo, A Pattison, C Zuber, K Bobisut, F Gibin, D Guglielmi, A Mezzetto, M Durnarchez, J Vannucci, F Dore, U Orestano, D Pastore, F Tonazzo, A Tortora, L Booth, C Howlett, L Bogomilov, M Chizhov, M Kolev, D Tsenov, R Piperov, S Temnikov, P Apollonio, M Chimenti, P Giannini, G Santin, G Burguet-Castell, J Cervera-Villanueva, A Gomez-Cadenas, JJ Martin-Albo, J Novella, P Sorel, M AF Catanesi, M. G. Radicioni, E. Edgecock, R. Ellis, M. Robbins, S. Soler, F. J. P. Goessling, C. Bunyatov, S. Krasnoperov, A. Popov, B. Tereshchenko, V. Di Capua, E. Vidal-Sitjes, G. Artamonov, A. Giani, S. Gilardoni, S. Gorbunov, P. Grant, A. Grossheim, A. Gruber, P. Ivanchenko, V. Kayis-Topaksu, A. Panman, J. Papadopoulos, I. Tcherniaev, E. Tsukerman, I. Veenhof, R. Wiebusch, C. Zucchelli, P. Blondel, A. Borghi, S. Campanelli, M. Morone, M. C. Prior, G. Schroeter, R. Engel, R. Meurer, C. Kato, I. Gastaldii, U. Mills, G. B. Graulich, J. S. Gregoire, G. Bonesini, M. Ferri, F. Kirsanov, M. Bagulya, A. Grichine, V. Polukhina, N. Palladino, V. Coney, L. Schmitz, D. Barr, G. De Santo, A. Pattison, C. Zuber, K. Bobisut, F. Gibin, D. Guglielmi, A. Mezzetto, M. Durnarchez, J. Vannucci, F. Dore, U. Orestano, D. Pastore, F. Tonazzo, A. Tortora, L. Booth, C. Howlett, L. Bogomilov, M. Chizhov, M. Kolev, D. Tsenov, R. Piperov, S. Temnikov, P. Apollonio, M. Chimenti, P. Giannini, G. Santin, G. Burguet-Castell, J. Cervera-Villanueva, A. Gomez-Cadenas, J. J. Martin-Albo, J. Novella, P. Sorel, M. TI Measurement of the production cross-sections of pi(+/-) in p-C and pi(+/-)-C interactions at 12 GeV/c SO ASTROPARTICLE PHYSICS LA English DT Article DE charged pion production in proton-carbon and pion-carbon interactions ID LARGE-ANGLE PRODUCTION; PARTICLE-PRODUCTION; CHARGED PIONS; POSITIVE PIONS; COLLISIONS; PROTONS; BERYLLIUM; HARP; MOMENTUM; DETECTOR AB The results of the measurements of the double-differential production cross-sections of pions, d(2)sigma(pi)/dpd Omega, in p-C and pi(+/-)-C interactions using the forward spectrometer of the HARP experiment are presented. The incident particles are 12 GeV/c protons and charged pions directed onto a carbon target with a thickness of 5% of a nuclear interaction length. For p-C interactions the analysis is performed using 100,035 reconstructed secondary tracks, while the corresponding numbers of tracks for pi(-)-C and pi(+)-C analyses are 106,534 and 10,122, respectively. Cross-section results are presented in the kinematic range 0.5 GeV/c <= p(pi) < 8 GeV/c and 30 mrad <= theta(pi) < 240 mrad in the laboratory frame. The measured cross-sections have a direct impact on the precise calculation of atmospheric neutrino fluxes and on the improved reliability of extensive air shower simulations by reducing the uncertainties of hadronic interaction models in the low energy range. (C) 2008 Elsevier B.V. All rights reserved. C1 [Bunyatov, S.; Krasnoperov, A.; Popov, B.; Tereshchenko, V.] Joint Inst Nucl Res, Dubna, Russia. [Catanesi, M. G.; Radicioni, E.] Univ Bari, Bari, Italy. [Catanesi, M. G.; Radicioni, E.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Edgecock, R.; Ellis, M.; Robbins, S.; Soler, F. J. P.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Goessling, C.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Di Capua, E.; Vidal-Sitjes, G.] Univ Ferrara, I-44100 Ferrara, Italy. [Artamonov, A.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Gruber, P.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Tcherniaev, E.; Tsukerman, I.; Veenhof, R.; Wiebusch, C.; Zucchelli, P.] CERN, Geneva, Switzerland. [Blondel, A.; Borghi, S.; Campanelli, M.; Morone, M. C.; Prior, G.; Schroeter, R.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Engel, R.; Meurer, C.] Forschungszentrum Karlsruhe, Inst Kernphys, D-76021 Karlsruhe, Germany. [Kato, I.] Kyoto Univ, Kyoto 6068501, Japan. [Gastaldii, U.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Mills, G. B.] Los Alamos Natl Lab, Los Alamos, NM USA. [Graulich, J. S.; Gregoire, G.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Bonesini, M.; Ferri, F.] Univ Milan, Milan, Italy. [Bonesini, M.; Ferri, F.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Kirsanov, M.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Bagulya, A.; Grichine, V.; Polukhina, N.] Russian Acad Sci, PN Lebedev Phys Inst FIAN, Moscow, Russia. [Palladino, V.] Univ Naples Federico II, Naples, Italy. [Palladino, V.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Coney, L.; Schmitz, D.] Columbia Univ, New York, NY USA. [Barr, G.; De Santo, A.; Pattison, C.; Zuber, K.] Univ Oxford, Nucl & Astrophys Lab, Oxford OX1 2JD, England. [Bobisut, F.; Gibin, D.; Guglielmi, A.; Mezzetto, M.] Univ Padua, Padua, Italy. [Bobisut, F.; Gibin, D.; Guglielmi, A.; Mezzetto, M.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Durnarchez, J.; Vannucci, F.] Univ Paris 06, LPNHE, Paris, France. [Durnarchez, J.; Vannucci, F.] Univ Paris 07, LPNHE, Paris, France. [Dore, U.] Univ Roma La Sapienza, Rome, Italy. [Dore, U.] Sezione INFN Roma I, Rome, Italy. [Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.] Univ Rome, Rome, Italy. [Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.] Sezione INFN Roma III, Rome, Italy. [Booth, C.; Howlett, L.] Univ Sheffield, Dept Phys, Sheffield S10 2TN, S Yorkshire, England. [Bogomilov, M.; Chizhov, M.; Kolev, D.; Tsenov, R.] Sofia Univ St Kliment Ohridski, Fac Phys, Sofia, Bulgaria. [Piperov, S.; Temnikov, P.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Apollonio, M.; Chimenti, P.; Giannini, G.; Santin, G.] Univ Trieste, Trieste, Italy. [Apollonio, M.; Chimenti, P.; Giannini, G.; Santin, G.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Burguet-Castell, J.; Cervera-Villanueva, A.; Gomez-Cadenas, J. J.; Martin-Albo, J.; Novella, P.; Sorel, M.] CSIC, IFIC, Inst Fis Corpuscular, Barcelona, Spain. [Burguet-Castell, J.; Cervera-Villanueva, A.; Gomez-Cadenas, J. J.; Martin-Albo, J.; Novella, P.; Sorel, M.] Univ Valencia, E-46003 Valencia, Spain. RP Popov, B (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Tcherniaev, Evgueni/G-3453-2016; Morone, Maria Cristina/P-4407-2016; Temnikov, Petar/L-6999-2016; Graulich, Jean-Sebastien/B-4806-2009; Chimenti, Pietro/F-9898-2012; Wiebusch, Christopher/G-6490-2012; Prior, Gersende/I-8191-2013; Bagulya, Alexander/D-4273-2014; Novella, Pau/K-2845-2014; Gomez Cadenas, Juan Jose/L-2003-2014; Grichine, Vladimir/M-8526-2015; Polukhina, Natalia/E-1610-2014; Soler, Paul/E-8464-2011; Booth, Christopher/B-5263-2016 OI Tcherniaev, Evgueni/0000-0002-3685-0635; Morone, Maria Cristina/0000-0002-0200-0632; Temnikov, Petar/0000-0002-9559-3384; Chimenti, Pietro/0000-0002-9755-5066; Wiebusch, Christopher/0000-0002-6418-3008; Novella, Pau/0000-0002-0923-3172; Gomez Cadenas, Juan Jose/0000-0002-8224-7714; Soler, Paul/0000-0002-4893-3729; Prior, Gersende/0000-0002-6058-1420; Booth, Christopher/0000-0002-6051-2847 NR 54 TC 24 Z9 24 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAY PY 2008 VL 29 IS 4 BP 257 EP 281 DI 10.1016/j.astropartphys.2008.02.002 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 310WD UT WOS:000256560600003 ER PT J AU Sarkar, D Amblard, A Holz, DE Cooray, A AF Sarkar, Devdeep Amblard, Alexandre Holz, Daniel E. Cooray, Asantha TI Lensing and supernovae: Quantifying the bias on the dark energy equation of state SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; cosmology : observations; cosmology : theory; gravitational lensing; supernovae : general ID HIGH-REDSHIFT SUPERNOVAE; FLUX-AVERAGING ANALYSIS; HUBBLE-SPACE-TELESCOPE; CONSTRAINTS; OMEGA(LAMBDA); OMEGA(M); UNIVERSE; SET AB The gravitational magnification and demagnification of Type Ia supernovae (SNe) modify their positions on the Hubble diagram, shifting the distance estimates from the underlying luminosity- distance relation. This can introduce a systematic uncertainty in the dark energy equation of state ( EOS) estimated from SNe, although this systematic is expected to average away for sufficiently large data sets. Using mock SN samples over the redshift range 0 < z <= 1: 7, we quantify the lensing bias. We find that the bias on the dark energy EOS is less than half a percent for large data sets ( >= 2000 SNe). However, if highly magnified events ( SNe deviating by more than 2.5 sigma) are systematically removed from the analysis, the bias increases to similar to 0.8%. Given that the EOS parameters measured from such a sample have a 1 sigma uncertainty of 10%, the systematic bias related to lensing in SN data out to z similar to 1: 7 can be safely ignored in future cosmological measurements. C1 [Sarkar, Devdeep; Amblard, Alexandre; Cooray, Asantha] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92617 USA. [Holz, Daniel E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Holz, Daniel E.] Univ Chicago, Kavil Inst Cosmol Phys, Chicago, IL 60637 USA. [Holz, Daniel E.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Sarkar, D (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92617 USA. RI amblard, alexandre/L-7694-2014 OI amblard, alexandre/0000-0002-2212-5395 NR 24 TC 32 Z9 32 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2008 VL 678 IS 1 BP 1 EP 5 DI 10.1086/586886 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 294BE UT WOS:000255378300001 ER PT J AU Levine, R Gnedin, NY Hamilton, AJS Kravtsov, AV AF Levine, Robyn Gnedin, Nickolay Y. Hamilton, Andrew J. S. Kravtsov, Andrey V. TI Resolving gas dynamics in the circumnuclear region of a disk galaxy in a cosmological simulation SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : evolution; galaxies : high-redshift; galaxies : ISM; galaxies : nuclei; galaxies : structure ID ACTIVE GALACTIC NUCLEI; BAR-FORMING INSTABILITY; SUPERMASSIVE BLACK-HOLE; GLOBAL SCHMIDT LAW; DARK-MATTER HALOS; STAR-FORMATION; ACCRETION DISKS; MAGNETIC-FIELDS; SPIRAL GALAXIES; VELOCITY DISPERSION AB Using a hydrodynamic adaptive mesh refinement code, we simulate the growth and evolution of a galaxy, which could potentially host a supermassive black hole, within a cosmological volume. Reaching a dynamical range in excess of 10 million, the simulation follows the evolution of the gas structure from supergalactic scales all the way down to the outer edge of the accretion disk. Here we focus on global instabilities in the self- gravitating, cold, turbulence-supported, molecular gas disk at the center of the model galaxy, which provide a natural mechanism for angular momentum transport down to subparsec scales. The gas density profile follows a power law alpha r(-8/3), consistent with an analytic description of turbulence in a quasi- stationary circumnuclear disk. We analyze the properties of the disk which contribute to the instabilities and investigate the significance of instability for the galaxy's evolution and the growth of a supermassive black hole at the center. C1 [Levine, Robyn; Hamilton, Andrew J. S.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Levine, Robyn; Hamilton, Andrew J. S.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Levine, Robyn; Gnedin, Nickolay Y.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Gnedin, Nickolay Y.; Kravtsov, Andrey V.] Univ Chicago Hosp, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.; Kravtsov, Andrey V.] Univ Chicago Hosp, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Kravtsov, Andrey V.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Levine, R (reprint author), Univ Colorado, JILA, Boulder, CO 80309 USA. EM robyn.levine@colorado.edu NR 70 TC 41 Z9 41 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2008 VL 678 IS 1 BP 154 EP 167 DI 10.1086/529064 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 294BE UT WOS:000255378300013 ER PT J AU Carmichael, GR Sakurai, T Streets, D Hozumi, Y Ueda, H Park, SU Fung, C Han, Z Kajino, M Engardt, M Bennet, C Hayami, H Sartelet, K Holloway, T Wang, Z Kannari, A Fu, J Matsuda, K Thongbooncho, N Amann, M AF Carmichael, G. R. Sakurai, T. Streets, D. Hozumi, Y. Ueda, H. Park, S. U. Fung, C. Han, Z. Kajino, M. Engardt, M. Bennet, C. Hayami, H. Sartelet, K. Holloway, T. Wang, Z. Kannari, A. Fu, J. Matsuda, K. Thongbooncho, N. Amann, M. TI MICS-Asia II: The model intercomparison study for Asia Phase II methodology and overview of findings SO ATMOSPHERIC ENVIRONMENT LA English DT Review DE air quality modeling; Asia air quality; ozone; aerosol composition ID TRACE-P EXPERIMENT; EAST-ASIA; DEPOSITION; EMISSIONS; TRANSPORT; BIOMASS; SULFUR AB Results from the Model Intercomparison Study Asia Phase II (MICS-Asia II) are presented. Nine different regional modeling groups simulated chemistry and transport of ozone (O-3), secondary aerosol, acid deposition, and associated precursors, using common emissions and boundary conditions derived from a global model. Four-month-long periods, representing 2 years and three seasons (i.e., March, July, and December in 2001, and March in 2002), are analyzed. New observational data, obtained under the EANET (the Acid Deposition Monitoring Network in East Asia) monitoring program, were made available for this study, and these data provide a regional database to compare with model simulations. The analysis focused around seven subject areas: O-3 and related precursors, aerosols, acid deposition, global inflow of pollutants and precursor to Asia, model sensitivities to aerosol parameterization, analysis of emission fields, and detailed analyses of individual models, each of which is presented in a companion paper in this issue of Atmospheric Environment. This overview discusses the major findings of the study, as well as information on common emissions, meteorological conditions, and observations. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Carmichael, G. R.; Thongbooncho, N.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. [Sakurai, T.; Hozumi, Y.; Ueda, H.; Han, Z.] Acid Deposit & Oxidant Res Ctr, Niigata, Japan. [Streets, D.] Argonne Natl Lab, Argonne, IL 60439 USA. [Park, S. U.] Seoul Natl Univ, Seoul, South Korea. [Fung, C.] Hong Kong Environm Protect Dept, Hong Kong, Hong Kong, Peoples R China. [Kajino, M.] Kyoto Univ, Disaster Prevent Res Inst, Kyoto, Japan. [Engardt, M.; Bennet, C.] Swedish Meteorol & Hydrol Inst, S-60176 Norrkoping, Sweden. [Hayami, H.] Cent Res Inst Elect Power Ind, Chiba, Japan. [Sartelet, K.] Ctr Enseignement & Rech Environm Atmospher, Marne La Vallee, France. [Holloway, T.] Univ Wisconsin, Ctr Sustainabil & Global Environm, Madison, WI USA. [Wang, Z.] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China. [Fu, J.] Univ Tennessee, Knoxville, TN 37996 USA. [Matsuda, K.] Iwaki Meisei Univ, Tokyo, Japan. [Amann, M.] Int Inst Appl Syst Anal Laxenburg, Laxenburg, Austria. RP Carmichael, GR (reprint author), Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. EM gcarmich@engineering.uiowa.edu RI Sartelet, Karine/A-6430-2011; Kajino, Mizuo/B-5645-2012; Wang, ZF/D-7202-2012; Wang, Zifa/B-5799-2011; Matsuda, Kazuhide/C-2041-2013; Bennet, Cecilia/E-1854-2014; OI Wang, ZF/0000-0002-7062-6012; Bennet, Cecilia/0000-0002-3712-2170; Streets, David/0000-0002-0223-1350 NR 36 TC 46 Z9 51 U1 1 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2008 VL 42 IS 15 BP 3468 EP 3490 DI 10.1016/j.atmosenv.2007.04.007 PG 23 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 310TF UT WOS:000256552600002 ER PT J AU Han, Z Sakurai, T Ueda, H Carmichael, GR Streets, D Hayami, H Wang, Z Holloway, T Engardt, M Hozumi, Y Park, SU Kajino, M Sartelet, K Fung, C Bennet, C Thongboonchoo, N Tang, Y Chang, A Matsuda, K Amann, M AF Han, Z. Sakurai, T. Ueda, H. Carmichael, G. R. Streets, D. Hayami, H. Wang, Z. Holloway, T. Engardt, M. Hozumi, Y. Park, S. U. Kajino, M. Sartelet, K. Fung, C. Bennet, C. Thongboonchoo, N. Tang, Y. Chang, A. Matsuda, K. Amann, M. TI MICS-Asia II: Model intercomparison and evaluation of ozone and relevant species SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE chemical transport model; EANET; TRACE-P; evaluation; model intercomparison; O(3) and relevant species; seasonality ID LONG-RANGE TRANSPORT; TRACE-P EXPERIMENT; EAST-ASIA; BOUNDARY-LAYER; DEPOSITION; SULFUR; PARAMETERIZATION; SENSITIVITY; AEROSOLS; CLOUD AB Eight regional Eulerian chemical transport models (CTMs) are compared with each other and with an extensive set of observations including ground-level concentrations from EANET, ozone soundings from JMA and vertical profiles from the TRACE-P experiment to evaluate the models' abilities in simulating O(3) and relevant species (SO(2), NO, NO(2), HNO(3) and PAN) in the troposphere of East Asia and to look for similarities and differences among model performances. Statistical analysis is conducted to help estimate the consistency and discrepancy between model simulation and observation in terms of various species, seasons, locations, as well as attitude ranges. In general, all models show a good skill of simulating SO(2) for both ground level and the lower troposphere, although two of the eight models systematically overpredict SO(2) concentration. The model skills for O(3) vary largely with region and season. For ground-level O(3), model results are best correlated with observations in July 2001. Comparing with O(3) soundings measured in the afternoon reveals the best consistency among models in March 2001 and the largest disparity in O(3) magnitude in July 2001, although most models produce the best correlation in July as well. In terms of the statistics for the four flights of TRACE-P experiment, most models appear to be able to accurately capture the variability in the lower troposphere. The model performances for NO(x) are relatively poor, with lower correlation and with almost all models tending to underpredict NO(x) levels, due to larger uncertainties in either emission estimates or complex chemical mechanism represented. All models exhibit larger RMSE at altitudes < 2 km than 2-5.5 kin, mainly due to a consistent tendency of these models towards underprediction of the magnitude of intense plumes that often originate from near surface. Relatively lower correlation at altitudes 2-5.5 km may be attributed to the models' limitation in representing convection or potential chemical processes. Most of the key features in species distribution have been consistently reproduced by the participating models, such as the O(3) enhancement in the western Pacific Ocean in March and in northeast Asia in July, respectively, although the absolute model values may differ considerably from each other. Large differences are found among models in the southern parts of the domain for all the four periods, including southern China and northern parts of some Southeast Asia countries where the behaviors of chemical components and the ability of these models are still not clearly known because of a lack of observational databases. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Han, Z.; Wang, Z.] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China. [Han, Z.; Sakurai, T.; Ueda, H.; Hozumi, Y.] Acid Deposit & Oxidant Res Ctr, Niigata, Japan. [Carmichael, G. R.; Thongboonchoo, N.; Tang, Y.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA. [Streets, D.] Argonne Natl Lab, Argonne, IL 60439 USA. [Hayami, H.] Cent Res Inst Elect Power Ind, Chiba, Japan. [Holloway, T.] Univ Wisconsin, Madison, WI 53706 USA. [Engardt, M.; Bennet, C.] Swedish Meteorol & Hydrol Inst, S-60176 Norrkoping, Sweden. [Park, S. U.] Seoul Natl Univ, Seoul, South Korea. [Kajino, M.] Kyoto Univ, Disaster Prevent Res Inst, Kyoto, Japan. [Sartelet, K.] Ctr Enseignement & Rech Environm Atmospher, Marne La Vallee, France. [Fung, C.; Chang, A.] Hong Kong Environm Protect Dept, Hong Kong, Hong Kong, Peoples R China. [Matsuda, K.] Iwaki Meisei Univ, Tokyo, Japan. [Amann, M.] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. RP Han, Z (reprint author), Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China. EM hzw@mail.iap.ac.cn RI Sartelet, Karine/A-6430-2011; Kajino, Mizuo/B-5645-2012; Wang, ZF/D-7202-2012; Wang, Zifa/B-5799-2011; Matsuda, Kazuhide/C-2041-2013; Bennet, Cecilia/E-1854-2014; OI Wang, ZF/0000-0002-7062-6012; Bennet, Cecilia/0000-0002-3712-2170; Streets, David/0000-0002-0223-1350 NR 37 TC 26 Z9 31 U1 3 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2008 VL 42 IS 15 BP 3491 EP 3509 DI 10.1016/j.atmosenv.2007.07.031 PG 19 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 310TF UT WOS:000256552600003 ER PT J AU Hayami, H Sakurai, T Han, Z Ueda, H Carmichael, GR Streets, D Holloway, T Wang, Z Thongboonchoo, N Engardt, M Bennet, C Fung, C Chang, A Park, SU Kajino, M Sartelet, K Matsuda, K Amann, M AF Hayami, Hiroshi Sakurai, T. Han, Z. Ueda, H. Carmichael, G. R. Streets, D. Holloway, T. Wang, Z. Thongboonchoo, N. Engardt, M. Bennet, C. Fung, C. Chang, A. Park, S. U. Kajino, M. Sartelet, K. Matsuda, K. Amann, M. TI MICS-Asia II: Model intercomparison and evaluation of particulate sulfate, nitrate and ammonium SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE chemical transport models; model intercomparison; EANET; sulfate; nitrate ID GAS-AEROSOL EQUILIBRIUM; NUCLEATION RATES; ACID DEPOSITION; DRY DEPOSITION; PHASE-II; CHEMISTRY; PARAMETERIZATION; TRANSPORT; SULFUR; SENSITIVITY AB Eight chemical transport models participate in a model intercomparison study for East Asia, MICS-Asia II. This paper analyzes calculated results for particulate matter of sulfate, nitrate and ammonium through comparisons with each other and with monthly measurements at EANET (the acid deposition monitoring network in East Asia) and daily measurements at Fukue, Japan. To the EANET measurements, model ensemble means better agree with model individual results for sulfate and total ammonium, although total nitrate is consistently and considerably underestimated. To measurements at Fukue, the models show better agreement than for the EANET measurements. This is likely because Fukue is centered in many of the model domains, whereas the EANET stations are mostly in Southeast Asia and Russia. Moreover, it would be important that Fukue is in Northeast Asia, where the emission inventory is more reliable than Southeast Asia. The model-model comparisons are made in view of the total amount in the atmosphere, vertical profile, coefficient of variation in surface concentrations, and transformation changes with distance. All the models show reasonable tendencies in vertical profiles and composition ratios. However, total amounts in the atmosphere are discrepant among the models. The consistency of the total amount in the atmosphere would influence source-receptor analysis. It seems that model results would be consistent, if the models take into account the primitive processes like emission, advection/diffusion, chemical transformation and dry/wet deposition, no matter the processes are modeled simply or comprehensively. Through the comparison study, we learned that it would be difficult to find any problems from one comparison (model-observation comparison with one data or many but at one station or in a short period). Modelers tend to examine model performances only from model-observation comparisons. However, taking budget in a certain or whole model domain would be important, before the models are applied to source-receptor analysis. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Hayami, Hiroshi] Cent Res Inst Elect Power Ind, Chiba 2701194, Japan. [Sakurai, T.; Han, Z.] Acid Deposit & Oxidant Res Ctr, Niigata 9502144, Japan. [Ueda, H.; Kajino, M.] Kyoto Univ, Disaster Prevent Res Inst, Kyoto 6110011, Japan. [Carmichael, G. R.; Thongboonchoo, N.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. [Streets, D.] Argonne Natl Lab, Argonne, IL 60439 USA. [Holloway, T.] Univ Wisconsin Madison, New York, NY 10027 USA. [Wang, Z.] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China. [Engardt, M.; Bennet, C.] Swedish Meteorol & Hydrol Inst, S-60176 Norrkoping, Sweden. [Fung, C.; Chang, A.] Hong Kong Environm Protect Dept, Hong Kong, Hong Kong, Peoples R China. [Park, S. U.] Seoul Natl Univ, Seoul 151742, South Korea. [Sartelet, K.] Ctr Enseignement & Rech Eau, F-77455 Marne La Vallee 2, France. [Matsuda, K.] Iwaki Meisei Univ, Tokyo 1918506, Japan. [Amann, M.] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. RP Hayami, H (reprint author), Cent Res Inst Elect Power Ind, 1646 Abiko, Chiba 2701194, Japan. EM haya@criepi.denken.or.jp; sakurai@adorc.gr.jp; han@adorc.gr.jp; ueda@storm.dpri.kyoto-u.ac.jp; gcarmich@icaen.uiowa.edu; dstreets@anl.gov; taholloway@wisc.edu; zifawang@mail.iap.ac.cn; nthongbo@cgrer.uiowa.edu; magnuz.engardt@smhi.se; Cecilia.Bennet@smhi.se; cfung@epd.gov.hk; alick@epd.gov.hk; supark@snu.ac.kr; mimizuo@storm.dpri.kyoto-u.ac.jp; sartelet@cereve.enpc.fr; matsuda@adorc.gr.jp; amann@iiasa.ac.at RI Sartelet, Karine/A-6430-2011; Kajino, Mizuo/B-5645-2012; Wang, ZF/D-7202-2012; Wang, Zifa/B-5799-2011; Matsuda, Kazuhide/C-2041-2013; Bennet, Cecilia/E-1854-2014; OI Wang, ZF/0000-0002-7062-6012; Bennet, Cecilia/0000-0002-3712-2170; Streets, David/0000-0002-0223-1350 NR 48 TC 21 Z9 23 U1 2 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2008 VL 42 IS 15 BP 3510 EP 3527 DI 10.1016/j.atmosenv.2007.08.057 PG 18 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 310TF UT WOS:000256552600004 ER PT J AU Wang, ZF Xie, FY Sakurai, T Ueda, H Han, ZW Carmichael, GR Streets, D Engardt, M Holloway, T Hayami, H Kajino, M Thongboonchoo, N Bennet, C Park, SU Fung, C Chang, A Sartelet, K Amann, M AF Wang, Zifa Xie, Fuying Sakurai, T. Ueda, H. Han, Zhiwei Carmichael, G. R. Streets, D. Engardt, M. Holloway, T. Hayami, H. Kajino, M. Thongboonchoo, N. Bennet, C. Park, S. U. Fung, C. Chang, A. Sartelet, K. Amann, M. TI MICS-Asia II: Model inter-comparison and evaluation of acid deposition SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE acid deposition; EANET; evaluation; sulfate; nitrate; model inter-comparison ID LONG-RANGE TRANSPORT; EAST-ASIA; NUMERICAL-SIMULATION; DRY DEPOSITION; SULFUR; PARAMETERIZATION; KOREA AB This paper focuses on the comparison of chemical deposition of eight regional chemical models used in Model Inter-Comparison Study for Asia (MICS-Asia) II. Monthly-mean depositions of chemical species simulated by these models, including dry deposition of SO(2), HNO(3), NH(3), Sulfate, nitrate and ammonium and wet deposition of SO(4)(2-), NO(3)(-) and NH(4)(+), have been provided for four periods (March, July, December 2001 and March 2002) in this work. Observations at 37 sites of the Acid Deposition Monitoring Network in East Asia (EANET) are compared with SO(4)(2-), NO(3)(-) and NH(4)(+) wet deposition model results. Significant correlations appeared between the observation and computed ensemble mean of participant models. Also, differences among modeled sulfur and nitrogen dry depositions have been studied at the EANET sites. Based on the analysis of acid deposition for various species from different models, total depositions of sulfur (SO(2) and sulfate) and nitrogen (nitrate and ammonium) have been evaluated as the ensemble mean of the eight models. In general, all models capture the observed spatial distribution' of sulfur and nitrogen deposition, although the absolute values may differ from measurements. High deposition often occurs in eastern China, Japan, the Republic of Korea, Thailand, Vietnam, Philippines and other parts of Southeast Asia. The magnitude of model bias is quite large for many of the models. In examining the reasons for model-measurement disagreement, we find that differences in chemical processes, deposition parameterization, and modeled precipitation are the main reasons for large model disparities. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Wang, Zifa; Xie, Fuying] Chinese Acad Sci, Inst Atmospher Phys, NZC LAPC, Beijing 100029, Peoples R China. [Sakurai, T.; Ueda, H.; Han, Zhiwei] Acid Deposit & Oxidant Res Ctr, Niigata, Japan. [Carmichael, G. R.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA. [Streets, D.] Argonne Natl Lab, Argonne, IL 60439 USA. [Engardt, M.; Bennet, C.] Swedish Meteorol & Hydrol Inst, S-60176 Norrkoping, Sweden. [Holloway, T.] Univ Wisconsin, Madison, WI 53706 USA. [Hayami, H.] Cent Res Inst Elect Power Ind, Chiba, Japan. [Park, S. U.] Seoul Natl Univ, Seoul, South Korea. [Fung, C.; Chang, A.] Hong Kong Environm Protect Dept, Hong Kong, Hong Kong, Peoples R China. [Sartelet, K.] Teaching & Res Ctr Atmospher Environm, Marne La Vallee, France. [Kajino, M.] Kyoto Univ, Disaster Prevent Res Inst, Kyoto, Japan. [Xie, Fuying] Chinese Acad Sci, Grad Univ, Beijing 100864, Peoples R China. RP Wang, ZF (reprint author), Chinese Acad Sci, Inst Atmospher Phys, NZC LAPC, Beijing 100029, Peoples R China. EM zifawang@mail.iap.ac.cn RI Sartelet, Karine/A-6430-2011; Kajino, Mizuo/B-5645-2012; Wang, ZF/D-7202-2012; Wang, Zifa/B-5799-2011; Bennet, Cecilia/E-1854-2014; OI Wang, ZF/0000-0002-7062-6012; Bennet, Cecilia/0000-0002-3712-2170; Streets, David/0000-0002-0223-1350 NR 24 TC 30 Z9 34 U1 7 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2008 VL 42 IS 15 BP 3528 EP 3542 DI 10.1016/j.atmosenv.2007.12.071 PG 15 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 310TF UT WOS:000256552600005 ER PT J AU Holloway, T Sakurai, T Han, Z Ehlers, S Spak, SN Horowitz, LW Carmichael, GR Streets, DG Hozumi, Y Ueda, H Park, SU Fung, C Kajino, M Thongboonchoo, N Engardt, M Bennet, C Hayami, H Sartelet, K Wang, Z Matsuda, K Amann, M AF Holloway, Tracey Sakurai, Tatsuya Han, Zhiwei Ehlers, Susanna Spak, Scott N. Horowitz, Larry W. Carmichael, Gregory R. Streets, David G. Hozumi, Y. Ueda, Hiromasa Park, S. U. Fung, Christopher Kajino, M. Thongboonchoo, Narisara Engardt, Magnuz Bennet, Cecilia Hayami, Hiroshi Sartelet, Karine Wang, Zifa Matsuda, K. Amann, Markus TI MICS-Asia II: Impact of global emissions on regional air quality in Asia SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE MICS-Asia; inter-comparison; hemispheric transport; air pollution; ozone; carbon monoxide ID LONG-RANGE TRANSPORT; TROPOSPHERIC OZONE; CARBON-MONOXIDE; SEASONAL-VARIATIONS; NORTH-AMERICA; TRACE GASES; MODEL; PACIFIC; POLLUTION; OUTFLOW AB This study quantifies the seasonality and geographic variability of global pollutant inflow to Asia. Asia is often looked to as a major source of intercontinental air pollution transport with rising emissions and efficient pollutant export processes. However, the degree to which foreign emissions have been imported to Asia has not been thoroughly examined. The Model Inter-Comparison Study for Asia (MICS-Asia) is an international collaboration to study air pollution transport and chemistry in Asia. Using the global atmospheric chemistry Model of Ozone and Related Tracers (MOZART v. 2.4), and comparing results with a suite of regional models participating in MICS-Asia, we find that imported O-3 contributes significantly throughout Asia. The choice of upper boundary condition is found to be particularly important for O-3, even for surface concentrations. Both North America and Europe contribute to ground-level O-3 concentrations throughout the region, though the seasonality of these two sources varies. North American contributions peak at over 10% of monthly mean O-3 during winter months in East Asia, compared to Europe's spring- and autumn-maxima (5-8%). In comparison to observed data from the Acid Deposition Monitoring Network in East Asia (EANET), MOZART concentrations for 03 generally fall within the range of the MICS models, but MOZART is unable to capture the fine spatial variability of shorter-lived species as well as the regional models. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Holloway, Tracey; Ehlers, Susanna; Spak, Scott N.] Univ Wisconsin, Ctr Sustainabli & Global Environm SAGE, Madison, WI 53726 USA. [Sakurai, Tatsuya; Han, Zhiwei; Hozumi, Y.; Ueda, Hiromasa] Acid Deposit & Oxidant Res Ctr, Niigata, Japan. [Han, Zhiwei] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100864, Peoples R China. [Horowitz, Larry W.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Carmichael, Gregory R.; Thongboonchoo, Narisara] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. [Streets, David G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Park, S. U.] Seoul Natl Univ, Seoul, South Korea. [Fung, Christopher] Hong Kong Environm Protect Dept, Hong Kong, Hong Kong, Peoples R China. [Kajino, M.] Kyoto Univ, Disaster Prevent Res Inst, Kyoto, Japan. [Engardt, Magnuz; Bennet, Cecilia] Swedish Meteorol & Hydrol Inst, S-60176 Norrkoping, Sweden. [Hayami, Hiroshi] Cent Res Inst Elect Power Ind, Chiba, Japan. [Wang, Zifa] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China. [Matsuda, K.] Iwaki Meisei Univ, Tokyo, Japan. [Amann, Markus] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. RP Holloway, T (reprint author), Univ Wisconsin, Ctr Sustainabli & Global Environm SAGE, 1710 Univ Ave,Room 201A, Madison, WI 53726 USA. EM taholloway@wisc.edu RI Spak, Scott/B-7331-2008; Sartelet, Karine/A-6430-2011; Kajino, Mizuo/B-5645-2012; Wang, ZF/D-7202-2012; Wang, Zifa/B-5799-2011; Matsuda, Kazuhide/C-2041-2013; Horowitz, Larry/D-8048-2014; Bennet, Cecilia/E-1854-2014; OI Spak, Scott/0000-0002-8545-1411; Wang, ZF/0000-0002-7062-6012; Horowitz, Larry/0000-0002-5886-3314; Bennet, Cecilia/0000-0002-3712-2170; Streets, David/0000-0002-0223-1350 NR 49 TC 20 Z9 21 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2008 VL 42 IS 15 BP 3543 EP 3561 DI 10.1016/j.atmosenv.2007.10.022 PG 19 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 310TF UT WOS:000256552600006 ER PT J AU Fu, JS Jang, CJ Streets, DG Li, ZP Kwok, R Park, R Han, ZW AF Fu, Joshua S. Jang, Carey J. Streets, David G. Li, Zuopan Kwok, Roger Park, Rokjin Han, Zhiwei TI MICS-Asia II: Modeling gaseous pollutants and evaluating an advanced modeling system over East Asia SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE CMAQ; EANET; GEOS-Chem; model performance; TRACE-P ID LONG-RANGE TRANSPORT; TRACE-P EXPERIMENT; AIR-QUALITY; DEPOSITION; OZONE; COMPONENTS; AIRCRAFT; AEROSOLS; IMPACT AB An advanced modeling system with a "one-atmosphere" perspective, Models-3/Community Multi-scale Air Quality (CMAQ) modeling system, driven by MM5/NCEP reanalysis data as the meteorology, and GEOS-Chem outputs as boundary values was applied to simulate the O(3), and other gaseous pollutants (SO(2) and NO(2)) evolution among other atmospheric chemicals for July 2001. Comparisons had been made with other models in the MICS-II exercise for the same period. Statistics of both monthly and daily means show that the model skill is very good in reproducing O(3) and SO(2) With small to moderate RMSE. The model species capture the day-to-day and spatial variability of the observations. The same O(3) model concentrations that overpredict most of the EANET observations in the MICS-II study may have underpredicted ones from monitoring networks in Beijing area that is not included in this paper. Vertical O(3) profiles at 4 ozonesonde sites are well predicted in July 2001. In fact, our model is among the best of those MICS-II models within the 2-km surface layer. The meteorology near surface and lower troposphere is well reproduced. Compared to SO(2) and O(3), the NO(2) gas concentrations are simulated less well, but the correlation coefficient is still significant. The choice of reanalysis meteorological fields and different boundary conditions generated by different global models may result in diverse spatial patterns exhibited by MICS-II models and ours. Our spatial distributions of O(3) shows a high concentration patch covering Beijing, a moderate to high pattern across Korea and Japan Sea, and a low but extensive pattern enclosing southern China, Taiwan, and East Sea. Extension of the pattern to southern China coincides with the existence of pollution problems in Guangdong and Taiwan, but overprediction of O(3) over the region deserves further improvement by various factors. One of them can be the grid resolution to resolve the complex orography in or close to the ocean. Another factor can be the refinement of local land use data that changes the micro-meteorology in favor of more air pollution events. Published by Elsevier Ltd. C1 [Fu, Joshua S.; Li, Zuopan; Kwok, Roger] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Jang, Carey J.] US EPA, Off Air Qual Planning & Stand, RTP, Res Triangle Pk, NC 27711 USA. [Streets, David G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Kwok, Roger] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China. [Park, Rokjin] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. [Park, Rokjin] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea. [Han, Zhiwei] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China. RP Fu, JS (reprint author), Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. EM jsfu@utk.edu RI Chem, GEOS/C-5595-2014; Park, Rokjin/I-5055-2012; OI Park, Rokjin/0000-0001-8922-0234; Streets, David/0000-0002-0223-1350 NR 35 TC 23 Z9 26 U1 2 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2008 VL 42 IS 15 BP 3571 EP 3583 DI 10.1016/j.atmosenv.2007.07.058 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 310TF UT WOS:000256552600008 ER PT J AU Kannari, A Streets, DG Tonooka, Y Murano, K Baba, T AF Kannari, Akiyoshi Streets, David G. Tonooka, Yutaka Murano, Kentaro Baba, Tsuyoshi TI MICS-Asia II: An inter-comparison study of emission inventories for the Japan region SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE emissions inventory; intercomparison; East Asia; Japan ID TRACE-P EXPERIMENT; TRANSPORT AB For the model intercomparison study, MICS Asia phase II, standard air pollutants emission data are provided from published research results (the TRACE-P data set) and other recent work. To provide preliminary information concerning the reliability of the standard emissions data, this inventory was compared with a local emission inventory, EAGrid2000-Japan, which has been developed for detailed analyses with fine grid data resolution for the Japan region. Although these inventories are based upon different estimation methodologies, from the comparative analyses it was found that regional emissions of the standard data are consistent, with differences smaller than 10% for SO(2), NO(x), NMVOC and CO(2), and smaller than 30% for CO and NH(3). Differences for all species are smaller than the 95% confidence intervals that were estimated in the research that produced the standard emissions data. Additional information is provided regarding emissions of PM(10) and PM(2.5), although these did not originate in the TRACE-P data. Furthermore, it was found that the 0.5 degrees x 0.5 degrees grid-based emissions from the two inventories match well for NO(x), NMVOC, CO, and PM(2.5), even though the spatial allocation techniques for the local inventory are much more detailed. For SO(2) emissions, the differences in the grid-based inventories are greater. Although some problems still remain, such as diurnal variations that are not considered in the standard emissions data, the intercomparison analysis suggests that the standard emissions data have appropriate properties for atmospheric model simulation. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Streets, David G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Tonooka, Yutaka] Saitama Univ, Sakura Ku, Saitama 3388570, Japan. [Murano, Kentaro] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Baba, Tsuyoshi] Inst Behav Sci, Shinjuku Ku, Tokyo 1620845, Japan. RP Kannari, A (reprint author), 2-33-18-401 Mishuku, Tokyo 1540005, Japan. EM kannari.akiyoshi@circus.ocn.ne.jp OI Streets, David/0000-0002-0223-1350 NR 11 TC 4 Z9 5 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2008 VL 42 IS 15 BP 3584 EP 3591 DI 10.1016/j.atmosenv.2007.06.002 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 310TF UT WOS:000256552600009 ER PT J AU Streets, DG Yu, C Wu, Y Chin, M Zhao, Z Hayasaka, T Shi, G AF Streets, David G. Yu, Carolyne Wu, Ye Chin, Mian Zhao, Zongci Hayasaka, Tadahiro Shi, Guangyu TI Aerosol trends over China, 1980-2000 SO ATMOSPHERIC RESEARCH LA English DT Article DE aerosols; China; solar radiation; climate change ID EMISSIONS; ASIA; TEMPERATURE; POLLUTION; DIOXIDE; MODEL; SO2; NOX AB Annual emission trends of sulfur dioxide, black carbon, and organic carbon are presented for East Asia for the period 1980-2000. Emissions of sulfur dioxide peaked in about 1996, and emissions of the carbonaceous aerosols peaked in about 1994-1995, due to a variety of economic, environmental, and social forces. These emissions are converted to their contributions to aerosol optical depth (AOD) over East Asia, using regional results from the GOCART global chemical transport model. We calculate that, on average, AOD over China rose from a value of 0.25 in 1980, peaked at a value of about 0.305 in 1995-1996, and then decreased to about 0.29 in 2000. This trend is consistent with surface shortwave irradiance measurements at 52 weather stations in China, as well as with other radiation-related trends. It may also be consistent with a rise in mean surface temperatures in China starting about the middle of the 1990s. (c) 2007 Elsevier B.V. All rights reserved. C1 [Streets, David G.; Yu, Carolyne] Argonne Natl Lab, Dept Informat & Decis Sci, Argonne, IL 60439 USA. [Wu, Ye] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Chin, Mian] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zhao, Zongci] China Meteorolog Adm, Natl Climate Ctr, Beijing 100871, Peoples R China. [Hayasaka, Tadahiro] Natl Inst Humanities, Res Inst Humanity & Nat, Kita Ku, Kyoto 6038047, Japan. [Shi, Guangyu] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China. RP Streets, DG (reprint author), Argonne Natl Lab, Dept Informat & Decis Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dstreets@anl.gov RI Chin, Mian/J-8354-2012; Wu, Ye/O-9779-2015; OI Streets, David/0000-0002-0223-1350 NR 41 TC 94 Z9 110 U1 4 U2 37 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 EI 1873-2895 J9 ATMOS RES JI Atmos. Res. PD MAY PY 2008 VL 88 IS 2 BP 174 EP 182 DI 10.1016/j.atmosres.2007.10.016 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 300CH UT WOS:000255801400008 ER PT J AU Kobelev, AP Stefanovskii, SV Lebedev, VV Polkanov, MA Knyazev, OA Ptashkin, AG Nikonov, BS Marra, J AF Kobelev, A. P. Stefanovskii, S. V. Lebedev, V. V. Polkanov, M. A. Knyazev, O. A. Ptashkin, A. G. Nikonov, B. S. Marra, J. TI Vitrification of a simulator of Savannah River site (USA) wastes with high iron and aluminum content on bench and commercial facilities with a cold crucible SO ATOMIC ENERGY LA English DT Article AB Bench and commercial-facility experiments have been performed on cold-crucible vitrification of a simulator of high-level wastes from the Savannah River site (USA). The wastes contained up to 29 mass% Fe2O3 and 26 mass% Al2O3. The specific product flow reached 1700 and 2450 kg/(m(2)center dot day) with specific energy consumption 14-16 and 9-10 kW center dot h/kg, respectively. The crucibles did not undergo any appreciable corrosion during the period of the work performed and are reusable. The product consisted of a borosilicate matrix, containing up to 10 vol.% crystalline phase of spinel. The method of induction melting in a cold crucible is especially effective for crucibles with a large diameter, since the specific productivity increases and the specific energy consumption on the vitrification of high-level wastes decreases. C1 [Kobelev, A. P.; Stefanovskii, S. V.; Lebedev, V. V.; Polkanov, M. A.; Knyazev, O. A.; Ptashkin, A. G.] Moscow Sci & Ind Assoc Radon, Moscow, Russia. [Nikonov, B. S.] Russian Acad Sci, Inst Geol Mineral Deposits, Moscow 117901, Russia. [Marra, J.] Savannah River Natl Lab, Savannah, GA USA. RP Kobelev, AP (reprint author), Moscow Sci & Ind Assoc Radon, Moscow, Russia. NR 7 TC 5 Z9 5 U1 1 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1063-4258 J9 ATOM ENERGY+ JI Atom. Energy PD MAY PY 2008 VL 104 IS 5 BP 381 EP 386 DI 10.1007/s10512-008-9044-7 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 354ZS UT WOS:000259679000008 ER PT J AU Chen, G Wang, HC Robinson, H Cai, JW Wan, YQ Ke, HM AF Chen, Gong Wang, Huanchen Robinson, Howard Cai, Jiwen Wan, Yiqian Ke, Hengming TI An insight into the pharmacophores of phosphodiesterase-5 inhibitors from synthetic and crystal structural studies SO BIOCHEMICAL PHARMACOLOGY LA English DT Article DE phosphodiesterase (PDE); sildenafil; Viagra; crystal structure ID CYCLIC-NUCLEOTIDE PHOSPHODIESTERASES; ERECTILE DYSFUNCTION; CATALYTIC DOMAIN; DRUG DEVELOPMENT; SELECTIVITY; SILDENAFIL; PDE5; DESIGN; TARGET; AGENTS AB Selective inhibitors of cyclic nucleotide phosphodiesterase-5 (PDE5) have been used as drugs for treatment of male erectile dysfunction and pulmonary hypertension. An insight into the pharmacophores of PDE5 inhibitors is essential for development of second generation of PDE5 inhibitors, but has not been completely illustrated. Here we report the synthesis of a new class of the sildenafil derivatives and a crystal structure of the PDES catalytic domain in complex with 5-(2-ethoxy-5-(sulfamoyl)-3-thienyl)-1-methyl-3-propyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (12). Inhibitor 12 induces conformational change of the H-loop (residues 660-683), which is different from any of the known PDES structures. The pyrazolopyrimidinone groups of 12 and sildenafil are well superimposed, but their sulfonamide groups show a positional difference of as much as 1.5 angstrom. The structure-activity analysis suggests that a small hydrophobic pocket and the H-loop of PDE5 are important for the inhibitor affinity, in addition to two common elements for binding of almost all the PDE inhibitors: the stack against the phenylalanine and the hydrogen bond with the invariant glutamine. However, the PDE5-12 structure does not provide a full explanation to affinity changes of the inhibitors. Thus alternatives such as conformational change of the M-loop are open and further structural study is required. (C) 2008 Elsevier Inc. All rights reserved. C1 [Chen, Gong; Cai, Jiwen; Wan, Yiqian] Sun Yat Sen Univ, Sch Pharmaceut Sci, Struct Biol Ctr, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R China. [Wang, Huanchen; Ke, Hengming] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Wan, YQ (reprint author), Sun Yat Sen Univ, Sch Pharmaceut Sci, Struct Biol Ctr, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R China. EM ceswyq@mail.sysu.edu.cn; hke@med.unc.edu FU NIGMS NIH HHS [GM59791, R01 GM059791-07, R01 GM059791] NR 40 TC 22 Z9 22 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0006-2952 J9 BIOCHEM PHARMACOL JI Biochem. Pharmacol. PD MAY 1 PY 2008 VL 75 IS 9 BP 1717 EP 1728 DI 10.1016/j.bcp.2008.01.019 PG 12 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA 300TZ UT WOS:000255849400004 PM 18346713 ER PT J AU Elliott, DC AF Elliott, Douglas C. TI Catalytic hydrothermal gasification of biomass SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Review DE hydrothermal gasification; biomass; biomass gasification ID PRESSURE AQUEOUS ENVIRONMENTS; REDUCED NICKEL-CATALYST; NOBLE-METAL CATALYSTS; SUPERCRITICAL WATER; HYDROGEN-PRODUCTION; LIGNIN GASIFICATION; ORGANIC-COMPOUNDS; CELLULOSE; TEMPERATURE; FEEDSTOCKS AB A recent development in biomass gasification is the use of a pressurized water-processing environment to avoid drying of the biomass. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, subcritical processing as well as supercritical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research. (C) 2008 Society of Chemical Industry and John Wiley & Sons, Ltd C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Elliott, DC (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM dougc.elliott@pnl.gov FU US Department of Energy [DE-AC06-76RLO 1830] FX Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle under Contract DE-AC06-76RLO 1830. NR 50 TC 181 Z9 182 U1 10 U2 68 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1932-104X J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD MAY-JUN PY 2008 VL 2 IS 3 BP 254 EP 265 DI 10.1002/bbb.74 PG 12 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 387KF UT WOS:000261950400014 ER PT J AU Qian, S Wang, WC Yang, L Huang, HW AF Qian, Shuo Wang, Wangchen Yang, Lin Huang, Huey W. TI Structure of the alamethicin pore reconstructed by x-ray diffraction analysis SO BIOPHYSICAL JOURNAL LA English DT Article ID FUSION INTERMEDIATE STRUCTURE; OFF-PLANE SCATTERING; ANTIMICROBIAL PEPTIDE; LIPID BILAYERS; ANOMALOUS DIFFRACTION; CIRCULAR-DICHROISM; CRYSTAL-STRUCTURE; HEXAGONAL PHASE; MEMBRANE PORES; MELITTIN AB We reconstructed the electron density pro. le of the alamethicin-induced transmembrane pore by x-ray diffraction. We prepared fully hydrated multiple bilayers of alamethicin-lipid mixtures in a condition where pores were present, as established previously by neutron in-plane scattering in correlation with oriented circular dichroism. At dehydrated conditions, the interbilayer distance shortened and the interactions between bilayers caused the membrane pores to become long-ranged correlated and form a periodically ordered lattice of rhombohedral symmetry. To resolve the phase problem of diffraction, we used a brominated lipid and performed multiwavelength anomalous diffraction at the bromine K edge. The result unambiguously shows that the alamethicin pore is of the barrel-stave type consisting of eight alamethicin helices. This pore structure corresponds to the stable pores detected by neutron in-plane scattering in fully hydrated fluid bilayers at high peptide/lipid ratios, which are the conditions at which alamethicin was tested for its antibacterial activity. C1 [Qian, Shuo; Wang, Wangchen; Huang, Huey W.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Yang, Lin] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Huang, HW (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. EM hwhuang@rice.edu RI Yang, Lin/D-5872-2013; OI Yang, Lin/0000-0003-1057-9194; Qian, Shuo/0000-0002-4842-828X FU NIGMS NIH HHS [GM55203, R01 GM055203] NR 52 TC 73 Z9 73 U1 2 U2 12 PU BIOPHYSICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD MAY 1 PY 2008 VL 94 IS 9 BP 3512 EP 3522 DI 10.1529/biophysj.107.126474 PG 11 WC Biophysics SC Biophysics GA 286EW UT WOS:000254829700014 PM 18199659 ER PT J AU Igathinathane, C Womac, AR Sokhansanj, S Narayan, S AF Igathinathane, C. Womac, A. R. Sokhansanj, S. Narayan, S. TI Knife grid size reduction to pre-process packed beds of high- and low-moisture switchgrass SO BIORESOURCE TECHNOLOGY LA English DT Article DE switchgrass; cutting energy; biomass pre-processing; knife grid; size reduction ID MECHANICAL-PROPERTIES; BIOMASS; PERFORMANCE; CROP AB A linear knife grid device was developed for first-stage size reduction of high- and low-moisture switchgrass (Panicum virgatum L.), a tough, fibrous perennial grass being considered as a feedstock for bioenergy. The size reduction is by a shearing action accomplished by forcing a thick packed bed of biomass against a grid of sharp knives. The system is used commercially for slicing forages for drying or feed mixing. No performance data or engineering equations are available in published literature to optimize the machine and the process for biomass size reductions. Tests of a linear knife grid with switchgrass quantified the combined effect of shearing stresses, packed bed consolidation, and frictional resistance to flow through a knife grid. A universal test machine (UTM) measured load-displacement of switchgrass at two moisture contents: 51%, and 9% wet basis; three knife grid spacings: 25.4, 50.8, and 101.6 mm; and three packed bed depths: 50.8, 101.6, and 152.4 mm. Results showed that peak load, ultimate shear stress, and cutting energy values varied inversely with knife grid spacing and directly with packed bed depth (except ultimate shear stress). Mean ultimate shear stresses of high- and low-moisture switchgrass were 0.68 +/- 0.24, and 0.41 +/- 0.21 MPa, mass-based cutting energy values were 4.50 +/- 4.43, and 3.64 +/- 3.31 MJ/dry Mg, and cutting energy based on new surface area, calculated from packed-circle theory, were 4.12 +/- 2.06, and 2.53 +/- 0.45 kJ/m(2), respectively. The differences between high- and low-moisture switchgrass were significant (P < 0.05), such that high-moisture switchgrass required increased shear stress and cutting energy. Reduced knife grid spacing and increased packed bed depths required increased cutting energy. Overall, knife grid cutting energy was much less than energy values published for rotary equipment. A minimum knife grid spacing of 25.4 mm appears to be a practical lower limit, considering the high ram force that would be needed for commercial operation. However, knife grid spacing from 50 to 100 mm and greater may offer an efficient first-stage size reduction, especially well suited for packaged (baled) biomass. Results of this research should aid the engineering design of size reduction equipment for commercial facilities. (C) 2007 Published by Elsevier Ltd. C1 [Igathinathane, C.] Mississippi State Univ, Dept Agr & Biol Engn, Mississippi State, MS 39762 USA. [Womac, A. R.] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. [Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Womac, AR (reprint author), Mississippi State Univ, Dept Agr & Biol Engn, 100 Moore Rd,, Mississippi State, MS 39762 USA. EM awomac@utk.edu OI Cannayen, Igathinathane/0000-0001-8884-7959 NR 26 TC 16 Z9 19 U1 0 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD MAY PY 2008 VL 99 IS 7 BP 2254 EP 2264 DI 10.1016/j.biortech.2007.05.046 PG 11 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 272HI UT WOS:000253850100023 PM 17627819 ER PT J AU Gao, LJ Yang, HY Wang, XF Huang, ZY Ishii, M Igarashi, Y Cui, ZJ AF Gao, Lijuan Yang, Hongyan Wang, Xiaofen Huang, Zhiyong Ishii, Masaharu Igarashi, Yasuo Cui, Zongjun TI Rice straw fermentation using lactic acid bacteria SO BIORESOURCE TECHNOLOGY LA English DT Article DE rice straw fermentation; lactic acid bacteria; diversity; PCR-DGGE; 16S rDNA clone library ID GRADIENT GEL-ELECTROPHORESIS; 16S RIBOSOMAL-RNA; CORN-SILAGE MANAGEMENT; AEROBIC STABILITY; LACTOBACILLUS-BUCHNERI; WHEAT-STRAW; RUMINAL DEGRADABILITY; MICROBIAL COMMUNITY; ALFALFA SILAGE; SUCCESSION AB To efficiently utilize rice straw and lessen its disposal problem on the environment, a lactic acid bacteria community, SFC-2 was developed from natural fermentation products of rice straw by continuous enrichment with the MRS-S broth (MRS broth with sucrose), and used to accelerate the fermentation of air-dried straws. The SFC-2 could rapidly lower the pH of the broth and produce high levels of lactic acid. Using a combination of plate isolation, denaturing gradient gel electrophoresis (DGGE) and 16S rDNA sequencing, the microbial composition of the SFC-2 was classified into Lactobacillus, mainly comprised of L. fermentum, L. plantarum and L. paracacei. An evaluation of the fermentation effect of SFC-2 on rice straw showed that it lowered the pH and significantly (P < 0.05) increased lactic acid concentration in the straw. Further analysis with DGGE indicated that L. plantarum, L. fermentum and L. paracasei were the dominant species during fermentation. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Gao, Lijuan; Yang, Hongyan; Wang, Xiaofen; Cui, Zongjun] China Agr Univ, Coll Agronomy & Biotechnol, Beijing 100094, Peoples R China. [Huang, Zhiyong] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29803 USA. [Ishii, Masaharu; Igarashi, Yasuo] Univ Tokyo, Dept Biotechnol, Tokyo 1138657, Japan. RP Cui, ZJ (reprint author), China Agr Univ, Coll Agronomy & Biotechnol, Beijing 100094, Peoples R China. EM acuizj@cau.edu.cn NR 34 TC 28 Z9 45 U1 5 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD MAY PY 2008 VL 99 IS 8 BP 2742 EP 2748 DI 10.1016/j.biortech.2007.07.001 PG 7 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 275LF UT WOS:000254072200005 PM 17702573 ER PT J AU Jeoh, T Michener, W Himmel, ME Decker, SR Adney, WS AF Jeoh, Tina Michener, William Himmel, Michael E. Decker, Stephen R. Adney, William S. TI Implications of cellobiohydrolase glycosylation for use in biomass conversion SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article ID FUNGUS TRICHODERMA-REESEI; SACCHAROMYCES-CEREVISIAE; BACTERIAL CELLULOSE; PICHIA-PASTORIS; CELLULASES; HYDROLYSIS; EXPRESSION; OLIGOSACCHARIDES; IDENTIFICATION; DOMAINS AB The cellulase producing ascomycete, Trichoderma reesei ( Hypocrea jecorina), is known to secrete a range of enzymes important for ethanol production from lignocellulosic biomass. It is also widely used for the commercial scale production of industrial enzymes because of its ability to produce high titers of heterologous proteins. During the secretion process, a number of post-translational events can occur, however, that impact protein function and stability. Another ascomycete, Aspergillus niger var. awamori, is also known to produce large quantities of heterologous proteins for industry. In this study, T. reesei Cel7A, a cellobiohydrolase, was expressed in A. niger var. awamori and subjected to detailed biophysical characterization. The purified recombinant enzyme contains six times the amount of N-linked glycan than the enzyme purified from a commercial T. reesei enzyme preparation. The activities of the two enzyme forms were compared using bacterial (microcrystalline) and phosphoric acid swollen (amorphous) cellulose as substrates. This comparison suggested that the increased level of N-glycosylation of the recombinant Cel7A (rCel7A) resulted in reduced activity and increased non-productive binding on cellulose. When treated with the N-glycosidase PNGaseF, the molecular weight of the recombinant enzyme approached that of the commercial enzyme and the activity on cellulose was improved. C1 [Himmel, Michael E.; Decker, Stephen R.; Adney, William S.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. [Jeoh, Tina] Univ Calif Davis, Dept Biol & Agr Engn, Davis, CA 95616 USA. [Michener, William] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Adney, WS (reprint author), Natl Renewable Energy Lab, Chem & Biosci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM tjeoh@msn.com; william_michener@nrel.gov; mike_himmel@nrel.gov; steve_decker@nrel.gov; bill_adney@nrel.gov FU Department of Energy Office of the Biomass Program FX The authors would like to thank Eric Knoshaug for helpful discussions on A. niger var. awamori fermentation conditions as well as constructive criticisms of the manuscript. The MALDI analyses were conducted by the Biomolecular Research Facility at the University of Virginia. This work was funded by the Department of Energy Office of the Biomass Program. NR 35 TC 54 Z9 55 U1 0 U2 35 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD MAY 1 PY 2008 VL 1 AR 10 DI 10.1186/1754-6834-1-10 PG 12 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 522NM UT WOS:000272004900005 PM 18471276 ER PT J AU Mccoy, SR Kuehl, JV Boore, JL Raubeson, LA AF McCoy, Skip R. Kuehl, Jennifer V. Boore, Jeffrey L. Raubeson, Linda A. TI The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates SO BMC EVOLUTIONARY BIOLOGY LA English DT Article ID SEED PLANT PHYLOGENY; EVOLUTIONARY GENETICS ANALYSIS; REARRANGED CHLOROPLAST GENOME; COMPLETE NUCLEOTIDE-SEQUENCE; LONG-BRANCH ATTRACTION; LARGE INVERTED REPEAT; MOLECULAR EVOLUTION; EXTANT GYMNOSPERMS; BASAL ANGIOSPERM; DNA EVOLUTION AB Background: Welwitschia mirabilis is the only extant member of the family Welwitschiaceae, one of three lineages of gnetophytes, an enigmatic group of gymnosperms variously allied with flowering plants or conifers. Limited sequence data and rapid divergence rates have precluded consensus on the evolutionary placement of gnetophytes based on molecular characters. Here we report on the first complete gnetophyte chloroplast genome sequence, from Welwitschia mirabilis, as well as analyses on divergence rates of protein-coding genes, comparisons of gene content and order, and phylogenetic implications. Results: The chloroplast genome of Welwitschia mirabilis [GenBank: EU342371] is comprised of 119,726 base pairs and exhibits large and small single copy regions and two copies of the large inverted repeat (IR). Only 101 unique gene species are encoded. The Welwitschia plastome is the most compact photosynthetic land plant plastome sequenced to date; 66% of the sequence codes for product. The genome also exhibits a slightly expanded IR, a minimum of 9 inversions that modify gene order, and 19 genes that are lost or present as pseudogenes. Phylogenetic analyses, including one representative of each extant seed plant lineage and based on 57 concatenated protein-coding sequences, place Welwitschia at the base of all seed plants (distance, maximum parsimony) or as the sister to Pinus (the only conifer representative) in a monophyletic gymnosperm clade (maximum likelihood, bayesian). Relative rate tests on these gene sequences show the Welwitschia sequences to be evolving at faster rates than other seed plants. For these genes individually, a comparison of average pairwise distances indicates that relative divergence in Welwitschia ranges from amounts about equal to other seed plants to amounts almost three times greater than the average for non-gnetophyte seed plants. Conclusion: Although the basic organization of the Welwitschia plastome is typical, its compactness, gene content and high nucleotide divergence rates are atypical. The current lack of additional conifer plastome sequences precludes any discrimination between the gnetifer and gnepine hypotheses of seed plant relationships. However, both phylogenetic analyses and shared genome features identified here are consistent with either of the hypotheses that link gnetophytes with conifers, but are inconsistent with the anthophyte hypothesis. C1 [McCoy, Skip R.; Raubeson, Linda A.] Cent Washington Univ, Ellensburg, WA 98926 USA. [Kuehl, Jennifer V.; Boore, Jeffrey L.] DOE Joint Genome Inst, Walnut Creek, CA 94547 USA. [Kuehl, Jennifer V.; Boore, Jeffrey L.] Lawrence Berkeley Lab, Program Evolutionary Genom, Walnut Creek, CA 94547 USA. [Boore, Jeffrey L.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94702 USA. [Boore, Jeffrey L.] Genome Project Solut, Hercules, CA 94547 USA. RP Raubeson, LA (reprint author), Cent Washington Univ, Ellensburg, WA 98926 USA. EM McCoySk@cwu.edu; JVKuehl@lbl.gov; JLBoore@Berkeley.edu; raubeson@cwu.edu NR 77 TC 46 Z9 94 U1 2 U2 21 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2148 J9 BMC EVOL BIOL JI BMC Evol. Biol. PD MAY 1 PY 2008 VL 8 AR 130 DI 10.1186/1471-2148-8-130 PG 16 WC Evolutionary Biology; Genetics & Heredity SC Evolutionary Biology; Genetics & Heredity GA 308PE UT WOS:000256401700002 PM 18452621 ER PT J AU Williams, PT AF Williams, P. T. TI Association between walking distance and percentiles of body mass index in older and younger men SO BRITISH JOURNAL OF SPORTS MEDICINE LA English DT Article ID PHYSICAL-ACTIVITY; VIGOROUS EXERCISE; POPULATION-DISTRIBUTION; AMBULATORY ACTIVITY; OBESE SUBJECTS; WOMEN; ADIPOSITY; WEIGHT; HEALTH; ADULTS AB Objective: To assess the association of weekly walking distance to body weight and waist circumference in elderly ( age >= 75 years), senior ( 55 <= age < 75 years), middle- aged ( 35 <= age < 55 years), and younger men ( 18 <= age < 35 years old). Design: Cross-sectional analyses of baseline questionnaires from 7082 male participants of the National Walkers' Health Study. Results: Standard regression analyses showed that body mass index (BMI) was inversely and significantly associated with walking distance (kg/m(2) per km/week) in elderly ( slope ( SE): -0.032 (0.008)), senior (-0.045 (0.005)) and middle- aged men (-0.037 (0.007)), as were their waist circumferences (-0.090 (0.025), -0.122 (0.012) and -0.091 (0.015) cm per km/week, respectively), and that these slopes remained significant when adjusted statistically for reported weekly servings of meat, fish, fruit and alcohol. However, percentile regression analyses showed that the declines in BMI per km/week walked were greater at the higher than the lower percentiles of the BMI distribution. In men >= 74 years old the decline per km walked was 4.9-fold greater among the heaviest men ( that is, 90th BMI percentile; -0.076 kg/m(2) per km/week) than among the leanest men ( that is, 10th BMI percentile; -0.015 kg/m(2) per km/week). The differences in slope at the 90th compared to the 10th BMI percentile were 5.4-fold among men 55-74 years old and sixfold among men 35 54 years old. Per km/week walked, the declines at the 90th percentile of waist circumference were also greater than at its 10th percentile, and intermediate for percentiles in between. Whereas standard regression analyses suggest that the average declines in BMI per km/week walked reported here are consistent with those reported previously per km/week run in male runners 35-54 years old (-0.036 (0.001) kg/m(2) per km/week) and >= 50 years old (-0.038 ( 0.001) kg/m(2) per km/week), percentile regression analyses showed that when adjusted to the leaner body weights of the runners the declines per km walked were between 49% and 59% less for walkers than runners. Conclusions: Declines in BMI and waist circumferences with walking distance depend upon the percentile of the BMI distribution, with the decline per km walked being significantly greater among heavier men. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU NHLBI NIH HHS [HL-72110, HL-45652, R01 HL072110]; NIA NIH HHS [R03 AG032004-01A1, R03 AG032004]; NIDDK NIH HHS [R01 DK066738, DK-066738] NR 36 TC 14 Z9 14 U1 0 U2 1 PU B M J PUBLISHING GROUP PI LONDON PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND SN 0306-3674 J9 BRIT J SPORT MED JI Br. J. Sports Med. PD MAY PY 2008 VL 42 IS 5 AR 352 DI 10.1136/bjsm.2007.041822 PG 5 WC Sport Sciences SC Sport Sciences GA 297AX UT WOS:000255588900008 PM 18385193 ER PT J AU May, PT Mather, JH Vaughan, G Jakob, C McFarquhar, GM Bower, KN Mace, GG AF May, Peter T. Mather, James H. Vaughan, Geraint Jakob, Christian McFarquhar, Greg M. Bower, Keith N. Mace, Gerald G. TI The tropical warm pool international cloud experiment SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID AUSTRALIAN MONSOON EXPERIMENT; THUNDERSTORM EXPERIMENT MCTEX; TRMM PRECIPITATION FEATURES; BAND POLARIMETRIC RADAR; MARITIME CONTINENT; ATMOSPHERIC RADIATION; NORTHERN AUSTRALIA; WESTERN PACIFIC; CRYSTAL SIZE; CONVECTION AB A comprehensive dataset describing tropical cloud systems and their environmental setting and impacts has been collected during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and Aerosol and Chemical Transport in Tropical Convection (ACTIVE) campaign in the area around Darwin, Northern Australia, in January and February 2006. The aim of the experiment was to observe the evolution of tropical cloud systems and their interaction with the environment within an observational framework optimized for a range of modeling activities with the goal of improving the representation of cloud and aerosol process in a range of models. The experiment design utilized permanent observational facilities in Darwin, including a polarimetric weather radar and a suite of cloud remote-sensing instruments. This was augmented by a dense network of soundings, together with radiation, flux, lightning, and remote-sensing measurements, as well as oceanographic observations. A fleet of five research aircraft, including two high-altitude aircraft, were taking measurements of fluxes, cloud microphysics, and chemistry; cloud radar and lidar were carried on a third aircraft. Highlights of the experiment include an intense mesoscale convective system (MCS) developed within the network, observations used to analyze the impacts of aerosol on convective systems, and observations used to relate cirrus properties to the parent storm properties. C1 [May, Peter T.] Australian Bur Meterol, Ctr Australian Weather & Climate Res, Melbourne, Vic 3001, Australia. [May, Peter T.] CSIRO, Melbourne, Vic 3001, Australia. [Jakob, Christian] Monash Univ, Sch Math Sci, Clayton, Vic, Australia. [Mather, James H.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Vaughan, Geraint; Bower, Keith N.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester, Lancs, England. [McFarquhar, Greg M.] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. [Mace, Gerald G.] Univ Utah, Dept Meteorol, Salt Lake City, UT USA. RP May, PT (reprint author), Australian Bur Meterol, Ctr Australian Weather & Climate Res, GPO Box 1289, Melbourne, Vic 3001, Australia. EM p.may@bom.gov.au RI Vaughan, Geraint/O-2459-2015; Jakob, Christian/A-1082-2010; OI Vaughan, Geraint/0000-0002-0885-0398; Jakob, Christian/0000-0002-5012-3207; McFarquhar, Greg/0000-0003-0950-0135 NR 54 TC 106 Z9 107 U1 0 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD MAY PY 2008 VL 89 IS 5 BP 629 EP + DI 10.1175/BAMS-89-5-629 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 310XA UT WOS:000256562900016 ER PT J AU Iversen, CM Norby, RJ AF Iversen, Colleen M. Norby, Richard J. TI Nitrogen limitation in a sweetgum plantation: implications for carbon allocation and storage SO CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE LA English DT Article ID FINE-ROOT DYNAMICS; ELEVATED ATMOSPHERIC CO2; NET PRIMARY PRODUCTIVITY; TERRESTRIAL ECOSYSTEMS; LOBLOLLY-PINE; FOREST ECOSYSTEMS; DECIDUOUS FOREST; USE EFFICIENCY; NUTRIENT RESORPTION; LEAF-AREA AB The N status of temperate forests is closely linked to their C fluxes, and altered C or N availability may affect ecosystem C storage through changes in forest production and C allocation. We proposed that increased fine-root production previously observed in a sweetgum (Liquidambar styraciflua L.) forest in response to elevated [CO(2)] was a physiological response to N limitation. To examine this premise, we fertilized plots in the sweetgum plantation adjacent to the Oak Ridge National Laboratory free-air CO(2)-enrichment (FACE) experiment. We hypothesized that N fertilization would increase sweetgum net primary production, leaf [N], and the relative flux of C to wood production. Annual additions of 200 kg center dot ha(-1) of N as urea increased soil N availability, which increased stand net primary production, stand N uptake, and N requirement by about one-third. Increased leaf [N] and leaf area production in the fertilized plots increased stem production and shifted relative flux of C to wood production. We conclude that sweetgum production on this site is limited by soil N availability and a decreased fraction of net primary production in fine-root production with N addition is consistent with the premise that increased fine-root production in the adjacent FACE experiment is in response to N limitation. C1 [Iversen, Colleen M.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. [Norby, Richard J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Iversen, CM (reprint author), Univ Tennessee, Dept Ecol & Evolutionary Biol, 569 Dabney Hall, Knoxville, TN 37996 USA. EM civersen@utk.edu RI Norby, Richard/C-1773-2012; Iversen, Colleen/B-8983-2012 OI Norby, Richard/0000-0002-0238-9828; NR 69 TC 22 Z9 22 U1 3 U2 16 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA SN 0045-5067 J9 CAN J FOREST RES JI Can. J. For. Res.-Rev. Can. Rech. For. PD MAY PY 2008 VL 38 IS 5 BP 1021 EP 1032 DI 10.1139/X07-213 PG 12 WC Forestry SC Forestry GA 304PC UT WOS:000256120400012 ER PT J AU Gu, MF AF Gu, Ming Feng TI The flexible atomic code SO CANADIAN JOURNAL OF PHYSICS LA English DT Review ID HIGHLY-CHARGED IONS; ELECTRON-IMPACT EXCITATION; RECOMBINATION RATE COEFFICIENTS; ANGULAR-MOMENTUM COEFFICIENTS; COLLISION CROSS-SECTIONS; RAY-LINE-FORMATION; L-SHELL IONS; DIELECTRONIC RECOMBINATION; LABORATORY MEASUREMENTS; RELATIVISTIC CALCULATIONS AB We describe a complete software package for the computation of various atomic data such as energy levels; radiative transition; collisional excitation; ionization by electron impact, photoionization, autoionization; and their inverse processes radiative recombination and dielectronic capture. The atomic theoretical background and numerical techniques associated with each process are discussed in detail. Sample applications and results are presented. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Gu, MF (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM mfgu@ssl.berkeley.edu NR 63 TC 392 Z9 401 U1 1 U2 25 PU NATL RESEARCH COUNCIL CANADA-N R C RESEARCH PRESS PI OTTAWA PA BUILDING M 55, OTTAWA, ON K1A 0R6, CANADA SN 0008-4204 J9 CAN J PHYS JI Can. J. Phys. PD MAY PY 2008 VL 86 IS 5 BP 675 EP 689 DI 10.1139/P07-197 PG 15 WC Physics, Multidisciplinary SC Physics GA 330OJ UT WOS:000257952400001 ER PT J AU Bremer, E Greer, KJ Black, M Townley-Smith, L Malhi, SS Izaurralde, RC Larney, FJ AF Bremer, E. Greer, K. J. Black, M. Townley-Smith, L. Malhi, S. S. Izaurralde, R. C. Larney, F. J. TI SimPLE.ca: Simulator of productivity loss due to erosion for Canada SO CANADIAN JOURNAL OF SOIL SCIENCE LA English DT Article DE available N and P; model; nutrients; productivity loss; simulator; soil erosion; soil properties; yield loss ID CROP PRODUCTIVITY; SOIL-EROSION; CORN YIELD; TOPSOIL REMOVAL; ALKALINE SOILS; CLIMATE-CHANGE; PHOSPHORUS; MODEL; FERTILIZER; CARBON AB Robust and practical estimates of the impact of soil erosion on crop productivity are essential for developing and implementing appropriate solutions for soil erosion on agricultural land. The objective of this study was to develop a simple model which captured the most important relationships between topsoil erosion and productivity loss for major agricultural regions of Canada. The model was developed for spring wheat (Triticum aestivum L.) and corn (Zea mays L.). Using annual time steps, maximum crop yields were reduced by soil erosion due to losses in available water-holding capacity, N-mineralization potential and available P. Using minimal input data, the model accounted for 56% of the variation in relative yields (fraction of non-eroded controls) determined in field studies using desurfacing or comparison plot methods. C1 [Bremer, E.] Symbio Ag Consulting, Lethbridge, AB T1K 2B5, Canada. [Greer, K. J.] Western Ag Innovat, Saskatoon, SK S7N 3R2, Canada. [Black, M.] Prairie Farm Rehabil Adm, Halifax, NS B3J 2N7, Canada. [Townley-Smith, L.] Prairie Farm Rehabil Adm, Regina, SK S4P 4L2, Canada. [Malhi, S. S.] Agr & Agri Food Canada, Melfort, SK S0E 1A0, Canada. [Izaurralde, R. C.] Pacific NW Natl Lab, College Pk, MD 20740 USA. [Larney, F. J.] Agr & Agri Food Canada, Lethbridge, AB T1J 4B1, Canada. RP Bremer, E (reprint author), Symbio Ag Consulting, Lethbridge, AB T1K 2B5, Canada. EM ericbremer@shaw.ca RI Izaurralde, Roberto/E-5826-2012 NR 62 TC 2 Z9 2 U1 0 U2 4 PU AGRICULTURAL INST CANADA PI OTTAWA PA 280 ALBERT ST, SUITE 900, OTTAWA, ONTARIO K1P 5G8, CANADA SN 0008-4271 J9 CAN J SOIL SCI JI Can. J. Soil Sci. PD MAY PY 2008 VL 88 IS 3 BP 365 EP 376 PG 12 WC Soil Science SC Agriculture GA 321LO UT WOS:000257306700009 ER PT J AU Francl, KE Glenn, TC Castleberry, SB Ford, WM AF Francl, K. E. Glenn, T. C. Castleberry, S. B. Ford, W. M. TI Genetic relationships of meadow vole (Microtus pennsylvanicus) populations in central Appalachian wetlands SO CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE LA English DT Article ID MITOCHONDRIAL CONTROL REGION; DNA POLYMORPHISM; COMPETITIVE INTERACTION; 2-SPECIES SYSTEM; COMMON VOLE; BANK VOLES; CONSERVATION; NEUTRALITY; DISPERSAL; INSIGHTS AB We sequenced and compared variation within a 375-base-pair segment of the mitochondrial DNA control region of 323 meadow voles (Microtus pennsylvanicus (Ord, 1815)) among 14 populations to determine the influence of past and present landscape connectivity among isolated wetlands in the central Appalachian Mountains. To best explain observed differences among sites, we used genetic and landscape-level (GIS) data to test a null hypothesis (no genetic differences) and three alternate explanations of significant variation owing to founder effects, effective population size, or isolation by distance. Sequencing results revealed 16 distinct haplotypes (1-8 haplotypes/site), with two present in samples from most wetlands, and half of the remaining haplotypes concentrated in specific geographic clusters. Our findings best support the explanation that founder effects have influenced current genetic patterns among sites. These founder effects are likely due to historical land-use activities such as exploitative logging (ca. 1880-1920; creating early successional habitats for voles) and subsequent forest regeneration over the past half century; they were also likely influenced by postglacial colonization patterns. Therefore, current genetic diversity in these populations seems to largely reflect the number and source of voles that successfully colonized these isolated wetlands during the window of opportunity immediately following extensive logging. C1 [Francl, K. E.] Radford Univ, Dept Biol, Radford, VA 24142 USA. [Glenn, T. C.] Univ Georgia, Athens, GA 30602 USA. [Glenn, T. C.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Castleberry, S. B.] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. [Ford, W. M.] US Forest Serv, No Res Stn, USDA, Parsons, WV 26282 USA. RP Francl, KE (reprint author), Radford Univ, Dept Biol, Radford, VA 24142 USA. EM kfrancl@radford.edu RI Glenn, Travis/A-2390-2008 NR 42 TC 1 Z9 1 U1 1 U2 2 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA SN 0008-4301 J9 CAN J ZOOL JI Can. J. Zool.-Rev. Can. Zool. PD MAY PY 2008 VL 86 IS 5 BP 344 EP 355 DI 10.1139/Z07-140 PG 12 WC Zoology SC Zoology GA 311UT UT WOS:000256626600002 ER PT J AU Hu, M Yao, J Carroll, DK Weremowicz, S Chen, H Carrasco, D Richardson, A Violette, S Nikolskaya, T Nikolsky, Y Bauerlein, EL Hahn, WC Gelman, RS Allred, C Bissell, MJ Schnitt, S Polyak, K AF Hu, Min Yao, Jun Carroll, Danielle K. Weremowicz, Stanislawa Chen, Haiyan Carrasco, Daniel Richardson, Andrea Violette, Shelia Nikolskaya, Tatiana Nikolsky, Yuri Bauerlein, Erica L. Hahn, William C. Gelman, Rebecca S. Allred, Craig Bissell, Mina J. Schnitt, Stuart Polyak, Kornelia TI Regulation of in situ to invasive breast carcinoma transition SO CANCER CELL LA English DT Article ID MYOEPITHELIAL CELLS; TUMOR PROGRESSION; EPITHELIAL-CELLS; EXTRACELLULAR-MATRIX; CANCER PROGRESSION; STEM-CELL; MAMMARY; EXPRESSION; MICROENVIRONMENT; IMMORTALIZATION AB The transition of ductal carcinoma in situ (DCIS) to invasive carcinoma is a poorly understood key event in breast tumor progression. Here, we analyzed the role of myoepithelial cells and fibroblasts in the progression of in situ carcinomas using a model of human DCIS and primary breast tumors. Progression to invasion was promoted by fibroblasts and inhibited by normal myoepithelial cells. Molecular profiles of isolated luminal epithelial and myoepithelial cells identified an intricate interaction network involving TGF beta, Hedgehog, cell adhesion, and p63 required for myoepithelial cell differentiation, the elimination of which resulted in loss of myoepithelial cells and progression to invasion. C1 [Chen, Haiyan; Gelman, Rebecca S.] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA. [Weremowicz, Stanislawa; Richardson, Andrea] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA. [Hu, Min; Yao, Jun; Carroll, Danielle K.; Weremowicz, Stanislawa; Richardson, Andrea; Bauerlein, Erica L.; Hahn, William C.; Schnitt, Stuart; Polyak, Kornelia] Harvard Univ, Sch Med, Boston, MA 02115 USA. [Chen, Haiyan; Gelman, Rebecca S.] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA. [Violette, Shelia] Biogen Idec, Cambridge, MA 02142 USA. [Nikolskaya, Tatiana; Nikolsky, Yuri] GeneGo Inc, St Joseph, MI 49085 USA. [Allred, Craig] Washington Univ, Sch Med, Dept Pathol, St Louis, MO 63110 USA. [Schnitt, Stuart] Beth Israel Deaconess Med Ctr, Dept Pathol, Boston, MA 02115 USA. [Bissell, Mina J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hu, Min; Yao, Jun; Carrasco, Daniel; Bauerlein, Erica L.; Hahn, William C.; Polyak, Kornelia] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA. RP Polyak, K (reprint author), Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA. EM kornelia-polyak@dfci.harvard.edu RI Nikolskaya, Tatiana/M-5008-2013 FU NCI NIH HHS [P50 CA089393-040004, CA116235, CA64786, CA89393, CA94074, P50 CA089393, P50 CA089393-010004, P50 CA089393-020004, P50 CA089393-030004, P50 CA089393-050004, P50 CA089393-060014, P50 CA089393-070014, P50 CA089393-080014, P50 CA089393-090014, R01 CA064786, R01 CA094074, R01 CA094074-01A1, R01 CA094074-02, R01 CA094074-03, R01 CA094074-04, R01 CA094074-05, R01 CA116235, R01 CA116235-01A1, R01 CA116235-02, R01 CA116235-03, R37 CA064786] NR 41 TC 246 Z9 252 U1 1 U2 12 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1535-6108 J9 CANCER CELL JI Cancer Cell PD MAY PY 2008 VL 13 IS 5 BP 394 EP 406 DI 10.1016/j.ccr.2008.03.007 PG 13 WC Oncology; Cell Biology SC Oncology; Cell Biology GA 296TP UT WOS:000255569000006 PM 18455123 ER PT J AU Le Scolan, E Zhu, QW Wang, L Bandyopadhyay, A Javelaud, D Mauviel, A Sun, LZ Luo, KX AF Le Scolan, Erwan Zhu, Qingwei Wang, Long Bandyopadhyay, Abhik Javelaud, Delphine Mauviel, Alain Sun, LuZhe Luo, Kunxin TI Transforming growth factor-beta suppresses the ability of ski to inhibit tumor metastasis by inducing its degradation SO CANCER RESEARCH LA English DT Article ID ANAPHASE-PROMOTING COMPLEX; PROTOONCOGENE C-SKI; TGF-BETA; SKELETAL-MUSCLE; DEPENDENT DEGRADATION; ECTOPIC EXPRESSION; CELL-LINES; IN-VIVO; CANCER; SNON AB c-Ski is an important corepressor of transforming growth factor-beta (TGF-beta) signaling through its ability to bind to and repress the activity of the Smad proteins. It was initially identified as an oncogene that promotes anchorage-independent growth of chicken and quail embryo fibroblasts when over-expressed. Although increased Ski expression is detected in many human cancer cells, the roles of Ski in mammalian carcinogenesis have yet to be defined. Here, we report that reducing Ski expression in breast and lung cancer cells does not affect tumor growth but enhances tumor metastasis in vivo. Thus, in these cells, Ski plays an antitumorigenic role. We also showed that TGF-beta, acytokine that is often highly expressed in metastatic tumors, induces Ski degradation through the ubiquitin-dependent proteasome in malignant human cancer cells. On TGF-beta treatment, the E3 ubiquitin ligase Arkadia mediates degradation of Ski in a Smad-dependent manner. Although Arkadia interacts with Ski in the absence of TGF-beta, binding of phosphorylated Smad2 or Smad3 to Ski is required to induce efficient degradation of Ski by Arkadia. Our results suggest that the ability of TGF-beta to induce degradation of Ski could be an additional mechanism contributing to its protumorigenic activity. C1 [Le Scolan, Erwan; Zhu, Qingwei; Luo, Kunxin] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Zhu, Qingwei; Luo, Kunxin] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Wang, Long; Bandyopadhyay, Abhik; Sun, LuZhe] Univ Texas Hlth Sci Ctr San Antonio, Dept Cellular & Struct Biol, San Antonio, TX 78229 USA. [Javelaud, Delphine; Mauviel, Alain] Inst Natl Sante & Rech Med, U697, Paris, France. RP Luo, KX (reprint author), Univ Calif Berkeley, Dept Mol Cell Biol, 16 Barker Hall,MC3204, Berkeley, CA 94720 USA. EM kluo@berkeley.edu RI MAUVIEL, Alain/F-6251-2013 FU NCI NIH HHS [CA79683, CA101891] NR 50 TC 60 Z9 60 U1 0 U2 4 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD MAY 1 PY 2008 VL 68 IS 9 BP 3277 EP 3285 DI 10.1158/0008-5472.CAN-07-6793 PG 9 WC Oncology SC Oncology GA 297FN UT WOS:000255602600027 PM 18451154 ER PT J AU Lebarbier, V Dagle, R Conant, T Vohs, JM Datye, AK Wang, Y AF Lebarbier, V. Dagle, R. Conant, T. Vohs, J. M. Datye, A. K. Wang, Y. TI CO/FTIR spectroscopic characterization of Pd/ZnO/Al2O3 catalysts for methanol steam reforming SO CATALYSIS LETTERS LA English DT Article DE FTIR spectroscopy; Pd catalyst; PdZn alloy catalyst; methanol steam reforming ID COPPER-CONTAINING CATALYSTS; SUPPORTED PD CATALYSTS; CU/ZNO/AL2O3 CATALYST; MICROCHANNEL REACTOR; ALLOY FORMATION; FUEL-CELLS; HYDROGEN; KINETICS; DEHYDROGENATION; DIFFERENCE AB An as-synthesized 8.8wt% Pd/ZnO/Al2O3 catalyst was either pretreated under O-2 at 773 K followed by H-2 at 293 K or under H-2 at 773 K to obtain, respectively, a supported metallic Pd degrees catalyst (Pd degrees/ZnO/Al2O3) or a supported PdZn alloy catalyst (PdZn/ZnO/Al2O3). Both catalysts were studied by CO adsorption using FTIR spectroscopy. For the supported PdZn alloy catalyst (PdZn/ZnO/Al2O3), exposure to a mixture of methanol and steam, simulating methanol steam reforming reaction conditions, does not change the catalyst surface composition. This implies that the active sites are PdZn alloy like structures. The exposure of the catalyst to an oxidizing environment (O-2 at 623 K) results in the break up of PdZn alloy, forming a readily reducible PdO with its metallic form being known as much less active and selective for methanol steam reforming. However, for the metallic Pd degrees/ZnO/Al2O3 catalyst, FTIR results indicate that metallic Pd degrees can transform to PdZn alloy under methanol steam reforming conditions. These results suggest that PdZn alloy, even after an accidental exposure to oxygen, can self repair to form the active PdZn alloy phase under methanol steam reforming conditions. Catalytic behavior of the PdZn/ZnO/Al2O3 catalyst also correlates well with the surface composition characterizations by FTIR/CO spectroscopy. C1 [Lebarbier, V.; Dagle, R.; Wang, Y.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Lebarbier, V.; Conant, T.; Datye, A. K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87106 USA. [Vohs, J. M.] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. RP Wang, Y (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM yongwang@pnl.gov RI Wang, Yong/C-2344-2013; OI Datye, Abhaya/0000-0002-7126-8659 NR 46 TC 21 Z9 21 U1 2 U2 48 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD MAY PY 2008 VL 122 IS 3-4 BP 223 EP 227 DI 10.1007/s10562-008-9407-7 PG 5 WC Chemistry, Physical SC Chemistry GA 302RP UT WOS:000255987300004 ER PT J AU Lin, SSY Kim, DH Ha, SY AF Lin, Sean S. -Y. Kim, Do Heui Ha, Su Y. TI Hydrogen production from ethanol steam reforming over supported cobalt catalysts SO CATALYSIS LETTERS LA English DT Article DE hydrogen production; ethanol steam reforming; cobalt; cerium-zirconium oxide ID LOW-TEMPERATURE; FUEL-CELLS; RH/CEO2-ZRO2 CATALYSTS; SURFACES; OXIDE; BIOFUELS; TRENDS AB Hydrogen production was carried out via ethanol steam reforming over supported cobalt catalysts. Wet incipient impregnation method was used to support cobalt on ZrO2, CeO2 and CeZrO4 followed by prereduction with H-2 up to 677 degrees C to attain supported cobalt catalysts. It was found that the non-noble metal based 10 wt.% Co/CeZrO4 is an efficient catalyst to achieve ethanol conversion of 100% and hydrogen yield of 82% (4.9 mol H-2/mol ethanol) at 450 degrees C, which is superior to 0.5 wt.% Rh/Al2O3. The pre-reduction process is required to activate supported cobalt catalysts for high H-2 yield of ethanol steam reforming. In addition, support effect is found significant for cobalt during ethanol steam reforming. 10% Co/CeO2 gave high H-2 selectivity while suffered low conversion due to the poor thermal stability. In contrast to CeO2, 10 wt.% Co/ZrO2 achieved high conversion while suffered lower H-2 yield due to the production of methane. The synergistic effect of ZrO2 and CeO2 to promote high ethanol conversion while suppress methanation was observed when CeZrO4 was used as a support for cobalt. This synergistic effect of CeZro(4) support leads to a high hydrogen yield at low temperature for 10 wt.% Co/CeZrO4 catalyst. Under the high weight hourly space velocity (WHSV) of ethanol (2.5 h(-1)), the hydrogen yield over 10 wt.% Co/CeZrO4 was found to gradually decrease to 70% of its initial value in 6 h possibly due to the coke formation on the catalyst. C1 [Lin, Sean S. -Y.; Ha, Su Y.] Washington State Univ, Dept Chem Engn, Pullman, WA 99164 USA. [Kim, Do Heui] Inst Interfacial Catalysis, Pacific NW Natl Lab, Richland, WA 99354 USA. RP Ha, SY (reprint author), Washington State Univ, Dept Chem Engn, POB 642710, Pullman, WA 99164 USA. EM suha@wsu.edu RI Lin, Sean/F-3988-2010; Kim, Do Heui/I-3727-2015 NR 35 TC 46 Z9 46 U1 2 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD MAY PY 2008 VL 122 IS 3-4 BP 295 EP 301 DI 10.1007/s10562-007-9375-3 PG 7 WC Chemistry, Physical SC Chemistry GA 302RP UT WOS:000255987300014 ER PT J AU Rodriguez, AS Batac, J Killilea, AN Filopei, J Simeonov, DR Lin, I Paluh, JL AF Rodriguez, Adrianna S. Batac, Joseph Killilea, Alison N. Filopei, Jason Simeonov, Dimitre R. Lin, Ida Paluh, Janet L. TI Protein complexes at the microtubule organizing center regulate bipolar spindle assembly SO CELL CYCLE LA English DT Article DE gamma-tubulin; MTOC; kinesin-5; kinesin-14; binding site; bipolar; spindle ID GAMMA-TUBULIN COMPLEX; KINESIN-LIKE PROTEIN; FISSION YEAST; POLE BODY; SCHIZOSACCHAROMYCES-POMBE; SACCHAROMYCES-CEREVISIAE; ASPERGILLUS-NIDULANS; MITOTIC SPINDLE; MOTOR DOMAIN; CRYOELECTRON MICROSCOPY AB Bipolar spindle assembly is essential to genomic stability in dividing cells. Centrosomes or spindle pole bodies duplicated earlier at G(1)/S remain adjacent until triggered at mitotic onset to become bipolar. Pole reorientation is stabilized by microtubule interdigitation but mechanistic details for bipolarity remain incomplete. To investigate the contribution of spindle pole microtubule organizing center (MTOC) proteins in bipolarity, we applied genetic, structural and molecular biochemical analysis along with timelapse microscopy. Spindle formation was followed by an in vivo growth assay with the conditional allele cut7-22(ts), encoding fission yeast mitotic Kinesin-5, essential for bipolarity. By analysis of double and triple mutant strains of MTOC alleles and cut7-22(ts) we found that stabilized microtubules or increased bundling can rescue cut7-22(ts) associated bipolarity defects. These changes to microtubule dynamics and organization occurred through two surface domains on gamma- tubulin, a helix 11 domain and an adjacent site for binding MTOC protein Alp4. We demonstrate that Kinesin-14 Pkl1, known to oppose bipolarity, can bind to gamma-tubulin at helix 11 and that mutation of either of two conserved residues in helix 11 can impair Kinesin-14 binding. Altering the Alp4/gamma-tubulin interaction, conserved residues in helix 11 or deletion of pkl1 each are sufficient to rescue bipolarity in our cut7-22(ts) strain. Our findings provide novel insights into regulation of the bipolar mechanism through the MTOC complex. C1 [Simeonov, Dimitre R.; Lin, Ida; Paluh, Janet L.] Rensselaer Polytech Inst, CBIS, Troy, NY 12180 USA. [Rodriguez, Adrianna S.] NYU, Sch Med, Dept Med, New York, NY USA. [Batac, Joseph] Tufts Univ, Sch Med, Boston, MA 02111 USA. [Killilea, Alison N.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Filopei, Jason] New York Med Coll, New York, NY USA. RP Paluh, JL (reprint author), Rensselaer Polytech Inst, CBIS, 110 8th St, Troy, NY 12180 USA. EM Paluhj@rpi.edu NR 82 TC 15 Z9 15 U1 0 U2 2 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1538-4101 EI 1551-4005 J9 CELL CYCLE JI Cell Cycle PD MAY 1 PY 2008 VL 7 IS 9 BP 1246 EP 1253 DI 10.4161/cc.7.9.5808 PG 8 WC Cell Biology SC Cell Biology GA 304IH UT WOS:000256102700020 PM 18418055 ER PT J AU Linke, K Mace, PD Smith, CA Vaux, DL Silke, J Day, CL AF Linke, K. Mace, P. D. Smith, C. A. Vaux, D. L. Silke, J. Day, C. L. TI Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans SO CELL DEATH AND DIFFERENTIATION LA English DT Article DE MDM2; MDMX; p53; RING; ubiquitylation ID UBIQUITIN LIGASE ACTIVITY; P53; MDM2; DEGRADATION; COMPLEX; PROTEIN; ACTIVATION; INACTIVATION; BRCA1-BARD1 AB MDM2, a ubiquitin E3-ligase of the RING family, has a key role in regulating p53 abundance. During normal non-stress conditions p53 is targeted for degradation by MDM2. MDM2 can also target itself and MDMX for degradation. MDMX is closely related to MDM2 but the RING domain of MDMX does not possess intrinsic E3-ligase activity. Instead, MDMX regulates p53 abundance by modulating the levels and activity of MDM2. Dimerization, mediated by the conserved C-terminal RING domains of both MDM2 and MDMX, is critical to this activity. Here we report the crystal structure of the MDM2/MDMX RING domain heterodimer and map residues required for functional interaction with the E2 (UbcH5b). In both MDM2 and MDMX residues C-terminal to the RING domain have a key role in dimer formation. In addition we show that these residues are part of an extended surface that is essential for ubiquitylation in trans. This study provides a molecular basis for understanding how heterodimer formation leads to stabilization of MDM2, yet degradation of p53, and suggests novel targets for therapeutic intervention. C1 [Linke, K.; Mace, P. D.; Day, C. L.] Univ Otago, Dept Biochem, Dunedin 9054, New Zealand. [Smith, C. A.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. [Vaux, D. L.; Silke, J.] La Trobe Univ, Dept Biochem, Bundoora, Vic, Australia. RP Day, CL (reprint author), Univ Otago, Dept Biochem, 710 Cumberland St,POB 56, Dunedin 9054, New Zealand. EM catherine.day@stonebow.otago.ac.nz RI Silke, John/B-7622-2008; Vaux, David/C-7249-2013; OI Silke, John/0000-0002-7611-5774; Vaux, David/0000-0003-2703-1651; Mace, Peter/0000-0003-2175-9537; Day, Catherine/0000-0003-1571-4367 FU NCRR NIH HHS [P41 RR001209] NR 41 TC 162 Z9 164 U1 2 U2 13 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1350-9047 J9 CELL DEATH DIFFER JI Cell Death Differ. PD MAY PY 2008 VL 15 IS 5 BP 841 EP 848 DI 10.1038/sj.cdd.4402309 PG 8 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 288BF UT WOS:000254960500005 PM 18219319 ER PT J AU Benyahia, S AF Benyahia, Sofiane TI A time-averaged model for gas-solids flow in a one-dimensional vertical channel SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE fluidization; turbulence; gas-solids flow; particle-particle interactions; kinetic theory of granular flow ID CIRCULATING FLUIDIZED-BEDS; KINETIC-THEORY; PARTICLE FLOW; GRANULAR FLOW; SIMULATION; RISER; TURBULENCE; PHASE AB In this study, we are interested in deriving time-smoothed governing and constitutive equations for gas-solids flow in moderately dense systems where particle-particle collision is the main energy dissipation mechanism. Results obtained from dynamic simulations of a gas-solids flow in a ID channel are used to show that it is possible to obtain expressions for the time-averaged constitutive relations based on Taylor series expansion. We demonstrate, by comparing with time-averaged transient results, that the 1st term (or laminar) in the series expressions of most non-linear constitutive relations can yield inaccurate quantitative and qualitative results. This means that steady-state models derived by simply removing the partial time derivative from the governing equations are not suitable for gas-solids flows. This study shows that it was necessary to include many terms of the Taylor series expression of non-linear constitutive relations (such as the granular energy dissipation term) due to large-scale oscillations that were computed for all flow variables at all locations in the ID domain. In some cases, the Taylor series expansion diverged and the Euler transformation was used to improve the convergence of these series. In this moderately dense flow system, turbulence in the gas-phase was found to be just a reaction to turbulence in the solids phase that resulted from the large-scale motion of solids clusters. This resulted in a negative turbulent gas viscosity computed due to the fact that gas (in the horizontal direction) flows only to occupy regions vacated by clusters of solids. The steady-state results obtained using the time-smoothed gas-solids flow model compared well with the time-averaged results obtained using the transient model for all flow variables. Published by Elsevier Ltd. C1 Natl Energy Technol Lab, Morgantown, WV 26505 USA. RP Benyahia, S (reprint author), Natl Energy Technol Lab, Morgantown, WV 26505 USA. EM sofiane.benyahia@netl.doe.gov NR 19 TC 12 Z9 12 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD MAY PY 2008 VL 63 IS 9 BP 2536 EP 2547 DI 10.1016/j.ces.2008.02.012 PG 12 WC Engineering, Chemical SC Engineering GA 302AB UT WOS:000255937000019 ER PT J AU Monazam, ER Shadle, LJ Berry, DA AF Monazam, Esmail R. Shadle, Lawrence J. Berry, David A. TI Modeling and analysis of S-sorption with ZnO in a transport reactor SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE S-sorption; transport reactor; ZnO sorbent; H2S capture; sintering; pore closure; grain boundary model; hydrodynamics; dimensional analysis ID ZINC-OXIDE SOLIDS; HYDROGEN-SULFIDE; FLUIDIZED-BEDS; SORBENTS; TITANATE AB A mathematical model was developed to describe the sulfidation of zinc oxide sorbents in a transport reactor. The model incorporated both kinetic and hydrodynamic effects. A variable property grain model was applied to account for the kinetic reaction of hydrogen sulfide with zinc oxide. Grain radius was assumed to vary under the combined effect of sintering and extend of reaction. All model parameters were obtained from literature correlations or independent experimental measurements. The model predictions were validated against experimental data from a bench-scale transport reactor. Tests were conducted with 70 mu m ZnO particles in a nitrogen stream with 1% H2S at 2100 kPa and 811 K. The sorbent was recycled through the system to simulate 10 passes through the reactor. Significant improvement in the comparison with experimental results was achieved when compared to a constant property grain model. The model was also used to perform a sensitivity analysis on the effect of operating temperature, pressure, H2S concentration, and particle size on the hot gas desulfurization performance. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Shadle, Lawrence J.; Berry, David A.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Monazam, Esmail R.] PLLC, REM Engn Serv, Morgantown, WV 26505 USA. RP Shadle, LJ (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM lshadl@netl.doe.gov OI Shadle, Lawrence/0000-0002-6283-3628 NR 19 TC 9 Z9 9 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD MAY PY 2008 VL 63 IS 10 BP 2614 EP 2623 DI 10.1016/j.ces.2008.01.035 PG 10 WC Engineering, Chemical SC Engineering GA 309VT UT WOS:000256489000002 ER PT J AU Stringfellow, WT AF Stringfellow, William T. TI Ranking tributaries for setting remediation priorities in a TMDL context SO CHEMOSPHERE LA English DT Article DE eutrophication; TMDL; chemometric; water quality index; Wilcoxon-Mann-Whitney; diffuse pollution ID SAN-JOAQUIN RIVER; WATER-QUALITY; CALIFORNIA; BASIN; MANAGEMENT; DRAINAGE; CLASSIFICATION; CHEMOMETRICS; STANDARDS; POLLUTION AB The San Joaquin River (SJR) in the Central Valley of California has been designated an impaired waterbody based on its loss of fisheries-related beneficial uses and the river is now subject to regulation, under total maximum daily load (TMDL) rules. For impaired waterbodies, numeric standards alone may not be sufficient to establish remediation priorities and priorities must be established by comparing drainages to each other. Data collected as part of regional water quality (WQ) studies in the SJR Valley were not normally distributed, so nonparametric methods based on ranking were used to compare the WQ of individual tributaries and drainages. Normalized rank means (NRMs) were calculated from ranked data and NRMs were mapped to identify priority drainages for WQ improvement activities. NRMs for individual parameters were combined into indexes that are useful for examining the relative importance of different drainages for multiple parameters simultaneously. Indexes were developed for eutrophication and overall WQ This ranking approach is being proposed as an easily understood, transparent, and scientifically rigorous method to assess the relative WQ impact of individual drainages and set watershed remediation priorities. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Stringfellow, William T.] Univ Pacific, Sch Engn & Comp Sci, Ecol Engn Res Program, Stockton, CA 95211 USA. [Stringfellow, William T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. RP Stringfellow, WT (reprint author), Univ Pacific, Sch Engn & Comp Sci, Ecol Engn Res Program, 3601 Pacific Ave,Sears Hall, Stockton, CA 95211 USA. EM wstringfellow@lbl.gov RI Stringfellow, William/O-4389-2015 OI Stringfellow, William/0000-0003-3189-5604 NR 48 TC 9 Z9 10 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD MAY PY 2008 VL 71 IS 10 BP 1895 EP 1908 DI 10.1016/j.chemosphere.2008.01.040 PG 14 WC Environmental Sciences SC Environmental Sciences & Ecology GA 306OF UT WOS:000256257000014 PM 18328528 ER EF